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Abstract

Computationally difficult problems are ubiquitous. Although, sometimes approximations

come in handy, accuracy is often a must and hence complexity of optimization seems un­

avoidable. The classical viewpoint to the complexity considers the instant size as the only

factor for computing its hardness, but while dealing with hard problems, many input in­

stances consist of easy parts and other parts that form the hard core of the problem. There­

fore, it seems reasonable that before starting a cost-intensive algorithm, a polynomial-time

preprocessing phase is executed in order to shrink the instance to the hard core kernel. In

fixed-parameter algorithms, this is known as data reduction to a problem kernel. In this

thesis, we study data reduction for the connected dominating set problem. In particular,

we introduce a set of data reduction rules for the connected dominating set problem and

prove that the problem admits a linear-size kernel in planar graphs.
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Chapter 1

Introduction

1.1 Parameterized algorithms

Computationally hard problems are ubiquitous and therefore it is critical to know how to

best deal with them. Although, sometimes approximations come in handy, accuracy is often

a must and hence complexity of optimization seems unavoidable.

A fixed-parameter algorithm computes an optimal solution to a discrete combinatorial

problem. For an NP-hard problem, one can not hope for anything better than exponential

running times. However, the fundamental idea is to restrict the corresponding, seemingly

unavoidable, combinatorial explosion that causes the exponential growth in the running

time of certain problem-specific parameters. It is hoped then that these parameters might

take only relatively small values, resulting in an affordable exponential growth in which

case, the fixed-parameter algorithm efficiently solves the given parameterized problem [36].

The field of parameterized algorithms continues to grow. Over twenty difl'erently named

techniques are known in the literature for designing parameterized algorithms. These include

Bounded Search Trees [24]' Data Reduction [36], Kernelization [24], The Extremal Method

[26], The Algorithmic Method [39], Catalytic Vertices [26], Crown Reductions [17], Modeled

Crown Reductions [21], Either/Or [40], Reduction to Independent Set Structure [41], Greedy

Localization [21]' Win/Win [25], Iterative Compression [21], Well-Quasi-Ordering [24], FPT

through Treewidth [24], Search Trees [36], Bounded Integer Linear Programming [36], Color

Coding [5], Method of Testsets [24], Interleaving [37]. Several survey articles [25, 21] and

books [36, 24] have discussed the common themes like Bounded Search Trees, Kernelization

and Win/Win. A full taxonomy of the mentioned techniques is provided in [43].

1



CHAPTER 1. INTRODUCTION 2

Although the classical viewpoint to the complexity usually considers the size of input

as the only factor for computing its hardness, while dealing with computationally hard

problems, many input instances consist of some parts that are relatively easy to deal with

and other parts that form the real hard core of the problem. Therefore, it is reasonable that

before starting a cost-intensive algorithm solving the difficult problem, a polynomial-time

preprocessing phase is executed in order to shrink the input data to the hard core kernel.

In the context of fixed-parameter algorithms, this basically comes down to what is known

as data reduction to a problem kernel.

The work of Weihe [45, 46] demonstrates the ease and power of data reduction in tackling

real life applications very well. Dealing with the problem of covering trains by stations they

applied two simple data reduction rules to the equivalent NP-complete red/blue dominating

set problem recursively until no further application was possible. Their result was later

successfully tested on the data from German and European trains schedules. No matter the

context in which the data reduction is applied, the main idea behind this approach is to

shrink the problem instance by applying reduction rules into a very small instance (namely,

kernel) for which a simple brute-force approach is sufficient to solve the computationally

hard problems efficiently and optimally.

1.2 Graph domination

Given a graph G with vertex set V (G), the dominating set problem asks for a minimum

subset D ~ V(G) of vertices such that every vertex in V(G)\D has a neighbor in D.

The dominating set problem is a classic NP-complete graph problem which belongs to a

broader class of domination and covering problems on which hundreds of papers have been

written. The dominating set problem and its variants are discussed in details in the book of

Haynes, Hedetniemi, and Slater [31]. From applications' point of view, domination problems

appear in numerous practical settings, ranging from strategic decisions such as locating

radar stations or emergency services through computational biology to voting systems [4] and

more than 200 research papers and more than 30 Ph.D. theses investigate the algorithmic

complexity of domination and related problems (see Haynes et al. [31] for a survey). It is

known that dominating set problem on arbitrary graphs is W[2]-complete 1 and hence is

1W[2] is the class of decision problems that are fixed-parameter reducible to the Weighted Circuit-SAT
with 2-unbounded fan-in along any path to the root.



CHAPTER 1. INTRODUCTION 3

not fixed-parameter tractable unless the parameterized complexity hierarchy collapses [24].

When restricted to planar graphs dominating set is fixed-paramater tractable [24]. The best

known parameterized time complexity for the planar dominating set is O(211.98Vk ) . nO(I)

where k is the domination number of the input graph [22J.

Apart from the original dominating set problem, variations of dominations such as mul­

tiple domination, even/odd domination, distance domination, directed domination, inde­

pendent domination and connected domination have found numerous applications and sig­

nificant theoretical interests recently. While each of such problems may vary in terms of

difficulty, most of them are proven to be NP-complete and hence it has also been a chal­

lenge to study the problems when restricted to a smaller class of graphs and check how the

imposed restrictions affect tractability of the problems.

Out of these variants, the connected dominating set (abbreviated as CDS) has probably

received the most attention, as apart from its theoretical significance, the connected dom­

inating set lies at the heart of many practical settings. In this scenario, given a graph G

and a positive integer k, the question is whether a dominating set of size k exists such that

the induced graph on the set of dominating vertices is connected. It is known that the con­

nected dominating set problem remains NP-complete even under the planarity restriction.

In terms of parameterization results, the connected dominating set is not fixed-parameter

tractable in arbitrary graphs but becomes tractable when restricted to planar graphs [23J.

Probably the most prominent applications of connected dominating set appear in wireless

ad hoc networks, where a wide range of network protocols use CDS as underlying structure

for performing various communication functions. These include protocols for media access

coordination [6J; unicast/routing [19, 18], multicast/broadcast [32,33], location-based rout­

ing [20J; and energy conservation [14, 48J. For a survey on the algorithms and techniques

for computing connected dominating sets in wireless ad hoc networks see [8J.

1.3 Related works

Preprocessing of hard problems is not a new concept and indeed it can be traced back to

the very beginning of algorithm research and hence it seems impossible to relate its origin

to a particular piece of research. The concept of data reduction to a problem kernel was

introduced by Downey and Fellows [24J for the first time in order to formalize reductions

for parameterized complexity purposes. Vertex cover as a classical problem is probably one



CHAPTER 1. INTRODUCTION 4

of the earliest problems studied in this line. A simple data reduction for the vertex cover

is discussed by Buss and Goldsmith in [9]. Though much earlier and not in the context

of data reduction, Nemhauser and Trotter [35] proved a fundamental result of 2k kernel

for vertex cover. Cai et al. [11] proved that every fixed-parameter tractable problem is

kernelizable. Mahajan and Raman [34] studied the parameterized and exact complexity of

MAX-SAT and proved a quadratic-size problem kernel for the problem. Their work was

later improved by Chen and Kanj [16]. Study of the NP-complete MAX-2-SAT problem

is done in Gramm et al. [27]. They proved an upperbound of LO(I) . 2K / 5 for an input of

size L with k 2-literal clauses. The kernelization of cluster editing is due to Gramm et al.

[28]; while its more general form, correlation clustering had been studied before by Bansal

et al. [7]. An exponential size problem kernel for multicut in tr'ees was obtained by Guo and

Niedermeier [29]. A problem kernel of cubic size for 3-hitting set was shown by Niedermeier

and Rossmanith [38]. A linear-size kernel of 335k for the planar dominating set problem

was given in Alber et al. [4]. Chen et al. [15] improved this bound to 67k with better

reduction rules and a more detailed analysis. They used an extra technique of marking

vertices while applying rules in addition to the subsets of neighbors in Alber et al. [4]. On

the experimental side, the work of Alber in [1] showed that their data reduction rules also

perform well on non-planar sparse graphs.

1.4 Contributions of this thesis

In this thesis, we study the problem of the connected dominating set which has significant

theoretical and practical importance. Although it is known that connected dominating set

is fixed-paramater tractable when restricted to planar graphs, it has been open whether the

problem in this setting admits a linear-size kernel. Here, we answer this question using data

reduction techniques. In particular, having proposed a set of simple and easy-to-implement

reduction rules for the connected dominating set, we prove that for planar graphs a linear­

size problem kernel can be efficiently constructed. Considering the paramount importance

of the problem in theory and practice, this brings us one step closer to efficient computation

of many real life problems.

From algorithmic point of view, our linear kernel size result of 413k can be coupled with

any of the previous algorithmic result to obtain a very efficient fixed-parameter algorithm
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for the connected dominating set problem on planar graphs. In particular, using the branch­

decomposition based approach of [23], our result proposes a fixed-parameter algorithm of

time cVk . k + nO(l) where c is a constant and k is the connected domination number.

1.5 Thesis outline

The organization of this thesis is as follows: In Chapter 2, we define the terminology and

notation that we will be using throughout the thesis. In Chapter 3, we define a set of

reduction rules for the connected domination in planar graphs. These rules are local in

the sense that they use the neighborhood information of pairs of vertices only, for deciding

whether the reduction can be applied. Later, we prove the correctness of the reduction rules

and to assure the validity of reduction we prove polynomial computational time complexity

for each rule. Chapter 4, deals with upperbounding the size of kernel resulted after applying

reduction rules repetitively. In particular, we use a technique known as region decomposition

to divide the reduced graph into a set of connected subgraphs called regions and prove that

there can only exist a linear number of regions and that the size of each region is bounded

by a constant and hence we obtain a linear upperbound for the size of kernel. In Chapter

5, we employ a similar idea as the one behind our previous reduction rules to obtain a

master reduction rule. This rule is defined based on the SAT representation of the problem

and introduces a general gadget on-the-fly based 011 the associated constraints. Finally, in

Chapter 6, we conclude our work and suggest some possible future works in this line of

research.



Chapter 2

Preliminaries

In this chapter, we set the foundation of definitions and terminology that is being used

throughout the rest of the thesis.

2.1 Parameterized algorithms

Definition. Niedermeier [36] A fixed-parameter algorithm is the one that solves a problem

with an input instance of size n and a parameter kin f(k) 'nO(l) time for some computable

function f depending solely on k. In other words for any fixed parameter value the algo­

rithm gives a solution in polynomial time and the degree of polynomial is independent of k.

Definition. Niedermeier [36] Let .[ be a parameterized problem, that is, .[ consists of

input pairs (/, k) where I is the input instance and k is the parameter for I. Then, ker­

nelization or reduction to a problem kernel means to replace instance (/, k) by a reduced

instance (1', k') called problem kernel such that

k:S k', 11'1 :S g(k)

for some function 9 only depending on k, and

(/, k) E .[ iff (/', k') E .[

and this reduction must be computable in a polynomial time T(III, k). Here, g(k) is called

the kernel size.

6



CHAPTER 2. PRELIMINARIES

2.2 Graph domination

7

Throughout this thesis whenever we refer to G, we mean a graph that is simple and undi­

rected. We denote by V (G) the vertex set and E(G) the edge set of a graph G respectively.

Readers may refer to any textbook on graph theory for the very elementary definitions that

are skipped here.

For a vertex v of a graph G, The open and closed neighborhoods of v are defined as

N(v) = {ul{u,v} E E(G)} and N[v] = N(v) u {v} respectively.

Given a subset U ~ V(G), let N(U) = {ulv E U, {u,v} E E(G)} and G[U] denote the

subgraph induced by the vertices of U.

A vertex 'U is dominated by a vertex v if either 'U = v or {u, v} E E(G). Similarly, A vertex

v is dominated by a vertex set U if the v is dominated by a vertex of U.

Consider a set of vertices VI, V2, ... , VI E V we use the notation VI - V2 - . - . - VI-I - VI to

denote a path between VI and VI passing the vertices V2, ... ,VI-I in order.

The distance between two vertices V and w in G, denoted by dc(v, w) is the length of the

shortest path between V and w in G.

Given a graph G = (V, E) and a nonnegative integer k, the dominating set problem asks

whether there exists a subset D of V with at most k vertices such that for every vertex

V E V, there is a vertex 'U E N[v] with u E D.

A connected dominating set (CDS) of G is a subset D ~ V(G) such that D is a domi­

nating set of G and the subgraph G[D] induced by D is connected. The minimum CDS

problem is to find a CDS D of G with the minimum cardinality. Denoting the size of the

minimum CDS of G by "rAG), the decision version of the CDS problem is to decide, given

a graph G and a positive integer k, whether "Yc(G) :::; k.

Alber et al. [4] partition the neighborhood of a vertex (pair of vertices) into three sub­

sets based on the notion of domination. We adopt the same definitions from their work in

order to introduce the domination concept in our reduction rules as it becomes clear later

on. For a vertex v E V(G), we can define the following subsets of N(v) (See Figure 2.l.a).
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N}(v)

N2(v)

N3 (v)

{ulu E N(v), N(u) \ N[v] f- 0},

{ulu E N(v) \ N I (v), N(u) n N I (v) f- 0},

N(v) \ (NI(v) U N2(v)).

Also, for a pair of vertices v, w E V (G), let N (v, w) = N (v) U N (w) \ {v, w} and

N[v,w] = N[v]UN[w]. The neighborhood N(v,w) is partitioned similarly into the following

subsets(See Figure 2.l.b):

NI(v,w)

N 2 (v,w)

N 3 (v,w)

{ulu E N(v, w), N(u) \ N[v, w] f- 0},

= {uIUE N(v,w) \NI(v,w),N(u) nNI(v,w) f-0},

N(v, w) \ (NI (v, w) U N2 (v, w)).

A plane graph is a planar graph drawn in the plane without edge crossings.

Let G = (V, E) be a plane graph. A region R(v, w) between two vertices v, w is a closed

subset of the plane with the following criteria:

• The boundary of R(v, w) denoted by 8R is formed by two simple paths PI and P2 in

V that connect v and w, and the length of each path is at most three, and

• All vertices that are strictly inside the region R(v, w) are from N(v, w).

Figure 2.2.a gives an example of a region.

For a region R = R(v, w), let V (R) denote the vertices belonging to R, that is,

V(R) := {u E Vlu sits inside R or on 8R}

A region R(v, w) between two vertices v, wED is called simple if all vertices contained in

R(v, w) except for v, ware common neighbors of both v and w, that is, if (V(R(v, w))\ {v, w}) S;;

N(v) U N(w). (See Figure 2.2.b)

A simple region is of type i if i, (i = 1,2) of the vertices on its boundary except for v, w

have at least a neighbor outside the region. Examples of regions of type 2 and 1 are depicted
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@ N\(v)

@ Nz<v)

® N3(v)

(a)

9

@ N 1(v,w)

@ Nz<v,w)

® N3(v,w)

(b)

Figure 2.1: Examples of Ni(v) and Ni(v, w) (i = 1,2,3).

in Figure 2.2.b and c.

Given the definition of the region, for a plane graph G, one can envision a decomposition

of the graph into a set of non-overlapping regions. This notion is formalized in the next

definition.

Definition. Given a plane graph G and a subset D ~ V(G), a D-region decomposition

of G is a set R of regions between pairs of vertices of D such that

1. for R(v, w), no vertex of D \ {v, w} is in V(R(v, w)) and
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(a) (b) (c)

Figure 2.2: (a) A region (b) A simple region of type 2 (c) A simple region of type 1.

Figure 2.3 demonstrates an example of a region decomposition. With a little abuse of no­

tation, we use V(R) to denote all vertices in or on the boundary of a region in R; i.e.

V(R) = URE'R V(R).

The notion of region decomposition as defined before is not exact in the sense that it only

specifies a set of criteria on the set of regions. In practice, there can be several different

D-region decompositions for G many of them even not covering major parts of the graph.

Indeed, it is not hard to see that R = 0 is a valid decomposition. Therefore, in order to be

more accurate we need to include the concept of maximality in our statement.

A D-region decomposition R is called maximal if no region R can be added to R such

that the resulting decomposition stays valid and more vertices are covered. In other words,

R u R, R rf. R is not a region decomposition if V(R) c V(R U R).

An isomorphism between two graphs G and G' is a bijective map M from the vertices

of G to the vertices of G' such that there exists an edge from vertex v to vertex w in G iff

there is an edge from M(v) to M(w) in G'.

Assume a parameterized problem I:- with input instances of the type graph G = (V, E)

and a set of data reduction rules <I> for shrinking the size of instances. A rule ¢ is applied
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Figure 2.3: Example of a region decomposition for a plane graph.

11

successfully to a subset of vertices of G if the graph obtained after applying rule ¢ is not

isomorphic to G. Similarly, a graph G is called reduced if applying rules cI> to G results in a

graph isomorphic to G; i.e. none of the rules in cI> can be applied successfully to any subset

of V.



Chapter 3

Reduction Rules for Connected

Domination

In this chapter, using the inherent properties of the connected domination, we introduce

five simple rules for reducing the graph. Furthermore, in order to assure the validity of

our fixed-parameter reduction, for each presented rule we prove correctness and polynomial

time complexity.

The intuition behind the first and simplest reduction rule is that the vertices in N3 (v)

cannot be dominated by vertices from N 1(v). Vertex v is a good candidate for dominating

N3 (v) and the vertices in N2 (v) and N3 (v) can be removed.

Rule 1 For v E V(G), if N3(V) i- 0 then remove N2 (v) and N3(v) from G and add a new

gadget vertex v' with edge {v, v'} to G.

Lemma 3.0.1 Given a graph G, let G' be the graph obtained by applying Rule 1 to some

v E V(G). Then 'Yc(G) = 'Yc(G').

Proof: We prove the lemma by showing that a minimum CDS D' of G' is a also a min­

imum CDS of G. Obviously, D' contains vertex v but not the gadget vertex v'. From

N2 (v) U N3(V) ~ N(v), D' is a CDS of G as well. Let D be a minimum CDS of G. Then

ID I ~ ID'I· Notice that the vertices in N3 ( v) can only be dominated by either v or some

vertices from N 2(v) U N3 (v).

Assume that D contains v. Let D1 = D \ (N2 (v) U N3 (v))j then IDI 2:: ID11. From

N(N2 (v) U N3(v)) ~ N[v], it is inferred that D1 is a CDS of G. Since D1 does not contain

12
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any vertex from N 2(v) U N 3(v), D1is also a CDS of G'. Therefore, IDI ~ ID11 ~ \D'I. Thus,

IDI = ID'I and D' is a minimum CDS of G.
Assume that D does not contain v. Then, D must contain at least one vertex from

N 2 (v) UN3(v). Let D1= (D\ (N2 (v)UN3 (v))) U {v}; then Dl is a CDS of Gand IDI ~ ID11.
Similarly, D 1 is a CDS of G' and D' is a minimum CDS of G. 0

Our second reduction rule is applied to the vertices on an edge {v, w} of G. The intu­

ition behind introducing this rule is that a vertex of N 3 (v, w) can not be dominated by

vertices of N1(v,w). Good candidates for dominating N 3 (v,w) are {v,w} and therefore,

some vertices in N 2(v, w) and N 3 (v, w) can be removed.

Rule 2 For {v, w} E E(G), assume that IN3 (v, w)1 ~ 2 and N3 (v, w) can not be dominated

by a single vertex from N 2 (v, w) U N 3 (v, w).

Case 1: N 3 (v, w) can be dominated by a single vertex from {v, w}.

• (1.1) If N3(v, w) ~ N(v) and N3(v, w) ~ N(w) then remove N3(v, w) and

N 2(v, w) n N(v) n N(w) from G and add a new gadget vertex z with edges

{v, z} and {w, z} to G.

• (1.2) If N 3(v,w) ~ N(v) but N3(v,w) rz N(w) then remove N3(v,w) and

N 2 (v,w) n N(v) from G and add a new gadget vertex v' with edge {v,v'} to

G.

• (1.3) If N3(V, w) ~ N(w) but N3(v, w) rz N(v) then remove N3(V, w) and

N2(v,w) n N(w) from G and add a new gadget vertex w' with edge {w,w'}

to G.

Case 2: If N3 (v, w) can not be dominated by a single vertex from {v, w} then remove

N2 ( v, w) and N3(v, w) from G and add new gadget vertices v' and w' with edges {v, v'}

and {w, w'} to G.

Lemma 3.0.2 Given a graph G, let G' be the graph obtained by applying Rule 2 to some

edge {v, w} E E(G). Then rc(G) = rc(G').

Proof: Let D be a minimum CDS of G and D' be a minimum CDS of G'. To prove the

lemma, we show that D' is also a minimum CDS of G, that is, IDI = ID'I. We first show
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that D' is a CDS of G and get IDI ::; ID'I. Later we show IDI 2: ID'I to finally obtain

IDI = ID'I. Let X be the set of vertices removed by Rule 2 and D1= (D \ X) U {v, w}.

Since N(X) ~ N[v, w] and {v, w} E E(G), D1 is a CDS of G. Since D1 does not contain

any vertex from X, D1is a CDS of G' as well and thus, ID11 2: \D'I. Next, we show that

IDI2: IDII to get IDI 2: ID'I· Notice that the vertices in N3 (v,w) can only be dominated

by vertices from {v, w} U N2(v, w) U N3(v, w), and no single vertex from N2( v, w) U N3(v, w)

can dominate N3 (v, w).

Case 1: N3 (v, w) can be dominated by a single vertex from {v, w}.

• (1.1) N3(v,w) ~ N(v) and N3(v,w) ~ N(w).

We claim that D' does not contain the gadget vertex z. For the sake contradiction,

assume that zED'. Since z is connected only to v and w, and D' is a CDS of

G', D' must contain at least one vertex from {v,w}. Because {v,w} is an edge

of G, we get N(z) ~ N[v] and N(z) ~ N[w]. Therefore, D" = D' \ {z} is a CDS

of G' and ID"I < ID'I, a contradiction with D' a minimum CDS of G. So z t/. D'.

Since z can only be dominated by a vertex from {v, w}, D' contains either of v

or w, let's say it contains v. Since X ~ N(v), D' is a CDS of G and IDI ::; ID'I.
Next, we show that ID/ 2: ID'I to obtain IDI = ID'I. If D contains at least two

vertices from {v, w}UN2(v, w)UN3 (v, w) then IDI 2: IDII 2: ID'I. Assume that D

contains one vertex from {v, w} U N2(v, w) U N3(v, w). Because no single vertex

from N2(v) U N3(v) can dominate N3(V), D contains either of v or w. Since D

does not contain any vertex from X, D is also a CDS of G' and IDI 2: ID'I.
• (1.2) N3(v, w) ~ N(v) but N3(v, w) ~ N(w).

The proof of this case is similar to that for (1.1). Obviously, D' does not contain

the gadget vertex v' and contains the vertex v. Since X ~ N(v), D' is a CDS of

G as well and IDI ::; ID'I.
If D contains at least two vertices from {v,w} UN2(v,w) UN3 (v,w) then IDI2:
ID11 2: ID' I. Therefore, we assume that D contains one vertex from {v, w} U

N2(v,w) U N3(v,w). Because no single vertex from {w} U N2(v) U N3(v) can

dominate N3(V), D contains v. Since D does not contain any vertex from X, D

is also a CDS of G' and IDI 2: /D'I.
• (1.3) If N3 (v,w) ~ N(w) but N3 (v,w) ~ N(v).

The proof is symmetric to that for (1.2).
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Obviously D' does not contain any gadget vertex from {v', w'} and contains vertices

v and w. Since X ~ N(v, w), D' is a CDS of C as well and IDI :::; ID'I. Since N3(v, w)

can not be dominated by a single vertex from {v, w} U N2(V, w) U N3(v, w), D contains

at least two vertices from {v,w}UN2(v,w)UN3(v,w). Therefore, IDI.2': IDll.2': ID'I.

o
Our next three rules are designed to be applied to a pair of vertices v and w of C with

2 :::; dc(v, w) :::; 3. The intuition behind these rules is similar to that for Rule 2 but to

remove some vertices from N2 (v, w) and N 3 (v, w), we may need to keep some vertices which

form a path between v and w to guarantee the connectivity of the graph induced by the

dominating set while we also need to assure that there cannot be any other connected path

of shorter length in N2(v,w) and N3(v,w) dominating N3(V,W). This makes the rules more

complex than Rule 2 because there are different cases for keeping such vertices. We first

introduce some notation.

A vertex x E N3(v, w) is called a bridge if x is dominated by a vertex from N2(v, w), v,

and w, that is, x E N(N2(v, w)) n N(v) n N(w). We denote by B(v, w) the set of bridges for

v and w. Intuitively, a bridge is a good candidate for forming a path between v and w while

since a bridge is connected to a vertex from N2(v, w) it can be on a candidate connected

path of shorter length than the one connecting v and w. A vertex x E N2(v, w) is called a

key-neighbor of v w.r.t. w if x is dominated by v and a vertex from N3(v, w) n N(w), that

is, x E N(v) n N2(v, w) n N(N(w)). We denote by Kw(v) the set of key-neighbors of v w.r.t.

w. We define similarly a key-neighbor of w w.r.t. v and KvCw). Intuitively, a key-neighbor

and its respective bridge might be good candidates for a shorter connected path dominating

N3 (v, w).

Rule 3 For v, wE V(C) with dc(v, w) = 2, assume that IN3 (v, w)1 ~ 2. We remove some

vertices from N3 (v, w) but keep a path v - p - w in C.

Case 1: N3(v,w) can be dominated by a single vertex of {v,w} .

• (1.1) N3(v, w) ~ N(v) and N3(V, w) ~ N(w). If N3(V, w) can not be dominated

by a subset U of N 2 (v, w) U N 3 (v, w) with lUI :::; 2 and C[UJ connected then:

If B (v, w) =I 0 then select a vertex of B (v, w) as p, otherwise select a vertex

from N 3 (v, w) as p.
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- Remove N3 ( v, w) \ (B (v, w) U {p} ).

- Add gadget vertex z with edges {v, z} and {z, w} to C .

• (1.2) N3(V,W) ~ N(v) but N3(V,W) ~ N(w). If N3 (v,w) can not be dominated

by a subset U of {w} U N2(V,W) U N3(V,W) with \UI ::; 2 and C[UJ connected

then:

- If Kv(w) "# 0 then for each Xi E Kv(w), if B(v, w) dominates Xi then select a

Yi E B(v, w) dominating Xi, let Y be the set of such Yi'S, and select a vertex

from Y as p; otherwise,

select a vertex from N(v) n N(w) as p.

- Remove N 3 ( v, w) \ (Y U {p}).

- Add a gadget vertex v' with edge {v, v'} to C .

• (1.3) N3(V, w) ~ N(w) but N3(V, w) ~ N(v). If N3(V, w) can not be dominated

by a subset U of {v} UN2(v, w) UN3(v, w) with lUI::; 2 and C[UJ connected then:

- If Kw(v) "# 0 then for each Xi E Kw(v), if B(v, w) dominates Xi then select

a Yi E B(v, w) dominating Xi,

let Y be the set of such Yi'S. Select a vertex from Y as p; otherwise, select a

vertex from N(v) n N(w) as p.

- Remove N3(V, w) \ (Y U {p}).

- Add a gadget vertex v' with edge {w, w'} to C.

Case 2: N3(v, w) can not be dominated by a single vertex from {v, w}. If N3(v, w)

can not be dominated by a subset U of {v, w} U N2(V, w) U N3(V, w) with lUI::; 2

and C[UJ connected then: select a vertex from N(v) n N(w) as p, remove (N2(v, w) U

N3(V,W)) \ {p}, and add gadget vertex v' and w' with edges {v,v'},{w,w'} to C.

Lemma 3.0.3 Civen a graph C, let C' be the graph obtained by applying Rule 3 to SO'Tne

pair of vertices v, wE V(C) with dc(v, w) = 2. Then "Yc(C) = "Yc(C').

Proof: To prove the lemma, we first show that there is a minimum CDS D' of C' which

does not contain any gadget vertex. Then we prove that D' is also a minimum CDS of C.

Let D" be a minimum CDS of C'. If D" does not have any gadget vertex then the first

statement is true by taking D' = D". Assume that D" contains some gadget vertex. If D"

contains z (Case (1.1)) then D" must contain v or w because z is only connected to v and
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w, and D" is a CDS of C'. Let D' = (D" \ {z}) U {p}, then D' is a CDS of C', ID'I ::; ID"I

and D' does not contain any gadget vertex. Since D" is a minimum CDS of G', D' is a

minimum CDS of C'. If D" contains any gadget vertex from {v',w'} (Cases (1.2), (1.3),

and (2)) then D' = D" \ {v', w'} is a minimum CDS of G' that does not contain any gadget

vertex.

Next, we prove that D' is also a minimum CDS of G. Similar to the proof for Lemma 3.0.2,

let D be a minimum CDS of C. We prove that IDI = ID'I by showing that D' is a CDS

of G to get IDI ::; ID'I and then proving IDI 2: ID'I. Let X be the set of vertices removed

by Rule 3 and D1 = (D \ X) U {v, w, p}. Since D is a CDS of G, N(X) <;;; N[v, w], and

{v,p}, {p, w} E E(G), D 1 is a CDS of G. Because D 1 does not contain any vertex from X,

therefore, D 1 is a CDS of G' as well and thus, ID11 2: ID'I. Next, we show that IDI 2: ID11
in order to get IDI 2: ID'I. Notice that the vertices in N 3 (v, w) can only be dominated by

vertices from {v, w} U N2(V, w) U N3 ( v, w).

Case 1: N 3 (v,w) can be dominated by one vertex from {v,w} .

• (1.1) Since D' is a CDS of G', D' contains v or w, say v. Since X <;;; N(v), D'

is a CDS of C as well and IDI ::; ID'I. If D contains at least three vertices from

{V,W} UN2(V,W) UN3(V,W) then IDI2: IDI I2: ID'J.
Assume that D contains at most two vertices from {v, w} U N2(V, w) U N3(v, w).

Since N3(v, w) can not be dominated by a subset U of Nz(v, w) U N3 (v, w) with

lUI::; 2 and C[U] connected, either (a) D contains v or w, or (b) D has a subset

U of N2(v, w) U N3(V, w) with lUI = 2 and G[U] not connected.

For Case (a), assume that D contains V'. If D does not contain any vertex from

X then D is a CDS of G' and IDI 2: ID'I. Assume that D contains one vertex x of

X. Since x is not a bridge vertex and x E N(v) n N(w), N(x) <;;; N3(V, w) U {w}.

From this and the fact that N3(V, w) <;;; N(v) and p dominates w, N[x] U N[v] <;;;

N[P] U N[v]. We replace x by pin D to get D2. Then D2 is a CDS of G and

does not have any vertex from X. From this, D2 is a CDS of G' as well and

ID21 2: ID'I· Since IDI = ID21, IDI 2: ID'I·

For Case (b), let Dz = (D \ U) U {v, w}; then ID21 = IDI. Since N(U) <;;; N[v, w]

and C[U] not connected, if D is a CDS of G then D2 is a CDS of G. Since D2

does not contain any vertex from X, D2 is a CDS of G' as well. But IDI = IDzl,

therefore we can conclude IDI 2: ID'I.
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• (1.2) Since X ~ N(v), D' is a CDS of G as well and IDI ~ ID'I. If D contains at

least three vertices from {v, w} U N2(v, w) U N3(v, w) then IDI ~ ID11 ~ ID'I.

Assume that D contains at most two vertices from {v, w} U N2(v, w) U NJ(v, w).

Since N3(V, w) can not be dominated by a subset U of {w} U N2(v, w) U N3(V, w)

with lUI ~ 2 and G[U] connected, either (a) D contains v or (b) D has a subset

U of {w} U N2(v,w) U N3(v,w) with lUI = 2 and G[U] not connected.

For Case (a), if D does not contain any vertex from X then D is a CDS of G' and

IDI ~ ID'I· Assume that D contains a vertex x of X. If x does not dominates w

or any vertex of N2(v, w) nN(w) then we take D2 = D\ {x}. Since N[x] t; N[v],

D2 is a CDS of G and IDI > ID2 1, a contradiction to the fact that D is a minimum

CDS of G. So we assume that x dominates w or a vertex from N2(v, w) n N(w).

Because x is not a bridge dominating any key-neighbor of w, x does not dominate

both wand a vertex of N2 (v, w) n N(w). If x dominates w then we replace x

with p to get D 2 with IDI = ID2 1. With a similar argument as in Case (a) of

(1.1), we get IDI = ID21~ ID'I. If x dominates a vertex from N2(v, w) n N(w)

then we replace x by w to get D2 with IDI = ID2 1. Since N[v] U N[x] t; N[v, w],

D2 is a dominating set of G. Because x E D3(v, w), D has at most two vertices

from {v,w}UN2(v,w)UN3(v,w), and v E D, N(x)nD = {v}. Therefore, G[D]

is connected implies that G[D \ {x}] is connected. From this and the fact that w

is dominated by a vertex from D, we can conclude that G[D2] is connected and

D2 is CDS of G. Since D2 does not have any vertex from X, D2 is a CDS of G'

and IDI = ID21 ~ ID'I·
For Case (b), let D2 = (D \ U) U {w}. Then IDI ~ ID2 1. Since N(U) t; N[v, w]

and G[UJ not connected, if D is a CDS of G then D2 is a CDS of G. Since D2

does not contain any vertex from X, D2 is a CDS of G' as well. From this and

IDI ~ ID2 1, we get IDI ~ ID'I·
• (1.3)

The proof is symmetric to that for Case (1.2) .

Case 2: N3(v,w) can not be dominated by one vertex from {v,w}.

Obviously D' contains both v and w. Since X ~ N(v, w), D' is a CDS of G

as well and IDI ~ ID'I. If D contains at least three vertices from N2(V, w) U

N3 (v, w) U {v, w} then IDI ~ ID11 ~ ID'I.
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Assume that D contains at most two vertices from {v, w} U N2 (v, w) U N3(v, w).

Then D has a subset U of {v, w} UN2(v, w) UN3(v, w) with lUI = 2 and C[Uj not

connected. Let D 2 = (D\U)U{v,w}. Then ID2 1 = IDI. Since N(U) ~ N[v,wj

and C[UJ is not connected, we know that if D is a CDS of C then D2 is a CDS

of C. Since D2 does not contain any vertex from X, D2 is a CDS of C' as well.

But since IDI 2: ID2 1, we obtain IDI 2: ID/I·

D

Rule 4 For v, w E V(C) with dc(v, w) = 3, assume that IN3(v, w)1 2: 2. We remove some

vertices from N 3 ( v, w) but keep a path v - p - q - w in C.

Case 1: N 3 (v, w) can be dominated by a single vertex of {v, w} .

• (1.1) N3(v, w) ~ N(v). If N3(v, w) can not be dominated by a subset U of

{w} U N2(v, w) U N3(V, w) with lUI :S 3 and C[UJ connected then:

- If Kv(w) =I- f/J then for each Xi E Kv(w), select a Yi E N(v) n N3(v, w)

dominating Xi, let Y be the set of such Yi'S, select a vertex Yi E Y as p, and

select Xi dominated by Yi as q; otherwise, select any two vertices p and q

such that v - p - q - w is a path of C.

- Remove N3 (v, w) \ (Y U {p, q}).

- Add a gadget vertex v' with edge {v, v'} to C .

• (1.2) N3(v,w) ~ N(w). If N3(V,W) can not be dominated by a subset U of

{v}UN2(v,w) UN3 (v,w) with IUI:s 3 and C[UJ connected then:

- If Kw(v) =I- f/J then for each Xi E Kw(v), select a Yi E N(w) n N3 (v,w)

dominating Xi, let Y be the set of such Yi'S, select a vertex Yi E Y as q, and

select Xi dominated by Yi as p; otherwise, select any two vertices p and q

such that v - p - q - w is a path of C.

- Remove N3(V, w) \ (Y U {p, q}).

- Add a gadget vertex w' with edge {w, w'} to C.

Case 2: N 3 (v, w) can not be dominated by a single vertex of {v, w}. If N 3 (v, w) can

not be dominated by a subset U of {v,w}UN2(v,W)UN3(V, w) with lUI :S 3 and C[Uj

connected then select any two vertices p and q such that v - p - q - w is path of C,
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remove (N2(v, w) U N3(v, w)) \ {p, q} from C, and add gadget vertices v' and w' with

edges {v, v'} and {w, w'} to G.

Lemma 3.0.4 Given a graph G, let C' be the graph obtained by applying Rule 4 to some

pair of vertices v, wE V(C) with dc(v, w) = 3. Then 'Yc(C) = 'Yc(C').

Proof: Obviously, a minimum CDS D' of G' does not contain any gadget vertex. We

prove that D' is also a minimum CDS of C. Let D be a minimum CDS of G. We prove

that IDI = ID'I by showing that D' a CDS of C to get IDI :::; ID'I and then proving

IDI2: ID'I· Lct X be the set of vertices removed by Rule 3 and D1 = (D \ X) U {v, W,p, q}.

Since N(X) ~ N[v, w], D is a CDS of G, and {v, p}, {p, q}, {q, w} E E(C), D 1 is a CDS

of C. Since D 1 does not contain any vertex from X, D 1 is a CDS of C' as well and

ID1 1 2: ID'I· Considering all possible cases, we prove that IDI 2: IDII in order to obtain

IDI 2: \D'/. Notice that the vertices in N3 (v, w) can only be dominated by vertices from

{v, w} U N2(v, w) U N3(V, w).

Case 1: N3(v, w) can be dominated by one vertex from {v, w} .

• (1.1) D' contains v. Since X ~ N(v), D' is a CDS of C as well and IDI :::; ID'I.

If D contains at least four vertices from {v, w} U N2(v, w) U N3 (v, w) then /DI 2:

ID11 2: ID'I·
Assume that D contains at most three vertices from {v, w} U N2(v, w) U N3 (v, w).

Since NJ(v, w) can not be dominated by a subset U of {w} U N2(V, w) U N3 (v, w)

with lUI:::; 3 and C[U] connected, either (a) D contains v or (b) D has a subset

U of {w} U N2(V, w) U N3(v, w) with 2 :::; lUI:::; 3 and C[UJ not connccted.

For Case (a), if D does not contain any vertex from X then D is a CDS of C' and

IDI 2: ID'I· Assume that D contains a vertex from X. There are two subcases:

(a1) D contains one vertex x E X and (a2) D contains two vertices x, x' E X.

For Subcase (a1), if x dominates a key-neighbor Xi E Kv(w) then we replace x by

Yi E Y which dominates Xi. Since N[v] U N[x] ~ N[v] U N[Yi], D2 is a CDS of G.

Since D2 does have any vertex from X, D2 is also a CDS of C' and ID2 \ 2: ID'I.
But since IDI = ID2 1, IDI 2: ID'I. Otherwise (:r does not dominate any vertex

from N2(v, w) n N[w]) we remove x from D to get D2. Since N(x) ~ N(v), D2

is a CDS of C and IDI 2: ID2 1. Because D2 does not have any vertex from X,
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D2is a CDS of G' and IDI 2: ID212: ID'I. For Subcase (a2), we replace x and x'

by w to obtain D 2 • Since N( {x, x'}) ~ N[v] U N[w], D 2 is a dominating set of

G. But as {x, x'} n D ~ N(v), if D is a CDS of G then D2is also a CDS of G.

Since D2 does not contain any vertex from X, D2 is a CDS of G' as well. Since

IDI 2: ID21 and D21 2: ID'I, we get IDI 2: ID'I·
For Case (b), let D2 = (D \ U) U {v, w}. Since N(U) ~ N[v, w] and G[U] is not

connected, we conclude that if D is a CDS of G then D2 must be a CDS of G.

Since D2does not contain any vertex from X, D2is a CDS of G' and ID21 2: ID'I.
From IDI 2: ID2/, we get IDI 2: ID'I·

• (1.2) The proof is symmetric to that for (1.1).

Case 2: D' contains both v and w. Since X ~ N[v, w], D' is a CDS of G and IDI ~ ID'J. If

D contains at least four vertices from N2 (v, w) U N3(V, w) U {v, w}, then jDI 2: ID11 2:

ID'I·
Assume that D contains at most three vertices from {v,w} U N2 (v,w) U N3 (v,w).

Since N3(v,w) can not be dominated by a subset U of {v,w} U N2 (v,w) U N3(V,W)

with lUI ~ 3 and G[Uj connected, D has a subset U of {v,w} U N2 (v,w) U N3(v,w)

with 2 ~ lUI ~ 3 and G[Uj not connected. Let D2 = (D \ U) U {v, w}. But since

N(U) ~ N[v, wj and G[Uj is not connected, we conclude that if D is a CDS of G then

D2must be a CDS of G. Since D2does not contain any vertex from X, D2is a CDS

of G' and ID21 2: ID'I· But since IDI 2: ID21, we get IDI 2: ID'I·

o

For v, wE V(G), let R = R(v, w) be the union of all maximal simple regions R(v, w).

Rule 5 For v, wE V(G), assume that (V(R) nN3(v, w)) \ B(v, w) i- 0. If B(v, w) i- 0 then

select a vertex from B(v, w) as p, otherwise select a vertex from V(R) n N3(V, w) as p.

Remove (V(R) n N3(v, w)) \ (B(v, w) U {p}). If B(v, w) i- 0 then add a gadget vertex

zwithedges {v,z},{z,w} toG.

Lemma 3.0.5 Given a graph G, Let G' be the graph obtained by appLying RuLe 5 to v, wE

V(G). Then lAG) = IC(G').

Proof: Let D be a minimum CDS of G and D' be a minimum CDS of G'. Since z is

dominated only by v or w, D' contains v or w. Beause N(z) ~ N(p), we can assume that
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D' does not contain z, otherwise we can replace z by p. Since (V(R.) n N3 (v, w)) ~ N(v),

and (V(R.) n N3 (v, w)) ~ N(w), D' is a CDS of G and IDI ::; ID'I. To prove the lemma, we

show that IDI ~ ID'I. Let X be the set of vertices removed by Rule 5. If D does not contain

any vertex from X then D is a CDS of G' and IDI ~ ID'I. Assume that D contains a vertex

x EX. If D contains v or w then we can place x by p to make D a minimum CDS of G'

and get IDI ~ ID'I. Assume that D does not have any of 11 and w. Because D is a CDS, D

must contain a bridge y E B(v,w) and a vertex y' E N2 (v,w) n N(y). We replace x,y,y'

by v, w, y in D. From N[x] U N[y] U N[y'] ~ N[v] U N[w] and G[{v, y, w}] is connected, D

is a minimum CDS of G and does not contain any vertex from X after the replacement.

Therefore, D is also a minimum CDS of G' and IDI ~ ID'I. 0

In Rules 1-4, adding gadget vertices v' and w' with edges {v 1 v'} and {w, w'} does not

change the planarity of G. In Rule 5 and Case (1.1) of Rule 3, a gadget vertex z with edges

{v,z}, {z,w} is added to G when a vertex x E N3 (v,w) nN(v) nN(w) is removed. We can

place the edges {v, z}, {z, w} at the locations of {v, x}, {x, w} to keep G planar. So graph

G' obtained from applying any of Rules 1-5 to G is planar.

Lemma 3.0.6 Given a planar graph G, Rule 1 can be performed in O(n) time for all

vertices of G, each of Rules 2-5 can be performed in O(n2
) time for all pairs of vertices

v,w E V(G).

Proof: We first discuss Rule 1 as it is different from the rest of the rules in that it requires

the calculation of neighborhood of a single vertex only. Considering the definition of the

three neighborhood sets for a vertex v of a planar graph G, (N1(v), N2(v), N3 (v)), in order

to calculate these sets, it is sufficient to consider a subgraph of G induced by the set of

vertices in the distance at most 2 of v. To do so, we construct a breadth-first-search tree of

depth two, rooted at v. We even may not need the complete tree as only some of the vertices

at depth 2 are required. Calculating N1(v) vertices is very easy since it only requires us to

explore all the vertices at distance one from v and see if it has a neighbor in the second level

of the tree. As soon as the first such neighbor is explored we can stop expanding the node's

neighbors and proceeds with the next vertex in the first level. Denoting the degree of 11 by

deg(v), the process takes time O(deg(v)) as there clearly are at most 2· deg(v) tree edges

and since G[N[v]] is planar, there can be only O(deg(v)) non-tree edges to be explored. To

obtain N 2 (v), one has to go through all vertices from the first level of the tree that are not

already marked as being in N 1 (v) but have at least one neighbor in N 1 (v). All this can be
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done in time O(deg(v)) within the planar graph induced by N[v], using the already marked

N l (v )-vertices. Finally, N 3 (v) consists of vertices from the first level that are not marked

yet. It is clear that removal of vertices and adding the gadget can also be performed in

O(deg(v). Since Rule 1 can be performed in O(deg(v)), applying Rule 1 for all vertices in

G takes 2:vEV(G) O(deg(v)) and as G is planar this sum is bounded from above by O(n).

Next, we consider Rules 2-5. All of these rules require the calculation of the joint

neighborhood sets for a pair of vertices; therefore, we first focus on this section. To do

this, we use a similar idea as the one employed for calculating neighborhood of one vertex.

In particular, for computing the joint neighborhood sets N l (11"v),N2(11"v),N3 (11"v), we

construct the breadth-first tree up to 2 levels using a distance function defined as the

minimum of the distance from 11, and the distance from v. Having constructed the tree, we

use the same process as before for calculating each of Nl('U, v), N2 (11" v) and N3(U, v) sets.

As before, the running time for calculating the neighborhood sets is determined by the size

of the subgraph induced by N[11" v] which has a size of O(deg(11,) +deg(v)) for planar graphs.

For enumerating bridge vertices we only need to test for each vertex of N3(11" 11) whether it

has an edge to a vertex from N2 (11" v) as well as 11, and v which can obviously be performed in

order of the size of G[N[11" v]]. Using a similar argument we can conclude that key-neighbors

of v (11,) with respect to 11, (v) can be calculated in the same time complexity. Next, we

argue that the vertex removal and attachment of gadgets as prescribed by the rules can be

performed within a linear order of the size of the respective subgraph. This is true since with

a successful application of any of the rules there is always a constant number of vertices are

being removed (added). Therefore, we need 2:u,VEV(G) O(deg(11,) + deg(v)) for performing

each of such rules on all of the vertex pairs which using the fact that O(deg(v)) = O(n) this

is upperbounded by O(2:u,VEV(G) deg(11,) + 2:u,VEV(G) deg(v)) = O(n2
). D

We recall that a graph G is called reduced if the graph obtained from applying any of Rules

1-5 to G is isomorphic to G.

Theorem 3.0.1 A plane graph G can be conve'rted to a reduced plane graph G' with ,'c(G) =

fC( G') by Rules 1-5 in O(n 3 ) time.

Proof: First of all notice that none of the 5 rules can increase the size of the graph. We recall

that while introducing each of the reduction rules we proved that there exists a solution

that does not contain any of the added gadgets. Therefore, without loss of generality we

assume that reduction rules are never applied to any of the added gadgets. In practice, the
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gadget vertices can be marked so that (only) in the data reduction phase they are treated

differently from original vertices of the graph. Please notice that the kernel includes the

gadget vertices and while solving the kernel, whichever the technique is used, we need not

distinguish between gadget and non-gadget vertices.

We claim that for a graph with m edges, there can be at most O(m) successful applica­

tions of reduction rules. This is true since after one application of Rules 1-5, which changes

the graph, by definition, the resulting graph has at most the same number of vertices, but

at least one edge less than before the application of the rule. Therefore, the graph can be

reduced to a kernel in O(m)O(n2)j but since graph is planar this is upperbounded by O(n3 ).

D



Chapter 4

Linear-size Kernel

In this chapter, we show that the reduced graph G', obtained after repetitive application of

reduction Rules 1-5, has O("Yc(G)) vertices. The proof consists of three major parts. First,

we obtain a maximal D-region decomposition n of O("Yc(G)) regions for a plane graph G.

Next, we show that having applied the reduction rules repetitively to the graph, each region

in n can have 0(1) vertices only. Finally, we upperbound the number of vertices of Gnat

belonging to any region of n as O(rc(G)). The proof of the first part is almost the same as

that in [4] and we only briefly recite some definitions and the main result here.

We recall that given a plane graph G and a subset D ~ V(G), a D-region decomposition of

G is a set n of regions between pairs of vertices of D such that

1. for R(v,w), no vertex of D\ {v,w} is in V(R(v,w)) and

2. for two regions R 1 , R 2 E n, (R1 n R 2 ) ~ (8R1 U 8R2 ).

AD-decomposition n is called maximal if there is no region R ~ n such that n' = n U {R}

is a D-region decomposition and V(n) c V(n').

Lemma 4.0.7 (Alber et al. [4]) Given a plane graph G and a dominating set D of G, a

maximal D-decomposition n of at most 31DI regions can be constructed.

Using this result, by setting D be to be a minimum CDS of G, we can have a maximal

D-region decomposition n of at most 3"Yc(G) regions.

25
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(a)
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(b)

Figure 4.1: Example of bridges in R(v, w) when da(v, w) = 2 and da(v, w) = 3.

Next, we calculate an upperbound on the number of vertices in a region.

Proposition 4.0.1 For any pair of vertices v, w of a plane graph G, any region R(v, w)

has at most two bridges, that is, IV(R) n B(v, w)1 ::; 2.

Proof: Assume that there are at least three bridges Xl, X2, X3 in R(v, w). Then one bridge,

say X3, must be strictly inside the region R' = R'(v, w) formed by the paths v - Xl - w

and v - X2 - W (see Figure 4.1 (a)). Since R' is inside R and Xl, X2 E N3 (v, w), each vertex

strictly inside R' is not connected to any vertex from N 2 (v, w), a contradiction to the fact

that X3 is a bridge. Thus, there are at most two bridges in R(v, w). 0

Proposition 4.0.2 For any pair of vertices v, w of a plane graph G, any region R(v, w)

has at most two key-neighbors of v w.r.t. wand at most two key-neighbors of w w.r.t. v,

that is, IV(R) n Kw(v)1 ::; 2 and IV(R) n Kv(w)1 ::; 2.

Proof: Assume that there are at least three key-neighbors Xl, X2, X3 in Kw(v). Let Yi E

N(w)nN3 (v, w), i = 1,2,3 be the neighbors of Xi, respectively. Then one vertex from Kw(v),

say X3, must be strictly inside the region R' = R' (v, w) formed by the paths v - Xl - YI - w

and v - X2 - Y2 - w (see Figure 4.1 (b)). Since R' is inside R and Xl, X2 E N2 (v, w) and



CHAPTER 4. LINEAR-SIZE KERNEL 27

Yl, Y2 E N 3 (v, w), each vertex strictly inside R' is not connected to any vertex from N1(v, w),

a contradiction to the fact that X3 is a vertex of N 2 (v, w). Thus, there are at most two key­

neighbors of v w.r.t. win R(v, w). Similarly, there are at most two key-neighbors of w w.r.t.

v in R(v, w). 0

Proposition 4.0.3 Let G' be the reduced graph obtained afte'" repetitive application of Rules

1-5 to G. Then G' has the following properties.

1. For every v E V(G'), N 3 (v) does not have any vertex of G.

2. For every pair v, wE V(G'), either

(aj there is a U ~ N 2 (v, w) U N 3 (v, w) such that lUI S; 3, G[Uj is connected, and U

dominates all vertices of N 3 ( u, v), or

(bj for every region R(v, w), N 3 (v, w) n V(R) has at most two vertices from V(G).

Proof: (1) follows from Rule 1. For (2), if no vertex is removed from G by any of Rules

2-5 then by the definition of the rules, (a) holds, otherwise, by Propositions 4.0.1 and 4.0.2,

(b) holds. 0

Next, we use Proposition 4.0.3 to upperbound the size of simple regions. We recall that

for i = 1,2, a simple region R(v, w) is called a type-i region if V(R) has i vertices from

N1(v, w).

Proposition 4.0.4 Given a reduced plane graph G and a maximal D-region decomposition

R for a CDS D of G, a type-i region R(v, w) of R has at most i vertices from N1(v, w), i

vertices from N 2 (v, w), and i + 1 vertices from N 3 (v, w).

Proof: For a simple region R = R(v, w) in R, only the vertices on the boundary can have

a neighbor outside R. By the definition of simple region, IN1(v, w) n V(R)I S; 2. But

since G is planar, every vertex in N1(v,w) n V(R) can contribute at most one vertex to

N 2 (v, w) n V(R). Hence, we get IN2 (v, w) n V(R)I S; IN1(v, w) n V(R)/. By Rule 5 and

Proposition 4.0.1, N 3 (v, w) n V(R) has at most IN2 (v, w) n V(R)I bridges and one gadget

vertex. 0
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Next, we upperbound the number of vertices in a region R(v, w) of R. The key step in

the proof is to decompose a worst case region R(v, w) to a set of simple regions. From this

upper bound and Propositions 4.0.3 and 4.0.4, we can get an upper bound on the number

of vertices in R(v, w).

Lemma 4.0.8 Given a reduced plane graph G and a maximal D-region decomposition R

for a CDS D of C, every region R = R(v, w) of R has at most 81 vertices.

Proof: Let P and Q be the paths which form the boundary of R. Without loss of generality,

we assume that both P and Q have length three (a shorter path will give a smaller number

of vertices in R); let P = v - PI - P2 - wand Q = v - ql - q2 - w. Since only the vertices

on P and Q can be connected to vertices outside R, INI(v, w) n V(R)\ :::; 4. The rest of the

proof is divided into three cases: (1) One of Rules 2-4 has been successfully applied to R;

(2) dc(v, w) = 2 and the condition for applying Rule 3 is not satisfied; and (3) dc(v, w) = 3

and the condition for applying Rule 4 is not satisfied.

Case (1). From Proposition 4.0.3 and the definition of Rules 2-4, IN3 (v, w) n V(R)I :::; 3.

Since each vertex of N2 (v,w) is dominated by a vertex of NI(v,w) and a vertex of {v,w},

the vertices of N2 ( v, w) are in simple regions between a vertex of N I (v, w) and a vertex of

{v, w}. From the planarity of G, we conclude that there are at most six such regions (see

Figure 4.2.a). In the worst case, 4 of the simple regions are type-1 and 2 are type-2. From

Proposition 4.0.4, IN2 (v, w) n V(R)I :::; 4·4 +2·7 = 30. Thus, IV(R)I :::; INI (v, w) n V(R) 1+
INI(v, w) n V(R)I + INI(v, w) n V(R)I + I{v, w}1 ~ 4 + 30 + 3 + 2 = 39.

Case (2). From Proposition 4.0.3 and the definition of Rule 3, we know that there is a

subset U ~ N 3(v, w) such that lUI:::; 2, G[UJ is connected, and every vertex of N 3 (v, w)

is dominated by U. Since each vertex of N3 (v, w) is also dominated by a vertex from

{v,w}, the vertices of N3(v,w) are in simple regions between a vertex of U and a vertex

from {v,w}. There are at most four such simple regions (see Figure 4.2.b). Therefore,

IN3(V, w) n V(R)I :::; 4·7 + 2 = 30. Similar to Case (1), the vertices of N2(V, w) are in at

most six simple regions between a vertex in NI(v,w) and a vertex from {v,w}. The total

number of vertices in V(R) is bounded by 4 + 30 + 30 + 2 = 66.

Case (3). From Proposition 4.0.3 and the definition of Rule 4, there is a subset U ~

N3 (v, w) such that lUI:::; 3, ClUJ is connected, and every vertex of N3 (v, w) is dominated

by U. Since each vertex of N3 (v, w) is also dominated by a vertex of {v, w}, the vertices of
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N3(V,W) are in simple regions between a vertex of U and a vertex of {v,w}. There are at

most six such simple regions (see Figure 4.2.c). Therefore, IN3 (v, w) nV(R)I ::; 6·7+3 = 45.

Similar to Case (1), the vertices of N 2(v, w) are in at most six simple regions between a

vertex of Nl (v, w) and a vertex of {v, w }. The total number of vertices in V (R) is bounded

by 4 + 30 + 45 + 2 = 81. 0

Finally, we use the result of [4] to bound the number of vertices not in V(R).

Lemma 4.0.9 (Alber et al. [4}) Given a plane reduced graph G and a dominating set D of

G, ifR is maximal D-region decomposition, then IV(G) \ V(R)I ::; 21DI + 561RI.

Proof: We recite the proof from Alber et al. [4] with the only difference that we use the

result in Proposition 4.0.4 for bounding the size of simple regions. We claim that every

vertex u E V\V(R) is either a vertex in D or belongs to a set N2 (v) UN3(V) for some v E D.

To see this, suppose that u t/: D. But since D is a dominating set, we know that u E N(v)

for some vertex v E D. Since R is assumed to be maximal, by Lemma 6, we know that

N1(v) ~ V(R). Thus, u E N 2 (v) U N3(v). For a vertex v E D, let N~(v) = N2 (v)\V(R),

then u E N3 (v) U Ni.(v), u E D. First, we bound the N3 vertices. Using the fact that

each vertex can have only one vertex in its N3 neighborhood we get I U N3 (v)1 ::; IDI.
VED

Next, we upperbound the size of N~(v) for a given vertex v E D. let's define Ni(v) to be

the subset of N 1 (v) that sit on the boundary of a region in R then by definition we know

Ni.(v) ~ N(v) n N(Ni(v)). Now for a vertex v let R(v, WI)' ... :, R(v, wI) be all the regions

between v and some other vertices Wi ED, where l = degcR(v) is the degree of v in the

induced region graph GR. Then, every region R(v, wd can contribute at most two vertices

say ut and ut to Ni(v), that is, INi(v)1 = 2degcR(v). Next, we claim that there are a set

of simple regions between vertices v E D and Ni (v) such that they include all the vertices

in N~(v). Formally, we claim that there exists a set Sv of simple regions such that:

(1) every S E Sv is a simple region between v and some vertex in Ni(v),

(2) Ni.(v) ~ UsEs
v

V(S) and

(3) ISvl ::; 2INi(v)l·

The idea for the construction of the set Sv is similar to the greedy-like construction of
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a maximal region decomposition as we used before. Starting with Sv as empty set, one

iteratively adds a simple region S(v, x) between v and some vertex x E Ni(v) to the set Sv

in such a way that (1) Sv U {S(v, x)} contains more N2' (v )-vertices than Sv , (2) S(v, x) does

not cross any region in Sv and (3) S(v, x) is maximal (in space) under all simple regions S

between v and x that do not cross any region in Sv . The fact that we end up with at most

21Ni (1J) I many regions can be seen as follows: Consider the induced graph GSv , which has

the set {v} U Ni (v) as vertices and an edge between v and a vertex u E Ni (v) if and only

Sv contains a simple region between v and u. In other words, GSv is a star with possible

multiple edges. Since, by construction, all simple regions were chosen maximal in space,

the graph GSv is thin. It is not hard to see that a thin star on n + 1 vertices can have

at most 2n edges. In particular, this shows that Gsv has at most 2jNi(v)1 edges, that is,

ISvl :::; 2INi(v)l. Every simple region S(v, x) with x E Ni(v) contains at most 7 vertices not

counting v and x, which clearly cannot be in N:;(v),we conclude that:

IN2'(v) I :::; 71Svl = 14INi(v)1 = 28degCR(v).

Finally, adding up all the 3 sets we get:

IV\V(R)I = IDI + IDI + L IN2'(v)\ :::; 21DI + 28 L degCR(v) :::; 21DI + 561RI
vED vED

Taking a minimum CDS of G as D, we get IV(G) \ V(R)I :::; 2')'c(G) + 561RI.

Theorem 4.0.2 For' a planar graph G which is reduced with respect to Rules 1 to 5,

IV(G)I :::; 413')'c(G)

Proof: From Lemma 4.0.7, there are at most 3')'c(G) regions in R. From Lemma 4.0.8, each

region has at most 81 vertices. From Lemma 4.0.9, IV\V(R)I :::; 21DI + 561RI. Therefore,

IV(G) :::; 2')'c(G) + 56 x 3')'c(G) + 81 x 3')'c(G) = 413')'c(G). 0
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g,

g,

(a)

(b)

g,

~ Type I Region

mIl Type 2 Region

Figure 4.2: a) Rules 2-4 apply b) dc(v,w) = 2 but Rule 3 fails c) dc(v,w) = 3 but Rule 4
fails.



Chapter 5

Extensions of reduction rules

5.1 Introduction

The idea behind our proposed reduction rules in the previous chapters was to examine the

graph locally and decide whether the subgraph can be replaced by a smaller graph while

maintaining the problems propreties. In particular, the reduction rules use the information

regarding a joint neighborhood of a pair of vertices as the criteria for choosing which subset

of vertices can be preferred to another subset.

A straight forward extension to the proposed rules is using neighborhood information of

3 or more vertices in reduction rules. This can be done by generalizing the same notion of

N I , N 2 , N 3 sets for a set Vr of vertices in the following way:

The main idea behind the generalized rule is to explore the joint neighborhood of r distinct

vertices for a given constant r. This more complex setting requires the introduction of a
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new gadget which generalizes the simple gadget used previously for a pair of vertices.

5.2 A generalized rule

33

As discussed in the previous chapters, data reduction rules identify sets of vertices that

should not be included in the solution (need to be dominated) in comparison to more pre­

ferred sets. Figuratively speaking, this proposes a number of candidate sets for inclusion in

the solution which can be formally specified as a set of constraints on the respective can­

didate sets. We use this notion to formalize the reduction rules as boolean constant formulas.

SAT reduction. Our general reduction rule will on the fly generate a boolean constraint

formula for an optimal connected dominating set D of the given graph considering this set­

ting: We identify the vertices V of a graph G = (V, E) with boolean variables, where the

meaning of a l(O)-assignment is that the corresponding vertex will (not) belong to D. A

constraint on the choice of vertices for an optimal connected dominating set then can be

formalized as a boolean formula over the variables V.

Definition. [3] Let W ~ 2v be a collection of subsets of V. The constraint associated

with W is a boolean formula Fw in disjunctive normal form: Fw = VWEW !\wEW W.

Definition. [3] Let G = (V, E) and let Fw be a constraint associated with some set system

W = {WI, ... , Ws } ~ 2v of r := IUf=l Wil vertices. An Fw-gadget is a set of p = Ilf=IIWil
new selector vertices S = {U(xl, ... ,xs)lxi E {I, ... , IWil}} and if p < r another (r - p) blocker

vertices B which are connected to G by the following additional edges: For each 1 ::; i ::; s

with Wi = {Wil, , wilwil} and each 1 ::; j ::; IWil, we add edges between Wij and all selector

vertices in {U(Xl, ,xs) E SIXi = j} and between Wij and all blocker vertices in B. We denote

the resulting graph by G EEl Fw .

The proposed definitions imply that a set D ~ V fulfills constraint Fw if the assignment

where each vertex in D is set to 1 and each vertex in V\D is set to 0 satisfies Fw .

A set system W ~ 2v is said to be compact if for any pair of its elements W, W' E W

we have: W ~ W' ==> W = W'.
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Notice that any set system W ~ 2v can be transformed into a minimal compact subset

W~ W in a process called compactification such that Fw is logically equivalent to Fw '

Furthermore, Wcan be found in polynomial time [3].

Definition. [3] For two sets 0 t: W, w' ~ V, we say that W is better than W' and write it

as W::; W' if IWI ::; IW'I and N[W] 2 N[W' ].

Generalized r-rule. Using the setting put forth in the previous section, we propose a

generalized r-rule in the following way:

Consider r pairwise distinct vertices \!;. = {VI, ... , Vr } ~ V and suppose N:1 (Vr ) t: 0. For

u, v EN\!;., let Pu,v be the set of vertices on the shortest paths between u and v in GN\!;..

Then for all vertex subsets Uof \!;. with lUI ~ 2, we can compute the set Pu = UU,VEU Pu,v.

A W ~ Pu is a minimum candidate if a) G[W] is connected, b) w dominates N 3 (Vr )

and c) for any W' satisfying a) and b) criteria, IWI ::; IW'I.

Now, we define W = {W ~ UU<:;;Vr IW is a minimum candidate }. Let m = minwEw IWI,

we also define the set of all alternative connected paths to dominate N 3 (Vr ) with less than

m vertices as Waltern = {X ~ N[\!;.]IG[X] is connected and N 3 (Vr ) ~ N[X] and IXI < m}.

Next, we compute the compactifications Wof Wand Waltern of Waltern .

If (VW E Waltern3W' E W : W' ::; W), then W is considered a better candidate for

connected domination and the r-rule applies as a result. We remove an independent subset

of

v is not a seperating set of G[N[\!;.]]

and N[v] ~ n N[W]}

WEW

Put an Fw-gadget to G for the constraint associated with W.

The proof of the correctness for the generalized rule is left as a future work.
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Conclusion

6.1 Summary of contributions

In this work, we studied data reduction for connected domination on planar graphs. Con­

nected domination has a significant practical importance as it frequently appears in various

fields of networking and communication. In mobile ad hoc networks (MANETs), connected

dominating set is well-known to be the core or virtual backbone and hence has been found

extremely useful in routing, message broadcast, and collision avoidance. This work ad­

dresses the problem of finding a linear size kernel for connected dominating set on planar

graphs. Having proposed a set of simple and easy to implement reduction rules for con­

nected dominating set, we proved that for planar graphs, a linear-size problem kernel of

size 413k can be efficiently constructed using our set of reduction rules. Considering the

paramount importance of the problem in the realm of graph theory is considered one step

closer to solving the problem efficiently. To the best of authors knowledge this is the first

study considering kernelization of connected dominating set in planar graphs.

6.2 Future work

Parameterization as a novel viewpoint to the complexity is still in its childhood. There are

still a lot of untouched arenas that are yet to be explored. There can be various direction

to take in order to extend this work or use it as a starting point for future studies.

One direction is to use similar data reduction techniques for attacking related graph

problems and there are still many of them left untouched. The ideas introduced in this
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work are basically in two different categories and both can be applied to other problem.

One is coding the characteristics of the problem in a set of effective reduction rules which

can be easily modified to be suitable for other problems. The second and more significant

category is the techniques employed to perform the analysis for calculating the size of kernel.

Another direction is to improve this work by further lowering the worst-case upper bound

on the size of the problem kernel. There can be various ways to address this problem. This

can be addressed using a set of more sophisticated reductions rules, for example, colored

vertices as in Chen et al.[15] but it may require a lot work to analyze the kernel size. It might

also be possible to capture more of the connectivity properties of the connected domination

problem in the reduction rules in order to further improve the upper bound. One possible

way is to consider the planar dual of the graph and look for a cycle of certain length say m

in its outer boundary as one such a cycle may correspond to an edge-cut of size Tn in the

original graph. This, can be used as a piece of information about the connectivity properties

of the graph while designing reduction rules.

In terms of upperbounding the kernel size, the techniques used in this work, are using

rough estimates in many cases, in order to keep analysis as simple and elegant as possible.

A more detailed analysis may help upperbounding the kernel with a constant smaller than

413. It might also be possible to use a technique different from region decomposition for

performing the analysis and obtain a better upperbound.
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