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Abstract

The Minimum Inhibitory Concentration (MIC) is the smallest concentration of an anti­

microbial agent that inhibits the growth of bacteria. The value is obtained in a highly

mechanized fashion, but this procedure only provides interval censored reading. It is often

of interest to use data collected from complex experiments to see how the mean MIC is

affected by different factors.

Because the MIC value is interval censored, ordinary least squares cannot be used. For

models containing only fixed effects, maximum likelihood estimates (MLE) can be obtained.

For models containing random effects, MLE methods are infeasible and Bayesian approaches

are required. Model building, selection and diagnostic procedures are presented for select­

ing the appropriate model. In cases where several models seem to fit the data equally well,

model averaging is also performed to get model averaged estimates. Four real data sets are

analyzed using the methodology we developed.

Keywords: Bayesian inference; Interval censoring; Maximum likelihood estimate; Mini­

mum inhibitory concentration; Model average
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Executive Summary

The current summary reports of the analysis of MIC data all have some limitation. All

current reports focus on selected percentiles of the anti-microbial resistance pattern, but do

not use the entire resistance pattern to look for changes. In the analysis procedure, none

of the collected covariates is used to investigate if the MIC values vary by region of origin,

producer of origin, feeding regime, size of herd/flock, temporally, etc. Additionally, none of

the current summary reports have any indication of the precision of the estimates.

The main goals of this project are to use statistical methods to relate the logMIC (be­

cause it is assumed that the unknown MIC has a log-normal distribution) to covariates;

to get general estimates that explicitly account for the sampling design; and to obtain the

precision of estimates.

A methodology was developed to deal with interval censored response variables. We start

by building possible models, then we select a model and finally perform model diagnostics.

When several models fit the data equally well, we model average. In the last step, we

calculate estimates from the appropriate model and use them to make inferences.

The analysis of the four real data sets support different "best" model. When a model

contains fixed effects only, the maximum likelihood method (implemented by SAS) is used.

When a model contains random effects, a Bayesian analysis using Markov Chain Monte

Carlo (MCMC) techniques (implemented by WinBUGS) is performed.

The analysis of the four real data sets all indicate that the mean logMIC is related to

some covariates. This information is useful in designing future experiments.

If the variance of the random effects (such attributed to farms) is small relative to the

variance of random noise; the estimates and precision derived using maximum likelihood

ignoring the random effects and derived using Bayesian method including the random effects

are quite similar.

iv



Dedication

v

To Wei and Xinxin.



Acknowledgments

I spent four years for my second Bachelor degree and my M.Sc. degree at Simon Fraser

University. My journey in academic is full of challenge and difficulty. I want to thank many

people who involved in my life at SFU. Without their help I can not be working in academic

today.

First, I would like to thank my supervisor, Dr. Carl Schwarz whose support, patience,

guidance, encouragement and understanding helped me through the "hard" time. Carl give

me a chance to achieve my academic goal.

I would like to thank my committee members, Dr. Tom loughin and Dr. Tim Swartz for

their time and suggestions.

I would like to thank my undergraduate adviser Dr. Larry Weldon for his kind and

insight suggestion, Dr. Boxin Tang for his help, Dr. Charmaine Dean and Robin Insley for

suggestion on being new parent.

Thanks to my fellow graduate students, Carolyn, Cindy, Jean, Luyao, Monica, Simon,

Suli and Wendell for their help.

I would like to thank my parents, my grand parents for their education and support.

Last but not least, I give my special thanks to my husband Wei and my daughter Xinxin,

for their love.

vi



Abbreviation

AIC

APE

BCMAL

BIC

BF

BGR

DIC

MCMC

MIC

MLE

OLM

SAS

SD

SE

WinBUGS

Akaike's Information Criterion

Bayesian Average Posterior Estimate

The British Columbia Ministry of Agriculture and Lands

Bayesian Information Criterion

Bayes Factor

Gelman-Rubin statistic

Deviance Information Criterion

Markov Chain Monte Carlo

Minimum Inhibitory Concentration

Maximum Likelihood Estimate

Ordinary Linear Model

Statistics Analysis System

Standard Deviation

Standard Error

Windows version of the Bayesian inference Using Gibbs Sampling

vii



Contents

Approval ii

Abstract iii

Executive Summary iv

Dedication v

Acknowledgments vi

A bbreviation vii

Contents viii

List of Tables x

List of Figures xii

1 Introduction 1

2 Models for the data 3

2.1 Model for data with no censoring and with no random effects acting upon

the mean response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4

2.2 Model for data with no censoring, but with random effects acting upon the

mean response 4

2.3 Model for data with censoring but with no random effects acting upon the

mean response

Vlll

4



2.4 Model for data with censoring and with random effects acting upon the mean

response ....

2.5 Model notation

3 Illustrative analyses

3.1 VISIT linear, no TYPE and no FARM effects

3.2 VISIT linear, TYPE classification, no FARM effect

3.3 VISIT classification, TYPE classification, no FARM effect

3.4 VISIT linear, TYPE classification, FARM random effect (big)

3.5 VISIT linear, TYPE classification, FARM random effect (small)

3.6 Summary of simulation results . . . . . . . . . . . . . . . . . . .

4 Model building, selection and diagnostics

4.1 Model building

4.2 Model selection

4.2.1 Likelihood Model.

4.2.2 Bayesian Model.

4.3 Model checking . . . . .

4.3.1 Likelihood model

4.3.2 Bayesian model.

5 Real Examples

5.1 Avian data set (Avian plate)

5.2 Avian data set (NARMS plate)

5.3 Dairy data set (Campylobacter)

5.4 Dairy data set (E.coli) ...

5

6

8

9

11

13

16

19

22

23

23

27

27

28

30

30

31

33

33

41

48

61

6 Conclusions and Suggestions 70

6.1 Future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71

Bibliography

ix

72



List of Tables

3.1 True values and estimates of parameters from model [Y]=VISIT. . . . . .. 11

3.2 True values and estimates of parameters from model [Y]=TYPE(C) VISIT. 13

3.3 True values of parameter of model [Y]=TYPE(C) VISIT(C). 14

3.4 True values and estimates of parameters from model [Y]=TYPE(C) VISIT(C). 16

3.5 True values and estimates of parameters from model [Y]=TYPE(C) VISIT

. FARM(R) (big). 19

3.6 True values and estimates of parameters from model [Y]=TYPE(C) VISIT

FARM(R)(small). . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

4.1 Example of model averaging. 29

5.1 Results of fitting different models to the Avian-CEFTIF data using MLE 36

5.2 Estimates for the Avian-CEFTIF data from the MLE and two Bayesian anal-

yses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39

5.3 DIC value for model [V] = TYPE(C) VISIT(C) VISIT x TYPE FARM(R)

with and without farm random effect . 40

5.4 DIC value for all possible models . . . 40

5.5 Results of fitting different models to the Avian (NARMS plate)-CEFTIF data

using MLE 44

5.6 Estimates for the Avian (NARMS plate)-CEFTIF data from the MLE and

two Bayesian analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47

5.7 DIC values for model [V] = TYPE(C) VISIT(C) VISIT x TYPE FARM(R)

with and without farm random effect. 48

5.8 Results of fitting different models to the Dairy (Camylobacter )-Azithromycin

data using MLE 53

x



5.9 Estimates for the Dairy (Camylobacter)-Azithromycin data (full data) from

the MLE and two Bayesian analyse. 56

5.10 DIC values for model [Y] = VISIT GROUP(C) VISIT x GROUP FARM(R)

with and without random farm effect. 57

5.11 Results of fitting different models after outliers were deleted use MLE method 57

5.12 Estimates for the Dairy (Camylobacter)-Azithromycin data (reduced data)

from the MLE and two Bayesian analyse. .... . . . . . . . . . . . . . .. 60

5.13 DIC values for model [Y] = VISIT(C) FARM(R) with and without farm ran-

dom effect. 61

5.14 Results of fitting different models to the Dairy (E.coli)-CEFTIF data set

using MLE method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.15 Estimates for the Dairy (E.coli)-CEFTIF data from the MLE and two Bayesian

analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69

5.16 DIC values for model [Y] = VISIT GROUP(C) VISIT x GROUP FARM(R)

with and without farm random effect. 69

xi



List of Figures

3.1 Plot of the lower bounds of simulated data from the model [Y]=VISIT with

fitted regression line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

3.2 Plot of the lower bounds of simulated data from the model [Y]=TYPE(C) VISIT

with fitted regression lines. 12

3.3 Plot ofthe lower bounds of simulated data from the model [Y]=TYPE(C) VISIT(C)

with fitted regression lines. 15

3.4 Plot of the lower bounds of simulated data from the model [Y]=TYPE(C)

VISIT FARM(R)(big) with fitted regression lines. . . . . . . . . . . . . . .. 18

3.5 Plot of the lower bounds of simulated data from the model [Y]=TYPE(C)

VISIT FARM(R)(small) with fitted regression lines. . . . . . 21

4.1 Portion of the Avian data set . . . . . . . . 23

4.2 Plot of the lower bounds of logMIC vs. visit 25

4.3 Plot of connecting median lower bounds of logMIC of each visit of each farm

vs. visit for different farms . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

43

45

34

35

37

41

Part of the raw data for the Avian data set.

Plot of the lower bounds of logMIC_CEFTIF vs. visit for Avian data set.

Residual plot of model [V] = VISIT(C) TYPE(C) VISIT x TYPE. .

Part of raw data for the Avian (NARMS plate) data set .

Plot of the lower bounds of logMIC_CEFTIF vs. visit for Avian (NARMS

plate) data set 42

Plot of connecting median lower bounds of logMIC_CEFTIF of each visit of

each farm vs. visit for different farm for Avian (NARMS plate) data set

Residual plot of model [V] = VISIT(C) TYPE(C) VISIT x TYPE....5.7

5.6

5.1

5.2

5.3

5.4

5.5

xii



5.8 Part of the raw data of the Dairy (Campylobacter) data set. . 49

5.9 Plot of the lower bounds of logMIC-Azithromycin vs. visit with fitted lines

for different group ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.10 Plot of connecting median lower bounds of logMIC_CEFTIF of each visit of

each farm vs. visit for different farm . . . . . . . . . . . . . . . . . 52

5.11 Residual plot of model [Y] = VISIT GROUP(C) VISIT x GROUP. 54

5.12 Residual plot of model [Y] = VISIT(C). ... . . . . . . . . . . . . 58

5.13 Part of raw data of Dairy (E.coli) data set. . . . . . . . . . . . . . 62

5.14 Plot of the lower bounds of logMIC-CEFTIF vs. visit with fitted loess lines

for Dairy (E.coli) data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.15 Plot of connecting median lower bound of logMIC_CEFTIF of each visit of

each farm vs. visit for different farm. . . . . . . . . . . . . . . . . . 64

5.16 Residual plot of model [Y] = VISIT GROUP(C) VISIT x GROUP 66

Xlll



Chapter 1

Introduction

The British Columbia Ministry of Agriculture and Lands (BCMAL) has initiated several

projects to measure the anti-microbial resistance of bacteria found in chickens, swine, cattle,

and other livestack. Data have been collected for the past several years on the bacteria

Escherichia coli, Salmonella sp., Campylobacter sp. and Enterococcus sp.

The sampling design is complex and depends upon the animal being tested. For example,

51 dairy calves on 26 farms were enrolled in the Dairy project. Four visits were made to

each farm to collect samples at 1-7 days of age; 14-28 days of age; 90-120 days of age; and

6-8 months of age. At each visit, one individual sample was taken from the enrolled calf,

one pooled sample from five calves of the same age, and one pooled sample from five cows.

Additionally, one sample was taken from the mother at the first visit, and one liquid calf

feed specimen was taken at the first, second, and third visits. A one-page questionnaire was

completed at each of the four visits and calf antibiotic treatments were recorded.

Samples were cultured and the resulting bacterial isolates were tested against an array

of anti-microbial agents at a variety of concentrations. For example, E.coli and Salmonella

bacterial cultures were tested in a highly mechanized fashion against an array of 17 anti­

microbial agents at a variety of concentrations (a total of 96 combinations of 17 anti­

microbials x 3-9 concentrations per agent) in a microtitre plate. The output from testing

one sample is a vector of MIC values for each anti-microbfal agent, as determined by the

broth microdilution method (NCCLS/CLSI - M7-A5).

For example, the array may contain the anti-microbial agent Ceftiofur at concentrations

of 0.12, 0.25, 0.50, 1, 2, 4 and 8 mg/L. A particular bacterial isolate may show inhibition

of bacterial growth at 2, 4 and 8 mg/L but growth at lower concentrations. The reported

1





Chapter 2

Models for the data

The analysis of the MIC data has several goals. What is the relationship between the MIC

and other explanatory variables such as the type of farm operation, visit, or the age of

animal? How can the precision for the estimated parameters be found? How can trend lines

be fitted with censored data?

Several assumptions, which are common for these types of data (Lee and Whitmore,

1999), will be used in the analyses.

1. Tests are carried out without measurement error.

2. Tests are monotonic in the sense that if inhibition is detected at concentration G, then

it is detected at any G', where G' > G.

3. The unknown MIC value of the anti-microbial agent, when tested against a bacteria,

has a log-normal distribution.

The logarithm of the MIC value, then, gives a normally distributed random variable that

we denote by Y = log(MIC). Hence Y has the normal distribution Y rv N(fL, 0'2) where fL

and 0'2 > 0 are the unknown mean and variance parameters. The mean fL may depend upon

covariates. These parameters are the quantities that we wish to estimate.

3



CHAPTER 2. MODELS FOR THE DATA 4

2.1 Model for data with no censoring and with no random

effects acting upon the mean response

If the exact MIC value is measured, and if all the explanatory variables are fixed effects, the

analysis would proceed using the Ordinary Linear Model (OLM):

y = X,8+E

where Y is an n x 1 response vector, X is an n x p predictor matrix, ,8 is an unknown p x 1

regression coefficient vector, p is the number of regression coefficients, and E is a noise term

for the model which is multivariate normal MVN(0,o-2In), where In is the n x n identity

matrix. Estimates are available in closed form, and are discussed in standard text books

(Kutner et al., 2004) on regression. Standard software (e.g., SAS (SAS Institute 2008)

(PROC REG, PROC GLM), R (R Development Core Team. 2008) (package LM, GLM))

can be used to obtain estimates.

2.2 Model for data with no censoring, but with random ef­

fects acting upon the mean response

If the MIC value is non-censored, but some of the explanatory variables are random effects,

this leads to the standard linear mixed model

Y= X,8+Z"'Y+ E

where "'Y is a vector of random effects that affect the mean response through the design

matrix Z, and "Ii is distributed as N(O, o-~) where "Ii is the i th element of "'Y. Again, the

analysis is standard (Dobson, 2002). Standard software (e.g., SAS (PROC MIXED), R

(package Ime4)) can be used to obtain estimates.

2.3 Model for data with censoring but with no random effects

acting upon the mean response

When the MIC value is censored (as in these experiments), the exact value of the MIC is

unknown; only an interval containing the MIC is known. Ordinary least squares cannot be
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used; instead tobit regression (Long, 1997) is used and estimation is done using maximum

likelihood methods.

Let T I , T2 , ... , Tm represent the concentrations available in the array for the anti-microbial

agents, with To = 0, Tm+1 = 00, T i < Ti+I' Vi E {O, 1,2, ... , m}. The likelihood function is

given by

m+1

L = II [8(Ti-I) - 8(Ti)]I;
i=1

where Ii is the number of samples with the MIC value between Ti- I and Ti, 8(Ti) = Pr(T>

) (
log Ti - J1i) () ( (I JX (2)T i = 1 - <I> a ,8 To = 1,8 Tm+d = 0, <I> x) = "f2ir _ooexp -~ du is

cumulative distribution function for the standard normal distribution with J1 = °and a =
1, and

It = X{3

Estimates are not available in closed form and standard numerical methods must be used.

Standard software (e.g., SAS (PROC LIFEREG), R (package KMsurv)) can be used.

2.4 Model for data with censoring and with random effects

acting upon the mean response

When the MIC value is censored and some of the explanatory variables are random effects,

the analysis becomes more complicated.

A random-effect tobit model (Long, 1997) could be used and it has a likelihood of

where

but now

It = X{3 + Z,

where, is a vector of random effects, "Ii is distributed as N(O, a;), and "Ii is the i th element

of -y.
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Likelihood estimation is intractable because of the need to integrate over the random

effects in fL.

What happens if the random effects are ignored in the modeling process? The model,

the analysis, and the conclusions may not be correct. For example, in many situations, if

random effects are ignored, the variance of the response variable is understated. Estimates

can be unbiased, but the estimated standard errors will typically be too small. Test statistics

based on the wrong standard error will typically lead to false positive results, i.e., claiming

an effect when none really exists.

In these situations, a Bayesian analysis is often performed and Markov chain Monte

Carlo (MCMC) methods are used to "integrate" over the random effects. The Bayesian

model has the same likelihood of

m+l [ ] Ii
L = g 1(S(7i-d - S(Ti )) Jh)

and

but adds the prior distributions for the parameters

(3i '" N(O,(T~J i = 1, ... p and

r '" N(O, (T~)

(T~ '" GAMMA(a, b)

where p is the number of regression coefficients, and (T~i and a, b are assumed to be known.

Priors are usually chosen based on previous knowledge (e.g., the results of earlier studies).

In our study, this form of the priors is chosen as above because these are standard priors

for these types of data.

WinBUGS (Lunn et al. 2000) software, an interactive Windows version of the BUGS

(Bayesian inference Using Gibbs Sampling) program for Bayesian analysis of complex sta­

tistical models using MCMC techniques, can be used for inference in these models.

2.5 Model notation

Despite having different types of models, we can define a standard notation to describe

models in terms of how they fit the data. This notation is similar to that used in linear
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models.

Let
Y represent the logMIC if known exactly

[V] represent the logMIC if censored with the censoring bounds implicitly known

X represent a linear fixed effect (such as a straight line)

X(C) represent a fixed classification effect (such as different groups)

X(R) represent a random linear effect (rarely used)

X(C)(R) represent a random classification effect

7

Nesting and crossing of effects are denoted in the usual way. For example, consider an

experiment where there are two TYPES of farms (e.g., different husbandry practices). At

each of several VISITS, equally spaced apart, a sample of fecal matter is obtained, bacteria

isolated, and the MIC obtained as outlined in the introduction. A potential model for this

experiment would be

[V] = TYPE(C) FARM(TYPE)(R) VISIT TYPE(C) x VISIT

This model means the dependent variable is logMIC, which is censored. The explanatory

variables are TYPE (classification), FARM (random effect, nested within TYPE), VISIT

(linear), and an interaction term between TYPE and VISIT (e.g., the linear effect is different

for each type of farm).



Chapter 3

Illustrative analyses

Simulated data will be used to demonstrate the use of various computer packages for the

different models discussed in Section 2. For each model type, the parameter values used to

generate the data and the estimates from two types of analysis are presented.

Why do we use simulated data? The first reason is that the real data is limited in size;

for example, actual sample sizes range from 323 to 519. The simulated data have sample

sizes ranging from 1000 to 2000. With large sample sizes, the results are sufficiently precise

that any approximate bias in the estimates can be determined.

The second reason is that a simulation can demonstrate the robustness of the algorithm

used in this analysis. If the methods used are robust, then the result from a simulated data

set should be similar or consistent with the true parameter values.

The analysis procedure is as follows. Different models will be used to generate simulated

data and estimates will be obtained using maximum likelihood (implemented with SAS

PROC LIFEREG) and a Bayesian approach (implemented with WinBUGS). The advantage

of SAS PROC LIFEREG is that it is the only procedure in SAS that can handle interval

censoring data; the disadvantage is that it is not designed to work with random effects

models. The Bayesian approach can deal with complicated models that include mixed

effects model, but priors need to be specified and the implementation is not as simple as it

is in SAS PROC LIFEREG.

What type of data is simulated? The general scenario is that multiple measurements are

taken over several VISITS from FARMS of two TYPES, VISIT is the number of times that

farms were being visited. We start with the simplest model [V] = VISIT, where logMIC

is only related to VISIT. Then we add a variable for the TYPE of farm, and the model

8



CHAPTER 3. ILLUSTRATIVE ANALYSES 9

becomes [Y] = VISIT TYPE(C), i.e., 10gMIC is related to VISIT and TYPE. When VISIT

is a classification variable, we have another model. Last, we add a random FARM effect, and

the model becomes [V] = VISIT TYPE(C) FARM(TYPE)(R), where 10gMIC is related to

VISIT, TYPE and FARM.

The following sections are arranged in the order of the models used. For each model,

we will describe the simulation experiment, present the fitted line and raw data on a graph,

and summarize the simulation results.

3.1 VISIT linear, no TYPE and no FARM effects

In this simulation experiment, separate farms of the same type are measured at each of five

VISITS. Consequently, the farm effects are confounded with measurement error. The total

sample size is 1000. The concentrations of the anti-microbial are predetermined at 0.25,

0.5, 1, 2, 4 mg/L, which imply that the censoring intervals are: (log(O)=-oo, log(0.25));

(log(0.25), log(0.5)); (log(0.5), 10g(1)); (log(l), log(2)); and (log(4), log(oo)=oo). Once the

observed true MIC value is simulated, the interval that contains the true value is then used

to represent the 10gMIC value obtained.

The simplified syntax for the model of this experiment is

[V] = VISIT

The true model is

Yi = 1.3 + 0.86visiti + Ei

Ei rv N (0,22
), visiti is the number of visit to ith observation.

Figure 3.1 shows the raw data and the fitted line. The line doesn't seem to fit the data

in the figure, because (a) only the lower bound of each 10gMIC was plotted, and (b) the

largest concentration of anti-microbial used was 4, so all the 10gMICs that exceed 4 are

represented as > log 4.
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CHAPTER 3. ILLUSTRATIVE ANALYSES 11

Table 3.1 summarizes the simulation results. All the estimates are close to the true

parameter values, indicating that censored data provide sufficient information to estimate

the parameters reliably if the sample size is sufficiently large.

Intercept Effect of VISITS Standard deviation
of random noise

/30 (SE) /3visit (SE) a (SE)
True Value 1.30 0.86 2.00
MLE 1.32 (0.21) 0.80 (0.09) 2.05 (0.15)
APE 1.32 (0.21) 0.78 (0.08) 2.01 (0.12)

Table 3.1: True values and estimates of parameters from model [Y]=VISIT. Estimates are
Maximum Likelihood Estimates (MLE) and Bayesian Average Posterior Estimates (APE).
Numbers in brackets state the standard errors for the MLEs or the standard deviations for
the APEs.

3.2 VISIT linear, TYPE classification, no FARM effect

In this simulation experiment, separate farms of two TYPES are measured at each of five

VISITS. The farm effects are again confounded with measurement error. The total sample

size is 1000. The same anti-microbial concentrations as in Section 3.1 are used.

The simplified syntax for the model of this experiment is

[V] = TYPE(C) VISIT

The true model is

Yi = 0.3 + 0.8visiti + fi for farms of type=1

Yi = 0.8 + 0.8visiti + fi for farms of type=2

fi '" N(O, 22
)

Figure 3.2 shows the raw data and the fitted lines. The two fitted regression lines are

parallel. This is consistent with the true relationship between the two types.
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CHAPTER 3. ILLUSTRATIVE ANALYSES 13

Table 3.2 summarizes the true values and the estimates of the parameters. All the

estimates are close to the true parameter values, indicating that censored data provides

sufficient information to estimate the parameters reliably, if the sample size is sufficiently

large.

Intercept Effect of TYPE Effect of VISITS Standard deviation
of type=2 of FARM of random noise
(30 (SE) (3type, - (3type2 (SE) (3visit (SE) (J" (SE)

True Value 0.80 -0.50 0.80 2.00
MLE 0.78 (0.21) -0.45 (0.18) 0.79 (0.08) 2.09 (0.12)
APE 0.79 (0.21) -0.46 (0.18) 0.79 (0.08) 2.10 (0.12)

Table 3.2: True values and estimates of parameters from model [Y]=TYPE(C) VISIT.
Estimates are Maximum Likelihood Estimates (MLE) and Bayesian Average Posterior Esti­
mates (APE). Numbers in brackets state the standard errors for the MLEs or the standard
deviations for the APEs.

3.3 VISIT classification, TYPE classification, no FARM ef­

fect

In this simulation experiment, separate farms of two TYPES are measured at each of five

VISITS. VISIT is treated as a classification effect. The farm effects are confounded with

measurement error. The total sample size is 2000. The same anti-microbial concentrations

as in Section 3.1 are used.

The simplified syntax for the model of this experiment is

[Y] = TYPE(C) VISIT(C)

Table 3.3 gives the parameters for the true models of each type and visit.

Figure 3.3 shows the raw data and the fitted lines. The two fitted regression lines are

parallel. This is consistent with the true relationship between the two types.
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Type1 Type2
Visit1 Yi=3.0+Ei Yi=3.5+Ei
Visit2 Yi=2.8+Ei Yi=3.3+Ei
Visit3 Yi=2.4+Ei Yi=2.9+Ei
Visit4 Yi=2.1+Ei Yi=2.6+fi
Visit5 Yi=3.1+Ei YF3.6+Ei

fi rv N(O, 2:t)

Table 3.3: True model for the simulation of the model [Y]=TYPE(C) VISIT(C).

14



~ ~ '"0 ~ ~ ~ t:1 t-< 53 ~ ~ ~ ~ ~ ~ t-< ~ ?2

6

'.

",
-

5

~*'
'"

;
/

/
/
'

.
/
-
/
"

4

~
,

~
-
-

--
-
--

..
-'

"-
'

3*
','

:i1
=

~_
:\

~{:
f::

't-
•

i!
.

:
~

<I
f

:-t
'1

'

'-
."

2

•

~.
,

.,
.'

.
.,.

."
+
~

•.
-.

",.. -'.,
m

-
-

--
...

.
--

-.
.

"
'
-
-

-
-
..

.
-
-

----
--

--
----

---
-

-
--

--

.
~
.

6 5

u
4

- :::
;; C
1'

0

3

- 0 ""
0

2
<:

:
:::

:I

0
...

.C
l .... d
)

;;<
:

0 ..
.J

0

-1 -2
1 0

V
is

it

F
ig

ur
e

3.
3:

P
lo

t
of

th
e

lo
w

er
bo

un
ds

(s
ta

r
fo

r
fa

rm
s

of
T

Y
P

E
=

l,
d

o
t

fo
r

fa
rm

s
of

T
Y

P
E

=
2

)
of

si
m

ul
at

ed
d

at
a

fr
om

th
e

m
od

el
[V

]=
T

Y
P

E
(C

)
V

IS
IT

(C
)

w
it

h
fi

tt
ed

re
gr

es
si

on
li

ne
s

(d
as

he
d

li
ne

fo
r

fa
rm

s
of

T
Y

P
E

=
1,

so
li

d
li

ne
fo

r
fa

rm
s

of
T

Y
P

E
=

2
).

V
al

ue
s

ar
e

ji
tt

er
ed

to
av

oi
d

ov
er

pl
ot

ti
ng

.
V

al
ue

s
of

T
Y

P
E

=
l

w
er

e
ji

tt
er

ed
to

le
ft

of
vi

si
t.

V
al

ue
s

of
T

Y
P

E
=

2
w

er
e

ji
tt

er
ed

to
ri

gh
t

of
vi

si
t.

A
nt

i-
m

ic
ro

bi
al

co
nc

en
tr

at
io

ns
us

ed
w

er
e

0.
25

,
0.

5,
1,

2,
4

m
g

jL
.

>
-'

Cl
1



CHAPTER 3. ILLUSTRATIVE ANALYSES 16

Table 3.4 summarizes the true values and the estimates of the parameters. Some esti­

mates are not close to the true parameter values, but the 95% confidence intervals still cover

the true values.

Intercept Effect of TYPE Efl'ect of VISITS Standard deviation
of type=2 visit=5 of FARM of random noise
(30 (SE) (3typq - (3tYPe2 (SE) (3visit\ - (3visit5 (SE) (T (SE)

(3visit2 - (3v isit 5 (SE)
(3visit3 - (3visit5 (SE)
(3visit4 - (3visit5 (SE)

true value 3.60 -0.50 -0.10 2.00
-0.30
-0.70
-1.00

MLE 3.61 (0.19) -0.46 (0.12) -0.18 (0.20) 2.04 (0.08)
-0.41 (0.20)
-0.74 (0.20)
-1.15 (0.20)

APE 3.62 (0.20) -0.46 (0.12) -0.17 (0.21) 2.06 (0.08)
-0.40 (0.21)
-0.73 (0.20)
-1.14 (0.20)

Table 3.4: True values and estimates of parameters from model [Y]=TYPE(C) VISIT(C).
Estimates are Maximum Likelihood Estimates (MLE) and Bayesian Average Posterior Esti­
mates (APE). Numbers in brackets state the standard errors for the MLEs or the standard
deviations for the APEs.

3.4 VISIT linear, TYPE classification, FARM random effect

(big)

In this simulation experiment, separate FARMS of two TYPES are repeatedly measured

at each of five VISITS. For each farm type, there are 20 farms, and each farm has 10

replications. The total sample size is 2000. We assume the farm effect is normally distributed

with mean zero and is treated as a random effect. In this simulation, the farm effect has

a variance much larger than the variance of the random noise. The same anti-microbial

concentrations as in Section 3.1 are used.

The simplified syntax for the model of this experiment is

[Y] = TYPE(C) VISIT FARM(R)
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The true model is

Yi = 1.5 + 0.5visiti + farm.effecti + Ei for farms of type=l

Yi = 0.5 + 0.5visiti + farm. effecti + Ei for farms of type=2

farm.effect i rv N(O, 1.52
)

Ei rv N(O, 12
)

17

The MLE and Bayesian are different in this case because the SAS implementation of the

ML~ model cannot easily include the farm random effect.

The MLE model is

[V] = TYPE(C) VISIT

The model for the Bayesian analysis is

[V] = TYPE(C) VISIT FARM(R)

The prior distributions are: f3o(intercept) rv N(O,lO), f3.type rv N(O,lO), f3.visit rv

N(O, 10), Ty rv GAMMA(O.l, 0.01) and Ty = 1/0"2, Tfarm rv GAMMA(O.l, 0.01) and Tfarm =

l/O"Jarm'

Figure 3.4 shows the raw data and the fitted regression lines from the MLE and Bayesian

analyses. The two analysis procedures give similar fitted lines and the fitted regression lines

for the different type of farms are parallel. This is consistent with the true relationship

between the two types.



~ t"
' ~ ~ ~ ~ ~ ~ ~ t"
' ~ ~@ ~ "tl ~ ~ ~

6
5"

*"
n

~
.
.

~t
~

,
,
'

4'."
"'.

-

'.

~.
l'

:
t
~

fl
o~

""
:!:

,;

;:
~.

:~
.

3

,.t
,
~ ..

.'t
.

..
..

,

.-
-

.-
-

~
-
~
-
~
~
~
-
-
-
-
-
­

-
:
:
:
:
-
~
~
-

---
---

...,
....

---
--

'- .,J.
";

:
~
~

:

2

~.;
l

'
"

.:J
.

·t
~:

~
"..

----
----

-.
-
-

~
-
-
-
-
-
-
-

\
l
:
~

~
.•i

I
;i::

..,
",
f,
t:
::
,~
,

."\'
0

t-
-~
'
'
i

~
1
·
'

'",

---
---

~
-

---
-.

---
-
-

.-
-

~..,
.;:;

::;:
:-.:

:.-
--

::
::

~~
-~

--
--

--
-
-

--:
::.
~

~-
~

::
;:
::
::
::
.-
-~
~-
=-
--

-
~
~
~
;
.
.
-
-
_
:
'
-
-
-
-
-
~
-

6 5

u
4

- :::
;; cr
o

0

3

- 0 ""
0

2
<:

:
::

:J 0 ..
.0 ..... d
)

;l
:

0 -
-
l

0

-1 -2
I 0

V
is

it

F
ig

ur
e

3.
4:

P
lo

t
of

th
e

lo
w

er
bo

un
ds

(s
ta

r
fo

r
fa

rm
s

of
T

Y
P

E
=

l,
d

o
t

fo
r

fa
rm

s
of

T
Y

P
E

=
2

)
of

si
m

ul
at

ed
d

at
a

fr
om

th
e

m
od

el
[Y

]=
T

Y
P

E
(C

)
V

IS
IT

F
A

R
M

(R
)

w
it

h
fi

tt
ed

re
gr

es
si

on
li

ne
s

fr
om

th
e

M
L

E
m

et
h

o
d

(s
ol

id
li

ne
s,

u
p

p
er

li
ne

fo
r

fa
rm

s
o

f
T

Y
P

E
=

1,
b

o
tt

o
m

li
ne

fo
r

fa
rm

s
of

T
Y

P
E

=
2

)
an

d
th

e
B

ay
es

ia
n

an
al

ys
is

(d
as

he
d

li
ne

s,
up

pe
r

li
ne

fo
r

fa
rm

s
of

T
Y

P
E

=
1,

b
o

tt
o

m
li

ne
fo

r
fa

rm
s

of
T

Y
P

E
=

2
).

V
al

ue
s

ar
e

ji
tt

er
ed

to
av

oi
d

ov
er

pl
ot

ti
ng

.
V

al
ue

s
of

T
Y

P
E

=
l

w
er

e
ji

tt
er

ed
to

le
ft

of
vi

si
t.

V
al

ue
s

o
f

T
Y

P
E

=
2

w
er

e
ji

tt
er

ed
to

ri
gh

t
of

vi
si

t.
A

nt
i-

m
ic

ro
bi

al
co

nc
en

tr
at

io
ns

us
ed

w
er

e
0.

25
,

0.
5,

1,
2,

4
m

gj
L

.

>
-'

0
0



CHAPTER 3. ILLUSTRATIVE ANALYSES 19

Table 3.5 summarizes the true values and the estimates of the parameters. Because

a simple MLE analysis (SAS PROC LIFEREG) ignores random effects, the farm effect is

"confounded" with error, so the estimate of (j is inflated. The Bayesian analysis (WinBUGS)

gives a closer estimate of the farm effect and a closer estimate of (j than the Maximum

Likelihood method.

The standard errors of the MLEs are generally smaller than the Bayesian posterior stan­

dard errors, which is reasonable because Bayesian inference incorporates prior uncertainty

and other sources of uncertainty.

The estimate of (j from the Bayesian analysis is still a poor estimate. When the simulated

true 10gMIC is 2:log(4), the censoring implies that the lower bound is log(4) but the upper

bound is 00. For example, from Figure 3.4 we can see when visit is 5, most lower bounds

gather around log(4). Information about the data is lost. Consequently, it is difficult to get

a precise estimate of (j.

Intercept Effect of TYPE Effect of Standard deviation of Standard deviation
of type=2 of FARM VISITS random FARM effect of random noise
(30 (SE) (3type, - (3tYPe2 (SE). (3visit (SE) I7farrn (SE) 17 (SE)

True value 0.50 1.00 0.50 1.50 1.00
MLE 0.52 (0.11) 1.17 (0.10) 0.47 (0.04) - 1.61 (0.06)
APE 0.60 (0.28) 1.14 (0.10) 0.49 (0.04) 1.21 (0.23) 1.34 (0.05)

Table 3.5: True values and estimates of parameters from model [Y]=TYPE(C) VISIT
FARM(R). Estimates are Maximum Likelihood Estimates (MLE) and Bayesian Average
Posterior Estimates (APE). Numbers in brackets state the standard errors for the MLEs or
the standard deviations for the APEs.

3.5 VISIT linear, TYPE classification, FARM random effect

(small)

In this simulation experiment, separate FARMS of two TYPES are repeatedly measured

at each of five VISITS. For each farm type, there are 20 farms, and each farm has 10

replications. The total sample size is 2000. The farm effects are again random effects but the

farm effects are now small relative to random noise. The same anti-microbial concentrations

as in Section 3.1 are used.
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The simplified syntax for the model of this experiment is

[V] = TYPE(C) VISIT FARM(R)

The true model is

Yi = 1.5 + 0.5visiti + farm.effecti + Ei for farms of type=1

Yi = 0.5 + 0.5visiti + farm. effecti + Ei for farms of type=2

farm. effecti rv N (0,0.1 2
)

Ei rv N(O, 12 )

20

The models used for the analysis are the same as in Section 3.4.

Figure 3.5 shows the raw data and the fitted regression lines from the MLE and Bayesian

analyses. The two analysis procedures give almost the same fitted lines and the fitted

regression lines for the different types of farms are parallel. This is consistent with the true

relationship between the two types.

Table 3.6 summarizes the true values and the estimates of the parameters. When the

farm random effect is small, as in this case, the MLE and Bayesian analyses give similar

estimates. The Bayesian approach also gives a close estimate of the random effects. This

is not unexpected as Bayesian models for data with small random effects should behave

similarly to MLE models where the small random effects are ignored.

Intercept Effect of TYPE Effect of Standard deviation of Standard deviation
of type=2 of FARM VISITS random FARM effect of random noise
(30 (SE) (3tYP€l - (3type2 (SE) (3visit (SE) (jja1'm (SE) (j (SE)

True value 0.50 1.00 0.50 0.10 1.00
MLE 0.56 (0.08) 0.99 (0.08) 0.48 (0.03) - 1.01 (0.04)
APE 0.56 (0.09) 1.00 (0.08) 0.49 (0.03) 0.12 (0.04) 1.03 (0.04)

Table 3.6: True values and estimates of parameters from model [Y]=TYPE(C) VISIT
FARM(R). Estimates are Maximum Likelihood Estimates (MLE) and Bayesian Average
Posterior Estimates (APE). Numbers in brackets state the standard errors for the MLEs or
the standard deviations for the APEs.
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3.6 Summary of simulation results

22

The simulation results support our supposition that when the sample size is large, the

maximum likelihood method and Bayesian analysis give similar estimates. The analysis

methods also appear to be comparable for a variety of models. This implies that for different

types of data, the two methods used are robust.

The simulation results also demonstrate that the Bayesian method can be used in the

presence of random effects. When random effects are small relative to random noise, the

MLE method also works well, because a model with small random effects will behave simi­

larly to a model that ignores the random effects.

The simulation study still has some limitations. For example, it does not simulate a

model that contains interaction terms between effects, nor does it simulate data with small

sample sizes.



Chapter 4

Model building, selection and

diagnostics

Any statistical model should reflect the experimental structure of the data. The procedure of

finding a "good" model is as follows: model building ---+ model selection ---+ model assessment.

4.1 Model building

Model building starts with a set of candidate effects for the experiment. First, we need to

determine which effects and types of relationships should be included in the model. This

depends upon how the data are collected, information about likely explanatory variables

obtained, and can be aided by some preliminary plots.

Figure 4.1: Portion of the Avian data set

23
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As an example, the Avian data set will be used to illustrate how to build a starting

model. A portion of the raw data is shown in Figure 4.1.

The sample protocol for the Avian project is that five visits are made to each farm of

two diet types; nine farms used a medicated commercial ration, while two other farms used

a vegetarian, non-medicated diet. From each sample collected, 5 or 10 bacterial colonies or

"strains" were selected for inoculation onto anti-microbial plates. The sample Id-number,

Farm, Visit, Strain, Type, and MIC values were recorded.

Based on the sample protocol, farm, visit, strain and type may be potential explana­

tory variables. Straini to straini0 are replicated readings from same sample (i.e., pseudo­

replicates). Visit refers to the sampling time, that is relative to the age of the animals.

Type refers to the type of diet. Farm refers to where these samples come from. The last

three variables are considered to be potential explanatory variables for the MIC value so

they should be included in the model.

In this experiment we are only interested in the two specific diet types, so type is treated

as a fixed effect. Similarly, visit is also pre-determined; it is also a fixed effect. Farm is

generated from a large population of farms, the level of farms cannot be repeatedly chosen.

If the experiment were to be repeated, the same levels of visit (age of animals) and type

could be chosen while a new set of levels of farm would be chosen, so farm effect is treated

as a random effect.

Figure 4.2 is a plot of the lower bound of 10gMIC of CEFTIF (Ceftiofur, one of the anti­

microbial agents used in the Avian project) vs. visit, with a simple loess line (connecting

the mean lower bound value of every visit) for different types of farms.

The plot reveals some useful things. The two simple loess lines do not appear to be

parallel, which indicates that an interaction between type and visit may exist.

Figure 4.3 is a plot of the farm effects. It is drawn by connecting the median lower

bound of the logMIC of each visit of each farm. From the plot, we can see some farms have

higher median lower bound of 10gMIC than other farms. This implies that a farm effect

may exist and may be large.

After examining the raw data and the plots of the data, it is clear that the initial model

needs to include terms for the effects of farm, visit and type.
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4.2 Model selection

27

Once the base model is determined, there is still the question of whether other models are

more suitable. For example, is there evidence that interaction terms are large? Is there

evidence that the slope of the relationship between variables is different than zero? Are

random effects large?

A natural way to compare models is to use a criterion based on a trade-off between the

fit of the data to the model and the corresponding complexity of the model. Likelihood

models and Bayesian models have different but similar criteria based on this principle.

4.2.1 Likelihood Model

Akaike's information criterion (AIC) is a model selection criterion for likelihood models

(Burnham et al. 2002). This statistic trades off goodness of fit (measured by the maximized

log-likelihood) against model complexity (measured by p, which is the number of parameters

in each model under consideration). Comparisons between a number of possible models can

be made on the basis of the statistic

AlC = -2 x log(maximum likelihood) + 2p

The AIC penalizes models for adding parameters. The model with the smallest AIC value

is chosen to be the best model.

AICc is AIC with a second order correction for small sample sizes n. It is defined as:

Alec = AlC + 2p(p + 1)
n-p-l

Since AICc converges to AIC as n gets large, AICc should be employed regardless of sample

size.

In practice, it is impossible to explain all relationships between variables using a sin­

gle model. For example, consider a case where two models are fitted to some biological

data. Model Ml may be statistically superior to model M2, but model M2 is more biolog­

ically meaningful than model MI. In this case, model averaging is introduced to generate

model averaged estimates (Burnham and Anderson, 2002). We use .6.AlCc to represent the

difference in AICc between model and the model with the smallest AICc value.

Table 4.1 is an example of model averaging procedures. Suppose model Ml, M2 and M3

are possible models of an experiment, and n = 100 is the sample size. Let's use Ml, M2
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and M3 to demonstrate the details of the calculations.

The process is as follows: fit model ---+ get log(Maximum likelihood)---+ calculate Ale

and AICc ---+ calculate Weight and Normalize weight---+ calculate model averaged estimates.

Log(maximum likelihood) is obtained by using the MLE method. For example, if SAS

PROC LIFEREG is used to analyze the data set, the program will automatically give the

Log(maximum likelihood).

p is the number of parameters in the model.

The AIC is calculated by AIC = -2 x log(maximum likelihood) + 2p. For example,

the AIC for M3 is -2 x (-210) + 2 x 4 = 428.00.

The AICc is calculated by AICc = AIC+ ~~~? The AICc for M3 is 428+ 2~0~_~~;) =

428.41; The AICc for Ml and M2 were obtained similarly. Of the three models, M3 has the

minimum AICc 428.41.

The ~AlC is calculated by AICc - minimumAICc, which is 444.12 - 428.41 = 15.71

for Ml, 436.24 - 428.41 = 7.83 for M2, and 428.41 - 428.41 = 0 for M3.

The model averaged weight is calculated by weight = exp( -0.5 x ~AIC) = exp(­

0.5xI5.71)=0 for Ml, exp(-0.5x7.83)=0.02 for M2, and exp(-0.5xO)=1 for M3.

Th 1· d . ht· 1 ltd b l . d . ht weight 0 0e norma lze welg IS ca cu a e y norma 2ze we2g = sum(weight) = 0.00+0.02+1.00

for Ml, 0.00+g:g~+1.00 0.02 for M2, and 0.00+b:g~+1.00 0.98 for M3.

From the output of the computer program, we can get the estimates for parameter S

and the corresponding standard errors.

The model averaged estimate of S, which is S, is calculated by L estimate x normalize weight.

For example, it would be =7 x 0.98 + 6 x 0.02 + 5 x 0 = 6.98.

The model averaged estimate of the standard error for S is the estimate of the uncondi­

tional standard error. It is defined as L normalize weight x )var(S) + (S - S)2. For this

example, the calculation would be =Ox )1.002 + (5.00 - 6.98)2+0.02x )1.502 + (6.00 - 6.98)2+

0.98 x )2.002 + (7.00 - 6.98)2 = 0 x 2.22+0.02 x 1.79+0.98 x 2.00 = 0+0.04+ 1.96 = 2.00.

4.2.2 Bayesian Model

Spiegelhalter et al. (2002) proposed a Bayesian model comparison criterion. The Deviance

Information Criterion (DIC) is defined as

DIC = "goodness of fit" + "complexity"
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Model Ml M2 M3
Log(maximum likelihood) -220.00 -215.00 -210.00
P 2 3 4
AIC 444.00 436.00 428.00
AICc 444.12 436.24 428.41
~AIC=AICc-smallest AICc 15.71 7.83 0.00
Weight=exp(-0.5~AIC) 0 0.02 1.00
N l' W' h wetqht 0 0.02 0.98orma lze elg t= sum(weiqht)

Estimate of S 5.00 6.00 7.00
SE of estimate 1.00 1.50 2.00
Model averaged estimate of S S=6.98
Unconditional standard error SE=2.00

Table 4.1: Example of model averaging

29

"Goodness of fit" is measured by the deviance, where deviance is defined as D(0)

-2IogL(dataIO), that is -21og(likelihood).

Complexity is measured by an estimate of the effective number of parameters defined

as PD = D - D(1J), i.e., the posterior mean deviance minus the deviance evaluated at the

posterior mean of the parameters.

Sometimes PD is a fractional number, because D and D(1J) are not always integers. In

a random effect model, PD can be a negative number. This happens when there is either a

substantial conflict between the priors and the data or when the posterior distribution for

a parameter is extremely asymmetric.

The DIC is defined analogously to AIC as

DIC=D+PD

The model with the smallest DIC is chosen as the model that would best predict a

replicate dataset with the same structure as that currently observed. The model that has

the minimum DIC will make the best short-term predictions. The DIC has the same spirit

as Akaike's criterion.

It is difficult to say what would constitute an important difference in DIC. Very roughly,

differences of more than 10 might definitely rule out the model with the higher DIC, differ­

ences between 5 and 10 are substantial, but if the difference in DIC is, say, less than 5, and
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the models make very different inferences, then it could be misleading just to report the

model with the lowest DIe. In this case, estimates from both models should be reported.

Bayes factor (BF) is often used for comparing two models. It is defined as the ratio of

the marginal likelihood under one model to the marginal likelihood under a second model.

If we observe Yobs and have 2 models, M I and M2, then the Bayes Factor is

BF = p(YobslMd = J p(OIIMI)p(Yobsl(h,Mdd(h
p(Yobs IM2) J p(02IM2)p(YobsI02, M2)d02

where p(YobsIMi ) is called the marginal likelihood for model i. This provides the relative

weight of evidence for model M I compared to model M2. Roughly, a BF of more than

150 gives strong evidence to keep M I , a BF of between 12 and 150 is substantial, a BF of

between 3 and 12 gives some evidence for M I against M 2 , and a BF of between 1 and 3

gives weak evidence for M I against M 2 .

4.3 Model checking

Once we have accomplished the first two steps of a data analysis - constructing models

and selecting among models, we still need to assess the fit of the model to the data. It is

difficult to include all of one's knowledge about a problem in one model, so it is wise to

investigate what aspects of reality are not captured by the model.

4.3.1 Likelihood model

When searching for a parametric model that fits the data well, there are many methods

of model checking. Graphical displays are the most useful method to check a model's

appropriateness.

An important assumption in regression analysis is that the residual errors, the devia­

tions of the observed values of the response from their expectations, are independent and

identically distributed with a mean of zero. This assumption can be verified by viewing

residual plots. Independence among observations is often checked by plotting residuals vs.

the order of observation. If observations are correlated, we expect to find residuals exhibiting

dependence over time.

Residual plots for censored data are constructed similarly as for non-censored data. The

only difference is that we plot a residual interval instead of a residual. A residual interval is
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an interval with a lower bound equal to the difference between the predicted data and data's

lower bound, and an upper bound equal to the difference between the predicted data and

the data's upper bound. For example, in our experiment the lower bound of the residual

interval equals the lower bound of the 10gMIC minus prediction, and the upper bound of

the residual interval equals the upper bound of the 10gMIC minus prediction. We know the

true value is within an interval, so the true residual is also within an interval.

4.3.2 Bayesian model

There are several diagnostics used for Bayesian model checking: chain convergence, Bayesian

p-values and posterior predictive checking.

Chain convergence refers to the idea that eventually the Gibbs Sampler or other MCMC

technique will reach a stationary distribution. After the model has converged, samples from

the conditional distributions are used to summarize the posterior distribution of parameters

of interest.

Trace plots of parameter values against iteration numbers can be very useful in assess­

ing convergence. A trace plot indicates whether the chain has converged to its stationary

distribution. If convergence has not been reached, a longer burn-in period is often advis­

able. Those simulated values which are generated before the chain reaches its stationary

distribution should be discarded. A trace plot can also indicate whether the chain is mixing

well. A chain that mixes well traverses its posterior space rapidly, and it can jump from

one remote region of the posterior space to another in relatively few steps.

The Brooks-Gelman-Rubin (BGR) statistic (Brooks and Gelman, 1998) is another con­

vergence diagnostic. It uses parallel chains with dispersed initial values to test whether

they all converge to the same target distribution. Failure could indicate the presence of a

multi-mode posterior distribution (different chains converging to different local modes) or

the need to run a longer chain (burn-in is yet to be completed).

The BGR is computed as follows. The MCMC algorithm is run from J separate, equal­

length chains (J 2: 2) with starting values dispersed over the support of the target density.

Let L denote the length of each chain after discarding D burn-in iterates. For example,

suppose that the variable of interest is X, and its value at the tth iteration of the jth chain

is xJt
). Thus, for the jth chain, the D values xJO), ... , xJD-1)are discarded and the L values
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(D) (D+L-l) .
X j , ..• , X j are retamed. Then

L-1W + l.B
BGR = L L

W

32

where W represent the mean of the within-chain estimated variances, B represent the

between-chain variance. If all the chains are stationary, then both the numerator and

the denominator should estimate the marginal variance of X. As L ---. 00, VBGR ---.1. In

practice, when VBGR :::; 1.2 we think D and L are acceptable.

In a Bayesian context, a posterior p-value is the probability, given the data, that a future

observation is more extreme (as measured by some test statistics) than the data. If the model

fits, then replicated data generated under the model should look similar to observed data.

Our basic technique for checking the fit of a model to the data is to draw simulated values

from the posterior predictive distribution of replicated data and compare these samples

to the observed data. Any systematic differences between the simulations and the data

indicates potential failings of the model. A discrepancy function for the data is computed

for each simulated set and for the real data at the amount values of the parameters, and

then these two values are plotted against each other. If the model fits well, the points will

tend to fall along a reference line that has an intercept of 0 and a slope equal to 1.
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Real Examples

5.1 Avian data set (Avian plate)

In this project, 11 barns on 9 farms were visited. Fecal samples were collected on Day 0

(day the chicks arrived), and on approximately Day 10, Day 25, and Day 40 (just prior

to slaughter). In addition, a visit was made to the slaughter plant at the time the flock

(barn floor) of interest was being slaughtered, and carcass swab samples were collected. Two

barns used a vegetarian, non-medicated diet, while the 9 remaining barns used a medicated

commercial ration. From each farm visit, two pooled samples of 5-10 fresh fecal specimens

were collected from one floor of one barn on the farm (2 barns on farms where a vegetarian

diet was used). From each slaughter plant visit, two pooled samples of 10 carcass swabs were

collected. The bacteria colonies from each sample were inoculated onto Avian and National

Antimicrobial Resistance Monitoring System (NARMS) sensititre plates. The Avian plate

data set is the outcome of samples inoculated into Avian sensititre plates; the NARMS plate

data set is the outcome of samples inoculated into NARMS sensititre plates.

After samples were collected, the bacteria colonies from each sample were tested against

an array of 18 anti-microbial agents on Avian sensititre plates (Amoxycillin, Ceftiofur,

Clindamycin, Enrofloxacin, Erythromycin, Gentamycin, Neomycin, Novobiocin, Oxytetra­

cycline, Penicillin, Sarafloxacin, Spectinomycin, Streptomycin, Sulfadimethoxine, Sulfathi­

azole, Tetracycline, TrimethoprimjSulfamethoxazole, Tylosin Tartrate) and reported MIC

values were given. We will use the CEFTIF (Abbreviation of Ceftiofur) value as an example

to show how to analyse the data. The dilution series is 0.25, 0.5, 1, 2, 4 mgjL, representing

the different concentrations of the anti-microbial agent CEFTIF. Figure 5.1 presents some

33
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sample data from this experiment.

IdNumher Farm Visit Shain TYI)e
1-1-1-1 1 1 1 1

1 1 2 1
1 1 3 1

1 4 1

ENROFl ERYfH
<=0.12 >4
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Figure 5.1: Part of the raw data for the Avian data set. Column CEFTIF lists the reported
MIC values of anti-microbial CEFTIF.

Each of the reported MIC values are converted to a pair of numbers of either the form

(log(O), xx), (xxx/2, xxx), or (xxxx, (0), representing the intervals that contain the logMIC

values.

As outlined in Chapter 4, we decided that type, visit and farm should be included in

model.

Figure 5.2 presents a plot of logMIC (lower bound) vs. visit for different farm types with

simple loess lines.
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When the likelihood methods are used, we cannot include farm as a random effect in

our model. We will ignore the farm effect first, and then include it in our model when we

do a Bayesian model analysis.

Several models, named as Ml to M7, are fitted as summarized in Table 5.1. In terms of

the AICc criterion, support for model [Y] = VISIT(C) TYPE(C) VISIT x TYPE overwhelm

other models, and this model has dominant weight. Model Ml will be used to do further

analysis.

Model Log(maximum P AlCc D.AlC Normalized
likelihood) Weight

M1:[Y]=Visit(C) Type(C) Visitx Type -803.43 11 1629.44 0.00 0.97
M2:[Y]=Visit Type(C) -815.09 4 1638.27 8.83 0.01
M3:[Y]=Visit(C) Type(C) -812.12 7 1638.49 9.05 0.01
M4:[Y]=Visit Type(C) Visitx Type -814.70 5 1639.53 10.10 0.01
M5: [Y] =Type(C) -817.29 3 1640.63 11.20 0.00
M6:[Y]=Visit(C) -815.51 6 1643.20 13.76 0.00
M7:[Y]=Visit -818.76 3 1643.57 14.13 0.00

Table 5.1: Results of fitting different models to the Avian-CEFTIF data using maximum
likelihood estimation from PROC LIFEREG (SAS).

Figure 5.3 is the residual plot of M1. Residuals are scattered around 0 and no pattern

is apparent in the plot. This indicates that there is no evidence of lack of fit of model MI.



3
1

I
@ > "t

j t;5

II
I

~
:e

X
):

}:
SJ

l
2

1
-(I

]
J.JJ

"~~
~

~

il
'l~

III
~ t-<

:«
10

::<
;..:

,
'1in

n
r

E
"
~
~
:

"
I

"""
"

~
1

!jillII
III!

II
(I

Iill
11m

rII
I

~ t-<

III
t:rJ r:n.

~
0

0
- "" ~

~
I

11
11

11
11

11
11

11
III

11
11

1
I

I
I

11
11

11
11

1
I

x
l<

:«
lN

IK

-1
1

T
""

Im
II

B
r"

1
11

11
II

11
1I

1
:-

«

-2
I

I
I

I
I

I
I

I
i

o
2

3
4

5
6

V
is

it

F
ig

ur
e

5.
3:

R
es

id
ua

l
pl

ot
o

f
m

od
el

[Y
]

=
V

IS
IT

(C
)

T
Y

P
E

(C
)

V
IS

IT
x

T
Y

P
E

.
S

ym
bo

l
"X

"
on

th
e

g
ra

p
h

in
di

ca
te

s
tr

u
n

­
ca

te
d

re
si

du
al

s
w

hi
ch

oc
cu

r
w

he
n

th
e

u
p

p
er

b
o

u
n

d
of

lo
gM

IC
is

lo
g(

00
).

S
im

il
ar

ly
,

w
he

n
th

e
lo

w
er

b
o

u
n

d
o

f
lo

gM
IC

is
lo

g(
O

),
th

e
lo

w
er

b
o

u
n

d
o

f
th

e
re

si
du

al
in

te
rv

al
=

-0
0
..

T
h

is
is

al
so

re
pr

es
en

te
d

by
a

"X
".

V
al

ue
s

ar
e

ji
tt

er
ed

to
av

oi
d

ov
er

pl
ot

ti
ng

.

c.v ---
1



CHAPTER 5. REAL EXAMPLES 38

Two Bayesian models with and without farm as a random effect are also used to examine

the data.

• Bayesian model without farm effect

[V] = VISIT(C) TYPE(C) VISIT x TYPE

The prior distributions are: 130 rv N(O, 10), f3.type rv N(O, 10), f3.visit rv N(O, 10),

Ty rv GAMMA(0.1, 0.01) and Ty = 1/(12.

• Bayesian model with farm as a random effect

[V] = VISIT(C) TYPE(C) VISIT x TYPE FARM(R)

The prior for farm is: Tjarm rv GAMMA(0.1, 0.01) and Tjarm = 1/(1Jarm' Other prior

distributions are the same as above.

Table 5.2 presents the estimates for the MLE and Bayesian models. Estimates are similar

even when different analysis methods were used because the variance of random effects is

small relative to the random error. However, standard errors are somewhat higher with the

random effect in the model.

From Table 5.3, the DIC is smaller when farm is included in the model than when it

doesn't, indicating that

[V] = TYPE(C) VISIT(C) VISIT x TYPE FARM(R)

is the more "useful" model. Also from Table 5.4, this model has the smallest DIC value

among all 14 possible models and BGR statistic close to 1 means different chains converge to

same target distribution. Summary statistics from this model will be used to draw inferences

for the quantities of interest.

The summary statistics from the Bayesian model that includes farm random effects are as

follows: The difference in mean logMIC between the two diet types (farms of type=1 used a

medicated commercial ration, while farms of type=O used a vegetarian, non-medicated diet)

is not statistically significant. The difference of -0.18 is small compared to the SD of 0.79. In

anti-log scale, the ratio of the mean logMIC between the two diet types is exp(-0.18)=0.84.

The MLE estimate of -0.14 is small compared to the SE of 0.62. The same conclusion is
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MLE Bayesian excluding Bayesian including
farm effect random farm effect

(30 (intercept) (SE) -0.62 (0.24) -0.58 (0.24) -0.56 (0.34)
(3typeO - (3typq (SE) -0.14 (0.62) -0.30 (0.59) -0.18 (0.79)
(3visit! - (3visits (SE) 0.39 (0.38) 0.34 (0.38) 0.35 (0.38)
(3visitz - (3visits (SE) 0.88 (0.33) 0.85 (0.33) 0.83 (0.31)
(3visits - (3visits (SE) 0.81 (0.33) 0.76 (0.33) 0.72 (0.32)
(3visit4 - (3visits (SE) 0.21 (0.33) 0.16 (0.32) 0.14 (0.31)
/-lvisit! typq (SE) -0.22 (0.30) -0.23 (0.29) -0.21 (0.38)
/-lvisit2typq (SE) 0.26 (0.22) 0.27 (0.22) 0.27 (0.32)
/-lvisitstYP"J (SE) 0.20 (0.22) 0.18 (0.22) 0.16 (0.33)
/-lvisit4 tYP"J (SE) -0.41 (0.22) -0.42 (0.22) -0.42 (0.32)
/-lvisits tYP"J (SE) -0.62 (0.24) -0.58 (0.24) -0.56 (0.34)
/-lvisit! typeo (SE) -1.01 (0.53) -1.01 (0.53) -1.13 (0.73)
/-lvisit2typeO (SE) 0.18 (0.47) 0.19 (0.50) 0.18 (0.69)
/-lvisits typeo (SE) -2.90 (0.66) -2.85 (0.64) -2.85 (0.82)
/-lvisit4 typeo (SE) -0.40 (0.45) -0.38 (0.45) -0.41 (0.68)
/-lvisits typeo (SE) -0.76 (0.57) -0.88 (0.54) -0.74 (0.73)
aresidual (SE) 1.94 (0.10) 2.00 (0.11) 1.88 (0.10)
ajarm (SE) 0.69 (0.21)

39

Table 5.2: Estimates for the Avian data from the MLE and two Bayesian analyses. Numbers
in brackets are the standard errors for MLE or standard deviations for Bayesian APE.
(3typeO- (3type l is the difference in mean logMIC between different types of operation. (3visiti­

(3visit5 is the difference in mean logMIC between visiti and visit5. fl-visititypej is the mean
logMIC at the i th visit to a farm of jth diet type.

drawn: there is no strong evidence to say that the mean logMIC values of the two diet types

are different when averaged over visits.

The difference in mean logMIC between visit 2 and visit 5 is statistically significant, as

is the difference in mean logMIC between visit 3 and visit 5. This means there is evidence

that the mean logMIC value of visit 2 and visit 5 are different; the mean logMIC value of

visit 3 and visit 5 are different. However, there is no strong evidence that the mean logMIC

value of visit 1 and visit 5 are different, and that the mean logMIC value of visit 4 and visit

5 are different.

When we compare the mean logMIC of visit 2 and visit 3, that is Ct2 - (3visit3 =

(C2 - (3~5)-(C3 - (3~5 )=0.11, the standard deviation is too complex to com­

pute by hand because of the correlation between estimates, but is easily calculated by the
~ ~

computer, which gives an SD of 0.30. From the MLE output, the (3visit2 - (3visit3=0.07, the

(

2 2 ) ~
SE = (se(3visit2 -(3visit5) + (se(3visit3 -(3visit5) + 2cov ((3visit2 - (3visit5' (3visit3 - (3visit5) =
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Model PD DIC ADIC
Model without farm effect 10.60 1628.50 31.70
Model with farm effect 18.40 1596.80 0.00

40

Table 5.3: DIC value for model [Y] = TYPE(C) VISIT(C) VISIT x TYPE FARM(R) with
and without farm random effect

Model DIC PD Max(BGR) ADIC
MF1: [Y]=Visit(C) Type(C) Visit*Type Farm(R) 1596.84 18.40 1.03 0.00
MF3: [Y]=Visit(C) Type(C) Farm(R) 1608.24 14.25 1.02 11.40
MF6: [Y]=Visit(C) Farm(R) 1608.69 14.42 1.02 11.85
MF7: [Y]=Visit Farm(R) 1609.32 11.40 1.02 12.48
MF4: [Y]=Visit Type(C) Visit*Type Farm(R) 1609.38 12.19 1.03 12.54
MF2: [Y]=Visit Type(C) Farm(R) 1609.54 11.54 1.04 12.70
MF5: [Y]=Type(C) Farm(R) 1612.05 10.68 1.03 15.21

M1: [Y]=Visit(C) Type(C) Visit*Type 1628.45 10.63 1.04 31.61
M2: [Y]=Visit Type(C) 1638.17 3.98 1.01 41.33
M3: [Y]=Visit(C) Type(C) 1638.46 7.06 1.02 41.62
M4: [Y]=Visit Type(C) Visit*Type 1639.29 4.92 1.03 42.45
M5: [Y]=Type(C) 1640.76 3.08 1.02 43.92
M6: [Y]=Visit(C) 1643.17 6.04 1.02 46.33
M7: [Y]=Visit 1643.24 2.85 1.02 46.40

Table 5.4: DIC value for all possible models

1

((0.33)2 + (0.33)2 + 2 x 0.06) "2 =0.58. The estimate of 0.07 is small compared to the SE of

0.58. The same conclusion is drawn: there is no strong evidence to say that the mean

logMIC values of visit 2 and visit 3 are different from each other.

The variance of the farm effect 0.52 (0.35) is small compared to the variance of random

noise 3.56 (0.39).

The estimates from the MLE method have reported SE for some fixed effects that are

smaller relative to the standard deviation of the Bayesian estimates. This is because the

estimates of some fixed effects, such as type, are obtained by comparison between farms.

When estimating the fixed effects, the farm random effects will be subtracted, and the

variance of farm random effects will not be counted in the calculation of standard error.

The mean values, such as !-Lvisititypej' are obtained by averaging among farms. In this case,
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the variance of random effects is small compared to the random noise, but the Bayesian

method still needs to incorporate prior uncertainty and other sources of uncertainty.

5.2 Avian data set (NARMS plate)

The sample protocol is same as the Avian plate data set. Samples are tested against an

array of 16 anti-microbial agents (Amikacin, AmoxycillinjClavulanic Acid, Ampicillin, Ce­

foxitin, Ceftiofur, Ceftriaxone, Cephalothin, Chloramphenicol, Ciprofloxacin, Gentamycin,

Kanamycin, Nalidixic Acid, Streptomycin, Sulfamethoxazole, Tetracycline, Trimethoprimj

Sulfamethoxazole) and the reported MIC values are given. We will use the CEFTIF (Ab­

breviation of Ceftiofur) values to show how to analyse the data. The dilution series is 0.12,

0.25, 0.5, 1, 2, 4, 8 mgjL, representing the different concentrations of the anti-microbial

agent CEFTIF. Figure 5.4 presents a portion of the raw data.

Figure 5.4: Part ofraw data for the Avian (NARMS plate) data set. Column CEFTIF lists
the reported MIC values.

Each of the reported MIC values are converted to a pair of numbers of either the form

(log(O), xx), (xxxj2, xxx), or (xxxx, 00), representing the intervals that contain the logMIC

values.

Figure 5.5 presents a plot of logMIC (lower bound) vs. visit for different farm types with

simple loess lines. The two simple loess lines do not appear to be parallel, which indicates

that an interaction between type and visit may exist. Farm effects are shown in Figure 5.6;

we can see some farms have higher median lower bounds of logMIC than other farms. This

means that a large farm effect may exist.

After examining the raw data and the plot, the initial model needs to include terms for

the effects of farm, visit and type.
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We follow the same procedure as before. Based on Section 4, we decide that type and visit

should be included in the model. Several models are fitted as summarized in Table 5.5. In

terms of the AICc criterion, support for model [Y] = VISIT(C) TYPE(C) VISIT x TYPE

overwhelm other models, and this model has the dominant weight. It will be used to do

further analysis.

Model Log(maximum P AlCc ~AlC Normalized
likelihood) Weight

M1:[Y]=Visit(C) Type(C) Visitx Type -979.88 11 1982.34 0.00 0.95
M2:[Y]=Visit(C) Type(C) -988.14 7 1990.53 8.19 0.02
M3:[Y]=Visit Type(C) Visitx Type -990.22 5 1990.56 8.23 0.02
M4:[Y]=Visit Type(C) -991.44 4 1990.96 8.62 0.01
M5:[Y]=Visit(C) -990.60 6 1993.37 11.04 0.00
M6:[Y]=Type(C) -993.68 3 1993.40 11.07 0.00
M7:[Y]=Visit -994.03 3 1994.11 11.78 0.00

Table 5.5: Results of fitting different models to the Avian-CEFTIF data using maximum
likelihood estimation from PROC LIFEREG (SAS).

Figure 5.7 is the residual plot of model Ml. Residuals are scattered around 0 and no

pattern is apparent in the plot. This indicates that there is no evidence of lack of fit of

model Ml.
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Two Bayesian models with and without farm as a random effect are also used to examine

the data.

• Bayesian model without farm effect

[V] = VISIT(C) TYPE(C) VISIT x TYPE

The prior distributions are: 130 rv N(O,lO), f3.type rv N(O, 10), f3.visit rv N(0,10),

Ty rv GAMMA(O.l,O.01) and Ty = 1/(l2,

• Bayesian model with farm as a random effect

[V] = VISIT(C) TYPE(C) VISIT x TYPE FARM(TYPE)(R)

The prior for farm is: Tfarm rv GAMMA(O.l, 0.01) and Tfarm = l/(lJarm' Other prior

distributions are the same as above.

Table 5.6 presents the estimates for these models. Estimates are similar even when

different analysis methods were used b~cause the variance of the farm random effects

(0.542 = 0.29) is small relative to the residual variance (1.462 = 2.13).

From Table 5.7, the DIC is smaller when farm is included in the model than when it

doesn't, indicating that

[V] = TYPE(C) VISIT(C) VISIT x TYPE FARM(TYPE)(R)

is the more "useful" model. Summary statistics from this model will be used to draw

inferences for the quantities of interest.

The summary statistics from the Bayesian model that includes random farm effects are

as follows. The difference in mean logMIC between the two diet types (farms oftype=l used

a medicated commercial ration, farms of type=O used a vegetarian, non-medicated diet) is

not statistically significant. There is no evidence to say the mean logMIC values of the two

diet types are different. The estimate of 0.41 is small compared to the SE of 0.61. The MLE

analysis leads to same conclusion because the estimate of 0.44 is small compared to the SE

of 0.46.

The difference in mean logMIC between visit 2 and visit 5 is statistically significant, as

is the difference in mean logMIC between visit 3 and visit 5. This means there is evidence
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MLE Bayesian excluding Bayesian including
random farm effect random farm effect

(30 (intercept) (SE) -0.46 (0.18) -0.44 (0.17) -0.43 (0.25)
(3typeO - (3type, (SE) 0.44 (0.46) 0.36 (0.42) 0.41 (0.61)
(3vi.it, - (3vi.it5 (SE) 0.35 (0.28) 0.33 (0.28) 0.33 (0.27)
(3vi.it2 - (3vi. it5 (SE) 0.70 (0.24) 0.68 (0.24) 0.68 (0.23)
(3vi.it3 - (3vi. it5 (SE) 0.53 (0.24) 0.51 (0.24) 0.47 (0.24)
(3vi.it4 - (3vi. it5 (SE) 0.10 (0.24) 0.09 (0.24) 0.07 (0.23)
/lviSit, type, (SE) -0.10 (0.22) -0.11 (0.22) -0.10 (0.29)
/lvi. it2t yPe, (SE) 0.24 (0.16) 0.24 (0.16) 0.25 (0.25)
/lvi. it3t yPe, (SE) 0.08 (0.17) 0.08 (0.17) 0.04 (0.25)
/lvi. it4t yPe, (SE) -0.35 (0.16) -0.35 (0.16) -0.36 (0.24)
/lvi. it5t ype, (SE) -0.46 (0.18) -0.44 (0.17) -0.43 (0.25)

/lvi.it, typeo (SE) -0.81 (0.39) -0.78 (0.39) -0.84 (0.54)
/lvi. it2t ypeO (SE) 0.20 (0.35) 0.22 (0.35) 0.21 (0.52)
/lvi. it3t ypeO (SE) -1.80 (0.41) -1.78 (0.40) -1.79 (0.55)
/lvi. it4t ypeO (SE) -0.45 (0.34) -0.45 (0.34) -0.43 (0.52)
/lvi. it5typeO (SE) -0.02 (0.42) -0.08 (0.40) -0.03 (0.56)
{7re.idual (SE) 1.51 (0.06) 1.53 (0.06) 1.46 (0.06)
(J farm (SE) 0.54 (0.17)
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Table 5.6: Estimates for the Narms data from the MLE and two Bayesian analyses. Numbers
in brackets are the standard errors for MLE or standard deviations for Bayesian APE.
(3typeO- (3typel is the difference in mean logMIC between different types of operation. (3visit i ­

(3visit5 is the difference in mean logMIC between visiti and visit5' JLvisititypej is the mean
logMIC at the ith visit to a farm of lh diet type.

that the mean logMIC value of visit 2 and visit 5 are different; the mean logMIC value of

visit 3 and visit 5 are different.

The difference in mean logMIC between visit 1 and visit 5, and between visit 4 and visit

5 are not statistically significant. This means there is no strong evidence that the mean

logMIC value of visit 1 and visit 5 are different; and that the mean logMIC value of visit 4

and visit 5 are different.
~

When we compare the mean logMIC values of visit 2 and visit 3, that is (3visit2 - (3visit3 =

(C2 - (3~5) - (C3 - (3;;;t5) =0.21, the standard error is too complex to compute

by hand because of correlations between estimates,but can be calculated by the computer
~ ~

program and the reported SE is 0.23. From the MLE output, the (3visit2 - (3visit3 =0.17 ,the

(

2 2 ) ~
SE = (se{3vi. it2 -(3vi.it5) + (se{3vi. it3-(3vi.it5) + 2cov ((3visit2 - (3visit5' (3visit3 - (3visit5) =

1

((0.24)2 + (0.24)2 + 2 x 0.032) "2 =0.42. The estimate of 0.17 is small compared to the SE
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Model PD DIC
Model without farm effect 10.50 1981.00
Model with farm effect 18.70 1946.00
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Table 5.7: DIC values for model [Y] = TYPE(C) VISIT(C) VISIT x TYPE FARM(R) with
and without farm random effect.

of 0.42. The same conclusion is drawn: there is no strong evidence to say that the mean

logMIC values of visit 2 and visit 3 are different from each other.

The mean logMIC values from the MLE method have reported SEs that are small relative

to standard deviations of the Bayesian model when the random farm effect is present. The

reason is same as in Avian data set.

5.3 Dairy data set (Campylobacter)

The sample protocol for this project was that 51 dairy calves on 26 farms were enrolled in

the Dairy project. Six veterinarians made four visits to the farms to collect samples when

each enrolled calf was 1-7 days of age, 14-28 days of age, 90-120 days of age, and 6-8 months

of age. At each visit, one individual fecal sample was taken from the enrolled calf, one

pooled fecal sample from five calves of the same age, and one pooled fecal sample from five

cows. Additionally, one sample was taken from the mother of enrolled calf at the first visit,

and one liquid calf feed specimen was taken at the first, second, and third visits. A one-page

questionnaire was completed at each of the four visits.

Bacteria were cultured from the fecal and feed samples. Campylobacter sp. were tested

using AMR E-Test strips against 8 anti-microbial agents (Azithromycin, Chloramphenicol,

Ciprofloxacin, Erythromycin, Gentamycin, Nalidixic Acid, Tetracycline, Clindamycin) and

MIC values were given. We will use Azithromycin to show how to analyse the data. The

concentrations of the anti-microbial agent Azithromycin are 0.016,0.023,0.032,0.047,0.064,

0.094,0.125,0.19,0.25,0.38,0.50,0.75, 1.0, 1.5, 2, 3, 4, 6, 8, 12, 16,24,32,48,64,96, 128,

192, 256 mgjL. Figure 5.8 presents a portion of the raw data.

Each of the reported MIC values are converted to a pair of numbers that represents the

lower bound and upper bound of the true MIC values.

Based on the sample protocol, vet, visit, date, farm, and group may be potential
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Vet
SC
DC
DC
BG
BG
KL
KL
KL
KL

visit
-:----"-'~'-"'-'~"-~'--------"~-"""-----

date farm sample coli/jejuniAzithromycin-2
1 20-Mar-06F4 C412-C1 Jejuni 0,064
16-Feb-06 F2 C45-C1 jejuni 0,125
16-Feb-06 F2 C45-C2 jejunl 025
19-Mar-06F4 C616-C1 jejuni 0.25
19-Mar-06 F4 C616-C2 Jejunl 038
1 31-Jan-06 F1 Co7221723-C1 jejuni 0094
131-Jan-06 F1 C07221723-C2 jejuni 0.25
110-Feb-06F3 01201-C1 jejuni 0,125
110-Feb-06F3 1-C2 jejuni 0.25

Figure 5.8: Part of the raw data of the Dairy (Campylobacter) data set. Vet refers to the
names of vets, visit refers to the time of a visit, date refers to the exact date of visit, farm
refers to where a sample comes from, sample indicates from which animal group or pooled
animals group the sample is taken. Column Azithromycin-2 lists the reported MIC values.
In order to give a clear explanation, sample will be called as group and sampling will be
called as visit in the following part.

explanatory variables. Vet refers to the veterinarian. Visit is the number of the visit. Date

is the exact date of each visit. Farm is the name of the farm visited. Because farm Fl

visited by veterinarian 1 is not same as farm Fl visited by veterinarian 2, this implies that

farms are nested with veterinarians. The variable group is the type and ID-number of animal

sampled; this code is complex because it is not in the form of a consistent encoding scheme.

Based on group, animals are grouped into five types: enrolled calf, dam (mother of enrolled

calf), pooled calf (pooled sample from five calves of the same age), pooled cow (pooled

sample from five cows), and liquid calf feed. Unfortunately, there are only 2 observations

for liquid calf feed, so this set of data was deleted. Visit, group and farm are considered

most likely to be related to the MIC value so they should be included in the model. The

variable date has a similar measure to visit so it is not included in the model. With only

six veterinarians, vet is not considered to have a big effect. So Vet and date are dropped

from the model.

In this experiment, we are interested in the specific five samples from the animals, so

group is treated as a fixed effect. Similarly, visit is also pre-determined; it is a fixed effect

too. Farm is generated from a large population of farms, and the level of farms cannot

be repeatedly chosen. If the experiment were to be repeated, the same levels of visit and

group could be chosen while a new set of levels of farm would be chosen, so farm effect is

treated as a random effect.

Figure 5.9 presents a plot of 10gMIC (lower bound) vs. visit for different groups with

simple loess lines.
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The plot reveals some useful things. The simple loess line of group=2 (dam) seems to

diverge from the others, and the sample protocol indicates that group=2 is only measured

at the first visit, so we will treat the four samples from group=2 and visit=2 as outliers.

There are two observations have lower bounds equal to 256 when group=4 visit=l; these

may be outliers. We will discuss the six total outliers later. The simple loess lines of the

other three groups (calf, pooled calf, pooled cow) are almost parallel, which indicates that

an interaction between group and visit may not exist.

Farm effect can also be shown by plotting a line connecting the median lower bounds

of the logMIC of every visit of a farm. From Figure 5.10, we can see that all the lines are

mixed together, which implies that the farm effect is not large.

After examining the raw data and the plots of the data, it is apparent that the initial

model needs to include terms for the effects of farm, visit and group.
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The analysis procedure is similar to that for the Avian data set. We will ignore the farm

effect at first, and then include it in our model when we do the Bayesian model analysis.

Several models were fitted using the MLE method. The two observations have lower bounds

equal to 256 made the WinBUGS program not converge, so we will drop the two observations

at this stage. Results are summarized in Table 5.8. In terms of the AICc criterion, support

for model

[V] = VISIT GROUP(C) VISIT x GROUP

overwhelm other models, and this model has the dominant weight. This will be used to do

further analysis.

Model Log(maximum P AICc ~AIC Normalized
likelihood) Weight

M1:[Y]=Visit Group(C) Visitx Group -694.74 9 1408.06 0.00 0.85
M2:[Y]=Visit(C) Group(C) Visit x Group -689.96 15 1411.53 3.47 0.15
M3:[Y]=Visit(C) -708.09 5 1426.37 18.31 0.00
M4:[Y]=yisit(C) Group(C) -706.71 8 1429.89 21.83 0.00
M5:[Y]=Visit -718.53 3 1443.14 35.08 0.00
M6:[Y]=Visit Group(C) -718.35 6 1448.98 40.91 0.00
M7:[Y]=Group(C) -729.25 5 1468.69 60.63 0.00

Table 5.8: Results of fitting different models to the Dairy (Camylobacter)-Azithromycin
data using maximum likelihood estimation from PROC LIFEREG (SAS).

Figure 5.11 is the residual plot of model Ml. Residuals are scattered around 0 and no

pattern is apparent in the plot. This indicates that there is no evidence of a lack of fit of

model Ml.
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Two Bayesian models with and without farm as a random effect are also used to examine

the data.

• Bayesian model without farm effect

[Y] = VISIT GROUP(C) VISIT x GROUP

The prior distributions are: (3o rv N(O, 10), (3.group rv N(O, 10), (3.visit rv N(O, 10),

Ty rv GAMMA(O.l, 0.01) and Ty = 1/a2

• Bayesian model with farm as a random effect

[Y] = VISIT GROUP(C) VISIT x GROUP FARM(R)

The prior for farm is: Tfarm rv GAMMA(O.l, 0.01) and Tfarm = l/aJarm. Other prior

distributions are the same as above.

Table 5.9 presents the estimates for those models. Estimates are similar even when

different analysis methods are used because the variance of the farm random effect (0.262 =

0.07) is relatively small compared to the variance of the residual error (0.702 = 0.49).

From Table 5.10, the DIC is smaller when farm is included in model than when it doesn't,

indicating that

[Y] = VISIT GROUP(C) VISIT x GROUP FARM(R)

is the more "useful" model. Summary statistics from this model will be used to draw

inferences for the quantities of interest.

The summary statistics from the Bayesian model that includes farm random effects are

as follows. The differences in mean logMIC between calf and pooled cow (estimate 0.59

compared to the SD 0.35 is not big enough), pooled calf and pooled cow (estimate 0.06 is

small compared to the SD 0.29), calf and pooled calf (estimate 0.53 compared to the SD 0.40

is not big enough) are not statistically significant. {39-;;;;;Pl - {39-;;;;;P3 = ({39-;;;;;Pl - (39-;;;;;P4)-

({39-;;;;;P3 - (3~P4) =0.53, the standard error is calculated by the computer program and

the reported SE is 0.40. From the MLE output, the {39-;;;;;Pl - {3g-;;;;;P3=0.45 ,the SE =

(

2 2 ) ~
(se(3grOUPl -(39rOuP4) + (se(3grOUPl -(39rOuP4) + 2cov ({3grouPl - {3grouP4' (3grouP3 - (3grOuP4) =
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MLE Bayesian excluding Bayesian including
random farm effect random farm effect

(30 (intercept) (SE) -1.66 (0.16) -1.67 (0.17) -1.71 (0.17)
(3grouPl - (3grouP4 (SE) 0.56 (0.35) 0.55 (0.35) 0.59 (0.35)
(3grouP2 - (3grouP4 (SE) -2.74 (0.45) -2.66 (0.44) -2.64 (0.47)
(3grouP3 - (3grouP4 (SE) 0.11 (0.29) 0.11 (0.28) 0.06 (0.29)
(3visit (SE) -0.21 (0.07) -0.21 (0.07) -0.20 (0.06)
!-tvisitlgrouPl (SE) -1.51 (0.22) -1.52 (0.22) -1.51 (0.22)
!-tvisit2grouPl (SE) -1.91 (0.14) -1.92 (0.14) -1.90 (0.15)
!-tvisit3grouPl (SE) -2.32 (0.08) -2.32 (0.08) -2.29 (0.10)
!-tvisit4grouPl (SE) -2.72 (0.11) -2.72 (0.12) -2.68 (0.13)
!-tvisit,grouP2 (SE) -2.01 (0.11) -2.01 (0.11) -2.05 (0.11)
!-tvisit2grouP2 (SE) 0.38 (0.37) 0.31 (0.37) 0.25 (0.40)
!-tvisitlgrouP3 (SE) -1.79 (0.16) -1.80 (0.16) -1.86 (0.18)
!-tvisit2grouP3 (SE) -2.04 (0.11) -2.04 (0.10) -2.06 (0.12)
!-tvisit3grouP3 (SE) -2.28 (0.10) -2.28 (0.10) -2.27 (0.11)
!-tvisit4grouP3 (SE) -2.52 (0.15) -2.52 (0.15) -2.48 (0.15)
!-tvisitlgrouP4 (SE) -1.88 (0.11) -1.88 (0.11) -1.91 (0.12)
!-tvisit2grouP4 (SE) -2.09 (0.07) -2.09 (0.07) -2.10 (0.09)
!-tvisit3grouP4 (SE) -2.30 (0.08) -2.30 (0.08) -2.30 (0.09)
!-tvisit4grouP4 (SE) -2.52 (0.13) -2.51 (0.13) -2.49 (0.13)
O"residual (SE) 0.73 (0.03) 0.74 (0.03) 0.70 (0.03)
O"jarm (SE) 0.26 (0.07)
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Table 5.9: Estimates for the Dairy (Camylobacter) Project from MLE and Bayesian. Num­
bers in brackets state the standard errors for the MLEs or the standard deviations for the
APEs. Group=l is the sample of the enrolled calf, group=2 is the sample from the mother
of the enrolled calf, group=3 is the sample of pooled calves, and group=4 is the sample of
pooled cows. {3grouPi - {3grouP4 is the difference in mean logMIC between ith group and group
of pooled cows. {3visit is the difference in mean logMIC between the i th and the (i + 1)th

. ·t . h I MIC f h ·th ··t d ·thVISI . !-lvisitigroUpj IS t e mean og 0 t e ~ VISI an J group.



CHAPTER 5. REAL EXAMPLES

Model PD DIC
Model without farm effect 8.80 1407.10

Model with farm effect 24.40 1388.20

57

Table 5.10: DIC values for model [V] = VISIT GROUP(C) VISIT x GROUP FARM(R)
with and without random farm effect.

1

((0.35)2 + (0.29)2 + 2 x 0.027) 2 =0.51. This means there is no strong evidence that the

mean logMIC values of calf and pooled cow, pooled calf and pooled cow, calf and pooled

calf are different. The difference in mean logMIC between dam and pooled cow (estimate

-2.64 is large compared to the SD 0.47) is statistically significant. This means there is evi­

dence that the mean logMIC values of dam and pooled cow are different. The MLE analysis

also leads to the same conclusion.

The differences in mean logMIC between successive visits is statistically significant (the

estimate of -0.20 is large compared to the SD of 0.06). This means the logMIC is decreasing

with visits for the calf, dam, pooled cow and pooled calf groups. The MLE analysis reaches

the same conclusion.

Previous plots revealed some potential outliers. We will repeat the procedure, dropping

the outliers. Table 5.11 gives the results of re-fitting the models without the four outliers

(observations from group=2 and visit=2). In terms of the AICc criterion, support for model

[V] = VISIT(C) overwhelm other models, and this model has the dominant weight. Model

M1 will be used to do further analysis.

Model Log(maximum P AICc ~AIC Normalized
likelihood) Weight

M1:[Y]=Visit(C) -684.52 5 1379.23 0.00 0.90
M2:[Y]=Visit(C) Group(C) -684.13 8 1384.74 5.51 0.06
M3:[Y]=Visit -689.79 3 1385.65 6.42 0.04
M4:[Y]=Visit Group(C) -688.39 6 1389.05 9.82 0.00
M5:[Y]=Visit Group(C) Visitx Group -686.99 8 1390.45 11.22 0.00
M6:[Y]=Visit(C) Group(C) Visit x Group -682.27 14 1393.95 14.71 0.00
M7:[Y]=Group(C) -704.59 5 1419.38 40.15 0.00

Table 5.11: Results ofre-fitting different models to the Dairy (Camylobacter)-Azithromycin
data (without outliers) using maximum likelihood estimation from PROC LIFEREG (SAS).
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Figure 5.12 is the residual plot of model Ml. Residuals are scattered around 0 and no

pattern is apparent in the plot. This indicates that there is no evidence of lack of fit of

model MI.

Two Bayesian models with and without farm as a random effect are also used to examine

the data.

• Bayesian model without farm effect

[Y] = VISIT(C)

The prior distributions are: (3o rv N(O, 10), (3.visit rv N(O, 10), Ty rv GAMMA(O.l, 0.01)

and Ty = 1/(j2

• Bayesian model with farm as a random effect

[Y] = VISIT(C)

The prior for farm is: TJarm rv GAMMA(O.l,O.Ol) and TJarm = l/(jfarm. Other prior

distributions are the same as above.

Table 5.12 presents the estimates for those models. Estimates are similar even when

different analysis methods are used because the variance of the farm random effect (0.222 =

0.05) is relatively small compared to the variance of the residual error (0.71 2 = 0.50).

From Table 5.13, the DIC is smaller when the farm effect is included in the model than

when it doesn't, indicating that

[Y] = VISIT(C) FARM(R)

is the more "useful" model. Summary statistics from this model will be used to draw

inferences for the quantities of interest.

The DIC results indicate that the model [Y] = VISIT(C) FARM(R) has the smallest

DIC value among the four Bayesian models. It is still hard to say which model is better

than the others because of the influence of the six outliers. We will leave this question to

the biologists. They can make a reasonable choice between the two models.

The summary statistics from the Bayesian model [Y] = VISIT(C) FARM(R) is as follows.

For the calf, dam, pooled cow and pooled calf groups, the difference in mean logMIC between
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MLE Bayesian excluding Bayesian including
random farm effect random farm effect

{3o (intercept) (SE) -2.65 (0.09) -2.65 (0.09) -2.62 (0.11)
{3visit, - {3visit4 (SE) 0.68 (0.12) 0.68 (0.11) 0.60 (0.11)
{3visit2 - {3visit4 (SE) 0.85 (0.14) 0.84 (0.14) 0.79 (0.14)
{3visits - {3visit4 (SE) 0.32 (0.12) 0.31 (0.12) 0.31 (0.11)
{3visit, - {3visit2 (SE) -0.17 (0.22) -0.16 (0.13) -0.19 (0.13)
{3visit2 - {3visit3 (SE) 0.53 (0.22) 0.53 (0.13) 0.50 (0.13)
/-lvisit,grouP' (SE) -1.97 (0.07) -1.97 (0.07) -2.02 (0.09)
/-lvisit2grouPI (SE) -1.80 (0.11) -1.81 (0.11) -1.83 (0.12)
/-lvisitsgrouPI (SE) -2.34 (0.07) -2.34 (0.08) -2.31 (0.09)
/-lvisit4grouPI (SE) -2.65 (0.09) -2.65 (0.09) -2.62 (0.11)
/-lvisitl grouP2 (SE) -1.97 (0.07) -1.97 (0.07) -2.02 (0.09)
/-lvisitl groups (SE) -1.97 (0.07) -1.97 (0.07) -2.02 (0.09)
/-lvisit2grouPS (SE) -1.80 (0.11) -1.81 (0.11) -1.83 (0.12)
/-lvisitsgroups (SE) -2.34 (0.07) -2.34 (0.08) -2.31 (0.09)
/-lvisit4grouP3 (SE) -2.65 (0.09) -2.65 (0.09) -2.62 (0.11)
/-lvisit, group4 (SE) -1.97 (0.07) -1.97 (0.07) -2.02 (0.09)
/-lvisit2grouP4 (SE) -1.80 (0.11) -1.81 (0.11) -1.83 (0.12)
/-lvisitsgrouP4 (SE) -2.34 (0.07) -2.34 (0.08) -2.31 (0.09)
/-lvisit4grouP4 (SE) -2.65 (0.09) -2.65 (0.09) -2.62 (0.11)
(J"residual (SE) 0.72 (0.03) 0.74 (0.03) 0.69 (0.03)
(J" farm (SE) 0.25 (0.07)

60

Table 5.12: Estimates for re-fit the Dairy data set without outliers from MLE and Bayesian.
Numbers in brackets state the standard errors for the MLEs or the standard deviations for
the APEs. Group=l is sample of calf, group=2 is sample from mother of enrolled calf,
group=3 is sample of pooled calf, and group=4 is sample of pooled cow. f3viS it i - f3visitj is
the difference in mean logMIC between the i th and lh visit. !1visitigroUpj is the mean logMIC
of the i th visit and jth group.
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Model PD DIC
Model without farm effect 4.90 1378.90
Model with farm effect 20.00 1361.40

61

Table 5.13: DIC values for model [V] = VISIT(C) FARM(R) with and without farm random
effect.

visit occasions 1 and 4, 2 and 4, 3 and 4 are statistically significant. While the difference

in mean logMIC between visit occasions 1 and 2 is not statistically significant. This means

there is no evidence that the mean logMIC of visit 1 and visit 2 are different. The estimate

of -0.19 is not big compared to the SD 0.13. There is evidence that the mean logMIC of

visit 1 and visit 4 are different. The estimate of 0.60 is big compared to the SD 0.11. There

is evidence that the mean logMIC of visit 2 and visit 4 are different. The estimate of 0.79 is

big compared to the SD 0.14. There is evidence that the mean logMIC of visit 3 and visit 4

are different. The estimate of 0.31 is big compared to the SD 0.11. There is evidence that

the mean logMIC of visit 2 and visit 3 are different. The estimate 0.50 is big compared to

the SE of 0.13. The MLE analysis also leads to the same conclusion. The mean logMIC

value is decreasing with visit except when visit=2.

5.4 Dairy data set (E.coli)

The sample protocol is the same as the Dairy (Campylobacter) data set. In this case,

colonies of E.coli bacteria from each sample were inoculated onto NARMS sensititre plates.

Samples were tested against an array of 15 anti-microbial agents (Amikacin, AmoxycillinjClavulanic

Acid, Ampicillin, Cefoxitin, Ceftiofur, Ceftriaxone, Chloramphenicol, Ciprofloxacin, Gen­

tamycin, Kanamycin, Nalidixic Acid, Streptomycin, Sulfamethoxazole, Tetracycline, Trimetho­

primjSulfamethoxazole) and the reported MIC values were given. We will use the CEFTIF

(abbreviation of Ceftiofur) value as an example to show how to analyse the data. A portion

of the raw data is shown in Figure 5.13. The dilution series is 0.12, 0.25, 0.5, 1, 2, 4, 8

mgjL, representing the different concentrations of anti-microbial agent CEFTIF.

Each of the reported MIC values are converted to a pair of numbers that represent the

lower bound and upper bound of the true MIC value.

Based on similar reasoning to that outlined in Section 5.3, the initial model needs to
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project sample
Dairy Calf Project. F2C2975SD2
Dairy Calf Project. F2PCA2975S02
Dairy Calf Project. F2PCA2974S02
Dairy Calf Project F2D800KL
Dairy Calf Project· F2PC0800KL
Dairy Calf Project. F2PCA800KL
Dairy Calf ProjectF2C800KL
Dairy Calf ProjectF2LF800KL
Dairy Calf Project F3C;31 SC
Dairy Calf Project. F3D31 SC

isolate
1 E.CNH
1 E.CNH
1 E.CNH
1 E.CNH
1 E.CNH
1 ECNH
1 E.CNH
1 E.CNH
1 E.CNH
1 E.CNH

sexspeices collected CEFTIF/8/4
F BOV 12/02/2006849 = 0.25 NOINTP
F BOV 12/02/2006850 = 0.25 NOINTP
F BOV 12/02/2006844 0.25 NOINTP
F BOV 12/0212006908 = 0.25 NOINTP
F BOV 12/02/2006907 = 0.25 NOINTP
F BOV 12/02/2006906 = 0.25 NOINTP
F BOV 12/02/2006904 = 0.25 NOINTP
F BOV 12/02/2006903 = 8 NOINTP
F BOV 12/02/2006801 = 0.25 NOINTP
F BOV 12/02/20069 10 = 0.25 NOINTP

62

Figure 5.13: Part of raw data of Dairy (E.coli) data set. Sample are the combined animal
ID and information of Vet (names of veterinarians), visit (time of visit), farm (where
those sample come from), group (sample from which animal group or pooled animal group).
I solate is the bacteria isolated, sex is sex of animal, species is the bacteria species, collected
is the date and time sample was analyzed. Column CEFTIF lists the reported MIC values.

include terms for the effects of farm, visit and group.

Figure 5.14 presents a plot of logMIC (lower bound) vs. visit for different groups with

simple loess lines.

The plot reveals some useful things. The five simple loess lines are not parallel, which

indicates that an interaction between group and visit may exist. Farm effect can also be

shown by plotting a line connecting the median lower bounds of the logMIC of every visit

of a farm. From Figure 5.15, we can see that most lines are mixed together; this indicates

that the farm effect is not large.

After examining the raw data and the plot, it is clear that the initial model needs to

include terms for the effects of farm, visit and group.
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The analysis procedure is the same as before. We will ignore the farm effect at first, and

then include it in our model when we do the Bayesian model analysis.

Several models were fitted using the MLE method, results are summarized in Table 5.14.

In terms of the AICc criterion, support for model

[YJ = VISIT GROUP(C) VISIT x GROUP

overwhelms other models, and this model has the dominant weight. It will be used to do

further analysis.

Model Log(maximum P AICc ~AIC Normalized
likelihood) Weight

M1:[Y]=Visit Group(C) Visitx Group -724.32 11 1471.15 0.00 0.97
M2:[Y]=Visit -736.56 3 1479.16 8.01 0.02
M3:[Y]=Visit(C) Group(C) Visit x Group -722.08 18 1481.52 10.37 0.01
M4:[Y]=Visit(C) -735.99 5 1482.10 10.95 0.00
M5: [V] =Group(C) -735.21 6 1482.59 11.43 0.00
M6:[Y]=Visit Group(C) -734.94 7 1484.09 12.94 0.00
M7:[Y]=Visit(C) Group(C) -734.33 9 1487.01 15.86 0.00

Table 5.14: Results of fitting different models to the Dairy (E.coli)-CEFTIF data using
maximum likelihood estimation from PROC LIFEREG (SAS).

Figure 5.16 is the residual plot of model Ml. Residuals are scattered around 0 and no

pattern is apparent in the plot. This indicates that there is no evidence of a lack of fit of

the model Ml.
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Two Bayesian models with and without farm as a random effect are also used to examine

the data.

• Bayesian model without farm effect

[V] = VISIT GROUP(C) VISIT x GROUP

The prior distributions are: (3o rv N(O, 10), (3.group rv N(O, 10), (3.visit rv N(O, 10),

Ty rv GAMMA(0.1, 0.01) and Ty = 1/172

• Bayesian model with farm as a random effect

[V] = VISIT GROUP(C) VISIT x GROUP FARM(R)

The prior for farm is: Tfarm rv GAMMA(0.1, 0.01) and Tfarm = 1/aJarm. Other prior

distributions are the same as above.

Table 5.15 presents the estimates for these models. Most estimates are similar even

when different analysis methods were used because the variance of the farm random effect

(0.172 = 0.03) is relatively small compared to the variance of the residual error (0.702 =

0.49). A few estimates are quite different; this may because of the small sample size. For

example, when group=2 and visit=2, the sample size is 2; when group=5 and visit=1, the

sample size is 1; and when group=5 and visit=3, the sample size is 1.

From Table 5.16, the DIC is smaller when farm is included in the model than when it

doesn't, indicating that

[V] = VISIT GROUP(C) VISIT x GROUP FARM(R)

is the more "useful" model. Summary statistics from this model will be used to draw

inferences for the quantities of interest.

The summary statistics from the Bayesian model that includes farm random effects are

as follows. The differences in mean 10gMIC between calf and pooled cow (estimate of -0.04

is small compared to the SD of 0.20), between dam and pooled cow (estimate of 0.26 is small

compared to the SD of 0.58), between pooled calf and pooled cow (estimate of -0.09 is small

compared to the SD of 0.21), and between calf and pooled calf (estimate 0.05 is small com­

pared to the se 0.19) are not statistically significant. {39~1 - {39~3=({39-;;;;;Pl - (39-;;;;;P4)-
({39-;;;;;P3 - (39-;;;;;P4) =0.05, the standard error is calculated by the computer program and the
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reported SE is 0.19. This means there is no strong evidence that the mean logMIC values

of calf and pooled cow, dam and pooled cow, calf and pooled calf, or pooled calf and pooled

cow are different. The difference in mean logMIC between liquid feed calf and pooled cow

(estimate of 4.11 is big compared to the SD of 1.11) is statistically significant. This means

that there is evidence that the mean logMIC values of liquid feed calf and pooled cow are

different. The MLE analysis also indicates the same conclusion.

The differe~ce in mean logMIC between successive visit (estimate of -0.02 is small com­

pared to the SD of 0.06) is not statistically significant. This means there is no strong

evidence that the mean logMIC changes with visit for the calf, dam, pooled cow, pooled

calf and liquid feed calf. The MLE also demonstrates the same conclusion.
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MLE Bayesian excluding Bayesian including
random farm effect random farm effect

(30 (intercept) (SE) -1.54 (0.16) -1.52 (0.15) -1.51 (0.16)
(3grouPl - (3grouP4 (SE) 0.00 (0.20) -0.03 (0.20) -0.04 (0.20)
(3grouP2 - (3grouP4 (SE) 0.03 (0.57) 0.00 (0.56) 0.26 (0.58)
(3grouP3 - (3grouP4 (SE) -0.05 (0.22) -0.07 (0.23) -0.09 (0.21)
(3grouP5 - (3grouP4 (SE) 6.46 (1.49) 5.08 (1.27) 4.11 (1.11)
(3visit (SE) -0.01 (0.06) -0.02 (0.06) -0.02 (0.06)
J1,visitl groupl (SE) -1.57 (0.09) -1.58 (0.08) -1.58 (0.09)
J1,visit2grouPl (SE) -1.60 (0.06) -1.61 (0.05) -1.61 (0.06)
J1,visit3grouPl (SE) -1.64 (0.06) -1.64 (0.06) -1.64 (0.06)
J1,visit4grouPl (SE) -1.67 (0.09) -1.67 (0.08) -1.67 (0.09)

J1,visitlgrouP2 (SE) -1.62 (0.10) -1.63 (0.10) -1.63 (0.11)
J1,visit2grouP2 (SE) -1.73 (0.51) -1.73 (0.52) -2.01 (0.51)
J1,visitl grouP3 (SE) -1.59 (0.11) -1.59 (0.11) -1.60 (0.11)
J1,visit2grouP3 (SE) -1.59 (0.07) -1.59 (0.07) -1.59 (0.08)
J1,visit3grouP3 (SE) -1.58 (0.08) -1.59 (0.08) -1.58 (0.08)
J1,visit4grouP3 (SE) -1.58 (0.12) -1.59 (0.13) -1.57 (0.12)
J1,visitlgrOUP4 (SE) -1.55 (0.10) -1.54 (0.10) -1.53 (0.11)
J1,visit2grOUP4 (SE) -1.56 (0.07) -1.56 (0.07) -1.55 (0.08)
J1,visit3grouP4 (SE) -1.57 (0.07) -1.57 (0.07) -1.57 (0.08)
J1,visit4grouP4 (SE) -1.58 (0.11) -1.59 (0.11) -1.59 (0.11)
J1,visitl group5 (SE) 1.73 (0.72) 1.08 (0.63) 0.61 (0.58)
J1,visit2grouP5 (SE) -1.46 (0.32) -1.40 (0.32) -1.38 (0.31)
J1,visit3grouP5 (SE) -4.64 (0.97) -3.87 (0.84) -3.36 (0.72)
CTresidual (SE) 0.69 (0.02) 0.70 (0.02) 0.69 (0.02)
CT farm (SE) 0.17 (0.05)

69

Table 5.15: Estimates for the Dairy (E.coli)-CEFTIF data from MLE and Bayesian anal­
yses. Numbers in bracket state the standard errors for the MLEs or standard deviations
for the APEs. Group=l is sample of calf, group=2 is sample from dam, group=3 is sample
of pooled calf, group=4 is sample of pooled cow, and group=5 is liquid calf feed sample.
{3grouPi - {3grouP4 is the difference in mean logMIC between the i th group with group of pooled
cows. {3visit is the difference in mean logMIC between the ith and (i + 1)th visit. J..lvisitigroUpj

is the mean logMIC of the i th visit and yth group.

Model PD DIe
Model without farm effect 10.41 1470.33
Model with farm effect 23.85 1461.11

Table 5.16: DIC values for model [V] = VISIT GROUP(C) VISIT x GROUP FARM(R)
with and without farm random effect.
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Conclusions and Suggestions

We assumed a log-normal distribution of MIC data, which are interval censored, and de­

veloped different models for which the unknown mean value of logMIC is related to some

explanatory variables. Four real data sets were analyzed. The MLE and Bayesian anal­

yses were performed and estimates from the two analysis procedures were compared with

each other. When the variance of random effects is small compared to the variance of ran­

dom noise, the two methods give similar results. The result of the simulation study also

confirmed that when the variance of the random effect is small relative to the variance of

random noise, estimates from two analysis procedures are similar. This implies that MLE

analysis (using SAS PROC LIFEREG) may be sufficient for many datasets.

If the MLE method is used, ignoring farm random effects, what is the approximate

increase in the SE that should be seen to account for farm effects? In our examples, the

increase were 1.40x, 1.43x, 1.1lx (1.23x for model M1 when fitting reduced data), and

1 01 t · I Th b' b . db 1 l' h . se(Jrom Bayesian analysis). X respec Ive y. e num er IS 0 tame y ca cu atmg t e ratIOS se(MLE)

for estimates of mean logMIC, obtaining the average of the ratios; the average number is

the approximate increase in the SE. Those numbers are small, which indicates again a small

effect for ignoring farm random effect.

The suggestion for increasing the precision of the estimates is as follows. (1) Increase

sample size. Animals in the same farm are usually correlated with each other; 1000 correlated

samples may give similar information as 500 independent samples. (2) Increasing the number

of concentrations of anti-microbial agents in the microtitre plate may reduce the size of the

interval that contains the true MIC. If, from previous knowledge, we can estimate the MIC

value of an anti-microbial agent as 0.50 mgjL, we can have concentrations of 0.80, 0.90,
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1, 1.30, 1.50 and 2 mg/L instead of concentrations of 0.40, 0.50, 1 and 2 mg/L on the

microtitre plate. (3) Change the number of concentrations of some anti-microbial agents

in the microtitre plate. For example, in the Avian data set, the MIC values results for

anti-microbial CLINDA are all 2: 4, more appropriate concentrations may be 4, 5, and 6

mg/L instead of concentrations 1, 2 and 4 mg/L on the microtitre plate.

Using a simple and consistent coding system for recording may make future work easier.

For example, in the Dairy (E.coli) data set, the variable sample contain information on

farm, vet, visit, and animal (group).

6.1 Future work

For future work, we suggest to plan studies early. Existing estimates have relatively poor

precision. Hence, we need to do a power analysis to see what size of sample is required to

get accurate parameter estimates. Also it is hard to know how much precision is lost by

censoring, a simulation study may help us to investigate it.
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