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Abstract 

This thesis investigates several problems related to searching a polygonal area for intruders. 

The mutual visibility between an arbitrary pair of points on the boundary of a polygon 

is an important piece of information we can make use of when searching a polygon. We 

extensively employ the visibility diagram that represents mutual visibility information for 

each pair of boundary points. 

We first investigate the two-guard room search problem, where two guards cooperate 

in finding an intruder by maintaining mutual visibility. In terms of the visibility diagram 

we characterize the class of searchable rooms in a concise way. We also find all doors in a 

polygon, if any, such that the resultant rooms are searchable by two guards. The second 

problem we tackle in this thesis is the polygon search problem by a boundary 1-searcher, 

who moves along the boundary of a polygon and can see the points on the beam from a 

flashlight. We identify the patterns that make a polygon non-searchable. The third problem 

we investigate is to search a polygon with one hole by two boundary 1-searchers. We solve 

this problem by extending the visibility diagram. 
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Chapter 1 

Background 

As a topological entity a simple polygon is merely a closed non-intersecting loop of line 

segments. However, if we treat it as a metric entity, its boundary structure can be extremely 

complex. Various computational problems are the result of efforts to classify polygons with 

respect to their boundary structures. 

Polygon search problems are one of the different incarnations of the various visibility 

problems, which are fundamental in computational geometry. The solutions to them can 

help us better understand the inherent nature of the visibility in simple polygons. Because 

of this, they recently attract more and more attention in the research community in com- 

putational geometry. Furthermore, since these problems exist not only in computer science, 

but also in other areas, such as robotics and mathematics, they are also interesting to the 

researchers from these fields. 

1.1 Introduction 

In a nutshell, the polygon search problem is the problem of searching for mobile intruders 

inside a polygonal region by one or more mobile searchers or guards. The problem was first 

proposed and discussed by Suzuki and Yamashita [106]. Before describing the notation to 

be used in our discussions and reviewing the previous work on the problem, we first briefly 

introduce the Art Gallery Problem. It  should be noted that for many terms and expressions, 

we just use them first on the assumption that many of them are common sense. We shall 

define them formally later on when our discussions unfold. 

During a conference at Stanford in August 1976, in response to the request from V. 
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ChvAtal who asked for an interesting geometric problem, V. Klee posed the following ques- 

tion: How many guards are necessary and sufficient to guard the artistic objects in a given 

art gallery with n walls? The name Ar t  Gallery Problem was coined for this problem. 

ChvAtal soon [31] established that Ln/3j guards are occasionally necessary and always suffi- 

cient to guard an art gallery represented by a simple polygon with n vertices. For a detailed 

proof of the theorem, see [81]. As an example, we show a polygon with 10 vertices that is 

guarded by L10/3j = 3 guards in Figure 1.1 (Their positions are represented by the points 

marked as g.). 

Figure 1.1: Guarding a polygon. 

Since the establishment of ChvAtal's theorem, a tremendous amount of research on the 

Art Gallery Problem has been carried out. This superficially naive but inherently complex 

problem has been not only extended by mathematicians in several directions, but also further 

studied by computer scientists. Many variations have been proposed and studied and a great 

number of research results have been published. In 1987, O'Rourke published a book entitled 

A r t  Gallery Theorems and Algorithms [81j, the first documentation dedicated solely to the 

topic. The book further inspired interests in the topic. In 1992, Shermer [98] conducted 

a thorough survey in Recent Results i n  Ar t  Galleries. In 2000, Urrutia published another 

survey [113], which can be considered as complementary to O'Rourke's book and Shermer's 

paper. Besides these surveys, numerous research papers were published on the topic during 

the past decades. Due to the huge number of the papers, we cannot list them here. But the 

aforementioned book [81] and two papers [98, 1131 give us excellent surveys on the subject. 

Interested readers are referred to them. 
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Essentially speaking, the Art Gallery Problem and its variations deal with polygon 

guarding problems with guards that are stationary at their prespecified positions. Even for 

diagonal or edge guards, who can only move along a diagonal or an edge of a polygon, we 

can still regard them as stationary "fluorescent" lights, fastened on the diagonal or edge. 

The polygon search problem is closely related to the Art Gallery Problem. Actually in 

many previous papers on the topic, authors have always mentioned the Art Gallery Problem 

in their introductions. In the polygon search problems, guards are capable of moving at 

a limited speed, i.e. the guards are mobile. In these problems, the guards are actually 

searching a polygon. So in many occasions, the guards are also called searchers. 

Intuitively speaking, as searchers are able to move, the number of searchers required 

to search a polygon is drastically reduced. But in the meanwhile, the complexity of the 

problem is increased. 

1.2 Preliminaries 

We will use the 2-dimensional Euclidean plane as our coordinate system. In this system, 

a point is represented as an ordered pair of coordinates in different dimensions. Straight 

lines are the shortest distance between any two points. A line is of infinite length in both 

directions, while a line segment is a continuous portion of a line with two end points. If 

a line segment's two end points are u and v, we denote it as E. We use the Euclidean 

distance to measure the length of a line segment. 

A polygon P is composed by an ordered sequence of points PO, pl, . . a ,  pn-1, n 2 3, 

which are called the vertices of P, and n line segments from pi to pi+ll i = 0, 1, - . , n - 2 

and from p,-1 to pol which are called the edges of P. We assume that the order of the 

vertices is in the clockwise direction starting at po. 

In this thesis, we assume that the polygons are simple, i.e., the only pairs of edges that 

intersect are pairs of consecutive edges, whose intersection must be exactly their common 

vertex. 

For a simple polygon P, its edges form its boundary, which is denoted as dP .  We assume 

that d P  P. We denote the length of the boundary as JdP( ,  which is the sum of the lengths 

of all the edges of P .  

A polygonal chain (or just chain) is a continuous section of dP .  The open (closed, 

resp.) clockwise chain on d P  from u to v is denoted by dP,,(u, v) (dP,,[u, v], resp.), where 
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u, v E aP. Half-open clockwise chains are denoted by aPcw [u, v) or aP,, (u, v], depending on 

which end is open. Similarly, the open (closed, resp.) counter-clockwise chain on aP from 

U' to v' is denoted by dP,,(u', v') (aPccw[u', v'], resp.), where u', v' E aP. Also, half-open 

counter-clockwise chains are denoted by aPccw [u', v') or aP,, (u', v'], depending on which 

end is open. Note that the starting point or the ending point of a chain might not be a 

vertex of P .  

Suppose that v E aPcw(u, w). We write u 4, v and v 4, w. If u 4, v, we also say 

that v kc, u. For a vertex v on aP, Prec(v) is the vertex immediately preceding v while 

Succ(v) denotes the vertex immediately succeeding v in the clockwise direction. 

u and v are mutually visib!e, 
p and q are not mutually visible. 

Figure 1.2: Visibility in a polygon. 

Two points u, v E P are said to be mutually visible if the line segment zlv is completely 

contained inside P. Recall that aP E P .  This definition allows the segment of visibility zLv 

to go through a reflex vertex or graze along a polygon edge. Sometimes we also say that u 

sees v and vice versa, if u and v are mutually visible. For example, in Figure 1.2, u and v are 

mutually visible while p and q are not. Note that in Chapter 5, we use a slightly different 

definition of mutual visibility. 

We say that a vertex of a polygon is convex if the interior angle between its two incident 

edges is at  most 180'; otherwise we say that it is reflex. Sometimes, if a vertex is convex, 

we also call it non-reflex. 

We use Figure 1.3 as a reference for the following discussions. Let r be a reflex vertex. 

Its backward ray is the ray generated from Succ(r) to r while the backward ray end point 

is the point on aP at which the ray leaves the polygon for the first time and is denoted as 
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The fonvard ray from r 

The counter-clockwise coniponint due to r The counter-clockvise invisible chain due to r 

Figure 1.3: Definitions related a reflex vertex r. 

r,,. We call the polygonal area formed by aP,,[r, r,,] and the chord the clockwise 

component w.r.t. r and denote it by P,,(r). Sometimes we also say that the clockwise 

component P,,(r) is due to r .  

Similarly, the forward ray from r is the ray generated from Prec(r) to r while the forward 

ray end point of r is the point on aP at which the ray leaves the polygon for the first time 

and is denoted as r,. We call the polygonal area formed by aPcw [r,,, r] and the chord 

rr,,, the counter-clockwise component w.r.t. r and denote it by P,(r). Again, sometimes 

we also say that the counter-clockwise component Pccw(r) is due to r .  A component can be 

completely contained in another component. A component is non-redundant if it does not 

contain any other components. 

From the definitions of ray end points, we immediately know that for r,, (r,,, resp.), 

the polygonal chain c9Pccw(r, r,,) (aP,,(r, r,,), resp.) is invisible to any point from r 

(excluding r )  (Prec(r), resp.) to Succ(r) (r (excluding r ) ,  resp.). We call it the counter- 

clockwise (clockwise, resp.) invisible chain due to r .  It is easy to see that a reflex vertex r 

gives rise to two invisible chains and they do not have any common intersection. 

Visibility graph is an important concept in computational geometry. Here we briefly 

discuss it. We first give some definitions in graph theory. A graph G(V, E )  consists of a 

set of elements V called the vertices of G(V, E )  and a set of pairs of vertices E called the 

edges of G(V, E) .  Two vertices u and v in G(V, E )  are called adjacent if the pair (u, v) is an 

element in E (u and v are called the endpoints of the edge). 

The visibility graph VG(P) of a given polygon P is the graph whose vertex set is the set 

of vertices of P. Two vertices u and v are adjacent in VG(P) if they are mutually visible in 
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P. 

A visibility polygon is defined as follows. For a point p E P, let V(p) denote the set of all 

points in P that are visible from p. It is easy to see that the points in V(p) form a polygon. 

We call V(p) the visibility polygon of p. Note that p can be on aP. 
A polygon with hole(s) is a polygon with the interior of one or more simple polygons 

removed from it. The definition of visibility between two points in a polygon with hole(s) 

is the same as the one in a polygon without holes. 

We will use some other terms and expressions in our discussions in this thesis. But we 

will leave them until the relevant topic comes up for discussion. 

1.3 Previous work 

Many variations of the polygon search problem have been proposed and studied in the 

literature since its first proposal by Suzuki and Yamashita [106]. 

We first introduce the terminology for polygon search problems. We assume that there 

are intruders who move around in a polygon P. Without losing generality, we may assume 

that there is only one intruder. Our task is to use a set of searcher(s) to search the polygon 

such that the intruder is eventually detected or leaves the polygon, i.e., we are sure that the 

polygon is clear of the intruder. In the following discussions in this thesis, we interchangeably 

use searchers, pursuers, hunters and guards if no ambiguity arises. 

Let e(t) E P denote the position of the intruder at time t > 0, and let e : [0, oo) -+ P 

be a continuous function, representing his move path. The intruder is capable of moving 

arbitrarily faster than the searcher(s) (in order to make the problem non-trivial). The initial 

position e(0) and the move path e are unknown to the searcher(s). Any region in P that 

might contain the intruder is referred to as contaminated; otherwise it is referred to as clear. 

If a region was contaminated, became cleared, and then becomes contaminated again, it is 

referred to as recontaminated. 

Let N be the number of searchers. Denote by y a search schedule or just a schedule 

of the searcher(s). It contains the specification of a continuous path for each searcher: 

y = {yl, y2, a . , yN). To be more specific, yi denotes the continuous path of the ith searcher 

in the form yi : [0, oo) -+ P. Denote by yi(t) the position of the ith searcher at time t _> 0. 

A search schedule, y, is called a solution schedule if for every continuous function e : 

[0, oo) -+ P there exists a time t E [0, oo) and an i E {1,2, - .  . , N )  such that e(t) E 
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vR(yi(t)), where VR(yi(t)) is the visibility range of searcher i. We will define VR(yi(t)) 

later when we discuss different search problems. Sometimes, we may call a solution schedule 

using some other names, such as a legal schedule, a winning schedule, etc. 

1.3.1 The watchman route problem 

Figure 1.4: A watchman route. 

The Watchman Route Problem was first introduced in [29] by Chin et al.. Suppose that a 

watchman has to patrol a polygon P. To do this, she has to find a closed "walk" W starting 

and ending at a starting point s such that every point in P is visible from some point in W. 

See Figure 1.4 for an example. In the figure, the dashed curve inside the polygon represents 

a watchman route. In order to minimize the cost, usually measured as the distance the 

watchman travels, it is desirable to find a shortest route. Note that the visibility range of 

the watchman in this problem is 360'. 

Ntafos et al. [80] proposed and studied the External Route Problem. Given a set of 

polygonal obstacles in the plane, the problem is to find a route along which a watchman 

follows to patrol the exterior of the obstacles such that each point in the exterior is visible 

from some point on the route. 

As a restricted version of the External Route Problem, Gewali at el. [51] investigated 

the problem for computing the shortest watchman route for a pair of convex polygons. 

Some other work regarding the Watchman Route Problem can be found in [25, 261. Also 

the work in [23, 241 discussed how to find the shortest watchman route. 
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1.3.2 The Hunter's Problem 

Suzuki and Yamashita [I061 considered a polygon search problem in which both the searcher 

and the intruder are allowed to move freely within a given polygonal region. The searcher 

moves at a bounded speed while the intruder can move at an unbounded speed. Thus the 

searcher needs to figure out a search schedule in order to catch the intruder. 

Many variations of this problem have been studied, such as that the searcher has a 

visibility range of 360') or the searcher has a fixed number of Ic searchlights, where the 

visibility range of the searcher is restricted to the Ic rays from the flashlights. The former is 

called the oo-searcher problem while the latter is called the Ic-searcher problem. It was shown 

that there are some polygons that are searchable by a Zsearcher but not by a 1-searcher. 

Figure 1.5: A polygon that is not searchable by a 1-searcher. 

The work also established some necessary conditions for a polygon to be searchable. A 

polygon is called Ic-searchable (there is only one Ic-searcher) if, no matter what the given 

initial configuration of the intruder and the Ic-searcher is, it is always possible to move the 

searcher such that at some time the intruder will be falling into the visibility range of the 

searcher. For example, it was proven that if a polygon is 1-searchable, it has no three points 

such that the shortest path between any two of them is invisible to the third one. According 

to this, the polygon shown in Figure 1.5 is not 1-searchable, since point z cannot see any 

point on the shortest path between points x and y. The same situation applies to the other 

combinations where we consider the shortest paths between points x and z and points y 

and z, respectively. 

In the sense that, when an intruder slips into a polygon, the searcher's task is to catch 
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him, the above problem was named as the Hunter's Problem [98]. 

Urrutia [I131 proved the following theorem regarding the number of the searchers. 

Theorem 1.3.1 O(ln n) searchers are always suficient, and occasionally necessary to catch 

an intruder in  any polygon with n vertices. 

Figure 1.6: A binary polygon. 

Figure 1.6 shows a family of polygons that actually require O(1nn) searchers. We call 

them binary polygons due to the similarity between their shape and a binary tree. 

Since its first appearance, there have been a number of variations of the Hunter's Prob- 

lem, though some of them do not use the problem name exactly or explicitly. 

1.3.3 The two-guard problem 

There are great interests in the two-guard street problem. One can imagine that there is a 

polygon with two prespecified ends, one called the entrance while the other called the exit, 

which divide the boundary of the polygon into two sides. Usually the entrance and the exit 

are the vertices of the polygon. 

Two searchers (or guards), with one on each side of the street, start from the entrance, 

move along the two sides, and finally meet at  the exit. It is required that during the search 

process, the two guards be always mutually visible. Thus in this problem, the visibility 

range of the guards is restricted to the line segment (represented by a flashlight beam) in 

between them. If there was an intruder slipping into the street, it is hoped that he would 

be eventually pushed to the exit and leave the street from there. In some literature, the 
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two-guard problem is also called the corridor problem. Sometimes the entrance and the exit 

can be an edge rather than a vertex. 

Figure 1.7: A polygon P with two sides L and R. 

The two-guard street problem was first studied by Icking et al. [57]. Assume that we are 

given a simple polygon with n edges and two distinguished vertices s (start) and g (goal), 

representing the entrance and the exit, respectively; then the polygon's boundary consists of 

two polygonal chains, L and R, with common endpoints s and g. Both chains are oriented 

from s to g. See Figure 1.7 for an example. It is required that L and R be mutually weakly 

visible. L (R, resp.) is said to be weakly visible from R (L, resp.) if for each point p E L 

(q E R, resp.) there exists a point q E R (p E L) such that q and p are visible. h r t h e r  

definitions regarding the problem are given below. 

A walk on P is a pair (1, r )  of continuous functions such that: (1) 1 : [O, 11 + L, 

r : [O, 11 + R; (2) l(0) = r(0) = s ,  l(1) = r(1) = g; (3) l(t) is visible from r( t )  for all 

t E [0, 11. Any line segment l(t)r(t) is called a walk line segment of the walk. Note that a 

walk line segment must always lie within the street. The point r ( t )  is the walk partner of 

l(t), and vice versa. A walk on P is called straight if both 1 and r are non-decreasing with 

respect to the orientation of L and R. P is called (straight) walkable if it admits a (straight) 

walk. As a counterpart, a counter-walk on L and R is defined to be just like a walk, but 

with the boundary conditions l(0) = s, l(1) = g, r(0) = g, r(1) = s. A straight counter-walk 

has a non-decreasing function 1 and a non-increasing function r w.r.t.the orientation of L 

and R. P is called (straight) counter-walkable if it admits a (straight) counter-walk. 

The general walk problem asks for a walk in which the total distance traveled by the two 
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guards is minimized, i.e., the one where the sum of the lengths of the two curves given by 

the functions 1 and r becomes minimum. 

A walk instruction [57], is defined to be one of the two elementary moves: (1) Both 

searchers move forward along segments of single edges; (2) One of the searchers moves 

forward, while the other moves backward along single edges. Clearly, any straight walk, if 

one exists for a given polygon, is of the minimum length. 

The major contribution in [57] is stated in the following theorem. 

(a) Deadlocks (b) Left wedge (c) Right wedge 

Figure 1.8: Three configurations for which no straight walks exist. 

Theorem 1.3.2 Let the chains L and R be mutually weakly visible. Then there is  a straight 

walk for P i f  and only i f  none of the three configurations shown in  Figure 1.8 exists for L 

and R. To test the conditions, and to construct a straight walk, O(n1ogn) time and linear 

space are sufficient. 

(4 (b) (c) 

Figure 1.9: Three configurations for which no straight counter-walks exist. 
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The necessary and sufficient condition for a straight counter-walk in a street is stateb in 

the following theorem [57]. ~ 
Theorem 1.3.3 There i s  a straight counter-walk if and only if the chains L and Ri are 

mutually weakly visible and none of the three conjigumtions shown in Figure 1.9 exists. 

Such a straight counter-walk can be computed in O(n log n) t ime.  i 

For the general walk problem, the following result was obtained [57]. I 

Theorem 1.3.4 There i s  a walk for P if and only if the chains L and R are m u t u ~ l l y  

weakly visible and P does not contain a deadlock, shown in Figure 1.8 (a). ~ u r t h e n o r i ,  a 

walk of m i n i m u m  length can be computed in t ime  O(n1ogn + k) and in space O(n), w#re 

k i s  the number of walk instructions. I 

There have been some followups since then. Observing that some rays are dominated by 
I 

others, Heffernan [56] proposed to build balanced trees using only non-dominated rays, w$ile 

the trees' structure is similar to the one used in [57]. Furthermore, with the help of sho est il paths and shortest path trees, the time complexity of Theorems 1.3.2 and 1.3.3 is improyed 
~ to B(n). However, it was asked whether there was an O(k) algorithm for Theorem 1.3.44 

In the two-guard street problem, the starting point s and the ending point g are &e- 

specified. Tseng et  al. [I101 considered the street problem from another perspective. T e y  4 
asked whether, for a given polygon with n vertices, there exists a pair of vertices such t$at 

the resultant street admits a general walk, a straight walk or a straight counter-walk. ~ d e ~  

obtained an O(n log n) time algorithm to find all such pairs of entrance and exit that ad4i t  

a (straight) walk and an O(n log n) + m (m could be as large as 0(n2).) time algorithm to 

find the pairs that admit a (straight) counter-walk. ~ 
Bhattacharya et  al. [15] further reduced the above time complexity to O(n) to find $11 

the pairs of vertices such that the resultant streets are walkable. In their notation, @pn 

a street with the entrance s and the exit t ,  an s-deadlock (a t-deadlock, resp.) happenA if 

the two searchers, both starting at s ( t ,  resp.) and moving along the street boundaries in 

the opposite directions, have reached two reflex vertices such that neither of them can m be 9 forward without losing their mutual visibility. These two reflex vertices form an s-deadlofk 

(a t-deadlock, resp.). The technique employed is to make use of a nice property of a classof I 
LR-visible polygons [14, 361 (Also see below in Section 1.3.11.) to compute the s-deadlocks 
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and t-deadlocks in linear time. The property is that in an LR-visible polygon, all the non- 

redundant components can be calculated in O(n) time. Later on we also make use of this 

property in our work. 

The work [14, 33, 581 also discussed the street search problem in other directions. 

1.3.4 The room search problem 

Suppose that an intruder slips into a room P(d),  which is a polygon P with a designated 

point d on its boundary, called a door. The door is a point where a searcher starts her 

search in order not to let the intruder escape through it. The goal of the searcher is to catch 

the intruder. This problem is called the room search problem. There are several papers 

discussing the problem under different search models. 

right caves of v 

d - left cave of v 

Figure 1.10: Definition of caves. 

Lee et al. [74] discussed the room search problem using a 1-searcher. The work introduced 

a concept called cave under the observation that reflex vertices are the sources where the 

visibility difficulties arise. A cave is defined for a vertex v to be a maximal connected 

boundary chain C(p, q) that is not a subset of V(v), the visibility polygon of the vertex 

v. Note that two endpoints p and q of C(p, q) lie on the directed line $ and C(p, q) lies 

entirely to the left (called a left cave) or right (called a right cave) of $. A left cave C(p, q) 

of v is called the L-cave of v if p = Succ(v). Analogously, a right cave CCp, q) of v is called 

the R-cave of v if q = Prec(v). Figure 1.10 illustrates these definitions. 

In order to analyze the problem, the following definitions are introduced. Let C = 

(vl,v2, v3) be a triple of vertices such that vl +,, v2 +cw v3. We call C an s-triple if vl 
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has the Lcave and v2 and v3 lie in it, and v3 has the R-cave and vl and 212 lie in it. An 

striple C such that v2 has the R-cave and vl and d (the door) lie in it is called an 1-triple. 

Symmetrically, an striple C such that v2 has the Lcave and v3 and d lie in it is called an 

r-triple. For the sake of space, we do not go into the details of the paper. 

The main theorem in [74] is as follows. Interested readers are referred to the paper. 

Theorem 1.3.5 A room P(d) is 1-searchable if and only if the following three statements 

hold. 

(Nl) There are no vertices a and b such that d and b lie in the L-cave or R-cave of a, 

and d and a lie in the L-cave or R-cave of b. 

(N2) There is no s-triple (al, a2, as) such that a1 and a3 lie in the L-cave or R-cave 

of a2. 

(N3) There are no 1-triple (al ,  a2, a3) and r-triple (bl, b2, b3) such that a2 4 ba and 

everg vertex v lying between a2 and b2 has an s-pair (VL, VR). 

Park et al. [89] considered the same problem using two guards (with the same visibility 

requirement as the one for the two-guard street search problem, i.e., the two guards are 

always mutually visible). However, a search schedule for a room is different from the one 

for a street. When searching a street, the starting and ending points are prespecified, and 

at any time the two guards cannot go across the ending point. However, there is no such a 

condition in the room search problem. Even though the search schedule ends at  some point 

g' ,  during the search process the two guards may go across it. It was shown that there exist 

some polygons with one door which are not walkable as a street no matter where the ending 

point is, but can be searched by two guards as a room. 

The street search problem and the room search problem were compared in [74]. If a street 

is searchable by two guards (while maintaining their mutual visibility), we can construct the 

search schedule. By following the same schedule, a 1-searcher can also search the street by 

moving the searcher along L and aiming its flashlight at the positions of the second guard 

on R. On the other hand, any 1-searchable street can also be searched by two guards, which 

was demonstrated by showing that any 1-searchable street also satisfies the conditions in 

Theorem 1.3.4. The catch is that a 1-searcher still cannot clear a deadlock. As for the 

room search problem, if a room is searchable by two guards (while maintaining their mutual 
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visibility), it is 1-searchable according to  the same reason as above. However, there is some 

1-searchable room which is not searchable by two guards. The example is shown in [74]. 

The work in [73, 93, 1081 also discussed some other search problems in a room. 

1.3.5 Graph-based solutions to polygon search problems 

In the previous discussions of the polygon search problems, including the street and room 

search problems, the techniques used are basically the characterizations of polygons, in which 

a set of patterns in a polygon are identified. Depending on whether a polygon contains these 

patterns or not, we then decide its searchability. Usually, the proofs of these results are quite 

lengthy and involved since one has to go through each of the patterns completely before the 

final conclusion is drawn. 

In this section, we will discuss how to deal with polygon search problems using another 

line of approach. The new approach could be regarded as the application of the visibility 

polygons discussed in Section 1.2. 

Instead of enumerating possible patterns, we visualize a diagram which consists of the 

information, for each point on the boundary of the polygon, in the visibility polygons. We 

then identify the key points on this diagram and use them to conduct our polygon search 

process. 

LaValle et al. [67,68] discussed the search problem using a 1-searcher on the boundary of 

a given polygon. For a given polygon P, the searcher moves along aP and uses a flashlight 

to separate the cleared and contaminated portions of the polygon. 

For points p, q E dP ,  as defined in [67, 681, p is visible to  q if every interior point of the 

line segment ijij lie in P - a P .  Thus, no two points on the same edge of P are mutually 

visible. 

A configuration is defined to be a pair (p, q) of points p, q E aP, and the space of all 

configurations X is defined as: X = aP x aP = {(p, q) Ip, q E 8P) .  

There are three types of configurations we need to distinguish. 

The diagonal configurations, denoted as Xd c X ,  that contain the pairs (p, q) such 

that p and q lie on the same edge of aP. 

The feasible configurations, denoted as X, c X ,  that contain the pairs (p, q) such that 

p and q are mutually visible. 
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The non-feasible configurations, denoted as Xn = X - Xd - Xu, that contain the pairs 

(p ,  q) that do not lie on the same edge and are not mutually visible. 

Note that the definition of mutual visibility here between two points is a little different 

from our definition in Section 1.2, in that if a beam touches a reflex vertex, it cannot travel 

beyond that point. In our definition of the mutual visibility, we have Xd c Xu. We will see 

this in later chapters. 

Intuitively, for any (p, q) E Xu, p can represent the position of the searcher while q 

can represent the point (the beam head) illuminated by her flashlight. We now give the 

definition of a visibility obstruction diagram. 

Definition The Visibility Obstruction Diagram (VOD) for a polygon P is defined as a 

diagram consisting of three partitions of X ,  (Xd, Xu, Xn), where Xd, Xu, and Xn are defined 

as above. 

Figure 1.11 : A simple polygon and its corresponding visibility obstruction diagram. 

Figure 1.11 shows an example of a polygon and its corresponding VOD. In the diagram, 

the black area along the diagonal represents Xd, the gray (shaded) area represents Xn, and 

the white area represents Xu. 

A feasible search schedule may consist of the moves (the vertical moves of the searcher 

and the horizontal moves of the flashlight) inside the white areas in the diagram. Occasion- 

ally, the move can go across a gray area from right to left, representing a recontamination 

(we will see more on this in later discussions). In order to simplify this construction, several 

definitions were introduced 167, 681. 
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Figure 1.12: A concave region. 

A maximal subinterval of aP of the form C = (pi,pj+l), in which all of the vertices 

pi+l, pi+a, - . , p j  are reflex vertices, form a concave region. Consider the k-th concave 

region Ck = ( ~ ~ , p ~ + ~ )  of P from po in the clockwise direction. Let ei be the edge between 

the vertices pi and pi+l and ej be the edge between the vertices p j  and pj+l. Define the 

shelter of Ck to be the two points ak and bk, the midpoints of the edges of ei, e j ,  respectively. 

Shoot a ray starting at ak through pi+l and let x be the point of aP where the ray leaves 

P for the first time. Define the threshold of ak, denoted by a;, to be the point in wfl aP, 

which is the nearest from ak in the counter-clockwise direction along the boundary. The 

threshold of bk can be defined similarly. See Figure 1.12 for an example for a concave region. 

- q . 
a . b . a , b , b : a : a : N a .  

Figure 1.13: The skeletal obstruction diagram corresponding to Figure 1.11. 

Now we identify these shelter and threshold points in the VOD diagram. We finally 
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obtain the skeletal obstruction diagram (SOD), which represents the skeleton of the VOD, 

drawn over the square grids formed by the shelter and threshold points. For example, for 

the VOD shown in Figure 1.11, its corresponding SOD is shown in Figure 1 .l3. It  is proven 

in [67, 681 that this representation is topologically equivalent to the VOD in terms of the 

searchability of a polygon by a 1-searcher. 

In order to search in SOD effectively, a graph Gp is constructed as follows. The vertex set 

V(Gp) is composed of three types vertices: (I) the non-diagonal vertices, one for each square 

that does not intersect the diagonal (such as the one labeled by A in Figure 1.13); (2) the 

starting vertices, one for each half-square, a triangle immediately above the diagonal (such 

as the one labeled by B in Figure 1.13); and (3) the goal vertices, one for each half-square, 

a triangle immediately below the diagonal (such as the one labeled by C in Figure 1.13). 

The edge set of the graph is defined as the maximum subset of V(Gp) x V(Gp) satisfying 

five rules. See [67, 681 for the details of these rules. We do not detail them here for the sake 

of space. 

The whole algorithm for deciding whether a polygon is 1-searchable and if so, construct- 

ing a search schedule, can be basically described as follows. For the given polygon, determine 

the shelter and threshold points and then construct the SOD and the graph Gp. Finally 

use a breadth-first search (BFS) to find a path in the graph from a starting vertex to a goal 

vertex. If no such path exists, we say that the polygon is not 1-searchable. The following 

theorem is established. 

Theorem 1.3.6 Given a simple polygon P with n vertices and m concave regions, there is  

a n  algorithm that decides whether it can be searched by a I-searcher, and iif so, outputs a 

search schedule in t ime  O(n + m log n + m2). 

Another graph-based solution was due to Guibas et  al. [55]. They studied how to deter- 

mine the minimum number of searchers for both simple polygons and polygons with holes 

and how to construct an information graph in order to find the search schedule for a poly- 

gon. Note that the searchers in their work have a 360' visibility range. The following two 

lemmas are about the minimum number of searchers. 

Theorem 1.3.7 Let ps(P) denote the m in imum number of searchers that are needed t o  

search a polygon. For a simple polygon P with n edges, ps(P) = O(1og n), and there exists 

some polygon P' with n edges such that p s ( ~ ' )  = Q(1ogn). These two statements together 

imply ps(P) = @(log n)  . 
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This result is consistent with the one in Theorem 1.3.1 and also with the one we are 

going to introduce in Section 1.3.8. The technique used is similar to the one employed in 

Theorem 1.3.1. 

Theorem 1.3.8 Let ps(P) denote the minimum number of searchers that are needed to 

search a polygon. For a polygon P with n edges and h holes, ps(P) = o(& + logn), and 

there exists some polygon PI with n edges and h holes such that p s ( ~ ' )  = a(& + log n). 

These two statements together imply ps(P) = o(& + log n) . 

It  was observed [55] that in a polygon P, the boundary of a visibility polygon from a 

boundary point q generally alternates between being part of the boundary and crossing the 

interior of the polygon. Let each edge of a visibility polygon that is in the interior of the 

polygon be a gap edge. We assign a label "1" to it if the subpolygon (that is on the different 

side from the visibility polygon) is contaminated and assign a label "0" to it, otherwise. Let 

B(q) denote the binary vector of gap edge labels, with one label for each gap edge in q's 

visibility polygon. Thus the pair (q, B(q)) uniquely characterizes the information state when 

the searcher is at  q. Then we partition the given polygon using a collection of convex regions. 

Now construct a graph G, each vertex of which corresponds to a convex region and each 

edge of which is defined if the boundaries of two regions have a one-dimensional intersection. 

A directed information graph, GI, can then be derived from G. For each vertex in G, a set 

of vertices are included in GI, one for each possible labeling of the gap edges. The edge 

between two vertices in GI depends on when a gap edge disappears, a gap edge appears, two 

or more gap edges merge, or a gap edge splits into two or more. The search process starts 

at  a vertex in GI where B(q) = 11 - .  . 1 to a goal vertex where B(q) = 00. . 0. The paper 

showed several computed examples, demonstrating the feasibility of the approach. But the 

formal analysis of the complexity was not conducted. 

Simov et al. [loll used the same graph-based idea to solve the polygon search problem. 

It  is claimed that the algorithm needs 0(n3)  time to guarantee that a successful search 

schedule would be found. 

Simov et al. [99] considered the polygon search problem using two 1-searchers (not 

necessarily bound to the boundary of a given polygon). The solution to the problem was 

also graph-based. They considered the shelters in a given polygon, as discussed above. 

They also considered a bitangent. A bitangent is defined as follows. Let c, d, 6 ,  dl, x E P be 

collinear points. Let c and d be mutually visible vertices of aP and x be an interior point of 
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- 
cd. If there exist points & and d such that the pairs (c, &) and (d, dl) form gap edges relative 

to x, we say that c and d define a bitangent, and we call c and d the bitangent points and & 
and d' the bitangent projections. The shelter and bitangent configurations were introduced. 

They form the set of the b-configuration. Let 71 = (pl, ql) and 72 = (p2, q2) be a pair of 

b-configurations and let b be the corresponding contamination string (defined similarly to 

B(q) as discussed above). Basically, 71 = (pl, ql) and 72 = (p2, q2) decide the statuses of the 

two searchers. Then a b-state is defined to be (71, 72, b). The b-space is defined as the set of 

all b-states. Now a directed information graph can be composed as follows. Its vertex set 

consists of all b-states. Two vertices (b-states) are connected if there is an elementary move 

from one to the other. The search schedule is finally obtained by conducting a breadth-first 

search (BFS) in this graph. A set of elementary moves were illustrated and discussed in [99]. 

Another useful diagram, called the cylindrical boundary visibility diagram (BVM), was 

introduced by Suzuki et al. [I051 for an arbitrary search schedule S of an oo-searcher on the 

following observations. The boundary of a polygon is topologically equivalent to a circle. 

The "state" of such a circle, which is a function of time t, consists of information on the 

current locations of pockets (similar to the caves defined in Figure 1.10), if any, and whether 

or not they are contaminated or not. The cylindrical BVM arranges these circles next to 

each other, from left to right, in the order of time t (0 5 t 5 to), where to is the time the 

polygon is cleared. We distinguish three sets of points in BVM at time t: (1) the set of 

all (t,p) (p E 8P) such that p belongs to a contaminated pocket; (2) the set of all (t,p) 

such that p belongs to a cleared pocket at  time t; and (3) the set of all (t,p) such that 

p does not belong to any pocket. As the oo-searcher traverses, the pockets may emerge, 

disappear, merge and split. The BVM diagram describes when these events happen. The 

major contribution in the paper is stated in the following theorem [105]. 

Theorem 1.3.9 A polygon P can be cleared, using a boundary schedule, by an oo-searcher, 

if only if it can be cleared, using a boundary schedule, by a 1-searcher. 

For other work investigating the 1-searcher polygon searcher problem, see [91, 92, 1091. 

They will also be discussed in the following. 

1.3.6 The chain of k-guard problem 

The polygon search problem by a chain of k-guard was discussed by Efrat et al. [41]. The 

search process is subject to the restriction that the first and the k-th searchers always move 
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on the boundary of a given polygon while searcher i, 1 < i < k, moves in the interior and 

maintains the visibility with its neighbors: searchers i - 1 and i + 1. 

They attempted to compute a minimum number r* of searchers needed to sweep a 

polygon with n vertices under the chain of k-guard mechanism. A new concept link diagram 

was introduced and, as claimed, was the first of its kind in the literature. A link diagram 

provides another tool to analyze the polygon search problem. Compared with the graph- 

based solutions as discussed above, the link diagram captures other geometric information 

hidden inside a given polygon. 

Another version of k-guarding problem was proposed and studied by Belleville et al. [9]. 

A polygon is called k-guardable if it is possible to find a collection G of points in the interior 

of the edges of a given polygon P such that every point in P is visible from at least k elements 

of G. Due to the space limitation, we will not go into details. Interested readers may refer 

to the paper for further information. 

1.3.7 The k-searcher problem 

To the best of our knowledge, although there are some results obtained for oo-searcher [105, 

1091, there is not much progress towards k 2 3 for a k-searcher. In this section, we discuss 

some work related to the case where k = 1 or k = 2. 

Park et al. [go] discussed the 1-searchability of a polygon. Basically the techniques used 

are similar to the ones in [89]. We will not repeat it here. Instead, we introduce another 

paper by Tan. 

Based on a case-by-case analysis, the following theorem was established by Tan [log]. 

Theorem 1.3.10 A polygon P is 1-searchable i f  and only if none o f the  four configurations, 

as shown i n  Figure 1.14 (where the dashed lines represent the rays from reflex vertices), 

appears in the polygon. 

Due to the space limitation, we will not detail the proof here since it is quite lengthy and 

tedious. Note that in [log], the 1-searcher may go off the boundary of a polygon. The paper 

also established that if a polygon is searchable by an m-searcher, then it is also searchable by 

a Zsearcher. This work could be regarded as complementary to the work reported in [105]. 

There is some other work discussing the k-searcher problem. Interested readers may 

refer to [72]. 
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Figure 1.14: Four configurations that make a polygon not l-searchable. 

1.3.8 Polygon metrics related to polygon search problems 

It is believed that different polygon metrics will help better understand polygon search 

problems. In this section, we discuss some results in this direction. 

Yamashita et al. [I151 explored the different metrics of a polygon. Denote by ps(P)  the 

number of searchers necessary and sufficient to search a given polygon P,  with n vertices 

and r reflex vertices. There are another two measures of the shape complexity of P that 

are of our interest. A finite set G of points in P is called a guard set of P if every point 

x E P is visible from some point y E G. We define g as the minimum size [GI among all 

guard sets G of P. The definition of the bushiness b of P is based on a triangulation of 

P. It is known that a triangulation of a polygon with n vertices has n - 2 triangles and 

n - 3 non-intersecting diagonals [12, 811. The dual of a triangulation is a tree T having 

a vertex for each triangle and an edge between those vertices that correspond to the two 

triangles that share a common diagonal. A triangulation is said to be thin if its dual tree has 

the smallest number of degree-three vertices among all triangulations of P. The bushiness 

of P is then defined to be the number of degree-three vertices in the dual tree of a thin 

triangulation of P. 

Given the polygon P and an edge el the chasing problem with respect to e is the problem 

of discovering all intruders in room P without letting any of them escape from the entrance 

e .  The shooing problem with respect to e is the problem of clearing room P with entrance e 
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through which a new intruder may enter into P at any time. Thus, with those two problems, 

the corridor search problem (also discussed above) for P with respect to the entrance e and 

the exit el is the problem of designing a search schedule for P which is both a chasing 

schedule with respect to e and a shooing schedule with respect to el. 

Figure 1.15: An example of one-way sweep strategy. 

The method for constructing a search schedule is to decompose the original problem into 

smaller chasing, shooing, and corridor search problems until each smaller problem becomes 

tractable. This process is formalized in an algorithm called one-way sweep strategy (OWSS) .  

Figure 1.15 shows an example. For the details of the algorithm, see [115]. 

The work also related the polygon search problem to the graph search problem [94]. 

Denote by es(G) the graph search number of G ,  which is the minimum number of searchers 

for searching a graph [94]. The following lemma regarding the dual tree of a triangulation 

of a polygon was established [115]. 

Lemma 1.3.11 Let T be the dual tree of a triangulation of a simple polygon P .  Then 

ps (P)  I es (T) .  

With the help from [77] showing that if T is a tree with m 1 2 vertices, then e s ( T )  < 
1 + [log3 (m - I ) ] ,  the following two theorems regarding the number of vertices and the 

bushiness of P were proven [115]. 

Theorem 1.3.12 For any simple polygon P with n vertices, p s ( P )  5 1 + [log3 (n - I ) ] .  

The theorem that relates p s ( P )  to the bushiness of a polygon was also proven [ I  151. 
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Theorem 1.3.13 For any simple polygon P with bushiness b, p s ( P )  5 1 + Llog, (2b + 1)J 

By constructing a search schedule based on the recursive applications of OWSS, the 

following theorem related ps (P)  to the number of reflex vertices of P in the paper. 

Theorem 1.3.14 For any simple polygon P with r 1 1 refEex vertices, p s (P)  5 1 + [log3 r J  

The following theorem related the size of a guard set with ps(P) .  

Theorem 1.3.15 Let P be a simple polygon having a guard set of size g. Then p s ( P )  5 

Figure 1.16: Examples that provide the lower bounds for ps (P) .  

Using the configurations shown in Figurel.16, the work finally showed us that there are 

some simple polygons that do provide the lower bounds on the polygon search number as 

discussed in the above four theorems, as stated in the following theorem. 

Theorem 1.3.16 For any natural number s 2, there is a simple polygon P satisfying 

ps (P)  = log3 (n + 1) = log3(2r + 3) = 10g3(2b + 1) + 1 = log3(2g - 1) + 1 = s ,  where n, r ,  

b, and g are the numbers of vertices, the number of refEex vertices, the bushiness, and the 

size of a minimum guard set of P ,  respectively. 

The work in [I141 was an extended abstract of the work we are introducing here. Also 

the work [I071 discussed the problem of how to represent ps(P)  in terms of the bushiness of 

a polygon. Given the guards' positions iL priori, Cheong et al. [28] discussed how to compute 

a guarded region. 
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1.3.9 Other related polygon search problems 

In the following, we discuss some other interesting topics related to the polygon search 

problems in the literature. 

The Robber Route Problem 

A problem called the Robber Route was introduced by Ntafos [78]. The problem is defined 

as follows. Consider a set of T points and a set E of edges of a polygon P. The goal is to 

find a closed walk W starting and ending at a point x such that every point on any edge of 

E is visible from a point in W while W is not visible from any point in T .  The elements in 

T are threats that we desire to avoid while the elements of E are the sights that we might 

want to see. 

The Zookeeper and Safari Route Problem 

Chin [30] proposed and studied another variation of the Robber Route Problem. The task 

is to find a route in a polygon P containing a set of sites S and a set of sites T. The sites 

in S are sights that must be visible from at least one point on the route while the sites in 

T are threats that must never be visible from any point along the route. If the threats are 

represented by polygons within the given polygon P, the problem becomes the Zookeeper 

Route Problem. By restricting these polygons to be attached to the edges of the outer 

polygon, the work designed an algorithm for finding the shortest path for this purpose and 

showed that it is unique. In general, the problem is NP-hard. See [50] for NP-hardness. 

The Safari Route problem is the same as the Zookeeper Route Problem, except that one 

is allowed to enter the threats. It was proven by Ntafos [79], that in general this problem 

is also NP-hard. But if the sites were allowed to attach to the edges of the outer polygon, 

the problem could be solved in 0 ( n 3 )  time. 

The Lazy Guard Problem 

Colley et al. [32] studied the so-called Lazy Guard Problem. The problem is defined as 

follows. Given a polygon P, choose a minimal number of stations (represented by points) in 

the polygon such that a mobile searcher who visits all stations will guard the entire polygon. 

The problem has its counterpart in real applications. For example, a searcher is inherently 

lazy in the sense that she may not patrol as often and thoroughly as her supervisor wishes. 



CHAPTER 1. BACKGROUND 26 

To ensure the completeness of the patrol, the supervisor will install a set of check-in stations 

such that the searcher has to physically visit them on a regular basis. 

It was proven that an optimal placement of stations for lazy guarding a simple polygon 

can be found in linear time. It  was also shown that the Lazy Guard Problem is NP-complete 

for polygons with holes. See [50] for NP-completeness. 

1.3.10 Related topics 

The polygon search problems are of interest to other research communities. The pursuit- 

evasion problem in graphs is to search a graph by a group of searchers. See [lo, 17, 63, 76, 

77, 941 for some work related to the problem. 

Many variations of the polygon search problem also play an important role in robotics. 

Many of the results we have discussed above were used in solving problems related to plane 

explorations. See [3, 8, 13, 37, 53, 64, 65, 66, 95, 961 for some results in this direction. 

There are also some other papers discussing how to explore unknown environments in 

the literature [2, 6, 8, 39, 40, 59, 60, 87, 881. 

For the work related to the Floodlight Illumination Problem, see [I, 20, 34, 46, 47, 48, 

83, 1021. 

For other work related to the topics, such as visibility, triangulations, visibility graphs, 

etc., see [4, 5, 7, 11, 16, 18, 19, 21, 22, 25, 27, 35, 38, 42, 43, 44, 45, 49, 52, 61, 62, 69, 70, 

71, 82, 84, 85, 86, 97, 103, 104, 111, 1121. 

1.3.1 1 LR-visible polygons 

In our later discussions, we will use a class of LR-visible polygons. We briefly discuss them 

here. 

As defined in [36], a polygon P is LR-visible if there exists a pair of points s and t on aP 

such that aPcw (s, t)  and aPccw (s, t) are weakly visible from each other. Also in the same 

paper, if a polygon is LR-visible, a linear-time algorithm is shown to determine all possible 

pairs of boundary chains (Ai, Bi), i = 0,1, . . - , m, such that for any s E Ai and any t E Bil 

P is LR-visible with respect to (s, t). As a preparatory step, there is another algorithm 

that calculates all of the non-redundant components in linear time. If the polygon is not 

LR-visible, this algorithm terminates prematurely. 

Figure 1.17 shows such an example. We change the notation in the figure in order to be 
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Figure 1.17: An LR-visible polygon adopted from [36]. 

consistent with the one used in our discussions. It  is easy to check that the polygon is LR- 

visible with respect to any pairs of points from (Ao, Bo), (Al, B1), (Az ,  B2), and (A3, B3). 

Note that as discussed in [36], the chain pairs can be output either with all Ai's disjoint or 

all Bi's disjoint. For example, in Figure 1.17 all the chains Ai's are disjoint. We will use 

this result later. 

Another concept that will be used in our discussions is the shortest path tree. A shortest 

path between two vertices u and v on aP is a sequence of maximal line segments connecting 

u and v that lie entirely within P and has the minimum Euclidean distance. Shortest paths 

are unique [36]. The shortest path tree from a vertex v on aP, denoted by SPT(v), is the 

union of the shortest paths from v to u, where u is a vertex of P .  For a simple polygon, the 

shortest path tree from a vertex v can be computed in linear time [54]. 

1.4 Our work 

The focus of our work in this thesis is to improve upon the previous work while attempting 

to solve new problems. 

In our work, we first further investigate the room search problem. The problem has 

been attempted before. Considering that its counterpart, the street search problem, can 

be checked in linear time for searchability, we are seeking the same optimality in the room 

searchability problem. In addition, being not satisfied with the previous involved and com- 

plex analysis, we attempt, with the help of previous results, to simplify the solution to the 

room searchability problem. Our approach solves the room search problem by two searchers 
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as well as by a 1-searcher in a uniform way. We also solve a new problem related to the 

room search problem - finding all the possible doors of a polygon such that the resultant 

rooms are searchable. 

For the polygon search problem with a 1-searcher, the previous characterization, as 

discussed in Section 1.2, is quite tedious and complex. We desire to find a concise solution 

to the problem. We also relate the searchability problem to the LR-visibility problem of a 

polygon, with the hope that the latter could help us improve the time complexity of the 

former. We also explore the relationship between the polygon search problem and the room 

search problem by a 1-searcher. We will present our results in these problems. 

The polygon search problem by two 1-searchers has been studied before. In our work, 

we focus on a restricted version of the problem. We study the search problem by two 1- 

searchers in the polygon with one hole. We consider three cases: (1) both searchers move 

on the inner boundary of the polygon; (2) both searchers move on the outer boundary; and 

(3) one searcher moves on the inner boundary and the other moves on the outer boundary. 

We provide an algorithmic graph-based solution to the problem. 

The remaining part of the thesis is structured as follows. In the next chapter, we prepare 

necessary notation for the later chapters. We introduce and discuss the visibility obstruction 

diagram (VOD) and the skeletal visibility obstruction diagram (SVOD) of a given polygon, 

which is the basis of our work in this thesis. 

In Chapter 3, we construct the VOD and SVOD of a given room and use it to help 

us analyze the searchability problem of a room by two guards. We also show that a new 

problem of finding all doors given a polygon can be solved optimally. The solutions we 

obtain can be easily extended to the room search problem by a boundary 1-searcher. 

Chapter 4 revisits the polygon search problem by a 1-searcher. We will see how the 

revision of the VOD and SVOD of a polygon helps reveal more of the inherent nature of 

the problem. We also relate the polygon's searchability (by a 1-searcher) problem with its 

LR-visibility. It might appear that a 1-searchable polygon is a searchable room, i.e., we can 

find a door on the boundary such that the resultant room is 1-searchable. However, our 

result shows that this is not always possible. 

In Chapter 5 we propose a new problem of searching a polygon with a polygonal "hole" 

inside. We use two 1-searchers for this task. We explore several variants of the problem. 

Again, we make use of the extended visibility obstruction diagram to guide our analysis. 

Finally, in Chapter 6, we summarize our contributions in this thesis and also indicate 
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some further extensions and future work on the basis of our results here. 



Chapter 2 

Preparations 

2.1 Introduction 

Visibility between any two boundary points plays an important role in various polygon 

search problems. Given a polygon P, from a point p E aP, the visibility polygon V(p) 

consists of those points of P that are visible from p (see Section 1.2 for details.). Let us take 

the 1-searcher polygon search problem as an example. If the searcher is standing at p, we 

immediately know that the beam head of her flashlight can only be falling on VCp) n aP. 
For the same reason, for the two-guard search problem, no matter whether the polygon to 

be searched is a street or a room, if one guard is standing at p, the other guard must be on 

V(p) n aP since otherwise the mutual visibility requirement is violated. 

The visibility polygons of two different boundary points may overlap. If we consider the 

visibility polygons for all the boundary points for a given polygon, the collective information 

hidden in them might help us decide whether the polygon (under different search models) is 

searchable or not. Actually the answer to this is affirmative, as will be seen in what follows. 

2.2 Two search models 

We consider two search models in this thesis. The first one is the two-guard model. In 

this model, the two guards move on the boundary of a polygon. It is required that the two 

guards be always mutually visible throughout a search process. The visibility range of the 

two guards in this search model is restricted to the line segment connecting them. (For 
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Figure 2.1: Two search models 

convenience, we imagine this line segment to be a light beam emanating from a flashlight 

from one of the two guards.) An intruder is caught if he is hit by the light beam. Figure 2.1 

(a) illustrates this. We use boundary points to represent the two guards. 

The second model we consider is the boundary 1-searcher model. In this model, there is 

a searcher with a flashlight, who always moves on the boundary of a polygon while aiming 

her flashlight in any direction she wants. The head of the beam (ray) from her flashlight is 

the point where the beam and the boundary of the polygon intersect before the beam leaves 

the polygon for the first time. The visibility range of the searcher is restricted to the beam 

from her flashlight. An intruder is caught if he is hit by the beam. We illustrate this model 

in Figure 2.1 (b), where the searcher is represented by a point on the boundary. 

Some previous work has investigated different polygon search problems under these two 

models. See Chapter 1 for a review of them. We will come back to these two search models 

when we discuss different search problems in later chapters. 

2.3 Visibility space and visibility obstruction diagram 

Given a polygon P, we define a configuration (introduced by LaValle et al. [67, 681) to be 

an element in aP x a P .  For a configuration (p, q), where p, q E aP, if p and q are mutually 

visible, we say that (p, q) is a visible configuration. Otherwise, we say that it is an invisible 

configuration. 

The visibility space of P is defined to be the set of all configurations for P .  It is obvious 

that, because pq E P if and only if @ E P, the visibility space is symmetric in the sense 
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that if the configuration (p, q) is a(n) (in)visible configuration, so is the configuration (q,p). 

See discussions in Section 1.3.5. 

Following what LaValle et al. [67, 681 proposed, we visualize the visibility space using 

a diagram, which is represented by a unit square in this chapter. Starting from the origin 

vertex po of P, we map dP monotonically into the sides of this diagram. Note that the 

definition of visibility in [67, 681 is different from the one adopted here. In their definition, 

(p, q) is a visible configuration if and only if is in the interior of P. Thus, two points 

on the same edge are not mutually visible. There are black squares along the diagonal, 

representing mutual invisibility as shown in Figure 1.1 1 in Chapter 1. 

Figure 2.2: A representation of the visibility space. 

Figure 2.2 is a visualization of the visibility space. The vertical axis of the diagram 

represents, from bottom to top, one traversal of dP in the clockwise direction while the 

horizontal axis also represents, from left to right, one clockwise traversal of dP. We label 

the relative positions of vertices on the four sides in their respective orders. For convenience, 

we call the top side of the diagram the top boundary (TB, for short), the right side the right 

boundary (RB, for short), the bottom side the bottom boundary (BB, for short), the left 

side the left boundary (LB, for short), and the diagonal line (running from the bottom-left 

corner to the top-right corner) the diagonal boundary (DB, for short). We also show the 

coordinate system for the diagram in the figure. For any point (x, y )  (an ordered pair) in 

the diagram, x is projected on TB and BB, and y is projected on LB and RB. 

We now construct the visibility obstruction diagram (VOD) [67, 681 to represent the 

'In the VOD as defined by LaValle et al., the values in the horizontal axis increase in the clockwise 
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visibility relationship among the boundary points of a given polygon in the visibility space. 

The type (visible or invisible) of each configuration (p,q) of a polygon P at point (p, q) 

is indicated in VOD(P) by a different color. The points in VOD(P) representing invisible 

configurations are shaded gray while those representing visible ones are left white. 

?he clockwise invisible chain due tor 7 Y 

Figure 2.3: The relationship between invisil~le configurations and an invisible chain. 

We consider the properties of the VOD for a polygon P .  We will show how the invisible 

configurations are related to the invisible chains due to reflex vertices in P and how this 

relationship is presented in VOD(P). 

We first discuss the clockwise invisible chain caused by a reflex vertex on aP. In Fig- 

ure 2.3 (a), we show a reflex vertex r and the clockwise invisible chain dPm(r, r,) due 

to it. Now select a point p E dP,(r, r,,). We shoot a ray in the direction from p to r.  

Suppose that the beam head of the ray is at  p', a s  shown in the figure. It  is obvious that for 

any point p" different from p' on dP,(pl, r ) ,  (;dl, p) and (p, p") are invisible configurations. 

If we project them to the VOD, it is easy to see that for p, the gray points corresponding to 

the invisible configurations (p",p) form a horizontal gray line (as marked by a in Figure 2.3 

(b)) starting from p' and ending at r, and the gray points corresponding to the invisible 

configurations (p, p") form a vertical gray line (as marked by b in the Figure 2.3 (b)) starting 

from p' and ending at T. 

direction of the vertices of a polygon, while the vertical axis represents the counter-clockwise direction of 
them. We adopt the standard coordinate system so that both axes represent the clockwise direction of 
vertices. However, we will retain the name VOD. 
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Now consider all the points on 8Pc,(r,rc,,,). They generate a set of vertical gray lines 

and a set of horizontal gray lines (generating two gray areas). This is shown in Figure 2.3 

(b). Also as point p approaches r,, in the clockwise direction, the intersection point p' 

approaches r in the clockwise direction as well, and the length of the corresponding gray 

line (=l8PC,(pt, r)I) gradually (actually monotonically) becomes shorter. The two gray areas 

extend from r on D B  upward and rightward as p approaches r,,. 

It is easy to see from the above discussions that the gray areas caused by a reflex vertex 

is symmetric with respect to D B  in the VOD.  If we draw the gray areas due to all the reflex 

vertices, some of them may overlap. 

n l e  upward bone 
The uonhwes~ barrier 

The curved side 
7he rightward bone 

side 

The downward bone Vie soulhedsl barrier 

Figure 2.4: A barrier and its bones. 

The two gray areas due to r shown in Figure 2.3 (b) are represented in Figure 2.4 with 

some annotations. As shown in the figure, we ca,ll the gray area due to r above (below, resp.) 

DB the northwest barrier (southeast barrier, resp.) due to r and denote it as NW(r) (SE(r), 

resp.). We call the bottom flat side of NW(r) the leftward bone to indicate its extension 

direction. It is obvious that the length of the leftward bone is laPcCw(r, rcw)l. We call the 

barrier's right flat side the upward bone, whose length is laPCw(r, rccw)I. Similarly for SE(r), 

we call its top flat side the rightward bone and its left flat side the downward bone. We also 

indicate the curved side of each barrier. 

For example, we show a polygon and its corresponding VOD in Figure 2.5. The two 

barriers marked by the thick lines in the figure are due to reflex vertex 4. In the figure, we 

also mark (using thick arrows) the four extension directions of the barriers. The remaining 

gray areas in the figure are due to other reflex vertices, i.e., vertices 8 and 10. 
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I 

Figure 2.5: A polygon and its corresponding VOD. 

Proposition 2.3.1 Every reflex vertex r of P gives rise to two barriers. The two barriers 

are symmetric with respect to DB. Barrier NW(,r) extends upward and leftward from r on DB 

i n  VOD(P) and stops at r,,, and r,, respectively, while barrier SE(r) extends downward 

and rightward from r on DB and stops at r,, and r,,, respectively. 

Note that VOD(P) wraps around horizontally and vertically. Consider barrier SE(r), 

such as SE(4) in Figure 2.5, for example. If the counter-clockwise (clockwise, resp.) invisible 

chain due to r contains po (which is the vertex 0 in the example figure), because BB (LB, 

resp.) corresponds to point po, SE (NW, resp.) extends to BB (RB, resp.), and continues 

at  the position r on TB (LB, resp.) downward (rightward, resp.) and stops a t  r ,  (r,,, 

resp.). Barrier N W ( r )  is treated similarly. This means that the number of barriers in the 

VOD due to a reflex vertex is still two. 

The barriers due to different reflex vertices might intersect. For instance, in Figure 2.5, 

the leftward extension of barrier N W(10) intersects the upward extension of barrier N W(8). 

Another fact is that the invisible chains .From a reflex vertex are continuous. Thus, 

the corresponding barriers in the VOD are also continuous, as shown in their construction. 

That is, there are no white areas inside a barrier. On the other hand, a white area might be 

surrounded by barriers due to different reflex vertices in the VOD. But it should be noted 

that it is not inside any barrier. 
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2.4 Skeletal visibility obstruction digram 

From the above discussions we know that the points inside a barrier due to a reflex vertex 

in the VOD of polygon P represent an infinite set of invisible configurations. 

Consider the first search model of two guards. With a configuration (x, y), if we use x 

to represent the current position of one guard on d P  while using y to represent the current 

position of the other under the mutual visibility requirement, we know that (x, y) must be 

a visible configuration, which means that corresponding point in the VOD should not be in 

a barrier. 

As for the second search model of a 1-searcher, if we use y to represent the current 

position of the searcher on d P  and x to represent the beam head of her flashlight on d P ,  

the configuration (x, y) must be a visible one. We will discuss the second search model in 

more detail in Chapter 4. 

Thus, within a barrier due to a reflex vertex in the VOD, one point is equivalent to 

another in terms of the invisible configurations they represent. In other words, the key 

information we can make use of to conduct the polygon searchability studies is contained in 

the topology of the VOD, rather than the actual shapes of barriers. 

The invisible configurations are caused by the invisible chains due to reflex vertices. 

Thus the length of each invisible chain is important to determine to what extent the reflex 

vertices pose difficulties to polygon searches. 

In order to facilitate our polygon searchability analysis, we collapse each barrier toward 

its two bones (representing the two invisible chains), extracting the topological information 

from the VOD. We obtain, for each extension, a bone segment (or simply a bone). (We abuse 

the notation a little here.) If a bone is generated from a barrier due to a reflex vertex r, we 

also say that the bone is due to r .  

The length of each bone is equal to that of the corresponding invisible chain. We call the 

diagram thus obtained the skeletal visibility obstruction diagram (SVOD) of P and denote 

it by SVOD(P). See Figure 2.6 for the SVOD of the polygon in Figure 2.5. 

In the SVOD of a polygon, a bone due to r starts from r (called its the origin) on DB 

and extends to r,, or r,, (called its tips) horizontally or vertically. Sometimes, a bone may 

go out of a boundary, such as BB and RB, and continue at the opposite boundary TB and 

LB, respectively. The intersections among barriers in the VOD become the intersections of 

the corresponding bones in the SVOD, as shown in the following. 
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0 1 2  3 4  5 6 7 8  9 1 0 1 1 0  

Figure 2.6: The SVOD of the polygon in Figure 2.5. 

Figure 2.7: Two intersecting barriers. 

One may think that two barriers intersect in the VOD but their corresponding bones 

may not intersect in the SVOD. We show such a situation in Figure 2.7. We have two 

barriers in the figure, with the southeast one due to rl and the northwest one due to r2. 

For the sake of simplicity, we do not show other barriers. Suppose that SE(rl)  intersects 

NW(r2) ,  as shown in the figure. We can see that there is a point a such that a and rl 

are not mutually visible. However, if this is true, then rl cannot see any points between 

Prec(r2) and 7-2. This means that the rightward extension of SE(rl)  should extend further 

rightward, as shown by the dashed segments in the figure. 

Another situation we consider is whether the curved sides of two barriers can intersect. 

We show this situation in Figure 2.8. In Figure 2.8 (a), SE(r l )  intersects NW(r2) on their 

curved sides. We mark three points a, a' and a" in the clockwise direction from a, as 



CHAPTER 2. PREPARATIONS 

a;/' 
a',,' ; 
/ ;  ; ,' ; ; 

Figure 2.8: Two intersecting barriers. 

shown in the figure. Now in order to make sure that the three points are in the correct 

order, we must have the situation shown in Figure 2.8 (b) in the polygon itself. Definitely, 

the situation shown is not possible since a", the intersection point of the ray from a to rl 

and the boundary of the polygon, should be a point after r2 in the clockwise direction, a 

contradiction to the fact that a" precedes r2 in the VOD. Thus, the curved sides of two 

barriers do not intersect. 

Also it is easy to see that if two barriers do not intersect, the corresponding bones do 

not intersect either in the SVOD. 

We will use VOD and SVOD to study and identify the "important" patterns that deter- 

mine the searchability of a polygon. We will see how the VOD and SVOD of a polygon can 

be modified differently and employed to help us analyze different incarnations of polygon 

search problems. 

2.5 Recontaminations 

When we use different search models to search a polygon, we need to consider recontami- 

nations. Recall from Chapter 1 that if one portion of a polygon was contaminated, became 

cleared and then becomes contaminated again, we say that the portion is recontaminated. 

Let us consider recontaminations in the context of the VOD and SVOD of a polygon. 

We first consider the two-guard search model. Due to the requirement that the two guards 

be always mutually visible, the configuration encoding the current standing positions of the 

two guards must be a visible one, i.e., the corresponding point is always in the white area 
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The guard 

Figure 2.9: Recontamination in the two-guard search model. 

of the VOD and SVOD. Some partial recontaminations are harmless, in the sense that  the 

action is reversible. The situation is shown in Figure 2.9. Suppose that  the two guards are 

at  two points 1 and 4 on aP, respectively. The polygonal portion formed by aP,,(l, 4) and 

the beam between the two guards is clear. When one guard moves from point 4 to point 

3, some previously cleared portion of the polygon becomes recontaminated, as indicated in 

the figure. This recontamination is harmless. However, the guard cannot move from point 

3 to point 2 while keeping the currently cleared portion clear (notice reflex vertex r in the 

figure), since this means that she loses her sight, with the other guard a t  point 1 during the 

move, which is not allowed. 

Figure 2.10: Recontamination in the 1-searcher search model. 
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As for the second search model by a boundary 1-searcher, the searcher and the beam 

head of her flashlight can backtrack. Consider the situation shown in Figure 2.10, where the 

searcher stands at point 1 while the beam head of her flashlight is at point 4. She rotates 

her flashlight to the left until the beam head is at point 3, at which time the beam grazes 

reflex vertex r. Thereafter, she continues rotating her flashlight until the beam head is at  

point 2, which is sufficiently close to r in the counter-clockwise direction. This is shown in 

Figure 2.10 (a). When we interpret this in the corresponding VOD (The y axis represents 

the current standing position of the searcher while the x axis represents the beam head of 

her flashlight.), it means that there is a jump over the downward extension of SE(r) from 

right to left, as shown by the arrow marked as a in Figure 2.10 (b). We may also have 

a jump from left to right, as the segment marked as b in the figure. (However, this jump 

represents total recontamination, i.e., all the cleared area will be recontaminated, because 

the intruder could have been hiding in the triangular area formed by vertices r, 3 and the 

boundary of the polygon.) The reason that these jumps are considered is that while we 

require that the searcher be always on the boundary (this explains why we cannot have a 

jump over a barrier from top to bottom or vise versa), the beam head of her flashlight does 

not have to. We call such a jump a beam head jump. In the SVOD, such a beam head jump 

corresponds to the crossing of a vertical bone. 

We will come back to the topic of recontamination in later chapters. 

2.6 Previous work 

The VOD and SVOD of a given P we discussed above are essentially the same as the VOD 

and SOD discussed in Section 1.3.5. 

However, we observe that in the previous work these diagrams were mainly used to 

design a graph-based algorithmic solution to check whether a polygon is searchable by a 

1-searcher. By studying these diagrams, we have realized that they provide us with more 

than the information for this purpose. As will be seen in later chapters, they are useful 

for a variety of search problems. Also the information hidden inside the diagrams helps us 

further explore the geometric properties of a given polygon, improve the performance of the 

previous solutions, and solve new interesting problems in the field. 
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Room Search Problems 

We consider room search problems in this chapter. We first study the room search problem 

by two boundary guards or searchers. (We use guards in the sequel to emphasize its evolution 

from the two-guard street search problem.) This is the first search model we discussed in 

Section 2.2. We then consider the room search problem under the second search model, 

i.e., a boundary 1-searcher. As will be seen, the latter problem is just an extension to the 

former. Under both search models, we study how to find all doors of a given polygon such 

that the resultant rooms are searchable. 

Without causing any ambiguity, in this chapter, if we say that a room is searchable, it 

should be interpreted as that the room is searchable by two boundary guards. 

3.1 Room search problem by two guards 

Formally the two-guard room searchability problem is defined as follows. 

Definition 3.1.1 Suppose that d is the origin vertex of P .  A room P ( d )  is searchable by two 

boundary guards i f  there exist two continuous functions 1 : [O, 11 + d P  and r : [O, 11 + d P  

such that ( I )  l (0 )  = r ( 0 )  = d and l (1 )  = r ( 1 )  E d P ;  (2) For any x E (0, I), 1(x)  4, r ( x )  

and 1 ( x )  and r ( x )  are mutually visible; and (3) A t  any t ime x E [0, I], d E dP,  [ r ( x ) ,  1 ( x ) ]  . 
Deciding whether a room is searchable by two guards or not is called the room searchability 

problem. 

The functions l ( x )  and r ( x )  represent the current positions of the left guard and right 

guard on d P  at x E [0, I], respectively. It is easy to see from the above definition that, if 
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Figure 3.1: A room and its corresponding VOD. 

a room is searchable, then for any time x E [ O , l ] ,  the subpolygon formed by dPcw[r(x), 4, 
dPcw[d, l(x)], and l(x)r(x) is clear. That is, it is guaranteed that no intruder can be in this 

subpolygon and thus the door is protected. On the other hand, if at sometime, the mutual 

visibility between l(x) and r(x) is violated, the intruder can then escape the room through 

d. Also Condition (3) in Definition 3.1.1 states that neither guards can go across the door. 

3.2 The VOD and SVOD of a room 

We will show that the VOD and SVOD introduced in Chapter 2 are helpful for solving the 

two-guard room searchability problem. As an example, Figure 3.1 shows a room with the 

door at d and its corresponding VOD. 

Recall DB, TB, RB, BB, and LB defined for the VOD of a polygon in Section 2.3. For 

the room searchability problem, we drop the part below DB and only focus on the one 

above. For instance, for the VOD shown in Figure 3.1 (b), after this operation, we have 

a simplified diagram as shown in Figure 3.2. By abusing the notation a little, we call it 

the VOD of P(d).  As will be seen, this diagram (in a triangular shape) contains all the 

information we need to analyze the room searchability problem. We also label the relative 

positions of vertices along the diagonal line for easy reference. 
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Figure 3.2: The VOD for the room shown in Figure 3.1. 

We next consider the following conditions about the room search problem. (1) The left 

guard moves in the general clockwise direction while the right guard moves in the general 

counter-clockwise direction; (2) Both guards start from the door d; (3) Neither can go across 

the door; and (4) If the room is searchable, the two guards will meet at some point on aP. 

Let us look at how these four conditions are interpreted within the context of the VOD. 

According to the definition of the room search problem, at  any time x E [0, 11, we must have 

l(x) E aP and r(x) E d P ,  and both l(x) and r(x) should be continuous. We consider the 

configurations (l(x),r(x)) as x changes from 0 to 1. Correspondingly, we use the notation 

(a, b) to represent a point inside the VOD. 

The first three conditions can be represented in the VOD. Condition (1) tells us that the 

vertical axis of the VOD can be used to represent the current position of the right guard, 

while the horizontal axis represents the current position of the left guard. Condition (2) 

states that the positions of both guards are initially at (d, d), which is the top-left corner 

in the VOD. Condition (3) means that at no time can the positions of the two guards be 

outside the VOD. As for Condition (4), when the two guards eventually meet at  some point 

at the end of the search, say g, on d P ,  then IdPcw[d, g] 1 + IdPccw[d, g]l = IdPJ. Th' is means 

that the corresponding configuration is on DB of the VOD. 

If a room is searchable, the sequence of configurations representing the positions of the 

two guards on d P  can be mapped into the VOD as a continuous path through the white 

area in the diagram. Thus the VOD of a searchable room must contain a continuous path 
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from the point (dl d) (the top-left corner) in the VOD to a point (p, q) on DB, and every 

point on this path is in the white area. Conversely, any continuous path, if there is my, 

through the white area in the VOD, which starts at the (d,d) and ends at DB, represents a 

continuous sequence of visible configurations, indicating that the room is searchable. 

We call such a path a legal path. If no legal path exists in the VOD, the room is not 

searchable. We thus immediately have the following proposition. 

Proposition 3.2.1 A room is searchable if and only if there exists a legal path i n  its VOD. 
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Figure 3.3: The room (shown in Figure 3.1 (a)) after relabeling some of its boundary points 
and the corresponding SVOD. 

From the properties of the VOD of a polygon (a room in the current context) stated in 

Sections 2.3 and 2.4, we know that the SVOD of a room can be constructed from its VOD. 

In order to show the extensions representing the invisibility from each reflex vertex in the 

SVOD, we relabel the points on dP,  taking only the reflex vertices into consideration and 

ignoring the non-reflex vertices. For instance, after relabeling, the room in Figure 3.1 and 

its corresponding SVOD are shown in Figure 3.3. 

For the SVOD for a room, we use LB to represent its left side, TB for its top side, 

and DB for its diagonal, as before. We also call the bone segments, which are extending 

downward, upward, rightward, and leftward, the downward bones (DBone), the upward 
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bones (UBone), the rightward bones (RBone), and leftward bones (LBone), respectively. 

Note that the downward and rightward bones here start at TB and LB, respectively. Recall 

the bones defined in Sections 2.3 and 2.4. 

Also the special point (dl d) at  the top-left corner of the SVOD is called the door point, 

to emphasize its correspondence to door d. We show these terms in Figure 3.3 (b). Note 

that the bone labeled as DBone in the figure does not exist in the original SVOD (that is 

why it is represented using a dashed line). We add it here only for an illustration purpose. 

After this construction, the intersections of barriers in the VOD become the intersections 

of the corresponding bones due to the definitions of bones. (Recall the construction of the 

VOD of a polygon in Section 2.3.) The following proposition is immediate. 

Proposition 3.2.2 Given a room P(d),  there exists a legal path in its VOD if and only if 

there exists a path in its SVOD, which does not go across any bones, TB or LB, starting at 

the door point and ending at the same single point on DB. 

We still call such a path in the SVOD a legal path. Also for the sake of easy illustration, 

we treat LB and TB of the SVOD as the longest bones that a path should not go across. 

Due to this proposition, we can only focus on the SVOD in our following analysis. 

3.3 The searchability of a room 

The SVOD of a given room P(d) represents the interactions of the bones corresponding to 

the invisible chains due to the reflex vertices of P .  It is obvious that, if a region inside the 

SVOD is all surrounded by three or four bones (including LB, TB, and DB), a path can 

never enter the region if it is already outside. The two guards lose their mutual visibility 

when the path goes across a bone. For the same reason, if the path is already inside the 

region, it cannot go outside by crossing any surrounding bones. This is a key observation 

in the SVOD. We call such a region a trap region. We will identify them in the following. 

For the sake of simplicity, in the following figures, if some vertices of P are irrelevant to 

our discussions, we will just omit them. We will draw a polygon as a circle and only mark 

the relevant reflex vertices on its boundary. 

We list in Figure 3.4 all the possible patterns that make the door point inside a trap 

region. Note that the two arrows in Figure 3.4 (d) need not intersect. Any path within a 
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Figure 3.4: Four patterns that make the door point inside a trap region. 

trap region can only be extended within it and cannot go outside. Note that these patterns 

also have effects on the accessibility of DB, as will be seen later on. 

Lemma 3.3.1 A room P(d) is not searchable if the door point is inside a trap region formed 

by two bones, LB, and TB i n  its SVOD. 

Proof In the SVOD of a room, if the door point is inside a trap region formed by four 

bones (including TB and LB of the SVOD), any path starting at the door point cannot 

escape from the trap region. Otherwise, the path would go across one of the bones, which 

contradicts the requirement that the two guards be mutually visible or the requirement that 

the door be protected. I 

If the door point is inside a trap region in the SVOD, we say that d is trapped. 

Just as the door point can be trapped (inside a trap region), a point on DB can be inside 

a trap region (which is bordered by DB), too. The two guards cannot meet at this point 

without crossing bones and thus violating the mutual visibility requirement. We say that 

such a point is unreachable. We also say that the corresponding boundary point on LIP is 

unreachable. 

If every point on DB is unreachable, we then say that DB is unreachable. If a point on 

DB is not unreachable, then it is reachable. For example, any point between point 6' and 

point 7' on DB of the SVOD shown in Figure 3.3 is unreachable. 

We list all the possible patterns in Figure 3.5 that generate a trap region bordered by 

DB of an SVOD. The following lemma follows from the above discussions. 
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Figure 3.5: Five patterns that generate a trap region that is bordered by DB. 

Lemma 3.3.2 If every point on D B  i n  the SVOD of a room P ( d )  is unreachable, then the 

room is not searchable by two guards. 

The negations of the conditions stated in Lemma 3.3.1 and Lemma 3.3.2, respectively, 

are also sufficient for a room to be searchable, as shown in the following lemma. 

TB 

Figure 3.6: The sufficiency proof for room searchability. 

Lemma 3.3.3 For a room P ( d ) ,  i f  neither the door point is trapped nor DB of its SVOD 

is unreachable, there must exist a legal path i n  the SVOD. 

Proof We will show in this proof that, given the conditions specified in the lemma, we can 

construct a path from t to the door point, where t is any point on DB of the SVOD that is 

reachable. We use Figure 3.6 as an illustration for our proof. Note that the SVOD in the 
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figure is partial in the sense that we do not show all the bones and vertices. In the following 

discussions, we sometimes say that the path hits a bone. Actually, this hitting should be 

interpreted as coming suficiently close to the bone. 

Suppose that rl +,, t +, r 2  on aP, where rl and r 2  are two reflex vertices and there 

is no reflex vertex between rl and r2. We first extend the path horizontally toward LB. 

This is the first step of our path construction. In this step, the path may encounter 

some vertical bones that prevent the path from going farther horizontally. Here we discuss 

the case where the path hits a downward bone. The case for an upward bone can be treated 

similarly. We know that this bone cannot intersect the LBone due to rl, since otherwise t 

is unreachable in the SVOD. (The downward bone and LBone due to rl form a trap region, 

as shown in the pattern in Figure 3.5 (d), bordered by DB. t is inside the region.) For the 

same reason, it cannot intersect any leftward bone due to r', where r' +,, r l .  Furthermore, 

any rightward bones intersecting this bone would make the door point trapped. We are 

thus able to extend the path downward. When the path reaches this downward bone's tip, 

it then resumes going horizontally until it hits the next vertical bone. Using this argument 

repeatedly, the path is able to reach LB of the SVOD eventually. This step is marked as 

(1) in the figure. 

We then switch to the next step (marked as (2) in the figure). At the beginning of this 

step, the path is at  some point sufficiently close to LB. The path now goes upward along 

LB. In this process, the path might encounter horizontal bones. But we first claim that 

those horizontal bones should not be leftward ones. There are two cases we have to consider 

here. If it is a leftward bone due to a reflex vertex r', where r' +,, t, the bone should touch 

both DB and LB of the SVOD. Since the path is being extended upward, we know that the 

path should be above the leftward bone sometime before. This results in a contradiction, 

since it means that the path has gone across the bone before. If the leftward bone is due 

to r", where t +,, r", then the fact that this leftward bone should touch both DB and LB 

means that t is unreachable, a contradiction again. 

For any rightward bone, the path can then follow it rightward horizontally. Using the 

same reasoning as above, we know that this rightward bone cannot hit any upward bone, 

since, if so, the path was already inside the trap region generated by the rightward bone, 

the upward bone, LB and DB, a contradiction to the fact that the path was constructed 

without crossing any bones. The path thus can reach the tip of the rightward bone. By 

going around the tip, the path follows the bone leftward. 
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Now we consider the downward bones. But any intersection between some downward 

bone and this rightward bone means that the door point is trapped. So the path will 

eventually be able to  reach LB of the SVOD again. Repeating this process, the path will 

finally reach the door point. 

By reversing the path we just constructed, we have a legal path and the lemma follows. 

I 

Summarizing the above discussions, we have the following result. 

Theorem 3.3.4 A room P(d)  is searchable by two guards if and only if neither the door 

point is trapped nor DB of its SVOD is unreachable. 

3.4 Checking the searchability 

We begin with a lemma which shows the possible range for the final meeting point of the 

two guards with respect to  the relationship between the door d and a reflex vertex r. 

Lemma 3.4.1 Let r be a reflex vertex of a room P(d).  If d $! Pcw(r) (d $! Pccw(r), resp.), 

the final meeting of the two guards can only be in the polygonal chain dPccw(dl r )  (dPcw(d7 r) ,  

resp.) . 

Proof Refer to [89, 931 for one possible proof. It can also be proved using the SVOD with 

the obvious observation that the bone due to r crosses from DB to LB horizontally (TB 

vertically, resp.). See Figures 3.5 (b) and (c), respectively. I 

Recall from Section 1.3.11 that if P is LR-visible, we can find a set of pairs (Ai, Bi) such 

that for any s E Ai and t E Bil P is LR-visible with respect to (s, t). Given a room P(d),  

we now discuss the relationship between d and these (Ai, Bi) pairs. 

The following lemma shows the relationship between the searchability of a room and its 

LR-visibility. 

Lemma 3.4.2 If a room P(d) is searchable by two guards, then P is LR-visible. 

Proof Let t E d P  be the final meeting point. Suppose that P is not LR-visible. Then 

dPc,(d,t) and dPccw(d, t) are not mutually weakly visible. From a result in [36], there 

exists a component which contains neither d nor t. 
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Figure 3.7: The illustration of the proof for Lemma 3.4.2. 

Without losing generality, suppose that it is a clockwise component due to a reflex vertex 

r (If there are several such components, we select the one whose originating reflex vertex is 

the closest to t in the counter-clockwise direction.). This is shown in Figure 3.7. Since P(d) 

is searchable and the two guards cannot lose their mutual visibility, so they must be both 

in P,,(r) simultaneously at some time point, from which we also know that the polygonal 

chains aPcw(d, r)  and dPccw(d, r,) are mutually weakly visible. 

We select a point, denoted by t', on aP,,(r, r,,) which is sufficiently close to r,, in the 

counter-clockwise direction. We claim that if P(d) is searchable, then P is LR-visible with 

respect to d and t'. 

In order to show this, we only need to show that any point on aP,(r, t') is visible to 

some point on aP,, (d, t'). Suppose that there is a point on aP,, (r, t') that is not visible 

to aP,,(d, t'). Then we only have the following two situations. (1) The point is hidden 

by a counter-clockwise component due to a reflex vertex r' (r' E aPcw(r, t')) whose r:, 

is on aP,,(d,rf). However, then by Lemma 3.4.1, the final meeting point can only be on 

aP,(d, r'), which is a contradiction to the fact that the final meeting point is at t. (2) The 

point is hidden by a clockwise component due to a reflex vertex r" (r" E aPcw(r, t')) whose 
I' r,, is on aP,, (r", t'), which means that P,(rU) does not contain t. However, this again 

leads to a contradiction to the fact that P,(r) is the "closest component" (we selected it 

as above) that does not contain t. 

We thus have shown that aP,(r, t') is weakly visible to aP,,(d, t'). Due to the selection 

of t', all these mean that aPcw(d, r,,) is weakly visible to aP-(d, r,). We thus conclude 

that P is LR-visible with respect to d and r,. I 
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Corollary 3.4.3 For a room P(d), if P is not LR-visible, then P(d) is not searchable by 

two guards. 

Lemma 3.4.4 If a room P(d) is searchable, then d must be on some Ai or Bi. 

Proof From Lemma 3.4.2, we know that if P(d) is searchable, then there must exist a point 

t E d P  such that P is LR-visible with respect to d and t. So d must be on some Ai or Bi. 

I 
Given a room P(d), we first check its LR-visibility. If it is not LR-visible, we know 

that it is not searchable by two guards. If it is LR-visible, then we check whether door d is 

in any Ai or Bi and decide whether the room P(d) is searchable accordingly. Clearly this 

checking can be done in O(n) time by visiting Ai and Bi once (since Ai and Bi pairs can 

be precomputed in linear time, as shown in Section 1.3.11). 

In the following discussion, we always assume that d is on some Ai or Bi. We then 

relabel the Ai's and Bi's such that the pair containing d is indexed by 0. 

We first consider the four possible patterns in Figure 3.4. By the assumption that d is on 

Ao, we immediately know that the patterns in Figure 3.4 (a), (b) and (c) are not possible, 

since they imply that the corresponding Bo must be simultaneously present in two disjoint 

components. 

The pattern in Figure 3.4 (d) is exactly an s-deadlock (d is treated as s), which, as 

shown in Section 1.3.3, can be precomputed in linear time. Clearly, given a room P(d), to 

see whether d is in an s-deadlock can be checked in O(n) time by traversing d P  once. 

We then consider the patterns that generate trap regions bordered by DB, as shown in 

Figure 3.5. We treat each pattern as follows. 

The pattern in Figure 3.5 (a) involves a deadlock. Finding all of the deadlocks on d P  

(they are unreachable) can be done in linear time, as shown in Section 1.3.3. 

As for the pattern in Figure 3.5 (b), we will, starting from d in the clockwise direction, 

find the farthest clockwise component (due to a reflex vertex r )  which does not contain 

d. With the shortest path tree precomputed from d, this can be done in linear time by 

traversing the boundary of P and checking each clockwise component. The polygon chain 

dPw(dl r )  is marked as unreachable. 

The pattern in Figure 3.5 (c) is symmetric to the pattern in Figure 3.5 (b). 

As for the pattern in Figure 3.5 (d), we notice that the corresponding Bo should lie inside 

the clockwise component due to rl. The relationship between rl and r 2  can be described as 



CHAPTER 3. ROOM SEARCH PROBLEMS 52 

follows. Let rl,, and rzcw be the backward ray end point from rl and 7-2, respectively. We 

look for a pair of reflex vertices rl and r 2  such that (a) d E Pcw(r2) and d 4 P,(rl); (b) 

racW +, r1; and (c) rl,, +,, 7-2. We want to find, from d, the farthest clockwise component 

(due to r l )  in the clockwise direction from d, and the farthest clockwise component (due to 

r2) in the counter-clockwise direction from d that satisfy the above three conditions. 

We preprocess the polygon with respect to A. and Bo by computing the shortest path 

tree from d to any other vertices and the shortest path tree from a point t E Bo to any other 

vertices. These can be done in linear time. See Section 1.3.11 for more information about 

this computation. Note that now P is LR-visible with respect to d and t. 

We first consider the clockwise components in the clockwise direction from d to t. We 

immediately know that we only need to consider the non-redundant ones since if there is any 

redundant component that satisfies the above three conditions, we can always find a non- 

redundant one that is even farther. We move along aP in the clockwise direction from d and 

check the non-redundant components. We only consider those that do not contain d, which 

can be checked in O(1) time. These components have the property that if the clockwise 
I' components due to r' and r" are two such components and r' +,, r", then r', +,, r ,, 

and for any r whose clockwise component is such a component, rcw E aPccw(d, t). For these 

components, we denote their originating reflex vertices in a set called LC,. We maintain a 

pointer Pl for traversing them. Pl starts at the first vertex in LC, and moves from d to t in 

the clockwise direction. 

We next consider the clockwise components in the clockwise direction from t to d. It 

is obvious that this time we have to consider all the clockwise components since each of 

them could be possibly the farthest. We check each component to see whether d is inside. 

This can be done in O(1) time, after the shortest path tree from d is precomputed in linear 

time. We exclude those that do not contain d from further consideration. We also check 

each selected component to see whether t is contained inside. We keep those that do not 

contain t. Thus all the remaining components contain d but not t. For these components, 

we put their originating reflex vertices in a set called R,,. We also maintain a pointer P, 

for moving over them. P, starts at  Plcw (since we do not need to consider the components 

whose originating reflex vertices are inside the clockwise component due to Pl), and moves 

in the clockwise direction from t to d. 

Refer to Figure 3.8, which shows Pl and P, and their move directions. The algorithm is 

described as follows. 
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Figure 3.8: Illustration for the algorithm for detecting the pattern in Figure 3.5 (d). 

P, moves to the next reflex vertex x in Rcw . Note that in this process, if P, goes across 

any backward ray end point from a reflex vertex in LC,, we update Pl to it. 

We know that the backward ray end point from x can intersect neither aPCw(t, x) 

nor aPcw(x,d). We only need to test whether the backward ray intersects BPcw(d, 8 )  

or aPcw(Pl, t). If the latter is true, we give up x and continue to the next element in Rcw. 

If the former is true, we then will move Pl to the next element in LC,. 

In order to do so, we first check whether Pl and x are mutually visible. By preprocessing 

(See [56] for details for how to preprocess a street in order to check the mutual visibility 

between two points on the two opposite boundaries in O(1) time.) the polygon with respect 

to (dl t)  in O(n) time [56], this checking can be done in O(1). If they are mutually visible, 

then we only need to check whether the ray is to the right or left of the segment z. If the 

former is true, it means that the backward ray intersects aPcw(fi,t). Otherwise, the ray 

intersects aPcw (dl 4). 
Suppose that Pl and x are not mutually visible. In order to check whether the backward 

ray from x intersects dP,,(Pl, t )  or aPcw (dl Pl) in constant time, we maintain another pointer 

Px which starts from Pl and moves in the counter-clockwise direction from Pl toward d. Px 

goes through each vertex and checks its visibility with x in constant time. We know that 

eventually Px will point to a reflex vertex y, since otherwise d is not contained in the 

clockwise component from x. Clearly y is a reflex vertex. We associate y with Pl. We then 

check the backward ray from x with the segment z?J, from which we can easily check to see 

whether the ray intersects aPcw (Pl, t) or aPcw (dl Pl), as discussed above. 
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We then consider the following two situations. (1) Suppose that we have found an x such 

that the conditions for the pattern in Figure 3.5 (d) are satisfied. We save Pl . We next move 

Pl to the next reflex vertex to see whether the component from this new Pl contains x or 

not, since we desire to find the farthest one. If x is contained in the component, then we do 

not need to go farther since any farther components must also contain x. The saved Pl and 

x are the pair we are looking for. We mark the polygonal chain aPcw(x, d) and aPcw(d, Pl) 

as unreachable. If x is not contained in the component, we save the current Pl and move Pl 

to the next one. We then continue the process. (2) Suppose that no such x has been found 

and PT goes across a backward ray hit point due to a reflex vertex in LC,. We update Pl to 

the next reflex vertex in LC,, and PT to be the hit point, and whole process continues. 

One important fact here is when we repeat the above process with new Pl and PTl we 

might need to move the pointer P, again in the counter-clockwise direction. However, any 

previously checked polygonal chains will not need to be checked again. For instance, the 

polygonal chain aPccw (Ply y) in Figure 3.8 will not be checked again for any new Pl and PT 

since we already knew that any vertices on aPccw(Pl, y) would not be visible to any point on 

dPcw(x, d). Thus any vertex on aPcw (dl t) can be checked at most once. Also, PT is always 

advanced in the clockwise direction on Pcw(t, d). Thus we conclude that we can detect the 

pattern in Figure 3.5 (d) in O(n) time. 

The pattern in Figure 3.5 (e) is symmetric to the pattern in Figure 3.5 (d). 

After the unreachable parts on the boundary of P have been marked, checking whether 

there is any part that is not marked can be done in linear time by traversing the boundary 

once. Thus, we have the following theorem. 

Theorem 3.4.5 For a room P(d)  with n vertices, we can check whether it is searchable by 

two guards in O(n) time. 

3.5 Finding all doors associated with a polygon 

A natural followup to the room searchability problem, the Find-All-Doors problem is to find 

all the doors for a given polygon P such that the resultant rooms are searchable. 

Now that we know from Section 3.4 that the searchability of a room P(d) can be checked 

in O(n) time, a straightforward solution to the Find-all-Doors problem for a polygon can be 

found in 0 (n2)  by checking each vertex in turn to see whether it can be the door. However, 

as will be seen, it can be done much faster. 
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(4 (b) 

Figure 3.9: The CVOD and CSVOD of the polygon shown in Figure 3.2 

As shown in Section 3.3, for a given room, we focus on the above-diagonal half of its 

VOD and SVOD to conduct our analysis. As has been shown, it is enough for checking 

whether the room is searchable or not. But in order to study the Find-All-Doors problem, 

including the below-diagonal half facilitates our analysis greatly, as described in the following 

construction. 

For a given simple polygon P, with vertices pol pl, - .  . , p,-1 in the clockwise direction 

starting at pol we first construct its VOD and SVOD starting from po. Recall Sections 2.3 

and 2.4. We move the bottom-right triangle below DB of the VOD to the left side of 

the top-left triangle, keeping the two triangles abreast. We then copy the top-left triangle 

underneath the bottom-right triangle. We construct the corresponding SVOD similarly. 

We call the diagram thus constructed from the VOD the complete visibility obstruction 

diagram (CVOD) and the skeletal diagram from the SVOD the complete skeletal obstruction 

visibility diagram (CSVOD) of P .  For example, for the polygon shown in Figure 3.1, the 

corresponding diagrams are shown in Figure 3.9. 

Again we focus our attention on the CSVOD of P for the analysis of the Find-All-Doors 

problem. There are four sides of a CSVOD. By abusing the notation a little, we still call 

the top side the top boundary, denoted as TB, and the left side the left boundary, denoted 

as LB. There are two diagonal sides in the CSVOD. We call the shorter diagonal side the 
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door boundary and denote it as d-DB, and the longer diagonal side the destination boundary 

and denote it as D-DB. It is easy to see that, by following 6'P in the clockwise direction 

starting at pol d-DB represents one traversal of 6'P while D-DB represents two traversals of 

6'P from po. As will be seen, the CSVOD of P encodes sufficient information for analyzing 

the Find-All-Doors problem. 

We first analyze the patterns that generate trap regions bordered by D-DB, thus making 

some parts on it unreachable. We then analyze the patterns that generate trap regions 

bordered by d-DB such that the points on d-DB within these regions are trapped and cannot 

be used as a door. Here the definition of a trap region is similar to the one defined in 

Section 3.3, i.e., a region inside CSVOD being surrounded by bones (including d-DB, D- 

DB, TB and LB). 

We have to emphasize that P must be LR-visible, otherwise there is no searchable room 

that we can find in it. 

3.5.1 Patterns bordering on D-DB 

Figure 3.10: The patterns that generate trap regions bordered by D-DB. 

We list in Figure 3.10 all the possible patterns that make some parts on D-DB unreach- 

able. Note that we just draw their effects on D-DB. They might also cause trap regions on 

d-DB, which shall be analyzed below. It is obvious that those patterns are similar to the 

ones in Figure 3.5, and we can compute all of them in O(n)  time and mark the corresponding 

parts on D-DB as unreachable. In order to facilitate our later computations, we maintain a 

list called DL for all the reachable parts on D-DB. Each element in this list is identified by 
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a pair of starting and ending points. Later on we will use DL. 

3.5.2 Patterns bordering on d-DB 

Figure 3.11: The patterns that generate trap regions bordered by d-DB. 

Correspondingly, all the possible patterns that can generate trap regions bordered by 

d-DB (thus making the points inside trapped) in the CSVOD of P are shown in Figure 3.11. 

Also note that, by the above discussions, any potential doors for a given polygon can only 

be on Ais' and Bis'. We thus do not consider any other parts on aP. 
The patterns in Figure 3.11 (a) and (b) correspond to deadlocks, which can be computed 

in O(n). Pattern (c) can be ignored since we know that any door should be on Ai or Bi, 

and if there is any Ai on aPCw(r",,, r'), the corresponding Bi cannot be in the two disjoint 

clockwise components due to r' and r" simultaneously. Pattern (d) can be dealt with using 

a similar reasoning. The pattern in Figure 3.11 (e) corresponds to a deadlock, which can be 

identified in O(n). Pattern (f) is not possible for the same reason as the one for patterns 

(c) and (d). 

Note that some Ai and Bi can intersect the parts just computed as above. We need not 

consider the vertices in Ai or Bi that are in these computed parts. We put all the remaining 

vertices in Pd (the potential doors). In order to find all the doors such that the resultant 

rooms are searchable, we only need to focus on the vertices in Pd. 
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Figure 3.12: The local visibility triangle of a vertex dl. 

3.5.3 Local visibility triangle 

Intuitively speaking, any vertex dl in Pd represents a potential door, and in order to check 

the searchability of P(dl), we need to consider, in the CSVOD, the triangle formed by dl 

and its two counterparts on D-DB. We call such a triangle the local visibility triangle of dl, 

which extends horizontally and vertically from d-DB to D-DB. We denote it as LVT(dl), a s  

shown in Figure 3.12. 

For each vertex d' E Pd, we have to consider two situations. First, we need to compute 

from dl to dl in the clockwise (counter-clockwise, resp.) direction the farthest reflex vertex 

dlL (dlH, resp.) whose clockwise component (counter-clockwise component, resp.) does 

not contain dl. Note that we only need to focus on the non-redundant components, which 

can be identified in linear time. By traversing aP in the clockwise direction twice and 

in the counter-clockwise direction twice, respectively, those two farthest reflex vertices can 

be obtained collectively for all the vertices in Pd in O(n) .  Note that if such a farthest 

component does not exist, we set dlL or dlH to be dl itself. If dlH +,, dlL starting from po, 

we immediately know that dl cannot be a door. 

Second, for each dl E Pd, we need to check whether the patterns shown in Figure 3.5 (d) 

and (e) exist in LVT(dl). Here we only discuss the situation for pattern (d). The situation 

for pattern (e) is treated similarly. We use Figure 3.5 (d) as our reference in the following 

proof. 

Lemma 3.5.1 For any selected dl E Pd, if pattern (d) exists for dl, then all the other 

vertices in Pd are either in PC, (rl) or in Pcw(r2). 
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Proof Suppose that a d" E Pd is neither on PC, (rl)  nor on Pcw (r2). From the computation 

of Pd above, there must exist an Ai that contains d". We immediately know that the cor- 

responding Bi should be in Pcw(rl) and Pcw(r2) simultaneously, which is not possible. This 

is because the pair (Ai, Bi) is the output from the algorithm we discussed in Section 1.3.11. 

T h u s a n y d " ~ P ~ s h o u l d b e e i t h e r o n P , ~ ( r ~ ) o r o n P , ( r ~ ) .  I 

With this lemma, in order to detect pattern (d) we can select any d' E Pd and use the 

algorithm in Section 3.4 to detect rl and r2. 

If no such pattern exists for dl, there is no such pattern for all vertices in Pd. Otherwise, 

for any d", where d" E Pd and d" E dPcw(r2,raCw), we need to check whether 7-2 +, dnH. 

If true, we need to replace dMH with r2. We leave dML unchanged since it is already the 

farthest. Also for any d"', where d"' E Pd and dl" E dP,(rl, rlcw), we repeat the above 

process to see whether dNtH also needs to be changed. 

Clearly after the computation of rl and r 2 ,  which should be done once, for each d' E Pd, 

we can compute the possible meeting place for dl, which is dP,(d'~, dlH). We do this for 

every d' E Pd, which takes O(n)  time. 

Again, after this computation, if dlH +,, dlL starting from po, we immediately know 

that d' cannot be a door. Note that even though we have dlL +,, dlH for some dl, some 

part on the polygonal chain dP,(dtL, dlH) might not be in DL. So at this moment, we are 

still not sure whether d' can be used as a door for a searchable room. 

3.5.4 Finding all rooms 

With the sets Pd and DL ready, we now show how to find all doors for searchable rooms in 

a given polygon in linear time. 

We group the vertices in Pd according to their dlL, in the clockwise direction starting at 

PO. We maintain two pointers in the following algorithm. PR traverses the elements in DL, 

while P D  goes through each group in Pd. 

Algorithm 3.5.2 

1. PR is set to the first element in DL; 

2. P D  is set to the first group in Pd; /* We call each potential door d' below. */ 
3. Loop: 

4. if PR.EndPoint +, PD.dfL then 
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P R  = PR.next; 

if P R  is null then 

Output all the remaining vertices i n  the 

groups starting at P D  as not doors; 

else 

got0 Loop; 

else 

i f  PR.StartPoint +,, PD.dtL 

x = PD.dtL; 

else 

x = PR.StartPoint; 

for each element dtt i n  the group pointed b y  P D  

if x +,, dtfH then 

output d" is a door; 

else 

output d" is  not a door; 

end for 

P D  = PD.next; 

zf PD is null then 

stop; 

else 

got0 Loop; 

Note that pointer PD points to a group of vertices in Pd that have common dtL. Lines 

(4) to (10) try to find the first reachable part on a P  that covers dtL associated with the 

current group of potential doors. Lines (12) to (20) check, for each individual vertex in the 

current group, whether this reachable part also covers the corresponding dtH. If true, then 

by Theorem 3.3.4 the room with door d" is searchable. Otherwise it is not searchable. The 

reason behind this claim is that P R  points to the first reachable part that might intersect 

aP(dnL ,  dnH) .  If its StartPoint is preceded by dUH,  then d" cannot be used as a door for a 

searchable room and we need to check no other elements in DL.  Lines (21) to (25) look for 

the next group of potential doors and loop again. 
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PR will traverse forward through DL once, which is O(n). Also pointer P D  always moves 

forward, in the clockwise direction from po, and traverses through Pd once, which takes time 

O(n). Thus we have the following theorem. 

Theorem 3.5.3 For a given polygon P with n vertices, it takes O(n) time to solve the 

Find-All-Doors problem, where n is the number of vertices of P. 

3.6 Discussions 

Our result regarding the searchability of a room was also reported in [89]. However, our 

approach is more concise. Furthermore, using the VOD and SVOD of a room and with the 

help from some previous work we have improved the searchability checking time to O(n). 

We have also investigated a new problem for finding all doors in a polygon. As discussed 

above, the new problem can also be solved in linear time. 

Another advantage of our approach is that we can easily extend it to the room search 

problem by a 1-searcher (See Section 2.2 for the two search models.), as shown below. 

3.6.1 Extension to the room search problem by one 1-searcher 

With a 1-searcher, we consider that she moves from d along aP in the general counter- 

clockwise direction and d must be between her and the beam head of her flashlight in the 

clockwise direction. Again, at anytime the door d must be protected. 

The power of a 1-searcher is stronger than that of two guards, which is quite counter- 

intuitive, since there is one more searcher in the two-guard search model. The reason 

behind this is that in the search problem by a 1-searcher, the cleared area in the room 

can be recontaminated because of the recontamination discussed in Section 2.5. Crossing 

a barrier from right to left is allowed (marked by a in Figure 2.10 (b)). However, this 

recontamination is not allowed in the model where we have two guards since the guards are 

required to always stay on the boundary. 

It is also obvious that the conditions specified in Theorem 3.3.4 are all applicable to 

the room search problem by a 1-searcher, except for the pattern in Figure 3.5 (e) (due to 

the recontamination as discussed above), where the polygonal chain dP,,(po, TI) can be a 

possible place that a search ends. 
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We thus conclude that all the discussions about the room search problem by two guards 

can be applied to the problem by a 1-searcher. We have the following theorem. 

Theorem 3.6.1 A room P ( d )  is searchable by a 1-searcher i f  and only i f  neither d is 

trapped nor D B  is unreachable i n  the SVOD. The searchability can be checked i n  O ( n )  time. 

Furthermore, it takes O ( n )  time to find all the rooms associated with a polygon that are 

searchable by a 1-searcher. 

The door point 

Figure 3.13: A room searchable by a 1-searcher but not searchable by two guards. 

In Figure 3.13, we depict a room and its corresponding SVOD, which is searchable by a 

1-searcher but not by two guards. The legal path can be constructed by crossing the upward 

bone due to r l .  However, as discussed above, such a crossover is not allowed when the room 

is searched by two guards. For the sake of simplicity, we just show the relevant vertices in 

the figure. 

The room search problem by a 1-searcher was also investigated in [74]. But again, a 

comparison between their work and ours here indicates that our approach is much simpler, 

an easy extension of the situation for the room search problem by two guards. 
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Polygon Search by a 1-Searcher 

Given a simple polygon P, suppose that we have a boundary 1-searcher, who always stays 

on the boundary of the polygon. Her task is to search the polygon using her flashlight in 

order to catch an intruder roaming in the polygon. See Section 2.2 for the introduction to 

this search model. 

If, no matter where the intruder starts and how he moves, he is eventually detected 

by the 1-searcher, we say that the polygon is 1-searchable. In this chapter, if we say that 

a polygon is searchable, it should be interpreted as that the polygon is searchable by a 

boundary 1-searcher. Also a searcher should be understood as a boundary 1-searcher. 

4.1 Introduction 

The searcher and the intruder are modeled as points that can move continuously. Let 

e(t) E P denote the position of the intruder at time t 2 0. It  is assumed that e : [O, m) -t P 

is a continuous function, representing the unpredictable move path of the intruder, who 

is capable of moving arbitrarily faster than the searcher (in order to make the problem 

non-trivial). The initial position e(0) and the move path e are unknown to the searcher. 

Let y represent a continuous path of the searcher in the form y : [O, m) -t P and y(t) 

denote the position of the searcher at time t 2 0. The searcher's visibility is restricted to the 

beam emanating from her flashlight at  y(t), whose direction can be changed continuously 

with a bounded angular rotational speed. Let 8(t) denote the beam head of the flashlight 

at  time t on 8P. The beam head is the point where the beam from the searcher's flashlight 

intersects the polygon boundary before it leaves the polygon for the first time. 
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The polygon P is 1-searchable if we can always find a search schedule (y,8) satisfying the 

condition that for every continuous function e : [0, oo) + P, there exists a time t E [O, oo) 

such that e(t) E y(t)O(t). 

Note that there is a major difference between the 1-searcher polygon search problem in 

this chapter and the two-guard room search problem in Chapter 3. In the two-guard room 

search problem, at any time the door should be protected, which means that the polygonal 

portion containing the door should be always clear. However, in the 1-searcher polygon 

search problem, we do not have such a restriction. 

Some previous work has investigated the problem, as stated in Chapter 1. One previous 

approach was to identify some forbidden patterns inside a polygon, whose presence renders 

the polygon non-searchable. For some work using this approach, see [91, 92, 106, 1091. 

Usually this type of approach involves a case-by-case analysis which is quite lengthy and 

complex. Another line of approach is to use the visibility obstruction diagram (VOD) 

(See Section 1.3.5 for detailed discussions.) to help solve the problem. But the approach 

was algorithmic in the sense that it circumvented the involved case-based analysis and 

only checked whether a polygon is searchable, without any interpretation and explanation 

regarding the reason behind the searchability. For representative work along this line, 

see [55, 67, 68, 99, 1011. Kameda et al. [59] recently proposed a generalized form of the VOD 

and SVOD of a polygon to deal with the on-line polygon search problem by a boundary 

1-searcher1. 

In our approach, we make use of the advantages of both lines of approach. We rely on 

the generalized form of the VOD and SVOD of a polygon (See Chapter 2 for the VOD and 

SVOD of a polygon and see [59] for their generalized form.). 

Furthermore, we relate searchable polygons and LR-visible polygons. We also discuss 

the relationship between a searchable polygon and a searchable room. 

4.2 Visibility diagram of a polygon 

We call the above-diagonal part of the VOD T and below-diagonal part B. By using T and 

B, we construct a diagram that can be used to facilitate our analysis of the 1-searchability 

problem of a polygon, as shown in the following. 

'Under review by IEEE Transactions on  Robotics. 
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Figure 4.1: The original VOD and the construction of a new diagram. 

We move T to the right of B and generate another copy of T right below B. Then we 

copy B to the left of the second copy of T. Thus the new diagram consists of two copies of 

T and B. We show the construction in Figure 4.1. In the figure, we also show the standard 

coordinate system. We use the visibility space and visibility diagram introduced by Kameda 

et al. [59]. 

Figure 4.2: The visibility space, where D = IaPI. 

We use Figure 4.2 as our reference. We call the infinite area between and including the 

lines y = x (denoted by dD) and y = x - (denoted by DD) the visibility space. Thus, 

point (x, y) is in the visibility space if and only if x - 5 y 5 x. 

Consider a real number p. We use p to represent the point on aP which is at distance 

p - klaPl from the starting point po, where k is an integer such that 0 5 p - klaPl < lap[. 

This is due to the circularity of aP. Note that there is an infinite number of p's that can 
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represent a single point on d P .  

For a polygon P, we create the visibility diagram (VD) of P as follows. A point (x, y) 

in the visibility diagram is colored gray if points x and y on d P  are not mutually visible, 

i.e., (x, y) is an invisible configuration. 

Let a point nl = (x, y) be in the visibility space. Consider the points n2 = (y, x - ( d P J )  

and ng = (y + lap(, x). According to the above discussions, x and x - ldP( refer to the same 

point on d P  and so do y and y + IdPJ. Thus, point nl is gray if and only if points n2 and 

n3 are gray. Their relationship is shown in Figure 4.2 [59]. 

Compare Figure 4.1 (b) and Figure 4.2. The points in the barriers in the former have 

the same relationships among the points in the latter. It is easy to see that the new diagram 

we constructed in Figure 4.1 (b) is a subpart of the VD of P, which extends infinitely to 

the lower-left and the upper-right. 

For the southeast barrier due to a reflex vertex r ,  represented by a real number p (the 

distance from the origin of the polygon), the same barrier appears at  regular intervals, 

touching dD at (p+ kJdPI,p+ kldP(), where k is an integer. Similarly, the northwest barrier 

due to r appears at regular intervals, touching DD at (p + (k + l ) J d P J , p  + kldP1). 

A path from dD to DD in the VD of a polygon is said to be a legal path if it goes through 

the white area, except for zero or more horizontal crossings over some barriers from right 

to left. The following theorem directly follows from Proposition 2.3 in [68]. Also see [59]. 

Theorem 4.2.1 A polygon is 1-searchable if and only if there exists a legal path in its VD. 

We then consider the skeleton representation called skeletal visibility diagram (SVD) of 

the VD. SVD is to VD as what SVOD is to VOD. We focus our analysis in the SVD. 

We first introduce some notation for the SVD for our later discussions. Note that we 

can identify the position of a searcher on the y axis while the beam head of her flashlight 

on d P  is projected on the x axis. 

The reflex vertices give rise to the bones in the SVD, which are either horizontal or 

vertical. From dD, the bones due to a reflex vertex r extend downward and rightward and 

are denoted as dDBone(r) and dRBone(r), respectively. These bones correspond to the 

southeast barrier from r .  From DD, the bones due to r extend upward and leftward and 

are denoted as DUBone(r) and DLBone(r), respectively. These bones correspond to the 

northwest barrier from r .  
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Figure 4.3: The illustration of the notation. 

For each bone, we call one of its two ends that is not attached to dD or DD its tip while 

we call the other end that is attached to dD or DD its origin. 

We call a path from dD to DD that does not cross any horizontal bones and any vertical 

bones from left to right the legal path (by abusing the notation a little) in the SVD. 

See the discussions in Sections 2.3 and 2.4. Also see [67, 681 for a proof for the following 

theorem. 

Theorem 4.2.2 A polygon is 1-searchable if and only if there exists a legal path i n  its SVD. 

4.3 The searchability of a polygon 

We consider legal paths in the SVD of a polygon. Throughout the search, we maintain 

the condition that the polygonal portion, which is on the left side of the flashlight beam in 

the direction from the position of the searcher to the beam head of her flashlight, is always 

clear. This is called the left invariance [67, 681. The general idea of searching a polygon 

by a 1-searcher is to gradually increase the cleared portion of the polygon (though the 

cleared portion might temporarily decrease due to recontaminations and the backtracks of 

the searcher or the beam head of her flashlight. See below.) until the contaminated portion 

disappears. The searcher's flashlight beam divides the cleared and contaminated portions 

in the polygon, maintaining the left invariance. 

The move of the searcher must be continuous since she always stays on the boundary. 

On the other hand, the move of the beam head of her flashlight can be piecewise continuous, 

as long as the left invariance is not violated. The only possible situation that may cause 
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discontinuity of the beam head is where the flashlight beam hits a reflex vertex due to 

the rotation of the flashlight or the movement of the searcher. This situation is shown in 

Figure 2.10, where the beam head jumps from point 3 to point 2. When this is interpreted 

in the VD (marked by the dashed line segment a in the VOD), it is a crossing of a barrier 

from right to left. (It is the crossing of a vertical bone from right to left in the corresponding 

SVD.) However, since this jump maintains the left invariance, it is still allowed. On the 

other hand, the jump from point 2 to point 3 is not allowed since the left invariance is 

violated. Also note that the beam head might jump as well when the searcher moves. 

When we interpret the valid moves of the searcher and the beam head of her flashlight 

in the SVD, it is easy to see that a path cannot cross a horizontal bone since this means the 

move of the searcher is not continuous. Also a path cannot cross a vertical bone from left 

to right. The only valid crossing happens when the path crosses a vertical bone from right 

to left. 

4.3.1 Necessary conditions for searchability 

Figure 4.4: Patterns that generate trap regions bordered by dD. 

We are interested in the patterns formed by different bones in the SVD. We list in 

Figure 4.4 the possible patterns that bound some regions bordered by dD. The pattern in 

Figure 4.4 (a) (The rays need not intersect.) bounds a section on aPm(rl, rz)  on dD (shown 
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as the dashed line segments). The pattern also has effects on DD, which will be discussed 

shortly. It  is also easy to see that the pattern in Figure 4.4 (b) (The rays from rl and r 2  

can intersect.) bounds a section on aP,, (rl, r2) on dD (shown as the dashed line segments). 

The bounded regions are marked by x in the figure. We call the regions marked by x the 

trap regions on dD. 

If a point s on dD in the SVD is inside a trap region, then any path starting from s 

cannot be extended beyond the region without violating the left invariance requirement. 

We immediately know that the searcher should not start a search from such a point. If this 

situation happens, we say that s is trapped on dD. If every point on dD is trapped, we say 

that dD is trapped. It is easy to see that if dD is trapped, the searcher has nowhere to start 

a search, indicating that the polygon is not searchable. We have the following proposition. 

Proposition 4.3.1 If dD of the SVD of a polygon P is trapped, then P is not 1-searchable. 

Figure 4.5: A pattern that does not make any point trapped on dD. 

It should be noted the symmetric pattern of Figure 4.4 (b) shown in Figure 4.5 does not 

make any point trapped on dD, since a path can go across the vertical bone due to rl from 

right to left, as shown by the dashed curves in the figure. 

Similarly, we list all the possible patterns in Figure 4.6 that make some regions bordering 

with DD inaccessible. The bounded regions are marked by x in the figure. The two rays in 

Figure 4.6 (a) need not intersect while the rays from r 2  and rs in Figure 4.6 (b) can intersect. 

(Note that the pattern in Figure 4.6 (b) is topologically identical to the one in Figure 4.5.) 

We call such regions unreachable regions. If a point t on DD is inside an unreachable region, 
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Figure 4.6: Patterns that generate unreachable regions bordered by DD. 

then a path cannot reach t without violating the left invariance requirement. In such a case, 

we say that t is unreachable on DD. 

If every point on DD is unreachable, then DD is said to be unreachable. If a point on 

DD is not unreachable, we say that it is reachable. We immediately have the following. 

Proposition 4.3.2 If DD of the SVD of a polygon P is unreachable, then P is not 1- 

searchable. 

Figure 4.7: A pattern that does not make any points on DD unreachable. 
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Note that the pattern shown in Figure 4.7, which is topologically identical to the one in 

Figure 4.4 (b), does not make any points on DD unreachable. 

Figure 4.8: Two special patterns that make a polygon non 1-searchable. 

In addition, we have two special patterns [91, 92, 106, 1091 that are not included either 

in Figure 4.4 or in Figure 4.6. They are shown in Figure 4.8. Note that the rays from r l  and 

rs need not intersect. It is obvious from the VDs shown in Figure 4.8 that, if the pattern 

shown in Figure 4.8 (a) or (b) is present in a polygon P, then P is not 1-searchable due to 

Theorem 4.2.2. 

Lemma 4.3.3 In  the S V D  of a polygon P, if every point on dD is between two refEex vertices 

such as r l  and 7-2 i n  the pattern shown i n  Figure 4.5, P is not 1-searchable. 

Proof The counterpart of the pattern shown in Figure 4.5 on DD is the pattern shown in 

Figure 4.6 (b). Thus it is easy to see that if every point on dD is between two reflex vertices 

such as r l  and r2 in the pattern shown in Figure 4.5, then every point on DD is unreachable. 

The lemma then follows. I 
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Figure 4.9: A non-searchable polygon (due to Lemma 4.3.3) and its corresponding SVD. 

For an example of the situation described in Lemma 4.3.3, see the polygon and its 

corresponding SVD in Figure 4.9. 

On the other hand, if in the SVD of a polygon P every point on DD is between two reflex 

vertices such as rl and r 2  in the pattern shown in Figure 4.7, P is not 1-searchable either. 

This can be explained as follows. The counterpart of the pattern shown in Figure 4.7 on 

dD is the pattern shown in Figure 4.4 (b). Thus it is easy to see that if every point on DD 

is between two reflex vertices rl and 7-2 as shown in Figure 4.7, then every point on dD is 

trapped. As an example, the polygon shown in Figure 4.10 is not 1-searchable due to this 

reason. 

4.3.2 Sufficient conditions for searchability 

In order to test the 1-searchability of a polygon P, we first introduce some definitions related 

to the SVD of P .  In the SVD, we call a maximal connected white area a cell. Due to the 

circularity of the boundary of a polygon, a cell may have an infinite area. 

We show in Figure 4.11 a polygon (adopted from [59]) and its corresponding SVD with 

several cells indicated (surrounded by dashed line segments). 

A cell touches dD (DD, resp.) if it is bordered by dD (DD, resp.). For instance, cell A 

in Figure 4.11 touches DD while cell C touches dD. 

If two bones intersect as shown in Figure 4.12, we say that the two bones form a bridge, 

in the sense that they connect dD and DD. It is easy to see that if there is no bridge in 
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Figure 4.10: Another special non-searchable polygon and its corresponding SVD. 

the SVD of polygon, then there is an infinite cell in between dD and DD. For instance, the 

bones from vertices 5 and 12 in Figure 4.11 form a bridge. 

Figure 4.13 was obtained from Figure 4.11 by changing the position of vertex 6 slightly 

to remove the bridges. 

Lemma 4.3.4 If neither dD is trapped nor DD is unreachable and there is no bridge in the 

SVD of a polygon P, then P is 1-searchable. 

Proof It is easy to see that if there is no bridge in the SVD, the patterns shown in Figure 4.8 

cannot be present in the polygon. Also the condition in Lemma 4.3.3 cannot hold. 

We select a point s on dD that is not trapped and a point t on DD that is reachable. 

We construct a legal path connecting them. 

The construction consists of two stages. In the first stage, we keep extending the path 

horizontally from s. In this process, the path might encounter some downward bone from 

dD. If this is the case, the path goes along the bone downward until it reaches the tip of the 

downward bone. This should be possible since any rightward bone from dD preventing the 

path from doing so would generate a trap region on dD that s is in. Note that we need not 

consider leftward bones from DD, since such a bone would imply a bridge. When the path 

is at  the tip of the downward bone, we keep extending it horizontally, until it reaches the 

next downward bone from dD, if any, where we continue the above process, or it reaches an 

upward bone from DD, where we switch to the next stage, or it reaches a point on DD, in 
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Figure 4.11: A polygon and its corresponding SVD with some cells indicated. 

Figure 4.12: Bridges connecting dD and DD. 
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Figure 4.13: A polygon and its corresponding SVD with all the bridges removed. 

which case the proof is finished by setting t to this point. 

In the second stage, the path is initially close to an upward bone from DD. Then we 

extend the path along the bones from DD. Since there is no bridge, this extension is always 

possible. Eventually, the path can reach t. The lemma thus follows. I 

Figure 4.13 shows an example in which there is no bridge in the SVD of a polygon. We 

show in Figure 4.14 a legal path as the dashed curve. 

Before proving the following lemma, we identify three types of cells. The first type of 

cell has either a non-trapped point on dD or a reachable point on DD on its boundary. We 

call this type of cell live cell. The second type of cell touches either dD or DD but has 

neither a non-trapped point on dD nor a reachable point on DD on its boundary. We call 

them dead cells. The third type of cell touches neither dD nor DD. We call them neutral 

cells. Figure 4.15 shows neutral cells that a path from dD to DD might go through. Note 

that there are other neutral cells, but a path never goes through them. One such neutral 

cell is shown in Figure 4.16. 

Note that the boundary of a cell is composed of the bones, dD and DD in the SVD. 
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Figure 4.14: A legal path in the SVD in Figure 4.13. 

Neutral cells 

0) 

Figure 4.15: The neutral cells that a path from dD to DD might go through. 
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A neutral cell 

Figure 4.16: A neutral cell that a path from dD to DD never goes through. 

Figure 4.17: The situations where the path hits a vertical bone. 

Lemma 4.3.5 If neither dD is trapped nor DD is unreachable and the patterns in Figure 4.8 

are not present in the S V D  of a polygon P, P is 1-searchable. 

Proof If there is a cell touching both dD and DD and a non-trapped point s on dD and a 

reachable point t on DD are both on the cell's boundary, we can obviously construct a path 

from s to t and the lemma follows. 

In order to  construct a path under the conditions specified in the lemma, we select a 

point s on dD that is on the boundary of a live cell. We extend the path inside the cell by 

following the cell boundary in the clockwise direction (the cell is always on the right side of 

the path), until it reaches a place where the intersecting bones (part of the cell's boundary) 

form a bridge, a s  shown in Figure 4.17. The path can go across the vertical bone from right 

to left, since the crossing is valid. 
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Figure 4.18: The situations where the path goes into a dead cell. 

After this, the path can go through some live or neutral cells. However, after going 

through those "good cells", the path cannot be in a dead cell. 

We list all the possible situations in Figure 4.18 where the last cell the path went through 

is a live one (Figures 4.18 (a) and (b)) or a neutral one (in Figure 4.18 (c), (d) and (e)). 

Note that the SVOD might contain other bones. But we are more interested in the bones 

shown in the figure. 

We first consider the situations in Figures 4.18 (a), (c) and (e). If we have a dead cell 

ahead of the path (due to the presence of the bone marked by x), we have the special pattern 

shown in Figure 4.8 (b). As for the situations in Figures 4.18 (b) and (d), if we have a dead 

cell (due to the presence of the bone marked by x) that the path hits, we have the special 

pattern shown in Figure 4.8 (a). 

In all the situations, if the path goes into a dead cell, we have a contradiction with the 

conditions specified in the lemma. Thus, when the path goes across a vertical bone from 

right to left, the path is always in a live cell or a neutral cell. 

In this process, if the path goes into a live cell touching DD, the lemma then follows. 

Otherwise, we keep extending the path inside the new live cell by following its boundary in 
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Figure 4.19: The situations where the path hits a leftward bone from DD. 

the clockwise direction. 

Now if the path is in a live cell touching dD, we may have one of the situations in 

Figure 4.19. The path continues its extension but hits a leftward bone (part of the cell 

boundary) (marked by h) from DD. It then has to follow the bone leftward. However, in 

each situation, this bone and other bones together generate an unreachable region bordered 

by DD, as marked by x (the dashed line segments) in the figure. Note that there might be 

other unreachable regions bordered by DD. But we only show those related to the leftward 

bone. Also note that there might be other bones in the SVOD, but we are more concerned 

about whether the SVOD contains bones causing one of the situations in Figure 4.19. 

The path further extends leftward until it hits a bridge, in which case the path is again 

in one of the situations shown in Figure 4.18. We know that the path should be still alive 

and can be further extended. If no matter how the path is extended, it is always in a live 

cell touching dD (after going through zero or more neutral cells), then according to the 

above discussions, the access to DD is always hindered by an unreachable region bordered 

by DD in this process. Assume that the path keeps extending to the lower left indefinitely. 

Imagine that the sections of the vertical bones that the path goes through were absent. 
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Figure 4.20: A legal path in the SVD in Figure 4.11. 

Then it is as if the path were going through an infinite cell, but can never reach DD. This 

could only mean that there are unreachable regions spanning the entire DD, which leads to 

a contradiction. For instance, the situation described by Lemma 4.3.3 shows such a case. 

We conclude that the path should be able to reach a live cell touching DD. The lemma 

thus follows. I 

Figure 4.11 shows an example in which there are bridges in the SVD of a polygon. We 

show in Figure 4.20 the legal path constructed. It is indicated by the solid, arrowed curve 

directed from s to t .  

Theorem 4.3.6 A polygon P is 1-searchable if and only if in the SVD of P neither dD is 

trapped nor DD is unreachable and the patterns in  Figure 4.8 are not present. 

4.4 Searchability and LR-visibility 

In Chapter 3, we proved that a searchable room must be LR-visible. In this section, we 

prove that a searchable polygon is LR-visible as well. 

We first give the following lemma [36]. 

Lemma 4.4.1 If a polygon contains three disjoint components, then it is not LR-visible. 
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See Section 1.2 for the definition of a component and a non-redundant component in a 

polygon. The following lemma was first proved in [106]. 

Lemma 4.4.2 If a polygon contains three disjoint components, then it  is not 1-searchable. 

Proof The lemma follows due to either Lemmas 4.3.3 or that we have one of those special 

patterns shown in Figure 4.8 in the polygon. I 

By Lemma 4.4.2, there are only two cases of our interest in a searchable polygon; either 

there are no disjoint components or there is just a pair of disjoint components. 

We first consider the situation where all the components in a searchable polygon have a 

common intersection. 

Lemma 4.4.3 I f  the components i n  a searchable polygon have a common intersection, the 

polygon is LR-visible. 

Proof We can select two points s +,, t on the common boundary of all the components. 

We immediately know that the polygon is LR-visible with respect to s and t since every 

component contains both of them [36]. 1 

We now only need to consider a searchable polygon that contains two disjoint compo- 

nents, as shown in the following series of lemmas. 

Lemma 4.4.4 If a 1-searchable polygon P contains only a pair of disjoint components, one 

of which is clockwise while the other is counter-clockwise, P is LR-visible. 

Proof we try to locate two points s and t on dP such that P is LR-visible with respect to 

s and t. 

Assume that the clockwise component is due to a reflex vertex a and the counter- 

clockwise component is due to a reflex vertex b, as shown in Figure 4.21. 

We first consider the components that only intersect with the component due to a. It 

is easy to see that the intersection of these components is a continuous boundary inside the 

component. We call it T .  

There can be only three situations here, which are shown in Figure 4.22. In the figure, 

we only show the two components that generate the starting point and the ending point of 
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Figure 4.21: Two disjoint components. (The clockwise component is due to vertex a while 
the counter-clockwise component is due to vertex b.) 

Figure 4.22: Definition of T for for the components in Figure 4.21. 

Figure 4.23: Definition of S for the components in Figure 4.21. 
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Figure 4.24: The situation where the clockwise component due to x does not intersect T or 
S, and is between T and S in the clockwise direction. 

Figure 4.25: The situation where the counter-clockwise component due to x does not inter- 
sect T or S, and is between T and S in the clockwise direction. 
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T. However, the situation shown in Figure 4.22 (c) is the special pattern shown in Figure 4.8 

(a), with m = rl, b = 7-2, and a = 7-3. We thus drop it from later discussions. 

Similarly, we consider the components that only intersect with the component due to b. 

We also have an intersection of those components, which is within the component and is 

denoted as S. Figure 4.23 shows three situations. Again, the situation in Figure 4.23 (c) is 

the special pattern shown in Figure 4.8, with b = rl, a = r2, and m = r3. We thus drop it 

from later discussions as well. 

The only components left are those that intersect with both the component due to a and 

the component due to b. However, we claim that such a component must intersect (contain) 

S, T or both, as shown in the following. 

We assume that the component under discussion is due to a reflex vertex x in the 

following discussions. We consider several situations. 

We first consider that the component due to x is clockwise and is between T to S in the 

clockwise direction. Suppose that the component from x does not intersect T or S. We list 

all the possible situations in Figure 4.24. It is easy to see that all these situations make the 

polygon non-searchable. For instance, the three components due to the reflex vertices x, m 

and b in Figure 4.24 (a) form the special pattern shown in Figure 4.8 (a), while the three 

components due to the reflex vertices x, m and b in Figure 4.24 (b) form the special pattern 

shown in Figure 4.8 (b) 

Next we assume that the component due to x is counter-clockwise and is between T and 

S in the clockwise direction. For the same reason as above, it is easy to see that the two 

possible situations, as shown in Figure 4.25, render the polygon to be non-searchable. 

We then consider the situation where the component due to x is clockwise but is between 

S and T in the clockwise direction. The possible situations are shown in Figure 4.26. 

We show in Figure 4.27 the two possible situations for Figure 4.26 (b) where we include 

the components that form S.  It is not difficult to see, using the same argument as above, 

that in any of these situations, the polygon is not searchable. A similar argument holds true 

for the pattern in Figure 4.26 (a). 

The last possibility we need to consider is that the component due to x is counter- 

clockwise but is between S and T in the clockwise direction. Again we list the two possible 

situations in Figure 4.28. For the patterns in Figure 4.28 (a) and (b), we further consider 

them, just as we did above. We list the possible situations in Figure 4.29 for the pattern 

shown in Figure 4.28 (b) when the components forming T are considered. It is easy to see 
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Figure 4.26: The situation where the clockwise component due to x does not intersect S or 
T, and is between S and T in the clockwise direction. 

Figure 4.27: Further situations for the pattern in Figure 4.26 (b). 

Figure 4.28: The situation where the counter-clockwise component due to x does not inter- 
sect S or T, and is between S and T in the clockwise direction. 
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Figure 4.29: Further situations for the pattern in Figure 4.28 (b). 

Figure 4.30: The situations for T where both the components due to a and b are clockwise. 
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that each of the situations makes the polygon non-searchable. The pattern in Figure 4.28 

(a) is dealt with similarly. 

We conclude that every component must intersect or contain S or T. Recompute the 

intersection for these components, and adjust S and T. After the adjustment, select a point 

s E S and a point t E T. Every component must contain either s or t. Thus P is LR-visible 

with respect to s and t. The lemma follows. I 
Lemma 4.4.5 If a I-searchable polygon P only contains two disjoint components that are 

either both clockwise or both counter-clockwise, then P is LR-visible. 

Proof We consider here the case where the two components are clockwise. The counter- 

clockwise case can be dealt with similarly. 

We list the two situations where T is formed in Figure 4.30 when the two disjoint 

components due to a and b are both clockwise. The situation in Figure 4.30 (a) involves a 

clockwise component and a counter-clockwise component and was dealt with in Lemma 4.4.4. 

The only situation left is in Figure 4.30 (b). 

Similarly, for S we can list the two situations in Figure 4.31 and only the situation in 

Figure 4.31 (b) needs to be discussed. 

Thus the only combination is between the situation in Figure 4.30 (b) and the situation 

in Figure 4.31 (b). We consider a clockwise component between T and S in the clockwise 

direction, as shown in Figure 4.32. It is not searchable since every point on DD is unreach- 

able, according to Figure 4.6 (b). Note that we need not consider any counter-clockwise 

component, since the situation can be dealt with by Lemma 4.4.4. 

The last possibility is shown in Figure 4.33, which can also be handled similarly, since 

every point on DD is unreachable. 

For the above two situations, also see Lemma 4.3.3 and the discussions following it. 

Summarizing the above arguments, the lemma follows. I 
Theorem 4.4.6 If a polygon P is I-searchable, then it is LR-visible. 

Proof It follows from Lemmas 4.4.3, 4.4.4, and 4.4.5. 1 

4.5 Checking the searchability 

The main reason that we relate the searchability and LR-visibility of a polygon is that we 

hope to take advantage of the nice property of a LR-visible polygon, i.e., we can calculate 
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Figure 4.31: The situations for S where both the components 

T 

due to a and b are clockwise. 

Figure 4.32: The situation where there is a clockwise component between T and S in the 
clockwise direction. 

Figure 4.33: The situation where there is a clockwise component between S and T in the 
clockwise direction. 
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the non-redundant components in O(n) time in such a polygon. 

However, as shown in the proof of Theorem 4.3.6, we need to consider not only the non- 

redundant components in a polygon, but also the redundant components when checking its 

searchability. Even though this additional requirement might be eliminated by studying the 

other properties of a 1-searchable polygon, so far none of our attempts was successful. 

For a polygon with n vertices, the deadlocks in a polygon can be calculated in O(n) 

time [15] (since the polygon must be LR-visible), making the calculations of trapped parts 

on dD and unreachable parts DD, respectively, in O(n) time. There can be at most O(n) 

such parts. Also all the components (including the redundant and non-redundant ones) can 

be calculated in O(nlog(n)) time. 

As for the two special patterns in Figure 4.8, we consider Figure 4.8 (a) here, since 

Figure 4.8 (b) can be dealt with in a similar fashion. For a deadlock (calculated as above) 

formed by the reflex vertices r l  and r g ,  we look for a third reflex vertex 7-2, forming the 

pattern in Figure 4.8 (a). This can be done in 0 (n2)  time for all the deadlocks. 

As for the patterns in Figure 4.4 (b) and in Figure 4.6 (b), we discuss the situation for 

the pattern in Figure 4.4 (b) since the pattern in Figure 4.6 (b) can be dealt with similarly. 

For each reflex vertex rl, we look for a reflex vertex r g  whose rg,, is the farthest from rl in 

the clockwise direction and whose counter-clockwise component does not intersect with the 

one due to rl. We have at most O(n) such pairs of reflex vertices. For each pair, such as rl 

and r g  as calculated above, going from rg,,, in the counter-clockwise direction toward rl, 

we try to find a reflex vertex r 2  which is closest to rg,,, in the counter-clockwise direction 

and whose counter-clockwise component does not intersect the one due to r g .  If such a reflex 

vertex 7-2 is found, then we have a trap region bordered by dD, which makes any point on 

dPcw(rl, r2) trapped on dD. For all the O(n) pairs, clearly this can be done in 0 (n2)  time. 

Thus, in order to check the searchability using our characterization of a 1-searchable 

polygon, we need 0 (n2)  time. However, we do not believe that this bound is tight. But due 

to the time limitation, we did not explore further on this. 

Time complexity O(nlog(n)) for checking the searchability of a polygon was reported 

in [91, 921, while the work in [log] presented an algorithm for the same purpose with time 

complexity of 0(n2) .  
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4.6 Discussions 

We have characterized the polygons that are searchable by a 1-searcher. Our work here 

is complementary to the one in [67, 681, where only an algorithmic graph-based solution is 

provided and no characterizations are discussed, but is much simpler than the ones reported 

in [91, 92, 1091 in terms of the analysis complexity. We attribute this to the VD and SVD 

of a polygon. 

We have noticed that the relationship between LR-visibility of a polygon and its 1- 

searchability has been previously explored in [106]. It  is stated that if a simple polygon P is 

1-searchable, then there exists a pair of vertices u and v of P such that P is weakly visible 

from the shortest path between u and v, i.e., every point on the two sides divided by u and 

v can be seen at least by one point on the shortest path between u and v. Then according 

to the discussions in [14], P is LR-visible with respect to u and v. 

The approach employed in [I061 is simpler than ours reported here. But it is harder to 

follow. Interested readers are referred to the original paper. 

4.6.1 The complexity of testing searchability 

We wanted to improve the checking time complexity of the 1-searchability of a polygon. 

But we were not successful. This is definitely our task in the near future. 

4.6.2 The relationship between the searchability of a polygon and a room 

It first appeared that a searchable polygon could contain a door such that the resultant 

room is searchable by two guards. But it has turned out that the conjecture is incorrect, as 

shown in Figure 4.34. We show the polygon and its corresponding SVD. 

It  is easy to see that the polygon itself is searchable by a 1-searchable since starting from 

a point between vertices 1 and 5 in the clockwise direction, we can construct a legal path 

from dD to DD, as shown in Figure 4.34 (b). 

The polygon is purposely constructed in such a way that every point on dD is trapped 

except the part between vertices 1 and 5. Since the trap regions on dD are the same as 

those trap regions when we discussed the problem of finding all doors for a given polygon in 

Chapter 3, it follows that any door, if one exists, cannot be a point trapped on dD. Therefore, 

the only possible place for a door must be between vertices 1 and 5 in the clockwise direction. 



CHAPTER 4. POLYGON SEARCH B Y  A 1-SEARCHER 

(4 (b) 

Figure 4.34: A 1-searchable polygon and its corresponding SVD. 

Suppose that the door is at dl as shown in the figure. If the room P(d) is searchable 

by two guards, it must be possible to find a path which starts at  d and ends on DD within 

the triangle shown in the figure formed by d and its two counterparts on DD. However, we 

notice that every point on DD between d and d in the clockwise direction is unreachable 

except the points on the two parts between d and vertex 5 and between vertex 1 and d, 

respectively, in the clockwise direction. Even for these two parts, the points on them are 

unreachable on DD within the triangle because of the horizontal bone from vertex 5 and 

the vertical bone from vertex 1, respectively. Thus, any point between vertices 1 and 5 

(including the two vertices themselves) cannot be used as a door. 

It is not difficult to see that the above example can also be used to derive a similar result 

for the situation where the room is searched by a 1-searcher. 



Chapter 5 

Searching 1-Hole Polygons 

The polygon search problem by two 1-searchers has been investigated by Simov et al. in [99], 

as mentioned in Chapter 1. The approach employed is algorithmic, in the sense that we can 

tell whether a polygon is searchable by two 1-searchers but could not interpret the reason 

behind this searchability since the geometric properties of the polygon are not reflected in 

an obvious manner in the algorithm. 

In this chapter, we attempt to work on a restricted version of the polygon search problem 

by two boundary 1-searchers. We consider a 1-hole polygon and there are two boundary 

1-searchers to search it. We will see how the extended visibility space of a 1-hole polygon 

provides us with hints that can be used to tackle the problem. 

Without causing any ambiguity, if we say that a 1-hole polygon is searchable, it should 

be interpreted as that it is searchable by two boundary 1-searchers. Also a searcher should 

be understood as a boundary 1-searcher. 

5.1 Introduction 

A 1-hole polygon is a polygon with a simple polygon (the "hole") removed from its interior. 

The interior of the hole is considered to be exterior to the polygon itself. Therefore, there 

are two boundaries for such a polygon. 

In order to make our discussions simple, we adopt the mutual visibility between two 

points used in [67, 681. For two point a E d P  and b E dH,  if ab E P - aP, then a and b are 

mutually visible. According to this definition, in Figure 5.1, a' and b are mutually visible 
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a and b are not mutually visible. 
a' and b are not mutually visible. 

rand b are mutually visible. 

Figure 5.1: Definition of mutual visibility [67, 681. 

and so are r and b. But a and b are not mutually visible. Note a and b are mutually visible 

according to our previous mutual visibility definition in Chapter 1. 

We require that the forward and backward ray end points from any reflex vertex be 

on the opposite boundary to make the problem simple. It is easy to see that under this 

requirement, the two boundaries are mutually weakly visible. 

We also require that the two searchers stay on the boundaries. We use d P  to refer to 

the outer boundary and d H  to the inner boundary, and use a ,  a', a", ao, a l l  a * ,  r, r', etc. 

to represent vertices on d P ,  while using b, b', b", bo, bl, - a ,  q, q', etc. to represent vertices 

on dH.  

The two 1-searchers move along the boundaries to search the polygon. We consider the 

following three settings. (1) Both searchers move on the outer boundary; (2) Both searchers 

move on the inner boundary; and (3) One searcher moves on the outer boundary and the 

other moves on the inner boundary. In all of the three settings, it is required that the beam 

head of the flashlight of a searcher be always on the opposite boundary from the searcher's 

boundary. For simplicity, we denote by Po, Pi, and Pb the search problems in these three 

settings, respectively. 

5.2 The street search problem 

We first consider the two-guard street search problem because it is relevant to the problem 

in hand. Recall that a street is defined as a polygon P with two distinguished points, s and t, 

called the entrance and exit, respectively, on its boundary. It is required that dP,(s, t)  and 

dPccw(s, t)  be mutually weakly visible. The skeletal visibility obstruction diagram (SVOD) 

of a street is restricted in a rectangle whose two sides represent dPCw(s, t) and dPccW(sl t), 



CHAPTER 5. SEARCHING I-HOLE POLYGONS 

(4 (b) 

Figure 5.2: A street that is searchable by two mutually visible guards. 

respectively. For example, Figure 5.2 (b) is the SVOD of the street in Figure 5.2 (a). We try 

to find a path through the white area which starts at  s and ends at t ,  which means that the 

street is searchable by two mutually visible searchers (guards). The path in Figure 5.2 (b) is 

similar to the ones we introduced when we discussed the room search problem in Chapter 3 

and the polygon search problem in Chapter 4. 

Figure 5.3: Deadlocks. 

Deadlocks play an important role in determining whether a street is searchable or not. 

To give an illustration, we redraw the deadlocks in Figure 1.8 here in Figure 5.3. Also we 

draw the corresponding partial SVODs of the deadlocks in Figure 5.4. It is quite easy to see 

why the presence of deadlocks in a street makes it non-searchable. We still call the regions 

bounded by bones the trap regions. The path is either restricted within a trap region or 

cannot go into it in the SVOD. 
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a trap region 

,'--' a trap region 

a 

Figure 5.4: Partial SVODs corresponding to the deadlocks in Figure 5.3. 

Figure 5.5: A non-searchable 1-hole polygon. 

We now consider deadlocks in the 1-hole polygon search problem. As a simple example, 

it is easy to verify that the 1-hole polygon shown in Figure 5.5 cannot be searched by two 

1-searchers, no matter where they start their search and no matter which search setting, i.e., 

Pi, Po, Pb, is considered. The intuitive reason behind this is that we need the two 1-searchers 

together to clear the first deadlock. However, it is not possible for the two searchers to work 

together on the second or the third deadlock at the same time. 

However, with a special arrangement of the deadlocks shown in Figure 5.6, the polygon 

in the figure is still searchable, even though it contains more than three deadlocks. 

Since we are dealing with the search problem with two 1-searchers, intuitively we have 

one more freedom represented by the additional searcher to consider. We need to extend 

the visible space, as shown below. 
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Figure 5.6: A searchable 1-hole polygon. 

5.3 The visibility space of a 1-hole polygon 

In order to study the 1-hole polygon search problem by two 1-searches, we employ the 

visibility space of a 1-hole polygon. It  is composed of configurations (r, q), where r E d P  

and q E d H .  This is different from the visibility space we introduced in the previous 

chapters. 

Figure 5.7: The visibility diagram of a 1-hole polygon. 

In order to visualize the visibility space for a 1-hole polygon, we still use standard 
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Figure 5.8: A 1-hole polygon and its VD. 

coordinate system, in which the x-axis represents the clockwise traversal of i3H while the 

y-axis represents the clockwise traversal of i3P. Due to the circularity of a 1-hole polygon 

(like a ring), its visibility space extends to the whole coordinate plane. We start drawing 

a diagram in this plane from the point corresponding to any configuration and gray those 

points corresponding to the invisible configurations while leaving white those corresponding 

to the visible configurations. Figure 5.7 shows an example. Note that this diagram extends 

infinitely in all directions. We call this diagram the visibility diagram (VD) of the 1-hole 

polygon. We show a 1-hole polygon and its corresponding VD in Figure 5.8'. We use the 

VD to conduct our analysis. 

It is easy to see that the VD of a 1-hole polygon is similar to the VOD and SVOD 

in Section 5.2 of a street. However, the VOD and SVOD of a street is restricted within 

the rectangle formed by the sides corresponding to the street's two sides, as shown in the 

example in Figure 5.2. 

In the VD of a 1-hole polygon, a point (x, y) is white if and only if the points (x + 

'Due to  the time limitation, we did not create a program to  draw this diagram. 
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klldHI, y + k2(dPI)  are white, where kl and k2 are integers. 

Consider a visible configuration (T, q), where r E d P  and q E 8 H .  Obviously, such a 

visible configuration could be used to represent the standing position of a single searcher and 

the beam head of her flashlight. Thus, two visible configurations ( T ~ ,  qi) (i = 1, 2) together 

can completely determine the current states of the two searchers. In the sequel, if we say 

the state of a searcher, this state should be interpreted as including the standing position 

of the searcher and the beam head of her flashlight. Note that at this moment we do not 

specify rigidly which one of ri and qi is the standing position of a searcher and which one 

represents the beam head of her flashlight. 

Figure 5.9: The contamination classes. 

Figure 5.10: A special case where the beams rlql and overlap. 

Throughout the search, the beams of the searchers' flashlights rlql and r2qz partition 
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the polygon P into at most three connected components. We show the possible partitions 

in Figure 5.9. In these partitions, the beams from the flashlights of the two searchers could 

be either independent or cooperative [99]. Figure 5.9 shows an example for independent 

and cooperative beams. Note that if the two beams touch each other only at one of their 

end points, they are considered independent. We also show in Figure 5.10 a special case 

where the beams rlql and T2Q2 overlap with each other. In order to be consistent with the 

situations shown in Figure 5.9, we still say that there are two components but the area of 

C2 is zero. 

Each component is characterized by a contamination status. We label each component 

by "0" (being cleared) or "1" (being contaminated). We use a binary string called the 

contamination string, denoted as C,  to represent the current contamination statuses. Since 

there can be always two or three components, we have C E {0 ,1 )~  U (0, 1j3. 

Combining the visible configurations representing the current states of the two searchers 

and the contamination string representing the current contamination status, we define a 

triple (5'1, S2, C)  to be a search state, where Si = (ri, qi) (i = 1,2) are visible configurations 

and C is a contamination string. (See more below on this.) In a 1-hole polygon, the set of 

all the search states is called its search space. 

We define a search state a s  a starting state if its contamination string is "10" and S1 

and S2 overlap. (Recall the special contamination shown in Figure 5.10.) Similarly, a goal 

state is defined as the one in which the contamination string contains "00" and S1 and S 2  

overlap. 

Intuitively speaking, the search space contains all of the possible states of the searchers 

and the contamination status in each state. These two pieces of information are encoded 

in a search state. Now in order to check whether a 1-hole polygon is searchable or not, we 

need to find a continuous sequence of search states, which starts in a starting state and ends 

in a goal state, in this space. If no such sequence exists, the polygon is not searchable. 

Let Si : [O, 11 + aP x aH (i = 1,2), such that Si(t) = (ri(t), qi(t)) encodes the position 

of searcher i at time t. We will discuss below which one of ri(t) and qi(t) represents the 

standing position of searcher i and which one represents the beam head of her flashlight. 

Let C(t) : [O, I] + {0 ,1 )~  U (0, ll3 be the contamination string at time t. 

A search schedulestarts in a starting state and is composed of the triples (Sl(t), S2(t), C(t)) 

over time t E [0, 11. Each triple (Sl (t), S2(t), C(t)) encodes the states of the searchers and 

the contamination string at time t. 
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When both searchers move on dH, at time t searcher i is standing at qi(t) and the beam 

head of her flashlight is at ri(t). The standing position of the searcher i must be continuous 

over time while the beam head of her flashlight must be piecewise continuous. Recall the 

recontaminations for a 1-searcher a s  discussed in Sections 2.5 and 4.3. 

When both searchers move on dP,  at time t searcher i is standing at ri(t) while the 

beam head of her flashlight is at qi(t). The standing position of the searcher i must be 

continuous over time while the beam head of her flashlight can be piecewise continuous due 

to its jumps over reflex vertices on dH. 

When searcher 1 moves on d P  and searcher 2 moves on dH, at time t, rl(t) and q2(t) 

are the standing positions of searchers 1 and 2, respectively, while ql(t) and r2(t) are the 

beam heads of their flashlights, respectively. For a searcher, her standing position must 

be continuous on the respective boundary while the beam head of her flashlight can be 

piecewise continuous, due to its jumps over reflex vertices on the opposite boundary. 

If at time 1, a search schedule is in a goal state, we call it a legal schedule. The proposition 

below follows directly from the definitions of search states, search space and legal schedule. 

Proposition 5.3.1 A 1-hole polygon is searchable by two 1-searchers if and only if a legal 

schedule exists in its corresponding search space. 

5.3.1 Moves of searchers 

As the two searchers move on the boundaries of a 1-hole polygon, the contamination bits 

change and the beams of the flashlights from the searchers may change from independent to 

cooperative and vice versa. In order to delineate these changes, we introduce moves (defined 

below) that comprise a legal schedule. 

Observe that the functions (Sl(t), S2(t), C(t)) change over time. For most of the time, 

C(t) stays constant. There are changes to C(t) when the relative order of r l ,  ql, 7-2, and 92 

changes, representing that the beams change from independent to cooperative or vice and 

versa, perhaps due to a beam head jump over reflex vertices. However, these changes only 

happen at discrete moments of time. We identify different types of changes to C(t) and 

accordingly introduce moves. 
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Type 1 moves: No beam head jumps and no relative order changes through the 

move 

In this type of move, the two beams from the flashlights keep the relative order, i.e., at 

the beginning of the move, if the two beams are independent (cooperative, resp.), at the 

end the move, the beams are still independent (cooperative, resp.), and because of this, the 

contamination string does not change. 

Type 2 moves: No beam head jumps but the beam's relative order changes 

through the move 

In this type of move, the beams change from independent to cooperative or vis versa, and 

accordingly the information in C(t) changes. 

Type 3 moves: Beam head jumps 

This type of move corresponds to the situation where the beam head of the flashlight from 

a searcher makes a jump while the state of the other searcher is stationary. The jump 

results in a change to the contamination string (possibly causing recontaminations) and a 

possible simultaneous change to the relative order of the beams, i.e., they may change from 

independent to cooperative or vice versa. 

More precisely, for a given schedule, let the time moments to = 0 < tl < t2 < . . . < tk = 1 

be where changes may occur in C(t). Type 2 and 3 moves convert a search schedule into a 

sequence of search states sl, s2, . . . , sk. Within such a state only Type 1 moves take place, 

while at ti, the changes correspond to Type 2 or 3 moves. With respect to the following 

conditions, we decompose a move into individual parts. 

With a Type 2 or 3 move, the two beams of the flashlights could change from independent 

to cooperative, as shown in Figure 5.9, or vice versa. There could be at most one beam head 

jump. To be more specific, a move is represented as m,mjme, where (1) m, = C (being 

cooperative) if at the beginning of a move, the two beams are cooperative or m, = I (being 

independent) if at  the beginning of the move, the beams are independent; (2) m j  = 1, if 

there is a beam head jump during the move or m j  = 0, otherwise; and (3) me = C,  if at 

the end of the move the beams are cooperative or me = I ,  if at the end of the move the 

beams are independent. Note that a searcher might move her position and rotate her beam 

head simultaneously, as long as it is within a valid move. A Type 2 or 3 move also possibly 
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causes the contamination string to be recomputed. 

We need to consider moves for the three different search settings. When both searchers 

move on dH,  we show in Figure 5.11 the possible transitions from one search state to 

another. In the figure, when recomputing the contamination string, the "or" operation 

is the standard boolean operation, i.e., when both operands are "O"s, the result is "0"; 

otherwise, the result is "1". 

The situation where both searchers move on d P  can be handled similarly. We show the 

corresponding moves in Figure 5.12. 

However, the situation where one searcher moves on d P  and the other moves on d H  is 

different. We show the possible transitions in Figures 5.13 and 5.14. 

Note that there is an important difference here from the results we reported in Chapter 4, 

in which we require that at  any time, the 1-searcher maintain the so-called left invariance [67, 

681 in the polygon search problem by a 1-searcher. The left invariance guarantees that at  any 

time, the beam from the flashlight separates the cleared portion and contaminated portion 

of the polygon, even though one of them might have an area of zero. 

However, in the 1-hole polygon search problem by two 1-searchers, from the discussions 

above, the contamination is encoded in the contamination string. The changes of the con- 

tamination string will follow the formulae shown in the above figures. If the contamination 

string contains all "O"s, then the 1-hole polygon has been searched successfully by the two 

1-searchers. 

5.4 Equivalence classes of search states 

The search space, as defined above, of a 1-hole polygon contains all of the possible states of 

the searchers and the corresponding contamination status. However, this space is infinite 

and it is hard to find a representation that makes it feasible to seek a legal schedule. 

5.4.1 Critical points 

We observe that the major difficulties arising when searching a polygon are due to the reflex 

vertices. On the other hand, a consecutive sequence of non-reflex vertices will not pose any 

problems since we can easily move the searchers over or direct their flash lights at these 

vertices one by one. Thus, as in the previous chapters, we can focus our attention on the 

reflex vertices of a 1-hole polygon. 
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p The clockwise direction 

P 
m = C  m,=l  a = C  

C; <- C,, C;<- Gor G, C;<- C3 

c; <- Cl, c;<- cz, c; <- c3 

m = C  m,= 1 a = C  
C; <- CI, Ci <- Gor G, C; <- C3 

Figure 5.11: The moves when both searchers are on 8 H .  
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p The clockwise direction 

c ;  c- C,, cic- Cz, c; c- c3 

,=I q=l m=I m = I  q = 1  m=I 
C; c- C,, C; C- C,or C, C; c- Clor C2, C;<- CZ 

m = C  q= 1 a = C  m = C  q = l  a = C  
Ci c- o r  c G c - ,  c c- 3 C1 c- C,, c; c- S, c; c- C,or c3 

Figure 5.12: The moves when both searchers are on 8P. 
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p The clockwise direction 

c; <- Cl, c;<- c2, c; <- c3 

m=l q = O  m = I  
c; <- C,, c;<- c2 

m = C  mj= l  m = C  
c ;  <- C,, C;<- C,or G, C; <- c3 

c ;  <- Cl, c;<- c2, c; <- c3 

C; <- CI, C; <- Cor  CZ, C; <- C3 

Figure 5.13: The moves when one searcher noves on d P  while the other moves on dH. 
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7 The clockwise direction 

m=I q = 1  m=I m=I q = 1  r&=I 
C', <- C,, C;<- Clor C, C; <- Clor C,, C;<- CZ 

Figure 5.14: The moves when one searcher moves on aP while the other moves on aH 
(cont 'd) . 
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T ~ h e  clockwise direction. 

a',b' a', b 

a', a, b, b' a', a, b, b' 

a', b' a', b' 

a', a, b, b' a', a, b, b' 

Figure 5.15: Critical points. 

We consider the patterns shown in Figure 5.15. We define a critical point to be a reflex 

vertex, a forward ray end point, a backward ray end point, or an end point of a bitangent. 

One bitangent introduces two end points on the boundaries of the 1-hole polygon, as shown 

in Figure 5.15. 

From these critical points, we define a section to be either a single reflex vertex or 

composed of the part of a polygon boundary (i.e., d P  and dH)  that lies between two 

adjacent critical points. All sections are disjoint. Therefore, if a section that is not a reflex 

vertex is bounded by a reflex vertex, then it is open at that end. In general, a section might 

be closed and open at both ends. Note that if a critical point that is not a reflex vertex is 

at  the interface of two sections, we select arbitrarily one section to be closed at the critical 

point while letting the other section to be open. 

For consistency, we call the sections on d P  Ro, R1, . . - , Rn,-1, while the sections on d H  

are represented by Qo, Q1, . . . , Qn,-1, where n l  and nz (of order O(n)) are the number of 

sections on d P  and dH,  respectively. 
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In order to make the following discussions easier, we identify a section by a number. In 

particular, we designate the sections on d P  as 0, 1, . . , i, . . , nl - 1 and the sections on 

d H  as 0, 1, -.., j, ..., nz - 1. 

5.4.2 Equivalence classes 

Let R and Q be sections on d P  and dH, respectively. We call (R, Q) a section pair. Consider 

tuples Dv = ((r1, ql), (rz, qz)) and Dv' = ( ( d ,  ql'), (7-2/, qzl)), where (r1, ql), (7-2, q2), (TI', q1') 

and (rZ1, q2') are visible configurations. We say that Dv is similar to Dvl if there exist two 

section pairs (Ril, Qjl) and (Ri2, Rj,) such that rl, r l t  E Ril, 7-2, r2' E Ri2, 41, qI1 E Qjl and 

q2, q2' E Qj2. This relationship can be extended to a relation on search states. Let C be a 

contamination string. Let D and Dl be two search states such that D is a concatenation 

of Dv and C and D' is a concatenation of D,' and C. We say that D and D' are similar 

if Dv and D,' are similar. This "similar" relation partitions the search space into a set of 

equivalence classes of the form ((I&,, Q j2 ), (Rjl , Qj2), C) . 
Note that a section pair (I&, Qj) can be simply represented by (i, j) ,  and there are 4 

section pairs adjacent to it, i.e., ( i+  1 (mod nl),  j), (i - 1 (mod nl),  j), ( 2 ,  j + 1 (mod n2)), 

and (i, j - 1 (mod nz)). 

We show the possible equivalence classes in Figure 5.16. In the figure, R, R', R", Q, Q' 

and Q" are sections while C'C" and C'C"Ct" are the contamination strings for a particular 

class. One special situation which is not shown in the figure is where a section is a reflex 

vertex as a degenerate case. Note that for the four equivalence classes in the second row in 

the figure, Type 2 and Type 3 moves are possible. 

In order to study the properties of equivalence classes over the search space, we super- 

impose a grid over the VD of a 1-hole polygon, defined by the critical points. In this grid, a 

section pair (R, Q) is represented by a rectangle defined by the grid element corresponding 

to R on d P  and to Q on dH,  respectively, and infinitely many copies of this grid obtained 

by shifting by klldPJ horizontally and kzldPl vertically, where kl and k2 are integers. In 

what follows, we normally concentrate on one copy corresponding to the situation when 

kl = k2 = 0 .  

We call such a rectangle Box(R, Q) in the following. If Box(R, Q) intersects the white 

area of the VD, then we call the intersection a core cell of Box(R, Q) and denote it as 

CC(R, Q). Box(R, Q) and CC(R, Q) are similar to the vertically and horizontally convex 

box (VHC) and the VHC core, respectively, introduced by Simov et al. [loo] and LaValle et 
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The clockwise direction 

P H 

Q" 

C" C"' 

R" RH Q ' 

((R',Q'), (R",QW), C'C") ((R',Q'), (R",QU), CIC"C"') 

((R,Q'), (R,QN), C'C") ((R,Q'), (R,QW), C'C"C"') ((R',Q), (R",Q), c'c") ((R',Q), (RW,Q), C'CWC"') 

Figure 5.16: Different equivalence classes induced by the similarity among section pairs. 

al. [67, 681. 

Figure 5.17 shows Box(R, Q) and CC(R, Q) for a section pair (R, Q). For the polygon 

and its VD shown in Figure 5.8, we show its critical points in Figure 5.18 (a). Consider the 

critical points ata and at3 on d P  and the critical points bf2 and bf3 on dH. Those critical 

points are due to the ray end points and the bitangent from reflex vertices bfl and atl. 

Let R = dPc.(af2,  at3) and Q = dHcw(bf2, bf3). We show section pair (R, Q) in Fig- 

ure 5.18 (a) and its rectangle box and core cell in Figure 5.18 (b), respectively. 

A CC(R, Q) has a nice property. It is called the vertical and horizontal convexity [loo], 
which tells us that for every r E R, the set {ql(r, q) E CC(R, Q)) is a single connected 

non-empty interval and for every q E Q, the set { r  1 (r, q) E CC(R, Q)) is a single non-empty 

interval. In the following we prove this property using our notation. 

Lemma 5.4.1 Consider the grid over the VD of a 1-hole polygon. Let Box(R, Q) be a grid 

element. If CC(R, Q) is not empty, then it has the vertical and horizontal convexity. 
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Figure 5.17: Box(R, Q) and its core cell. 

Proof If at  least one of R and Q is a reflex vertex in the degenerate case, then the CC(R, Q) 

degenerates to a point or a vertical or horizontal line segment. The lemma follows trivially. 

Now suppose that neither R nor Q is a reflex vertex. No point within R or Q can be a 

critical point (and a reflex vertex). See Figure 5.15. 

We consider the horizontal convexity here. The vertical convexity is dealt with similarly. 

Let R = aPm(rl, r2),  where both rl and r;! are critical points, and let Q = aHcw(qll q2), 

where both ql and qa are critical points. Recall that in Chapter 2, the gray areas in VOD 

(VD, in this context) are due to reflex vertices. In particular, for any gray area due to a 

reflex vertex, there is a curved side. See Figure 2.4. This curved side is convex toward the 

interior of the gray area, as discussed in Section 2.3. 

Consider Box(R, Q) for a section pair (R, Q). As discussed above, no reflex vertex can 

be within R or Q. This means that the rectangle representing Box(R, Q) can only overlap 

with a gray area on its curved side, if such an overlap exists. Since the curved side is convex 

toward the interior of the gray area, the part of the gray area within the rectangle must be 

concave toward the interior of CC(R, Q). 

The rectangle may overlap several gray areas. But each overlap results in a concave gray 

area, as the one discussed above on the shape of CC(R, Q). The lemma then follows. Note 

that the gray area in CC(R, Q) may come from the same contiguous gray area. 
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Figure 5.18: A section pair and its rectangle box and core cell. 

Now it is easy to see that if there are gray areas and white area inside Box(R, Q), then 

the gray areas only occupy some of the four corners of the rectangle. Thus CC(R, Q) always 

consists of a single white area inside Box(R, Q). 

Consider Box(R1, Q1) and Boz(R2, Q2). We connect a white point in CC(R1, Q1) to 

a white point in CC(R2, Q2). If the slope of the line segment connecting those two points 

is positive, then it is easy to see that at this moment the two beams of the flashlights are 

independent. On the other hand, if the slope is negative, the two beams are cooperative. 

This situation is shown in Figure 5.19. 

If the line segment is vertical or horizontal, then we have the situation where R1 is equal 

to R2 or Q1 is equal to Qg. In this case, the two beams is either independent or cooperative. 

Another special case is where one or both the sections in a section pair can be a reflex 

vertex. In this case, we still say that there is a corresponding rectangle box but its area is 

zero. 

It  is easy to see from the definition of a core cell that if Dl and D2 are two search states 

contained in the same equivalence class of the search space, then a Type 1 move suffices to 
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Figure 5.19: The relationship between two core cells. 

change from Dl to D2, or from D2 to Dl. On the other hand, Type 2 and Type 3 moves 

can change a search state in an equivalence class to a search state in another equivalence 

class. 

5.5 Search graph of the visibility space 

We define a directed search graph G, = (V,, E,) to capture the equivalence classes of the 

search states. Each equivalence class in the search space is represented by a vertex in V,. 

The set of edges, Es, consists of all the pairs (v', v") such that there is a move from some 

search state in v' to some search state in v". 

A vertex v E V, is called a starting vertex if the equivalence class represented by v 

contains a starting search state while a v' E Vs is called a goal vertex if the equivalence class 

represented by v' contains a goal search state. A legal path is a path in G, from a starting 

vertex to a goal vertex. 

Lemma 5.5.1 For a 1-hole polygon, there exists a legal schedule i n  the search space i f  and 

only if there exists a legal path i n  G,. 

Proof Suppose that there is a schedule a in the search space of the polygon from a starting 



CHAPTER 5. SEARCHING I-HOLE POLYGONS 

search state to a goal state, such that a consists of moves defined above. 

The schedule can be partitioned into subschedules 00, all .  , a k ,  where each ai is a 

sequence of search states within the same equivalence class vi (0 5 i 5 k). Since a 0  begins 

from a starting search state, vo is a starting vertex in G,. For the intermediate subschedules, 

the transition from ai-1 to ai corresponds to a move, which means that vi) E E,. Now 

connecting the vertices vi using the edges between them and considering that a,, ends in a 

goal search state (which means that vk is a goal vertex in G,), we have a legal path in G,. 

Conversely, suppose that there exists a legal path vo, vl, . . , vk, where vo is a starting 

vertex while vk is a goal vertex. We consider how to convert this path into a legal schedule 

in the search space. Since vertex vo is a starting vertex, we can find a starting search state 

sb in the equivalence class represented by it while since vertex vk is a goal vertex, we can 

find a goal search state s i  in the equivalence class represented by it as well. Furthermore, 

since vi), where i = 1,. . . ,k, belongs to Es, it follows that there exists a move (could be 

of any move type) which changes search state s " ~ - ~  in vi-1 to search state sti in vi. Within 

the same equivalence class represented by vi, where i = 0, - .  . , k, we select a sequence of 

search states that starts at  si and ends at sy (Note that we have already selected sb for vo 

and sc for vk as above, respectively.), and use a Type 1 move for the two searchers to move 

from each search state to the next in this sequence. We denote this sequence as di, and 

construct a schedule by concatenating ato, all, - , atk together. The schedule starts from 

a starting search state and ends at a goal search state. Therefore, we have obtained a legal 

schedule in the search space. I 

The above proof is similar to the one proposed by Simov et al. [loo]. 

Suppose that the two section pairs and contamination string in the equivalence class 

represented by a goal vertex vk are (Rill Qjl), (Ri2, Qj2) and C,  then C contains all "0"s 

and CC(Rill  Qjl) and CC(&,, Qj2) are separated by the distance JdH(  horizontally and 

by the distance JdPI vertically in the VD of the polygon, reflecting the fact the two beams 

have met after the searchers have gone around the 1-hole polygon in the generally opposite 

direction. Note that for 0 5 i 5 nl  - 1, Ri appears infinitely many times with period IdP(. 

Similarly, for 0 5 j 5 n2 - 1, Qj appears infinitely many times with period IdHI. Though 

there are an infinite number of sections (due to the circularity of d P  and dH), the number 

of different sections is finite. As commented earlier, we only consider the area of VD that is 

in the range [0, (dH(]  on the horizontal axis and in the range [0, JdPI] on the vertical axis. 
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Thus, each vertex in Gs can be described by ((il ,  jl), (22, j z ) ,  C),  where 0 I ill i 2  I nl  - 1 

and 0 I j l , j 2  I n 2  - 1. 

5.6 Time complexity for finding a legal schedule 

We construct graph Gs which represents the equivalence classes of the search states and 

perform a breadth-first search (BFS) on it to find a legal path. If such a path exists, then 

the corresponding 1-hole polygon is searchable and the path can be converted into a search 

schedule for the two searchers [99, 1001. 

To analyze the time complexity, suppose that aP and aH together contain n vertices. 

There can be at  most O(n) sections. We need at most O(n log n) time to calculate all the 

critical points due to the reflex vertices and the ray end points from them [12]. As for the 

critical points due to bitangents, since there are n vertices, the total time to determine them 

is 0 (n2 ) ,  i.e., we need to check pairwise reflex vertices on aP and aH. 

Note that, as discussed before, a section pair (Ri, Qj) can be simply represented by (i, j ) ,  

and there are 4 section pairs adjacent to it, i.e., (i + 1 (mod nl),  j), (i - 1 (mod nl),  j), 

(i, j + 1 (mod n2)), and (i, j - 1 (mod n2)). 

For section pairs, we maintain a 2-dimensional array indexed by (i, j), where i = 0, . . . , 
n l  - 1 and j = 0,. ,n2 - 1. Access time to this array is O(1). We can also immediately find 

the adjacent section pairs from the indices, as discussed above. Each element in this array 

points to a structure which contains the information for the i th section and j th  section on 

aP and aH, respectively. 

There can be 0 ( n 2 )  section pairs. For two section pairs represented by (ill jl) and 

(i2, j2), we can evaluate in O(1) time whether there exist a visible configuration (rl, ql) E 

CC(Ril , Qjl ) and a visible configuration (r2, q2) E CC(Ri2, Qj2) [loo]. This is equivalent to 

checking whether two section pairs could be an equivalence class together with a contamina- 

tion status, i.e., a vertex in G,. Consider all the possible choices of ill jl, i2, and j2. Since 

the number of this combination is at  most 0(n4) ,  so the vertex set of G, can be constructed 

in 0 (n4 )  time and there are 0 (n4 )  vertices in it. This vertex set can be maintained in a 

4-dimensional array (constructed from the above two Zdimensional arrays). Each element 

in the array points to a data structure which stores a set of contamination strings that are 

possible with the two section pairs. Each contamination string points to a set of neighbor 

vertices in G,, determined as described below. A tuple ((ill jl), (i2, j2), C)  can be accessed 
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in O(1) time in this array. 

Since the move of the searchers (except for the beam head jumps. See below for more on 

this.) must be continuous, for a given element in this 4-dimensional array, there are only a 

constant number of adjacent elements (and a small number of possible contamination strings 

in these elements) in the array, i.e., the searchers can only move from the current search 

state to the adjacent search state (discussed above) contained in these elements. In order to 

construct the edge set of G,, we need to check for each element in the 4dimensional array the 

possible moves from one of the equivalence classes in it to an equivalence class in the adjacent 

elements in the array. If the destination equivalence class has the same contamination string 

as the source equivalence class, a Type 1 move is involved. Otherwise, a Type 2 move is 

employed. In both cases, we need a constant time to make such a decision [loo]. For 

instance, when a Type 2 move is involved, we only need to check whether the change of the 

contamination string from the source equivalence class to the destination equivalence class 

is consistent with the contamination status change for a Type 2 move. Clearly this can be 

done in constant time. Since we need to do this for a constant number of times for a given 

element, the total time for constructing the edge set under the Type 1 or Type 2 moves is 

0 ( ~ 4 ) .  

Type 3 moves cause beam head jumps. So the main goal is to decide whether there 

is a feasible jump between a pair of source and destination search states. Let v1 be the 

equivalence class represented by ((ill, ji), (ih, ji), C1) and let v2 be the one represented 

by ((if ,  j;), (i3, ji), C2). v1 and v2 can be identified in the 4dimensional array in O(1). 

Suppose that the beam head jumps on d H .  According to [100], we first identify the jump 

intervals. Consider one section R;, (= R&) on d P  and two sections Q;, and QL on d H .  

Let (pl,p") E R!, be a maximal interval with the property such that for every p E (pt,p"), 

there is a jump for the beam head from ql E Qil to q2 E Q:,. (pt,p") is called a jump 

interval and we use it to group equivalent jumps. The number of jump intervals is 0 (n2 ) .  

Given a jump interval, Ri l l  Q;, , Q!, are fixed, and there are 0 (n2 )  possible elements for 

ih (= i3) and j!j (= j i ) .  We need to check the possible edges from these elements in the 

4dimensional array. This can be done by further identifying different areas on the VD of 

the polygon. The total time for constructing all the possible edges in this case is 0 (n4)  [loo]. 

Note that the neighboring elements may not be the adjacent ones of the given element in the 

4-dimensional array. However, there are a constant number of such neighboring elements in 

G, for a given element. For the detailed analysis, a reader is referred to [loo]. 
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Therefore, we can construct the edge set of E(Gs) in 0(n4) ,  whose size is 0(n4)  as 

well 199, 1001. The time complexity for performing BFS on G, is O(IV,I + I EsI) = 0(n4).  

Note that though the search setting where both searchers move on d P  is treated similarly 

(in the moves) to the one where both searchers move on dH,  the class of 1-hole polygons 

searchable in the former setting could be different from the one in the latter setting. 

5.7 Some examples 

We show some simple examples using the graph-based search approach we have presented 

above. 

Figure 5.20: The 1-hole polygon in Figure 5.6 with relevant configurations indicated. 

In order to make a simple presentation, we just use configurations in the search states 

in the following to describe the moves of the two searchers. The 1-hole polygon shown in 

Figure 5.20 is the same one as shown in Figure 5.6, with critical points indicated (we only 

label the relevant points). There are four deadlocks formed by the pairs of vertices a2 and ba, 

a6 and b6, a l l  and blo, and a23 and b19. The first three deadlocks are located quite close to 

one another. We consider the situation where both searchers move on dH. In the following 

discussions, the first searcher always tries to move in the general clockwise direction while 

the second searcher always tries to move in the general counter-clockwise direction. Note 
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Figure 5.21: Searching the 1-hole polygon in Figure 5.6. 

that sometimes it is necessary for them to move in the opposite direction from their general 

travel directions in order to work cooperatively. 

We now show how to clear this 1-hole polygon using the moves discussed above when 

the two searchers move on d H .  We use Figure 5.21 for our reference. Note that in the figure 

we have deleted the dashed curves in order to generate a clear illustration. 

Suppose that initially the two searchers are both in configurations (all, blo) and the 

area in between them is clear, as shown in Figure 5.10. We show this initial situation in 

Figure 5.21 (a). The next move for the second searcher is to configuration (al3, blo). We 

keep the first searcher stationary. We then keep the second searcher stationary and move 

the first searcher to configuration (al3, blo) . 
After this, the first searcher moves to configuration (al5, blo) and then to configuration 

(al5, bll) . The first searcher continues her move to configuration (al3, b12). At this moment, 

the contamination status (represented by the contamination string in a search state) is shown 

in Figure 5.21 (b). The area formed by blo, bll ,  bla and the beam from the first searcher 

is clear. Then the first searcher rotates her flashlight left to configuration (all, b12)  After 

this, the first searcher keeps moving along d H  until she is in configuration (all, b13). She 

next advances to the next configuration (all, b15). Then she moves to the next configuration 

(a6, bls) and continues to configuration (a2, b14). We show the contamination status at this 
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moment in Figure 5.21 (c). 

After this, we start moving the second searcher while keeping the first one stationary. It 

is easy to see that the reflex vertices on aH between b2 and blo in the clockwise direction will 

not pose any difficulties to the second searcher. Eventually, by following the configurations 

between b2 and blo, the second searcher is able to reach configuration (a2, b2). This is shown 

in Figure 5.21 (d). Note that at this moment the first searcher is in configuration (a2, b14) 

while the second searcher is in configuration (a2, b2). 

By following configurations (a3, b16), (a6, b14), (ag, b15), and (all, b15), the first searcher 

can reach configuration (al7, b17). Eventually, the first searcher can reach configuration 

(azl, b18). Using the same rationale, the second searcher can eventually move to configura- 

tion (~27,  b24). Right now the contamination status is shown in Figure 5.21 (e) 

We keep the first searcher stationary while moving the second one. It is easy to see that 

after moving through a series of configurations, the second searcher can reach configuration 

( ~ 2 3 ,  bz2), as shown in Figure 5.21 (f) . We then keep the second searcher stationary while 

moving the first one. It is also obvious that after moving through some configurations, the 

first searcher reaches configuration (aas, b19) and the contamination status at this moment 

is shown in Figure 5.21 (g). 

Finally, the first searcher moves to configuration (az3, bz2) where the second searcher 

is currently at. The contamination string at this moment contains all "O"s, as shown in 

Figure 5.21 (h). The 1-hole polygon has been cleared by the two 1-searchers. 

On the other hand, the polygon shown in Figure 5.22 is not searchable by two 1-searchers. 

We show all the configurations for the polygon (we only label the relevant points). We 

consider the situation where the two searchers move on aH.  Initially the two searchers are 

in configuration (a4, b2). We set that the first searcher moves in the clockwise direction while 

the second one moves in the counter-clockwise direction, similar to the above situation. 

In the starting search state, the area (its size is zero) between the two beams from the 

flashlight of the two searchers is clear while the area around them is also contaminated. 

The general goal of the two searchers is to enlarge this area as large as possible. There are 

three deadlocks in the polygon. When clearing a deadlock, in order to maintain the existing 

cleared area, the two searchers need to work together to move through the corresponding 

configurations. This is shown in Figure 5.21 where the searchers tried to clear the deadlock 

formed by vertices a23 and blg. 

We mark three general positions, X, Y and Z in Figure 5.22. Note that these positions 
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Figure 5.22: The non-searchable 1-hole polygon in Figure 5.5 with relevant configurations 
indicated. 

might not correspond to configurations. After clearing the deadlock formed by vertices 

a4 and b2, the first searcher moves to position Y while the second one moves to position 

X. The area between the two beams from the flashlights of the searchers in the clockwise 

direction from the second searcher to the first one is clear while the rest of the polygon is 

contaminated. 

Now in order to clear the deadlock formed by vertices a12 and bg, the first searcher 

needs to move through the configurations generated by this deadlock. No matter how she 

tries, the cleared area becomes recontaminated, which invalidates the previous efforts. On 

the other hand, if the first searcher keeps stationary while the second searcher moves, we 

have a similar situation where she tries to move through the configurations generated by 

the deadlock formed by vertices a20 and bls. The two searchers might meet in position 2, 

but all the previous efforts are wasted. They have to start again. This situation means that 

there is a loop inside graph Gd and there is no path going out of this loop. The two searchers 

keep moving without making any progress towards the goal that the contamination string 

contains all "0"s. 

It should be pointed out that there can be many starting search states when clearing a 

polygon by two searchers. But for the particular polygon shown in Figure 5.22, no matter 
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where the searchers start their search, the searchability of the polygon does not change. 

Also in general, there could be some loops in search graph G,. But the existence of such 

loops is harmless, in terms of the searchability of the polygon, as long as there is path out 

of them. 

5.8 Discussions 

We are not satisfied with the result we report here, since we have employed the similar 

approach proposed by Simov e t  al. [99, 1001. 

Originally we planned to characterize a 1-hole polygon that is searchable by two 1- 

searchers. The intuition behind it is based on the observation made regarding Figure 5.6. 

We have attempted to find a sequence of consecutive deadlocks that satisfy a condition 

enabling them to be cleared in a collective way. It is easy to see that if there are three such 

deadlock sequences in a 1-hole polygon, then it is not searchable. The deadlock sequences 

play a similar role to the deadlocks in Figure 5.5. However, it eventually turned out that 

a precise definition of such a deadlock sequence was really hard to obtain. After having 

attempted for quite a while, we had to abandon our efforts. But definitely, this will be 

our next task. We conjecture that the 1-hole polygon search problem by two 1-searchers is 

easier than its general counterpart without a hole, if we assume weak visibility, and thus it 

might be easier to obtain the characterization of such a class of searchable polygons. 

Before dealing with the 1-hole polygon search problem, we had investigated the room 

search problem by two 1-searchers, trying to characterize the class of searchable polygons. 

Unfortunately, our attempts have not succeeded so far. 
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Conclusion 

Visibility obstruction diagram (VOD) and its variations of a polygon capture the visibility 

information hidden in a polygon. They represent the inherent relationships between the 

searchability of a polygon and its geometric characteristics. Previous work using this infor- 

mation, though successful, focused only on the searchability of a polygon. In contrast to 

this, we have shown that the information provided in the diagram not only helps us decide 

the searchability of a polygon but also assists us to characterize the class of polygons under 

different search models. In addition, it is easy to see that, using this information, the char- 

acterization of the searchable polygons under different search models is more concise than 

that in the previous work in terms of the analysis process and understandability. 

6.1 Brief summary of polygon search problems 

Here we give a brief summary of our current knowledge regarding the polygon search prob- 

lem. In Table 6.1, each column represents a variant of the polygon search problem while each 

row corresponds to a search model. The following variants are considered: street (corridor) 

search problem, room search problem, polygon (no restrictions on the vertices of a polygon) 

search problem, and 1-hole polygon search problem. We consider the following search mod- 

els: one oo-searcher, one boundary 1-searcher model, one non-boundary 1-searcher model 

(the searcher can move away from the boundary), two guards (with the requirement of mu- 

tual visibility) model, two boundary 1-searchers model, and two non-boundary 1-searchers 

model (the searches can move away from the boundary). 
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Table 6.1: A brief summary of polygon search problems. 

One co-searcher 
One boundary 1-searcher 

One non-boundary 1-searcher 
Two guards 

Two boundary 1-searchers 
Two non-boundary 1-searchers 

In each cell in the table, Yes means the corresponding search problem under the par- 

ticular model has been solved. Impossible shows that the problem cannot be solved under 

the model. An A inside a cell means that there is a polynomial algorithm for checking the 

searchability of the polygon under the specific model while a C indicates that a characteri- 

zation of the class of searchable polygon for the problem has been obtained. 

6.1.1 One m-searcher model 

Street 

Yes (A,C) 
Yes (A,C) 
Impossible 
Yes (A,C) 
Yes (A) 
Yes (A) 

In many search problems, it has been proved that the power of an co-searcher is equivalent 

to that of a 2-searcher [73, 91, 1151. 

Crass et al. [33] considered the problem of an co-searcher searching a corridor. Both an 

algorithm for checking the searchability and a characterization were obtained. 

Lee et al. [73] discussed the model for searching a room. Again both a checking algorithm 

and a characterization were obtained. 

As for the simple polygon search problem under this model, Park et al. [91] proposed a 

checking algorithm and a characterization of searchable polygons. Guibas et al. [55] obtained 

a graph-based algorithm for checking the searchability but no characterization was available. 

It is impossible for an co-searcher to search a 1-hole polygon, since the inner polygon can 

be considered as an obstacle, and the intruder can always hide from the visibility polygon 

generated by the flashlight with 360' visibility. 

6.1.2 One boundary 1-searcher model 

Room 

Yes (A,C) 
Yes (A,C) 
Impossible 
Yes (A,C) 
Yes (A) 
Yes (A) 

No previous work has specifically discussed the one boundary 1-searcher for the street search 

problem. But there are some discussions in [74]. Refer to the discussions in Section 1.3.4. 

The papers [74, 1081 discussed one boundary 1-searcher in the room search problem. It 

Polygon 

Yes (A,C) 
Yes (A,C) 
Impossible 

Yes (A) 
Yes (A) 
Yes (A) 

1-hole polygon 

Impossible 
Impossible 
Impossible 
Impossible 

Yes (A) 
Impossible 
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appears that these two papers developed two different sets of conditions for a room to be 

searchable. It  would be interesting to compare them in terms of the equivalence of the two 

sets. Both searchability checking algorithms and characterizations were obtained in these 

work. 

The one boundary 1-searcher model was studied originally by Suzuki and Yamashita [106], 

who first proposed some necessary conditions for the problem. 

Park et al. [go] studied the problem and so did Tan [log]. However, again, both pieces of 

work proposed two different sets of conditions. No work has been published for checking if 

the two sets are equivalent. Both work obtained the searchability checking algorithms and 

characterizations. 

LaValle et al. [67, 681 proposed a graph-based algorithm for checking whether a poly- 

gon is searchable. However, no characterization was obtained. See the original paper and 

discussions in Chapters 1 and 2. 

As for 1-hole polygons, it is impossible to search them since an intruder can always move 

just behind or ahead of the flashlight beam. Since the speed of the intruder is alway faster 

than the speed of the beam rotation and the move of the searcher, there is no way that the 

intruder can be detected. 

6.1.3 One non-boundary 1-searcher model 

In this model, in order to distinguish it from the one boundary 1-searcher model, we require 

that the searcher not always stay on the boundary, i.e. at  least for sometime, the searcher 

have to move into the interior of a polygon. 

First we can see that no matter whether the 1-searcher should not always stay on the 

boundary or not, there is no way for her to clear a polygon with one hole since the intruder 

can move behind or ahead of the flashlight beam. 

For the other three situations, i.e., street search, room search, and general polygon 

search, even though we put impossible in the three cells in the table, there are still subtle 

differences, as discussed below. 

Recall that we consider two definitions of mutual visibility between two points. In 

Chapters 2, 3, and 4, we have used the definition which is depicted in Figure 1.2. This 

definition allows the line segment between two points to graze on a reflex vertex or an edge 

of the polygon. Under this definition and the requirement from the model, we can still find 
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A room A polygon 

Figure 6.1: Searching under the one non-boundary 1-searcher model. 

some streets, rooms and general polygons that are searchable. For instance, we show in 

Figure 6.1 a searchable street, room and general polygon. Note that at  the reflex vertex 

r, the searcher moves away from the boundary while keeping the beam head stationary. 

Afterwards, the searcher clears the "pocket" area as indicated by A and the rest of the 

polygon. 

However, in Chapter 5, we have used a different definition, as shown in Figure 5.1. If the 

line segment between two points graze on a reflex vertex or an edge, then the two points are 

not mutually visible. It is easy to check that it is impossible for a non-boundary 1-searcher 

to search the street, the room and the general polygon in Figure 6.1 under this visibility 

definition and the requirement from the model, since the searcher has to always stay on the 

boundary. 

6.1.4 Two-guard search model 

Icking and Klein [57] discussed the two-guard street problem. Different variations were 

explored. They proposed algorithms for checking whether a street was searchable in each 

of these variations. They obtained a characterization for each variation. The problem was 

further discussed by [15, 56, 1101 in other directions. 

Park et a2. [89, 931 discussed the two-guard room search problem. They obtained both 

an algorithm for testing the searchability of a room and a characterization of a searchable 

room. 

As for the general polygon problem, the two guard must clearly stay on the boundary. 

The only difference of this model from the one boundary 1-searcher model is that no beam 

head jump is involved. This means that a legal path cannot cross any bone in the SVOD. 
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Hence the searchability can be easily tested using the SVOD. For instance, by requiring 

that no bone-crossings be allowed in the SVOD (See Chapters 1, 2 and 4.) of a polygon, 

we can check whether a polygon is searchable by two guards. 

Two guards with the mutual visibility requirement cannot search a polygon with a hole, 

since any intruder can just follow the beam segment without being detected. 

6.1.5 Two boundary 1-searchers model 

To our knowledge, no results have been obtained for the two boundary 1-searchers model 

applied to the street and room search problem. We have applied the model on the room 

search problem, looking for a characterization of the class of searchable streets and rooms. 

But it eventually turned out that our attempt was not successful. We consider that by using 

the approach proposed by Simov et al. [99, 1001, we could find an algorithm for checking 

whether a street or a room is searchable under this model. The search graph would be smaller 

for these two situations than that for the situation where a simple polygon is considered 

since certain edges in the graph are deleted. However, a characterization of such a class of 

searchable streets and rooms is still at large. 

Simov et al. [99, 1001 discussed the problem of searching a polygon using two 1-searchers. 

In their work, the two searchers are not required to stay on the boundary of the polygon. 

Considering that they converted this setting to the one where both searchers always move 

on the boundary by introducing canonical in fomat ion  states, their result is actually an 

algorithmic solution to the problem that two boundary 1-searchers search a polygon. But 

no characterization has been ever obtained. 

In this thesis, we have discussed the two boundary 1-searchers for searching a 1-hole 

polygon in Chapter 5. Originally, we considered that our problem in this setting could be 

easier than the problem attacked by Simov et al. in [99, 1001. But it appeared that this 

was not the case. We have proposed an algorithmic solution to the 1-hole polygon search 

problem by two boundary 1-searchers. But again our attempt for a characterization of the 

class of searchable 1-hole polygons under this setting failed. 

6.1.6 Two non-boundary 1-searchers model 

We have not seen any work discussing the two 1-searchers model used to search a street 

or a room. But we consider that the approach proposed by Simov et al. is still valid to 
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obtain an algorithm for checking whether a street or a room is searchable by two non- 

boundary 1-searchers model. We believe that the search graph would be smaller for these 

two situations than that for the situation where a simple polygon is considered. However, 

a characterization for the searchable streets or rooms is still not available. 

As discussed above, the original problem investigated by Simov et al. [99, 1001 was for 

the setting that the two 1-searchers searchers are not required to stay on the boundary of 

a polygon to search it. They proposed a graph-based algorithmic solution for checking the 

searchability of a polygon. But no characterization has been obtained. 

As for the two non-boundary 1-searchers model on a 1-hole polygon, again we have not 

seen any result so far. 

We believe that as the number of searchers is increased, the complexity of search problem 

in different settings is increased as well. Sometimes it is extremely hard to conduct a 

complete and concise analysis for these settings. 

6.2 Recent results on visibility obstruction diagram 

In our thesis, we have made heavy use of the visibility obstruction diagram to help us tackle 

different search problems. Since its first proposal [67], there have been some further studies 

along this direction. 

Simov et al. [99, 1001 attempted to generalize the approach to the search problem by 

two 1-searchers (not required to be boundary searchers). Lee et al. [75] generalized the 

basic idea of visibility obstruction diagram to the visibility relationships between vertices 

and edges of a polygon instead of pairs of boundary points. Kameda et al. [59] used the 

diagram to help solve the on-line search problem by a 1-searcher. 

It appears that the studies of the diagram for the one boundary 1-searcher model are 

abundant. However, to the best of our knowledge, generalization of diagram for the two 

1-searchers by Simov et al. is the farthest attempt at this moment. We believe that as the 

number of searchers is increased, the complexity of using this type of diagram is greatly 

increased. A new tool based on a similar idea might be in great need. 
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6.3 Our contributions 

6.3.1 Room search problem 

The room search problem is the first problem we investigated in this thesis. Though the 

problem has been looked at before, the previous analysis is quite lengthy and tedious and 

is very hard to understand. 

As has been shown, the application of VOD to the room search problem reduces this 

difficulty. We believe that our proof of the characterization of a searchable room by two 

mutually visible guards is very simple and easy to follow, and it can be readily adapted to 

deal with the room search problem by a 1-searcher. 

We have related the LR-visibility of a room and its searchability, making it possible to 

check the searchability of a room in linear time. 

We have further extended the VOD of a room to solve the Find-all-doors problem. 

6.3.2 Polygon search problem 

We have again successfully applied the VOD of a polygon to investigate the search problem 

by a 1-searcher. We believe that by making use of the information hidden in the VOD, our 

characterization of a searchable polygon by a 1-searcher is much easier to understand. The 

intuition behind the searchability is much more apparent. 

In addition, the VOD helped us explore the relationship between a searchable polygon 

and a searchable room. We have presented an example showing that a searchable polygon 

does not necessarily contain a door such that the resultant room is searchable. 

Unfortunately, our attempt to reduce the time complexity of checking the searchabil- 

ity was not successful. However, we have related the LR-visibility and 1-searchability of 

a polygon. We hope that by relating those two important characteristics of a polygon to- 

gether, we can take advantage of the nice properties of an LR-visible polygon in our further 

explorations of the polygon search problems. 

6.3.3 Searching a 1-hole polygon 

Due to the increasing complexity when we increase the number of searchers in our search 

model, we have started our investigation into a relatively simple but yet still challenging 

search problem by two 1-searchers. Though we are not successful in characterizing the class 
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of searchable 1-hole polygons, we conjecture that deadlock sequences can shed light on the 

problem. 

6.4 Possible future work 

6.4.1 K-link visibility space 

Essentially if two boundary points are visible to a common point in a polygon (including 

one of the two points themselves), we say that those two points are %link visible. This 

definition can be generalized to the K-link visibility. 

Consider a search model in which we have 3 searchers searching a polygon. Two of them 

are moving along the boundary of the polygon while the third searcher is moving inside the 

polygon. It is required that the adjacent searchers be mutually visible. It  is not difficult to 

see that if we could represent the 2-link visibility space of the polygon, then the information 

in this space could help us solve the polygon search problem by 3 searchers. 

The situation could be further extended to the search problem by k searchers [41], in 

which there are k searchers working together to search a polygon. 

6.4.2 On-line polygon search problems 

If we are searching a polygon for which we have no h priori knowledge about its properties, 

such as the coordinates of its vertices, and lengths of its edges, we search the polygon on-line. 

On-line polygon search problems have been tried in different directions. However, how 

to use the VOD of a polygon to help us set down our exploration strategy is probably a new 

direction [59]. For example, in the proof of Lemma 3.3.3, we construct a legal path. Can 

we generate a search schedule if we do not know the polygon beforehand? Can we figure 

out the shape of the room using the information we have obtained during our exploration? 

In fact, the same questions are applicable to the polygon search problem by a 1-searcher 

and the search problem by two 1-searchers. 

6.4.3 Randomized polygon search problems 

Some previous work has focused on the randomization of the Art Gallery Problem [53], 

though few papers have appeared on this topic in the polygon search problems. 
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We conjecture that the difficulty of introducing randomization into polygon search prob- 

lem lies in the fact that both the searcher(s) and intruder(s) are dynamic inside a polygon. 

There are too many parameters in depicting their pursuit and evasion strategies. However, 

there is already some work published [13, 531 and we are starting working in this direction. 
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