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Abstract

This project investigates the application of finite difference schemes to option pricing prob-

lems. In particular, an adaptive mesh method is introduced to deal with difficulties that

arise in the numerical approximation of PDE’s in the presence of discontinuities, such as

a barrier. Compared to an equidistant mesh, this adaptive mesh method substantially in-

creases the numerical accuracy with the same number of grid points. Several finite difference

schemes for pricing American options are studied and compared both in the one dimensional

and two dimensional case. The behaviors of the price and hedge factors of various types of

barrier options and American barrier options are further studied in detail.
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Chapter 1

Introduction

1.1 Background

Over last three decades, the trading of options has grown dramatically, and now huge vol-

umes of options, worth many billions of currency units, are traded daily on global exchanges

(such as the Korea Stock Exchange, Chicago Board Options Exchange, MONEP, Eurex and

American Stock Exchange) [9], and over the counter by banks and financial institutions.

Therefore, option pricing has become increasingly important in the financial world.

Definition: An European option [24] gives the holder the right, but not the obligation,

to buy or sell an underlying asset on a date T in the future. A call option is the right to buy

at a strike price K and has a payoff of max(S −K, 0). The 0 corresponds to the scenario

where the option holder does not exercise their right to buy. A European put option, with

the same strike price, has payoff min(K − S, 0). For example, trader A purchases a call

option to buy 1 share of XYZ Corp from trader B at $50/share. If the share price of XYZ

stock rises to $60/share at T, then trader A can exercise the call and buy 1 share for $50

from trader B and sell it at $60 in the stock market, reflecting a profit of $10. If the share

price of XYZ Corp is below $50 at T, then there is no point exercising a call option and it

has value $0. Since the option buyer obtains certain rights, the buyer must pay a premium

for these rights, usually when the contract is initiated. The goal of option pricing is to

determine a fair market value for this premium.

Various Types of Options: An European option can be exercised only at the maturity

date T. American options can be exercised at any time t ≤ T . A Bermudan option [40] can

be exercised at a finite set of dates ti ≤ T . A barrier option [37] is activated (knocked in)

1



CHAPTER 1. INTRODUCTION 2

or extinguished (knocked out) when the price of the underlying asset crosses a certain level

(called a barrier). For example, an up-and-out barrier call option gives the option holder the

payoff of a call option if the price of the underlying asset does not reach a higher barrier level

before the expiration date. More complicated barrier options may have two barriers (double

barrier options). As well as barrier options, many exotic options present discontinuities.

For example, a digital option [37] is characterized by a payoff equal to 1(l < S < u) where

1 stands for the indicator function of the set A.

1.1.1 Brownian Motion

In 1973, Fischer Black and Myron Scholes published their seminal paper ’The Pricing of

Options and Corporate Liabilities’ [1], which derived the Black-Scholes Equation by assum-

ing that the underlying assets follows a geometric Brownian motion (GBM) process. The

returns on the assets are governed by the stochastic differential equation (SDE)

dSt

St
= µdt + σdWt, (1.1)

where St is the price of the underlying asset at time t, µ is the constant expected return

of the asset, and σ is the constant volatility of asset returns. Moreover, Wt is a Wiener

process, or Brownian motion. The GBM process can be relaxed for other processes such as

CEV or a mean-reverting process, although greater attention will be required in correctly

choosing the numerical method [37].

1.2 Black-Scholes Equation

This section lists a few forms of Black-Scholes equations.

Assuming an equity S follows geometric Brownian motion, the Black-Scholes equation [1]

was derived as

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1.2)

with initial condition

V (S, T ) =

max(S −K, 0) Call,

max(K − S, 0) Put,
(1.3)
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where V is the option (call, put) value, K is the strike price, r is the interest rate, and σ is

the volatility.

Consider the case when the underlying asset pays a continuous dividend [42] at some

fixed rate q. Then, the Black Scholes equation becomes

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0. (1.4)

When considering the case of an underlying asset of Forward or Future commodities [24],

the Black Scholes equation becomes

∂V

∂t
+

1
2
σ2F 2 ∂2V

∂F 2
− rV = 0. (1.5)

where F denotes the Forward (Future) price.

In general, n-factor models [42] follow the equation

∂V

∂t
+

1
2

n∑
ij

σ2
ijSiSj

∂2V

∂Si∂Sj
+

n∑
i

(r − qi)
∂V

∂Si
− rV = 0, (1.6)

where r is the risk free interest rate, qi is the dividend yield of the ith asset, t is time and

σij = σiρijσj is the covariance of the ith asset with respect to the jth asset.

1.3 Literature Review of Option Valuation Methods

This section reviews existing option valuation methods.

1.3.1 Analytic and Approximation Solutions

Many option valuation problems can be solved for closed form solutions. Black and Scholes

[1] obtained the closed form solutions for European option

C(S, t) = SN(d1)−Ke−r(T−t)N(d2)

for the call option and

P (S, t) = Ke−r(T−t)N(−d2)− SN(−d1)

for the put option. Above, the function N(·) is the standard normal distribution function,

and

d1 =
ln( S

K ) + (r + σ2/2)(T − t)
σ
√

T − t
(1.7)

d2 =
ln( S

K ) + (r − σ2/2)(T − t)
σ
√

T − t
(1.8)
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Analytic Solution of Barrier Options

Barrier options can also be solved in closed form. A typical barrier option is a down-

and-out call option, which was first solved analytically by Merton in [29]. There has been

extensive work on the pricing of double barrier options, or corridor options. Ikeda and Kuin-

tomo (1992), and Geman and Yor (1996) have developed closed form solutions for double

barrier options using quite complex mathematics. Haug [18] has developed an alternative

way to value double barrier options using the single barrier put-call transformations in

combination with some simple intuition. A closed-form formula for all types of continuous

barrier options can be found in Haug [18]. It should be mentioned that in the market, most

barrier options are monitored discretely, i.e., there is no closed form formula.

Analytic Approximation for American Options

It is possible to value perpetual American options in closed form [27]. There are quite a

few analytical approximate solutions available. An early approach is the quadratic approx-

imation of Barone-Adesi and Whaley [16]. Carr [8] introduced the randomization approach

for pricing American options, and Huang et al. [21] introduced a recursive integral-equation

method. It should be pointed out that all these analytical approximation methods still

require a certain degree of computation.

To valuate the option price numerically, there are three methods, tree methods, Monte

Carlo methods, finite difference methods.

1.3.2 Trees

The binomial tree method was suggested by Cox et al. [12], which approximates the un-

derlying stochastic process as a lattice. Convergence of this method for American and

path dependent options is proved in [26]. The binomial tree method using the fast Gauss

transform is applied to American options in Broadie and Yamamoto [7].

Binomial methods converge slowly to the correct price for the case of barrier options.

To overcome this, a trinomial tree approach is used by Boyle [3]. Figlewski and Gao [14]

introduced an adaptive mesh method that increased the number of lattice nodes near the

barrier. This greatly reduced the number of time steps required for accurate pricing.
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1.3.3 Monte Carlo

Pricing financial options by Monte Carlo simulation is described in Boyle [2]. Broadie and

Glasserman [18] obtained American option values by Monte Carlo simulation, with a high-

low bias. Longstaff and Schwartz [28] proposed a Monte-Carlo method with a least-squares

regression method, which is based on finding the value of the continuation function, or the

expected future payoff, at each time step. Metwally and Atiya [30] made use of a Brownian

bridge method for Monte Carlo simulation, which greatly increased the convergence rate.

In an attempt to reduce the complexity of pricing path dependent options, many

have used variance reduction techniques to reduce computation time [34]. Monte Carlo

simulation converges slowly but is usually easy to implement, and is still competitive for

high dimensional problems, for which other methods cannot easily be applied.

1.3.4 Finite Differences

A partial differential equation framework for option pricing has faster convergence and has

the advantage of providing the entire option value surface as well as the hedge factors, which

can be useful for risk management.

The Black-Scholes partial differential equation can be transformed into a constant

coefficient diffusion equation at which point the space discretization becomes easier [40]. The

Black-Scholes equation also has time-dependence. First-order accurate explicit and implicit

Euler schemes [40] are well-known methods for treating the temporal discretization. The

implicit scheme is only first-order accurate, but it has good stability properties. The Crank-

Nicolson method is second-order accurate in time, but it can produce undesired oscillations

[44] to numerical solutions of Black-Scholes equation. One way to improve the stability is to

use a Rannacher time-stepping scheme [33], which starts the time-stepping by a few implicit

Euler time steps and then continues with the Crank-Nicolson method.

Finite Difference Methods for American Options

The pricing of an American option is a variational inequality problem [27]. Moreover, it

can be formulated as a linear complementarity problem [37] [20]. Finite difference methods

were suggested for use in finance by Brennan and Schwartz [5]. Jaillet et al. [25] proved the

convergence of the Brennan and Schwartz method. The projected SOR method for pricing

American options is introduced in [40]. Wu and Kwok [41] introduced front-fixing methods,
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Monte Carlo Finite Difference Trees
American/Bermudan Not Great Good Good
Accuracy Not Great Good Good
High dimensional Problems Good Not Great Not Great

Table 1.1: Numerical Computational Techniques

Nielsen et al. [31] applied a nonlinear transformation to fix the boundary and solve the

resulting nonlinear problem. Zvan et al. [43] introduced the penalty method and Nielsen

et al. [32] further refined this model to a more general American type of option. Clarke

and Parrott [10] applied multigrid methods to American options on assets with stochastic

volatility.

Finite Differences Methods for Barrier Options

The discontinuities in exotic options such as Barrier options cause difficulties in obtaining

numerical results, especially hedge parameters. Boyle and Tian [4] consider an explicit finite

difference approach, which aligned grid points with barriers by constructing a grid which

lies right of the barrier. Zvan et al. [45] introduced an implicit finite difference method

for barrier options and the stability issues of discontinuous payoff. Tagliani [36] discussed

discrete monitored barrier options by finite difference schemes. Vetzal et al. [39] discussed

a general numerical approach of discrete Parisian and delayed barrier options.

In summary, one technique is not good for all problems. The three numerical techniques

are summarized in Table 1.1.

1.4 Research Objectives

This research has two objectives. The first is to investigate adaptive mesh methods for

exotic options such as barrier options. We want to improve existing methods for finding

the price and Greeks of barrier options using an adaptive mesh method. The second is to

investigate finite difference numerical methods of finding solutions for American options,

and understand behaviors of the price and hedge factors of American barrier options.
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1.5 Context

The rest of this project will be organized as follows. In Chapter 2, an adaptive mesh method

is introduced and its application to Barrier options is presented in Chapter 3. The finite

difference methods for valuating American options are investigated and behavior of hedge

factors for American barrier options is further studied in Chapter 4. Chapter 5 summarizes

the project.



Chapter 2

Adaptive Mesh Methods

In this chapter, we first describe a mechanism for generating non-uniform meshes based on

the equidistribution principle in Section 2.1. Then the so-called moving mesh method is

discussed in Section 2.2. In Section 2.3, a new adaptive mesh method is introduced.

2.1 Non-Uniform Mesh

The choice of an appropriate mesh is of high importance since it directly influences the nu-

merical error. Basically, by choosing an appropriate non-uniform mesh, which locates more

points in the regions that generate larger errors, it decreases the numerical error substan-

tially. This is the core idea of the moving mesh strategy, where the number of grid points

remains constant and only the locations of the grid points are changed with time.

2.1.1 Equidistribution Principle

De Boor’s equidistribution principle (EP) has been a popular tool for mesh generation and

adaptation [22]. The idea is to choose the coordinate transformation by equidistributing a

monitor function, M(x) > 0, which provides some measure of the computational difficulty

in the solution of the physical PDE. It can be expressed in its integral form [22] as∫ x(ξ,t)

0
M(x̃, t)dx̃ = ξθ(t),

8
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Figure 2.1: Mesh generator by De Boor’s equidistribution principle

where

θ(t) =
∫ 1

0
M(x̃, t)dx̃, ξi =

i

n
, i = 0, 1, ..., n.

In order to generate a mesh, one has to provide an adaptation function as shown in Figure

2.1(a). Figure 2.1(b) shows the location of the grid points and mesh density for the new

mesh generated by the equidistribution principle.

2.2 Moving Mesh Method

For the numerical solution of time-dependent PDEs which involve large solution variations,

a variety of moving mesh methods [23] have been shown to give significant improvements

in accuracy and efficiency over conventional fixed mesh methods. When working properly

(choosing a proper monitor function), a moving mesh method usually concentrates mesh

points at regions of rapid variation in the solution. This produces commensurate accuracy

and allows significantly larger time steps without causing instability [23]. Figure 2.2 (left)

shows computed results using an adaptive moving mesh for Burgers’ equation. Figure 2.2

(right) presents the mesh trajectories, which clearly show the concentration of grid points
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Figure 2.2: The graph of mesh adaptation of burger’s equation using moving mesh solver.(a):
The computed solution;(b): The corresponding mesh trajectories.

around the front.

2.2.1 Formulation of the Moving Mesh Method

Adaptive mesh movement is best understood by interpreting the problem in terms of a

suitable coordinate transformation [22] S = S(ξ, t) with

S : Ω = [Smin, Smax] → Ωc = [0, 1],

where Ωc and Ω are the computational and physical domains, respectively. Generally speak-

ing, this transformation is chosen such that the solution in the transformed spatial variable,

V̂ (ξ, t) = V (S(ξ, t), t),

is smooth and in principle economic to approximate using a uniform mesh on the computa-

tional domain Ωc. A corresponding moving mesh can be described as

Th(t) : Sj(t) = S(ξj , t), j = 1, ..., N

which corresponds to a fixed, uniform mesh

Tc
h(t) : ξj =

j − 1
N − 1

, = 1, ..., N
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on Ωc. A finite difference discretization of the Black-Scholes equation for V̂ (ξ, t) on this

moving mesh can be derived using the so-called quasi-Lagrange approach. The Black-Scholes

equation is transfromed from the physical domain to the computational domain using the

coordinate transformation shown below. By the chain rule,

V̂ξ = VSSξ, V̂t = Vt + VSSt,

where St = ∂S
∂t (ξ, t) denotes the mesh speed. In the new coordinates (ξ, t), the Black-Scholes

equation becomes

V̂t −
∂V̂ξ

Sξ
St =

σ2S2

2

(
V̂ξ

Sξ

)
ξ

+ (r − q)
S

Sξ
V̂ξ + rV̂ . (2.1)

2.2.2 Moving Mesh PDEs

The coordinate transformation S = S(ξ, t) is determined by solving so-called moving mesh

PDE (MMPDEs) [22]. Two popular choices are the

MMPDE5 : ẋ =
1
τ

∂

∂ξ
(M

∂x

∂ξ
),

MMPDE7 :
∂

∂ξ
(M

∂ẋ

∂ξ
)− 2

∂

∂ξ
(M

∂x

∂ξ
)/

∂ẋ

∂ξ
= −1

τ

∂

∂ξ
(M

∂x

∂ξ
),

(2.2)

where ẋ = ∂x
∂t , τ > 0 is a parameter used for adjusting the time scale of the mesh movement,

and the adaptation function M(x, t) > 0 provides some measure of the computational

difficulty in the solution of the underlying physical differential equations. A popular choice

for the adaptation function is

ρ = (1 +
1
α
|uxx|2)

1
3 , (2.3)

where α is the intensity parameter given by

α = max

{
1,

[∫ 1

0
|uxx|

2
3 dx

]3
}

.

The discrete physical PDE and the meshing process form a coupled system. The system

can be solved simultaneously and alternately. The simultaneous solution procedure has the

advantage in one-dimensional problems, while for highly nonlinear and high dimensional

problems, we usually resort to an alternate solution procedure.
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2.3 New Adaptive Mesh Approach

Although the moving mesh method has done a great job in scientific computing, the mov-

ing mesh method takes extra CPU time to deal with MMPDEs, which will slow down the

computational speed. By the property of Black-Scholes types of PDEs, the discontinuity or

sharp front that arises in the modeling of option pricing usually only lasts for short time,

and the singularity will smooth out quickly. In some cases of exotic options such as discrete

barrier options, the discontinuity occurs frequently, but it still smooths out very fast in each

interval between two monitor days. So using a pure moving mesh scheme will not provide

as much computational efficiency benefit as in many other areas of scientific modeling.

2.3.1 Persson’s Approach

Persson and Sydow [26] presented an adaptive technique to solve the Black-Scholes equation.

The basic idea is to compute the solution on two coarse meshes (with dx = 2h and dx = h),

and then compute the difference τ = Ahuh − A2hu2h, where uh and u2h are the numerical

solutions with initial grid dx = 2h and dx = h, respectively, and A is the FD operator of

Black-Scholes equation. Thereafter, the authors were able to construct a new non-uniform

mesh using the mapping function

ĥ(x) = h(x)
(

ε

εγ + |τh(x)|

) 1
p

,

which obtained a solution for the Black-Scholes equation which was twice as accurate as the

solution using an equidistant grid with the same number of grid points.

2.3.2 New Approach

To balance the efficiency and accuracy, a new idea is to combine a moving mesh method

and a non-uniform fixed mesh. This results in the following algorithm:

• Solve the problem once using a moving mesh method on a coarse grid, which automati-

cally obtains information on the physical structure of the problem with time evolution.

Give a measure π (adaptation function) to capture the numerical error distribution.

At each time step, restore the value of the measure π on each grid point.
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• Since the grid points are moving, interpolate the value of π at each time step to pre-

fixed points. Then, take a time weighted average of these values to construct a mesh

density distribution measure ρ.

• Create a new adaptive mesh based on the mesh density distribution.

• Solve the problem again with the new adaptive mesh using a fixed mesh solver.

Discretization of Black-Scholes Equation

The PDE is first discretiezed in the spatial domain, and then the resulting system of ordinary

differential equations (ODEs) is integrated using an ODE solver (ode15i in Matlab). The

main advantage of this method of lines is the separate treatments of the spatial and temporal

components of the PDE, so that attention can be focussed on each of them independently.

The partial differential equation (2.1) can then be written as

∂V̂

∂t
= LV̂ . (2.4)

where L is the FD-discretization operator.

For the spatial domain, central finite differences are used to discretize (2.1) on the

uniform computational mesh Tc
h. This yields

LV̂ =
uj+1 − uj−1

Sj+1 − Sj−1

dSj

dt
+

σ2S2
j

Sj+1 − Sj−1

[
uj+1 − uj

Sj+1 − Sj
− uj − uj−1

Sj − Sj−1

]
+(r − q)Sj

(uj+1 − uj−1)
Sj+1 − Sj−1

+ ruj . (for moving mesh)

LV̂ =
σ2S2

j

Sj+1 − Sj−1

[
uj+1 − uj

Sj+1 − Sj
− uj − uj−1

Sj − Sj−1

]
+ (r − q)Sj

(uj+1 − uj−1)
Sj+1 − Sj−1

+ ruj . (for fixed mesh)

(2.5)

where uj(t) ≈ V̂ (ξj , t) = u(Sj(t), t).

Time-integration and Time-adaptivity

For time-integration we use the backward difference formula of order two (BDF2) [19] . The

time adaptive algorithm (ode15i in Matlab) chooses time-steps automatically to keep the

local discretization error in time below or at a predefined level.



Chapter 3

Application to Barrier Options

In this chapter, we apply the adaptive mesh method to various barrier options and study

some properties and hedge factors of barrier options.

The financial markets have invented various types of barrier options, such as an

up-and-out barrier option, and a down-and-in barrier option. More complicated barrier

options may have a time-dependent barrier, may have two barriers (double barrier options),

and may have the final payoff determined by one asset and the barrier level determined by

another asset (two-dimensional barrier options).

The discontinuities present in barrier options lends to difficulties in the numerical

approximation of PDEs. Moreover, it can be shown that the sensitivities of the option

price (the Greeks) satisfy the PDE with such discontinuous conditions involving Dirac func-

tions [37].

3.1 Continuous Barrier Options

First, take the European double knock-out barrier call option with continuous monitoring

barrier as an example. Let expiration date be T=3 months, strike price K=100, volatility

σ = 40%, interest rate r=10%, dividend rate q=2%, lower barrier Hlower = 80 and upper

barrier Hupper = 120. If the underlying asset price goes above 120 or below 80 at any time

before expiry, then the option is knocked out and the holder receives $0. If the underlying

asset price is always between $80 and $120, then the payoff is standard call option payoff

max(S −K, 0).

14
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Figure 3.1: The graph of mesh adaptation at different times for the double knock-out
continuous barrier option when using moving mesh solver

3.1.1 Moving Mesh Simulation

Take the function (2.3) as the adaptation function M(x), and take MMPDE7 in equation

(2.2) for the moving mesh solver. We compute this double knock-out barrier option with

81 grid points. Figure 3.1 (a) illustrates the mesh adaptation at different times. We can

see that, initially, the solver automatically captures the steep slope area beside the upper

barrier and the angle beside the strike price, and the grid points move and are concentrated

in these two regions. Also when the physical solution smooths out, and the grid points

become more evenly distributed. Figure 3.1 (b) further illustrates the mesh density change

as the mesh moves.
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Figure 3.2: The graph of the new adaptive mesh for the double knock-out continuous barrier
option.

3.1.2 Construct New Adaptive Mesh

At each time step of the moving mesh method, we restore the value of the adaptation

function π on each grid point. Since the grid points are moving, we interpolate (using

interp1.m in Matlab) the data to 81 pre-fixed equidistant points. Then, we take a time

weight average of these values to construct ρ. Afterward, we use ρ as the mesh density

distribution. Finally, based on this density measure ρ, we are able to generate a new

adaptive mesh (see Figure 3.2). We construct a new mesh with 41, 81, 161, 321, 641, 1281

grid points within the domain of S ∈ [80, 120], which have averages ∆S=1, 0.5, 0.25, 0.125,

0.0625, 0.0313, respectively.

3.1.3 Benchmark Analytical Solution

To study the numerical errors, we take the exact solution using Ikeda and Kuintomo’s

formula [18] with first five terms of their infinite series.

3.1.4 Accuracy Analysis

Figure 3.3 shows the results calculated on this new adaptive mesh with 1281 grid points,

and average ∆S = 0.0313. It shows that the numerical algorithm gives a very accurate

result, with an error of O(10−7). The numerical error between the equidistant mesh and
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Figure 3.3: The graph of numerical results for the double knock-out continuous barrier
option using an adaptive mesh method with 1281 grid points. (a) Numerical solution; (b)
Numerical error compared to exact solution; (c) The Delta of the numerical solution; (d)
The Gamma of the numerical solution.
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∆S Equidistant Mesh Adaptive Mesh
1 1.9824e-003 2.8560e-004
0.5 4.9531e-004 1.0724e-004
0.25 1.2395e-004 2.7400e-005
0.125 3.1075e-005 7.2559e-006
0.0625 7.8510e-006 2.6619e-006
0.03125 2.1196e-006 4.7179e-007

Table 3.1: Numerical errors for the continuous barrier call option using different meshes.
Expiry date T=3 months, K=100, σ=40%, r=10%, q=2%, Hlower = 80, Hupper = 120. Both
barriers are monitored continuously.

new adaptive mesh (ρ mesh) are studied in Table 3.1. The convergence study is also shown

in Figure 3.4. From the table and the convergence log-log plot, we can see that the new

mesh has substantially increased the accuracy.

3.2 Discrete Barrier Options

In this section, we study the discrete double knock-out barrier option. For discrete barrier

options, discontinuity at the barrier occurs at each monitoring date, which brings more diffi-

culty in obtaining an accurate result. The example considered here is a call option with expi-

ration time of T=3 months, strike price K=100, volatility σ = 40%, interest rate r=10%, div-

idend rate q=2%, lower barrier Hlower = 80, and upper barrier Hupper = 120. Then the bar-

riers are monitored 10 times, i.e. at the 18th, 36th, 54th, 72nd, 90th, 108th, 126th, 144th, 162nd, 180th

day.

3.2.1 Benchmark Solution

Since the exact option values are unknown, here we choose the result using the Quasi-Monte

Carlo method, which simulates 80 million paths, as the exact solution.

3.2.2 Moving Mesh Simulation

Figure 3.5(a) shows how the moving mesh method reaches discontinuities of the barrier on

a discrete barrier option. We can see that at the beginning, most grid points move and

concentrate to the barrier region where there is a steep slope and sharp angle present. Once
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Figure 3.4: The log-log plot of the error convergence for the double knock-out continuous
barrier option using different meshes.
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Figure 3.5: The graph of the mesh adaptation at different times for the discrete barrier
option when using a moving mesh solver.

the solution of the barrier option smooths out, the grid points also smooth out and distribute

more evenly. The mesh density in Figure 3.5(b) illustrates that the mesh density goes down

as time passes.

3.2.3 Construct New Adaptive Mesh

After solving this model using a moving mesh solver, the density measure ρ is extracted.

Then, we are able to generate a new adaptive mesh as in Figure 3.6. we construct new

meshes with 41, 81, 161, 321, 641, 1281 grid points within the price range of S ∈ [48, 168],

and with average ∆S=3, 1.5, .75, 0.375, 0.1875, 0.0938, respectively.
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Figure 3.6: The graph of the new adaptive mesh for the discrete barrier option.

S Monte Carlo Equidistant Mesh Adaptive Mesh Moving Mesh
70 0.0103 0.0102 0.0101 0.0099
75 0.1022 0.1025 0.1019 0.1011
80 0.4060 0.4044 0.4047 0.4027
85 0.8730 0.8679 0.8722 0.8691
90 1.3245 1.3147 1.3245 1.3197
95 1.6515 1.6369 1.6522 1.6453
100 1.7998 1.7812 1.8009 1.7923
105 1.7403 1.7193 1.7419 1.7322
110 1.4779 1.4564 1.4797 1.4698
115 1.0700 1.0499 1.0709 1.0621
120 0.6336 0.6195 0.6352 0.6284
125 0.2985 0.2900 0.2991 0.2951
130 0.1101 0.1060 0.1101 0.1083

Table 3.2: Numerical solutions at asset price S for the discrete barrier call option using
different meshes with 641 grid points. Expiry date T=3 months, K=100, σ=40%, r=10%,
q=2%, Hlower = 80 and Hupper = 120. Both barriers are applied at the 10 monitor dates.
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∆S Equidistant Mesh Adaptive Mesh Moving Mesh
3 0.2925 0.0242 0.0714
1.5 0.1602 0.0855 0.0373
0.75 0.0824 0.0334 0.0411
0.3750 0.0402 0.0076 0.0265
0.1875 0.0225 0.0022 0.0093

Table 3.3: Numerical errors for the double knock-out discrete barrier call option using
different meshes. Expiry date T=3 months, K=100, σ=40%, r=10%, q=2%, Hlower = 80
and Hupper = 120. Both barriers are applied at 10 monitor dates.

3.2.4 Accuracy Analysis

With 641 grid points, the numerical solutions using a moving mesh, an adaptive mesh, an

equidistant mesh and a Monte Carlo method are displayed in Table 3.2. The numerical

errors using different meshes are shown in Table 3.3. As well, the point-wise errors are

compared in Figure 3.7 and an error convergence log-log plot is presented in Figure 3.8.

We can see that the new adaptive mesh obtains solutions with quadratic convergence, and

the solutions are about five times more accurate than the results for an equidistant mesh.

Furthermore, the new adaptive mesh method performs even better than the moving mesh

method when using a large number of grid points, though it underperforms when the number

of grid points is small.

3.3 Moving Barrier Options

A more challenging problem is the discrete and moving barrier case. Consider a double

discrete moving barrier call option as an example. Let expiration time be T=3 months,

strike price K=100, volatility σ = 40%, interest rate r=10%, dividend rate q=2%, lower

barrier Hlower = 80, and upper barrier Hupper = 120, where both barriers move outward

one unit at each monitor day. Also, the barriers are monitored 10 times as in the previous

plain discrete barrier case.

Again, we construct new adaptive meshes with 41, 81, 161, 321, 641 and 1281 grid points

points separately (see Figure 3.9 for 161 points). The benchmark solutions are obtained

by 80 million Quasi-Monte Carlo paths.
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Figure 3.7: The graph comparing point-wise errors for the discrete barrier option using
different meshes.
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Figure 3.8: The log-log plot of the error convergence for the discrete barrier option using
different meshes.

Figure 3.9: The graph of the new adaptive mesh for the moving discrete barrier option
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S Monte Carlo Equidistant Mesh Adaptive Mesh Moving Mesh
70 0.1188 0.1181 0.1179 0.1179
75 0.3562 0.3546 0.3560 0.3546
80 0.7013 0.6982 0.7014 0.6982
85 1.1101 1.1058 1.1103 1.1059
90 1.5307 1.5228 1.5290 1.5231
95 1.8880 1.8785 1.8863 1.8791
100 2.1169 2.1058 2.1150 2.1070
105 2.1736 2.1609 2.1709 2.1626
110 2.0460 2.0332 2.0433 2.0354
115 1.7568 1.7442 1.7536 1.7469
120 1.3528 1.3413 1.3496 1.3450
125 0.9079 0.8989 0.9056 0.9035
130 0.5153 0.5084 0.5133 0.5131

Table 3.4: Numerical solutions at asset price S for the moving discrete barrier call option
using different meshes with 641 grid points. Expiry date T=3 months, K=100, σ=40%,
r=10%, q=2%, Hlower = 80 and Hupper = 120. Both barriers move outward one unit at
each of the 10 monitor dates.

3.3.1 Accuracy Analysis

The numerical solutions with 641 grid points for these methods as well as Monte Carlo

method are presented in Table 3.4. The infinity norm of the numerical errors on different

meshes is shown in Table 3.5 and their point-wise numerical errors illustrated in Figure

3.10. We can see that the results with the new adaptive mesh are considerably better than

the equidistant mesh, while the new adaptive ρ mesh even outperforms the moving mesh

method, though it is better than the equidistant mesh. Figure 3.11 further illustrates the

error convergence study for these three methods.

Remark: From the case of the discrete barrier and moving discrete barrier option, we

noticed that the new adaptive mesh method outperforms the moving mesh method, and

of course outperforms uniform mesh methods as well. It is speculated that this occurs

because the barrier option smooths out after each monitor day. In the case of a moving

mesh method, as time moves forward, grid moving will not increase the accuracy, but rather

introduce additional error when doing the interpolation.
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∆S Equidistant Mesh Adaptive Mesh Moving Mesh
3 0.1938 0.0318 0.0894
1.5 0.1099 0.0161 0.0740
0.75 0.0516 0.0101 0.0330
0.375 0.0279 0.0062 0.0143
0.1875 0.0137 0.0035 0.0117

Table 3.5: Numerical errors for the moving discrete barrier call option using different meshes.
Expiry date T=3 months, K=100, σ=40%, r=10%, q=2%, Hlower = 80 and Hupper = 120.
Both barriers move outward one unit at each of the 10 monitor dates.

Figure 3.10: The graph comparing point-wise errors for the moving discrete barrier call
option using different meshes.
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Figure 3.11: The log-log plot of the error convergence for the moving discrete barrier option
using different meshes.

3.4 Further Study of Discrete Barrier Options

This section further studies the discrete barrier options, and mainly focuses on the influence

of interest rate, dividend rate, volatility, monitoring frequency and hedge factors (Delta,

Gamma, Vega, Rho). All the examples in this section are considering a double knock-out

call option with expiry date T=3 months, strike price K=100, lower barrier Hlower = 80 and

upper barrier Hupper = 120 with 30 monitoring days. The volatility, interest and dividend

rates differ in each example.

3.4.1 Influence of the Dividend Rate on Discrete Barrier Options

Take a double knock-out call option with interest rate r= 10%, volatility σ = 40%, and

dividend rate q=2%, 6%, 10%, 14%, 18% separately. The results are presented in Figure

3.12. It is clear that as the dividend rate increases, the value of the option decreases. This

matches the financial meaning, the payout dividend rate decreases the value of an option.

3.4.2 The Hedge Ratios of Discrete Barrier Options

This subsection focuses on the hedge factors (Delta, Gamma, Vega, Rho) of the discrete

barrier options.
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Figure 3.12: The graph of the influence of the dividend rate on the discrete barrier option.

The Delta factor is approximated by

∂V

∂S
≈ Vi+1 − Vi−1

Sj+1 − Sj−1
, (3.1)

the Gamma factor is approximated by

∂2V

∂S2
≈ 2

Sj+1 − Sj−1

[
Vj+1 − Vj

Sj+1 − Sj
− Vj − Vj−1

Sj − Sj−1

]
, (3.2)

the Rho factor is approximated by

∂V

∂r
≈ V (ri+1)− V (ri−1)

2∆r
, (3.3)

and the Vega factor is approximated by

∂V

∂σ
≈ V (σi+1)− V (σi−1)

2∆σ
. (3.4)

The Greek Delta

Take the case where the dividend rate q=2%, interest rate r=10%, volatility σ=40%, and

consider when the option is close to maturity. Here we capture the Delta at times t=0.005,

0.001, 0.015, 0.02, 0.025 years, respectively. The results are shown in Figure 3.13. From the

plot, we see that the option value becomes more and more sensitive as time approaches the

expiry date. As well, the value of Delta is largest at the location of the upper barrier. When
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Figure 3.13: The graph of Delta for the discrete barrier option.

the underlying asset price is around the strike price, Delta is positive. However, when the

asset price rises and is near the upper barrier, Delta becomes negative, due to the risk of

hitting the barrier.

The Greek Gamma

Taking the same case considered in the previous example, we display Gamma at time

t=0.005, 0.001, 0.015, 0.02, 0.025 years in Figure 3.14 (left). Figure 3.14 (right) gives a

closer look at Gamma. It is apparent that when time is closer to the expiry date, Gamma is

much higher, which means Delta is more sensitive. Moreover, Gamma gives a higher value

when the asset price is close to strike price and a few units away from the upper barrier.

Within the range from the strike price and the upper barrier, Gamma is almost negative,

while outside this range, it is positive.
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Figure 3.14: The graph of Gamma for the discrete barrier option.

Influence of the Interest Rate on Discrete Barrier Options and the Greek Rho

Figure 3.15 presents the results with fixed dividend rate q=5% and interest rate r=2%,

6%, 10%, 14%, 18%. Figure 3.16 further illustrates the Greek Rho for the discrete barrier

option when interest rate r=6%, 10%, 14%. From the graph, we see that option value is

positively correlated to the interest rate when it is out the money, but it is negatively corre-

lated to the interest rate when it is in the money. This is due to the risk of hitting the barrier.

Influence of Volatility on Discrete Barrier Options and the Greek Vega

Consider a double knock-out call option with interest rate r=10%, dividend rate q=2% and

volatility σ=10%, 20%, 30%, 40%, 50%, 60%. From Figure 3.17, we find that as the volatil-

ity increases, the value of the discrete barrier option decreases. This can be explained by

the diffusion term 1
2σ2S2 ∂2V

∂S2 in the Black-Scholes equation. Since volatility is the coefficient

of the diffusion term, increasing volatility will enlarge the effect of diffusion. Figure 3.18

shows the value of Vega for the discrete barrier option. In the case that the volatility is low,

the option value is positively correlated to the volatility when the underlying asset price is

less than the strike price. However, as the asset price goes up, Vega becomes negative since

the option faces more risk of hitting the barrier. In the case that volatility is high, Vega

almost becomes negative. This happens since the risk of hitting the barrier is high at high
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Figure 3.15: The graph of the influence of the interest rate on the discrete barrier option

Figure 3.16: The graph of Rho for the discrete barrier option
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levels of volatility.

3.4.3 Effect of Monitoring Frequency on Discrete Barrier Options

This subsection studies the effect of the monitor frequency on the value of the discrete

barrier option.

Consider a double knock-out call option with expiry date T=3 months, strike price

K=100, volatility σ = 40%, interest rate r=10%, dividend rate q=2%, lower barrier Hlower =

80, upper barrier Hupper = 120, and discrete monitoring frequency of 10, 20, 40, 80, 160,

320 times. Figure 3.19 shows that the option value converges as the monitoring frequency

rises.

Broadie et.al [6] proved that the price Vm(H) of a discrete barrier option with m moni-

toring points can be approximated by a continuous barrier option V (H) as

Vm(H) = V (He±βσ
√

T/m) + o(1/
√

m), (3.5)

with + for an up barrier option and - for a down barrier option. Above, the constant β is

β = −(ζ(1/2)/
√

2π) ≈ 0.5826,

where ζ is the Riemann zeta function.

Table 3.6 illustrates the numerical difference between the discrete barrier option value

and the continuous barrier option with barrier shifted by exp(βσ
√

T/m). The difference

seems to decrease linearly in 1√
m

. The higher ratio for cases with m=320 and 640 times can

be explained by the numerical error that was caused by too many discontinuities in cases of

high monitoring frequency. The log-log plot in Figure 3.20 provides further support for the

linearity.

3.5 Conclusions

An adaptive mesh method has been developed for efficiently dealing with the Black-Scholes

equation for various types of barrier options. The adaptive meshes are chosen such that

the mesh nodes are relocated in the regions which involve large numerical errors, which

will reduce the final global error substantially. The algorithm automatically selects the grid

by using a moving mesh solver, which runs in a coarse mesh and obtains the structure of
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Figure 3.17: The graph of the influence of the volatility on the discrete barrier option.

Figure 3.18: The graph of Vega for the discrete barrier option.



CHAPTER 3. APPLICATION TO BARRIER OPTIONS 34

Figure 3.19: The graph comparing continuous barrier options with discrete barrier options.

m Error 1√
m

Ratio
10 0.4145 0.3162 1.3107
20 0.2954 0.2236 1.3211
40 0.2090 0.1581 1.3221
80 0.1490 0.1118 1.3325
160 0.1080 0.0791 1.3662
320 0.0807 0.0559 1.4432
640 0.0673 0.0395 1.7025

Table 3.6: Discrete barrier option monitoring frequency convergence. T=3 months, K=100,
σ=40%, r=10%, q=2%, Hlower = 80 and Hupper = 120. The barriers are monitored dis-
cretely with frequency m=10, 20, 40, 80, 160, 320 times, respectively; the ’Error’ is the
difference of the value of discrete barrier and it’s continuous modification (3.5); the ’Ratio’
is the ratio of ’Error’ and ’ 1√

m
’.
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Figure 3.20: The log-log plot of the convergence of discrete barrier options to continuous
barrier option versus the monitoring frequency m.

the solution for an option model. The method has been tested successfully for problems

with three different types of barrier option. The moving mesh method performs best when

using few grid points, since it automatically moves the grid points to the right locations at

each time step, which reduces the numerical error. However, as the number of grid points

increase, it does not have this advantage, since the singularity smooths out as time evolves.

The adaptive mesh method combines the merit of moving mesh method and the efficiency

of fixed mesh methods. It is able to obtain more accurate solutions without taking much

additional computational time. In order to give insight into hedging discrete barrier options,

we did several numerical simulations to further study the hedge factors for discrete barrier

options.



Chapter 4

American Options

This chapter investigates several finite difference numerical methods for valuating American

options in both one-dimension and two dimension cases. Then, the price behavior and

hedge factors of American barrier options with continuous and discrete barriers are further

studied.

4.1 Formulation of American Option Models

An American style derivative is a contract whose cash flows can be influenced by the holder

of the derivative. The holder affects the cash flows of the contract through an exercise

strategy. The optimal exercise strategy is the one which will provide the holder of the

option with the maximum value.

The pricing of American options is a similar physical phenomenon to the obstacle prob-

lem. The obstacle problem arises when an elastic string, which is fixed at two ends A and

B, passes over a smooth object which protrudes between the two ends (Figure 4.1).

Similarly, for American put options, the obstacle is the payoff function max(K − S, 0).

The pricing of American options can be formed into a linear complementarity problem. For

36
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Figure 4.1: Obstacle Problem.

example, an American put option can be formularized [40] [20] by the following equation:

for S < Sf (t) : V (S, t) = K − S and

∂V
∂t + 1

2σ2S2 ∂2V
∂S2 + (r − q)S ∂V

∂S − rV < 0,

for S > Sf (t) : V (S, t) > K − S and

∂V
∂t + 1

2σ2S2 ∂2V
∂S2 + (r − q)S ∂V

∂S − rV = 0

boundary condition: limS→∞ V (S, t) = 0

V (Sf (t), t) = K − Sf (t)

VS(Sf (t), t) = −1

initial condition: V (S, T ) = max(K − S, 0)

where V is the option value, K is the strike price, S is the underlying asset price and Sf (t)

is the optimal exercise boundary.
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Figure 4.2: The graph of optimal exercise boundary for American put options in case of
r > q, r = q, r < q.

4.2 Optimal Exercise Boundary

The free boundaries (optimal exercise boundary) Sf (t) relates to the optimal exercise strat-

egy, which will provide the holder of the option with the maximum value. The free boundary

separates the region where it is optimal to exercise the option from the region and where it

is optimal to hold the option.

Although closed form solutions for the American option optimal exercise boundary do

not exist, several analytical approximations near expiry have been derived. Kuske et al.

[13] derived an analytical approximation of the optimal exercise boundary near expiry. Re-

cently, a iterative numerical algorithm has been introduced by several authors (Coman [11]),

which is based on using an initial free boundary approximation and then doing several iter-

ations with the transformed Black-Scholes equation. The sequence of boundaries converge

monotonically to the optimal exercise boundary. Figure 4.2 illustrates the optimal exercise

boundary obtained by Coman’s iterative algorithm.

4.3 Numerical Schemes for Valuating American Options

In this section, we discuss finite difference schemes for valuating American options. Numer-

ical experiments are provided to illustrate the convergence behavior and runtime speed of



CHAPTER 4. AMERICAN OPTIONS 39

these methods.

4.3.1 The Schemes

The finite difference numerical methods studied in this section are the Brennan Schwartz

scheme [5], the projected successive over-relaxation algorithm [40], the penalty scheme in-

troduced by Zvan et al. [43] and explicit front fixing method introduced by H. Han and X.

Wu [17].

4.3.2 Comparison of Finite Difference Schemes

This subsection studies the convergence behavior providing insight into the FD methods as

presented. We consider an American put option with expiry date T=2 years, strike price

K=5, volatility σ=25%, interest rate r=10% and dividend rate q=15%. All the algorithms

are implemented using MATLAB for testing purposes, and the computations are carried

out on a 4× 1.1 Ghz SunFire V440 machine with 8 GB of RAM. For all these schemes we

did the numerical experiments with 21, 41, 81, 161, 321, 641, 1281 equidistant grid points

within domain S ∈ [0.6767, 20].

Benchmark Solution

Since the exact option values are unknown, we use the binomial method with large steps

(80000) to find the option values. The results of the binomial method with large steps

are considered very accurate. Thus we take these values as the exact option values for the

purpose of comparison.

Accuracy Analysis

Table 4.1 lists the numerical solutions using a mesh with 641 grid points. The solutions

using the binomial tree method are also displayed for comparison. Table 4.2 shows the

numerical errors and its log-log plot is further illustrated in Figure 4.3. We notice that all

these finite different schemes are very accurate, since they obtain an error of O(10−4) with

only 81 grid points. We also notice that the penalty scheme out performs other schemes and

has a quadratical convergence rate, which matches the quadratical convergence conclusion

in [15]. The PSOR method converges similarly to the penalty method, though its error is
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S BinTree PSOR BS PNLTY FRONT

2 3 3 3 3 3
3 2.0525 2.0525 2.0525 2.0525 2.0525
4 1.3297 1.3297 1.3296 1.3297 1.3296
5 0.82151 0.82151 0.82151 0.82151 0.82149
6 0.49101 0.491 0.491 0.49101 0.491
7 0.28779 0.28778 0.28779 0.28779 0.28779
8 0.16709 0.16708 0.16709 0.16709 0.16709
9 0.096769 0.096754 0.096772 0.096772 0.096771
10 0.056161 0.056137 0.056163 0.056163 0.056162

Table 4.1: Numerical solutions for finite difference schemes and binomial tree method for
American put option with T=2 years, K=5, σ=25%, r=10% and dividend rate=15%. ’Bin-
Tree’ denotes binomial tree method, ’PSOR’ denotes projected successive over-relaxation
algorithm, ’BS’ denotes Brennan Schwartz scheme, ’PNLTY’ denotes penalty scheme,
’FRONT’ denotes explicit front tracking scheme. The results were computed on a equidis-
tant mesh with 641 grid points.

∆S PSOR BS PNLTY FRONT

1 1.0401e-002 1.0400e-002 1.0401e-002 1.0400e-002
0.5 4.7861e-003 4.8158e-003 4.7860e-003 4.8158e-003
0.25 6.5912e-004 6.6478e-004 6.5894e-004 6.6478e-004
0.125 1.4875e-004 1.8870e-004 1.4875e-004 1.8870e-004
0.0625 6.9414e-005 1.1979e-004 6.9412e-005 1.1979e-004
0.03125 3.7202e-005 5.7175e-005 3.7202e-005 5.7560e-005
0.015625 2.4651e-005 5.6157e-005 1.9902e-005 5.6157e-005

Table 4.2: Numerical errors for finite difference schemes compared to binomial tree method
using equidistant meshes with 21, 41, 81, 161, 321, 641, 1281 grid points, respectively.
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Figure 4.3: The log-log plot of numerical error convergence for the American put option
using different finite difference schemes.
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Grid Points SOR BS PNLTY FRONT

21 3.751 1.8967 3.8709 2.0616
41 13.274 6.4778 17.38 6.0646
81 30.315 17.699 35.868 15.732
161 62.63 34.083 77.072 34.875
321 124.67 81.013 217.15 56.286
641 1293.5 172.43 598.89 186.9
1281 4960.8 527.41 1740.1 526.93

Table 4.3: CPU time (in seconds) used for finite difference schemes for solving the one
dimensional American put option.

a little bit higher when the number of grid points is large. The Brennan Schwartz scheme

and the explicit front tracking scheme perform quite similarly, but they both have much

higher error than the penalty scheme. The numerical error for these two schemes also tends

to converge slower as the grid points increase.

Runtime Comparisons

The CPU time of each of these schemes are shown in Table 4.3 with its log-log plot illustrated

in Figure 4.4. We find that the explicit front tracking scheme is a little bit faster than the

Brennan Schwartz scheme, and they are both much faster than the other two schemes.

The runtime of the penalty scheme increases similarly compared to the Brannan Schwartz

scheme, as the number of grid points increases, though it takes more time computing. The

PSOR scheme is not so slow when using fewer grid points, but slows down substantially

when the number of grid points are increased.

Two Dimensional Case

In order to give further insight into the runtime speed of these finite difference schemes, we

consider a two asset American basket option with expiry date T=1 year, strike price K=20,

interest rate r=10%, asset S1 with volatility σ1=40%, dividend rate q1=3%, asset S2 with

volatility σ2=40%, dividend rate q2=3% and correlation ρ(S1, S2) = −0.7. The resulting

Black-Scholes equation has the form as in equation (1.5). The initial value is taken as

V0 = max(max(S1, S2)−K, 0). The space domain is (S1, S2) ∈ [1, 40]× [1, 40].
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Figure 4.4: The log-log plot of runtime comparisons for the American put option using
different finite difference schemes.

Since the explicit front tracking scheme can only be applied in the one dimensional case,

we compare the PSOR scheme, the Brennan Schwartz scheme and the penalty scheme. The

penalty scheme is combined with the large linear system solver conjugate gradients squared

method (CGS) [35] and biconjugate gradients stabilized method (BiCGstab) [38]. The CPU

time expense of each of these schemes is presented in Table 4.4.

We notice that as the number of grid points increases, the CPU time used by the Brennan

Schwartz scheme substantially grows. The CPU time used by the PSOR scheme does not

grows as fast as the Brennan Schwartz scheme, but it is much larger than that of the penalty

scheme with BiCGstab and CGS. We also noticed that the CGS scheme performs a little

bit better than the BiCGstab scheme.

Remark:

For solving one dimensional American option models, when using a small number of grid

points, the Brennan Schwartz scheme and the explicit front tracking scheme are better

candidates which spend less CPU time. However, when we require higher accuracy, i.e.,
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Grid Points BiCGstab CGS PSOR BS
11× 11 20.564 15.327 9.0695 7.4644
21× 21 17.983 14.545 37.863 88.547
41× 41 26.907 19.582 147.7 2154.5
81× 81 108.76 91.323 854.05 77798

Table 4.4: CPU time (in seconds) used for finite difference schemes for solving the two
dimensional American option. ’BiCGstab’ denotes penalty scheme with BiCGstab solver,
’CGS’ denotes penalty scheme with CGS solver, ’PSOR’ denotes projected successive over-
relaxation algorithm, ’BS’ denotes Brennan Schwartz scheme.

more grid points, the penalty would be a good choice. For solving higher dimensional

American option models, the penalty methods seemed to be more flexible and efficient,

where the modern large sparse algebraic solvers, such as BiCGstab or CGS, can be applied.

Although the Brennan Schwartz scheme performs well in the one-dimensional case, it is not

a good choice in higher dimensional models.

4.4 American Barrier Option

In this section, we study the American barrier options. We mainly focus on the influence

of a continuous monitoring barrier and a discrete monitoring barrier on option value and

hedge factors (Delta, Gamma, Vega, Rho) for American barrier options.

4.4.1 Numerical Scheme

All the numerical results are computed using the penalty scheme [43]. Since we have not

been able to apply the adaptive mesh method to American option, in order to concentrate

more points around the barrier and strike price, we use the following function as the mesh

density distribution measure:

ρ = 1 + 3(1− tanh(40(S −K))2) + 6(1− tanh(40(S −H))2),

where K is the strike price, H is the barrier. The resulting non-uniform mesh is shown in

Fig 4.5. For the time-integration we use BDF2 [19].

For computing the hedge factors we use the same formula as in equations 3.1 ∼ 3.4.
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Figure 4.5: The graph of the non-uniform mesh for the American put barrier option.

All the examples in this section are computed on a non-uniform mesh with 641 grid points

and consider an American up-and-out barrier put option with expiry date T=2 years, strike

price=5 and dividend rate=15%. The volatility, interest rate and knock out barrier change

from case to case.

4.4.2 American Option Value with and without Barriers

We take volatility=40%, interest rate=10% and knock out barrier H=6. Figure 4.6 illustrates

the numerical solutions for a regular American put option, a continuous monitored American

put barrier option, and a discrete monitored American put barrier option. From the graph

we find that the option value of the regular American put option is greater than the ones

with discrete barriers. As well, the put with a discrete barrier is greater than that with

discontinuous barriers. Figure 4.7 further shows the value of Delta for these three options.

We find that the price of the continuous barrier put option is the least sensitive and that the

value of Delta for the discrete barrier put option is smaller than that of a regular American

put when the underlying asset price is small, while it is greater when the option is deep in

the money.
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Figure 4.6: The value of the American barrier put option.

Figure 4.7: The value of Delta of the American barrier put option.
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Figure 4.8: The influence of the barrier on the American put option price. The barriers are
continuously monitored, where H=[5.5, 6, 8, 10].

4.4.3 Influence of Barrier on the American Option Value, Delta and

Gamma

This subsection studies the influence of the barrier on the price and hedge factors Delta and

Gamma of American options.

Continuous Barrier Case

Firstly, consider an American put option with continuously monitored knock-out barrier H

at 5.5, 6, 8, 10 separately. Figure 4.8 presents the numerical results with these different

barriers. We find that as the barrier moves outward, the value of the American option also

increases and the option value becomes closer to a regular American put option with the

same parameters.

Discrete Barrier Case

Consider an American put option with discretely monitored knock-out barrier H which takes

values 5.5, 6, 8, 10 separately. These barriers are monitored at 10 discrete times. Figure 4.9

displays numerical solutions for these options. Figure 4.10 and Figure 4.11 further illustrate

the influence of monitoring barrier on the value of Delta and Gamma for American discrete

barrier options. We notice that Delta is twisted when the barrier is closed to strike price. As
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Figure 4.9: The influence of the discrete barrier on the American put option price. The
barriers discretely monitored at 10 monitoring dates, where H=[5.5, 6, 8, 10].

the barrier moves outward, Delta becomes flatter and approaches to the shape of a regular

American option. We also find that Gamma has the highest value between S=2 and S=3,

which is the region of free boundary. Moreover, for each case, Gamma also gives high values

around its barriers.

4.4.4 Other Hedge Ratios of American Discrete Barrier Option

This subsection studies the hedge ratios of Rho and Vega for American Discrete Barrier

Options.

The Greek Rho

Consider an American put option with knock-out barrier H=6 which has 10 monitoring

dates, volatility=40%, and interest rates 5%, 7%, 9%, 11%, 13%, 15%. Figure 4.12 illus-

trates the Greek Rho with interest rate= 7%, 9%, 11%, 13%. We notice that all Rho are

negative, which tells us that the put option value is negatively correlated to the interest

rates. Furthermore, Rho has higher absolute value when interest is smaller, meaning that

the option has higher sensitivity when the interest rate is small. It also suggests that the

option value is more sensitive when the underlying asset price is close to the strike price,

while less sensitive when it is deep in the money or deep out of the money. Moreover,
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Figure 4.10: The influence of the barrier on the value of Delta for the American discrete
barrier options.

Figure 4.11: Influence of the barrier on the value of Gamma for American discrete barrier
options.
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Figure 4.12: The value of Rho for American discrete barrier options.

we notice the phase shift of Rho which means that when the interest rate increases, the

maximum point of Rho is shifted to the right. This probably results from the effect of the

barrier.

The Greek Vega

We take an American put option with knock-out barrier H=6 which has 10 monitoring

dates, and volatility=20%, 30%, 40%, 50%, 60%. Figure 4.13 shows the value of Vega for

the discrete barrier option. We find that all the value of Vega are positive, which means

that the option value is positively correlated to the volatility. We also notice that in the

case of lower volatility, the sensitivity of the option value is higher when it is at the money,

while lower when it is deep in the money or deep out of the money.

4.5 Conclusions

In this Chapter we investigated the projected successive over-relaxation scheme, the penalty

scheme, the Brennan Schwartz scheme and the explicit front fixing scheme when applied to

pricing American put options. These finite differences schemes have been shown to be able

to obtain accurate solutions for American options. We found that, in case of one dimensional
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Figure 4.13: The value of Vega for American discrete barrier options.

American option models, when using a small number of grid points, the Brennan Schwartz

scheme and the explicit front tracking scheme are good candidates which spend less CPU

time, while the penalty scheme outperforms as the number of grid points increases.

For solving higher dimensional American option models, the penalty scheme seemed to

be more flexible and efficient, since modern large sparse algebraic solvers, such as BiCGstab

or CGS, can be applied. Although the Brennan Schwartz scheme performs well in the one

dimensional case, it is not a good choice in higher dimensional models.

In order to give insight into hedging American options, we did several numerical simula-

tions to further study the hedge factors for American options with continuous and discrete

monitoring barrier.
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Conclusion

There are four ways of determining the arbitrage-free value of the option: 1) Analytic and

approximation solutions; 2) Binomial tree method; 3) Monte Carlo simulation; 4) Partial

differential equation framework. The PDE option pricing framework has a faster convergence

and has the advantage of providing the entire option value surface as well as the hedge

factors, which can be useful for risk management.

In this project, we investigated the application of finite difference schemes to option

pricing problems, especially the barrier option and American option pricing problems. For

the purpose of comparison, a Monte Carlo method and a binomial tree method are also

implemented for pricing barrier options and American options.

In the case of barrier options, the Black-Scholes equation involves discontinuities, which

is known to cause difficulties in obtaining accurate results. To deal with this difficulty, we

introduced a new adaptive mesh method. We not only implemented the adaptive mesh

method for continuous barrier options but also extended it to cases when the barrier is

discretely monitored and the barrier is time dependent. The big advantage of this method

is that the mesh nodes are relocated in the regions which involve large numerical errors,

which will reduce the global error substantially. The algorithm automatically selects the

grid by using a moving mesh solver, which ran for a coarse mesh and obtained the structure

of the solution for an option model. The method has been tested successfully for problems

with three different types of barrier options. The adaptive mesh method combines the merit

of the moving mesh method and the efficiency of fixed mesh methods. It is able to obtain

more accurate solutions without taking much additional computational time. By using the

adaptive mesh method, we also did several numerical simulations to give insight into to the
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price and hedge of discrete barrier options.

In the case of American options, we investigated several finite difference methods, i.e.,

the projected successive over-relaxation scheme, the penalty scheme, the Brennan Schwartz

scheme and the explicit front fixing scheme. During several tests, these finite differences

schemes have shown to be capable tools for pricing American options. Moreover, we found

that for one-dimensional American option models, when using a small number of grid points,

the Brennan Schwartz scheme and the explicit front tracking scheme are good candidates

which spend less CPU time, while the penalty scheme outperforms as the number of grid

points increases. For solving higher dimensional American option models, the penalty meth-

ods seemed to be more flexible and efficient, since modern large sparse algebraic solvers,

such as BiCGstab or CGS, can be applied. Although the Brennan Schwartz scheme per-

forms well in the one-dimensional case, it is not a good choice in higher dimensional models.

Finally, to give insight into finite difference numerical methods to price and hedge American

options, we did several numerical simulations for hedging factors of American put options

with barriers.

5.1 Suggestions for Future Research

Finding an optimized adaption function, which gives a good measure of numerical error

distribution, still offers potential for further improvements regarding accuracy. It would

be of great interest to know how the adaptive mesh method applies to American exotic

options models. It is also interesting to further investigate the performance of adaptive

mesh methods for higher dimensional problems and jump-diffusion models.
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