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ABSTRACT 

Multiple-symbol differential detection (MSDD) is a robust maximum-likelihood 

receiver for frequency-nonselective fast Rayleigh fading channels. However, its 

complexity grows exponentially with the block size. Recently, multiple-symbol- 

differential sphere decoder (MSDSD) is developed to alleviate this problem but its 

complexity at low signal-to-noise ratio (SNR) grows exponentially. This work 

investigates the possibility of using a Fano decoder as an efficient MSDD. The detector, 

namely Fano-MSDD, is an "intelligent" decision-feedback detector (DFD) that uses a 

running threshold and an accumulated path metric as navigation tools when it roams the 

decoding tree. Our results indicate that Fano-MSDD is more attractive than DFD from 

the perspectives of error-performance and complexity. When compared to MSDSD, our 

best Fano-MSDD suffers a small degradation in power efficiency. However, its 

complexity is a stable function of SNR. Furthermore, with the extension of Fano-MSDD 

to differential space-time modulation, our receivers become more remarkable when 

compared to other reduced complexity techniques. 
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CHAPTER 1: INTRODUCTION 

In wireless communication, a frequently occurring problem with signal 

propagation is the multipath effect. This multipath effect occurs when the transmitted 

signal arrives at the receiver via multiple propagation paths at different delays. All of 

these delayed signal components may add up destructively so that the signal arrived at the 

receiver may suffer from both amplitude and phase distortions. This phenomenon is 

termed fading. Since the transmitter commonly modulates its information in the 

amplitude and phase of the transmitted signal, this multipath effect becomes an issue to 

many communication systems. In order to achieve reliable reception in such a hostile 

environment, these amplitude and phase distortions are required to be estimated and 

tracked. It can be achieved through the adoption of a pilot-symbol assisted modulation 

(PSAM) [I]. Pilot symbols are sent at a regular interval so that the receiver is able to 

estimate the channel accurately. However, channel estimation may be too difficult and 

costly in a fast fading environment. Consider a mobile travelling on a train at a speed of 

250 kmlhr (approximately 70 mls) and operating at a carrier frequency of 1.9GHz, the 

Doppler frequency shift is approximately fd = 450Hz. If we assume a baud rate l/Ts of 

9600Hz, the normalized Doppler frequency fdTs then turns out to be about 0.05 and, 

according to the Nyquist rate, the largest allowable frame size can only be ten symbols 

long. In other words, one pilot symbol is required to be sent for every nine transmitted 

symbols (i.e. 90% transmission efficiency). This can be even worse when we consider a 

space-time (ST) system [2]-[4]. Say we have an Alamouti-type ST system [3] with two 



transmit antennas and one receive antenna, now it requires channel estimation on two 

different channels to estimate so twice as many pilot symbols are sent. Therefore, it is 

natural to consider non-coherent detection techniques that do not require any explicit 

channel estimation at the receiver. 

In the thesis, we present two novel non-coherent detection techniques, termed 

Fano multiple-symbol differential detection (MSDD) and Fano space-time multiple- 

symbol differential detection (ST-MSDD), for the single antenna systems and the 

Alamouti-type ST systems respectively. Before getting into the details of our detectors, 

we begin this chapter by reviewing some of the major contributions in non-coherent 

detections. 

1.1 Non-Coherent Detections in Single-Input-Single-Output Systems 

In a single-input-single-output (SISO) system, differential detection (DD) of M- 

ary phase shift keying transmission with differential encoding (MDPSK) is a well-known 

non-coherent detection technique for frequency-nonselective Rayleigh fading 

environment because of its simple receiver structure. The main idea of MDPSK 

transmission is that information-bearing symbols are embedded in the phase differences 

of two consecutive transmitted symbols so that, when the channel condition is quasi- 

static or is changing very slowly, the first transmitted symbol can be served as a noisy 

reference symbol providing the receiver a rough estimate of the channel gain. However, 

if the channel gain changes substantially from one symbol to the next, this reference 

symbol may no longer be accurate and, subsequently, the error performance of this 

conventional DD may suffer from an irreducible error floor. 



Divsalar and Simon have solved this problem by introducing the concept of 

MSDD [5] for the additive white Gaussian noise (AWGN) channel. Then, Ho and Fung 

[6] apply the same concept for Rayleigh fading channel and their results show that 

MSDD is very robust in combating the irreducible error floor in fast fading environment. 

The bit-error probability (BEP) improves with increasing block size N and the ideal 

coherent result can be achieved when N is infinitely large. However, the complexity of a 

brute-force MSDD receiver grows exponentially with N. 

In solving the issue of complexity, Mackenthun [7] has developed an efficient 

MSDD receiver that can be used in both the AWGN channel and the static fading 

channel. The complexity of this receiver only depends on the efficiency of its sorting 

routine, which is only in the order of N log(N) . Unfortunately, adopting this algorithm in 

a fast fading environment also leads to an irreducible error floor. 

Kam and Teh [8] and Schober and Gerstaker [9] have developed a decision- 

feedback differential detection (DFDD) receiver with moderate complexity to solve the 

time-varying channel issue. DFDD is based on the concept of linear prediction which 

makes a decision on the current received signal based on the previous N-1 detected 

symbols. However, it is apparent that this receiver can suffer from error propagation, 

especially when the modulation has a large constellation size. 

Recently, multiple-symbol differential sphere decoding1 (MSDSD) [lo] is 

introduced as an optimal MSDD receiver in the fast fading environment. However, the 

receiver is only suitable while operating at high signal-to-noise ratio (SNR) and, at low 

' Due to the nature of the MSDD, the terms decoding and detection are used interchangeably in the thesis. 
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SNR, its complexity grows almost exponentially with decreasing SNR. This will be 

further verified by the simulation results presented in Chapter 3. 

1.2 Non-Coherent Detections in Space-Time Systems 

In a multiple-input-multiple-output (MIMO) system, ST codes have received a lot 

of interest from the wireless communications community because of its ability to provide 

dramatic improvement to the radio link quality. In particular, orthogonal space-time 

block code (OSTBC) [4] has been extensively studied in the past few years. Its simplest 

form, namely the Alamouti-type ST code [3], has been adopted in the third generation 

systems [I I]. However, analogous to single antenna transmission, explicit channel 

estimation is required at the receiver for reliable performance. An Alamouti-type ST 

system, which is composed of two transmit antennas and one receive antenna, requires 

twice the number of pilot symbols as in the SISO channel. In solving the issue of 

transmission overhead, researchers [12]-[15] have proposed a number of differential ST 

codes with differential detections. Unfortunately, all of the proposed schemes show a loss 

of 3 dB in power efficiency when compared to an ideal coherent detector with differential 

encoding. In order to narrow this performance gap, Gao et al. [I61 has extended the 

concept of MSDD in SISO systems to ST systems and developed a non-coherent ST 

maximum likelihood (ML) detector. We will refer to this MSDD detector as a ST- 

MSDD. Intuitively, the BEP of the ST-MSDD detector can improve with the detection 

window size N and can achieve the performance of an ideal coherent detection with 

differential encoding when N is infinity. In exchange, its computational complexity 

grows exponentially with N, severely limiting the benefits it can deliver in practice. 



Riediger and Ho [17] have resolved this complexity issue by introducing the 

Eigen-Assisted (EA) receiver, which has a linear complexity in N, the observation 

window size. However, its application is restricted to the static fading channel. Several 

sub-optimal, reduced-complexity approaches [18]-[21] have been proposed for fast 

fading channels but, since these detection techniques are based on the ideas of decision 

feedback and iterative processing, they are subjected to the problems of error propagation 

and slow convergence. This leads us to the work of investigating a practical MSDD 

receiver with good balance in BEP performance and complexity. 

1.3 Thesis Outline 

The organization of the thesis is the following. Chapter 2 presents the signal and 

system model for the SISO system and the Alamouti-type ST system. The primary 

purpose of this chapter is to provide reader with an overview of our communication 

system and to introduce some necessary notations that are used throughout the thesis. 

We present in Chapter 3 the derivation of the MSDD receivers in the SISO 

channel, with special emphasis on the Fano-MSDD receivers. Also included in this 

chapter are the two reference detectors, the DFDD and the MSDSD. They are used as 

benchmarks when we evaluate the performance of our Fano receivers. 

In Chapter 4, the focus is shifted to the multiple antenna system and the ST- 

MSDD sequence detectors are derived. The ST versions of the Fano-MSDD and 

MSDSD, termed Fano ST-MSDD and ST-MSDSD respectively, are introduced. A new 

branch sortingtordering algorithm, which resolves the problem of an exhaustive sort in 



the Fano ST-MSDD and ST-MSDSD receivers, is also presented. A similar version of the 

SISO decision-feedback detector, termed ST-DFDD, is used as performance guidance. 

The last chapter summarizes the work in the thesis and provides suggestions on 

the possible improvements of our Fano receivers. 

1.4 Contributions of the Thesis 

Of all the SISO non-coherent detectors discussed in Section 1.1, none of them can 

provide simultaneously the attributes of 1) low implementation complexity, 2) robustness 

against fast fading environment, and 3) attaining near ML performance. In the thesis, we 

explore the potential of the Fano algorithm as a computationally efficient MSDD 

receiver. The detector, termed a Fano-MSDD, is capable of delivering excellent error 

performance at moderate implementation complexity over a wide range of SNR and 

fading rates. Our simulation results indicate that Fano-MSDD only suffers from a 

moderate degradation in power efficiency relative to the MSDSD while its computational 

complexity is very steady over a wide range of SNR. 

We also propose a bi-directional Fano-MSDD, termed Bi-Fano MSDD, which 

searches in both the forward and the reverse directions, and provide a mechanism for 

error detection and error correction. An edge-cut variant of this bi-directional algorithm, 

Edge-Bi-Fano, is introduced to further improve the power efficiency. Simulation results 

indicate that both of the bidirectional detectors have near ML bit-error performance and 

there is no noticeable irreducible error floor. The complexity of the Bi-Fano MSDD 

approximately doubles that of a unidirectional Fano-MSDD and it is also a very stable 

function of SNR. 



By adopting the concepts of the Fano, Bi-Fano, and Edge-Bi-Fano algorithms to 

the Alamouti-type ST system, we arrive at an efficient implementation of the ST-MSDD 

receivers. They are inherently referred to as the Fano ST-MSDD, the Bi-Fano ST-MSDD, 

and the Edge-Bi-Fano ST-MSDD. As benchmarks, we present two ST variants of the 

MSDSD and the DFDD, namely the ST-MSDSD and the ST-DFDD respectively. 

In addition, we discover two refinements that can further reduce the 

computational complexity of our receivers. The first refinement is the adoption of an 

improved threshold adjustment scheme for the basic Fano algorithm in order to avoid the 

unnecessary back-and-forth node transitions in the decoding process. The other 

refinement is an efficient branch sorting routine proposed for both the Fano ST-MSDD 

receivers and the ST-MSDSD receiver. By adopting this branch sorting algorithm, these 

detectors do not need to go through the tedious process of calculating and sorting all 

branch metrics on each node transition and now they can perform sorting on demand. The 

author would like to emphasize that this sorting algorithm can be applied to any ST 

sequence detectors and the same concept can be easily extended to other MIMO systems 

with more transmit and receive antennas. 



CHAPTER 2: SIGNAL AND SYSTEM MODEL 

In this chapter, we present the signal and system model for the communication 

systems in the SISO channel and the Alarnouti-type ST channel. We begin with a brief 

description of the baseband representation of bandpass systems. Then the channel and 

signal model for SISO systems is presented. We conclude with the description of the 

Alamouti-type ST modulation and its received signal representation. 

2.1 Baseband Representation of Bandpass Systems 

In digital communication systems, information is sent by modulating a carrier 

with a signal, whose bandwidth is much smaller than the carrier frequency. These 

modulated signals are called narrowband bandpass signals and they can be expressed in 

the form 

i(t) = ~ ( t )  cos ( 2 ~  fct + B(t)) 

= ~ e { s ( t ) e ~ ~ ~ ~ ~ ' } ,  

where A(t) and B(t) are the amplitude and phase of the information signal respectively, 

fc is the carrier frequency, and s(t) = A(t)eje") is the complex baseband equivalent of 

the bandpass signal B(t) . For mathematical convenience, sometimes it is more desirable 

to represent our modulated signals and channels by their baseband equivalents. 

Therefore, we adopt the complex baseband representation throughout the thesis and we 



only deal with the transmission of the equivalent low-pass signals through the equivalent 

low-pass channels without any loss of generality. 

2.2 Transmission Model in Single-Input-Single-Output Systems 

As described in Chapter 1, when the channel condition is changing too rapidly, 

PSAM [I] is inefficient in transmitting information over the channel as extra bandwidth 

is allocated for the pilot symbols. Consequently, non-coherent modulation is a more 

plausible transmission scheme in this hostile channel condition. MDPSK is a common 

non-coherent transmission technique and we adopt this transmission scheme for our SISO 

system. 

'"i Mapper 

Rayleigh fading 
channel fit) 

Matched filter 
De-mapper 

detection 

Pulse shaping 
filter p(t) 

4kI 

Figure 2-1. Transmission model for a SISO system. 
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Consider the SISO transmission model illustrated in Figure 2-1. At discrete time 

k, the raw information bit sequence b[k] of length nb = log2(M) is passed to a mapping 

Differential 
encoder 

s[kl 



device which maps the information bits using Gray mapping into a data symbol c[k]  

from the MPSK constellation S = {exp( j2nm l M ) : m = 0, 1, ..., M - 1) . Then, the 

differential encoder encodes this data symbol to form a transmitted symbol s[k]  

according to the differential encoding formula 

s[k]  = c[k]s[k - 11 . 

The symbol s[k - I ]  in the above equation is the previous transmitted symbol and the 

value of the reference transmitted symbol s[O] is set to unity for convenience. Without 

loss of generality, s[k]  is also from the same MPSK set S . After the transmitted symbol 

is modulated by a square-root raised cosine (SQRC) pulse shaping filter p(t) with a one- 

sided bandwidth of l/Ts and unity energy ! p2(t)dt = 1 ,  the transmitted signal is 

represented as 

We assume the transmission channel is a frequency-nonselective Rayleigh fading channel 

with AWGN. Subsequently, the received signal can be mathematically modelled as 

where the fading gain f (t) and the noise term n(t) are both zero-mean complex 

Gaussian random processes with a variance of 0; = and a power spectral 
2 

density (p.s.d.) of No = 1 respectively. The fading gains f (t)'s are assumed constant 

within each symbol interval T, but can vary from interval to interval. Under the 



assumptions of isotropic scattering and vertical polarized antenna, the fading gain f (t) 

has a Jakes' power spectrum or, in other words, its autocorrelation function is 

where Jo (*) is the zero-order Bessel function of the first kind and fd is the Doppler 

frequency. 

An SQRC matched filter q(t) = p(- t )  is used at the receiver to maximize the 

SNR and the matched filter output is sampled at a rate of l/Ts. With perfect sampling, a 

normalized Doppler frequency of fdTs c 0.05 , and no channeVprocessing delays, the 

received sample at discrete time k can be written as [22] 

r[k] = f [k]s[k] + n[k] . 

Note that the autocorrelation function of the fading sample f [k] is now 

where J ,  = Jo (2n fd~ ,v) ,  and the variance of the noise sample n[k] is No = 1. Based on 

the channel model in (6), the average received bit SNR is 

The received samples are then passed onto a differential detector for estimating 

their information-bearing symbols c[k]'s and these estimated information symbols t[k]'s 

are further converted into their corresponding information bit sequences b[k]'s . In 



Chapter 3, we will describe the design of the Fano-MSDD receiver as an efficient 

generalized differential detector and provide BEP and complexity comparisons against 

other reduced-complexity techniques. 

2.3 Transmission Model in Space-Time Systems 

Alamouti-type ST code, which is used for a MIMO system with two transmit 

antennas and one or more receive antennas, is a well-known ST modulation technique for 

transmitting signals across both space and time in order to achieve transmit diversity. 

Because of its relatively simple structure, the ST system considered in the thesis is 

confined to Alamouti-type ST system. However, the same concept can be easily extended 

to other OSTBC [4] with more transmit and receive antennas. 

As mentioned in Chapter 1, the downside of Alarnouti-type ST system is the loss 

of transmission efficiency because twice the number of pilot symbols is required. This 

motivates the investigation on the design of differential ST codes [12]-[14]. However, 

these differential schemes exhibit a 3-dB performance deficit in power efficiency. The 

differential scheme proposed by Tarokh and Jafarkhani [12] is of our particular interest 

and we adopt this transmission scheme for the ST systems discussed throughout the 

thesis. Figure 2-2 illustrates the generalization of our ST transmission model. 
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Figure 2-2. Transmission model for a ST system. 

The transmission model for our ST system is similar to the one in the SISO 

channel except that there are now two transmit antennas and the differential encoder is 

following the ST differential encoding rule specified in [12]. In Alamouti-type ST 

system, the encoding/modulation period is two-symbol long. In order to transmit at the 

same rate of nb bits per T, seconds as in the SISO case, Tarokh and Jafarkhani [12] 

suggest the following scheme. 

I I 

Differential 7 

encoder 

At the k-th ST interval (of length TST = 2T,), the incoming information bit 

sequence B[k] = 14 [k], b2 [k], . . ., qnb [k]] is encoded using Gray mapping as a data 

s[kl 

vector d[k] = [dl [k] d2 [k]] where dl [k] and d2 [k] are holding the first and second nb 

Pulse shaping 
filters p(t) 

information bits respectively and they are both MPSK M = 2nb symbols from the ( 1 



signal set S . The data vector d[k] is then transformed into a ST data symbol with the 

Alamouti-type ST structure 

This ST data symbol D[k] is then multiplied by a transformation matrix 

to form a rotated ST data symbol 

This rotated ST data symbol c[k] is further differentially encoded into the k-th 

transmitted symbol 

where s[k - 11 is the symbol transmitted in the previous interval. It is worth mentioning 

that the transformation matrix A[k] is used to obtain the same set of rotated ST data 

symbols c[k]'s defined in [12], [21], and [23]. This special transformation is not 

necessarily required in the differential encoding process and the original ST data symbol 

D [ k ]  can be directly encoded to form the transmitted symbol s [ k ]  (i.e. s [ k ]  = D[k]s [k  - 11 ). 

The initial transmitted symbol, s [O] ,  has the Alamouti-type ST structure and is 

unitary, i.e. s[O]sH [O] = 1,. As a result, all subsequent s[k]'s also have the Alamouti-type 



ST structure and are unitary matrices. The constant I /&  in (9) and (10)  is introduced so 

that the transmitted power in s[k] is kept constant at all time. Note that the individual 

si[k]'s are not necessarily MPSK symbols due to constellation expansion in the 

differential encoding process. 

The matrix shown in (12) can be interpreted as follows: the individual symbol in 

the i-th row and j-th column of the matrix represents the symbol transmitted at time 

t  = kTsT + (i-l)Ts by the j-th antenna. For example, the symbols s l [k]  and s2[k]  in (12) 

correspond to the transmitted symbols sent at time t  = kTsT by the first and the second 

antenna respectively. Similarly, the symbols -s;[k] and s;[k] in the second row are sent 

at time t  = kTsT +Ts . The individual transmitted symbols at the two antennas are 

modulated by a unit-energy SQRC pulse shaping filter p(t) ,  and they are sent over a 

two-link Rayleigh flat fading channel with AWGN. The fading gains fi ( t )  and f2( t )  of 

the two links are independent and identically distributed (i.i.d.) zero-mean complex 

Gaussian processes with the autocorrelation function defined in (5). The fading gains are 

assumed to be constant over the entire ST interval TsT but they can vary from one ST 

interval to the other. The noise term n( t )  is a zero-mean complex white Gaussian random 

process with a variance of No = 1 .  At the receiver, an SQRC matched filter q(t)  = p(-t) 

is used and the filtered signal is sampled at a rate of l/Ts . With the assumption of no 

processing/channel delays, two received samples, q [ k ]  and r2[k] ,  are obtained for the k- 

th ST interval. Their relationship with s[k] , in vector form, is 



r [ k ]  = [ q [ k l ]  = s ( k ] f  [ k ]  + n [ k ]  , 
Q[kI 

where 

and 

are respectively the fading gain vector and the noise vector. f , [ k ]  and f 2 [ k ] ,  the fading 

gains in the two links, are also i.i.d. zero-mean complex Gaussian random sequences with 

an autocorrelation function 

where 5, = Jo (2n  f d ~ s , v ) .  It means the autocorrelation of the fading gain vector f [ k ]  is 

As for the noise terms n i [ k ]  , i = 1,2, they are i.i.d. zero-mean complex Gaussian 

sequence and their autocorrelation function, at the vector level, is 

R, [v]  = -$ E [ n [ k  + v ] n H  [ k ] ]  = G[v]12. 

where 6 [ v ]  is the discrete time impulsive function. Note also that the fading gains and 

the channel noise are mutually independent. Given that the transmitted ST symbol s [ k ]  



has a unitary structure, i.e. s[k]sH [k] = 12, we can deduce, based on the channel model in 

(1 3) that the received bit SNR is 

where rb is the bit SNR defined in (8). Note that the bit SNR of the ST system is half 

that of the SISO system. This stems from the fact that now the total energy transmitted 

per ST interval is split into two individual transmitted symbols sl[k] and s2[k] in two 

sub-intervals T,'s , and they have the energy constraint of unity (i.e. I s,[k] l 2  + I s2[k] 1 2 =  1 ) .  

Finally, the received samples are passed onto differential detectors that will be 

described in Chapter 4 for estimating the information pattern d[k]. The estimated pattern, 

$k], is then mapped to a corresponding information bit sequence ~ [ k ]  



CHAPTER 3: SINGLE-INPUT-SIGNAL-OUTPUT 
MULTIPLE-SYMBOL DIFFERENTIAL 
DETECTIONS 

As described earlier in Chapter 1, MSDD is a robust and effective detection 

strategy for achieving coherent performance in both AWGN and Rayleigh fading 

channels but at a cost of an exponential growth in complexity with the block size N. In 

this chapter, we consider three reduced-complexity sequence detectors in a single antenna 

system. Of the three, the Fano algorithm is the focal point of our discussion. 

The organization of this chapter is the following. We present in Section 3.1 the 

derivation of an ML sequential decoding metric. Two reduced-complexity sequence 

detectors, the DFDD and the MSDSD, are reviewed in Section 3.2 and Section 3.3 

respectively. The former detector is suboptimal while the latter is optimal. Section 3.4 

introduces our novel detector with the Fano algorithm as its decoding engine. In addition, 

an improved version of the Fano algorithm, which makes use of a new threshold 

adjustment scheme, is presented. Also included in this section are two bi-directional 

variants of the Fano algorithm, the Bi-Fano and the Edge-Bi-Fano algorithms. At the end, 

we conclude this chapter with the simulation results. 

3.1 Derivation of the ML Decoding Metric 

In a fast fading environment, a detector needs to exploit the statistics of the fading 

channel in order to compensate the fading effects on the transmitted signals and to 

suppress the irreducible error floor. This can be accomplished by processing 



simultaneously a block of N received samples at a time. This receiver is referred to as the 

MSDD receiver. The received samples are divided into overlapping blocks as shown in 

Figure 3-1, with the i-th block being 

where si = diag ( s [ i ( ~  -I)] s[i(N - 1) + 11 ... s[(i + 1)(N -I)]) is a diagonal matrix 

representing the transmitted pattern, fi = [ f [ i ( ~  -I)], f [i(N - 1) + 11, ..., f [(i + l)(N - 

T 
and ni = [ n [ i ( ~  - I)], n[i(N - 1) + 11, ..., n[(i + 1)(N -I)]] denote the corresponding 

fading gain vector and the noise vector respectively. Note that the overlapping symbol 

r[i(N -I)] is being used implicitly as a reference symbol. In the following discussion, 

only the first observation window (i.e. i = 0 )  is assumed and for brevity, we drop the 

block index i in all the expressions above. 

Figure 3-1. Arrangement of the overlapping blocks in a MSDD receiver 

Since both the fading gain f [k] and the noise term n[k] are zero-mean complex 

Gaussian random variables, (20) implies that the received block r has a joint probability 

density function (p.d.f.) [24] 



where 

is the covariance matrix of the received vector r, Q f l  = is the covariance 
2 

1 
matrix of the fading gain vector f ,  and 8,, = - E [nnH ] = IN is the covariance matrix 

2 

of the noise vector n .  Since s is aunitary matrix i.e. ssH = I N )  and 8,, is a diagonal ( 
matrix, (22) can be rewritten as 

H H 8 ,  = s ( m f l  +mnn)s = sBggs , 

where 

is the covariance matrix of the fading-plus-noise vector g = f + n  . Now (21 )  can be 

expressed as 



Since the determinant term 

is independent of the transmitted pattern s ,  a joint ML decision on all the N -1 

information symbols 

contained in ri is made by minimizing the ML metric 

where i = diag (s [̂O], ŝ [l], ..., s [̂N - 11) is a diagonal matrix representing a possible 

transmitted pattern. The term i H r  in (28) represents a hypothesized fading-plus-noise 

pattern. The multiplication of this pattern and its conjugate transpose r H ;  by in the 

metric determines how likely the trajectory of the hypothesized fading-plus-noise 

samples is on the complex plane. Let us define the n-th hypothesized fading-plus-noise 

sample as 2[n] = i*[n]r[n] and let &n] = [2[0] i[l] ... 2[n]lT be the vector containing all 



such samples up to time n, where n = 1,2, . . . (N - 1). Furthermore, let the covariance 

matrix of the actual fading-plus-noise samples g[n] = [g[0] g[l] ... g[n]lT be 

This covariance matrix can be interpreted as an (n + 1) by (n + 1) sub-matrix of the 

covariance matrix in (24). Now the operation pH [ n ] ~ ; : [ n ] p [ n l  can be written as 

where )[O] = 0; + 1 is the variance of fading-plus-noise, and 

is the correlation vector between the current and past fading-plus-noise samples. By 

applying the iterative approach given in [25] and [26], the inverse of the covariance 

matrix in (29) can be determined iteratively as 

where I, is an n by n identity matrix and 

2 H 
E [n] = AO] - qg [n - 118;; [n - l]qg [n - 11. 



Consequently, (30) can be simplified to 

and applying this recursive relationship to (28) implies the ML metric (after a small 

change in notation) can now be rewritten as 

where 

is the branch metric at time index n. Note that the constant term lg [̂o]12 IWO] is omitted in 

the ML metric. The term cp; [n - 11~;: [n -I] in (36) can be interpreted as an n-th order 

linear predictor that predicts the next fading-plus-noise sample based on the previous n 

hypothesized samples g[n - 11. When the hypothesized sequence is the same as the 

transmitted pattern, then the prediction errors, P[n] - (cp; [n - l]Qii [n - 11) i[n - 11, 

n = 1, 2, ..., (N - l), are independent, zero mean complex Gaussian random variables 

with variances s2[n]. Thus (36) represents the magnitude square of the n-th normalized 

prediction error and its expected value is thus 1. Since the ML metric in (35) is the sum 

of N - 1 such terms, its expected value is simply N - 1. When the hypothesized sequence 



differs from the transmitted one, the prediction errors can be very large, owing to the 

abrupt transitions in the hypothesized fading-plus-noise pattern. Consequently, (35) will 

be substantially larger than the expected value of N - 1 for the correct sequence. This 

property specifically helps the Fano decoder, which will be discussed in Section 3.4, to 

differentiate the most likely pattern from the erroneous ones. 

Accumulated 
path metric 

expected 
slope of 1 

- 
Tree level n 

Figure 3-2. Accumulated path metric of a distance tree. 

The main reason why we want to manipulate the original metric (28) into (35) is 

that the metric of the entire hypothesized fading-plus-noise pattern is now expressed as a 

sum of branch metrics. Furthermore, the accumulated path metric (APM) up to time n 

(equivalent to a tree level in a distance tree as illustrated in Figure 3-2) 

is a non-decreasing function of n and depends only on the received information up to 

time n. These properties are required for performing a sequential search in the distance 

tree for both the sphere decoder (in Section 3.3) and the Fano decoder (in Section 3.4). 



Finally, the structure of (35) enables us to arrive quickly to the efficient tree search 

algorithms, the sphere decoding and the Fano algorithms, as we shall see in Sections 3.3 

and 3.4 respectively. 

3.2 DFDD 

Compared to the sphere decoder and the Fano decoder, DFDD [8]-[9] is a simple 

sequential decoding technique in which its implementation is the least complicated. 

Unlike the original MSDD, which makes a joint decision on N - 1 data symbols 

simultaneously, the DFDD makes a decision one symbol at a time based on the past N-1 

decisions. In fact, the decoding process of DFDD with an observation window of size N 

employs an (N - 1)-th order linear predictor. In order to maintain consistency with our 

usual notations, the decision metric of the DFDD in [8]-[9] is represented as 

where pN = cpf [N - 2](D;L [N - 21 is the (N - 1)-th order linear predictor that predicts 

the next fading-plus-noise sample g[n] = st[n]r[n] at discrete time n, 

E; = AO] -,f [N - 2](Dij [N - 211, [N - 21 is the corresponding mean square prediction 

T error, e,[n] = [ i [ n  - N + 11 i [ n  - N + 21 ... i [ n  -111 , i [n] = i*[n]r[n], is the vector 

containing the past (N - 1) samples, and i[n] is the decision on s[n]. Given that the 

mean square prediction error E; is independent of the hypothesis, the estimated 

transmitted symbol i[n] can be easily computed by calculating the phase angle 



B[n] = arg{pNf [n]r*[n]] and locating the point in the MPSK constellation that is 

closest in phase to B[n]. In other words, the estimated transmitted symbol can be 

computed by 

?[n] = exp j- p[n] , (: 1 
where 

p[n] = round ("%" ) 
is the phase index of the estimated transmitted symbol ?[n] and round ( x )  is the rounding 

operator which rounds x  to the nearest integer. 

After the estimated transmitted symbol ?[n] is calculated, the decoder then slides 

the observation window forward by one symbol and makes a decision on the next 

transmitted symbol s[n +I] . Figure 3-3 depicts the arrangement of the overlapping blocks 

in a DFDD receiver. We will see in the simulation results that the complexity of a DFDD 

receiver is independent of either the SNR or the fading condition, but it can suffer from 

poor BEP performance due to error propagation. 

Figure 3-3. Arrangement of the overlapping blocks in a DFDD receiver. 
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Figure 3-4. Flowchart of a sphere decoder. 

The sphere decoding algorithm is originally proposed as an efficient searching 

algorithm for solving the closest lattice point problem [27]. Recently, this decoding 

strategy has been extensively adopted in solving many MIMO communication problems 

[28]-[29]. The fundamental idea behind sphere decoding algorithm is that the decoder 

only examines the candidate vectors 2~ s N - l  that are lying within a sphere with a certain 

radius, rather than searches over all the candidate vectors in the entire vector space. 

Figure 3-4 illustrates the flowchart of a sphere decoder. 

As discussed earlier, this vector space can be visualized as an M-ary search tree 

with a depth of N - 1. When the sphere decoding process begins, the decoder starts at the 



root node with a threshold T initially set to infinity2. This threshold T is only updated 

when the sphere decoder reaches to the last tree level. If the sphere decoder is examining 

a path which has its APM, a[n] ,  greater than the threshold, the decoder immediately 

stops searching along that path and starts a new search again. The process continues until 

no new search is possible. The way the sphere decoder terminates its search makes it 

optimal. However, it will be shown in Section 3.5 that the computational complexity of 

the sphere decoder grows exponentially with decreasing SNR while all of our Fano- 

MSDD receivers can maintain a steady complexity versus SNR characteristics. 

Note that the implementation of the sphere decoder in Figure 3-4 is different from 

the one in [lo]. Our MSDSD receiver is implemented by employing the same tricks and 

assumptions as we implement the Fano-MSDD receiver. Now the sphere decoder adopts 

a sum of the branch metrics shown in (35) as its navigation tool rather than the one given 

by a triangular matrix [lo]. The reason for the change is that the computational 

complexity of a receiver strongly depends on the programming tricks and other resources 

(such as look-up tables). This ensures that a fair assessment is made while comparing the 

complexity of the sphere decoder with the Fano detectors. It will be shown in the 

simulation that our implementation of the MSDSD requires only half as many 

computations as that reported in [lo]. 

3.4 The Fano-MSDDs 

The Fano decoding algorithm [30]-[32] is a well-established sequential decoding 

algorithm commonly used in decoding convolutional codes. Other applications include 

In order to maintain consistency with the Fano algorithm, the term threshold is analogous to the radius of 
a sphere decoder. 



linear block code decoding [32]-[34], channel coefficient estimation [35], and blind 

equalization [36]. Although suboptimal, it is a more suitable choice than the optimal 

Viterbi algorithm (VA) when the constraint length is large. While the complexity of the 

VA grows exponentially with the constraint length, the complexity of the Fano algorithm 

grows only linearly with the depth of the decoding tree N (i.e. block size in our case). The 

fundamental idea behind the Fano decoding algorithm is that in the decoding process, 

only the most promising paths are explored. If a branch to a node looks bad, the 

algorithm can back up to the ancestor nodes and try different paths. This is accomplished 

by monitoring the APM against a running threshold T that can be varied in steps of A. 

The running threshold T can be tightened (i.e. decreased) or relaxed (i.e. increased) 

depending on the results of the comparison. The ability to backtrack is one of the key 

features that distinguish the Fano decoder from the DFDD, and the one that allows the 

decoder to deliver close to ML performance with a modest computational complexity. 

In the subsequent sub-sections, we first present the original Fano search algorithm 

and then propose an improved version, which utilizes a new threshold adjustment scheme 

that can significantly reduce the computational complexity. Furthermore, two variants of 

the Fano algorithm, the Bi-Fano and the Edge-Bi-Fano algorithms, are introduced. 

3.4.1 Original Fano search 

Due to the nature of the Fano algorithm, it is more convenient to describe the 

search procedure by adopting the tilted or biased metric 

where 



mb [n]  = m[n] - b 

is the biased branch metric at time index n, and b is a bias that has to be chosen properly. 

A larger bias translates into a larger tolerance to the statistical fluctuation in the metric. 

The biased APM up to time n is defined as 

where v [ N  -11 is the same as Mb ( g [ ~  -11). When the Fano decoder is tracking the 

correct transmitted pattern, each branch metric m[n]  has an expected value of unity as 

discussed. Consequently, the average slope of v[n]  is (1 - b)  , where b is set to a number 

greater than 1 so that the slope is negative. In other words, for the correct path, v[n]  

tends to decrease linearly as n increases. On the other hand for an incorrect path, some of 

the m[n]'s can be quite large because the erroneous symbols in the incorrect path cause 

abrupt transitions in the hypothesized fading-plus-noise pattern, causing large prediction 

errors. As a result, the slope of biased APM is positive and v[n] tends to increase with n. 

Figure 3-5 depicts the transformation of the original positive-distance tree into a tilted 

distance tree by adopting a bias b greater than unity. Note that the Fano decoder is now 

searching for the data pattern with the most negative biased path metric. 
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Figure 3-5. Tilted tree as a result of a bias slope. 
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Figure 3-6. Flowchart for the original Fano algorithm. 



The decoding process begins at the root node (i.e. tree level 0 or equivalently n = 

1) and terminates at one of the nodes at the end of the tilted tree (i.e. tree level N - 2).  Say 

the decoder is now located at some node ND at tree level L (i.e. n = L + 1). From that 

node the decoder looks3 forward to its M succeeding nodes at tree level n. If the best 

succeeding node has a biased APM v[n] that is less than or equal to the running threshold 

T, the decoder will move to that node. Furthermore, if that successor node is visited the 

first time, the threshold will be tightened to the quantized level just above v[n]  . On the 

other hand if v[n]  is greater than T, the decoder looks backward to its ancestor node at 

tree level L - 1 and checks if its biased APM v[n - 21 violates T. If it is also greater than 

T, T is loosened by a step size of A and the decoder looks forward again in an attempt to 

move forward. If v[n - 21 is less than T, the decoder recognizes an unlikely path and 

moves backward to the ancestor node. If node ND was the worst node when the decoder 

moved forward from its ancestor node at some early decoding stage, the decoder 

continues to move backward. Otherwise, the decoder searches along another path by 

looking forward to the next best node. If the decoder reaches the end of the tree, the 

decoding process terminates and the path is taken as the decoded path (or estimated 

sequence). Figure 3-6 illustrates the overall operation of a Fano decoder. 

The two actions looking and moving are needed to be distinguished in the Fano algorithm. When the 
decoder looks at a node, it means evaluating the metric at that node. The decoder moves to that node only if 
certain criteria are met (or not met). 



Figure 3-7. A Fano search for BPSK symbols with b = 3, A = 1, and N = 6. 

Table 3-1. Actions taken for the example shown in Figure 3-7. 

Action (x indicates violation) 

look at 3 :  x look at l -xset  Tm==-l 
look at 3 x +- look - -- at - 1 - -- I ----. p__~?i"f -- to 1 
look --- at - -  4 - > o i n 1 s e t  - - -- T - - = - -1 -- 

look at 3 point to 3 1 r ~ e t  T = 0 
" - - ".--- 
lookat6 + setT=-1 1 -- 
lookat7 output[l,-1,1,1,1,-I] 

An illustrative example of the search algorithm is provided in Figure 3-7 and 

Table 3-1 for BPSK. The first column of the table contains not only the current node 

where the decoder pointer is located, but also the array of tentative decisions up to that 

point in the decoding tree. Without loss of generality, the first tentative decision is always 

1 because of the way our simulation is set up. The fourth column of the table contains the 

branch metric as well as the corresponding transmitted symbol. The output pattern in the 



last entry of the table will be differentially decoded to yield the corresponding 

information pattern. The rest of the table and the figure are self-explanatory. 

In fact, the tree search in MSDSD is very similar to the one in the Fano-MSDD 

except that the threshold T of the MSDSD can only be tightened. Another difference is 

that the sphere decoder searches in a non-decreasing tree as shown in Figure 3-2 instead 

of a biased tree as in the Fano algorithm. Furthermore, the sphere decoder updates its 

threshold only when it reaches to the last tree level while the Fano decoder updates its 

threshold each time it moves to another node and the threshold can be either tightened or 

loosened dynamically. Consequently, MSDSD is guaranteed to find the ML solution over 

the block. Fano-MSDD does not provide any guarantee, but allows indefinite length and 

continuous overlap. 

For both the sphere and the Fano decoders, when the decoder is penetrating a tree, 

it always looks to the best succeeding node to move forward to. If that turns out to be 

futile, it will examine the next best node, and so on. This means the decoder needs to sort 

the M outgoing branches of the current node from best to worst. Due to the nature of the 

MPSK constellation, this can be easily accomplished by first computing the phase angle 

B[n] = arg{(cp: [n - 1 1 8 ; ;  [n - I ] )  f [n - l ] r*[n] )  and then substituting this angle to 

equations (39) and (40) to calculate the estimated transmitted symbol i[k] with the 

minimum branch metric m[n].  After this best outgoing branch is found, the other 

branches can be sorted quickly by zigzagging through the remaining angles, in phase to 

B[n] , based on the quotient and remainder of the rounding operation in (40). There is no 



need to calculate all M branch metrics in this process. Figure 3-8 illustrates an example of 

the zigzagging operation for a QPSK constellation. 

Figure 3-8. Zigzagging operation for a QPSK constellation. 

In order to extract good performance at a reasonable complexity from the Fano 

decoder, the bias b as well as the step size A used to adjust the running threshold need to 

be sufficiently large to keep backtracking as infrequent as possible. Note that back- 

tracking is usually caused by a deep fade in the detection block, as the APM will increase 

sharply when this occurs. Even with careful choices, there are still chances that some 

biased branch metrics mb[n] along the correct path are so large that the receiver is not 

able to get to the end of the tree, ending up eventually at the tree's root node with no path 

to move forward to. This event corresponds to a search failure. 

Specifically, search failures happen when some biased APMs v[n]'s, n = 1 ..N - 1, 

along the correct path are greater than that of the root node (i.e. v[n] > 0). For example, 

as shown in Figure 3-9, the sharp increase in the biased branch metric of the correct path 

at tree level n = 2 causes the corresponding biased APM v[2] to be greater than zero. 

Based on the Fano algorithm shown in Figure 3-6, the decoder will eventually stay at the 



root node with no other paths to penetrate forward. When this happens, another search, 

using a larger bias b, is required. Our Fano algorithm in Figure 3-6 first assigns b an 

initial value and gradually increases it while search failures are detected. The bias 

increment is intuitively set to the number of search failures A. Note that, without any loss 

of generality, the number of bias re-adjustment is equal to the number of search failures A. 

SNR = 20 

Tree level n 

Figure 3-9. A deep fade happened at the beginning of a block. 

Intuitively, we can deduce that search failures happen more often when deep 

fades occur at the beginning of the decoding block. This stems from the fact that, at the 

root portion of the tree, there is less room for statistical fluctuation and backtraclung. A 

deep fade happened near the root node can cause the biased APMs in that neighbourhood 

to increase dramatically that the biased APMs can be greater than zero (see Figure 3-9) 

and, hence, search failures can occur. However, when deep fades happen at the end of the 



decoding block, the decoder is able to penetrate deep enough to allow more room for 

statistical fluctuations. Figure 3-10 illustrates an example where a deep fade occurs at the 

end of the observation window. In sum, we can conclude that the probability of a search 

failure is closely related to the probability of a deep fade occurred at the beginning of the 

observation window and it will be verified by the simulation results shown in Section 

3.5.3. 

SNR = 20 

In addition, the number of search failures is dependent on SNR. At large SNR, the 

correct path becomes more prominent in terms of its APM (see Figure 3-1 1) and, in 

absence of deep fades, the Fano decoder can always penetrate through this path without 

any backtracking. However, when deep fades occur, some branch metrics along this path 

can become so large that some backtracking is required. Since other paths look even 



worse in terms of APM (see Figure 3-9), the decoder eventually happens to be travelling 

back-and-forth exclusively along this path and, in the worst case, the decoder may end up 

staying at the root node. However, when SNR is low, search failures are not as frequent 

because all paths lie close to each other (see Figure 3-12). When the Fano decoder is 

searching along a path that has a biased APM too large to penetrate through, the decoder 

can simply backtrack to its preceding nodes and then try other paths. Subsequently, the 

decoder has a higher probability to pick a path, which can lead to the end of the tree. Note 

that this decoded path may not necessarily be the correct path. 

SNR = 20 
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Figure 3-11. Example of the tilted tree at SNR = 20 dB. 



SNR = 0 

2 3 4 
Tree level n 

Figure 3-12. Example of the tilted tree at SNR = 0 dB. 



3.4.2 Improved Fano search 
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Figure 3-13. Flowchart of the improved Fano MSDD with a step size of A. 

The flowchart of an improved Fano-MSDD is shown in Figure 3-13. It is similar 

to the original algorithm in Figure 3-6, excep;: that new measures are introduced to reduce 

the computation complexity. These changes/a.dditions are highlighted in the figure. One 

of the key changes to the original algorithm is the introduction of the parameter D. This 

parameter stores the smallest biased APM (43) that had previously violated the running 

threshold T. It helps to avoid unnecessary back-and-forth node transitions when the 

decoder is looking for the minimal threshold that allows it to penetrate through the 

decoding tree. It also helps in reducing the number of steps involved in relaxing the 



threshold when a branch violates the threshold by more than one step size A during a 

forward movement. These advantages are most apparent when A is relatively small. 

An illustrative example of the improved Fano search strategy is provided in 

Figure 3-14 and Table 3-2. In addition, Table 3-3 lists the actions that the decoder would 

take if the original algorithm (Section 3.4.1) was employed instead. From the perspective 

of the improved algorithm, Steps 5-7 in Table 3-3 are unnecessary node transitions. Step 

12 in the same table shows a situation when a forward search results in a biased APM 

that violates the running threshold by two step sizes. Thus for this particular example, the 

improved Fano algorithm saves a total of four steps in metric calculations and 

comparisons. In actual simulations, the improved algorithm also provides very significant 

saving in complexity. 



Figure 3-14. A Fano search for BPSK symbols with b = 3, A = 1, and N = 6. 

Table 3-2. Actions taken by the improved Fano search. 
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3.4.3 Bi-Fano MSDD 

Consider the path and branch metrics in (35) and (36). They were derived under 

the implicit assumption that the decoder searches forward in time (i.e. from time n = 1 to 

n = N - 1) for the data pattern that best matches the received pattern. As far as an ML 

MSDD is concerned, it makes no difference whether the decoder searches forward or 

backward (from time n = N - 2 to n = 0 )  in time, since by definition, this receiver 

evaluates all possible data patterns within the detection window. However, for a Fano- 

MSDD, a forward search and a backward search may not yield identical results, since the 

algorithm is suboptimal. Another reason for the potential discrepancy is that different 

predictors (and different observations) are being used to predict the fading gains affecting 

the same data symbols when searching in different directions. For example, the fading- 

plus-noise sample g[n] is implicitly estimated by an n-th order predictor during the 

forward search, and by an (N - 1 - n) -th predictor during the backward search. The 

reader is referred to Appendix A for the derivation of the ML metric in the form of 

backward linear predictions. 

The above observation leads us to introduce a bi-directional Fano-MSDD (Bi- 

Fano MSDD) that uses the outcomes of the forward and backward searches to perform 

error detection and error correction. Let (tf [l],cf [21,...,i?~ [N -11) and 

(~b[l],$[2],...,i?b[~ -11) be the decisions provided by the forward and the backward 

decoders respectively. If the two sequences are identical, then they become the final 

decision. On the other hand, if discrepancies occur at positions {nl, n2, ... , nd], then the 



decoder examines all possible sequences of the form (cK [I], ZK [2], ..., ZK [N - I]), 

K = 0, 1, ... , 2nd - 1, where 

x[nl, 
FK [n] = 

Zf [nl, 

and ( 4 ,  b2, ... , bnd) is the binary equivalent of the integer K. There are altogether 2"d 

such sequences and the one with the smallest metrics (41) is released by the decoder as 

the final decision. The simulation results show that this bi-directional search technique 

provides a substantial improvement to the bit-error performance when compared to the 

forward Fano-MSDD. The computational complexity, on the other hand, is 

approximately doubled at large SNR. 

3.4.4 Edge-Bi-Fano MSDD 

It is observed that for the forward Fano-P( VISDD, data estimates near the end of the 

block (i.e. n = N -1) have a higher error probability than those at the beginning. This 

stems from the fact that the decoder will not be able to discover soon enough when it 

makes a wrong turn in the decoding tree while searching in that neighbourhood. The 

opposite is also true for a backward Fano-MSDD. To mitigate the problem, we propose 

an edge-cut version of the Bi-Fano algorithm with an effective block size of N ,  = N + E ,  

where N -1 is the actual number of symbols the algorithm wants to decode, and 

E = 2H , is the number of symbols whose decisions will be discarded. Figure 3-15 



depicts the arrangement of the overlapping blocks for the new detector. This improved 

detector, termed an Edge-Bi-Fano MSDD, first searches in both the forward and the 

backward directions and arrives at the tentative decisions {tf [I], tf [2], ... , tf [ N ,  -11) 

and {cb[l], cb[2], ... , cb[Ne -111. Then the first and the last H symbols in each of these 

N-1 
sequences are dropped. The surviving sequences, {el [H + i]} and {&[H + illN-' are 

i=l i=l 

then used to construct the final decision space as per (44) and (45). After the transmitted 

pattern of the current observation window has been decoded, the decoder slides its 

window forward by N - 1 symbols and starts another decoding process with the same 

effective windows size N, = N + E. It will be shown in the next section that the Edge-Bi- 

Fano detector provides a substantial improvement over a Bi-Fano detector with the same 

block size. 

Figure 3-15. Arrangement of overlapping blocks in an Edge-Bi-Fano receiver. 



3.5 Simulation Results and Discussion 

We present in this section the bit-error performance and the implementation 

complexity of the three Fano sequence detectors described in the preceding sections. The 

BEPs and complexities of the MSDSD and the DFDD are used as performance 

benchmarks. Other statistical measures such as the average number of node transitions, 

the average number of search failures (or bias adjustments), and the probability of a 

differed symbol in the forward and the backward detected patterns, are also discussed. 

All simulation results are based on the QDPSK and the 8DPSK transmissions with 

detection block sizes of N = 6 and N = 10. Both fast ( fdTs = 0.03) and static ( fdTs = 0) 

fading are considered. The bit SNR used in our simulation follows the definition in (8) of 

Section 2.2. 

All the Fano MSDD schemes are simulated using a bias of b = 2 and a step size of 

A = 3. Note that we did not attempt to optimize these parameters because, in general, the 

more stringent search criteria (in terms of tolerance to metric fluctuation) yields better 

performance results but, in exchange, with higher complexity. In addition, we would like 

to caution the reader that the computational complexity can vary substantially from 

programmer to programmer because complexity strongly depends on implementation 

tricks and other assumptions. 

3.5.1 Bit-Error Performance 

The BEPs of the Fano-MSDDs, the MSDSD, and the DFDD are plotted in Figure 

3-16 and Figure 3-17 for the fast fading channel, and in Figure 3-19 and Figure 3-20 for 

the static fading channel. Among the three Fano schemes, the forward Fano detector has 



the worst performance, the Bi-Fano detector is ranked second, while the Edge-Bi-Fano 

detector is the best. In addition, all of our Fano detectors are able to track the coherent 

bound whereas the DFDD detectors begin to exhibit a noticeable irreducible error floor at 

high SNR; see Figure 3-17 and Figure 3-18. Note that the initial transmitted pattern 

[s[o]  s[l] ... s[N - 211' is assumed to be known to the DFDD detector so the error curves 

shown in the plots can be referred to as the performance lower bounds for the DFDD. 

In the fast fading channel, the Edge-Bi-Fano detector has almost identical 

performance as the MSDSD when the block size equals to N = 6 .  At a BEP of lo", it is 

approximately 0.6 dB more power efficient than the Bi-Fano detector, 2 dB more 

efficient than the forward Fano detector, and 2.5 dB more efficient than the DFDD. At 

the same BEP of when we increase the block size to N = 10, the degradation 

experienced by the Edge-Bi-Fano, Bi-Fano, forward Fano, and DFDD detectors, relative 

to the MSDSD, are 0.6 dB, 0.9 dB, 2.5 dB, and 3 dB respectively. In an 8DPSK system, 

similar degradations are observed except the forward Fano and the DFDD detectors are 

respectively 3 dB and 3.5 dB less power efficient than the MSDSD. 

Although our primary interest is on the fast fading environment, to demonstrate 

the robustness of the Fano detectors, we show in Figure 3-19 and Figure 3-20 the bit- 

error performance of the sequence detectors in the static fading environment. As 

observed in the figures, the Fano-MSDDs are almost as good as the MSDSD. With a 

block size of N = 6 ,  all of the sequence detectors have practically the same BEP, except 

that the forward Fano-MSDD is approximately 0.2 dB less power efficient than the 

others. When we increase the block size to N = 10, the BEP of the forward Fano detector 

improves by 0.2 dB while the other non-coherent detectors show only little improvement 



in power efficiency due to the diminishing return of an MSDD detector. The reader is 

reminded that in a static fading environment, one can simply use the Mackenthun's 

algorithm [7] because the computational complexity of this algorithm is independent of 

the SNR and it is only in the order of N log(N). 
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Figure 3-16. BEP versus bit SNR for QDPSK at N = 6 and fdTs = 0.03. 
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Figure 3-17. BEP versus bit SNR for QDPSK at N = 10 and fdTs = 0.03. 
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Figure 3-18. BEP versus bit SNR for 8DPSK at N = 10 and fdTs = 0.03. 
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Figure 3-19. BEP versus bit SNR for QDPSK at N = 6 and static fading. 
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Figure 3-20. BEP versus bit SNR for QDPSK at N = 10 and static fading. 



3.5.2 Computational Complexity 

The average number of real multiplications and comparisons per block of N 

symbols are used as measures for the complexity and they are plotted in Figure 3-21 and 

Figure 3-23 for QDPSK and in Figure 3-22 and Figure 3-24 for 8DPSK. All of the 

complexity versus SNR curves are simulated under the assumption of a fast fading 

environment ( fdTs = 0.03) and the resultant curves are obtained by inserting counters at 

various place in the simulation programs. Note that the complexity of the MSDSD 

measured in the plots is only half of that reported in [lo]. This stems from the fact that 

the MSDSD in the thesis is implemented based on the same programming tricks and 

resources we used to implement the Fano MSDD. 

In general, we observe that our proposed Fano-MSDD receivers are 

computationally stable even at an SNR of 0 dB. They do not exhibit the exponential 

growth in complexity as seen in MSDSD when SNR decreases. For QDPSK transmission 

and a block size of N = 10, our Bi-Fano MSDD has lower complexity than the MSDSD 

when the SNR is below 20 dB. In terms of power efficiency, at the same SNR of 20 dB, 

the Bi-Fano MSDD is only 0.2 dB less efficient than the MSDSD. If we consider an 

8DPSK transmission, the cross-over point is moved to 25 dB and the same performance 

loss of 0.2 dB is observed. 

Also shown in the plots are the complexity curves for the DFDD. At large SNR, 

the forward Fano MSDD is very similar to a DFDD because backtracking does not 

happen very often and the decoder spends most of the time moving forward. From the 

perspective of the sphere decoder, the initial pass most likely provides a radius, which is 

small enough to narrow its search and hence to avoid any additional roaming in the tree. 



In addition, since our Bi-Fano MSDD searches in both the forward and the reverse 

directions, it is observed that, at high SNR, our bi-directional decoder requires twice as 

many computations as the DFDD. 

Note that when SNR is low, the Bi-Fano and the Edge-Bi-Fano both exhibit a 

growth in the number of multiplications. This is due to the increased number of 

discrepancies between the tentative decisions provided by the forward and the backward 

Fano detectors. At low SNR, all paths may look equally bad and there is insufficient 

information in the APM that enables the decoder to discriminate the transmitted pattern 

from the rest. As a consequence, more errors are made in the initial searches, which leads 

to more computations in the final decision making process. 

In summary, the Bi-Fano detector is most suitable for channels at medium to low 

SNR as it is able to achieve close to ML performance, while its complexity is still 

computationally stable. However, in order to obtain reliable data transmission, medium to 

high SNR is usually of interest. At large SNR, the Bi-Fano detector suffers from a modest 

degradation in power efficiency when compared to the sphere decoder, but it requires 

twice as many computations. It will be shown in the next section that, for Bi-Fano and 

Edge-Bi-Fano, a backward search (or error correction) is not always required, as the 

forward and the backward searches may yield identical results, especially when SNR is 

large. We believe that further improvement can be made on the complexity of the Bi- 

Fano and Edge-Bi-Fano detectors if a smart way of performing bi-directional search on 

demand can be found. We will present in Chapter 5 some suggestions that can done to 

achieve this goal. 
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Figure 3-21. Average number of real multiplications versus bit SNR for QDPSK at fdTs = 0.03. 
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Figure 3-22. Average number of real multiplications versus bit SNR for 8DPSK at fdTs = 0.03. 
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Figure 3-23. Average number of comparisons versus bit SNR for QDPSK at fdTs = 0.03. 
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3.5.3 Other Statistical Measurements for Fano MSDD 

Other than the BEP and the computational complexity, we have also taken other 

statistical measurements for our Fano-MSDDs. The average numbers of node transitions, 

search failures (or bias re-adjustments), and the probability of a differed symbol in the 

forward and the backward tentative decisions are plotted in Figure 3-25, Figure 3-27, and 

Figure 3-29 for QDPSK and in Figure 3-26, Figure 3-28, and Figure 3-30 for 8DPSK 

respectively. All of the results are obtained based on the fast fading scenario 

( fdTs = 0.03). 

It is interesting to see that, in both Figure 3-27 and Figure 3-28, there is a 

substantial growth in the number of bias re-adjustments for both the Bi-Fano and the 

Edge-Bi-Fano detectors. As recalled from Section 3.4.1, bias re-adjustments are needed 

only when some biased branch metrics mB[n] along the correct path are so large that the 

receiver is not able to get to the end of the tree and ending up at the root node with no 

path to move forward. For the forward Fano decoder, this incident often happens when a 

deep fade occurs at the beginning of the decoding block. For the Bi-Fano and the Edge- 

Bi-Fano detectors, search failures happen when deep fades appear at both ends of the 

decoding block. Subsequently, the number of search failures is closely related to both the 

probability of deep fades and their positions within the observation window. This 

assumption is justified in Figure 3-27 and Figure 3-28 that the number of search failures 

is almost independent of the window size N. The plots also confirm our explanation in 

Section 3.4.1 that the number of search failures increases with SNR. In spite of this, when 

we look at the plots in Figure 3-25 and Figure 3-26, the number of node transitions is still 



a stable function of SNR for the forward Fano and only shows a small growth for the Bi- 

Fano and Edge-Bi-Fano. 

The probability of a differed symbol in the tentative decisions provided by the 

forward and the backward Fano detectors are plotted in Figure 3-29 for QDPSK and in 

Figure 3-30 for 8DPSK. The error curves are obtained by dividing the average number of 

differed symbols in the two tentative decisions E[nd] (see Section 3.4.3) by the number 

of data symbols per block, i.e. E[nd]/(N - 1). Figure 3-29 and Figure 3-30 show that the 

Edge-Bi-Fano detector is malung more accurate preliminary decisions than the Bi-Fano 

detector. This coincides with our assumption that the data symbols at the end of the block 

are more prone to errors. As an example, for a block size of N = 10 and an SNR of 40 dB, 

the Bi-Fano has a probability of 3 . 3 ~  10" for QDPSK and 1.1 x10-~ for 8DPSK whereas 

the Edge-Bi-Fano has a probability of 1 . 3 ~ 1 0 - ~  for QDPSK and 4 . 4 ~ 1 0 - ~  for BDPSK. 

In other words, most of the time error corrections are not required at the final decision 

making process, especially when SNR is large. This suggest that further improvement can 

be made on the complexity of the Bi-Fano and Edge-Bi-Fano detectors if an intelligent 

way of performing bi-directional search on demand is found. We will present in Chapter 

5 that this bi-directional search on demand can be performed by monitoring the 

instantaneous energy level of the received signals. 
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Figure 3-25. Average number of node transitions versus bit SNR for QDPSK at fdTs = 0.03. 
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Figure 3-26. Average number of node transitions versus bit SNR for 8DPSK at fdTs = 0.03. 
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Figure 3-27. Average number of search failures versus bit SNR for QDPSK at fdTs = 0.03. 
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Figure 3-28. Average number of search failures versus bit SNR for 8DPSK at fdTs = 0.03. 





CHAPTER 4: SPACE-TIME MULTIPLE-SYMBOL 
DIFFERENTIAL DETECTIONS 

As observed in Chapter 3, the Fano decoder is capable of striking a good balance 

between bit-error performance and complexity, and robust enough to operate over a wide 

range of fading rates. It has been shown that, for QDPSK, the complexity of this novel 

decoding strategy reduces by one to two orders of magnitude when it is compared with 

the one of the sphere decoder at low SNR. The results become more remarkable when the 

number of outgoing branches per node is increased to eight (i.e. 8DPSK). In order to take 

the full advantage of the Fano algorithm, we consider in this chapter a higher dimensional 

system. We intuitively extend the application of the Fano algorithm to a ST-MSDD 

receiver for an Alamouti-type ST system with differential encoding. Similarly, 

simulations and discussions are presented at the end of the chapter. Two other reduced- 

complexity techniques, ST-DFDD and ST-MSDSD, are derived and used as performance 

benchmarks. 

This chapter is organized as follows: Section 4.1 derives the ML sequence 

decoding metric. Section 4.2 presents a new two-dimensional branch sorting algorithm 

for ranking the candidate ST symbols in each decoding interval. This algorithm is used in 

both the Fano ST-MSDD and ST-MSDSD receivers to avoid the tedious process of 

calculating and sorting of the branch metrics at each node transition. Then, ST-DFDD 

and ST-MSDSD are derived in Sections 4.3 and 4.4 respectively. In Section 4.5, the ST 

versions of the three Fano-MSDD receivers, forward Fano, Bi-Fano, and Edge-Bi-Fano 



ST-MSDDs, are presented. Finally, this chapter is concluded with simulation results and 

some follow-up discussions. 

4.1 Derivation of the ML Decoding Metric 

In an Alamouti-type ST system, the receive antenna receives two received 

samples at each ST-symbol interval TST . In order to maintain consistency throughout the 

thesis, a ST-MSDD receiver with block size of N is referred to as a block detector which 

processes 2N received samples simultaneously at a time. In other words, an N-symbol 

long ST-MSDD receiver makes a joint ML decision on the 2(N - 1) information symbols 

2i[k]'s, i = 1,2, k = 1 ..(N -I), contained in the received pattern 

where S = diag {s[O], s[l], ... , s[N -111 is a block diagonal matrix representing the 

T T 
transmittedpattern, and F = [ f T [ O ] , f T [ l ] .  .... f T [ N - 1 1 1  and N = [ n T [ O ] , n T [ l ]  ,..., n T [ N - I ] ]  

are the corresponding fading and noise patterns. Conditioned on S , the received pattern 

is a zero-mean complex Gaussian vector with a covariance matrix 

where YFF = aff @I2,  YNN = an,, @I2,  and and a,, are the SISO channel's 

fading and noise covariance matrices defined in Chapter 3. Specifically, Q,, = IN , and 



2 the (n,m)-th element of m f f  , n, m = 0,1, . . ., N-1, equals 4f [n - m] = 4f [v] = of J ,  as 

shown in (7). Based on these results, we can show that YRR can be rewritten as 

I,, = s(cpgg @ l , ) s H ,  (48) 

where mgg = C D f f  + mnn is equivalent to the SISO channel's fading-plus-noise 

covariance matrix in (24). Furthermore, we can deduce from (48) that the conditional 

p.d.f. of the received pattern R is 

P(RI 

Since I Y  RR I is independent of S , the ML ST sequence detector can make a joint decision 

on the N - 1 ST information symbols c[l],c[2], ..., c[N - I] in (1 1) by minimizing the 

metric 

where 

T g [ k ]  = [ & [ k ] ,  g 2 [ k ] ]  = iH [ k ] r [ k ] ,  is the sequence of hypothesized fading-plus-noise 

samples associated with the hypothesized transmitted pattern s = diag {g[~],i[l], ..., ;[N - I]}. 



Although the metric in (50)  is well defined, its block-oriented format is not 

compatible with the ML sequential detections. However, by applying the similar iterative 

procedure described in Section 3.1 on the matrix Ogg @I2,  we can manipulate (50)  into 

a sum of branch metrics. To begin, let 

be the equivalence of the fading-plus-noise process. Its covariance matrix is 

G [ ~ ] G  [ n ] ]  = agg [n ]  0 I2 
2 

where agg [ n ]  is the ( n  + 1 )  by ( n  + 1) covariance matrix defined in (29) .  Similarly, let 

be a column vector containing 2(n + 1) hypothesized fading-plus-noise samples up to ST 

interval n, where n = 1 , 2 ,  . . . (N  - I ) .  Now the quadratic form G [n ]Y; ;  [ n ] ~ [ n ]  can be 

written as 



where 

and A01 = 0; + 1 . Qgg [n - I] and cpg [n -I] were defined in (29) and (3 1) respectively. 

By taking the inverse of the covariance matrix in (53) using the iterative technique 

described in [25] and [26], (55) can be arrived to 

where 

with ~ ~ [ n ]  , defined earlier in (33), being the mean-square error of an n-th order linear 

predictor of the fading process. Substituting (58) into (57) leads to 



The second term in the above equation is simply 

where 

and 

the last two terms in (59) can be rewritten as 



and 

Finally, substituting (60)-(65) into (59) enables us to arrive at the recursive equation 

In comparing (66) with its counterpart in the SISO channel in Chapter 3, we notice an 

additional square distance term in the branch metric. This coincides with the fact that 

there are now two links between the transmitter and the receiver. The total APM can be 

written as 

where 



is the branch metric of the reference fading-plus-noise samples. It should be pointed out 

that m[O] is common to all hypotheses and hence it will be omitted from the path metric 

in the subsequent formulations. 

Now the metric in (50 )  can be manipulated into 

M ( G )  = ~ . " = - m [ n l ,  

where 

is the n-th branch metric. As recalled, G i [ n - 1 ]  = [k i lo]  i i [ l ]  - - -  ii[n-111' is the 

sequence of past fading-plus-noise estimates in the i-th link, and c p f  [ n  -110;: [ n  - 11 is 

an n-th order fading-plus-noise predictor, E~ [ n ]  = AO] - c p f  [ n  -I]@;: [ n  - llcp, [ n  - I ]  is 

2 T the corresponding mean-square prediction error, c p ,  [ n  - 11 = of [ J - ,  , J1-,, ,..., J - I ]  , 

defined in (31),is the correlation vector between the current fading-plus-noise sample 

g ,  [ n ]  = [ n ]  + ni [ n ]  and the past samples gi [ n  - 1 ]  = [ g i  [o] gi [1] .. . gi [ n  - l ] lT  , and 

@,, [ n  - 11 , the covariance matrix of g i [ n  - 11 , is a matrix obtained from the first n  rows 

and n  columns of @,, in (24). 

As discussed earlier in Chapter 3, in order for the Fano decoder to move forward 

from a node that it visits the first time, it must determine which is the most promising 

branch emanating from that node. If that turns out to be futile, it will examine the next 



best node, and so on. This means the decoder needs to sort all of the outgoing branches of 

the current node from best to worst. The same sorting is required for the sphere decoder. 

In the SISO system, this sorting can be easily accomplished by zigzagging through the 

hypothesized phase angles (refer to Section 3.4.1). However, in the ST system, the branch 

metric m[n] now is composed of two square distance terms and, in a brute-force 

implementation, the sorting of all branch metrics requires M' branch metric calculations 

and comparisons. If unfortunately the decoder has to backtrack from a node, then the next 

most promising branch from the ancestor node must also be known. Thus in the worst 

case, the decoder needs to go through the tedious process of calculating and sorting the 

branch metrics for every node that it has visited. While this scenario is unlikely to 

happen, it points out the importance of calculating the branch metrics and sorting them 

efficiently. We will provide in the next section a sorting routine that can achieve this 

objective. 

4.2 Branch Sorting Algorithm for ST-MSDD 

Consider the branch metric in (70). It can be rewritten in the form 

where 



are the predicted fading-plus-noise samples. Given that the transmitted ST symbol s[n]  is 

H unitary and a n ]  = P H  [n]r[n]  , we have iH [n]e [n]  = r H  [ n ] i [ n ] i H  [n]r [n]  = r  [n ]r [n]  , or 

equivalent 

a result that is independent of the hypothesis at the n-th ST interval. Similarly, the sum of 

2 2 
the predicted fading-plus-noise samples, l d l [ n ]  + l b 2 [ n ]  , is also independent of the 

branch hypothesis. These imply that during the decoding process, the branch metrics can 

be sorted based on the last two terms in (71) .  Let us define the sum of these two terms as 

where i [ n ]  = [ i l [ n ]  i 2 [ n ] l T  is the predicted fading-plus-noise vector at the n-th ST 

interval and it depends solely on the path history in the decoding tree. Since 

P[n] = B[n]P[n - 11 and E[n] = P H  [n ] r [n]  = iH [n  - l]BH [n]r [n]  , (74)  can be rewritten as 

where 



Similar to the predicted fading-plus-noise vector g[n] , the vector a[n] also depends 

solely on the path history. Furthermore, (75) can be further simplified to 

where 

ii[n], i = 1,2, are hypotheses of the data symbols in (1 I), and 

are the fading-compensated samples in the individual links. The important points 

conveyed by these equations are 1) all parameters, except %[n] and &[n] , depend on 

the path history, and 2) the most promising branch is the one with the largest 

q[n] = ql[n] + q2[n]. These properties suggest that the M values of q[n] can be 

efficiently sorted by first creating the sorted lists 



for the individual qi[n]'s , where qi,(l)[n] is the largest and qi,(,)[n] is the smallest. As 

described in Section 3.4.1, the sequence Qi [n] and the corresponding data estimates 

M 
{&,)[n]) can be generated by first calculating the phase angle q[n] = arg{yi[n]} 

m=l 

and then sorting the points in the MPSK constellation based on their distance from 8):[n]. 

The best data estimate &l,[n] can be computed by 

and the rest of the data estimates can be computed by zigzagging through the rest of the 

phase angles based on the quotient and remainder of the rounding operation described in 

Section 3.4.1 

Next, we form the M x M matrix 

where the (i, j)-th element of this matrix is Sii [n] = ql,(i) [n] + q2,( ,) [n] . This matrix has 

the following properties 1) the Sii[n]'s are decreasing from left to right and from top to 

bottom, 2) any sub-matrix of Ms [n] also possesses the previous property, and 3) the 

matrix is symmetrical in the sense that if one of its elements takes on a value of v, then 

there must be another element with a value of -v. Based on these properties, we can see 

that Sl l[n] is, by default, the largest value of the sum q[n] . For the second largest value, 



we only need to choose between Sl,[n] and S,][n] as shown in Figure 4-1. Suppose 

S12[n] is the second largest, then the only candidates for the third largest sum are S13[n] 

and S 2 ,  [n] (see Figure 4-2). 

Figure 4-1. Decision between Slz[n] and Stl[n].  

M&l3)[n] 

Figure 4-2. Decision between SI3[n] and Stl[n].  

Figure 4-3. Decision between SI3[n] ,  Sz2[nl, and SJl[n] .  
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If S21[n] is greater than S13[n], then the candidates for the fourth largest sum are 

S3 l[n] , S22[n] , and S13[n] . The procedure continues until the first M 1 2 largest sums 

are found. At this point, we make use of the symmetry in the matrix to sort the rest of the 

sums. We provide in Figure 4-4 the flow chart of this sorting algorithm. It should be 

emphasized that we only need to perform sorting on demand, because of the probabilistic 

nature of sequential decoding. In the worst case scenario, the number of 

comparisons/additions required is upper-bounded by 

M~ 
I-, forM 2 2 .  

2 

The statistical average, however, is much less than this number. It should also be 

emphasized that the application of this sorting algorithm is not restricted to the sphere 

and the Fano decoders. The same concept can be easily extended to other ordered tree 

searching algorithms and even to ST systems with higher dimensions. 



< START 
I 

Create an e mpty k t  for 
storing sorted data pairs 

&ate an empty buffer 
of slze M and put Sll[n] 

into the buffer X 
+- 

Find the rnaxjrnum 
SJn] in the buffer and 

output its 
conespondmg data pair 

( 4  [nl .d l  [nl 1 

data p w  I 4  [nl. 4 [nl 1 
to the soxted list 

order of the rest of the 

Figure 4-4. Flowchart of the sum sorting algorithm. 

4.3 ST-DFDD 

For the sake of completeness, a decision-feedback detector is derived in this 

chapter for the Alamouti-type ST system. This detector, termed ST-DFDD, follows the 

fundamental structure of the DFDD receiver used in the SISO channel. Inherently, the 

ST-DFDD receiver is a forward linear prediction receiver and it makes decision on one 

ST symbol at a time, based on the N - 1 previously detected ST symbols. As mentioned 

in the preceding section, the sequence decoding metric now has two square distance 

terms because there are two links between the transmitter and the receiver. The decoding 

metric of a ST-DFDD receiver now becomes 



where pN = q-~f [N - 210;; [N - 21 and E: = @[o]- q - ~ f  [N - 219;; [N - 2]q, [N - 21 are 

the same (N - 1)-th order linear predictor and mean square prediction error as in Chapter 

T 
3, and ~ $ ) [ n ]  = [gi[n - N + 11 gi[n - N + 21 ... gi[n -111 , i = 1,2, is the vector containing 

the past (N - 1) fading-plus-noise samples of the i-th link. Without any loss of generality, 

minimizing the metric in (84) is equivalent to maximizing the term 

where &)[n] = pN~$)[n] ,  i = 1,2, is the predicted fading-plus-noise sample of the i-th 

T 
link, gN[n] = [gi)[n] jjt'[n]] is the corresponding vector at the n-th ST interval, and 

g[n] = [gl [n] g2 [n]lT is the hypothesized fading-plus-noise pattern. By performing 

further simplification, (85) can be rewritten as 

where 

Bi[n], i = 1,2, are hypotheses of the data symbols in (1 I), 



w:[n] = q * [ n ] a t ) [ n ]  + r2 [n]aC)*[n]  

w; [ n ]  = { [n]a(NZ' [n ]  - r2 [n]a$)* [ n ]  

are the conjugate of the fading-compensated samples, and 

a N  [ n ]  1 -1  
a N [ n l = [ : :  aN [nl ]=[ 1 1  ] 8 n - 1 1 i j N [ n ~ .  

Now the estimated data symbols 4 [n]  and i 2 [ n ]  can be easily computed by calculating 

the phase angles q [ n ]  = arg{wi[n])  , i = 1,2, and then locating the MPSK constellation 

points that are closest in phase to Oi[n]'s. The estimated data symbols can be calculated 

by 

After the estimated data symbols are found, the decoder slides its window forward by one 

ST symbol and starts another forward prediction on the next received vector 

r [ n + ~ ] = [ ~ [ n + l ] , r ~ [ n + l ] ] ~ .  

4.4 ST-MSDSD 

The sphere decoding algorithm used for our Alarnouti-type ST system is exactly 

the same as the one used for the SISO channel except that the decoder now makes use of 

the new branch sorting algorithm introduced in Section 4.2. Figure 4-5 highlights the 

portion where the new sorting routine is implanted. 
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Figure 4-5. Flowchart of the ST-MSDSD. 

Recalled from the simulation results presented in the previous chapter, we notice 

that, at low SNR, the more outgoing branches a node has, the longer time the sphere 

decoder spends on roaming (or more paths are being explored by the decoder). We may 

deduce that the sphere decoding process in ST systems requires more computations than 

the one in SISO systems. This stems from the fact that there are now M branches 

emerging from each node. This huge increase in complexity leads us to the investigation 

of the Fano algorithm as an alternative decoding strategy for a ST-MSDD receiver. 

4.5 The Fano ST-MSDDs 

This section deals with the Fano algorithm applied to the Alamouti-type ST 

system. It can be seen as a natural extension of Chapter 3. Recalled from the expression 

(70) in Section 4.1, the branch metrics represent the normalized square prediction errors. 



When the hypothesized pattern s equals the transmitted pattern S , then these errors will 

be small. Furthermore, each branch metric has an expected value of 2 and the APM 

will fluctuate around a straight line with a positive slope of 2. On the other hand when 

s t S , the branch metrics can be quite large because of the abrupt transitions in the 

hypothesized fading-plus-noise sequence. In this case, the APM will, at some point, 

deviate suddenly from the straight line mentioned above. This difference in the APM's 

characteristics in the two cases enables the Fano ST-MSDD to make accurate decisions 

on the transmitted data without the need to search exhaustively through the decoding tree. 

As introduced in Section 3.4, the Fano decoder is essentially an intelligent 

decision feedback detector that employs a dynamic threshold to check if it is tracking the 

correct path in the decoding tree. In order to maintain consistency with our usual notions 

of threshold tighteningtrelaxation when describing the Fano ST-MSDD, we adopt a 

similar biased path metric 

where the biased branch metric mb[n] = m[n]  - b is given in (42). The bias b is chosen 

such that the average value of mb[n] is negative when conditioned on s = S . From the 

above discussion, we can deduce that b > 2 .  With the introduction of the bias, the 

transmitted pattern will have the most negative metric amongst all the candidates (most 



of the time), and the average slope of its biased APM, v [ n ]  = x : = , m , [ k ]  in (43), is 

negative and is equal to 2 - b 

4.5.1 Fano ST-MSDD 

After the biased APM has been formulated, the Fano decoder can now use this 

APM along with the running threshold T to help in decoding the distance tree. As 

described earlier, the Fano decoder can be viewed as an intelligent decision feedback 

detector, which knows probabilistically if it is following a correct decision path. It can 

also be viewed as a device that performs an initial pass of a sphere decoder. However, the 

initial pass performed by a Fano decoder is more promising than the one performed by a 

sphere decoder because of its ability to backtrack and update its running threshold 

dynamically. Furthermore, numerical results show that, if an additional pass is performed 

in the backward direction, this bidirectional Fano decoder can achieve a BEP 

performance close to the one of a sphere decoder. This further illustrates the practically 

usefulness of the Fano algorithm in a ST-MSDD receiver. 

The Fano algorithm used by our Fano ST-MSDD receiver is the same as the 

improved Fano algorithm discussed in Section 3.4.2 except that the new sorting routine 

described in Section 4.2 is engaged. Figure 4-6 depicts the area where the sorting 

algorithm is adopted. 



(START)+ 1 = 0, b = initial bias I 

Figure 4-6. Flowchart of the Fano ST-MSDD. 

4.5.2 Bi-Fano ST-MSDD 

The Bi-Fano ST-MSDD is no different from the Bi-Fano MSDD in the SISO 

channel except there are some little changes in notation. The outcomes of the forward and 

backward searches are used to perform error detection and error correction. The decisions 

made by the forward decoder (df[l],d [2], ..., d [N - 11) and by the backward decoder 

(db[l],db[2], ...,d([ N -I]) are compared to form a final decoded pattern. Similarly, if the 

two sequences are identical, then the final decoded pattern is equal to either one of them 

and no error correction is needed. However, if there are discrepancies at the positions 



{ n l ,  n2,  ... , n d } ,  the decoder explores all possible sequence of the form 

{ d K [ 1 ] ,  d K [ 2 ] ,  ..., d K [ ~ - 1 ] ] ,  K = O ,  1, ... , 2nd - 1 ,  where 

z [n l ,  n = ni 
d K  [ n ]  = 

if [nl ,  n + n i ,  
(93)  

and (4, b2, ... , bnd}  is the binary equivalent of the integer K. Inherently, 2"d sequences 

are compared and the sequence with the smallest metric (92)  is chosen as the final 

decoded pattern. 

4.5.3 Edge-Bi-Fano ST-MSDD 

As recalled, an Edge-Bi-Fano receiver is an edge-cut version of the Bi-Fano 

algorithm with an effective block size of N~ = N + E ,  where N - 1 is the actual number of 

ST symbols the algorithm wants to decode, and E = 2H is the number of discarded ST 

symbols. Similarly, the Edge-Bi-Fano ST-MSDD receiver makes tentative decisions 

{ i f  [ I ] .  i f  121. ... . i I N ,  -11) and {db[ l ] ,  db[2] ,  ... , d b [ ~ e  - 1 1 )  on both the forward and the 

backward directions, respectively, and the first and the last H ST symbols in these two 

{ 
N-1 

sequences are discarded. The surviving sequences, d f  [ ~ + i ] ] ,  and { d , [ ~  +i]]"', are 
1=1 1 =1 

then used to form the final decoded pattern by carrying out the same procedure as 

described in the preceding Section 4.5.2. 



4.6 Simulation Results and Discussion 

We present in this section the simulation results for the forward Fano, Bi-Fano, 

and the Edge-Bi-Fano ST-MSDDs. In addition to the BEP and the computational 

complexity, we also provide the average numbers of node transitions, bias adjustments, 

and the probability of a differed ST-symbol, just like in the SISO case. All simulation 

results are obtained based on ST-QDPSK transmission in both the fast ( fdTST = 0.03) 

and the static fading scenarios. The bit SNR used in our simulation is defined earlier in 

(19); see Section 2.3. In order to maintain consistency with our results for the SISO 

channel, we adopt a bias of b = 3 and a step size of A = 3 so that the overall expected 

slope of the biased APM becomes -1. On the other hand, the BEPs and the 

implementation complexities of the ST-MSDSD and the ST-DFDD are served as 

performance benchmarks. It is worth mentioning that the ST-DFDD has perfect 

T 
knowledge of the initial transmitted pattern [si[O] si[l] ... si[N - 211 , i = 1,2, and its 

error curves shown in the plots essentially represent the BEP lower bounds of the ST- 

DFDD detector. 

4.6.1 Bit-Error Performance 

The bit-error performance of the Fano, the Bi-Fano, and the Edge-Bi-Fano ST- 

MSDDs are plotted in Figure 4-7 and Figure 4-8 for the fast fading channel, and in Figure 

4-9 and Figure 4-10 for the static fading channel. Also shown in the figures are the BEPs 

of the ST-MSDSD, the ST-DFDD, and the coherent detector with ST-QPSK 

transmission. In a fast fading environment, the Fano detectors do not show any 

observable irreducible error floor. At a BEP of the N,=X (i.e. N = 6 and E = 2) Edge- 



Bi-Fano detector outperforms the ST-MSDSD, the Bi-Fano, the forward Fano, and the 

ST-DFDD by 0.6 dB, 1 dB, 2 dB, and 2 dB respectively. In addition, the BEP of a Bi- 

Fano detector with the same effective block size of N = 8 is plotted to show that the 

Edge-Bi-Fano detector can provide substantial improvement over a Bi-Fano detector with 

the same effective block size. It is observed that, at the same BEP of lo4, the Edge-Bi- 

Fano is 0.5 dB more power efficient than the Bi-Fano counterpart. When we increase the 

block size to N = 10, all of the ST-MSDDs have an additional 1 dB improvement in 

power efficiency. 

In the static fading environment, Figure 4-9 shows that, at a BEP of lo", the N, = 

8 (i.e. N = 6 and E = 2) Edge-Bi-Fano detector is 0.5 dB and 1.5 dB more power efficient 

than the Bi-Fano and the forward Fano detectors respectively while it is only 0.2 dB and 

2.3 dB away from the ST-MSDSD and the coherent detector. When we compare the 

Edge-Bi-Fano with the ST-DFDD at the same BEP of we observe a 1.5 dB 

improvement in power efficiency. When the block size is increased to N = 10, all of the 

non-coherent detectors offer little improvement over their N = 6 counterparts in Figure 

4-9 due to the diminishing return as observed in the SISO channel. 
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Figure 4-7. BEP versus bit SNR for ST-QDPSK at N = 6 and fdTsT = 0.03. 
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Figure 4-8. BEP versus bit SNR for ST-QDPSK at N = 10 and fdTsT = 0.03. 





4.6.2 Computational Complexity 

For computational complexity, we consider both the average number of real 

multiplications and comparisons per block of N ST symbols and these results are plotted 

in Figure 4-1 1 and Figure 4-12 respectively for the fast fading scenario ( fdTST = 0.03). 

The computational complexity curves of the ST-DFDD are also plotted as benchmarks. 

As shown in both plots, the complexities of our Fano ST-MSDDs are more 

manageable than the ST-MSDSD. For example, at an SNR of 0 dB, the N = 10 Bi-Fano 

detector requires approximately 5 x lo4 multiplications and 820 comparisons whereas the 

sphere decoder requires 2 x 10' multiplications and 2 x lo6 comparisons. This translates 

into savings of 2.6 and 3.4 orders of magnitude in multiplications and comparisons 

respectively. Furthermore, the Bi-Fano ST-MSDD has lower complexity than the ST- 

MSDSD when the SNR is below 17 dB and, at this SNR, the Bi-Fano detector is only 0.3 

dB less efficient than the sphere decoder in power efficiency. It is more interesting to see 

that, in Figure 4-12, the N = 10 Bi-Fano detector has less comparisons than the N = 6 

sphere decoder when SNR is blow 7.5 dB. 
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Figure 4-11. Average number of real multiplications versus bit SNR for ST-QDPSK at fdTsT = 0.03. 
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Figure 4-12. Average number of comparisons versus bit SNR for ST-QDPSK at fdTsT = 0.03. 



4.6.3 Other Statistical Measurements for Fano ST-MSDD 

Similar to what we have illustrated in Chapter 3, the average numbers of node 

transitions, search failures (or bias re-adjustments), and the probability of a differed ST- 

symbol are simulated and they are plotted in Figure 4-13, Figure 4-14, and Figure 4-15 

respectively. As shown in Figure 4-14, we observe a growth in the number of search 

failures as the SNR is increasing. However, when we compare it with the one for QDPSK 

in Figure 3-27, the curves shown in Figure 4-14 seem to reach their asymptotic bounds 

whereas the SISO curves still keep on growing even at an SNR of 40 dB. As recalled, the 

growth is associated with the frequency of deep fades occurring at both ends of the 

decoding block. Since our ST system has two independent transmission links, the 

probability that both links are in deep fades is relatively small and hence the number of 

search failures for our Fano ST-MSDDs is expected to be lower than that of the SISO 

detectors. 

In addition, when we compare Figure 4-15 with its SISO counterpart in Figure 

3-29, both plots show that the Edge-Bi-Fano detector requires less error corrections than 

that of the Bi-Fano detector in the final decision process. With a block size of N = 10 and 

an SNR of 25 dB, the probability of error correction required per symbol is 4.6 x for 

the Edge-Bi-Fano and 9.2 x for the Bi-Fano. These results once again suggest that 

the complexity of the Bi-Fano and the Edge-Bi-Fano detectors can be reduced if an 

intelligent way of performing bidirectional search on demand is found. We will suggest 

in Chapter 5 that it can be accomplished by monitoring the instantaneous energy level of 

the received signals. 
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Figure 4-13. Average number of node transitions versus bit SNR for ST-QDPSK at fdTsT = 0.03. 
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Figure 4-14. Average number of search failures versus bit SNR for ST-QDPSK at fdTsT = 0.03. 
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Figure 4-15. Probability of a different detected symbol for ST-QDPSK at fdTsT = 0.03. 



CHAPTER 5: CONCLUSION 

5.1 Conclusion 

In the thesis, the Fano-MSDDs and its ST variants, Fano ST-MSDDs, are 

discussed and analyzed. Their counterparts, the MSDSD and the DFDD, are reviewed 

and used as performance benchmarks. Numerical results show that our Fano detectors are 

capable of delivering near-ML performance at modest implementation complexity and 

robust enough to operate over a wide range of fading rates. When compared to the sphere 

decoders, our Bi-Fano detectors reduce the number of computations by two to three 

orders of magnitude when SNR is extremely low. For example, at an SNR of 0 dB, the N 

= 10 Bi-Fano detector requires ten times less computations than the sphere decoder for 

QPSK and almost 100 to 1000 times less for ST-QDPSK. Unfortunately, at large SNR, 

the Bi-Fano detector requires twice as many computations as that of the sphere decoder 

while it still suffers from a 0.5 dB to 1 dB degradation in power efficiency. However, the 

Bi-Fano detector is an attractive alternative to the DFDD detector. It is observed that, 

with a normalized Doppler frequency of 0.03, the Bi-Fano detector can provide up to 4 

dB gain in power efficiency for QDPSK and 2.5 dB for ST-QDPSK, and most 

importantly, it does not exhibit any noticeable irreducible error floor. 

In addition, we observe that the computational complexity gap between the Edge- 

Bi-Fano and the Bi-Fano shrinks as the block size N increases. In other words, the Edge- 

Bi-Fano can be more computationally efficient as N is large. In fact, the decoding 

complexity of the Edge-Bi-Fano can be roughly estimated to be C = (N + E - 1 ) / ( ~  - 1) 

times that of the Bi-Fano and C can approach unity when N is infinitely large. However, 



we would like to emphasize that the performance gain provided by the Edge-Bi-Fano 

over the Bi-Fano can decrease with the block size N due to the diminishing return of an 

MSDD receiver. Consequently, the Edge-Bi-Fano is most suitable when a moderate 

window size is used. 

Besides fading, the instantaneous SNR at the receiver is subject to fluctuation 

while the receiver is operating in a multiuser environment. Since the error performance of 

our receivers strongly depends on the accuracy of the channel statistics, the sudden 

change in instantaneous SNR due to multiuser interference may result in a decoding 

metric that is mismatched to the actual channel statistics. This mismatch in channel 

statistics can result in larger prediction error that makes the decoder harder to 

differentiate the correct path from the erroneous paths. Consequently, more backtracking 

may happen in the decoding process. However, this mismatch does not affect our receiver 

in the statistical sense because, in Rayleigh fading environment, the BEP of our receiver 

is a linear function of SNR and the complexity is almost independent of it. If we average 

the instantaneous values of the BEP and the complexity over the range of fluctuating 

SNR, their expected values does not change, and hence, on average, multiuser 

interference does not constitute to any performance degradation in our receivers. 

In addition, our simulation results suggest several improvements for our Fano 

detectors. We present in the next section some possible improvements that can further 

enhance the BEP performance and reduce the implementation complexity of our 

receivers. 



5.2 Suggestions for Future Work 

As discussed earlier, the computational complexity of the bi-directional Fano 

decoders, Bi-Fano and Edge-Bi-Fano, can be reduced significantly if the decoders can 

perform bi-directional search on demand. Numerical results show that the probability of 

having a differed symbol in the forward and the backward tentative decisions is very 

small, especially in the MIMO channel and at large SNR. It suggests that, almost always, 

a forward search is enough and no error correction is required. However, it comes to the 

question on how the decoder knows whether an additional backward search is needed. In 

fact, it can be easily resolved by 1) examining the number of backtracking in the forward 

decoding process, andlor 2) monitoring the instantaneous energy level of the received 

signals. It is apparent that, when deep fades happen, the instantaneous received energy 

can drop tens of dB below its mean value. As a result, the estimated transmitted pattern 

provided by the forward Fano decoder is more prone to error due to low instantaneous 

SNR. To mitigate this problem, error detection and error correction can be made by 

performing a bi-directional search only when the received energy level falls below a 

certain threshold. By adopting this adaptive approach, we believe that the complexity gap 

between the sphere decoder and the Bi-Fano can be tightened considerably. 

Another possible refinement is the optimization of the search parameters (b, A). 

In general, a large bias b and a large step size A provide the decoder more tolerance to the 

sudden change in APM when a branch is struck by deep fades. Consequently, 

backtracking can be less frequent and hence the complexity can be much lower. In 

exchange, the BEP performance can be substantially degraded. However, tight search 

criteria usually results in large number of search failures or bias re-adjustments, 



especially when deep fades occur at both ends of the decoding block. In fact, this 

problem can be easily resolved by adopting the similar fade monitoring mechanism as 

discussed earlier. When deep fades are identified at the branches that are in the 

neighbourhood of the root node, the decoder can dynamically enlarge the biases b's of 

those branches in order to give more cushion against the sudden change in APM. 

However, we would like to emphasize that the biases have to be chosen very carefully 

because too large biases can result in the loss of power efficiency. 

In addition, the bit-error performance of our Fano detectors can be further 

enhanced by fixing the order of their linear predictors, just like how the DFDD is 

implemented. As recalled, the DFDD receiver uses a finite order predictor pN in the 

decoding process and slides its observation window by only one symbol at a time, instead 

of N -1 symbols. This receiver, termed the approximate ML sequence detection [25], is 

capable of delivering considerable amount of improvement in power efficiency because 

the decision on each transmitted symbol s[k] is based on the same (N -1)-th order of 

linear prediction. Since the Fano decoder is considered as an intelligent decision- 

feedback detector, which shares many common features of the DFDD, it is 

straightforward to adopt this sequence detection strategy in our Fano detector. Note that 

this receiver structure is not compatible with the sphere decoder due to its nature of 

searching. 



APPENDIX A: DERIVATION OF THE MAXIMUM 
LIKELIHOOD DECODING METRIC FOR 
BACKWARD LINEAR PREDICTIONS 

We present in this appendix the derivation of an ML metric in the backward 

decoding direction for both the SISO channel and the Alamouti-type ST channel. The 

reader, who has already gone through the derivation of the ML metric in Chapter 3 and 

Chapter 4, can treat this appendix as a natural extension to the forward linear prediction 

with little changes in notations. All of the work shown below is applied in the 

implementation of the Bi-Fano and Edge-Bi-Fano detectors. 

A.1 Backward ML Metric for SISO Systems 

For a backward search, we first define a backward discrete time index 

m = (N - 2), (N - l), ..., 0, where m can be related to the forward time index 

n = 1, 2, ..., (N -1) by m = N -n - 1. Let us define the m-th hypothesized fading-plus- 

T 
noise pattern ~ ( ~ ' [ m ]  = [i[m] i[m + 11 ... i [ N  - 111 , where i[m] = f [m]r[m] is the m-th 

hypothesized fading-plus-noise sample. The covariance matrix of the actual fading-plus- 

(b) T noise pattern g [m] = [g[m] g[m + 1] ... g[N - 1]] can be written as 

a, [N - m - 11 = E [g(b)[m]g(b)H [m]] = agg [n] . 



Note that the covariance matrix agg [N - m - 11 is interpreted as an (N - m - 1) by 

(N - m - 1) sub-matrix of the covariance matrix defined in (24) of Section 3.1. Now the 

quadratic form j$b)H [m]bii  [ N  - m - 11$~)[m] can be written as 

where @[O] = 0; + 1 is the variance of fading-plus-noise, and 

is the correlation vector between the current and past fading-plus-noise samples in the 

backward direction. Note that this correlation vector is a row vector whereas the one in 

(31) of Section 3.1 is a column vector. The order of the Bessel coefficients is also 

reversed. By applying the same iterative procedure shown in Section 3.1, (96) can be 

simplified to 

where 

2 (b) 
E [N-m-l]=@[O]-pg [ ~ - m - 2 ] @ i ~ [ N - m - 2 ] p ~ ~ ) ~ [ N - m - 2 ]  (99) 



is the mean square prediction error of an ( N  - rn - 1) -th order backward linear predictor. 

Note that E ~ [ N  - m -11 is equivalent to ~ ~ [ n ]  as defined in (33). This stems from the 

fact that, on average, the square error of an i-th order forward linear prediction is the 

same as the one of the backward linear prediction with the same order. 

Now the ML decoding metric can be written as 

Note that the constant term I ~ [ N  -ill2 /@o] is omitted in the decodmg process. The term 

cp(,b) [ N  - rn - 21~;; [ N  - m - 21 can be interpreted as an ( N  - m - 1) -th order backward 

linear predictor. 

A.2 Backward ML Metric for ST Systems 

Let us define 

as the vector containing all hypothesized fading-plus-noise samples from the rn-th ST 

interval up to the (N - 1)-th ST interval where rn = ( N  - 2), ( N  -I), . . . , 0. Note that rn is 

used as backward ST interval index whereas n is used as forward ST interval index and 

their relationship is rn = N  - n - 1 .  The covariance matrix of the actual fading-plus-noise 

samples 



G ' ~ '  [ m ]  = 

can be defined as 

where CDgg [ N  - m - 11 is an ( N  - m - 1) by ( N  - m - 1) sub-matrix of the covariance 

matrix defined in equation (24)  of Section 3.1. Now the quadratic form 

G ' ~ ' ~  [ ~ ] Y & [ N  - m - l ] ~ ( ~ ) [ m ]  can be written as 

~ ( b w  [ m ] ~ & .  [ N  - m - 1 1 ~ ' ~ )  [ m ]  

where & = 0; + 1 .  The correlation vector of the fading-plus-noise vectors g[m] and 

G'b' [ m  + 11 is defined as 

where c p T ' [ ~  - m - 21 is the correlation vector defined in (97). 

Applying the same iterative procedure shown in Section 4.1 yields 



where 

and 

Since the inverse covariance sub-matrices [ N  - m - 21 and 0;; [n - I ]  are equivalent 

for n  = N - m - 1 ,  and the backward correlation vector cpf)[N - m - 21 in (97) is just the 

reversed order of the forward correlation vector c p ,  [n - 11 as defined in (3 I ) ,  ( 1  08)  can be 

re-written as 

2 H [ m ] = K [ N  - m - I ] = &  [N-m-1]12 ,  (109) 

where E ~ [ N  - m-1] is defined in (99).  Substituting (109) into (106) yields 



where 

The second term in (1 10) is simply 

Let 

Gib'[m + 11 = 

and 

be the estimated fading-plus-noise vectors from transmit antennas 1 and 2 respectively. 

Since 



the last two terms in (1 10) can be written as 

and 

After substituting (1 12)-(117) in (1 lo), we arrive at a backward recursive equation 

Note that the recursive equation of the backward prediction is very similar to the one of 

forward prediction except that m is counting backward from (N - 2) to 0. Furthermore, 



the total accumulated metric for the backward prediction with a block size of N can be 

written as 

where 

e branch metri c of the reference fading-plus-noise sample for backward prediction. 

Since this term is independent of the hypothesized pattern, it can be omitted in the 

decoding process. 

Now let us define the branch metric as 

where 

is the predicted gain based on path history up to time m + 1. Similar to the forward 

prediction case, the first four terms of (121) are independent of the branch hypothesis in 



the current interval so the backward branch hypothesis can be sorted by the last two 

terms. The sum of the last two terms is represented as 

where 

is the vector of backward predicted gains at time m. Since i [ m ]  = 

g[m] = iH  [m]r[m]  = iH [m + l ] t [ m  + l ] r [m]  , (123) can be rewritten as 

{( 
H 

4(b'[m] = 2  Re i [ m  + 1 1 j $ ~ )  [ m ] )  t [ m  + l ] r [m]  

= ~e { ( a ( b ) [ m ~ ) H  i [ m  + I I ~ [ ~ I }  

I 
where 

is a rotated ST received vector, and 

(b a  [m]  = i [ m  + l ~ i ( ~ ) [ m ]  = 

G[m + 11 and 

If we further simplify q ( b ) [ m ] ,  (125) can be rewritten as 



where 

and 

For the backward Fano detection, the sequence of the paths to be searched is also 

determined by sorting the sums in (128). Thus, the decoder can use the same sorting 

algorithm as described in Section 4.2 to sort the M branches from largest to smallest at 

every discrete time m. 
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