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Abstract

In SONET/WDM networks, the bandwidth requirement of an individual network traffic de­

mand is normally much lower than the capacity provided by a wavelength channel. There­

fore multiple low-rate traffic demands are usually multiplexed together to share a high­

speed wavelength channel during the transmission, and demultiplexed when arriving at

corresponding destinations. This multiplexing/demultiplexing is known as traffic grooming

and carried out by SONET Add-Drop Multiplexers (SADM). Since SADMs are expensive

network devices, optimization problems in traffic grooming have been focusing on making

efficient use of the SADMs. Traffic grooming has attracted a lot of research attention, and

the optimization problems are challenging and NP-hard for almost all possible problem set­

tings. In this thesis, we will study the traffic grooming problem and focus on designing

efficient performance guaranteed algorithms for Unidirectional Path-Switch Ring (UPSR)

networks in the following three categories: Firstly, we study the traffic grooming problem

to minimize the total number of required SADMs in order to satisfy a given set of traf­

fic demands, and aim to get better upper bounds on the number of SADMs than those

achieved by previous algorithms. Secondly, we analyze the computational complexity and

propose an efficient approximation algorithm for grooming the regular traffic pattern, which

has not been studied previously. Thirdly, we study the computational complexity and pro­

pose efficient approximation algorithms for the Min-Max traffic grooming problem and the

Maximum Throughput traffic grooming problem. We will also study the traffic grooming

problems in Bidirectional Line-Switched Ring (BLSR) networks and discuss the extensions

of our results for UPSR networks to BLSR networks. Finally, we will survey existing re­

search problems on traffic grooming in other network topologies, for which we will discuss

possible future research directions.
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Chapter 1

Overview

1.1 Background

1.1.1 WDM technology

With the explosive growth of the Internet traffic, and the increasing demand for delay­

sensitive multimedia network applications, it has been a challenging issue for the telecom­

munication infrastructure to provide sufficient bandwidth capacity for numerous Internet

users. The introduction of fiber optics brings a bandwidth revolution to solve this problem.

Optical fibers provide huge bandwidth capacity, which can be up to 50 terabits per second.

However, the electronic network end devices usually operate on a speed of a few gigabits per

second [45]. To eliminate the huge opto-electronic bandwidth mismatch, the bandwidth of

an optical fiber is split into a number of non-overlapping wavelength channels, each of which

operates at an electronic data rate. This multiplexing is known as the Wavelength Division

Multiplexing (WDM) technology, which is widely used in optical networks to exploit the

tremendous bandwidth capacity inherent in optical fibers.

1.1.2 Traffic grooming

In a WDM optical network, every optical fiber supports multiple wavelength channels,

each of which has a bandwidth up to a few gigabit per second. However, the bandwidth

requirement of an individual network traffic demand is normally much lower than the ca­

pacity provided by a wavelength channel. Therefore multiple low-rate traffic demands are

1



CHAPTER 1. OVERVIEW 2

usually multiplexed together to share a high-speed wavelength channel during the trans­

mission, and demultiplexed when arriving at corresponding destinations. The multiplex­

ing/demultiplexing is known as tmffic grooming, and the maximum number of traffic de­

mands that can be multiplexed into a wavelength channel is called grooming factor. For

example, four OC-3 (155.52 Mbps) traffic demands can be multiplexed into a wavelength

channel operated at OC-12 (622.08 Mbps), giving a grooming factor of 4.

In SONET/WDM networks, traffic grooming is carried out by SONET Add-Drop Mul­

tiplexers (SADM), where one SADM is used to multiplex/demultiplex the traffic demands

into/from a specific wavelength channel at each network node. With the emerging optical

devices such as Wavelength Add-Drop Multiplexers (WADM), it is possible for a network

node to optically bypass a wavelength channel if the wavelength does not carry any traffic

ending at the node. Therefore, at each network node SADMs are needed only for the wave­

lengths which carry traffic from/to the node. Figure 1.1 shows the difference between an

optical network node architecture without WADM (Figure 1.1(a)) and a node architecture

with WADM (Figure 1.1(b)), where it is assumed that only wavelength A2 carries low-rate

traffic demands from/to the network node shown in the Figure. It is clear that the number

of SADMs can be decreased by deploying one WADM at each network node, and arrang­

ing the multiplexing/demultiplexing carefully. SADMs are expensive network devices and

dominate the cost of SONET/WDM networks, so it is critical to minimize the number of

SADMs in the SONET/WDM network design by utilizing the optical bypass capability of

WADMs. Generally speaking, to reduce the number of SADMs, low-rate traffic demands

should be groomed in a way to yield as many optical bypasses as possible.

In the following, we use a simple example to illustrate that a good grooming scheme

saves the number of used SADMs. Consider a unidirectional ring network of four nodes

shown in Figure 1.2 (a), where traffic demands must be routed in the clockwise direction

and each optical fiber supports two wavelength channels. Suppose that each of the two

wavelengths AI, A2 operates with a bandwidth OC-48, and there is an OC-16 traffic demand

between each pair of nodes in the network. Since the grooming factor is 3 and every traffic

demand is routed in the clockwise direction, a possible grooming scheme is as follows: traffic

demands (1,2), (2, 1), (2,3), (3, 2), (3,4), (4,3) are groomed into wavelength AI, and traffic

demands (1,3), (3, 1), (2,4), (4, 2), (1,4), (4,1) are groomed into wavelength A2. This scheme

requires eight SADMs in total, which are listed in details as follows (see Figure 1.2 (b)):

1. Node 1 need one SADM for wavelength Al to add traffic (1,2) and drop traffic (2,1);
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Figure 1.1: Node architecture without/with WADM.
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2. Node 1 need one SADM for A2 to add traffic (1,3), (1,4) and drop traffic (3,1), (4,1));

3. Node 2 need one SADM for Al to add traffic (2,1), (2,3) and drop traffic (1,2) (3,2);

4. Node 2 need one SADM for A2 to add traffic (2,4) and drop traffic (4,2);

5. Node 3 need one SADM for Al to add traffic (3,2), (3,4) and drop traffic (2,3), (4,3);

6. Node 3 need one SADM for A2 to add traffic (3,1) and drop traffic (1,3);

7. Node 4 need one SADM for Al to add traffic (4,3) and drop traffic (3,4);

8. Node 4 need one SADM for A2 to add traffic (4,2), (4,1) and drop traffic (2,4), (1,4).

A better grooming scheme is as follows: (1,2), (2, 1), (2,4), (4,2), (1,4), (4, 1) are groomed

into wavelength AI, and (1,3), (3, 1), (2,3), (3,2), (3,4), (4,3) are groomed into wavelength

A2. This scheme requires seven SADMs in total, where two SADMs for each of node 1, 2, 4

and one SADM for node 3 (see Figure 1.2 (c)).
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(b)

Figure 1.2: A traffic grooming example.

(c)

A major objective of traffic grooming in SONET/WDM networks is to find a grooming

scheme for a given set of traffic demands, such that the total number of required SADMs is

minimized. This problem is surveyed in [20, 43, 47, 68]. Also, it is worth pointing out that

the traffic grooming problem is closely related to another important optimization problem

in optical network design, which is to minimize the number of required wavelengths in order

to satisfy a given set of traffic demands. Intuitively it seems that a smaller number of

wavelengths implied a smaller number of SADMs. However, previous studies have shown

that the two optimization goals can not be achieved simultaneously in general [7, 25, 42].

Therefore, it is natural to optimize one goal subject to a specific constraint of the other

goal. Specifically, grooming schemes for minimizing SADMs subject to using the minimum

number of wavelengths have been explored in [7, 32, 42, 64].

Another important optimization goal for the traffic grooming problem is to minimize
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the maximum number of SADMs at a network node over all network nodes (known as the

Min-Max traffic grooming problem in [12]). Such a Min-Max traffic grooming problem is of

high practical interest. First of all, minimizing the maximum number of SADMs very likely

produces a homogeneous network design in terms of the number of SADMs at each network

node. Homogeneous nodes usually have lower cost than heterogeneous ones for network

deployment, maintenance and upgrade due to the identical specifications. Furthermore,

the Min-Max optimization goal is important for dealing with dynamic traffic demands. In

particular, if the traffic pattern is changing dynamically within a given set, we can pre­

compute a solution for each traffic pattern in the set, and deploy in every node with the

largest number of SADMs required by any solution. Thus any traffic pattern from the given

set can be satisfied without reconfiguring the deployment of SADMs.

It is also an important optimization goal for the traffic grooming problem to maximize

the number of accommodated traffic demands subject to using limited traffic grooming

resources (known as the Maximum Throughput traffic grooming problem in [67, 66, 65]).

This problem is critical in the situation that there are no sufficient SADMs in the network

to satisfy the full connectivity of the traffic demands. Especially in the WDM network

operation, when the deployed SADMs are not sufficient to satisfy the full connectivity for a

given set of traffic demands, a grooming scheme which satisfies as many traffic demands as

possible is greatly desired.

1.1.3 Network topology

The traffic grooming problem has attracted a lot of research attention, and previous work in

the literature is mainly in ring networks. SONET rings have been widely used to construct

Metropolitan Area Networks (MAN), which are typically backbone optical networks that

span metropolitan areas. For example, the telephone companies have provided MAN services

in the form of SONET rings for years [IJ. We will give a brief introduction on the SONET

ring topology in the following.

There are two main architectures in SONET/WDM ring networks: Unidirectional Path­

Switched Ring (UPSR) networks and Bidirectional Line-Switched Ring (BLSR/2 or BLSR/4)

networks [26J. In a UPSR network, there is a pair of optical fibers between each pair of

adjacent nodes in the ring. Each fiber provides a unidirectional link and the two fibers work

in opposite directions. The fibers in a UPSR constitute two unidirectional rings with one in

the clockwise direction and the other in the counter-clockwise direction, where one ring is
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used as a working ring and the other as a protecting ring (see Figure 1.3 (a)). A bidirectional

communication between two nodes in a UPSR is realized with two nodes sending traffic on

the working ring, for example, both in the clockwise direction (i.e., all the fibers in the

working ring are used). In a BLSR/2 network, all fibers also constitute two unidirectional

rings that are the same as those in a UPSR network. However, the two unidirectional fiber

rings are both used as working rings, and the protection is provided by reserving 50% of

the capacity in each ring (see Figure 1.3 (b)). In a BLSR/4 network, there are two extra

unidirectional rings (one in the clockwise direction and the other in the counter-clockwise

direction) compared to BLSR/2. The protection is provided by reserving all the capacity of

the two extra rings (see Figure 1.3 (c)). A bidirectional communication between two nodes

in a BLSR may be realized with one node sending traffic in the clockwise direction and the

other node sending traffic in the counter-clockwise direction (Le., both working rings are

partly used). Compared to UPSR networks, the routing in BLSR networks is not unique,

which makes the traffic grooming problem in BLSR more complicated.

1.2 Previous work

Previous work on traffic grooming in UPSR and BLSR networks can be classified into two

categories: approximation algorithms with provable worst case performance guarantees, and

heuristic algorithm evaluated by empirical results. Traffic grooming is a very complicated

optimization problem, and usually it is difficult to obtain approximation algorithms with

guaranteed performances. In previous work, the performance guaranteed algorithms are

available only for all-to-all traffic pattern and duplex traffic pattern in UPSR networks [42,

32, 64, 7, 28, 11]' where the optimization goal is to minimize the total number of required

SADMs to satisfy a given set of traffic demands. For the arbitrary traffic grooming in UPSR

networks, and traffic grooming in BLSR networks, various heuristic algorithms have been

proposed [52, 50,16,17,51].

1.3 Thesis contributions

In this thesis, we will focus on developing performance guaranteed algorithms for traffic

grooming problems. We will propose performance guaranteed algorithms for UPSR networks

in the following three categories.
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3

(a) UPSR

7

3

(b) BLSR/2

3

(c) BLSR/4

Figure 1.3: Optical ring topologies.

protecting rings

First, we study the traffic grooming problem to minimize the total number of SADMs [55,

58]. We will propose two linear time approximation algorithms, which achieve better worst

case performance guarantees than previous algorithms. In addition, both of our algorithms

use the minimum number of wavelengths. Second, we consider the traffic grooming problem

with regular traffic pattern [56, 57], which has not been studied previously. We prove the

problem is NP-hard, and show that the problem does not admit a Fully Polynomial Time

Approximation Scheme (FPTAS) unless P = N P. We further prove that the problem

remains NP-hard even if the grooming factor is any value chosen from a subset of integers.

We also propose an approximation algorithm to solve the problem. As well, the proposed

algorithm always uses the minimum number of wavelengths. Last but not least, we study

the Min-Max: traffic grooming problem [60] and the Maximum Throughput traffic grooming

problem [59]. For each of the two problems, we prove the NP-hardness of the problem,
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and propose an approximation algorithm. We also study the all-to-all traffic pattern, and

present algorithms achieving solutions only constant factors away from the optimal ones.

In addition, we will study the traffic grooming problem in BLSR networks. As the

topology changes from UPSR to BLSR, the complexity of the traffic grooming problem

increases. There is no performance guaranteed algorithm available so far. We will extend

our algorithms proposed for UPSR networks to design efficient heuristic algorithms for traffic

grooming in BLSR networks.

1.4 Thesis organization

This thesis is organized as follows: In Chapter 2, we first present preliminaries, and then

summarize the previous work that is closely related to our research. In Chapter 3, we pro­

pose algorithms for the traffic grooming problem to minimize the total number of required

SADMs in UPSR networks, and obtain improved guaranteed performance than previous

algorithms. In Chapter 4 we study traffic grooming in UPSR networks with regular traffic

pattern, which has not be considered before. In Chapter 5 we consider the Min-Max traf­

fic grooming problem and the Maximum Throughput traffic grooming problem in UPSR

networks. We analyze the computational complexity for both problems, and propose per­

formance guaranteed algorithms for them. In Chapter 6, we study traffic grooming in BLSR

networks. Future extensions to traffic grooming in other network topologies are discussed

in Chapter 7. The final chapter concludes the thesis.



Chapter 2

Preliminaries and related work

In this chapter, first we will provide the notation and terminology, which will be used

throughout the thesis. Then we will survey the existing research of traffic grooming in the

literature. In particular, my main focus will be on the computational complexity of the

traffic grooming problems, and the performance guaranteed algorithms.

2.1 Preliminaries

2.1.1 Graph theory notation and terminology

In this thesis, we will propose performance guaranteed algorithms for traffic grooming using

a novel graph partitioning approach. We use the nodes in a graph to denote the nodes in the

network, and use the edges to model the traffic demands between network nodes. We will

first introduce the graph theory notation and terminology used throughout the thesis in the

following. Readers are referred to a textbook on graph theory (e.g., the one by West [61])

for basic definitions and terminology on graphs.

Let G(V, E) be a simple connected undirected graph with node set V(G) and edge set

E(G). For v E V(G), the degree 8(v) of v is the number of edges of G incident to v. If

8(v) = r for every v E V(G), we say G is a r-regular gmph. We use 6(G) to denote the

maximum degree over all nodes in G, (i.e., 6(G) = maxvEV(G) {8(v)}), and we simply use 6

instead of 6(G) when it is clear from the context. A path of G is a sequence of consecutive

edges {xo, Xd,{XI, X2}," .,{Xl-I, Xl} in G, where no repeated edge is allowed in the path,

and we use Xo - Xl - X2 - ... - Xl-I - Xl to denote the path for simplicity. The length of

9
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a path is the number of edges in the path, and we use l-path to denote a path of length l.

The two nodes at which a path starts and terminates are called end-nodes of the path, and

all other nodes on the path are called mid-nodes. A simple path is a path with no repeated

node. An Euler path of graph G is a path which uses each edge of G exactly once, and

a connected graph has an Euler path if and only if it has at most two odd-degree nodes.

A component of G is a maximal connected sub-graph of G. The edge connectivity of G is

defined to be the minimum number of edges whose deletion from G partitions G into at

least two components.

A tree T is a connected graph with IV(T) I - 1 edges, and a spanning tree of G is a tree

that contains all nodes of G. A rooted spanning tree of G is a spanning tree of G where a

node r is specified as the root. For any node u other than root r in a rooted spanning tree

T, the parent of u, denoted as up, is the node adjacent to u on the path from u to r in T.

For any node u in T, a descendant of u is a node x such that u is on the unique path from

x to r, and the length of the unique path from x to u in tree T is denoted by dT (x, u).

For any node u in T, the depth of u is defined as dT (u, r). For a node u in T, the subtree

induced by node u and all its descendants is denoted by Tu , and node u is the root of Tu .

The depth of Tu is defined as dT(u, r) (Le., the depth of node u). The height of Tu , denoted

as h(Tu ), is defined as max{dT(x, u)jx E V(Tu )}. A tree is called trivial if the tree contains

only one node.

For a simple undirected graph G(V, E), a matching M of G is a set of edges of G such

that no two edges of M share a node in common. We say a node is saturated by matching

M if the node is an end-node of some edge in M. If a matching saturates every node of G,

then it is a perfect matching. For graph G and a function b : V (G) --> Z+, a b-matching M

is a set of edges in G such that each node v of G appears in at most b(v) edges of M. A

maximum b-matching is a b-matching with the maximum cardinality, and can be computed

in polynomial time for a simple graph G [23]. An edge coloring of G is a coloring of the

edges of G such that adjacent edges receive different colors. For graph G and a function

f : V (G) --> Z+, an f -coloring is to assign a color for each edge in E(G), such that at most

f(v) edges incident to a node v receive the same color. It is proved that an f-coloring with

at most !:i.f + 1 colors can be computed in polynomial time for a simple graph G, where

!:i.f = maxvEv(G)f8(v)/f(v)1 [30]. The edge coloring is a special case of the f-coloring,

where f(v) = 1 for each v E V(G).

A clique of graph G is a complete sub-graph of G, and the size of the clique is the number
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of nodes in the clique. A star, denoted as S, is a tree with one node having degree IV(S) [-I

and the others having degree 1. The node of degree IV(S) 1-1 is called the center of star S.

A bipartite graph G(U, V, E) is a graph whose node set can be divided into two non-empty

sets U (G) and V (G) such that for every edge {u, v} E E (G), one of nodes u, v is in U (G)

and the other is in V (G).

2.1.2 Approximation algorithm

For any NP-hard optimization problem, there is no polynomial time algorithm to compute

an optimal solution unless P = N P. So much effort has been put into developing polyno­

mial time algorithms to find near-optimal solutions whose values are close to the value of

an optimal solution. We call such a near-optimal solution an approximate solution, and an

algorithm that produces approximate solutions an approximation algorithm. The following

formal definitions of the approximate solution, approximation algorithm, and approxima­

tion ratio are from the book by Cormen et al. [18].

Approximate Solution: for an optimization problem fl, a feasible solution with the value

close to the value of an optimal solution is an approximate solution of fl.

Approximation Algorithm: for an optimization problem fl, a polynomial time algorithm

that generates approximate solutions is an approximation algorithm of fl.

Any algorithm that produces approximate solutions for problem fl can be called an

approximation algorithm. How to evaluate approximation algorithms is important. Gen­

erally speaking, good approximation algorithms should be efficient (polynomial time) and

produce solutions with values as close to the optimum as possible. Concept approximation

ratio is widely used to evaluate approximation algorithms. In the following, we assume that

a solution always has a positive value.

Approximation Ratio: an approximation algorithm A for an optimization problem fl
has an approximation ratio of p(n) if for any instance of fl with size n, the value C of any

approximate solution produced by the approximation algorithm satisfies

C C*
max{ C*' C} ~ p(n),
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where C· is the value of an optimal solution.

12

This definition applies to both maximization and minimization problems. For a maxi­

mization problem, 0 < C :::; C·, and C· /C gives the approximation ratio. For a minimization

problem, 0 < C· :::; C, and C/C· gives the approximation ratio. Therefore, the approxi­

mation ratio of an approximation algorithm is at least 1, and the approximation ratio of

an optimal algorithm is exactly 1. An approximation algorithm with a large approximation

ratio may return a solution that is much worse than an optimal solution. Reducing the

approximation ratio as close to 1 as possible is a major goal of developing approximation

algorithms.

For a minimization problem Il, an algorithm A is called a Polynomial Time Approxi­

mation Scheme (PTAS) if its running time, for any instance of Il and a parameter of fixed

E > 0, is bounded by a polynomial in the size of the instance, and the value C of any solution

produced by A satisfies .g. :::; 1 + E, where C· is the value of an optimal solution. A Fully

Polynomial Time Approximation Scheme (FPTAS) is a PTAS for which the running time

is bounded polynomially in both the size of the problem instance and ~.

2.2 Related work

2.2.1 Traffic grooming in UPSR networks

Traffic grooming is a complicated optimization problem, and usually it is difficult to obtain

polynomial time optimal algorithms or even approximation algorithms with guaranteed

performances. So far, the performance guaranteed algorithms are available only for all-to­

all traffic pattern and duplex traffic pattern.

All-to-all traffic pattern

For the all-to-all traffic pattern, there is a traffic demand (x, y) from node x to node y for

every pair of nodes x and y in the UPSR network. A traffic demand is unitary if it requires

one unit of bandwidth. Without loss of generality, we assume that every traffic demand

is unitary, since otherwise we can split a traffic into multiple unitary sub-traffic. We call

(x, y) and (y, x) a duplex traffic pair, and use {x, y} to denote the unitary duplex traffic pair

(x,y) and (y,x). In the UPSR network, every duplex pair of unitary traffic occupies a full
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cycle with one unit of bandwidth. Such a full cycle is called a primitive cycle, and up to k

primitive cycles can be groomed into one wavelength for a grooming factor of k.

For the all-to-all traffic grooming with grooming factor k = 4 and k = 16, Chiu and

Modiano [42] derived lower bounds on the number of SADMs, and Hu [32J provided the

optimal solutions. For an arbitrary grooming factor k, lower bounds and heuristics were

proposed by Chiu and Modiano [42J, and Zhang and Qiao [64], where the heuristics are

evaluated by computer simulations, yet their approximation ratios are not given.

By formulating the traffic grooming problem as a graph partitioning problem, Bermond

and Coudert [7J optimally solved the all-to-all traffic grooming problem in UPSR networks

if the grooming factor k is a practical value or in the infinite congruence classes of values.

The graph partitioning formulation is based on the following fact which has been assumed

implicitly in [7J: for any grooming scheme (}, a grooming scheme (}' can be constructed such

that (}' always puts each unitary duplex pair into one primitive cycle and (}' uses no more

SADMs than (} (we will give the explicit proof for this claim in the next chapter). Therefore

for the all-to-all traffic pattern, we can always put each duplex pair into a primitive cycle,

and concentrate on grooming primitive cycles into wavelengths so that the number of used

SADMs is minimized. In the graph partitioning approach proposed by [7], the all-to-all

traffic pattern is represented by an undirected complete graph G(V, E) called traffic graph,

where V (G) represents the set of nodes in the UPSR network and each edge in E(G) between

node x and y represents the duplex traffic pair {x,y}. Then the all-to-all traffic grooming

problem is formulated as the following k-Edge-Partitioning problem of the traffic graph:

For a positive integer k ::; IE(G) I, partition the edge set E(G) into a collection of sub­

sets E = {E1 , E 2 , ... ,Ew} (where U~lEi = E(G) and Ep n Eq = 0 for p -:j:. q), such that

IEil ::; k for each E i E E and L:EiEt:IVi I is minimized, where Vi is the set of nodes in the

sub-graph induced by edge set Ei.

It is observed that integer k corresponds to the grooming factor, W corresponds to

the number of used wavelengths, each induced sub-graph corresponds to a wavelength, and

L:EiEt:IViI corresponds to the total number of used SADMs. We will take the example given

in Section 1.1.2 to illustrate the graph partitioning approach. The all-to-all traffic pattern

in the example can be represented by a complete graph K4 with 4 nodes shown in Figure 2.1

(a). The grooming scheme that uses 8 SADMs corresponds to the graph partition of K4
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shown in Figure 2.1 (b), and the grooming scheme that uses 7 SADMs corresponds to the

graph partition shown in Figure 2.1 (c) .

.....-----------:l.2

4 3

(a)

I:=)' IX'
4 3 4 3

sub-graph I sub-graph 2
(b)

]~7~' 1~'
443

sub-graph I sub-graph 2
(c)

Figure 2.1: A graph partitioning example.

Bermond and Coudert [7J tackled the graph partitioning problem using the techniques

of design theory [15J. Their results improve and unify all the previous results on the all-to­

all traffic grooming in UPSR networks. In particular, they completely or partially solved

the cases that k = 3,4,5,6,8,9,10,16 and various congruence classes for other values of

k. We will show the case k = 3 as an example of their results in the following. By using

the results from design theory, Bermond and Coudert proved the following result, where

E, P3, K3, Kl,3, P4 denote the graphes shown in Figure 2.2:

For complete graph K n with n nodes, the optimal k-edge partition of K n for k = 3 is as
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• • • • • L
E P3

K 3

11\ • • • •

K i ,3 P 4

Figure 2.2: Examples of graphes with at most three edges.

follows:

1. n(n
6
-1) K3 whenn:=l,3(mod6);

2. n(n~1)-8 K3 and 2 P3 when n:= 5(mod 6);

3. (n(n6-1) - ~) K3 and ~ K 1,3 when n:= O,4(mod 12);

4. (n(n~1)-2 - rn 42 1) K3, rn 421Kl,3 and 1 E when n:= 2,8(mod 12);

5. (n(n
6
-1) - n!2) K3, n42 K1,3 and 1 P4 when n:= 6, 10(mod 12).
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Bermond and Coudert [7] also discussed minimizing the number of used wavelengths,

and provided a deep insight into the cases for which the number of SADMs and the number

of wavelengths can not be minimized simultaneously.

Duplex traffic pattern

A set R of traffic demands is duplex if (x,y) E R implies (y,x) E R, where (x,y) denotes

a traffic demand from node x to node y. Duplex traffic demands are very common in

many applications, for example, IP telephony. The all-to-all traffic pattern discussed in

the previous section is a special case of the duplex traffic pattern. For the duplex traffic

grooming, we can similarly put each duplex pair into a primitive cycle, and concentrate on

grooming primitive cycles into wavelengths so that the number of used SADMs is minimized.

Therefore, the graph partitioning approach discussed for the all-to-all traffic pattern in the

previous section can be used for the duplex traffic pattern as well: the set R of traffic
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demand pairs is represented by an undirected graph G(V, E), where V (G) represents the set

of nodes in the UPSR network, and there is an edge in E(G) between node x and y if and

only if {x, y} E R. The only difference from the all-to-all traffic grooming is that we now

consider the k-Edge-Partitioning problem on arbitrary traffic graphs rather than complete

traffic graphs.

For arbitrary traffic graphs, Goldschmidt et at. [28] proved that the k-Edge-Partitioning

problem is NP-hard. The NP-hardness proof is based on the reduction from the Edge­

Partition into Triangles (EPT) problem, which is known to be NP-hard [31] and the decision

version of the EPT problem is stated as follows:

Edge-Partition into Triangles (EPT) Problem

Instance: An undirected graph G(V, E).

Question: Is there a partition of E(G) into pairwise disjoint subsets El, E2, ... ,EIE(Gll/3'

such that each E i induces a triangle?

For the NP-completeness proof, it is shown that any given instance of the EPT problem

can be transformed to an instance of the k-Edge-Partitioning problem on the same graph

with k = 3, such that the instance has a solution if and only if the original EPT instance

has a solution.

Goldschmidt et at. [28] also proposed an approximation algorithm for the k-Edge-Partitioning

problem on arbitrary traffic graphs. The algorithm first transforms a traffic graph G

into an open tree as follows: it computes a spanning tree T of G. Then for every edge

{u,v} E E(G)\E(T), it re-labels node vasa new node and attaches edge {u,v} to node

u in T. Figure 2.3 illustrates how to construct an open tree for a given graph G. It

is clear that an open tree of G has the same number of edges as G, and has duplicated

copies for some nodes of G. Then the open tree is partitioned into subtrees such that

r~l :::; IE(T')I :::; k for each subtree T'. For each subtree, a sub-graph G i of G can be

obtained by merging duplicated copies of the same node in the subtree. All such sub­

graphs together constitute a k-edge partition of G. It is clear that the number of edges

IE(Gi)1 in each sub-graph Gi satisfies r~l :::; IE(Gi)1 :::; k. For each sub-graph Gi , the

number of nodes IV(Gi )1 :::; IE(Gi)1 + 1, where the equation holds if and only if Gi is a

tree. Since each sub-graph contains at least r~l edges, the total number of sub-graphs

is at most I~~~ll :::; 2lEfll. Therefore, the total number of nodes over all sub-graphs is

Ei IV(Gi) I :::; Ei(IE(Gi)1 + 1) :::; IE(G)I + 2IE~Gll = IE(G)I(l + ~), which means the algo­

rithm uses at most rIE(G)I(l + ~)l SADMs.
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Figure 2.3: Illustration of constructing the open tree of a traffic graph.

Brauner et ai. [11] proposed another two approximation algorithms for the k-Edge­

Partitioning problem on arbitrary traffic graphs. The first algorithm is based on an approach

that constructs edge-disjoint 2-paths of traffic graph G [41]. Then the set of 2-paths are

partitioned into subsets, each of which contains l~J 2-paths. The edges appearing in the

2-paths of each subset induce a sub-graph of G, and all sub-graphs constitute a k-edge

partition of G. It can be shown that this algorithm uses at most r3IEJG)ll SADMs. The

second algorithm starts by adding virtual edges between odd-degree nodes to make every

node of G have even degree. Then an Euler path is constructed, and cut into segments such

that each segment contains k edges of the original graph G and some virtual edges. The

k-edge partition is obtained by removing virtual edges and merging duplicated copies of the

same node in each segment. This second algorithm uses at most r(l + VIE(G)Il + ~~dd

SADMs, where tlodd is the number of odd-degree nodes in the graph.

Arbitrary traffic pattern

Besides the performance guaranteed algorithms for all-to-all traffic pattern and duplex traffic

pattern, there are also heuristic algorithms proposed for arbitrary traffic pattern. We will

show some representative results in the following.

Due to the hardness of the traffic grooming problem, it is difficult to develop performance

guaranteed algorithms for the arbitrary traffic pattern. Instead, the heuristic algorithms
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evaluated by simulations have been proposed by a lot of research papers, among which the

work by Wan et ai. [52] can be considered as a representative one.

For an arbitrary traffic pattern, the algorithm in [52] uses a two-step approach to solve

the traffic grooming problem: generation of primitive cycles and grooming of primitive

cycles. In the first step to generate primitive cycles, the set of traffic demands are partitioned

into groups such that the routing paths for the traffic demands within any group do not

overlap. Therefore, the traffic demands in each group can be put into one primitive cycle.

The cost of each group (or primitive cycle) is defined as the number of different nodes

appearing as the endpoints of the routing paths contained in the primitive cycle, and the

cost of a partition is defined as the sum of the costs of the primitive cycles within this

partition. The objective of the first step is then to find a valid partition of the arbitrary

traffic set into groups such that the partition has the minimum cost.

In the second step to groom primitive cycles, primitive cycles are groomed into high­

speed wavelength channels such that the number of primitive cycles in each wavelength

channel is no more than the grooming factor k. The cost of each wavelength channel is

defined as the number of different nodes appearing as the endpoints of the routing paths

in the primitive cycles groomed in the wavelength channel, that is, the number of SADMs

required for the wavelength. Therefore, the objective of the second step is to groom a set

of primitive cycles such that the number of required SADMs is minimized. Wan et ai. [52]

give a performance guaranteed sub-algorithm for each of the two steps. However, there is

no proof (and it is difficult to prove) on a set of solutions of the first step, based on which

optimal solutions for the whole problem can be derived in the second step. Therefore, the

worst case performance of the two-step approach in [52] is not guaranteed.

2.2.2 Traffic grooming in BLSR networks

For BLSR networks, usually a similar two-step approach as the one in [52] is used to solve

the traffic grooming problem, where the first step is to generate primitive cycles and the

second step is to groom primitive cycles into wavelength channels. Traffic grooming in

BLSR networks is more complicated than traffic grooming in UPSR networks, and there

is no performance guaranteed algorithms so far even for all-to-all traffic pattern. However,

there has been research work which proposes performance guaranteed sub-algorithms for

each of the two steps. We will briefly review such algorithms for both all-to-all traffic

pattern and arbitrary traffic pattern in this section.
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All-to-all traffic pattern
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Wan [50] studied the all-to-all traffic grooming on BLSR networks for grooming factor

k = 1,2, and 4. Colbourn and Wan [17], and Colbourn and Ling [16] solved the case k = 8

using the techniques of design theory [15]. All of these works use the same two-step approach

to tackle the traffic grooming problem: the first step is to generate primitive cycles and the

second step is to groom primitive cycles, where the goal for the first step is to minimize the

number of primitive cycles, and the goal of the second step is to minimize the number of

SADMs.

For the first step, Wan [50] proposed the an approach to achieve the minimum number

of primitive cycles: when the number n of nodes in the BLSR network is even, ~2 primitive

cycles are constructed, where r~21 primitive cycles are in the clockwise direction and the

other l ~2 J ones are in the counterclockwise direction; when n is odd, n
2

4-1 primitive cycles

are constructed, where rn2

811 primitive cycles are in each of the clockwise and counter­

clockwise directions. For the second step, they model the primitive cycles constructed in

the first step as a complete graph with a loop on each node, and then formulate the primi­

tive cycle grooming into a graph partitioning problem: partition the edges of the graph into

sub-graphs, each of which contains at most k edges (where loops are counted as edges when

n is odd, and counted as half-edges when n is even), such that the total SADM cost of all

sub-graphs is minimized. Based on this graph partitioning approach, the cases k = 1,2,4,8

are studied in [16, 17, 50] to achieve the minimum number of SADMs given the primitive

cycles obtained in the first step.

It is worth pointing out that the two-step approach does not guarantee that the number of

used SADMs is optimum even the optimal solution can be achieved for each step individually.

This is because that the two steps are not completely independent, and the solution to the

first step might affect how the second step can be solved optimally.

Arbitrary traffic pattern

The two-step approach is used for arbitrary traffic grooming in BLSR networks as well [51].

The first step is to generate primitive cycles and the second step is to groom primitive

cycles obtained from the first step. Two versions of the problem are considered in [51],

where the first version is that each traffic stream has a predetermined routing, and the

second version is that the routing of each traffic stream is not given in advance. It is proved
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that both versions are NP-hard for any fixed grooming factor k. For both versions, various

performance guaranteed algorithms are developed to solve primitive cycle generation sub­

problem or the primitive cycle grooming sub-problem individually. However, it is difficult

to derive performance guaranteed results for the whole traffic grooming algorithm as well.



Chapter 3

Traffic Grooming in UPSR

networks

Minimizing the total number of required SADMs, as a major optimization goal of the traffic

grooming problem, has been shown very challenging. It is NP-hard even for Unidirectional

Path-Switched Ring (UPSR) networks with unitary duplex traffic pattern. In this chapter,

we propose two linear time approximation algorithms for this NP-hard problem based on a

novel graph partitioning approach. Both algorithms achieve better worst case performances

than previous algorithms. We show that the upper bounds obtained by our algorithms

are very close to the lower bounds for some instances. In addition, both of our algorithms

use the minimum number of wavelengths, which are precious resources as well in optical

networks. We also conduct extensive simulations to evaluate the average performances of

our algorithms.

3.1 Problem formulation

Recall that in UPSR networks, a pair of unitary duplex traffic occupies a full cycle with one

unit of bandwidth. Such a full cycle is called a primitive cycle, and up to k primitive cycles

can be groomed into one wavelength for a grooming factor of k. To illustrate the graph

partition formulation more clearly, we prove the following theorem first.

Theorem 1 For any grooming scheme (}, there exists a grooming scheme (}' such that (}'

always puts every unitary duplex pair into a primitive cycle and (}' uses no more SADMs

21
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than g.
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Proof: Recall that a primitive cycle denotes a full cycle with unitary bandwidth capacity

in the SONET/WDM ring network, that is, a wavelength channel along the ring network

consists of k primitive cycles for a grooming factor of k. In the UPSR network, a primitive

cycle can carry exactly one unitary duplex traffic pair. We consider any grooming scheme

9 as the following two-step procedure: the first step is a packing scheme P that puts traffic

into primitive cycles, and the second step is a clustering scheme C that puts primitive cycles

into wavelengths. We use pi to denote the special packing scheme that puts each duplex

traffic pair into a primitive cycle. For any grooming scheme 9 consisting of a packing scheme

p and a clustering scheme C, if P = pi, g' can be constructed such that g'=g. Otherwise,

it is observed that pi uses no more primitive cycles than P. We call traffic demand (i,j) a

long demand if its routing path in the UPSR has length at least ~ (where n is the number of

nodes in the UPSR), and a short demand otherwise. It is noticed that a duplex pair contains

at least one long demand. Now we define the following function f to map primitives cycles

used in pi to those used in P:

1. For each primitive cycle x used in pi that carries a long demand (i, j) and a short

demand (j, i), and suppose y is the primitive cycle used in P that carries (i, j), we

define f(x) = y.

2. For each primitive cycle x used in pi that carries two long demands (i,j) and (j, i) (in

this case, n is even, and the length of the routing paths for both (i,j) and (j, i) is ~),

and suppose Yl is the primitive cycle used in P carrying (i, j) and yz is the primitive

cycle used in P carrying (j, i), we define either f(x) = Yl or f(x) = yz.

The above function f is an injective function, since no primitive cycle can carry more than

one long demand from different duplex traffic pairs. Now we construct grooming scheme g'
with packing scheme pi, and clustering scheme C' as follows: two primitive cycles Xl and Xz

used in pi are put into the same wavelength if and only if f(Xl) and f(xz) are put into the

same wavelength in C. Since f is an injective function, it is clear g' uses no more SADMs

than g. 0

According to Theorem 1, for a set R of unitary duplex traffic demand pairs in UPSR

networks, we can always put each pair into a primitive cycle, and concentrate on grooming

primitive cycles into wavelengths so that the number of required SADMs is minimized. That
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is, the traffic grooming problem can be solved by partitioning R into subsets, each of which

contains at most k duplex pairs, and use one wavelength to carry each subset. For each

node involved in at least one duplex pair of a subset carried by a wavelength A, we need one

SADM for wavelength A at the node, and minimizing the total number of required SADMs

is equivalent to minimizing the sum of the number of distinct nodes involved in each subset.

As we mentioned in Chapter 2, the traffic grooming problem in UPSR networks with

unitary duplex traffic pattern has been formulated as the following k-Edge-Partitioning

problem to develop approximation algorithms [11, 28]:

k-Edge-Partitioning Problem

Instance: A traffic graph G(V,E) and integer k::; IE(G)I.

Objective: Partition the edge set E(G) into a collection of subsets £ = {E l , E2 , ••. , Ew}

(where U~lEi = E(G) and Ep n Eq = 0 for p =f q), such that IEil ::; k for each Ei E £ and

LEiE£IViI is minimized, where Vi is the set of nodes in the sub-graph induced by edge set

Ei·

In this formulation, a simple undirected graph G(V, E), called traffic graph, is con­

structed to represent the set R of unitary duplex traffic demand pairs, where node set V(G)

denotes the set of network nodes in the UPSR and there is an edge {x, y} E E(G) between

node x and y if and only if there exists a unitary duplex pair {x, y} E R (when it is clear

in the context, we use {x,y} to denote either an edge in the graph or a unitary duplex pair

in R). It is observed that integer k corresponds to the grooming factor, W corresponds

to the number of required wavelengths, and LEiE£IViI corresponds to the total number of

required SADMs. We also notice that f/E1G) I1is a lower bound on the number of required

wavelengths (Le., f'E1G)[1 ::; W).

3.2 Algorithms

For arbitrary traffic graphs, the k-Edge-Partitioning problem has been proved NP-hard [28]

and two approximation algorithms have been proposed in [11, 28J. Intuitively, to achieve

good solutions for the k-Edge-Partitioning problem, we need to partition traffic graph G into

sub-graphs of at most k edges such that each sub-graph contains as few nodes as possible.

One key observation is that given a fixed number of edges of G, a sub-graph induced by

the edges more likely contains fewer nodes if there are fewer components in the sub-graph.

This is the basic idea behind the algorithms in [11, 28]. The algorithm in [28] guarantees



CHAPTER 3. TRAFFIC GROOMING IN UPSR NETWORKS 24

that each sub-graph is connected, while every sub-graph might contain only rk/2l edges in

the worst case. The algorithm in [11] does not guarantee that each sub-graph is connected,

instead it guarantees that the total number of components over all sub-graphs is bounded

above and each sub-graph contains exactly kedges.

In this section, we propose two linear time approximation algorithms for the k-Edge­

Partitioning problem based on a novel graph partitioning approach. Both algorithms utilize

the similar idea as that of the algorithm in [11], and they guarantee the total number

of components over all sub-graphs is bounded above. Our algorithms use at most r(l +
i) jE(G) Il + llV~G)1J SADMs and achieve a better upper bound than previous algorithms

of [11] and [28J as long as t:!J.odd > IV~G)I (i.e., the traffic graph has a small number of even

degree nodes) andl~fg~f > ~ (i.e., the traffic graph is relatively dense), respectively. It can

be shown that our upper bounds are very close to the lower bounds for some instances. In

addition, it is worth pointing out that both of our algorithms use the minimum number

r'EtG)'l of wavelengths. We also conduct simulations to evaluate the performances of our

algorithms, and the results show that our algorithms outperform the previous algorithms.

3.2.1 Skeleton and skeleton cover

To solve the k-Edge-Partitioning problem, our algorithms use a novel approach of partition­

ing traffic graph G into special sub-graphs called skeletons. A skeleton 5 of G is a connected

sub-graph of G that consists of a backbone and a set of branches, where the backbone is a

path of G, and each branch is an edge of G such that at least one end-node of the edge is

in the backbone. We say a branch {u, v} is attached to node u in the backbone if u is a

node in the backbone (notice that a branch may be attached to two nodes in the backbone).

The length of a skeleton 5, denoted as l(5), is the length of its backbone. A skeleton cover

S of graph G is a set of skeletons {51, 52 ... , 5 j } which form an edge partition of G (i.e.,

U{=d E(5i ) = E(G) and E(5p ) n E(5q) = 0 for p =F q), where j is the size of the skeleton

cover (i.e., j = lSI). We call f : V(G) -t S a characteristic function of skeleton cover S if

f maps each node u E V(G) to a unique skeleton 5 j E S for some 5 j with u E V(5 j ). For

each node u E V(G) and f(u) = 5 j , u is called a characteristic node of 5 j • The following

properties on skeletons and skeleton covers play key roles in our algorithms.

Proposition 2 For any skeleton 5 and integer t with 0 < t < IE(5)1, 5 can be partitioned

into two skeletons 51 and 52, such that IE(51)1 = t and IE(52)1 = IE(5)1- t.
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Proof: We prove. this proposition by constructing Sl and S2 from S. Assume that the

backbone of S is U1 - U2 - ... - UI(Sl+1, where U1 and UI(Sl+1 are the two end-nodes of the

backbone. Initially Sl is empty (i.e., IE(Sl)1 = 0). We start from i = 1 to check whether

the number of branches attached to Ui is less than t - IE(Sl)l. If so, we remove all such

branches and edge {ui,ui+d from S, add them into Sl, and repeat the same process for

next node Ui+1 in the backbone. Otherwise we remove t - IE(Sl)1 such branches from S,

add them into Sl, and terminate with S2 = S\Sl. It is easy to see that eventually both Sl

and S2 are skeletons with IE(Sl)1 = t and IE(S2)1 = IE(S)I - t. 0

By Proposition 2, it is easy to transform a skeleton cover to a k-edge partition of G with

exactly k edges in each sub-graph except the last one (note that some sub-graphs might be

disconnected). Especially we have the following proposition for any skeleton cover.

Proposition 3 Any skeleton coverS = {Sl, S2,"" Sj} of graph G can be transformed into

a k-edge partition £ = {E1, ... , Ew} of G with W = rlE1GliliEil = k for 1 ~ i < W, and

2:EiEf IViI ~ f(l + t)IE(G)1l + (j - 1).

Proof: Let Si and ti be the end-nodes of the backbone of each skeleton Si E S. We

can connect Sl, ... , Sj into one skeleton S* by adding (j - 1) virtual edges {ti, si+d for

1 ~ i ~ j - 1. According to Proposition 2, S* can be cut into W skeletons {Si, S2, ... , Sty},

where W = f'E1Gl' l, each skeleton S1 (1 ~ i ~ W -1) contains exactly k edges of G and

ji virtual edges, and Sty contains at most k edges of G and jw virtual edges. We have

2:~1 ji = j - 1 since the total number of added virtual edges is j - 1. For a skeleton of

k +ji edges, the maximum number of nodes in the skeleton is k +ji +1. Therefore the set of

skeletons {Si, S2' ... , Sty} becomes a k-edge-partition £ = {E1 , ••• , Ew} of G after deleting

virtual edges, and

w 1L IViI ~ IE(G)I + Lji + W = f(l + k)IE(G)ll + (j - 1).
EiEf i=l

o

Proposition 4 For any skeleton cover S = {Sl, S2, ...} of graph G and integer t, if there

exists a characteristic function f of S such that at most one skeleton in S contains less than

t characteristic nodes, then lSI ~ flV\Gl'l·
Proof: Assume that at most one skeleton contains x (where x < t) characteristic nodes.

By the definition of the characteristic function, each node U E V( G) is a characteristic
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node for exactly one skeleton in S. Since IV(G)I is the total number of nodes, we have

x + (ISI- l)t ~ IV(G)I, which implies that lSI ~ l(IV~Gll + ttl)J ~ rlV(tGlll 0

By Proposition 4, if we can construct a skeleton cover S of G such that the number of

characteristic nodes in each skeleton is bounded below, then the size of S is bounded above.

After S is transformed to a k-edge partition of G, the total number of components over all

sub-graphs in the k-edge partition will be bounded above.

In the following we propose two linear time approximation algorithms for the k-Edge­

Partitioning problem based on constructing skeleton covers of the traffic graph. The first

algorithm kEP constructs a skeleton cover with size at most rlV~Gl'l for traffic graph G.

The second algorithm SpanT..Euler constructs a skeleton cover with the help of Euler path

construction, and achieves an upper bound that is at least as good as the one obtained

by Algorithm kEP. In addition, both Algorithm kEP and Algorithm SpanT_Euler use the

minimum number r,E1Gl'l of wavelengths.

3.2.2 Algorithm kEP

The algorithm

We first give a brief review on the previous algorithms [11, 28] for the k-Edge-Partitioning

problem, since our algorithm is designed in order to overcome the deficiencies of these

algorithms. The algorithm in [11] first adds virtual edges between odd-degree nodes to

make every node of G have even degree. Then an Euler path is constructed, and cut into

segments such that each segment contains k edges of the original graph G and some virtual

edges. A k-edge partition is obtained by removing virtual edges and merging duplicated

copies of the same node in each segment. The algorithm in [28] transforms traffic graph G

into an open tree as follows: it first computes a spanning tree T of G. Then for every edge

{u, v} E E(G)\E(T), renames node v as U v and attaches edge {u, uv } to node u in T. It is

clear that an open tree of G has the same edge set as G, and has duplicated copies for some

nodes of G. Then the open tree is partitioned into subtrees such that r~l ~ IE(T')I ~ k

for each subtree T', and a k-edge partition can be obtained by merging duplicated copies of

the same node in each subtree.

As we mentioned previously, in order to achieve good solutions for the k-Edge-Partitioning

problem, the obtained k-edge partition should contain as few components as possible over

all sub-graphs. For the algorithm in [11], the number of components depends on the number
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of odd-degree nodes that can be as large as IV(G)I in the worst case. In addition, the adja­

cent edges in G might be separated far away in the constructed Euler path, therefore each

sub-graph G* in the obtained k-edge partition could be sparse in term of the ratio j~tg:H.

Similar problem might occur for the algorithm in [28], since the adjacent edges in G might

be separated far away in the constructed open tree.

We propose Algorithm kEP for the k-Edge-Partitioning problem. Our algorithm first

constructs a skeleton cover S of traffic graph G. Then all the constructed skeletons are

connected together by adding virtual edges to form a virtual skeleton, which covers all the

edges of G exactly once. Then the virtual skeleton can be partitioned into segments, each

of which contains exactly k edges of G and some virtual edges according to Proposition 2.

We notice that duplicated copies of a node of G might exist in a segment. In order to get a

k-edge partition of G, we need to merge duplicated copies of the same node as follows: for

any two edges {v,w} and {x,y} in a segment, assume v and x are two duplicated copies of

the same node in G (i.e., {v,w} and {x,y} are adjacent edges in G), we delete edge {x,y}

from the segment and add a new edge {v, y} into the segment. Therefore, a k-edge partition

can be obtained by removing virtual edges and merging duplicated copies of the same node

in each segment. The pseudo code of Algorithm kEP is given in Figure 3.1.

Algorithm kEP(G,k)
Input: An undirected graph G and integer k.
Output: A k-edge partition of G.
begin

Call Subroutine FindSkeleton(G) to construct a skeleton cover S = {Sl, ... , S.};
Let Ui and Vi be the end-nodes of the backbone of Si;
Connect SI, ... , S. into one virtual skeleton S· by adding (8 - 1) virtual edges {Vi, Ui+l} for 1 ~ i ~ s - 1;
Cut S· into l = i(IE(S·)I- s + 1)/k1 = iIE(G)I/k1 segments such that

each of the first l - 1 segments has k edges of G;
Remove virtual edges and merge duplicated copies of the same node in each segment;

end.

Figure 3.1: Pseudo code of Algorithm kEP.

The key part of Algorithm kEP is Subroutine FindSkeleton, which constructs a skeleton

cover S. In order to avoid the deficiencies of previous algorithms [11, 28], S is constructed

based on a rooted spanning tree T of traffic graph G (without loss of generality, we assume

that the traffic graph is connected, since otherwise we can deal with each component of the

traffic graph individually). Roughly speaking, the backbone of each skeleton is extracted
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from E(T), and edges of E(G)\E(T) are attached as branches (a few edges from E(T)

might also be attached as branches). Thus each skeleton is very likely to be a relatively

dense sub-graph of G. In addition, we construct S in a way that each skeleton in S has at

least four characteristic nodes (it can be easily show that there exist instances where four

characteristic nodes is the maximum worst case guarantee we can obtain), which guarantees

that the size of skeleton cover S is at most rlV~G)'l for traffic graph G. Figure 3.2 gives an

example on constructing a skeleton cover for a given traffic graph.

II

CY
10

edge in spanning tree T

edge not in spanning tree T

(a) traffic graph G

-. edge and node in backbone

- - - 0 branch and node not in backbone

(b) a skeleton cover containing two skeletons

Figure 3.2: Illustration of constructing skeleton cover.

Now we give the details of Subroutine FindSkeleton. Let S be the set of skeletons

extracted so far, and F = E(G) \ (USiES E(Si)) be the set of edges of G that have not been

included in the skeletons of S. Let GF be the graph induced by the edges in set F. Initially,

S is an empty set and GF = G. Let T be a rooted spanning tree of graph GF. We call the

edges in E(T) black edges and edges in Ew = F \ E(T) white edges. The skeleton extraction

is done in iterations. For each iteration, a subtree Tu with height two and the largest depth

in T is selected. Backbones are extracted from E(Tu ) and branches are extracted from Ew

(a few branches might be from Tu as well) to form skeletons. The constructed skeletons are

included into S, and edges appearing in the skeletons are removed from E(T) and Ew . The

largest depth of Tu guarantees that T is connected after the removal of edges appearing in

extracted skeletons, and T is always maintained to be a spanning tree of GF. The skeleton

extraction is repeated until h(T) ::; 1. Once h(T) ::; 1, the last skeleton is extracted if T is
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........ white edge

(a) marking nodes in T.
white edge {x, y} with x
marked

o unmarked node

(b) white edge {x, y} with
x in T. and y not in T.

• marked node

(c) white edge {x, y} with x and y in To

-- black edge

Figure 3.3: Marking nodes of Tu and white edge types.

not trivial.

Let Tu be a selected subtree of height two. Tu may only contain three nodes of G (Le., Tu

is a path x - xp - u). In this case, we can not get a skeleton with at least four characteristic

nodes from Tu . Instead, we contract the edge {x,xp } into a compact node Xc and go to the

next iteration. If Tu contains at least four nodes of G or a compact node, skeletons are

extracted. There are two major steps in the extraction. The first step is to mark the nodes

to be included in the backbone of a skeleton and update the spanning tree T (and thus Tu )

such that each white edge incident to a node of Tu is adjacent to at least one marked node.

The second step extracts skeletons.

In the first major step, we mark every non-leaf node and every compact node in Tu . For

Tu , we define

D l (u) = {xix is a descendant of u and dT(x, u) = l}.

For every non-leaf node v E Dl (u), if there is no compact node in Dl (v), then all nodes of

D1(v) are unmarked and we arbitrarily mark one node in D1(v). Since each compact node

has been marked (we will show later that each D1(v) contains at most one compact node),

exactly one node in each D1(v) is marked (see Figure 3.3(a)).

After the marking, each white edge {x, y} incident to a node of Tu belongs to one of the

following types: (a) at least one of x and y is marked, (b) x is an unmarked node of Tu and

y is a node of T\Tu , and (c) x and y are unmarked nodes of Tu (see Figure 3.3 for examples

of each type). We update T (and thus Tu ) by exchanging some white edges of the types (b)

and (c) with the edges in E(T) (i.e., black edges), such that the following properties hold:

• Property 1: Each white edge {x,y} incident to a node ofTu has either x or y marked;
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• Property 2: T is always maintained as a spanning tree of GF;

• Property 3: The height of Tu is not increased after the updating.

30

Property 1 guarantees that each white edge incident to a node of T can be included in a

skeleton as a branch. Property 2 guarantees that no edge will be missed when extracting

skeletons, since every edge of GF is either in the spanning tree T (i.e., a black edge) or

incident to a node in T (i.e., a white edge). Property 3 is used to make the second major

step (i.e., the skeleton extraction step) less complicated, as we only need to consider a

subtree of height two. Based on the three properties above, the key in extracting a skeleton

is to find the backbone of the skeleton. From now on, when we say a skeleton S with a

backbone Xl - X2 - ... - X s is extracted, we mean that S is extracted with Xl - X2 - ... - X s

as the backbone, and all white edges incident to the nodes of the backbone as branches.

Then S is included into S and the edges of E(S) are deleted from GF.

To satisfy Property 1, we need to process each white edge of the type (b) or (c), without

violating Properties 2 and 3. Recall that the parent of a node X E V (T) is denoted by xp '

For a white edge {x,y} of the type (b), we change {x,y} from white to black and change

{xp,x} from black to white (i.e., add {x,y} to E(T) and delete {xp,x} from E(T)) (see

Figure 3.4(b)). For a white edge {x,y} of the type (c), we further have the following two

sub-types: (c1) at least one node of {x, y} is in DI(u) and (c2) x, y E D2(U). For a type (c1)

white edge {x,y}, assume that y E DI(u). We change {x,y} from white to black, change

{x,xp } from black to white, and mark the nodes x,y (see Figure 3.4(c1) for an example).

For a type (c2) white edge {x, y}, we do not change the color of {x, y} but extract a skeleton

from Tu with the backbone containing {x, y} as follows.

• Update-Extract

Case 1: xp =I- yp' Let x' and y' be the marked nodes in DI(xp) and DI(yp), re­

spectively. We extract a skeleton S with the backbone x' - x p - x - y - yp - y' (see

Figure 3.4(c2-1)).

Case 2: x p = YP and IDI(xp)1 = 3. We extract a skeleton S with the backbone

x' - x p - x - y - xp - u (see Figure 3.4(c2-2)).

Case 3: xp = YP and IDI(xp)1 > 3. In this case, DI(xp) contains at least one node z

other than x', x, y. We extract a skeleton S with the backbone x' - xp - x - y - xp - z

(see Figure 3.4(c2-3)). If x',x,y,z are the only nodes in DI(xp), DI(xp) will become
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(b) change {x, y} from white to black and
change {x, Xp} from black to white.

(c I) change {x, y} from white to black, change
{x, xp} from black to white. and mark x, y.

~~. ~ '.~. ~
x;:Xyh'0 x~1\

....... x .......~. y:
x' y'

••.•..••••... Y

(c2-1) extract backbone
x· -xpx-y-yP-y'

(c2-2) extract backbone
x· -xpx-y-xp-u

(c2-3) extract backbone
x I -xp.x-y-xp-z

• marked node

........ white edge

-- black edge

Figure 3.4: Updating Ttl.

empty after the extraction of S, and we can attach the edge {xp , u} as a branch of S

as well. Otherwise D 1(xp ) is not empty and all nodes in D 1(xp ) are unmarked, so we

arbitrarily mark one node in D1(xp ).

It is easy to check that Properties 1, 2 and 3 are satisfied after the first major step. If

the height of Ttl is decreased and Ttl f= T, then we can go to the next iteration to select a

new Ttl of height two. Here we assume that after the marking step, either Ttl has a height

of two, or Ttl = T has a height of at most one. We execute the second major step to extract

skeletons from Ttl as follows.

• Extract

Let M be the set of marked nodes in D2 (u).

Case 1: IMI > 2. We arbitrarily choose two nodes X, y E M and extract a skeleton

S with the backbone X - x p - u - yp - y (see Figure 3.5(a)). We repeat this process

until IMI :::; 2.

Case 2: IMI = 2. Let M = {x,y}. We extract a skeleton S with the backbone

x - xp - u - yp - y. If the parent up of u exists, we extract the black edge {u,up} as

a branch of S as well.
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u

x Y
(a) extracting backbone x-x,.-u-yp-y

x
(b) extracting backbone x-x,.-u

x
(c) contracting {x. x,.} into compact node ""

Figure 3.5: Extracting skeletons from Tu .

Case 3: IMI = 1. Let M = {x}. If Tu = T (i.e., the skeleton to be extracted is the

last one from T), JV(Tu ) I ~ 4, or x is a compact node, we extract a skeleton S with

the backbone x - xp - u. (see Figure 3.5(b)). If the parent up of u exists, we extract

{u, up} as a branch of S as well.

Otherwise, Tu is a simple path x - xp - u and Tu =I- T (see Figure 3.5(c)). To meet

the constraint that each skeleton contains at least four characteristic nodes, we do not

extract x - xp - u as a skeleton from Tu . However, Tu still has a height of two and

may be selected in the next iteration. To break the deadlock, we contract the edge

{x,xp } into a compact node Xc to reduce the height of Tu to one. It is observed that

any node can not have more than one compact child, which guarantees that exactly

one node in D 1(v) will be marked in the first major step for each v E Dl (u) in the

subtree Tu . After a compact node Xc is included in the backbone of a skeleton (recall

that in the first major step we guarantee that a compact node will always be marked,

and thus a compact node will always be in the backbone of a skeleton), we recover the

edge {x,xp } from the node Xc and recover the edges incident to x or xp accordingly.

Case 4: IMI = O. In this case, Tu = T and Tu has a height of at most one. If

IE(T)I =I- 0, we extract the last skeleton S. It is observed that no white edge is

incident to a marked child of u, since all of these white edges have been processed

and included into some extracted skeletons. Therefore the single node u can be the

backbone and the branches are {ele E Ew U E(T)}. We then extract the skeleton S.

The pseudo code of Subroutine FindSkeleton is given in Figure 3.6.
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Subroutine FindSkeleton(G)
Input: Graph G.
Output: A skeleton cover S of G.
begin

S := 0; Compute a rooted spanning tree T of G;
while h(T) > 1 do
begin

Find a subtree T" with h(T,,) = 2 and the largest depth;
/* Major step 1. */
Mark every non-leaf node and every compact node of T,,;
Mark one node of D 1(v) for every non-leaf node v E D 1 (u) if no compact node is in D 1 (v);
For each {x, y} E Ew with x, y unmarked and at least one of x, yin V(T,,)

switch {x, y} do
case (x E V(T,,) and y E V(T)\V(T,,)): change white edge type (b);
case (x E D1(u) U D2 (u) and y E D1(u)): change white edge type (c1);
case (x,y E D 2 (u) and X p cI yp): Update_Extract case 1;
case (x,y E D 2 (u), x p = YP and ID1(xp)1 = 3): Update_Extract case 2;
case (x,y E D 2 (u), X p = YP and ID1(xp)1 > 3): Update..Extract case 3;

/* Major step 2. Let M be the set of marked nodes in D2 (u). */
while IMI > 2 do

{ pick x, y E M; Extract case 1; };
switch M do

case (M = {x,y}): Extract case 2;
case (M = {x}): Extract case 3;
case (M = 0): Extract case 4;

end of while
Recover every compact node Xc in each S; E S;

end.

Figure 3.6: Subroutine for finding a skeleton cover S of G.

Analysis of the algorithm

33

In this section, we show that Algorithm kEP finds a k-edge partition that uses minimum

number of wavelengths, and less SADMs than previous algorithms in most cases. First we

prove the correctness of Subroutine FindSkeleton, that is, we prove that each edge of G

appears in exactly one skeleton of S.

Lemma 5 Each edge of G appears in exactly one skeleton of S.

Proof: In major step 1 of Subroutine FindSkeleton, the nodes of Ttl are marked in such a

way that every edge incident to a node of Ttl is incident to a node in the backbone of some

skeleton S E S. This implies that every edge is included in some skeleton, either as an edge

in the backbone or as an attached branch. In major step 2, once an edge is included in a



CHAPTER 3. TRAFFIC GROOMING IN UPSR NETWORKS 34

skeleton, it is removed from the graph. Thus, each edge appears in exactly one skeleton of

s. D

Next we show that the size of skeleton cover S is bounded above by rIV~G)'1·

Lemma 6 The size of skeleton cover S is at most rIV~G)ll·
Proof: Assume S = {Sl,S2,S3, . ..}, where the skeleton Si is extracted before Sj for i < j.

We define a characteristic function f : V(G) ---> S as follows: for each u E V(G), f(u) = Si

if u E V(Si) and u (j. V(Sj) for any j > i. We now show that for i < j, IV(Si) \ V(Sj)1 ~ 4,

that is, each skeleton of S except the last one has at least four characteristic nodes. Each

skeleton Si is extracted in either Update-Extract or Extract.

• For Cases 1, 2, and 3 of Update-Extract, Si has the backbone x' -xp-x-y_yp_y',

x' -xp-x-y -xp-u and x' -xp - x-y-xp- z, respectively. The nodes {x', x, y, y'},

{x', xp, x, y}, and {x', x, y, z} do not appear in Sj (i < j), respectively.

• For Cases 1 and 2 of Extract, Si has the backbone x - x p - u - yp - y and x - xp ­

u - yp - y, respectively. The nodes {x, x p, yp, y} and {x, x p,u, yP' y} do not appear in

Sj (i < j), respectively.

• For Case 3 of Extract, Si has the backbone x - xp - u. In this case, IV (TtL) I ~ 4 or x

is a compact node if Si is not the last extracted skeleton of S. If x is a compact node,

after recovering x, IV (TtL) I ~ 4. The nodes of V(TtL ) do not appear in Sj (i < j) since

Si is the last skeleton extracted from TtL.

• For Case 4 of Extract, Si is the last extracted skeleton of S.

Therefore, we have IV(Si) \ V(Sj)1 ~ 4 for i < j, and the lemma holds, according to

Proposition 4.

Theorem 7 Algorithm kEP finds a k-edge partition £ = {E1, ... ,Ew} of G with W

r'E~G)'l, IEil = k for 1 ~ i < W, and EE;E£ IViI ~ f(1 + VIE(G)ll + llV~G)[J.

D

Proof: The theorem can be easily proved based on Proposition 3 and Lemma 6. D

According to Theorem 7, Algorithm kEP uses at most f(1 + t)IE(G)ll + llV~G)1 JSADMs

for a traffic graph G. In addition, Algorithm kEP uses the minimum number r'E~G)'l of

wavelengths since each sub-graph except the last one contains exactly kedges.
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It is worth pointing out that there exist instances whose optimal solutions require as

many as (1 + i)IE(G)1 + IEJfll SADMs, which is very close to the upper bound achieved

by Algorithm kEP. Consider a traffic graph G that is a tree with height two and rooted at

node r, and for each child Ui of r there exists exactly one child Vi of Ui, where 1 ~ i ~ IE~Gll

(see Figure 3.7). Grooming factor k is an odd value, and for convenience we assume that

IE(G)/ is a multiple of 2k. It is easy to see that an optimal grooming scheme is to put k

edges

into a sub-graph, and put kedges

{UH l~J' vHl~J}' {r, uHl~J+1}' {uHl~J+1' Vi+ l~J +1}' ... ,{r, UHk}, {UHk, Vi+k}

into a sub-graph, where 1 ~ i < IEJfll. This optimal grooming scheme uses (1 + !)IE(G)j +
IEJ~ll SADMs, which is very close to our upper bound. In addition, our algorithm kEP

does achieve the optimal solution for this specific instance.

Figure 3.7: A tree with height two.

Constructing S can be done in O(IE(G)I) time: First, it is well known that the spanning

tree generation can be done in O(IE(G)I) time. Second, each of the node marking and

skeleton extraction takes O(IE(G)I) time. This is because in each iteration, we process a

subtree and the associated white edges (Le., to mark the nodes and extract the skeletons

from the subtree), and this subtree, together with the white edges, is deleted from the graph

before proceeding to the next iteration. Third, after the skeleton cover is constructed, trans­

forming the skeleton cover to a k-edge partition of G also takes O(IE(G)I) time according
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to Proposition 3. Therefore, Algorithm kEP runs in O(IE(G)I) time, which is linear in the

size of the input graph.

Goldschmidt et al. [28] established a lower bound by observing that each sub-graph in

the best possible k-edge partition is a complete graph with exactly k edges. Therefore, the

total number of nodes over all sub-graphs is bounded below by IE~G)I . 1+/fB. Based on

this lower bound, we have the following theorem for Algorithm kEP.

Theorem 8 For a graph G with m edges and n nodes, and an integer k, Algorithm kEP is

a
~(r(l + k)ml + l~J)

1+y'8ffi
2

approximation algorithm for the k-Edge-Partitioning problem.

Proof: Trivial.

3.2.3 Algorithm SpanT...Euler

o

The k-Edge-Partitioning algorithms that we have discussed so far fall into two categories:

spanning-tree based algorithms(the algorithm in [28] and Algorithm kEP) and Euler-path

based algorithm (the algorithm in [11]). In this section, we propose a linear time approx­

imation algorithm SpanT-Euler, which combines the spanning-tree based skeleton cover

approach used by Algorithm kEP and the Euler-path based approach used in [11]. Algo­

rithm SpanT_Euler tries to minimize the total number of components over all sub-graphs as

well, and achieves an upper bound that is at least as good as the one obtained by Algorithm

kEP. Algorithm SpanT-Euler also uses the minimum number r'E~G)'l of wavelengths.

The algorithm

In order to achieve good solutions for the k-Edge-Partitioning problem, the obtained k-edge

partition should contain as few components as possible over all sub-graphs. The algorithm

in [11] constructs an Euler path of traffic graph G by adding virtual edges between odd­

degree nodes. Then the Euler path is cut into segments and virtual edges are deleted to

obtain a k-edge partition of G. However in the case that G contains a large number of

odd-degree nodes, there will be a large number of virtual edges, whose deletion further

implies a large number of components over sub-graphs in the k-edge partition. Algorithm
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kEP constructs a skeleton cover of G, and then transform the skeleton cover into a k-edge

partition. Skeleton are constructed using a spanning-tree based approach, which likely

produces skeletons with small size, and thus the size of the skeleton cover is usually large.

According to Proposition 3, a skeleton cover with large size yields a solution of the k-Edge­

Partitioning problem with large value. In this section, we propose Algorithm SpanT_Euler

that combines the techniques of constructing the Euler path and the skeleton cover. We

intend to generate a skeleton cover of small size with the help of Euler path construction.

On constructing a skeleton cover, the following lemma holds.

Lemma 9 If there exist l edge-disjoint paths which span every node in graph G, then G has

a skeleton cover with size l.

Proof: Each of the l paths can be considered as the backbone of a skeleton. Since the

backbones span every node in graph G, other edges which do not appear in the backbones

can be attached as branches. Thus the size of the constructed skeleton cover is exactly I. 0

It is proved by Jaeger [36] that if the edge connectivity of G is at least four, then there

exists a path that spans every node in G, which implies that there exists a skeleton cover

with size one for graph G according to Lemma 9. Following a similar argument, we generalize

the result of [36] as the following Lemma.

Lemma 10 Let T be a spanning tree of G, and c be the number of components in graph

G(V(G),E(G)\E(T», then G has a skeleton cover with size at most c.

Proof: Let Vodd ~ V(G) be the set of nodes having odd degree in graph G(V(G), E(G)\E(T».

lVoddl must be even since the number of odd-degree nodes in any graph is even. Pair the

nodes of Vodd arbitrarily and let P = {pl,p2,'" ,PJ.Y..wtl} be the set of simple paths in T
2

between each pair of nodes. For every edge e E E(T), let a(e) denote the number of paths

(in P) that contain edge e. Define

Eodd = {ele E E(T) and a(e) is odd}, and

Eeven = {ele E E(T),a(e) is even, and a(e) =I- OJ.

We prove in the following that Vodd is also the set of nodes that have odd degree in graph

G(V(G), Eodd)'
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For every node v E Vodd, let Ev ~ Eodd U Eeven be the set of edges adjacent to node v.

We notice that v is an end-node for exactly one path in P (i.e., only one edge in the path

is adjacent to v), and for any other path in P, either v is a mid-node of the path (i.e., two

edges in the path are adjacent to v) or v is not in the path (i.e., no edge in the path is

adjacent to v). Therefore l:eEEv a(e) must be odd. We also know that

L a(e) = L a(e) + L a(e),
eEEv eE(EvnEodd) eE(EvnEeven)

so jEvnEoddl must be odd, that is, every node v E Vodd has odd degree in graph G(V(G), Eodd)'

Similarly for every node u E V(G)\Vodd , since either u is a mid-node of some paths or u is

not in any path, we have that l:eEEu a(e) must be even. That is,

L a(e) = L a(e) + L a(e)
eEEu eE(EunEodd) eE(EunEeve,,)

must be even, and thus lEu n Eoddl must be even. Therefore every node u E V(G)\Vodd has

even degree in graph G(V(G), Eodd).

Since Vodd is defined to be the set of nodes having odd degree in graph G(V(G), E(G)\E(T)),

every node in graph G' = G(V(G), Eodd U (E(G)\E(T))) has even degree. We know that

G(V(G), E(G)\E(T)) contains at most c components, so there are at most c components

in graph G' as well. For each component in graph G', we can construct an Euler path since

all nodes have even degree (for the component consisting of a single node, the Euler path

is a special one consisting of the single node). It is clear that the Euler paths span every

node in G. Thus we can construct a skeleton cover of G with size at most c according to

Lemma 9. 0

Notice that a component of graph G' contains either a single node or at least three nodes

since each node has an even degree. A component is called small if it contains at most three

nodes, otherwise called large. In the worst case, the size c of the skeleton cover constructed

above could be as large as the number n of nodes in graph G (in this case, graph G is a tree

T and removing the edges of T gives c = n components, each of which is small component

containing a single node). To further bound the size of the skeleton cover, we use Algorithm

kEP to handle the small components of graph G'.

Given a graph G and a spanning tree T, let H be the sub-graph of G induced by the

nodes of the small components of G'. For a component h of H, there is an edge {u, v} and a

large component 9 of G' such that u E V(h) and v E V(g), since graph G is connected. We
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select one such 9 and edge {u, v} for h. If h has at most three nodes, then we connect h to

9 via edge {u, v} as an attachment. Otherwise, we use Algorithm kEP to extract skeletons

from h with node u as the root of the spanning tree of h until at most three nodes are left

in h, and let hi be the remaining sub-graph of h. We connect hi to 9 via edge {u, v} as an

attachment. Notice that hi is a path u - x - y of three nodes and nodes x and y do not appear

in any previously extracted skeletons (Le., nodes x and y can be treated as characteristic

nodes when they are included into some skeleton later). According to the above description,

an attachment must be one of the following five cases: a single node, a I-path, two I-paths,

a 2-path, or a triangle (see Figure 3.8(a)). We call an attachment large if it has at least

two nodes, and small if it is a single node. Obviously, a large attachment contains at least

two nodes which can be treated as characteristic nodes when they are included into some

skeleton later. For each large attachment, we select a longest path from v to a node in the

attachment as the main-path of the attachment (see Figure 3.8(a)).

For every large component 9 of G' , we find an Euler cycle of g. For every node v in

g, if there are at least two large attachments connected to v then we extract a skeleton

with the backbone to be the main-paths of two large attachments. There are at least four

characteristic nodes in the skeleton. We repeat this procedure until at most one large

attachment is connected to v. After the process, we have an Euler cycle of 9 and each node

v in the cycle is connected to at most one large attachment.

We view the Euler cycle of 9 as a ring with IE(g)1 edges (see Figure 3.8(b)). A node

v of 9 may appear multiple times in the ring. We arbitrarily select one appearance as the

real v and call any other a copy of v. All attachments connected to v are connected to the

real v in the ring. We call node v in the ring a special node if it is connected .to one large

attachment. The extraction of skeletons for large component 9 are now divided into the

following several cases:

• Case 1: there is no special node in the ring. A single skeleton is extracted with

the backbone as an Euler path of g, and any small attachment connected to 9 can

be treated as a branch (in the following, we will only mention the backbone of each

skeleton, since once the backbone is obtained, it is easy to decide the corresponding

branches). Notice that the backbone contains at least four nodes which do not appear

in any other skeleton, and thus can be treated as characteristic nodes.

• Case 2: there is one special node v in the ring. A single skeleton is extracted with
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Figure 3.8: Skeleton extraction.
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the backbone formed by an Euler path of 9 and the main-path of the large attach­

ment connected to v. Similar as Case 1, this backbone also contains at least four

characteristic nodes.

• Case 3: there are at least two special nodes in the ring. There will be two sub-cases

for extracting the first skeleton:

- Case 3.1: there are special nodes u and v such that the segment [u, v] (including

nodes u and v) in the ring does not contain any other special node and contains

at least one other real node. We find such a [u, v] and extract a skeleton with

the backbone formed by [u, v] and the main-paths of the two large attachments

connected to u and v. If each real node in the backbone is treated as a char­

acteristic node, then this backbone has at least seven characteristic nodes (see

Figure 3.8(b) for u = 1 and v = 3).

- Case 3.2: for any pair of special nodes u and v, if [u, v] does not contain any other

special node then [u, v] does not contain any other real node. We find such a [u, v]

and extract a skeleton with the backbone formed by [u, v] and the main-paths

of the two large attachments connected to u and v. Notice that this backbone

contains at least six characteristic nodes.

After the first skeleton is extracted, let W be the first real node searched from v on the

remaining segment of the ring and Wi be the special node in the remaining segment

such that [w, Wi] does not contain any other special node. We extract a skeleton

with the backbone formed by [w, Wi] and the main-paths of the large attachments

connected to wand Wi (note that if w is not a special node, we only need to include

one main-path. See Figure 3.8(b) for w = 4 and Wi = 5). Notice that this backbone

has at least four characteristic nodes. We repeat this procedure until all nodes in the

ring are processed and included into some backbone. It is noticed that in the worst

case the last backbone may contain only one real node as the characteristic node for

Case 3.1, and contain only a main-path of some large attachment (i.e., there are three

characteristic nodes in the backbone) for Case 3.2. Since the first backbone has at

least seven characteristic nodes for Case 3.1 and six characteristic nodes for Case 3.2,

there are at least four characteristic nodes in average in each skeleton.

After we process all large components of graph GI to extract skeletons, it is easy to verify
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Algorithm SpanT..Euler
Input: An undirected graph G and integer k.
Output: A k-edge partition of G.
begin

Compute a spanning tree T of G;
Let c be the number of components in G(V(G), E(G)\E(T));
Let Vodd ~ V(G) be the set of nodes having odd degree in G(V(G), E(G)\E(T));
Pair nodes of Vodd , and let P = {PI, P2, ... ,PlVoddl/2} be simple paths in T

between each pair of nodes;
Let Eodd ~ E(T) be the set of edges appearing in odd number paths of P;
Let G' = G(V(G), E odd U (E(G)\E(T)));
Let H be sub-graph of G induced by the nodes of small components of graph G';
Call Algorithm kEP to extract skeletons from each component of H with at least four nodes;
Connect attachments to large components of G';
Process each large component to extract skeletons;
Form a skeleton cover consisting of all the constructed skeletons;
Transform skeleton cover to a k-edge partition of G;

end.

Figure 3.9: Pseudo code of Algorithm SpanT_Euler.
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that we obtain a skeleton cover of graph G. The pseudo code of Algorithm SpanT-Euler is

given in Figure 3.9.

Analysis of the algorithm

Lemma 11 The size of the skeleton cover constructed in Algorithm Span T.Euler is at most

minH~l ,e}.
Proof: Each skeleton is constructed to contain at least four characteristic nodes in average,

therefore the size of the skeleton cover is obviously at most rIV~G)'1 according to Proposi­

tion 4. We will prove in the following that the size of the skeleton cover is bounded above

bye as well.

The only possible reason, which might cause the size of the skeleton cover to exceed e,

is that we may extract several skeletons from the same large component. However, it is

noticed that each such skeleton (except the last one) contains at least one large attachment.

For a large attachment, either it contains at least a small component of graph G', or it is

obtained after we extract skeletons by calling Algorithm kEP. For the former case, it is easy
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to conclude that cutting a large component into skeletons will not make the number of con­

structed skeletons exceed c, since each such skeleton contains at least one small component

of G'. For the latter case, the large attachment is obtained after extracting skeletons from

some component h of H (recall that H is the sub-graph of G induced by the nodes of the

small components of G'). We also know that each such extracted skeleton contains at least

four characteristic nodes, and h is composed of small components containing at most three

nodes. Therefore, the number of extracted skeletons from h must be at least one less than

the number of small components contained in h. Therefore, we can have the same conclusion

as the former case. In summary, we conclude that the total number of constructed skeletons

in Algorithm SpanT-.Euler can not exceed c. 0

Theorem 12 Algorithm SpanT_Euler finds a k-edge partition [; = {E1, ... , Ew } of G with

W = fIE1G)'lIEil = k for 1:::; i < W, and

EE;E£ IViI :::; f(1 + k)IE(G)1l + min {llV~G)IJ ,(c - I)}.

Proof: The theorem can be easily proved based on Proposition 3 and Lemma 11. 0

By Theorem 12, at most f(1 + k)IE(G)il +min {llV\G)IJ ' (c - I)} SADMs are used by

Algorithm SpanT-.Euler. It is also noticed that the algorithm uses the minimum number

f'E1G)'l of wavelengths for a traffic graph G.

Similarly, we have the following theorem for Algorithm SpanT_Euler.

Theorem 13 For a graph G with m edges and n nodes, and an integer k, Algorithm

SpanT_Euler is a
~(f(1 + k)ml + l~J)

1+v'8k±1
2

approximation algorithm for the k-Edge-Partitioning problem.

Proof: Trivial. D.

Since the spanning tree generation and Euler path construction can be done in O(jE(G)I)

time, it is clear that each step of Algorithm SpanT_Euler takes O(IE(G)I) time. So Algo­

rithm SpanT-.Euler runs in O(IE(G)/) time, which is linear in the size of the input graph.

3.3 Empirical results

In this section, we will conduct extensive simulations to evaluate the practical performances

of our algorithms by comparing to existing algorithms. We implemented the algorithms
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in [11, 28], our approximation algorithms kEP and SpanT_Euler to compare their perfor­

mances on randomly generated traffic graphs. In generating graphs, we specify the number

n of nodes and density ratio d that is used to calculate the number m = n 1+d of edges.

A graph of m edges and n nodes is generated by randomly connecting m pairs of nodes

among all n(n - 1)/2 possible pairs. We refer to the algorithms in [28J anq [l1J as Algo.

1 and Algo. 2 respectively. Figure 3.10 shows the empirical results for graphs of 36 nodes

with different settings of density ratio d and grooming factor k. For each pair of values

of d and k, we run the algorithms on 100 randomly generated traffic graphs and take the

average number of required SADMs. We observe that the spanning-tree based Algo. 1 and

Algo. kEP have better performances if density ratio d is smaller, and the Euler-path based

Algo. 2 has better performance if density ratio d is larger. As we pointed out previously,

Algorithm SpanT_Euler combines the techniques of constructing Euler path and skeleton

cover. Therefore, Algorithm SpanT_Euler can be considered as a hybrid of the spanning-tree

based approach and the Euler-path based approach. The empirical results in Figure 3.10

verify that Algorithm SpanT-Euler does take advantages of both approaches, and has bet­

ter performance than all of the previous algorithms. Also, we would like to mention that

for Algorithm SpanT_Euler and confidence interval [1 - 5%,1 + 5%], the confidence lev­

els are 88%,93%,96%,98%,99% and 100% for density ratio d = 0.1,0.2,0.3,0.4,0.5 and 0.6

respectively. We ran simulations on graphs with different parameter settings as well, and

the results present similar characteristics (see Figure 3.11 and Figure 3.12 for some other

representative results).

3.4 Summary

In this chapter, we proposed two linear time approximation algorithms for the traffic groom­

ing problem in the SONET/WDM UPSR network with unitary duplex traffic demands. Our

algorithms achieve better upper bounds on the number of SADMs and experimental per­

formances compared to previous ones, and they use the minimum number of wavelengths,

which are also precious resources in optical networks. The gap between the upper bounds of

our algorithms and the lower bound for arbitrary traffic graphs is still large (see Theorem 8

and Theorem 13). An interesting open problem is to further narrow the gap. The problem

seems challenging for arbitrary graphs because the upper bounds of our algorithms have

been shown very close to the optima for some sparse graph instances. The difficulty in
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Figure 3.10: Empirical results on graphs with n = 36 nodes.
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Figure 3.11: Empirical results on graphs with n = 48 nodes.



CHAPTER 3. TRAFFIC GROOMING IN UPSR NETWORKS 47

CD
c:i

""0
o
~
5l
16
"0

I
I I

I I
, I

i l
II

,,;
./

-'--:

M
c:i

""0
o
~

'".,
~

oL----o~----,~--=o,-----o=---=o,-----o=----:'o a
~ ~ ~ w W V N

O~---'=----::----='-----=:---=i5'----O=----'O=----'O=----:O:------:Oa
~ ~ g ~ ~ ~ g

S!'lOI7'S pOJ!nboJ )0 Joqwnu S!'lOI7'S pOJ!nbaJ )0 Joqwnu

L------=,------..,__~__~--_=_-____::O

~ ~ g ~
S!'lOI7'S pOJ!nbaJ )0 Jaqwnu

It)

c:i

""0
o
~

'".,
16
"0

(
I

"IIII
/,

I I
/1

//
// .

'":;
W

,.....N ~
.. "o 0 Q. to

99UJ a.
«.><(/)

: t

S!'lOI7'S pOJ!nboJ)o Jaqwnu

N
c:i

""0

,g
t!!

'".,
~

r;:::====::;---~--~--Ig
I;;
:;
w

.... N ~

ci ci Q. ~

~~~c%

: t

L-----~---,----i5~----g~---....Ji5a
N N

"':
a

""0

g
t!!

'".,"'""0

I I
I

I

I
I

/

/

M
0L----O~--~--=,----~--,.O,-----,O=--....JOa

N w ~ w

c:i

""0

,g
t!!

'".,
~
"0

S!'lOI7'S pOJ!nboJ )0 Joqwnu S!'lOI7'S paJ!nboJ )0 Jaqwnu

Figure 3.12: Empirical results on graphs with n = 60 nodes.
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narrowing the gap is that sparse graphs (e.g., trees) are shown the barriers for improving

the upper bounds, while the lower bound is based on the assumption that the graph can be

partitioned into cliques, which implies the graph is either dense or has a special structure.

One possible approach is to develop different lower bounds and algorithms for graphs with

different densities. For dense graphs, it is interesting to design algorithms which partition

the traffic graph into dense subgraphs, each of which is a clique or close to a clique. For

sparse graphs, a better lower bound seems necessary.



Chapter 4

Traffic grooming in UPSR with

regular traffic

In this chapter, we study the regular traffic pattern, which is considered as a generalization

of the well-known all-to-all traffic pattern. We focus on the Unidirectional Path-Switched

Ring (UPSR) networks as well. We prove that the traffic grooming problem is NP-hard for

the regular traffic pattern in UPSR networks, and show that the problem does not admit

a Fully Polynomial Time Approximation Scheme (FPTAS) unless P = N P. We further

prove that the problem remains NP-hard even if the grooming factor is any value chosen

from a subset of integers. We also propose a performance guaranteed algorithm to minimize

the total number of required SADMs, and show that the algorithm achieves a better upper

bound on the number of SADMs than previous algorithms applying on the regular traffic

pattern. In addition, our algorithm always uses the minimum number of wavelengths, which

are precious resources as well in optical networks.

4.1 Problem formulation

Recall that the traffic grooming problem in UPSR networks with duplex traffic pattern can

be formulated as the k-Edge-Partitioning problem on the traffic graph. In this chapter, we

study the regular traffic pattern, in which each network node is involved in r duplex traffic

demand pairs in the network, where 1 ::; r ::; n -1 for a network of n nodes. For the regular

traffic pattern, the traffic graph is a regular graph, and the traffic grooming problem can be

49
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formulated as the following k-Edge-Partitioning of Regular Graph problem:

k-Edge-Partitioning of Regular Graph Problem

Instance: A regular traffic graph G(V, E) and integer k ~ IE(G)I.

Objective: Partition the edge set E(G) into a collection of subsets [; = {Ell E2,···, Ew}

(where U~lEi = E(G) and Ep n Eq = 0 for p -I- q), such that IEil ~ k for each E i E [; and

l:EiE£IViI is minimized, where Vi is the set of nodes in the sub-graph induced by edge set

Ei.

The regular traffic pattern is a generalization of the well known all-to-all traffic pattern,

for which the traffic grooming problem has been well studied in [7, 32, 42, 64J. The regular

traffic pattern is of high practical interest, since optical network nodes usually have limited

capacity on sourcing/ending traffic demands simultaneously at any time due to the hard­

ware constraints. To the best of our knowledge, this is the first time that the regular traffic

grooming problem is addressed. It has been shown that the k-Edge-Partitioning problem

on arbitrary traffic graphs is NP-hard [28J. We prove that the k-Edge-Partitioning of Reg­

ular Graph problem remains NP-hard, and show that the problem does not admit a Fully

Polynomial Time Approximation Scheme (FPTAS) unless P = N P. As well, we prove the

problem remains NP-hard even if k = a(a - 1)/2 for each integer a 2: 3. We also propose

a performance guaranteed algorithm that achieves a better upper bound than previous al­

gorithms designed for general duplex traffic patterns. In addition, our algorithm uses the

minimum number of wavelengths, which are precious resources as well in SONET/WDM

networks. We also conduct extensive simulations to evaluate the average performance of

our algorithm.

4.2 Computational complexity

In this section we analyze the computational complexity of the k-Edge-Partitioning problem

on regular graphs. We first prove that the k-Edge-Partitioning problem is NP-hard on r­

regular graph for an arbitrary value of r, and further prove that the problem does not admit

an FPTAS unless P = N P. In addition, we show that the problem remains NP-hard even

if k = a(a - 1)/2, where a 2: 3 is integer and k < IE(G)I.



CHAPTER 4. TRAFFIC GROOMING IN UPSR WITH REGULAR TRAFFIC 51

4.2.1 NP-hardness

We consider the decision version of the k-Edge-Partitioning of Regular Graph (kEPRG)

problem, and prove it is NP-complete. The kEPRG problem is stated as follows:

k-Edge-Partitioning of Regular Graph (kEPRG) Problem

Instance: An undirected regular graph G(V, E), and integers k and T.

Question: Is there a partition of E(G) into a collection of subsets £ = {El , E 2, ... , Ew}

(where U:lEi = E(G) and Ep n Eq = 0 for Pi- q), such that lEi! ::; k for each Ei E £ and

LEiE£IViI ::; T, where Vi is the set of nodes in the sub-graph induced by edge set E i ?

We give a two-step reduction from the Edge-Partition into Triangles (EPT) problem to

the kEPRG problem. The EPT problem is known to be NP-complete [31] and stated as

follows:

Edge-Partition into Triangles (EPT) Problem

Instance: An undirected graph G(V, E) with IE(G)I = m.

Question: Is there a partition of E(G) into sets {El , E2, ... , E m / 3 } such that each Ei induces

a triangle?

In the first step we show that the EPT problem on regular graphs is NP-complete by a

reduction from the EPT problem.

Lemma 14 The EPT problem remains NP-complete when the input graph G is regular.

Proof: It is easy to see that if an odd-degree node exists in a graph, the graph can not be

partitioned into triangles. Therefore, the EPT problem is NP-complete even if the input

graph contains no odd-degree nodes. Otherwise, the EPT problem itself is not NP-complete.

In what follows, we assume the input graph has no odd-degree nodes when we refer to an

instance of the EPT problem.

The regular graph version of EPT is clearly in NP. Given an undirected graph G with

maximum degree ~ (where ~ is even) , we construct a ~-regular graph G* as follows (for

simplicity, we use (u,v,w) to denote a triangle with {u,v,w} as node set):

1. For every node v in G with degree 8(v) < ~, add triangles {(V,Uv,i,Uv,i+I)} for

i = 1,3,5, ... ,~ - 8(v) - 1 to get graph G' , where the ~ - 8(v) nodes uv,i's and

Uv,i+l'S are the new added nodes.

2. Make two extra copies of G' , and assume the number of new added nodes in G' is q.
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3. Re-Iabel all the new added nodes as UI, U2, U3, ... , U3q'

4. If 3q < ~22

(a) add 3p new nodes U3q+I, U3q+2, U3q+3, ... , U3q+3p, where p is the smallest integer

satisfying 3q + 3p 2: ~22;

(b) add p triangles {(U3q+i, U3q+i+1, U3q+i+2)} for i = 1,4,7, ... , 3p - 2;

(c) set q = q + p.

5. Add 3q new nodes WI,W2, W3, ... ,W3q and q triangles {(Wi, Wi+I, Wi+2)} fori = 1,4,7, ... , 3q­

2. Add another 3q new nodes YI,Y2,Y3, ... ,Y3q and q triangles {(Yi,Yi+I,Yi+2)} for

i = 1,4,7, ... , 3q - 2.

6. Repeat the following for i = 1,2,3, ... , ~22: add triangles {(Uj, WjEBi, YjEB2i)} for j =
1,2,3, ... ,3q, where EB is defined as mod 3q sum.

It is easy to verify that graph G* constructed above is a b.-regular graph. Figure 4.1

illustrates an example to construct regular graph G* based on the given graph G (we make

two copies for nodes YI, Y2 and WI to avoid messy drawing).

Now we prove that G can be partitioned into triangles if and only if G* can be partitioned

into triangles. If G can be partitioned into triangles, according to the construction of G*, G*

can be partitioned into triangles as well. If G* can be partitioned into triangles, it is noticed

that any triangle containing an edge from a copy of G can not contain any edge outside of

that copy. So each copy of G by itself must be able to be partitioned into triangles. 0

In the second step we show that the kEPRG problem is NP-complete by a reduction

from the regular graph version of the EPT problem.

Theorem 15 The kEPRG problem is NP-complete.

Proof: The problem is clearly in NP. Given an instance of the regular graph version of

EPT problem, where the input graph G is regular, we construct an instance of the kEPRG

problem on the same graph with T = m and k = 3, where m = IE(G)I.

If G can be partitioned into triangles, the triangle partition gives a solution for the

kEPRG problem where IEil = 3 for each E i E £ and LEiEt: IYiI = m.

We now prove that if G has a solution for the kEPRG problem with k = 3 and T = m,

then it can be partitioned into triangles. It is noticed that LEiEt: IYiI 2: m for k = 3, and the
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(a) graph G

"v,1

(c) regular graph G"

(b) graph G'

y2
" -;",-

Figure 4,1: An example: graph G with ~ = 4 and the corresponding 4-regular graph G*.

equation holds if and only if G can be partitioned into complete graphs with 3 edges (i,e.,

triangles). Since we have LEiE£ IViI ~ T = m, it must be the case that LE;E£ IViI = m,

which implies that G can be partitioned into triangles. 0

4.2.2 The non-existence of FPTAS

We further prove that the kEPRG problem does not admit an FPTAS unless P = N P.

Theorem 16 The kEPRG problem does not admit an FPTAS unless P = N P.

Proof: Assume that kEPRG does admit an FPTAS. Now we construct an algorithm A

that calls the FPTAS with parameter € = 2';+1' where m is the number of edges of graph

G. Since the time complexity of an FPTAS is polynomial in the problem size and also

polynomial in ~ = 2m + 1, algorithm A is polynomial in the problem size (i.e., A is a
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polynomial time algorithm for the kEPRG problem). Given any input instance I, let A(I)

denote the value of the solution by algorithm A and OPT(I) denote the optimum. Since

any solution to the problem must be integral value, we assume A(I) = OPT(I) + i for some

positive integer i. We have OPT(I) + i = A(I) ~ (1 + f)OPT(I) = (1 + 2~+l)OPT(I),

which implies that OPT(I) ~ i(2m + 1). It is observed that OPT(I) ~ 2m for any input

graph with m edges, therefore OPT(I) ~ i(2m + 1) holds only when i = 0, which implies

that OPT(I) = A(I). So A is an optimal algorithm with polynomial running time. But

this can not be true for the NP-hard problem kEPRG unless P = N P. 0

According to Theorem 16, it is worth pointing out that the following corollary holds for

the k-Edge-Partitioning problem on arbitrary traffic graphs.

Corollary 17 The k-Edge-Partitioning problem does not admit an FPTAS unless P = N P.

4.2.3 NP-hardness for restricted k

In the above we proved that the kEPRG problem is NP-complete by showing the sub­

problem of the kEPRG with k = 3 is NP-complete. In this section, we extend the NP­

completeness result by showing that the kEPRG problem is NP-complete for every k =

a(a - 1)/2, where a ~ 3 is integer and k < IE(G)I.

Holyer proved in [31J that for each integer a ~ 3, it is NP-complete to determine whether

an arbitrary graph can be edge-partitioned into sub-graphs isomorphic to the complete

graph K a . This NP-complete problem can be stated as the following Edge-Partition into

K a (EPKa) problem:

Edge-Partition into K a (EPKa) Problem

Instance: An undirected graph G(V, E) with IE(G)I = m, and an integer a ~ 3.

Question: Is there a partition of E(G) into sets {El,E2, ... ,E_m_} such that each Ei
a(a-I)/2

induces a complete graph K a ?

We first show that for each integer a ~ 3, the EPKa problem on regular graphs is

NP-complete by a reduction from the EPKa problem.

Lemma 18 The EPKa problem remains NP-complete when the input graph G is regular.

Proof: It is easy to see that if the degree of any node in a graph is not a multiple of a - 1,

the graph can not be partitioned into Ka's. Therefore, the EPKa problem is NP-complete
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even if the degree of every node in the input graph is a multiple of a - 1. Otherwise, the

EPKa problem itself is not NP-complete. In what follows, we assume that the degree of

each node in the input graph is a multiple of a-I when we refer to an instance of the EPKa

problem.

The regular graph version of EPKa is clearly in NP. Given an undirected graph G with

maximum degree 6 (where 6 is a multiple of a-I) , we construct a 6-regular graph G*

as follows (where we use (VI, V2, ... , Va) to denote a complete graph K a with {VI, V2, ... ,Va}

as node set):

1. For every node V in G with degree <5(v) < 6, add Ka's {(v, Uv,i, Uv,i+I,···, Uv,i+(a-2j)}

for i = 1, a, 2a - 1, ... ,6 - <5(v) - (a - 2) to get graph G', where the 6 - <5(v) nodes

Uv,i'S, Uv,i+I'S, ... , and Uv,i+(a-2j'S are the new added nodes.

2. Make a-I extra copies of G', and assume the number of new added nodes in G' is q.

3. Re-label all the new added nodes in the a copies of G' as uL u~, u§, ... , U~q'

4 If ~-(a-Ij
. aq < a I

(a) add ap new nodes U~q+l' U~q+2' ,. " U~q+ap, where p is the smallest integer sat-
. f . > ~-(a-l)
IS ymg aq + ap _ a-I;

(b) add p Ka's {(U~q+i'U~q+i+l' ... , U~q+i+(a-l))} for i = 1, a + 1, 2a + 1, ... ,ap ­

(a - 1);

(c) set q = q + p.

5. Repeat the following for i = 2,3, ... , a: add aq new nodes ui, u~, u~, ... , U~q and q

Ka's {(u;, u;+l"'" u~+(a-l))} for j = 1, a + 1, 2a + 1, ... , aq - (a - 1);

6 R h l' 11 . l' • - 1 2 3 ~-(a-l). dd K' {( I 2 3 a )}. epeatt elO owmg lOr z - , " ... , a-I . a as Uj,UjEBi,UjEB2;,,,,,UjEB(a_lji

for j = 1,2,3, ... , aq, where EB is defined as mod aq sum.

It is easy to verify that graph G* constructed above is a 6-regular graph.

Now we prove that G can be partitioned into Ka's if and only if G* can be partitioned

into Ka's. If G can be partitioned into Ka's, according to the construction of G*, G* can

be partitioned into Ka's as well. If G* can be partitioned into Ka's, it is noticed that any

K a containing an edge from a copy of G can not contain any edge outside of that copy. So

each copy of G by itself must be able to be partitioned into Ka's. 0
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Now we show that the kEPRG problem is NP-complete for every k = a(a -1)/2, where

a ~ 3 is integer and k < IE(G)I, by a reduction from the regular graph version of the EPKa

problem.

Theorem 19 For each integer a ~ 3, the kEPRG problem is NP-complete for k = a(a2-1),

where k < IE(G)I.

Proof: The problem is clearly in NP. Given an instance of the regular graph version of

EPKa problem, where the input graph G is regular, we construct an instance of the kEPRG

problem on the same graph with L = ;~ and k = a(a - 1)/2, where m = IE(G)I.

If G can be partitioned into Ka's, the K a partition gives a solution for the kEPRG

problem where IEil = a(a - 1)/2 for each Ei E £ and L:EiEt: IViI = ;~.

We now prove that if G has a solution for the kEPRG problem with k = a(a - 1)/2

and L = ;~, then it can be partitioned into Ka's. It is noticed that L:EiEt: IViI ~ ;:'1 for

k = a(a-I) /2, and the equation holds if and only if G can be partitioned into Ka's. Since

we have L:EiEt: IViI ::; L = ;~, it must be the case that L:EiEt: IViI = ;~, which implies

that G can be partitioned into Ka's. 0

For k = 2 or k = IE(G)I, the kEPRG problem can be solved trivially. We have proved

that the kEPRG problem is NP-complete for each k = a(a - 1)/2, where a ~ 3 is integer

and k < IE(G) I. It is interesting to derive the computational complexity of the kEPRG

problem for other values of k with 3 < k < IE(G)I. We conjecture that the kEPRG problem

is NP-complete for every k with 3 ::; k < IE(G)I, since it is difficult to get optimal solutions

even for all-to-all traffic pattern (i.e., the traffic graph is a complete graph) for most values

of k [7].

4.3 An approximation algorithm

In this section we propose Algorithm Regular-Euler with guaranteed performance for the

kEPRG problem on r-regular graphs with r ~ 2. For r-regular graph G with r = 0 or 1,

the traffic grooming is trivial: For r = 0, there is no edge in G and no grooming is needed;

For r = 1, the edges of G constitute a matching of G. We partition E(G) into subsets

E1,E2, ... ,Ew (where W = r'E~G)'l) by putting arbitrarily k edges into each subset Ei,

and this scheme uses 2IE(G)1 SADMs that is optimal for I-regular graph G.
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For the k-Edge-Partitioning problem on arbitrary traffic graphs, several algorithms have

been proposed in [11, 28]. Intuitively, to achieve good solutions for the k-Edge-Partitioning

problem, we need to partition the traffic graph G into sub-graphs of at most k edges such

that each sub-graph contains as few nodes as possible. One key observation is that given a

fixed number of edges, a sub-graph with fewer components more likely contains fewer nodes.

This is the basic idea behind the algorithms in [11, 28]. Our algorithm Regular_Euler utilizes

a similar idea, and aims to minimize the total number of components over all sub-graphs.

The algorithm uses at most f1E(G)I(l + t)l SADMs for even r ~ 2, and f1E(G)I(1 + Vl +
(2(;~1) -1) SADMs for odd r ~ 3, which are almost always better than previous algorithms

applying on regular graphs.

First, we prove the following lemma about the lower bound on the size of the maximum

matching of regular graphs. This lemma also gives a solution for one of the open problems

proposed by Biedl et al. [10].

Lemma 20 A r-regular graph G with IV(G)I = n has a maximum matching containing at

least ~ . r~l edges.

Proof: It is proved by Vizing [49] that any simple graph G has an edge coloring with ~

or ~ + 1 colors, where ~ is the maximum degree of G. The proof immediately yields an

approximation algorithm to color any simple graph G with at most ~ + 1 colors. Therefore,

a r-regular graph G can be colored by r + 1 colors. Considering such an edge coloring, we

notice that each set of edges with the same color is a matching of G. Since the total number

of edges in G is ~, there must exist at least ~1; = ~ . r~l edges having the same color in

the edge coloring. Therefore, ~ . r~l is a lower bound on the size of the maximum matching

of r-regular graph. 0

We prove the following lemma for r-regular graphs.

Lemma 21 For r-regular graph G with IV(G)I = nand r ~ 2, there exists a skeleton cover

of size one if r is even, and there exists a skeleton cover of size at most 2(;~1) if r is odd.

Proof: For even value r (where r -I- 0), we can construct an Euler path of G. Such an Euler

path is a skeleton of G without branches, therefore we obtain a skeleton cover of size one.

For odd value r (where r -I- 1), we first compute a maximum matching M of G. Then

after deleting the edges in M from graph G, all the nodes saturated by M have degree r - 1,

all the unsaturated nodes have degree r, and there might be more than one components in
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graph G(V(G), E(G)\M). We call a component in G(V(G), E(G)\M) an even component

if every node in the component has degree r - 1, and an odd component if there exists

a node with degree r. Assume there are s even components and t odd components. Let

Ceven = {C~, C;, ... , C~} be the set of even components, and Codd = {Cl, C2, ... ,Cd be the

set of odd components. It is noticed that there are (n - 21M!) odd-degree (i.e., the degree

is r) nodes in the odd components, and every odd component Ci (1 ::; i ::; t) contains at

least two nodes Vi,l, Vi,2 with degree r since the number of odd-degree nodes in any graph

must be even. We add (n - 2IM!)/2 - 1 virtual edges to change (n - 21M!) - 2 odd-degree

nodes to even-degree nodes (i.e., nodes with degree r+ 1) and connect the t odd components

together into a connected graph Godd at the same time. More specifically, we first add t - 1

virtual edges (Vl,1,v2,I),(V2,2,v3,I), ... ,(Vt-2,2,Vt-l,I),(Vt-l,2,Vt,I) to connect the connect

the odd components into one connected graph. Then for every pair of remaining odd-degree

nodes except Vl,2 and Vt,2, we add a virtual edge between them. It is obvious that the

new generated graph Godd is connected and has exactly two odd-degree nodes vl,2 and Vt,2.

Therefore, an Euler path of Godd can be found. For every even component, we can find

an Euler path as well since each node of the component has even degree r - 1. Taking

the s + 1 Euler paths as the backbones, we can construct a skeleton cover of size s + 1.

After deleting the (n - 2IM!)/2 - 1 virtual edges, we obtain a skeleton cover of G with size

(s + 1) + (n-;IMI - 1) = s + n-;IMI.

Since each node in an even component has degree r - 1, each even component must

contain at least r nodes. In graph G(V(G), E(G)\M), the total number of nodes with

degree r - 1 is 21MI, so the number of even components in graph G(V(G), E(G)\M) is at

most 21~1, that is, s ::; 21~1.

We have IMI ~ ~ . r~l according to Lemma 20, so the size of the skeleton cover for odd

value r is

n - 21MI 21M I n - 21MI (4 - 2r)IMI + nr (4 - 2r) . ~ . r~l + nr 3n
s+ < --+ = < = ----,-----,-

2 - r 2· 2r - 2r 2(r + 1)

o

The pseudo code of Algorithm Regular_Euler is given in Figure 4.2.

Theorem 22 Algorithm Regular_Euler finds a k-edge partition E = {El , ... , Ew} of r­

regular graph G with W = f'EtG)'l, IEil = k for 1 ::; i < W, L:E;Et: l\til ::; fI E (G)I(1 + Vl
for even r ~ 2, and L:E;Et: I\til ::; f1E(G)I(1 + t)l + (2d~1) - 1) for odd r ~ 3.
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Algorithm Regular...Euler
Input: An undirected r-regular graph G and integer k.
Output: A k-edge partition of G.
begin

If r is even then begin
Construct an Euler path of G;
Cut Euler path into W = r1E(G)I/kl segments such that each of first W - 1 segments

has k edges of G;
end
else begin

Compute a maximum matching M of G;
Connect odd components in G(V(G), E(G)\M) by virtual edges to form connected graph Godd;
Construct an Euler path for Godd;
Construct an Euler path for each even component in graph G(V(G), E(G)\M);
Attach edges in M to Euler paths as branches and delete virtual edges to obtain skeleton cover

S = {Sl, ... , S 3n };
2(r+l)

Transform skeleton cover to a k-edge partition of G;
end;

end.

Figure 4.2: Pseudo code of Algorithm Regular_Euler.

Proof: The theorem can be easily proved based on Proposition 3 and Lemma 21. 0

If we apply the algorithms in [11] on r-regular graph, the upper bound on the number of

SADMs is f1E(G)I(1 + til for even value r, and rIE(G)I(1 + *)1 +~ for odd value r. There­

fore our algorithm Regular_Euler always gives a better upper bound. The algorithm in [28]

applying on r-regular graph gives an upper bound of rIE(G)I(1 + f)l So for even value r,

Algorithm Regular_Euler is always better. And for odd value r, Algorithm Regular-Euler

is better when IE1G)1 > 2d~1) - 1 (the inequality holds as long as r > J3k"). Since the

grooming factor k is usually a constant, Algorithm Regular_Euler has a better performance

than that of the algorithm in [28] when r is greater than some constant. It is also noticed

that the algorithm in [28] may use as twice as the minimum number of wavelengths in the

worst case. Algorithm kEP and SpanT..Euler applying on r-regular graph give an upper

bound of fI E(G) I(1 + *)1 + l~J' therefore Algorithm Regular..Euler is always better except

the only case of r = 3. In summary, Algorithm Regular..Euler almost always achieves a

better upper bound than previous algorithms. In addition, it is worth pointing out that

W = r,E1G)ll corresponds to the number of wavelengths used by Algorithm Regular-Euler,

and it is the minimum number of wavelengths required for a traffic graph G.
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A maximum matching can be computed in O([vI~IE(G)1) time, the Euler path con­

struction can be done in O(IE(G)I), and each of other steps in Algorithm Regular-Euler

can be done in O(IE(G)I) as well, therefore Algorithm Regular-Euler runs in O([vI~ IE(G)I)

time.

4.4 Empirical results

In this section, we will conduct extensive simulations to evaluate the practical performance

of our algorithm by comparing to existing algorithms. We implemented the algorithms

in [11, 28], Algorithm kEP, Algorithm SpanT-Euler and Algorithm Regular-Euler to com­

pare their performances on regular traffic graphs randomly generated by the regular graph

generator from [2]. Figure 4.3 shows the empirical results for graphs of 36 nodes with dif­

ferent settings of degree r and grooming factor k, where for each value of rand k we collect

the results from 100 randomly generated regular graphs and compute the average value.

For Algorithm Regular-Euler, the confidence level for confidence interval [1-5%,1+5%] is

about 94%. We refer to the algorithm in [28] and [11] as Algo. 1 and Algo. 2 respectively.

The empirical results in Figure 4.3 verify that Algorithm Regular-Euler outperforms most

of other algorithms (it is also observed that the performance of Algo. 2 is close to that

of Algorithm Regular-Euler in most cases, which is due to the fact that both algorithms

are Euler-path based algorithms. However, as we showed in the previous section, the worst

case performance of Algorithm Regular-Euler is always better than that of Algo. 2). We

ran simulations on graphs with different parameter settings as well, and the results present

similar characteristics (see Figure 4.4 and Figure 4.5 for some representative results).

In Section 4.3 we showed that Algorithm Regular_Euler achieves a provable upper bound

for the kEPRG problem, where the upper bound measures the worst case performance of

the algorithm. We compare this worst case upper bound to the average performance of

Algorithm Regular-Euler in Figure 4.6. We also include a lower bound for the kEPRG

problem in the Figure. The lower bound is derived based on a lower bound for the k-Edge­

Partitioning problem given in [28]. Goldschmidt et ai. [28] established the lower bound for

k-Edge-Partitioning problem by observing that each sub-graph in the best possible k-edge

partition is a complete graph with exactly k edges. Therefore, the total number of nodes

over all sub-graphs is bounded below by IE~G)I . l+~. Given an integer a such that



"r
j

@
oq

'
~

de
gr

ee
r

=
3

de
gr

ee
r
=

4
de

gr
ee

r
=

7
'i::

l
~

1
0

0
1

2
0

2
5

0

~
"1 (1

)
-

-
A

lg
a.

1
-

-
A

lg
a.

1
-

-
A

lg
a.

1
~

-
-

-
A

lg
a.

2
1

1
0

-
A

lg
a.

2
-

A
lg

a.
2

~

""
9

0
A

lg
a.

kE
P

A
lg

a.
kE

P
A

lg
a.

kE
P

....
1

0
0

2
0

0
;J>

A
lg

a.
S

pa
nT

-E
u

le
r

A
lg

a.
S

pa
nT

-E
u

le
r

A
lg

a.
S

pa
nT

-E
u

le
r

oq
..

8
0

--
--

+
--

A
lg

a.
R

e
g

u
la

r-
E

u
le

r
'"

--
--

-l
if

-
A

lg
a.

R
e

g
u

la
r-

E
u

le
r

..
--

--
-l

if
-

A
lg

a.
R

e
g

u
la

r-
E

u
le

r

~
::;

::;
9

0
::;

0
0

0
0

"1
«

I
«

«
:;+

:
en

7
0

\
en

8
0

~
1

5
0

'0
'0

I
"r

j
::r

-
e!

e!
e!

S
'5

1\
'5

7
0

'5
\

~
0

'
0

'
0

'

::0
e!

6
0

\
e!

e!
\

CJ
(1

)
0

\
'0

6
0

'0
1

0
0

,
G

Q
'q

:;;
:;;

:;;
~

~
.0

\
.0

5
0

.0
"-

~
E

5
0

E
E

"-
0

"
\

"
"

c
c

c
~

0
I

,
4

0
-

-
5

0
tr:I

4
0

,
~

~ m
--

--
--

--
4

3
0

~
:: (1

)
3

0
20

0

~
S

0
5

0
1

0
0

1
5

0
0

5
0

1
0

0
15

0
0

5
0

1
0

0
1

5
0

'E
.

gr
oo

m
in

g
fa

ct
or

k
gr

oo
m

in
g

fa
ct

or
k

gr
oo

m
in

g
fa

ct
or

k

~
::1

.
(
)

~
~ "1

de
gr

ee
r

=
8

de
gr

ee
r
=1

5
de

gr
ee

r
=1

6

~
(1

)
00

2
5

0
5

0
0

5
0

0
~ :;:;

:'
-

-
A

lg
a.

1
-

-
A

lg
a.

1
-

-
A

lg
a.

1
~

00
-

A
lg

a.
2

4
5

0
-

-
-

A
lg

a.
2

4
5

0
'-

A
lg

a.
2

0
A

lg
a.

kE
P

A
lg

a.
kE

P
A

lg
a.

kE
P

~
l:I

2
0

0
4

0
0

4
0

0
Q

'q
A

lg
a.

S
pa

nT
-E

u
le

r
A

lg
a.

S
pa

nT
-E

u
le

r
A

lg
a.

S
pa

nT
-E

u
le

r
t.'l:

'J
"1

..
-
-

A
lg

a.
R

e
g

u
la

r-
E

u
le

r
'"

--
--

-l
if

-
A

lg
a.

R
e

g
u

la
r-

E
u

le
r

'"
--

--
-l

if
-

A
lg

a,
R

e
g

u
la

r-
E

u
le

r
G

\l>
::;

::;
3

5
0

::;
"d

C
l

0
0

~
::r-

«
«

«
en

~
3

0
0

en
00

'0
\

'0
~

~
e!

e!
e!

,
~

'5
.
~

2
5

0
,

.
~

2
5

0
"-

:;+
:

0
'

"-
;5

::r-
e!

e!
'-

e!
'0

'0
2

0
0

~

'0
'-

;:
l

'-
~

1i;
,

:;;
'-

:;;
~

~
II

.0
,

~
1

5
0

,
~

~
1

5
0

'-
"r

j
E

'-

""
"

~

-
"

"
~

c
c

c
C

t.l
50

1
0

0
""

1
0

0
CJ

l:I
- -

0
5

0
-

5
0

Q
..

(1
)

~
0

0
0

0
5

0
1

0
0

1
5

0
0

50
1

0
0

1
5

0
0

5
0

1
0

0
1

5
0

C
t.l

gr
oo

m
in

g
fa

ct
or

k
gr

oo
m

in
g

fa
ct

or
k

gr
oo

m
in

g
fa

ct
or

k
I
-
'



"!
j

g ~
ciG

°
d

e
g

re
e

r
=3

de
gr

ee
r
=4

d
e

g
re

e
r
=7

'i:
l

~
70

80
14

0
~

.... el
l

-
-

A
lg

a.
1

-
-

A
lg

a.
1

A
lg

a.
1

.+
:.

65
-

-
-

A
lg

a.
2

-
-

-A
lg

a
.

2
-

-
-

A
lg

a.
2

::0
~

A
lg

a.
kE

P
70

A
lg

a.
kE

P
12

0
A

lg
a.

kE
P

11>
0.

II
I

60
II

I
II

I

>
::2

A
lg

a.
S

p
a

n
T

-E
u

le
r

::2
A

lg
a.

S
p

a
n

T
-E

u
le

r
::2

A
lg

a.
S

pa
nT

-E
u

le
r

ciG
~

55
--

--
+

-A
lg

a.
R

e
g

u
la

r-
E

u
le

C
l

--
--

+
-A

lg
a.

R
e

g
u

la
r-

E
u

le
C

l
--

--
+

-
A

lg
a.

R
e

g
u

la
r-

E
u

le
~

0
;:j

60
;:j

10
0

....
~

50
\

'C
'C

~
~

~
\

~
\

.."
,

::r
'

.~
4

5
~

'S
'S

~
S

~
50

\
0

'
80

\
~

\
~

0
::t

I
~

40
'0

'0
el

l
\

.8
40

Q;
Q

(T
q

II>
\

E.-
.0

.\
.0

::0
E

35
E

E
....

0
'"

:;
,

~
\

:;
,

\
:;

,
....

....
c:

"-
c:

c:
0

f:.j
30

"-
30

e;
40

~

"
"-

CD
25

"-
<

~
Q

el
l

20
20

20

~
S

0
50

10
0

15
0

0
50

10
0

15
0

0
50

10
0

15
0

"d
gr

oo
m

in
g

fa
ct

or
k

g
ro

o
m

in
g

fa
ct

o
r

k
gr

oo
m

in
g

fa
ct

o
r

k

sa
::;

0 n° e:-
ga

....
de

gr
ee

r
=8

de
gr

ee
r
=1

1
de

gr
ee

r
=1

2
:§

el
l

r:n
16

0
25

0
25

0
~ :;:

;:'
-

-
A

lg
a.

1
-

-
A

lg
a.

1
-

-
A

lg
a.

1
~

r:n
-

-
-A

lg
a

.
2

-
-

-A
lg

a
.

2
-

-
-

A
lg

a.
2

0
14

0
A

lg
a.

kE
P

A
lg

a.
kE

P
A

lg
a.

kE
P

::0
;:

l
II

I
20

0
II

I
20

0
II

I
A

lg
a.

S
pa

nT
-E

u
le

r
A

lg
a.

S
p

a
n

T
-E

u
le

r
A

lg
a.

S
p

a
n

T
-E

u
le

r
tr:

l
(T

q
::2

::2
::2

....
S!

12
0

--
--

+
-A

lg
a.

R
e

g
u

la
r-

E
u

le
C

l
-
-
+

-
A

lg
a.

R
e

g
u

la
r-

E
u

le
C

l
_

-
A

lg
a.

R
e

g
u

la
r-

E
u

le
Q

'"
<t

;:j
8

"d
rJ

)
rJ

)

~~
'"

::
r'

'C
'C

~
15

0
r:n

.~
10

0
\

~
~

~.
:;

,
\

'S
'S

::0
0

'
0

'
0

'
r
t

~
e

~

~
::r

'
'0

'0
"-

'0
10

0
;:3

Q;
Q;

"-
.8

II
.0

.0
"-

.."
,

E
\

E
"-

E
tV

:;
,

\
:;

,
"-

:;
,

~
.+

:.
c:

c:
c:

\
50

"-
50

0
;:

l
40

"-
~

0 0
-

"-

el
l ?'

20
'

0
'

I
0

0
50

10
0

15
0

0
50

10
0

15
0

0
50

10
0

15
0

0"
:>

gr
oo

m
in

g
fa

ct
or

k
gr

oo
m

in
g

fa
ct

o
r

k
g

ro
om

in
g

fa
ct

o
r

k
tV



'T
j

~ >
aq

"
d

e
g

re
e

r
=3

d
e

g
re

e
r
=4

d
e

g
re

e
r
=7

'i:l
I::

14
0

18
0

30
0

~
...., ro

-
-

A
lg

o
.1

-
-

A
lg

o
.1

-
-

A
1g

o.
1

..,.
13

0
-

-
-

A
lg

o.
2

-
-

-A
lg

o
.

2
-

-
-A

1
g

o
.2

::0
C

Jl
A

lg
o.

kE
P

16
0

A
lg

o.
kE

P
A

1g
o.

kE
P

~
en

12
0

en
en

25
0

>
::E

A
lg

o.
S

p
a

n
T

-E
u

le
r

::E
A

lg
o.

S
p

a
n

T
-E

u
le

r
::E

A
1g

o.
S

p
a

n
T

-E
u

le
r

aq
~

11
0

--
--

-l
I<

--
A

lg
o.

R
e

g
u

la
r-

E
u

le
~

14
0

--
--

-l
I<

--
A

lg
o.

R
e

g
u

la
r-

E
u

le
c

--
--

-l
I<

--
A

1g
o.

R
e

g
u

la
r-

E
u

le
~

<I
:

0
(/

)
(/

)
(/

)
....,

ijl
10

0
"C

¥
20

0
>

~
.~

12
0

'"11
::

r'
.=

\
a

:
l

:
l

'S
~

0
"

90
.\

0
"

0
"

\

~
~

\
\

~
\

~
Q

'0
'0

10
0

~
15

0
\

Q;
80

\
G

aq
\

Q;
<I>

\
::0

I::
.0

.0
.0

~
E

70
"-

E
E

\
0

:
l

"-
"-

:
l

:
l

....,
c:

-
c:

c:
"-

0
I

60
.;

:-
-

10
0

tr:I
-

"-
E5

--
-

I::
--

-
-

-
-

ro-
50

:::
,..

.
~

-
-.

-
~

....,
-

-
ro

4
0

4
0

50

S2
a

0
50

10
0

15
0

0
50

10
0

15
0

0
50

10
0

15
0

'C
:I

gr
oo

m
in

g
fa

ct
or

k
gr

oo
m

in
g

fa
ct

o
r

k
gr

oo
m

in
g

fa
ct

or
k

~
::;" n' 2:-

~
....,

d
e

g
re

e
r
=8

d
e

g
re

e
r
=1

0
d

e
g

re
e

r
=1

1
:§

<0 CJ
l

35
0

40
0

50
0

e- M
-

-
-

A
lg

o
.1

-
-

A
lg

o
.1

-
-

A
1g

o.
1

~
CJ

l
-

A
lg

o.
2

-
-

-A
lg

o
.2

45
0

-
-

-A
1

g
o

.
2

0
35

0
::l

30
0

A
lg

o.
kE

P
A

lg
o

.
kE

P
en

40
0

A
lg

o.
kE

P
::0

en
A

lg
o.

S
p

a
n

T
-E

u
le

r
en

A
lg

o.
S

p
a

n
T

-E
u

le
r

A
lg

o.
S

pa
nT

-E
uJ

er
tr

l
aq

::E
::E

::E
....,

C
--

-+
-

A
lg

o.
R

e
g

u
la

r-
E

u
le

~
30

0
--

-+
--

A
lg

o.
R

e
g

u
la

r-
E

u
le

r
~

35
0

--
-+

-
A

1g
o.

R
e

g
u

la
r-

E
u

le
G

~
;Jj

25
0

~
'C

:I
(/

)
(/

)
::

r'
"C

"C
¥

30
0

CJ
l

~
~

25
0

\
>

§.
'S

'S
'S

\
::0

~
20

0
\

0
"

\
~

25
0

M
-

~

~
::

r'
'0

\
'0

20
0

\
'0

"-
;3

.8
15

0
\

Q;
\

Q;
"-

>
II

.0
"-

.0
"-

~
E

\
§

15
0

E
-

..,.
:
l

"-
:
l

c:
c:

c:
-

....
(y

j
\

-
10

0
-

Q
10

0
-

-
::l

\
10

0
-

0
~

-
50

P
o

-
-

~
<0

-
?'

50
50

0
0

50
10

0
15

0
0

50
10

0
15

0
0

50
10

0
15

0
~

gr
oo

m
in

g
fa

ct
or

k
g

ro
o

m
in

g
fa

ct
o

r
k

gr
oo

m
in

g
fa

ct
or

k
c..:

>



CHAPTER 4. TRAFFIC GROOMING IN UPSR WITH REGULAR TRAFFIC 64

a(a - 1}/2 = k, the best possible solution for the kEPRG problem is to partition the r­

regular traffic graph into Ka's when a ~ r, and to partition the r-regular traffic graph into

r-regular graphs with exactly k edges when a > r. Thus the lower bound for the kEPRG

problem with a r-regular input graph can be expressed as

{

IE(G)I. 1+y!8k±I if 1+y!8k±I < r.
L B d k 2 2-'

ower oun = 2IE (G)[ • 1 vtsk+l8k1
r If + 2 + > r.

The empirical results demonstrate that although the gap between the provable upper bound

and the lower bound is large, the average performance of Algorithm Regular-Euler is much

closer to the lower bound. Simulations on graphs with different parameter settings present

similar characteristics as well, and some other representative results are shown in Figure 4.7

and Figure 4.8.

4.5 Summary

In this chapter, we studied the traffic grooming problem on the SONET/WDM UPSR

network with regular traffic pattern. We analyzed the computational complexity of the

problem, and gave an algorithm with guaranteed performance. The algorithm achieves a

better upper bound in most cases than previous algorithms and uses the minimum number

of wavelengths as well. As proved in this chapter, the k-Edge-Partitioning of Regular Graph

problem is NP-hard for any k = a(a -1}/2, where a 2: 3 is an integer. One interesting open

problem is whether the problem remains NP-hard for any other value of k with 3 < k <
E(G}. When k = a(a - 1}/2 for integer a 2: 3, we know the best solution to partition the

traffic graph is that each sub-graph is a clique with a nodes and such a partitioning problem

on arbitrary graphs is NP-hard, which were used to prove the NP-hardness of the problem.

While for other values of k, the difficulty lies in that the sub-graphs with k edges in the

best solution might not be unique, and the NP-hardness results of partitioning an arbitrary

graph into sub-graphs containing k edges are not known as well. Another possible research

direction is to derive tighter theoretical analysis to prove a better guaranteed performance

for Algorithm Regular-Euler. As indicated by the empirical results, the average performance

is always much better than the provable worst case performance. There might exists some

room to improve the approximation ratio if a better lower bound can be derived.
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Chapter 5

Min-Max and Max Throughput

traffic grooming

In the previous two chapters, we have studied the traffic grooming problem to minimize

the total number of used SADMs in order to satisfy the full connectivity for a given set

of traffic demands. In this chapter, using novel graph partitioning approaches, we study

traffic grooming from different point of views. We first consider a Min-Max optimization

problem to minimize the maximum number of required SADMs at a network node over all

network nodes. We focus on the Unidirectional Path-Switched Ring (UPSR) network with

unitary duplex traffic demands. We prove the NP-hardness of this minimization problem,

and propose a linear time (kt1 + 2)-approximation algorithm. In addition, we study the

problem to maximize the number of accommodated traffic demands in networks with limited

number of SADMs at each network node. We prove that this maximization problem is NP­

hard as well, and propose a (k + I)-approximation algorithm. We also study the all-to-all

traffic pattern, which is an important special case. For both the minimization and the

maximization problems, we give algorithms achieving solutions only constant factors away

from the optimal ones.

68
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5.1 Problem formulation

We first consider the problem to minimize the maximum number of required SADMs over

all network nodes. A similar Min-Max optimization goal has been discussed for the multi­

hop traffic grooming problem [12]. Such a Min-Max traffic grooming problem is of high

practical interest [12]. First of all, minimizing the maximum number of SADMs very likely

produces a homogeneous network design in terms of the number of SADMs at each network

node. Homogeneous nodes usually have lower cost than heterogeneous ones for network

deployment, maintenance and upgrade due to the identical specifications. Furthermore,

the Min-Max optimization goal is important for dealing with dynamic traffic demands. In

particular, if the traffic pattern is changing dynamically within a given set, we can pre­

compute a solution for each traffic pattern in the set, and deploy in every node with the

largest number of SADMs required by any solution. Thus any traffic pattern from the given

set can be satisfied without reconfiguring the deployment of SADMs.

We also study the dual problem of the above Min-Max optimization problem: maximize

the throughput for a given set of traffic demands on a network with a limited number of

SADMs at each network node. This problem is critical in the situation that there are no suf­

ficient SADMs in the network to satisfy the full connectivity of the traffic demands. Similar

sparse grooming networks are studied in [35, 62, 63, 69], where limited number of grooming

resources are deployed unevenly among network nodes in the network. In this chapter, we

consider homogeneous networks with limited number of grooming resources. Specifically,

we consider the network in which every network node is equipped with a limited number L

of SADMs, and we study the problem to maximize the number of satisfied traffic demands.

Such a Maximum Throughput traffic grooming problem is natural in the WDM network

operation: when the deployed SADMs are not sufficient to satisfy the full connectivity for

a given set of traffic demands, a grooming scheme which satisfies as many traffic demands

as possible is greatly desired.

Recall that for the unitary duplex traffic grooming problem in the UPSR network, a

k-Edge-Partitioning problem has been formulated to minimize the total number of used

SADMs, such that the full connectivity for a given set of traffic demands can be satisfied.

We use a similar graph partition approach for the Min-Max traffic grooming problem. The

Min-Max traffic grooming problem can be formulated as the following Min-Max k-Edge­

Partitioning problem (MMkEP) on the traffic graph:
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Min-Max k-Edge-Partitioning Problem (MMkEP)

Instance: A traffic graph G(V, E) and integer k ~ IE(G)I.

Objective: Partition the edge set E(G) into a collection of pairwise disjoint subsets E =

{El,Ez, . ..} such that IE;I ~ k for each E; E E. The objective is to minimize the value of

max"EV(G) A(v), where A(v) is the number of E;'s each of which contains at least one edge

incident to node v.

It is noticed that integer k corresponds to the grooming factor, each subset E; cor­

responds to a wavelength, and A(v) corresponds to the number of used SADMs in node

v.

Similarly, the Maximum Throughput traffic grooming problem can be formulated as the

following Maximum Connectivity k-Edge-Partitioning problem (MaxCkEP) on the traffic

graph:

Maximum Connectivity k-Edge-Partitioning Problem (MaxCkEP)

Instance: A traffic graph G(V, E), an integer k ~ IE(G)I and an integer L.

Objective: Find a collection E = {El' Ez, ...} of pairwise disjoint subsets of E(G) such

that IE;I ~ k for each E; E E and A(v) ~ L for each v E V(G), where A(v) is the number

of E;'s each of which contains at least one edge incident to node v. The objective is to

maximize L:EiE£ IE;I.

It is noticed that integer L corresponds to the number of available SADMs at each node,

and the other parameters have the same meaning as we described in the MMkEP problem.

5.2 Min-Max k-Edge-Partitioning Problem

In this section, we prove that the MMkEP problem is NP-hard, and propose a linear time

(k!l + 2)-approximation algorithm, where k is the grooming factor. In addition, we show

that the algorithm achieves the worst case lower bound for the MMkEP problem. As an

important special case, the all-to-all traffic pattern attracts a lot of research attention as

well. The all-to-all traffic pattern has been well studied for minimizing the total number

of used SADMs [5, 6, 7, 8, 32, 42, 64]. For the all-to-all traffic pattern, the traffic graph

is a complete graph. We prove a lower bound ~ for the MMkEP problem on complete

graph K n , and propose an algorithm achieving an upper bound \II n + ~, which is a
~v'2k-z
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constant factor away from the lower bound. The lower bound is interpreted in the Min-Max

traffic grooming problem as that for the all-to-all traffic pattern on a network of n nodes,

at least ~ SADMs are needed at a network node with the maximum number of SADMs

for any solution. The upper bound says that our algorithm gives a solution which requires

at most If n + ~ SADMs at any node. We also show that the upper bound can be
~Y2k-2

systematically improved further for relatively large values of k.

5.2.1 NP-hardness

In this section we analyze the computational complexity of the MMkEP problem. We first

prove that the problem is NP-hard, and then show that the problem does not admit an

FPTAS unless P = N P. We consider the decision version of the MMkEP problem, and

prove that it is NP-complete. The decision version of the MMkEP problem is stated as

follows:

Min-Max k-Edge-Partitioning (MMkEP) Problem

Instance: An undirected graph G(V, E), and integers k, L.

Question: Is there a partition of E(G) into a collection of pairwise disjoint subsets E =
{El,E2 ,,,.} such that

1. IEil ~ k for each E i E E, and

2. maxvEV(G) A(v) ~ L, where A(v) is the number of Ei'S each of which contains at least

one edge incident to node v.

We prove that the MMkEP problem is NP-complete by a reduction from the regu­

lar graph version of the Edge-Partition into Thiangles (EPT) problem. The regular graph

version of the EPT problem is proved to be NP-complete in Chapter 4 and stated as follows:

Edge-Partition into Triangles (EPT) Problem (regular graph version)

Instance: An undirected r-regular graph G(V, E) with IE(G)I = m.

Question: Is there a partition of E(G) into sets {El, E2, ... , E m / 3 } such that each Ei induces

a triangle?
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Theorem 23 The MMkEP problem is NP-complete.

Proof: The MMkEP problem is clearly in NP. Given an instance of the regular graph

version of the EPT problem with an undirected input r-regular graph G, we construct an

instance of the MMkEP problem with G as the input graph, k = 3, and L = ~. We prove

that G can be partitioned into triangles if and only if there exists a solution for the MMkEP

problem on the constructed instance.

If G can be partitioned into triangles, it is easy to verify that the triangle partition of

G gives a solution for the MMkEP problem on the constructed instance.

We now prove that if the constructed instance has a solution E = {El' E2, ... } for the

MMkEP problem, then G can be partitioned into triangles. For solution E we have

1. lEd:::; 3 = k for each Ei E E, and

2. maJevEV(G) A(v) :::; ~ = L.

Let Gi denote the sub-graph (of G) induced by each edge set E i E E. We notice that

fV(Gi)1 ~ IE(Gi)1 since each graph Gi contains at most 3 edges, where the equation holds

if and only if Gi is a triangle (Le., the complete graph with three edges). Hence we have

L fV(Gi ) I ~ L IEil = IE(G)I·
EiEE EiEE

Therefore

L A(v) = L fV(Gi)1 ~ [E(G)I = rfV~G)I.
VEV(G) EiEE

We also know that maJevEV(G) A(v) :::; ~, which implies that

L A(v):::; r ·I~(G)I.
vEV(G)

Therefore it must be the case that

L A(v) = r 'I~(G)I,
vEV(G)

which implies that every E i E E induces a triangle. That is, graph G can be partitioned

into triangles. 0

We further prove that the MMkEP problem does not admit an FPTAS unless P = N P.
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Theorem 24 The MMkEP problem does not admit an FPTAS unless P = N P.

Proof: Assume that the MMkEP problem does admit an FPTAS. Now we construct an

algorithm A that calls the FPTAS with precision € = r~l' where r is the maximum degree

of graph G. Since the time complexity of an FPTAS is polynomial in the input size and

also polynomial in ~ = r + 1 and r + 1 is at most O(n), algorithm A is polynomial in the

input size (i.e., an polynomial time algorithm for MMkEP). Given any input instance I, let

A(I) denote the value of the solution by algorithm A and OPT(I) denote the optimum.

Since any solution to the problem must be an integer, we assume A(I) = OPT(I) + i for

some positive integer i. We have OPT(I) +i = A(I) ~ (1 + €)OPT(I) = (1 + r~l )OPT(I) ,

which implies that OPT(I) ~ i(r + 1). It is observed that OPT(I) ~ r for any instance,

therefore OPT(I) ~ i(r + 1) holds only when i = 0, which implies that OPT(I) = A(I). So

A is an optimal algorithm with polynomial running time, however this can not be true for

the NP-hard problem MMkEP unless P = N P. 0

5.2.2 A linear time (k~l + 2)-approximation algorithm

As the MMkEP problem is NP-hard, we will put our efforts on algorithms achieving ap­

proximate solutions instead of optimal solutions. In this section, we propose a linear time

(~ + 2)-approximation algorithm MinMax_Grooming for the MMkEP problem, where k

is the grooming factor.

For a traffic graph G, we first construct a bipartite graph Gb(U, V, E) based on G as

follows:

1. For every edge ei E E(G), there is a corresponding node u~ in U(Gb);

2. For every node Vi E V(G), there is a corresponding node v~ in V(Gb);

3. In graph G, if the edge corresponding to a node u' E U(Gb) is incident to the node

corresponding to a node v' E V (Gb), then there exists an edge (u', v') E E(Gb).

Figure 5.1 shows an example of constructing bipartite graph Gb based on G. It is noticed

that every node in U(Gb) has degree two, and every node in V(Gb) has the same degree

as its corresponding node in graph G. Since the number of odd-degree nodes in any graph

must be even, the number of odd-degree nodes in V(Gb) is even.

We assume that every edge of graph Gb is unmarked initially, and we traverse and mark

the edges of graph Gb as follows:
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v7

u'l u'2 u'3 u'4 u'5 u'6 u'7 u'S u'9

v6

v3 v4 v'l v'2 v'] v'4 v'5 v'6 v'7

<aJ GIlIph G (b) Graph Gb

Figure 5.1: An example: graph G and the corresponding bipartite graph Gb'

1. If there exists a node in V(Gb) that has odd number of unmarked adjacent edges, we

start from such a node and traverse along arbitrary unmarked edges until arriving at a

node with all adjacent edges marked, where after traversing each edge we immediately

mark the edge as black if the edge is traversed from a node in V(Gb) to a node in

U(Gb), and mark the edge as white otherwise. We repeat the above process until

every node in V(Gb ) has even number of unmarked adjacent edges. It is observed we

always start from an odd-degree node and terminate at an odd-degree node in V(Gb)

in each iteration;

2. If there still exist unmarked edges in Gb, we start from a node in V (Gb) with unmarked

adjacent edges, and traverse along unmarked edges until arriving at a node with all

adjacent edges marked, where the traversed edges are marked the same way as above.

We repeat until all the edges in Gb are marked. It is observed we terminates at the

same node from which we start in each iteration.

Figure 5.2 shows a possible marking for the edges of the bipartite graph Gb constructed

in Figure 5.1 according to the following traversing order:

1. Start from node v~, traverse along unmarked edges {v~,uD,{u~,v~} and mark each

edge accordingly immediately after it is traversed, and terminate at node v~;

2. Start from node v~, traverse along unmarked edges {v~, Ug}, {Ug, v~}, {v~, u~}, {u~, v~},

{v~,u~}, {u~,v~}, {v~,u~}, {u~,vD, {v~,u~}, {u~,v~} and mark each edge accordingly

immediately after it is traversed, and terminate at node v~;

3. Start from node v~, traverse along unmarked edges {v~, u~}, {u~, v~}, {v~, u~}, {u~, v~},

{v3' u;}, {u;, vD and mark each edge accordingly immediately after it is traversed,
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u'l u'2 u') u'4 u'S u'6 u'7 u'S

v'' v'3

Black edge --

v'4 v'5

While edge

v'6 v'7

Figure 5.2: An example: Marking edges of Gb.

and terminate at node vi.

After traversing and marking alI edges of graph Gb, the following properties hold:

<l(v' ) Mv' \1. Each node v' E V(Gb) is adjacent to at least l 2 J black edges and at least lT J
white edges, where 15(v') is the degree of v'.

2. Each node u' E U(Gb) is adjacent to exactly one black edge and one white edge.

For every node v' E V(Gb), let BVI ~ U(Gb) denote the set of nodes which are adjacent to

node v' via black edges, and let EBvl ~ E(G) denote the set of edges which are corresponding

to the nodes in BV" Since each node in U(Gb) is adjacent to exactly one black edge, we

have UV/EV(Gb) BVI = U(Gb), and B v: n B vj = 0 for v~ f:. vi. So we can conclude that

UV/EV(Gb) EBvl = E(G), and EBvl n EBvl = 0 for v~ f:. vi. Then for every node v' E V(Gb),
• 1

we arbitrarily divide EBvl into groups, each of which contains exactly k edges of graph G

(except the last group might contain less than k edges). It is noticed that the edges in each

group induce a star of graph G, where the center of the star is the node (of G) corresponding

to node v' E Gb. Therefore, we can construct a solution £: = {E l , E2,"'} for the MMkEP

problem on graph G, such that each Ei E £: is a group of edges as described above. Since

each node v' E V(Gb) is adjacent to at least l15(v' )/2J black edges, for solution £: we have

max A(v) ~ rl~(~)/2J 1+ r~(G)/21,
vEV(G)

where ~(G) is the maximum degree of graph G. The pseudo code of Algorithm Min­

Max_Grooming is given in Figure 5.3.

Theorem 25 Algorithm MinMax_Grooming is a (k!l +2)-approximation algorithm for the

MMkEP problem.
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Algorithm MinMax_Grooming
Input: An undirected traffic graph G and integer k.
Output: A solution [ for the MMkEP problem.
begin

Construct bipartite graph Gb based on graph G;
Traverse and mark edges in E(Gb ) as black and white edges;
Construct [ according to the marking of E(Gb)'

end.

Figure 5.3: Pseudo code for Algorithm MinMaLGrooming.

Proof: For a traffic graph G and a grooming factor k, it is obvious that r~~G)l is a lower

bound on any optimal solution of the MMkEP problem. Therefore the approximation ratio

of Algorithm MinMIDcGrooming is given by

o

It is worth pointing out that there exist instances for which the optimal solution of the

MMkEP problem is r l~(~)/2J l + r~(G) /2l, that is, Algorithm MinMaLGrooming achieves

the worst case lower bound.

Theorem 26 Algorithm MinMax_Grooming achieves the worst case lower bound of the

MMkEP problem.

Proof: Consider an instance of the MMkEP problem where k = 2 and the traffic graph G

is a r-regular graph. Since G is a r-regular graph, there are 1V(~)I·r edges in graph G. For

any solution £ = {EI, E2 , .. . }, we have

L A(v) 2: IV(~)I' r . ~ = ~1V(G)lr,
vEV(G)

where the equation holds if and only if each Ei E £ is a path of length 2. So we have

maXvEV(G) A(v) 2: ~r, which implies that maXvEV(G) A(v) 2: r~rl since maXvEV(G) A(v)

must be an integer. It is easy to verify that

r~rl = rlr~2Jl + rr/2l when k = 2,
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hence Algorithm MinMaJLGrooming achieves the worst case lower bound. 0

The bipartite graph construction and the edge traversing/marking procedure can be

done in O(IE(G)I) time, and the solution based on the marking of E(Gb) can be obtained

in O(IE(G)I) time as well. So Algorithm MinMax_Grooming runs in O(IE(G)I) time, which

is linear in the size of the input graph.

5.2.3 Special case: all-to-all traffic pattern

For the all-to-all traffic pattern, the traffic graph is a complete graph. We consider a

complete traffic graph K n containing n nodes.

A lower bound

We first prove a lower bound for the MMkEP problem on an arbitrary traffic graph.

Theorem 27 For a traffic graph G, ~~N]t is a lower bound on optimal solutions for the

MMkEP problem.

Proof: It is noticed that the minimum value of L:vEV(G) A(v) is achieved if we can partition

G into cliques, each of which contains exactly k edges. We also know that a clique of k

edges contains ~+l nodes. Therefore we have

" A(v) > /E(G)I . v'8k+T + 1
L.J - k 2'

VEV(G)

and thus
max A(v) > IE(G)I . v'8k+T + 1 > v'2/E (G)I.

vEV(G) - IV(G)I· k 2 IV(G)Iv'k
o

Corollary 28 For complete graph K n , ~ is a lower bound on optimal solutions for the

MMkEP problem.

For the case that grooming factor k = 2, since K n is a regular graph as well, the proof

of Theorem 26 shows that Algorithm MinMax_Grooming achieves the optimal solution. In

the following we assume that k ~ 3.
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Upper bounds

For complete graph K n , we propose an algorithm achieving a solution which is a constant

factor away from the above lower bound. The basic idea of the algorithm is to balance the

number of required SADMs among all nodes. In order to do so, we construct a complete

graph KN based on kn such that each node in KN corresponds to a set of 9 nodes in K n ,

and each edge in K N corresponds to the set of edges between the two corresponding sets of

nodes in K n . Then using the results from design theory, we partition KN into triangles. For

each of such triangles, the three edges corresponds to a set of edges in K n , which constitutes

a sub-graph in the solution of the MMkEP problem on K n if we choose the value of 9 to be

lJj"J.

Theorem 29 A solution with m8.XvEV(Kn ) A(v) < If n + ~ can be obtained for the
~v'2k-2

MMkEP problem on complete graph K n .

Proof: Let 9 = lJj"J and we divide the n nodes of K n into fn/g1groups, each of which

contains 9 nodes of K n . To simplify the description, we assume the last group also contains

9 nodes even it might contain less than 9 nodes.

Let N be the smallest integer satisfying N :2: fn/gland N == 1,3 (mod 6). We construct

a complete graph KN in the following, where we call each node of KN a super node, and

each edge of KN a super edge:

1. for each of the fn/gl node groups in K n , add a corresponding super node in KN,

2. if N > fn/gl, add N - fn/gl virtual super nodes in KN, and

3. add a super edge between each pair of super nodes in KN,

where each super node in KN corresponds to a clique of size 9 in K n , and each super edge

corresponds to g2 ::; ~ edges that are between nodes of two corresponding cliques in K n .

Using results from the design theory, Bermond and Ceroi [5] showed that KN can be

partitioned into N(~-I) K~s (i.e., triangles) if N == 1,3 (mod 6). For each triangle, the

three super edges correspond to 3g2 = 3lJj"J2 ::; k edges in K n , therefore we can put each

set of such 3g2 edges into one subset Ei in a solution £ of the MMkEP problem on K n .

For each super node in KN, there are 9(92-
1

) < ~ edges in the corresponding clique of K n ,
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therefore we can put 3g(g - 1) edges from each 6 corresponding cliques into one subset Ei

in solution [;. It is clear for the above solution [; we have

N -1 n 3
max A(v) = -- + 1 < + -.

vEV(Kn ) 2 - IIv'2k - 2 2

[J

The above upper bound can be improved further for relatively large values of k. Bermond

et al. showed that KN can be partitioned into K 4's if N == 1,4 (mod 12), can be partitioned

into Ks's if N == 1,5 (mod 20), and can be partitioned into K6'S if N == 1 (mod 30) [8]. So

for the case of k 2': 6, we can divide the nodes of K n into groups, each of which has ly1J
nodes. Then each group is represented by a super node in KN, and minimum number of

virtual super nodes are added such that the total number of super nodes N satisfies that

N == 1,4 (mod 12). So complete graph KN on N super nodes can be partitioned into K4'S.

Similar as described above, the K4 partition of KN can be transferred into a solution [; for

the MMkEP problem on K n with

N-l n 10
max A(v) = -- + 1 < + -.

vEV(Kn ) 3 - 1fv'2k _ 3 3

Bermond and Coudert [8J also have proved that KN can be partitioned into Ks's if

N == 1,5 (mod 20), and partitioned into K 6 's if N == 1 (mod 30). The similar idea can be

used to further improve the above upper bounds, and accordingly the upper bounds that

we can obtain are

n 9 n 33
14 + - for k 2': 10, and 15 + - for k > 15

ygv'2k-4 2 y~v'2k-5 5 -

respectively.

5.3 Maximum Connectivity k-Edge-Partitioning Problem

In this section, we prove that the MaxCkEP problem is NP-hard as well, and propose a

(k + I)-approximation algorithm. We also prove an upper bound nj!! for a traffic graph

with n nodes. This upper bound indicates that any solution of the MaxCkEP problem can

accommodate at most nj!! duplex demands. For the special case of complete traffic graph

K n, we propose an algorithm achieving a lower bound nL~v'kJ. This lower bound states that

the number of accommodated duplex demands by our algorithm is at least nLl2v'kJ, which

is only a constant factor (about J2) away from the upper bound and thus the optimum.
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5.3.1 NP-hardness

In this section, we prove the NP-hardness of the MaxCkEP problem. We consider the deci­

sion version of the problem, and prove that it is NP-complete. The decision version of the

MaxCkEP problem is stated as follows:

Maximum Connectivity k-Edge-Partitioning (MaxCkEP) Problem

Instance: An undirected graph G(V, E), and integers k, L, T.

Question: Is there a collection £ = {El, E2, ... } of pairwise disjoint subsets of E(G) such

that

2. A(v) :::; L for each v E V(G), where A(v) is the number of Ei's each of which contains

at least one edge incident to node v, and

Theorem 30 The MaxCkEP problem is NP-complete.

Proof: We prove that the MaxCkEP problem is NP-complete by a reduction from the

MMkEP problem. The MaxCkEP problem is clearly in NP. Given an instance of the

MMkEP problem with an undirected input graph G, integers k and L, we construct an

instance of the MaxCkEP problem with the same input graph G, the same integers k and

L, and T = IE(G)/. It is easy to verify that the MMkEP problem has a solution if and only

if the MaxCkEP problem has a solution. D

5.3.2 A (k + I)-approximation algorithm

In this section, we propose a (k + I)-approximation algorithm MaxConnectivity_Grooming

for the MaxCkEP problem, where k is the grooming factor.

For a traffic graph G, we first introduce a rather simple approach to compute solutions

for the MaxCkEP problem. Let ML be a maximum b-matching of G with b(v) = L for

every v E V(G). Since each node v E V(G) appears in at most L edges of ML, a feasible

solution for the MaxCkEP problem can be obtained by arbitrarily partitioning M L into

disjoint subsets, each of which contains at most k edges. We use £ML to denote such a

solution.
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Now we propose the following algorithm MaxConnectivity_Grooming to compute a so­

lution C for the MaxCkEP problem on the traffic graph G. Initially c is an empty set. For

each v E V(G), we define capacity(v)= L - A(v) (i.e., the number of available SADMs in

node v). At the beginning of the algorithm, A(v) = 0 since c is empty, and capacity(v)= L

for every node v E V(G). Algorithm MaxConnectivity_Grooming runs in iterations. For

each iteration, a star of k edges is constructed and the edges in the star constitute a subset

Ei in the solution c. Then the star is removed from graph G, and the degree and capacity of

each node is updated accordingly. Intuitively, a node with higher degree and lower capacity

should be given higher priority to be chosen as the center of the star. We also notice that

once a star of k edges is removed from G, the capacity of the center is decreased by 1 and

the degree of the center is decreased by k. Therefore we define

rank(u) = o(u) - k· capacity(u).

For each iteration we choose a node u with the largest value rank(u) as the center of the star

(in the case of ties, we arbitrarily break the tie). Then the star is constructed by arbitrarily

picking min(k, o(u)) edges incident to node u as the edge set. After a star is constructed and

removed from graph G, if there exists a node u with capacity(u) = 0, graph G is updated

by deleting all edges incident to node u. The same procedure is repeated until all edges in

graph G are removed. Then the solution c is compared to solution CM
L

, which is obtained

by the b-matching based approach mentioned above. IfCML is a better solution than C, then

C is simply replaced by CML • The pseudo code of Algorithm MaxConnectivity_Grooming is

given in Figure 5.4.

Theorem 31 Algorithm MaxConnectivity_Grooming is a (k + I)-approximation algorithm

for the MaxCkEP problem.

Proof: Let MkL be a maximum b-matching of graph G with b(v) = kL for every node

v E V(G). Consider an optimal solution copt for the MaxCkEP problem on graph G. We

first prove that IMkLI is an upper bound on solution Copt (i.e., LEiE[opt IEil ~ IMkLI).

Define G[opt as the graph induced by all the edges in UEiE[OPt Ei. We observe that the

maximum degree ~(G[oPt) ~ kL, since the initial capacity of each node is L and one unit

of capacity can be used for at most k edges incident to the node. So the edge set E(G[opJ

is a b-matching of graph G with b(v) = kL, and we can conclude that

L IEil = IE(G[opt)1 ~ IMkLI·
EiE[opt
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Algorithm MaxConnectivity_Grooming
Input: An undirected traffic graph G, integer k and integer L.
Output: A solution C for the MaxCkEP problem.
begin

C :=0;
capacity(v) := L for every node v E V(G);
While IE(G)I i 0 do
{Pick a node u E G with the largest value of rank(u);
Construct star S with u as center, and IE(S)I = min(k,<5(u));
Update c := c U {E(S)};
Update graph G by removing E(S) from G,

and decreasing capacity(v) by 1 for every v E V(S);
For any v E V(S) with capacity(v) = 0 do

update graph G by removing edges incident to v;
};
Compute a maximum b-matching ML (b(v) = L for every v E V(G));
Construct solution CML based on M L ;

IfL:EEt:IEil <L:EEt: IEil thenc:=cML;
... 't M L

end.

Figure 5.4: Pseudo code for Algorithm MaxConnectivity_Grooming.

Let ML be a maximum b-matching of graph G with b(v) = L for every node v E V(G).

Consider a solution £ = {El, E2, ...} obtained by Algorithm'MaxConnectivity_Grooming

for the MaxCkEP problem on graph G. It is clear that IMLI is a lower bound on solution

£, that is, LE;Et: IEil ::::: IMLI·
Let GMkL be the graph induced by edges in a maximum b-matching of G with b(v) = kL

for each v E V(G). By the definition, we know that the maximum degree b.(GMkL ) ~ kL.

For such a graph, we can use (k + 1) colors to obtain an f -coloring with f (v) = L for each

v E V (GM kL ). Then each set of edges with the same color in the f -coloring is a b-matching

of G with b(v) = L. Hence, we can conclude that (k + l)IMLI ::::: IMkLI. Therefore the

approximation ratio of Algorithm MaxConnectivity_Grooming is given by

o

For the star extraction part of Algorithm MaxConnectivity_Grooming, a set of edges

are removed from the graph in each iteration. The process is repeated until all the edges

are removed. Therefore, the running time is O(IE(G)I) time, which is linear in the size of
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the input graph. While for the part to compute a maximum b-matching with b(v) = L, the

running time is JLJV(G)IIE(G)I [23]. Therefore, Algorithm MaxConnectivity_Grooming

runs in JLJV(G)IIE(G)I time.

5.3.3 Special case: all-to-all traffic pattern

In this section, we study the MaxCkEP problem on complete traffic graph K n containing n

nodes, each of which has a capacity of L initially.

An upper bound

We first prove an upper bound for the MaxCkEP problem on an arbitrary traffic graph, in

which each node has a capacity L initially.

Theorem 32 For a traffic graph G, IV(Gjv'k is an upper bound on optimal solutions for

the MaxCkEP problem.

Proof: For graph G, the total capacity over all nodes is JV(G)IL. It is observed that a

clique of k edges consumes the minimum units of capacity, which is i8kf+l, among all

sub-graphs of k edges. Therefore an upper bound on optimal solutions is

IV(G)IL . k < JV(G)IL . k = IV(G)ILVk
~+1 ~ V2

2 2

o

Corollary 33 For complete graph K n , n~ is an upper bound on optimal solutions for the

MaxCkEP problem.

A lower bound

For complete graph K n , we propose an algorithm achieving a solution which is a constant

factor away from the above upper bound. We first prove the following lemma about a

complete graph K 2m with even number 2m of nodes.

Lemma 34 The edge set of complete graph K 2m can be partitioned into (2m - 1) pairwise

disjoint subsets, such that each subset is a perfect matching of K 2m .



CHAPTER 5. MIN-MAX AND MAX THROUGHPUT TRAFFIC GROOMING 84

Proof: It is known that an edge coloring of K2m can be obtained using 2m - 1 colors [22].

We notice that each set of edges with the same color is a matching of K 2m , so the number

of edges with the same color is at most m for every color. The total number of edges in

K2m is m(2m - 1), therefore it must be the case that the number of edges with the same

color is exactly m for each color, which implies that each set of edges with the same color

is a perfect matching of K 2m- 0

The basic idea of the algorithm is still to balance the use of SADMs among all nodes.

In order to do so, we construct a complete graph K N based on kn such that each node in

KN corresponds to a set of 9 nodes in K n , and each edge in KN corresponds to the set

of edges between the two corresponding sets of nodes in K n . Then we partition KN into

perfect matchings according to Lemma 34. Each edge in the matchings corresponds to a set

of edges in K n , which constitutes a sub-graph in the solution of the MaxCkEP problem on

K n if we choose the value of 9 to be lv'kJ.

Theorem 35 A solution [; with LE;E£ IEil > nL~.jkJ can be obtained for the MaxCkEP

problem on complete graph K n .

Proof: Let 9 = lv'kJ and we divide the n nodes of K n into rn/91groups, each of which

contains 9 nodes of K n • To simplify the description, we assume that the last group also

contains 9 nodes even it might contain less than 9 nodes.

Let N = rn/91, and we construct a complete graph KN, where we call each node of KN

a super node, and each edge of K N a super edge:

1. for each of the rn/91node groups in K n , add a corresponding super node in KN, and

2. add a super edge between each pair of super nodes in KN,

where each super node in KN corresponds to a clique of size 9 in K n , and each super edge

corresponds to g2 ::; k edges that are between nodes of two corresponding cliques in K n .

We assume that N is even, since otherwise we can add one virtual super node and some

corresponding virtual super edges.

According to Lemma 34, the edge set of KN can be partitioned into (N - 1) perfect

matchings. Since every super edge in each perfect matching corresponds to g2 ::; k edges of

K n , we can arbitrarily pick L perfect matchings, and construct solution [; = {El, E2, ... }

such that each Ei E [; consists of edges (of K n ) corresponding to a super edge in the L
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perfect matchings of K N. Therefore

'" IE-I =L· N .g2 =L. fn/gl .g2 > nLg = nLlVkJ
LJ t 2 2 - 2 2'

EiEC

o

The lower bound obtained above is based on two assumptions: the number of nodes in

the last group is g, and N is an even integer. It can be easily verified that the difference

will only be a constant value even if we do not make the assumptions.

5.4 Empirical results

In this section, we will conduct extensive simulations to evaluate the practical perfor­

mances of our algorithms by comparing to the corresponding worst case performances and

lower/upper bounds. We implemented Algorithm MinMax_Grooming and Algorithm Max­

Connectivity_Grooming to validate their performances on randomly generated traffic graphs.

In generating graphs, we specify the number n of nodes and density ratio d that is used to

calculate the number m = n l+d of edges. A graph G of m edges and n nodes is generated

by randomly connecting m pairs of nodes among all n(n - 1)/2 possible pairs. Figure 5.5

shows the empirical results of Algorithm MinMax_Grooming on graphs of 36 nodes with

density ratio d = 0.6, where for each value of grooming factor k, we collect the results from

100 randomly generated traffic graphs and compute the average value. The lower bound

we used for measuring Algorithm MinMax_Grooming is f~~G) 1, which is mentioned in The­

orem 25. Figure 5.8 shows the empirical results of Algorithm MaxConnectivity_Grooming

on graphs of 36 nodes with density ratio d = 0.6 and grooming factor k = 4, where for

each value of capacity L, we collect the results from 100 randomly generated traffic graphs

and compute the average value. The upper bound we used for measuring Algorithm Max­

Connectivity_Grooming is IMkLI, which is mentioned in Theorem 31. We observe that the

experimental performances of both algorithms are considerably better than the worst case

performances proved in Section 5.2.2 and Section 5.3.2. In addition, the results show that

the solution obtained by Algorithm MinMax_Grooming is close to the corresponding lower

bound, and the solution obtained by Algorithm MaxConnectivity_Grooming is close to the

corresponding upper bound. Simulations are conducted on graphs with different parameter

settings as well, and the results present similar characteristics (see Figure 5.6, Figure 5.7,

Figure 5.9, and Figure 5.10 for other representative results).
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Figure 5.5: Performance of Algorithm MinMax_Grooming for n = 36 and d = 0.6 .

5.5 Summary

In this chapter, using novel graph partitioning approaches, we studied traffic grooming for

both the problem to minimize the maximum number of SADMs over all network nodes,

and the problem to maximize the number of accommodated traffic demands subject to

limited number of SADMs. We proved both problems are NP-hard for the UPSR network

with unitary duplex traffic demands, and proposed an approximation algorithm for each

problem. We also studied the all-to-all traffic pattern, and proposed algorithms achieving

solutions only constant factors away from the optimal ones for both problems. For the

future work, it is interesting to further narrow the gap between the lower bound and the

upper bound for both the MMkEP problem and the MaxCkEP problem. Intuitively, a good

approach for both problems should balance the usage of SADMs among all nodes. As we

did in Algorithm MinMax_Grooming and Algorithm MaxConnectivity_Grooming, stars are

extracted from the traffic graph in iterations to achieve such a balance. However, when

the degrees of all nodes tend to be uniform (the extreme case is that all nodes have the

same degree, i.e., the traffic graph is a regular graph), extracting a star each time from

the traffic graph might not be good enough. A possible approach could be to extract a

regular sub-graph for each iteration from the traffic graph. Therefore, the ideal solution for

both problems should also take the structure of the traffic graph into account, and use a

combination of star and other topologies for extracting sub-graphs.
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Figure 5.6: Performance of Algorithm MinMrocGrooming for n = 48 and d = 0.5
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Chapter 6

Traffic grooming in BLSR networks

As another important architecture for SONET/WDM ring networks, BLSR is widely used

in optical network design as well. Compared to UPSR networks, the routing of a traffic

demand in BLSR networks is not unique. Traffic demands can be routed in either clockwise

or counter-clockwise direction. Generally speaking, this flexibility in routing makes the

traffic grooming problem in BLSR networks more complicated than UPSR networks. As

mentioned in Chapter 2, the traffic grooming problem in BLSR network is usually solved

by a two-step approach: the first step is to generate primitive cycles, and the second step

is to groom primitive cycles into wavelength channels. The two steps are not completely

independent, therefore it can not be guaranteed that the number of used SADMs is optimal

even if the optimal solution can be achieved for each step individually. For the traffic

grooming problem in BLSR networks, we adopt the two-step approach, and use previous

algorithms to obtain the solution for the first step. From now on, we assume that the solution

for the first step is available unless otherwise stated, and focus on solving the second step.

6.1 Definitions and problem formulations

We formulate the traffic grooming problems into hypergraph partitioning problems. A

hypergraph H(V, EH) of n nodes and m hyperedges is a graph with node set V and hyperedge

set EH = {el, e2,"" em}, where each hyperedge ei is a subset of V with ni (ni ~ 2) nodes.

For the two-step approach to solve the traffic grooming in BLSR networks, once the

solution for the first step is given, we can construct a traffic hypergraph as follows: the node

set represents the set of network nodes in the BLSR network; there is a hyperedge in the
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hypergraph corresponding each primitive cycle, where the set of nodes in a hyperedge is the

set of network nodes as the sources or destinations of the traffic demands groomed in the

corresponding primitive cycle. We will formulate the traffic grooming problems using this

hypergraph model.

Similar as the k-Edge-Partitioning Problem, the traffic grooming problem to minimize

the total number of SADMs in BLSR networks can be formulated as the following parti­

tioning problem on the traffic hypergraph:

k-Edge-Partitioning of Hypergraph Problem (kEPH)

Instance: A traffic hypergraph H(V, E) and integer k::; IE(H)I.

Objective: Partition the hyperedge set E(H) into a collection of subsets [; = {EI, E2, ... }

(where UiEi = E(H) and Ep n Eq = 0 for P 1: q), such that IEil ::; k for each Ei E [;

and LEiE£IViI is minimized, where Vi is the set of nodes in the sub-hypergraph induced by

hyperedge set E i .

Similar as the Min-Max k-Edge-Partitioning Problem, the Min-Max traffic grooming

problem in BLSR networks can be formulated as the following Min-Max k-Edge-Partitioning

of Hypergraph problem (MMkEPH):

Min-Max k-Edge-Partitioning of Hypergraph Problem (MMkEPH)

Instance: A traffic hypergraph H(V,E) and integer k::; jE(H)I.

Objective: Partition the hyperedge set E(H) into a collection of pairwise disjoint subsets

[; = {EI' E2, ... } such that lEi I ::; k for each Ei E [;. The objective is to minimize the value

of m8.XvEV(H) A(v), where A(v) is the number of Ei's each of which contains at least one

hyperedge incident to node v.

Similar as the Maximum Connectivity k-Edge-Partitioning Problem, the Maximum

Throughput traffic grooming problem in BLSR networks can be formulated as the following

Maximum Connectivity k-Edge-Partitioning of Hypergraph problem (MaxCkEPH):

Maximum Connectivity k-Edge-Partitioning of Hypergraph Problem (MaxCkEPH)

Instance: A traffic hypergraph H(V, E), an integer k::; IE(H)I and an integer L.

Objective: Find a collection [; = {EI' E2,"'} of pairwise disjoint subsets of E(H) such

that IEil ::; k for each Ei E [; and A(v) ::; L for each v E V(H), where A(v) is the number
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of E;'s each of which contains at least one hyperedge incident to node v. The objective is

to maximize LEiEE IE;I.
Since all the three corresponding graph partitioning problems are NP-hard, it can be

easily proved that the following theorem holds.

Theorem 36 The kEPH problem, the MMkEPH problem, and the MaxCkEPH problem

are NP-hard.

Proof: Trivial.

6.2 Algorithms

o

In this section, we will focus on designing algorithms for the MMkEPH problem and the

MaxCkEPH problem. As to the kEPH problem, it has been well studied in previous work

which uses the hypergraph partitioning formulation implicitly.

6.2.1 Algorithms for the MMkEPH problem

In this section, we propose a simple greedy algorithm MinMax_Hyper for the MMkEPH

problem. The basic idea of this algorithm is to balance the SADM usage among all the

nodes in the network. The algorithm runs in iterations. For each iteration, a node v with

the maximum degree is chosen. Then arbitrary k hyperedges incident to v are chosen to

form a sub-hypergraph and deleted from the hypergraph, and accordingly the degrees of

the affected nodes in the hypergraph are updated. The same process is repeated until every

hyperedge is deleted from the hypergraph and included into some sub-hypergraph. During

each iteration, we also maintain a variable L(v) for each node v to denote the number

of sub-hypergraphs containing at least one hyperedge incident to v (i.e., L(v) denotes the

number of consumed SADMs at node v) so far. Thus if there is a tie when comparing the

degrees of the nodes, we choose the node with the largest L(v) to break the tie (we will

arbitrarily break the tie if it still exists). Eventually, all the sub-hypergraphs will constitute

a hypergraph partition, which gives a solution for the MMkEPH problem. The pseudo code

of Algorithm MinMax_Hyper is given in Figure 6.1. We will show the empirical results in

Section 6.3.
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Algorithm MinMaxJIyper
Input: A traffic hypergraph H and integer k.
Output: A solution E: for the MMkEPH problem.
begin

E::= 0;
While IE(H)I =I 0 do
{Pick a node v E V(H) with the largest degree 8(v);
(break the tie by choosing a node with the largest L(v))
Construct E; consisting of min(k, 8(v)) hyperedges incident to v;
Update E: := E: U {E;};
Update hypergraph H by removing hyperedges in E;;
Update degree 8(u) of each node u contained in the hyperedges of E;;
Update L(u) of each node u contained in the hyperedges of E;;

};
end.

Figure 6.1: Pseudo code for Algorithm MinMax_Hyper.
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During each iteration of the algorithm, a set of hyperedges are removed from the hyper­

graph. The process is repeated until all the hyperedges are removed. Therefore, Algorithm

MinMax-Hyper runs in O(IE(H)I) time, which is linear in the size of the input hypergraph.

Special case: all-to-all traffic pattern

Wan [50J studied the all-to-all traffic grooming on BLSR networks for minimizing the maxi­

mum number of SADMs. For the first step to generate primitive cycles, Wan [50J proposed

the following approach to achieve the minimum number of primitive cycles: let n be the

number of nodes in the BLSR network, and assume the nodes are labelled from °to n - 1 in

the clockwise direction. According to the parity of n there will be the following two cases:

1. If n is even, for every four nodes i, i + ~,j,j + ~, where °~ i < j ~ ~, the following

two primitive cycles are constructed:

• A clockwise primitive cycle formed by traffic demands (i,j),(j, i+~), (i+~,j+~),

(j + ~,i) routed in the clockwise direction;

• A counterclockwise primitive cycle formed by traffic demands (i,j + ~),(j +~, i+

~), (i + ~,j), (j, i) routed in the counterclockwise direction.

For every node i, where °~ i ~ ~ - 1 and i mod 2 == 0, the following primitive cycle

is constructed:
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• A clockwise primitive cycle formed by traffic demands (i, i + ~), (i +~, i) routed

in the clockwise direction.

For every node i, where 0 ~ i ~ ~ - 1 and i mod 2 == 1, the following primitive cycle

is constructed:

• A counterclockwise primitive cycle formed by traffic demands (i, i + ~), (i +~, i)

routed in the counterclockwise direction.

Therefore the total number of primitive cycles is 2(t) + ~ = ~2, where there are r~21

primitive cycles in one direction and l ~2 J in the other direction.

2. If n is odd, for every four nodes i,i + r~l,j,j + r~l, where 0 ~ i < j < l~J, the

following two primitive cycles are constructed:

• A clockwise primitive cycle formed by traffic demands (i,j),(j, i + r~l), (i +
r~l,j + r~l), (j + r~l,i) routed in the clockwise direction;

• A counterclockwise primitive cycle formed by traffic demands (i,j + r~l), (j +
r~1, i + r~1), (i + r~1, j), (j, i) routed in the counterclockwise direction.

For every node i, where 0 ~ i < l~J, the following two primitive cycles are constructed:

• A clockwise primitive cycle formed by traffic demands (i, l~J), (l~ J, i + r~1),
(i + r~1, i) routed in the clockwise direction;

• A counterclockwise primitive cycle formed by traffic demands (i,i + r~l), (i +
r~l, l~J), (l~J,i) routed in the counterclockwise direction.

Therefore the number of primitive cycles is (l ~ J) + l~J = n
2

s-1 in each of the clockwise

and counterclockwise directions.

Based on the above construction of primitive cycles, we can construct a traffic hypergraph

and use algorithm MinMaxJIyper to solve the MMkEPH problem. However, due to the

special scheme of constructing primitive cycles, a better approach can be used to compute

the solution. We will describe the case for n being even in the following, and the case for n

being odd can be solved in a similar way.

If n is even, we assume that n = 2m without loss of generality. We construct a complete

graph K m with m nodes as follows: each node i in K m represents a node pair (i, i + ~) in
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the BLSR; the edge between node i and j in K m represents the two primitive cycles formed

by traffic demands (i,j),(j,i + ~), (i + ~,j + ~), (j + ~,i) in the clockwise direction and

traffic demands (i, j + ~), (j + ~, i + ~), (i + ~, j), (j, i) in the counterclockwise direction. It

is also noticed that there is a primitive cycle between each node pair (i, i + ~), and there are

~ primitive cycles in total for each of the clockwise and counterclockwise directions. We

use a hidden edge to denote each pair of such primitive cycles in the complete graph K m .

For the complete graph K m , we can use the same algorithm described in Section 5.2.3 to

groom the edges of K m , and use one extra SADM at each node to groom the hidden edges.

Therefore, we have the follow corollary based on Theorem 29.

Corollary 37 A solution with maxv A(v) ~ If m + ~ can be obtained for the Min-Max
Jv'2k-2 .

grooming of all-to-all traffic in BLSR networks.

As well, the solution can be improved further to Nil + 1 ~ n + g for k > 6Ifv'2k-3 3 -,

and VI n + ~1 for k 2: 10, and Ii n + ¥ for k 2: 15, as derived in Section 5.2.3.
sv'2k-4 6v'2k-5

6.2.2 Algorithms for the MaxCkEPH problem

It is observed that Algorithm MaxConnectivity_Grooming proposed in Section 5.3.2 can

be directly applied to solve the Maximum Connectivity k-Edge-Partitioning of Hypergraph

problem. However, the theoretical analysis of the performance guarantee uses the results of

the maximum b-matching of graphs, which are not known for hypergraphs. Therefore, the

approximation ratio of Algorithm MaxConnectivity_Grooming can not be preserved for the

MaxCkEPH problem.

Special case: all-to-all traffic pattern

As illustrated in Section 6.2.1, we can use a complete graph with some hidden edges to denote

the primitive cycles constructed by the approach in [50]. For the Maximum Throughput

traffic grooming problem, the algorithm proposed in Section 5.3.3 can be used directly to

achieve the same performance. Based on Theorem 35, we have the follow corollary for the

Maximum Throughput grooming of all-to-all traffic in BLSR networks.

Corollary 38 A solution £ with L:EiE£ IEil 2: mL~VkJ can be obtained for the Maximum

Throughput grooming of all-to-all traffic in BLSR networks.
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6.3 Empirical results
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We implemented Algorithm MinMa)cHyper and conducted simulations to evaluate its prac­

tical performance by comparing to a lower bound. In generating traffic hypergraphs, we

specified the number n of network nodes and a parameter t that is used to calculate the

number nl+t of traffic demands on the BLSR network. Then we used the algorithm closed

chain first proposed in [51] to generate primitive cycles, which are further formulated as a

hypergraph. Figure 6.2 shows the empirical results of Algorithm MinMaJcHyper for n = 36

and t = 0.6, where for each value of grooming factor k, we collect the results from 100

randomly generated traffic demand sets and compute the average value. The lower bound

we used for measuring Algorithm MinMaxJIyper is r~1H) 1, where Do (H) represents the

maximum degree of hypergraph H. We observe that the experimental performance of the

algorithm is not far from the lower bound, and thus the optimum. The gap between the

results achieved by the algorithm and the lower bound indicates that there might exist room

to improve the performance of the algorithm, or it is possible to show a better lower bound.

Simulations are conducted on hypergraphs with different parameter settings as well, and the

results present similar characteristics (see Figure 6.3 and Figure 6.4 for other representative

results).

Algorilhm MinM8X_Hyper
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:I
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l;
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Figure 6.2: Performance of Algorithm MinMaxJIyper for n = 36 and t = 0.6 .



CHAPTER 6. TRAFFIC GROOMING IN BLSR NETWORKS

Algorilhm MinMax_Hyper
30,~-~-"--:~-7"=======il

1

expenmental performance I
--+- lower bound I

25

°3:-~----=--7-~7'------~8-~-----'1~O-~11-----'---"2

grooming 'acteN' k

Figure 6.3: Performance of Algorithm MinMmcHyper for n = 48 and t = 0.6 .

6.4 Summary
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In this chapter, we studied the traffic grooming problem in BLSR networks. We extended

the graph partitioning approach used for traffic grooming in UPSR networks to the BLSR

networks, and formulated the traffic grooming problems into hypergraph partitioning prob­

lems. The algorithms proposed in previous chapters for graph partitioning problems are

also extended to solve the hypergraph partitioning problems. However, the guaranteed per­

formance can not be preserved as the graph theory results we used in previous chapters

are not available for hypergraphs. As a possible future research direction, achieving per­

formance guaranteed algorithms for hypergraph partitioning problems seems interesting yet

challenging. Also, the hypergraph partitioning formulation aims to solve the grooming of

primitive cycle (i.e., the second step of the two-step approach) rather than the entire traffic

grooming problem. As another more difficult problem, achieving performance guaranteed

algorithms for the entire traffic grooming problem in BLSR networks is still open. Although

the two-step approach provided an efficient way to solve the traffic grooming problem, the

two steps are coupled closely and solving each step optimally might not lead to the opti­

mal solution for the entire problem. An integrated approach which considers the two steps

jointly is needed to develop performance guaranteed algorithms.



CHAPTER 6. TRAFFIC GROOMING IN BLSR NETWORKS

Algoriltlm MinMax_Hyper

301-~-~-~~~r=======:='===il
--..- experimental perfDnTlatlC8
---+-- lower bound

2S

o3~-~-~~-~7'----'----<8-'----<-'----<'O'----~11,-------J'2
grooming factOf k

Figure 6.4: Performance of Algorithm MinMaxJIyper for n = 60 and t = 0.6 .
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Chapter 7

Discussion for future work

7.1 Traffic grooming in mesh networks

The mesh topology has been increasingly considered recently as an alternative of the ring

topology to build the next generation optical networks due to its scalability. The mesh

considered in optical networks is an irregular mesh topology. Roughly speaking, an irregular

mesh is based on a conventional mesh but there is no restriction that every node must be

connected to the four neighbors in the pattern defined in the mesh. In other words, an

irregular mesh can be considered as a planar graph with a bounded node degree, in practice

the planarity may not be a restriction though. Compared to the regular mesh topology, the

irregular mesh topology is more flexible and much easier to scale.

7.1.1 Related work

Due to the increasing deployment of Digital Crossconnects (DXC) in optical networks, the

multi-hop traffic grooming problem is usually considered in mesh networks rather than the

single-hop traffic grooming problem. Along the path from the source to the destination, each

traffic is carried by a lightpath for each hop, where the lightpath is defined as a fully optical

wavelength circuit spanning multiple physical links. Such a multi-hop traffic grooming

problem in mesh networks is usually divided into four sub-problems [67]:

1. Determining the virtual topology that consists of light-paths;

2. Routing the lightpaths over the physical topology;
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3. Performing the wavelength assignment to the lightpaths; and

4. Routing the traffic demands on the virtual topology.

100

Based on the optimization goal, the existing research on traffic grooming in mesh net­

works can be divided into two categories: the first category is to minimize the total number

of SADMs to satisfy a given set of traffic demands, and the second category is to maximize

the number of accommodated traffic demands subject to using limited traffic grooming re­

sources. We will discuss the two categories for traffic grooming in mesh network in the

following respectively.

'!raffle grooming to minimize the total number of SADMs

Similar as the traffic grooming in ring networks, the major goal of traffic grooming in mesh

networks is to satisfy a given set of traffic demands such that the total number of used

SADMs is minimized. A lot of research papers have proposed heuristic algorithms based

on Integer Linear Programming, and the work by Hu and Leida [33] can be considered as a

representative one. We will introduce their approach in the following.

Hu and Leida [33] made the assumption that the lightpaths and their routes in the

physical topology are given, and only the third and fourth sub-problems mentioned above

are considered. They use graph GI = (VI' E) to represent the physical topology, where E

is the set of physical links and VI is the set of physical network nodes. They also use graph

Go = (Vo , L) to represent the virtual topology, where L is the set of edges representing

lightpaths and Vo C VI is the set of network nodes which are connected via lightpaths. It is

noticed that each edge in L actually corresponds to a path in graph GI' They also assume

that each lightpath might contain multiple wavelengths (i.e., each light path is treated as

a logical connection between a pair of network nodes). Based on the above definitions, the

grooming problem on mesh networks can be described as follows: for a given set of traffic

demands, find an optimal way to route and groom these demands in the virtual topology,

and also to assign a set of wavelengths to each lightpath such that the total number of

used SADMs is minimized. There are two key constraints which should be taken into

consideration:

• the wavelength capacity constraint to accommodate low-rate traffic demands, and
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• the wavelength continuity constraint for each lightpath (i.e., the same wavelength(s)

should be assigned to a lightpath over the physical links it traverses).

Therefore given the above problem setting, the number of SADMs required for each lightpath

is equal to twice the number of wavelengths assigned to it (i.e., one SADM is used for one end

of each wavelength on a lightpath). Thus, the number of wavelengths on a lightpath can be

potentially reduced by grooming multiple low-rate traffic demands onto a single wavelength,

and further the number of SADMs can be reduced. Hu and Leida [33] formulate the problem

into a Integer Linear Programming (ILP) problem, where the objective is to minimize the

number of used SADMs subject to the above two major constraints.

It is well known that the ILP problem is NP-hard, and it may not be computationally

feasible to solve the above ILP problem, particularly for large networks. A more efficient

approach is proposed to solve the formulated ILP problem in [33]: the ILP problem is

decomposed into two smaller sub-problems, where one is traffic grooming and routing (GR)

problem and the other is the wavelength assignment (WA) problem. In the GR problem,

they only consider how to groom and route demands over lightpaths and ignore the issue

of how to assign specific wavelengths to lightpaths, and the size of the GR ILP problem

is much smaller than the original ILP problem. Once the GR problem is solved, WA is

considered with the goal to derive a feasible wavelength assignment solution. It is worth

pointing out that in general the decomposition approach does not yield the optimal solution

for the original ILP problem. Therefore, they provided a sufficient condition under which

it can be shown that the decomposition approach does produce an optimal solution for the

original ILP problem.

Maximum Throughput traffic grooming

Zhu and Mukherjee [67,66, 65] studied the traffic grooming on mesh networks with different

problem settings and optimization goals. They assume that the number of SADMs in each

node and/or the number of wavelength available on each optical fiber are/is fixed, and the

objective is to establish lightpaths, and groom as many low-rate traffic demands as possible

onto the lightpaths (i.e., the objective is to maximize the throughput for a given set of traffic

demands).

• ILP based algorithms
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Similar as the conventional traffic grooming problem in mesh networks, the Maximum

Throughput traffic grooming problem is formulated as an Integer Linear Program

(ILP) in [67]. Due to the high computational complexity to solve the ILP problem,

two heuristic algorithms are proposed in [67] for large networks, and simulations are

conducted to compare the results with the optimal results obtained from the ILP

problem. The simulation results suggested that the heuristic algorithms can achieve

acceptable performance with relatively low computational complexity.

As well, they extended the problem setting to a network revenue model: different

low-rate traffic demands might have different revenues even if they have the same

bandwidth requirement. A weight is associated with each low-rate traffic demand to

represent the revenue that can be achieved by satisfying the traffic demand. Therefore,

the objective becomes to maximize the sum of revenues subject to having fixed number

of SADMs and/or fixed number of available wavelengths on each optical fiber. Again,

this problem can be formulated as an ILP by simply modifying the ILP used for the

Maximum Throughput traffic grooming.

• Algorithms based on a novel generic graph model

To solve the traffic grooming problem in mesh networks, one approach is to deal with

the four sub-problems separately. The ILP decomposition approach in [33] and the

heuristic algorithms in [67] fall into this category. Although this divide-and-conquer

method makes traffic grooming easier to handle, it cannot guarantee to achieve the

optimal solution even if the optimal solution for each sub-problem can be computed.

The other approach is to solve the four sub-problems as a whole. The ILP approaches

used in [33, 67] fall into this category. By taking into account all the constrains of

the four sub-problems simultaneously, the ILP approach is capable of achieving opti­

mal solutions for relatively small networks with reasonable computational complexity.

However, the ILP approach is not scalable and cannot be directly applied to large

networks.

Zhu et al. [66] proposed a novel graph model, and developed integrated traffic grooming

heuristic algorithms based on this model to maximize the throughput for a given set

of traffic demands. This graph model is generic in the sense that it can be applied to

a wide range of problem settings. For examples, each network node can be equipped

with the same number of SADMs or different number of SADMs, each traffic demand
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can be a uniform size or non-uniform size. In this graph model, for any given physical

network configuration, an auxiliary graph G is constructed. The auxiliary graph G is

a layered graph with (W + 2) layers, where W is the number of wavelengths on each

optical fiber in the network. Layers 1 though W denote the W wavelength layers, layer

(W +1) is called the lightpath layer, and layer (W + 2) is called the access layer, where

a low-rate traffic flow starts and terminates. For each network node, there are two

ports on each layer, denoted by two nodes in graph G, an input port and an output

port. The edge set in graph G contains the following edges:

- Wavelength bypass edges: there is an edge from the input port to the output

port on each wavelength layer at each node;

- Grooming edges: there is an edge from the input port to the output port on

access layer at node i if node i has SADMs to perform the grooming;

- Mux edges: there is an edge from the output port on the access layer to the

output port on the lightpath layer at each node;

Demux edges: there is an edge from the input port on the lightpath layer to the

input port on the access layer at each node;

- Transmitter edges: there is an edge from the output port on the access layer to the

output port on wavelength layer l if there is an SADM operating on wavelength

l at a node;

- Receiver edges: there is an edge from the input port on wavelength layer l to the

input port on the access layer if there is an SADM operating on wavelength l at

a node;

Converter edges: there is an edge from the input port on wavelength layer II to

the output port on wavelength layer l2 at a node if wavelength it can be converted

to wavelength l2 at the node;

- Wavelength-Link edges: there is an edge from the output port on wavelength

layer l at node i to the input port on wavelength layer l at node j if there is a

physical link from node i to node j and wavelength l on this link is free;

- Lightpath edges: there is an edge from the output port on the lightpath layer at

node i to the input port on the lightpath layer at node j if there is a lightpath

from node i to node j. Those lightpath edges are set up with the establishment
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of any lightpath during the algorithm, and there is no such edge initially when

no lightpath is set up.

Each edge in the auxiliary graph G is associated with a weight, which is used to denote

its capacity. For a wavelength-link edge, its capacity is the capacity of the correspond­

ing wavelength on the corresponding link. For a lightpath edge, its capacity is the

residual capacity of the corresponding lightpath. For all the other types of edges, the

capacity is set to be 00. It should be clear that the auxiliary graph reflects the current

state of the network, and the network can be heterogeneous, with different nodes hav­

ing different resources and capabilities. Zhu et at. [66J used an example to illustrate

how to groom a single traffic demand T from source node s to destination node t with

a certain bandwidth requirement m: find the shortest path p in graph G from the

output port on the access layer of the source node s to the input port on the access

layer of the destination node t. If no such path exists, then traffic demand T can not

be satisfied given the current available resources. Otherwise if p contains wavelength­

link edges, one or more lightpaths going through the corresponding wavelength-links

needs to be set up. A lightpath starts whenever p travels through a transmitter edge,

follows the subsequent wavelength-link edges, and terminates at the first receiver edge.

Route T along the lightpaths in p. If the capacity of the path, which is defined as

the minimum capacity of the lightpaths along p, is less than the entire amount m of

T, route the maximum amount possible of the traffic (i.e., it is assumed that a traffic

demand can be split, and it can be satisfied partially if the entire traffic demand can

not be accommodated). After T or a fraction of T is groomed, the graph G is updated

accordingly such that the auxiliary graph always reflects the up-to-date network state.

The above procedure for grooming a single traffic demand can be naturally extended

to groom a given set of traffic demands such that as many traffic demands as possible

are satisfied. And the order in which the traffic demands are routed plays an important

role in achieving good performance. Several grooming algorithms are proposed in [66]

based on different traffic demands selection schemes, and simulations are conducted to

show that this integrated grooming approach based on the novel graph model produces

good performance by considering the four sub-problems simultaneously.
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Both the traffic grooming problem to minimize the total number of SADMs and the Maxi­

mum Throughput traffic grooming problem have been studied in mesh networks. However,

no research has been known for the Min-Max traffic grooming problem. Thus studying

the computational complexity and developing efficient algorithms for the Min-Max traffic

grooming in mesh networks is a possible future research direction.

As we discussed above, a novel graph model has been used to design algorithms for

Maximum Throughput traffic grooming in mesh networks. This approach is an integrated

one in the sense that it considers all the sub-problems jointly. One interesting open prob­

lem is to extend this graph model to tackle the traffic grooming problem to minimize the

total number of SADMs, and the Min-Max traffic grooming problem. For the Maximum

Throughput traffic grooming problem, the amounts of network resources (e.g., SADMs) are

given as input parameters, and thus it is natural to model those parameters as nodes, edges,

or weights in the graph. However for the other two optimization goals, the traffic demands

are given as the input, and we are supposed to optimize the network resources. Therefore,

probably a graph model representing the traffic demands instead of the network resources is

more suitable (similar as the traffic graph/hypergraph we defined in the UPSR/BLSR net­

works). Thus, the difficulty lies in how to construct the graph model, and how to formulate

the traffic grooming problem into a problem on the graph model.

As we know, it is NP-hard to solve ILP while Linear Programs (LP) can be computed

optimally in polynomial time. For the ILP based algorithms introduced above, one possible

research direction is to transfer the ILP problems into LP problems by using techniques

such as LP relaxation, and design algorithms to transform the optimal solutions of the

LP problems into approximate solutions of the ILP problems. This kind of approach is

widely used to design ILP based approximation algorithms for optimization problems. For

the traffic grooming problem in mesh networks, the challenge lies in the transform from

solutions of the LP problems to the solutions of the ILP problems, and it could be even

difficult to obtain feasible solutions of the ILP problems based on the solutions of the LP

problems.
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Besides the ring and mesh topology, traffic grooming in some other fundamental topologies,

including path, star, and tree, has also been studied.

7.2.1 Related work

Bermond et al. [4] considered the single-hop traffic grooming in path networks, and Huang

et al. [34] considered the multi-hop traffic grooming in path, star, and tree networks.

Traffic grooming in path networks

• Single-hop traffic grooming

Bermond et al. [4] formulated the single-hop traffic grooming problem in the undirected

path as a graph partitioning problem. They used PN to denote a path with node set

V = {O, 1, 2, ... , N - 1} and edge set E = {(i, i + 1) 10 :-:; i :-:; N - 2}, and I to denote

the set of uniform traffic demands, each of which is a pair (u, v) representing the traffic

demand from node u to v. In the graph partitioning formulation, traffic demand set

I is modelled by a graph G = (V, E) where each edge e = (u, v) is associated to

the traffic demand (u, v). Since the physical network topology is a path, each traffic

demand is routed uniquely from u to v along PN, and need to be groomed into a

wavelength w. Let Bw = (Vw, Ew) be the sub-graph of G containing all the traffic

demands groomed into wavelength w, and L(Bw , e) be the number of traffic demands

in Bw which are routed through edge e in PN, then the traffic grooming problem can

be formulated as the following graph partitioning problem:

Inputs: A path PN, a grooming factor k, and a set of traffic demands I modelled by

the graph G = (V, E);

Output: A partition of the edges of G into sub-graphs Bw = (Vw, Ew) (where

w = 1, ... , W) such that L(Bw , e) :-:; k for each edge e of PN;

Objective: Minimize l:l$w$W /Vwl·

Bermond et al. [4] optimally solved the above graph partitioning problem for the case

that k = 1. For k ? 2, the problem is proved to be NP-hard and it is even difficult to

develop approximation algorithms for an arbitrary traffic pattern. In particular, when
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the grooming factor k = 2, the problem is the same as the problem to partition G into

the maximum number of triangles. Bermond et at. [4] optimally solved the case that

k = 2 and G is a complete graph (Le., I is an all-to-all traffic pattern) by using the

results of design theory.

• Multi-hop traffic grooming

Huang et at. [34] studied the multi-hop traffic grooming in path networks. The opti­

mization goal is to minimize the total amount of electronic switching over all network

nodes. In this cost model, every time a lightpath terminates at a network node,

one unit of cost is incurred for each unit traffic stream carried by the lightpath if

this stream has to undergo electronic switching (i.e., the stream does not have this

node as its destination). This optimization goal indirectly captures the total cost of

SADMs. Under this optimization goal, the following traffic grooming problem variants

are proved to be NP-hard in [34]:

- The multi-hop traffic grooming problem in unidirectional path networks is NP­

hard.

- The multi-hop traffic grooming problem in bidirectional path networks is NP­

hard.

- Constant-factor approximation to the optimal solution of the multi-hop traffic

grooming problem in unidirectional path networks is NP-hard.

Since most network topologies contain the path as a sub-topology, the above theorems

suggest that it is unrealistic to achieve optimal or constant ratio approximate solutions

to the multi-hop traffic grooming problem in general network topologies. A heuristic

algorithm for the multi-hop traffic grooming in path networks is proposed in [34], and

evaluated by simulation results.

Traffic grooming in star and tree networks

Huang et at. [34] studied the multi-hop traffic grooming in star and tree networks as well,

where the optimization goal is still to minimize the total amount of electronic switching

over all network nodes. They proved that the problem remains NP-hard for both star and

tree networks. Heuristic algorithms are proposed for both topologies. In addition, they
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derived a series of lower and upper bounds for both star and tree networks, which are

increasingly tighter but have considerably higher computational complexity. Those bounds

provide a good benchmark to evaluate the performances of the heuristic algorithms proposed

for traffic grooming in star and tree networks.

7.2.2 Future research

For the single-hop traffic grooming, previously only the path topology is considered. One

possible research direction is to consider the single-hop traffic grooming in star and tree

networks as well. This research direction can be conducted in two categories: computational

complexity of the problems and efficient algorithms to solve the problems. As to the former,

it is noticed that some results on computational complexity of traffic grooming in tree

networks might be implied by the known results in path networks, since the path topology

is a special case of the tree topology. The similar relation exists between the star and

tree topology. For the research on designing efficient algorithms, it is worth exploring both

special traffic (e.g., all-to-all) patterns and the arbitrary traffic pattern.

For the multi-hop traffic grooming in path, star, and tree networks discussed above, the

optimization goal is to minimize the total amount of electronic switching over all network

nodes. This cost model simplifies the traffic grooming problem, however, it is not as accurate

as the total number of SADMs in order to represent the cost of the network. Therefore,

studying the traffic grooming problem in those fundamental network topologies under the

conventional cost model is a possible future research direction, which should include the

research on both deriving computational complexity and designing efficient algorithms.

For both the single-hop and multi-hop traffic grooming discussed above, the optimization

goal is to minimize the total amount of traffic grooming resources. There is no result known

for the Min-Max traffic grooming and Maximum Throughput traffic grooming problems in

path, star and tree networks, which can be another possible research direction for traffic

grooming on those fundamental topologies.



Chapter 8

Concluding remarks

In this thesis, we studied the traffic grooming problem in WDM optical networks. naffic

grooming is to multiplex low-rate traffic demands into high-speed wavelength channels to

make efficient use of the high bandwidth of the wavelength channels in optical networks.

naffic grooming is carried out by SADMs, which are expensive network devices. Therefore,

the optimization goal of traffic grooming is usually to either minimize the number (which can

be the total number or the maximum number over all network nodes) ofrequired SADMs to

satisfy a given set of traffic demands, or maximize the number of satisfied traffic demands

subject to using a limited number of SADMs. Those optimization goals have attracted a lot

of research attention, however, few results have been known to have guaranteed worst case

performance. In this thesis, we focused on developing performance guaranteed algorithms

for traffic grooming in UPSR networks. Firstly, we studied the traffic grooming problem

to minimize the total number of SADMs. We proposed two linear time approximation

algorithms, which achieve better upper bounds on the number of SADMs than previous

algorithms. Secondly, we studied traffic grooming of the regular traffic pattern. We proved

the NP-hardness, and proposed an approximation algorithm to solve the problem. Thirdly,

we studied the Min-Max traffic grooming problem and the Maximum Throughput traffic

grooming problem, for each of which we showed the NP-hardness and proposed an approx­

imation algorithm. We also studied the all-to-all traffic pattern, and gave algorithms that

achieve solutions constant factors away from the optima. In addition, we studied the traffic

grooming problem in BLSR networks, and discussed the possible extensions of the results

in UPSR networks to BLSR networks. Finally, we surveyed the research on traffic grooming

in mesh networks and other fundamental network topologies, based on which some possible
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future research directions are pointed out.
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