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Abstract 
Dividing a video into many segments and then broadcasting each segment 

periodically has proved to be an efficient and cost-effective way of providing near Video- 

on-Demand services. Some of the known broadcasting schemes, such as Fixed-Delay 

Pagoda Broadcasting (FDPB), adopt the fixed-delay policy, which requires the user to 

wait for a fixed time before watching a video. Our first broadcasting scheme, the 

Generalized Fixed-Delay Pagoda Broadcasting (GFDPB), based on the fixed-delay 

policy, improves Bar-Noy et al.'s greedy algorithm for the Harmonic Windows Scheduling 

Problem. GFDPB achieves the lowest maximum waiting time among all the known 

protocols using segments of equal duration and channels of equal bandwidth. In 

addition, its performance is very close to the theoretical optimum. Second, we define the 

Harmonic Group Windows Scheduling (HGWS) problem and present a new 

broadcasting scheme to solve it, Harmonic Page-set Broadcasting (HPB), which 

provides the lowest average waiting time of all currently known protocols by using the 

fewest channels for given server bandwidth. Finally, we present a hybrid broadcasting 

scheme, Preloading Page-Set Broadcasting (PPSB), which compromises between the 

average waiting time and the maximum waiting time of HPB. While still providing the 

shortest average waiting time of all known protocols using segments of equal duration 

and channels of equal bandwidth, PPSB achieves much shorter maximum waiting time 

than HPB. Furthermore, PPSB provides a very desirable trade& between the average 

waiting time and the maximum waiting for a given server bandwidth, while guaranteeing 

that its maximum waiting time is only 113 longer than its average waiting time. 
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Chapter One 
Introduction 

With the advancement of broadband networking technology and the increasing 

power of computers, video-ondemand (VOD) has appeared as an important technology 

for many multimedia applications such as news on demand, digital libraries, home 

entertainment, and distance learning. A common VOD service allows remote users to 

play back any video from a large collection stored on one or more servers at the time of 

their choice. 

1.1 VOD System Architecture 

A typical videoan-demand architecture [50] consists of three critical subsystems: 

video servers, high speed wide-area and/or local distribution networks, and user 

populations (see Figure 1.1 for a single user population). A high capacity video server 

can support a large number of video streams and deliver high quality digitized video data 

to clients either over a local LAN or remotely over high speed network connections. In 

addition to providing buffers for video segments periodically delivered from the video 

servers, a set-top box, along with a television monitor and a remote control, enables 

viewers to be connected to a video source (video server); viewers browse through a 

selection of videos, and then receive and display the selected video. Each local video 

server cluster is dedicated to a single user population. It may store a complete or partial 

set of videos from the video collection, work as a proxy server, and/or administer 

admission control before accepting new requests. A remote video server cluster may 

also be archival in nature providing a permanent repository for all videos. The most 



popular videos are replicated and stored on different servers in a local cluster. The 

service from the local cluster is provided over a I A N  such as an ATM LAN, a hybrid fiber 

coaxial (HFC) network, or a Gigabit Ethernet network. 

A remote video 
server cluster or - -. 
an origin server I 

an origin server 

. . ._ .C 

server cluster or 
an edge server 

Figure 1.1 Elements of a VOD system 

The recently published HP open VOD solution for cable [I21 uses Gigabit 

Ethernet to interconnect with video server farms in regional headends where video 

streams are formatted and organized into IANs, and then distributes VOD streams to 

individual subscribers across the existing hybrid fiber coax (HFC) infrastructure. The 

video delivery and management portion of the solution is Kasenna's MediaBase XMP 

[I 31. Small servers are deployed in a distributed server architecture based on the "origin 

server" and the "edge server" (see Figure 1.1) models. The small servers work as both 

proxies and part of servers and are deployed "closer" to end users to address quality, 

bandwidth, and scalability constraints. 

1.2 VOD Protocols 

1.2.1 Unicast Scheme 

The VOD delivery solution currently used by hotels and cable TV companies 

initiates a dedicated channel for each client's request and provides all VCR-like control 



such as forward, rewind, pause, and search [2, 31. Since a video is an isochronous 

medium, a video server has to reserve a sufficient amount of network bandwidth and 

input-output bandwidth for each video stream before committing to a client's request [4]. 

Under a heavy load, the server bandwidth quickly becomes a bottleneck, because the 

growth of the number of channels may never be able to keep up with the growth in the 

number of clients. Therefore, this solution does not scale well and the number of clients 

that can be served simultaneously is limited. 

The Personal Video Record (PVR) service [9] is another recent service. It makes 

a set-top box receive and record selected TV programs for late "ondemand" viewing at 

one's leisure with full VCR-like control; also, it provides VCR-like control over live TV 

broadcasts, where users can pause and rewind the current broadcast. The set-top box 

contains an encoder and a hard disk drive to store recorded programming. Most 

significantly, this set-top box PVR makes no bandwidth demand on the broadband 

service provider's network. However, it is not really a VOD service and indeed it is just a 

TV program recorder. Furthermore, it has many limitations on how much programming it 

can store and how many videos it can record simultaneously (presently at most two); it 

has a risk of hard disk drive failure and a set-top box can only server one TV at a time. 

The limitations of set-top box PVR are resolved by network PVR [9]. Network 

PVR offers users essentially the same functionality as set-top box PVR except that disk 

storages, encoders, and software intelligence are located on video servers in regional 

headends or digital hubs. The network PVR service doesn't require hard disk drives in 

consumer homes, but, cable operators must allocate bandwidth to accommodate the on- 

demand video streams requested from the server. This again leads to the scalability 

problem mentioned above. 



Many alternatives known as near-VOD services have been proposed to tackle 

the scalability problem by sacrificing some VCR functions. The schemes described 

below in this chapter belong to this category. 

One technique to reduce an individual server's load, such as proxy caching (51, 

[6], [7], [8], is to cache streams at various nodes in a network. A proxy is a distributed 

caching scheme to enhance the scalability of web services over the Internet. By placing 

proxies on the edge of a backbone network, the network traffic and server load are 

substantially reduced, as it is often the case that 80 percent of demands are for a few 

(10 to 20) of the most popular videos [ lo] [ I l l .  In the absence of proxy caching, a 

popular video is transferred through the same network link once per request. This results 

in server overload, network congestion, higher latency, and even the possibility of the 

rejection of a client's request as mentioned earlier. Furthermore, proxies can deliver their 

contents over unicast networks and do away with client buffers. 

The limitation of proxy caching is that the temporal distances of the aggregated 

client requests cannot exceed the free buffer size (a temporal distance is defined as the 

interval between any two requests in [6]). If a proxy buffer is not large enough to cache 

an entire movie and the temporal distance between the present request and the earliest 

online request exceeds the free buffer space, the proxy server still needs to initiate a 

unicast server stream for each request [6]. Although [8] has proposed a cooperative 

proxy scheme that dynamically adjusts buffer allocation to give a priority to aggregate 

the requests with short temporal distances and decrease the number of unicast server 

streams, there are still many repeated unicast server streams between each video 

server and a proxy. During peak hours, unicast client streams from each proxy to client 

cost much more bandwidth than multicast schemes or broadcast schemes. Moreover, 

each proxy can only support a small number of clients because of the limitation of each 



proxy's outward bandwidth and storage space; therefore, many proxies are required in a 

VOD system. Another similar technique is to replicate servers with the same content or 

the same popular movie content at various sites in the network. Both of these 

approaches attempt to achieve better scaling by decentralizing the location of a media 

object, but they drive up the cost of providing VOD service substantially. 

1.2.2 Non-Periodic Multicast Scheme 

Multicast is exploited to reduce the number of streams required by a server to 

support a given number of clients. In multicast, a number of requests are grouped 

together according to some scheduling policies and served by a video stream. 

The batching approach was originally proposed in [14]. The basic idea is to delay 

requests for different videos for a certain amount of time so more requests for the same 

video arriving during the current batching interval may be serviced by the same stream. 

The system has limited bandwidth as well as a limited number of available channels, and 

there may be a large number of requests for different video at any time; some requests 

are for popular movies and some are for less popular movies. Therefore, an efficient 

scheduling policy based on the arrival of requests is required to efficiently utilize 

channels [15, 16, 17, 18, 19, 201. 

Two common scheduling policies, first-come-first-served (FCFS) and maximum 

queue length (MQL), are studied in [15]. Under the FCFS policy, requests for all movies 

join a single queue. Once a multicast channel is available or after a batching interval, the 

client at the front of the queue is served as well as all the requests in the queue for the 

same movie. The FCFS policy seems like a fair policy since it selects a movie request 

independent of its popularity ("hot" or "cold"). Under the MQL policy, requests for each 

movie join a separate queue, and the movie with the maximum queue length is selected 



for multicast. One drawback of this policy is that it may choose only hot movies, since 

there are very few requests for cold movies within a short time period. However, MQL 

can better utilize a small server capacity to reduce the overall reneging probability (the 

probability that clients may cancel their requests because of long waits). It is shown in 

[15] that since the MQL policy does not take into account client waiting, the MQL policy 

may not even perform as well as the FCFS policy in terms of reneging probability if the 

reneging probability of a client depends on the amount of waiting. From this point of 

view, the FCFS policy is the preferred policy. 

The maximum factored queue length (MFQ) policy, studied in [17], is an 

improvement to the MQL policy. Under the MFQ policy, whenever a channel becomes 

available, the video with the largest value of qi*Ati is scheduled, where qi represents the 

length of the queue for video i, and Ati is the interval since the last time video i was 

scheduled. If a movie has not been scheduled for a long period time, its priority will 

increase accordingly. Therefore, the MFQ policy guarantees that the starvation of cold 

movies will never occur. In [17], it is shown that the MFQ policy outperforms both the 

FCFS and the MQL policy in terms of the average waiting time if there is no reneging, or 

in terms of reneging probability if reneging exists. The MFQ policy also performs better 

than the MQL policy and is nearly comparable to the FCFS policy in terms of fairness. 

The question of when to launch a new channel best if a channel is available in a 

batching approach was studied in [20]. The authors analyze a number of batching 

schemes and compare client waiting times and system profitability (the number of 

current channels and the number of clients per channel). The first scheme studied in 

[20] is a window-based scheme in which clients are batched for a fixed period of time W 

before they are served, so client delay is bounded by a maximum value W. Since system 

profitability depends on the average number of clients in a batch, window-based 



schemes have good profits if the arrival rate is high, but have poor profits if the arrival 

rate is low. The second scheme is a batch-size based scheme in which the profitability is 

maintained by launching a new channel whenever a certain number M of clients are 

collected in a batch. However, if the request rate increases, the average number of 

channels can grow unbounded. To combine the advantage and lessen the disadvantage 

of the above two schemes, they proposed a third scheme, a self-adaptive scheme, with 

three parameters: 1) a minimum window size, Wmi" in which as many clients as possible 

are batched if the arrival rate is high; 2) a batch-size M which is used to guarantee a 

profitability if the arrival rate is not so high; 3) a maximum windows size, Wmax which is 

used to bound client delay if the arrival rate is low. The last scheme they considered is a 

moving-average scheme in which they force the mean delay of all clients in a batch to be 

equal to a certain average user delay requirement. 

As to the question of how to place a large amount of video contents on a set of 

video servers to optimize the performance of a batching VOD system, a recently 

published paper [33] proposes an optimal video placement scheme. The video 

placement problem is formulated as a modified bin-packing problem which can be 

effectively solved by the hybrid generic approach proposed first in [32]. Given a specified 

blocking probability, the minimum batching interval is derived and the corresponding 

video file placement is obtained while the server capacity usage is minimized by the 

scheme. 

The major drawback of batching schemes is that each client has to wait for a 

batching interval until the request is served and yet the batching interval cannot be too 

short to benefit from multicasting. Thus, clients making early requests are likely to 

renege if they are kept waiting too long. To overcome this problem, a technique referred 

to as a patching scheme [22, 23, 24, 251 or a stream tapping scheme [36, 371 is 



proposed on the top of the batching method. Patching allows a batch of new incoming 

requests to join an on-going multicast and take advantage of the same data channel. In 

this case, video requests are first served by a patching (multicast or unicast) channel for 

the missed portion of a video while simultaneously buffering the rest portion coming from 

the existing multicast. The existing multicast is called regular channel that multicasts the 

whole video. The patching channel plays a video until the starting point of the buffered 

portion of the video, then, the patching channel is released and the client plays from his 

buffer while buffering the future video data from the regular channel. In this way, service 

latency is shortened or eliminated without compromising the benefit of the multicast. 

Since the workload of a patching channel increases as the age of the latest 

regular channel increases, it may be more efficient to start a new regular channel rather 

than continue patching the latest regular channel when the regular channel reaches a 

certain age. [25] presents a proof of this point for VOD patching without service latency, 

and proposes a method to determine the optimal patching window, and calls this 

scheme optimized patching. In this scheme, a patching window is a time period after the 

launch of a regular channel during which patching channels are used. After every 

patching window interval, a regular channel is launched to maximize the data sharing. 

Recently, a new technique called a two-level patching scheme has been proposed [28], 

and the scheme introduces two level patching channels to minimize the server 

bandwidth requirement. Unlike a patching scheme where clients receive streams from at 

most two determined channels, clients in the two-level patching scheme receive streams 

from at most three determined channels rather than two. It is shown in [28] that the two- 

level patching scheme has a significantly lower bandwidth requirement than the 

optimized patching scheme. 



Stream merge schemes [26, 27, 29, 30, 311 belong to another multicast approach 

and are hierarchical dynamic multicast schemes. In stream merge schemes, clients 

receive streams from normally at most two channels at the same time. Later streams are 

repeatedly merged into the former streams for the same movie, leading to a hierarchical 

merging (or patching) structure. The optimal merge trees are also studied in the above 

papers. All the above multicast schemes except [30, 311 focus on immediate service. 

However, [30, 311 study the delay guaranteed system, in which time is divided into 

intervals of unit length. A new stream is launched at the end of an interval if there is at 

least one request in this interval, or no new streams are launched if there are no new 

requests in the interval. It is shown in [30] that the delay guaranteed on-line algorithm is 

much simpler than any immediate service stream merging algorithm, and performs well 

in terms of total server bandwidth usage when the mean inter-arrival time of clients is 

less than the guaranteed start-up delay. 

Another interesting approach is the dynamic skyscraper technique [34, 351. 

Based on the FCFS policy, the approach uses a set of static skyscraper broadcast 

channels, which is introduced in the next section, to broadcast different videos according 

to recently batched requests. Non-overlapping clusters of skyscraper broadcast periods 

are identified, and each cluster can broadcast one video continuously, completely and 

independently. The clusters can then be dynamically scheduled for different videos. If 

the largest segment duration in a skyscraper broadcast is equal to W slots given K 

channels, then each new cluster will begin on channel 0 precisely W slots after the 

beginning of the earliest period in the previous cluster, and the latency in the system is 

fixed and bounded. Some optimization methods, such as new segment size 

progressions and channel stealing, are also studied to address the problem of unused 

channel bandwidth. 



The other related solutions are piggyback schemes [38, 39, 40, 411. Piggyback 

schemes dynamically speed up and slow down client display rates in order to bring 

different streams to the same file position, at which time the streams can be merged. 

However, the maximum rate at which clients can be merged is bounded by the variation 

in viewing rate (typically 5%) which can be tolerated by a client. 

Although some multicast schemes can provide bandwidth savings and introduce 

zero startup delay such as immediate patching, they require more complicated control 

systems and are not as suitable for high request bursts at peak hours. 

1.2.3 Broadcast Scheme 

As mentioned in Section 1.2.1, it is reported that 55% to 80% of the overall 

demands for videos are on a few (10 or 20) very popular videos. Broadcast protocols 

were introduced to efficiently distribute the top ten to twenty videos to provide near-VOD 

service where servers use multiple dedicated channels to broadcast a video 

cooperatively and repetitively. The common idea in these protocols is that the data for 

each video is divided into fragments or segments and these fragmentslsegments are 

broadcast during predefined periods on a set of channels. Clients must be able to 

receive two or more channels simultaneously and must be able to buffer a 

fragmentlsegment that is received before needed for playback. All of these solutions 

assume a static allocation of bandwidth per transmission; thus, bandwidth savings are 

achieved only when client request rates are high. 

A distinct advantage of this approach is that it can serve a very large community 

of users by using minimal server bandwidth. In fact, the bandwidth requirement is 

independent of the number of clients in the system. This makes it scale up extremely 

well. However, broadcast schemes cannot provide an immediate service, and clients 



have to wait until the beginning of a video is broadcast again. As a result, the waiting 

time is a very important factor. Access time can be reduced by repeatedly transmitting 

the whole movie through each of the given multiple server channels, and the multiple 

video streams are staggered evenly across the channels, similar to the Staggered 

Broadcasting scheme [42]. The advantage of this scheme is its simplicity and no local 

buffer space is needed at client sides. However, its access time will be reduced only in a 

linear fashion with increased bandwidth. 

Other approaches to reductions in waiting time are based on partitioning a video 

into segments. In these approaches, clients need to buffer some segments of video in 

their set-top box (STB) while watching other segments. These broadcasting protocols 

are subdivided into three groups according to [51]. The revolutionary Pyramid 

Broadcasting (PB) protocol [43, 441, followed by the Permutation-based Pyramid 

Broadcasting (PPB) scheme [45] and the Skyscraper Broadcasting (SB) scheme 

[46], belongs to the first group. Protocols in this group of schemes partition each video 

into segments of increasing size and broadcast each segment during predefined periods 

on separate channels with equal bandwidth. The periodic broadcast of the first smallest 

segment is the most frequent allowing new requests to begin playback quickly. The 

periodic broadcast of each larger segment is scheduled on a different channel in a 

manner such that a client can always begin receiving the next larger segment during or 

immediately following the broadcast of a given previous segment. Clients need to 

download from at most two channels simultaneously and buffer a segment that is 

received earlier than needed for playback. 

The segment sizes of a video in PB follows a geometrical series [d, ad, d d ,  d d ,  

...I, where d is the size of the first segment, and a is equal to the ratio of the channel 

bandwidth to the video consumption rate (a >I). The drawback of PB is that each video 



segment requires a very high transmission rate, consequently client I10 bandwidth is 

also very high and client side buffers are usually more than 70% of the video program 

length. 

PPB is proposed for addressing the client side issues in PB. PPB is similar to PB 

except that PPB further divides each segment into several blocks and multiplexes each 

segment channel into the same number of subchannels using a time division 

multiplexing method. The subchannels of each segment channel are staggered with 

each other to meet the same timing requirement as in PB. 

If PB, PPB, and SB are compared, SB is the most efficient scheme. In SB, the 

segment size progression denoted as [d, 2d, 2d, 5d, 5d, 12d, 12d, 25d, 25d, 52d, 52d, 

...I (d is the size of the first segment), offers the lowest latency and the client buffering 

space needed is only 20% of that needed by PPB. Moreover, SB employs low- 

bandwidth channels, each of which is at the playback rate. 

Another scheme in the first group called the Fast Broadcasting (FB) protocol 

[47] is even more efficient than PB, PPB, and SB. In FB, a video is divided into 

geometrically increasing segment sizes of [d, 2d, 4d, .... 2K-2d, 2K-1d], where d is the size 

of the first segment. K is the total number of channels (segments), and the channel 

bandwidth is equal to the playback rate, the same as SB. Unlike PB, PPB, and SB, 

where clients need to download from at most 2 channels simultaneously, FB makes 

clients download from all K channels. FB incurs a ~ l ( 2 ~ - 1 )  waiting time, where D is the 

length of a whole video. The extra benefit of FB is that it provides heterogeneous users' 

service in terms of clients' buffer sizes; the larger the buffer size, the shorter the waiting 

time. 

The most efficient scheme in the first group is the Greedy Equal Bandwidth 

Broadcasting (GEBB) protocol [48] which operates in a "greedy" fashion. GEBB 



receives as much of the data as possible from all of the channels immediately after tune- 

in and ceases receiving a segment immediately before playing it. The main difference 

between GEBB and all the above schemes in this group is that a fixed-delay policy is 

used in GEBB in which all clients need to wait for a small fixed delay before watching the 

selected video. The waiting time in GEBB is used to preload the first segment and 

simultaneously downloads part of the other segments rather than just waiting for the 

starting point of the first segment as in other schemes. Given the length of a video and a 

server bandwidth, the waiting time in GEBB approaches fIl(eK-1) as the number of 

channels approaches infinity, where K is the ratio of the server bandwidth to the 

playback rate. GEBB is described in more detail in Chapter 2. 

The second group of schemes is characterized by dividing the data for each 

video into equal-sized segments, repetitively transmitting them in separate channels of 

decreasing bandwidth, and allowing clients to be able to download from all the channels 

simultaneously. The Harmonic Broadcasting (HB) [49] protocol broadcasts each 

segment on a dedicated channel with bandwidth bli, where b is the playback rate and i is 

the segment number (e.g., i= l  for the first segment). The bandwidth assignments for 

each successive segment follow the harmonic series: b, bl2, bl3, bl4, .... In HB a client 

must wait for the beginning of an instance of the first segment before the client can start 

receiving (and viewing) a video. Once the client starts receiving the first segment, the 

client will also start receiving all other channels dedicated to the video. HB can 

significantly reduce clients' waiting time and is proved to be optimal with respect to 

clients' waiting time given a specific transmission bandwidth [52]. 

Unfortunately, HB does not always deliver all data on time [53]. Paris et al. 

proposed the Cautious Harmonic Broadcasting (CHB), Quasi-Harmonic 

Broadcasting (QHB) [53] and Poly-Harmonic Broadcasting (PHB) [54] protocols to 



solve this problem. PHB and QHB are the most efficient in this group of schemes in 

terms of clients' maximum waiting time and average waiting time, respectively, given the 

total server bandwidth. Like GEBB, PHB uses "greedy" downloading and the fixed-delay 

policy. We'll introduce the detail in the next chapter too. The only drawback in this group 

of schemes is that the number of channels tends to infinity for getting a good latency and 

to handle so many channels with decreasing bandwidth is likely to be a daunting task. 

To solve the problem of the HB-based schemes, Paris et al. further proposed the 

Pagoda broadcasting (PB) [55], New Pagoda broadcasting (NPB) [56] and Fixed- 

delay Pagoda broadcasting (FDPB) [57] protocols. They are the third group of 

schemes, which partition each video into a large number of small segments with equal 

size and uses time division multiplexing to periodically multiplex the segments into a 

small number of channels with equal bandwidth equal to the playback rate. To ensure 

that each segment is broadcast at the appropriate bandwidth, these schemes broadcast 

later segments less frequently instead of lowering channel bandwidth as HB-based 

schemes do. 

In 2002, Tseng et al. and Bar-Noy et al. independently published the Recursive 

Frequency-Splitting (RFS) protocol [59] and a greedy algorithm for the harmonic 

windows scheduling problem [58] which packs as many segments as possible into a 

given number of channels with playback rate in a greedy way. To further reduce waiting 

time, Bar-Noy et al. introduced a shifting technique [60] for their greedy algorithm similar 

to FDPB, and their algorithm makes clients wait for a fixed waiting time before playing 

videos. We'll review the details of FDPB, RFS and Bar-Noy's greedy algorithm in the 

next chapter. Given the length of a video D and a server bandwidth, the three schemes, 

GEBB, PHB and FDPB, which all implement the fixed-delay policy, have the same lower 

bound for the maximum waiting time: ~ l ( e ~ - l ) ,  where K is the ratio of the server 



bandwidth to the playback rate. None of the recently known broadcasting schemes can 

achieve maximum waiting times shorter than this lower bound, which we call the fixed- 

delay lower bound. 

To handle the case in which the clients' bandwidth is different from that of the 

server, Paris [57] improved his FDPB to adapt this case at the expense of clients' waiting 

time. A server divides a video into a different number of segments according to the 

clients' bandwidth limitation so that clients can simultaneously receive a limited number 

of channels rather than from all the video channels. Generalized Fibonacci 

Broadcasting (GFB) [61] is also proposed to address this case. Just like GEBB, GFB 

divides each video into segments of increasing size and broadcasts each of them in 

separate channels of equal bandwidth and the waiting time is used to completely 

download the first segment (and some other partial segments). However, unlike GEBB, 

GFB requires clients to download only from a given number of channels simultaneously 

other than from all the channels of a video. GFB, at the expense of the number of server 

channels, is more efficient than FDPB with a client bandwidth restriction in terms of 

clients' waiting time given client and the server bandwidth. 

So far, all the above schemes are for a homogenous environment where all 

clients have the same bandwidth. The HEterogeneous Receiver-Oriented (HeRO) 

broadcasting protocol [62] employs one schedule for all clients with different bandwidths, 

and requires each client to wait until an appropriate time slot (every time slot 

corresponds to a broadcasting duration of the first segment) to start the video. The client 

bandwidth requirement at each time slot is different, so clients can download videos 

according to their bandwidth capacity at the possible expense of waiting time. HeRO 

belongs to the first group of schemes mentioned above. 



1.2.4 Combination Scheme 

In recent years, different combinations of services are also suggested to achieve 

cost-performance tradeoffs. Lee combines unicast and broadcast services in [63], in 

which multicast channels multicast hot movies periodically using the staggered 

broadcasting scheme and unicast channels provide patching channels for hot movies 

requests to reduce waiting time. Therefore, clients need to receive up to two video 

channels simultaneously, and require additional storage to cache part of the video. 

Storage capacity up to the length of the maximum waiting time of the corresponding 

staggered broadcasting schedule in multicast channels is required. Poon et al. [64] 

combines broadcast, multicast and unicast services together, and a video is delivered to 

customers through one of three kinds of channels, broadcast, multicast or unicast, 

depending on whether the video is very hot, hot or cold, respectively. In [64], efficient 

batching techniques for very hot and hot videos are studied while requests for old videos 

are served by dedicated channels and some VCR functions are also considered. 

1.3 Contributions 

In this thesis, we study broadcasting approaches and focus on the third group of 

schemes mentioned above. These schemes are normally used in a local area 

(distribution) network (LAN) to broadcast the top 10 or 20 hot movies. Since it is too 

time-consuming to find optimal solutions, we use heuristic algorithms to get near-optimal 

solutions in this thesis. 

First, we propose a new broadcasting scheme, called Generalized Fixed-Delay 

Pagoda Broadcasting (GFDPB), which is based on the fixed-delay policy and improves 

Bar-Noy et al.'s greedy algorithm for the Harmonic Windows Scheduling Problem [58] as 

well as RFS [59] scheme. In GFDPB, clients need to wait for a small fixed delay to 



preload some segments from all channels simultaneously before watching the movie 

they have selected. Our GFDPB achieves the lowest maximum waiting time of all 

protocols using segments of equal duration and channels of equal bandwidth and of all 

currently known protocols given the same server bandwidth and the same number of 

channels. Furthermore, we present Enhanced GFDPB (EGFDPB) to perfect the overall 

performance of GFDPB when the number of channels is less than 4. Our result shows 

that when the number of channels is larger than 3, the results of GFDPB and EGFDPB 

are almost the same. Also, we analyze and propose an efficient server multiplexing and 

client demultiplexing scheme, and give an algorithm to translate the RFS representation 

for channel schedules used in [59] to the tree representation used in [58]. 

Second, we define the Harmonic Group Windows Scheduling (HGWS) 

problem and then present a new broadcasting scheme, the Harmonic Page-set 

Broadcasting (HPB) scheme, to solve it. The main idea of HGWS comes from my 

senior supervisor Dr. Kameda and his postdoctoral fellow Dr. Yi Sun. Our contributions 

to HGWS are that we use subchannels, a page-set schedule, and a page schedule to 

uniquely describe the problem and work out the slot-level details. A page-set in HPB 

corresponds to a segment in RFS or GFDPB (m=l) and is further divided into many 

consecutive pages. A page is the basic unit of the transmission of a video in HPB and all 

pages of a video have equal sizes and all pages in the same page-set have the same 

broadcasting period. The output of our algorithm is a page list, which is ready to be put 

into our server multiplexing scheme proposed in Section 3.7 for a real broadcasting. Our 

result shows that HPB provides the lowest average waiting time of all currently known 

protocols by using the least number of channels given the same server bandwidth. 

However, a drawback of HPB is that its maximum waiting time is twice its average 

waiting time, and much longer than that of GFDPB or FDPB. 



Finally, to address HPB's drawback, we present our third new broadcasting 

scheme, a hybrid broadcasting scheme called the Preloading Page-Set Broadcasting 

(PPSB) scheme, which compromises the average waiting time and the maximum waiting 

time of HPB. While PPSB provides shorter average waiting time than the fixed-delay 

lower bound, and has the shortest average waiting time of all published broadcasting 

protocols in the third group, PPSB achieves much shorter maximum waiting time than 

HPB. From the probability point of view, PPSB provides a very desirable trade-off 

between the average waiting time and the maximum waiting time of all the published 

broadcasting protocols for a given server bandwidth, while guaranteeing that the 

maximum waiting time is not more than 32% longer than the fixed-delay lower bound. 

HPB's maximum waiting time is nearly 90% longer than the fixed-delay lower bound, and 

its average waiting time is just 9.5% shorter than that of PPSB. Furthermore, there are 

no currently published broadcasting protocols in the third group which can guarantee 

their average waiting time shorter than the fixed-delay lower bound for any given number 

of channels with equal bandwidth equal to playback rate. 

1.4 Organization of the Thesis 

The rest of this thesis is organized as follows. In Chapter 2, we first review two 

most efficient broadcasting protocols in the first and second groups of broadcasting 

protocols for the purpose of comparison; then, we review some related schemes in the 

third group of broadcasting protocols. In Chapter 3, we first analyze and compare the 

RFS representation and the Tree representation of channel schedules; then, we propose 

two algorithms for GFDPB and its server multiplexing and client demultiplexing scheme, 

and we give some analysis and simulation results on the performance of GFDPB to 

show that it outperforms all the other broadcasting protocols. In Chapter 4, we first 

define the HGWS problem and present the HPB protocol to solve the problem; then, we 



propose PPSB, a hybrid broadcasting scheme, and analyze its performance. Finally, we 

conclude this thesis and discuss the future work in Chapter 5. 



Chapter Two 
Review 

In Chapter 1, we have introduced three groups of broadcasting protocols. In this 

Chapter, to help understand the essence of the segment-scheduling problem, we review 

several broadcasting schemes in the third group. For the purpose of comparison, we 

also introduce GEBB, PHB and QHB, which are the most efficient broadcasting schemes 

in the first and second groups. 

2.1 Basic Notation 

Broadcasting protocols normally divide each video into a series of segments and 

transmit each segment periodically on dedicated server channels. While a client is 

playing a current video segment, it is guaranteed that the next segment is downloaded 

on time and the whole video can be played out continuously. In the third group of 

schemes, each video is divided into many fixed-size segments and all segments are 

periodically multiplexed in several channels with equal bandwidth equal to playback rate. 

In addition, each channel is partitioned into time slots of equal duration and the duration 

of each time slot is equal to the duration of each fixed-size segment. 

For the convenience of expressing ideas and calculating formulas, we will use 

the following notations in our discussion: 

K: the number of broadcasting channels for each video 

n: the number of segments that each video is divided into 

b: the playback rate of a video in Mbps 



b;: 

B : 

B *: 

w: 

w*: 

w ': 

S;: 

ci: 

D : 

Di: 

the i-th channel bandwidth 

the total bandwidth for each video in Mbps 

the normalized total bandwidth equal to B/b 

the maximum waiting time that clients may wait before watching the video 

the normalized waiting time equal to w/D 

the average waiting time 

the i-th segment (the first segment is S,) 

the i-th channel (the first channel is Co) 

the total length of a video in seconds 

the length of the i-th segment in seconds during playback in unequal- 

sized segmentation protocols 

d: the length of one segment in seconds during playback in equal size 

segmentation protocols; also, the duration of each time slot in the third group of 

schemes 

m: an integer m l l .  In fixed-delay protocols such as PHB, FDPB and our 

GFDPB, w=md; or in QHB, each time slot is divided into m subslots. 

2.2 Greedy Equal Bandwidth Broadcasting (GEBB) 

GEBB [48] is the most efficient protocol in the first group of broadcasting 

protocols which divide each video into segments of increasing size and transmit each of 

them in separate channels of the same bandwidth. GEBB operates in a "greedy" fashion, 

i.e. receives as much of the data as possible from all of the channels immediately after 

tune-in and finishes receiving a segment immediately before playing the corresponding 



segment. As shown in Figure 2.1, a client tunes in at to and starts receiving immediately 

from all channels. After a fixed waiting time w, the client finishes receiving S1 and 

immediately starts playing it. After playing S1, the client finishes receiving S2 and 

immediately starts playing S2, and so on. 

Download 

I 
I 

Time 
to 

Figure 2.1 Illustration of GEBB 

[48] describes an optimization problem as follows. Given a video with length D, 

the number of segments n (n=K), and the fixed waiting time w, the problem is to derive 

the segment durations and their corresponding channel bandwidths with the objective of 

minimizing the total server bandwidth required to broadcast a specific video. Formally, 

the problem can be stated 

minimize x b i  

subject to 

as follows: 

(2.2.1) 



The condition represented by Formula (2.2.2) ensures that Si is completely 

received at the exact time point when the play of Si-4 terminates. Thus, the segments of 

the video are available always and exactly on time for their playing. 

From Formula (2.2.2), we can get a formula for (?+bi/b), and then multiplying all n 

of the (?+bib) quantities produces 

Thus, we have determined that the product of the n terms (?+bib) is a constant 

since D and w are given. The minimization of C b ,  is equivalent to the minimization of 
;=I 

C ( l +  b, 1 b) and it is well-known that the minimization of the sum of n terms given that 
i=l 

their product is constant is achieved when all the n terms take the same value. Let us 

represent this optimal value as (?+b*/b). Consequently, from Formula (2.2.3), we can 

derive that the channel bandwidth is 

Further from Formulae (2.2.2) and (2.2.4), we can derive 



Therefore, we can see that given D, w, and n, the segment size of GEBB follows a 

geometrical series. The total server bandwidth (6) necessary in GEBB for a particular 

video is nb*. 

It is straightfoward to show that: 

From Formula (2.2.6), we can get the formula for waiting time: 

Letting n increase to infinity, we can get the minimum waiting 

server bandwidth and a given number of channels: 

time for a given 

In the following sections, we will see that the waiting time of PHB as well as 

FDPB also asymptotically approaches this lower bound. It is shown in [48] that GEBB 

uses a smaller number of segments as well as a smaller number of channels than PHB 

to achieve the same fixed waiting time. 

2.3 Poly-Harmonic Broadcasting (PHB) 

PHB [54] is the most efficient protocol in terms of clients' maximum waiting time 

in the second group of broadcasting protocols which divide the data for each video into 



equal-sized segments and repetitively transmit them in separate channels of decreasing 

bandwidth. PHB, just like GEBB, uses greedy downloading. However, unlike GEBB, 

which uses increasing-sized segments during playback and equal channel bandwidth, 

PHB uses equal-sized segments during playback (display) and decreasing channel 

bandwidth. If we adapt Figure 2.1, by letting D1=D2= ...= Dn and bl> bn> bs> ...> b n ,  the 

adapted Figure 2.1 becomes the illustration of PHB. 

PHB breaks a video into n segments of (display) duration d=D/n and separately 

broadcasts them in n channels. Under PHB, no client can start consuming the first 

segment of the video before having downloaded from all n channels during a time 

interval of duration w=md, where m is an integer m 21. The waiting time is w=mD/n. As a 

result, segment Siwill not be consumed until (m+i-l)d seconds have elapsed from the 

moment the client started downloading data from the server. Ensuring that segment Si 

will be entirely broadcast over this time interval suffices to guarantee that all the content 

of segment Si will be already loaded in the set-top box before the client starts viewing 

that segment. This can be achieved by retransmitting segment Si at a transmission rate 

bi=b/(m+i-1), since each segment has an equal size bd. Therefore, the total bandwidth 

required by PHB is given by 

I 
BmB (n, m) = bi = b x  = b(H(n + m - 1) - H(m - 1 ) )  

i=l ;=, m+i-1 

where H(i) represents the i-th Harmonic number 

If k=n/m and k is an integer, where k r l ,  Formula (2.3.1) can be rewritten as 

BpHB ( k , m )  = b ( H  ( ( k  + 1)m - 1 )  - H ( m  - I ) )  

[54] derives BpHB(k, m + 1 )  < BpHB(k, m)  for all k2 l  and m l l  . This means 

increasing m and n while keeping k constant will always result in a reduction in total 



bandwidth. Thus, when m and n go to infinity while k remains constant, we can compute 

the limit of BPHB(K,m) and derive a lower bound for the total bandwidth required by PHB. 

lim BPHAk,m)= lim f: b = p d t =  blug 
n , w ,  n l d  

(2.3.2) 
n ~ - ~ n l & ~ = , r n + i - l  w+t w 

We can see Formula (2.3.2) is exactly the same as the GEBB lower bound Formula 

(2.2.7). However, GEBB is more efficient than PHB in terms of the number of channels 

required for a fixed waiting time. 

2.4 Quasi-Harmonic Broadcasting (QHB) 

QHB [53] is the most efficient protocol in terms of clients' average waiting time in 

the second group of broadcasting protocols [65]. Like other harmonic protocols, QHB 

divides each video into n equal-sized segments and repetitively transmit them in 

separate channels of decreasing bandwidth. The first segment is broadcast repeatedly 

on the first channel with the display rate b. However, each segment i, 1< i 5 n, is broken 

into im -1 fragments for some parameter m, and a client will receive m fragments from 

each channel per time slot. If we divide each time slot into m equally sized subslots, the 

client will receive a single fragment during each subslot. 

In each channel except the first, the last subslot of each time slot is used to 

transmit the first i-1 fragments of Si in order. The rest of the subslots transmit the other 

i(m-1) fragments such that the kh subslot of the fh slot is used to transmit fragment ik 

+(ti-1) mod I]  of S,. For example, in Figure 2.2, the third segment is subdivided into eight 

fragments that occupy three slots, each comprising three subslots. The second subslot 

of the fourth slot of the third channel, which broadcasts S3, is used to transmit fragment 

3x2+ ((4-1) mod 3 )  =6 of S3, i.e., fragment S3& It is proved in [53] that QHB delivers all 

video data on time. 



1'' channel 

2" channel 

3rd Channel 

Slot 

subslot 1'' 2"' 3" 2na 3rd 2nd 3rd 2nd 3rd 

Figure 2.2 QHB schedule for K=3, m=3 

m-1 
We can see that each segment Si, bl, broadcasts in (i - 1 +-) time slots. 

m 

Because each segment has an equal size and the first channel bandwidth is b, we can 

easily derive the bandwidth for each channel. 

bm 
b i  = otherwise 

im - 1  

Then the total bandwidth B o ~ s  required by QHB is given by 

The maximum waiting time is w=D/n and the normalized average waiting time is 

112n. 

2.5 Fixed-Delay Pagoda Broadcasting (FDPB) 

FDPB [57] and RFS, which will be introduced in Section 2.6, belong to the third 

group of broadcasting protocols, which are pagoda-based protocols. They partition each 

video into n equal-sized segments of duration d=D/n, use time division multiplexing to 

broadcast these segments at different frequencies over K channels with equal bandwidth 

equal to the video consumption rate b, and let each segment transmission occupy a time 



slot of duration d. In addition, clients need to simultaneously download from all K 

channels. 

Like GEBB and PHB, the FDPB protocol implements the fixed-delay policy and 

requires all clients to wait for a fixed time interval w=md, where m is an integer m l l .  

Thus, segment S, needs to be transmitted at least once every m slots and must always 

be received before a customer, after md-second wait and preload, starts watching the 

video. More generally, segment Si needs to be transmitted at least once every m+i -1 

slots to guarantee that Si has been buffered before it is needed to be consumed. 

The FDPB protocol partitions each channel Ci into si subchannels in such a way 

that slot j (slot number starts from 0) of channel Ci belongs to its subchannel (j mod si). 

Thus, each subchannel has l/si of the slots and l/si of the bandwidth of Channel Ci. 

Figure 2.3 shows how a channel is partitioned into three subchannels. 

FDPB maps segments into subchannels in a strictly sequential fashion. The first 

segments of a video are mapped into subchannel 0 of channel 1, the next segments into 

subchannel 1 of the same channel, and so on until all sf subchannels have been used. 

The process repeats itself for the subchannels of channel Cp to CK. 

Slot No. 0 1 2  3 4 5 6 7  8 9 1 0 1 1 1 2 1 3  14 

Subchannel 0 

Subchannel 1 

Subchannel 2 

Figure 2.3 A channel partitioned into 3 subchannels in FDPB 

By trial and error, Paris [57] found the optimal mapping of subchanels for a given 

channel Ci is always achieved when channel Ci is partitioned into ,/m + j - 1 



subchannels assuming that the first segment assigned to this channel is segment Si. 

Consider, for instance, the case when m=9. As figure 2.3 indicates, channel Co will be 

partitioned into .\/= = 3 subchannels since the first segment assigned to Cois Sf. 

Since m=9, segment S1 needs to be repeated at least once every nine slots and we 

assign S1 to subchannel 0. Since subchannel 0 occupies 113 of the slots of channel Co, 

we can map up to 913=3 segments into it, while ensuring that each of these three 

segments (S1 - S 3) will be repeated once every nine slots (see Figure 2.3). The first 

segment assigned to subchannel 1 is S4, which needs to be repeated at least once every 

9+4-1=12 slots. As a result, we can map 1213=4 segments into suchannel 1 while 

ensuring that each of these four segments (Sd- ST) will be repeated once every 12 slots. 

The first segment assigned to subchannel 2 is S8, which needs to be repeated at least 

once every 9+8-1=16 slots. Thus, we can map = 5 segments into subchannel 2 

while ensuring that each of these five segments (S8-SI2) will be repeated once every 

5*3=15 slots. As a result, channel Cowill transmit a total of 12 segments. We can repeat 

this procedure for channel Cl where the first segment assigned is Sf3, SO the number of 

subchannels is rounded off to round( Jm) = 5 ,  and so on. 

After getting the number of segments n which are mapped into the given K 

channels, we can calculate the waiting time for FDPB by formula w=mD/n, which is 

exactly the same as that for PHB. PHB broadcasts all segments in separate channels of 

decreasing bandwidth, whereas FDPB broadcasts them in decreasing frequencies over 

K channels with equal bandwidth equal to the video consumption rate. 

Recently, [65] points out that J m  + i-1 is not always the optimal number of 

subchannels for a channel Ci, where the first segment assigned is Si. They find that the 



actual optima are laid between r n a x d z - 5 ,  1) and d m +  5 . However, 

the improvement is small and at most around 1%. 

[57] also derives a lower bound, which is the same as Formulae (2.3.2) and 

(2.2.7), for the total bandwidth required 

policy as follows: 

D + w  
B ,in = b log 

W 

by those schemes implementing the fixed-delay 

(2.5.1) 

From Formula (2.5.1), [57] derives a lower bound for the maximum waiting time 

when the broadcasting bandwidth is equal to K times the video consumption rate, 

We call this lower bound the fixed-delay lower bound. No currently known 

broadcasting protocols can achieve maximum waiting time lower than this lower bound. 

2.6 Recursive Frequency-Splitting (RFS) Scheme 

As mentioned in Section 2.5, RFS [59], like FDPB, belongs to the third group of 

broadcasting protocols. However, unlike GEBB, PHB and FDPB, RFS does not 

implement the fixeddelay policy. In RFS, channel Co continuously repeats segment S1 

to ensure that it is repeated in every slot, so a client should wait until the beginning of 

any new time slot to start watching a video and at the same time to start the buffering 

process while downloading simultaneously from all K channels. Thus, its maximum 

waiting time is w=D/n. 

In RFS, generally, segment Si must be broadcast at least once on one of K 

channels in every consecutive i time slots to guarantee that Si has been received or will 



be received at the time slot when a viewer needs to consume it. Thus, segment Si must 

be broadcast on one of K channels periodically with a frequency no less than lli. [59] 

introduces the concept of "periodical time slots" as follows: a slot sequence SS(Ci, s, p) 

is an infinite sequence of time slots [s, s+p, s+2p, ...I belonging to channel Ci, beginning 

at slot s, which we will call the start slot of the slot sequence or of the assigned 

segment, and repeating infinitely with a period of p slots, where Ci is one of the K 

channels, p l ?  is an integer, and s is an integer satisfying 0 I s I p-1. Thus, when p=l, 

the time slots of the corresponding slot sequence will be continuous and the slot 

sequence represents a complete channel (e.g., C, = SS(Ci, 0, 1 )). 

Input: a set of K channels Co, C1 ,..., CK-~ 

Output: n, and the assignment of one slot sequence for each segment Si, i=l,. ..n. 

1 ) Let POOL be a set of free slot sequences: 

POOL = {SS(Co, 0, 1 ), SS(Cl, 0, 1 ), ..., SS(CK-1, 0, 1 )) 

Intuitively, this is the set of free channels Co, Cl, ..., CK-1 that are given initially. 

2) Initialize n= l  for the first segment. 

3) Pick a slot sequence SS(Ci, s, p) € POOL, such that p I n. If more than one 
sequence in POOL satisfies this condition, choose the sequence(s) with the 
smallest (n mod p) and break a tie by selecting the largest p, and then do the 
subtraction POOL=POOL - {SS(Ci, s, p)). 

4) Split SS(Ci, s, p)  into a = Ln / P J  slot sequences: SS(Ci, s, ap), SS(Ci, s+p, ap), 
SS(Ci, s+2p, ap), .. ., SS(Ci, s+(a-1 )p, ap). Assign SS(Ci, s, ap) to S,; then, do the 
union POOL=POOL U { SS(Ci, s+jp, ap), j=1,2 ,..., a-1) 

5) If there exists a slot sequence SS(Ci, s, p)  €2 POOL such that p I n+l,  then 
increase n by 1 and go to step 3 to schedule the next segment; otherwise, 
terminate this procedure and output the value of n. 

Figure 2.4 RFS Algorithm 

The RFS scheme is based on a concept called Yrequency splitting". For segment 

S,, we should allocate a slot sequence SS(Ci, s, p) such that p I j. It is desirable that the 

value of p be as close to j as possible, since a larger p means less waste in 

communication bandwidth. The best case is p = j. However, when p < j and j/p 2 2, we 



need to partition SS(C, s, p) into a = l j l p ]  subsequences with the same period of ap  

time slots, as indicated in step 4 of Figure 2.4, and assign one of these subsequences to 

Si. The period a p  is the maximal period that is a multiple of p and not larger than j. 

According to this concept of frequency splitting, [59] gives the RFS algorithm as shown 

in Figure 2.4. 

Unlike FDPB which maps segments into subchannels and channels in a strictly 

sequential fashion, RFS maps segments in a "greedy" fashion in order to minimize the 

waste of bandwidth. In the procedure shown in Figure 2.4, authors of 1591 try to increase 

the value of n repeatedly. Step 3 is a heuristic for reducing the waste of bandwidth when 

performing the assignment in step 4, and it is also a heuristic for leaving more flexibility 

in subsequent assignments. Step 4 performs the splitting. Step 5 checks whether the 

next segment can be accommodated. Figure 2.5 shows the result of running the RFS 

scheme for K = 3. We can express the result in a slot sequence expression: SS(Co, 0, 1, 

Sf), SS(C1, 0, 29 SZ), SS(C1r 1941 S4)1 SS(C1r 39 41 SS), SS(C2r 0, 31 S3)r SS(C2r 1, 61 S6), 

SS(C2, 2, 6, Ss) SS(C2, 4, 6, S7), and SS(C2, 5, 6, S9), where the last parameter in each 

bracket is what we add to represent the segment assigned to this slot sequence. 

/ Channel Co 

/ Channel C1 

f Channel C2 

Figure 2.5 RFS scheme result for K=3 channels 

[59] gives an upper bound of the number of segments n that can be packed into 

K channels using RFS. Upper bound n must satisfy 



i -  1, if i is a prime number and i 2 p(K) 

where f ( i ,  = ( o{hsn&e. 
i 7 

and p(i) is the i th prime number (i.e., p(l)=2, p(2)=3, p(3)=5, etc.). Thus, given 

a video with duration D seconds, Dln is a lower bound on the maximum waiting time. 

We summarize the proof of the above upper bound as follows. We know 

segment Sirnust be broadcast at least once in every continuous i time slot. According to 

Lemma 3 of [59], no two segments Si and Sj, such that i and j are primes, can be 

broadcast in the same channel with period i and j, respectively. Under the best situation, 

we may place each of the K - 1 segments SPll), Sp(2), , Sp(k-l) in a separate channel 

by broadcasting them with perfect periods p(l),  p(2), - ,  p(K-I), respectively. The 

other segments Sp(~), Sp(K+,j, Sp(K+2), , each of which has a segment number equal to a 

prime and larger than p(K-I), will each be forced to broadcast with a smaller period less 

than its segment number no matter which channels they broadcast on (otherwise, 

conflict will occur). Therefore, in the best case, segment Si has period f(11 in Formula 

(2.6.1) and will consume at least llf(11 of the channel bandwidth. Summing this over all 

segments gives Formula (2.6.1). 



Chapter Three 
Generalized Fixed-Delay Pagoda 
Broadcasting 

In the previous chapter, we reviewed the RFS and FDPB schemes, which are the 

most bandwidth-efficient schemes that are currently known in the third group of 

broadcasting schemes, i.e., those which use equal-sized segments. In Section 3.1, we 

will introduce a tree representation of a channel schedule and a window scheduling 

algorithm, which is similar to RFS but is represented in terms of a tree. Because it is 

more intuitive, we will use the tree representation extensively throughout the rest of the 

thesis. In Sections 3.2 to 3.4, we will propose our two versions of GFDPB and analyze 

their performance. In Sections 3.5 and 3.6, we will present and analyze the efficient 

multiplexing and demultiplexing methods to be used by the server and clients, 

respectively. Finally, in Section 3.7, we will present an algorithm to translate the slot 

sequence representation for a channel schedule to the tree representation. 

3.1 Previous Work 

Bar-Noy et al. proposed a greedy algorithm for the Harmonic Windows 

Scheduling (HWS) problem [58] similar to RFS but it uses a different representation and 

a different point of view. A window consists of a set of consecutive time slots and the 

number of time slots in the window is called the window size. HWS uses equal-sized 

segments called pages [58] such that a page exactly fits in a time slot. For conformance 

with other broadcasting schemes in the third group we use the term segment instead of 

page. The optimal harmonic windows scheduling problem is defined as follows: 



Given K slotted channels, what is the maximum number of segments that 
can be scheduled on the K channels, one segment per channel at each 
time slot, such that segment i appears at least once in every window of 
size i? 

In this thesis, a segment appears only repeatedly on a single channel. A 

schedule is said to be perfect if it schedules each segment at fixed slot intervals. In this 

case, the size of the interval is called the period of the segment. 

A channel schedule is defined as a sequence of segments to be transmitted on a 

single channel such that the length of the sequence is equal to an integer multiple of the 

least common multiple (LCM) of the periods of all the segments broadcast in this 

channel. In Figure 2.5, the 2nd channel broadcasts S2, S4and S5, whose periods are 2, 4, 

and 4 time slots, respectively, so that the LCM is 4. Therefore, the shortest channel 

schedule for the 2nd channel is <S2, S4, S21 S5> or any of its three cyclic shifts i.e., <S5, 

S2, S4, S2>, <S2, S5, S2, S4>, and <S4, S2, S5, S2>. The 3rd channel broadcasts S3, S6, S8, 

S7, and Sg, whose periods are 3, 6, 6, 6, and 6 time slots, respectively, so that the LCM 

is 6. Therefore, the shortest channel schedule for the 3rd channel is <S3, S6, S8, S3, S7, 

Sg> or any of its five cyclic shifts. Each channel repeats its channel schedule forever 

and any repetition of a channel schedule is also a channel schedule by definition. 

Instead of using many slot sequences to represent a broadcasting schedule for 

each channel and each of the slot sequences to represent a segment broadcasting 

schedule as RFS does, Bar Noy et al. use a tree representation such as shown in Figure 

3.1, in which each leaf determines a segment's start slot (offset) and broadcasting period 

in the channel. Therefore, each node in the tree representation, except the root, 

corresponds to a slot sequence in RFS, and the child nodes of each non-leaf node 

correspond to the subsequences resulting from the frequency splitting of such a node. 



Figure 3.1 An example of a tree for segments A, 6, C, D, E, F, G, H 

Figure 3.2 Frequency splitting representation corresponding to Figure 3.1 

Figure 3.1 represents a certain channel schedule in the tree representation. Let's 

call the channel involved channel Ci, which is assigned to broadcast segments A, B, C, 

D, E, F, G, H. Now we can see the correspondence between a tree representation and 

the slot sequence representation. At the very beginning, this tree only has a root node 

corresponding to SS(Ci, 0, 1) mentioned in Section 2.6, and then this root splits into two 

child nodes c l  and c2, corresponding to SS(Ci, 0, 2) and SS(Ci, 1, 2), respectively, as 

shown in Figure 3.2. Node c l  splits again into two child nodes. One of its child nodes is 

cl-1, corresponding to SS(Ci, 0,4), and the other represents segment D, corresponding 



to SS(Ci, 2, 4, D). Node c2 splits again into three child nodes. One of its child nodes 

represents segment E, corresponding to SS(Ci, 1, 6, E), and another represents 

segment HI corresponding to SS(Cil 5, 6, H). SS( ) with four parameters represents a 

slot sequence allocated to a segment, and SS( ) with three parameters represents a 

non-leaf node of the tree, which will be split further. The other child node is c2-1, 

corresponding to SS(Ci, 3, 6). Node c l - I  splits again to three child leaves and node 

c2-1 splits again to two child leaves. The whole frequency splitting procedure is 

illustrated in Figure 3.2. 

Procedure: Tree-to-Schedule 

Input: A tree T with n leaves that are labeled with the labels PI, ..., p, that 
represent the segments. Let T have d 2 0 subtrees. 

Output: A perfect channel schedule S' for these segments in which each segment 
3 has a fixed period 

Base case: If n =1 (it is a leaf tree), then the schedule is S1=< pl> 

The recursive step: If ni >1 and therefore d > 0, do the following: 

a) Recursively construct the channel schedules S'I, ..., S> of all the d subtrees of 
T. Assume their respective lengths are 61, ..., &. 

b) Replicate each channel schedule and make all of them have the same length C 
= LCM{ 4, ..., &}. Let the new schedules be S*I, ..., S*d. 

c) The final channel schedule S' of length d = db is constructed by alternately 
picking 6' times the next segment from the d channel schedules S*l, . . ., S*d. 

Figure 3.3 Algorithm for translating a tree to channel schedule 

[58] provides a recursive procedure for translating a tree to its channel schedule 

as shown in Figure 3.3. The round-robin tree is a simple example. This is a tree whose 

root has d children, all of which are leaves. If they are labeled by the segment numbers 

pl, p2, ..., pd, then the channel schedule represented by this tree is the round-robin 

channel schedule S=<pl, p2, ..., pd>. Since this channel schedule simply goes through 

the d children of the root in order, we call it round-robin. A more complicated example is 

the tree in Figure 3.1. Its root has two subtrees (d=2) and the labels of the leaves are A, 



B, ..., H. Applying procedure Tree-to-Schedule on the left and right subtrees yields the 

channel schedules cADBDCD> and cEFHEGH>, respectively. Hence, the schedule 

represented by the tree is CAEDFBHDECGDW. By repeating the above channel 

schedule infinitely, we can see the start slot and the period of each segment is exactly 

the same as depicted in Figure 3.2. For example, H starts from slot 5 and its period is 6 

slots. Similarly, G starts from slot 9 and its period is 12 slots. 

From the recursive round-robin character of the algorithm in Figure 3.3 and the 

correspondence between a tree representation and a slot sequence representation, we 

can easily find that the period of a segment (label) in a tree representation is equal to the 

product of the numbers of children of the segment's ancestors. For example, for the leaf 

labeled G in Figure 3.1, the numbers of children of all the ancestors of the leaf, from the 

root to its parent c2-1, are 2, 3, 2 in this order, so segment G's period is 2x3x2=12. 

Now we introduce the greedy algorithm proposed in [58]. The authors of [58] first 

define two kinds of trees. One is an open tree which is a tree whose leaves are labeled 

with two types of labels: a segment label and a window label. The other is a closed tree 

which is a tree whose leaves have only segment labels. The leaves with segment labels 

have been assigned to specific segments and those with window labels are free leaves, 

or the leaves which have not been assigned to specific segments, and are labeled by 

their periods. The period of a window label or a leaf is calculated in the same way as that 

of a segment label mentioned above. An open forest is a collection of open trees and a 

closed forest is a collection of closed trees. Initially, all the K trees are singleton open 

trees with window labels whose value is 1. The greedy algorithm terminates when all the 

K trees become closed trees, which means no free slot sequence is available to be 

allocated to any more segment. 



Output: n and K closed trees with a total of n leaves labeled with segment labels, 
each of which represents segment i, i=l, ... n 

1 ) Initialize K channels into K singleton open trees with window labels 1 

2) Initialize ~ 1 ,  where r indicates the r-th segment. 

3) Let w, I w2 I* -5 wk be the ordered list of the labels of all the leaves in the 
forest whose labels are of type window (initially they are all 1). 

4) Let mj =(r mod wi) for I S  j 5 k. 

5) Let i be the index such that mi is the minimum among all the mi. Break a tie by 
selecting the index that is associated with the largest window label. 

6) Let d ,  = Lr / w i  J and T, be the tree that contains wi. 

7) If di = 1, then replace the window label wi with the segment label r in the tree Ts. 
(This operation is called the replacement operation). Otherwise, add di children to 
the leaf associated with wi replacing this leaf with di new leaves. The first child is 
labeled with rand the rest are labeled with the window label wimdi which are put in 
order into the window label list. (This operation is called the split operation). 

8) If the window label list is not empty, then increment r and go to step 3 to 
schedule the next segment; otherwise, terminate this procedure and output the 
value of n=r and the K closed trees. 

Figure 3.4 Greedy algorithm for Harmonic Windows Scheduling problem 

[58] gives the greedy algorithm as shown in Figure 3.4, in which the split 

operation in step 7 is the same as the 'Yrequency splitting" operation of RFS. Variables di 

and wi here are respectively the same as a and p in Figure 2.4. In [58], the authors 

propose two possible modifications to the split operation and only one of them is 

manipulable. The manipulable modification tries to leave leaves open with small window 

labels as long as possible and works as follows. When d (in step 6 of Figure 3.4) is a 

composite number, the split operation is carried out in several steps in the increasing 

order of the prime factors of di. For example, let di = 12 for a node with a window label 

wi. The prime factors of 12 are 2, 2, and 3; therefore, the node is split twice into two 

nodes in the first two split operations, and once into three nodes in the last split 

operation, as shown in Figure 3.5, where all labels are window labels. Thus, it creates 

five new leaves whose window labels are 2wi, 4wj, 12wi, 12wi, 12wi, respectively. The 



leftmost window label 12wi in Figure 3.5 produced in the last split operation becomes a 

segment label but the rest remain window labels. They found that the basic greedy 

algorithm with this modification does not always get a better result. In this thesis, we call 

the basic greedy algorithm with the modification, i.e., the multilevel split for composite di, 

the multilevel splitting greedy algorithm. 

Original window 
label wi 

/n 4wi 

Figure 3.5 Multilevel splitting 

We can translate each segment label in the tree representation to a (slot) 

sequence representation. First, we just copy the channel number and the segment label 

which is indicated by its segment number. Second, we must calculate the start slot of the 

segment, which is called the offset of the segment in [61] by Bar-Noy et al. Third, we 

must calculate the segment's actual period. In [61], Bar-Noy et al. give the formulae for 

the calculation of the start slot and the actual period. Both formulae are given below and 

they are proved in [61]. 

For each node J, let d(J) denote the number of children of J, and let J'denote the 

parent of a non-root node J. They first define the period T(J) of node J inductively as 

follows: for the root node JO, T(J0) = 1, and for a non-root node J 

Thus, by definition, for a leaf J, its period T(J) is the product of the number of children of 

each of its ancestors. Next they assign an offset (start slot) for each leaf. If a node has d 

children, they are numbered 0, 1, . . . , d - 1, left to right. Each node J is associated with 



a number h(J), which is the number of its left siblings. The offset can be computed 

recursively as follows: a(J0) = 0 for the root node JO, and for each node J with parent J', 

Take segment G in Figure 3.1 for instance. Its period is 2x3x2=12 and its offset 

(start slot) is equal to a(c2-1) + 1 x6 = (a(c2) + 1x2) + 1x6 = ((a(J0) + IxT(J0)) +1x2) + 

1x6 = 9, where JO is the root. 

Segment 1 2 3 4  5 6 7 8 9 1 0 1 1  1 2 1 3  
Period 9 10 11 12 13 14 15 16 17 18 19 20 21 

Figure 3.6 Tree representation of Figure 2.3 

In [60], Bar-Noy et al. propose the RR2 algorithm which is almost exactly the tree 

version of FDPB. The main difference is that the optimal number of subchannels for the 

channel in which the first segment assigned is Si is found by nearly exhaustive checks 

from 2 to (m+i-1)/2 instead of using the integer closest to J m  + i- 1 as in FDPB. RR2 

represents each channel schedule of FDPB as a tree of height 2, as shown in Figure 3.6 

for the channel schedule in Figure 2.3. In Figure 3.6, the three internal nodes at level 1 

represent the three subchannels and the leaves at level 2 represent the segments in 

each subchannel. The authors also adapt the greedy algorithm mentioned above to the 

fixed-delay policy in the simulation section of [60] for a small number of channels and a 

small number of m. 



3.2 Generalized Fixed-Delay Pagoda Broadcasting 

In this section, we present our GFDPB scheme which improves Bar-Noy et al.'s 

greedy algorithm. GFDPB, like FDPB, is based on the fixeddelay policy. In GFDPB, a 

video of duration D is broadcast over K channels {Ci 1 01 i<K), each with bandwidth 

equal to the video consumption rate b. Each video is partitioned into n equal-sized 

segments of duration d=Dln. These n segments are broadcast at different frequencies 

over the K channels, and each segment transmission occupies a slot of duration d. A 

client in GFDPB needs to wait for a fixed time interval w=md before starting to display a 

video, where m is some integer m 2 1. As in FDPB, segment Si in GFDPB needs to be 

transmitted at least once every m+i-1 slots to guarantee that Si has been buffered 

before it is needed. 

Maximizing the number of segments scheduled in the given K channels, such 

that segment i appears at least once in every window of size m + i -1, is called the 

optimal truncated-Harmonic scheduling problem in [65]. 

We call m+i-1 the ideal period of segment Si. The ideal period idealP of a 

segment Si of a video is an integer such that segment Si needs to be repeated at least 

once every idealP slots to ensure the continuity of the display of the video. In RFS, 

idealP=i; whereas in FDPB, idealP=m+i-7. The actual period of a segment in each 

broadcasting schedule must be equal to or less than its ideal period. 

However, unlike FDPB which maps segments into subchannels and channels in 

a strictly sequential fashion, GFDPB, like RFS and the greedy algorithm, maps 

segments in a "greedy" fashion in order to minimize the waste of bandwidth and to pack 

more segments into a given number of channels. 

If we change the greedy algorithm to conform to the fixed-delay policy directly, 

we need to replace "Initialize ~ 1 "  in step 2 of Figure 3.4 with "initialize ~ m " ,  add m to 



the input, and replace "output the value of n=r" in step 8 with "output the value of n=r- 

m+l". In the same way, we can adapt the RFS algorithm to the fixed-delay policy. By 

careful observation of results of the greedy algorithm under the fixed-delay policy, we 

found that if di = Lr / w i J  in step 6 of Figure 3.4 is a big integer, then the free leaf with 

the window label wi will be split into a large number of leaves with the same large 

window label wi*di. This leads to inflexibility in processing the subsequent segments after 

the split. For example, for K=l and m=100, in processing segment ST, channel Co is split 

into 100 leaves with the same period 100, so the maximum number of segments that 

can be packed into this channel is, according to the basic greedy algorithm, only 100. 

For a leaf with a window label wi, the replacement operation or the split operation 

of the leaf will not cause bandwidth loss only if it is assigned to a segment Si whose ideal 

period m+i-1 is exactly equal to wi or an integer multiple of wi,; otherwise, the actual 

period of segment S,, or wi*di, should be less than the segment's ideal period since 

di = L(m + i - 1) / W ,  1 < ( m  + i - 1) / w i  . If we allocate too much bandwidth to Si, i.e., 

di w i  < m + i - 1 ,  we lose bandwidth at segment SI or at the window label wi. 

For a window label wi, we don't know in advance which segment label will 

replace it or split it. If the probability of replacing or splitting is the same for all segments, 

then the probability to lose bandwidth at this window label is (1 -1lwi). For any segment r, 

the possible remainders mi =(r mod wi) are 0, 1 ,  ..., wi -1, among which only 0 means 

we do not lose bandwidth. Thus, the probability of wasting bandwidth is (wj-l)Iwj = 1- 

l/wP The larger the window label is, the higher the probability of losing bandwidth at it. 

For example, if there are many leaves with window label 10, then there is a 90% 

probability of losing bandwidth at them. However, if the window label is 100, then the 

probability is 0.99. Therefore, we must try to prevent a leaf with a window label from 

splitting into a large number of leaves with the same large window label, and try to keep 



the average value of all the window labels in a tree as small as possible after each split 

operation, leaving leaves with small window labels open as long as possible. 

However, minimizing the average value of window labels may cause more 

bandwidth loss. Thus, for each split operation, we must balance between the purpose of 

minimizing the average value of window labels and minimizing bandwidth loss at each 

segment. Bar-Noy's multilevel splitting greedy algorithm mentioned in Section 3.1 

achieves part of this purpose. Consider, for instance, the case where K=2 and m=100. 

Segment Sf will split the root node of Co into five leaves with window label 100, four 

leaves with window label 20, one leaf with window label 4 and one leaf with window label 

2. The first leaf with window label 100 becomes the leaf with segment label 100 

according to the multilevel splitting greedy algorithm as shown in Figure 3.7(a). The 

average window label is (5x100 + 4x20 + 1x4 + 1x2)/(5 + 4 + 1 + 1)=53.27. This tree 

structure is more flexible in minimizing bandwidth loss in subsequent assignments of 

leaves for segments than a tree structure formed after splitting the root node of Co into 

100 leaves with period 100 by the greedy algorithm. In fact, we can pack 136 segments 

into this channel according to the multilevel splitting greedy algorithm rather than 100 

segments according to the basic greedy algorithm. 

However, the multilevel splitting greedy algorithm only works when di = Lr / w i  

in step 6 of Figure 3.4 is a composite number whose prime factors are all small. If di is a 

big prime number or has a big prime factor, then the multilevel splitting greedy algorithm 

will not prevent a leaf with the window label wi from splitting into a large number of 

leaves with the same large window label wi*di. For example, for K=2 and m=100, 

segment &will split C1 into m+2-1=101 leaves with the same period 101 because 101 is 

a prime number (as shown in Figure 3.7(a)); for K=2 and m=141, segment &will split C1 

into one leaf with period 2 and 71 leaves with period 141 because m+2-1=142=2x71 



101 (101) (101) (1 01) 
100 leaves with window labels (101) 

Figure 3.7 For K=2, m=100, the forest after two multilevel splits 

141 (141) (141) * *  (141) 142 (142) (142) 
46 leaves with window label (141) 

(1 42) 
70 leaves with window labels (142) 

141 142 (141) * *  (141) 
45 leaves with window 
label (141) 

(b) 
Figure 3.8 For K=2, m=141, the forest after two multilevel splits 



and 71 is a big prime factor of 142 (as shown in Figure 3.8(a)). In Figures 3.7 and 3.8, 

we use the ideal period of each segment to indicate the segment label, so segment Si is 

represented by an integer m+i-1. Each window label is represented as a number inside 

parentheses, where the number indicates the period of the window label. For example, 

(1 01) indicates a window label with period 101. 

To further prevent a leaf with a window label from splitting into a large number of 

leaves with the same large window label (we call this split large split operation in the 

following), we try to give the lowest priority to a split operation in which the value of 

d ,  = Lr / wi 1 in step 6 of Figure 3.4 is a big prime number or has a big prime factor even 

if the corresponding m, =(r mod w,) is very small. To do so, we introduce a parameter, 

limiting-prime, which is also a prime number, as a delimiting prime. For a split operation, 

if di is a prime number and bigger than a given limitinggrime, or the biggest prime factor 

of di is bigger than the given limitinggrime, then we will give a low priority to the split 

operation. In this way, we can control the structure of closed trees so that most of their 

internal vertices have no more than limitinggrime children. For each pair of K and m, 

the optimal limiting-prime that can maximize the number of packed segments may be 

different. By trial and error, we find that the optimal limitinggrime is in the range from 2 

to 61 and too large a limiting-prime imposes little constraint to split operations. When 

limiting-prime is larger than 61, our results approach those of the multilevel splitting 

greedy algorithm. Therefore, we try limiting-prime values from 2 to 61 to find the optimal 

limiting-prime for each pair of K and m in our algorithm. 

We have tried all the possible variant algorithms in order to choose the smallest 

m, = (r mod w,) while considering the value of d i  = Lr 1 W ,  1 and its prime factors to 

minimize the probability of making a large split operation, but we find no variant can 



Procedure: gfdpb-prime()(, m) 
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Input: K and m 

Output: Value n, optimal limitingjrime and K closed trees, optimal_forest. 

1) Initialize the number of segments max-seg=0 and optimal-limitingjrime = 0 and 
optimal_forest = NULL. 

2) Assign 18 prime numbers between 2 and 62 inclusive, to the prime number array 
orime[0]=2, prime[l]=3, . . . , prime[l7]=61. 

3) lnitialize prime-index=O. 

5) lnitialize K channels as K singleton open trees with window labels 1 and initialize 
r=m since the ideal period of segment S1 is m. 

6) Let wl, w2, *, wk be the ordered list of all the window labels in the forest in the 
increasing order of the corresponding channel numbers and then the start slot 
numbers. If this window label list is empty, go to step 16. 

7) lnitialize i = 1 for fetching the first window label in the above list. 

8) lnitialize the minimal remainder m-min=r, since mi in the next step is always less 
than r. 

9) If i S k, then mi =(r mod wi), d, = Lr / w;] and wp=O; otherwise, go to step 12. 

10) If mi < m-min then { 
if di is a prime number and m-min < r and di > limitingjrime 

increment i and go to step 9. 
else 

m-min= mi; wp= wi ) 
else if (mi == m-min and wi > wp) {m-min = mi; wp= wi ) 

11) Increment i by 1 and go to step 9. 

12) Remove the window label wp from the window label list. 

13) If(d, =lr /  w,) = 1.  then replace the window label wp with the segment label rand go 

to step 15). 

14) Calculate the prime factors of d, = Lr W, ] as p1, p2, a - . ,  pj. Apply the multilevel 

split operation to the window label wp, following the increasing order of the prime 
factors of dp and attach the segment label r to the first leaf (the leftmost leaf) with the 
window label (dp*wp) among the leaves just produced; then insert the rest of window 
labels into the window label list. 

15) Increase r by 1 and go to step 6. 

16) If(max-seg < (r- m)) { max-seg = r - m; optimal_limiting-prime = limitingjrime; 
optimal_forest=this-forest ). 

17) If prime-index < 17 then increase prime-index by 1 and go to step 4; otherwise, 
output (max-seg, optimal-limiting-prime, optimal_forest) 

Figure 3.9 Procedure gfdpbgrime 



always outperform the others. Sometimes the difference among the variants is more 

than 1%. After trial and error, we finally settled on two procedures as shown in Figures 

3.9 and 3.10. The two procedures have three loops inside them: the outer loop is from 

step 4 to 17 and loops through 18 limiting-prime values; the middle loop is from step 6 to 

15 and is for calculating each max-seg which is the number of packed segments for a 

given limiting_prime value; the inner loop is from step 9 to 11 and is for finding the best 

window label to assign the given segment with the ideal period r. The better result of 

these two procedures (variants) for any given K and m is always within 1% of the best 

result from all the variants. 

The two procedures comprise GFDPB. The first procedure gfdpb-prime(K, m) 

imposes a constraint on di whose value is a prime number and larger than a given 

limiting-prime, checking di only in the first condition of step 10 in Figure 3.9. The second 

procedure gfdpbjrime-facto4K, m) imposes a constraint on di whose biggest prime 

factor is larger than a given limitingjrime, checking di or d,, in all the three conditions of 

step 10 in Figure 3.10. Thus, we can see these two procedures are the two extremes for 

imposing constraints to prevent large split operations. The second procedure imposes 

the most severe constraint of all the variants we have tried on the di selection, while the 

first one imposes the least. In fact, more constraints on di selection sometimes causes 

less constraint on mj selection and therefore causes more bandwidth loss. As a result, 

there is a trade-off between the selection of the best mj and the selection of the best di. 

Thus, neither of these two procedures can always outperform the other. We try both of 

them and then pick the better one as the result of GFDPB in Figure 3.1 1. 

For K=2 and m=100, both procedure gfdpb-prime and gfdpb-prime-factor 

replace the window label (100) next to the segment label 100 by segment label 101 in 

the Co tree, as shown in Figure 3.7(b), instead of splitting the root node of the C1 tree 



Procedure: gfdpb-prime-factor(K, m) 

Input: K and m 

Output: n, the optimal limitinggrime, and K closed trees 

I ) to 9 )  are the same as procedure gfdpb-prime(K, m) 

10) if mi < m-min then { 

Calculate d/s biggest prime factor, biggestgrime-factor 

if biggestgrime-factor > limitinggrime and m-min < r 

increment i and go to step 9 

else 

m-min= mi; wp= wi ) 

else if (mi == m-min and wi > wp ){ 

Determine d k  biggest prime factor, biggescprime-factor. 

if (biggescprime-factor <= limitinggrime ) { m-min = mi and wp= Wi ) ) 

else if (mi > m-min) { 

d ,  = l r / w p ]  

determine d,'s biggest prime factor biggescprime-factor9 

if ( biggestgrime-factor-p > limitinggrime) { m-min= mi; wp= wi ) ) 

1 1 )  Increment i by land go to step 9. 

12) to 17) are the same as procedure gfdpb-prime(K, m) 
- - 

Figure 3.1 0 Procedure gfdpbgrim-factor 

Algorithm: GFDPB: gfdpb(K, m) 

Input: number of channel K and m 

Output: value n, K closed trees 

(max-seg I ,  optimal_limiting-prime I ,  optimal_forest I )  = gfdpbgrime(K, m) 

(max-seg2, optirnal_limiting_prime2, optimal_forest2) = gfdpbgrime-factor(K, m) 

If (max-seg? 2 max-seg2) 

Output (max-seg? , optimal_forest I )  

Else 

Output (max-seg2, optimal_forest2) 

Figure 3.11 Algorithm for GFDPB scheme 



into 101 leaves. This tree structure makes it more flexible to match the ideal periods of 

the subsequent segments. For K=2 and rn=141, procedure gfdpbjrirne-factor replaces 

the window label (141) next to the segment label 141 in the Co tree by segment label 

142, as shown in Figure 3.8(b), instead of splitting Cl into 71 leaves. However, according 

to procedure gfdpb-prime, for K=2 and rn=141, segment 142 will split Cl in the same 

way as in the multilevel splitting greedy algorithm, as shown in Figure 3.8(a). 

3.3 Enhanced GFDPB 

One problem with GFDPB is that it can't prevent the first segment with period rn 

which is a prime or has a big prime factor, such as rn=101 for K=l, from splitting the 

initialized singleton open tree into a large number of leaves with the same large window 

label. Therefore, we propose the Enhanced GFDPB (EGFDPB) algorithm in Figure 3.12. 

If rn is a prime number and larger than 3, or if rn is not a prime number but its biggest 

prime factor is larger than 10, then we reduce the period of the first segment from rn to 

the nearest integer whose value is less than rn and whose biggest prime factor is no 

larger than 10, and keep the ideal periods of the rest of segments the same as before. 

For a prime number rn which is less than 10, we just decrement the period of the first 

segment from rn to rn-1. 

First we must modify procedures gfdpb-prirne(K, rn) and gfdpb-prime-factor(K, 

rn) into procedures gfdpb-prirne(K, rn, firstger) and gfdpbgrirne-factor(K, rn, firstger), 

respectively, where variable firstger is the modified period of the first segment. In the 

same way, procedure gfdpb(K, rn) can be modified as gfdpb(K, rn, firstger). Take 

gfdpb(2, 101, 101) =546, for instance. Since the ideal period of the first segment 101 is a 

big prime number, we reduce the period to 100. Therefore, gfdpb(2, 101, 101)=546 is 

modified as gfdpb(2, 101,l OO)=612 or egfdpb(2,101)=612. The number of packed 



segments is thus increased by 12O/0. From here we can see the benefit of preventing the 

large split operations. 

Llgorithm: EGFDPB: egfdpb(K, m) 

nput: the number of channel K and m 

Iutput: value n, optimal limitinggrime and K closed trees 

(max-segl, optimal_forest?)=gfdpb(K, m, m) 

If (m is a prime number larger than 3, or m is not a prime number but the 
biggest prime factor of m is larger than 10) then { 

first-per = m; 

do{ 
first-per=firstger - 1 ; 

calculate the biggest prime factor of first_per; 

) while (firstgets biggest prime factor is larger than 10) 

(max-seg2, optimal_forest2)=gfdpb(K, m, first_per) 

if (max-segl rmax-seg2) 
return (max-segl , optimal_forestl ) 

else 
return (max-seg2, optimal-forest2) 

1 
Else 

return (max-segl, optimal_forest 1 ) 

Figure 3.12 Algorithm of Enhanced GFDPB 

3.4 Performance Analysis of GFDPB and EGFDPB 

To understand how well our GFDPB scheme performs with different numbers of 

channels and m values, we have calculated the values of n that result from GFDPB, 

EGFDPB, FDPB, RFS (or the greedy algorithm), and the multilevel splitting greedy 

algorithm. Here we apply RFS or the greedy algorithm under the fixeddelay policy. The 

results are shown in Figures 3.13 and 3.14, where the horizontal axis represents the 

value of m and the vertical axis represents the number of segments, n. The number in 

the name of each line represents the value of K. For example, fdpb-3 means FDPB with 

3 channels, bar-3 means Bar-Noy's multilevel splitting greedy algorithm with 3 channels, 



and ub-3 means the upper bound for K=3. Here, the upper bound is calculated 

according to a small variation of Formula (2.6.1), in which p(i) is changed to the i th 

prime number among the integers not less than m (e.g., if m=100 or m=101, then 

p(l)=101, p(2)=103, p(3)=107, etc) and "f(~]=i-1 if i is prime and i r p(K)" is changed to 

"f(i)=i-1 if i is prime and i > p(K)". 

Figure 3.13 Diagram for K=l to 3 and m=l to 254 

From these figures for each number of channels, we can see that the EGFDPB 

curve lies very close to and immediately below the upper bound curve. Note that the 

EGFDPB curve lies above the GFDPB curve when K 4 ,  and almost completely overlaps 

the GFDPB curve when K>3. The GFDPB curve undulates slightly under the EGFDPB 

curve, whereas Bar-Noy's multilevel splitting greedy algorithm curve undulates very 



Figure 3.14 Diagram for K=4 to 6 and m=l to 254 

wildly below the GFDPB curve, and goes sometimes above and sometimes below the 

FDPB curve except for K=6. Some of the maximum points of curve bar-i with 15 i 5 6 

are rather close to curve gfdpb-i with 15 i 5 6, but they are hard to be caught because of 

the irregularity and sparsity of this kind of maximum points. We can explain that the 

irregular wild undulations of curves bar-i with 15 i 5 6 is due to their partial control of split 

operations since sometimes large split operations cause a heavy bandwidth loss. 

Surprisingly, we find FDPB is better than RFS in most cases unless rn is very small. The 

reason is that the effect of the large split operations caused by RFS's one level splitting 

becomes bigger and bigger as rn increases. Thus, RFS performs worse and worse with 



increasing m. The above reason can also explain why the derivative of the RFS curves 

decreases as m increases especially when K=6. 

From these figures, we can see that of all the above schemes or algorithms, RFS 

or the greedy algorithm can pack the least number of segments, FDPB and Bar-Noy's 

multilevel splitting greedy can pack a moderate number of segments, and EGFDPB and 

GFDPB can pack the most number of segments. When more than three channels are 

used, the EGFDPB and GFDPB curves almost overlap, especially for K=6. For K=6, 

curve bar-6 is very close to curve g f d p b  or e g f d p b  when me50. When mr50, curve 

bar-6 undulates below curve gfdpb-6 or e g f d p b  and parts from curve g f d p b  and is 

progressively worse with increasing m. 

FDPB m=9 +- 
FDPB m=16 + 

FDPB m=36 * 
FDPB m=64 * 

FDPB m=100 * 
GFDPB m=9 f 

GFDPB m=16 +- 
GFDPB m=36 t 
GFDPB m=64 -Et 

GFDPB m=100 * 
ll(exp(x)l) ip- 

3 3.5 4 4.5 5 5.5 6 6.5 7 

Bandwidth (channels) 

Figure 3.15 Waiting time for FDPB and GFDPB with different m 



Given the number of channels K and the value of m, the inverse of n offered by 

each scheme reflects the maximum waiting time before a client can start viewing a video. 

Figure 3.15 shows the normalized waiting time (mln)  achieved by GFDPB and FDPB for 

m=9, 16, 36, 64, and 100. All the bandwidths are expressed as multiples of the video 

consumption rate b, and all the waiting times are expressed as fractions of the video 

duration D. The top five curves in the figure represent the results of FDPB and the curve 

at the bottom represents the lower bound on FDPB, i.e., l l(eK -1). We can see all the 

normalized waiting time values achieved by GFDPB are much smaller than those of 

FDPB and approach the lower bound very quickly with increasing m. 

Table 3.1 Comparison of GFDPB, GEBB and PHB 

BWlb 

GFDPB m=100 

GEBB n= 100 

GEBB n=500 

PHB m=8 

PHB m=100 

Table 3.1 shows the normalized waiting time achieved by GFDPB, GEBB and 

PHB. The bandwidth is expressed as multiples of the video consumption rate b. From 

the table, we can see GFDPB with the number of channels K>3 and m=100 achieves 

much shorter normalized waiting time than GEBB with the same total bandwidth and 100 

channels. GFDPB with K>5 and m=100 achieves even shorter normalized waiting time 

than GEBB with the same total bandwidth and 500 channels. GFDPB with m=100 

achieves shorter waiting time than PHB with m=8, where a video is broadcast in many 

more channels. For example, given the bandwidth B=6b, PHB with m=8 needs to use 

3021 channels to achieve a normalized waiting time of 0.002648, which is still longer 

than that achieved by GFDPB with six channels. At the cost of an enormous number of 

3 

0.05506608 

0.05488886 

0.05289245 

0.0556 

0.0526500 

4 

0.01 955034 

0.02020000 

0.01 896235 

0.0199 

0.01 875 



channels, PHB with m=100 achieves shorter waiting time than GFDPB. For example, 

given bandwidth B=6b, PHB achieves normalized waiting time of 0.0024974, which is 

2.8% shorter than that achieved by GFDPB with m=100, by partitioning a video into 

40041 segments and broadcasting each of them on a separate channel with decreasing 

bandwidth. However, to handle so many channels with decreasing bandwidth is likely to 

be a daunting task. Therefore, Table 3.1 shows that our GFDPB scheme is better than 

GEBB and PHB with the same total bandwidth and many more channels. Only if the 

number of channels used by GEBB and PHB increases to a great extent, the GEBB and 

PHB schemes can outperform GFDPB with the same total bandwidth and a much 

smaller number of channels. However, compared with GEBB, GFDPB needs to pay the 

price of handling many more segments than GEBB. For example, for K=6, each video 

will be partitioned into 38920 segments in GFDPB with m=100, but only 540 segments in 

GEBB. Thus, the overhead of GFDPB is much more than that of GEBB. 

Bar-Noy 
28 

Best bound 

Table 3.2 Number of the packed segments for m = 1 

Table 3.2 compares the numbers of the packed segments achieved by GFDPB 

for m=l  with those achieved by RFS [59], the multilevel splitting greedy algorithm 

(indicated by "Bar"), and Bar-Noy's best bound [58]. Bar-Noy's best bounds for small 

numbers of channels (K=4, 5, 6) were achieved by hand tuning the results of the greedy 



algorithm (RFS) and realized by non-perfect schedules. Bar-Noy's best bounds for 7 to 

10 channels were obtained from their modifications of the basic greedy algorithm, which 

were tuned according to each specific number of channels and use ad-hoc methods. 

They are the best known schedules for m=l. The upper bounds are calculated according 

to Theorem 2 of [59], as shown in formula (2.5.1). We can see from Table 3.2 that even 

for m=l,  GFDPB outperforms RFS and the multilevel splitting greedy algorithm ("Bar"), 

and is better than Bar-Noy's best bound if the number of channels is bigger than 8. 

UB 

170 

634 

1895 

5324 

14646 

39986 

108872 

Channel 

1 

2 

3 

4 

5 

6 

7 

Table 3.4 Number of the packed segments for m 4 0 0  

FDPB 

156 

565 

1650 

4563 

1241 8 

33684 

91321 

RFS 

100 

370 

1105 

31 68 

8809 

25432 

72029 

Bar 

136 

452 

1335 

4778 

13420 

3771 7 

1 04478 

GFDPB 

158 

606 

1816 

5115 

14180 

38920 

106387 



In Tables 3.3 and 3.4 we compare the number of packed segments achieved by 

GFDPB with those offered by FDPB, RFS, and the multilevel splitting greedy algorithm 

(indicated by "Bar") in the case of m=9 and m=100. After computing the average 

improvement, we find that GFDPB is on average 34.96% better than FDPB for m=9, and 

11% better than FDPB for m=100, and on average 1.92% better than the result of the 

multilevel splitting greedy algorithm for m=9, and 14.86% better than that of the 

multilevel splitting greedy algorithm for m=100. In Figures 3.13 and 3.14, we can see 

that when m is small, the result of the multilevel splitting greedy algorithm is generally 

close to the GFDPB result and is much worse than the GFDPB result when m is big. 

In addition to our above analysis, we also know that FDPB [57] and RFS [59] are 

better than all other Pagoda schemes in the third group of broadcasting protocols, and 

PHB and GEBB outperform all other schemes in the first and the second group. 

Therefore, we can conclude that EGFDPB or GFDPB outperforms all other schemes in 

the third group, and they achieve the lowest maximum waiting time of all currently known 

protocols given the same server bandwidth and the same number of channels. 

Sometimes, the results of the multilevel splitting greedy algorithm are very close to 

GFDPB, especially when m is small, but its performance is very unstable and 

uncontrollable. Furthermore, when K < 4, the maximum waiting times achieved by the 

multilevel splitting greedy algorithm are longer than those offered by FDPB in most 

cases. The result of GFDPB with Kc4 is slightly unstable when m is a big prime number 

or has a big prime factor, but it becomes more stable for K>3. We are able to choose a 

non-prime number m whose biggest prime factor is no larger than 10 so that we can only 

use GFDPB to find satisfying results quickly. 



3.5 Server Multiplexing Scheme 

In this section, we will analyze the server multiplexing scheme for GFDPB, which 

can be applied to FDPB and RFS as well. Intuitively, after getting a broadcasting 

schedule from GFDPB, FDPB or RFS, we can form a channel schedule for each channel 

as mentioned in Section 3.1. The channel schedule is a sequence of segments to be 

transmitted on the corresponding channel, starting from time slot 0, and has a length 

equal to the least common multiple (LCM) of the actual broadcasting periods (in slots) of 

all the segments in the channel. This channel schedule can be put into a circular array, 

so this array will contain a sequence of segments that is repeated infinitely in the 

channel. Each indexed position in the circular array corresponds to a time slot. We can 

keep a pointer for each channel schedule array and initially the pointer points to the first 

segment of the array. Every time we fetch the K segments that are pointed by the K 

pointers, send them to the corresponding broadcasting channels, and then let each of 

the K pointers point to the next segment of each array. In this way, the K pointers follow 

the K circular arrays forever. 

During simulation, we found a serious problem with the above intuitive server 

multiplexing scheme. If the number of segments of each video exceeds 300, the LCM of 

the actual periods of all the segments broadcast in one channel may be bigger than 1 

million. If the number of segments exceeds 2000, then the LCM will be larger than 1 

billion. If the number of segments is much bigger than 2000, then the LCM may be out of 

range of four-byte integers. Therefore, it takes up too much memory to be a practical 

algorithm. 

From Figures 3.1 and 3.2, we can see that the start slot of a segment is normally 

less than the segment's actual period minus 1. For example, the start slot of SS(Ci, 0, 

12, A )  is slot 0 and its period is 12. The start slot of SS(Ci, 3, 12, F) is slot 3 and its 



period is 12. Only the start slot of the rightmost leaf SS(Ci, 5, 6, H) is equal to its period 

minus 1, i.e. 5. According to this observation, we have the following lemma. 

Lemma 3.1 In a closed tree, a segment has an offset equal to its actual period 

minus 1 if and only if it is represented by the rightmost leaf such that each of its ancestor 

nodes is the rightmost among its sibling nodes. 

Proof: We use the symbols introduced in Formulae 3.1 . I  and 3.1.2 in Section 

3.1. For a leaf node J,, its ancestors are named J,,,-l, Jm-2, . . ., JI, Jo, where Jo is the root 

node and Ji-l is the parent of Ji (O< i 5 m). Then, Formulae 3.1.1 and 3.1.2 are changed 

to be T(Ji) = T(Ji- I) d(Ji- I) and a(Ji) = a(Ji- I) + h(JJ T(Ji- I), where T(JJ is the period of Ji 

and a(Ji) is the start slot of Ji. We have 

Since h(Ji)< (d(Ji-1)-I), we have 

m-l 

=~(JO)+~(~(J~-~)-~)*T(J;-~)+(T(J~-,)-T(J~-,))+(T(J~)-T(J~-~)) 

The equality happens if and only if h(Ji)=d(Ji-~)-l, where O< i s  m. 

To solve the problem caused by the tremendous memory requirement, we give 

up on the above server multiplexing scheme, which uses channel schedules. For each 

channel, we make a circular array and the size of the array is equal to the maximum 

broadcasting period of all the segments broadcast on the channel. From the channel, we 

fetch a sequence of segments starting from time slot 0 with the array size to be 

transmitted on the channel, and put the sequence of segments into the circular array. 



Lemma 3.1 guarantees that the array will contain all the segments broadcast in the 

corresponding channel at any time. Each time slot corresponds to an indexed position of 

the array, which contains the address of a segment and the corresponding period. 

Assume the array size is A. At the beginning of time slot a, we will fetch the address of a 

segment from index (a mod A) of the array. We set a pointer for each array, initially 

pointing to index 0 of the array. We must have K senders to send segments to the K 

channels simultaneously. 

Each sender works as follows: 

For each time slot, slot i, first, the sender fetches the address of a 
segment with period p from the indexed position pointed to by the 
corresponding pointer. Second, go to the address to fetch the segment 
and send it to the corresponding channel. Third, rewrite the position of 
index (i+p) mod A with this segment's address and period. Finally, let the 
pointer point to the next indexed position, index (i+l) mod A, of the 
corresponding circular array. 

In the way described above, we constantly update the K circular arrays to 

guarantee that the interval between any two consecutive broadcasting of a segment is 

exactly equal to its actual broadcasting period calculated by GFDPB, RFS, or FDPB. For 

K=6 and m=100, we have the number of segments n=38920, achieved by GFDPB, so 

the size of the six circular array is less than 38920 X 6 = 233520. 

Figure 3.16(a) shows the first channel schedule for the case of K=2 and m=3. 

The maximum broadcasting period in this channel is 9, so we use a circular array with 

size 9 and initialize the array as shown in Figure 3.16(b). Here, for simplicity, we assume 

the address of each segment is equal to its segment number. Thus, segment Si is 

represented as ;.(actual period). For example, 1.3 represents the address of segment S1 

with the actual broadcasting period 3. In Figure 3.16(b) the index 0 of the array is at the 

top and filled with 1.3. The array index is increased clockwise to index 9, which is filled 

with 9.9. Take time slots 0 to 4 for instance. In slot 0, the sender sends segment S1 



indicated in index 0 and then rewrites index (0+3) mod 9=3 with 1.3. In slot 1 ,  the sender 

sends S4 indicated in index 1 and then rewrites index (1+6) mod 9=7 with 4.6. In slot 2, 

the sender sends S7 indicated in index 2 and then rewrites index (2+9) mod 9=2 with 7.9. 

In slot 3, the sender sends Sf indicated in index 3 and then rewrites index (3+3) mod 

9=6 with 1.3. In slot 4, the sender sends S5 indicated in index 4 and then rewrites index 

(4+6) mod 9=1, where we replace 4.6 with 5.6. 

Figure 3.16 Circular array for server multiplexing 

3.6 Client Demultiplexing Scheme 

In this section, we will discuss the demultiplexing scheme on the client side. 

Since we need to download from all the channels simultaneously, we must have K 

loaders to download simultaneously from K channels and one displayer to display the 

video at the same time. First, we have the following two observations: 

a We need to know which segments are available in each time slot so that they can 

be downloaded and saved in order. Thus, every segment must bear a segment 

number or a sequence number in its header. For K=6 and m=100, a 2-byte 

header is enough for identifying segments less than 40,000. In the following, we 

assume the sequence number of a segment is equal to its segment number. 



If we start downloading a segment from the middle, we don't know which 

segment it is; therefore, we let each user wait for the beginning of a new slot, and 

then download for m - I  time slots in advance. After that, the user starts viewing 

the movie. 

According to the second observation, at the beginning of the (m+i-1)-th slot, 

clients can always display the i-th segment from the buffer or display directly from one of 

the loaders. Thus, we can start displaying S, at the beginning of the m-th slot, and then 

SP at the beginning of the (m+l)-th slot, and so on. 

If we have plenty of memory or buffer space, we can allocate continuous space 

for the whole movie, and each segment address can be calculated by a formula 

according to the segment size and the starting address of the first segment. At the 

beginning of each time slot, each loader checks the segment header first, calculates the 

address, and then downloads the segment to the address. After each loader has 

preloaded m- I  segments, the displayer starts displaying the video from the beginning of 

the continuous buffer space, and then goes through the buffer space until reaching the 

last segment of the video. 

If we want to save buffering space, we need an address array with the size of 

the total number of segments of a video to hold the addresses of all the downloaded 

segments. Also, we need a free list to hold all the free memory space. We present our 

demultiplexing scheme which we call the loader scheme next. 

Each loader works as follows (the loader scheme): 

At the beginning of each time slot, the loader downloads a segment 
header and compares its sequence number i with the sequence number j 
of the segment just starting to display. If i < j, the loader discards the 
segment with sequence number i (segment i )  in the present time slot. If i=j 
and the displayer asks for it from loaders, the loader directly sends 
segment i to the displayer. If i=j and the displayer doesn't ask for it from 



loaders, the loader discards the segment. If i >j, the loader checks the 
address array for the address of segment i and does as follows. If the 
address for segment i in the present time slot is found, it means segment i 
has been downloaded and the loader does not need to download it again; 
otherwise, the loader checks the free list for a free block to download 
segment i and writes the address of segment i to the address array. 

The displayer works as follows: 

Once m-1 time slots have elapsed after the moment each loader starts 
downloading segments, the displayer starts to fetch segment addresses 
from the address array in order and displays the segments one by one. If 
an address is not found in the address array, the displayer checks the K 
loaders to find the one that is downloading the segment, and then reads 
directly from the loader. Finally, the displayer places the address of the 
segment just displayed to the free list and starts to fetch the next 
segment. 

The above loader scheme takes two steps to check the segments that have been 

downloaded but have not yet been displayed: first, compare i and j; second, check the 

address array. We can save time by adding a bit vector with its size equal to the total 

number of segments. Each bit represents a segment, and it is 1 if this segment has been 

downloaded or displayed; otherwise, it is 0. For m=100 and K=6, this bit vector only 

needs 40 Kbits = 5 Kbytes of memory. Therefore, the loader scheme is modified as 

follows. 

Each revised loader works as follows: 

At the beginning of each time slot, the loader downloads a segment 
header and checks the bit vector to see whether the segment has been 
downloaded. If the bit is 1,  the loader quits downloading in this time slot. If 
the bit is 0 and the segment is just needed for display, the loader sends 
the segment directly to the displayer and sets the bit to 1.  If the bit is 0 
and the segment does not have to be displayed immediately, the loader 
checks the free list for a free block to download the segment, changes the 
corresponding bit in the bit vector to 1 ,  and then writes the address in the 
address array. 

Many computers support very efficient bit-manipulation instructions in assembly 

languages. Often high level program languages also provide these kind of instructions. 



Thus, we can make a decision about whether to download the segment in the present 

time slot very quickly in the above scheme. The cost is only a small multiple of K bytes of 

memory. 

3.7 Channel Schedule Formats Translation 

The translation from the tree representation to the (slot) sequence representation 

was described in Section 3.1. The method first copies the channel number and the 

segment number, and then calculates the period and the start slot (offset) of each 

segment label of the tree. Here, the segment number is equal to the segment's ideal 

period. 

Root Node 

Start slot (k2 n2 ) nl+ il (k2n2 + 1 )  n~ + il (k2 n2 + ( ( n ~ l ) )  nl+ il 
Figure 3.17 Start slot pattern of the round robin tree 

In this section, we discuss the translation from the (slot) sequence representation 

to the tree representation of a channel schedule. According to the recursive round-robin 

character of the tree representation shown in Figure 3.3, for a tree whose root node has 

nl children labeled with the numbers 0, 1 ,  . . ., n l - I ,  the start slot (offset) of each segment 

label that is a descendant of child il (01 il< n l )  of the root node can be expressed as 

klnl+ i l ,  where kl is a non-negative integer and 0 1  il< n l .  If klnl+ il is the start slot 

(offset) of a segment label in the tree shown in Figure 3.17, kl is the start slot (offset) of 

the segment label in the subtree of child il (01 il< n l )  of the root node, and kl= k2n2+ i2. 

Integer n2 is the number of the children of child il of the root node, 0 1  i2< n2, and k2 is a 



non-negative integer, as shown in Figure 3.17. According to this observation, if a 

segment whose start slot (offset) is s in a channel schedule tee,  this segment should be 

a descendant of child c (c= s mod n r )  of the root node, and i s l n ,  1 should be the start 

Algorithm: Translate a channel schedule from the slot sequence representation to 
the tree representation 

Input: A channel schedule in a slot sequence list 

Output: A channel schedule in the tree representation 

1 )  Sort the slot sequence list in the increasing order of the ideal periods. 

2) Pick the slot sequence, whose start slot, actual period and ideal period are 
indicated as (startslot, actualPeriod, idealperiod), from the head of the list and 
remove the slot sequence from the list. 

3)  If the present segment is the first segment of the channel, apply the multilevel 
split operation to the root node following the increasing order of the prime factors 
of the actual period of the first segment, and then attach the segment label, 
idealperiod, to the leftmost leaf. Then go to step 2). 

4) If the present slot sequence is not the first, use startslot to find an empty leaf. 
Initialize s=startSlot, F O ,  and J=Jo, where J is the current node and Jo is the root 
node. 

5 )  Calculate r =s mod d(J) and s  = l s l d ( ~ ) J ,  where d(J) is the number of 
children of node J. 

6) Update J as child r of itself. If J becomes a leaf with a window label w, apply 
multilevel split operation to J, following the increasing order of the prime factors of 
integer actualPeriod/w, and then attach segment label idealperiod to the leftmost 
leaf of the subtree of node J; otherwise, go to step 5). 

7 )  If the slot sequence list is not empty, go to step 2); otherwise, output the tree. 

Figure 3.18 The channel schedule format translation 

slot (offset) of this segment in the subtree of child c. We can recursively apply the same 

rule to the subtree of child c of the root node. According to the above description, we 

have our translation algorithm in Figure 3.18. Since segments are placed in a tree in the 

increasing order of the corresponding ideal periods in the GFDPB algorithm shown in 

Figures 3.9 to 3.11, we also place slot sequences, each of which corresponds to a 

segment, to a tree in the increasing order of the corresponding ideal periods. Therefore, 

we sort the slot sequence list in step 1. The algorithm in Figure 3.18 has two loops inside 



it: the outer loop is from steps 2 to 7 and loops through the slot sequence list; the inner 

loop is from steps 5 to 6 and is for placing a given slot sequence, which is not the first 

slot sequence in the list, to the tree. 

Figure 3.19 Example for the schedule format translation 

For example, let the first four segments in the order of their ideal periods be 

SS(0, 0, 48, 48), SS(0, 1, 50, 50), SS(0,3,50,55), and SS(0,2,56,56). The first, the 

second, the third, and the fourth integer inside each pair of brackets represent the 

corresponding segment's channel number, start slot, actual period and ideal period, 

respectively. First, we need to place SS(0, 0, 48, 48). According to step 3 of Figure 3.18, 

we apply the multi-level split operation to the root node following the order of 2, 2, 2, 2 

and 3 since 48=2x2x2x2x3, as shown in Figure 3.19. Second, we place SS(0,1,50,50). 

Since the root node has two children and 1 mod 2=1, segment label 50 is a descendant 

of child 1 of the root, which is an open leaf. We apply the multi-level split operation to 

the leaf following the order of 5 and 5 since 50/2=25=5x5. Third, we place SS(0,3,50,55). 

In step 4 of Figure 3.18, we have s=3, ~ 0 ,  and J=root. In the first loop of steps 5 and 6, 

r=3 mod 2=1, s=l3/21= 1, and J=c. In the second loop, node c has five children, so r=l 

mod 5=1. Since child 1 of node c is an open leaf and has a window label 10, we split the 

leaf into five child leaves since 50/10=5. Similarly, we place SS(0,2,56,56). Figure 3.19 

only shows the segment labels, and the window labels are left empty. 



Chapter Four 
Group-Based Broadcasting Schemes 

As before, we consider a video of duration D to be broadcast over K channels {Ci 

) 0 S i < K). The bandwidth of each channel is equal to the video consumption rate b, so 

that the total bandwidth is equal to Kb. In the model adopted in the harmonic windows 

scheduling, the number of pages n that can be packed in the K channels must satisfy 

This implies that there is bandwidth equal to K - H(n) that is not utilized if this quantity is 

non-zero. In this chapter, we try to make use of this "wasted" bandwidth to pack more 

pages into K channels. To this end, we first describe the Harmonic Group Window 

Scheduling (HGWS) problem in Section 4.1. Then, in Section 4.2, we present the 

Harmonic Page-set Broadcasting (HPB) scheme as a solution to HGWS. In Section 4.3, 

we simulate HPB and analyze its results. Finally, in Section 4.4, we propose the 

Preloading Page-Set Broadcasting (PPSB) scheme to remedy HPB's shortcoming with 

respect to maximum waiting time. 

4.1 Harmonic Group Window Scheduling (HGWS) Problem 

The HGWS was introduced in [67], which presents many basic properties of the 

problem. The HGWS problem has two features different from the Fixed-Length 

Segment-scheduling (FLSS) Problem defined in [59] for the common features of all other 

broadcasting schemes in the third group. First, HGWS groups consecutive slots into 

blocks, and second, it groups consecutive pages into page-sets. 



Each video is partitioned into N pages of duration d=D/N, where a page is an 

equal-sized segment. A page is the basic unit of the transmission of a video in the 

HGWS problem. Each of these N pages is broadcast at a certain interval over the K 

channels such that each page transmission occupies a time slot of duration d in some 

channel. We group P consecutive time slots into one time block, as shown in Figure 4.1 

for P=5. Integer /3 is called the block size. We label time slots from 0 to P-1 inside each 

time block. Each page-set consists of a number of consecutive pages. All the pages in 

page-set i (the first page-set is numbered 1) are broadcast exactly once every i blocks 

so that all of them have the same broadcasting period, i.e., i time blocks or, equivalently, 

ip time slots. 

Time Block 0 1 2 3 

Figure 4.1 Block diagram for p = 5 

A client waits until the beginning of a new time block to start watching a video 

and at the same time downloading simultaneously from all K channels. Channel Co 

continuously repeats the first page-set (page-set I), consisting of page 1 to page P, to 

ensure that they are repeated in every time block. For example, in Figure 4.1, for j=0, 1, 

2, 3, 4, slot j is allocated to page j+ l .  This way, once a client starts viewing page 1, 

pages 2 to 5 will be available for display just in time. It is easy to see that the maximum 

waiting time and average waiting time are /3d (one block duration) and 0.5pd (half block 

duration), respectively. 

Grouping every /3 slots as a block is similar to partitioning a channel into /3 

subchannels in Fixed Delay Pagoda Broadcasting (FDPB) [57]. Slot 0 of every block 

belongs to subchannel 0, and slot 1 of every block belongs to subchannel 1, and so on. 



In general, slot i (01 i1 P-I)  of every block belongs to subchannel i. As we saw above, 

the p subchannels of channel Coare allocated to the P pages of page-set 1. 

Unlike FDPB which maps pages into subchannels in a strictly sequential fashion, 

we first assign each page-set to several (possibly inconsecutive) subchannels, observing 

the continuous display constraint that we will discuss later. This assignment produces a 

page-set schedule, then we map pages into page-sets in a strictly sequential fashion to 

get a page schedule. If subchannel j is allocated to page-set i, we map only i 

consecutive pages of page-set i to subchannel j, since each page in page-set i must be 

broadcast once in every i blocks. As stated above, we map the first pages into the 

subchannels allocated to page-set 1, and then the next P or more pages into those of 

page-set 2, and so on. Subchannels belonging to different channels can be allocated to 

a page-set. We always map consecutive pages into a page-set in the order of its 

allocated subchannel numbers. 

We can use a forest consisting of K round-robin trees to represent a page-set 

schedule in the tree representation mentioned in Section 3.1. One tree is assigned for 

each channel, as shown in Figure 4.2(a) for K=2 and P=4. Each tree has P leaves 

representing the P subchannels of the corresponding channel. If we number the /3 leaves 

of each tree 0, 1, . . ., P-1, from left to right, leaf i corresponds to subchannel i or slot i of 

each block, where 0 S i  5 P-1. Each leaf in the tree is labeled with a page-set number 

called page-set label, representing the page-set the corresponding subchannel is 

allocated to. 

A page schedule further splits each leaf with a page-set label in a page-set 

schedule into level 2 leaves representing individual pages, except the leaf with page-set 

label I. For example, in Figure 4.2, pages 5 and 6 are mapped into page-set 2 and 

subchannel 0 of C1 is allocated to them, so we split the leftmost leaf of C1 in (a) into two 



leaves at level 2 with page labels 5 and 6, as shown in (b). According to the algorithm in 

Figure 3.3, we can easily translate each tree of a page schedule to a channel schedule 

to be broadcast repeatedly on the corresponding channel. 

Figure 4.2 shows a complete example. For /3 = 4 and K = 2, page-set 1 is 

assigned to the four subchannels of channel Co, and page-set 2 is assigned to 

subchannels 0, 2 and 3 of C1, and page-set 3 is assigned to subchannel 1 of C1. We 

thus get a page-set schedule shown in Figure 4.2(a). We will discuss in detail why we 

assign page-sets to subchannels in this way in the next section. The purpose is to 

guarantee continuous display of a video and to pack as many pages as possible into the 

given channels. In the following steps, we map pages into page-sets to get the 

corresponding page schedule as shown in Figure 4.2(b). First, we map pages 1, 2, 3, 4 

to page-set 1 and allocate the four subchannels of channel Coto the pages. Then, we 

map pages 5, 6, 7, 8, 9, 10 to page-set 2, since there are three subchannels allocated to 

page-set 2 in the page-set schedule shown in Figure 4.2(a) and each subchannel can 

broadcast two pages of page-set 2. Now, pages 5, 6 are mapped into subchannel 0 of 

C1, pages 7, 8 into subchannel 2 of C1, and pages 9, 10 into subchannel 3 of C1. Finally, 

since there is only one subchannel allocated to page-set 3 in the page-set schedule 

shown in (a), and each subchannel can broadcast three pages of page-set 3, we map 

pages 11, 12, 13 to page-set 3 and allocate subchannel 1 of C1 to the pages. Figure 

4.2(b) shows the above page schedule. Each label in Figure 4.2(b) represents a page 

number called a page label. Applying Procedure Tree-to-Schedule in Figure 3.3 to the 

four round-robin subtrees of channel C1 in Figure 4.2(b) yields the channel schedules of 

four subchannels of C1, <5, 6>, 4 1 ,  12, 13>, <7, 8>, and <9, lo>, respectively. 

Following the procedure in Figure 3.3, we can get the channel schedule of C1, 6, 11, 7, 

9, 6, 12, 8, 10, 5, 13, 7, 9,6, 11,8, 10, 5, 12, 7, 9, 6, 13, 8, lo>, which is broadcast 



repeatedly on channel C1. Figure 4.2(c) shows the first five blocks of the broadcasting 

sequence of pages of Co and C1, and (d) shows the broadcasting sequences of the four 

subchannels of C1. For example, subchannel 0 of C1 consists of slot 0 of every block and 

broadcasts pages 5 and 6. 

1 1 1 1  2 3 2 i  

(a) Page-set schedule (b) Page schedule 

4 u u u 
n n n b 

Time Block 0 1 2 3 4 
(c) The broadcasting page sequence according to the page schedule 

Channel& 

Channel C1 

Time b 
(d) Four subchannels of channel C1 

Figure 4.2 The page-set and page schedule for K=2, P=4 

i 

Let us now check whether the page schedule in Figure 4.2(b) meets the 

requirement for continuous display. We assume a client starts to play a video at the 

beginning of time block i. Thus, pages 1 to 4 will be displayed in block i, pages 5 to 8 in 

block i+1, pages 9 to 12 in block i+2, and page 13 in block i+3. We can see this page 

schedule guarantees that each page has been received or will be received at the time it 

is needed. Take pages 7 to 10 for instance. At the beginning of slot 2 of block i+ l ,  pages 

7 and 8 either have been received or will be received from subchannel 2 of channel C1, 

since both of them appear once every two blocks as shown in Figure 4.2(d). Thus, page 

2 

5 1 1  

3 4 1  2 3 4  

7 9 6 1 2 8 1 0 5 1 3 7 9 6 1 1  

1 2  3 4 1  2 3 

8 

4 1 2  

1 0 5 1 2 7 9  
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7 can be displayed on time. At the beginning of slot 3 of block i+ l ,  page 8 has been 

received and can be displayed on time. Pages 9 and 10 will be received at slot 3 of 

either block i or block i+l,  since both of them appear once every two blocks as shown in 

Figure 4.2(d). Thus, pages 9 and 10 can also be displayed on time at the beginning of 

slot 0 and 1 of block i+2, respectively. 

According to the above description, we need to find a page-set schedule first, 

and then to map pages into page-sets in a strictly sequential fashion. We now formally 

define our HGWS problem as follows. 

Definition: Given a video V of duration D seconds, block size P, and a set of K 

channels, the Harmonic Group Window Scheduling (HGWS) Problem is to find a 

partition of V into n page-sets, PS(1), PS(2), . . ., PS(n), such that PS(k), where O<kl n, 

consists of the pages with a broadcasting period of k blocks, and to find a placement of 

the n page-sets to the Kfl subchannels of the K channels. The placement should 

guarantee that for any viewer starting to play the video at the beginning of any block, 

each page will be received or has been received at the time slot when the viewer needs 

to consume the page. 

Suppose sf ,  Sn, ..., S, subchannels are allocated to the above n page-sets, 

respectively. Since i pages from PS(1) can be mapped to a subchannel, the total number 

of pages in these n page-sets is N = C i s i  . Each page has an equal size DHN and 
i=l 

each channel is divided into time slots of length S = D l  N . Our goal is to maximize the 

total number of pages N, or equivalently to minimize DIN. 

To schedule each page-set on some of the KP subchannels, we need to 

guarantee that each page can be downloaded before or exactly when it is consumed so 

that the video can be displayed continuously. Since the pages of page-set 1 must be 



broadcast in every block and displayed immediately while downloading, we map the first 

p pages of a video to page-set 1 and allocate the P subchannels of Co to them so that 

they can be broadcast repeatedly in Co to guarantee continuous display. As for the 

pages in other page-sets, the following lemma gives a necessary condition to solve the 

HGWS problem. First we define a set of pages P(k)={ page i I (k- l)P< i 5 kp ), for 1 I k 5 

n. 

Lemma 4.1: For any solution to the HGWS problem, each page in P(k) must 

appear at least once on one of the K channels in every k consecutive blocks. If a client 

starts playing the movie at the beginning of block j, then the pages of P(k) will be 

displayed in block j+k-1. 

Proof: If a client starts to play and download a video from slot 0 of block j, page i 

will be displayed in slot ((i-1) mod P )  of block j+ l(i - 1 ) l ~ ]  . Recall that pages are 

numbered 1, 2, . . .. For example, for P = 5, page 12 will be displayed in slot 1 of block 

j+2. Because clients may start from the beginning of any block, page i must appear at 

least once every[(i - l)l~]+ 1 = ri l /31 blocks. If (k-1)P< i S kp, then ri//3]= k ,  so all 

pages in P(k) must appear at least once every k blocks and will be displayed in block 

j+k-1 if a client starts to view a movie at the beginning of block j. 

According to the above lemma, we call P(k) the ideal page-set k. We have the 

following theorem for upper bounds on the number of pages and page-sets. 

Theorem 4.1 Given K channels, let integer n satisfy 



" 1 
Then the number of pages N cannot be more than n p  + ( K  - :)(n + l ) P  and the 

;=I  1 

number of page-set (N/P) cannot be more than 

Proof: The number of pages in P(k) is P,  and according to Lemma 4.1, all pages 

in P(k) must be broadcast at least once in every k consecutive blocks (or once in every 

kp consecutive slots). Thus, the pages in P(k) will consume at least Pe(lI(Pk)) = l / k  of 

the channel bandwidth. Since the total bandwidth cannot exceed K, we must have 

x i  2 K  . The maximum such 
k=l 

together have KP subchannels. 

n is given by Equation (4.1.1). Note that K channels 

" 1 
Of these, at l e a s t p x T  subchannels are allocated to 

;=I 1 

" 1 
page-sets P ( l )  to P(n). In other words, up to ( K  -xT)/? subchannels may be still 

;=I 1 

" 1 
unallocated. This means that we can map at most (K - z7)p(n + 1) pages to page-set 

i=l 1 

" 1 
n+1. Thus, np+ (K - z T ) p ( n  + 1)  is an upper bound on the number of pages. 

;=I 1 

From the above theorem, we can see that P(I) in HGWS is equivalent to segment 

Si in the optimal harmonic windows scheduling problem, mentioned in Section 3.1, since 

P(i), as well as Si, consumes at least l l i  of the channel bandwidth. In HGWS, by dividing 

P(I] into many pages, the required bandwidth 1li is separated into many small bandwidth 

portions so that we can use the residual bandwidth mentioned in Theorem 4.1 to pack a 

partial page-set. 



Since a client needs to wait at most one block to start watching the video, and on 

average needs to wait for half a block, we have following corollary: 

" 1 
Corollary 4.1 : Given a video with duration D seconds, D l(n + (K  - x T ) ( n  + I ) )  

i=l I 

" 1 
is a lower bound on the maximum waiting time and OSD/(n + ( K  - x T ) ( n  + 1) )  is a 

i=l Z 

lower bound on the average waiting time. 

According to the proof of Lemma 4.1, we need to guarantee that page i should be 

available at slot ((i-I ) mod P) of block j + l ( i  - 1 )  l f l ]  or before, if a client starts to play a 

movie at the beginning of block j. Since block j can be any block, page i should be 

mapped to subchannel s, where 0s s 5 ((i-I) mod P), if it appears exactly once every 

r i l f l l  blocks. Otherwise, its period should be less than r i l f l l  blocks. Because a 

subchannel is allocated to only one page-set, not all the first pages (page (k-1)P+1) of all 

the ideal page-sets P(k) (bO) can be mapped to subchannel 0 of some channel. For the 

same reason, not all the i-th pages (page (k-l)P+o of all the ideal page-sets P(k) (bO) 

can be mapped into subchannel s of some channel, where 0 1  ss (i-I). Thus, some 

pages in P(k) must be given a block period less than k to meet the continuity 

requirement. For example, pages 9 and 10 in Figure 4.2 (P=4) belong to the ideal page- 

set P(3) and need to appear at least once every three blocks, but actually they appear 

once in every two blocks. If we let page 9 be broadcast once every three blocks, page 9 

should be mapped to subchannel 0 to guarantee that a client can reach or has received 

page 9 for playing after 3 time blocks from the moment the client started viewing and 

downloading the movie from a server. However, pages 5 and 6 of page-set 2 have been 

already mapped into subchannel 0. Therefore, page 9 should be broadcast with a period 



less than 3. Since each subchannel can broadcast two pages with a two block period, 

we promote both pages 9 and 10 to page-set 2. 

Recall that PS(k) denotes the set of pages that are actually given block period k. 

Note that PS(k)  P ( k ) u P ( k + l )  . We call the pages of P(k+l) contained in 

P(k+ 1 )nPS(k) promoted pages. 

Lemma 4.2 Page i E PS(k)nP(k), where k = r i l ~ l ,  must be in subchannel j 

satisfying 01 j I i - (k-l)P - 1 to guarantee a jitter free display. The promoted pages, i.e., 

those in PS(k)nP(k+l), can be put in any subchannels from 0 to 0-1 

Proof: The first part has been proved before. In the second part, each page in 

PS(k)nP(k+l) will have been downloaded by the time when it is needed, no matter 

which subchannel it may be broadcast in. 

To maximize the number of pages N, we must minimize the number of promoted 

pages from each P(k), since promoted pages consume more bandwidth than necessary. 

Let IPS(/][ and IP(i)) denote the number of pages in PS(0 and P(I], respectively. Further, 

let promoted(k)= IPS(k-l)nP(k)l denote the number of pages actually promoted from 

P(k) and let subChs(i) denote the number of subchannels or the number of slots per 

block that the pages of page-set i occupy. The pages in PS(i) should include IP(i)l- 

promoted(0 pages from P(0 and pmrnoted(i+l ) pages promoted from P(i+l ), i.e., 

i- l  i-l 

Clearly pmrnoted(l)=O. Since CIP(~)I + promoted(i) = C(PS(Z)~ and IP(/]I=P. 

we clearly have 



We have the following necessary and sufficient condition to solve the HGWS 

problem by promoting some pages from each P(k). Subchannel allocation is represented 

by SiPj such that SiSj =1 (0s j < p) if subchannel j is allocated to page-set i; else SiPj =O. 

Therefore, we have 

Let IBound6(i), /Bound of page-set i, denote the minimum number of pages that must 

be promoted from set P(i) to guarantee the continuous display of all the pages in page- 

set i under assignment 6 . 

Theorem 4.2: For any solution to the HGWS problem, given Si,j for 15 i r n and 

01 j 5 p-I, we have 

and 

Proof: We assume a client starts viewing and downloading pages from slot 0 of 

block s, so P(i) will be displayed in block s + i -1. By definition, the number of 

subchannels allocated to page-set i, between subchannel 0 and j inclusive, is 2 S i , =  . 
z=O 

We know that each subchannel Xallocated to page-set i broadcasts i consecutive pages 

of page-set i, and these i consecutive pages, pages % to Z, are downloaded completely 



at the end of slot Xof block s+i-I, as shown in Figure 4.3. Moreover, consecutive pages 

are mapped into page-set i in a strictly sequential fashion in the increasing order of their 

page numbers. Thus, at the end of any slot j, 0 5 j< P, of block s+i-I, the number of 

downloaded consecutive pages of P(I), counting from the first page of P(i), is 

i 
promoted(i) + i x 6 ; , ,  , and the number of displayed pages of P(I) is j+ l .  Therefore, to 

z=o 

meet the continuity requirement of P(i) at the end of slot j of all blocks, the necessary 

and sufficient condition is promoted(i) + i2 6,,, 2 j + 1 , ~.e., 
z=o 

i 
promoted(i) t j + l  - iC6 , , ,  and this condition should be satisfied for any j, Or j < p. 

z=o 

Thus, promoted(/) must not be less than rnax{j + 1 - i t  6,,, 1 0 i j < P)  . This proves the 
z=o 

first part of the theorem. 

i 
Letting j=P in promoted(/) 2 ( j  + 1 )  - i x  6 , .  and using (41.5) we get 

z = o  

promoted(1)2,8 - i E 6 , , ,  = p - i subChs(i) which proves the second part. 

Subchannel % 
or slot X 

Figure 4.3 Downloading pages from a subchannel 



Since promoted(/)< P, /Bound,&), a lower bound on promoted(i), is also always 

less than p. We now want to compute IPS(I)I for a given 6,,j for 15 is n and 01 j5 p-I.  

According to Formula (4.1.4), promoted(i+l) can be calculated only after IPS(q1 is known, 

so we use IBound6(i+l) instead of promoted(i+l) to calculate a lower bound on IPS(/)l 

from Formula (4.1.3). Summing both sides of (4.1.3) from 1 to i, we obtain: 

This can be rewritten as 

Since each subchannel broadcast i consecutive pages of page-set i, the number 

of pages in PS(1) should be an integer multiple of i. Therefore, we have the following 

formula. 

In Formula (4.1.6), we use a ceiling function to guarantee that at least 

/Bounda(i+l) pages are promoted from page-set i + 1. We thus obtain IP(/)l and 

promoted(i) using the total number of pages in all the previous page-sets and the 



IBound6(i) on the next page-set. For a solution to the HGWS problem, subchannel 

allocation, i.e., 8i,j for I 5 i 5 n and 05 j 5 El, should satisfy 

IPS(i)l =I' * subChs(i) for I < i < n 

where IPS(/]l is obtained from Formula (4.1.6) and subChs(~] is from Formula (4.1.5). 

Normally, it is not easy to get a right subchannel allocation satisfying the above 

condition directly. The method used in Section 4.2 is that we choose a rough subchannel 

allocation first, and then, for each page-set, we adjust the number of subchannels or 

slots to exactly meet the number of pages obtained from Formula (4.1.6) according to 

Theorem 4.2. If we succeed in the above adjustment of the number of subchannels for 

each page-set, we get the final solution. 

4.2 HPB Scheme 

In this section, we will introduce our detailed solution to the HGWS problem, i.e., 

the HPB scheme. Given a set of page-sets satisfying the conditions given in Section 4.1, 

how can we assign all the page-sets into PK subchannels so that we can pack as many 

pages as possible into K channels with block size P? 

As mentioned in Section 4.1, to maximize the total number of packed pages N, 

we should try to minimize the number of promoted pages. Therefore, we should put as 

many pages of the ideal page-set P(I] as possible in the actual page-set PS(i) so that, for 

all i = 1, 2, ..., page-set PS(I] will occupy a bandwidth as close as possible to lli of the 

channel bandwidth, which implies roughly Pli subchannels should be allocated to page- 

set PS(/]. We know that each segment Si in the schedule of RFS or GFDPB (m=l) 

consumes no less than and close to lli of the channel bandwidth. So they give us 

something that approximates our goal. 



Given a schedule from either RFS or GFDPB, we can get a segment 

broadcasting sequence for each channel by repeating the corresponding channel 

schedule as mentioned in Section 3.1. Suppose we pick a suitable P and the first one 

block (or P slots) of the segment broadcasting sequence of each channel. If we now 

regard each segment i as page-set i and each slot j (01 j<P) as subchannel j, we will get 

an initial version of the rough page-set schedule in which each page-set is assigned to 

roughly pli subchannels. We call the corresponding schedule from RFS or GFDPB 

(m=l) the initial version of the rough block schedule, where each segment label should 

be interpreted as a page-set label. For example, let us consider the case where K=3 and 

P=18. The schedule from RFS or GFDPB (m=l) is shown in Figure 4.4(a). Figure 4.4(b) 

is the segment broadcasting sequence of schedule (a) in the first 18 slots of the three 

channels. If we regard slot i (0 I i 5 17) of each channel in (b) as subchannel i of the 

corresponding channel, then (b) is the initial version of the rough page-set schedule for 

K=3 and P=18, and (a) is the initial version of the rough block schedule. Later, we will 

talk about how to improve this initial version of the rough block schedule. First, we will try 

to increase the number of packed page-sets and get a final version of the rough block 

schedule. Second, we will modify the final version of the rough page-set schedule using 

Theorem 4.2 to get the actual page-set schedule which exactly meets the requirement of 

continuous display. 

According to Theorem 4.2, we have i*subChs(i) 2 P - promoted(i), for any page- 

set i. It means the number of subchannels allocated to page-set i is sufficient to hold all 

the (p - promoted(i)) pages of the ideal page-set Pfl, excluding the promoted pages. 

Note that each subchannel can accommodate i pages of PS(i). According to Lemma 4.2, 

promoted pages can be put into any surplus subchannels of page-set j satisfying 

j*subChs(j) > IPS0)l. 



or Slot # 

Co 

(a) The initial version of the rough block schedule for K=3 

(b) The initial version of the rough page-set schedule for K=3 and P=18 

Figure 4.4 Rough block schedule and rough pageset schedule for K=3 

If page-set j has a period p less than j in a rough block schedule (tree), then it 

may occupy more subchannels in the corresponding rough page-set schedule than 

necessary to support all the pages in PSQ, i.e., the interval p between any two 

consecutive appearances of the (pages of) page-set j in the corresponding rough page- 

set schedule is less than j time slots in a block. We say in this case that pageset j has 

free space or free bandwidth ( l lp  - 10). There are many page-sets of such kind in an 

initial version of a rough block schedule. 

We call a page-set which is assigned to only one leaf in a rough block schedule a 

perfect page-set, otherwise we call the page-set a non-perfect page-set. Since we 

only use a perfect schedule as our initial version of a rough block schedule, all the page- 

sets in the initial version of the rough block schedule are perfect page-sets. Later, we 

show that we can add some non-perfect page-sets to the initial version of a rough block 

schedule to increase the number of packed page-sets. 

1 All pages in page-set j have the same period, j block, in the actual page schedule. 
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Lemma 4.3 Given a schedule of HPB, the IBound6(i) of a perfect page-set i, 

computed from a rough block schedule, is equal to its start slot sh , the smallest 

subchannel number allocated to this page-set. 

Proof: We use the same assumptions 

J 

IBound, (i, j) = (j + 1) - ix G,,, for some j. Since 
z=o 

as in Theorem 4.2 and let 

Gi,, = 0 for z < sb , we have 

max{lBound,(i, j) 1 02 j <sA )= si . Consequently, we have promoted(/] 2s; . Suppose a 

client starts viewing and downloading pages from slot 0 in block s. The pages of P(I] are 

displayed in block s + i - 1 .  Note that the interval p between any two consecutive 

appearances of the (pages of) perfect page-set i in the corresponding rough page-set 

schedule is not more than i time slots in a block, i.e., p 5 i. Moreover, each subchannel X 

allocated to page-set i broadcasts i consecutive pages of page-set i and these i 

consecutive pages can be downloaded completely by the end of slot X of block s+i-1. 

Therefore, the number of downloaded consecutive pages of P(I], counting from the first 

page of P(I], increases by i every p slots in block s + i -1 after slot si . Therefore, if 

promoted(/] ~ s i ,  the continuous display of the perfect page-set i is guaranteed. 

From the proof of Lemma 4.3, we can guarantee that each page-set i with a 

period equal to i in a rough block schedule can be displayed on time, if the number of 

promoted pages is equal to its start slot number. As we stated above, there are many 

page-sets with free space that is more than enough to support promoted pages in the 

initial version of a rough block schedule. We can assign the free bandwidth of these 

page-sets to some new page-sets in a rough block schedule without affecting the 

continuity of the former page-sets. In this way, we can modify the initial version of a 

rough block schedule to increase the number of packed page-sets, within the upper 



bound given in Theorem 4.1. We call a page-set in the initial version of a rough block 

schedule initial page-set, otherwise extended page-set. For example, for K=3, the 

initial version of the rough block schedule obtained directly from RFS or GDPB (m=l) 

has 9 page-sets, and we can insert page-set 10 and a partial page-set 11 into the initial 

page-sets having free bandwidth. Here, page-sets 1 to 9 are the initial page-sets and 

page-sets 10 and 11 are the extended page-sets. 

Next, we define extra-slot(i, 1) as a measure of which subchannel j, originally 

allocated to an initial page-set i having free space, can be reallocated to an extended 

page-set in a rough page-set schedule. 

extra-slot(i, 1) indicates the number of consecutive pages already downloaded in 

the buffer space at the beginning of slot j of the i-th block of display time, i.e., the time 

block during which a client plays the ideal page-set P(I) of a video, in the worst case. 

The consecutive pages are counted from page (i-I)P+j+l, where P is the block size. The 

worst case for the i-th block of display time is when each slot in the block, whose 

corresponding subchannel is allocated to page-set i, is for broadcasting the first page of 

the i consecutive pages mapped to the corresponding subchannel of the slot. Page (K- 

I)P+j+l is the page just needed to be consumed at the beginning of slot j of the i-th 

block of display time. In other words, extra-slot(i, 1) is equal to the number of 

downloaded consecutive pages of P(0, counting from the first page of P(0, minus the 

number of pages of P(I) having consumed at the beginning of slot j of the i-th block of 

display time for the worst case scenario mentioned above. 

For example, in Figure 4.2, we have P(3)={page i 1 9 5 i I 121, PS(2)={page i 1 5 5 

i I 101, PS(3)={page i 1 11 5 i I 131, and start-slot(3)=l, so we have promoted(3) = 

(PS(2)flP(3)1=2. Take the 3rd block of display time for instance. The pages of P(3), i.e., 

pages 9 to 12, will be displayed in the block. Since pages 9 and 10 are promoted from 



P(3) to PS(2), they will be downloaded in the 1'' or the 2nd block of display time. There 

are three pages, i.e., pages 11, 12, and 13, in PS(3), each of which will be downloaded 

in the IS', 2nd, or 3rd block of display time. Thus, the 3rd block of display time has three 

different cases related to the downloading of PS(3): the block broadcasting page 11, the 

block broadcasting page 12, and the block broadcasting page 13, as shown in Figure 

4.2(c). At the beginning of slot 1 of the 3rd block of display time, when page 10 is needed 

for display, if the 3rd block is the block broadcasting page 11, then the number of the 

downloaded consecutive pages of P(3) counting from page 10 in the buffer space is 1 

(page 10). If the 3rd block is the block broadcasting page 12, then only two such pages 

(pages 10 and 11) are in the buffer. If the 3rd block is the block broadcasting page 13, 

then only three such pages (pages 10, 11 and 12) are in the buffer. Thus, the worst case 

for the 3rd block in Figure 4.2(c) is the block broadcasting page 11, i.e., the first page of 

the three consecutive pages mapped to subchannel 1, and extraaslot(3, 1)=1. 

If subchannels j o  and jl are two adjacent subchannels allocated to page-set i and 

jo+extraaslot(i, jo) 1 jl, then we can reallocate subchannel jo to an extended page-set to 

replace page-set i in a rough page-set schedule without changing the continuity of the 

display of page-set i. The reason is that at the beginning of slot jo, extraaslot(il jo) can 

support continuous display up to the beginning of slot jl in the worst case for the i-th 

block of display time. If page-set i is a perfect page-set and its period is p slots in a 

rough block schedule, we have jo + p = jl; moreover, if extraaslot(il jo) 2 p, we have 

jo+extra-slot(i, lo) 1 jl. 

In Figure 4.4, we present an insertion algorithm for assigning the free bandwidth 

of a perfect initial page-set to an extended page-set. It splits the leaf with the initial page- 

set label in a rough block schedule into several child leaves, and then assigns some of 

those child leaves to the extended page-set. In the algorithm, a leaf with a label of an 



initial page-set i in a rough block schedule is split into split-num child leaves, so the 

original subchannels allocated to page-set i, or the corresponding slots in each block, 

are divided into groups of split-num, each of which consists of split_num original 

consecutive subchannels or slots for page-set i. Thus, in the first group, the first original 

subchannel allocated to page-set i, or the corresponding slot in each block, corresponds 

to the first child leaf, and the second original subchannel or slot for page-set i 

corresponds to the second child leaf, ..., and the (split-num)-th original subchannel or 

slot for page-set i corresponds to the last child leaf. The above matching is repeated 

again in the next group of split_num original consecutive subchannels or slots for page- 

set i: the (split-num+l)-th original subchannel or slot for page-set i corresponds to the 

first child leaf, and so on. 

Algorithm: Assign the free bandwidth of a perfect initial page-set to an extended 
page-set in a rough block schedule 

Input: Trees of a rough block schedule, an extended page-set a, an initial page-set i 
with start_slot(i)=s, promoted(i)=r, and a period p 

Ouput: The rough block schedule with the extended page-set a inserted into the 
subtree of the original page-set label i 

1) Split the leaf with page-set label i into split_num=ilGCD(i, i-p) child leaves and 
label the child leaves 0, 1, 2, ..., split-num-1, where GCD means the 
greatest common divisor. The number of leaves given to extended page-set a 
is new-num=(i-p)lGCD(i, i-p). 

2) Initialize extra-slot=(r-s) for the first child leaf and set j= l  . 
3) If extra-slot r p, assign extended page-set a to the j-th child leaf, 

increment j by 1, and update extraaslot=extra-slot - p 
else 

assign page-set i to the j-th child leaf, increment j by 1 and update 
extra-sot = extra-slot+i-p 

4) If j < split-num, go to step 3, else output the trees. 
- - 

Figure 4.5 The insertion algorithm for HPB 

Each group of split_num original consecutive slots for page-set i in a block 

repeats the same matching pattern. Therefore, in Figure 4.4, when we calculate the 



value of extra-slot of a child leaf, we regard the child leaf as its corresponding slot in the 

first group of split-num original consecutive slots of page-set i in the i-th block of display 

time. Because we always keep the value of extra-slot of the next child leaf in step 3 of 

Figure 4.4, and we already know the corresponding slot and block of each leaf, we only 

use the variable extra-slot in the algorithm without indicating the corresponding 

parameters. If a child leaf corresponds to slot k and is assigned to page-set i, then all the 

i pages broadcast in the corresponding subchannel k must have been downloaded at the 

end of slot k of the i-th block of display time. At the beginning of the next slot, slot k+p, 

whose corresponding subchannel is allocated to page-set i, the value of extra-slot is 

increased by i - p from the value at the beginning of slot k, as shown in step 3 of Figure 

4.4. The reason is that during the period between the beginning of slot k and the 

beginning of slot k+p in the i-th block of display time in the worst case, the number of 

downloaded consecutive pages of P(I], counting from the first page of P(i), increases by i 

and p pages are consumed. 

Theorem 4.3 proves that we can pick exactly new-num subchannels from each 

group of split_num original consecutive subchannels of page-set i to be assigned to 

extended page-set a (in Figure 4.4) without changing the continuity of the display of 

page-set i, i.e., without changing the value of promoted(+ 

Theorem 4.3: The algorithm in Figure 4.5 can guarantee that a total number of 

new-num leaves for page-set a can be added, and page-set i occupies exactly l l i  of the 

channel bandwidth in the output trees. Page-set a gets ( I l p  - I l i )  of the channel 

bandwidth after being inserted. 

Proof: We assume that we can assign 3 child leaves to the extended page-set a. 

From step 3 of Figure 4.5 we see that every child leaf assigned to page-set i contributes 

( i  - p) slots to extra-slot, so the total contribution to the value of extra-slot through the 



(split-num- 3) child leaves assigned to page-set i is (split-num - 3)*(i - p). Also from 

step 3, we see that each child leaf assigned to extended page-set a consumes p slots 

from extra-slot, so we need to consume a total of %jp slots from extra-slot for the %jchild 

leaves. Thus, for guaranteeing that each group of split-num original consecutive slots for 

page-set i in a block repeats the same insertion pattern, we should have 

3 = split_num * ( i  - p)li = ( i  - p)lGCD(i, i - p) = new-num 

Therefore, we can assign exactly new-num child leaves to extended page-set a in the 

algorithm. 

Since the leaf for the initial page-set i is split into split-num child leaves in which 

new-num leaves are given to the extended page-set a, (split_num-new-num)=p/GCD(i, 

i-p) child leaves are assigned to page-set i. The bandwidth of each child leaf is 

l l (spl i t_num~p), so the total bandwidth of page-set i in the output trees is 

(ll(sp1it-numep)). plGCD(i, i-p)=lli. Thus, the residual bandwidth ( l i p  - l l i )  is given to 

page-set a. Assigning a leaf to the extended page-set if extra-slot 2 p in step 3 of the 

algorithm guarantees the continuous display of page-set i after the assignment. 

Consider, for instance, the case of inserting extended page-set 11 into the free 

space of the initial page-set 8 with a period of six slots in a rough block schedule given 

promoted(8)=7 and start_slot(8)=2. In step 1 of Figure 4.5, we get GCD(8, (8-6))=2, 

split-num=8/2=4, and new-num=(8-6)/2=1. When we calculate the value of extra-slot 

of a child leaf, we regard the child leaf as its corresponding slot in the first group of four 

original consecutive slots, slots 2, 8, 14, and 20, for page-set i in the i-th block of display 

time. In step 2,  we initialize extra-slot=7-2=5 for the first child leaf. In step 3, we 

increase extra-slot by 8-6=2 every time for assigning page-set 8 to a child leaf and 



decrease extra-slot by 6 every time for assigning page-set 11 to a child leaf as shown in 

Figure 4.6. For the last, or the rightmost, child leaf, we have extra_slot=3, so we assign 

page-set 8 to it and update extra-slot=extra-slot+2=5, which is exactly the same as the 

value of extra-slot of the first child leaf. Therefore, each group of four original 

consecutive slots of the initial page-set 8 in each block repeats the same insertion 

pattern as shown in Figure 4.6. 

\ The original 

Figure 4.6 An example for insertion algorithm 

To minimize the number of promoted pages, we try to allocate l / a  of a channel 

bandwidth to extended page-set a. To do so, we need to choose several initial page-sets 

that have free space and the sum of whose free bandwidths is greater than or equal to 

l / a  to provide page-set a with sufficient free bandwidth according to the algorithm shown 

in Figure 4.5. Thus, most of the extended page-sets are non-perfect page-sets, each of 

which is assigned to more than one leaf in a rough block schedule after being inserted 

completely. 

We denote each leaf of a non-perfect page-set i in a rough block schedule as 

( s j , p ; )  in which sj. represents the start slot of the j-th leaf of page-set i, and p )  

represents the corresponding period. We assume that a non-perfect page-set i has a + l  

leaves, (sb , ), ( s ,  ) ,  . a ,  (sh, p i ) ,  in the increasing order of s;  (0 5 j 5 a). We call 

the j-th leaf of page-set i the subpage-set j of page-set i, so the above page-set i has 



a+l  subpage-sets. Since each leaf(s;,p;) represents a sequence of time slots [s:. , 

s;+~:,  s;+zP;, ~ ; + 3 ~ ' .  J 9 * I  inside a block, beginning at slots;, and repeating with 

a period of p; slots, then we have the following formula. If page-set i is a perfect page- 

set, then a=O. 

a 

subChs(i) = (1 + 
J=O 1";; "" ) where > r i  

Obviously, the number of the pages mapped into subChs(0 subchannels is equal to i 

times subChs(i). 

Now, we can talk about how to get the page-set schedule as shown in Figure 4.2. 

For K=2 and P=4, an initial version of the rough block schedule from RFS and the 

corresponding rough page-set schedule are shown in Figure 4.7 (a) and (b), 

respectively. First, we check the IBound6(i) of each page-set according to Lemma 4.3: 

IBounda(l)=O, IBounda(2)=0, and IBounda(3)=l. Second, we calculate the number of 

promoted pages and the number of pages of each page-set except the last page-set 

according to Formulae (4.1.4) and (4.1.6): promoted(l)=O, IPS(l)l=4, promoted(2)=4- 

4=0, and IPS(2)1= [4-:i11x2 = 6  For the last page-set (page-set 3), lBound6(3) 

already guarantees its continuous display in the 3'* block of display time according to 

Lemma 4.3. Adding additional subchannels to it or giving some last subchannels of it to 

other page-sets doesn't affect its continuity. Therefore, the number of pages of the last 

page-set is very flexible. Third, we calculate the number of slots or subchannels of each 

page-set according to Formula (4.2.1) with a=O: subChs(l)=4, subChs(2)=2, and 

subChs(3)=2. Fourth, we adjust the number of subchannels of each page-set to fit the 

number of pages of the same page-set except the last page-set. Since each subchannel 



allocated to page-set i broadcasts i consecutive pages of page-set i, IPS(i)Jli is the 

number of the subchannels needed to support the number of the pages of page-set i. By 

comparing (PS(i)Jli with subChs(i), where 1 I i 12,  we find page-set 2 needs one more 

subchannel to support its pages. Therefore, we give the last subchannel of page-set 3, 

i.e., subchannel 3 in the rough page-set schedule (see Figure 4.7(b)), to page-set 2 and 

get the actual page-set schedule as shown in Figure 4.2(a). 

1 2 3 
(a) Rough block schedule 

1 1  1 1  2 3 2 3  
(b) Rough page-set schedule 

Figure 4.7 HPB example for K=2, p 4  

According to Theorem 4.2, we have the following lemma for the /Bound of a non- 

perfect page-set. 

Lemma 4.4: Assume that an extended page-set a has a + l  leaves after being 

inserted in a rough block schedule (trees) and the leaves, 

(s," , p,"), (sr , p;) ,  -, ( s z ,  p:) , are in the increasing order of start slots; (0 5 j 5 a). 

j Y 

Let IBound, (a,  j )  = ( j  + 1)  - a x  So, = ( j  + 1)  - a x ( l +  ) where 0 5 y 5 a, j 
z=o z=O 

L S ; ,  and y = a or j <s;+, , then IBound, ( a )  = max {IBound, (a ,  j )  ( 0 5 j  < P) 

Proof: For any leaf (s la ,py)  of page-set a, the number of the subchannels 

corresponding to the leaf (subpage-set) between subchannel 0 and j, inclusive, is 

if j Lsla ; else it is zero. The rest is similar to the proof of Theorem 4.2 after 1 +I?] 

summing up over all the leaves (subpage-sets) of page-set a,. 



Now, we present our HPB. Figure 4.8 is a flow chart of the algorithm. The main 

data structure in the algorithm is a page-set list, pagesetlist, where each object 

represents a leaf with a page-set label in a rough block schedule forest, so non-perfect 

page-sets have more than one page-set object. To meet the continuity requirement, first, 

we use Lemma 4.3 or Lemma 4.4 to calculate the values of /Bound for each page-set, 

and then use Formula (4.1.6) to calculate the number of pages (indicated as nPages 

here) for each page-set. According to the algorithm in Figure 4.5, we insert extended 

page-sets up to the given page-set number, i.e., max-pageset in Figure 4.9, into the free 

space of initial page-sets having free bandwidth in the rough block schedule to get the 

final version of the rough block schedule. 

- 
Build and output the page schedule 

Figure 4.8 Flowchart of HPB 

Insert extended page-sets 
into the free space of initial 
page-sets having free 
bandwidth to get the final 
version of the rough block 
schedule 

Read in an initial 
version of a rough 
b l o c k s c h e d u l e  

> 

Now, we talk about how to transfer subchannels from page-sets to page-sets to 

meet the continuous display requirement after getting the final version of the rough block 

schedule. Suppose that we have subChs(0 = T and IPS(i)lli = 3, and page-set i is 

assigned to subchannels i f ,  i2, ... , i, (in the increasing order of subchannel numbers), 

each from one of the K given channels. If X > 3, page-set i has a surplus of subchannels. 

+ 

+ 
Build the 
page-set 
schedule 

Calculate the number 
of subchannels, the 
numberofpagestand 
free bandwidth for 
each initial page-set 

_+ 

Adjust the number of subchannels to fit 
the number of pages for each page-set. 
If a page-set has a shortage of 
subchannels, try to borrow from other 
page-sets; if a page-set has a surplus 
of subchannels, give them to other 

Calculate the number 
of subchannels, the 
number of promoted 
pages, and the 
number of pages for 
each extended page- 

page-sets or the last page-set set 



According to Theorem 4.2 and Formula (4.1.6), IBound~(i) used in calculating IPS(i -1)l 

guarantees the continuous display of page-set i from slots 0 to i2 in the i-th block of 

display time. After slot i2 of the i-th block of display time, all the pages of page-set i have 

been downloaded in a client's buffer space. Thus, the continuous display of page-set i is 

still be guaranteed if we give subchannels ipl to i, to other page-sets that have a 

shortage of subchannels. If X < 3, page-set i has a shortage of subchannels. According 

to theorem 4.2, those pages that cannot be accommodated on the Xsubchannels are 

the promoted pages from page-set i+ l .  We can put the promoted pages into any 

subchannels borrowed from page-sets that have surplus subchannels and don't worry 

about their display continuity. For the last page-set (the last extended page-set), we also 

calculate its /Bound according to lemma 4.4 so that adding additional subchannels to it, 

or giving some last subchannels of it to other page-sets, doesn't affect its continuous 

display. Thus, the number of pages of the last page-set is very flexible. If a page-set has 

a surplus of subchannels and no other page-sets need them, we give them to the last 

page-set. If a page-set has a shortage of subchannels and no other page-sets have 

surplus subchannels, then we borrow subchannels from the last page-set as indicated in 

step 9 of Figure 4.9. 

List pagesetlist is a list of objects of a page-set class that has the following 

private member variables: channel, start-slot, period, pageset, nPages, subChs, IBound, 

promoted, more, givelist, and borrowlist. The first four variables indicate the place of a 

leaf with page-set label, pageset, in the rough block schedule tree. The next four 

variables are used to check for a sufficient condition for continuous display of this page- 

set. The last three variables, where more = subChs - npageslpageset, are used to 

match the number of subchannels with the number of pages as described in Figure 4.8. 

We sort pagesetlist in increasing order of (pageset, start-slot, channel) so that all the 



leaves assigned to the same non-perfect page-set are put together in the increasing 

order of start_slots. For a non-perfect page-set, its parameters, nPages, subChs, 

IBound, promoted, more, givelist, and borrowlist, are stored in the first subpage-set. 

Figure 4.9 shows the detailed algorithm of HPB. In step 1, we read in an initial 

version of a rough block schedule generated by GFDPB (m=l) or RFS, and build the 

pagesetlist, and then in step 3, we calculate parameters of each initial page-set: IBound, 

promoted, nPages, and subChs. In step 4, we build a list, freelist, which contains all the 

page-sets having free spaces and their corresponding free bandwidths. In step 5, for 

each extended page-set i, we choose a set of initial page-sets from the freelist to form a 

freeD list where the sum of all the free bandwidths exceeds and is close to lli, and then 

insert the extended page-set i into the free space of each of the page-sets in the freeD 

list according to the algorithm in Figure 4.5. Step 5c is a heuristic for reducing the waste 

of free bandwidth while adding an extended page-set. In step 6, we calculate IBound, 

promoted, nPages, and subChs for all the extended page-sets. In step 7, we calculate 

the value of more = subChs - npageslpageset for each page-set. If a page-set lacks 

subchannels, i.e., more<O, we put it in the lesslist; if a page-set has a surplus of 

subchannels, i.e., more>O, we put it in the morelist. From steps 8 to 10, we adjust the 

number of subchannels, subChs, to fit the number of pages, nPages, for each page-set 

including all the initial and extended page-sets through the rnorelist and the lesslist. If a 

page-set lacks subchannels, then we borrow some subchannels from other page-sets 

that have a surplus of subchannels, or from the last extended page-set, and record the 

number of the subchannels borrowed and the page-set from which the subchannels 

have been borrowed in the borrowlist of the corresponding page-set. If a page-set has 

too many subchannels, then we give the surplus subchannels to other page-sets which 

lack subchannels, or give them to the last extended page-set, and then record the 



number of the subchannels and the page-set to which the subchannels have been given 

in the givelist of the corresponding page-set. 

Now, we get the final version of the rough block schedule. In step 13a, we build 

the final version of the rough page-set schedule according to the final version of 

the rough block schedule indicated by pagesetlist. In pagesetlist, each object 

represents a leaf with a page-set label in the final version of the rough block schedule 

forest through four private member variables: channel, start_slot, period, and pageset. 

Then, in step 13b, we modify the above final version of the rough page-set schedule to 

make each page-set meet the continuous display requirement by giving their last several 

subchannels or slots to other page-sets in givelist and get the actual page-set schedule. 

Finally, we build the page schedule in step 14 by mapping pages into each page-set in a 

strictly sequential fashion. If there is no sufficient free bandwidth for adding the given 

number of extended page-sets, or if we fail in matching the number of subchannels with 

the number of pages for some page-sets, an error message will be generated and the 

program terminates. 

The output of HPB is pagelist where each object represents a leaf with a page 

label in the actual page schedule forest. Each page object is indicated by four private 

variables. The first one is the channel number and the second is the start slot number. 

The third is the broadcasting period of the page (in slots), and the fourth is the page 

number. Note that the final page schedule is an actual broadcasting schedule like the 

GFDPB schedule and is ready for being put into our server multiplexing scheme in 

Section 3.7 for actual broadcasting. A time slot is the only time unit used in the page 

schedule. No time blocks and page-sets are used in pagelist. 



Algorithm: 

I 

- 

max-pageset) 

Input: Number of channels K, block size P, and max-pageset, which is the last 
page-set number you want to insert. 

Output: Total number of pages and a page schedule, pagelist. 

1) Read an initial version of a rough block schedule in the format (channel, star-slot, 
period, pageset) per line, build the pagesetlist, and count the number of initial 
page-sets, pageseLnum. 

2) Sort the pagesetlist in the increasing order of (pageset, start_slot, channel). 

3) For each initial page-set i except the last, calculate subChs according to Formula 
(4.2.1) with a=O, promoted according to Formula (4.1.4), /Bound according to 
Lemma 4.3, nPages according to Formula 4.1.6, and more = subChs - nfagesh. 
For the last initial page-set, just calculate the value of promoted, since we don't 
know the /Bound value of its next pageset, the first extended page-set, at this 
point. 

4) For each initial page-set i with period p, if i > p, then this page-set has free 
bandwidth with period freeP=iapl(i-p), whose corresponding bandwidth is 
llfreeP; put (freeP, i )  into freelist in the increasing order of freeP. 

5) For each extended page-set i from page-set pageset-num+l to page-set 
max-pageset, do the following: 

5a) Create a null list freeD. 

5b) If the free bandwidth of the first page-set in freelist is not less than l l i ,  
remove it from the head of freelist, add it to freeD list, and then go to 5f). 

5c) If we can find an integer n such that the sum of the first n page-sets' free 
bandwidth from freelist is not larger than lli and the sum of the first n+l  free 
bandwidth is larger than lli, then do the following; else go to 5d) directly. 
Remove the first n page-sets from freelist and add them into freeD list. If the 
sum of all the free bandwidth in freeD is less than l l i ,  go though the rest of 
freelist to pick the last free bandwidth for freeD list, which makes the sum of all 
the free bandwidths in freeD list closer to lli than any other free bandwidth in 
freelist and larger than l l i ,  and then remove the corresponding page-set from 
freelist. Go to 5f). 

5d) If the sum of all the page-sets' free bandwidth in freelist is less than 1li and 
i < max-pageset, then output an error message "Error: max-pageset should 
be changed to i "  and terminate the program. 

5e) If i = maxgageset, then move all the remaining free bandwidths from 
freelist to freeD list. 

5f) For each page-set j in freeD list, do the following: Find the initial page-set j 
in pagesetlist, remove it, assign it to pre-PS, and then insert page-set i into the 
free space of page-set j according to Figure 4.5. Copy nPages and promoted 
of pre-PS to the first subpage-set of page-set j after insertion and calculate the 
new values of subChs and more for page-set j. 

5g) Calculate /Bound of the just inserted page-set i according to Lemma 4.4. 



6) Calculate promoted, nPages, subChs, and more for page-set pageset-num and 
all the extended page-sets except page-set max-pageset, whose nPages is 
flexible. 

7) For each page-set i, if more>O, then put (i, more) into morelist in the increasing 
order of more; if more<O, then put (i, -more) into lesslist in the increasing order of 
-more. 

8 )  For each page-set i in lesslist, whose -more is assigned to cp, do the following. 

8a) If morelist is empty, go to step 9. 

8b) Go through morelist to find the page-set, page-set j, whose more 2 cp. 
Remove page-set j from morelist and page-set i from lesslist. If more of page- 
set j is larger than cp, deduct cp from more, then put (j, more-cp) into morelist in 
order. Every pair of actions of borrowing subchannels and giving subchannels 
is recorded in the corresponding page-set's borrowlist and givelist. 

8c) If we can't find page-set j in 8b), then do as follows. Fetch and remove the 
page-set from the head of morelist and deduct the corresponding more value 
from cp and update cp=cp-more. Repeat the above operation until cp I more 
value of a just fetched page-set, or morelist is empty. If more value of the just 
fetched page-set is larger than the updated cp, then put the remainder more-cp 
back to morelist in order. If we use up all the surplus subchannels in morelist 
and the updated cp is still larger than 0, then put the updated cp and page-set i 
back in the head of lesslist, then go to step 9. Also, every pair of actions of 
borrowing subchannels and giving subcahnnels should be recorded in the 
corresponding page-sets' borrowlist or givelist. 

9 )  If lesslist is still not empty, then borrow subchannels from the last page-set 
(max-pageset). If all the subchannels of page-set max-pageset are used up and 
lesslist is still not empty, then output error message "Failure in matching less and 
more, try to decrease max-pageset!!!" and terminate the program. 

10) If morelist is still not empty, then give all the surplus subchannels in morelist to 
the last page-set, page-set max-pageset. 

11) Calculate the last page-set's subChs according to its subpage-sets, borrowlist 
and givelist; then calculate its nPages=subChs* max-pageset. 

12) Calculate the total number of pages by 

total_page=(max-pageset-l)j3 + (the value of promoted of page-set 
max-pageset)+ (the value of nPages of page-set max-pageset) 

13) Build the page-set schedule through the 2-dimensional array ps-sch with size KP 
I 

where ps[~]m, where 01 i 5 K-I and 05 j 5 P- I ,  represents subchannel j of 
channel i or slot j of each block of channel i and holds the page-set number that is 
assigned to the subchannel. For each page-set i in pagesetlist, 15 i 5 ' max-pageset, do the following: 

13a) For each subpage-set of page-set i, fill all the slots or subchannels 
belonging to this subpage-set in the corresponding channel with page-set i. 

13b) For each page-set j in givelist of page-set i, check all the K channels, 
subchannel by subchannel and backward from subchannel /3 - 1 ,  to find the 



I last appropriate number of subchannels or slots belonging to this page-set i, 
and then reassign them to page-set j, which borrows the corresponding 
number of subchannels from page-set i 

14) Build the page schedule according to the page-set schedule by mapping pages 
to each page-set in a strict sequential fashion. 

page-idx=O; 

Loop i  from 1 to max-pageset //go through all the page-sets 

loop j from 0 to P-1 //go through all the subchannels 

loop k from 0 to K - 1 //go through all the K channels 

if(ps-sch[k]M==i) 

for m=O to i-1 //each subchannel broadcasts i 

//pages of page-set i 

{ page-idx++; 

add page(k, j+m P,  i *  P, page-idx) to pagelist ) 
Next k 

Next j 

Next i 

15) Output total_page and pagelist. 

Figure 4.9 Algorithm for the HPB scheme 

4.3 Simulation and Analysis of HPB 

Figure 4.10 shows our simulation results for K=6 and the selected values of P 

between 100 and 10000. We can see that the normalized number of page-sets, i.e., (the 

total number of pages)lP, approaches the upper bound as /3 increases. The reason is 

that the proportion of promoted pages decreases and the residual bandwidth in Theorem 

" 1 
4.1, K -x: , is more likely to get some subchannels and contributes to the 

i=I 1 

improvement of the result as p increases. 

Table 4.1 shows the normalized number of page-sets, (the total number of 

pages)lp, achieved by HPB for the value of K from 3 to 7. The values of "GFDPB" and 

"RFS" are obtained by using the corresponding schedules of GFDPB (m= l )  and RFS, 



respectively, as the initial version of rough block schedules. Since we need to add a 

header to each page during broadcasting, we can't let each page be too small; 

Figure 4.10 Normalized number of page-sets achieved by HPB 

Table 4.1 Number of page-sets of HPB 

BW(b) 

GFDPB 

RFS 

UB 

P 

otherwise, the header will consume too much bandwidth. To let each page remaining a 

reasonable record size, we can't let P grow too large. Here we limit the total number of 

pages to be no larger than 700,000. This means that each page can contain more than 

7,200*5,000,000/(700,000*8)= 6,429 bytes of data given a two-hour movie and 

3 

10.753 

10.753 

10.781 

60000 

4 

30.131 

30.131 

30.155 

15000 

6 

225.614 

225.614 

226.009 

2000 

5 

82.784 

82.785 

82.828 

5000 

7 

612.61 

612.635 

615.215 

1000 



5MegbitsIsecond channel bandwidth. In the table, we choose the P for each case such 

that the number of pages packed is close to 700,000 pages. UB denotes the upper 

bound on the number of page-sets according to Theorem 4.1. We can see that the 

results of HPB based on the RFS schedule have little difference from those based on 

GFDPB schedules. All are very close to the upper bound if P is big. 

HPB 

Best Bound 

RFS 

Bar 

Table 4.2 Average waiting time of HPB and other schemes 

334.790 

400.00 

GFDPB(m=l ) 

FD-LB 

QHB(m=100) 

Table 4.2 compares the average waiting time, achieved by HPB and based on 

RFS schedules from Table 4.7, with other schemes for a two-hour movie. "Best Bound" 

shows the average waiting time achieved by Bar-Noy's non-perfect schedules (K=4, 5, 

6) or from their modifications of the greedy algorithm using ad hoc method. Those are 

the shortest average waiting times of all schedules using segments of equal duration 

and channels of equal bandwidth. "FD-LB" shows the fixed-delay lower bound, the 

minimum waiting times that can be approached by schemes based on the fixed-delay 

policy such as FDPB, GFDPB, PHB and GEBB, according to Formula (2.5.2). "RFS" and 

"GFDPB" show the results of the RFS and GFDPB schemes, respectively. "Bar" shows 

the results of the multilevel splitting greedy algorithm. We can see none of the above 

three protocols or algorithms in the third group can guarantee an average waiting time 

better than the fixed-delay lower bound (FD-LB) in all cases, unless the number of 

400 

400 

1 19.478 

128.571 

400 

377.249 

360 

144 

144 

43.486 

46.753 

144 

134.332 

124.1 37 

49.31 5 

49.31 5 

15.956 

17.061 

49.31 5 

48.842 

43.902 

5.876 

6.315 

17.91 0 

17.734 

6.372 

6.417 

17.561 

17.891 

16.071 

6.360 

6.572 

5.892 



channels is larger than 5 or 6. Moreover, their maximum waiting time is nearly 100% 

longer than FD-LB. Therefore, no currently known protocols or algorithms in the third 

group of broadcasting schemes can guarantee an average waiting time less than the 

fixed-delay lower bound, since the above three protocols or algorithms are the best in 

the third group in terms of the waiting time. We also show the results of QHB in Table 

4.2, since QHB is the most efficient protocol in terms of clients' average waiting time in 

the other two groups of broadcasting protocols. We notice that the average waiting time 

of HPB is even shorter than that of QHB, although QHB can guarantee the lower 

average waiting time than the fixed-delay lower bound. 

From the above simulation results, we can see HPB provides the lowest average 

waiting time of all currently known broadcasting protocols using the least number of 

channels given the server bandwidth, but it pays the price of using many more pages. 

For example, for K=6, GFDPB with m=l partitions each video into 207 segments, 

whereas HPB needs 451,228 pages. Thus, the overhead cost of HPB is much more than 

that of other schemes. 

We notice that the maximum waiting time of HPB is twice its average waiting time 

and much longer than those of FDPB or GFDPB. Since clients' requests come randomly, 

the fact that HPB's maximum waiting time is twice its average waiting time makes the 

treatment of clients highly variable and unfair. 

4.4 Preloading Page-Set Broadcasting (PPSB) 

To solve the problem of the maximum waiting time of HPB mentioned above, we 

propose a hybrid scheme, the PPSB scheme, which efficiently shortens the maximum 

waiting time of HPB by slightly compromising the average waiting time. In PPSB, clients 

need to wait half a block on average until the beginning of the next block, and then 



preload one time block before starting to play a video. Thus, in PPSB each page in the 

first page-set is broadcast once every two blocks. Its average waiting time is equal to 

1.5DPltotaljage. Its maximum waiting time is 2Dptotal_page, and its minimum waiting 

time is DPltotaljage. Thus, its maximum waiting time is 33.3% longer than its average 

waiting time. 

For PPSB, we just need to make a slight change to the HPB algorithm in Figure 

4.9. In step 1, the input file must be the schedule of GFDPB with m=2 and pagesecnum 

must be "the last initial page-set number" instead of "the number of initial page-sets". In 

PPSB, we use the block period to indicate a page-set number, so the first page-set is 

page-set 2. Generally, the i-th page-set in PPSB is page-set i+ l .  Thus, in step 1 of 

Figure 4.9, a private member variable, pageset, of the class page-set is the block period 

of the corresponding page-set. A new theorem, Theorem 4.4, is required for PPSB 

based on modifying Theorem 4.1. 

Theorem 4.4 Given K channels, let integer n satisfy 

n+l 1 
Then np+ (K - xT)(n + 2)P is an upper bound on the number of pages of PPSB, and 

i=2 1 

is an upper bound on the number of page-sets of PPSB. a 



ncl  1 
Thus, given a video with a length of D seconds, 2D/(n + (K - x T ) ( n  + 2)) is a 

i = 2  z 

n+l 1 
lower bound on the maximum waiting time and l .SD/(n + (K - x T ) ( n  + 2)) is a lower 

i=2  z 

bound on the average waiting time. 

Formula (4.1.4) is changed to Formula (4.4.3). 

i-1 

promoted(i) = ~ I P S ( Z ) ~  - (i - 2)P where i > 2 
z=2 

promoted(2) = 0 

Formula (4.1.6.1) is changed to Formula (4.4.4.1). 

Accordingly, Formula (4.1.6) is changed to Formula (4.4.4). 

I 
i- l 

( i  - 1)p - ~ I P s ( z ) ~  + lBound,(i + 1)  
IpS(i)I = i  z=2 where i > 2 

i 

Table 4.3 shows the average waiting time and the maximum waiting time 

achieved by PPSB and HPB. Their rough block schedules are all from GFDPB. The 

upper row of PPSB or HPB in the table shows the (average waiting time)/(maximum 

waiting time) in seconds for a two hour video, and the lower row shows the f l  value. Like 



in Table 4.1, we choose the P value so that the total number of pages of each schedule 

is less than and close to 700,000. We can see HPB's average waiting time is roughly 

9.5% shorter than that of PPSB, but HPB's maximum waiting time is roughly 35% longer 

than that of PPSB. For K=5, by using PPSB instead of HPB, we increase the average 

waiting time by 4.57 seconds, but decrease the maximum waiting time by 22.89 

seconds. We can say it is reasonable to sacrifice a small amount of average waiting time 

to win much more in maximum waiting time. By comparing Table 4.3 with Table 4.2, we 

can see PPSB still provides shorter average waiting time than the fixed-delay lower 

bound (FD-LB) and the shortest average waiting time of all the published broadcasting 

protocols in the third group. PPSB's maximum waiting time is not more than 32% longer 

than the fixeddelay lower bound (FD-LB), whereas HPB's maximum waiting time is 

nearly 90% longer than FD-LB. Although GFDPB (m=l), Bar and RFS may achieve their 

average waiting time shorter than the fixeddelay lower bound if the given number of 

channels is larger than 5 or 6 ,  their corresponding maximum waiting time is nearly 100% 

longer than the fixed-delay lower bound. 

PPSB 1 370.721494.29 1 132.0311 76.04 1 48.06164.08 1 1 7.66123.54 

Table 4.3 Maximum and average waiting times of PPSB and HPB 

I I I I 

We notice that QHB (see Table 4.2) achieves shorter average waiting times than 

PPSB. However, the superior performance of QHB in average waiting time comes at a 

price: achieving an average waiting time of 16.071 seconds for a two-hour video given a 

server bandwidth 6b requires dividing 224 fixed-sized segments into 2,519,678 smaller 

HPB 334.791669.58 1 19.481238.96 43.49186.97 15.95131.91 



and smaller fragments and broadcasting them on 224 separate channels with 

decreasing bandwidth, which is rather impractical. Furthermore, the maximum waiting 

time of QHB is even longer than that of HPB. 

Non-perfect HPB PPSB FDPB GFDPB 1 1 (p=300O) 1 (/3=1000) 1 (m=1800) 1 (m=1600) 

Average 

Table 4.4 Average and maximum waiting time for K=6 

Max 

Table 4.4 compares the average waiting time achieved by PPSB for K=6 with 

other schemes or schedules for a two hour movie. Bar-Noy's non-perfect hand-tuned 

schedule is currently the best known schedule for average waiting time, but its maximum 

waiting time is twice its average waiting time. For K=6, compared with HPB, PPSB's 

maximum waiting time is 8.353 seconds shorter, but its average waiting time is 1.71 

seconds longer. PPSB's minimum waiting time for K=6 is 11.772 seconds. Suppose that 

the actual waiting times of PPSB clients are distributed uniformly between the maximum 

waiting time and the minimum waiting time. Compared with the clients of GFDPB, the 

clients of PPSB enjoy shorter waiting times (up to (18.07-11.772) = 6.928 seconds 

shorter) with (1 8.07- 11.772)/11.772=53.5% probability and wait longer (up to 5.474 

seconds longer) with (23.544 -18.07)/11.771=46.5% probability. Waiting 5 seconds 

longer would be almost unnoticeable. Let us consider HPB for a comparison. In the 

worst case, clients of HPB need to wait 13.84 seconds longer than the clients of GFDPB; 

a period of 13.84 seconds would be noticeable. Thus, we can see that, while most of the 

time PPSB clients enjoy shorter waiting time than GFDPB clients, and even in the worst 

17.061 

34.123 

15.948 

31.897 

17.658 

23.544 

18.73 18.07 

18.73 18.07 



case, the maximum waiting time of PPSB would not be significant. Thus, at most times, 

the clients of PPSB would be happier than the clients of GFDPB. 

In conclusion, PPSB is the only broadcasting protocol in the third group that 

guarantees its average waiting time less than the fixeddelay lower bound if P is big 

enough, while its maximum waiting time is only 113 longer than its average waiting time. 

From the probability point of view, PPSB provides a very desirable trade-off between 

average waiting time and maximum waiting time of all the known broadcasting protocols, 

given the server bandwidth. 



Chapter Five 
Conclusion and Future work 

In this thesis, we first introduced different VOD protocols, and then focused on 

the broadcasting protocols, especially the third group of broadcasting protocols, which 

partition each video into a large number of small segments with equal size, and use time 

division multiplexing to multiplex the segments periodically into a small number of 

channels with bandwidth equal to the playback rate. We have proposed three new 

broadcasting protocols in this third group. GFDPB provides the lowest maximum waiting 

times of all protocols in the third group, and HPB provides the lowest average waiting 

times of all broadcasting protocols. PPSB provides the lowest average waiting times of 

all published protocols in the third group and provides a very desirable trade-off between 

average waiting time and maximum waiting time of all known protocols to date. 

We presented two versions of GFDPB. GFDPB greatly improves the 

performance of the greedy algorithm by assigning the lowest priority to the split action 

that splits a leaf into a large number of child leaves with the same large window label. 

EGFDPB improves the performance of GFDPB when m is a prime number or has a big 

prime factor. We have shown that for K>3, the GFDPB result is almost the same as the 

EGFDPB result. We also presented a server multiplexing and client demultiplexing 

algorithm that can be applied to all the broadcasting protocols in the third group. 

We have shown that no currently known broadcasting protocols in the third group 

can guarantee that their average waiting times are less than fixed-delay lower bound for 

any number of channels. By grouping pages into page-sets, and every P slots into a 

block, HPB can make the number of packed page-sets approach or even surpass the 



upper bound of RFS given the number of channels. However, HPB's maximum waiting 

time is still large compared with FDPB or GFDPB; therefore, we proposed the PPSB 

scheme to solve it. 

We have shown that PPSB is the only broadcasting protocol that not only 

provides the average waiting time less than the fixed-delay lower bound but also 

guarantees its maximum waiting time is only 113 worse than its average waiting time. 

Other schemes that have a lower average waiting time than the fixed-delay lower bound, 

such as HPB and RFS, have their maximum waiting time 100% worse than their average 

waiting time. Therefore, PPSB provides much more fair and stable service for any client 

at any time than the above schemes. 

Future research could be directed towards simplifying the algorithm of GFDPB, 

and making further improvements to GFDPB, or toward reducing the maximum waiting 

time of HPB. More work is needed to improve the performance of the protocols in this 

thesis when they are used to transmit variable bit-rate videos using a constant 

transmission rate, or when they are combined with multi-layer encoding videos and 

caching technique to provide multicast service through the internet. 
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