
NEAR-OPTIMAL HEURISTIC SOLUTIONS FOR TRUNCATED
HARMONIC WINDOWS SCHEDULING AND HARMONIC

GROUP WINDOWS SCHEDULING

by

Zhiwen Lin

B.Sc., University of Science and Technology of China, 1987

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of

Computing Science

0 Zhiwen Lin 2004

SIMON FRASER UNIVERSITY

Fa11 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Approval

Name:

Degree:

Zhiwen Lin

Master of Science

Near-Optimal Heuristic Solutions for Truncated
Harmonic Windows Scheduling and Harmonic

Title of Thesis: Group Windows Scheduling

Examining Committee:

Chair: Dr. Andrei Bulatov
Assistant Professor of Computing Science

Dr. Tiko Kameda
Senior Supervisor
Professor of Computing Science

Dr. Ramesh Krishnamurti
Supervisor
Professor of Computing Science

Dr. Jiangchuan Liu
Examiner
Assistant Professor of Computing Science

Date Approved: 1.2, D"p

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work,
has granted to Simon Fraser University the right to lend this thesis,
project or extended essay to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to
a request from the library of any other university, or other educational
institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to
keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of
this work for scholarly purposes may be granted by either the author or
the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain
shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private
scholarly use, of any multimedia materials forming part of this work,
may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial
Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and
signed by this author, may be found in the original bound copy of this
work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract
Dividing a video into many segments and then broadcasting each segment

periodically has proved to be an efficient and cost-effective way of providing near Video-

on-Demand services. Some of the known broadcasting schemes, such as Fixed-Delay

Pagoda Broadcasting (FDPB), adopt the fixed-delay policy, which requires the user to

wait for a fixed time before watching a video. Our first broadcasting scheme, the

Generalized Fixed-Delay Pagoda Broadcasting (GFDPB), based on the fixed-delay

policy, improves Bar-Noy et al.'s greedy algorithm for the Harmonic Windows Scheduling

Problem. GFDPB achieves the lowest maximum waiting time among all the known

protocols using segments of equal duration and channels of equal bandwidth. In

addition, its performance is very close to the theoretical optimum. Second, we define the

Harmonic Group Windows Scheduling (HGWS) problem and present a new

broadcasting scheme to solve it, Harmonic Page-set Broadcasting (HPB), which

provides the lowest average waiting time of all currently known protocols by using the

fewest channels for given server bandwidth. Finally, we present a hybrid broadcasting

scheme, Preloading Page-Set Broadcasting (PPSB), which compromises between the

average waiting time and the maximum waiting time of HPB. While still providing the

shortest average waiting time of all known protocols using segments of equal duration

and channels of equal bandwidth, PPSB achieves much shorter maximum waiting time

than HPB. Furthermore, PPSB provides a very desirable trade& between the average

waiting time and the maximum waiting for a given server bandwidth, while guaranteeing

that its maximum waiting time is only 113 longer than its average waiting time.

Dedication

iweB%%rn@% - &%%

To my dear mother, Runzhen Yang

Acknowledgements
I would like to express my deepest gratitude to my senior supervisor, Dr. Tiko

Kameda, for his guidance and continuous support throughout the duration of my study

and research. His serious attitude toward research impresses me most deeply and sets

an excellent example for me. My gratitude also goes to my supervisor Dr. Ramesh

Krishnamurti and the examiner, Dr. Jiangchuan Liu, for their valuable comments and

advice on my thesis.

Special thanks are reserved for Yi Sun for his discussion with me about the

Harmonic Group Windows Scheduling Problem. I am also thankful to other members of

the Distributed Computing Laboratory, Zhong Zhang and Shufang Wu, for their help and

friendship.

Finally, I am especially grateful to my parents for their love, support and

encouragement over the years. I am equally grateful to my wife Hong Huang for her

understanding and support during my study.

Table of Contents
. . Approva I ... I I
... Abstract ... III

Dedication ... iv

Acknowledgements ... v

Table of Contents ... vi
. . List of Figures .. VII
... List of Tables .. VIII

Chapter One Introduction ... 1
1.1 VOD System Architecture .. 1
1.2 VOD Protocols ... 2

1.2.1 Unicast Scheme .. 2
1.2.2 Non-Periodic Multicast Scheme ... 5
1.2.3 Broadcast Scheme .. 10
1.2.4 Combination Scheme .. 16

1.3 Contributions .. 16
1.4 Organization of the Thesis ... 18

Chapter Two Review ... 20
2.1 Basic Notation .. 20
2.2 Greedy Equal Bandwidth Broadcasting (GEBB) ... 21
2.3 Poly-Harmonic Broadcasting (PHB) ... 24
2.4 Quasi-Harmonic Broadcasting (QHB) ... 26
2.5 Fixed-Delay Pagoda Broadcasting (FDPB) .. 27
2.6 Recursive Frequency-Splitting (RFS) Scheme ... 30

Chapter Three Generalized Fixed-Delay Pagoda Broadcasting 34
3.1 Previous Work .. 34
3.2 Generalized Fixed-Delay Pagoda Broadcasting ... 42
3.3 Enhanced GFDPB .. 50
3.4 Performance Analysis of GFDPB and EGFDPB ... 51
3.5 Server Multiplexing Scheme ... 59
3.6 Client Demultiplexing Scheme .. 62
3.7 Channel Schedule Formats Translation ... 65

Chapter Four Group-Based Broadcasting Schemes .. 68
4.1 Harmonic Group Window Scheduling (HGWS) Problem 68
4.2 HPB Scheme ... 81
4.3 Simulation and Analysis of HPB ... 99
4.4 Preloading Page-Set Broadcasting (PPSB) .. 102

Chapter Five: Conclusion and Future work ... 108

Bibliography .. 110

List of Figures
Figure 1.1 Elements of a VOD system ... 2
Figure 2.1 Illustration of GEBB .. 22
Figure 2.2 QHB schedule for K=3. m=3 ... 27
Figure 2.3 A channel partitioned into 3 subchannels in FDPB 28
Figure 2.4 RFS Algorithm .. 31
Figure 2.5 RFS scheme result for K=3 channels .. 32
Figure 3.1 An example of a tree for segments A. B. C. D. E. F. G. H 36
Figure 3.2 Frequency splitting representation corresponding to Figure 3.1 36
Figure 3.3 Algorithm for translating a tree to channel schedule 37
Figure 3.4 Greedy algorithm for Harmonic Windows Scheduling problem 39
Figure 3.5 Multilevel splitting ... 40
Figure 3.6 Tree representation of Figure 2.3 .. 41
Figure 3.7 For K=2. m=100. the forest after two multilevel splits 45
Figure 3.8 For K=2. m=14l. the forest after two multilevel splits 45
Figure 3.9 Procedure gfdpb-prime .. 47
Figure 3.1 0 Procedure gfdpb_prim-factor ... 49
Figure 3.1 1 Algorithm for GFDPB scheme ... 49
Figure 3.12 Algorithm of Enhanced GFDPB .. 51
Figure 3.1 3 Diagram for K=l to 3 and m=l to 254 ... 52
Figure 3.14 Diagram for K=4 to 6 and m=l to 254 ... 53
Figure 3.1 5 Waiting time for FDPB and GFDPB with different m 54
Figure 3.1 6 Circular array for server multiplexing .. 62
Figure 3.1 7 Start slot pattern of the round robin tree .. 65
Figure 3.1 8 The channel schedule format translation .. 66
Figure 3.1 9 Example for the schedule format translation ... 67
Figure 4.1 Block diagram for f i = 5 ... 69
Figure 4.2 The page-set and page schedule for K=2. P=4 ... 72
Figure 4.3 Downloading pages from a subchannel .. 79
Figure 4.4 Rough block schedule and rough page-set schedule for K=3 83
Figure 4.5 The insertion algorithm for HPB .. 87
Figure 4.6 An example for insertion algorithm .. 90

Figure 4.7 HPB example for K=2. P=4 ... 92
Figure 4.8 Flowchart of HPB .. 93
Figure 4.9 Algorithm for the HPB scheme .. 99
Figure 4.1 0 Normalized number of page-sets achieved by HPB 100

vii

List of Tables

Table 3.1 Comparison of GFDPB. GEBB and PHB ... 55
Table 3.2 Number of the packed segments for m = 1 .. 56
Table 3.3 Number of the packed segments for m = 9 .. 57
Table 3.4 Number of the packed segments for m = I 00 ... 57
Table 4.1 Number of page-sets of HPB ... 100
Table 4.2 Average waiting time of HPB and other schemes .. 101
Table 4.3 Maximum and average waiting times of PPSB and HPB 105
Table 4.4 Average and maximum waiting time for K=6 .. 106

viii

Chapter One
Introduction

With the advancement of broadband networking technology and the increasing

power of computers, video-ondemand (VOD) has appeared as an important technology

for many multimedia applications such as news on demand, digital libraries, home

entertainment, and distance learning. A common VOD service allows remote users to

play back any video from a large collection stored on one or more servers at the time of

their choice.

1.1 VOD System Architecture

A typical videoan-demand architecture [50] consists of three critical subsystems:

video servers, high speed wide-area and/or local distribution networks, and user

populations (see Figure 1.1 for a single user population). A high capacity video server

can support a large number of video streams and deliver high quality digitized video data

to clients either over a local LAN or remotely over high speed network connections. In

addition to providing buffers for video segments periodically delivered from the video

servers, a set-top box, along with a television monitor and a remote control, enables

viewers to be connected to a video source (video server); viewers browse through a

selection of videos, and then receive and display the selected video. Each local video

server cluster is dedicated to a single user population. It may store a complete or partial

set of videos from the video collection, work as a proxy server, and/or administer

admission control before accepting new requests. A remote video server cluster may

also be archival in nature providing a permanent repository for all videos. The most

popular videos are replicated and stored on different servers in a local cluster. The

service from the local cluster is provided over a I A N such as an ATM LAN, a hybrid fiber

coaxial (HFC) network, or a Gigabit Ethernet network.

A remote video
server cluster or - -.
an origin server I

an origin server

. . ._ .C

server cluster or
an edge server

Figure 1.1 Elements of a VOD system

The recently published HP open VOD solution for cable [I21 uses Gigabit

Ethernet to interconnect with video server farms in regional headends where video

streams are formatted and organized into IANs, and then distributes VOD streams to

individual subscribers across the existing hybrid fiber coax (HFC) infrastructure. The

video delivery and management portion of the solution is Kasenna's MediaBase XMP

[I 31. Small servers are deployed in a distributed server architecture based on the "origin

server" and the "edge server" (see Figure 1.1) models. The small servers work as both

proxies and part of servers and are deployed "closer" to end users to address quality,

bandwidth, and scalability constraints.

1.2 VOD Protocols

1.2.1 Unicast Scheme

The VOD delivery solution currently used by hotels and cable TV companies

initiates a dedicated channel for each client's request and provides all VCR-like control

such as forward, rewind, pause, and search [2, 31. Since a video is an isochronous

medium, a video server has to reserve a sufficient amount of network bandwidth and

input-output bandwidth for each video stream before committing to a client's request [4].

Under a heavy load, the server bandwidth quickly becomes a bottleneck, because the

growth of the number of channels may never be able to keep up with the growth in the

number of clients. Therefore, this solution does not scale well and the number of clients

that can be served simultaneously is limited.

The Personal Video Record (PVR) service [9] is another recent service. It makes

a set-top box receive and record selected TV programs for late "ondemand" viewing at

one's leisure with full VCR-like control; also, it provides VCR-like control over live TV

broadcasts, where users can pause and rewind the current broadcast. The set-top box

contains an encoder and a hard disk drive to store recorded programming. Most

significantly, this set-top box PVR makes no bandwidth demand on the broadband

service provider's network. However, it is not really a VOD service and indeed it is just a

TV program recorder. Furthermore, it has many limitations on how much programming it

can store and how many videos it can record simultaneously (presently at most two); it

has a risk of hard disk drive failure and a set-top box can only server one TV at a time.

The limitations of set-top box PVR are resolved by network PVR [9]. Network

PVR offers users essentially the same functionality as set-top box PVR except that disk

storages, encoders, and software intelligence are located on video servers in regional

headends or digital hubs. The network PVR service doesn't require hard disk drives in

consumer homes, but, cable operators must allocate bandwidth to accommodate the on-

demand video streams requested from the server. This again leads to the scalability

problem mentioned above.

Many alternatives known as near-VOD services have been proposed to tackle

the scalability problem by sacrificing some VCR functions. The schemes described

below in this chapter belong to this category.

One technique to reduce an individual server's load, such as proxy caching (51,

[6], [7], [8], is to cache streams at various nodes in a network. A proxy is a distributed

caching scheme to enhance the scalability of web services over the Internet. By placing

proxies on the edge of a backbone network, the network traffic and server load are

substantially reduced, as it is often the case that 80 percent of demands are for a few

(10 to 20) of the most popular videos [lo] [I l l . In the absence of proxy caching, a

popular video is transferred through the same network link once per request. This results

in server overload, network congestion, higher latency, and even the possibility of the

rejection of a client's request as mentioned earlier. Furthermore, proxies can deliver their

contents over unicast networks and do away with client buffers.

The limitation of proxy caching is that the temporal distances of the aggregated

client requests cannot exceed the free buffer size (a temporal distance is defined as the

interval between any two requests in [6]). If a proxy buffer is not large enough to cache

an entire movie and the temporal distance between the present request and the earliest

online request exceeds the free buffer space, the proxy server still needs to initiate a

unicast server stream for each request [6]. Although [8] has proposed a cooperative

proxy scheme that dynamically adjusts buffer allocation to give a priority to aggregate

the requests with short temporal distances and decrease the number of unicast server

streams, there are still many repeated unicast server streams between each video

server and a proxy. During peak hours, unicast client streams from each proxy to client

cost much more bandwidth than multicast schemes or broadcast schemes. Moreover,

each proxy can only support a small number of clients because of the limitation of each

proxy's outward bandwidth and storage space; therefore, many proxies are required in a

VOD system. Another similar technique is to replicate servers with the same content or

the same popular movie content at various sites in the network. Both of these

approaches attempt to achieve better scaling by decentralizing the location of a media

object, but they drive up the cost of providing VOD service substantially.

1.2.2 Non-Periodic Multicast Scheme

Multicast is exploited to reduce the number of streams required by a server to

support a given number of clients. In multicast, a number of requests are grouped

together according to some scheduling policies and served by a video stream.

The batching approach was originally proposed in [14]. The basic idea is to delay

requests for different videos for a certain amount of time so more requests for the same

video arriving during the current batching interval may be serviced by the same stream.

The system has limited bandwidth as well as a limited number of available channels, and

there may be a large number of requests for different video at any time; some requests

are for popular movies and some are for less popular movies. Therefore, an efficient

scheduling policy based on the arrival of requests is required to efficiently utilize

channels [15, 16, 17, 18, 19, 201.

Two common scheduling policies, first-come-first-served (FCFS) and maximum

queue length (MQL), are studied in [15]. Under the FCFS policy, requests for all movies

join a single queue. Once a multicast channel is available or after a batching interval, the

client at the front of the queue is served as well as all the requests in the queue for the

same movie. The FCFS policy seems like a fair policy since it selects a movie request

independent of its popularity ("hot" or "cold"). Under the MQL policy, requests for each

movie join a separate queue, and the movie with the maximum queue length is selected

for multicast. One drawback of this policy is that it may choose only hot movies, since

there are very few requests for cold movies within a short time period. However, MQL

can better utilize a small server capacity to reduce the overall reneging probability (the

probability that clients may cancel their requests because of long waits). It is shown in

[15] that since the MQL policy does not take into account client waiting, the MQL policy

may not even perform as well as the FCFS policy in terms of reneging probability if the

reneging probability of a client depends on the amount of waiting. From this point of

view, the FCFS policy is the preferred policy.

The maximum factored queue length (MFQ) policy, studied in [17], is an

improvement to the MQL policy. Under the MFQ policy, whenever a channel becomes

available, the video with the largest value of qi*Ati is scheduled, where qi represents the

length of the queue for video i, and Ati is the interval since the last time video i was

scheduled. If a movie has not been scheduled for a long period time, its priority will

increase accordingly. Therefore, the MFQ policy guarantees that the starvation of cold

movies will never occur. In [17], it is shown that the MFQ policy outperforms both the

FCFS and the MQL policy in terms of the average waiting time if there is no reneging, or

in terms of reneging probability if reneging exists. The MFQ policy also performs better

than the MQL policy and is nearly comparable to the FCFS policy in terms of fairness.

The question of when to launch a new channel best if a channel is available in a

batching approach was studied in [20]. The authors analyze a number of batching

schemes and compare client waiting times and system profitability (the number of

current channels and the number of clients per channel). The first scheme studied in

[20] is a window-based scheme in which clients are batched for a fixed period of time W

before they are served, so client delay is bounded by a maximum value W. Since system

profitability depends on the average number of clients in a batch, window-based

schemes have good profits if the arrival rate is high, but have poor profits if the arrival

rate is low. The second scheme is a batch-size based scheme in which the profitability is

maintained by launching a new channel whenever a certain number M of clients are

collected in a batch. However, if the request rate increases, the average number of

channels can grow unbounded. To combine the advantage and lessen the disadvantage

of the above two schemes, they proposed a third scheme, a self-adaptive scheme, with

three parameters: 1) a minimum window size, Wmi" in which as many clients as possible

are batched if the arrival rate is high; 2) a batch-size M which is used to guarantee a

profitability if the arrival rate is not so high; 3) a maximum windows size, Wmax which is

used to bound client delay if the arrival rate is low. The last scheme they considered is a

moving-average scheme in which they force the mean delay of all clients in a batch to be

equal to a certain average user delay requirement.

As to the question of how to place a large amount of video contents on a set of

video servers to optimize the performance of a batching VOD system, a recently

published paper [33] proposes an optimal video placement scheme. The video

placement problem is formulated as a modified bin-packing problem which can be

effectively solved by the hybrid generic approach proposed first in [32]. Given a specified

blocking probability, the minimum batching interval is derived and the corresponding

video file placement is obtained while the server capacity usage is minimized by the

scheme.

The major drawback of batching schemes is that each client has to wait for a

batching interval until the request is served and yet the batching interval cannot be too

short to benefit from multicasting. Thus, clients making early requests are likely to

renege if they are kept waiting too long. To overcome this problem, a technique referred

to as a patching scheme [22, 23, 24, 251 or a stream tapping scheme [36, 371 is

proposed on the top of the batching method. Patching allows a batch of new incoming

requests to join an on-going multicast and take advantage of the same data channel. In

this case, video requests are first served by a patching (multicast or unicast) channel for

the missed portion of a video while simultaneously buffering the rest portion coming from

the existing multicast. The existing multicast is called regular channel that multicasts the

whole video. The patching channel plays a video until the starting point of the buffered

portion of the video, then, the patching channel is released and the client plays from his

buffer while buffering the future video data from the regular channel. In this way, service

latency is shortened or eliminated without compromising the benefit of the multicast.

Since the workload of a patching channel increases as the age of the latest

regular channel increases, it may be more efficient to start a new regular channel rather

than continue patching the latest regular channel when the regular channel reaches a

certain age. [25] presents a proof of this point for VOD patching without service latency,

and proposes a method to determine the optimal patching window, and calls this

scheme optimized patching. In this scheme, a patching window is a time period after the

launch of a regular channel during which patching channels are used. After every

patching window interval, a regular channel is launched to maximize the data sharing.

Recently, a new technique called a two-level patching scheme has been proposed [28],

and the scheme introduces two level patching channels to minimize the server

bandwidth requirement. Unlike a patching scheme where clients receive streams from at

most two determined channels, clients in the two-level patching scheme receive streams

from at most three determined channels rather than two. It is shown in [28] that the two-

level patching scheme has a significantly lower bandwidth requirement than the

optimized patching scheme.

Stream merge schemes [26, 27, 29, 30, 311 belong to another multicast approach

and are hierarchical dynamic multicast schemes. In stream merge schemes, clients

receive streams from normally at most two channels at the same time. Later streams are

repeatedly merged into the former streams for the same movie, leading to a hierarchical

merging (or patching) structure. The optimal merge trees are also studied in the above

papers. All the above multicast schemes except [30, 311 focus on immediate service.

However, [30, 311 study the delay guaranteed system, in which time is divided into

intervals of unit length. A new stream is launched at the end of an interval if there is at

least one request in this interval, or no new streams are launched if there are no new

requests in the interval. It is shown in [30] that the delay guaranteed on-line algorithm is

much simpler than any immediate service stream merging algorithm, and performs well

in terms of total server bandwidth usage when the mean inter-arrival time of clients is

less than the guaranteed start-up delay.

Another interesting approach is the dynamic skyscraper technique [34, 351.

Based on the FCFS policy, the approach uses a set of static skyscraper broadcast

channels, which is introduced in the next section, to broadcast different videos according

to recently batched requests. Non-overlapping clusters of skyscraper broadcast periods

are identified, and each cluster can broadcast one video continuously, completely and

independently. The clusters can then be dynamically scheduled for different videos. If

the largest segment duration in a skyscraper broadcast is equal to W slots given K

channels, then each new cluster will begin on channel 0 precisely W slots after the

beginning of the earliest period in the previous cluster, and the latency in the system is

fixed and bounded. Some optimization methods, such as new segment size

progressions and channel stealing, are also studied to address the problem of unused

channel bandwidth.

The other related solutions are piggyback schemes [38, 39, 40, 411. Piggyback

schemes dynamically speed up and slow down client display rates in order to bring

different streams to the same file position, at which time the streams can be merged.

However, the maximum rate at which clients can be merged is bounded by the variation

in viewing rate (typically 5%) which can be tolerated by a client.

Although some multicast schemes can provide bandwidth savings and introduce

zero startup delay such as immediate patching, they require more complicated control

systems and are not as suitable for high request bursts at peak hours.

1.2.3 Broadcast Scheme

As mentioned in Section 1.2.1, it is reported that 55% to 80% of the overall

demands for videos are on a few (10 or 20) very popular videos. Broadcast protocols

were introduced to efficiently distribute the top ten to twenty videos to provide near-VOD

service where servers use multiple dedicated channels to broadcast a video

cooperatively and repetitively. The common idea in these protocols is that the data for

each video is divided into fragments or segments and these fragmentslsegments are

broadcast during predefined periods on a set of channels. Clients must be able to

receive two or more channels simultaneously and must be able to buffer a

fragmentlsegment that is received before needed for playback. All of these solutions

assume a static allocation of bandwidth per transmission; thus, bandwidth savings are

achieved only when client request rates are high.

A distinct advantage of this approach is that it can serve a very large community

of users by using minimal server bandwidth. In fact, the bandwidth requirement is

independent of the number of clients in the system. This makes it scale up extremely

well. However, broadcast schemes cannot provide an immediate service, and clients

have to wait until the beginning of a video is broadcast again. As a result, the waiting

time is a very important factor. Access time can be reduced by repeatedly transmitting

the whole movie through each of the given multiple server channels, and the multiple

video streams are staggered evenly across the channels, similar to the Staggered

Broadcasting scheme [42]. The advantage of this scheme is its simplicity and no local

buffer space is needed at client sides. However, its access time will be reduced only in a

linear fashion with increased bandwidth.

Other approaches to reductions in waiting time are based on partitioning a video

into segments. In these approaches, clients need to buffer some segments of video in

their set-top box (STB) while watching other segments. These broadcasting protocols

are subdivided into three groups according to [51]. The revolutionary Pyramid

Broadcasting (PB) protocol [43, 441, followed by the Permutation-based Pyramid

Broadcasting (PPB) scheme [45] and the Skyscraper Broadcasting (SB) scheme

[46], belongs to the first group. Protocols in this group of schemes partition each video

into segments of increasing size and broadcast each segment during predefined periods

on separate channels with equal bandwidth. The periodic broadcast of the first smallest

segment is the most frequent allowing new requests to begin playback quickly. The

periodic broadcast of each larger segment is scheduled on a different channel in a

manner such that a client can always begin receiving the next larger segment during or

immediately following the broadcast of a given previous segment. Clients need to

download from at most two channels simultaneously and buffer a segment that is

received earlier than needed for playback.

The segment sizes of a video in PB follows a geometrical series [d, ad, d d , d d ,

...I, where d is the size of the first segment, and a is equal to the ratio of the channel

bandwidth to the video consumption rate (a >I). The drawback of PB is that each video

segment requires a very high transmission rate, consequently client I10 bandwidth is

also very high and client side buffers are usually more than 70% of the video program

length.

PPB is proposed for addressing the client side issues in PB. PPB is similar to PB

except that PPB further divides each segment into several blocks and multiplexes each

segment channel into the same number of subchannels using a time division

multiplexing method. The subchannels of each segment channel are staggered with

each other to meet the same timing requirement as in PB.

If PB, PPB, and SB are compared, SB is the most efficient scheme. In SB, the

segment size progression denoted as [d, 2d, 2d, 5d, 5d, 12d, 12d, 25d, 25d, 52d, 52d,

...I (d is the size of the first segment), offers the lowest latency and the client buffering

space needed is only 20% of that needed by PPB. Moreover, SB employs low-

bandwidth channels, each of which is at the playback rate.

Another scheme in the first group called the Fast Broadcasting (FB) protocol

[47] is even more efficient than PB, PPB, and SB. In FB, a video is divided into

geometrically increasing segment sizes of [d, 2d, 4d, 2K-2d, 2K-1d], where d is the size

of the first segment. K is the total number of channels (segments), and the channel

bandwidth is equal to the playback rate, the same as SB. Unlike PB, PPB, and SB,

where clients need to download from at most 2 channels simultaneously, FB makes

clients download from all K channels. FB incurs a ~ l (2 ~ - 1) waiting time, where D is the

length of a whole video. The extra benefit of FB is that it provides heterogeneous users'

service in terms of clients' buffer sizes; the larger the buffer size, the shorter the waiting

time.

The most efficient scheme in the first group is the Greedy Equal Bandwidth

Broadcasting (GEBB) protocol [48] which operates in a "greedy" fashion. GEBB

receives as much of the data as possible from all of the channels immediately after tune-

in and ceases receiving a segment immediately before playing it. The main difference

between GEBB and all the above schemes in this group is that a fixed-delay policy is

used in GEBB in which all clients need to wait for a small fixed delay before watching the

selected video. The waiting time in GEBB is used to preload the first segment and

simultaneously downloads part of the other segments rather than just waiting for the

starting point of the first segment as in other schemes. Given the length of a video and a

server bandwidth, the waiting time in GEBB approaches fIl(eK-1) as the number of

channels approaches infinity, where K is the ratio of the server bandwidth to the

playback rate. GEBB is described in more detail in Chapter 2.

The second group of schemes is characterized by dividing the data for each

video into equal-sized segments, repetitively transmitting them in separate channels of

decreasing bandwidth, and allowing clients to be able to download from all the channels

simultaneously. The Harmonic Broadcasting (HB) [49] protocol broadcasts each

segment on a dedicated channel with bandwidth bli, where b is the playback rate and i is

the segment number (e.g., i= l for the first segment). The bandwidth assignments for

each successive segment follow the harmonic series: b, bl2, bl3, bl4, In HB a client

must wait for the beginning of an instance of the first segment before the client can start

receiving (and viewing) a video. Once the client starts receiving the first segment, the

client will also start receiving all other channels dedicated to the video. HB can

significantly reduce clients' waiting time and is proved to be optimal with respect to

clients' waiting time given a specific transmission bandwidth [52].

Unfortunately, HB does not always deliver all data on time [53]. Paris et al.

proposed the Cautious Harmonic Broadcasting (CHB), Quasi-Harmonic

Broadcasting (QHB) [53] and Poly-Harmonic Broadcasting (PHB) [54] protocols to

solve this problem. PHB and QHB are the most efficient in this group of schemes in

terms of clients' maximum waiting time and average waiting time, respectively, given the

total server bandwidth. Like GEBB, PHB uses "greedy" downloading and the fixed-delay

policy. We'll introduce the detail in the next chapter too. The only drawback in this group

of schemes is that the number of channels tends to infinity for getting a good latency and

to handle so many channels with decreasing bandwidth is likely to be a daunting task.

To solve the problem of the HB-based schemes, Paris et al. further proposed the

Pagoda broadcasting (PB) [55], New Pagoda broadcasting (NPB) [56] and Fixed-

delay Pagoda broadcasting (FDPB) [57] protocols. They are the third group of

schemes, which partition each video into a large number of small segments with equal

size and uses time division multiplexing to periodically multiplex the segments into a

small number of channels with equal bandwidth equal to the playback rate. To ensure

that each segment is broadcast at the appropriate bandwidth, these schemes broadcast

later segments less frequently instead of lowering channel bandwidth as HB-based

schemes do.

In 2002, Tseng et al. and Bar-Noy et al. independently published the Recursive

Frequency-Splitting (RFS) protocol [59] and a greedy algorithm for the harmonic

windows scheduling problem [58] which packs as many segments as possible into a

given number of channels with playback rate in a greedy way. To further reduce waiting

time, Bar-Noy et al. introduced a shifting technique [60] for their greedy algorithm similar

to FDPB, and their algorithm makes clients wait for a fixed waiting time before playing

videos. We'll review the details of FDPB, RFS and Bar-Noy's greedy algorithm in the

next chapter. Given the length of a video D and a server bandwidth, the three schemes,

GEBB, PHB and FDPB, which all implement the fixed-delay policy, have the same lower

bound for the maximum waiting time: ~ l (e ~ - l) , where K is the ratio of the server

bandwidth to the playback rate. None of the recently known broadcasting schemes can

achieve maximum waiting times shorter than this lower bound, which we call the fixed-

delay lower bound.

To handle the case in which the clients' bandwidth is different from that of the

server, Paris [57] improved his FDPB to adapt this case at the expense of clients' waiting

time. A server divides a video into a different number of segments according to the

clients' bandwidth limitation so that clients can simultaneously receive a limited number

of channels rather than from all the video channels. Generalized Fibonacci

Broadcasting (GFB) [61] is also proposed to address this case. Just like GEBB, GFB

divides each video into segments of increasing size and broadcasts each of them in

separate channels of equal bandwidth and the waiting time is used to completely

download the first segment (and some other partial segments). However, unlike GEBB,

GFB requires clients to download only from a given number of channels simultaneously

other than from all the channels of a video. GFB, at the expense of the number of server

channels, is more efficient than FDPB with a client bandwidth restriction in terms of

clients' waiting time given client and the server bandwidth.

So far, all the above schemes are for a homogenous environment where all

clients have the same bandwidth. The HEterogeneous Receiver-Oriented (HeRO)

broadcasting protocol [62] employs one schedule for all clients with different bandwidths,

and requires each client to wait until an appropriate time slot (every time slot

corresponds to a broadcasting duration of the first segment) to start the video. The client

bandwidth requirement at each time slot is different, so clients can download videos

according to their bandwidth capacity at the possible expense of waiting time. HeRO

belongs to the first group of schemes mentioned above.

1.2.4 Combination Scheme

In recent years, different combinations of services are also suggested to achieve

cost-performance tradeoffs. Lee combines unicast and broadcast services in [63], in

which multicast channels multicast hot movies periodically using the staggered

broadcasting scheme and unicast channels provide patching channels for hot movies

requests to reduce waiting time. Therefore, clients need to receive up to two video

channels simultaneously, and require additional storage to cache part of the video.

Storage capacity up to the length of the maximum waiting time of the corresponding

staggered broadcasting schedule in multicast channels is required. Poon et al. [64]

combines broadcast, multicast and unicast services together, and a video is delivered to

customers through one of three kinds of channels, broadcast, multicast or unicast,

depending on whether the video is very hot, hot or cold, respectively. In [64], efficient

batching techniques for very hot and hot videos are studied while requests for old videos

are served by dedicated channels and some VCR functions are also considered.

1.3 Contributions

In this thesis, we study broadcasting approaches and focus on the third group of

schemes mentioned above. These schemes are normally used in a local area

(distribution) network (LAN) to broadcast the top 10 or 20 hot movies. Since it is too

time-consuming to find optimal solutions, we use heuristic algorithms to get near-optimal

solutions in this thesis.

First, we propose a new broadcasting scheme, called Generalized Fixed-Delay

Pagoda Broadcasting (GFDPB), which is based on the fixed-delay policy and improves

Bar-Noy et al.'s greedy algorithm for the Harmonic Windows Scheduling Problem [58] as

well as RFS [59] scheme. In GFDPB, clients need to wait for a small fixed delay to

preload some segments from all channels simultaneously before watching the movie

they have selected. Our GFDPB achieves the lowest maximum waiting time of all

protocols using segments of equal duration and channels of equal bandwidth and of all

currently known protocols given the same server bandwidth and the same number of

channels. Furthermore, we present Enhanced GFDPB (EGFDPB) to perfect the overall

performance of GFDPB when the number of channels is less than 4. Our result shows

that when the number of channels is larger than 3, the results of GFDPB and EGFDPB

are almost the same. Also, we analyze and propose an efficient server multiplexing and

client demultiplexing scheme, and give an algorithm to translate the RFS representation

for channel schedules used in [59] to the tree representation used in [58].

Second, we define the Harmonic Group Windows Scheduling (HGWS)

problem and then present a new broadcasting scheme, the Harmonic Page-set

Broadcasting (HPB) scheme, to solve it. The main idea of HGWS comes from my

senior supervisor Dr. Kameda and his postdoctoral fellow Dr. Yi Sun. Our contributions

to HGWS are that we use subchannels, a page-set schedule, and a page schedule to

uniquely describe the problem and work out the slot-level details. A page-set in HPB

corresponds to a segment in RFS or GFDPB (m=l) and is further divided into many

consecutive pages. A page is the basic unit of the transmission of a video in HPB and all

pages of a video have equal sizes and all pages in the same page-set have the same

broadcasting period. The output of our algorithm is a page list, which is ready to be put

into our server multiplexing scheme proposed in Section 3.7 for a real broadcasting. Our

result shows that HPB provides the lowest average waiting time of all currently known

protocols by using the least number of channels given the same server bandwidth.

However, a drawback of HPB is that its maximum waiting time is twice its average

waiting time, and much longer than that of GFDPB or FDPB.

Finally, to address HPB's drawback, we present our third new broadcasting

scheme, a hybrid broadcasting scheme called the Preloading Page-Set Broadcasting

(PPSB) scheme, which compromises the average waiting time and the maximum waiting

time of HPB. While PPSB provides shorter average waiting time than the fixed-delay

lower bound, and has the shortest average waiting time of all published broadcasting

protocols in the third group, PPSB achieves much shorter maximum waiting time than

HPB. From the probability point of view, PPSB provides a very desirable trade-off

between the average waiting time and the maximum waiting time of all the published

broadcasting protocols for a given server bandwidth, while guaranteeing that the

maximum waiting time is not more than 32% longer than the fixed-delay lower bound.

HPB's maximum waiting time is nearly 90% longer than the fixed-delay lower bound, and

its average waiting time is just 9.5% shorter than that of PPSB. Furthermore, there are

no currently published broadcasting protocols in the third group which can guarantee

their average waiting time shorter than the fixed-delay lower bound for any given number

of channels with equal bandwidth equal to playback rate.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we first review two

most efficient broadcasting protocols in the first and second groups of broadcasting

protocols for the purpose of comparison; then, we review some related schemes in the

third group of broadcasting protocols. In Chapter 3, we first analyze and compare the

RFS representation and the Tree representation of channel schedules; then, we propose

two algorithms for GFDPB and its server multiplexing and client demultiplexing scheme,

and we give some analysis and simulation results on the performance of GFDPB to

show that it outperforms all the other broadcasting protocols. In Chapter 4, we first

define the HGWS problem and present the HPB protocol to solve the problem; then, we

propose PPSB, a hybrid broadcasting scheme, and analyze its performance. Finally, we

conclude this thesis and discuss the future work in Chapter 5.

Chapter Two
Review

In Chapter 1, we have introduced three groups of broadcasting protocols. In this

Chapter, to help understand the essence of the segment-scheduling problem, we review

several broadcasting schemes in the third group. For the purpose of comparison, we

also introduce GEBB, PHB and QHB, which are the most efficient broadcasting schemes

in the first and second groups.

2.1 Basic Notation

Broadcasting protocols normally divide each video into a series of segments and

transmit each segment periodically on dedicated server channels. While a client is

playing a current video segment, it is guaranteed that the next segment is downloaded

on time and the whole video can be played out continuously. In the third group of

schemes, each video is divided into many fixed-size segments and all segments are

periodically multiplexed in several channels with equal bandwidth equal to playback rate.

In addition, each channel is partitioned into time slots of equal duration and the duration

of each time slot is equal to the duration of each fixed-size segment.

For the convenience of expressing ideas and calculating formulas, we will use

the following notations in our discussion:

K: the number of broadcasting channels for each video

n: the number of segments that each video is divided into

b: the playback rate of a video in Mbps

b;:

B :

B *:

w:

w*:

w ':

S;:

ci:

D :

Di:

the i-th channel bandwidth

the total bandwidth for each video in Mbps

the normalized total bandwidth equal to B/b

the maximum waiting time that clients may wait before watching the video

the normalized waiting time equal to w/D

the average waiting time

the i-th segment (the first segment is S,)

the i-th channel (the first channel is Co)

the total length of a video in seconds

the length of the i-th segment in seconds during playback in unequal-

sized segmentation protocols

d: the length of one segment in seconds during playback in equal size

segmentation protocols; also, the duration of each time slot in the third group of

schemes

m: an integer m l l . In fixed-delay protocols such as PHB, FDPB and our

GFDPB, w=md; or in QHB, each time slot is divided into m subslots.

2.2 Greedy Equal Bandwidth Broadcasting (GEBB)

GEBB [48] is the most efficient protocol in the first group of broadcasting

protocols which divide each video into segments of increasing size and transmit each of

them in separate channels of the same bandwidth. GEBB operates in a "greedy" fashion,

i.e. receives as much of the data as possible from all of the channels immediately after

tune-in and finishes receiving a segment immediately before playing the corresponding

segment. As shown in Figure 2.1, a client tunes in at to and starts receiving immediately

from all channels. After a fixed waiting time w, the client finishes receiving S1 and

immediately starts playing it. After playing S1, the client finishes receiving S2 and

immediately starts playing S2, and so on.

Download

I
I

Time
to

Figure 2.1 Illustration of GEBB

[48] describes an optimization problem as follows. Given a video with length D,

the number of segments n (n=K), and the fixed waiting time w, the problem is to derive

the segment durations and their corresponding channel bandwidths with the objective of

minimizing the total server bandwidth required to broadcast a specific video. Formally,

the problem can be stated

minimize x b i

subject to

as follows:

(2.2.1)

The condition represented by Formula (2.2.2) ensures that Si is completely

received at the exact time point when the play of Si-4 terminates. Thus, the segments of

the video are available always and exactly on time for their playing.

From Formula (2.2.2), we can get a formula for (?+bi/b), and then multiplying all n

of the (?+bib) quantities produces

Thus, we have determined that the product of the n terms (?+bib) is a constant

since D and w are given. The minimization of C b , is equivalent to the minimization of
;=I

C (l + b, 1 b) and it is well-known that the minimization of the sum of n terms given that
i=l

their product is constant is achieved when all the n terms take the same value. Let us

represent this optimal value as (?+b*/b). Consequently, from Formula (2.2.3), we can

derive that the channel bandwidth is

Further from Formulae (2.2.2) and (2.2.4), we can derive

Therefore, we can see that given D, w, and n, the segment size of GEBB follows a

geometrical series. The total server bandwidth (6) necessary in GEBB for a particular

video is nb*.

It is straightfoward to show that:

From Formula (2.2.6), we can get the formula for waiting time:

Letting n increase to infinity, we can get the minimum waiting

server bandwidth and a given number of channels:

time for a given

In the following sections, we will see that the waiting time of PHB as well as

FDPB also asymptotically approaches this lower bound. It is shown in [48] that GEBB

uses a smaller number of segments as well as a smaller number of channels than PHB

to achieve the same fixed waiting time.

2.3 Poly-Harmonic Broadcasting (PHB)

PHB [54] is the most efficient protocol in terms of clients' maximum waiting time

in the second group of broadcasting protocols which divide the data for each video into

equal-sized segments and repetitively transmit them in separate channels of decreasing

bandwidth. PHB, just like GEBB, uses greedy downloading. However, unlike GEBB,

which uses increasing-sized segments during playback and equal channel bandwidth,

PHB uses equal-sized segments during playback (display) and decreasing channel

bandwidth. If we adapt Figure 2.1, by letting D1=D2= ...= Dn and bl> bn> bs> ...> b n , the

adapted Figure 2.1 becomes the illustration of PHB.

PHB breaks a video into n segments of (display) duration d=D/n and separately

broadcasts them in n channels. Under PHB, no client can start consuming the first

segment of the video before having downloaded from all n channels during a time

interval of duration w=md, where m is an integer m 21. The waiting time is w=mD/n. As a

result, segment Siwill not be consumed until (m+i-l)d seconds have elapsed from the

moment the client started downloading data from the server. Ensuring that segment Si

will be entirely broadcast over this time interval suffices to guarantee that all the content

of segment Si will be already loaded in the set-top box before the client starts viewing

that segment. This can be achieved by retransmitting segment Si at a transmission rate

bi=b/(m+i-1), since each segment has an equal size bd. Therefore, the total bandwidth

required by PHB is given by

I
BmB (n, m) = bi = b x = b(H(n + m - 1) - H(m - 1))

i=l ;=, m+i-1

where H(i) represents the i-th Harmonic number

If k=n/m and k is an integer, where k r l , Formula (2.3.1) can be rewritten as

BpHB (k , m) = b (H ((k + 1)m - 1) - H (m - I))

[54] derives BpHB(k, m + 1) < BpHB(k, m) for all k2 l and m l l . This means

increasing m and n while keeping k constant will always result in a reduction in total

bandwidth. Thus, when m and n go to infinity while k remains constant, we can compute

the limit of BPHB(K,m) and derive a lower bound for the total bandwidth required by PHB.

lim BPHAk,m)= lim f: b = p d t = blug
n , w , n l d

(2.3.2)
n ~ - ~ n l & ~ = , r n + i - l w+t w

We can see Formula (2.3.2) is exactly the same as the GEBB lower bound Formula

(2.2.7). However, GEBB is more efficient than PHB in terms of the number of channels

required for a fixed waiting time.

2.4 Quasi-Harmonic Broadcasting (QHB)

QHB [53] is the most efficient protocol in terms of clients' average waiting time in

the second group of broadcasting protocols [65]. Like other harmonic protocols, QHB

divides each video into n equal-sized segments and repetitively transmit them in

separate channels of decreasing bandwidth. The first segment is broadcast repeatedly

on the first channel with the display rate b. However, each segment i, 1< i 5 n, is broken

into im -1 fragments for some parameter m, and a client will receive m fragments from

each channel per time slot. If we divide each time slot into m equally sized subslots, the

client will receive a single fragment during each subslot.

In each channel except the first, the last subslot of each time slot is used to

transmit the first i-1 fragments of Si in order. The rest of the subslots transmit the other

i(m-1) fragments such that the kh subslot of the fh slot is used to transmit fragment ik

+(ti-1) mod I] of S,. For example, in Figure 2.2, the third segment is subdivided into eight

fragments that occupy three slots, each comprising three subslots. The second subslot

of the fourth slot of the third channel, which broadcasts S3, is used to transmit fragment

3x2+ ((4-1) mod 3) =6 of S3, i.e., fragment S3& It is proved in [53] that QHB delivers all

video data on time.

1'' channel

2" channel

3rd Channel

Slot

subslot 1'' 2"' 3" 2na 3rd 2nd 3rd 2nd 3rd

Figure 2.2 QHB schedule for K=3, m=3

m-1
We can see that each segment Si, bl, broadcasts in (i - 1 +-) time slots.

m

Because each segment has an equal size and the first channel bandwidth is b, we can

easily derive the bandwidth for each channel.

bm
b i = otherwise

im - 1

Then the total bandwidth B o ~ s required by QHB is given by

The maximum waiting time is w=D/n and the normalized average waiting time is

112n.

2.5 Fixed-Delay Pagoda Broadcasting (FDPB)

FDPB [57] and RFS, which will be introduced in Section 2.6, belong to the third

group of broadcasting protocols, which are pagoda-based protocols. They partition each

video into n equal-sized segments of duration d=D/n, use time division multiplexing to

broadcast these segments at different frequencies over K channels with equal bandwidth

equal to the video consumption rate b, and let each segment transmission occupy a time

slot of duration d. In addition, clients need to simultaneously download from all K

channels.

Like GEBB and PHB, the FDPB protocol implements the fixed-delay policy and

requires all clients to wait for a fixed time interval w=md, where m is an integer m l l .

Thus, segment S, needs to be transmitted at least once every m slots and must always

be received before a customer, after md-second wait and preload, starts watching the

video. More generally, segment Si needs to be transmitted at least once every m+i -1

slots to guarantee that Si has been buffered before it is needed to be consumed.

The FDPB protocol partitions each channel Ci into si subchannels in such a way

that slot j (slot number starts from 0) of channel Ci belongs to its subchannel (j mod si).

Thus, each subchannel has l/si of the slots and l/si of the bandwidth of Channel Ci.

Figure 2.3 shows how a channel is partitioned into three subchannels.

FDPB maps segments into subchannels in a strictly sequential fashion. The first

segments of a video are mapped into subchannel 0 of channel 1, the next segments into

subchannel 1 of the same channel, and so on until all sf subchannels have been used.

The process repeats itself for the subchannels of channel Cp to CK.

Slot No. 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14

Subchannel 0

Subchannel 1

Subchannel 2

Figure 2.3 A channel partitioned into 3 subchannels in FDPB

By trial and error, Paris [57] found the optimal mapping of subchanels for a given

channel Ci is always achieved when channel Ci is partitioned into ,/m + j - 1

subchannels assuming that the first segment assigned to this channel is segment Si.

Consider, for instance, the case when m=9. As figure 2.3 indicates, channel Co will be

partitioned into .\/= = 3 subchannels since the first segment assigned to Cois Sf.

Since m=9, segment S1 needs to be repeated at least once every nine slots and we

assign S1 to subchannel 0. Since subchannel 0 occupies 113 of the slots of channel Co,

we can map up to 913=3 segments into it, while ensuring that each of these three

segments (S1 - S 3) will be repeated once every nine slots (see Figure 2.3). The first

segment assigned to subchannel 1 is S4, which needs to be repeated at least once every

9+4-1=12 slots. As a result, we can map 1213=4 segments into suchannel 1 while

ensuring that each of these four segments (Sd- ST) will be repeated once every 12 slots.

The first segment assigned to subchannel 2 is S8, which needs to be repeated at least

once every 9+8-1=16 slots. Thus, we can map = 5 segments into subchannel 2

while ensuring that each of these five segments (S8-SI2) will be repeated once every

5*3=15 slots. As a result, channel Cowill transmit a total of 12 segments. We can repeat

this procedure for channel Cl where the first segment assigned is Sf3, SO the number of

subchannels is rounded off to round(Jm) = 5 , and so on.

After getting the number of segments n which are mapped into the given K

channels, we can calculate the waiting time for FDPB by formula w=mD/n, which is

exactly the same as that for PHB. PHB broadcasts all segments in separate channels of

decreasing bandwidth, whereas FDPB broadcasts them in decreasing frequencies over

K channels with equal bandwidth equal to the video consumption rate.

Recently, [65] points out that J m + i-1 is not always the optimal number of

subchannels for a channel Ci, where the first segment assigned is Si. They find that the

actual optima are laid between r n a x d z - 5 , 1) and d m + 5 . However,

the improvement is small and at most around 1%.

[57] also derives a lower bound, which is the same as Formulae (2.3.2) and

(2.2.7), for the total bandwidth required

policy as follows:

D + w
B ,in = b log

W

by those schemes implementing the fixed-delay

(2.5.1)

From Formula (2.5.1), [57] derives a lower bound for the maximum waiting time

when the broadcasting bandwidth is equal to K times the video consumption rate,

We call this lower bound the fixed-delay lower bound. No currently known

broadcasting protocols can achieve maximum waiting time lower than this lower bound.

2.6 Recursive Frequency-Splitting (RFS) Scheme

As mentioned in Section 2.5, RFS [59], like FDPB, belongs to the third group of

broadcasting protocols. However, unlike GEBB, PHB and FDPB, RFS does not

implement the fixeddelay policy. In RFS, channel Co continuously repeats segment S1

to ensure that it is repeated in every slot, so a client should wait until the beginning of

any new time slot to start watching a video and at the same time to start the buffering

process while downloading simultaneously from all K channels. Thus, its maximum

waiting time is w=D/n.

In RFS, generally, segment Si must be broadcast at least once on one of K

channels in every consecutive i time slots to guarantee that Si has been received or will

be received at the time slot when a viewer needs to consume it. Thus, segment Si must

be broadcast on one of K channels periodically with a frequency no less than lli. [59]

introduces the concept of "periodical time slots" as follows: a slot sequence SS(Ci, s, p)

is an infinite sequence of time slots [s, s+p, s+2p, ...I belonging to channel Ci, beginning

at slot s, which we will call the start slot of the slot sequence or of the assigned

segment, and repeating infinitely with a period of p slots, where Ci is one of the K

channels, p l ? is an integer, and s is an integer satisfying 0 I s I p-1. Thus, when p=l,

the time slots of the corresponding slot sequence will be continuous and the slot

sequence represents a complete channel (e.g., C, = SS(Ci, 0, 1)).

Input: a set of K channels Co, C1 ,..., CK-~

Output: n, and the assignment of one slot sequence for each segment Si, i=l,. ..n.

1) Let POOL be a set of free slot sequences:

POOL = {SS(Co, 0, 1), SS(Cl, 0, 1), ..., SS(CK-1, 0, 1))

Intuitively, this is the set of free channels Co, Cl, ..., CK-1 that are given initially.

2) Initialize n= l for the first segment.

3) Pick a slot sequence SS(Ci, s, p) € POOL, such that p I n. If more than one
sequence in POOL satisfies this condition, choose the sequence(s) with the
smallest (n mod p) and break a tie by selecting the largest p, and then do the
subtraction POOL=POOL - {SS(Ci, s, p)).

4) Split SS(Ci, s, p) into a = Ln / P J slot sequences: SS(Ci, s, ap), SS(Ci, s+p, ap),
SS(Ci, s+2p, ap), .. ., SS(Ci, s+(a-1)p, ap). Assign SS(Ci, s, ap) to S,; then, do the
union POOL=POOL U { SS(Ci, s+jp, ap), j=1,2 ,..., a-1)

5) If there exists a slot sequence SS(Ci, s, p) €2 POOL such that p I n+l, then
increase n by 1 and go to step 3 to schedule the next segment; otherwise,
terminate this procedure and output the value of n.

Figure 2.4 RFS Algorithm

The RFS scheme is based on a concept called Yrequency splitting". For segment

S,, we should allocate a slot sequence SS(Ci, s, p) such that p I j. It is desirable that the

value of p be as close to j as possible, since a larger p means less waste in

communication bandwidth. The best case is p = j. However, when p < j and j/p 2 2, we

need to partition SS(C, s, p) into a = l j l p] subsequences with the same period of ap

time slots, as indicated in step 4 of Figure 2.4, and assign one of these subsequences to

Si. The period a p is the maximal period that is a multiple of p and not larger than j.

According to this concept of frequency splitting, [59] gives the RFS algorithm as shown

in Figure 2.4.

Unlike FDPB which maps segments into subchannels and channels in a strictly

sequential fashion, RFS maps segments in a "greedy" fashion in order to minimize the

waste of bandwidth. In the procedure shown in Figure 2.4, authors of 1591 try to increase

the value of n repeatedly. Step 3 is a heuristic for reducing the waste of bandwidth when

performing the assignment in step 4, and it is also a heuristic for leaving more flexibility

in subsequent assignments. Step 4 performs the splitting. Step 5 checks whether the

next segment can be accommodated. Figure 2.5 shows the result of running the RFS

scheme for K = 3. We can express the result in a slot sequence expression: SS(Co, 0, 1,

Sf), SS(C1, 0, 29 SZ), SS(C1r 1941 S4)1 SS(C1r 39 41 SS), SS(C2r 0, 31 S3)r SS(C2r 1, 61 S6),

SS(C2, 2, 6, Ss) SS(C2, 4, 6, S7), and SS(C2, 5, 6, S9), where the last parameter in each

bracket is what we add to represent the segment assigned to this slot sequence.

/ Channel Co

/ Channel C1

f Channel C2

Figure 2.5 RFS scheme result for K=3 channels

[59] gives an upper bound of the number of segments n that can be packed into

K channels using RFS. Upper bound n must satisfy

i - 1, if i is a prime number and i 2 p(K)

where f (i , = (o{hsn&e.
i 7

and p(i) is the i th prime number (i.e., p(l)=2, p(2)=3, p(3)=5, etc.). Thus, given

a video with duration D seconds, Dln is a lower bound on the maximum waiting time.

We summarize the proof of the above upper bound as follows. We know

segment Sirnust be broadcast at least once in every continuous i time slot. According to

Lemma 3 of [59], no two segments Si and Sj, such that i and j are primes, can be

broadcast in the same channel with period i and j, respectively. Under the best situation,

we may place each of the K - 1 segments SPll), Sp(2), , Sp(k-l) in a separate channel

by broadcasting them with perfect periods p(l), p(2), - , p(K-I), respectively. The

other segments Sp(~), Sp(K+,j, Sp(K+2), , each of which has a segment number equal to a

prime and larger than p(K-I), will each be forced to broadcast with a smaller period less

than its segment number no matter which channels they broadcast on (otherwise,

conflict will occur). Therefore, in the best case, segment Si has period f(11 in Formula

(2.6.1) and will consume at least llf(11 of the channel bandwidth. Summing this over all

segments gives Formula (2.6.1).

Chapter Three
Generalized Fixed-Delay Pagoda
Broadcasting

In the previous chapter, we reviewed the RFS and FDPB schemes, which are the

most bandwidth-efficient schemes that are currently known in the third group of

broadcasting schemes, i.e., those which use equal-sized segments. In Section 3.1, we

will introduce a tree representation of a channel schedule and a window scheduling

algorithm, which is similar to RFS but is represented in terms of a tree. Because it is

more intuitive, we will use the tree representation extensively throughout the rest of the

thesis. In Sections 3.2 to 3.4, we will propose our two versions of GFDPB and analyze

their performance. In Sections 3.5 and 3.6, we will present and analyze the efficient

multiplexing and demultiplexing methods to be used by the server and clients,

respectively. Finally, in Section 3.7, we will present an algorithm to translate the slot

sequence representation for a channel schedule to the tree representation.

3.1 Previous Work

Bar-Noy et al. proposed a greedy algorithm for the Harmonic Windows

Scheduling (HWS) problem [58] similar to RFS but it uses a different representation and

a different point of view. A window consists of a set of consecutive time slots and the

number of time slots in the window is called the window size. HWS uses equal-sized

segments called pages [58] such that a page exactly fits in a time slot. For conformance

with other broadcasting schemes in the third group we use the term segment instead of

page. The optimal harmonic windows scheduling problem is defined as follows:

Given K slotted channels, what is the maximum number of segments that
can be scheduled on the K channels, one segment per channel at each
time slot, such that segment i appears at least once in every window of
size i?

In this thesis, a segment appears only repeatedly on a single channel. A

schedule is said to be perfect if it schedules each segment at fixed slot intervals. In this

case, the size of the interval is called the period of the segment.

A channel schedule is defined as a sequence of segments to be transmitted on a

single channel such that the length of the sequence is equal to an integer multiple of the

least common multiple (LCM) of the periods of all the segments broadcast in this

channel. In Figure 2.5, the 2nd channel broadcasts S2, S4and S5, whose periods are 2, 4,

and 4 time slots, respectively, so that the LCM is 4. Therefore, the shortest channel

schedule for the 2nd channel is <S2, S4, S21 S5> or any of its three cyclic shifts i.e., <S5,

S2, S4, S2>, <S2, S5, S2, S4>, and <S4, S2, S5, S2>. The 3rd channel broadcasts S3, S6, S8,

S7, and Sg, whose periods are 3, 6, 6, 6, and 6 time slots, respectively, so that the LCM

is 6. Therefore, the shortest channel schedule for the 3rd channel is <S3, S6, S8, S3, S7,

Sg> or any of its five cyclic shifts. Each channel repeats its channel schedule forever

and any repetition of a channel schedule is also a channel schedule by definition.

Instead of using many slot sequences to represent a broadcasting schedule for

each channel and each of the slot sequences to represent a segment broadcasting

schedule as RFS does, Bar Noy et al. use a tree representation such as shown in Figure

3.1, in which each leaf determines a segment's start slot (offset) and broadcasting period

in the channel. Therefore, each node in the tree representation, except the root,

corresponds to a slot sequence in RFS, and the child nodes of each non-leaf node

correspond to the subsequences resulting from the frequency splitting of such a node.

Figure 3.1 An example of a tree for segments A, 6, C, D, E, F, G, H

Figure 3.2 Frequency splitting representation corresponding to Figure 3.1

Figure 3.1 represents a certain channel schedule in the tree representation. Let's

call the channel involved channel Ci, which is assigned to broadcast segments A, B, C,

D, E, F, G, H. Now we can see the correspondence between a tree representation and

the slot sequence representation. At the very beginning, this tree only has a root node

corresponding to SS(Ci, 0, 1) mentioned in Section 2.6, and then this root splits into two

child nodes c l and c2, corresponding to SS(Ci, 0, 2) and SS(Ci, 1, 2), respectively, as

shown in Figure 3.2. Node c l splits again into two child nodes. One of its child nodes is

cl-1, corresponding to SS(Ci, 0,4), and the other represents segment D, corresponding

to SS(Ci, 2, 4, D). Node c2 splits again into three child nodes. One of its child nodes

represents segment E, corresponding to SS(Ci, 1, 6, E), and another represents

segment HI corresponding to SS(Cil 5, 6, H). SS() with four parameters represents a

slot sequence allocated to a segment, and SS() with three parameters represents a

non-leaf node of the tree, which will be split further. The other child node is c2-1,

corresponding to SS(Ci, 3, 6). Node c l - I splits again to three child leaves and node

c2-1 splits again to two child leaves. The whole frequency splitting procedure is

illustrated in Figure 3.2.

Procedure: Tree-to-Schedule

Input: A tree T with n leaves that are labeled with the labels PI, ..., p, that
represent the segments. Let T have d 2 0 subtrees.

Output: A perfect channel schedule S' for these segments in which each segment
3 has a fixed period

Base case: If n =1 (it is a leaf tree), then the schedule is S1=< pl>

The recursive step: If ni >1 and therefore d > 0, do the following:

a) Recursively construct the channel schedules S'I, ..., S> of all the d subtrees of
T. Assume their respective lengths are 61, ..., &.

b) Replicate each channel schedule and make all of them have the same length C
= LCM{ 4, ..., &}. Let the new schedules be S*I, ..., S*d.

c) The final channel schedule S' of length d = db is constructed by alternately
picking 6' times the next segment from the d channel schedules S*l, . . ., S*d.

Figure 3.3 Algorithm for translating a tree to channel schedule

[58] provides a recursive procedure for translating a tree to its channel schedule

as shown in Figure 3.3. The round-robin tree is a simple example. This is a tree whose

root has d children, all of which are leaves. If they are labeled by the segment numbers

pl, p2, ..., pd, then the channel schedule represented by this tree is the round-robin

channel schedule S=<pl, p2, ..., pd>. Since this channel schedule simply goes through

the d children of the root in order, we call it round-robin. A more complicated example is

the tree in Figure 3.1. Its root has two subtrees (d=2) and the labels of the leaves are A,

B, ..., H. Applying procedure Tree-to-Schedule on the left and right subtrees yields the

channel schedules cADBDCD> and cEFHEGH>, respectively. Hence, the schedule

represented by the tree is CAEDFBHDECGDW. By repeating the above channel

schedule infinitely, we can see the start slot and the period of each segment is exactly

the same as depicted in Figure 3.2. For example, H starts from slot 5 and its period is 6

slots. Similarly, G starts from slot 9 and its period is 12 slots.

From the recursive round-robin character of the algorithm in Figure 3.3 and the

correspondence between a tree representation and a slot sequence representation, we

can easily find that the period of a segment (label) in a tree representation is equal to the

product of the numbers of children of the segment's ancestors. For example, for the leaf

labeled G in Figure 3.1, the numbers of children of all the ancestors of the leaf, from the

root to its parent c2-1, are 2, 3, 2 in this order, so segment G's period is 2x3x2=12.

Now we introduce the greedy algorithm proposed in [58]. The authors of [58] first

define two kinds of trees. One is an open tree which is a tree whose leaves are labeled

with two types of labels: a segment label and a window label. The other is a closed tree

which is a tree whose leaves have only segment labels. The leaves with segment labels

have been assigned to specific segments and those with window labels are free leaves,

or the leaves which have not been assigned to specific segments, and are labeled by

their periods. The period of a window label or a leaf is calculated in the same way as that

of a segment label mentioned above. An open forest is a collection of open trees and a

closed forest is a collection of closed trees. Initially, all the K trees are singleton open

trees with window labels whose value is 1. The greedy algorithm terminates when all the

K trees become closed trees, which means no free slot sequence is available to be

allocated to any more segment.

Output: n and K closed trees with a total of n leaves labeled with segment labels,
each of which represents segment i, i=l, ... n

1) Initialize K channels into K singleton open trees with window labels 1

2) Initialize ~ 1 , where r indicates the r-th segment.

3) Let w, I w2 I* -5 wk be the ordered list of the labels of all the leaves in the
forest whose labels are of type window (initially they are all 1).

4) Let mj =(r mod wi) for I S j 5 k.

5) Let i be the index such that mi is the minimum among all the mi. Break a tie by
selecting the index that is associated with the largest window label.

6) Let d , = Lr / w i J and T, be the tree that contains wi.

7) If di = 1, then replace the window label wi with the segment label r in the tree Ts.
(This operation is called the replacement operation). Otherwise, add di children to
the leaf associated with wi replacing this leaf with di new leaves. The first child is
labeled with rand the rest are labeled with the window label wimdi which are put in
order into the window label list. (This operation is called the split operation).

8) If the window label list is not empty, then increment r and go to step 3 to
schedule the next segment; otherwise, terminate this procedure and output the
value of n=r and the K closed trees.

Figure 3.4 Greedy algorithm for Harmonic Windows Scheduling problem

[58] gives the greedy algorithm as shown in Figure 3.4, in which the split

operation in step 7 is the same as the 'Yrequency splitting" operation of RFS. Variables di

and wi here are respectively the same as a and p in Figure 2.4. In [58], the authors

propose two possible modifications to the split operation and only one of them is

manipulable. The manipulable modification tries to leave leaves open with small window

labels as long as possible and works as follows. When d (in step 6 of Figure 3.4) is a

composite number, the split operation is carried out in several steps in the increasing

order of the prime factors of di. For example, let di = 12 for a node with a window label

wi. The prime factors of 12 are 2, 2, and 3; therefore, the node is split twice into two

nodes in the first two split operations, and once into three nodes in the last split

operation, as shown in Figure 3.5, where all labels are window labels. Thus, it creates

five new leaves whose window labels are 2wi, 4wj, 12wi, 12wi, 12wi, respectively. The

leftmost window label 12wi in Figure 3.5 produced in the last split operation becomes a

segment label but the rest remain window labels. They found that the basic greedy

algorithm with this modification does not always get a better result. In this thesis, we call

the basic greedy algorithm with the modification, i.e., the multilevel split for composite di,

the multilevel splitting greedy algorithm.

Original window
label wi

/n 4wi

Figure 3.5 Multilevel splitting

We can translate each segment label in the tree representation to a (slot)

sequence representation. First, we just copy the channel number and the segment label

which is indicated by its segment number. Second, we must calculate the start slot of the

segment, which is called the offset of the segment in [61] by Bar-Noy et al. Third, we

must calculate the segment's actual period. In [61], Bar-Noy et al. give the formulae for

the calculation of the start slot and the actual period. Both formulae are given below and

they are proved in [61].

For each node J, let d(J) denote the number of children of J, and let J'denote the

parent of a non-root node J. They first define the period T(J) of node J inductively as

follows: for the root node JO, T(J0) = 1, and for a non-root node J

Thus, by definition, for a leaf J, its period T(J) is the product of the number of children of

each of its ancestors. Next they assign an offset (start slot) for each leaf. If a node has d

children, they are numbered 0, 1, . . . , d - 1, left to right. Each node J is associated with

a number h(J), which is the number of its left siblings. The offset can be computed

recursively as follows: a(J0) = 0 for the root node JO, and for each node J with parent J',

Take segment G in Figure 3.1 for instance. Its period is 2x3x2=12 and its offset

(start slot) is equal to a(c2-1) + 1 x6 = (a(c2) + 1x2) + 1x6 = ((a(J0) + IxT(J0)) +1x2) +

1x6 = 9, where JO is the root.

Segment 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
Period 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3.6 Tree representation of Figure 2.3

In [60], Bar-Noy et al. propose the RR2 algorithm which is almost exactly the tree

version of FDPB. The main difference is that the optimal number of subchannels for the

channel in which the first segment assigned is Si is found by nearly exhaustive checks

from 2 to (m+i-1)/2 instead of using the integer closest to J m + i- 1 as in FDPB. RR2

represents each channel schedule of FDPB as a tree of height 2, as shown in Figure 3.6

for the channel schedule in Figure 2.3. In Figure 3.6, the three internal nodes at level 1

represent the three subchannels and the leaves at level 2 represent the segments in

each subchannel. The authors also adapt the greedy algorithm mentioned above to the

fixed-delay policy in the simulation section of [60] for a small number of channels and a

small number of m.

3.2 Generalized Fixed-Delay Pagoda Broadcasting

In this section, we present our GFDPB scheme which improves Bar-Noy et al.'s

greedy algorithm. GFDPB, like FDPB, is based on the fixeddelay policy. In GFDPB, a

video of duration D is broadcast over K channels {Ci 1 01 i<K), each with bandwidth

equal to the video consumption rate b. Each video is partitioned into n equal-sized

segments of duration d=Dln. These n segments are broadcast at different frequencies

over the K channels, and each segment transmission occupies a slot of duration d. A

client in GFDPB needs to wait for a fixed time interval w=md before starting to display a

video, where m is some integer m 2 1. As in FDPB, segment Si in GFDPB needs to be

transmitted at least once every m+i-1 slots to guarantee that Si has been buffered

before it is needed.

Maximizing the number of segments scheduled in the given K channels, such

that segment i appears at least once in every window of size m + i -1, is called the

optimal truncated-Harmonic scheduling problem in [65].

We call m+i-1 the ideal period of segment Si. The ideal period idealP of a

segment Si of a video is an integer such that segment Si needs to be repeated at least

once every idealP slots to ensure the continuity of the display of the video. In RFS,

idealP=i; whereas in FDPB, idealP=m+i-7. The actual period of a segment in each

broadcasting schedule must be equal to or less than its ideal period.

However, unlike FDPB which maps segments into subchannels and channels in

a strictly sequential fashion, GFDPB, like RFS and the greedy algorithm, maps

segments in a "greedy" fashion in order to minimize the waste of bandwidth and to pack

more segments into a given number of channels.

If we change the greedy algorithm to conform to the fixed-delay policy directly,

we need to replace "Initialize ~ 1 " in step 2 of Figure 3.4 with "initialize ~ m " , add m to

the input, and replace "output the value of n=r" in step 8 with "output the value of n=r-

m+l". In the same way, we can adapt the RFS algorithm to the fixed-delay policy. By

careful observation of results of the greedy algorithm under the fixed-delay policy, we

found that if di = Lr / w i J in step 6 of Figure 3.4 is a big integer, then the free leaf with

the window label wi will be split into a large number of leaves with the same large

window label wi*di. This leads to inflexibility in processing the subsequent segments after

the split. For example, for K=l and m=100, in processing segment ST, channel Co is split

into 100 leaves with the same period 100, so the maximum number of segments that

can be packed into this channel is, according to the basic greedy algorithm, only 100.

For a leaf with a window label wi, the replacement operation or the split operation

of the leaf will not cause bandwidth loss only if it is assigned to a segment Si whose ideal

period m+i-1 is exactly equal to wi or an integer multiple of wi,; otherwise, the actual

period of segment S,, or wi*di, should be less than the segment's ideal period since

di = L(m + i - 1) / W , 1 < (m + i - 1) / w i . If we allocate too much bandwidth to Si, i.e.,

di w i < m + i - 1 , we lose bandwidth at segment SI or at the window label wi.

For a window label wi, we don't know in advance which segment label will

replace it or split it. If the probability of replacing or splitting is the same for all segments,

then the probability to lose bandwidth at this window label is (1 -1lwi). For any segment r,

the possible remainders mi =(r mod wi) are 0, 1 , ..., wi -1, among which only 0 means

we do not lose bandwidth. Thus, the probability of wasting bandwidth is (wj-l)Iwj = 1-

l/wP The larger the window label is, the higher the probability of losing bandwidth at it.

For example, if there are many leaves with window label 10, then there is a 90%

probability of losing bandwidth at them. However, if the window label is 100, then the

probability is 0.99. Therefore, we must try to prevent a leaf with a window label from

splitting into a large number of leaves with the same large window label, and try to keep

the average value of all the window labels in a tree as small as possible after each split

operation, leaving leaves with small window labels open as long as possible.

However, minimizing the average value of window labels may cause more

bandwidth loss. Thus, for each split operation, we must balance between the purpose of

minimizing the average value of window labels and minimizing bandwidth loss at each

segment. Bar-Noy's multilevel splitting greedy algorithm mentioned in Section 3.1

achieves part of this purpose. Consider, for instance, the case where K=2 and m=100.

Segment Sf will split the root node of Co into five leaves with window label 100, four

leaves with window label 20, one leaf with window label 4 and one leaf with window label

2. The first leaf with window label 100 becomes the leaf with segment label 100

according to the multilevel splitting greedy algorithm as shown in Figure 3.7(a). The

average window label is (5x100 + 4x20 + 1x4 + 1x2)/(5 + 4 + 1 + 1)=53.27. This tree

structure is more flexible in minimizing bandwidth loss in subsequent assignments of

leaves for segments than a tree structure formed after splitting the root node of Co into

100 leaves with period 100 by the greedy algorithm. In fact, we can pack 136 segments

into this channel according to the multilevel splitting greedy algorithm rather than 100

segments according to the basic greedy algorithm.

However, the multilevel splitting greedy algorithm only works when di = Lr / w i

in step 6 of Figure 3.4 is a composite number whose prime factors are all small. If di is a

big prime number or has a big prime factor, then the multilevel splitting greedy algorithm

will not prevent a leaf with the window label wi from splitting into a large number of

leaves with the same large window label wi*di. For example, for K=2 and m=100,

segment &will split C1 into m+2-1=101 leaves with the same period 101 because 101 is

a prime number (as shown in Figure 3.7(a)); for K=2 and m=141, segment &will split C1

into one leaf with period 2 and 71 leaves with period 141 because m+2-1=142=2x71

101 (101) (101) (1 01)
100 leaves with window labels (101)

Figure 3.7 For K=2, m=100, the forest after two multilevel splits

141 (141) (141) * * (141) 142 (142) (142)
46 leaves with window label (141)

(1 42)
70 leaves with window labels (142)

141 142 (141) * * (141)
45 leaves with window
label (141)

(b)
Figure 3.8 For K=2, m=141, the forest after two multilevel splits

and 71 is a big prime factor of 142 (as shown in Figure 3.8(a)). In Figures 3.7 and 3.8,

we use the ideal period of each segment to indicate the segment label, so segment Si is

represented by an integer m+i-1. Each window label is represented as a number inside

parentheses, where the number indicates the period of the window label. For example,

(1 01) indicates a window label with period 101.

To further prevent a leaf with a window label from splitting into a large number of

leaves with the same large window label (we call this split large split operation in the

following), we try to give the lowest priority to a split operation in which the value of

d , = Lr / wi 1 in step 6 of Figure 3.4 is a big prime number or has a big prime factor even

if the corresponding m, =(r mod w,) is very small. To do so, we introduce a parameter,

limiting-prime, which is also a prime number, as a delimiting prime. For a split operation,

if di is a prime number and bigger than a given limitinggrime, or the biggest prime factor

of di is bigger than the given limitinggrime, then we will give a low priority to the split

operation. In this way, we can control the structure of closed trees so that most of their

internal vertices have no more than limitinggrime children. For each pair of K and m,

the optimal limiting-prime that can maximize the number of packed segments may be

different. By trial and error, we find that the optimal limitinggrime is in the range from 2

to 61 and too large a limiting-prime imposes little constraint to split operations. When

limiting-prime is larger than 61, our results approach those of the multilevel splitting

greedy algorithm. Therefore, we try limiting-prime values from 2 to 61 to find the optimal

limiting-prime for each pair of K and m in our algorithm.

We have tried all the possible variant algorithms in order to choose the smallest

m, = (r mod w,) while considering the value of d i = Lr 1 W , 1 and its prime factors to

minimize the probability of making a large split operation, but we find no variant can

Procedure: gfdpb-prime()(, m)

I

(

(

1

d

,
I

(

i
I

I

1

!

Input: K and m

Output: Value n, optimal limitingjrime and K closed trees, optimal_forest.

1) Initialize the number of segments max-seg=0 and optimal-limitingjrime = 0 and
optimal_forest = NULL.

2) Assign 18 prime numbers between 2 and 62 inclusive, to the prime number array
orime[0]=2, prime[l]=3, . . . , prime[l7]=61.

3) lnitialize prime-index=O.

5) lnitialize K channels as K singleton open trees with window labels 1 and initialize
r=m since the ideal period of segment S1 is m.

6) Let wl, w2, *, wk be the ordered list of all the window labels in the forest in the
increasing order of the corresponding channel numbers and then the start slot
numbers. If this window label list is empty, go to step 16.

7) lnitialize i = 1 for fetching the first window label in the above list.

8) lnitialize the minimal remainder m-min=r, since mi in the next step is always less
than r.

9) If i S k, then mi =(r mod wi), d, = Lr / w;] and wp=O; otherwise, go to step 12.

10) If mi < m-min then {
if di is a prime number and m-min < r and di > limitingjrime

increment i and go to step 9.
else

m-min= mi; wp= wi)
else if (mi == m-min and wi > wp) {m-min = mi; wp= wi)

11) Increment i by 1 and go to step 9.

12) Remove the window label wp from the window label list.

13) If(d, =lr / w,) = 1. then replace the window label wp with the segment label rand go

to step 15).

14) Calculate the prime factors of d, = Lr W,] as p1, p2, a - . , pj. Apply the multilevel

split operation to the window label wp, following the increasing order of the prime
factors of dp and attach the segment label r to the first leaf (the leftmost leaf) with the
window label (dp*wp) among the leaves just produced; then insert the rest of window
labels into the window label list.

15) Increase r by 1 and go to step 6.

16) If(max-seg < (r- m)) { max-seg = r - m; optimal_limiting-prime = limitingjrime;
optimal_forest=this-forest).

17) If prime-index < 17 then increase prime-index by 1 and go to step 4; otherwise,
output (max-seg, optimal-limiting-prime, optimal_forest)

Figure 3.9 Procedure gfdpbgrime

always outperform the others. Sometimes the difference among the variants is more

than 1%. After trial and error, we finally settled on two procedures as shown in Figures

3.9 and 3.10. The two procedures have three loops inside them: the outer loop is from

step 4 to 17 and loops through 18 limiting-prime values; the middle loop is from step 6 to

15 and is for calculating each max-seg which is the number of packed segments for a

given limiting_prime value; the inner loop is from step 9 to 11 and is for finding the best

window label to assign the given segment with the ideal period r. The better result of

these two procedures (variants) for any given K and m is always within 1% of the best

result from all the variants.

The two procedures comprise GFDPB. The first procedure gfdpb-prime(K, m)

imposes a constraint on di whose value is a prime number and larger than a given

limiting-prime, checking di only in the first condition of step 10 in Figure 3.9. The second

procedure gfdpbjrime-facto4K, m) imposes a constraint on di whose biggest prime

factor is larger than a given limitingjrime, checking di or d,, in all the three conditions of

step 10 in Figure 3.10. Thus, we can see these two procedures are the two extremes for

imposing constraints to prevent large split operations. The second procedure imposes

the most severe constraint of all the variants we have tried on the di selection, while the

first one imposes the least. In fact, more constraints on di selection sometimes causes

less constraint on mj selection and therefore causes more bandwidth loss. As a result,

there is a trade-off between the selection of the best mj and the selection of the best di.

Thus, neither of these two procedures can always outperform the other. We try both of

them and then pick the better one as the result of GFDPB in Figure 3.1 1.

For K=2 and m=100, both procedure gfdpb-prime and gfdpb-prime-factor

replace the window label (100) next to the segment label 100 by segment label 101 in

the Co tree, as shown in Figure 3.7(b), instead of splitting the root node of the C1 tree

Procedure: gfdpb-prime-factor(K, m)

Input: K and m

Output: n, the optimal limitinggrime, and K closed trees

I) to 9) are the same as procedure gfdpb-prime(K, m)

10) if mi < m-min then {

Calculate d/s biggest prime factor, biggestgrime-factor

if biggestgrime-factor > limitinggrime and m-min < r

increment i and go to step 9

else

m-min= mi; wp= wi)

else if (mi == m-min and wi > wp){

Determine d k biggest prime factor, biggescprime-factor.

if (biggescprime-factor <= limitinggrime) { m-min = mi and wp= Wi))

else if (mi > m-min) {

d , = l r / w p]

determine d,'s biggest prime factor biggescprime-factor9

if (biggestgrime-factor-p > limitinggrime) { m-min= mi; wp= wi))

1 1) Increment i by land go to step 9.

12) to 17) are the same as procedure gfdpb-prime(K, m)
- -

Figure 3.1 0 Procedure gfdpbgrim-factor

Algorithm: GFDPB: gfdpb(K, m)

Input: number of channel K and m

Output: value n, K closed trees

(max-seg I , optimal_limiting-prime I , optimal_forest I) = gfdpbgrime(K, m)

(max-seg2, optirnal_limiting_prime2, optimal_forest2) = gfdpbgrime-factor(K, m)

If (max-seg? 2 max-seg2)

Output (max-seg? , optimal_forest I)

Else

Output (max-seg2, optimal_forest2)

Figure 3.11 Algorithm for GFDPB scheme

into 101 leaves. This tree structure makes it more flexible to match the ideal periods of

the subsequent segments. For K=2 and rn=141, procedure gfdpbjrirne-factor replaces

the window label (141) next to the segment label 141 in the Co tree by segment label

142, as shown in Figure 3.8(b), instead of splitting Cl into 71 leaves. However, according

to procedure gfdpb-prime, for K=2 and rn=141, segment 142 will split Cl in the same

way as in the multilevel splitting greedy algorithm, as shown in Figure 3.8(a).

3.3 Enhanced GFDPB

One problem with GFDPB is that it can't prevent the first segment with period rn

which is a prime or has a big prime factor, such as rn=101 for K=l, from splitting the

initialized singleton open tree into a large number of leaves with the same large window

label. Therefore, we propose the Enhanced GFDPB (EGFDPB) algorithm in Figure 3.12.

If rn is a prime number and larger than 3, or if rn is not a prime number but its biggest

prime factor is larger than 10, then we reduce the period of the first segment from rn to

the nearest integer whose value is less than rn and whose biggest prime factor is no

larger than 10, and keep the ideal periods of the rest of segments the same as before.

For a prime number rn which is less than 10, we just decrement the period of the first

segment from rn to rn-1.

First we must modify procedures gfdpb-prirne(K, rn) and gfdpb-prime-factor(K,

rn) into procedures gfdpb-prirne(K, rn, firstger) and gfdpbgrirne-factor(K, rn, firstger),

respectively, where variable firstger is the modified period of the first segment. In the

same way, procedure gfdpb(K, rn) can be modified as gfdpb(K, rn, firstger). Take

gfdpb(2, 101, 101) =546, for instance. Since the ideal period of the first segment 101 is a

big prime number, we reduce the period to 100. Therefore, gfdpb(2, 101, 101)=546 is

modified as gfdpb(2, 101,l OO)=612 or egfdpb(2,101)=612. The number of packed

segments is thus increased by 12O/0. From here we can see the benefit of preventing the

large split operations.

Llgorithm: EGFDPB: egfdpb(K, m)

nput: the number of channel K and m

Iutput: value n, optimal limitinggrime and K closed trees

(max-segl, optimal_forest?)=gfdpb(K, m, m)

If (m is a prime number larger than 3, or m is not a prime number but the
biggest prime factor of m is larger than 10) then {

first-per = m;

do{
first-per=firstger - 1 ;

calculate the biggest prime factor of first_per;

) while (firstgets biggest prime factor is larger than 10)

(max-seg2, optimal_forest2)=gfdpb(K, m, first_per)

if (max-segl rmax-seg2)
return (max-segl , optimal_forestl)

else
return (max-seg2, optimal-forest2)

1
Else

return (max-segl, optimal_forest 1)

Figure 3.12 Algorithm of Enhanced GFDPB

3.4 Performance Analysis of GFDPB and EGFDPB

To understand how well our GFDPB scheme performs with different numbers of

channels and m values, we have calculated the values of n that result from GFDPB,

EGFDPB, FDPB, RFS (or the greedy algorithm), and the multilevel splitting greedy

algorithm. Here we apply RFS or the greedy algorithm under the fixeddelay policy. The

results are shown in Figures 3.13 and 3.14, where the horizontal axis represents the

value of m and the vertical axis represents the number of segments, n. The number in

the name of each line represents the value of K. For example, fdpb-3 means FDPB with

3 channels, bar-3 means Bar-Noy's multilevel splitting greedy algorithm with 3 channels,

and ub-3 means the upper bound for K=3. Here, the upper bound is calculated

according to a small variation of Formula (2.6.1), in which p(i) is changed to the i th

prime number among the integers not less than m (e.g., if m=100 or m=101, then

p(l)=101, p(2)=103, p(3)=107, etc) and "f(~]=i-1 if i is prime and i r p(K)" is changed to

"f(i)=i-1 if i is prime and i > p(K)".

Figure 3.13 Diagram for K=l to 3 and m=l to 254

From these figures for each number of channels, we can see that the EGFDPB

curve lies very close to and immediately below the upper bound curve. Note that the

EGFDPB curve lies above the GFDPB curve when K 4 , and almost completely overlaps

the GFDPB curve when K>3. The GFDPB curve undulates slightly under the EGFDPB

curve, whereas Bar-Noy's multilevel splitting greedy algorithm curve undulates very

Figure 3.14 Diagram for K=4 to 6 and m=l to 254

wildly below the GFDPB curve, and goes sometimes above and sometimes below the

FDPB curve except for K=6. Some of the maximum points of curve bar-i with 15 i 5 6

are rather close to curve gfdpb-i with 15 i 5 6, but they are hard to be caught because of

the irregularity and sparsity of this kind of maximum points. We can explain that the

irregular wild undulations of curves bar-i with 15 i 5 6 is due to their partial control of split

operations since sometimes large split operations cause a heavy bandwidth loss.

Surprisingly, we find FDPB is better than RFS in most cases unless rn is very small. The

reason is that the effect of the large split operations caused by RFS's one level splitting

becomes bigger and bigger as rn increases. Thus, RFS performs worse and worse with

increasing m. The above reason can also explain why the derivative of the RFS curves

decreases as m increases especially when K=6.

From these figures, we can see that of all the above schemes or algorithms, RFS

or the greedy algorithm can pack the least number of segments, FDPB and Bar-Noy's

multilevel splitting greedy can pack a moderate number of segments, and EGFDPB and

GFDPB can pack the most number of segments. When more than three channels are

used, the EGFDPB and GFDPB curves almost overlap, especially for K=6. For K=6,

curve bar-6 is very close to curve g f d p b or e g f d p b when me50. When mr50, curve

bar-6 undulates below curve gfdpb-6 or e g f d p b and parts from curve g f d p b and is

progressively worse with increasing m.

FDPB m=9 +-
FDPB m=16 +

FDPB m=36 *
FDPB m=64 *

FDPB m=100 *
GFDPB m=9 f

GFDPB m=16 +-
GFDPB m=36 t
GFDPB m=64 -Et

GFDPB m=100 *
ll(exp(x)l) ip-

3 3.5 4 4.5 5 5.5 6 6.5 7

Bandwidth (channels)

Figure 3.15 Waiting time for FDPB and GFDPB with different m

Given the number of channels K and the value of m, the inverse of n offered by

each scheme reflects the maximum waiting time before a client can start viewing a video.

Figure 3.15 shows the normalized waiting time (mln) achieved by GFDPB and FDPB for

m=9, 16, 36, 64, and 100. All the bandwidths are expressed as multiples of the video

consumption rate b, and all the waiting times are expressed as fractions of the video

duration D. The top five curves in the figure represent the results of FDPB and the curve

at the bottom represents the lower bound on FDPB, i.e., l l(eK -1). We can see all the

normalized waiting time values achieved by GFDPB are much smaller than those of

FDPB and approach the lower bound very quickly with increasing m.

Table 3.1 Comparison of GFDPB, GEBB and PHB

BWlb

GFDPB m=100

GEBB n= 100

GEBB n=500

PHB m=8

PHB m=100

Table 3.1 shows the normalized waiting time achieved by GFDPB, GEBB and

PHB. The bandwidth is expressed as multiples of the video consumption rate b. From

the table, we can see GFDPB with the number of channels K>3 and m=100 achieves

much shorter normalized waiting time than GEBB with the same total bandwidth and 100

channels. GFDPB with K>5 and m=100 achieves even shorter normalized waiting time

than GEBB with the same total bandwidth and 500 channels. GFDPB with m=100

achieves shorter waiting time than PHB with m=8, where a video is broadcast in many

more channels. For example, given the bandwidth B=6b, PHB with m=8 needs to use

3021 channels to achieve a normalized waiting time of 0.002648, which is still longer

than that achieved by GFDPB with six channels. At the cost of an enormous number of

3

0.05506608

0.05488886

0.05289245

0.0556

0.0526500

4

0.01 955034

0.02020000

0.01 896235

0.0199

0.01 875

channels, PHB with m=100 achieves shorter waiting time than GFDPB. For example,

given bandwidth B=6b, PHB achieves normalized waiting time of 0.0024974, which is

2.8% shorter than that achieved by GFDPB with m=100, by partitioning a video into

40041 segments and broadcasting each of them on a separate channel with decreasing

bandwidth. However, to handle so many channels with decreasing bandwidth is likely to

be a daunting task. Therefore, Table 3.1 shows that our GFDPB scheme is better than

GEBB and PHB with the same total bandwidth and many more channels. Only if the

number of channels used by GEBB and PHB increases to a great extent, the GEBB and

PHB schemes can outperform GFDPB with the same total bandwidth and a much

smaller number of channels. However, compared with GEBB, GFDPB needs to pay the

price of handling many more segments than GEBB. For example, for K=6, each video

will be partitioned into 38920 segments in GFDPB with m=100, but only 540 segments in

GEBB. Thus, the overhead of GFDPB is much more than that of GEBB.

Bar-Noy
28

Best bound

Table 3.2 Number of the packed segments for m = 1

Table 3.2 compares the numbers of the packed segments achieved by GFDPB

for m=l with those achieved by RFS [59], the multilevel splitting greedy algorithm

(indicated by "Bar"), and Bar-Noy's best bound [58]. Bar-Noy's best bounds for small

numbers of channels (K=4, 5, 6) were achieved by hand tuning the results of the greedy

algorithm (RFS) and realized by non-perfect schedules. Bar-Noy's best bounds for 7 to

10 channels were obtained from their modifications of the basic greedy algorithm, which

were tuned according to each specific number of channels and use ad-hoc methods.

They are the best known schedules for m=l. The upper bounds are calculated according

to Theorem 2 of [59], as shown in formula (2.5.1). We can see from Table 3.2 that even

for m=l, GFDPB outperforms RFS and the multilevel splitting greedy algorithm ("Bar"),

and is better than Bar-Noy's best bound if the number of channels is bigger than 8.

UB

170

634

1895

5324

14646

39986

108872

Channel

1

2

3

4

5

6

7

Table 3.4 Number of the packed segments for m 4 0 0

FDPB

156

565

1650

4563

1241 8

33684

91321

RFS

100

370

1105

31 68

8809

25432

72029

Bar

136

452

1335

4778

13420

3771 7

1 04478

GFDPB

158

606

1816

5115

14180

38920

106387

In Tables 3.3 and 3.4 we compare the number of packed segments achieved by

GFDPB with those offered by FDPB, RFS, and the multilevel splitting greedy algorithm

(indicated by "Bar") in the case of m=9 and m=100. After computing the average

improvement, we find that GFDPB is on average 34.96% better than FDPB for m=9, and

11% better than FDPB for m=100, and on average 1.92% better than the result of the

multilevel splitting greedy algorithm for m=9, and 14.86% better than that of the

multilevel splitting greedy algorithm for m=100. In Figures 3.13 and 3.14, we can see

that when m is small, the result of the multilevel splitting greedy algorithm is generally

close to the GFDPB result and is much worse than the GFDPB result when m is big.

In addition to our above analysis, we also know that FDPB [57] and RFS [59] are

better than all other Pagoda schemes in the third group of broadcasting protocols, and

PHB and GEBB outperform all other schemes in the first and the second group.

Therefore, we can conclude that EGFDPB or GFDPB outperforms all other schemes in

the third group, and they achieve the lowest maximum waiting time of all currently known

protocols given the same server bandwidth and the same number of channels.

Sometimes, the results of the multilevel splitting greedy algorithm are very close to

GFDPB, especially when m is small, but its performance is very unstable and

uncontrollable. Furthermore, when K < 4, the maximum waiting times achieved by the

multilevel splitting greedy algorithm are longer than those offered by FDPB in most

cases. The result of GFDPB with Kc4 is slightly unstable when m is a big prime number

or has a big prime factor, but it becomes more stable for K>3. We are able to choose a

non-prime number m whose biggest prime factor is no larger than 10 so that we can only

use GFDPB to find satisfying results quickly.

3.5 Server Multiplexing Scheme

In this section, we will analyze the server multiplexing scheme for GFDPB, which

can be applied to FDPB and RFS as well. Intuitively, after getting a broadcasting

schedule from GFDPB, FDPB or RFS, we can form a channel schedule for each channel

as mentioned in Section 3.1. The channel schedule is a sequence of segments to be

transmitted on the corresponding channel, starting from time slot 0, and has a length

equal to the least common multiple (LCM) of the actual broadcasting periods (in slots) of

all the segments in the channel. This channel schedule can be put into a circular array,

so this array will contain a sequence of segments that is repeated infinitely in the

channel. Each indexed position in the circular array corresponds to a time slot. We can

keep a pointer for each channel schedule array and initially the pointer points to the first

segment of the array. Every time we fetch the K segments that are pointed by the K

pointers, send them to the corresponding broadcasting channels, and then let each of

the K pointers point to the next segment of each array. In this way, the K pointers follow

the K circular arrays forever.

During simulation, we found a serious problem with the above intuitive server

multiplexing scheme. If the number of segments of each video exceeds 300, the LCM of

the actual periods of all the segments broadcast in one channel may be bigger than 1

million. If the number of segments exceeds 2000, then the LCM will be larger than 1

billion. If the number of segments is much bigger than 2000, then the LCM may be out of

range of four-byte integers. Therefore, it takes up too much memory to be a practical

algorithm.

From Figures 3.1 and 3.2, we can see that the start slot of a segment is normally

less than the segment's actual period minus 1. For example, the start slot of SS(Ci, 0,

12, A) is slot 0 and its period is 12. The start slot of SS(Ci, 3, 12, F) is slot 3 and its

period is 12. Only the start slot of the rightmost leaf SS(Ci, 5, 6, H) is equal to its period

minus 1, i.e. 5. According to this observation, we have the following lemma.

Lemma 3.1 In a closed tree, a segment has an offset equal to its actual period

minus 1 if and only if it is represented by the rightmost leaf such that each of its ancestor

nodes is the rightmost among its sibling nodes.

Proof: We use the symbols introduced in Formulae 3.1 . I and 3.1.2 in Section

3.1. For a leaf node J,, its ancestors are named J,,,-l, Jm-2, . . ., JI, Jo, where Jo is the root

node and Ji-l is the parent of Ji (O< i 5 m). Then, Formulae 3.1.1 and 3.1.2 are changed

to be T(Ji) = T(Ji- I) d(Ji- I) and a(Ji) = a(Ji- I) + h(JJ T(Ji- I), where T(JJ is the period of Ji

and a(Ji) is the start slot of Ji. We have

Since h(Ji)< (d(Ji-1)-I), we have

m-l

=~(JO)+~(~(J~-~)-~)*T(J;-~)+(T(J~-,)-T(J~-,))+(T(J~)-T(J~-~))

The equality happens if and only if h(Ji)=d(Ji-~)-l, where O< i s m.

To solve the problem caused by the tremendous memory requirement, we give

up on the above server multiplexing scheme, which uses channel schedules. For each

channel, we make a circular array and the size of the array is equal to the maximum

broadcasting period of all the segments broadcast on the channel. From the channel, we

fetch a sequence of segments starting from time slot 0 with the array size to be

transmitted on the channel, and put the sequence of segments into the circular array.

Lemma 3.1 guarantees that the array will contain all the segments broadcast in the

corresponding channel at any time. Each time slot corresponds to an indexed position of

the array, which contains the address of a segment and the corresponding period.

Assume the array size is A. At the beginning of time slot a, we will fetch the address of a

segment from index (a mod A) of the array. We set a pointer for each array, initially

pointing to index 0 of the array. We must have K senders to send segments to the K

channels simultaneously.

Each sender works as follows:

For each time slot, slot i, first, the sender fetches the address of a
segment with period p from the indexed position pointed to by the
corresponding pointer. Second, go to the address to fetch the segment
and send it to the corresponding channel. Third, rewrite the position of
index (i+p) mod A with this segment's address and period. Finally, let the
pointer point to the next indexed position, index (i+l) mod A, of the
corresponding circular array.

In the way described above, we constantly update the K circular arrays to

guarantee that the interval between any two consecutive broadcasting of a segment is

exactly equal to its actual broadcasting period calculated by GFDPB, RFS, or FDPB. For

K=6 and m=100, we have the number of segments n=38920, achieved by GFDPB, so

the size of the six circular array is less than 38920 X 6 = 233520.

Figure 3.16(a) shows the first channel schedule for the case of K=2 and m=3.

The maximum broadcasting period in this channel is 9, so we use a circular array with

size 9 and initialize the array as shown in Figure 3.16(b). Here, for simplicity, we assume

the address of each segment is equal to its segment number. Thus, segment Si is

represented as ;.(actual period). For example, 1.3 represents the address of segment S1

with the actual broadcasting period 3. In Figure 3.16(b) the index 0 of the array is at the

top and filled with 1.3. The array index is increased clockwise to index 9, which is filled

with 9.9. Take time slots 0 to 4 for instance. In slot 0, the sender sends segment S1

indicated in index 0 and then rewrites index (0+3) mod 9=3 with 1.3. In slot 1 , the sender

sends S4 indicated in index 1 and then rewrites index (1+6) mod 9=7 with 4.6. In slot 2,

the sender sends S7 indicated in index 2 and then rewrites index (2+9) mod 9=2 with 7.9.

In slot 3, the sender sends Sf indicated in index 3 and then rewrites index (3+3) mod

9=6 with 1.3. In slot 4, the sender sends S5 indicated in index 4 and then rewrites index

(4+6) mod 9=1, where we replace 4.6 with 5.6.

Figure 3.16 Circular array for server multiplexing

3.6 Client Demultiplexing Scheme

In this section, we will discuss the demultiplexing scheme on the client side.

Since we need to download from all the channels simultaneously, we must have K

loaders to download simultaneously from K channels and one displayer to display the

video at the same time. First, we have the following two observations:

a We need to know which segments are available in each time slot so that they can

be downloaded and saved in order. Thus, every segment must bear a segment

number or a sequence number in its header. For K=6 and m=100, a 2-byte

header is enough for identifying segments less than 40,000. In the following, we

assume the sequence number of a segment is equal to its segment number.

If we start downloading a segment from the middle, we don't know which

segment it is; therefore, we let each user wait for the beginning of a new slot, and

then download for m - I time slots in advance. After that, the user starts viewing

the movie.

According to the second observation, at the beginning of the (m+i-1)-th slot,

clients can always display the i-th segment from the buffer or display directly from one of

the loaders. Thus, we can start displaying S, at the beginning of the m-th slot, and then

SP at the beginning of the (m+l)-th slot, and so on.

If we have plenty of memory or buffer space, we can allocate continuous space

for the whole movie, and each segment address can be calculated by a formula

according to the segment size and the starting address of the first segment. At the

beginning of each time slot, each loader checks the segment header first, calculates the

address, and then downloads the segment to the address. After each loader has

preloaded m- I segments, the displayer starts displaying the video from the beginning of

the continuous buffer space, and then goes through the buffer space until reaching the

last segment of the video.

If we want to save buffering space, we need an address array with the size of

the total number of segments of a video to hold the addresses of all the downloaded

segments. Also, we need a free list to hold all the free memory space. We present our

demultiplexing scheme which we call the loader scheme next.

Each loader works as follows (the loader scheme):

At the beginning of each time slot, the loader downloads a segment
header and compares its sequence number i with the sequence number j
of the segment just starting to display. If i < j, the loader discards the
segment with sequence number i (segment i) in the present time slot. If i=j
and the displayer asks for it from loaders, the loader directly sends
segment i to the displayer. If i=j and the displayer doesn't ask for it from

loaders, the loader discards the segment. If i >j, the loader checks the
address array for the address of segment i and does as follows. If the
address for segment i in the present time slot is found, it means segment i
has been downloaded and the loader does not need to download it again;
otherwise, the loader checks the free list for a free block to download
segment i and writes the address of segment i to the address array.

The displayer works as follows:

Once m-1 time slots have elapsed after the moment each loader starts
downloading segments, the displayer starts to fetch segment addresses
from the address array in order and displays the segments one by one. If
an address is not found in the address array, the displayer checks the K
loaders to find the one that is downloading the segment, and then reads
directly from the loader. Finally, the displayer places the address of the
segment just displayed to the free list and starts to fetch the next
segment.

The above loader scheme takes two steps to check the segments that have been

downloaded but have not yet been displayed: first, compare i and j; second, check the

address array. We can save time by adding a bit vector with its size equal to the total

number of segments. Each bit represents a segment, and it is 1 if this segment has been

downloaded or displayed; otherwise, it is 0. For m=100 and K=6, this bit vector only

needs 40 Kbits = 5 Kbytes of memory. Therefore, the loader scheme is modified as

follows.

Each revised loader works as follows:

At the beginning of each time slot, the loader downloads a segment
header and checks the bit vector to see whether the segment has been
downloaded. If the bit is 1, the loader quits downloading in this time slot. If
the bit is 0 and the segment is just needed for display, the loader sends
the segment directly to the displayer and sets the bit to 1. If the bit is 0
and the segment does not have to be displayed immediately, the loader
checks the free list for a free block to download the segment, changes the
corresponding bit in the bit vector to 1 , and then writes the address in the
address array.

Many computers support very efficient bit-manipulation instructions in assembly

languages. Often high level program languages also provide these kind of instructions.

Thus, we can make a decision about whether to download the segment in the present

time slot very quickly in the above scheme. The cost is only a small multiple of K bytes of

memory.

3.7 Channel Schedule Formats Translation

The translation from the tree representation to the (slot) sequence representation

was described in Section 3.1. The method first copies the channel number and the

segment number, and then calculates the period and the start slot (offset) of each

segment label of the tree. Here, the segment number is equal to the segment's ideal

period.

Root Node

Start slot (k2 n2) nl+ il (k2n2 + 1) n~ + il (k2 n2 + ((n ~ l)) nl+ il
Figure 3.17 Start slot pattern of the round robin tree

In this section, we discuss the translation from the (slot) sequence representation

to the tree representation of a channel schedule. According to the recursive round-robin

character of the tree representation shown in Figure 3.3, for a tree whose root node has

nl children labeled with the numbers 0, 1 , . . ., n l - I , the start slot (offset) of each segment

label that is a descendant of child il (01 il< n l) of the root node can be expressed as

klnl+ i l , where kl is a non-negative integer and 0 1 il< n l . If klnl+ il is the start slot

(offset) of a segment label in the tree shown in Figure 3.17, kl is the start slot (offset) of

the segment label in the subtree of child il (01 il< n l) of the root node, and kl= k2n2+ i2.

Integer n2 is the number of the children of child il of the root node, 0 1 i2< n2, and k2 is a

non-negative integer, as shown in Figure 3.17. According to this observation, if a

segment whose start slot (offset) is s in a channel schedule tee, this segment should be

a descendant of child c (c= s mod n r) of the root node, and i s l n , 1 should be the start

Algorithm: Translate a channel schedule from the slot sequence representation to
the tree representation

Input: A channel schedule in a slot sequence list

Output: A channel schedule in the tree representation

1) Sort the slot sequence list in the increasing order of the ideal periods.

2) Pick the slot sequence, whose start slot, actual period and ideal period are
indicated as (startslot, actualPeriod, idealperiod), from the head of the list and
remove the slot sequence from the list.

3) If the present segment is the first segment of the channel, apply the multilevel
split operation to the root node following the increasing order of the prime factors
of the actual period of the first segment, and then attach the segment label,
idealperiod, to the leftmost leaf. Then go to step 2).

4) If the present slot sequence is not the first, use startslot to find an empty leaf.
Initialize s=startSlot, F O , and J=Jo, where J is the current node and Jo is the root
node.

5) Calculate r =s mod d(J) and s = l s l d (~) J , where d(J) is the number of
children of node J.

6) Update J as child r of itself. If J becomes a leaf with a window label w, apply
multilevel split operation to J, following the increasing order of the prime factors of
integer actualPeriod/w, and then attach segment label idealperiod to the leftmost
leaf of the subtree of node J; otherwise, go to step 5).

7) If the slot sequence list is not empty, go to step 2); otherwise, output the tree.

Figure 3.18 The channel schedule format translation

slot (offset) of this segment in the subtree of child c. We can recursively apply the same

rule to the subtree of child c of the root node. According to the above description, we

have our translation algorithm in Figure 3.18. Since segments are placed in a tree in the

increasing order of the corresponding ideal periods in the GFDPB algorithm shown in

Figures 3.9 to 3.11, we also place slot sequences, each of which corresponds to a

segment, to a tree in the increasing order of the corresponding ideal periods. Therefore,

we sort the slot sequence list in step 1. The algorithm in Figure 3.18 has two loops inside

it: the outer loop is from steps 2 to 7 and loops through the slot sequence list; the inner

loop is from steps 5 to 6 and is for placing a given slot sequence, which is not the first

slot sequence in the list, to the tree.

Figure 3.19 Example for the schedule format translation

For example, let the first four segments in the order of their ideal periods be

SS(0, 0, 48, 48), SS(0, 1, 50, 50), SS(0,3,50,55), and SS(0,2,56,56). The first, the

second, the third, and the fourth integer inside each pair of brackets represent the

corresponding segment's channel number, start slot, actual period and ideal period,

respectively. First, we need to place SS(0, 0, 48, 48). According to step 3 of Figure 3.18,

we apply the multi-level split operation to the root node following the order of 2, 2, 2, 2

and 3 since 48=2x2x2x2x3, as shown in Figure 3.19. Second, we place SS(0,1,50,50).

Since the root node has two children and 1 mod 2=1, segment label 50 is a descendant

of child 1 of the root, which is an open leaf. We apply the multi-level split operation to

the leaf following the order of 5 and 5 since 50/2=25=5x5. Third, we place SS(0,3,50,55).

In step 4 of Figure 3.18, we have s=3, ~ 0 , and J=root. In the first loop of steps 5 and 6,

r=3 mod 2=1, s=l3/21= 1, and J=c. In the second loop, node c has five children, so r=l

mod 5=1. Since child 1 of node c is an open leaf and has a window label 10, we split the

leaf into five child leaves since 50/10=5. Similarly, we place SS(0,2,56,56). Figure 3.19

only shows the segment labels, and the window labels are left empty.

Chapter Four
Group-Based Broadcasting Schemes

As before, we consider a video of duration D to be broadcast over K channels {Ci

) 0 S i < K). The bandwidth of each channel is equal to the video consumption rate b, so

that the total bandwidth is equal to Kb. In the model adopted in the harmonic windows

scheduling, the number of pages n that can be packed in the K channels must satisfy

This implies that there is bandwidth equal to K - H(n) that is not utilized if this quantity is

non-zero. In this chapter, we try to make use of this "wasted" bandwidth to pack more

pages into K channels. To this end, we first describe the Harmonic Group Window

Scheduling (HGWS) problem in Section 4.1. Then, in Section 4.2, we present the

Harmonic Page-set Broadcasting (HPB) scheme as a solution to HGWS. In Section 4.3,

we simulate HPB and analyze its results. Finally, in Section 4.4, we propose the

Preloading Page-Set Broadcasting (PPSB) scheme to remedy HPB's shortcoming with

respect to maximum waiting time.

4.1 Harmonic Group Window Scheduling (HGWS) Problem

The HGWS was introduced in [67], which presents many basic properties of the

problem. The HGWS problem has two features different from the Fixed-Length

Segment-scheduling (FLSS) Problem defined in [59] for the common features of all other

broadcasting schemes in the third group. First, HGWS groups consecutive slots into

blocks, and second, it groups consecutive pages into page-sets.

Each video is partitioned into N pages of duration d=D/N, where a page is an

equal-sized segment. A page is the basic unit of the transmission of a video in the

HGWS problem. Each of these N pages is broadcast at a certain interval over the K

channels such that each page transmission occupies a time slot of duration d in some

channel. We group P consecutive time slots into one time block, as shown in Figure 4.1

for P=5. Integer /3 is called the block size. We label time slots from 0 to P-1 inside each

time block. Each page-set consists of a number of consecutive pages. All the pages in

page-set i (the first page-set is numbered 1) are broadcast exactly once every i blocks

so that all of them have the same broadcasting period, i.e., i time blocks or, equivalently,

ip time slots.

Time Block 0 1 2 3

Figure 4.1 Block diagram for p = 5

A client waits until the beginning of a new time block to start watching a video

and at the same time downloading simultaneously from all K channels. Channel Co

continuously repeats the first page-set (page-set I), consisting of page 1 to page P, to

ensure that they are repeated in every time block. For example, in Figure 4.1, for j=0, 1,

2, 3, 4, slot j is allocated to page j+ l . This way, once a client starts viewing page 1,

pages 2 to 5 will be available for display just in time. It is easy to see that the maximum

waiting time and average waiting time are /3d (one block duration) and 0.5pd (half block

duration), respectively.

Grouping every /3 slots as a block is similar to partitioning a channel into /3

subchannels in Fixed Delay Pagoda Broadcasting (FDPB) [57]. Slot 0 of every block

belongs to subchannel 0, and slot 1 of every block belongs to subchannel 1, and so on.

In general, slot i (01 i1 P-I) of every block belongs to subchannel i. As we saw above,

the p subchannels of channel Coare allocated to the P pages of page-set 1.

Unlike FDPB which maps pages into subchannels in a strictly sequential fashion,

we first assign each page-set to several (possibly inconsecutive) subchannels, observing

the continuous display constraint that we will discuss later. This assignment produces a

page-set schedule, then we map pages into page-sets in a strictly sequential fashion to

get a page schedule. If subchannel j is allocated to page-set i, we map only i

consecutive pages of page-set i to subchannel j, since each page in page-set i must be

broadcast once in every i blocks. As stated above, we map the first pages into the

subchannels allocated to page-set 1, and then the next P or more pages into those of

page-set 2, and so on. Subchannels belonging to different channels can be allocated to

a page-set. We always map consecutive pages into a page-set in the order of its

allocated subchannel numbers.

We can use a forest consisting of K round-robin trees to represent a page-set

schedule in the tree representation mentioned in Section 3.1. One tree is assigned for

each channel, as shown in Figure 4.2(a) for K=2 and P=4. Each tree has P leaves

representing the P subchannels of the corresponding channel. If we number the /3 leaves

of each tree 0, 1, . . ., P-1, from left to right, leaf i corresponds to subchannel i or slot i of

each block, where 0 S i 5 P-1. Each leaf in the tree is labeled with a page-set number

called page-set label, representing the page-set the corresponding subchannel is

allocated to.

A page schedule further splits each leaf with a page-set label in a page-set

schedule into level 2 leaves representing individual pages, except the leaf with page-set

label I. For example, in Figure 4.2, pages 5 and 6 are mapped into page-set 2 and

subchannel 0 of C1 is allocated to them, so we split the leftmost leaf of C1 in (a) into two

leaves at level 2 with page labels 5 and 6, as shown in (b). According to the algorithm in

Figure 3.3, we can easily translate each tree of a page schedule to a channel schedule

to be broadcast repeatedly on the corresponding channel.

Figure 4.2 shows a complete example. For /3 = 4 and K = 2, page-set 1 is

assigned to the four subchannels of channel Co, and page-set 2 is assigned to

subchannels 0, 2 and 3 of C1, and page-set 3 is assigned to subchannel 1 of C1. We

thus get a page-set schedule shown in Figure 4.2(a). We will discuss in detail why we

assign page-sets to subchannels in this way in the next section. The purpose is to

guarantee continuous display of a video and to pack as many pages as possible into the

given channels. In the following steps, we map pages into page-sets to get the

corresponding page schedule as shown in Figure 4.2(b). First, we map pages 1, 2, 3, 4

to page-set 1 and allocate the four subchannels of channel Coto the pages. Then, we

map pages 5, 6, 7, 8, 9, 10 to page-set 2, since there are three subchannels allocated to

page-set 2 in the page-set schedule shown in Figure 4.2(a) and each subchannel can

broadcast two pages of page-set 2. Now, pages 5, 6 are mapped into subchannel 0 of

C1, pages 7, 8 into subchannel 2 of C1, and pages 9, 10 into subchannel 3 of C1. Finally,

since there is only one subchannel allocated to page-set 3 in the page-set schedule

shown in (a), and each subchannel can broadcast three pages of page-set 3, we map

pages 11, 12, 13 to page-set 3 and allocate subchannel 1 of C1 to the pages. Figure

4.2(b) shows the above page schedule. Each label in Figure 4.2(b) represents a page

number called a page label. Applying Procedure Tree-to-Schedule in Figure 3.3 to the

four round-robin subtrees of channel C1 in Figure 4.2(b) yields the channel schedules of

four subchannels of C1, <5, 6>, 4 1 , 12, 13>, <7, 8>, and <9, lo>, respectively.

Following the procedure in Figure 3.3, we can get the channel schedule of C1, 6, 11, 7,

9, 6, 12, 8, 10, 5, 13, 7, 9,6, 11,8, 10, 5, 12, 7, 9, 6, 13, 8, lo>, which is broadcast

repeatedly on channel C1. Figure 4.2(c) shows the first five blocks of the broadcasting

sequence of pages of Co and C1, and (d) shows the broadcasting sequences of the four

subchannels of C1. For example, subchannel 0 of C1 consists of slot 0 of every block and

broadcasts pages 5 and 6.

1 1 1 1 2 3 2 i

(a) Page-set schedule (b) Page schedule

4 u u u
n n n b

Time Block 0 1 2 3 4
(c) The broadcasting page sequence according to the page schedule

Channel&

Channel C1

Time b
(d) Four subchannels of channel C1

Figure 4.2 The page-set and page schedule for K=2, P=4

i

Let us now check whether the page schedule in Figure 4.2(b) meets the

requirement for continuous display. We assume a client starts to play a video at the

beginning of time block i. Thus, pages 1 to 4 will be displayed in block i, pages 5 to 8 in

block i+1, pages 9 to 12 in block i+2, and page 13 in block i+3. We can see this page

schedule guarantees that each page has been received or will be received at the time it

is needed. Take pages 7 to 10 for instance. At the beginning of slot 2 of block i+ l , pages

7 and 8 either have been received or will be received from subchannel 2 of channel C1,

since both of them appear once every two blocks as shown in Figure 4.2(d). Thus, page

2

5 1 1

3 4 1 2 3 4

7 9 6 1 2 8 1 0 5 1 3 7 9 6 1 1

1 2 3 4 1 2 3

8

4 1 2

1 0 5 1 2 7 9

3 4

7 can be displayed on time. At the beginning of slot 3 of block i+ l , page 8 has been

received and can be displayed on time. Pages 9 and 10 will be received at slot 3 of

either block i or block i+l, since both of them appear once every two blocks as shown in

Figure 4.2(d). Thus, pages 9 and 10 can also be displayed on time at the beginning of

slot 0 and 1 of block i+2, respectively.

According to the above description, we need to find a page-set schedule first,

and then to map pages into page-sets in a strictly sequential fashion. We now formally

define our HGWS problem as follows.

Definition: Given a video V of duration D seconds, block size P, and a set of K

channels, the Harmonic Group Window Scheduling (HGWS) Problem is to find a

partition of V into n page-sets, PS(1), PS(2), . . ., PS(n), such that PS(k), where O<kl n,

consists of the pages with a broadcasting period of k blocks, and to find a placement of

the n page-sets to the Kfl subchannels of the K channels. The placement should

guarantee that for any viewer starting to play the video at the beginning of any block,

each page will be received or has been received at the time slot when the viewer needs

to consume the page.

Suppose sf , Sn, ..., S, subchannels are allocated to the above n page-sets,

respectively. Since i pages from PS(1) can be mapped to a subchannel, the total number

of pages in these n page-sets is N = C i s i . Each page has an equal size DHN and
i=l

each channel is divided into time slots of length S = D l N . Our goal is to maximize the

total number of pages N, or equivalently to minimize DIN.

To schedule each page-set on some of the KP subchannels, we need to

guarantee that each page can be downloaded before or exactly when it is consumed so

that the video can be displayed continuously. Since the pages of page-set 1 must be

broadcast in every block and displayed immediately while downloading, we map the first

p pages of a video to page-set 1 and allocate the P subchannels of Co to them so that

they can be broadcast repeatedly in Co to guarantee continuous display. As for the

pages in other page-sets, the following lemma gives a necessary condition to solve the

HGWS problem. First we define a set of pages P(k)={ page i I (k- l)P< i 5 kp), for 1 I k 5

n.

Lemma 4.1: For any solution to the HGWS problem, each page in P(k) must

appear at least once on one of the K channels in every k consecutive blocks. If a client

starts playing the movie at the beginning of block j, then the pages of P(k) will be

displayed in block j+k-1.

Proof: If a client starts to play and download a video from slot 0 of block j, page i

will be displayed in slot ((i-1) mod P) of block j+ l(i - 1) l ~] . Recall that pages are

numbered 1, 2, For example, for P = 5, page 12 will be displayed in slot 1 of block

j+2. Because clients may start from the beginning of any block, page i must appear at

least once every[(i - l)l~]+ 1 = ri l /31 blocks. If (k-1)P< i S kp, then ri//3]= k , so all

pages in P(k) must appear at least once every k blocks and will be displayed in block

j+k-1 if a client starts to view a movie at the beginning of block j.

According to the above lemma, we call P(k) the ideal page-set k. We have the

following theorem for upper bounds on the number of pages and page-sets.

Theorem 4.1 Given K channels, let integer n satisfy

" 1
Then the number of pages N cannot be more than n p + (K - :)(n + l) P and the

;=I 1

number of page-set (N/P) cannot be more than

Proof: The number of pages in P(k) is P, and according to Lemma 4.1, all pages

in P(k) must be broadcast at least once in every k consecutive blocks (or once in every

kp consecutive slots). Thus, the pages in P(k) will consume at least Pe(lI(Pk)) = l / k of

the channel bandwidth. Since the total bandwidth cannot exceed K, we must have

x i 2 K . The maximum such
k=l

together have KP subchannels.

n is given by Equation (4.1.1). Note that K channels

" 1
Of these, at l e a s t p x T subchannels are allocated to

;=I 1

" 1
page-sets P (l) to P(n). In other words, up to (K -xT)/? subchannels may be still

;=I 1

" 1
unallocated. This means that we can map at most (K - z7)p(n + 1) pages to page-set

i=l 1

" 1
n+1. Thus, np+ (K - z T) p (n + 1) is an upper bound on the number of pages.

;=I 1

From the above theorem, we can see that P(I) in HGWS is equivalent to segment

Si in the optimal harmonic windows scheduling problem, mentioned in Section 3.1, since

P(i), as well as Si, consumes at least l l i of the channel bandwidth. In HGWS, by dividing

P(I] into many pages, the required bandwidth 1li is separated into many small bandwidth

portions so that we can use the residual bandwidth mentioned in Theorem 4.1 to pack a

partial page-set.

Since a client needs to wait at most one block to start watching the video, and on

average needs to wait for half a block, we have following corollary:

" 1
Corollary 4.1 : Given a video with duration D seconds, D l(n + (K - x T) (n + I))

i=l I

" 1
is a lower bound on the maximum waiting time and OSD/(n + (K - x T) (n + 1)) is a

i=l Z

lower bound on the average waiting time.

According to the proof of Lemma 4.1, we need to guarantee that page i should be

available at slot ((i-I) mod P) of block j + l (i - 1) l f l] or before, if a client starts to play a

movie at the beginning of block j. Since block j can be any block, page i should be

mapped to subchannel s, where 0s s 5 ((i-I) mod P), if it appears exactly once every

r i l f l l blocks. Otherwise, its period should be less than r i l f l l blocks. Because a

subchannel is allocated to only one page-set, not all the first pages (page (k-1)P+1) of all

the ideal page-sets P(k) (bO) can be mapped to subchannel 0 of some channel. For the

same reason, not all the i-th pages (page (k-l)P+o of all the ideal page-sets P(k) (bO)

can be mapped into subchannel s of some channel, where 0 1 ss (i-I). Thus, some

pages in P(k) must be given a block period less than k to meet the continuity

requirement. For example, pages 9 and 10 in Figure 4.2 (P=4) belong to the ideal page-

set P(3) and need to appear at least once every three blocks, but actually they appear

once in every two blocks. If we let page 9 be broadcast once every three blocks, page 9

should be mapped to subchannel 0 to guarantee that a client can reach or has received

page 9 for playing after 3 time blocks from the moment the client started viewing and

downloading the movie from a server. However, pages 5 and 6 of page-set 2 have been

already mapped into subchannel 0. Therefore, page 9 should be broadcast with a period

less than 3. Since each subchannel can broadcast two pages with a two block period,

we promote both pages 9 and 10 to page-set 2.

Recall that PS(k) denotes the set of pages that are actually given block period k.

Note that PS(k) P (k) u P (k + l) . We call the pages of P(k+l) contained in

P(k+ 1)nPS(k) promoted pages.

Lemma 4.2 Page i E PS(k)nP(k), where k = r i l ~ l , must be in subchannel j

satisfying 01 j I i - (k-l)P - 1 to guarantee a jitter free display. The promoted pages, i.e.,

those in PS(k)nP(k+l), can be put in any subchannels from 0 to 0-1

Proof: The first part has been proved before. In the second part, each page in

PS(k)nP(k+l) will have been downloaded by the time when it is needed, no matter

which subchannel it may be broadcast in.

To maximize the number of pages N, we must minimize the number of promoted

pages from each P(k), since promoted pages consume more bandwidth than necessary.

Let IPS(/][and IP(i)) denote the number of pages in PS(0 and P(I], respectively. Further,

let promoted(k)= IPS(k-l)nP(k)l denote the number of pages actually promoted from

P(k) and let subChs(i) denote the number of subchannels or the number of slots per

block that the pages of page-set i occupy. The pages in PS(i) should include IP(i)l-

promoted(0 pages from P(0 and pmrnoted(i+l) pages promoted from P(i+l), i.e.,

i- l i-l

Clearly pmrnoted(l)=O. Since CIP(~)I + promoted(i) = C(PS(Z)~ and IP(/]I=P.

we clearly have

We have the following necessary and sufficient condition to solve the HGWS

problem by promoting some pages from each P(k). Subchannel allocation is represented

by SiPj such that SiSj =1 (0s j < p) if subchannel j is allocated to page-set i; else SiPj =O.

Therefore, we have

Let IBound6(i), /Bound of page-set i, denote the minimum number of pages that must

be promoted from set P(i) to guarantee the continuous display of all the pages in page-

set i under assignment 6 .

Theorem 4.2: For any solution to the HGWS problem, given Si,j for 15 i r n and

01 j 5 p-I, we have

and

Proof: We assume a client starts viewing and downloading pages from slot 0 of

block s, so P(i) will be displayed in block s + i -1. By definition, the number of

subchannels allocated to page-set i, between subchannel 0 and j inclusive, is 2 S i , = .
z=O

We know that each subchannel Xallocated to page-set i broadcasts i consecutive pages

of page-set i, and these i consecutive pages, pages % to Z, are downloaded completely

at the end of slot Xof block s+i-I, as shown in Figure 4.3. Moreover, consecutive pages

are mapped into page-set i in a strictly sequential fashion in the increasing order of their

page numbers. Thus, at the end of any slot j, 0 5 j< P, of block s+i-I, the number of

downloaded consecutive pages of P(I), counting from the first page of P(i), is

i
promoted(i) + i x 6 ; , , , and the number of displayed pages of P(I) is j+ l . Therefore, to

z=o

meet the continuity requirement of P(i) at the end of slot j of all blocks, the necessary

and sufficient condition is promoted(i) + i2 6,,, 2 j + 1 , ~.e.,
z=o

i
promoted(i) t j + l - iC6 , , , and this condition should be satisfied for any j, Or j < p.

z=o

Thus, promoted(/) must not be less than rnax{j + 1 - i t 6,,, 1 0 i j < P) . This proves the
z=o

first part of the theorem.

i
Letting j=P in promoted(/) 2 (j + 1) - i x 6 , . and using (41.5) we get

z = o

promoted(1)2,8 - i E 6 , , , = p - i subChs(i) which proves the second part.

Subchannel %
or slot X

Figure 4.3 Downloading pages from a subchannel

Since promoted(/)< P, /Bound,&), a lower bound on promoted(i), is also always

less than p. We now want to compute IPS(I)I for a given 6,,j for 15 is n and 01 j5 p-I.

According to Formula (4.1.4), promoted(i+l) can be calculated only after IPS(q1 is known,

so we use IBound6(i+l) instead of promoted(i+l) to calculate a lower bound on IPS(/)l

from Formula (4.1.3). Summing both sides of (4.1.3) from 1 to i, we obtain:

This can be rewritten as

Since each subchannel broadcast i consecutive pages of page-set i, the number

of pages in PS(1) should be an integer multiple of i. Therefore, we have the following

formula.

In Formula (4.1.6), we use a ceiling function to guarantee that at least

/Bounda(i+l) pages are promoted from page-set i + 1. We thus obtain IP(/)l and

promoted(i) using the total number of pages in all the previous page-sets and the

IBound6(i) on the next page-set. For a solution to the HGWS problem, subchannel

allocation, i.e., 8i,j for I 5 i 5 n and 05 j 5 El, should satisfy

IPS(i)l =I' * subChs(i) for I < i < n

where IPS(/]l is obtained from Formula (4.1.6) and subChs(~] is from Formula (4.1.5).

Normally, it is not easy to get a right subchannel allocation satisfying the above

condition directly. The method used in Section 4.2 is that we choose a rough subchannel

allocation first, and then, for each page-set, we adjust the number of subchannels or

slots to exactly meet the number of pages obtained from Formula (4.1.6) according to

Theorem 4.2. If we succeed in the above adjustment of the number of subchannels for

each page-set, we get the final solution.

4.2 HPB Scheme

In this section, we will introduce our detailed solution to the HGWS problem, i.e.,

the HPB scheme. Given a set of page-sets satisfying the conditions given in Section 4.1,

how can we assign all the page-sets into PK subchannels so that we can pack as many

pages as possible into K channels with block size P?

As mentioned in Section 4.1, to maximize the total number of packed pages N,

we should try to minimize the number of promoted pages. Therefore, we should put as

many pages of the ideal page-set P(I] as possible in the actual page-set PS(i) so that, for

all i = 1, 2, ..., page-set PS(I] will occupy a bandwidth as close as possible to lli of the

channel bandwidth, which implies roughly Pli subchannels should be allocated to page-

set PS(/]. We know that each segment Si in the schedule of RFS or GFDPB (m=l)

consumes no less than and close to lli of the channel bandwidth. So they give us

something that approximates our goal.

Given a schedule from either RFS or GFDPB, we can get a segment

broadcasting sequence for each channel by repeating the corresponding channel

schedule as mentioned in Section 3.1. Suppose we pick a suitable P and the first one

block (or P slots) of the segment broadcasting sequence of each channel. If we now

regard each segment i as page-set i and each slot j (01 j<P) as subchannel j, we will get

an initial version of the rough page-set schedule in which each page-set is assigned to

roughly pli subchannels. We call the corresponding schedule from RFS or GFDPB

(m=l) the initial version of the rough block schedule, where each segment label should

be interpreted as a page-set label. For example, let us consider the case where K=3 and

P=18. The schedule from RFS or GFDPB (m=l) is shown in Figure 4.4(a). Figure 4.4(b)

is the segment broadcasting sequence of schedule (a) in the first 18 slots of the three

channels. If we regard slot i (0 I i 5 17) of each channel in (b) as subchannel i of the

corresponding channel, then (b) is the initial version of the rough page-set schedule for

K=3 and P=18, and (a) is the initial version of the rough block schedule. Later, we will

talk about how to improve this initial version of the rough block schedule. First, we will try

to increase the number of packed page-sets and get a final version of the rough block

schedule. Second, we will modify the final version of the rough page-set schedule using

Theorem 4.2 to get the actual page-set schedule which exactly meets the requirement of

continuous display.

According to Theorem 4.2, we have i*subChs(i) 2 P - promoted(i), for any page-

set i. It means the number of subchannels allocated to page-set i is sufficient to hold all

the (p - promoted(i)) pages of the ideal page-set Pfl, excluding the promoted pages.

Note that each subchannel can accommodate i pages of PS(i). According to Lemma 4.2,

promoted pages can be put into any surplus subchannels of page-set j satisfying

j*subChs(j) > IPS0)l.

or Slot #

Co

(a) The initial version of the rough block schedule for K=3

(b) The initial version of the rough page-set schedule for K=3 and P=18

Figure 4.4 Rough block schedule and rough pageset schedule for K=3

If page-set j has a period p less than j in a rough block schedule (tree), then it

may occupy more subchannels in the corresponding rough page-set schedule than

necessary to support all the pages in PSQ, i.e., the interval p between any two

consecutive appearances of the (pages of) page-set j in the corresponding rough page-

set schedule is less than j time slots in a block. We say in this case that pageset j has

free space or free bandwidth (l lp - 10). There are many page-sets of such kind in an

initial version of a rough block schedule.

We call a page-set which is assigned to only one leaf in a rough block schedule a

perfect page-set, otherwise we call the page-set a non-perfect page-set. Since we

only use a perfect schedule as our initial version of a rough block schedule, all the page-

sets in the initial version of the rough block schedule are perfect page-sets. Later, we

show that we can add some non-perfect page-sets to the initial version of a rough block

schedule to increase the number of packed page-sets.

1 All pages in page-set j have the same period, j block, in the actual page schedule.

83

Lemma 4.3 Given a schedule of HPB, the IBound6(i) of a perfect page-set i,

computed from a rough block schedule, is equal to its start slot sh , the smallest

subchannel number allocated to this page-set.

Proof: We use the same assumptions

J

IBound, (i, j) = (j + 1) - ix G,,, for some j. Since
z=o

as in Theorem 4.2 and let

Gi,, = 0 for z < sb , we have

max{lBound,(i, j) 1 02 j <sA)= si . Consequently, we have promoted(/] 2s; . Suppose a

client starts viewing and downloading pages from slot 0 in block s. The pages of P(I] are

displayed in block s + i - 1 . Note that the interval p between any two consecutive

appearances of the (pages of) perfect page-set i in the corresponding rough page-set

schedule is not more than i time slots in a block, i.e., p 5 i. Moreover, each subchannel X

allocated to page-set i broadcasts i consecutive pages of page-set i and these i

consecutive pages can be downloaded completely by the end of slot X of block s+i-1.

Therefore, the number of downloaded consecutive pages of P(I], counting from the first

page of P(I], increases by i every p slots in block s + i -1 after slot si . Therefore, if

promoted(/] ~ s i , the continuous display of the perfect page-set i is guaranteed.

From the proof of Lemma 4.3, we can guarantee that each page-set i with a

period equal to i in a rough block schedule can be displayed on time, if the number of

promoted pages is equal to its start slot number. As we stated above, there are many

page-sets with free space that is more than enough to support promoted pages in the

initial version of a rough block schedule. We can assign the free bandwidth of these

page-sets to some new page-sets in a rough block schedule without affecting the

continuity of the former page-sets. In this way, we can modify the initial version of a

rough block schedule to increase the number of packed page-sets, within the upper

bound given in Theorem 4.1. We call a page-set in the initial version of a rough block

schedule initial page-set, otherwise extended page-set. For example, for K=3, the

initial version of the rough block schedule obtained directly from RFS or GDPB (m=l)

has 9 page-sets, and we can insert page-set 10 and a partial page-set 11 into the initial

page-sets having free bandwidth. Here, page-sets 1 to 9 are the initial page-sets and

page-sets 10 and 11 are the extended page-sets.

Next, we define extra-slot(i, 1) as a measure of which subchannel j, originally

allocated to an initial page-set i having free space, can be reallocated to an extended

page-set in a rough page-set schedule.

extra-slot(i, 1) indicates the number of consecutive pages already downloaded in

the buffer space at the beginning of slot j of the i-th block of display time, i.e., the time

block during which a client plays the ideal page-set P(I) of a video, in the worst case.

The consecutive pages are counted from page (i-I)P+j+l, where P is the block size. The

worst case for the i-th block of display time is when each slot in the block, whose

corresponding subchannel is allocated to page-set i, is for broadcasting the first page of

the i consecutive pages mapped to the corresponding subchannel of the slot. Page (K-

I)P+j+l is the page just needed to be consumed at the beginning of slot j of the i-th

block of display time. In other words, extra-slot(i, 1) is equal to the number of

downloaded consecutive pages of P(0, counting from the first page of P(0, minus the

number of pages of P(I) having consumed at the beginning of slot j of the i-th block of

display time for the worst case scenario mentioned above.

For example, in Figure 4.2, we have P(3)={page i 1 9 5 i I 121, PS(2)={page i 1 5 5

i I 101, PS(3)={page i 1 11 5 i I 131, and start-slot(3)=l, so we have promoted(3) =

(PS(2)flP(3)1=2. Take the 3rd block of display time for instance. The pages of P(3), i.e.,

pages 9 to 12, will be displayed in the block. Since pages 9 and 10 are promoted from

P(3) to PS(2), they will be downloaded in the 1'' or the 2nd block of display time. There

are three pages, i.e., pages 11, 12, and 13, in PS(3), each of which will be downloaded

in the IS', 2nd, or 3rd block of display time. Thus, the 3rd block of display time has three

different cases related to the downloading of PS(3): the block broadcasting page 11, the

block broadcasting page 12, and the block broadcasting page 13, as shown in Figure

4.2(c). At the beginning of slot 1 of the 3rd block of display time, when page 10 is needed

for display, if the 3rd block is the block broadcasting page 11, then the number of the

downloaded consecutive pages of P(3) counting from page 10 in the buffer space is 1

(page 10). If the 3rd block is the block broadcasting page 12, then only two such pages

(pages 10 and 11) are in the buffer. If the 3rd block is the block broadcasting page 13,

then only three such pages (pages 10, 11 and 12) are in the buffer. Thus, the worst case

for the 3rd block in Figure 4.2(c) is the block broadcasting page 11, i.e., the first page of

the three consecutive pages mapped to subchannel 1, and extraaslot(3, 1)=1.

If subchannels j o and jl are two adjacent subchannels allocated to page-set i and

jo+extraaslot(i, jo) 1 jl, then we can reallocate subchannel jo to an extended page-set to

replace page-set i in a rough page-set schedule without changing the continuity of the

display of page-set i. The reason is that at the beginning of slot jo, extraaslot(il jo) can

support continuous display up to the beginning of slot jl in the worst case for the i-th

block of display time. If page-set i is a perfect page-set and its period is p slots in a

rough block schedule, we have jo + p = jl; moreover, if extraaslot(il jo) 2 p, we have

jo+extra-slot(i, lo) 1 jl.

In Figure 4.4, we present an insertion algorithm for assigning the free bandwidth

of a perfect initial page-set to an extended page-set. It splits the leaf with the initial page-

set label in a rough block schedule into several child leaves, and then assigns some of

those child leaves to the extended page-set. In the algorithm, a leaf with a label of an

initial page-set i in a rough block schedule is split into split-num child leaves, so the

original subchannels allocated to page-set i, or the corresponding slots in each block,

are divided into groups of split-num, each of which consists of split_num original

consecutive subchannels or slots for page-set i. Thus, in the first group, the first original

subchannel allocated to page-set i, or the corresponding slot in each block, corresponds

to the first child leaf, and the second original subchannel or slot for page-set i

corresponds to the second child leaf, ..., and the (split-num)-th original subchannel or

slot for page-set i corresponds to the last child leaf. The above matching is repeated

again in the next group of split_num original consecutive subchannels or slots for page-

set i: the (split-num+l)-th original subchannel or slot for page-set i corresponds to the

first child leaf, and so on.

Algorithm: Assign the free bandwidth of a perfect initial page-set to an extended
page-set in a rough block schedule

Input: Trees of a rough block schedule, an extended page-set a, an initial page-set i
with start_slot(i)=s, promoted(i)=r, and a period p

Ouput: The rough block schedule with the extended page-set a inserted into the
subtree of the original page-set label i

1) Split the leaf with page-set label i into split_num=ilGCD(i, i-p) child leaves and
label the child leaves 0, 1, 2, ..., split-num-1, where GCD means the
greatest common divisor. The number of leaves given to extended page-set a
is new-num=(i-p)lGCD(i, i-p).

2) Initialize extra-slot=(r-s) for the first child leaf and set j= l .
3) If extra-slot r p, assign extended page-set a to the j-th child leaf,

increment j by 1, and update extraaslot=extra-slot - p
else

assign page-set i to the j-th child leaf, increment j by 1 and update
extra-sot = extra-slot+i-p

4) If j < split-num, go to step 3, else output the trees.
- -

Figure 4.5 The insertion algorithm for HPB

Each group of split_num original consecutive slots for page-set i in a block

repeats the same matching pattern. Therefore, in Figure 4.4, when we calculate the

value of extra-slot of a child leaf, we regard the child leaf as its corresponding slot in the

first group of split-num original consecutive slots of page-set i in the i-th block of display

time. Because we always keep the value of extra-slot of the next child leaf in step 3 of

Figure 4.4, and we already know the corresponding slot and block of each leaf, we only

use the variable extra-slot in the algorithm without indicating the corresponding

parameters. If a child leaf corresponds to slot k and is assigned to page-set i, then all the

i pages broadcast in the corresponding subchannel k must have been downloaded at the

end of slot k of the i-th block of display time. At the beginning of the next slot, slot k+p,

whose corresponding subchannel is allocated to page-set i, the value of extra-slot is

increased by i - p from the value at the beginning of slot k, as shown in step 3 of Figure

4.4. The reason is that during the period between the beginning of slot k and the

beginning of slot k+p in the i-th block of display time in the worst case, the number of

downloaded consecutive pages of P(I], counting from the first page of P(i), increases by i

and p pages are consumed.

Theorem 4.3 proves that we can pick exactly new-num subchannels from each

group of split_num original consecutive subchannels of page-set i to be assigned to

extended page-set a (in Figure 4.4) without changing the continuity of the display of

page-set i, i.e., without changing the value of promoted(+

Theorem 4.3: The algorithm in Figure 4.5 can guarantee that a total number of

new-num leaves for page-set a can be added, and page-set i occupies exactly l l i of the

channel bandwidth in the output trees. Page-set a gets (I l p - I l i) of the channel

bandwidth after being inserted.

Proof: We assume that we can assign 3 child leaves to the extended page-set a.

From step 3 of Figure 4.5 we see that every child leaf assigned to page-set i contributes

(i - p) slots to extra-slot, so the total contribution to the value of extra-slot through the

(split-num- 3) child leaves assigned to page-set i is (split-num - 3)*(i - p). Also from

step 3, we see that each child leaf assigned to extended page-set a consumes p slots

from extra-slot, so we need to consume a total of %jp slots from extra-slot for the %jchild

leaves. Thus, for guaranteeing that each group of split-num original consecutive slots for

page-set i in a block repeats the same insertion pattern, we should have

3 = split_num * (i - p)li = (i - p)lGCD(i, i - p) = new-num

Therefore, we can assign exactly new-num child leaves to extended page-set a in the

algorithm.

Since the leaf for the initial page-set i is split into split-num child leaves in which

new-num leaves are given to the extended page-set a, (split_num-new-num)=p/GCD(i,

i-p) child leaves are assigned to page-set i. The bandwidth of each child leaf is

l l (spl i t_num~p), so the total bandwidth of page-set i in the output trees is

(ll(sp1it-numep)). plGCD(i, i-p)=lli. Thus, the residual bandwidth (l i p - l l i) is given to

page-set a. Assigning a leaf to the extended page-set if extra-slot 2 p in step 3 of the

algorithm guarantees the continuous display of page-set i after the assignment.

Consider, for instance, the case of inserting extended page-set 11 into the free

space of the initial page-set 8 with a period of six slots in a rough block schedule given

promoted(8)=7 and start_slot(8)=2. In step 1 of Figure 4.5, we get GCD(8, (8-6))=2,

split-num=8/2=4, and new-num=(8-6)/2=1. When we calculate the value of extra-slot

of a child leaf, we regard the child leaf as its corresponding slot in the first group of four

original consecutive slots, slots 2, 8, 14, and 20, for page-set i in the i-th block of display

time. In step 2, we initialize extra-slot=7-2=5 for the first child leaf. In step 3, we

increase extra-slot by 8-6=2 every time for assigning page-set 8 to a child leaf and

decrease extra-slot by 6 every time for assigning page-set 11 to a child leaf as shown in

Figure 4.6. For the last, or the rightmost, child leaf, we have extra_slot=3, so we assign

page-set 8 to it and update extra-slot=extra-slot+2=5, which is exactly the same as the

value of extra-slot of the first child leaf. Therefore, each group of four original

consecutive slots of the initial page-set 8 in each block repeats the same insertion

pattern as shown in Figure 4.6.

\ The original

Figure 4.6 An example for insertion algorithm

To minimize the number of promoted pages, we try to allocate l / a of a channel

bandwidth to extended page-set a. To do so, we need to choose several initial page-sets

that have free space and the sum of whose free bandwidths is greater than or equal to

l / a to provide page-set a with sufficient free bandwidth according to the algorithm shown

in Figure 4.5. Thus, most of the extended page-sets are non-perfect page-sets, each of

which is assigned to more than one leaf in a rough block schedule after being inserted

completely.

We denote each leaf of a non-perfect page-set i in a rough block schedule as

(s j , p ;) in which sj. represents the start slot of the j-th leaf of page-set i, and p)

represents the corresponding period. We assume that a non-perfect page-set i has a + l

leaves, (sb ,), (s ,) , . a , (sh, p i) , in the increasing order of s; (0 5 j 5 a). We call

the j-th leaf of page-set i the subpage-set j of page-set i, so the above page-set i has

a+l subpage-sets. Since each leaf(s;,p;) represents a sequence of time slots [s:. ,

s;+~:, s;+zP;, ~ ; + 3 ~ ' . J 9 * I inside a block, beginning at slots;, and repeating with

a period of p; slots, then we have the following formula. If page-set i is a perfect page-

set, then a=O.

a

subChs(i) = (1 +
J=O 1";; "") where > r i

Obviously, the number of the pages mapped into subChs(0 subchannels is equal to i

times subChs(i).

Now, we can talk about how to get the page-set schedule as shown in Figure 4.2.

For K=2 and P=4, an initial version of the rough block schedule from RFS and the

corresponding rough page-set schedule are shown in Figure 4.7 (a) and (b),

respectively. First, we check the IBound6(i) of each page-set according to Lemma 4.3:

IBounda(l)=O, IBounda(2)=0, and IBounda(3)=l. Second, we calculate the number of

promoted pages and the number of pages of each page-set except the last page-set

according to Formulae (4.1.4) and (4.1.6): promoted(l)=O, IPS(l)l=4, promoted(2)=4-

4=0, and IPS(2)1= [4-:i11x2 = 6 For the last page-set (page-set 3), lBound6(3)

already guarantees its continuous display in the 3'* block of display time according to

Lemma 4.3. Adding additional subchannels to it or giving some last subchannels of it to

other page-sets doesn't affect its continuity. Therefore, the number of pages of the last

page-set is very flexible. Third, we calculate the number of slots or subchannels of each

page-set according to Formula (4.2.1) with a=O: subChs(l)=4, subChs(2)=2, and

subChs(3)=2. Fourth, we adjust the number of subchannels of each page-set to fit the

number of pages of the same page-set except the last page-set. Since each subchannel

allocated to page-set i broadcasts i consecutive pages of page-set i, IPS(i)Jli is the

number of the subchannels needed to support the number of the pages of page-set i. By

comparing (PS(i)Jli with subChs(i), where 1 I i 12, we find page-set 2 needs one more

subchannel to support its pages. Therefore, we give the last subchannel of page-set 3,

i.e., subchannel 3 in the rough page-set schedule (see Figure 4.7(b)), to page-set 2 and

get the actual page-set schedule as shown in Figure 4.2(a).

1 2 3
(a) Rough block schedule

1 1 1 1 2 3 2 3
(b) Rough page-set schedule

Figure 4.7 HPB example for K=2, p 4

According to Theorem 4.2, we have the following lemma for the /Bound of a non-

perfect page-set.

Lemma 4.4: Assume that an extended page-set a has a + l leaves after being

inserted in a rough block schedule (trees) and the leaves,

(s," , p,"), (sr , p;) , -, (s z , p:) , are in the increasing order of start slots; (0 5 j 5 a).

j Y

Let IBound, (a, j) = (j + 1) - a x So, = (j + 1) - a x (l +) where 0 5 y 5 a, j
z=o z=O

L S ; , and y = a or j <s;+, , then IBound, (a) = max {IBound, (a , j) (0 5 j < P)

Proof: For any leaf (s la ,py) of page-set a, the number of the subchannels

corresponding to the leaf (subpage-set) between subchannel 0 and j, inclusive, is

if j Lsla ; else it is zero. The rest is similar to the proof of Theorem 4.2 after 1 +I?]

summing up over all the leaves (subpage-sets) of page-set a,.

Now, we present our HPB. Figure 4.8 is a flow chart of the algorithm. The main

data structure in the algorithm is a page-set list, pagesetlist, where each object

represents a leaf with a page-set label in a rough block schedule forest, so non-perfect

page-sets have more than one page-set object. To meet the continuity requirement, first,

we use Lemma 4.3 or Lemma 4.4 to calculate the values of /Bound for each page-set,

and then use Formula (4.1.6) to calculate the number of pages (indicated as nPages

here) for each page-set. According to the algorithm in Figure 4.5, we insert extended

page-sets up to the given page-set number, i.e., max-pageset in Figure 4.9, into the free

space of initial page-sets having free bandwidth in the rough block schedule to get the

final version of the rough block schedule.

-
Build and output the page schedule

Figure 4.8 Flowchart of HPB

Insert extended page-sets
into the free space of initial
page-sets having free
bandwidth to get the final
version of the rough block
schedule

Read in an initial
version of a rough
b l o c k s c h e d u l e

>

Now, we talk about how to transfer subchannels from page-sets to page-sets to

meet the continuous display requirement after getting the final version of the rough block

schedule. Suppose that we have subChs(0 = T and IPS(i)lli = 3, and page-set i is

assigned to subchannels i f , i2, ... , i, (in the increasing order of subchannel numbers),

each from one of the K given channels. If X > 3, page-set i has a surplus of subchannels.

+

+
Build the
page-set
schedule

Calculate the number
of subchannels, the
numberofpagestand
free bandwidth for
each initial page-set

_+

Adjust the number of subchannels to fit
the number of pages for each page-set.
If a page-set has a shortage of
subchannels, try to borrow from other
page-sets; if a page-set has a surplus
of subchannels, give them to other

Calculate the number
of subchannels, the
number of promoted
pages, and the
number of pages for
each extended page-

page-sets or the last page-set set

According to Theorem 4.2 and Formula (4.1.6), IBound~(i) used in calculating IPS(i -1)l

guarantees the continuous display of page-set i from slots 0 to i2 in the i-th block of

display time. After slot i2 of the i-th block of display time, all the pages of page-set i have

been downloaded in a client's buffer space. Thus, the continuous display of page-set i is

still be guaranteed if we give subchannels ipl to i, to other page-sets that have a

shortage of subchannels. If X < 3, page-set i has a shortage of subchannels. According

to theorem 4.2, those pages that cannot be accommodated on the Xsubchannels are

the promoted pages from page-set i+ l . We can put the promoted pages into any

subchannels borrowed from page-sets that have surplus subchannels and don't worry

about their display continuity. For the last page-set (the last extended page-set), we also

calculate its /Bound according to lemma 4.4 so that adding additional subchannels to it,

or giving some last subchannels of it to other page-sets, doesn't affect its continuous

display. Thus, the number of pages of the last page-set is very flexible. If a page-set has

a surplus of subchannels and no other page-sets need them, we give them to the last

page-set. If a page-set has a shortage of subchannels and no other page-sets have

surplus subchannels, then we borrow subchannels from the last page-set as indicated in

step 9 of Figure 4.9.

List pagesetlist is a list of objects of a page-set class that has the following

private member variables: channel, start-slot, period, pageset, nPages, subChs, IBound,

promoted, more, givelist, and borrowlist. The first four variables indicate the place of a

leaf with page-set label, pageset, in the rough block schedule tree. The next four

variables are used to check for a sufficient condition for continuous display of this page-

set. The last three variables, where more = subChs - npageslpageset, are used to

match the number of subchannels with the number of pages as described in Figure 4.8.

We sort pagesetlist in increasing order of (pageset, start-slot, channel) so that all the

leaves assigned to the same non-perfect page-set are put together in the increasing

order of start_slots. For a non-perfect page-set, its parameters, nPages, subChs,

IBound, promoted, more, givelist, and borrowlist, are stored in the first subpage-set.

Figure 4.9 shows the detailed algorithm of HPB. In step 1, we read in an initial

version of a rough block schedule generated by GFDPB (m=l) or RFS, and build the

pagesetlist, and then in step 3, we calculate parameters of each initial page-set: IBound,

promoted, nPages, and subChs. In step 4, we build a list, freelist, which contains all the

page-sets having free spaces and their corresponding free bandwidths. In step 5, for

each extended page-set i, we choose a set of initial page-sets from the freelist to form a

freeD list where the sum of all the free bandwidths exceeds and is close to lli, and then

insert the extended page-set i into the free space of each of the page-sets in the freeD

list according to the algorithm in Figure 4.5. Step 5c is a heuristic for reducing the waste

of free bandwidth while adding an extended page-set. In step 6, we calculate IBound,

promoted, nPages, and subChs for all the extended page-sets. In step 7, we calculate

the value of more = subChs - npageslpageset for each page-set. If a page-set lacks

subchannels, i.e., more<O, we put it in the lesslist; if a page-set has a surplus of

subchannels, i.e., more>O, we put it in the morelist. From steps 8 to 10, we adjust the

number of subchannels, subChs, to fit the number of pages, nPages, for each page-set

including all the initial and extended page-sets through the rnorelist and the lesslist. If a

page-set lacks subchannels, then we borrow some subchannels from other page-sets

that have a surplus of subchannels, or from the last extended page-set, and record the

number of the subchannels borrowed and the page-set from which the subchannels

have been borrowed in the borrowlist of the corresponding page-set. If a page-set has

too many subchannels, then we give the surplus subchannels to other page-sets which

lack subchannels, or give them to the last extended page-set, and then record the

number of the subchannels and the page-set to which the subchannels have been given

in the givelist of the corresponding page-set.

Now, we get the final version of the rough block schedule. In step 13a, we build

the final version of the rough page-set schedule according to the final version of

the rough block schedule indicated by pagesetlist. In pagesetlist, each object

represents a leaf with a page-set label in the final version of the rough block schedule

forest through four private member variables: channel, start_slot, period, and pageset.

Then, in step 13b, we modify the above final version of the rough page-set schedule to

make each page-set meet the continuous display requirement by giving their last several

subchannels or slots to other page-sets in givelist and get the actual page-set schedule.

Finally, we build the page schedule in step 14 by mapping pages into each page-set in a

strictly sequential fashion. If there is no sufficient free bandwidth for adding the given

number of extended page-sets, or if we fail in matching the number of subchannels with

the number of pages for some page-sets, an error message will be generated and the

program terminates.

The output of HPB is pagelist where each object represents a leaf with a page

label in the actual page schedule forest. Each page object is indicated by four private

variables. The first one is the channel number and the second is the start slot number.

The third is the broadcasting period of the page (in slots), and the fourth is the page

number. Note that the final page schedule is an actual broadcasting schedule like the

GFDPB schedule and is ready for being put into our server multiplexing scheme in

Section 3.7 for actual broadcasting. A time slot is the only time unit used in the page

schedule. No time blocks and page-sets are used in pagelist.

Algorithm:

I

-

max-pageset)

Input: Number of channels K, block size P, and max-pageset, which is the last
page-set number you want to insert.

Output: Total number of pages and a page schedule, pagelist.

1) Read an initial version of a rough block schedule in the format (channel, star-slot,
period, pageset) per line, build the pagesetlist, and count the number of initial
page-sets, pageseLnum.

2) Sort the pagesetlist in the increasing order of (pageset, start_slot, channel).

3) For each initial page-set i except the last, calculate subChs according to Formula
(4.2.1) with a=O, promoted according to Formula (4.1.4), /Bound according to
Lemma 4.3, nPages according to Formula 4.1.6, and more = subChs - nfagesh.
For the last initial page-set, just calculate the value of promoted, since we don't
know the /Bound value of its next pageset, the first extended page-set, at this
point.

4) For each initial page-set i with period p, if i > p, then this page-set has free
bandwidth with period freeP=iapl(i-p), whose corresponding bandwidth is
llfreeP; put (freeP, i) into freelist in the increasing order of freeP.

5) For each extended page-set i from page-set pageset-num+l to page-set
max-pageset, do the following:

5a) Create a null list freeD.

5b) If the free bandwidth of the first page-set in freelist is not less than l l i ,
remove it from the head of freelist, add it to freeD list, and then go to 5f).

5c) If we can find an integer n such that the sum of the first n page-sets' free
bandwidth from freelist is not larger than lli and the sum of the first n+l free
bandwidth is larger than lli, then do the following; else go to 5d) directly.
Remove the first n page-sets from freelist and add them into freeD list. If the
sum of all the free bandwidth in freeD is less than l l i , go though the rest of
freelist to pick the last free bandwidth for freeD list, which makes the sum of all
the free bandwidths in freeD list closer to lli than any other free bandwidth in
freelist and larger than l l i , and then remove the corresponding page-set from
freelist. Go to 5f).

5d) If the sum of all the page-sets' free bandwidth in freelist is less than 1li and
i < max-pageset, then output an error message "Error: max-pageset should
be changed to i " and terminate the program.

5e) If i = maxgageset, then move all the remaining free bandwidths from
freelist to freeD list.

5f) For each page-set j in freeD list, do the following: Find the initial page-set j
in pagesetlist, remove it, assign it to pre-PS, and then insert page-set i into the
free space of page-set j according to Figure 4.5. Copy nPages and promoted
of pre-PS to the first subpage-set of page-set j after insertion and calculate the
new values of subChs and more for page-set j.

5g) Calculate /Bound of the just inserted page-set i according to Lemma 4.4.

6) Calculate promoted, nPages, subChs, and more for page-set pageset-num and
all the extended page-sets except page-set max-pageset, whose nPages is
flexible.

7) For each page-set i, if more>O, then put (i, more) into morelist in the increasing
order of more; if more<O, then put (i, -more) into lesslist in the increasing order of
-more.

8) For each page-set i in lesslist, whose -more is assigned to cp, do the following.

8a) If morelist is empty, go to step 9.

8b) Go through morelist to find the page-set, page-set j, whose more 2 cp.
Remove page-set j from morelist and page-set i from lesslist. If more of page-
set j is larger than cp, deduct cp from more, then put (j, more-cp) into morelist in
order. Every pair of actions of borrowing subchannels and giving subchannels
is recorded in the corresponding page-set's borrowlist and givelist.

8c) If we can't find page-set j in 8b), then do as follows. Fetch and remove the
page-set from the head of morelist and deduct the corresponding more value
from cp and update cp=cp-more. Repeat the above operation until cp I more
value of a just fetched page-set, or morelist is empty. If more value of the just
fetched page-set is larger than the updated cp, then put the remainder more-cp
back to morelist in order. If we use up all the surplus subchannels in morelist
and the updated cp is still larger than 0, then put the updated cp and page-set i
back in the head of lesslist, then go to step 9. Also, every pair of actions of
borrowing subchannels and giving subcahnnels should be recorded in the
corresponding page-sets' borrowlist or givelist.

9) If lesslist is still not empty, then borrow subchannels from the last page-set
(max-pageset). If all the subchannels of page-set max-pageset are used up and
lesslist is still not empty, then output error message "Failure in matching less and
more, try to decrease max-pageset!!!" and terminate the program.

10) If morelist is still not empty, then give all the surplus subchannels in morelist to
the last page-set, page-set max-pageset.

11) Calculate the last page-set's subChs according to its subpage-sets, borrowlist
and givelist; then calculate its nPages=subChs* max-pageset.

12) Calculate the total number of pages by

total_page=(max-pageset-l)j3 + (the value of promoted of page-set
max-pageset)+ (the value of nPages of page-set max-pageset)

13) Build the page-set schedule through the 2-dimensional array ps-sch with size KP
I

where ps[~]m, where 01 i 5 K-I and 05 j 5 P- I , represents subchannel j of
channel i or slot j of each block of channel i and holds the page-set number that is
assigned to the subchannel. For each page-set i in pagesetlist, 15 i 5 ' max-pageset, do the following:

13a) For each subpage-set of page-set i, fill all the slots or subchannels
belonging to this subpage-set in the corresponding channel with page-set i.

13b) For each page-set j in givelist of page-set i, check all the K channels,
subchannel by subchannel and backward from subchannel /3 - 1 , to find the

I last appropriate number of subchannels or slots belonging to this page-set i,
and then reassign them to page-set j, which borrows the corresponding
number of subchannels from page-set i

14) Build the page schedule according to the page-set schedule by mapping pages
to each page-set in a strict sequential fashion.

page-idx=O;

Loop i from 1 to max-pageset //go through all the page-sets

loop j from 0 to P-1 //go through all the subchannels

loop k from 0 to K - 1 //go through all the K channels

if(ps-sch[k]M==i)

for m=O to i-1 //each subchannel broadcasts i

//pages of page-set i

{ page-idx++;

add page(k, j+m P, i * P, page-idx) to pagelist)
Next k

Next j

Next i

15) Output total_page and pagelist.

Figure 4.9 Algorithm for the HPB scheme

4.3 Simulation and Analysis of HPB

Figure 4.10 shows our simulation results for K=6 and the selected values of P

between 100 and 10000. We can see that the normalized number of page-sets, i.e., (the

total number of pages)lP, approaches the upper bound as /3 increases. The reason is

that the proportion of promoted pages decreases and the residual bandwidth in Theorem

" 1
4.1, K -x: , is more likely to get some subchannels and contributes to the

i=I 1

improvement of the result as p increases.

Table 4.1 shows the normalized number of page-sets, (the total number of

pages)lp, achieved by HPB for the value of K from 3 to 7. The values of "GFDPB" and

"RFS" are obtained by using the corresponding schedules of GFDPB (m= l) and RFS,

respectively, as the initial version of rough block schedules. Since we need to add a

header to each page during broadcasting, we can't let each page be too small;

Figure 4.10 Normalized number of page-sets achieved by HPB

Table 4.1 Number of page-sets of HPB

BW(b)

GFDPB

RFS

UB

P

otherwise, the header will consume too much bandwidth. To let each page remaining a

reasonable record size, we can't let P grow too large. Here we limit the total number of

pages to be no larger than 700,000. This means that each page can contain more than

7,200*5,000,000/(700,000*8)= 6,429 bytes of data given a two-hour movie and

3

10.753

10.753

10.781

60000

4

30.131

30.131

30.155

15000

6

225.614

225.614

226.009

2000

5

82.784

82.785

82.828

5000

7

612.61

612.635

615.215

1000

5MegbitsIsecond channel bandwidth. In the table, we choose the P for each case such

that the number of pages packed is close to 700,000 pages. UB denotes the upper

bound on the number of page-sets according to Theorem 4.1. We can see that the

results of HPB based on the RFS schedule have little difference from those based on

GFDPB schedules. All are very close to the upper bound if P is big.

HPB

Best Bound

RFS

Bar

Table 4.2 Average waiting time of HPB and other schemes

334.790

400.00

GFDPB(m=l)

FD-LB

QHB(m=100)

Table 4.2 compares the average waiting time, achieved by HPB and based on

RFS schedules from Table 4.7, with other schemes for a two-hour movie. "Best Bound"

shows the average waiting time achieved by Bar-Noy's non-perfect schedules (K=4, 5,

6) or from their modifications of the greedy algorithm using ad hoc method. Those are

the shortest average waiting times of all schedules using segments of equal duration

and channels of equal bandwidth. "FD-LB" shows the fixed-delay lower bound, the

minimum waiting times that can be approached by schemes based on the fixed-delay

policy such as FDPB, GFDPB, PHB and GEBB, according to Formula (2.5.2). "RFS" and

"GFDPB" show the results of the RFS and GFDPB schemes, respectively. "Bar" shows

the results of the multilevel splitting greedy algorithm. We can see none of the above

three protocols or algorithms in the third group can guarantee an average waiting time

better than the fixed-delay lower bound (FD-LB) in all cases, unless the number of

400

400

1 19.478

128.571

400

377.249

360

144

144

43.486

46.753

144

134.332

124.1 37

49.31 5

49.31 5

15.956

17.061

49.31 5

48.842

43.902

5.876

6.315

17.91 0

17.734

6.372

6.417

17.561

17.891

16.071

6.360

6.572

5.892

channels is larger than 5 or 6. Moreover, their maximum waiting time is nearly 100%

longer than FD-LB. Therefore, no currently known protocols or algorithms in the third

group of broadcasting schemes can guarantee an average waiting time less than the

fixed-delay lower bound, since the above three protocols or algorithms are the best in

the third group in terms of the waiting time. We also show the results of QHB in Table

4.2, since QHB is the most efficient protocol in terms of clients' average waiting time in

the other two groups of broadcasting protocols. We notice that the average waiting time

of HPB is even shorter than that of QHB, although QHB can guarantee the lower

average waiting time than the fixed-delay lower bound.

From the above simulation results, we can see HPB provides the lowest average

waiting time of all currently known broadcasting protocols using the least number of

channels given the server bandwidth, but it pays the price of using many more pages.

For example, for K=6, GFDPB with m=l partitions each video into 207 segments,

whereas HPB needs 451,228 pages. Thus, the overhead cost of HPB is much more than

that of other schemes.

We notice that the maximum waiting time of HPB is twice its average waiting time

and much longer than those of FDPB or GFDPB. Since clients' requests come randomly,

the fact that HPB's maximum waiting time is twice its average waiting time makes the

treatment of clients highly variable and unfair.

4.4 Preloading Page-Set Broadcasting (PPSB)

To solve the problem of the maximum waiting time of HPB mentioned above, we

propose a hybrid scheme, the PPSB scheme, which efficiently shortens the maximum

waiting time of HPB by slightly compromising the average waiting time. In PPSB, clients

need to wait half a block on average until the beginning of the next block, and then

preload one time block before starting to play a video. Thus, in PPSB each page in the

first page-set is broadcast once every two blocks. Its average waiting time is equal to

1.5DPltotaljage. Its maximum waiting time is 2Dptotal_page, and its minimum waiting

time is DPltotaljage. Thus, its maximum waiting time is 33.3% longer than its average

waiting time.

For PPSB, we just need to make a slight change to the HPB algorithm in Figure

4.9. In step 1, the input file must be the schedule of GFDPB with m=2 and pagesecnum

must be "the last initial page-set number" instead of "the number of initial page-sets". In

PPSB, we use the block period to indicate a page-set number, so the first page-set is

page-set 2. Generally, the i-th page-set in PPSB is page-set i+ l . Thus, in step 1 of

Figure 4.9, a private member variable, pageset, of the class page-set is the block period

of the corresponding page-set. A new theorem, Theorem 4.4, is required for PPSB

based on modifying Theorem 4.1.

Theorem 4.4 Given K channels, let integer n satisfy

n+l 1
Then np+ (K - xT)(n + 2)P is an upper bound on the number of pages of PPSB, and

i=2 1

is an upper bound on the number of page-sets of PPSB. a

ncl 1
Thus, given a video with a length of D seconds, 2D/(n + (K - x T) (n + 2)) is a

i = 2 z

n+l 1
lower bound on the maximum waiting time and l .SD/(n + (K - x T) (n + 2)) is a lower

i=2 z

bound on the average waiting time.

Formula (4.1.4) is changed to Formula (4.4.3).

i-1

promoted(i) = ~ I P S (Z) ~ - (i - 2)P where i > 2
z=2

promoted(2) = 0

Formula (4.1.6.1) is changed to Formula (4.4.4.1).

Accordingly, Formula (4.1.6) is changed to Formula (4.4.4).

I
i- l

(i - 1)p - ~ I P s (z) ~ + lBound,(i + 1)
IpS(i)I = i z=2 where i > 2

i

Table 4.3 shows the average waiting time and the maximum waiting time

achieved by PPSB and HPB. Their rough block schedules are all from GFDPB. The

upper row of PPSB or HPB in the table shows the (average waiting time)/(maximum

waiting time) in seconds for a two hour video, and the lower row shows the f l value. Like

in Table 4.1, we choose the P value so that the total number of pages of each schedule

is less than and close to 700,000. We can see HPB's average waiting time is roughly

9.5% shorter than that of PPSB, but HPB's maximum waiting time is roughly 35% longer

than that of PPSB. For K=5, by using PPSB instead of HPB, we increase the average

waiting time by 4.57 seconds, but decrease the maximum waiting time by 22.89

seconds. We can say it is reasonable to sacrifice a small amount of average waiting time

to win much more in maximum waiting time. By comparing Table 4.3 with Table 4.2, we

can see PPSB still provides shorter average waiting time than the fixed-delay lower

bound (FD-LB) and the shortest average waiting time of all the published broadcasting

protocols in the third group. PPSB's maximum waiting time is not more than 32% longer

than the fixeddelay lower bound (FD-LB), whereas HPB's maximum waiting time is

nearly 90% longer than FD-LB. Although GFDPB (m=l), Bar and RFS may achieve their

average waiting time shorter than the fixeddelay lower bound if the given number of

channels is larger than 5 or 6 , their corresponding maximum waiting time is nearly 100%

longer than the fixed-delay lower bound.

PPSB 1 370.721494.29 1 132.0311 76.04 1 48.06164.08 1 1 7.66123.54

Table 4.3 Maximum and average waiting times of PPSB and HPB

I I I I

We notice that QHB (see Table 4.2) achieves shorter average waiting times than

PPSB. However, the superior performance of QHB in average waiting time comes at a

price: achieving an average waiting time of 16.071 seconds for a two-hour video given a

server bandwidth 6b requires dividing 224 fixed-sized segments into 2,519,678 smaller

HPB 334.791669.58 1 19.481238.96 43.49186.97 15.95131.91

and smaller fragments and broadcasting them on 224 separate channels with

decreasing bandwidth, which is rather impractical. Furthermore, the maximum waiting

time of QHB is even longer than that of HPB.

Non-perfect HPB PPSB FDPB GFDPB 1 1 (p=300O) 1 (/3=1000) 1 (m=1800) 1 (m=1600)

Average

Table 4.4 Average and maximum waiting time for K=6

Max

Table 4.4 compares the average waiting time achieved by PPSB for K=6 with

other schemes or schedules for a two hour movie. Bar-Noy's non-perfect hand-tuned

schedule is currently the best known schedule for average waiting time, but its maximum

waiting time is twice its average waiting time. For K=6, compared with HPB, PPSB's

maximum waiting time is 8.353 seconds shorter, but its average waiting time is 1.71

seconds longer. PPSB's minimum waiting time for K=6 is 11.772 seconds. Suppose that

the actual waiting times of PPSB clients are distributed uniformly between the maximum

waiting time and the minimum waiting time. Compared with the clients of GFDPB, the

clients of PPSB enjoy shorter waiting times (up to (18.07-11.772) = 6.928 seconds

shorter) with (1 8.07- 11.772)/11.772=53.5% probability and wait longer (up to 5.474

seconds longer) with (23.544 -18.07)/11.771=46.5% probability. Waiting 5 seconds

longer would be almost unnoticeable. Let us consider HPB for a comparison. In the

worst case, clients of HPB need to wait 13.84 seconds longer than the clients of GFDPB;

a period of 13.84 seconds would be noticeable. Thus, we can see that, while most of the

time PPSB clients enjoy shorter waiting time than GFDPB clients, and even in the worst

17.061

34.123

15.948

31.897

17.658

23.544

18.73 18.07

18.73 18.07

case, the maximum waiting time of PPSB would not be significant. Thus, at most times,

the clients of PPSB would be happier than the clients of GFDPB.

In conclusion, PPSB is the only broadcasting protocol in the third group that

guarantees its average waiting time less than the fixeddelay lower bound if P is big

enough, while its maximum waiting time is only 113 longer than its average waiting time.

From the probability point of view, PPSB provides a very desirable trade-off between

average waiting time and maximum waiting time of all the known broadcasting protocols,

given the server bandwidth.

Chapter Five
Conclusion and Future work

In this thesis, we first introduced different VOD protocols, and then focused on

the broadcasting protocols, especially the third group of broadcasting protocols, which

partition each video into a large number of small segments with equal size, and use time

division multiplexing to multiplex the segments periodically into a small number of

channels with bandwidth equal to the playback rate. We have proposed three new

broadcasting protocols in this third group. GFDPB provides the lowest maximum waiting

times of all protocols in the third group, and HPB provides the lowest average waiting

times of all broadcasting protocols. PPSB provides the lowest average waiting times of

all published protocols in the third group and provides a very desirable trade-off between

average waiting time and maximum waiting time of all known protocols to date.

We presented two versions of GFDPB. GFDPB greatly improves the

performance of the greedy algorithm by assigning the lowest priority to the split action

that splits a leaf into a large number of child leaves with the same large window label.

EGFDPB improves the performance of GFDPB when m is a prime number or has a big

prime factor. We have shown that for K>3, the GFDPB result is almost the same as the

EGFDPB result. We also presented a server multiplexing and client demultiplexing

algorithm that can be applied to all the broadcasting protocols in the third group.

We have shown that no currently known broadcasting protocols in the third group

can guarantee that their average waiting times are less than fixed-delay lower bound for

any number of channels. By grouping pages into page-sets, and every P slots into a

block, HPB can make the number of packed page-sets approach or even surpass the

upper bound of RFS given the number of channels. However, HPB's maximum waiting

time is still large compared with FDPB or GFDPB; therefore, we proposed the PPSB

scheme to solve it.

We have shown that PPSB is the only broadcasting protocol that not only

provides the average waiting time less than the fixed-delay lower bound but also

guarantees its maximum waiting time is only 113 worse than its average waiting time.

Other schemes that have a lower average waiting time than the fixed-delay lower bound,

such as HPB and RFS, have their maximum waiting time 100% worse than their average

waiting time. Therefore, PPSB provides much more fair and stable service for any client

at any time than the above schemes.

Future research could be directed towards simplifying the algorithm of GFDPB,

and making further improvements to GFDPB, or toward reducing the maximum waiting

time of HPB. More work is needed to improve the performance of the protocols in this

thesis when they are used to transmit variable bit-rate videos using a constant

transmission rate, or when they are combined with multi-layer encoding videos and

caching technique to provide multicast service through the internet.

Bibliography
Y. H. Chang, D. Coggins, D. Pitt, and D. Skellem, "An open-system approach to
video on demand, " IEEE commun. Mag., vol. 32, pp.68-80, May 1994.

D. Deloddere. W. Verbiest, and H. Verhille, "Interactive video on demand," IEEE
commun. Mag., vo1.32, pp.82-88, May 1994.

T. D. C. Little and D. Venkatesh, "Prospects for interactive video-on-demand,"
IEEE Multimedia, vol. 1, pp. 14-24, Mar. 1994.

L. Gao and D. Towsley, "Efficient schemes for broadcasting popular videos," in
Proc. Int. Workshop Network and Operating Syst. Support for Digital Audio and
Video, pp.317-329, Aug. 1998.

R. Rejaie, M. Handley, H. Yu, and D. Estrin, "Proxy caching mechanism for
multimedia playback streams in the internet," In Proc. 4" Int. Web caching
Workshop, 1999.

E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, "Design and implementation of
a caching system for streaming media over the Internet," IEEE Real-Time
Technology and Application Symposium, 2000.

Dong-Hoon Nam and Seung-Kyu Park, "Adaptive multimedia stream service with
intelligent proxy," Int. Conf. on Information Networking, 2001.

Chen-Lung Chan, Te-Chou Su, Shih-Yu Huang, and Jia-Shung Wang,
"Cooperative proxy scheme for large-scale VoD systems," Parallel and
Distributed Systems, 2002. Proc. Ninth lntemational Conference, pp. 404 - 409,
Dec. 2002.

http://www.ncube.com/pressroom/downloads/npvr-white-paper.pdf.

[lo] A. Dan D. Sitaram, and P. Shahabuddin, "Scheduling policies for an on-demand
video server with batching," Proc. ACM Multimedia, San Franciso, CA, pp. 15-23,
Oct. 1994.

[I I] A. Dan, D. Sutaram, and P. Shahabuddin, "Dynamic batching policies for an on-
demand video server," Multimedia Systems, 4(3):112-121, June 1996.

[I 21 HP website download file: http://h71028.www7.hp.com/enterprise /downloads
nlOD-datasheet-6-05-03-~2.pdf.

[I 31 Kasenna, Inc. Website: httr>://www. kasenna.com/newkasenna/solutions/
Kasenna.MediaBaseXMPv70.Datasheet.08.15.03c.pdf.

[I41 David P. Anderson, "Metascheduling for continuous media", ACM Transactions
on Computer Systems, Vol. 11, No. 3, pp.226-252, Aug.1993.

[I51 A. Dan, D. Sitaram, and P. Shahabuddin, "Scheduling policies for an on-demand
video server with batching," in Proc. ACM Multimedia, Florence, Italy, pp. 15-23,
1994.

[16] A. Dan, D. Sitaram, and P. Shahabuddin, "Dynamic batching policies for an on-
demand video server", Multimedia Systems, 4(3): June 1996.

[17] C. C. Aggarwal, J. L. Wolf and P. S. Yu, "On optimal batching policies for video-
on-demand storage servers," in Proc. IEEE int. Conf Multimedia Computing and
Systems, June 1996, pp. 253-258.

[18] E. L. Abram-Profeta and K. G. Shin, "Scheduling video programs in near video-
on-demand systems", In Proc. ACM Multimedia197, Nov. 1997.

[I91 K. C. Almeroth and M. Ammar, "The interactive multimedia jukebox (IMJ : A new R paradigm for the ondemand delivery of audiolvideo", In Pmc. 7' WWW
conference, Brisbane, Australia, April 1998.

[20] S. H. G. Chan, F. Tobagi, and T. M. KO, "Providing on-demand video services
using request batching", in IEEE Int. Conf. Communication, vo1.3, pp.1716-1722,
1998.

[21] W.K.S. Tang, E.W.M. Wong, S. Chan, and K.-T. KO, "Optimal video placement
scheme for batching VOD services", Broadcasting, IEEE transactions on, vol. 50,
issue 1, pp. 16-25, Mar. 2004.

[22] L. Gao and D. Towslay, "Supplying instantaneous video-on-demand services
using controlled multicast," IEEE Multimedia, pp.117-121, June 1999.

[23] K. A. Hua, Y. Cai, and S. Sheu, "Patching: a multicast technique for true video-
on-demand services", ACM Multimedia, pp.191-200, Sept. 1998.

[24] S. Sen, L. Gao, J. Rexford, and D. Towsley, "Optimal patching schemes for
efficient multimedia stream", In Proc. of IEEE NOSSDAV, NJ, USA, June 1999.

[25] Y. Cai, K. A. Hua, and K. Vu, "Optimizing patching performance", In Proc.
SPIE/ACM Conference on Multimedia Computing and Networking, CA, pp. 204-
215, Jan. 1999.

[26] D. Eager, M. Vernon, and J. Zahorjan, "Optimal and efficient merging schedules
for video-on-demand servers," in Pmc. 7th ACM Int. Multimedia Conf. (ACM
MULTIMEDIA'99), 1999.

[27] D. L. Eager, M. K. Vernon, and J. Zahorjan, "Minimizing bandwidth requirements
for on-demand data delivery," IEEE Trans. Knowledge and Data Engineering,
Sept.lOct. 2001 .

[28] D. Guan and S. Yu, "A two-level patching scheme for video-ondemand delivery",
IEEE Transactions on Broadcasting, vol. 50, No. 1, Mar. 2004.

[29] E. G. Coffman Jr., P. Jelenkovic' and P. Momooilovic', "The Dyadic stream
merging algorithm", In J. Algorithms, 43(2002), 120-1 37.

[30] A. Bar-Noy, J. Goshi, and R. E. Ladner, "Off-line and on-line guaranteed start-up
delay for media-on-demand with stream merging", in Proc. 15'~ annual ACM
symposium on Parallel algorithm and architectures, San Diego, California, USA,
session: Networks II, pp. 164-1 73, 2003.

[31] A. Bar-Noy and R. E. Ladner, "Competitive on-line stream merging algorithms for
media-on-demand", In Proc. 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) 364-373, Jan. 2001.

[32] K. S. Tang, K. T. KO, S. Chan, and E.W. M. Wong, "Optimal file placement in
VOD system using genetic algorithm," IEEE Trans. Industrial Electronics, vol. 48,
no. 5, pp. 891-897, Oct. 2001.

[33] W. K. S. Tang, E. W. M. Wong, S. Chan, and K. -T. KO, "Optimal video
placement scheme for batching VOD service", IEEE Transaction on
Broadcasting, vol. 50, issue 1, Mar. 2004, pp.16-25.

[34] D. L. Eager and M. K. Vernon, "Dynamic skyscraper broadcasts for video-on-
demand," in Proc. 4th Int. Workshop on Multimedia Information systems (MIS '98),
Istanbul, Turkey, pp. 18-32, Sept. 1998.

[35] D. L. Eager, M. C. Ferris, and M. K. Vernon, "Optimized regional caching for on
demand data delivery," in Proc. IS&T/SPIE Conf. Multimedia Computing and
Networking 1999 (MMCN'99), San Jose, CA, pp. 301-316, Jan. 1999.

[36] S. W. Carter and D. D. E. Long, "Improving videoon-demand server efficiency
through stream tapping", Proceedings of the 6th International Conference on
Computer Communications and Networks, pp. 200-207, Sep. 1997.

[37] S. W. Carter and D. D. E. Long, "Improving bandwidth efficiency on video-on-
demand servers", Computer Networks and ISDN Systems, 30(1-2):99-111.

[38] C. C. Aggamal, J. L. Wolf, and P. S. Yu, "On optimal piggyback merging policies
for videoan-demand systems," in Proc. ACM SlGMETRlCS Conf Measurement
and Modeling of Computer Systems (SIGMETRICS196), pp. 200-209,1996.

[39] L. Golubchik, J. C. S. Lui, and R. R. Muntz, "Reducing I10 demand in ideo-on-
demand storage servers," in Proc. ACM SIGMETRICS Conf measurement and
Modeling of Computer Systems (SIGMETRICS195), pp. 25-36, 1995.

[40] L. Golubchik, J. C. S. Lui, and R. R. Muntz, "Adaptive piggybacking: A novel
technique for data sharing in videoan-demand storage servers," ACM Multimedia
Systems Journal, vol. 4, no. 3, pp. 140-1 55, 1996.

[41] S. W. Lau, J. C. S. Lui, and L. Golubchik, "Merging video streams in a multimedia
storage server: Complexity and heuristics," ACM Multimedia Systems Journal,
vol. 6, no. 1, pp. 29-42, 1998.

[42] T. Chiueh and C. Lu, "A periodic broadcasting approach to video-ondemand
service", Int. Soc. Optical Eng., vol. 261 5, pp.162-169, Oct. 1995.

[43] S. Viswanathan and T. Imielinski, "Pyramid broadcasting for video-on-demand
service," in Proc. SPlE Conf Multimedia Computing and Networking (MMCN'95),
pp. 66-77,1995.

[44] S. Viswanathan and T. Imielinski, "Metropolitan area video-on-demand service
using pyramid broadcasting," ACM Multimedia Systems Journal, vol. 4, no. 3, pp.
l97-208,1996.

[45] C. C. Aggamal, J. L. Wolf, and P. S. Yu, "A permutation-based pyramid
broadcasting scheme for videoan-demand systems", in Proc. IEEE Int. Conf
Multimedia Computing and Systems, pp. 1 1 8-1 26, June 1 996.

[46] K. A. Hua and S. Sheu, "Skyscraper Broadcasting: A new broadcasting scheme
for metropolitan video-on-demand systems", in Proc. Of the ACM SIGCOMM197
Conference, Connes, France, pp.89-100, Sept. 1997.

[47] L. Juhn and L.Tseng, "Fast data broadcasting and receiving scheme for popular
video service", in IEEE Transactions on Broadcasting, 44(1): 100-1 05, Mar. 1998.

[48] A. Hu, I. Nikolaidis, and P. van Beek, "On the design of efficient video-on-demand
broadcast schedules", in Proc. 7th Int'l Symp. On Modeling Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS'99),
pp.262-269.

[49] L. Juhn and L. Tseng, "Harmonic broadcasting for video-on-demand service",
IEEE Trans. On Broadcasting, 43:268-271, Sep. 1997.

[50] P. Mundur, R. Simon, and A. K. Sood, "End-to-end analysis of distributed video-
on-demand systems", in IEEE Transactions on Multimedia, vol. 6, No.1, Feb.
2004.

[51] A. Hu, "Video-on-demand broadcasting protocols: a comprehensive study", in
Proc. IEEE INFOCOM 2001, 2ah Annual Joint Conf. of IEEE Computer and
Communications Societies, vol. 1,22-26, pp. 508-517, April 2001.

[52] Z. Y. Yang, L. S. Juhn, and L.M. Tseng, "On optimal broadcasting scheme for
popular video service", IEEE Trans. Broadcast, vol. 45, pp. 31 8-322, Sept. 1999.

[53] J. F. Paris, S. W. carter, and D. D. E. Long, "Efficient broadcasting protocols for
video on demand", in 6th International Symposium on Modeling Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTSJ98), pp.
127-1 32, July 1998.

[54] J. F. Paris, S. W. carter, and D. D. E. Long, "A low bandwidth broadcasting
protocol for video on demand", in Proc. Fh ICCCN Conf., pp. 690-697, Oct. 1998.

[55] J. F. Paris, S. W. carter, and D. D. E. Long, "A hybrid broadcasting protocol for
video on demand", in Proc. 1999 Multimedia Computing and Networking
Conference, San Jose, CA, pp.317-326, Jan. 1999.

[56] J. F. Paris, "A simple low-bandwidth broadcasting protocol for video on demand",
in Proc. 87th Int. ICCCN Conf, pp.690-697, Oct. 1999.

[57] J.-F. Piris, "A Fixed-Delay Broadcasting Protocol for Video-On-Demand", in Proc.
10th International Conference on Computer Communications and Networks,
2001, pp. 418-423,2001.

[58] A. Bar-Noy and R. E. Ladner, "Windows scheduling problems for broadcast
systems", in Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA) 433-442, Jan. 2002.

[59] Y. C. Tseng, M. H. Yang, and C. H. Chang, "A recursive frequency-splitting
scheme for broadcasting hot videos in VOD service", IEEE Transactions on
Communication, vol. 50, issue 8, pp.1348-1355, Aug. 2002.

[60] A. Bar-Noy, R. E. Ladner, and T. Tamir, "Scheduling technique for media-on-
demand", in Proc. 14th annual ACM-SIAM symposium on Discrete algorithms,
Baltmore, Maryland, session 11C, pp. 791-880.

[61] E.M. Yan and T. Kameda, "An efficient VOD broadcasting scheme with user
bandwidth limit", in Proc. SPIH4CM Conf on Multimedia Computing and
Networking, vol. 5019, Santa Clara, CA, pp.200-208, Jan. 2003.

[62] 0. Bagouet, K. A. Hua, and D. Oger, "A Periodic Broadcast Protocol for
Heterogeneous Receivers," in Proc. of SPIE Conference on Multimedia
Computing and Networking (MMCN 2003), pp. 220-231, January 29-31, 2003.

[63] J. Y. B. Lee, "On a unified architecture for video-on-demand services," IEEE
Trans. Multimedia, vol. 4, no. 1, pp. 38-47, Mar. 2002.

[64] W. F. Poon, K. T. Lo, and J. Feng, "A hybrid delivery strategy for a video-on-
demand system with customer reneging behavior," IEEE Trans. Broadcast., vol.
48, no. 2, pp. 140-150, June 2002.

[65] T. Kameda, and Y. Sun, "Optimal truncated-Harmonic windows scheduling for
broadcast systems", in Proc. ACM SACO4, Nicosia, Cyprus, March 2004.

[66] A. Bar-Noy, A. Nisgav and B. Patt-Shamir, "Nearly optimal perfectly-periodic
schedules", In Proc. 2oth annual ACM symposium on Principles of distributed
computing, Newport, Rhode Island, United States, pp. 107-1 16, Aug. 2001.

[67] T. Kameda and Y. Sun, "Group windows scheduling through windows scheduling",
submitted to INFOCOM 2005.

