
THE CLOSEST POINT METHOD FOR

TIME-DEPENDENT PROCESSES ON SURFACES

by

Colin B. Macdonald

B.Sc., Acadia University, 2001

M.Sc., Simon Fraser University, 2003

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

Department of Mathematics

c© Colin B. Macdonald 2008

SIMON FRASER UNIVERSITY

Summer 2008

Some rights reserved. This work may not be reproduced in whole or in part, by photocopy or other

means, without permission of the author, except for scholarly or other non-commercial use for

which no further copyright permission need be requested.

APPROVAL

Name: Colin B. Macdonald

Degree: Doctor of Philosophy

Title of thesis: The Closest Point Method for Time-dependent Processes on

Surfaces

Examining Committee: Dr. JF Williams

Chair

Dr. Steven J. Ruuth

Senior Supervisor

Dr. Robert D. Russell

Supervisor

Dr. James H. Verner

Supervisor

Dr. Torsten Möller

Internal Examiner

Dr. Hong-Kai Zhao

External Examiner

Date Approved:

ii

Abstract

This thesis concerns the numerical solution of time-dependent partial differential equations

(PDEs) on general surfaces using a recent technique known as the Closest Point Method.

The Closest Point Method represents surfaces with a closest point representation which

leads to great flexibility with respect to surface geometry, among other advantages. The

computation itself alternates between two steps: first, an explicit time step is performed

using standard finite difference techniques on a narrow band of grid points surrounding

the surface embedded in a higher dimension; second, a closest point extension is used to

maintain consistency with the original surface PDE.

The Closest Point Method is applied to the important problem of interface motion

on surfaces by using level set equations posed on surfaces. New weighted essentially non-

oscillatory (WENO) interpolation schemes are derived to perform the necessary closest point

extensions. This approach, in combination with standard Hamilton–Jacobi WENO finite

difference schemes and explicit time stepping, gives high-order results (up to fifth-order)

on a variety of test problems. Example computations are performed on a sphere, torus,

triangulated human hand and Klein bottle to demonstrate the flexibility of the method.

A new implicit Closest Point Method is presented for surface PDEs which are stiff, for

example, because of diffusion terms. The method uses implicit time-stepping schemes to

allow large steps but retains the flexibility with respect to surface geometry of the original

explicit Closest Point Method. Numerical convergence studies on the heat equation and a

fourth-order biharmonic problem demonstrate the accuracy of the method and a variety of

example computations demonstrate its effectiveness. These include an image processing ex-

ample of blurring on triangulated surfaces, heat diffusion on a surface consisting of multiple

components connected by a thin filament and Turing pattern formation on surfaces using

implicit–explicit (IMEX) time stepping.

iii

A class of time-stepping methods known as diagonally split Runge–Kutta (DSRK) meth-

ods is investigated. These methods appear promising because they offer both high-order

convergence and unconditional contractivity (a nonlinear stability property). However, nu-

merical computations and analysis of stage-order demonstrates that unconditionally con-

tractive DSRK methods suffer from order reduction which severely limits their practical

application.

Keywords:

Closest Point Method; level set methods; surface computation; implicit surfaces; partial

differential equations; WENO schemes; time stepping; implicit time stepping; biharmonic

operator; diagonally split Runge–Kutta methods; strong stability preserving

iv

Acknowledgments

The research behind this thesis was supported financially by an NSERC postgraduate schol-

arship, NSERC grants, the C.D. Nelson Memorial scholarship and the PIMS Graduate Fel-

lowship.

I thank my supervisor Steve Ruuth for introducing me to the Closest Point Method and

for his enthusiasm. Special thanks also to my collaborator Sigal Gottlieb.

Finally, I thank my wife and my family for their support.

v

Contents

Approval ii

Abstract iii

Acknowledgments v

Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Numerical Partial Differential Equations . 1

1.1.1 The method of lines . 1

1.1.2 Linear problems . 2

1.1.3 Hamilton–Jacobi equations . 3

1.1.4 Hamilton–Jacobi WENO . 4

1.2 Time Stepping . 4

1.2.1 Runge–Kutta methods . 5

1.2.2 Implicit linear multistep methods . 6

1.2.3 IMEX schemes . 7

1.3 Consistency, Stability and Convergence . 8

1.4 Strong Stability Preserving Time Stepping . 9

1.5 Interpolation . 9

1.5.1 1D polynomial interpolation . 10

vi

1.5.2 Barycentric Lagrange interpolation . 11

1.5.3 Higher dimensional interpolation . 11

1.5.4 Nonlinear interpolation . 11

1.6 Surfaces . 12

1.6.1 Partial differential equations on surfaces 12

1.6.2 Representations of surfaces . 13

1.6.3 Closest point representation of surfaces 13

1.6.4 Equivalence of gradients . 15

1.7 The Closest Point Method . 17

1.7.1 The explicit Closest Point Method . 17

1.7.2 Closest point extension and interpolation 19

1.7.3 Banding and bandwidth . 19

1.8 Outline of Thesis Contributions . 20

2 Level Set Equations on Surfaces 22

2.1 Level Set Methods . 22

2.1.1 Computing level sets on surfaces . 24

2.2 WENO Interpolation . 25

2.2.1 One-dimensional WENO interpolation 26

2.3 Banded Calculations . 30

2.3.1 Bandwidth upper bounds . 31

2.3.2 The stencil set approach . 32

2.3.3 Implementation . 34

2.4 Numerical Results . 34

2.4.1 Passive transport: flow under a specified velocity field 34

2.4.2 Normal flow . 36

2.4.3 Signed distance and reinitialization . 37

2.4.4 WENO interpolation on marginally resolved surfaces 39

2.4.5 Triangulated surfaces . 40

2.4.6 Klein bottle . 42

2.4.7 Forest fires . 43

vii

3 The Implicit Closest Point Method 46

3.1 Introduction . 47

3.2 Matrix Formulation of the Closest Point Method 48

3.2.1 The discrete extension operator . 49

3.2.2 The discrete differential operator . 50

3.2.3 Stabilizing the Closest Point Method matrix 53

3.2.4 Re-examining the explicit Closest Point Method 54

3.3 Matrix Properties . 56

3.3.1 Spectra, spectral radius and condition number 56

3.3.2 Sparsity . 57

3.3.3 Diagonal dominance . 60

3.3.4 Positive definiteness . 60

3.3.5 Summary of matrix properties . 61

3.4 Error Analysis . 61

3.5 Constructing the Computational Band . 62

3.5.1 Forming the ∆h matrix . 63

3.5.2 Forming the E matrix . 64

3.6 Numerical Results . 64

3.6.1 Numerical convergence studies . 64

3.6.2 Heat equation on surfaces . 67

3.6.3 Biharmonic problems . 70

3.6.4 Pattern formation . 74

3.7 Nonlinear Problems . 76

4 Diagonally Split Runge–Kutta Methods 78

4.1 Introduction . 79

4.1.1 Strong stability preserving time stepping 79

4.1.2 Implicit strong stability preserving time stepping 80

4.2 Diagonally Split Runge–Kutta Methods . 82

4.2.1 Dissipative systems and contractivity 83

4.2.2 DSRK schemes . 84

4.2.3 Numerical implementation of DSRK 86

4.3 Numerical Results . 87

viii

4.3.1 Convection-driven problems . 87

4.3.2 Diffusion driven problems . 92

4.3.3 The Black–Scholes equation . 92

4.3.4 Hyperbolic conservation laws: Burgers’ equation 97

4.4 Stage Order and Order Reduction . 99

4.4.1 The van der Pol equation . 99

4.4.2 DSRK schemes with higher underlying stage order 100

4.4.3 DSRK schemes with higher stage order 101

5 Conclusions 104

A Implicit Closest Point Method Algorithms 106

A.1 Construction of the Computational Band . 106

A.1.1 Pass one . 106

A.1.2 Pass two . 107

B WENO Schemes 108

B.1 The Hamilton–Jacobi WENO Procedure . 108

C Explicit Strong Stability Preserving Runge–Kutta Schemes 110

C.1 Common SSP Runge–Kutta Schemes . 110

Bibliography 112

Index 119

ix

List of Tables

2.1 Sufficient bandwidths for Closest Point Method 32

2.2 Numerical verification of bandwidths for a Closest Point Method calculation . 33

2.3 Numerical convergence study for passive transport 35

2.4 Numerical convergence study for constant normal flow 37

2.5 Numerical convergence study for reinitialization equation 39

3.1 Spectral radius and condition number for I−∆tM 57

3.2 Sparsity properties of the matrix M . 58

3.3 Diagonal dominance of ABE = I−∆tM . 60

3.4 Unsymmetric positive definiteness of ABE = I−∆tM 61

3.5 Properties of the computation band . 65

4.1 The 14 order conditions for fourth-order DSRK schemes 82

4.2 Numerical convergence study for the linear advection of a sine wave 89

4.3 Total variation of the solution for the advection of a square wave 89

4.4 Numerical convergence study for the heat equation with smooth initial con-

ditions . 93

4.5 Black–Scholes numerical convergence study 97

4.6 Burgers’ equation numerical convergence study 98

4.7 Initial conditions for the van der Pol problem 99

x

List of Figures

1.1 Example of 1D interpolation with linear and cubic interpolants 10

1.2 Choice of grid points for various degrees of 1D interpolating polynomials . . . 10

1.3 Using a 1D interpolation scheme to build a 2D interpolation routine 12

1.4 Example of the closest point function for a curve 14

1.5 Example of the closest point function for a circle 14

1.6 An example of closest point extensions . 20

1.7 Example of the computational band . 20

2.1 Level set representation of an interface in 2D and on a surface 23

2.2 The one-dimensional WENO interpolation grid and three candidate stencils . 26

2.3 Values of the ideal WENO weights Ci(x) . 27

2.4 Example contrasting Lagrange and WENO interpolation 30

2.5 The minimum bandwidths involved in a Closest Point Method computation . 31

2.6 Passive transport of a circular interface on a sphere 35

2.7 Unit normal flow on a torus . 37

2.8 Lagrange and WENO interpolation on closely spaced surfaces 40

2.9 Lagrange and WENO interpolation on increasingly closely spaced surfaces . . 41

2.10 Unit normal flow on “Laurent’s Hand” . 42

2.11 Reinitialization on a Klein bottle . 44

2.12 Forest fire computation on the surface of a mountain 45

3.1 Example of the sets Levolve and Lghost . 49

3.2 Second-order stencils for the Laplacian in various dimensions 52

3.3 Fourth-order stencils for the Laplacian in various dimensions 52

3.4 Stable and unstable solutions of the in-surface heat equation. 53

xi

3.5 Spectra of the M̃ and M matrices . 55

3.6 Examples of the spectrum of M for various surfaces 56

3.7 Spectral radii for Jacobi and Gauss–Seidel iteration matrices 58

3.8 Sparsity structure of the M, ∆h and E matrices 59

3.9 Numerical convergence study for the in-surface heat equation using second-

order finite differences . 67

3.10 Numerical convergence study for the in-surface heat equation using fourth-

order finite differences . 68

3.11 Blurring on the surface of Laurent’s Hand by solving the in-surface heat

equation . 68

3.12 A pig-wire-sphere domain with heat source 69

3.13 Pig-wire-sphere solution . 71

3.14 Second-order stencil for the biharmonic operator in 2D 72

3.15 Inconsistent biharmonic numerical convergence study 72

3.16 Comparison of the sparsity structure of M and Mbi 73

3.17 Biharmonic numerical convergence studies in 2D and 3D 74

3.18 Various patterns of the Brusselator Bunny . 76

4.1 Oscillations from Crank–Nicolson for advection of a square wave 81

4.2 Advection of a square wave after two time steps 90

4.3 Numerical convergence study for linear advection of a sine wave 91

4.4 Numerical convergence study for linear advection of a square wave 91

4.5 Numerical convergence studies for the heat equation with smooth initial con-

ditions . 93

4.6 Numerical convergence study for heat equation with discontinuous initial con-

ditions . 94

4.7 Computational domain and initial conditions for the Black–Scholes problem . 94

4.8 Numerical solutions of the Black–Scholes problem 96

4.9 Burgers’ equation with Crank–Nicolson and DSRK2 98

4.10 Numerical convergence study on the van der Pol equation 100

4.11 Stage order numerical convergence study for linear advection of a sine wave . 103

4.12 Stage order numerical convergence study on the van der Pol equation 103

xii

Chapter 1

Introduction

The Closest Point Method is a new general technique for the numerical solution of partial

differential equations and other processes on surfaces. The method was introduced in [RM08,

MR07], and this thesis makes substantial contributions to its development.

The Closest Point Method uses three basic techniques from numerical analysis: the

method of lines, interpolation and time stepping. This chapter begins by reviewing these

three concepts, before introducing the Closest Point Method itself.

1.1 Numerical Partial Differential Equations

Most of this thesis deals with the numerical solution of partial differential equations (PDEs)

on surfaces. In this section we review some important concepts that form the basis for the

techniques introduced in later sections

1.1.1 The method of lines

The method of lines is a widely used technique for approximating partial differential equa-

tions by discretizing in all but one dimension to obtain a large system of ordinary differential

equations (ODEs). Often the spatial dimensions are discretized, resulting in a system of

ODEs in time; this process is known as a spatial semi-discretization. A numerical solution

to the PDE is then obtained by computing a numerical solution of the system of ODEs

using a time-stepping scheme.

1

CHAPTER 1. INTRODUCTION 2

Consider, for example, the nonlinear PDE

ut − f(u,∇u,∆u) = 0, (1.1)

where ∇u and ∆u are respectively the gradient and Laplacian of u, with initial conditions

u(t, 0) = u0 and solution u(t,x) : R×R
d → R. A possible method-of-lines approach begins

by approximating u(t,x) ∈ R with a vector u(t) ∈ R
m of values ui on a grid of points

xi ∈ R
d, i = 1, . . . ,m. Finite difference schemes [Tho95] (or other techniques) are then

used to approximate the spatial derivatives over these spatial grid points. For example, one

possible semi-discretization of the above PDE in 1D at each interior point xi would be

∂

∂t
ui(t) = f

(
ui,

ui+1 − ui

∆x
,
ui−1 − 2ui + ui+1

∆x2

)
, i = 2, ...,m − 1, (1.2)

combined with some boundary condition-dependent treatment for the end points u1 and

um. The grid spacing ∆x depends on how many spatial grid points are used; in this thesis,

equispaced grids are used so ∆x will be constant. In a semi-discretization like (1.2), the

ODEs for each ui are coupled together by the approximation of the spatial derivatives. Thus

the original PDE is approximated by the coupled system of ODEs

∂

∂t
u(t) = f(u(t)), (1.3a)

u(t0) = u0, (1.3b)

where f(u(t)) approximates f(u,∇u,∆u) at each of the spatial grid points.

1.1.2 Linear problems

If both the PDE and the spatial discretization are linear then instead of (1.3), we obtain

the linear system of ODEs

∂

∂t
u(t) = Mu(t), (1.4a)

u(t0) = u0, (1.4b)

CHAPTER 1. INTRODUCTION 3

where M is a constant m ×m matrix. For example, in 1D on a periodic domain, a semi-

discretization of the heat equation ut = uxx in the form of (1.4) might have

M =
1

∆x2

−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 1 −2

. (1.5)

1.1.3 Hamilton–Jacobi equations

An important class of time-dependent PDEs are the Hamilton–Jacobi equations of the form

φt + H(t, x,∇φ) = 0,

where the Hamiltonian H is a function of the gradient ∇φ. Hamilton–Jacobi equations

occur in the motion of interfaces such as the level set equations in Chapter 2, and for these

problems we will typically use φ instead of u for consistency with the literature [OF03, Set99].

The solutions of Hamilton–Jacobi equations can develop nonsmooth solutions with kinks

(discontinuous first derivatives) even from smooth initial conditions. This property and the

hyperbolic nature of the equations mean that care must be taken in their discretization.

An example of a particular Hamilton–Jacobi equation is the 3D linear advection equation

φt + V · ∇φ = 0, (1.6)

which has H(∇φ) = V · ∇φ and describes flow under a specified velocity field V =

[v1(t,x), v2(t,x), v3(t,x)]T. A spatial semi-discretization of (1.6) can be obtained using

upwind differencing in a dimension-by-dimension fashion as follows. For each grid point

xijk we compute the forward difference

φ+
x =

φi+1,j,k − φijk

∆x
,

and backward difference

φ−
x =

φijk − φi−1,j,k

∆x
.

If v1, the first component of V , is positive then we approximate φx with φ−
x ; otherwise, we

approximate φx with φ+
x . The same procedure is repeated to approximate φy and φz. We

CHAPTER 1. INTRODUCTION 4

then use these values to approximate V · ∇φ = v1φx + v2φy + v3φz, thus completing the

spatial discretization.

The discretization of a more general Hamiltonian typically involves using the forward

and backward differences φ+
x , φ−

x , φ+
y , φ−

y , φ+
z and φ−

z to evaluate a numerical Hamiltonian

such as the Lax–Friedrichs or Godunov scheme [OF03]. Several examples are presented in

Section 2.4.

1.1.4 Hamilton–Jacobi WENO

To obtain a more accurate spatial discretization, we can use higher order finite difference

schemes for the derivatives φ+
x and φ−

x . One approach is to use Hamilton–Jacobi weighted

essentially non-oscillatory (WENO) schemes. These schemes use a dynamic combination of

candidate stencils to approximate the derivatives based on the local smoothness properties of

the solution. When the solution is smooth, the Hamilton–Jacobi WENO procedure produces

high-order accurate derivatives; when the solution is nonsmooth or even discontinuous, the

procedure uses smaller stencils biased away from the nonsmooth behaviour. This process is

inherently nonlinear and even for linear PDE like (1.6), Hamilton–Jacobi WENO results in

a nonlinear system of ODEs.

See Appendix B.1 for the Hamilton–Jacobi WENO procedure to be used in Chapter 2.

1.2 Time Stepping

Consider the system of ordinary differential equations (ODEs)

∂

∂t
u(t) = f(u(t)), (1.7a)

u(t0) = u0, (1.7b)

which, in our context, will typically arise from the spatial semi-discretization of a PDE,

with u ∈ R
m where m is the number of points in the spatial grid. A numerical time-

stepping scheme approximates u(t) with a sequence of solution values un at discrete steps

n = 0, 1, 2, . . . with un ≈ u(tn). Several classes of time discretizations will be used in this

thesis; they are outlined over the next several sections.

CHAPTER 1. INTRODUCTION 5

1.2.1 Runge–Kutta methods

A simple numerical method for approximating the solution to (1.7) is the forward Euler

method which computes the solution at the next step value un+1 in terms of the current

step value un as

un+1 = un + ∆tf(un). (1.8)

The result is a solution which is first-order accurate in time. Runge–Kutta methods can

construct a higher order accurate numerical solution by employing intermediate stage values

to approximate combinations of higher order terms in the Taylor series of the exact solution

[HNW93, But03]. One possible representation of an explicit s-stage Runge–Kutta scheme

is the Shu–Osher form [SO88]

ū(0) = un,

ū(i) =
i−1∑

k=0

(
αikū

(k) + ∆tβikf(ū(k))
)

, i = 1, . . . , s, (1.9)

un+1 = ū(s),

which expresses the next step of the numerical solution un+1 in terms of the solution at

the current step un and s intermediate stage values ū(i). The values of the coefficients αik

and βik must be chosen to satisfy certain order conditions1 for the Runge–Kutta method to

achieve higher order accuracy [HNW93, But03].

In Chapter 2, the following Runge–Kutta method, originally by Fehlberg [Feh70] and

now known as SSP(3,3), will be used.

SSP(3,3): three-stage, third-order Runge–Kutta scheme

ū(1) = un + ∆tf(un),

ū(2) =
3

4
un +

1

4
ū(1) +

1

4
∆tf(ū(1)),

un+1 =
1

3
un +

2

3
ū(2) +

2

3
∆tf(ū(2)).

This scheme has an additional strong stability preserving (SSP) property as discussed in

Chapter 4. In fact it is the optimal three-stage third-order strong stability preserving

1These order conditions are generally presented for the Butcher tableau representation of the Runge–
Kutta method, which is closely related to the Shu–Osher form [Hig05, FS05, KMG08].

CHAPTER 1. INTRODUCTION 6

Runge–Kutta method (see Section 4.1) [GS98, SO88]. Note, the scheme is explicit because

each stage of the computation depends only on previously computed values. In contrast, in

implicit Runge–Kutta methods, the computation of each stage in general depends on all the

other stages. Implicit Runge–Kutta methods will be discussed further in Chapter 4. We

next consider implicit methods in the class of linear multistep methods.

1.2.2 Implicit linear multistep methods

Instead of computing intermediate stage values, linear multistep methods use a weighed

linear combination of the current and previous step values and function evaluations thereof,

to advance to the next step. Chapter 3 uses implicit linear multistep methods for linear

problems, that is, in the special case where the ODE system takes the form (1.4). In

particular, the implicit Closest Point Method of Chapter 3 takes this form for linear PDEs.

If M is a spatial discretization of a diffusive operator such as the Laplacian or the biharmonic

operator, then the system may be stiff and explicit time stepping may be inefficient due to

the small time-step sizes required to ensure stability [Tho95]. In this case, implicit schemes—

with their typically relaxed stepsize restrictions for stability [BF01, HW96]—will often be

more efficient. Stability is discussed further in Section 1.3. The following implicit multistep

schemes will applied to linear ODEs of the form (1.4) in this thesis.

Backward Euler The simplest implicit linear multistep method is known as backward

Euler and is also the implicit Runge–Kutta method

[I−∆tM]un+1 = un, (1.10)

where I represents the m×m identity matrix. The backward Euler method is implicit because

a linear system solve is required to advance from the current step value un to the next step

un+1. The scheme is first-order, has excellent stability properties and is self-starting.

Crank–Nicolson A second-order self-starting scheme known as Crank–Nicolson is
[
I− ∆t

2
M

]
un+1 = un +

∆t

2
Mun. (1.11)

BDF-2 The second-order backward difference formula (BDF-2) [Gea71] uses the current

step value and one previous step value, and is given by
[
I− 2

3
∆tM

]
un+1 =

4

3
un − 1

3
un−1. (1.12)

CHAPTER 1. INTRODUCTION 7

We note that this scheme must have n ≥ 1 and so this method is not self-starting. One

solution is to compute the first step u1 with the Crank–Nicolson scheme. Alternatively, one

can use several smaller sub-steps of the backward Euler scheme.

BDF-3 The third-order backward difference formula (BDF-3) uses the current step value

and two previous step values, and is given by

[
I− 6

11
∆tM

]
un+1 =

18

11
un − 9

11
un−1 +

2

11
un−2. (1.13)

Again the method is not self-starting, and now we require two starting steps u1 and u2. In

Chapter 3.6, the first step is computed with Crank–Nicolson followed by a step of BDF-2.

We note that this starting procedure is only second-order; however a globally third-order

solution is expected and may still be observed because only a small constant number of

steps of the second-order methods are used.

Each of these multistep methods perform one inversion per step, solving a single linear

system of the form Au = b with A = I − γ∆tM for some value of γ that depends on the

particular method. Time-stepping matrices corresponding to the above methods are denoted

as ABE, ACN, ABDF2 and ABDF3.

1.2.3 IMEX schemes

Implicit-explicit (IMEX) time-discretization schemes can be applied to general problems

involving a combination of stiff and nonstiff terms including the particular class of problem

∂

∂t
u(t) = f(u(t)) + Mu(t),

which arises, for example, from the spatial discretization of the prototype problem

ut = f(u) + uxx,

where the diffusion term uxx often makes the problem stiff. An IMEX scheme treats the

nonlinear but presumably nonstiff f(u) term explicitly, and the stiff but linear Mu term

implicitly. For a wide variety of problems, IMEX schemes

1. avoid the small time steps required by explicit methods to accommodate the stiff

terms,

CHAPTER 1. INTRODUCTION 8

2. avoid solving the nonlinear systems that occur in implicit methods because the non-

linear terms are treated explicitly.

We consider the following IMEX linear multistep schemes from [ARW95] for use on Turing

pattern formation problems in Section 3.6.4; however, IMEX Runge–Kutta schemes [ARS97]

could also be used.

IMEX Euler This first-order method is given by

[I−∆tM]un+1 = un + ∆tf(un). (1.14)

The IMEX Euler method applies backward Euler to the linear term and forward Euler to

the nonlinear term.

SBDF-2 The second-order semi-implicit backward difference formula [ARW95] is

[
I− 2

3
∆tM

]
un+1 =

4

3
un − 1

3
un−1 +

4∆t

3
f(un)− 2∆t

3
f(un−1). (1.15)

The IMEX Euler scheme can be used as a starting method.

1.3 Consistency, Stability and Convergence

Assume we have a discrete method (be it a finite difference method, time-stepping scheme

or otherwise) which is applied to a continuous problem. The local truncation error measures

the defect in applying this discrete method to the exact solution of the continuous problem.

The discrete method is said to be consistent if the local truncation error goes to zero

as ∆x → 0 and/or ∆t → 0. That is, if the discrete problem approximates the correct

continuous problem [Hea97].

Note that consistency does not say that the solution of the discrete problem converges

to the solution of the continuous problem. For that we also need stability : that the discrete

method is not overly sensitive to perturbations in the solution. For certain classes of methods

and well-posed problems, the Lax Equivalence Theorem states that stability and consistency

imply convergence [Tho95].

The rate at which the local truncation error, expressed as a function of ∆x and/or ∆t,

approaches zero as ∆x and ∆t approach zero is the order of accuracy of the method. For

CHAPTER 1. INTRODUCTION 9

example, the centered finite difference approximation of uxx for smooth u in Section 1.1.2

has

ui−1 − 2ui + ui+1

∆x2
= uxx +O

(
∆x2

)
,

so it is consistent and second-order accurate. For time-stepping schemes, if the local trun-

cation error is O
(
∆tq+1

)
then when O(1)

∆t
steps are performed, the resulting global error is

O(∆tq).

1.4 Strong Stability Preserving Time Stepping

In addition to being stable (in the sense of solutions not blowing up), it is sometimes

desirable for a time-stepping scheme to possess additional nonlinear (or strong) stability

properties. For example, if the exact solution of the ODE satisfies a monotonicity property

(i.e., ‖u(t2)‖ ≤ ‖u(t1)‖ for t2 > t1) in some norm or semi-norm, then it may be desirable

that the numerical solution un also satisfy a discrete monotonicity property ‖un+1‖ ≤
‖un‖. Alternatively, if the ODE system is dissipative and solutions satisfied a contractive

property (see Section 4.2.1), then one might require that the numerical solution also be

contractive. Monotonicity properties, for example where ‖ · ‖ is the total variation semi-

norm (see Section 4.1), are often useful in the context of nonlinear PDEs to minimize the

appearance of spurious oscillations in the numerical solution.

The SSP(3,3) scheme of Section 1.2.1, under a suitable time-step restriction, will preserve

monotonicity properties that happen to be satisfied by the forward Euler method. The

scheme is thus said to be strong stability preserving . Strong stability preserving methods

are discussed further in Chapter 4, where a promising class of methods are investigated.

1.5 Interpolation

Suppose we know the value of a function u at a discrete set of grid points xi ∈ R
d. Interpo-

lation is the process of approximating u at a point x using the values of u at the surrounding

grid points xi [Hea97]. Interpolation plays an important role in the Closest Point Method,

and in this section some useful techniques are outlined.

CHAPTER 1. INTRODUCTION 10

grid values
linear interp.
cubic interp.
interp. point

u

xi−1 xi xi+1 xi+2x

Figure 1.1: Example of 1D interpolation. The
values of a function u are given at the four
grid points and u(x) is approximated using lin-
ear (p = 1) and cubic (p = 3) polynomial
interpolation.

b ldp = 0

b bldp = 1

b b bldp = 2

b b b bldp = 3

b b b b bldp = 4
xi−2 xi−1 xi xi+1 xi+2x

Figure 1.2: Choice of grid points for various
degrees p of 1D interpolating polynomials.
For each p = 0, . . . , 4, the selected grid points
are indicated with • and the point of inter-
polation ♦ lies anywhere on the dashed line.
Note the difference between even and odd de-
gree p.

1.5.1 1D polynomial interpolation

In one dimension, a common interpolation technique is to fit a degree p polynomial through

the grid points surrounding x and evaluate at x. A linear (p = 1) polynomial interpolant

fits a straight line through neighbouring grid points xi and xi+1 with xi ≤ x < xi+1.

Figure 1.1 shows an example of linear p = 1 and cubic p = 3 interpolation for some point

data. Provided the underlying function is sufficiently smooth, degree p interpolation makes

an error of O
(
∆xp+1

)
where ∆x is the spacing between grid points [BF01]. Degree p

interpolation uses p + 1 grid points around x, and these points should generally be chosen

as close as possible to x to minimize the Runge phenomenon of oscillations at the far ends

of the interpolant [Run01, BT04]. Figure 1.2 shows the choice of grid points used for

various degree p interpolants. Various practical numerical techniques exist for performing

polynomial interpolation: one particularly efficient method for the Closest Point Method is

barycentric Lagrange interpolation, as discussed next.

CHAPTER 1. INTRODUCTION 11

1.5.2 Barycentric Lagrange interpolation

The barycentric Lagrange formula for the degree p interpolant through equispaced grid

points x0, . . . , xp evaluated at interpolation point x is

u(x) ≈

p∑

j=0

wbc
j

x− xj
uj

p∑

j=0

wbc
j

x− xj

, where wbc
j = (−1)j

(
p

j

)
, (1.16)

where the wbc
j are the barycentric weights (which are particularly simple here because of

the equispaced grid). Despite the appearance of x−xj in the denominators, the barycentric

formula is stable for x close to xj, although a straightforward special case must be used if

x lies exactly at a grid point [BT04].

The weights in the barycentric formula are independent of the values ui to be interpo-

lated, depending only on the grid points xi involved. This makes the form very efficient in

the case where the interpolation scheme will be used repeatedly with different data values

ui but with the interpolation point x remaining fixed. Such is the case for the Closest Point

Method, and in Chapter 3 we will pre-compute and store the weights wj =
wbc

j

x−xj
/
∑p

i=0
wbc

i

x−xi
.

This allows the interpolation to be performed as an inner product of the weights wj with

the grid point data ui.

1.5.3 Higher dimensional interpolation

Higher dimensional interpolation is built in the standard fashion from one-dimensional in-

terpolations. For example, two-dimensional degree p = 5 interpolation is carried out by first

interpolating six times in the x-direction to obtain six values which have x-coordinate values

that agree with the interpolation point. One-dimensional interpolation is then carried out

on these six points to get the desired interpolated value. See Figure 1.3 for an illustration.

Three and higher dimensions are treated in a similar dimension-by-dimension manner.

1.5.4 Nonlinear interpolation

Barycentric Lagrange interpolation uses a linear combination of values at the grid points.

This leads to efficient implementation, but in some cases it may be desirable to have the

weights depend on the local behaviour of the grid data. For example, if the underlying

CHAPTER 1. INTRODUCTION 12

b b b b b but

b b b b b but

b b b b b but

b b b b b but

b b b b b but

b b b b b but

ld

Figure 1.3: Using a 1D interpolation scheme to build a
2D interpolation routine. Suppose we want to approxi-
mate a value at the point ♦ by interpolating the values
at the grid points •. We begin by performing multiple
1D interpolations in the horizontal direction to obtain
the values at the points △. We then do a final 1D inter-
polation of the values at points △ to obtain a value at
point ♦.

function being interpolated is nonsmooth or discontinuous then we may wish to avoid using

data from both sides of the discontinuity. In Section 2.2, this idea of dynamic stencils is

used to derive a new weighted essentially non-oscillatory (WENO) interpolation scheme.

1.6 Surfaces

The importance of partial differential equations for modelling in the natural sciences and

other areas cannot be overstated. Many of the problems of interest occur on surfaces rather

than R
2 or R

3. Examples include mammalian coat pattern formation, surfactant flow, fire

and pest spread in forests on varying terrain, electrical signals on the cerebral cortex, wound

healing and tissue regeneration, pyroclastic flows over topography, transport by surface

currents in the oceans and large-scale atmospheric flows on the surface of the Earth. Surface

problems also occur commonly in computer graphics, for example in texture mapping and

synthesis, computer vision and image processing.

The Closest Point Method computes on surfaces such as a sphere, torus or general

triangulated object. The method also works on curves in R
2 or higher dimensions and

surfaces of arbitrary codimension such as the Klein bottle in R
4 (see Section 2.4.6). The

term surface and symbol S are used in this thesis to generically refer to all of these domains

although the term curve is occasionally used when appropriate.

1.6.1 Partial differential equations on surfaces

Suppose we have a surface S and a PDE defining a flow on the surface over time in terms of

intrinsic in-surface differential operators [Küh05]. For example, the evolution of a function

CHAPTER 1. INTRODUCTION 13

u : S → R might be governed by

ut = f(u,∇Su,∆Su),

where ∇S is the intrinsic gradient, that is, the gradient that the “pure two-dimensional

beings [who inhabit the surface] can recognize without any knowledge of the third dimension”

[Küh05], and ∆S is the Laplace–Beltrami operator, the intrinsic analogue of the Laplacian.

The PDE is time-dependent and we wish to propagate its solution on the surface over

time. Any method to do this propagation will need a surface representation.

1.6.2 Representations of surfaces

One method of representing a surface is parameterization in terms of two local parameters

(one in the case of a curve). For example a circle of radius R can be parameterized in terms

of arc length s as
〈
R cos(s

R
), R sin(s

R
)
〉
. For general surfaces, determining a parameterization

is considerably more difficult.

It is sometimes straightforward to approximate the solution of a surface PDE using a

parameterization. For example, consider the in-surface heat equation ut = ∆Su on a circle

of radius R. If si are grid points of arc length, equispaced and separated by ∆s, we can

approximate the PDE as

∂

∂t
ui =

ui−1 − 2ui + ui+1

∆s2
,

with periodic boundary conditions, which is the same as the system (1.5). Again this process

becomes more difficult on more general surfaces. In contrast, the Closest Point Method can

be straightforwardly applied to general surfaces requiring only a closest point representation

of S, as discussed next.

1.6.3 Closest point representation of surfaces

An alternative approach to parameterizing the surface S is to embed S in a higher dimen-

sional space R
d. For example, a curve could be embedded in R

2 or R
3 and a surface could be

embedded in R
3 or higher. Embedding methods are techniques for numerically solving PDEs

or other processes on surfaces by computing on points in the embedding space R
d instead

of the surface itself. To do this, embedding methods must choose a representation of the

surface in R
d. The Closest Point Method for evolving PDEs on surfaces is an embedding

method that uses a closest point representation of the surface.

CHAPTER 1. INTRODUCTION 14

S
b

x

bc cp(x)

b

bc

b

bc

b

bc

b
bc

b

bc

Figure 1.4: An example of the closest point function for a
curve S is shown for several example points in the embed-
ding space R

2 indicated by •. The corresponding closest
points cp(x) on S are indicated with ◦.

S

b bc

O cp(O)

b

bc b

bc
cp(x)

x
b

bc

Figure 1.5: An example of the closest point function for
a circle of radius R is shown for several points in R

2. To
ensure the closest point function is single-valued, cp(O)
is set to an arbitrary point on the circle, in this case
〈R, 0〉.

Let S be a surface embedded in R
d and define the closest point function as follows.

Definition 1 (Closest point function) For a given surface S, the closest point function

cp : R
d → R

d takes point x ∈ R
d and returns a point cp(x) ∈ S ⊂ R

d which is closest in

Euclidean distance to x. That is, cp(x) = min
q∈S
‖x− q‖2.

Figures 1.4 and 1.5 show examples of the closest point function. If x is in a sufficiently small

neighborhood of a smooth surface, then it will often have a unique closest point; however, if

multiple points are closest to x, then we define cp(x) to return an arbitrarily chosen closest

point. For example, in Figure 1.5 where the surface is a circle of radius R centered at the

origin, the closest point function is cp(〈x, y〉) =
〈

Rx
x2+y2 , Ry

x2+y2

〉
provided 〈x, y〉 6= 〈0, 0〉. The

origin is closest to any point on the circle and so we define cp(〈0, 0〉) to be some arbitrary

point on the circle.

A closest point representation of surface S means we know the value of cp(x) for all

x ∈ R
d (or at least on those points actually used in a computation). In this sense it is an

implicit representation because S is known only through the corresponding closest point

function: we shall see that the Closest Point Method requires no knowledge of the surface

other than a closest point representation. Some other embedding methods for surface PDEs

(e.g. [CBMO02, Gre06]) make use of level set representations of the underlying surface,

CHAPTER 1. INTRODUCTION 15

which is also an implicit representation. Unlike level set representations, the closest point

representation has the advantage of not requiring a notion of “inside/outside” allowing the

straightforward representation of surfaces with boundaries or non-orientable surfaces (e.g.,

a Möbius strip). Surfaces of codimension-two or higher [Küh05] such as the Klein bottle

in 4D (Section 2.4.6) or a filament in 3D (Section 3.6.2) can also be represented without

additional complication. Thus, an important feature of the closest point representation is

that it does not inherently impose any limitations on the geometry or dimension of surfaces

that can be represented.

1.6.4 Equivalence of gradients

Besides their flexibility for representing surfaces, closest point representations allow a natural

extension of quantities u defined on the surface S to points x in the rest of the embedding

space R
d via u(cp(x)). This process is known as a closest point extension.

Definition 2 (closest point extension) Let S be a surface embedded in R
d and let ũ :

S → R be a scalar function defined over S. Then the closest point extension of ũ is a

function u : R
d → R with u(x) = ũ(cp(x)).

Closest point extensions result in functions which are constant in the direction normal

to the surface, at least within a neighborhood of a smooth surface. This fact leads to

simplified derivative calculations in the embedding space [RM08] which in turn can be easily

approximated to accurately solve surface PDEs. To proceed, let ∇ denote the “standard”

gradient in R
d and let ∇S denote the gradient intrinsic to the surface S.

Principle 1 (Gradients) For points x on the surface, ∇Su(x) = ∇u(cp(x)) because the

function u(cp(x)) is constant in the normal direction and therefore only varies along the

surface. In other words, at points x on the surface, intrinsic surface gradients ∇Su(x) are

the same as gradients of u(cp(x)).

This principle will be all that we need to derive the embedding PDEs used in the Hamilton–

Jacobi examples appearing in Chapter 2. For problems involving higher order derivatives

such as those appearing in Chapter 3, a second principle also holds [RM08]:

Principle 2 (Divergence) Let ∇S · denote the divergence operator intrinsic to the surface

S and let v be any vector field on R
d that is tangent at S and also tangent at all surfaces

CHAPTER 1. INTRODUCTION 16

displaced by a fixed distance from S (i.e., all surfaces defined as level sets of the distance

function to S). Then at points x on the surface ∇ · v(x) = ∇S · v(x).

Combinations of this and the gradient property may be made, to allow for very general laws

for second-order differential operators, including the Laplace–Beltrami operator ∆S and

the level set equation for curvature motion and other nonlinear diffusion operators [RM08].

Indeed, even higher order and more general derivative replacements may be considered by

carrying out multiple closest point extensions as first described in [RM08] and demonstrated

in practice in Section 3.6.3 for the in-surface fourth-order biharmonic operator.

To help illustrate these ideas we provide two simple examples on a circle of radius R.

Example 1 Consider the surface gradient, expressed in polar coordinates ∇Su = 0er +
∂u
∂s

eθ, where s is the arc length. We have s = Rθ, therefore ∂u
∂s

= 1
R

uθ and

∇Su =
1

R
uθeθ.

Now applying the polar coordinate form of the standard gradient to u(cp(x)), we have

∇u(cp(x)) = ur(cp(x))er + 1
r
uθ(cp(x))eθ. As described earlier, u(cp(x)) is constant in the

direction normal to the surface which in this case is the radial direction (see also Figure 1.5),

so ur(cp(x)) = 0. Thus, for points x on the surface (where x = cp(x) and r = R) we have

∇u(cp(x)) =
1

r
uθ(cp(x))eθ =

1

R
uθ(x)eθ = ∇Su(x),

which is exactly Principle 1.

Example 2 Consider, in polar coordinates, the surface Laplace-Beltrami operator ∆Su =

uss = 1
R2 uθθ and the standard Laplacian operator ∆u(cp(x)) = urr(cp(x)) + 1

r
ur(cp(x)) +

1
r2 uθθ(cp(x)). Again, u(cp(x)) is constant in the radial direction so both radial derivatives

are zero, and for x on the surface

∆u(cp(x)) =
1

r2
uθθ(cp(x)) =

1

R2
uθθ(x) = ∆Su(x).

And indeed, the equivalence of the Laplace–Beltrami operator ∆Su and the Laplacian

∆u(cp(x)) for points x on the surface follows by combining Principles 1 and 2.

CHAPTER 1. INTRODUCTION 17

1.7 The Closest Point Method

The principles of equivalence of gradients and other differential operators yield a way of

dealing with surface differential operators by evaluating the corresponding differential oper-

ator in the embedding space R
d. Armed with these principles, we are now in a position to

define the Closest Point Method. Central to this task is to determine a PDE, defined over

the embedding space R
d, to be used to generate a flow in R

d corresponding to that of the

surface PDE. Suppose that the surface PDE takes the form

ut(t,x) = f

(
t,x, u(t,x),∇Su(t,x),∇S ·

(∇Su(t,x)

|∇Su(t,x)|

))
, (1.17a)

u(0,x) = u0(x). (1.17b)

for x ∈ S and t ≥ 0. More general PDEs can be treated directly by the Closest Point

Method, but this form includes many of the second-order flows that arise in geometric

interface motion [Set99, OF03]. Based on the principles described in Section 1.6.4, and

originally given in [RM08], we may replace the gradients and divergence operators by the

standard Cartesian derivatives in the embedding space and accordingly

ut(t,x) = f

(
t, cp(x), u(t, cp(x)),∇u(t, cp(x)),∇ ·

(∇u(t, cp(x))

|∇u(t, cp(x))|

))
, (1.18a)

u(0,x) = u0(cp(x)), (1.18b)

for x ∈ R
d and t ≥ 0. The solutions of (1.17) and (1.18) will agree at the surface in the

sense that if u1(t,x) is a solution of (1.17) for x ∈ S and u2(t,x) is a solution of (1.18) for

x ∈ R
d then u1(t,x) = u2(t,x) for t ≥ 0 and points on the surface x ∈ S.

At this point, we could try to discretize (1.18) directly: this idea is explored in Chapter 3

for implicit time stepping.

1.7.1 The explicit Closest Point Method

Notice that in (1.18) we begin with initial conditions u(0,x) which are a closest point

extension of some surface data u0, that is, u(0,x) = u0(cp(x)). Because of this, the right-

hand-side of (1.18) and that of the embedding PDE

ut(t,x) = f

(
t, cp(x), u(t,x),∇u(t,x),∇ ·

(∇u(t,x)

|∇u(t,x)|

))
, (1.19a)

u(0,x) = u0(cp(x)), (1.19b)

CHAPTER 1. INTRODUCTION 18

agree initially at t = 0 (although the solutions generally diverge at later times). That is,

if we evaluate the right-hand-sides of (1.18a) and (1.19a) at t = 0, they will be equal for

all x ∈ R
d. This is the key point of the explicit Closest Point Method because it suggests

a way of explicitly treating (1.18) efficiently: starting from a closest point extension of the

solution at time step tn, take one forward Euler step (or stage of a higher order explicit

Runge–Kutta scheme) of (1.19) to advance in time to ũn+1. After this evolution step, ũn+1

will not be constant in a direction normal to the surface. To regain this property, we perform

a closest point extension of ũn+1 according to un+1(x) = ũn+1(cp(x)). This procedure gives

an update which is constant in the direction normal to the surface, ensuring at tn+1 that

(1.19a) will again agree with (1.18a) and hence with the original surface PDE (1.17). We

can then repeat the process of alternating between time stepping (1.19) and performing

closest point extensions to propagate the solution forward in time to any desired time.

The semi-discrete (discrete in time, continuous in space) explicit Closest Point Method

with forward Euler time stepping would be as follows. First, using Principles 1 and 2,

determine the embedding PDE (1.19) corresponding to the surface PDE (1.17): i.e., simply

replace operators ∇S with ∇, ∇S · with ∇·, etc. Second, perform a closest point extension

of the initial conditions u0(x) = u0(cp(x)) to determine the initial conditions for all points

in the embedding space R
d. Then use the following algorithm to advance from time tn to

time tn+1.

Algorithm 1: the explicit Closest Point Method

1. Perform a forward Euler time step

ũn+1 = un + ∆tF

(
tn, cp(x), un,∇un,∇ ·

(∇un

|∇un|

))
.

2. Perform a closest point extension for each point in the embedding space x ∈ R
d

un+1(x) = ũn+1(cp(x)).

For higher order explicit Runge–Kutta methods, a closest point extension is employed fol-

lowing each stage of the Runge–Kutta scheme. That is, steps 1 and 2 would be repeated

three times for the three-stage SSP(3,3) scheme.

Now, we consider spatial discretization and indeed, great flexibility is available in choos-

ing a spatial discretization. Similar to [RM08] we will select finite difference methods on

CHAPTER 1. INTRODUCTION 19

banded, but regular, Cartesian grids. Indeed one of the benefits of the Closest Point Method

is that the evolution step (step 1) is approximated using standard methods in the em-

bedding space. Moreover the embedding PDE does not involve any projections or other

surface-specific modifications; it is simply the corresponding PDE in the embedding space.

This is very convenient since it implies that standard, well-understood algorithms in R
3 can

be modified straightforwardly to accommodate surface flows. Indeed, this is exactly the

approach taken in Section 2.4 where standard Hamilton–Jacobi algorithms are reused.

Note that the use and meaning of the embedding PDE is fundamentally different for the

level set surface representation of PDEs on surfaces of [CBMO02] compared to the Closest

Point Method. In a level set approach the embedding PDE gives the solution at the surface

for all times. In the Closest Point Method the embedding PDE only gives a valid evolution

initially and for one explicit time step (or stage in a Runge–Kutta method). Thus the

extension step is necessary to ensure the consistency of the method with the exact solution

on the surface.

1.7.2 Closest point extension and interpolation

The closest point extension is an interpolation step because, although x is a grid point

in a regular Cartesian grid, cp(x) likely will not be. Figure 1.6 illustrates an example

where bilinear interpolation is used to estimate a value for u(cp(x)) from a stencil of the

four neighboring grid points. One could use a larger interpolation stencil to increase the

accuracy of the interpolation, for example using Lagrange interpolation as described in

Section 1.5. Indeed, this is how interpolation was originally done in [RM08] and in this thesis

in Chapter 3.3. Section 3.4 in particular discusses the degree of polynomial interpolation

required for convergence.

In Chapter 2.4, a new high-order WENO interpolation scheme is constructed using

dynamic stencils.

1.7.3 Banding and bandwidth

The Closest Point Method does not introduce any artificial boundaries at the edge of the

computational band to carry out banded calculations near the surface. The method merely

computes on a band of points around the surface which is wide enough so that all values

in the interpolation stencil have been accurately evolved (which depends on the spatial

CHAPTER 1. INTRODUCTION 20

S
x1

ld
q1

× ×

××

x2ld
q2

×

× ×

×

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b grid points
ld interpolation point

× × interpolation stencil

Figure 1.6: Closest point extensions for grid points x1 and x2 where q1 = cp(x1) and
q2 = cp(x2). In this case, low-order bilinear interpolation is used to estimate a value for
u(qi) = u(cp(xi)) from a stencil of the four neighboring grid points to qi.

b

b b b b

b b b b

b b b

b b b b

b

b

b

b

b b b b

b b b b

b b b b

b b b bb

b

b

b

b b b b

b b b b

b

b

b

b

b

b

b

b b b b

b b b b

b

b

b

b

b b b b

b

b

b

b

b

b

b

b

b

b

b

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b b b

b

b

b

b

b

b

b

b

b b b

b b

b b

b b

b b

b

b

b

b

b b b b

b

b

b

b

b b b b

b

b

b

b

b b b b

b

b

b

b

b

b

b

b

b b b b

b b b b

b

b

b

b

b

b

b

Figure 1.7: Example of the computational band used by
the Closest Point Method where the curve S is a circle.
The grid points xi are indicated by •.

discretization stencil and the degree of interpolation as discussed in Sections 2.3 and 3.5). As

a general principle, artificial boundaries should be avoided as they can lead to a degradation

of accuracy even in simple diffusive problems [Gre06].

An example of an appropriate computational band is shown in Figure 1.7 where the

curve S is a circle embedded in 2D.

1.8 Outline of Thesis Contributions

The remainder of this thesis presents new contributions to the Closest Point Method (Chap-

ters 2 and 3) and an investigation and analysis of a class of time-stepping schemes (Chap-

ter 4).

Chapter 2 covers the application of the explicit Closest Point Method to the problem

of level set equations on surfaces. A new weighted essentially non-oscillatory (WENO)

CHAPTER 1. INTRODUCTION 21

interpolation scheme is derived, and many examples are presented. Numerical convergence

studies demonstrate the first high-order results of the Closest Point Method.

Chapter 3 derives a new implicit Closest Point Method which uses implicit time stepping.

A matrix operator interpretation of the evolution and extension steps of the Closest Point

Method is presented. Using this notation, the implicit Closest Point Method is very easy

to formulate, essentially by forming the product of two matrices. Numerical convergence

studies on the in-surface heat equation and biharmonic problems confirm that the implicit

Closest Point Method can also produce high-order results. Examples on a variety of surfaces

of image blurring, heat-flow modelling and pattern formation using implicit-explicit (IMEX)

time stepping are presented.

Chapter 4 investigates the class of unconditionally contractive diagonally split Runge–

Kutta methods which profess to offer high-order accuracy combined with a desirable non-

linear contractivity property. Through numerical tests and an analysis of stage order, it is

demonstrated that these schemes suffer from order reduction which makes them inefficient

in practice.

Finally Chapter 5 presents some conclusions of the work.

Chapter 2

Level Set Equations on Surfaces

Level set methods have been used extensively for interface problems in R
2 and R

3, but there

are also many applications which could benefit from level-set based techniques extended to

surfaces. In this chapter we consider the treatment of level set equations on surfaces via

the explicit Closest Point Method. The main modification is to introduce a Weighted Es-

sentially Non-Oscillatory (WENO) interpolation step into the Closest Point Method. This

interpolation, in combination with standard WENO for Hamilton–Jacobi equations, gives

high-order results (up to fifth-order) on a variety of smooth test problems including passive

transport, normal flow and redistancing. The algorithms proposed are straightforward mod-

ifications of standard codes, are carried out in the embedding space in a well-defined band

around the surface and retain the robustness of the level set method with respect to the

self-intersection of interfaces. Numerous examples are provided to illustrate the flexibility

of the method with respect to geometry.

Most of the contents of this chapter appear in [MR08].

2.1 Level Set Methods

Application of the level set method [OS88] involves evolving a curve in R
2 or a surface in R

3

to solve a problem of interest. This curve or surface—the interface—is represented as the

zero contour of a level set function φ (see Figure 2.1(a)). A principal strength of the level

set method comes from its ability to handle changes in topology of the evolving interface,

i.e., interfaces break apart or merge naturally, and without the need for special code or

instructions to detect or treat the shape changes as they occur. A second, and also key,

22

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 23

φ < 0

φ > 0

(a) Interface in 2D

φ < 0

φ > 0

(b) Interface on a surface

Figure 2.1: Level set representation of an interface in 2D (a) and on the surface of a sphere
(b). Inside of the interface corresponds to φ < 0 and outside corresponds to φ > 0. The
interface itself corresponds to φ = 0. In (b), φ is evaluated on the surface of the sphere.

benefit is that the discretization of the underlying level set equation (of Hamilton–Jacobi

type) can be carried out using well-known, accurate and reliable discretization techniques,

such as the weighted essentially non-oscillatory (WENO) methods [LOC94, JS96, JP00]

described in Section 1.1.4. Taken together, these benefits have contributed to a widespread

adoption of level-set based techniques in different disciplines [OF03, Set99].

Level set methods have primarily been used to treat evolving interfaces in R
2 and R

3.

However, evolving level set equations on general domains would give a way of robustly cap-

ture the motion of interfaces on curved surfaces (see Figure 2.1(b)). Such an extension would

be compelling because it could be exploited to generalize existing level set applications to

curved surfaces. For example, suppose one wished to detect or “mark” objects appearing on

a surface, a process known as segmentation. By extending level set methods to surfaces, we

gain the possibility of solving this problem by simply transferring existing level set methods

for segmentation to the case of surfaces. This approach becomes even more compelling if

the algorithms for surface flows end up being based on existing codes for standard two- and

three-dimensional flows. Indeed, we shall see that this is the case with the Closest Point

Method.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 24

2.1.1 Computing level sets on surfaces

The problem of level set methods on surfaces is not new, and one interesting method for

evolving interfaces on surfaces was proposed by Cheng et al. [CBMO02]. In their approach,

a level set representation of the underlying surface was taken, with the evolving interface

being represented by the intersection of two level set functions. The level set evolution

equation for φ made use of standard gradients followed by projections onto the surface.

Thus, the method evolved a level set PDE in R
3, and, at any time, gave the position of the

interface on the surface as the zero contour of φ on the surface. See [CBMO02] for further

details on the method as well as a selection of examples using the method.

Another way of developing a method to evolve interfaces on surfaces is to start from a

level set equation defined on a surface, e.g., a Hamilton–Jacobi equation of the form

φt + H(t,x, φ,∇Sφ) = 0, (2.1a)

φ(0,x) = φ0(x), (2.1b)

or some curvature-dependent generalization of this, and to solve it with some existing strat-

egy for evolving PDEs on surfaces. For example, one might apply either the method of

Bertalmı́o et al. [BCOS01] or that of Greer [Gre06] to treat the surface PDE. These meth-

ods use a level set representation of the surface and replace surface gradients by standard

gradients and projection operators in R
3 to get an embedding PDE which is defined through-

out time and space and agrees with the surface evolution of φ on the surface. This leads

to similar or the same PDEs as those appearing in [CBMO02], and will therefore be very

similar in character to the methods described there.

In this chapter, level set equations of Hamilton–Jacobi type (2.1) are evolved according

to the Closest Point Method. As discussed in Chapter 1, the Closest Point Method has

a number of properties that make it quite attractive for solving level set equations on

surfaces. First of all, it takes the underlying surface representation to be a closest point

representation. This allows it to treat PDEs on surfaces that have boundaries, lack any

clearly defined inside/outside or are of arbitrary codimension. Similar to level-set based

methods, the method uses an embedding PDE defined in the embedding space (e.g., R
3).

However, the meaning and use of the embedding PDE is fundamentally different, because it

is only valid initially, and requires an extension step (i.e., step 2 of the Closest Point Method)

to ensure consistency. A desirable property of the Closest Point Method is that it works on

sharply defined bands around the surface of interest without any loss of accuracy whatsoever.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 25

Finally, we note that the method, in its explicit form, leads to embedding PDEs which are

simply the PDEs of the corresponding flow in the embedding space. This last advantage

means that with the insertion of a simple extension step we can reuse three-dimensional

level set codes without any other modifications to obtain the motion of level sets on surfaces.

Note that this chapter does not consider curvature-driven flows which involve higher order

differential operators; such motions have been treated successfully using the Closest Point

Method with a central difference spatial discretization in [RM08]. Additionally, the implicit

Closest Point Method in Chapter 3 is also appropriate for curvature dependent flows as it

allows implicit time stepping to avoid restrictive time steps.

A crucial step in applying the Closest Point Method to solve level set equations on

surfaces is to design an appropriate extension step. This chapter considers a new extension

based on a WENO interpolation which is sixth order in smooth regions of the solution

and formally fourth order elsewhere. The approach has all the practical advantages of the

Closest Point Method: flexibility when selecting a surface, efficiency with respect to banding

and extreme simplicity of implementation. It is emphasized that while the new extension

procedure will be used here for Hamilton–Jacobi equations, it also could be valuable for

treating more general PDEs if high-order accuracy is desired but the PDE or the underlying

surface is somewhere nonsmooth or marginally resolved.

Section 2.2 derives the new interpolation technique which is inspired by previous WENO

methods. The section also includes details on situations where WENO interpolation will be

preferred over standard fixed-stencil Lagrange interpolation.

2.2 WENO Interpolation

Weighted Essentially Non-Oscillatory (WENO) spatial discretizations [LOC94, JS96, JP00,

Lan98] are well-studied and commonly used for the evolution of discontinuous or nonsmooth

solutions to PDEs. Standard WENO discretizations (Section 1.1.4 and Appendix B) are

used in Section 2.4 for the evolution step of the Closest Point Method (step 1 in Algorithm

1).

However, the extension step of the Closest Point Method (step 2 in Algorithm 1) re-

quires an interpolation scheme to approximate φ(cp(x)) from grid points near the surface.

High-degree fixed-stencil Lagrange interpolation is derived for smooth data [BF01] and may

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 26

b b b b b b

xi−2 xi−1 xi xi+1 xi+2 xi+3

ld
x

︸ ︷︷ ︸
S1

S2︷ ︸︸ ︷

︸ ︷︷ ︸
S3

Figure 2.2: The one-dimensional WENO interpolation grid, for x ∈ [xi, xi+1) and three
candidate stencils S1, S2 and S3.

encounter difficulties from either nonsmooth φ or from nonsmooth or poorly resolved sur-

faces. As an alternative, in this section a WENO-based interpolation is derived in one

dimension and in multiple dimensions. This derivation is followed by some numerical ex-

periments which illustrate that WENO interpolation can give very good results even when

fixed-stencil Lagrange interpolation fails or gives undesirable results.

WENO interpolation was considered in [SS03] to interpolate between subdomains for a

multidomain WENO finite difference calculation for hyperbolic conservation laws. However,

in [SS03] one of the candidate stencils corresponds to an extrapolation rather than an

interpolation (as can be seen from Fig. 2 of [SS03]). In this chapter, WENO interpolation

schemes in which all candidate polynomials are interpolants are derived and studied. The

question of whether improved results can be obtained by allowing some extrapolation in the

candidate polynomials will be addressed in future studies.

2.2.1 One-dimensional WENO interpolation

We consider two interpolation schemes. The first is formally sixth order in smooth regions.

Sixth-order WENO interpolation

Consider the 1D interpolation problem (Figure 2.2): given the six points xi−2, xi−1, xi, xi+1,

xi+2, xi+3, corresponding data fi−2, fi−1, fi, fi+1, fi+2, fi+3 and a value of x ∈ [xi, xi+1),

we want to estimate f(x).

We begin with three candidate interpolants p1(x), p2(x) and p3(x) corresponding to cubic

polynomial fits to the data given on each of the three candidate stencils (see Figure 2.2)

S1 = {xi−2, . . . , xi+1}, S2 = {xi−1, . . . , xi+2} and S3 = {xi, . . . , xi+3}. We combine these to

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 27

xi xi+1

x

0.0

0.2

0.4

0.6

0.8

C1

C2

C3

Figure 2.3: Values of the ideal WENO
weights Ci(x) for x ∈ [xi, xi+1).

give the WENO interpolant

IWENO6(x) = w1(x)p1(x) + w2(x)p2(x) + w3(x)p3(x),

where wi(x), i = 1, 2, 3 are the required weights (still to be determined). In a smooth

problem, all the point data could be used to obtain an interpolation which is as high order

as possible, i.e., that agrees with the degree five interpolating polynomial through all six

points. These “ideal” weights Ci, i = 1, 2, 3 are given by

C1(x) =
(xi+2 − x)(xi+3 − x)

20∆x2
,

C2(x) =
(xi+3 − x)(x− xi−2)

10∆x2
,

C3(x) =
(x− xi−2)(x− xi−1)

20∆x2
,

and their values on the interval x ∈ [xi, xi+1) are shown in Figure 2.3. Note that unlike

WENO for hyperbolic conservation laws [LOC94, JS96] and WENO for Hamilton–Jacobi

problems [JP00], here the interpolation point x is not fixed and the values of the ideal

weights depend on x. Still, these Ci(x) are completely analogous to the well-known “ 1
10 , 6

10 ,
3
10” weights in the latter work (see Appendix B).

In nonsmooth regions, at least one of the interpolants pi(x), i = 1, 2, 3 will be superior

to an interpolation with the “ideal” weights because of the Runge phenomenon [Run01]—

highly oscillatory results associated with high-degree polynomial interpolation. To decide

which stencils to use, we compute a smoothness indicator for each interpolant. We take the

smoothness indicator ISi for interpolant pi as “a sum of squares of scaled L2 norms of all the

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 28

derivatives of the [interpolant pi] over the interval [of interpolation]” [Shu97]. Specifically

ISi =

3∑

j=1

∫ xi+1

xi

(∆x)2j−1

(
djpi(x)

dxj

)2

dx, i = 1, 2, 3. (2.2)

If a particular interpolant exhibits rapid change on the interval (xi, xi+1) compared to the

other two interpolants, then its derivatives will be larger in magnitude on that interval, which

in turn increases the corresponding smoothness indicator (2.2). Smooth interpolants—those

that are desirable for use in the interpolation—will exhibit less drastic changes in their

derivatives and thus minimize (2.2). If all three candidate interpolants are smooth, then

all three smoothness indicators will have similar (small) values. The smoothness indicators

can be worked out as

IS1 =
(
− 3579fi+1fi + 2634fi+1fi−1 − 683fi+1fi−2 − 6927fifi−1 + 1854fifi−2

− 1659fi−1fi−2 + 814f2
i+1 + 4326f2

i + 2976f2
i−1 + 244f2

i−2

)
/180,

IS2 =
(
− 3777fi+1fi + 1074fi+1fi−1 − 1269fifi−1 + 1986f2

i+1 + 1986f2
i + 244f2

i−1

+ 244f2
i+2 − 1269fi+2fi+1 + 1074fi+2fi − 293fi+2fi−1

)
/180,

IS3 =
(
− 3579fi+1fi + 4326f2

i+1 + 814f2
i + 2976f2

i+2 + 244f2
i+3 − 683fi+3fi

− 6927fi+2fi+1 + 2634fi+2fi − 1659fi+3fi+2 + 1854fi+3fi+1

)
/180.

Note, as expected that the smoothness indicators do not depend on the particular point of

interpolation x because they measure a property of the interpolant candidates themselves.

The computation of the weights is carried out using the smoothness indicators as in the

standard WENO procedure by first calculating

αi(x) =
Ci(x)

(ε + ISi)2
, i = 1, 2, 3,

where ε is a small parameter to prevent division-by-zero in the case when all ISi ≈ 0; in this

chapter, ε = 1× 10−6 is used in all calculations. Finally, the weights are

wi(x) =
αi(x)

α1(x) + α2(x) + α3(x)
, i = 1, 2, 3.

Fourth-order WENO interpolation

A fourth-order (in smooth regions) WENO interpolation scheme can also be constructed

based on two quadratic interpolant candidates. In this case, we have the four points

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 29

xi−1, xi, xi+1, xi+2 and corresponding data fi−1, fi, fi+1, fi+2 and again want to estimate

f(x) for x ∈ [xi, xi+1). The two candidate interpolants are

p1(x) = fi +
fi+1−fi−1

2∆x
(x− xi) +

fi+1−2fi+fi−1

2∆x2 (x− xi)
2,

p2(x) = fi + −fi+2+4fi+1−3fi

2∆x
(x− xi) + fi+2−2fi+1+fi

2∆x2 (x− xi)
2,

with ideal weights C1(x) =
xi+2−x

3∆x
and C2(x) =

x−xi−1

3∆x
, and smoothness indicators

IS1 =
(
26fi+1fi−1 − 52fifi−1 − 76fi+1fi + 25f2

i+1 + 64f2
i + 13f2

i−1

)
/12,

IS2 =
(
26fi+2fi − 52fi+2fi+1 − 76fi+1fi + 25f2

i + 64f2
i+1 + 13f2

i+2

)
/12.

The fourth-order WENO interpolant is thus

IWENO4(x) = w1(x)p1(x) + w2(x)p2(x),

where w1(x) and w2(x) are calculated from the smoothness indicators by αi(x) = Ci(x)
(ε+ISi)2

and wi(x) = αi(x)
α1(x)+α2(x) , i = 1, 2.

Advantages of WENO interpolation

Both the fourth-order and sixth-order WENO interpolation routines are constructed so

that wherever the ideal weights are chosen (i.e., wi(x) = Ci(x)), the results are identical

to using fixed-stencil interpolating polynomials through all candidate points. Therefore, in

this case, they also are identical to the fixed-stencil Lagrange interpolation procedure used

in previous Closest Point Method works [RM08, MR07]. In nonsmooth problems, however,

stencils corresponding to smooth regions are automatically selected. Figure 2.4 shows one

such example, where a one-dimensional function is reconstructed using interpolation in a

cell adjacent to a discontinuity. Lagrange interpolation based on the six data points gives a

spurious oscillation in the cell of interest, since it interpolates across the discontinuity. On

the other hand, with WENO interpolation the smoothness indicators IS2 and IS3 are very

large, resulting in small weights w2 and w3, and thus the data from the rightmost two data

points give a negligible contribution to the interpolation. These weights lead to the desired

non-oscillatory result.

Another type of problem for which WENO-based interpolation is expected to give su-

perior results arises when the underlying surface is nonsmooth or is marginally resolved

by the grid of the embedding space. The latter possibility is investigated in Section 2.4.4,

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 30

cubic 1
cubic 2
cubic 3

xi−2 xi−1 xi xi+1 xi+2 xi+3

(a) 3 cubic candidate interpolants

1.2

1.4

1.6

1.8

2

2.2

2.4 IS
1
 = 0.0295

IS
2
 = 1.51

IS
3
 = 9.07

w
1
(x) = 0.999

w
2
(x) = 1.27e−3

w
3
(x) = 1.05e−5

data point
WENO interp.
Lagrange interp.

x

y

xi−2 xi−1 xi xi+1 xi+2 xi+3

(b) WENO and quintic interpolation

Figure 2.4: One-dimensional interpolation example contrasting Lagrange and WENO in-
terpolation near a discontinuity. Of the three cubic interpolants in (a), only one appears
non-oscillatory and in (b) the WENO procedure assigns most of the weight to that particular
interpolant.

where WENO interpolation produces improved results compared to Lagrange interpolation.

Thus, it is safer to use WENO for the interpolation whenever the PDE or the underlying

surface is nonsmooth or marginally resolved. WENO-based Hamilton–Jacobi methods are

also recommended for the evolution step. Such methods have been widely used to treat

standard Hamilton–Jacobi equations in R
2 and R

3 with good results [OF03] and will be

relatively safe when nonsmooth or marginally resolved problems arise.

2.3 Banded Calculations

The evolution step and extension step of the Closest Point Method may be performed over

the entire embedding space. However, such an implementation is inefficient because only

a subset of grid points in the vicinity of the surface can have any effect on the numerical

solution. A more efficient approach is to perform calculations in a narrow band around

the surface. This band must be wide enough to ensure that all nodal values within the

interpolation stencil have been accurately evolved. By working in such a band we obtain

the same results as we would for a global calculation because the closest point extension

extends all values out from the surface after each step.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 31

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

B
W

ev
ol
ve

BWex
ten

d

ld

b b grid points
ld interpolation point

× × interpolation stencil
evolution stencil

Figure 2.5: The minimum bandwidths in 2D involved in a Closest Point Method computation
for a surface in the vicinity of point ♦.

2.3.1 Bandwidth upper bounds

We begin by determining upper bounds on the bandwidth. Consider an R
d embedding

space and for simplicity assume that the grid spacing is ∆x in all d dimensions. The

WENO interpolation stencil is a d-dimensional hypercube (see Section 1.5.3) where each

side has a width of 5∆x. Considering Figure 2.5, the evolution step can therefore be carried

out on a set of grid points which lie within a distance of

BWevolve =
√

32 + · · ·+ 32∆x = 3
√

d∆x, (2.4)

from the surface, i.e., the diagonal distance across a d-dimensional hypercube with side

widths 3∆x.

To generate accurate values on points inside the interpolation stencil at tn+1, the evo-

lution stencil needs accurate values inside its own finite difference stencil at tn. Thus the

interpolation step at tn must update all grid points within the evolution stencil applied at

every grid point in the interpolation stencil around every point on the surface. In our case,

the fifth-order Hamilton–Jacobi WENO finite difference scheme has a stencil consisting of

a “hypercross” (see Figure 2.5) where each arm has width 6∆x (see Section 1.1.4 and Ap-

pendix B). From the furthest corner of the interpolation stencil hypercube, the evolution

stencil extends in grid-aligned directions; the extension step should therefore be performed

on a bandwidth of

BWextend =
√

32(d− 1) + (3 + 3)2∆x. (2.5)

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 32

Dimension BWevolve BWextend

2D 4.2426∆x 6.7082∆x

3D 5.1962∆x 7.3485∆x

4D 6∆x 7.9373∆x

Table 2.1: Sufficient bandwidths for the Closest
Point Method evolution and interpolation steps
in various embedding dimensions.

Values of the bandwidths (2.4) and (2.5) for two, three and four dimensions are tabulated

in Table 2.1. Bandwidth calculations for standard Lagrange interpolation can be carried

out using similar considerations; see [RM08] for further details.

When defining the computational domain based on these upper bounds, note there may

be some points which are inside BWevolve but are outside the union of the interpolation

stencils around each closest point on the surface. These points therefore have, at most, a

negligible effect1 on the solution as the calculation proceeds. Evolving on these points thus

introduces redundant computation. Similarly, there may be points inside BWextend which

are not needed for the evolution; they also introduce additional redundant calculations.

2.3.2 The stencil set approach

As noted above, using the bandwidth upper bounds (2.4) and (2.5) to define the compu-

tational bands may include unnecessary points thus increasing the computational expense

without improving accuracy. An alternate approach is to explicitly construct the sets of

points which define the evolution and extension bands. Let Sevolve be the set of nodes in

the evolution band and Sextend be the set of nodes in the extension band. These sets are

then determined by the following algorithm.

Algorithm 2: Identifying the stencil sets

• Initialize both sets to the empty set, i.e., set Sevolve = ∅ and Sextend = ∅.

• Loop over all grid nodes x in the embedding space that are within a distance BWextend

of the surface and for each:

• Loop over all grid nodes y in the interpolation stencil surrounding cp(x):

1In principle, these points could influence the artificial dissipation parameters appearing in schemes
such as the (global) Lax–Friedrichs (LF) scheme [CL84, OF03] or the local Lax–Friedrichs (LLF) scheme
[SO88, OF03]. Although such effects were not observed in practice, the stencil set approach discussed next
avoids this issue altogether.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 33

Table 2.2: Numerical verification of the bandwidths for a 3D Closest Point Method calcula-
tion. The particular calculation or the values of the error are not important here†; we note
only that the errors are identical (down to the bit-pattern of the double precision floating
point numbers) provided that the bandwidths are taken larger than the minimums from
Table 2.1.

Banding strategy Error Points in band
BWevolve BWextend Evolution Extension

No banding 3.546949572342186954 × 10−8 1030301 1030301

10∆x 10∆x 3.546949572342186954 × 10−8 165335 165335
5.2∆x 7.35∆x 3.546949572342186954 × 10−8 82830 119026

5.15∆x ‡ 7.35∆x 3.546949570771058627 × 10−8 82326 119026

5.2∆x 7.3∆x ⋆ 3.546949572069116105 × 10−8 82830 117970
Stencil set bands 3.546949572342186954 × 10−8 70296 111412

† In the interests of reproducibility, the computation is the same as Table 2.4 on a grid with ∆x = 0.04 with error
measured as the maximum absolute value of φ along the theoretical interface location with x ≥ 0 and z ≥ 0.
‡ 5.15∆x is less than the minimum bandwidth BWevolve.
⋆ 7.3∆x is less than the minimum bandwidth BWextend.

• Add node y to the evolution band by setting Sevolve = {y} ∪ Sevolve.

• Let K be the set of grid nodes appearing in the evolution stencil for y. Add

this set to the extension band by setting Sextend = K ∪ Sextend.

After this procedure, Sevolve and Sextend are the sets over which the evolution and extension

steps should be carried out for the Closest Point Method.

Table 2.2 shows some results for a particular Closest Point Method calculation on bands

which vary by width. We find that the banded procedures give results identical to computing

over the entire embedding space. Table 2.2 also illustrates that using smaller bandwidths

than those in Table 2.1 results in a different solution.

Table 2.2 confirms that the stencil set approach produces identical results to computing

on the entire embedding domain. Finally, Table 2.2 reports the number of points in each

band, and note that in three dimensions the extension band contains 94% of the points used

in the bandwidth approach. Likewise, the evolution band contains 85% of the points used in

the bandwidth approach. In the Klein bottle computation in 4D (see Section 2.4.6), these

savings are more significant as only 72% and 54% of the points are required in the respective

bands. The stencil set approach thus offers computational savings which, in combination

with its simplicity, leads us to use this approach in the calculations appearing throughout

this section.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 34

2.3.3 Implementation

For the results in this chapter, the explicit Closest Point Method is implemented in C. For

computations embedded in R
3, large 3D arrays which enclose the surface are used. The

various banding approaches work on only a small percentage of these arrays. This approach

is easy to implement but is perhaps inefficient in terms of storage. In Chapter 3, a memory

efficient approach to banding is implemented.

Visualizations of the results are done with Matlab (the function contourslice is partic-

ularly useful) and Geomview.

2.4 Numerical Results

Numerical studies are provided next to illustrate the behaviour and convergence of the

method for a variety of practical test cases: passive transport, geometric flow under constant

normal flow and redistancing via the standard reinitialization PDE. The geometric flexibility

of the method is also illustrated by treating normal flow on the triangulated surface of a

human hand and flow on a Klein bottle, a codimensional-two object in four dimensions. In

all of the examples, the new WENO-based interpolation procedure is used to carry out the

extension step and standard Hamilton–Jacobi WENO-based techniques are used to treat

the embedding PDE. For efficiency, calculations are performed in a narrow band around the

surface as described in Section 2.3.

2.4.1 Passive transport: flow under a specified velocity field

An important example of interface motion on surfaces is passive transport or flow under a

specified velocity field. In this case, an interface—represented on the surface by the zero-

contour of the level set function φ—is advected via a velocity field which is independent of

the interface geometry. On the surface, such a motion corresponds to the equation

φt + V · ∇Sφ = 0,

for some velocity field V specified on the surface. To evolve this surface PDE using the

Closest Point Method, we instead treat the embedding PDE

φt + V (cp(x)) · ∇φ = 0, (2.6)

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 35

Figure 2.6: Passive transport of a cir-
cular interface on a sphere. The circle
starts initially at y = −0.9 on the far
side of the sphere. It is advected over
the surface of the sphere via the ve-
locity field indicated with arrows to
the final solution at tf = 2.24 shown
on the front of the sphere. The ex-
act solution—also a circle—is shown,
but within the tolerances of the plot,
it is almost indistinguishable from the
numerical solution. The computation
grid has ∆x = 0.16.

∆x error-in-position order

0.16 1.7263 × 10−4

0.08 2.6721 × 10−6 6.01

0.04 7.3215 × 10−8 5.19

0.02 2.1474 × 10−9 5.09

0.01 6.3800 × 10−11 5.07

0.005 1.8378 × 10−12 5.12

Table 2.3: Numerical convergence study for passive
transport of a circular interface moving on a sphere.
Error-in-position measures the error in the position of
the interface along the surface where z = 0. Graph-
ically, the situation is similar to Figure 2.6, but with
the circle beginning initially at y = −0.25 and running
to tf = 1.

on a uniform 3D grid. Equation (2.6) is simply the standard equation for passive transport

in 3D since V (cp(x)) is well-defined in R
3. It is therefore natural to use standard methods

[OF03] and approximate ∇φ using upwinding and WENO approximations in a dimension-

by-dimension fashion as described in Sections 1.1.3 and 1.1.4. The result is then a method-

of-lines procedure. Time stepping is done with the three-stage, third-order strong-stability-

preserving (SSP) Runge–Kutta scheme [SO88] (SSP(3,3) from Section 1.2.1) with ∆t = 1
2∆x

and with closest point extensions performed after each stage. It is emphasized that apart

from the closest point extensions, this is simply a standard procedure used for evolving (2.6)

in three dimensions.

To test the numerical convergence of the method, consider a circular interface on a unit

sphere, evolving by passive transport. As shown in Figure 2.6, we take a velocity field that

is of unit length and emanates from one pole to the other in a radially symmetric fashion

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 36

about the axis between the poles (like lines of longitude on a tilted globe). A comparison of

the numerical result against the exact solution is provided in Table 2.3. These results show

a clear fifth-order convergence.

For this smooth problem we see that the Closest Point Method recovers the expected

fifth-order accuracy of the Hamilton–Jacobi WENO discretization of the embedding PDE

[OF03]. This demonstrates that the closest point extension procedure based on WENO

interpolation performs as anticipated and without degrading the fifth-order accurate treat-

ment of the embedding PDE.

2.4.2 Normal flow

We next consider the case of normal flow where the motion of the interface is governed not

by an external velocity field but by the shape of the interface itself. We begin with constant

normal flow where the interface moves in the direction of its in-surface normal vector at a

constant speed C, according to the surface PDE

φt + C|∇Sφ| = 0.

If C = 1, the problem is called unit normal flow and the underlying 3D embedding PDE is

φt + |∇φ| = 0, (2.7)

which is a Hamilton–Jacobi equation with Hamiltonian H(∇φ) = |∇φ|.
The embedding PDE is discretized in space using Lax–Friedrichs for Hamilton–Jacobi

equations [OF03, OS91]. Specifically, the numerical Hamiltonian

Ĥ =
∣∣∣
〈

φ−
x +φ+

x

2 ,
φ−

y +φ+
y

2 , φ−
z +φ+

z

2

〉∣∣∣

− αx
(

φ+
x −φ−

x

2

)
− αy

(
φ+

y −φ−
y

2

)
− αz

(
φ+

z −φ−
z

2

)
,

(2.8)

is used where φ+
x , φ−

y , etc. are calculated using Hamilton–Jacobi WENO and the latter three

terms provide artificial dissipation. The dissipation coefficients αx, αy and αz are calculated

as the bounds for partial derivatives of the Hamiltonian H over some domain, the choice

of which leads to variations of the Lax–Friedrichs scheme. The local Lax–Friedrichs (LLF)

and stencil local Lax–Friedrichs (SLLF) variants [OF03] are implemented and used in this

section. After computing the numerical Hamiltonian, we can proceed by the method of lines

where time stepping is again done with the SSP(3,3) scheme with ∆t = 1
2∆x and closest

point extensions after each stage.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 37

∆x error-in-position order

0.16 9.6093 × 10−5

0.08 1.8654 × 10−6 5.69

0.04 3.4943 × 10−8 5.74

0.02 5.5902 × 10−10 5.97

0.01 1.0222 × 10−11 5.77

0.05 2.2932 × 10−13 5.48

Table 2.4: Numerical convergence study for constant
normal flow for a circle moving on a unit-radius sphere.
Error-in-position measures the maximum error in the po-
sition of the zero-contour over the quadrant of the sphere
where x ≥ 0 and z ≥ 0. The circle begins at y = −0.25
and the computation proceeds using LLF to tf = 0.5
with ∆t = 1

2∆x.

Figure 2.7: Unit normal flow on
a torus with radii 0.8 and 0.4.
The interface begins as an ellipse
at y = −1 and the computation
proceeds using SLLF to tf = 2.
The interface is shown at every
0.4 units of time, travelling from
left to right. The computational
grid has ∆x = 0.04.

To test the order of convergence of the method, we compute the motion of a circle on a

sphere via unit normal flow. The exact solution is simply that the circle moved along the

surface of the sphere, similar to the passive transport case in Figure 2.6. Table 2.4 shows

that the Closest Point Method achieves at least fifth order on this problem, again validating

the choice of WENO interpolation technique.

Of course, non-spherical surfaces may also be treated. Figure 2.7 shows the motion of

an initial interface on a torus, as computed using the SLLF scheme for the embedding PDE.

As anticipated, the interface moves from left to right parallel to the y-axis via unit normal

flow, separating and re-combining as necessary.

2.4.3 Signed distance and reinitialization

In practical applications, level set functions may become either too steep or too flat during

their evolution. Reinitialization is often used to take general level set functions closer

to signed distance functions, or to generate accurate approximations of signed distance

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 38

functions. Given the widespread use of such techniques, it is of interest to see whether the

corresponding surface reinitialization PDE

φt + sgn(φ0) (|∇Sφ| − 1) = 0, (2.9)

[SSO94, RS00] can be accurately treated using the Closest Point Method. Here we assume

that the initial interface is, as usual, specified as the zero-contour of an initial φ0. Starting

from φ0, the surface level set equation (2.9) evolves so that in the steady state φ(x) gives

the signed distance (along the surface) from x to the interface. In practice, this evolution

may also move the zero-contour of φ; we want this motion to be small and to vanish as the

discretization grid spacings ∆x tend to zero.

Treating this problem using the Closest Point Method is straightforward; we discretize

the corresponding three-dimensional redistancing embedding PDE

φt + sgn(φ0) (|∇φ| − 1) = 0, (2.10a)

and as is standard practice [OF03, FAMO99, Mit04], we replace the signum function with

a smoother version

sgn(φ0) ≈ S(φo) =
φ0√

φ2
0 + ǫ2

. (2.10b)

Typically, ǫ is set equal to ∆x but in this work we use ǫ =
√

∆x, as suggested in [CT08].

This latter choice of ǫ gave considerably better convergence results than the former.

Following [FAMO99, Mit04], we implement a modified Godunov scheme for (2.10).

Specifically, at each grid point xj we compute φ+
x and φ−

x using Hamilton–Jacobi WENO.

We then select an approximation Φx to φx according to

Φx =

φ−
x if S(φ0)φ

+
x ≥ 0 and S(φ0)φ

−
x ≥ 0,

φ+
x if S(φ0)φ

+
x ≤ 0 and S(φ0)φ

−
x ≤ 0,

0 if S(φ0)φ
+
x > 0 and S(φ0)φ

−
x < 0,

φ−
x if S(φ0)φ

+
x < 0 and S(φ0)φ

−
x > 0 and s := S(φ0)

|φ+
x |−|φ−

x |

φ+
x −φ−

x
≥ 0,

φ+
x if S(φ0)φ

+
x < 0 and S(φ0)φ

−
x > 0 and s := S(φ0)

|φ+
x |−|φ−

x |

φ+
x −φ−

x
< 0.

Having repeated this procedure in the y and z directions at xj , we can approximate

S(φ0) (|∇φ| − 1) ≈ S(φ0)
(√

Φ2
x + Φ2

y + Φ2
z − 1

)
.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 39

Table 2.5: Numerical convergence study for signed distance / reinitialization at t = 5 where
φ0 is a signed half -distance function (i.e., φ0 = d/2 where d is the signed distance function)
to a circular interface at y = −0.25 on the surface of a unit sphere. Error-in-position
measures the maximum error in the position of the contour in the quadrant of the sphere
where x ≥ 0 and z ≥ 0.

∆x zero-contour 0.15-contour
error-in-position order error-in-position order

0.16 4.42 × 10−4 6.06 × 10−4

0.08 1.08 × 10−5 5.36 1.71 × 10−5 5.15
0.04 4.08 × 10−7 4.72 5.39 × 10−7 4.99
0.02 2.57 × 10−8 3.99 2.27 × 10−8 4.57
0.01 1.12 × 10−9 4.52 9.14× 10−10 4.64

The Closest Point Method then proceeds as a method-of-lines computation with closest

point extensions following each stage of the SSP(3,3) scheme with ∆t = 1
2∆x.

Table 2.5 shows between fourth- and fifth-order convergence for the signed distance

problem as measured by the error in the position of the 0 and 0.15 contours.

2.4.4 WENO interpolation on marginally resolved surfaces

Even when the solution of the PDE is smooth, WENO interpolation can offer improved

results over fixed-stencil Lagrange interpolation when the underlying surface is nonsmooth

or marginally resolved by the spatial grid. The latter is demonstrated by considering the

reinitialization equation with sinusoidal initial conditions on the lines x = a and x = b,

φ0(a, y) = sin(πy),

φ0(b, y) = cos(πy).

Interpreting the two lines as representing different arcs of a curve embedded in R
2, we may

apply the Closest Point Method to compute approximations of the solution. The underlying

PDE and initial conditions give a smooth flow. The problem becomes computationally

interesting when the two lines are separated by only a few grid points, as the two lines are

then marginally resolved by the grid.

Figure 2.8 shows the results when the lines are separated by only four grid nodes (that

is, b − a = 4∆x). Using Lagrange interpolation (based on degree five polynomials) for the

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 40

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ
0
(a,y)

φ
0
(b,y)

y

(a) Initial conditions

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ(a,y)
φ(b,y)
exact

y

(b) Lagrange interpolation

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ(a,y)
φ(b,y)
exact

y

(c) WENO interpolation

Figure 2.8: A comparison of Lagrange interpolation versus WENO interpolation on closely
spaced surfaces with b − a = 4∆x. This is a signed distance computation with tf = 4 and
periodic boundary conditions at y = −2 and y = 2. The dots indicate the values of φ on
the grid nodes in the y direction.

closest point extension leads to an incorrect solution with discontinuities and substantial

movement of the zero-contour on both lines. This error is due to the close proximity of the

lines resulting in the stencil using data from both lines, an approach which is nonlocal and

incorrect. WENO interpolation, however, chooses stencils based on smoothness and hence

avoids using data from the more distant line. This approach leads to a non-oscillatory nu-

merical approximation that is in excellent agreement (Figure 2.8(c)) with the exact result.

It turns out via a straightforward examination of the two interpolation stencils and the evo-

lution stencil that to avoid nonlocal interactions, there must be eight grid points between

the lines in the Lagrange interpolation case but only four grid points in the WENO interpo-

lation case. Finally, note in Figure 2.9 that WENO interpolation fails much more gracefully

when the lines are moved even closer together, unlike Lagrange interpolation which results

in wildly incorrect results with large discontinuities.

2.4.5 Triangulated surfaces

The examples thus far have involved fairly simple surfaces. Complex surfaces may also

be treated by the Closest Point Method so long as a closest point representation of the

underlying surface is available or can be computed.

Extensive and freely available collections of complex shapes exist, and many of the

available surfaces are in a triangulated form. Naturally, we might wish to be able to compute

flows on such surfaces, a task that, for the Closest Point Method, requires the construction

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 41

−2 −1 0 1 2
−4

−2

0

2

4

6
x 10

5

φ
1

φ
2

exact

y

(a) Lagrange Interp., b − a = 3∆x

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ
1

φ
2

exact

y

(b) WENO Interp., b − a = 3∆x

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

φ
1

φ
2

exact

y

(c) WENO Interp., b − a = 2∆x

Figure 2.9: A comparison of Lagrange interpolation versus WENO interpolation on increas-
ingly closely spaced surfaces. All three solutions are incorrect but (b) and (c) using WENO
interpolation fail much more gracefully (note vertical scale in (a)).

of a closest point representation from a surface triangulation.

A straightforward method to convert triangulated surfaces into closest point represen-

tations is to loop over the list of triangles to directly determine the triangle closest to each

grid node in the embedding space. Then the closest point on the surface is given by the

closest point on the corresponding closest triangle. Näıvely implemented, this approach is

computationally expensive (and inefficient) since each triangle must be examined for each

node.

A much faster construction of the closest point function is obtained by taking into

account that the method works on a narrow computational band [MR]. First, for each

triangle, we determine all nodes that are within the bandwidth, BWextend, of the triangle

(nodes that are further away cannot be influenced by that part of the surface). For each

node, this approach gives a list of triangles. This list is sufficiently small that it is normally

quite practical to directly examine each member to determine the closest triangle (and hence

the closest point on the surface). See [MR] for full details on this initialization procedure.

Notice that the triangulation is used only in the initial computation of the closest point

representation and for plotting purposes; otherwise the Closest Point Method calculation

proceeds exactly as described in Chapter 1 and in the previous examples. For example,

Figure 2.10 gives a computation for unit normal flow on the surface of “Laurent’s Hand”

[SAA07] (the hand consists of 351,048 vertices comprising 701,543 triangles). The flow itself

was carried out using the same code as was used in Section 2.4.2; as anticipated, the only

modifications appear in the initial computation of the closest point representation and in

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 42

(a) t = 0 (b) t = 0.665 (c) t = 1.065 (d) t = 1.315

Figure 2.10: Unit normal flow on “Laurent’s Hand” shown at various times. The interface—
visualized here as a transition from black to white—begins at the tip of the little finger.
The computation uses LLF on the computational domain [−1, 1]3 with a 401 × 401 × 401
grid.

the visualization procedure.

2.4.6 Klein bottle

The Klein bottle is a famous surface embedded in 4D (thus a surface of codimension 2)

which is closed but has no inside and outside. Although the Klein bottle appears self-

intersecting when drawn projected into 3D, the complete surface in 4D is not. We consider

a parameterization [Wik07] in terms of (u, v) ∈ [0, 2π)2

x =

3
7 cos u (1 + sin u) + 2

7r
(
1− cos u

2

)
cos u cos v, if u ≤ π,

3
7 cos u (1 + sin u)− 2

7r
(
1− cos u

2

)
cos v, otherwise,

(2.11a)

y =

8
7 sin u + 2

7r
(
1− cos u

2

)
sin u cos v − 1

7 , if u ≤ π,

8
7 sin u− 1

7 , otherwise,
(2.11b)

z =
2

7
r
(
1− cos u

2

)
sin v, (2.11c)

w = −8

7
cos u, (2.11d)

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 43

where r controls the radius of the bottle (we use r = 1). We define a function fKlein : R
2 →

R
4 such that x = 〈x, y, z, w〉 = fKlein(u, v) as in (2.11).

This surface is unlikely to have a simple closest point function. However we do have

the parameterization (2.11), and thus for a given grid point x0 = 〈x0, y0, z0, w0〉, we can

compute the closest point by minimizing

d2(u, v) = ‖〈x0, y0, z0, w0〉 − fKlein(u, v)‖22 ,

over (u, v) (using, for example, Matlab’s fminsearch) to find (umin, vmin). The closest point

to x0 is then

cp(x0) = fKlein(umin, vmin).

Once this straightforward—albeit time consuming—series of optimizations have been per-

formed, the results are stored and can then be reused for any further Closest Point Method

calculations on the same grid.

Figure 2.11 shows the results of the reinitialization equation calculation (Section 2.4.3)

on the surface of the Klein bottle. This example illustrates that the Closest Point Method

can treat both non-orientable surfaces and surfaces of codimension-two. Note that this

computation requires no special changes to the Closest Point Method, illustrating that the

method can handle very general surfaces without any particular modifications. We also note

that although the computational grid was 51×51×51×51, only 340,057 points or about 5%

of that grid is contained in the band used for computation. It is anticipated that problems

of high codimension would benefit in terms of memory requirements from a more flexible

storage scheme than the simple 4D array used here. An appropriate scheme is considered

in Chapter 3.

2.4.7 Forest fires

This example is a departure from the previous high-order examples using WENO interpola-

tion. Instead it demonstrates another feature of the Closest Point Method: namely, the ease

at which existing 3D codes can be straightforwardly modified to compute the corresponding

flows on surfaces. The Toolbox of Level Set Methods [Mit04] is a add-on for Matlab which

implements many level set techniques appearing in [OF03].

Using the toolbox to implement level set methods on surfaces via the Closest Point

Method is straightforward. Aside from acquiring the closest point values and visualization

code, a single line of matlab code is all that is required:

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 44

Figure 2.11: Reinitialization / Signed Distance on a Klein bottle from initial conditions
φ0 = 1.1 − w. Left: (x, y, z)-projection, right: (x, y,w)-projection. Each transition from
dark-to-light or light-to-dark represents contours of equal distance from the closer of the two
initial interfaces indicated with dashed lines. Note that some shaded bands appear narrower
than others in the 3D projections of the Klein bottle. The grid is 51× 51× 51 × 51 on the
domain [−2, 2]4.

phi = in te rpn (gr idx , gr idy , gr idz , phi , cpx , cpy , cpz) ;

This line calls the matlab function interpn() to perform a closest point extension of phi.

The variable phi is an array of values of the level set function φ at a set of grid points

(x, y, z) = (gridx, gridy, gridz) and the arrays cpx, cpy, cpz store the x, y and z coordinates

of the associated closest points.

A simple level set model for a burning flame front was used based on [ABP+07]. The

flame front propagates outwards in the (in-surface) normal direction and also burns faster

in the up-slope direction.

φt = −C(x)|∇Sφ|+∇Ψ · ∇Sφ, (2.12)

where ∇Ψ is the (non-intrinsic) gradient of the surface and C(x) is the normal rate of

spread possibly depending on local properties such as the fuel type [ABP+07]. Figure 2.12

shows an example of this model computing the evolution of a forest fire on the surface of a

mountain.

CHAPTER 2. LEVEL SET EQUATIONS ON SURFACES 45

(a) t = 0 (b) t = 0.33404

Figure 2.12: Forest fire computation on the surface of a mountain.

Chapter 3

The Implicit Closest Point Method

The explicit Closest Point Method in Chapter 1 works very well for Hamilton–Jacobi prob-

lems such as the level set equation in Chapter 2. The method efficiently achieves high-order

accuracy using standard spatial discretizations and explicit Runge–Kutta time-stepping

methods with time-step sizes ∆t = O(∆x), i.e., on the order of the spatial grid.

For problems with second- and higher-order derivatives such as the heat equation, ex-

plicit time stepping may be inefficient because the ODE system resulting from the spatial

discretization is often stiff: small time steps are required to maintain linear stability even

when larger time steps would be adequate from the point of view of consistency. Nonethe-

less, the explicit Closest Point Method has been used successfully in [RM08] to compute the

solution of second-order problems on surfaces (specifically, in-surface curvature motion and

diffusion). Developing stable methods becomes even more critical when higher-order spatial

derivatives arise, such as biharmonic terms, where the resulting stiffness makes explicit time

stepping prohibitively expensive.

In this chapter, a new implicit Closest Point Method is presented. It uses implicit linear

multistep or Runge–Kutta time-stepping schemes and allows large time steps. Numerical

convergence studies demonstrate the high-order properties of this method on both the heat

equation and biharmonic problems. Several applications are presented, including image

processing (blurring an image on a triangulated surface) and modelling heat flow on a

complicated surface with components of various codimension. Finally, in-surface pattern

formation results are presented using implicit-explicit (IMEX) time-stepping schemes.

46

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 47

3.1 Introduction

Let S be a surface embedded in R
d and consider, as an example, the in-surface heat equation

ut = ∆Su, (3.1a)

u(0,x) = u0(x). (3.1b)

Based on the principles in Chapter 1 and [RM08], we may replace the Laplace–Beltrami

operator ∆S by the standard Laplacian ∆ in the embedding space R
d, provided we evaluate

at the closest point cp(x), thus

ut(t,x) = ∆u(cp(x)), (3.2a)

u(0,x) = u0(cp(x)), (3.2b)

and the solutions of (3.1) and (3.2) will agree on the surface.

At this point in the explicit Closest Point Method, we would drop the closest point

operator cp in (3.2a) and note that the resulting embedding PDE agrees initially with

(3.2); an appropriate spatial discretization combined with explicit time stepping could then

be used, followed by closest point extensions to regain agreement with (3.2) at the start of

the next step (or stage) as described in Chapter 1.

In contrast, the implicit Closest Point Method is based on discretizing (3.2) directly. A

brief outline of this idea is presented first in 2D before deriving the more general form in

some detail in Section 3.2. Assume for the moment that the surface S is a curve embedded

in 2D and consider a second-order centered finite difference scheme applied to the Laplacian

∆ in (3.2), resulting in

∂

∂t
u(x, y) =

1

∆x2

(
− 4u(cp(x, y)) + u(cp(x + ∆x, y)) + u(cp(x−∆x, y))

+ u(cp(x, y + ∆x)) + u(cp(x, y −∆x))
)
, (3.3a)

u(0, x, y) = u0(cp(x, y)), (3.3b)

where x and y are still continuous variables (so this is not yet a spatial semi-discretization).

The spatial semi-discretization can be completed by choosing a grid xi and yj and by

using interpolation of the values at grid nodes surrounding each cp(xi, yj) to approximate

the value of u(cp(xi, yj)). As the value of cp(xi, yj) is known beforehand, the interpolation

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 48

weights can be precomputed with barycentric Lagrange interpolation (Section 1.5.2, [BT04]).

These interpolation weights and the evolution weights
{

−4
∆x2 , 1

∆x2 , 1
∆x2 , 1

∆x2 , 1
∆x2

}
can then

be combined into a matrix (as explained later in detail in Section 3.2) which approximates

∆u(cp(x, y)). Thus, this method-of-lines approach yields a linear system of coupled ODEs

in time for uij(t) ≈ u(t, xi, yj). The ODE system can then be discretized in time with

standard implicit Runge–Kutta or linear multistep methods.

In practice, the system resulting from (3.3) exhibits linear instabilities and instead the

following stabilized form is used:

∂

∂t
u(x, y) =

1

∆x2

(
− 4u(x, y) + u(cp(x + ∆x, y)) + u(cp(x−∆x, y))

+ u(cp(x, y + ∆x)) + u(cp(x, y −∆x))
)
, (3.4a)

u(0, x, y) = u0(cp(x, y)), (3.4b)

where the only change is that the diagonal entries no longer involve the closest point operator

cp. Note that this equation (3.4) and the previous (3.3) will agree at the surface because for

points (x, y) on the surface we have cp(x, y) = (x, y). This ensures that the solution of (3.4)

is consistent with (3.1). This stabilizing procedure is discussed further in Section 3.2.3.

3.2 Matrix Formulation of the Closest Point Method

A matrix formulation of the Closest Point Method is presented. While the above introduc-

tion was specific to curves embedded in R
2, the following derivation is presented in a more

abstract fashion. Suppose the surface S is embedded in an embedding space R
d. Assume

we have an interpolation scheme where the interpolated value is a linear combination of the

values at neighbouring grid points in a hypercube in R
d; this hypercube of grid points forms

the interpolation stencil of the scheme. We will use barycentric Lagrange interpolation

(Section 1.5.2, [BT04]) of degree p so the hypercube has p + 1 points on each side.

Now consider two discrete sets of points in the embedding space. The first is Levolve =

{x1,x2, . . . ,xm} and it contains every grid point which occurs in the interpolation stencil

for some point on the surface S.1 These grid points form the computational band on

which the solution is propagated. We approximate the solution u at all points in Levolve

1While this condition is sufficient, a weaker condition can be used in practice. Namely that Levolve must
contain the interpolation stencil for each cp(xi) for xi ∈ Levolve ∪ Lghost.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 49

ld

ld

bc bc bc
bc

bc

bc bc bc
bc

bc

b

b b b b

b b b b

b b b

b b b b

b

b

b

b

b b b b

b b b b

b b b b

b b b bb

b

b

b

b b b b

b b b b

b

b

b

b

b

b

b

b b b b

b b b b

b

b

b

b

b b b b

b

b

b

b

b

b

b

b

b

b

b

b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b b b

b

b

b

b

b

b

b

b

b b b

b b

b b

b b

b b

b

b

b

b

b b b b

b

b

b

b

b b b b

b

b

b

b

b b b b

b

b

b

b

b

b

b

b

b b b b

b b b b

b

b

b

b

b

b

b

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc bc bc bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc bc bc bcbc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc Figure 3.1: Example of the sets of grid points
Levolve (indicated by •) and Lghost (indicated by
◦) where the curve S is a circle. The interpolation
stencil is a 4 × 4 grid (for example using degree
p = 3 barycentric Lagrange interpolation) and
the shaded regions illustrate the use of this stencil
at the two points on the circle indicated by ♦.
Five-point evolution stencils are shown for two
example points in Levolve, in one case illustrating
the use of ghost points.

with the vector u ∈ R
m where ui ≈ u(xi) for each grid point xi ∈ Levolve. The second

set of points Lghost = {xm+1,xm+2, . . . ,xm+mg} is disjoint from Levolve and contains mg

additional “ghost points” along the edges of the computational band. These points will be

used in the derivation below but their values are not propagated in time. Figure 3.1 shows

an example of the two sets Levolve and Lghost where the curve S consists of a circle embedded

in R
2. The construction of these sets is discussed further in Section 3.5.

Finally, define two other vectors over the sets Levolve and Lghost for use in the derivation.

Let U ∈ R
m denote the vector with components Ui = u(cp(xi)) for xi ∈ Levolve and let

Ug ∈ R
mg be the vector with Ugi = u(cp(xm+i)) for xm+i ∈ Lghost.

3.2.1 The discrete extension operator

The closest point extension is an operator which assigns a value of u(cp(x)) to u(x). How-

ever, in a discrete setting, cp(x) is generally not a grid point. Hence instead we use a discrete

closest point extension which interpolates the values of the solution u at the grid points (i.e.,

the vector u) in the interpolation stencil surrounding cp(x). Because each interpolation is a

linear combination of values in u, this operation can be expressed as a matrix multiplication

using the discrete extension operator E defined next.

Definition 3 [discrete extension operator E] Given the vectors u, U , Ug and an in-

terpolation scheme as described above, the discrete extension operator is a (m + mg) ×m

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 50

matrix E such that

(
U

Ug

)
≈ Eu. (3.5)

The nonzero entries in the ith row of E consist of the weights in the interpolation scheme

for u(cp(xi)). That is, the components of E = [γij] are

γij =

wj if xj is in the interpolation stencil for cp(xi),

0 otherwise,

with wj denoting the weight associated with the grid point xj in the interpolation scheme for

point cp(xi).

It is worth reiterating that we have assumed that all points appearing in an interpolation

stencil will also be in Levolve: one way this can be guaranteed is to construct Levolve to contain

exactly the points appearing in any interpolation stencil as will be done in Section 3.5.

3.2.2 The discrete differential operator

Suppose we are interested in a spatial discretization of the Laplace–Beltrami operator

∆Su(x). The procedure works for more general operators, but it is instructive to use a

particular example. Recall that for points x on the surface, ∆Su(x) is consistent with

∆u(cp(x)). We thus consider approximating ∆u(cp(x)) for all points of Levolve as

∆u(cp(Levolve)) ≈∆h

(
U

Ug

)
(3.6)

where ∆h is an m×(m+mg) matrix which approximates the Laplacian operator in R
d using a

linear finite difference scheme. The finite difference scheme is applied at each point in Levolve

by taking a combination of neighbouring points appearing in an evolution stencil . Some of

these neighbouring grid points will be in Levolve with corresponding values of u(cp(x)) in

the vector U ; the remaining grid points will be ghost points in Lghost, and hence Ug also

appears in (3.6).

For example, in 2D, the classic second-order centered difference approximation to the

Laplacian ∆ would see the nonzero entries of the ith row of ∆h consisting of the values

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 51

{
−4
∆x2 , 1

∆x2 , 1
∆x2 , 1

∆x2 , 1
∆x2

}
(see Figure 3.2(a)). That is, the Laplacian of u at the point

cp(xi) is approximated by

∆u(cp(xi)) ≈
1

∆x2

(
− 4u(cp(xi)) + u(cp(xiN)) + u(cp(xiS)) + u(cp(xiE)) + u(cp(xiW))

)
,

(cf. (3.3)) where iN , iS , iE and iW are the indices of the four neighbouring points (some of

which may occur in Lghost as illustrated in Figure 3.1).

Both U and Ug can be approximated from the vector u by multiplying by the (m +

mg)×m discrete extension operator E as

(
U

Ug

)
≈ Eu =

E

u

. (3.7)

Combining with (3.6) we have

∆u(cp(x)) ≈∆h (Eu) = ∆hEu =

∆h

E

u

= = M̃u, (3.8)

where M̃ = ∆hE is an m ×m matrix. Thus a spatial discretization of the in-surface heat

equation ut = ∆Su is

∂

∂t
u = M̃u. (3.9)

Note that Ug and the ghost points were used only in the derivation; the system (3.9) is

defined on the set of grid points Levolve.

This procedure, as described above, used the 1D second-order finite difference approxi-

mation

uxx =
1

∆x2
(uj−1 − 2uj + uj+1) +O

(
∆x2

)
,

in a dimension-by-dimension fashion to approximate the Laplacian in 2D and 3D as shown in

Figure 3.2. However the procedure is not specific to second-order centered finite differences

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 52

−41 1

1

1

x

y

(a) 2D

−61 1

1

1

1

1

y

z

x

(b) 3D

Figure 3.2: Second-order stencils for
the Laplacian in various dimensions.

− 60
12

16
12

− 1
12

16
12

− 1
12

16
12

− 1
12

16
12

− 1
12

x

y

(a) 2D

− 90
12

− 1
12

16
12

16
12

− 1
12

− 1
12

16
12

16
12

− 1
12

− 1
12

16
12

16
12

− 1
12

y

z

x

(b) 3D

Figure 3.3: Fourth-order stencils for the Laplacian in various dimensions.

or to the Laplace–Beltrami operator. For example, we can also use the 1D fourth-order

finite difference approximation

uxx =
1

12∆x2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) +O

(
∆x4

)
,

in a dimension-by-dimension fashion to approximate the Laplacian in 2D and 3D as shown

in Figure 3.3. Other operators such as the intrinsic gradient considered in Chapter 2 or the

intrinsic biharmonic operator in Section 3.6.3 can also be considered.

Given the semidiscrete problem (3.9), we next consider the temporal discretization using

the implicit linear multistep methods of Section 1.2.2. Implicit Runge–Kutta methods would

also be straightforward, particularly diagonally implicit Runge–Kutta schemes [KMG08,

HW96]. For each time step, the multistep schemes perform a single linear system solve of the

form Au = b with A = I−γ∆tM̃ for some value of γ that depends on the particular method.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 53

0 2 4 6
−2

−1

0

1

2
t = 0.65

θ

u

init. cond.
exact soln
num. soln

(a) eM

0 2 4 6
−2

−1

0

1

2
t = 0.65

θ

u

init. cond.
exact soln
num. soln

(b) M

Figure 3.4: Stable and unstable solutions of the in-surface heat equation on a unit circle
embedded in 2D, with ∆x = 0.1, degree p = 4 interpolation, and Backward Euler time step-
ping. Note oscillations indicating instability in (a) whereas the numerical solution essentially
overlaps the exact solution in (b).

We denote the time-stepping matrices corresponding to the four linear multistep methods in

Section 1.2.2 as ABE, ACN, ABDF2 and ABDF3. The structure and properties of these matrices

are important for understanding the behavior of direct and iterative methods for solving

linear systems. Various properties and solution techniques are discussed in Section 3.3.

3.2.3 Stabilizing the Closest Point Method matrix

Recall that if the matrix in a linear system of ODEs such as the semidiscrete problem (3.9)

has eigenvalues with positive real components, then the corresponding eigenmodes grow

exponentially in time, causing a growing component in the solution. If the original PDE

is diffusive and does not have growth in the exact solution, then the exponentially growing

components in the solution of the semidiscrete problem correspond to instability. Indeed,

Figure 3.4(a) shows that using the implicit Closest Point Method with M̃ (as derived in

(3.9)) to solve the in-surface heat equation (3.1) on a unit circle exhibits instabilities. By

examining the spectra of M̃ in Figure 3.5(a), we note the matrix has some eigenvalues with

positive real components corresponding to growth in some eigenmodes.

We consider a modification of the implicit Closest Point Method procedure which has

stable results. When approximating ∆S at the point xi with a finite difference stencil,

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 54

we map only the neighbouring points of the stencil xj back to their closest points cp(xj)

and use ui itself instead of u(cp(xi)) (as in (3.4)). This special treatment of the diagonal

elements yields a new m×m matrix

M = stab(∆h,E) := diag (∆h) + (∆h − diag (∆h))E, (3.10a)

or diagrammatically

M

=

diag (∆h)

+

∆h − diag (∆h)

E

. (3.10b)

Note that as explained in Section 3.1, this splitting does not impact the consistency of u at

the surface. Additionally, the magnitude of the diagonal of the operator with respect to the

off-diagonal elements has increased, thus increasing its stability (see also Section 3.3.3 which

investigates the diagonal dominance of M̃ and M). Figure 3.4(b) shows a stable solution to

the in-surface heat equation using M and Figure 3.5(b) shows that all eigenvalues of M have

negative real parts.

3.2.4 Re-examining the explicit Closest Point Method

Finally for this section, note that the explicit Closest Point Method can be formulated using

the matrices ∆h and E. Recall from Chapter 1 that the explicit Closest Point Method for

solving ut = ∆Su consists of alternating between two steps:

1. Perform a forward Euler time step to advance from tn to tn+1:

ũn+1 = un + ∆t∆hun.

for each grid point in Levolve.

2. Perform a closest point extension for each grid point x ∈ {Levolve ∪ Lghost}:

un+1 = Eũn+1.

The matrices ∆h and E can be similarly used to formulate the explicit Closest Point Method

for nonlinear problems. The the stabilization procedure of Section 3.2.3 could also be applied

to the explicit Closest Point Method. Thus the matrix formulation is general enough to

describe both the implicit and explicit Closest Point Methods.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 55

−500 −400 −300 −200 −100 0

−30

−20

−10

0

10

20

30
0 5 10 15 20

−10

−5

0

5

10

(a) eM

−600−500−400−300−200−100 0

−30

−20

−10

0

10

20

30
0 5 10 15 20

−10

−5

0

5

10

(b) M

Figure 3.5: Spectra of the M̃ (left) and M (right) matrices. Geometry: unit circle in 2D,
E with biquartic interpolation (p = 4), spatial grid has ∆x = 0.1. Observe that M̃ has
eigenvalues in the right half plane.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 56

−600 0

−15

0

15

Re

I
m

(a) Circle, p = 4, ∆x = 0.1

−3000 0

−50

0

50

Re

I
m

(b) Circle, p = 4, ∆x = 0.05

−12000 0

−400

0

400

Re

I
m

(c) Circle, p = 4, ∆x = 0.025

−60 0

−0.6

0.0

0.6

Re

I
m

(d) Sphere, p = 3, ∆x = 0.4

−250 0

−3

0

3

Re

I
m

(e) Sphere, p = 3, ∆x = 0.2

−1000 0

−30

0

30

Re

I
m

(f) Bunny, p = 2, ∆x = 0.1

Figure 3.6: Examples of the spectrum of M for various surfaces including a unit circle in
2D, a unit sphere in 3D and the Stanford Bunny (see Section 3.6.4) in 3D. Axes scales are
linear.

3.3 Matrix Properties

In this section, some of the properties of the matrix M are investigated, particularly those

which relate to direct or iterative solution techniques for the system [I−∆tM]u = b which

is used in the time-stepping schemes.

3.3.1 Spectra, spectral radius and condition number

Figure 3.6 shows the spectrum (the distribution of the eigenvalues in the complex plane) of

the matrix M for several surfaces and various values of the grid spacing ∆x and the degree

of interpolation p. As previously noted in Section 3.2.3, the eigenvalues of M have negative

real parts, leading to stability. Note that the majority of eigenvalues appear to be real or

almost real with relatively small imaginary parts. The largest imaginary components of the

spectra are smaller than the smallest (most negative) real components by at least an order

of magnitude. This decay of eigenmodes is consistent with the diffusive behavior we expect

from a heat equation.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 57

∆x ρ(M) ρ(ABE) cond(ABE)

0.4 35.5 4.5 94.1

0.2 144 8.2 281

0.1 600 16.0 664

0.05 2587 33.3 1520

0.025 10777 68.4 3114

0.0125 41242 130 6289

0.00625 169999 267 12703

0.003125 694760 544 25984

Table 3.1: Condition number and spectral
radius for time stepping matrix ABE = I −
∆tM with ∆t = 1

4∆x for various ∆x. The
curve S is a unit circle in 2D and the inter-
polation is degree p = 4.

Table 3.1 lists the condition number and spectral radius ρ for the time-stepping matrix

ABE = I −∆tM for various ∆x. Note in particular, that with ∆t = O(∆x), the condition

number of the time-stepping matrix ABE is relatively small and only doubles when ∆x is

halved. Similar results are obtained for the time-stepping matrices ACN, ABDF2 and ABDF3.

Thus the time stepping matrices are well-conditioned.

Let ABE be factored into diagonal, lower and upper components as ABE = D − L − U;

then TJ = D−1 (U + L) and TGS = (D− L)−1 U are the iteration matrices associated with the

Jacobi and Gauss–Seidel iterative schemes [BF01]. Recall that the spectral radius of these

iteration matrices measures (at least asymptotically) how fast the corresponding method

converges [BF01]. Figure 3.7 shows the effect of p and ∆x on the spectral radius of the

Jacobi and Gauss–Seidel iteration matrices TJ and TGS. These results are important for

iterative methods, because the spectral radii are strictly less than one, and thus these

iterative methods can be expected to converge.

3.3.2 Sparsity

Figure 3.8 shows the sparsity structure of the ∆h, E and M matrices in 2D and 3D for

several values of the grid spacing ∆x and degree of interpolation p. The effects of the ghost

points Lghost are noticeable on the right of ∆h and the bottom of E. The final M has

limited bandwidth which is related to the ordering of the Levolve and Lghost chosen by the

banding algorithm in Section 3.5. Table 3.2 shows some sparsity properties of M including

the number of nonzero elements and the bandwidth.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 58

10
−3

10
−2

10
−1

10
0

∆x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

BE, ∆t = ∆x/4

BDF3, ∆t = ∆x/4

BE, ∆t = ∆x
2

BDF3, ∆t = ∆x
2

(a) Jacobi, p = 4

10
−3

10
−2

10
−1

10
0

∆x

0.0

0.2

0.4

0.6

0.8

1.0

ρ

BE, ∆t = ∆x/4

BDF3, ∆t = ∆x/4

BE, ∆t = ∆x
2

BDF3, ∆t = ∆x
2

(b) Gauss–Seidel, p = 4

2 3 4 5
p

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Jacobi, BE, ∆t = ∆x/4

G–S, BDF3, ∆t = ∆x/4

G–S, BE, ∆t = ∆x2

(c) Various, ∆x = 0.0125

Figure 3.7: Spectral radii ρ for Jacobi and Gauss–Seidel iteration matrices against grid
spacing ∆x and interpolation order p for backward Euler and BDF3 time-stepping systems.
Note that the higher-order BDF-3 scheme generally has smaller ρ than the backward Euler
scheme. Also note in (c) that p has a negligible effect on ρ.

Table 3.2: Sparsity properties of the matrix M for a unit circle in 2D. As ∆x increases and
degree of interpolation p increases, the percentage of nonzero entries increases. Roughly the
same relation is reflected in the bandwidth as a percentage of total width.

∆x nonzero entries (percentage) bandwidth (percentage)
p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

0.2 12.8 16.3 18.2 21.3 31.7 55.4 51.5 65.6
0.1 6.5 8.0 9.0 10.5 15.8 21.4 27.2 34.1
0.05 3.3 3.9 4.5 5.2 8.8 11.0 18.2 16.3
0.025 1.6 1.9 2.3 2.6 5.6 6.4 8.6 8.1
0.0125 0.8 1.0 1.1 1.3 2.9 2.8 4.5 3.9

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 59

S M ∆h E

Circle in 2D,
p = 2, ∆x = 0.2

Circle in 2D,
p = 4, ∆x = 0.2

Sphere in 3D,
p = 2, ∆x = 0.1

Stanford bunny,
p = 3, ∆x = 0.05

Figure 3.8: Sparsity structure of the M, ∆h and E matrices (from left to right) for the
in-surface heat equation on various surfaces using degree p interpolation.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 60

Table 3.3: Experimentally determined values of α for which ABE = I − ∆tM is diagonally
dominant with ∆t ≤ α∆x2.

α (circle in 2D) α (sphere in 3D)
∆x p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

0.2 0.665 0.618 0.403 0.396 0.306 0.316 0.166 0.140
0.1 0.505 0.599 0.342 0.373 0.273 0.333 0.175 0.198
0.05 0.519 0.623 0.343 0.383 0.286 0.320 0.169 0.185
0.025 0.534 0.625 0.355 0.391 0.273 0.328 0.174 0.192
0.0125 0.507 0.595 0.324 0.371 0.285 0.324 0.171 0.179

3.3.3 Diagonal dominance

The standard 2D 5-point discrete Laplacian is weakly diagonally dominant. This is not

the case with the implicit Closest Point Method matrices M or M̃; neither is diagonally

dominant, although M comes closer than M̃.

The standard 2D 5-point discrete Laplacian results in a strictly diagonally dominant

backward Euler matrix ABE = I − ∆t∆h for all ∆t. However, this is again not the case

when either M or M̃ replaces ∆h. Table 3.3 demonstrates experimentally that I −∆tM is

diagonally dominant only for ∆t ≤ α∆x2 where α depends on the degree of interpolation p

and the dimension d but not significantly on ∆x. Values of α vary from 0.15 to 0.6. Further

calculations, not included, show that for M̃, the values of α are even smaller. For practical

calculations, we wish to use larger time steps ∆t = O(∆x), and for these step sizes, the

backward Euler matrix I−∆tM is not diagonally dominant.

3.3.4 Positive definiteness

The Closest Point Method matrices M and M̃ are generally not symmetric (as noted above

their spectra are not purely real). Thus they cannot be symmetric positive definite. Addi-

tionally, they are indefinite in the sense of Golub and van Loan because the symmetric part

AS = 1
2(A + AT) has both positive and negative eigenvalues [GVL96].

It follows that the time-stepping matrices of the form I− γ∆tM are also not symmetric.

However, Table 3.4 shows that ABE is unsymmetric positive definite for restricted time steps

∆t ≤ α∆x2 for experimentally determined values of α between 0.15 and 0.5. In fact the

values of α agree roughly with those for diagonal dominance in Table 3.3. Again, these time

steps are too restrictive for practical usage, and ABE is certainly indefinite for ∆t = O(∆x).

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 61

Table 3.4: Experimentally determined values of α for which ABE = I−∆tM is unsymmetric
positive definite with ∆t ≤ α∆x2.

α (circle in 2D) α (sphere in 3D)
∆x p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

0.2 0.538 0.450 0.329 0.298 0.282 0.236 0.162 0.143
0.1 0.517 0.427 0.300 0.280 0.286 0.231 0.167 0.149
0.05 0.503 0.417 0.298 0.273 0.275 0.223 0.164 0.146
0.025 0.496 0.416 0.296 0.271 0.269 0.216 0.159 0.143

3.3.5 Summary of matrix properties

Performing time stepping for the implicit Closest Point Method results in linear systems of

the form ABEu = b with ABE = [I−∆tM] and similarly for ACN, ABDF2 and ABDF3. As

noted above, the time-stepping matrices are well-conditioned, and thus direct solves based

on variations of LU factorization work well, at least for small systems such as 2D with

large grid spacing ∆x. The Matlab backslash operator and scipy.linsolve.spsolve in SciPy

[JOP+01] are used in many of the calculations in Section 3.6.

The time-stepping matrices become increasingly sparse as ∆x decreases, and thus the

direct methods tend to use more memory due to “fill-in” from the LU factorization. For

larger systems, particularly in 3D, iterative schemes become more efficient. For time steps of

∆t = O(∆x), the time-stepping matrix ABE is not positive definite nor diagonally dominant

(which would guarantee convergence of many iterative schemes). However, the spectral radii

of the Jacobi and Gauss–Seidel iteration matrices are strictly less than one, and thus we

can expect convergence for those methods. In Section 3.6, the GMRES algorithm [TB97] is

used, which does not require symmetry of ABE and seems to converge well in practice. The

algorithm is used in Python as scipy.linalg.gmres and Matlab with the function gmres.

Finally, note that it is not necessary to explicitly construct M and ABE in order to use

these iterative schemes. For example, GMRES requires only a subroutine that computes

the product ABEu. However, in the numerical results that follow, the matrices M, ABE and

ABDF3 have been used.

3.4 Error Analysis

This section presents an analysis of the discretization error in the Closest Point Method

approximation of the Laplace–Beltrami operator. This error has two components, arising

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 62

from the discrete extension operator E and from the discretization of the Laplacian operator

∆h.

Assume that u(x) is a smooth Cp+1(Rd) scalar function where p is the degree of inter-

polation to be used. Let u ∈ R
m be the vector of values at points in Levolve and consider

a point x ∈ R
d on the surface S. Then the degree-p interpolation of the values in u to

approximate u(cp(x)) results in

u(cp(x)) = Eu +O
(
(x− x0)

p+1
)
,

where x0 is a nearby grid point to cp(x). Formally, two derivatives of the O
(
(x− x0)

p+1
)

term results in an O
(
(x− x0)

p−1
)

term. Thus consider the Laplacian

∆u(cp(x)) = ∆ (Eu) +O
(
(x− x0)

p−1
)
.

Then by approximating the Laplacian ∆ with ∆h using second-order centered finite differ-

ences we obtain

∆u(cp(x)) = ∆hEu + O
(
∆x2

)
︸ ︷︷ ︸

∆ disc. error

+O
(
∆xp−1

)
︸ ︷︷ ︸
interp. error

. (3.11)

This analysis indicates that the interpolation scheme should be chosen to have p ≥ 3 to

obtain a second-order semi-discretization of ∆u(cp(x)), and hence with suitable time step-

ping, an overall second-order solution to the in-surface heat equation (3.1). Section 3.6.1

compares (3.11) to numerical convergence studies.

3.5 Constructing the Computational Band

This section presents an algorithm to construct the band of grid points Levolve enveloping

the surface S and the band of ghost points Lghost. The algorithm is related to the “stencil

set approach” in Section 2.3 and differs mainly in that for the implicit Closest Point Method

we need to keep track of the indices and weights associated with evolution and extension

so that we can build the matrix M; in Chapter 2 we merely need to explicitly execute these

operations, and thus solutions and other data were organized primarily by their indices

in a grid of the d-dimensional embedding space. Here we build data structures based on

the position of grid points in the two lists of points Levolve and Lghost. These lists are

related to the Sevolve and Sextend sets of Section 2.3 in the sense that Levolve = Sevolve and

Levolve ∪ Lghost = Sextend.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 63

The algorithm proceeds in two passes. In the first pass, we build the list Levolve of

all points needed for the closest point extension; these are exactly the points on which

the approximate solution will be propagated. This pass also identifies special base points

b ∈ Levolve which are grid points that appear in the lower-left corner of an interpolation

stencil (for example, the grid points in the lower-left corner of each of the shaded regions

in Figure 3.1). Each of these base points stores the corresponding interpolation stencil as a

list Sb
interp of indices pointing into the list Levolve.

The second pass adds the list Lghost of ghost points; these grid points appear in an

evolution stencil but not in any of the interpolation stencils. Each point x in Levolve∪Lghost

stores cp(x), its closest point on S, and the index (pointing into Levolve) of the base point

b of its interpolation stencil. Points x in Levolve also store their evolution stencil as a list

Sx
evolve of indices pointing into Levolve and Lghost (recall that some of those evolution points

will be in Levolve and some of those points may be in Lghost, see Figure 3.1).

More detailed algorithms for the two passes are included in Appendix A.1.

Table 3.5 shows the resulting band sizes and computation times required to construct

Levolve and Lghost for various ∆x. Note that for a curve embedded in 2D, the number of

points in the band scales like O
(

1
∆x

)
: i.e., not like a full discretization of 2D which would

scale like O
(

1
∆x2

)
. In this sense, the Closest Point Method is (asymptotically) optimal in the

number of computation points required because it has the same scaling as a parameterized

discretization of the curve.

After building and storing the computational band, it is straightforward to compute the

∆h and E and M matrices.

3.5.1 Forming the ∆h matrix

From the Levolve and Lghost lists and associated data structures, the matrix ∆h is constructed

as follows.

• Loop over each index i where xi ∈ Levolve.

• Loop over each index j ∈ Sxi

evolve, the evolution stencil for xi.

• Set [∆h]i,j to the appropriate weight for the jth component of the evolution

stencil.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 64

3.5.2 Forming the E matrix

The discrete extension matrix E is constructed as follows.

• Loop over each index i where xi ∈ Levolve ∪ Lghost:

• Retrieve the base point b for xi.

• Compute the weights Sb
weights with barycentric Lagrange interpolation. This de-

pends on the Sb
interp and cp(xi)

• For each index j in the interpolation Sb
interp:

• Set [E]i,j = wj , the appropriate weight for the jth component of the interpo-

lation stencil.

It is emphasized that most of the effort with respect to programming the computer

implementation of the implicit Closest Point Method is in constructing the computational

band: explicitly constructing ∆h, E and their stabilized product M is straightforward as

the above algorithms suggest. The algorithm for building the computational band Levolve

and Lghost spends most of its time searching the current candidate lists Levolve and Lghost

for particular points. The long running times demonstrated in Table 3.5 would benefit from

improvements to this searching routine (which currently simply searches each list from the

beginning for every search). However, in practice this does not impact the running time to

compute a numerical solution to a surface PDE problem because finding the computational

band for a particular surface S, grid spacing ∆x, evolution stencil and interpolation stencil

is effectively a preprocessing step which is done once and the resulting Levolve and Lghost

stored for later use.

3.6 Numerical Results

3.6.1 Numerical convergence studies

The convergence of the implicit Closest Point Method is tested on two test problems.

2D test problem The problem consists of the in-surface heat equation (3.1) on a unit

circle with initial conditions u(0, θ) = cos 2θ. It is solved discretely in time until t = Tf = 1
2

using the BDF-3 scheme with ∆t = 1
4∆x. The exact solution is u(t, θ) = e−4t cos 2θ. The

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 65

Table 3.5: Properties of the computation band for a unit circle in 2D and a unit sphere in
3D for a second-order centered finite difference approximate to Laplacian with degree p = 4
interpolation. The “band time” column shows how long it took to generate the bands on
a particular machine, “matrix time” shows how long it took to form the matrices from the
band structures.

N 2D 3D
= 1

∆x
band size band time band size band time matrix time

Levolve Lghost Levolve Lghost ∆h E

2.5 96 36 0.2s 896 480 3.75s 0.1s 1s
5 186 56 0.3s 2425 863 13.7s 0.5s 3s
10 386 116 0.8s 9433 2480 108s 1.3s 9s
20 786 228 1.7s 37657 8688 1420s 5.7s 35s
40 1586 452 3.6s 150697 33752 20699s 21s 142s
80 3186 908 8.6s
160 6386 1812 24s
320 12786 3620 79s
640 25586 7244 278s
1280 51186 14484 1103s
2560 102386 28964 4426s

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 66

problem is embedded in 2D. Linear systems are solved directly with Matlab’s backslash

operator.

3D test problem The problem consists of the in-surface heat equation on a unit sphere

with initial conditions u(θ, φ) = cos(θ). As this is a spherical harmonic function of degree 1,

the solution is u(t, θ, φ) = e−2t cos θ [Pow99]. The problem is again discretized in time until

t = Tf = 1
2 using the BDF-3 scheme with ∆t = 1

4∆x. The embedding space is R
3. Linear

system solves are performed in Matlab with GMRES using a tolerance of 1× 10−10.

Heat equation, second-order differences in space

Figure 3.9 shows the results of a numerical convergence study on these two problems using

second-order finite-differences (Figure 3.2) and various degrees p of interpolating polynomi-

als. We note clear second-order convergence using p ≥ 3. The results are consistent with

the analysis in Section 3.4. The computational results appear identical for p ≥ 4 because

the error is dominated by the ∆ discretization error term in (3.11) and the interpolation

error term is insignificant. Degree p = 3 still exhibits second-order convergence but with a

larger error constant which is likely due to the interpolation error term dominating in (3.11).

Note that p = 2 behaves surprisingly well (often better than the first-order predicted by

(3.11)) and that p = 2 is the minimum degree of interpolation as p = 0 and p = 1 appear

inconsistent. This latter result is in good correspondence with the error analysis as (3.11)

suggests that for p ≤ 1 the error will not decay as ∆x decreases.

Larger values for the interpolation degree p result in larger interpolation stencils which

translates into denser matrices (see Table 3.2). Degree p = 3 or p = 4 are thus good choices

as both exhibit clear second-order convergence; although note the error for p = 3 is roughly

five times that of p = 4. Degree p ≥ 5 would be overkill as no benefit in accuracy results from

the extra work required. Degree p = 2 may be appealing for applications where calculation

speed is more important than accuracy.

Heat Equation, fourth-order differences in space

The convergence of the implicit Closest Point Method is next tested using the fourth-order

centered finite difference stencil in Figure 3.2 for ∆h. Time stepping is still performed

with the third-order BDF-3 scheme, so overall third-order results are expected. Figure 3.10

shows the results of a numerical convergence study on the two test problems above. We

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 67

10
1

10
2

10
3

10
4

N

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 n
d

-order

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

(a) 2D

10
0

10
1

10
2

N

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 n
d

-order

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

(b) 3D

Figure 3.9: Numerical convergence study results for the in-surface heat equation in 2D and
3D using second-order finite differences. Here N = 1

∆x
.

note again that p = 0 and p = 1 degree interpolation appear inconsistent. Degree p = 2

or p = 3 produce second-order results. Degree p ≥ 4 produces at least the third-order

convergence anticipated. In Figure 3.10(a), the error stagnates around 10−11: this is likely

due to roundoff error and is discussed further in Section 3.6.3 where the effect is more

pronounced.

3.6.2 Heat equation on surfaces

The computations in this section were performed in Python [vR+91] using SciPy [JOP+01]

and NumPy [Oli07] for numerical calculations. Visualizations use VTK [SML98].

Heat equation on Laurent’s Hand

Figure 3.11 shows the results of blurring an image on the surface of Laurent’s Hand [SAA07]

by solving several steps of the in-surface heat equation. Note the phone number written on

the hand is completely indistinguishable after only a few steps. The Closest Point Method

could also be used to apply an in-surface unsharp mask or other image processing technique

to attempt to recover the text from the blurred image: these applications to image processing

on surfaces are proposed for future work.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 68

10
0

10
1

10
2

10
3

N

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

‖
e
r
r
o
r
‖
∞

2 nd

-order

4 th
-o
rd

er

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

(a) 2D

10
0

10
1

10
2

N

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 nd

-order

4 th

-ord
er

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

(b) 3D

Figure 3.10: Numerical convergence study results for the in-surface heat equation in 2D and
3D using fourth-order finite differences. Here N = 1

∆x
.

(a) t = 0, init. cond. (b) t = 1

400
, step 1 (c) t = 1

200
, step 2 (d) t = 3

200
, step 6

Figure 3.11: Blurring on the surface of Laurent’s Hand [SAA07] by solving the in-surface
heat equation. Here ∆x = 1

40 and the length of the hand is about 80∆x. Time stepping is
performed with backward Euler and ∆t = ∆x

10 . Closest point extensions use p = 2.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 69

Figure 3.12: A composite domain consisting of Annie Hui’s pig [Hui08] connected by the
tail to a filament which is connected to a sphere. A heat source is applied under the sphere
(modelled as a local forcing consisting of Newton’s law of heating and cooling). (The candle
image is modified from a public domain image by Pascal Terjan.)

Heat equation on a complicated domain

Consider a composite domain consisting of Annie Hui’s pig [Hui08] connected by the tail to

a filament (infinitesimally thin wire) which is also connected to a sphere (see Figure 3.12).

This surface is comprised of components of various codimension: the pig and sphere are

codimension 1 whereas the filament is codimension 2. Nonetheless we will see that this poses

no particular difficulty for the implicit Closest Point Method. A heat source is applied under

the sphere and the temperature u over the surface of the domain is modelled according to

ut = κ(x)∆Su + k (T − u(x)) L(x), (3.12a)

where the heat coefficient κ(x) is chosen as

κ(x) =

1 x ∈ Pig,

2 x ∈ Sphere,

10 x ∈ Filament,

(3.12b)

and the forcing term consists of Newton’s law of heating and cooling with constant k = 30

and maximum temperature T = 10. The function L(x) is a Gaussian which localizes the

heat source directly under the sphere. Initially the temperature is set to zero everywhere.

The problem is solved until t = 25 using ∆x = 0.05 and degree p = 3 interpolation. Time

stepping is performed by the BDF2 scheme with ∆t = 2∆x. Thus, only 250 steps are used

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 70

in contrast with the 10,000 steps required for explicit time stepping for this problem. The

closest point representation is straightforward to obtain for this type of composite domain:

simply compute the closest point in each of the three components and then return the closest

of the three. This closest point calculation can be further accelerated by using bounding

boxes around the individual components (particularly the pig which has a nontrivial cp

function as described in Section 2.4.5)

Figure 3.13 shows the initial conditions and heat distribution at t = 25. Note that the

surface of the pig has not significantly increased in temperature. This example demonstrates

the great flexibility of the method with respect to geometry: heat flow over this complicated

geometry of variable codimension is no more complicated than it would be over a sphere.

3.6.3 Biharmonic problems

Consider the fourth-order problem

ut = −∇4
Su, (3.13)

where ∇4
S is the biharmonic operator intrinsic to the surface.

In R
2, the biharmonic operator is

−∇4 = − ∂4

∂x4
− ∂4

∂y4
− 2

∂4

∂x2∂y2
, (3.14)

and thus one approach to the Closest Point Method solution of (3.13) is to discretize (3.14)

and use the resulting matrix (say Dbi using the stencil shown in Figure 3.14) combined with

the discrete extension operator E in the construction of

M̂bi = stab(Dbi,E) = diag (Dbi) + (Dbi − diag (Dbi))E,

and then solve the semi-discrete system

∂

∂t
u = M̂biu.

However, as the principles in Section 1.6.4 do not explicitly hold for the biharmonic operator,

we have little reason to expect the Closest Point Method based on M̂bi to be effective. In

fact Figure 3.15 demonstrates that although the method appears stable, it is not consistent.

In Section 1.6.4 (and originally in [RM08]), it was suggested that operators such as

the biharmonic operator which are composed of multiple surface gradient ∇S or Laplace–

Beltrami ∆S operators would be implemented using multiple extension steps. This idea

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 71

(a) Initial conditions (top), solution at t = 1.5 (middle), and at t = 25 (bottom)

(b) Rescaled to show heat distribution on pig surface at t = 25

Figure 3.13: Numerical solution of the in-surface heat equation on the composite pig-wire-
sphere domain. At t = 25, the temperature is roughly constant at u = 10 in the sphere.
The pig has warmed up only slightly and there is a gradient in temperature in the wire.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 72

−208−1 8 −1

8

−1

8

−1

−2−2

−2−2

x

y

Figure 3.14: A possible second-order
stencil for the biharmonic operator in 2D.

10
1

10
2

10
3

N

10
−1

10
0

10
1

10
2

‖
e
r
r
o
r
‖
∞

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

Figure 3.15: Biharmonic numerical con-
vergence study results in 2D using the op-
erator M̂bi which applied second-order fi-
nite differences directly to the biharmonic
operator. Results appear inconsistent.
Note N = 1

∆x
.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 73

(a) M (b) Mbi

Figure 3.16: Comparison of the sparsity structure of M and Mbi. Note fill-in apparent in Mbi.
Geometry: 2D embedding of a unit circle using degree p = 4 interpolation and ∆x = 0.1.

can be implemented straightforwardly in the implicit Closest Point Method. Recall that

−∇4
Su = −∆S(∆Su) and thus, by the principles in Section 1.6.4,

−∇4
Su(x) = −∆(cp(∆(cp(x)))),

for points x on the surface. With ∆h as the discrete diffusion operator from Section 3.2.2,

we approximate this expression as

M̃bi = −∆hE∆hE. (3.15)

This matrix M̃bi has eigenvalues with positive real components, and thus for stability, we

use the stabilizing procedure from Section 3.2.3 to form the matrix

Mbi = −stab(∆h,E) stab(∆h,E) = −MM, (3.16)

and use this for computation instead. Note that this is a “one-line” change in computer

code for the surface heat equation—requiring only the squaring of the M matrix. However

this operation results in a fair amount of “fill-in” in as can be seen by a comparison of the

structure of Mbi and M in Figure 3.16. This fill-in typically results in higher cost in terms of

processor time and memory for solving biharmonic problems: however, the fill-in can likely

be avoided altogether with an iterative method.

The convergence of the method is tested on two problems. The first consists of (3.13) on

a unit circle with initial conditions u(0, θ) = cos θ + 6cos 2θ solved discretely in time until

t = Tf = 1
2 using the BDF-3 scheme with ∆t = ∆x

4 . The exact solution is u(t, θ) = e−t cos θ+

6e−16t cos 2θ. Linear systems are solved directly with Matlab’s backslash operator.

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 74

10
0

10
1

10
2

10
3

N

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 n
d

-ord
er

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

(a) 2D

10
0

10
1

10
2

N

10
−5

10
−4

10
−3

10
−2

10
−1

‖
e
r
r
o
r
‖
∞

2 n
d

-order

p = 0

p = 1

p = 2

p = 3

p = 4

p = 5

(b) 3D

Figure 3.17: Biharmonic numerical convergence studies in 2D and 3D using the operator Mbi

which uses a composition of the implicit Closest Point Method discrete Laplace–Beltrami
operator M. Note N = 1

∆x
.

The second test problem consists of (3.13) on a unit sphere with initial conditions

u(θ, φ) = cos(θ). As this function is a spherical harmonic of degree 1, the solution is

u(t, θ, φ) = e−4t cos θ. The problem is discretized in time until t = Tf = 1
2 using the BDF-3

scheme with ∆t = 1
4∆x. Linear system solves are performed in Matlab with GMRES using

a tolerance of 1× 10−10.

Figure 3.17 demonstrates that the Closest Point Method achieves the expected second-

order accuracy on both test problems although the error appears to stagnate, in this case

around 10−6. Note that the entries in the Mbi matrix are each multiplied by 1
∆x4 . Thus,

rounding errors could be magnified by roughly 108 because ∆x = O
(
10−2

)
and 1

∆x4 =

O
(
108
)
. Overall, the calculations demonstrate that the implicit Closest Point Method is

viable for biharmonic problems, although for highly accurate results, some attention should

be paid to the control of roundoff error.

3.6.4 Pattern formation

The solutions of reaction-diffusion equations can exhibit rich pattern forming behaviour from

random initial conditions. It is thought that this may be the mechanism for coat patterns on

animals such as zebras or cheetahs [Mur03]. The application of reaction-diffusion equations

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 75

on surfaces has been investigated by previous studies, such as [Tur91] (by computing directly

on a surface mesh) and [BCOS01] (using a level set representation of the surface). In this

section, the implicit Closest Point Method is applied to pattern formation problems.

A possible set of reaction-diffusion equations for two chemicals u and v is

ut = f(u, v) + νu∆Su, (3.17a)

vt = g(u, v) + νv∆Sv, (3.17b)

u(0,x) = u0(x), (3.17c)

v(0,x) = v0(x), (3.17d)

where f and g are nonlinear reaction terms. The chemicals locally react with one another

while at the same time diffusing spatially at different rates. One particular form of (3.17)

is known as the Brusselator [PL68, YZE04] and has

f(u, v) = a− (b− 1)u + u2v, g(u, v) = bu− u2v.

The implicit Closest Point Method can be applied to (3.17) using the implicit-explicit

(IMEX) schemes of Section 1.2.3. Recall that using these schemes, the nonlinear terms

are treated explicitly and the diffusion terms are treated linearly. Additionally, the implicit

system solves for u and v are decoupled from each other so the time stepping proceeds

essentially the same as the previous heat equation examples, solving two systems, each

of the form [I− γ∆tM] u = b, to advance to the next time step. The SBDF-2 scheme

(Section 1.2.3) is known to work well for pattern formation problems [Ruu95], and it is used

here with one step of IMEX Euler as a starting method. For initial conditions, small random

perturbations around the zero-diffusion (νu = νv = 0) steady state of u = a and v = b
a

are

used.

Depending on the values of the coefficients a, b, νu and νv, the Brusselator exhibits

various types of pattern forming behaviour [YZE04]. Figure 3.18 shows the results of three

simulations of the Brusselator on the surface of the Stanford Bunny [TL94] with a = 3,

b = 10.2, νv = 10/900 and various values of νu. This choice of parameters closely matches

those used for planar calculations in [YZE04, Figure 2a)]2, and indeed we notice the same

transition from “honeycomb” (Figure 3.18(a)) to stripes (Figure 3.18(b)) to roughly hexag-

onal patterns of spots (Figure 3.18(c)).

2We rescale the equations to the size of the bunny which accounts for the additional factors of 1

900
which

do not appear in [YZE04].

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 76

(a) Honeycomb, νu = 5

900
, t = 25 (b) Stripes, νu = 3.8

900
, t = 15 (c) Spots, νu = 2.5

900
, t = 15

Figure 3.18: Patterns formed by the Brusselator on the surface of the Stanford Bunny for
different values of νu with a = 3, b = 10.2 and νv = 10/900. Darker color indicates high
concentrations of u. The computation uses ∆x = 0.05 with p = 2 degree interpolation and
the bunny is approximately 2 units long.

The results indicate the effectiveness of the Closest Point Method for reaction-diffusion

systems on surfaces. An interesting application would be to study mammalian coat-pattern

formation [Mur03] directly on the embryonic surface.

3.7 Nonlinear Problems

For most of this chapter, the implicit Closest Point Method has been applied to linear

problems and nonlinear problems where the high-order terms appear linearly. The procedure

can be generalized to fully nonlinear problems. Suppose, for example, that the surface PDE

on S takes the form

ut = f (u,∇Su,∆Su) ,

u(0,x) = u0(x).

Consider the embedding PDE

ut = f (u(cp(x),∇Su(cp(x)),∆Su(cp(x)) ,

u(0,x) = u0(cp(x)),

CHAPTER 3. THE IMPLICIT CLOSEST POINT METHOD 77

and consider the semi-discretization

∂u

∂t
= f(Eu), (3.19a)

u(0) = u0, (3.19b)

where f is a nonlinear function resulting from the spatial discretization of f(u,∇u,∆Su).

The nonlinear system of ODEs could also arise from a nonlinear spatial discretization (e.g.,

WENO) of a linear PDE.

The system (3.19) could be discretized implicitly in time, and the nonlinear system

solves performed with Newton’s method or similar techniques [BF01]. If f(u) = ∆hu, then

(3.19) is equivalent to the unstable equation (3.9) and we may want to consider the diagonal

stabilization as in Section 3.2.3. This is done by defining the diagonal splitting function of f

as

Fj(u,z) = f(z1, z2, . . . , zj−1, uj , zj+1, . . . , zm), j = 1, . . . ,m,

that is, the jth component of F(u,z) is computed using the jth component of u for the jth

input of f and components of z for the other inputs of f .

Using this splitting function, the stabilized semi-discrete system becomes

∂

∂t
u = F(u,Eu),

u(0) = u0,

where one can verify that in the case when f is linear this splitting function recovers the

stabilized form demonstrated in Section 3.2.3. For example, if f(u) = ∆hu, then F(u,Eu) =

stab(∆h,E)u = [diag (∆h) + (∆h − diag (∆h))E] u = Mu.

While the fully nonlinear procedure has not yet been tried in practice, there are certainly

parabolic or mixed type nonlinear problems that could be posed on surfaces (for instance,

the examples of Chapter 2 with curvature dependent terms). For some of these problems (for

example applying implicit WENO [GMR06] on surfaces) it may be desirable for the implicit

time-stepping schemes to have additional nonlinear stability properties. One such class

of methods, the diagonally split Runge–Kutta methods, is investigated next in Chapter 4.

Interestingly—and coincidentally—we will revisit the diagonally splitting function in another

context in Chapter 4.

Chapter 4

Diagonally Split Runge–Kutta

Methods

Diagonally split Runge–Kutta (DSRK) time discretization methods are a class of implicit

time-stepping schemes which offer both high-order accuracy and a form of nonlinear sta-

bility known as unconditional contractivity. This combination is not possible within the

classes of Runge–Kutta or linear multistep methods and therefore appears promising for

the strong stability preserving (SSP) time-stepping community, which is generally concerned

with computing oscillation-free numerical solutions of PDEs. Using a variety of numerical

test problems, it will be shown that although second- and third-order unconditionally con-

tractive DSRK methods do preserve the strong stability property for all time-step sizes,

they suffer from order reduction at large times-step sizes. Indeed, for time steps larger than

those typically chosen for explicit methods, these DSRK methods behave like first-order

implicit methods. This is unfortunate, because it is precisely to allow a large time step that

we choose to use implicit methods. These results suggest that unconditionally contractive

DSRK methods are limited in usefulness as they are unable to compete with either the first-

order backward Euler method for large time-step sizes or with Crank-Nicolson or high-order

explicit SSP Runge–Kutta methods for smaller time-step sizes.

New stage order conditions for DSRK methods are derived, and it is shown that the

observed order reduction is associated with the necessarily low stage order of the uncondi-

tionally contractive DSRK methods.

Most of the contents of this chapter appear in [MGR08].

78

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 79

4.1 Introduction

4.1.1 Strong stability preserving time stepping

Strong stability preserving (SSP) high-order time discretizations [Shu88, SO88, GST01] were

developed for the solution of semi-discrete method-of-lines approximations of hyperbolic par-

tial differential equations with discontinuous solutions. In such cases, carefully constructed

spatial discretization methods guarantee a desired nonlinear or strong stability property

(for example, that the solution be free of oscillations) when coupled with first-order forward

Euler time stepping.

First, consider the system of m ordinary differential equations (ODEs)

∂

∂t
u(t) = f(u(t)), (4.1a)

u(0) = u0, (4.1b)

typically arising from the spatial discretization of a partial differential equation (PDE). We

assume the spatial discretization f has been chosen such that the forward Euler method

un+1 = un + ∆tf(un) is strong stability preserving (SSP)

||un+1|| ≤ ||un||, (4.2)

in some norm, semi-norm or convex functional || · ||, under the restricted time step

∆t ≤ ∆tFE.

One particularly important choice for || · || is the total variation semi-norm

||u||TV =
∑

j

|uj+1 − uj|,

and a spatial discretization f is said to be total variation diminishing (TVD) if forward

Euler applied to (4.1) is SSP in this semi-norm.

Recall from Section 1.2.1 that a general explicit s-stage Runge–Kutta method for (4.1)

can be written in Shu–Osher form [SO88]

ū(0) = un,

ū(i) =

i−1∑

k=0

(
αikū

(k) + ∆tβikf(ū(k))
)

, i = 1, . . . , s, (4.3)

un+1 = ū(s).

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 80

Consistency requires that
∑i−1

k=0 αik = 1, and if αik ≥ 0 and βik ≥ 0, all the intermediate

stages ū(i) in (4.3) are simply convex combinations of forward Euler operators, with ∆t

replaced by βik

αik
∆t. Therefore—as originally shown in [SO88]—any norm, semi-norm or

convex function property (4.2) satisfied by the forward Euler method will be preserved by

the Runge–Kutta method, under the time-step restriction

∆t ≤ min
i<k

αik

βik

∆tFE, (4.4)

where we assume αik

βik
=∞ if βik = 0.

Much of the research in the field of SSP methods centers around the search for high-order

SSP methods where the allowable time step is as large as possible. If a method has a SSP

time-step restriction ∆t ≤ C∆tFE, then C, the SSP coefficient, is often used to measure the

allowable time step of a method in multiples of that of forward Euler. When the time step

is limited by stability (rather than accuracy), then the effective SSP coefficient Ceff = C
s

(that is, the SSP coefficient scaled by the number of stages), may be used to enable the fair

comparison of explicit SSP schemes. Many optimal methods with the largest possible SSP

coefficients for a given order and number of stages are listed in [RS02, SR03, Got05]. Three

popular methods, SSP(2,2), SSP(3,3) and SSP(5,4), are given in Appendix C.

4.1.2 Implicit strong stability preserving time stepping

Historically, TVD spatial discretizations were constructed in conjunction with the for-

ward Euler method for which the step size is restricted by ∆tFE. In contrast, the im-

plicit backward Euler method will then preserve this TVD property for all time-step sizes

[HRS03, Hig04]. However, a higher-order time discretization, such as the second-order

Crank–Nicolson method, may only preserve the TVD property for a limited range of step

sizes. For example, consider the case of the linear wave equation

ut + aux = 0,

with a = −2π, a step-function initial condition

u(x, 0) =

{
1 if π

2 ≤ x ≤ 3π
2 ,

0 otherwise,

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 81

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

u

x

init. cond.

exact soln.

num. soln.

Figure 4.1: Oscillations from Crank–
Nicolson time stepping in the advec-
tion of a square wave with ∆t =
8∆tFE = 8∆x and ∆x = 2π

512 .

and periodic boundary conditions on the domain (0, 2π]. The solution is a step function

convected around the domain. For a simple first-order forward-difference TVD spatial dis-

cretization f(u) of −aux, the result will be TVD for all sizes of ∆t when using the im-

plicit backward Euler method. Using forward Euler time stepping, the result is TVD for

∆t ≤ ∆tFE = ∆x
|a| . On the other hand, consider the Crank–Nicolson method

un+1 = un +
1

2
∆tf(un) +

1

2
∆tf(un+1). (4.5)

Using the Shu–Osher theory, Crank–Nicolson can be shown in general to be SSP only for

values ∆t ≤ 2∆tFE [Got05]. This restriction is illustrated for this problem in Figure 4.1

where an excessively large ∆t leads to oscillations and a clear violation of the TVD property.

Crank–Nicolson requires extra computational cost due to the solution of an implicit

system, but with respect to strong stability only allows a doubling of the step size compared

to forward Euler or the second-order SSP(2,2). This means that, again with respect to

strong stability, it will not be efficient to use this method.

The Shu–Osher form (1.9) has been generalized for implicit Runge–Kutta methods

[Got05, FS05, Hig05], and the search for implicit methods which are SSP without a time-

step restriction has generated much interest. The first-order backward Euler method is one

such method. Unfortunately, there are no Runge–Kutta or linear multistep methods of or-

der greater than one which will satisfy this property [Spi83, GST01, HR06]. The search for

higher-order implicit SSP Runge–Kutta methods with finite but optimal SSP coefficients

has been documented in [FS08, KMG08]. As discussed further in Section 4.2.1, strong sta-

bility and contractivity are closely related for the class of implicit Runge–Kutta methods.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 82

order 1 b bTe = 1

order 2 b

b

bTCe = 1
2

order 3 b

b b

bTC2e = 1
3

b

b

b

bTWCe = 1
6 b

bc

b

bTACe = 1
6

order 4 b

b b b

bTC3e = 1
4

b

b b

b

bTCWCe = 1
8 b

b bc

b

bTCACe = 1
8

b

b

b b

bTWC2e = 1
12 b

bc

b b

bTAC2e = 1
12

b

b

b

b

bTW2Ce = 1
24 b

bc

b

b

bTAWCe = 1
24

b

b

bc

b

bTWACe = 1
24 b

bc

bc

b

bTA2Ce = 1
24

Table 4.1: The 14 order conditions
for fourth-order DSRK schemes
written in matrix form where C =
diag(c). See [BT97] for an explana-
tion of the bi-coloured trees.

This motivates us to search outside the class of Runge–Kutta methods for methods which

are unconditionally contractive and high-order in the hope that they have good SSP prop-

erties as well. One class of high-order unconditionally contractive methods is the family of

diagonally split Runge–Kutta (DSRK) methods.

4.2 Diagonally Split Runge–Kutta Methods

Diagonally split Runge–Kutta (DSRK) methods [BJZ94, BT97, itH96, Hor98] are one-step

methods which are based on a Runge–Kutta formulation, but where the ODE operator f

in (4.1) has different inputs used for the diagonal and off-diagonal components. We define

the diagonal splitting function of f as

Fj(u,z) = f(z1, z2, . . . , zj−1, uj , zj+1, . . . , zm), j = 1, . . . ,m, (4.6)

that is, the jth component of F(u,z) is computed using the jth component of u for the jth

input of f and components of z for the other inputs of f .

The general s-stage DSRK method is

U i = un + ∆t

s∑

j=1

aijF(U j ,Zj), i = 1, ..., s (4.7a)

Zi = un + ∆t

s∑

j=1

wijF(U j ,Zj), i = 1, ..., s (4.7b)

un+1 = un + ∆t
s∑

j=1

bjF(U j ,Zj). (4.7c)

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 83

The schemes are consistent [BJZ94] and the coefficients (A, bT, c,W) must satisfy the order

conditions [BT97] in Table 4.1. Note that these include the order conditions of the so-

called underlying Runge–Kutta method (i.e., conditions only on A = (aij), b, and c) and are

augmented by additional order conditions on the coefficients W = (wij). Finally, note that

if W = A, then U i = Zi and the DSRK scheme reduces to the underlying Runge–Kutta

method.

4.2.1 Dissipative systems and contractivity

Bellen et al. [BJZ94] introduced the class of DSRK methods for dissipative systems ut =

f(t,u). In the special case of the maximum norm ‖ · ‖∞, a dissipative system is characterized

(see, e.g., [BT97]) by the condition

m∑

j=1,j 6=i

∣∣∣∣
∂f i(t,u)

∂uj

∣∣∣∣ ≤ −
∂f i(t,u)

∂ui

, i = 1, . . . ,m,

for all t ≤ t0 and u ∈ R
m. Note in particular that the ODEs resulting from the spatial

discretizations of the linear PDE test problems in Sections 4.3.1, 4.3.2 and 4.3.3 satisfy this

condition. The ODE system resulting from the nonlinear problem in Section 4.3.4 can be

shown to be dissipative in ‖ · ‖1.
If the ODE system is dissipative, then solutions satisfy a contractivity property [Spi83,

Kra91, Zen93]. Specifically, if u(t) and v(t) are two solutions corresponding to initial con-

ditions u(t0) and v(t0) then

‖u(t)− v(t)‖ ≤ ‖u(t0)− v(t0)‖,

in some norm of interest. Naturally, if solutions to the ODE system obey a contractivity

property then it is desirable that a numerical method for solving the problem be contractive

as well, i.e., that given numerical solutions un and ũn, ||ũn+1−un+1|| ≤ ||ũn−un|| (possibly

subject to a time-step restriction).

In [itH96], in ’t Hout showed that if a DSRK method is unconditionally contractive in

the maximum norm, the underlying Runge–Kutta method is of classical order p ≤ 4, and

has stage order p̃ ≤ 1. In [Hor98], Horváth studied the positivity of Runge–Kutta and

DSRK methods, and showed that DSRK schemes can be unconditionally positive, that is

preserve positivity properties for any step size.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 84

The results on DSRK methods in terms of positivity and contractivity appear promising

when searching for implicit SSP schemes, because positivity, contractivity, and the SSP

condition are all very closely related for Runge–Kutta and multistep methods [Hig04, Hig05,

FS04, FS05, Kra91]. For example, a loss of positivity implies the loss of the max-norm SSP

property. For Runge–Kutta methods a link has also been established between time-step

restrictions under the SSP condition and contractivity, namely that the time-step restrictions

under either property agree [FS04], thereby enabling the possibility of transferring results

established for the contractive case to the SSP case [Hig04], and vice versa. For multistep

methods, the time-step restrictions coming from either an SSP or contractivity analysis

are the same, as can be seen by examining the proofs appearing in [Len91, Len89, Shu88].

If we include the starting procedure into the analysis, or if we consider boundedness (a

related nonlinear stability property) rather than the SSP property, significantly milder time-

step restrictions may arise [HRS03]. However, even with this less restrictive boundedness

property, we find that unconditional strong stability is impossible for multistep schemes that

are more than first order [HR06]. The promise of DSRK methods is that there exist higher

order implicit unconditionally contractive methods, and therefore possibly DSRK methods

which are unconditionally SSP, in this class.

4.2.2 DSRK schemes

It is illustrative to examine (4.7) when the ODE operator is linear, that is f(u) = Lu.

In this case, with matrix L decomposed into L = LD + LN where LD = diag(L), we have

F(u,z) = LDu + LNz and (4.7) becomes

U i = un + ∆t

s∑

j=1

aij

(
LDU j + LNZj

)
, i = 1, ..., s (4.8a)

Zi = un + ∆t
s∑

j=1

wij

(
LDU j + LNZj

)
, i = 1, ..., s (4.8b)

un+1 = un + ∆t

s∑

j=1

bj

(
LDU j + LNZj

)
, (4.8c)

and thus we see that for a linear ODE system, DSRK methods decompose the system into

diagonal and off-diagonal components, and treat each differently.

The DSRK schemes listed next are used in Section 4.3 for the numerical tests.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 85

Second-order DSRK (“DSRK2”) This second-order DSRK from [BJZ94] is based

on the underlying two-stage, second-order implicit Runge–Kutta method specified by the

Butcher tableau

c A

bT
=

0 1
2 −1

2

1 1
2

1
2

1
2

1
2

, combined with W =

[
0 0
1
2

1
2

]
. (4.9a)

Thus the DSRK2 scheme is

U1 = un +
1

2
∆tF(U1,un)− 1

2
∆tf(un+1), (4.9b)

un+1 = un +
1

2
∆tF(U1,un) +

1

2
∆tf(un+1). (4.9c)

Note that the un+1 terms are not split. For linear problems, (4.9) becomes

U1 = un +
1

2
∆t
[
LDU1 + LNun

]
− 1

2
∆t
[
Lun+1

]
, (4.10a)

un+1 = un +
1

2
∆t
[
LDU1 + LNun

]
+

1

2
∆t
[
Lun+1

]
. (4.10b)

Note also in the special case when LD = 0, (4.10) decouples and (4.10b) is exactly the

Crank–Nicolson method.

Third-order DSRK (“DSRK3”) This formally third-order DSRK scheme [BJZ94,

BT97, itH96] is based on the underlying Runge–Kutta method:

c A

bT
=

0 5
2 −2 −1

2
1
2 −1 2 −1

2

1 1
6

2
3

1
6

1
6

2
3

1
6

, combined with W =

0 0 0
7
24

1
6

1
24

1
6

2
3

1
6

 .

Higher order DSRK schemes Although unconditionally contractive second- and third-

order DSRK methods such as DSRK2 and DSRK3 exist, so far no unconditionally contrac-

tive fourth-order DSRK methods have been found. In [itH96, proof of Theorem 2.4], the

following necessary conditions are given for DSRK schemes to be unconditionally contractive

in the maximum norm:

all principal minors of A− ebT are nonnegative, (4.11a)

for each i ∈ {1, 2, . . . , s}, det[(A←i bT)(I)] ≥ 0

for every I ⊂ {1, 2, . . . , s} with i ∈ I,
(4.11b)

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 86

where the notation “←i” indicates replacing the ith row. The notation M(I) indicates the

principal submatrix formed by selecting from M only those rows and columns indexed by I.
These conditions are simpler than full necessary and sufficient conditions (e.g., [BT97, The-

orem 3.3]) in part because they do not involve matrix inverses. This ensures the conditions

can be written out as polynomial expressions which is ideal for the optimization software

discussed next.

As a first step towards finding an unconditionally contractive four-stage fourth-order

DSRK (DSRK44) scheme, we employ the proprietary Branch and Reduce Optimization

Navigator (BARON) software [ST04] to search for DSRK44 satisfying conditions (4.11).

In [Mac03, Ruu06, KMG08] the proprietary Branch and Reduce Optimization Navigator

(Baron) software [ST04] was used to find optimal SSP Runge–Kutta schemes. Here we

begin by searching for any feasible DSRK methods by imposing the 14 order conditions in

Table 4.1 and the 48 necessary conditions (4.11) as constraints and minimizing the sum of

the squares of the b coefficients. Baron was interrupted after 30 days of calculation (on

an Athlon MP 2800+ with 1GiB of RAM) and was unable to find any feasible solutions.

Constrained only by the order conditions, Baron was able to quickly find DSRK44 schemes;

it was also able to quickly find five-stage fourth-order DSRK54 methods satisfying the order

conditions and necessary conditions (4.11).

Altogether, this is a strong indication that unconditionally contractive DSRK44 methods

do not exist. The question of the existence of unconditionally contractive DSRK54 schemes

is left open, noting however that such schemes are still likely to suffer from the order

reduction noted in Section 4.3.

4.2.3 Numerical implementation of DSRK

For linear problems, DSRK can be implemented using (4.8) by re-arranging all the unknowns

into a larger linear system, in general (2sm)×(2sm) where m is the size of the linear system

(4.1) and s is the number of stages in the underlying Runge–Kutta scheme. However,

particular choices of methods may result in smaller systems; for example, the two-stage

DSRK2 (4.10) can be written as the 2m× 2m system

[
I− 1

2∆tLD
1
2∆tL

−1
2∆tLD I− 1

2∆tL

](
U1

un+1

)
=

(
un + 1

2∆tLNun

un + 1
2∆tLNun

)
,

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 87

where I represents the m ×m identity. This linear system can then be solved to advance

one time step. As is usually the case, nonlinear systems are considerably more difficult.

For the non-linear problems, a numerical zero-finding method is used to solve the nonlinear

equations.

All numerical computations are performed with Matlab versions 7.0 and 7.3 using double

precision on x86 and x86-64 architectures. Linear systems are solved using Matlab’s back-

slash operator, whereas for the nonlinear problems in Sections 4.3.4 and 4.4.1, the diagonal

splitting function (4.6) is implemented, and a black-box equation solver (Matlab’s fsolve)

used directly on (4.7).

4.3 Numerical Results

The primary aim is to show that unconditionally contractive DSRK methods preserve the

desired strong stability properties when applied to a variety of test cases. The numerical

experiments are focused on three types of problems: convection, diffusion, and convection-

diffusion. The SSP property is perhaps most important for convection driven problems, such

as hyperbolic problems with discontinuous solutions. The methods have also been used to

treat problems where the slope or some derivative of the solution is discontinuous and, for

this reason, SSP schemes have been used widely to treat Hamilton–Jacobi equations (see,

e.g., [OF03]). Many other problems of reaction-advection-diffusion type also can benefit

from nonlinearly stable time stepping. For example, time stepping a spatially discretized

Black–Scholes equation (an equation we consider in Section 4.3.3) can lead to spurious

oscillations in the solution. These oscillations are particularly undesirable in option-pricing

problems because they can lead to highly oscillatory results in the first and second spatial

derivatives—known respectively as γ and δ (“the Greeks”) in computational finance.

In the section, the time-step size ∆t will often be measured relative to the forward Euler

restriction ∆tFE using c as ∆t = c∆tFE.

4.3.1 Convection-driven problems

An important prototype problem for SSP methods is the linear wave equation, or advection

equation

ut + aux = 0, 0 ≤ x ≤ 2π. (4.12)

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 88

We consider (4.12) with a = −2π, periodic boundary conditions, and various initial con-

ditions. A method-of-lines approach is used, discretizing the interval (0, 2π] into m points

xj = j∆x, j = 1, . . . ,m, and then discretizing −aux with first-order upwind finite differ-

ences. The resulting linear system is solved using the time-stepping schemes described in

Sections 4.1 and 4.2.

Smooth initial conditions

To study the order of accuracy of the methods, we consider (4.12) with smooth initial

conditions

u(0, x) = sin(x).

Table 4.2 shows a numerical convergence study with fixed ∆x. The implicit time-discretization

methods used are backward Euler (BE), Crank–Nicolson (CN), DSRK2 and DSRK3. The

system is also evolved with several explicit methods: forward Euler (FE), SSP(2,2), SSP(3,3)

and SSP(5,4). To isolate the effect of the time-discretization error, the effect of the error

associated with the spatial discretization is excluded by comparing the numerical solution

to the exact solution of the ODE system (4.1), rather than to the exact solution of the

underlying PDE. In lieu of the exact solution a very accurate numerical solution is obtained

using Matlab’s ode45 with minimal tolerances (AbsTol = 1 × 10−14, RelTol = 1 × 10−13).

Table 4.2 shows that all the methods achieve their design order when ∆t is sufficiently small.

However, the errors from CN are typically smaller than the errors produced by the other

implicit methods. For large ∆t, the second- and third-order DSRK schemes are far worse

than CN. If we broaden the experiments to include explicit schemes and take time steps

which are within the stability time-step restriction, we obtain smaller errors still. Given the

relatively inexpensive cost of explicit time stepping, it would appear that high-order explicit

schemes (e.g., SSP(5,4)) are likely more efficient for this smooth problem, unless, perhaps,

very large time steps are preferred over accuracy considerations.

Discontinuous initial conditions

To study the nonlinear stability properties of the methods, we consider the case of advection

of discontinuous data

u(x, 0) =

{
1 if π

2 ≤ x ≤ 3π
2 ,

0 otherwise.
(4.13)

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 89

Table 4.2: Numerical convergence study for the linear advection of a sine wave to tf = 1
using N time steps, m = 64 points and a first-order upwinding spatial discretization. Here
c measures the size of the time step relative to ∆tFE.

discrete error, l∞-norm
c N BE order CN order DSRK2 order DSRK3 order

4 16 0.518 0.0582 0.408 0.395
2 32 0.336 0.62 0.0147 1.98 0.194 1.08 0.178 1.15
1 64 0.194 0.79 3.70e-3 2.00 0.0714 1.44 0.0590 1.59
1
2 128 0.105 0.89 9.25e-4 2.00 0.0223 1.68 0.0152 1.95

· · · · · · · · · · · · · · ·
1
32 2048 7.04e-3 3.61e-6 1.09e-4 1.21e-5
1
64 4096 3.53e-3 1.00 9.04e-7 2.00 2.74e-5 1.99 1.61e-6 2.91
1

128 8192 1.77e-3 1.00 2.26e-7 2.00 6.87e-6 1.99 2.09e-7 2.95

c N FE order SSP22 order SSP33 order SSP54 order

2 32 unstable unstable unstable 2.66e-5
1 64 0.265 7.43e-3 1.82e-4 1.66e-6 4.00
1
2 128 0.122 1.12 1.85e-3 2.01 2.27e-5 3.00 1.03e-7 4.01

Figure 4.2 shows typical results. Note that oscillations are observed in the Crank–Nicolson

results, while the DSRK schemes are free of such oscillations. In fact, Table 4.3 shows

that for any time-step size BE, DSRK2 and DSRK3 preserve the TVD property of the

spatial discretization coupled with forward Euler. In contrast, Crank–Nicolson exhibits

oscillations for time steps larger than ∆t = 2
|a|∆x (i.e., c > 2). These results suggest that

the unconditionally contractive DSRK schemes do preserve the strong stability properties

of the ODE system.

maxt TV (u)

c N exact CN BE DSRK2 DSRK3

32 16 2 8.78 2 2 2

16 32 2 6.64 2 2 2

8 64 2 4.73 2 2 2

4 128 2 3.33 2 2 2

2 256 2 2 2 2 2

1 512 2 2 2 2 2

Table 4.3: Total variation of the so-
lution for the advection of a square
wave (N time steps, tf = 1). The
spatial discretization uses m = 512
points, first-order upwinding and pe-
riodic BCs.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 90

0
−0.5

0

0.5

1

1.5

x

u

ππ/2 3π/2 2π

(a) CN

0
−0.5

0

0.5

1

1.5

init. cond.
exact soln.
num. soln.

x

u

ππ/2 3π/2 2π

(b) BE

0
−0.5

0

0.5

1

1.5

x

u

ππ/2 3π/2 2π

(c) DSRK2

Figure 4.2: Advection of a square wave after two time steps, showing oscillations from
Crank–Nicolson and none from backward Euler and DSRK2. Here c = 16 and a first-order
upwinding spatial discretization is used with m = 512 points in space.

Order reduction and scheme selection

We now delve deeper into the observed convergence rates of the smooth and nonsmooth

problems. Figures 4.3 and 4.4 show that for large time steps, the DSRK methods exhibit

behavior similar to backward Euler in that they exhibit large errors and as the size of the

time steps are decreased, the error decreases at a rate which appears only first order. As

the time steps are taken smaller still, the convergence rate increases to the design order of

the DSRK schemes. In contrast, note that Crank–Nicolson shows consistent second-order

convergence over a wide range of time steps.

On the discontinuous problem (Figure 4.4), note the DSRK schemes do not produce

significantly improved errors over backward Euler until the time-step sizes are small enough

that Crank–Nicolson no longer exhibits spurious oscillations (c = 2 in Figure 4.4). In fact,

once the time steps are small enough that DSRK are competitive, we are almost within the

nonlinear stability constraint of explicit methods such as SSP(2,2) (c = 1 in Figure 4.4) .

Note that neither Figure 4.3 nor Figure 4.4 takes into account the differences in com-

putational work required by the various methods. The costs for DSRK2 and DSRK3 are

significantly larger than BE and CN, because the underlying systems are larger. In the

linear case, the size of the DSRK2 system is 2m× 2m and the DSRK3 system is 5m× 5m,

whereas the BE and CN systems are only m×m. Even if the cost of solving the system rose

only linearly with the size of the system, the cost is doubled for DSRK2 and increased five-

fold for DSRK3. In reality, the cost may increase more rapidly, depending on the structure

of the implicit system and the method used to solve the implicit equations. Furthermore,

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 91

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

number of timesteps

di
sc

re
te

 e
rr

or

c=1

spatial disc. error

1 st−order
2 nd

−order

3 rd
−order

BE
CN
DSRK2
DSRK3

10
1

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

number of timesteps

di
sc

re
te

 e
rr

or

c=1

spatial disc. error

BE
CN
DSRK2
DSRK3

Figure 4.3: Numerical convergence study for linear advection of a sine wave to tf = 1.
The spatial discretization here is first-order upwinding with 64 points (left) and 2048 points
(right). The spatial discretization error is determined experimentally and is indicated with
a dotted horizontal line.

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of timesteps

di
sc

re
te

 e
rr

or

c=1c=2

spatial disc. error

1 st−order

2 nd
−orderBE

CN (oscil)
CN
DSRK2
DSRK3
SSP22

Figure 4.4: Numerical convergence study for
linear advection of a square wave to time tf = 1
using first-order upwinding and 512 points in
space. Note that Crank–Nicolson produces os-
cillations during the computation for c > 2. The
spatial discretization error is indicated with a
dotted horizontal line.

if a nonlinear system is solved, this cost may increase even further. It is even more diffi-

cult to quantify the increased cost of an implicit method over that of an explicit method.

However, it is clear that implicit methods in general, and DSRK methods in particular, are

significantly more costly than explicit methods.

Note that phase errors were also investigated to see if the DSRK schemes had improved

phase error properties compared to BE, but they do not. In general, for large ∆t, DSRK

methods behave similarly in many aspects to backward Euler.

In summary, the results on the advection equation show that although the uncondition-

ally contractive DSRK methods are formally high order, in practice a reduction of order is

encountered for large time steps. If one requires large time steps, low to moderate accuracy,

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 92

and no oscillations, backward Euler is a good choice. If on the other hand, one requires

higher accuracy, an explicit high-order SSP method is probably better suited. We will see

that these results are typical for unconditionally contractive DSRK schemes. The order

reduction is analyzed further in Section 4.4.

4.3.2 Diffusion driven problems

Consider the diffusion or heat equation

ut = νuxx, (4.14)

with heat coefficient ν on a periodic domain (0, 2π]. We begin by discretizing the uxx term

with second-order centered finite differences to obtain the ODE system (4.1).

In Figure 4.5 and Table 4.4, we consider (4.14) with smooth initial conditions

u(0, x) = sin(x) + cos(2x).

Once again, note that the DSRK schemes achieve their design order as ∆t gets smaller, but

for large time steps they exhibit large errors and reduced convergence rates.

Figure 4.6 shows that Crank–Nicolson produces spurious oscillations in the solution

to the heat equation with discontinuous initial conditions (4.13). Also, Figure 4.6 shows

that the DSRK schemes are not competitive with backward Euler until the time steps are

smaller than the explicit stability limit (in this case, the restrictive ∆t ≤ ∆x2

2ν
shown by the

dotted vertical line). Clearly, the unconditionally contractive DSRK methods exhibit order

reduction for this parabolic problem as well.

4.3.3 The Black–Scholes equation

The Black–Scholes equation [BS73]

Vτ =
σ

2
S2VSS + rSVS − rV, (4.15)

is a PDE used in computational finance [For05] for determining the fair price V of an option

at stock price S, where σ is the volatility and r is the risk-free interest rate. Note S is the

independent (we can think “spatial”) variable on the positive half-line and τ is a rescaled

time (the actual time runs backwards from “final conditions”). The initial conditions, shown

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 93

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

number of timesteps

di
sc

re
te

 e
rr

or

∆t=∆x2/(2ν)

s.d.e. 1 st−order
2 nd

−order

3 rd
−order

BE
CN
DSRK2
DSRK3

10
1

10
2

10
3

10
4

10
5

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

number of timesteps

di
sc

re
te

 e
rr

or

∆t=∆x2/(2ν)

s.d.e.

BE
CN
DSRK2
DSRK3

Figure 4.5: Numerical convergence studies for the heat equation with smooth initial con-
ditions. Left: m = 64, tf = 10, ν = 1

16 . Right: m = 1024, tf = 1, ν = 1
4 . The spatial

discretization uses second-order centered differences and the level of spatial discretization
error is indicated by the horizontal dotted line labeled “s.d.e.”

discrete error l∞-norm

c N BE CN DSRK2 DSRK3

830 16 0.0127 1.24e-4 0.0127 0.0127

415 32 0.00643 3.09e-5 0.00640 0.00640

.

12.97 1024 2.03e-4 3.02e-8 1.76e-4 1.74e-4

6.48 2048 1.02e-4 7.55e-9 7.77e-5 7.55e-5

1 13280 1.57e-5 1.80e-10 5.23e-6 4.28e-6

FE SSP22 SSP33 SSP54

2 6640 unstable unstable unstable 8.74e-13

1 13280 1.57e-5 3.59e-10 4.42e-13 1.32e-12

Table 4.4: Numerical con-
vergence study for the heat
equation with smooth ini-
tial conditions. Here ν =
1/4, m = 1024, tf = 1.
The discrete error is com-
puted against the ODE so-
lution calculated with Mat-

lab’s ode15s. For com-
parison explicit methods are
shown near their stability
limits around c = 1.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 94

10
1

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

number of timesteps

di
sc

re
te

 e
rr

or

∆t=∆x2/(2ν)

1 st−order

2 nd
−order

BE
CN (oscil)
CN
DSRK2
DSRK3
SSP22

Figure 4.6: Numerical convergence study
for heat equation with discontinuous ini-
tial conditions using m = 512, tf = 1
and ν = 1

4 . The spatial discretization
in this example is second-order centered
differences.

0 100 200 300 400
0

20

40

60

80

100

V

S

Figure 4.7: Computational domain
and initial conditions for the Black–
Scholes problem.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 95

in Figure 4.7, have a discontinuity in the first derivative at S = 100 (these initial conditions

are known as a “put option” with a “strike price” of S = 100).

Note that (4.15) is a linear non-constant coefficient advection-reaction-diffusion equation

and can be treated as the ODE system (4.1) by approximating the VS term with first-order

upwind finite differences and the VSS term with second-order centered finite differences.

We use σ = 0.8, r = 0.1, and for this choice no significant difference between upwind

and centered differences for the advection term was observed. The right-hand boundary

condition is an approximation to limS→∞ V (S) = 0, specifically V (Smax) = 0. At the

left-hand end of the domain, note that (4.15) reduces to

V̇0 = −rV0,

and thus it is both natural and convenient to simply solve this ODE coupled with the other

components Vj as part of the method-of-lines computation.

Figure 4.8 shows the problem of oscillations which show up in a Crank–Nicolson cal-

culation of the Black–Scholes problem. The oscillations are amplified in “the Greeks” i.e.,

the first and second spatial derivatives. Note this is a well-known phenomenon [Col06] as-

sociated with the CN numerical solution of (4.15); in practice, Rannacher time stepping

consisting of several initial steps of BE followed by CN steps [GC06] is often used to avoid

these oscillations. DSRK schemes also avoid oscillations but are not likely competitive with

Rannacher time stepping in terms of efficiency due to the order reduction illustrated in

Table 4.5 as well as the greater expense of implementing the DSRK schemes. A great num-

ber of time steps (N = 17, 800 in the case considered in Table 4.5) are required before the

Crank–Nicolson calculation is completely oscillation-free in “the Greeks”.

Note that explicit methods are not practical for this problem because of the severe linear

stability restriction imposed by the diffusion term in (4.15). If an oscillation-free calculation

is desired, then backward Euler is preferred over DSRK methods because DSRK methods

cost more and offer essentially the same first-order convergence rates for time-step sizes of

practical interest. Moreover, DSRK schemes can offer little practical advantage over current

Rannacher time-stepping techniques which attempt to combine the best aspects of backward

Euler and Crank–Nicolson.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 96

V VS VSS

C
N

,
N

=
6
4

60 80 100 120 140
0

10

20

30

40

S

V

60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

S
V

S

60 80 100 120 140

4

6

8

10

12

x 10
−3

S

V
S

S

B
E

,
N

=
8

60 80 100 120 140
0

10

20

30

40

S

V

60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

S

V
S

60 80 100 120 140

4

6

8

10

12

x 10
−3

S

V
S

S

D
S
R

K
2
,
N

=
8

60 80 100 120 140
0

10

20

30

40

S

V

60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

S

V
S

60 80 100 120 140

4

6

8

10

12

x 10
−3

S

V
S

S

D
S
R

K
3
,
N

=
8

60 80 100 120 140
0

10

20

30

40

S

V

init. cond.
exact soln.
num. soln.

60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

S

V
S

60 80 100 120 140

4

6

8

10

12

x 10
−3

S

V
S

S

Figure 4.8: Numerical solutions of the Black–Scholes problem magnified near S = 100 with
m = 1600, tf = 1

4 , σ = 0.8, r = 0.1 and Smax = 400 using N time steps. From left-to-right:
V , VS and VSS . Note that Crank–Nicolson exhibits oscillations with N = 64 whereas BE and
the DSRK schemes appear free of oscillation even with the larger time steps corresponding
to N = 8.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 97

Table 4.5: Black–Scholes numerical convergence study. * indicates oscillations in V , VS or
VSS. Here, m = 1600, Smax = 400, ∆x = 1

4 , tf = 1
4 , σ = 0.8 and r = 0.1. The discrete error

is calculated against a numerical solution from Matlab’s ode15s with AbsTol = 1× 10−14,
RelTol = 1× 10−13.

discrete error l∞-norm
N BE order CN order DSRK2 order DSRK3 order

32 0.0655 0.115 * 0.0654 0.0654
64 0.0328 1.00 0.0452 * 1.35 0.0327 1.00 0.0326 1.00
128 0.0164 1.00 8.64e-3 * 2.39 0.0163 1.00 0.0163 1.00
256 8.21e-3 1.00 8.76e-5 * 6.62 8.07e-3 1.01 8.06e-3 1.02
512 4.10e-3 1.00 1.95e-6 * 5.49 3.97e-3 1.02 3.96e-3 1.03
1024 2.05e-3 1.00 4.88e-7 * 2.00 1.92e-3 1.05 1.91e-3 1.05
.

8192 2.57e-4 7.62e-9 * 1.60e-4 1.51e-4
16384 1.28e-4 1.00 1.90e-9 * 2.00 5.67e-5 1.50 4.98e-5 1.60
32768 6.41e-5 1.00 4.75e-10 2.00 1.78e-5 1.67 1.67e-5 1.58

4.3.4 Hyperbolic conservation laws: Burgers’ equation

The examples so far have dealt exclusively with linear problems. In this section we consider

Burgers’ equation

ut = −f(u)x = −
(

1

2
u2

)

x

,

with initial condition u(0, x) = 1
2 − 1

4 sin(πx) on the periodic domain x ∈ [0, 2). The

solution is right-travelling and over time steepens into a shock. The right hand side −f(u)x

is discretized using a conservative simple upwind approximation

−f(u)x ≈ −
1

∆x

(
f̃i+ 1

2
− f̃i− 1

2

)
= − 1

∆x
(f(ui)− f(ui−1)) .

Figure 4.9 shows that Crank–Nicolson produces spurious oscillations in the wake of the

shock, for c = 8 (in fact, oscillations can be observed from CN for c ≥ 4 as noted in

Table 4.6). As expected, BE, DSRK2 and DSRK3 produce a non-oscillatory TVD solu-

tion. Table 4.6 shows a numerical convergence study for this problem which illustrates the

familiar pattern of order reduction. Notice, in particular, that for any time-step size consid-

ered, one of BE or CN gives non-oscillatory results with similar or smaller errors than the

DSRK schemes considered here. Furthermore, for small time steps, the explicit methods

considerably outperform the other choices.

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 98

0 0.5 1 1.5 2

0.3

0.4

0.5

0.6

0.7

0.8
ref. soln.
CN

u

x
0 0.5 1 1.5 2

0.3

0.4

0.5

0.6

0.7

0.8
ref. soln.
DSRK2

u

x

Figure 4.9: Burgers’ equation with Crank–Nicolson (left) and DSRK2 (right) with m = 256
spatial points and tf = 2, N = 32 (c = 8). For CN, the solution appears smooth until
the shock develops; then an oscillation develops at the trailing edge of the shock. Note
that DSRK2 appears overly dissipative. The reference solution is calculated with CN and
N = 8192.

Table 4.6: Burgers’ equation numerical convergence study. Values for which oscillations
appear are indicated with *. The setup here is the same as in Figure 4.9 except the reference
solution is calculated with SSP(5,4) and N = 8192.

error (l∞-norm against ref. soln.)
c N BE order CN order DSRK2 order DSRK3 order

16 16 0.192 0.193 * 0.195 0.195
8 32 0.173 0.15 0.109 * 0.82 0.153 0.35 0.154 0.34
4 64 0.140 0.31 0.0399 * 1.45 0.110 0.47 0.114 0.43
2 128 0.0964 0.54 0.0124 1.68 0.0644 0.78 0.0673 0.76
1 256 0.0589 0.71 3.11e-3 2.00 0.0273 1.24 0.0249 1.43

0.5 512 0.0320 0.88 7.72e-4 2.01 8.72e-3 1.65 6.79e-3 1.87
0.25 1024 0.0165 0.96 1.90e-4 2.02 2.45e-3 1.83 1.39e-3 2.29

FE order SSP22 order SSP33 order SSP54 order

4 64 unstable unstable unstable unstable
2 128 unstable unstable unstable 2.50e-4
1 256 0.0880 5.98e-3 3.54e-4 1.36e-5 4.20

0.5 512 0.0377 1.22 1.45e-3 2.04 4.32e-5 3.03 7.63e-7 2.88
0.25 1024 0.0172 1.13 3.63e-4 2.00 5.34e-6 3.02 4.46e-8 4.10
0.125 2048 8.43e-3 1.03 9.08e-5 2.00 6.61e-7 3.01 2.68e-9 4.06

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 99

ǫ y1(0) y2(0)

1× 10−1 2 -0.65

1× 10−2 2 -0.6654321

1× 10−3 2 -0.66654321

1× 10−4 2 -0.666654321

1× 10−5 2 -0.6666654321

1× 10−6 2 -0.66666654321

1× 10−7 2 -0.666666654321

Table 4.7: Initial conditions for the
van der Pol problem for various ǫ
(from [LM05, Table 5.1]).

4.4 Stage Order and Order Reduction

The numerical experiments have shown that the unconditionally contractive DSRK2 and

DSRK3 methods preserve nonlinear stability properties when applied to our test cases in

Section 4.3. However, the results also show that these methods suffer from order reduction:

when large time steps ∆t are taken, the form of the error appears larger then the design

order term O(∆tp) would suggest, for example, because of large derivatives in stiff problems

which may not be O(1) when ∆t is large [HW96]. The order reduction implies that the

unconditionally contractive DSRK methods are not likely an appropriate choice for a time-

stepping scheme, because they cannot compete with BE for large time steps or with SSP

explicit methods for smaller time steps.

4.4.1 The van der Pol equation

To further investigate the order reduction observed in the previous numerical tests, we

apply the DSRK methods to the van der Pol equation, a problem often used for testing for

reduction of order (see, e.g., [LM05] and references therein). The problem can be written

as an ODE initial value problem consisting of two components

y′1 = y2, (4.16a)

y′2 =
1

ǫ

(
−y1 + (1− y2

1)y2

)
, (4.16b)

with ǫ-dependent initial conditions shown in Table 4.7. The problem becomes increasingly

stiff as ǫ is decreased. The solution is computed to tf = 1
2 .

Figure 4.10 shows the distinctive “flattening” [LM05] that occurs during the numerical

convergence studies whereby the error exhibits a region (depending on ǫ) of first-order

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 100

10
0

10
1

10
2

10
3

10
4

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

number of timesteps

er
ro

r

1 st−order

2 nd
−order

BE
CN
DSRK2
DSRK3

10
0

10
1

10
2

10
3

10
4

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

number of timesteps

er
ro

r

BE
CN
DSRK2
DSRK3

Figure 4.10: Numerical convergence study on the van der Pol equation for ǫ = 1 × 10−3

(left) and ǫ = 1× 10−4 (right). Error shown is in the second component.

behaviour as the time-step size decreases before eventually approaching the design order of

the method. This suggests that DSRK schemes suffer from order reduction whereas Crank–

Nicolson does not. Before the flattened region, all the high-order methods produce similar

errors. In particular DSRK3 does no better than the second-order Crank–Nicolson until

after the flattening region. Note that this order reduction is noticeable despite the fact that

the choices of ǫ used do not correspond to particularly stiff systems.

4.4.2 DSRK schemes with higher underlying stage order

The order reduction is not completely unexpected, as [itH96] showed that the underlying

Runge–Kutta methods must have stage order at most one, and low stage order—at least

in Runge–Kutta schemes—is known to lead to order reduction [HW96]. For comparison,

consider a DSRK method which is based on the two-stage, second-order implicit Runge–

Kutta method with stage order two

c A

bT
=

1
2

3
4 −1

4

1 1 0

1 0

, combined with W =

[
1
2 0

1 0

]
. (4.17)

We call this method DSRK2uso2. Because the underlying method has stage order larger

than one (i.e., two), the DSRK2uso2 method cannot be unconditionally contractive [itH96].

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 101

4.4.3 DSRK schemes with higher stage order

Figures 4.11 and 4.12 indicate that DSRK2uso2 also suffers from order reduction. Thus, it

appears that higher stage order of the underlying Runge–Kutta scheme is not sufficient to

avoid order reduction. Thus stage order properties of the DSRK scheme itself are investi-

gated using the test problem of [PR74]

u′ = λ (u− φ(t)) + φ′(t), Re(λ) < 0, u(t0) = φ(t0).

However, because DSRK schemes reduce to Runge–Kutta schemes on scalar problems, we

introduce a modified vector version

u′ = Λ(u− φ(t)) + φ′(t), (4.18)

where u(t0) = φ(t0) and Λ is negative semidefinite, where the exact solution is u(t) = φ(t).

Following the Runge–Kutta analysis in [HW96, Section IV.15], the general DSRK scheme

(4.8) can be applied to the vector test problem to obtain

un+1 = un + ∆t

s∑

j=1

bj

[
ΛD

(
U j − φ(t + cj∆t)

)
+ ΛN

(
Zj − φ(t + cj∆t)

)
+ φ′(t + cj∆t)

]
,

U i = un + ∆t
s∑

j=1

aij

[
ΛD

(
U j − φ(t + cj∆t)

)
+ ΛN

(
Zj − φ(t + cj∆t)

)
+ φ′(t + cj∆t)

]
,

Zi = un + ∆t

s∑

j=1

wij

[
ΛD

(
U j − φ(t + cj∆t)

)
+ ΛN

(
Zj − φ(t + cj∆t)

)
+ φ′(t + cj∆t)

]
.

Substituting the exact solution for un, un+1, U i and Zi results in

φ(tn + ∆t) = φ(tn) + ∆t

s∑

j=1

bjφ
′(t + cj∆t) + d0,

φ(tn + ci∆t) = φ(tn) + ∆t
s∑

j=1

aijφ
′(t + cj∆t) + di

1, i = 1, . . . , s,

φ(tn + ci∆t) = φ(tn) + ∆t

s∑

j=1

wijφ
′(t + cj∆t) + di

2, i = 1, . . . , s,

where d0, di
1 and di

2 measure the resulting defect between the left- and right-hand sides.

Taylor series expansions of the various φ and φ′ terms about tn can be used to determine

the order of each defect, d0 = O
(
∆tq0+1

)
, di

1 = O
(
∆tq1+1

)
, and di

2 = O
(
∆tq2+1

)
. The

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 102

values of q0, q1 and q2 depend on the coefficients of the DSRK scheme and are the largest

values such the following relations hold:

bTck−1 =
1

k
, for k = 1, . . . , q0, (4.21a)

Ack−1 =
ck

k
, for k = 1, . . . , q1, (4.21b)

Wck−1 =
ck

k
, for k = 1, . . . , q2, (4.21c)

where the ck indicates component-wise exponentiation. We then define the stage order of

the DSRK method as follows.

Definition 4 (DSRK Stage Order) Consider a DSRK scheme with coefficients A, W, b

and c. Let q0, q1 and q2 be the largest possible values such that the relations (4.21) hold.

Then min(q0, q1, q2) is the stage order of the DSRK scheme.

Note that min(q0, q1) is the stage order of the underlying Runge–Kutta scheme [HW96,

Section IV.15] and that q0 ≥ p, where p is the order of the DSRK scheme.

The scheme DSRK2uso2 has q1 = 2 and q2 = 1. The DSRK2 scheme as q1 = 1 and

q2 = 2. It does not appear possible to create a two-stage second-order DSRK scheme with

q1 = q2 = 2. However, we can find many three-stage second-order DSRK schemes with

q1 = q2 = 2; a particular example is the method we call DSRK32so2 with

c A

bT
=

0 1
4 −1

2
1
4

1
2

1
4

1
4 0

1 1
4

1
2

1
4

1
4

1
2

1
4

, W =

0 0 0
1
3

1
12

1
12

1
4

1
2

1
4

 .

Third-order, three-stage DSRK methods with q1 = q2 = 2 can also be found, for example,

DSRK33so2 with

c A

bT
=

0 1
4 −1

2
1
4

1
2

1
2 −1

4
1
4

1 1
6

2
3

1
6

1
6

2
3

1
6

, W =

1
3 −2

3
1
3

1
3

1
12

1
12

1
6

2
3

1
6

 .

Recall that because the stage order of the underlying Runge–Kutta method exceeds one,

none of these higher stage order schemes can be unconditionally contractive [itH96], and in

CHAPTER 4. DIAGONALLY SPLIT RUNGE–KUTTA METHODS 103

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

number of timesteps

di
sc

re
te

 e
rr

or

1 st−order

2 nd
−order

3 rd
−order

BE
CN
DSRK32so2
DSRK33so2
DSRK2uso2

Figure 4.11: Stage order numerical con-
vergence study for linear advection of a
sine wave to tf = 1. The spatial dis-
cretization here is first-order upwinding
with m = 2048 points.

10
0

10
1

10
2

10
3

10
4

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

number of timesteps

er
ro

r

1 st−order

2 nd
−order

3 rd
−order

BE
CN
DSRK32so2
DSRK33so2
DSRK2uso2

10
0

10
1

10
2

10
3

10
4

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

number of timesteps

er
ro

r

BE
CN
DSRK32so2
DSRK33so2
DSRK2uso2

Figure 4.12: Stage order numerical convergence study on the van der Pol equation. Error
shown is in the second component for ǫ = 1× 10−3 (left) and ǫ = 1× 10−4 (right).

numerical tests (not included) it was observed that indeed, DSRK2uso2, DSRK32so2 and

DSRK33so2 violated the strong stability property for large enough ∆t.

Figures 4.11 and 4.12 show that the DSRK32so2 scheme is free from order reduction.

However, note that DSRK33so2 still exhibits order reduction as its stage order is one less

than its design order.

The apparent importance of high stage order for DSRK schemes is intriguing, especially

because order reduction is not observed when using implicit SSP schemes (which necessarily

have stage order at most two) even when tested [KMG08] on some of the same test problems

used here.

Chapter 5

Conclusions

The Closest Point Method is a recent technique for the solution of time dependent par-

tial differential equations (PDEs) or other problems constrained to surfaces. The method

propagates the solution of the PDE in time by alternating between an evolution step and

an extension step in an embedding space surrounding the surface. This thesis contributed

significantly to the development of the Closest Point Method in two main ways: first by

applying the method to level set equations on surfaces; and second by deriving an implicit

Closest Point Method.

Chapter 2 applied the Closest Point Method to level set equations on surfaces. The

result is a robust technique for evolving interfaces on very general surfaces. In particular,

the method retains the advantages of the level set method itself—i.e., it automatically

handles self-intersecting interfaces and it makes use of standard high-order methods in

the embedding space (typically R
3) to evolve the level set equations themselves. New in

this chapter is the derivation of a Weighted Essentially Non-Oscillatory (WENO) based

interpolation scheme suitable for use in the closest point extension step. The Closest Point

Method, using this interpolation scheme together with standard Hamilton–Jacobi WENO

discretizations for the evolution of the embedding level set equation, achieved fourth- and

fifth-order results on convergence test problems for passive transport, normal flow and the

reinitialization equation. Flows were computed on a sphere, a torus, a triangulation of

the surface of a human hand and on the surface of the non-orientable, codimension-two

Klein bottle, illustrating that the Closest Point Method is very flexible with respect to the

geometry and dimension of the surface.

Chapter 3 outlined the development of a new implicit Closest Point Method. A new

104

CHAPTER 5. CONCLUSIONS 105

notation expressing the evolution and extension steps of the original explicit Closest Point

Method as matrix operations allowed the derivation of the implicit Closest Point Method

essentially by taking the product of two matrices. The method then uses standard implicit

linear multistep methods for time stepping and is well-suited to the numerical solution of

PDEs with high-order differential terms. The implicit Closest Point Method allows large

time steps, and example computations showed that it is well-suited for stiff problems in-

volving the Laplace–Beltrami or in-surface biharmonic differential operators.

Chapters 2 and 3 both include numerical convergence studies of the Closest Point

Method, indicating high-order results of up to fifth-order. These results are the first to

demonstrate that the method is capable of solving surface problems with a high order of

accuracy. That these results are obtained over a variety of examples including both hy-

perbolic and parabolic PDEs on surfaces ranging from simple spheres to Klein bottles and

triangulated pigs is indicative of the broad applicability of the Closest Point Method.

Finally, Chapter 4 studied unconditionally contractive diagonally split Runge–Kutta

(DSRK) methods. These high-order schemes appeared promising because they allow large

time steps while maintaining nonlinear stability properties that might be desirable, for

example, when applying the implicit Closest Point Method to nonlinear problems with

nonsmooth solutions. However, using numerical test cases, it was shown that unconditionally

contractive DSRK schemes suffer from severe order reduction. New DSRK stage order

conditions were then derived and the order reduction of unconditionally contractive DSRK

methods was shown to be associated with their necessarily low stage order. In conclusion,

the class of unconditionally contractive DSRK methods does not produce viable alternatives

to well-established conditionally SSP Runge–Kutta and linear multistep methods, be it for

use with the implicit Closest Point Method or otherwise.

The Closest Point Method is very new and much work remains to be done on theory, im-

plementation and applications. Applications of particular interest include image processing

on surfaces, for example, image inpainting and segmentation. Other interesting problems

include computation on moving surfaces, perhaps by combining the Closest Point Method

with the method of [LZ08], and the computation of the harmonics or eigenmodes on a

surface [Bra07].

Appendix A

Implicit Closest Point Method

Algorithms

A.1 Construction of the Computational Band

A.1.1 Pass one

Start with empty lists Levolve and Lghost. Given an arbitrary point x, add the base point

for cp(x) to Levolve (we need a single point seeded within each non-connected part of the

surface; for a connected surface, any point will do and the algorithm will find all appropriate

points).

• Loop over each element x of Levolve (note that there is initially only one point in Levolve

but we will be adding elements as we go along: we stop when we actually get to the

end of the list):

• Loop over all the points y in the evolution stencil surrounding x:

• Calculate cp(y), and find b the base point of the interpolation stencil.

• For efficiency, if we’ve processed b before then do not do anything (proceed

to the next y); otherwise, process as follows.

• Let Sb
interp = ∅; this list associated with b will contain the indices of the

points in the interpolation stencil for which b is the base point.

• For each z in the interpolation stencil:

• Look for z in Levolve, note its index if found.

106

APPENDIX A. IMPLICIT CLOSEST POINT METHOD ALGORITHMS 107

• If z is not found, add it to Levolve and note its index.

• Add the index of z to Sb
interp.

A.1.2 Pass two

• Loop over each element x in Levolve:

• Set Sx
evolve = ∅; this list associated with point x will contain the indices of the

points in the evolution stencil at x.

• Loop over all the points y in the evolution stencil surrounding x:

• Find the index in Levolve of the base point b corresponding to y. Save the

base point index and the value of cp(y) with y.

• Look for y in Levolve and Lghost, note its index if found.

• If not found, add it to Lghost and note its index.

• Add the index of y and which band it is in to Sx
evolve.

Appendix B

WENO Schemes

B.1 The Hamilton–Jacobi WENO Procedure

This appendix describes the fifth-order Hamilton–Jacobi WENO procedure following [OF03,

Section 3.4]. Given seven data values φi−3, . . . , φi+3 at seven equispaced grid points xi−3,

. . . , xi+3 with grid spacing ∆x, the WENO procedure computes φ+
x and φ−

x , the right-biased

and left-biased approximations to φx(xi).

We begin by constructing the differences vj from the seven φj values as follows. To

compute φ−
x , we use

v1 =
φi−2 − φi−3

∆x
, v2 =

φi−1 − φi−2

∆x
, v3 =

φi − φi−1

∆x
, v4 =

φi+1 − φi

∆x
, v5 =

φi+2 − φi+1

∆x
,

or to compute φ+
x , we use

v1 =
φi+3 − φi+2

∆x
, v2 =

φi+2 − φi+1

∆x
, v3 =

φi+1 − φi

∆x
, v4 =

φi − φi−1

∆x
, v5 =

φi−1 − φi−2

∆x
.

Next we compute the smoothness indicators

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2 ,

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)

2 ,

S3 =
13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2 .

From the smoothness indicators, we compute

α1 =
1

10

1

(ε + S1)2
, α2 =

6

10

1

(ε + S2)2
, α3 =

3

10

1

(ε + S3)2
,

108

APPENDIX B. WENO SCHEMES 109

where ε prevents division-by-zero if one of the smoothness indicates is zero. The value

ε = 1 × 10−6 is used in the calculations in Chapter 2. From the α values we compute the

weights

w1 =
α1

α1 + α2 + α3
, w2 =

α2

α1 + α2 + α3
, w3 =

α3

α1 + α2 + α3
.

Finally, the derivative is computed as

φ±
x = w1

2v1 − 7v2 + 11v3

6
+ w2

−v2 + 5v3 + 2v4

6
+ w3

2v3 + 5v4 − v5

6
.

Appendix C

Explicit Strong Stability

Preserving Runge–Kutta Schemes

C.1 Common SSP Runge–Kutta Schemes

Some popular explicit SSP Runge–Kutta methods are given below. See [RS02, SR03, Got05,

Ket08] for details.

Two-stage, second-order SSP Runge–Kutta (SSP(2,2)) An optimal second-order

SSP Runge–Kutta method given by

ū(1) = un + ∆tf(un),

un+1 =
1

2
un +

1

2
ū(1) +

1

2
∆tf(ū(1)).

The time-step restriction for this scheme is ∆t ≤ ∆tFE, which means that it has a SSP

coefficient of C = 1. However, because it is a two-stage method, the computational work

required per step is doubled compared to forward Euler so Ceff = 0.5.

Three-stage, third-order SSP Runge–Kutta (SSP(3,3)) An optimal third-order

SSP Runge–Kutta method given by

ū(1) = un + ∆tf(un),

ū(2) =
3

4
un +

1

4
ū(1) +

1

4
∆tf(ū(1)),

un+1 =
1

3
un +

2

3
ū(2) +

2

3
∆tf(ū(2)).

110

APPENDIX C. EXPLICIT STRONG STABILITY PRESERVING RUNGE–KUTTA SCHEMES111

The time-step restriction for this method is ∆t ≤ ∆tFE, so it has a value of C = 1. However,

the computational work per step in this method is three times that of forward Euler so

Ceff = 1
3 . This method is very commonly used and is often referred to as the third-order

TVD Runge-Kutta scheme or the Shu–Osher method.

Five-stage, fourth-order SSP Runge–Kutta (SSP(5,4)) An optimal method devel-

oped in [SR02, Ruu06, Kra91] with coefficients expressed to 15 digits is

ū(1) = un + 0.391752226571890∆tf (un),

ū(2) = 0.444370493651235un + 0.555629506348765ū(1) + 0.368410593050371∆tf (ū(1)),

ū(3) = 0.620101851488403un + 0.379898148511597ū(2) + 0.251891774271694∆tf (ū(2)),

ū(4) = 0.178079954393132un + 0.821920045606868ū(3) + 0.544974750228521∆tf (ū(3)),

un+1 = 0.517231671970585ū(2) + 0.096059710526146ū(3) + 0.063692468666290∆tf (ū(3))

+ 0.386708617503269ū(4) + 0.226007483236906∆tf (ū(4)).

The time-step restriction for this method is approximately ∆t ≤ 1.508∆tFE, thus it has

C ≈ 1.508. The computational work per step in this method is five times that of forward

Euler, with Ceff ≈ 0.301,

Finally note the recently proposed 10-stage, fourth-order SSP(10,4) scheme [Ket08]

which has simple rational coefficients and improves considerably on the efficiency of SSP(5,4)

with Ceff = 0.6 (C = 6).

Bibliography

[ABP+07] Helen Alexander, Anna Belkin, Chris Poss, Weining Wang, and Colin Macdon-
ald. Modelling forest fires using level set equations. Technical report, MITACS
BC Industrial Math Summer School, 2007.

[ARS97] Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. Implicit-explicit
Runge–Kutta methods for time-dependent partial differential equations. Appl.
Numer. Math., 25(2-3):151–167, 1997.

[ARW95] Uri M. Ascher, Steven J. Ruuth, and Brian T. R. Wetton. Implicit-explicit
methods for time-dependent partial differential equations. SIAM J. Numer.
Anal., 32(3):797–823, 1995.

[BCOS01] Marcelo Bertalmı́o, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. Vari-
ational problems and partial differential equations on implicit surfaces. J. Com-
put. Phys., 174(2):759–780, 2001.

[BF01] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks/Cole,
seventh edition, 2001.

[BJZ94] A. Bellen, Z. Jackiewicz, and M. Zennaro. Contractivity of waveform relaxation
Runge–Kutta iterations and related limit methods for dissipative systems in the
maximum norm. SIAM J. Numer. Anal., 31(2):499–523, 1994.

[Bra07] Jeremy Brandman. A level-set method for computing the eigenvalues of elliptic
operators defined on compact hypersurfaces. CAM Report 07-24, UCLA, 2007.

[BS73] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. The
Journal of Political Economy, 81(3):637–654, 1973.

[BT97] A. Bellen and L. Torelli. Unconditional contractivity in the maximum norm of
diagonally split Runge–Kutta methods. SIAM J. Numer. Anal., 34(2):528–543,
1997.

[BT04] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation.
SIAM Rev., 46(3):501–517, 2004.

112

BIBLIOGRAPHY 113

[But03] John C. Butcher. Numerical Methods for Ordinary Differential Equations. Wi-
ley, 2003.

[CBMO02] Li-Tien Cheng, Paul Burchard, Barry Merriman, and Stanley Osher. Motion
of curves constrained on surfaces using a level-set approach. J. Comput. Phys.,
175(2):604–644, 2002.

[CL84] M. G. Crandall and P.-L. Lions. Two approximations of solutions of Hamilton–
Jacobi equations. Math. Comp., 43(167):1–19, 1984.

[Col06] Thomas Coleman. Option pricing: The hazards of computing delta and
gamma. http://www.fenews.com/fen49/where_num_matters/numerics.htm,
2006. Accessed 2006-08-08.

[CT08] Li-Tien Cheng and Yen-Hsi Tsai. Redistancing by flow of time dependent eikonal
equation. J. Comput. Phys., 227(8):4002–4017, 2008.

[FAMO99] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-
oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid
method). J. Comput. Phys., 152(2):457–492, 1999.

[Feh70] Erwin Fehlberg. Klassische Runge–Kutta-Formeln vierter und
niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf
Wärmeleitungsprobleme. Computing (Arch. Elektron. Rechnen), 6:61–71, 1970.

[For05] P.A. Forsyth. An introduction to computational finance without agoniz-
ing pain. Available on author’s website, http://www.cs.uwaterloo.ca/

~paforsyt/agon.pdf, February 2005. Accessed 2005-09-27.

[FS04] L. Ferracina and M. N. Spijker. Stepsize restrictions for the total-variation-
diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal.,
42(3):1073–1093, 2004.

[FS05] L. Ferracina and M. N. Spijker. An extension and analysis of the Shu–Osher
representation of Runge–Kutta methods. Math. Comp., 74(249):201–219, 2005.

[FS08] L. Ferracina and M. N. Spijker. Strong stability of singly-diagonally-
implicit Runge–Kutta methods. Appl. Numer. Math., 2008. To appear,
doi:10.1016/j.apnum.2007.10.004.

[GC06] Michael B. Giles and Rebecca Carter. Convergence analysis of Crank–Nicolson
and Rannacher time-marching. Journal of Computational Finance, 9(4):89–112,
2006.

[Gea71] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equa-
tions. Prentice Hall, 1971.

BIBLIOGRAPHY 114

[GMR06] Sigal Gottlieb, Julia S. Mullen, and Steven J. Ruuth. A fifth order flux implicit
WENO method. J. Sci. Comput., 27(1-3):271–287, 2006.

[Got05] Sigal Gottlieb. On high order strong stability preserving Runge–Kutta and multi
step time discretizations. J. Sci. Comput., 25(1-2):105–128, 2005.

[Gre06] John B. Greer. An improvement of a recent Eulerian method for solving PDEs
on general geometries. J. Sci. Comput., 29(3):321–352, 2006.

[GS98] Sigal Gottlieb and Chi-Wang Shu. Total variation diminishing Runge–Kutta
schemes. Math. Comp., 67(221):73–85, 1998.

[GST01] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor. Strong stability-preserving
high-order time discretization methods. SIAM Rev., 43(1):89–112, 2001.

[GVL96] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, 1996.

[Hea97] Michael T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill,
1997.

[Hig04] Inmaculada Higueras. On strong stability preserving time discretization meth-
ods. J. Sci. Comput., 21(2):193–223, 2004.

[Hig05] Inmaculada Higueras. Representations of Runge–Kutta methods and strong
stability preserving methods. SIAM J. Numer. Anal., 43(3):924–948, 2005.

[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations
I: Nonstiff problems, volume 8 of Springer Series in Computational Mathematics.
Springer-Verlag, second edition, 1993.

[Hor98] Zoltán Horváth. Positivity of Runge–Kutta and diagonally split Runge–Kutta
methods. Appl. Numer. Math., 28(2-4):309–326, 1998.

[HR06] Willem Hundsdorfer and Steven J. Ruuth. On monotonicity and boundedness
properties of linear multistep methods. Math. Comp., 75(254):655–672, 2006.

[HRS03] Willem Hundsdorfer, Steven J. Ruuth, and Raymond J. Spiteri. Monotonicity-
preserving linear multistep methods. SIAM J. Numer. Anal., 41(2):605–623,
2003.

[Hui08] Annie Hui. “Annie Hui’s pig”, the AIM@SHAPE shape repository. http:

//shapes.aimatshape.net, 2008. Accessed 2008-04-09.

[HW96] E. Hairer and G. Wanner. Solving ordinary differential equations. II: Stiff and
differential-algebraic problems, volume 14 of Springer Series in Computational
Mathematics. Springer-Verlag, second edition, 1996.

BIBLIOGRAPHY 115

[itH96] K. J. in ’t Hout. A note on unconditional maximum norm contractivity of
diagonally split Runge–Kutta methods. SIAM J. Numer. Anal., 33(3):1125–
1134, 1996.

[JOP+01] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001. http://www.scipy.org.

[JP00] Guang-Shan Jiang and Danping Peng. Weighted ENO schemes for Hamilton–
Jacobi equations. SIAM J. Sci. Comput., 21(6):2126–2143, 2000.

[JS96] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted
ENO schemes. J. Comput. Phys., 126(1):202–228, 1996.

[Ket08] David I. Ketcheson. Highly efficient strong stability-preserving Runge–Kutta
methods with low-storage implementations. SIAM J. Sci. Comput., 30(4):2113–
2136, 2008.

[KMG08] David I. Ketcheson, Colin B. Macdonald, and Sigal Gottlieb. Optimal implicit
strong stability preserving Runge–Kutta methods. Appl. Numer. Math., 2008.
To appear, doi:10.1016/j.apnum.2008.03.034.

[Kra91] J. F. B. M. Kraaijevanger. Contractivity of Runge–Kutta methods. BIT,
31(3):482–528, 1991.

[Küh05] W. Kühnel. Differential Geometry: Curves – Surface – Manifolds. American
Mathematical Society, second edition, 2005.

[Lan98] Culbert B. Laney. Computational gasdynamics. Cambridge University Press,
1998.

[Len89] H. W. J. Lenferink. Contractivity preserving explicit linear multistep methods.
Numer. Math., 55(2):213–223, 1989.

[Len91] H. W. J. Lenferink. Contractivity-preserving implicit linear multistep methods.
Math. Comp., 56(193):177–199, 1991.

[LM05] Anita T. Layton and Michael L. Minion. Implications of the choice of quadrature
nodes for Picard integral deferred corrections methods for ordinary differential
equations. BIT, 45(2):341–373, 2005.

[LOC94] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. J. Comput. Phys., 115(1):200–212, 1994.

[LZ08] Shingyu Leung and Hongkai Zhao. A grid based particle method for moving
interface problems. CAM Report 08-08, UCLA, 2008.

BIBLIOGRAPHY 116

[Mac03] Colin B. Macdonald. Constructing high-order Runge–Kutta methods with em-
bedded strong-stability-preserving pairs. Master’s thesis, Simon Fraser Univer-
sity, August 2003.

[MGR08] Colin B. Macdonald, Sigal Gottlieb, and Steven J. Ruuth. A numerical study
of diagonally split Runge–Kutta methods for PDEs with discontinuities. J. Sci.
Comput., 2008. To appear, doi:10.1007/s10915-007-9180-6.

[Mit04] Ian Mitchell. A toolbox of level set methods. Technical Report TR-
2004-09, University of British Columbia Department of Computer Science,
July 2004. http://www.cs.ubc.ca/~mitchell/ToolboxLS/Papers/Toolbox/

toolboxLS-1.0.pdf.

[MR] Barry Merriman and Steven J. Ruuth. Embedding methods for the numerical
solution of PDEs on manifolds. In preparation.

[MR07] Barry Merriman and Steven J. Ruuth. Diffusion generated motion of curves on
surfaces. J. Comput. Phys., 225(2):2267–2282, 2007.

[MR08] Colin B. Macdonald and Steven J. Ruuth. Level set equations on surfaces via the
Closest Point Method. J. Sci. Comput., 2008. To appear, doi:10.1007/s10915-
008-9196-6.

[Mur03] J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Appli-
cations, volume 18 of Interdisciplinary Applied Mathematics. Springer, third
edition, 2003.

[OF03] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit
surfaces, volume 153 of Applied Mathematical Sciences. Springer-Verlag, 2003.

[Oli07] Travis E. Oliphant. Python for scientific computing. Computing in Science &
Engineering, 9(3):10–20, 2007.

[OS88] Stanley Osher and James A. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Com-
put. Phys., 79(1):12–49, 1988.

[OS91] Stanley Osher and Chi-Wang Shu. High-order essentially nonoscillatory schemes
for Hamilton–Jacobi equations. SIAM J. Numer. Anal., 28(4):907–922, 1991.

[PL68] I. Prigogine and R. Lefever. Symmetry breaking instabilities in dissipative sys-
tems. II. The Journal of Chemical Physics, 48(4):1695–1700, 1968.

[Pow99] D.L. Powers. Boundary value problems. Academic Press, 1999.

[PR74] A. Prothero and A. Robinson. On the stability and accuracy of one-step methods
for solving stiff systems of ordinary differential equations. Math. Comp., 28:145–
162, 1974.

BIBLIOGRAPHY 117

[RM08] Steven J. Ruuth and Barry Merriman. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys., 227(3):1943–1961,
2008.

[RS00] Giovanni Russo and Peter Smereka. A remark on computing distance functions.
J. Comput. Phys., 163(1):51–67, 2000.

[RS02] Steven J. Ruuth and Raymond J. Spiteri. Two barriers on strong-stability-
preserving time discretization methods. J. Sci. Comput., 17(1-4):211–220, 2002.
Proceedings of the Fifth International Conference on Spectral and High Order
Methods (ICOSAHOM-01).

[Run01] Carl Runge. Über empirische Funktionen und die Interpolation zwischen
äquidistanten Ordinaten. Zeit. für Math. und Phys., 46:224–243, 1901.

[Ruu95] Steven J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in
pattern formation. J. Math. Bio., 34(2):148–176, 1995.

[Ruu06] Steven J. Ruuth. Global optimization of explicit strong-stability-preserving
Runge–Kutta methods. Math. Comp., 75(253):183–207, 2006.

[SAA07] L. Saboret, M. Attene, and P. Alliez. “Laurent’s Hand”, the AIM@SHAPE
shape repository. http://shapes.aimatshape.net, 2007. Accessed 2007-02-
16.

[Set99] J. A. Sethian. Level set methods and fast marching methods: evolving interfaces
in computational geometry, fluid mechanics, computer vision, and materials
science, volume 3 of Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, second edition, 1999.

[Shu88] Chi-Wang Shu. Total-variation-diminishing time discretizations. SIAM J. Sci.
Statist. Comput., 9(6):1073–1084, 1988.

[Shu97] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. NASA CR-97-206253
ICASE Report 97-65, Institute for Computer Applications in Science and Engi-
neering, 1997.

[SML98] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An
Object-Oriented Approach To 3D Graphics. Prentice Hall, 1998.

[SO88] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially
nonoscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[Spi83] M. N. Spijker. Contractivity in the numerical solution of initial value problems.
Numer. Math., 42(3):271–290, 1983.

BIBLIOGRAPHY 118

[SR02] Raymond J. Spiteri and Steven J. Ruuth. A new class of optimal high-order
strong-stability-preserving time discretization methods. SIAM J. Numer. Anal.,
40(2):469–491, 2002.

[SR03] Raymond J. Spiteri and Steven J. Ruuth. Non-linear evolution using optimal
fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput.
Simulation, 62(1-2):125–135, 2003.

[SS03] Kurt Sebastian and Chi-Wang Shu. Multidomain WENO finite difference
method with interpolation at subdomain interfaces. J. Sci. Comput., 19(1-
3):405–438, 2003.

[SSO94] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing
solutions to incompressible two-phase flow. J. Comput. Phys., 114(1):146–159,
1994.

[ST04] N. V. Sahinidis and M. Tawarmalani. BARON 7.2: Global Optimization of
Mixed-Integer Nonlinear Programs, User’s Manual, 2004. Available at http:

//www.gams.com/dd/docs/solvers/baron.pdf, Accessed 2005-01-17.

[TB97] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[Tho95] J.W. Thomas. Numerical Partial Differential Equations: Finite Difference
Methods, volume 22 of Texts in Applied Mathematics. Springer, 1995.

[TL94] Greg Turk and Marc Levoy. The Stanford Bunny, the Stanford 3D scanning
repository. http://www-graphics.stanford.edu/data/3Dscanrep, 1994. Ac-
cessed 2008-06-18.

[Tur91] Greg Turk. Generating textures on arbitrary surfaces using reaction-diffusion.
Computer Graphics, 25(4):289–298, 1991.

[vR+91] Guido van Rossum et al. The Python programming language, 1991. http:

//www.python.org.

[Wik07] Wikipedia contributors. Klein bottle. Wikipedia, the free encyclope-
dia, http://en.wikipedia.org/w/index.php?title=Klein_bottle&oldid=

133679151, May 2007. Accessed 2007-05-29.

[YZE04] Lingfa Yang, Anatol M. Zhabotinsky, and Irving R. Epstein. Stable squares
and other oscillatory Turing patterns in a reaction-diffusion model. Phys. Rev.
Lett., 92(19):198–303, May 2004.

[Zen93] M. Zennaro. Contractivity of Runge–Kutta methods with respect to forcing
terms. Appl. Numer. Math., 11(4):321–345, 1993.

Index

algorithm, 106

backward difference formula, 6–8
backward Euler, 6, 88
barycentric Lagrange formula, 11
barycentric Lagrange interpolation, 10
BDF, 6
BDF-2, 6
BDF-3, 7
biharmonic, 70
biharmonic operator, 70
Black–Scholes, 92
Black–Scholes equation, 87
Burgers’ equation, 97

closest point extension, 15, 49
closest point function, 14
closest point representation, 13
consistency, 70
contractivity, 83
Crank–Nicolson, 6, 80, 85, 88

diagonal splitting function, 77, 82
diagonally split Runge–Kutta methods, 77,

82
discrete extension operator, 49
dissipative system, 83
DSRK, 84
DSRK method, 82

effective SSP coefficient, 80
eigenmodes, 56
eigenvalues, 56
embedding methods, 13
Embedding methods, 13
evolution stencil, 50

extension operator, 70

forward Euler, 5, 80

GMRES, 61, 66, 74

Hamiltonian, 3

IMEX Euler, 8
IMEX scheme, 7
IMEX schemes, 75
implicit backward, 80
implicit representation, 14
implicit-explicit schemes, 75
interface, 104
interpolant, 10
Interpolation, 9
interpolation stencil, 48
intrinsic, 12

Laplace–Beltrami, 13, 16, 50, 70
level set method, 104
Level set methods, 22
linear multistep method, 84
linear multistep methods, 6, 52
linear stability, 46

Matlab, 61, 74, 87
Matlab backslash operator, 61, 66, 73, 87

numerical convergence study, 88
numerical Hamiltonian, 4
NumPy, 67

order reduction, 99, 100

pattern formation, 74

119

INDEX 120

Python, 61, 67

reaction-diffusion equation, 74
rounding error, 74
Runge–Kutta, 5, 46

SBDF-2 IMEX scheme, 8
SciPy, 67
spatial discretization, 77
spectrum, 56
spherical harmonics, 66, 74
SSP, 5
SSP(3,3), 5
stability, 70, 73
stage order, 99, 100, 102
stiff, 46
stiffness, 6, 7, 99, 100
strong stability preserving, 84
strong stability, 79
strong stability preserving, 5, 9
surface gradient, 70

TVD spatial discretizations, 80

unconditional contractivity, 83
unconditionally contractive, 99

van der Pol equation, 99

Weighted essentially non-oscillatory, see WENO
WENO, 108

Hamilton–Jacobi, 4, 23
interpolation, 12, 21, 25, 39

