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Abstract

In this thesis, model based fault detection, isolation, and estimation problem in several

classes of nonlinear systems is studied using sliding mode and learning approaches.

First, a fault diagnosis scheme using a bank of repetitive learning observers is

presented. The diagnostic observers are established in a generalized observer scheme,

and the observer inputs are repetitively updated using the output estimation error in

a proportional-integral structure.

Next, a framework for robust fault diagnosis using sliding mode and learning ap­

proaches is proposed to deal with various types of faults in a class of nonlinear systems

with triangular input form. In the designed diagnostic observers, first order and sec­

ond order sliding modes are used respectively, to achieve robust state estimation in

the presence of uncertainties, and additional online estimators are established to char­

acterize the faults. In order to guarantee that the sliding mode is able to distinguish

the system uncertainties from the faults, two iterative adaptive laws are used to up­

date the sliding mode switching gains. Moreover, different online fault estimators are

developed using neural state space models, iterative learning algorithms, and wavelet

networks.

Another class of nonlinear systems where an unmeasurable part of state can be

described as a nonlinear function of the output and its derivatives is considered next.

Accordingly, a class of fault diagnosis schemes using high order sliding mode dif­

ferentiators (HOSMDs) and online estimators are proposed, where neural adaptive

estimators and iterative neuron PID estimators are designed. Additionally, a fault

diagnosis scheme using HOSMDs and neural networks based uncertainty observers is

designed in order to achieve a better performance in robust fault detection. If the

iii



uncertainties can be accurately estimated, the generated diagnostic residual is more

sensitive to the onset of faults.

Finally, a fault diagnosis scheme using Takagi-Sugeno (TS) fuzzy models, neural

networks, and sliding mode is developed. The availability of TS fuzzy models makes

this fault diagnosis scheme applicable to a wider class of nonlinear systems. The pro­

posed fault diagnosis schemes are applied to several types of satellite control systems,

and the simulation results demonstrate their performance.

Keywords: Fault Diagnosis; Observer; Sliding Mode; Learning; Fuzzy Model; Neural

Networks; Satellite Control Systems

IV



Dedication

To my father, Zhengqi Wu, and my mother, Yueling Sun.

v



Acknowledgments

My great gratitude goes primarily to my Senior Supervisor Dr. Mehrdad Saif for his

support, patience, guidance, and enthusiastic assistant to my research. I appreciate

his time, effort, suggestions, and comments during this thesis and related research.

I would like to give my special thanks to Dr. Farid Golnaraghi and Dr. John

D. Jones for serving as my supervisory committee members, to Dr. Ahmad Rad for

willing to be Internal Examiner, to Dr. Kamal K. Gupta for chairing my Examining

Committee, to Dr. Kash Khorasani for being the External Examiner. I am very

grateful to them for taking their precious time to review my thesis.

I wish to express my gratitude to all my past and current colleagues, particularly

the members of the Diagnostic and Control Laboratory: Dr. Weitian Chen, Dr. Wen

Chen, Mr. Guangqing Jia, Mrs. Esther Liu, Mrs. Jinyun Ren, Mr. Yifeng Huang,

Mr. Qingguo Li, Mr. Jimmy Tsai, Mr. Esmaeil Tafazzoli, etc.

Many thanks are given to my friends in SFU: Dr. Wei Luo, Mrs. Huanhuan Wu,

Mrs. Vicky Hu, Mr. Jianyuan Liu, Mrs. Lan Jiang, Mr. Guangxing Zuo, Mrs. Cindy

Feng, etc.

Furthermore, I am particularly indebted to my father Zhengqi Wu and my mother

Yueling Sun for their encouragement, support, and love.

The financial support from the Natural Science and Engineering Research Council

(NSERC) of Canada, the Canadian Space Agency (CSA), the School of Engineering

Science, and Simon Fraser University is gratefully acknowledged.

VI



Contents

Approval

Abstract

Dedication

Acknowledgments

Contents

List of Tables

List of Figures

Table of Acronyms

Nomenclatures

1 Introduction

1.1 System Monitoring and Fault Diagnosis .

1.2 Literature Review for Fault Diagnosis ..

1.2.1 Basic Concept of Fault Diagnosis

1.2.2 Fault Diagnosis Methodologies ..

1.2.3 Quantitative Model-based Fault Diagnosis Methods

1.3 Thesis Motivation . . . . . . . . .

1.4 Thesis Contributions and Outline

Vll

11

III

v

VI

Vll

xii

xiii

XVI

xviii

1

1

2

2

4

6

8

14



2 Actuator Fault Diagnosis in Nonlinear Systems Using Repetitive

Learning Observers (RLOs) 21

2.1 Introduction..... 21

2.2 Problem Formulation 23

2.3 Design of Repetitive Learning Observers 25

2.4 RLOs-based Actuator Fault Detection and Isolation 26

2.5 RLOs-based Actuator Fault Estimation . . . . . . . 29

2.6 Application to a Satellite Attitude Control System. 32

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . 36

3 Fault Diagnosis Using Sliding Mode and Learning Approaches 42

3.1 Introduction..... 42

3.2 Problem Formulation 45

3.3 Fault Diagnosis Using Sliding Modes and Learning Approaches. 48

3.3.1 Design of a Fault Diagnostic Observer 48

3.3.2 Fault Diagnosis Strategy Using a Diagnostic Observer. . 50

3.3.3 Sliding Mode Gain Design Using an Iterative Learning Algorithm 51

3.3.4 Sliding Mode Gain Design Using an Iterative Fuzzy Model 54

3.4 Properties of the Fault Diagnosis Scheme 56

3.4.1 Robustness Analysis . . . . . . . 57

3.4.2 Sensitivity Analysis . . . . . . . . 59

3.5 Fault Isolation and Estimation Using Neural State Space Models. 61

3.5.1 Fault Estimator Design Using Neural State Space Models. 61

3.5.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.3 Application to a Satellite Orbital System . . . . . . . . . . 69

3.6 Fault Isolation and Estimation Using Iterative Learning Estimators 79

3.6.1 Design of PID-type Iterative Learning Fault Estimators. 79

3.6.2 Stability Analysis . . . . . . . . . . . . . . . . . . . 81

3.6.3 Application for a Flexible Satellite Control System 84

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Vlll



4 Fault Diagnosis Using High Order Sliding Mode Differentiators and

Learning Approaches 91

4.1 Introduction.... 91

4.2 Problem Formulation 93

4.3 High Order Sliding Mode Differentiators 95

4.4 Fault Diagnosis Using HOSMDs and Neural Adaptive Estimators 96

4.4.1 Diagnostic Neural Adaptive Observer Design . . . . 96

4.4.2 Property Analysis. . . . . . . . . . . . . . . . . . . 98

4.4.3 Application to a Satellite Attitude Control System 101

4.5 Fault Diagnosis Using HOSMDs and Iterative Neuron PID Estimators 104

4.5.1 Iterative Neuron PID Fault Observer Design . . . . . . 104

4.5.2 Application to a Large Angle Satellite Control System 110

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Fault Diagnosis Using Second Order Sliding Mode and Wavelet Net-

works 119

5.1 Introduction..... 119

5.2 Problem Formulation 121

5.3 Diagnostic Observer Design Using Second Order Sliding Mode 123

5.3.1 Second Order Sliding Mode Observer . . . . . . . . . . 123

5.3.2 Convergence Analysis. . . . . . . . . . . . . . . . . . . 124

5.4 Fault Diagnosis Using Second Order Sliding Mode and Wavelet Networks129

5.4.1 Robust Fault Detection Scheme . . . . . . . . . . 129

5.4.2 Fault Estimator Design Using Wavelet Networks. 129

5.4.3 Parameter Update Algorithm . . . . . . . . . . . 131

5.5 Application to a Multiple Satellite Formation Flying System 133

5.5.1 Dynamics of a Multiple Satellite Formation Flying System 133

5.5.2 Simulation and Analysis 135

5.6 Conclusions . . . . . . . . . . . 136

IX



6 Fault Diagnosis in Nonlinear Systems Using Fuzzy-Neural and Slid-

ing Mode Approaches 139

6.1 Introduction..... 139

6.2 Problem Formulation 141

6.3 Diagnostic Fuzzy-Neural Observer. 143

6.3.1 Observer Design Using Fuzzy-Neural Models 143

6.3.2 Parameter Update Algorithm 145

6.3.3 Stability Analysis . . . . . . . 146

6.4 Fuzzy-Neural Sliding Mode Observer 149

6.5 Robust Fault Diagnosis Schemes. . . 151

6.6 Application to a Satellite Orbital Control System 152

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . 156

164

164

165

167

170

171

173

175

178

Sliding

160

160

162

7 Fault Diagnosis in Nonlinear Systems Using High Order

Mode Differentiators and an Uncertainty Observer

7.1 Introduction.....

7.2 Problem Formulation

7.3 Fault Detection Using High Order Sliding Mode Differentiators and an

Uncertainty Observer .

7.3.1 State Estimation Using HOSMDs

7.3.2 Design of Uncertainty Observer

7.3.3 Stability Analysis . . . . .

7.3.4 Robustness Analysis . . .

7.3.5 Fault Sensitivity Analysis

7.4 Fault Reconstruction Using HOSMDs .

7.5 Application to a Satellite Attitude Control System.

7.6 Conclusions .

8 Conclusions and Future Work

8.1 Conclusions .

8.2 Future Work.

182

182

186

x



Bibliography

Xl

188



List of Tables

2.1 Parameters of a satellite attitude control system

3.1 Fuzzy rule base for the coefficient gain <I>i,i . . .
3.2 Values of switching gain <I>i,i . . . . . . . . . . .
3.3 Nominal parameters of the satellite with flexible appendages

34

55

74

87

4.1

5.1

Parameters of a large angle satellite

Parameters of the MSFF system . .

xu

111

135



List of Figures

1.1 Diagram of a closed-loop control system with diagnosis system . . . 3

1.2 Summary of several classes of satellite control systems in this thesis 10

1.3 Hierarchical structure of the fault diagnosis schemes in this thesis 14

1.4 Relationship between the approaches in this thesis . . . . . . . . . 20

2.1 System output in the fault-free case. . . . . . . . . 37

2.2 System output when a fault occurs at the second actuator 38

2.3 Fault detection and isolation results when a fault occurs at the second

actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Fault estimation result when a fault occurs at the second actuator 39

2.5 Norm of state estimation error of the three observers when a fault

occurs at the second actuator . . . . . . . . . . . . . . . . . . . . .. 39

2.6 Fault detection and isolation results when a fault occurs at the third

actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Fault estimation result when a fault occurs at the third actuator 40

2.8 Norm of state estimation errors of the three observers when a fault

occurs at the third actuator . . . . . . . . . . . . . . . . . . . . 41

3.1 Membership functions for fuzzification of Bi,i (k - 1) and Bi,i (k) . 55

3.2 Nominal system output and faulty system output for case 1 of Example 1 73

3.3 System states and observer states for case 1 of Example 1 . . . . . .. 74

3.4 Four sliding mode switching gains updated using the iterative learning

algorithm for case 1 of Example 1 . . . . . . . . . . . . . 75

3.5 Norm of output estimation error for case 1 of Example 1 75

Xlll



3.6 Incipient state fault 3 and the NSS model output 3 and 4 for case 1 of

Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76

3.7 Four adaptive switching gains updated using the iterative fuzzy model

for case 2 of Example 1 . . . . . . . . . . . . . . . . . . . . . . . . .. 77

3.8 Fault 3 and the NSS model output 3 and 4 for case 2 of Example 1. 77

3.9 Abrupt fault 4 and the corresponding NSS model output 3 and 4 in

Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78

3.10 Abrupt fault 3, incipient fault 4 and the corresponding NSS model

output 3 and 4 in Example 3. . . . . . . . . . . . . . . . . . . . . .. 79

3.11 Nominal system output, actual system output and observer output

when an incipient state fault occurs at the 8th second . . . . . . . .. 89

3.12 Actual states and estimated states using the proposed diagnostic observer 89

3.13 Incipient state fault f~3)(t), fault estimator M3(t), and the observer

inputs M4,4(t) and M4,5(t) . . . . . . . . . . . . . . . . . . . . . . .. 90

3.14 Abrupt state fault f~3)(t), fault estimator M3(t), and the observer in-

puts M4,4(t) and M4,5(t) . . . . . . . . . . . . . . . . . . . . . . . .. 90

4.1 Actual states and estimated states using third order sliding mode dif-

ferentiators 103

4.2 Time-behavior of state estimation error . . . . . . . . . . . . . . . 103

4.3 Characteristics of the fault f~3) (t) and neural adaptive estimators 104

4.4 Measured quaternions in case 1 . . . . . . . . . . . . . 114

4.5 Actual states and estimated states using HOSMDs 115

4.6 Characteristics of fault f~l\t) and estimators in case 1 115

4.7 Measured quaternions in case 2 . . . . . . . . . . . . . 116

4.8 Characteristics of fault f~2)(t) and estimators in case 2 116

4.9 Measured quaternions in case 3 . . . . . . . . . . . . . 117

4.10 Characteristics of fault f2)(t) and estimators in case 3 117

4.11 Measured quaternions in case 4 . . . . . . . . . . . . . 118

4.12 Characteristics of faults f~2)(t) and f~3\t) and estimators in case 4 118

5.1 The boundedness curve for the finite time convergence of Xl .... 125

XIV



5.2 Structure of the three-layer wavelet networks. 130

5.3 System outputs under multiple process faults. 137

5.4 States and their estimations using second order sliding mode observer 138

5.5 Output of wavelet networks under multiple process faults . . . . . .. 138

6.1 System states and observer states using a TS fuzzy control and observer

in the fault-free case . . . . . . . . . . . . . . . . . . . . . . . . . .. 156

6.2 Norm of the output error and the output estimation error using FNSMO

under an incipient fault. . . . . . . . . . . . . . . . . . . . . 157

6.3 Outputs of the fuzzy-neural observer under an incipient fault 157

6.4 Nominal states, actual states and observed states using fuzzy-neural

sliding mode observer under an incipient fault . . . . . . . . . . . .. 158

6.5 Outputs of the fuzzy-neural sliding mode observer under an incipient

fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 158

7.1 Unmeasurable states and their estimations using high order sliding

mode differentiators. . . . . . . . . . . . . . . . . . . . . . . . . . .. 178

7.2 Calculated state estimation error in the presence of a fault in the third

actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 179

7.3 Uncertainties and their estimation using neural networks in the pres-

ence of a fault and measurement noise 179

7.4 Reconstructed fault and actual fault in uncertainty-free case 180

7.5 Calculated fault and actual fault in the presence of uncertainty and

measurement noise . . . . . . . . . . . . . . . . . . . . . . . . . . .. 180

xv



Table of Acronyms

BP:

EKF:

FD:

FNO:

FNSMO:

HOSMD:

IFAC:

ILO:

INPID:

LMI:

MIMO:

MSFF:

NSS:

NAE:

PCA:

PI:

PID:

PLS:

PSD:

RBF:

RGDA:

Back-Propagation

Extended Kalman Filter

Fault Diagnosis

Fuzzy-Neural Observer

Fuzzy-Neural Sliding Mode Observer

High Order Sliding Mode Observer

International Federation of Automatic Control

Iterative Learning Observer

Iterative Neuron PID

Linear Matrix Inequality

Multiple Input Multiple Output

Multiple Satellite Formation Flying

Neural State Space

Neural Adaptive Observer

Principal Component Analysis

Proportional-Integral

Proportional-Integral-Derivative

Partial Least Square

Proportional-Summation-Derivative

Radial Basis Function

Robust Gradient Descent Algorithm

XVI



RILA:

RLO:

SMO:

TS:

Robust Iterative Learning Algorithm

Repetitive Learning Observer

Sliding Mode Observer

Takagi-Sugeno

xvii



Nomenclatures

A system state matrix

B system input matrix

bi radius of ball

C system output matrix

C damping coefficient in flexible satellite

Cij translation in wavelet network

d· . mapping from output to statez,J

E modulus of elasticity of the appendage

ey system output error

Fd constant disturbance force

f nonlinear function

fa additive fault

G switching gain matrix of sliding mode

G* optimal switching gain of sliding mode

gi switching gain vector of sliding mode

h nonlinear function

ht nonlinear function

I sectional area moment of inertia

J moment of inertia of central hub

J1 moment of inertia of each appendage

JM symmetric momentum of inertia

K gain of PID-type estimator

XVlll



Kj,i Kalman gain

k index of iterative or repetitive learning domain

k(, Lipschitz constant

L Length of appendage

L i gain for local linear observer

l distance from a point to the center of the hub

M Earth's mass

M fault estimator

m mass of satellite

ml mass of leader satellite

m f mass of follower satellite

P symmetric positive definite matrix

Pi generalized coordinate

p. . covariance matrix of state estimation errorJ,t

Q symmetric positive definite matrix

qd relative trajectory

qi,j coefficient vector

q first three quaternion

q4 the fourth quaternion

R· . estimated covariance of measurement noiseJ,t

I distance in polar coordinate or radius of the hub

'i diagnostic residual

S equivalent state estimation error vector

S equivalent state estimation error matrix

Si equivalent state estimation error

Tf beginning time of fault

Tm beginning time of estimator

Td disturbance torque

t index of continuous time or discrete time

u input vector

XIX



U* control signal for healthy system

Uf control force of follower satellite

Ui the ith element of input vector

Ut control torque

V parameter of fault estimator

V parameter estimation error

V* optimal parameter

VM bound of parameter

VI Lyapunov function

"Vs Lyapunov function

W parameter of fault estimator

W parameter estimation error

W* optimal parameter

WM bound of parameter

x state vector

x state vector of observer

:i; state estimation error

y system output vector

y output vector of observer

y output estimation error

YD derivative of y using HOSMDs

Zi(,~) external input of PID-type estimator

B(k) coefficient matrix
~,J

ex positive constant

f3i positive constant

r 1 symmetric positive definite matrix

r 2 symmetric positive definite matrix

r 3 symmetric positive definite matrix

"Ii learning rate

6f fault estimation error

xx



Chapter 1

Introduction

1.1 System Monitoring and Fault Diagnosis

Modern control engineering systems are becoming increasingly complex resulting in

more sophisticated control laws. Hence, all the control performance specifications,

the reliability, and the operating safety become critical requirements. Traditionally,

the system monitoring and timely fault diagnosis capabilities have been of utmost

importance in safety-critical systems, such as civil and military aircraft, nuclear power

reactors, etc. However, with the development of modern technologies, other factors

have been playing a major role in identifying the need for these capabilities in other

technical systems. Many contributing factors have caused automatic fault detection,

isolation, estimation, and accommodation problem to become an active area in a large

variety of industries and systems.

Due to the wide applications of electronics and computer technologies, the so­

phistication level of many industrial control systems has largely increased. A good

example is manufacturing modern automobiles. Many functions, such as anti-lock

brakes and combustion control, are now electronically executed and are used on many

vehicles. Productivity and economics are basic driving forces for fault diagnosis re­

quirements. A trivial fault may gradually evolve to a complete failure that can result

in plant shutdown and, therefore, loss of revenue.

Environmental considerations become an important reason for developing fault

1



Chapter 1. Introduction 2

diagnosis strategies. Without any prevention and protection, the consequences caused

by faults can be extremely serious to the environment. For instance, nuclear material

leaking from a nuclear reactor may lead to unrecoverable pollution to the neighboring

earth, air, and water. For the sake of human security, fault diagnosis is essential to

provide valuable information for preventing catastrophe.

In summary, fault diagnosis is extremely important, considering the production

and economic loss, environmental impact, and safety of humans. Therefore, online

system monitoring and fault diagnosis have become an attractive subject in the area

of control systems.

1.2 Literature Review for Fault Diagnosis

1.2.1 Basic Concept of Fault Diagnosis

In order to address the contributions of fault diagnosis (FD) in a unified framework,

the Technical Committee SAFEPROCESS of the International Federation of Auto­

matic Control (IFAC) defined common termin~~ogy in the field of fault diagnosis. In

their terminology list, a fault is referred to as "an unpermitted deviation of at least

one characteristic property or variable of the system from acceptable/usual/standard

behavior." This definition specifies a fault as a process abnormality or symptom.

Different from a failure, which is defined as a "permanent interruption of a system's

ability to perform a required function under specified operating conditions", the term

fault is mainly used to indicate a malfunction that can be tolerable at its present

stage.

Faults can be classified according to a variety of criteria. Based on their locations,

faults can be classified into actuator faults, component faults, sensor faults, and so on.

For example, for a mechatronic system, damage in the bearings, deficiencies in force

or momentum, or defects in the gears are typical actuator faults. Cracks, ruptures,

fracture, leaks, and any loose component of the system are considered component

faults. Furthermore, scaling errors, drift, and dead zones in sensors contribute to

sensor faults. In some literature, state faults and output faults have been used to
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Monitoring and
Diagnosis System

3

r~f(t)

controller
malfunction

~

actuator faults component faults

sensor faults

y(t)

Figure 1.1: Diagram of a closed-loop control system with diagnosis system

mathematically describe the locations of the faults. According to their time-behavior,

faults can be divided into abrupt faults and incipient faults, where the abrupt faults

represent sudden changes in system dynamics, and the incipient faults depict small and

slowly developing deviations from normal status. According to their relations to other

parts of the system, faults can be categorized into additive faults and multiplicative

faults, where the additive faults are described as additional functions which are added

in the system's dynamical equations, while the multiplicative faults are represented

by the product of a variable with the faults.

To prevent any undesirable consequences, a monitoring system is necessary to de­

tect and isolate faults as quickly as possible. A diagram of fault diagnosis for control

systems is shown in Figure 1.1. A fault diagnosis procedure is typically comprised

of three tasks: 1) fault detection makes a binary-decision whether and when any

abnormal event in the monitored system happens, or if everything works well. Fault

detection can be achieved from either the direct observation of system inputs and out­

puts, or the use of certain types of redundant relations. 2) fault isolation determines

the locations and/or types of the faults. 3) fault identification or fault estimation

specifies the magnitude of the fault. Fault detection, isolation, and estimation are

usually referred to as fault diagnosis. After a fault has been diagnosed, in some ap­

plications, the systems are required to be fault-tolerant, which is usually achieved via

passive or active controller reconfigurations. This procedure is usually referred to as

fault accommodation.
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1.2.2 Fault Diagnosis Methodologies

4

Manual diagnosis of control systems has been conducted for a very long time. How­

ever, automatic diagnosis first appeared after computers became available. In the

1970's, the first research report on fault diagnosis based on analytical redundancy

approaches was published at MIT. Since then, the research on fault diagnosis has

been intensified in the last three decades, and it gradually became a multidisciplinary

subject which integrates control theory, information theory, principles of reliability,

statistics, artificial intelligence, etc. Today, the unsolved problems in fault diagnosis

attract the attention of more and more researchers and practitioners. Contributions

in this area have been summarized in many books [1], [2]' [3], [4], [5], [6].

Traditionally, limit checking is a straightforward and easy way for diagnosing

faults. For example, when a sensor signal is out of its normal range, an alarm is

generated to indicate an abnormal event. Thresholds are usually used to predefine

the normal range. When the thresholds are functions of some variables or parameters,

the limit checking method can be considered as a model-based diagnosis method.

Another class of traditional fault diagnosis methods is based on hardware redun­

dancy, where duplicated sensors, actuators, and-.components are equipped to measure

and/or control a particular variable. In this mechanism, outputs from identical com­

ponents are compared for consistency. The major problems encountered with hard­

ware redundancy are the cost of the additional equipment and extra space required

to accommodate the equipment. Moreover, extra equipment increases the system

complexity, which may bring additional diagnostic requirements. Therefore, in the

last three decades, fault diagnosis using analytical redundancy techniques has received

considerable interest from industrial practitioners as well as academic researchers [7].

In spite of the overlap between different diagnostic approaches, one systematic

way to classify the analytical redundancy based fault diagnosis methodologies was

proposed in [8], [9], and [10], where fault diagnosis schemes are categorized into quan­

titative model-based methods, qualitative model-based methods, and process history­

based methods.

Fault diagnostic strategies are usually functions of knowledge representation schemes,
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which, in turn, are largely influenced by the kind of prior knowledge available. The

model-based prior knowledge can be generally classified as quantitative and qualita­

tive. In quantitative models, prior knowledge is expressed in terms of mathematical

functional relationships between the inputs and outputs of the system. In this thesis,

we mainly focus on quantitative model-based fault diagnosis methods. Thus, the char­

acteristics of quantitative model-based fault diagnosis schemes will be summarized in

Section 1.2.3.

In contrast to quantitative models, the relationships in qualitative model equa­

tions are described in terms of qualitative functions centered around different units

in a process. The qualitative models can be established using qualitative causal mod­

els or abstraction hierarchies. In the qualitative causal models, digraphs, fault trees,

and qualitative physics are the typical qualitative knowledge forms. With respect to

abstraction hierarchy, abstraction at different levels is possible along two dimensions:

structural and functional. Moreover, the two fundamental search strategies are topo­

graphic and symptomatic, where topographic searches conduct malfunction analysis

using a template of normal operation, and symptomatic searches look for symptoms

to lead the search to the fault location.

In comparison to assuming prior knowledge about the model is available, process

history based methods only assume a large amount of historical process data can be

obtained. Data can be transformed and expressed as a priori knowledge to the diagnos­

tic system using different feature extraction methods. The feature extraction process

can be either quantitative or qualitative. Methods that extract quantitative infor­

mation can be widely classified into non-statistical or statistical methods. One class

of typical and important non-statistical methods is based on neural networks. Prin­

cipal component analysis (PCA)/partial least square (PLS), and statistical pattern

classifiers constitute a primary component of statistical feature extraction methods.

In addition, expert systems and trend modeling methods are the two major methods

that extract qualitative history information.

A thorough review regarding these three classes of fault diagnosis schemes is found

in [8], [9], [10].
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In the last thirty years, quantitative model-based fault diagnosis schemes have been

significantly investigated, and many contributions have been summarized in the books

[2]' [3], [4]' [5], [6]. From this literature, residual generation and parameter estimation

are two main systematic methods used in the quantitative model-based fault diagnosis

schemes.

In the residual generation based fault diagnosis schemes, a mathematical model

of the dynamic system being considered is first constructed; then the residual signals

produced from the consistency checking of different variables are evaluated to diag­

nose faults. Normally, the consistency checking in analytical redundancy compares

the available system measurements with their estimation/observation. For different

purposes, the generated residual can be quite different. For example, a signal that is

zero, or small, in the fault free case, and nonzero when a fault occurs is enough for

fault detection. But for fault isolation and estimation, more sophisticated residuals

that contain the information of faults have to be developed. The most frequently used

residual generation fault diagnosis schemes are observer-based approaches and parity

space approaches.

The second class of quantitative model-based fault diagnosis schemes treats faults

as deviations in system parameters. Considering a system with a nominal model

M(eo), we use parameter estimation methods to obtain an estimation {j of eo. If the

deviation of (j from eo is above a threshold, then we can conclude that a fault has

occurred. Through comparing e with eo, we can achieve fault diagnosis. However,

this method is limited by the following two aspects: 1) the assumption that a fault

can be modeled as a deviation of system parameters is so restricted that it is prob­

ably unrealistic for many practical faults; 2) as the number of faults increases, the

dimension of the parameter emay become so large that computing the estimation of

e is cumbersome. Therefore, compared with parameter estimation methods, residual

generation methods have received more investigation.

For control systems, the quantitative model-based fault diagnosis schemes have
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the following advantages: 1) No additional hardware components are needed to im­

plement fault diagnosis algorithms. A model-based fault diagnosis algorithm can be

implemented in software on process control and monitoring computers. Moreover, in

many situations, the available measurements for controller design are sufficient for

developing fault diagnosis algorithms, therefore no extra sensors are required. Under

these circumstances, only powerful computers with more storage capacity and com­

puting ability are needed to implement fault diagnosis schemes. 2) The fault diagnosis

results using quantitative models can help establish a fault accommodation algorithm

using controller reconfiguration approaches. In many applications, the fault diagnosis

algorithms are designed based on the same linear or nonlinear models as those for the

controllers design. The location and magnitude of the faults can be directly or indi­

rectly used to design fault-tolerant controllers. Therefore, quantitative model-based

fault diagnosis algorithms and fault accommodation algorithms can be designed and

implemented in a unified framework. 3) Quantitative model-based fault diagnosis

schemes can be implemented online, providing real-time monitoring and diagnosis.

In spite of these advantages, some challenging issues in the quantitative model­

based fault diagnosis schemes are still under further investigation, in order to solve

the following problems: 1) Robust fault diagnosis for nonlinear uncertain systems is

needed. Due to the universal existence of nonlinearities and uncertainties in practi­

cal situations, an effective model-based fault diagnosis scheme should be robust, i.e.,

it should be insensitive or even invariant to modeling uncertainties, without losing

sensitivity to faults. 2) Accurate fault estimation in the presence of uncertainties is

needed. The accuracy of fault estimation should be guaranteed even when the system

has suffered from modeling uncertainties and disturbances. 3) Online implementa­

tion of fault diagnosis algorithms is needed. Now most fault diagnosis schemes are

required to detect, isolate, and estimate various faults in a real-time environment, so

that the engineers have more time to react before faults turn into failures. There­

fore, fault diagnosis algorithms should not be too complicated to be realized. 4) The

consistency between theoretical properties and practical applications is needed. An­

alytical properties such as robustness, sensitivity, and stability should be guaranteed
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rigorously in theory as well as in practice. In conclusion, many issues of the quantita­

tive model-based fault diagnosis schemes in nonlinear uncertain systems need further

investigation.

1.3 Thesis Motivation

With the development of space technologies, a variety of space vehicles, such as launch­

ers, satellites, and space shuttles, have been constructed and utilized in various space

missions, such as global positioning, Earth observation, atmosphere data collection,

space science, and communication. The dynamics of this class of systems have the

following characteristics: 1) The safety and reliability of the space vehicles are so

crucial that fault diagnosis schemes are indispensable. 2) Various linear and nonlin­

ear mathematical models of the space vehicles are already available for the design of

controllers and/or state observers. The attitude dynamics of the space vehicles can

be represented by linear systems when small attitude is deviated from local vertical

local horizontal orientation. However, the attitude dynamics of the space vehicles are

inherently nonlinear, especially when the space vehicles make a large angle maneuver

or have flexible appendages; therefore, different nonlinear models must be used to

describe their dynamics. Moreover, one key space technology is to distribute func­

tionality of a large space vehicle to a group of smaller, low-cost, cooperative space

vehicles. Flying two or more satellites in a specific formation is usually referred to

as a multiple satellite formation flying (MSFF) system. The relative distances and

orientations between the satellites are controlled for formation reconfiguration and

collision avoidance [11], [12]. The dynamics of the MSFF systems can also be de­

scribed by nonlinear mathematical equations. 3) The vehicles in space are subject to

internal modeling uncertainties and external disturbances and noises. For example,

gravity-gradient torque, aerodynamics torque, and Earth magnetic torque constitute

the primary environmental disturbances for space vehicles in low Earth orbit (LEO),

within 1000km. 4) In order to guarantee the normal operation of space vehicles, on­

line fault diagnosis is essential to provide real-time information for the space vehicles

to accommodate the faults as soon as possible. Therefore, fault diagnosis for satellite
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control systems have attracted significant attentions, and quite a few research results

have been published, e.g., [13], [14], [15], [16], [17], [18], [19], [20], [21].

Several classes of satellite control systems investigated in this thesis are summa­

rized in Figure 1.2. These systems not only include the typical satellite attitude and

orbital control systems, but they also have the dynamical systems of flexible satel­

lites, and multiple satellites. In order to realize health monitoring for these various

satellite control systems, the designed fault diagnosis schemes need to at least satisfy

the following requirements:

• both linear and nonlinear models of different satellite control systems should be

able to be used in the design of fault diagnosis schemes;

• the fault diagnosis schemes should be able to deal with nonlinear systems where

not all states are measurable;

• the fault diagnosis schemes should be effective in the presence of uncertainties;

• the fault diagnosis schemes should be implementable in real-time environment;

and

• the fault diagnosis schemes should be able to theoretically and practically guar­

antee the robustness, sensitivity, and stability.

Due to the dual relationship between the state feedback control and the full order

observer design, the main design procedure in model-based fault diagnosis becomes

an equivalent state feedback control problem. Hence, in recent years, robust fault di­

agnosis schemes for nonlinear systems using adaptive techniques, artificial intelligence

methodologies, and sliding mode approaches have been considerably developed.

The fault diagnosis schemes using a variety of adaptive approaches have been stud­

ied by a number of researchers in the last ten years, e.g., [22], [23], [24], [25], [26]. In

this class of fault diagnosis schemes, the parameters of the proposed observer are adap­

tively updated using the output estimation error. After the estimation error dynamics

are stabilized, the estimators that contain these parameters are used to characterize

the faults. Wang and Daley only considered linear systems without uncertainties and
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Figure 1. 2: Summary of several classes of satellite control systems in this thesis

disturbances [22), [23]. Jiang et al. and Xu and Zhang used robust adaptive techniques

to estimate not only constant faults, but also time-varying faults in the presence of

uncertainties [24], [25]. Since 1994, Polycarpou et al. have explored the robust fault

diagnosis schemes in a class of nonlinear systems using learning methodologies, such

as neural networks, [27], [28], [29], [30], [3-1], [32], and [33]. Due to the powerful

abilities of neural networks in function approximation and pattern recognition, neural

networks-based fault diagnosis schemes have been extensively studied, where neural

networks are usually developed as predictors of the nonlinear models and/or a fault

classifier; e.g., [34], [35], [36]. However, the mathematical models that can fully or

partially characterize the system dynamics are not explicitly utilized.

As a result, neural networks based observers have been designed and used for fault

diagnosis in nonlinear systems; e.g., [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],

[47], [48]. In their work, neural networks are integrated with the observer design meth­

ods, where the neural networks are only employed to approximate the possible faults.

In [31], robustness is achieved by using a dead-zone operator, where the parameter

update algorithm is insensitive to the estimation error less than a threshold, which is

deemed to be caused by modeling uncertainties. Moreover, a bank of neural networks
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based online approximators are adopted to estimate the magnitude of the faults. Al­

though this is a unified framework of the robust fault diagnosis schemes using learning

methodologies, the selection of a proper approximator is still based on trial-and-error

methods. For a specific problem with specific requirement, an ad hoc online esti­

mator will works better than a general one. For example, the transient process and

steady-state error of fault estimation are expected to be reduced and even eliminated.

Moreover, projection operators are used in the parameter update algorithms in order

to avoid parameter drift caused by modeling uncertainties, approximation errors, or

noise. However, the procedure of designing this projection operator is not straight­

forward. Additionally, the use of a dead-zone operator, which achieves a robust fault

detection, however, reduces the accuracy of the fault estimation.

In recent years, another family of learning approaches, named iterative learning

observers (ILO), have been proposed and used in the fault diagnosis for some kinds of

systems [49], [50], [51], [52], [53]. The ILO was inspired by iterative learning control

algorithms [54], [55], where the observer input is always updated by previous informa­

tion. The advantage of iterative learning observers is they can be easily implemented,

because the structure of an ILO is simple. Additionally, the stability of the ILO-based

fault diagnosis schemes can be guaranteed by selecting suitable coefficients that satisfy

Lyapunov functions. For an arbitrary time-varying fault, iterative learning algorithms

achieve better approximation performance than adaptive algorithms which perform

well only for constant or periodic fault signals [49], [51], [52], [53]. However, so far,

Proportional-type iterative learning observers are mainly used, where only the out­

put estimation error at the current iteration is iteratively updated in the form of a

linear discrete-time filter. Due to the availability of various iterative learning control

strategies, other types of iterative learning observers can be developed to reduce the

required iteration number and to avoid unnecessary overshoot and transient process

in the fault estimation.

Furthermore, due to the inherent robustness of sliding mode to modeling uncertain­

ties, the fault diagnosis schemes using sliding mode observers have been investigated

by many researchers for several years; for example, [56], [57], [58], [59], [60], [61], [62],

[63], [64], [65], [66], [67], [68], [69], [70], [71], [72]. sliding mode observers can be applied
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to the robust fault diagnosis schemes in at least two ways: 1) The fault is treated in the

same way as other unknown inputs such as system uncertainties, and both the fault

and the system uncertainties are counteracted by the sliding mode. Consequently,

the sliding motion is still maintained even after a fault occurs. Through a series of

matrix transformations, a fault estimation or reconstruction signal can be explicitly

established using an equivalent output estimation error injection method. 2) In the

second class of robust FD schemes using sliding mode observers, the fault is treated

in a different way from the system uncertainties. Prior to the occurrence of any fault,

the sliding mode works only to eliminate the effect of the system uncertainties. After

a fault occurs, the sliding motion is supposed to be destroyed, and other learning or

adaptive techniques are adopted to estimate the fault. So far, the second method has

not been explicitly developed, and the key point is properly selecting an appropriate

switching gain of the sliding mode in order to successfully distinguish the modeling

uncertainties from the faults. If the gain is too large, observer will exhibit excessive

chattering before reaching sliding mode, and even the faults may be counteracted by

the sliding mode. If the gain is too small, the observer may never be able to reach a

sliding mode and converge to a real state value.

In recent years, various high order sliding mode observers andjor differentiators

have been designed for state observation [73], [74], [75], [76], [77], [78], [79], [80], [81],

[82], and fault diagnosis in nonlinear systems; for example, super-twisting algorithms

[83], [50], [84], [85], [86], [87]. Compared with first order (classic) sliding mode ob­

servers, high order sliding mode observers not only hold their robustness to system

uncertainties, but they also reduce or remove chattering effects and can provide a

smooth or at least piece-wise smooth observation within a finite time. Moreover, a

high order sliding mode demonstrates its unique strength in state observation of a

class of nonlinear systems with a relative degree of more than one. However, high

order sliding mode observersjdifferentiators based fault diagnosis schemes have just

attracted many researchers' attentions in the last few years.

Moreover, wavelet networks, at least, have the same universal approximation prop­

erty as neural networks [88], [89]. This property can theoretically guarantee the fault

estimation accuracy if the wavelet network is chosen as an alternative of the neural
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networks based fault estimator. Moreover, the wavelet networks coefficients have an

explicit link with some appropriate transform. This link will help provide good initial

values for some learning algorithms. Additionally, a reduced-size wavelet network

achieves the same approximation quality as neural networks. This feature simplifies

the structure of the fault estimators, making the fault diagnosis schemes easier to

implement.

Fuzzy logic, in the last several years, has been extensively used in system modeling,

control, and pattern recognition [90], [91], [92], [93], [94], [95], [96], [97], [98]. The most

significant applications of fuzzy models to fault diagnosis are using their classification

and reasoning abilities [99], [100]. Correspondingly, the designed fuzzy model based

fault diagnosis schemes are mainly qualitative model based or process history based.

Moreover, research has shown that fuzzy models have the same approximation ability

as neural networks under certain conditions. Therefore, fuzzy models can replace the

neural networks in the fault diagnosis schemes using learning approaches. In addition,

at least two approaches are used to construct fuzzy models: 1) identification using

input-output data; and 2) derivation from given mathematical equations for nonlinear

systems. Consequently, linear model based fault diagnosis schemes can be extended

to more general nonlinear systems through fuzzy models. In fact, fuzzy-model-based

fault diagnosis schemes have only been partly developed [101], [102]' [103], and [104].

In summary, according to the above analysis, the existing fault diagnosis schemes

for nonlinear systems can still be improved. Hence, in this thesis, our research focuses

on the design and analysis of fault detection, isolation, and estimation strategies

using learning and sliding mode methodologies, as well as their applications to a

variety of satellite control systems. A diagram illustrating the hierarchy of analytical

redundancy based fault diagnosis schemes is shown in Figure 1.3.

Through my research, the following objectives were achieved:

• extend several existing fault diagnosis methods to more general nonlinear dy­

namic systems;

• develop a framework of robust fault diagnosis schemes using sliding mode and

learning approaches;
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• establish more learning strategies for robust fault isolation and estimation;

14

• relax some restrictive assumptions on the fault diagnosis schemes based on learn­

ing approaches; and

• apply the proposed fault diagnosis schemes to a variety of satellite control sys­

tems.

1.4 Thesis Contributions and Outline

The contributions of this thesis are summarized as follows,

• Actuator fault detection, isolation, and estimation using a bank of

repetitive learning observers

In Chapter 2, inspired by previous proportional-type ILO, a novel fault diagnosis

scheme using Proportional-Integral (PI) type repetitive learning observer (RLO)

is developed for a class of discrete-time nonlinear systems based on a generalized
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observer structure. In this fault diagnosis scheme, in order to isolate one fault

among N possible faults, N observers are designed to generate N residuals, and

the ith residual is sensitive to all faults except the ith one. Consequently, fault

detection and isolation become straightforward by observing and comparing the

residuals generated by each observer. After detecting and locating the fault, the

parameter of the corresponding PI type repetitive learning observer is updated

to estimate the magnitude of the fault. In order to demonstrate its performance,

this fault detection, isolation, and estimation scheme will be applied to the

nonlinear dynamics of a satellite attitude control system.

• Robust fault detection, isolation, and estimation using sliding mode

and learning strategies

Chapter 3 explores a novel framework for fault diagnosis schemes using slid­

ing mode and learning approaches. The proposed fault diagnosis schemes are

particularly designed for a class of nonlinear systems with a triangular input

form. The designed fault diagnostic observer has three features: 1) The vari­

able switching gain is updated by using an iterative learning algorithm and an

iterative fuzzy model, respectively, which guarantees the sliding motion as well

as reducing the gain value. With a time-varying switch gain, the sliding mode

is only expected to eliminate the effect of the modeling uncertainties on system

dynamics. 2) After any fault occurs, the sliding motion is destroyed due to the

variable sliding mode gain. Correspondingly, a bank of online learning estima­

tors are activated to isolate and estimate the fault. 3) This fault diagnostic

observer is suitable for cases of a single fault as well as for cases of multiple

faults.

After setting up the architecture of the robust fault diagnostic observer, we focus

on the development of the online fault estimators in this class of fault diagnosis

schemes. First, a neural state space (NSS) model based fault estimator is built,

which has a nonlinear state space structure. Then, an iterative learning based

fault estimator is designed. These two kinds of fault estimators are designed

and analyzed in Chapter 3 in detail, but here is a brief introduction:
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Neural state space model-based estimator

A neural state space model is a special type of recurrent neural network

[105], [106], [107], [108]. When NSS models are used as a fault estimator,

it demonstrates the following features: 1) The NSS models have the same

approximation ability as neural networks. Hence, under some assumptions,

the characteristics of faults can be accurately specified. 2) The NSS models

have a similar structure as linear state space models, consequently, the

theoretical properties of the fault diagnosis schemes using NSS models can

be rigorously analyzed by extending some properties of linear state space

systems. In Chapter 3, a fault diagnosis scheme using an estimator based

on sliding modes and NSS models is applied to a satellite orbital control

system.

PID-type iterative learning estimator

Although neural networks based estimators can approximate the fault with

satisfactory accuracy under certain conditions, inevitably, overshoot and

transient process in the fault estimation occur because the estimators need

time to update their parame_~ers to approximate the abrupt changes caused

by faults. Accordingly, we build an iterative learning estimator, which has

the following characteristics: 1) The tracking trajectory becomes time­

varying, but iteration-invariant. 2) The architecture of the iterative learn­

ing estimator is simple and deterministic, and only the proportional, inte­

gral, and derivative information of the output estimation error is used. 3)

The parameters of the estimator are updated in the iteration domain rather

than in the time domain. This strategy not only guarantees the conver­

gence of the update process when the tracking trajectory is time-varying

and iteration-invariant, but it also reduces or even eliminates the transient

process and overshoot in the fault estimation. This fault diagnosis scheme

using sliding mode and PID-type iterative learning estimator is applied to

a flexible satellite control system.

• Robust fault detection, isolation, and estimation using high order
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sliding mode differentiators and learning approaches

In Chapter 4, the fault diagnosis problem in a class of nonlinear systems are

studied, where the unmeasurable state is a nonlinear function of the system

output and its derivatives. For this class of particular nonlinear systems, high

order sliding mode differentiators (HOSMDs) are first used to obtain the deriva­

tives of the system output. Then the unmeasurable system state is estimated

according to the system dynamics and the system output and its derivatives

which have been obtained via HOSMDs. Thereafter, a fault diagnostic observer

is constructed, where the online estimators are again used to isolate and esti­

mate possible faults. Two types of fault estimators are discussed in detail in

Chapter 4, and here are some characteristics of these two fault estimators.

Neural adaptive estimator

The neural adaptive estimator (NAE) is inspired by discrete-time propor­

tional type iterative learning observers and artificial neural networks. The

neural adaptive estimator has the following advantages: 1) Its structure is

simpler than general feed-forwar-d or recurrent multiple-layer neural net­

works, and only the numbers of previous estimator inputs and outputs

need to be determined. As a result, if appropriate parameter update laws

are chosen, the algorithm is more easily implemented and can satisfy more

strict real-time computational requirements. 2) Theoretical properties of

the NAE-based fault diagnosis scheme are more easily analyzed than gen­

eral neural networks-based fault diagnosis schemes. The fault diagnosis

scheme using HOSMDs and neural adaptive estimator is applied to a typ­

ical satellite attitude control system.

- Iterative neuron PID estimator

The PID-type iterative learning estimator mentioned in Chapter 3 is ac­

tually a linear combination of previous information of the state estimation

error and its differences. In order to accelerate the convergence rate, the

hyperbolic tangent activation function is used to formulate an iterative
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neuron PID estimator. Still, only the proportional, integral, and deriva­

tive information of the state estimation error are used to build the fault

estimator. Not only does the deterministic observer structure simplify the

procedure of selecting a suitable architecture of the fault estimator, but

the nonlinear relationship between the input and output of the estimator

also speeds the approximation process. Moreover, in order to increase the

fault estimation accuracy, four robust adaptive algorithms are adopted to

iteratively update the parameters of this fault estimator. This strategy

can also reduce the transient time and overshoot in the fault estimation

because the parameters are updated in the iteration domain rather than

in the time domain. To illustrate the performance of this fault diagnosis

scheme, it is applied to a satellite attitude control system with large angle

maneuver .

• Robust fault detection, isolation, and estimation using a second-order

sliding mode and wavelet networks

In Chapter 5, we apply a second order sliding mode and wavelet networks to

the fault diagnostic observer design for the class of systems which is discussed in

Chapter 3. The second order sliding mode is only used to estimate the system

state in the presence of modeling uncertainties. The sliding motion is destroyed

by the onset of faults, and then a bank of wavelet networks are activated to

specify the faults. Although the basic idea of the fault diagnosis scheme in

this chapter is the same as that in Chapter 3, the distinguished features of the

second order sliding mode and wavelet networks provide flexibility in the design

of fault diagnosis schemes. The proposed fault diagnosis scheme is applied to a

multiple satellites formation flying system.

• Fault detection, isolation, and estimation using fuzzy models, neural

networks, and sliding modes

In Chapter 6, the fault detection, isolation, and estimation schemes using slid­

ing modes and learning approaches is extended to a class of nonlinear systems,
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which can be represented by Takagi-Sugeno (TS) fuzzy models. A TS fuzzy

observer is first developed to estimate the system state, and then neural net­

works are integrated to form a fuzzy-neural observer, where the neural networks

are supposed to estimate the faults. A modified back-propagation algorithm is

used to update the parameters of the neural networks, where only the output

information is used. In order to increase the robustness of this fault diagnosis

scheme and to reduce the approximation error caused by the system uncertain­

ties and estimator itself, sliding modes are utilized to construct a fuzzy-neural

sliding mode diagnostic observer. The neural networks is still used to isolate

and estimate possible faults. Finally, the proposed fault diagnosis scheme is

applied to a reduced-order satellite orbital control system.

• Fault diagnosis using high order sliding mode differentiators and un­

certainty observers

Chapter 7 proposes a novel robust fault diagnosis scheme for the class of nonlin­

ear systems discussed in Chapter 4, This fault diagnosis scheme is different from

previous ones. The system modeling uncertainty is estimated by using learning
•

approaches, rather than passively being counteracted by a sliding mode. As a

result, the residual is designed in such a way that it only has relationships with

the uncertainty estimation error and faults. If an accurate estimation of the un­

certainty is realized, the fault signature on the residual becomes more evident,

and fault detection and isolation is achieved more easily. In the design of the

uncertainty observers, we still need to use the information of the unmeasurable

state, which, again, is estimated via the high order sliding mode differentiators.

This proposed robust fault diagnosis scheme is applied to a typical satellite

attitude control system.

To summarize the approaches used in this thesis, a diagram showing the relation­

ship between the different approaches in this thesis is described by Figure 1.4. The

bi-directional arrows in this diagram indicate the two approaches at the end of each

side are used together in this thesis.
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Chapter 2

Actuator Fault Diagnosis in

Nonlinear Systems Using

Repetitive Learning Observers

(RLOs)

In this chapter, the fault diagnosis problem for a class of discrete-time nonlinear

systems are investigated using a bank of Proportional-Integral (PI) type repetitive

learning observers (RLOs). The proposed fault diagnosis scheme is applied to a satel­

lite attitude control system.

2.1 Introduction

Due to the universal existence of nonlinearities in practical systems, fault detection,

isolation, and estimation in nonlinear systems has received considerable attention

in the last few years. On one hand, many researchers considered extending fault

diagnosis approaches for linear systems to the cases of nonlinear systems. On the

other hand, various nonlinear system modeling and control strategies are used to

design fault diagnosis schemes.

21
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In the nonlinear fault diagnosis schemes, an important class of approaches was

originally proposed in [27] and further developed in [28], [29], [30], [31], [32], and

[33]. The characteristics of this class of FD schemes are to approximate the nonlinear

fault functions by using online learning estimators. So far, the online fault estima­

tors include adaptive observers [22], [23] [25], neural networks [34], [35], [36], and

neural networks based observers [46], [47], [48]. One common feature of these online

approximators is their parameters are updated in the time domain.

In recent years, another class of online estimators, named iterative learning ob­

servers (ILOs), was proposed and applied to the nonlinear fault diagnosis problems;

e.g., [49], [50], [51], [52], [53]. This class of iterative learning observers, in fact, inher­

its the idea of iterative learning control ([54], [55]), but it is different in the design

and implementation. The iterative learning control methods require the system to

execute the whole process multiple times, whereas the ILOs update the parameters to

approximate unknown input functions recursively. In the ILOs-based fault diagnosis

schemes, the time-varying tracking trajectory becomes constant at each measurable

time, which increases the estimation accuracy if the iteration number is sufficiently

large. Moreover, the ILOs are easily implemented because only one or two coefficients

need to be designed and the updating process is repeatable in the iteration domain.

However, in those previous work on ILOs, only the observer input is iteratively up­

dated in a proportional way for continuous time systems.

In addition, two observer design schemes have been used to design fault diagnosis

strategies. The first scheme is called dedicated observer scheme [1]. In this scheme,

to isolate one fault among N possible faults, N observers are designed to generate

N residuals, and the ith residual is expected to be only sensitive to the ith fault,

but insensitive to others. The other scheme is called generalized observer scheme [7],

where N observers are also designed to produce N residuals. However, the difference

is that the ith residual is sensitive to all possible faults, except the ith one. For

these two schemes, once the residuals are generated, the decision making for fault

isolation becomes straightforward. In this chapter, we adopt the second observer

scheme to design a fault diagnosis approach because, when using the generalized

observer scheme, we only need to consider how to make the ith residual insensitive
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to the ith fault, and other residuals are naturally sensitive to the faults due to the

nonlinearity and coupling of the dynamic systems.

Satellites play an ever increasing important role in various space missions, such as

global positioning, Earth observation, space science, and communication. In order to

achieve high-accuracy performance on pointing requirements, three-axis attitude con­

trol systems are usually installed on the satellites. As a result, a variety of controller

design methods have been developed for the multi-input-multi-output (MIMO) atti­

tude control systems by many researchers and engineers. Nevertheless, the research

regarding fault diagnosis for those kinds of systems is not thorough as for controller

design. This fact motivates us to develop more model-based fault diagnosis schemes

and apply them to the satellite attitude control systems.

This chapter is arranged as follows. In Section 2.2, the system of interest is first

described and some necessary assumptions are introduced. Then, in Section 2.3, Sec­

tion 2.4, and Section 2.5, a bank of PI-type repetitive learning diagnostic observers are

designed, and their corresponding fault detection, isolation, and estimation strategies

are proposed and analyzed theoretically. Section 2.6 provides a simulation example

where the proposed fault diagnosis scheme is applied to a satellite control system.

Finally, Section 2.7 gives conclusions.

2.2 Problem Formulation

The class of discrete-time nonlinear dynamic systems in this chapter is described by

the following difference equation:

x(t + 1)

y(t)

f(x(t), t) + Bu(t)

Cx(t) (2.1)

where x = [Xl,'·· ,xnF E ~n is the state vector, U = [UI,··· ,umF E ~m is the

control input vector, and Y = [YI,'" ,Yp]T E ~p is the output vector of the system,

respectively. The term B = [bl ,'" ,bm ] is called the actuator distribution matrix,

where bi is the ith column vector. The symbol t denotes the index of discrete time

domain in this chapter, but it represents continuous time in the later chapters.
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When an actuator fault occurs, the corresponding system can be described by a

faulty model of (2.1). Since the system has a total of m actuators, m possible faulty

models are available. For example, if the lth actuator is faulty, the corresponding

faulty model is presented by

x(t + 1)

y(t)

m

f(x(t), t) +I:: bjuj(t) + blUr (t)
j=l

Cx(t) (2.2)

where u{ (t) is an additive faulty signal in the lth actuator.

Throughout this chapter, the following assumptions are introduced in the design

and analysis of the RLOs-based fault detection, isolation, and estimation scheme.

Assumption 2.1 Only a finite constant actuator fault is supposed to occur at one

time; that is, uJ (t) = OJ for t ~ tf and limt-+oo IUj(t) - Ojl i= 0, j E 1,2"" ,m, where

OJ is a finite constant, tf is the time when the fault becomes constant, Uj(t) is the

healthy actuator output, and uJ is the finite constant fault signal in the jth actuator.

Constant bias or offset in an actuator can be described by this kind of fault.

Assumption 2.2 The nonlinear system function f(x, t) is Lipschitz at output y with

a positive constant kf ; i.e.,

(2.3)

where x can be divided into two components, Xl = Y and X2·

Assumption 2.3 The nonlinear function f(x, t) can be decomposed into a linear

matrix component and a nonlinear function part; i.e.,

f(x, t) = Ax + E(x, t),

and the nonlinear function part is Lipschitz with another constant kE,; i.e.,

IIE(x, t) - E(x, t) II < kc.ll x - xii·

(2.4)

(2.5)
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Assumption 2.4 A symmetric positive definite matrix P exists which satisfies the

following Lyapunov function:

(2.6)

where Q is also a symmetric positive definite matrix.

Remark 2.1 In this chapter, we study a class of discrete-time nonlinear systems

that is of the form (2.1), or a class of continuous-time nonlinear systems that can be

discretized into (2.1). The studied systems satisfy Assumption 2.1, 2.2, 2.3, and 2.4.

These assumptions are used in the design and analysis of the proposed RLOs-based

actuator fault detection, isolation, and estimation scheme.

2.3 Design of Repetitive Learning Observers

Based on the faulty model (2.2) and Assumption 2.1, a specific faulty model of system

(2.1) becomes

x(t + 1)

y(t)

m

f(x(t), t) + 2:: bjuj(t) + blBI

j=l

Cx(t). (2.7)

Based on (2.7), we design m repetitive learning observers for all m faulty models

as
m

Yi(t,k)

ei(t,k)

f(xi(t, k)) + 2:: bjuj(t) + biei(t, k)
j=l

CXi(t, k), i = 1" .. ,m

ei(t, k - 1) + qi,ldi,lfJi(t, k) + qi,2di,2(i5ih(t, k)) (2.8)

where Yi(t, k) = y(t + 1) - Yi(t, k) = C(x(t + 1) - Xi(t, k)) is the ith output estimation

error at sampling time t and at the kth repetition, i5Yi(t, k) = Yi(t, k) - Yi(t, k - 1),

k is the index of the repetitive learning domain, di,j E Rnxp(j = 1,2) is a mapping

from the output to the state, and qi,j E R1xn(j = 1,2) is the coefficient vector, which

determines the convergence rate of the repetitive learning algorithm.
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The repetitive learning algorithm is implemented in the following way. At each

sampling time t, Yi(t, O) is set to be y(t + 1); i.e., f/i(t,O) = 0 at the initialization

phase. Then, all the m observers repetitively update their parameters Bi (t, k) using a

PI-type algorithm in the repetitive learning domain. When k reaches the maximum

repetition number km , or IIiJi(t, k)11 is less than a tolerance error Ey, the repetitive

learning process at time t ceases.

The initial value of Xi(t, 0) is obtained by using the mapping operator di,j from

Yi(t,O) to Xi(t, 0). Since not all state variables are available, Xi(t,O) is not always

equal to x(t + 1); that is, Xi(t, 0) is not always zero. However, Xi(t, 0) becomes small

if x(t, 0) is well obtained by using the mapping operator. Moreover, this initialization

is implemented at each sampling time t. Therefore, the estimation error will not

accumulate as the discrete time t increases.

In order to investigate the properties of the proposed RLOs, we obtain the dy­

namics of the estimation error in the repetitive learning domain by subtracting (2.8)

from (2.7); i.e.,

Xi(t, k + 1)

Yi (t, k)

f(x(t)) - f(xi(t, k)) + blBI - biBi(t, k)

CXi(t, k) (2.9)

where Xi(t, k) is the ith state estimation error at the kth repetition and at time t.

2.4 RLOs-based Actuator Fault Detection and Iso­

lation

Fault detection is the primary task in a fault diagnosis scheme. In order to detect and

locate an actuator fault, we design a bank of residuals ri (t) = IIYi (t, k) II, i = 1, ... , m.

If only one residual approaches zero while the others are nonzero (e.g., rl(t) -----+ 0, and

ri (t) =I- 0, (i =I- l)), then the lth actuator is considered to be faulty. Regarding this

fault detection and isolation scheme for (2.7), we have the following theorem.

Theorem 2.1 When the lth actuator is faulty, the lth observer output YI(t, k) con­

verges to the system output y(t + 1) as the repetition number k approaches infinity;
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that is,

II yz (t, k) II --+ 0 as k --+ 00

provided the following inequality is satisfied,
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(2.10)

(2.11)

where 11·llinf is the infinity norm of a matrix. The variables el, e2, and PI are defined

in the following proof.

Proof: The lth pair of estimation error dynamics in the repetitive learning domain

is described as

xz(t, k + 1) - f(x(t)) - f(xz(t, k)) + bz(Bz - (Jz(t, k))

Yz(t, k) - Cxz(t, k). (2.12)

From (2.8) and (2.12), we can obtain that

Yz(t, k + 1) - Yz(t, k) = -C(j(xz(t, k)) - f(xz(t, k - 1)))

-Cbz(Oz(t, k) - Oz(t, k - 1))

- -C(J(xz(t, k)) - f(xz(t, k - 1)))

-CbZ(qZ,ldz,IYZ(t, k) + qZ,2dZ,26YZ(t, k)). (2.13)

Thus, we have

116YZ(t, k + 1)11 < IICII(kf + Ilbzqz,2dz,2!1)116Yz(t, k)11
+IICbzqz,ldz,IIIlIYi(t, k)ll. (2.14)

Based on (2.13), we have

yz(t, k + 1) - (I - CbZqZ,ldz,I)YZ(t, k)

-C(j(xz(t, k)) - f(xz(t, k - 1)))

-CbZqZ,2dZ,26YZ(t, k), (2.15)
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and
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II:ih(t,k+ 1)11 < III - Cbzqz,ldz,IIIlIYz(t,k)11

+IICII(kf + Ilbzqz,2dz,211)11c5yz(t, k)ll. (2.16)

Considering (2.14) and (2.16), we obtain

[
IIc5yz(t, k + 1)11 ] :::; [e l e2 ] [ IIc5yz(t, k)11 ]
IIYz(t, k + 1)11 el PI IIYz(t, k)1I

(2.17)

where the symbol ":::;" applies to each element of the vector, el = IICII(kf + IIbzqz,2dz,211),

e2 = IICbzqz,ldl,lll, and PI = III - Cbzql,ldz,lll·

Taking the inf-norm on both sides of (2.17), and according to the basic property

of the vector norm, we can derive that if

(2.18)

and IIYz(t, 0) II and lIc5yz(t, 0) II are both finite numbers, then both IIYz(t, k) II and IIc5Yz(t, k) II
converge to zero as k approaches infinity. •

Remark 2.2 The inequality (2.18) is only a sufficient condition to guarantee the

convergence of the lth observer output estimation error.

In order to isolate the fault, we want to show that the output estimation errors of

all RLOs except the lth one do not approach zero. If so, the fault isolation becomes

straightforward.

Theorem 2.2 IfmatrixCB is offull column rank, then the residualri(t) =I=- 0, (i =l=-l),

and the fault isolation problem can be effectively solved by evaluating the residuals.

Proof: For i =I=- l, we have the estimation error dynamics as follows,

Xi(t, k + 1)

Yi(t,k)

f(x(t)) - f(xi(t, k)) + bzBz - b/Ji(t, k)

CXi(t, k). (2.19)
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If matrix C B has full column rank, Cbz and Cb i are independent. Additionally,

(Mt, k) is updated using Yi(t, k), and, in general, ei(t, k) i- ez for i i- l. Therefore,

generally, Yi (t, k) for i =1= l will not approach zero. •

Summarizing Theorem 2.1 and 2.2, if the lth actuator is faulty, then only the lth

residual rz(t) is zero and others are nonzero. Therefore, the proposed PI-type RLOs

are effective for fault detection and isolation.

2.5 RLOs-based Actuator Fault Estimation

In the event of a fault, the location as well as the size of the fault must be deter­

mined. In this section, we estimate the fault by updating the parameter ez(t, k) in the

repetitive learning domain. Regarding the fault estimation using RLOs, we have the

following theorem.

Theorem 2.3 When the lth actuator is faulty, if the sufficient condition (2.18) in

Theorem 2.1 and the following inequality are both satisfied,

then

lim Ilez - ez(t, k)11 = O.
k-+oo

Proof: Subtracting both sides of ez(t, k + 1) from ez in (2.8), we have

(2.20)

(2.21)

B1(t, k) - ql,ldl,lYz(t, k + 1) - ql,zdz,zoYz(t, k + 1)

B1(t, k) - (qz,ldz,l + qz,zd1,z)Yl(t, k + 1) + ql,zdz,zYl(t, k)

B1(t, k) - (ql,ldz,l + ql,zdz,z)C(f(x(t)) - f(xl(t, k)))

-(ql,ld1,1 + ql,zdz,z)Cb1Bz(t, k) + ql,zd1,zYl(t, k). (2.22)

Taking the norm on both sides of (2.22), and according to Assumption 2.2, we

obtain

(2.23)
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where

and
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Therefore, if the sufficient condition in Theorem 2.1 is satisfied to guarantee

Ilih(t, k)ll---+ 0, and the parameters of the observers are carefully chosen to guarantee

o< P2 < 1, then limk---->oo II B1( t, k) II = o. •

Remark 2.3 So far, we do not have a systematic way to choose the learning coef­

ficients qi,l and qi,2, and we still have to use a trial-and-error method. In order to

guarantee (2.11) and (2.20), not only do the system dynamics need to satisfy cer­

tain assumptions, but also the learning coefficients need to be set to small values in

numerical computation.

In addition to fault detection, isolation, and estimation, the PI-type repetitive

learning observers can be used to estimate the system state. This property is guar­

anteed by the following theorem.

Theorem 2.4 For i = l, if the conditions in Theorem 2.1 and 2.3 are all guaranteed,

and the following inequality is also satisfied,

(2.24)

where P and Q are both defined in Assumption 2.4, and Amin(Q) is the minimum

eigenvalue of Q, then the system state estimation error obtained by the lth observer

ultimately approaches zero.

Proof: Based on Assumption 2.3, the dynamics of the state estimation error are

Xl(t, k + 1) f(x(t)) - f(xl(t, k)) + b1(()1 - (Jz(t, k))

AXl(t, k) + (~(x(t)) - ~(Xl(t, k))) + b1B1(t, k). (2.25)
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We design a Lyapunov function as

1Iz(k) = xz(t, k)T Pxz(t, k).
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(2.26)

Based on the results derived from Theorem 2.3 and Assumption 2.4, we compute

the difference of 1Iz (k) to be

1Iz(k + 1) -1Iz(k)

= xz(t, k + l)TPxz(t, k + 1) - xz(t, k)T Pxz(t, k)

= xz(t, k)T(ATPA - P)xz(t, k)

+ 2xz(t, k) T ATP(~(x(t)) - ~(x(t, k)))

+(~(x(t)) - ~(xz(t, k))) T P(~(x(t)) - ~(xz(t, k)))
- TT - T T-+(}z(t, k) bzPbz{Jz(t, k) + 2xz(t, k) A bzBz(t, k)

+2ez(t, k)Tbi (~(x(t)) - ~(xz(t, k)))

::; -xz(t, k) T Qxz (t, k) + k~ IIPllllxz(t, k) 11
2

+2k~IIPIIIIAllllxz(t, k)11 2+ IIPllllbzllllez(t, k)11 2

+2(IIAII + k~)lIbzllllez(t,k)llllxz(t,k)11

::; -,8t11xz(t, k)11 2+ 2,821Ixz(t, k)IIIIBz(t, k)11 + ,831Iez(t, k)11 2

(
,82 - ) 2 ( ,8i ) - 2

= -,81 Ilxz(t, k)lI- ,811IBz(t, k)11 + ,81 +,83 IIBz(t, k)11 (2.27)

where

,81 - Amin(Q) - kdPII- 2k~IIPIIIIAII (2.28)

,82 - IIAllllbzll + IIbzllk~ (2.29)

,83 - IIPllllbzll2. (2.30)

If

Amin(Q) > k~IIPII + 2k~IIPI"IAIl (2.31)

Ilxz(t, k)11 > ,82 + J~: + ,81,83
11
e

Z
( t, k) II (2.32)
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we obtain ~Vi(k) < 0, which implies Xl(t, k) is ultimately bounded, since (32 and (33

are finite positive numbers. This bound depends on the fault estimation error. Based

on the results in Theorem 2.3, \IXl(t, k)11 approaches zero as k ----+ O.

For (i =f:. l), we can prove that Xi (t, k) =f:. 0 in a similar way as that in Theorem

2.2. Therefore, the lth observer alone can be used to estimate the system state. •

The propose fault diagnosis scheme in this chapter is implemented using the fol­

lowing algorithm:

• Step 1: Determine mapping operators di,j, and coefficient qi,j based on system

dynamics and using a trial-and-error method.

• Step 2: Set maximum repetition number km and tolerance error Eg.

• Step 3: Obtain system output y(t + 1) from (2.1).

• Step 4: Construct m RLOs for m possible faulty models, and obtain Yi (t, k) and

5Yi (t, k) at the kth repetition.

• Step 5: Update Bi(t, k) of RLOs in repetition domain.

• Step 6: If k = km or IIYi(t, k)11 < Ey, then compute residual Ti(t) = IIYi(t, k)ll,

and record Bi(t, k) and Xi(t, k). Otherwise, k := k + 1, and goes to Step 4.

• Step 7: Use Ti(t) to detect fault based on Theorem 2.1.

• Step 8: Use Ti(t) to isolate fault based on Theorem 2.2.

• Step 9: Use Bl(t, k) to estimate fault based on Theorem 2.3.

• Step 10: Estimate system state using Xl(t, k).

2.6 Application to a Satellite Attitude Control Sys­

tem

In this section, we apply the proposed RLOs-based fault diagnosis scheme to a dy­

namic satellite attitude control system. This satellite works in a circular orbit in an



Chapter 2. Fault Diagnosis in Nonlinear Systems Using RLOs 33

inverse square gravitational field. The attitude of the satellite is assumed to have no

effect on the orbit. We define 11,12, 13 as the principal axis moments of inertia of the

satellite, W = [Wl,W2,W3]T as the angular velocity of the satellite, and () = [()1,()2,()3]T

as the pitch, yaw, and roll angles of the satellite, respectively.

The angular velocity has the following nonlinear relationship with the three atti­

tude angles:

W

[

Wl ] [ (wo + Bl ) sin ()2 + B3 ]

W2 = (wo + B~) cos ()2 cos ()3 + B~ sin ()3

W3 - (wo + ()1) cos ()2 sin ()3 + ()2 cos ()3

R(())B + wc (()) = T((), B) (2.33)

where

[ sinB, 0

~],
Wo sin ()2

R(()) = cos ()2 cos ()3 sin ()3 wc (()) = [ Wo coo B, cos B3 ] (2.34)

- cos ()2 sin ()3 cos ()3 -Wo cos ()2 sin ()3

The motion equation about the mass center of the satellite is provided in [109] as,

(2.35)

where I = diag{ll , 12 , 13 }, U = [Ul' U2, u3F is the control torque vector, and Td =
[Tdl , Td2 , Td3F is the disturbance torque vector. The vector ~c is written as

[

-sin ()l cos ()2 ]

~c = cos ()l sin ()3 + sin ()l sin ()2 cos ()3 ,

cos ()l cos ()3 - sin ()l sin ()2 sin ()3

and wis the skew symmetric matrix of the vector w, which is defined as,

(2.36)

(2.37)
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Defining the state vector to be x = [BT, W T]T, we obtain the dynamics of the

satellite motion in a nonlinear state space form as

x [ I-~-~~]~W+-:Ui~~E,) ] + [ I~l ] U + [ I~l ] Td

y = [B1,B2,B3]T. (2.38)

In the simulation, the parameter values of the satellite dynamics are listed in Table

2.1. The system dynamics is discretized using Euler's method with a sampling rate

equal to 1000Hz. This sampling rate is determined using a trial-and-error method. If

the sampling rate is too large, the discrete-time system can not represent the original

continuous-time system. However, a too small sampling rate causes the repetitive

learning algorithm hard to be implemented in real-time.

A sliding mode controller was designed in [110] to control the satellite output to

track the designated reference, which is,

Br = (1- e-at(sinat + cosat))e* (2.39)

where a = 0.353 and B* = [180,45, 75]T (deg). The control torque is disturbed by

C:;u = 1% * rand; i.e., Td = C:;uU, while the Euler angles have measurement noise with

C:;y = 0.01% * rand; i.e., Bmeasure = (1 + C:;y)e, where rand is a Gaussian white noise.

In the design of the repetitive learning observers, the parameters to be determined

are di,j and qi,j' Based on the analysis in Section 2.3, di,j E ~nxp is the operator that

inversely maps the output to the state, and qi,j E ~lxn is the vector that balances the

Table 2.1: Parameters of a satellite attitude control system
Parameters Values (unit)

Principal moment of inertia h 874.6 (kg m2)

Principal moment of inertia 12 888.2 (kg m2
)

Principal moment of inertia h 97.6 (kg m2
)

Orbital rate Wo 7.29 x 10-5 (rad/s)
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convergence rate of the state and parameter estimation. In this simulation, we choose

1 0 0

0 1 0

0 0 1
(2.40)d·· =t,]

0.7071~ 0 ~

0.183~ 0.9659~ 0

0.683~ 0.2588~ 0

where ~ is the difference operator. The matrix di,j is chosen based on (2.33) and

measured angles. In numerical computation, di,j can be treated as a time-varying

left-multiply matrix on fJi(t, k) and bYi(t, k - 1) at each sampling time. Moreover,

the coefficient vector, qi,j, is defined to be a vector such that only the (n - m + i)th

element, qi~-m+i), which corresponds to the ith actuator is nonzero; that is,

ql,l [ 0 0 0 10-6 0 o]

ql,2 [ 0 0 0 10-7 0 o]

q2,1 [ 0 0 0 0 10-6 o]

q2,2 [ 0 0 0 0 10-7 o]

q3,1 [ 0 0 0 0 0 10-6 ]

q3,2 [ 0 0 0 0 0 10-7 ] .

Note that the coefficient vector may affect the precision of fault estimation.

The simulation results are shown from Figure 2.1 to 2.8, where Figure 2.1 illus­

trates the time-behavior of the system output when no fault occurs. The sliding mode

control algorithm offers a satisfactory control performance in the presence of distur­

bances. Figure 2.2 to Figure 2.5 portray the simulation results of case 1, where a fault

occurs in the second actuator beginning from t = 20sec. Figure 2.6 and Figure 2.8

demonstrate the results of case 2, where another fault occurs in the third actuator

since t = 22sec. Clearly, when the ith actuator is faulty, only the residual produced by

the ith observer approaches zero, while the other residuals approach nonzero values.
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The corresponding parameter Bi is able to specify the fault in a short time. Moreover,

in both these two cases, after the fault has been characterized, the ith observer pro­

vides an estimation of the system state. The chattering in the simulation results are

due to the existence of system uncertainties and measurement noises, which directly

affect the output estimation error. However, the time-varying uncertainty and noise

become constant values in the repetitive learning domain at each discrete time. Hence,

the performance of fault estimation is not influenced too much as long as the output

estimation error approaches zero in time. Since there is no explicit robust strategies in

the proposed fault diagnosis scheme, the proposed FD scheme can only be tolerant to

small magnitude of disturbances and noises. In summary, these two simulation cases

demonstrate that the proposed repetitive learning observers are effective in diagnosing

finite constant faults in actuators for a class of nonlinear systems.

2.7 Conclusions

In this chapter, inspired by ILOs, a bank of m nonlinear repetitive learning observers

was designed for the detection, isolation, and estimation of m possible constant ac­

tuator faults in a class of discrete time nonlinear systems. The RLOs preserve the

simplicity in structure of ILOs, and use a PI-type algorithm to update their pa­

rameters. The system dynamics work in a discrete time domain and the observer

parameters are updated in a repetitive learning domain, where the discrete time do­

main and the repetitive learning domain form a 2-dimensional structure. Based on

RLOs, m residuals were generated to detect and locate a fault, where only the ith

residual that is associated with the ith faulty actuator is insensitive to the fault.

This strategy results in straightforward fault detection and isolation. Moreover, the

observer parameter that isolates the fault was used to estimate the constant fault

function. Sufficient conditions for effective fault isolation and estimation were derived

analytically. The theoretical analysis is exemplified by an application of the proposed

fault diagnosis scheme to the dynamics of a satellite attitude control system. The

simulation results verify the accuracy of the fault diagnosis scheme.

Although the proposed RLOs-based fault diagnosis scheme has the advantages
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Figure 2.1: System output in the fault-free case

that the structure of RLOs is simple and only two coefficients of each observer need

to be selected beforehand, the types of faults investigated in this chapter are confined

to finite constant faults. The applicability of the proposed fault diagnosis scheme to

a time-varying single fault and even multiple faults need further study. In addition,

from simulation results, the system uncertainty and noise have to be very small in

order to guarantee a successful fault diagnosis because no robust strategy is utilized

in this fault diagnosis scheme. Therefore, robust fault diagnosis in the presence of

system uncertainties is still a challenging issue for theoretical research as well as real

applications.
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Figure 2.3: Fault detection and isolation results when a fault occurs at the second
actuator
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Figure 2.7: Fault estimation result when a fault occurs at the third actuator
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Figure 2.8: Norm of state estimation errors of the three observers when a fault occurs
at the third actuator



Chapter 3

Fault Diagnosis Using Sliding

Mode and Learning Approaches

In this chapter, a unified framework of a fault diagnosis scheme using sliding mode

and learning approaches in a class of nonlinear systems is established.

3.1 Introduction

In general, a model-based fault diagnosis scheme generates a residual via comparing

the measurable output of a system with the output generated through the system's

mathematical model. Then, fault diagnostic decisions are made based on this residual.

Early fault diagnosis approaches were based on the assumption that the system under

consideration was linear and sufficiently accurate mathematical model was available.

Although model-based fault diagnosis schemes are attractive due to their powerful

information processing capabilities, efficient diagnosis relies on the robustness of the

residual with respect to the system uncertainties. This issue is referred to as robust

fault diagnosis.

For linear systems, robust fault diagnosis can be achieved via unknown input ob­

servers and eigenstructure assignment methods, both of which decouple the effect of

uncertainties from the residual. These two approaches do not make assumptions on

the size and the time functions, or on the frequency characteristics of the faults or

42
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of the unknown inputs. For nonlinear systems, robust fault diagnosis schemes using

learning approaches have been significantly investigated. For example, fault diagno­

sis schemes using feedforward neural networks, iterative learning observers, adaptive

observers, and other methods have received a great deal of attention. To realize

robust fault diagnosis, dead-zone operators are usually adopted in the learning algo­

rithms to ensure that the fault estimators are insensitive to the error signal under

a certain threshold which is deemed to be caused by system uncertainties, thereby

preventing false alarms [27], [28], [29], [30], [31], [32], and [33]. However, several is­

sues still need further study in this class of fault diagnosis methodologies. One issue

is that, in all likelihood, the dead-zone operators reduce the accuracy of the fault

approximation. Another issue concerns the projection operators which can confine

the parameter estimation vectors to a predefined compact and convex region in the

presence of system uncertainties and approximation errors. A third issue is that the

online fault estimators should be easily implementable to satisfy the requirement of

real-time computation. In addition, an accurate fault estimation is helpful for con­

troller reconfiguration to achieve fault tolerance. Hence, an estimation of a fault with

a fast transient process and less overshoot is preferred. This expectation motivates us

to develop more learning approaches to diagnose faults for different specific situations.

Due to the inherent robustness property of a sliding mode to system uncertainties,

sliding mode techniques have been studied for system observation by many researchers

[111], [112], [113], [114]' [115], [116], [117], [66], [48], [118], [119], [120], and [121]. In

summary, the existing sliding mode observer design methods can be classified into

two categories: 1) SMa designs based on equivalent control methods, and 2) SMa

designs based on the Lyapunov method.

In addition to the applications of a sliding mode to linear systems, in recent years,

sliding mode techniques have been extended to design fault diagnosis schemes for

nonlinear dynamic systems. One approach to using a sliding mode observer in fault

diagnosis is that the observer maintains a sliding motion even in the presence of

faults, and the fault signals are reconstructed by manipulating the equivalent output

injection signals. In order to guarantee the stability of the fault diagnosis scheme,

the bound of the system uncertainties is usually estimated and involved in the design
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of the discontinuous term. The practical importance of this class of sliding mode

observer-based fault diagnosis approaches is that it allows small faults to be detected,

even if large modeling errors occur. However, a large amount of chattering occurs

when this method is implemented by digital computers at a given sampling frequency.

Some researchers have proposed a variety of approaches to reduce the unnecessary

chattering. One method is to use a continuous saturation function to replace the

discontinuous sign function. Other methods involve adaptively estimating the bound

of the system uncertainties [122]' [123] or constructing an adaptive switching gain

[124], [125], [126]. However, these methods have not been widely used in sliding mode

observer based fault diagnosis.

In this chapter, a class of nonlinear diagnostic observers is established and applied

to the fault diagnosis of a class of nonlinear systems. The diagnostic observer inte­

grates an adaptive sliding mode and a bank of online estimators. The sliding mode

in this class of observers is used only to eliminate the effect of system uncertainties,

and the observer is designed such that the sliding motion is destroyed when any fault

occurs. In order to estimate the state as soon as possible and to prevent the sliding

mode eliminating the deviation caused by faults, the switching gain of the sliding

mode is updated by an iterative learning algorithm and an iterative fuzzy model, re­

spectively. After the occurrence of faults, a bank of online estimators is activated to

isolate and identify the incipient and/or abrupt faults. Neural networks based models

and online estimators based on iterative learning algorithms are established to charac­

terize the faults. The advantage of this class of robust fault diagnosis schemes is that

it is able to not only detect various faults in the presence of system uncertainties, but

also isolate and estimate the faults with satisfactory accuracy. Theoretical results are

verified by applying the proposed fault diagnosis schemes to a fourth-order satellite

orbital control system and a flexible satellite control system, both of which belong to

the class of nonlinear systems with triangular input form.

The organization of this chapter is as follows. In Section 3.2, the investigated

problem and some preliminaries are stated. The diagnostic observer using sliding

modes and learning approaches is proposed in Section 3.3, where two update laws

for the sliding mode switching gain are established, respectively. In Section 3.4, the
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analytical properties of the proposed fault diagnosis scheme are rigorously analyzed.

After this analysis, two kinds of online fault estimators are developed to characterize

the fault functions. These two estimator based fault diagnosis schemes are applied

to a satellite orbital control system and a flexible control system in Section 3.5 and

Section 3.6, respectively. Finally, conclusions are given in Section 3.7.

3.2 Problem Formulation

In this chapter, a class of nonlinear input-output dynamic systems subject to sys­

tem uncertainties and additive state faults is described by the following differential

equations:

Xl (t)

X2(t)

y(t)

X2(t)

A2lXI + A22X2 + ';(X, u, t) + 'TJ(X, u, t) + f3(t - Tf )fa(x, U, t)

Xl (t) (3.1)

where Xl (t) = [XI,b'" ,XI,p]T E ~P, (p = n/2), and X2(t) = [X2,1,'" ,x2,pF E ~p

are two components of the state vector X = [xI, xnT
, y(t) E ~p is the output

vector, and u(t) E Rm is the control vector of the system. The terms'; : Rn x

Rm x R+ ----+ RP, 'TJ : Rn x Rm x R+ ----+ RP, and fa : Rn X ~m X R+ ----+ RP are all

smooth vector fields. The matrices A21 E RPxp and A22 E RPxp describe the linear

characteristics of the system, while ';(x, u, t) denotes the nonlinear dynamics. The

nonlinear function vector 'TJ = ['TJI, ... ,'TJp]T represents the modeling uncertainties and

disturbances in the system dynamics. The nonlinear function vector fa(x, u, t) =

[f~l) (x, U, t), .. , ,f~p)(x, U, t)]T denotes any change in the system dynamics due to

additive state faults, which probably occur in the actuators and/or in the system

components. The term f3(t-Tf ) = diag{f3I(t-Tf ),'" ,f3p(t-Tf )} is a diagonal time

profile function matrix which satisfies

i = 1"" ,p (3.2)

where Tf denotes the beginning time of a fault.
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We can write the system dynamics (3.1) into a new form as

x(t)

y(t)

Ax(t) + D~(x, u, t) + Drt(x, u, t) + Df3(t - Tf )fa(x, u, t)

Cx(t) (3.3)

where matrix A is defined to be

and C = [Ip Op], D = lOp Ip]T, Op is a p x p zero matrix, and Ip is a p x p identity

matrix.

For the sake of designing and analyzing the proposed fault diagnosis scheme con­

veniently, the following assumptions are introduced.

Assumption 3.1 The system uncertainties rt(x, u, t) is possibly an unstructured non­

linear function of x, u, and t, but bounded; i.e., a known constant rto exists such that

Ilrt(x, u, t) II ::; rto·

For many dynamic systems, considerable system modeling and identification meth­

ods result in relatively small rt(t). The upper bound of the state modeling uncertainties

is used in the design of the proposed diagnostic sliding mode observer and in the ro­

bustness analysis of the proposed fault diagnosis scheme. Throughout this thesis, 11·11

represents the Euclidean vector norm or induced matrix 2-norm.

Assumption 3.2 The nonlinear dynamic component ~(x, u, t) of system (3.1) is Lip­

schitz at the state x with three known constants k, k1 , and k2 ; that is,

Assumption 3.3 The magnitude of the state fault is bounded by a finite constant;

i.e., Ilfa(t)11 ::; fm, and the system state variables would deviate from their normal

values but they will remain finite after the state fault occurs. Moreover, the fault

is assumed to occur after all the state variables have been observed in the original

regulation phase by using the sliding mode.
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The finiteness of the fault and the system state are not only required for state

observation, but also guarantee the feasibility of characterizing the fault using on­

line approximators. The assumption on the onset of the fault helps to individually

investigate the state observation and fault diagnosis.

Assumption 3.4 Matrix A is stable, which implies that A22 is also stable; I.e., a

symmetric positive definite matrix r 2 exists that satisfies the following Lyapunov

function:

(3.5)

where Q is also a positive definite matrix.

Even if matrix A is unstable, the linear part of the system (3.1) is stabilized by

designing a Luenberger gain.

Remark 3.1 The dynamic system (3.1) can represent a family of systems which have

triangular input form. Many mechanical or equivalent systems can be classified into

(3.1) because usually only displacements or angles are measurable. For such class of

systems, it is possible to design an observer which does not use the input derivative.

In real applications such as satellite jet control or AC motor with PWM control, the

exact information of the input derivative is hard to obtained [115), [127).

Remark 3.2 Sliding mode observers for the class of systems with triangular input

form have been studied in [115}, [66). In these methods, the states are stabilized

recursively, one by one in finite time, and the switching gain of the sliding mode

observer is held constant. The constant switching gain is acceptable when the objective

is only to observe the states. However, when the effect of system uncertainties needs

to be eliminated, and for the sliding motion to be destroyed when a fault occurs, a

time-varying switching gain is preferable.
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3.3 Fault Diagnosis Using Sliding Modes and Learn­

ing Approaches

3.3.1 Design of a Fault Diagnostic Observer

Based on system (3.1), a nonlinear diagnostic observer is proposed as follows:

£l(t) X2(t) + gl(t)sign(f1s1(t)) + f3(t - Tm)M1(t)

X2(t) A21X1 + A22X2 + ~(X, U, t) + g2(t)sign(f2s2(t)) + f3(t - Tm)!~12(t)

fj(t) Xl (t) (3.6)

where Xl E RP and X2 E RP are the estimated state vectors, and fj E RP is the

output vector of the observer. The term sign is a signum function, and M1(t) =
A A TA A AT

[M1,1, ... ,M1,p] ,M2(t) = [M2,1, ... ,M2,p] are online fault estimator vectors, which

are explicitly discussed in later sections.

In order to separate the roles of the sliding mode from the online fault estimators,

in the beginning, we disable the fault estimators M1 (t) and M2 (t) before all the state

estimation errors reach the sliding manifold. Moreover, the fault is assumed to occur

after the activation of the fault estimators; i.e., Tm < Tf .

The terms fIE RPxp and f 2 E RPXP are both symmetric positive definite matri­

ces, and f 2 satisfies Assumption 3.4. The terms Sl(t) = [Sl,l,'" ,Sl,p]T E RP, and

S2(t) = [S2,1,'" ,s2,pF E RP are named equivalent state estimation errors, which are

calculated according to the anti-peaking structure [115] as follows:

if X1(t) = 0 and X1(t) = 0

otherwise

(3.7)

where (gl(t)sign(f 1s1(t)))eq, named equivalent output injection, is the average value

of the discontinuous term in the sliding mode, which itself is enough to keep Xl on

the sliding manifold; i.e., X1(t) = X2(t) - (gl(t)sign(f1s1(t)))eq, when X1(t) = 0 and

Xl (t) = 0, where Xl (t) = Xl - Xl and X2 = X2 - X2 are defined as the state estimation
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errors. The switching gain gl(t) = diag{gl,l,'" ,gl,P} and g2(t) = diag{g2,l,'" ,g2,p}

are two diagonal matrices.

The principle of the anti-peaking structure is that the output estimation error is

not used to construct the state estimation error before reaching the sliding manifold.

Hence, the output estimation error Xl reaches the sliding manifold prior to X2' From

(3.7), the state estimation error X2 is constructed by using the equivalent output

injection as

(3.8)

after Xl (t) reaches the sliding manifold.

Several methods have been proposed to compute the equivalent output injection.

For example, Utkin et al, used a low pass filter to eliminate high frequency chattering

[112], and others computed the equivalent output injection by adding a small positive

number, 6, in the denominator of the discontinuous term [56]. In this chapter, we use

the second method to obtain the equivalent output injection.

The dynamics of the observer can be written in a new vector form as

£(t)

y(t)

Ax + D~(x, u, t) + G(t)sign(rS(t)) + (3(t - Tm)M(t)

Gx (3.9)

where G(t) = diag{gl,l (t), ... ,gl,p(t), g2,1 (t) ... ,g2,p(t)} is the diagonal switching

gain matrix. The equivalent state estimation errors are constructed into a new vector

S(t) = [si(t), sI(t)]T. The new matrix r = diag{rl , r 2} is still a positive definite

matrix.

Defining y(t) = y(t) - y(t) as the output estimation error, we can derive the

dynamics of the estimation error by subtracting (3.9) from (3.3) as follows:

i(t) Ax(t) + D(~(x, u, t) - ~(x, u, t)) + D'I7(x, u, t) - G(t)sign(rS) + M(t)

y(t) Gx(t) (3.10)

where M(t) = D(3(t - Tf)fa(t) - (3(t - Tm)M(t) is defined as the fault estimation

error.

The estimation error dynamics (3.10) will be used in the property analysis of the

proposed fault diagnosis scheme.
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3.3.2 Fault Diagnosis Strategy Using a Diagnostic Observer

In model-based fault diagnosis methods, a residual is usually generated to diagnose

faults. Due to the universal existence of system uncertainties and noise, robust fault

diagnosis strategies are necessary to avoid a false alarm. One robust fault diagnosis

approach uses a dead-zone operator in the learning algorithm, which leads the online

estimators to specify only the signal with magnitude above a certain threshold [31].

However, this method reduces the accuracy offault estimation. Another way to ensure

robust fault diagnosis is to set a nonzero threshold for the residual when making

diagnostic decisions. Adaptive or optimal threshold for timely fault diagnosis have

been investigated [128], [129], [130], [131], [132], [133]. In previous work, designing

an effective time-varying diagnostic threshold significantly depends on extensive prior

knowledge of the system and faults. In practice, an ad hoc threshold is required for a

specific problem.

In this chapter, the measurable output estimation error is used as the residual

signal, and a constant threshold is set for robust fault diagnosis. After the sliding

mode forces all the state estimation errors to reach the sliding manifold,

{
No fault has occured, ~nd M~(t), M2 (t) are set to zero

A fault has occured, M1(t), M 2 (t) are activated

if Ily(t)IIA < fA
if Ily(t)lh :::: fA

(3.11)

where lIy(t) IIA is the A-norm of y(t), which is defined as Ily(t) IIA = SUPtE[To,t'] e-Atlly(t) II,

where A > 0, To is defined in Section 3.4, and t f is the time when the proposed

observer terminates. The term fA is the threshold for robust fault detection. Since

Ily(t)IIA ::; SUPtE[To,t'] IIY(t)ll, a bound of Ily(t)11 can be selected as the threshold.

In order to make the sliding mode term eliminate only the deviation in the system

dynamics caused by uncertainties, the switching gain G(t) is set to be upper bounded

by Go, i.e., IIG(t)11 < Go. This issue will be discussed in more detail in the robustness

analysis of this FD scheme, Section 3.4.1. The setting of the upper bound distinguishes

the effect of faults from that of the system uncertainties. Moreover, the output of the

online estimator M(t) is used to determine the location, and to estimate the magnitude

of the faults.

In addition to the upper bound, the switching gain is supposed to have a lower
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bound, which is the minimum gain to guarantee the sliding motion prior to the occur­

rence of any fault. The lower bound of the switching gain is discussed in the stability

analysis of this fault diagnosis scheme, Section 3.5.2. Based on the above analysis,

under the guarantee of sliding motion, the switching gain needs to be reduced as much

as possible in order to increase the sensitivity to a fault. In numerical computation,

the switching gain is set as the lower bound when the state estimation errors reach

zero by using a sliding mode in the original regulation phase.

3.3.3 Sliding Mode Gain Design Using an Iterative Learning

Algorithm

For sliding mode observers, a larger switching gain can enable the state estimation

errors to approach the sliding manifold more quickly, but it may also cause unnecessary

high-frequency chattering. Furthermore, since the sliding mode term in the diagnostic

observer is used only to eliminate the effect of system uncertainties, the switching gain

can not be too large because, in that case, the effect of faults will also be destroyed by

the sliding mode. On the contrary, when a fault occurs, the sliding motion should be

destroyed immediately, and then the online fault estimator should specify the fault as

soon as possible. Therefore, a time-varying switching gain is more desirable for the

purpose of our study.

Adaptation laws for the switching gain of sliding mode controllers were investigated

in [124], [126]. In this section, two iterative methods are designed to update the

switching gain of the proposed sliding mode observer.

A Proportional-type (P-type) iterative learning update law is first proposed to

update the switching gain as follows:

(3.12)

where the diagonal matrix S = diag{sl,l,··· ,Sl,p, S2,1,··· ,S2,p} is defined for the

updating of the switching gain, and k indicates the kth iteration at time t. <p(t) E

Rnxn is a positive definite iterative learning coefficient matrix which determines the

rate of adaptation. The operator I . I takes the absolute value of each element of a
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vector or a matrix.

From the adaptation law (3.12), we see that if the state estimation error has

not reached the sliding manifold (the switching gain should be larger), the element

of sign(S'k(t)S'k-1(t)) is +1, and the switching gain will increase correspondingly. If

the state estimation error crosses the sliding manifold (the switching gain should be

reduced), the element of sign(S'k(t)S'k-1(t)) is -1, and the gain will decrease corre­

spondingly.

The purpose of the iterative learning update law (3.12) is to search for an optimal

switching gain G*(t) at each time t which can sufficiently minimize the state estimation

error. The convergence property ofthis iterative learning update law (3.12) is analyzed

in the following theorem.

Theorem 3.1 If the inequality (3.17) holds, the update law (3.12) for the sliding

mode switching gain is convergent.

Proof: Subtracting G* from both sides of (3.12) yields

(3.13)

where G* is the optimal gain which makes the state estimation error exactly reach

the sliding manifold. We define l:1Gk = G* - Gk. Taking the inner product on both

sides of (3.13) with themselves via <I>-1, we obtain

l:1Gl+l<I>-1l:1Gk+1 = l:1Gl <I>-1 l:1Gk+ ISklT<I>ISkl
T - - -

-2l:1Gk ISklsign(SkSk-l).

Integrating both sides of (3.14) over the time interval [0, t] results in

IIl:1Gk+lll;-l = IIl:1Gkll;-l + IISkll;

-21t

l:1Gl(T) ISk(T) Isign(S'k(T)Sk-1 (T))dT

IIl:1Gkll;-l + lIS'kll; - 21
t

Il:1Gl (T)II Sk(T)ldT

(3.14)

(3.15)
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where II . 1I<I>-1 is defined as

(3.16)

If the estimation error dynamics satisfies dissipativity; i.e., a positive constant 0:

exists such that

(3.17)

then, from (3.15), we have

(3.18)

This inequality implies that the sequence {11~Gkll<I>-l} will monotonously decrease

with increasing k as long as IISkll<I> is nonzero. Because {1I~Gkll<I>-l} is bounded from

below, the monotonous decrease of {1I~Gkll<I>-l} means IISkll<I> --+ 0 as k --+ 00. Thus,

Gk(t) --+ G*(t) as k --+ 00, that is, the iterative learning update law is convergent. •

The inequality (3.17) is generated by choosing a suitable iterative learning coeffi­

cient matrix <I>(t). Normally, a small <I>(t) results in a steadily but slowly converging

process. A large <I>(t) leads to a fast convergence, while the iterative learning process

may be unstable. In practice, <I>(t) , for increasing the switching gain, can be set to a

different value than <I>(t) for decreasing the switching gain.

In the ideal case, the optimal switching gain at each time t is obtained through

iteratively updating the switching gain to drive Sk(t) to the sliding manifold. In prac­

tical computation, a maximum iteration number is set to prevent overtime updating.

The maximum iteration number is usually set to a large value in order to guarantee

the convergence of the switching gain to its optimal value.
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3.3.4 Sliding Mode Gain Design Using an Iterative Fuzzy

Model

In the above P-type iterative learning update algorithm, because the coefficient matrix

<I>(t) is held constant during the increasing or decreasing updating of the switching

gain, reaching the optimal value of the gain may take more iterations. In order to

obtain better performance, we consider using an iterative fuzzy model to update the

coefficient matrix <I>(t) via the following update law:

G· ·(k + 1) = G· ·(k) + <I> ·(k)IB· ·(k)11.,2 1.,2 1.,2 t,t (3.19)

where k still denotes iteration number, and the subscript (i, i) represents the ith

diagonal element of a matrix.

According to the analysis in Section 3.3.3, when tuning the switching gain, we

need to consider the magnitude of the estimation error, as well as its position relative

to the sliding manifold. Therefore, according to the principle of the iterative learning

algorithm (3.12), we determine <I>i,i(k) based on the values of Bi,i(k - 1) and Bi,i(k).

We first define the inputs of the fuzzy model as inpl = Bi,i (k-1) and inp2 = Bi,i (k).

Then, in fuzzification of these two inputs, we map the crisp values of Bi,i (k - 1) and

Bi,i(k) into several fuzzy sets: NL, NB, NM, NS, PS, PM, PB, and PL, where N stands

for negative, P positive, L large, B big, M medium, and S small. The membership

functions for these fuzzy sets are shown in Figure 3.1.

In Figure 3.1, the triangular membership functions are used to separately map the

Bi,i > °and Bi,i < °into two groups of fuzzy sets, because !::J..Gi,i should be different

when sign(Bi,i(k - l))sign(Bi,i(k)) < °and sign(Bi,i(k - l))sign(Bi,i(k)) > 0.

A fuzzy linguistic model (Mamdani model), shown in Table 3.1, is designed, where

rule n is denoted as

(3.20)

where Rn denotes the nth rule, n = 1, ... ,Nr , and Nr is the number of rules. Am,n

and <I>7,i are fuzzy sets described by membership functions /-LAm,n (inPm) :~ [0, 1] and

/-L<i>m:~ [0,1].
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Figure 3.1: Membership functions for fuzzification of Si,i (k - 1) and Si,i (k)

Table 3.1: Fuzzy rule base for the coefficient gain <I>?i,

S. ·(k - 1) \ s. ·(k) NL NB NM NS PS PM PB PL1,1 1.,1,

NL <PPL <PPB <PPM <PPS <PNS <PNM <PNB <PNL

NB <PPL <PPB <PPM <PpS <PNS <PNM <PNB <PNL

NM <PPL <PPB <PPM <PpS <PNS <PNM <PNB <PNL

NS <PNL <PNB <PNM <PNS <PNS <PNM <PNB <PNL

PS <PNL <PNB <PNM <PNS <PNS <PNM <PNB <PNL

PM <PNL <PNB <PNM <P NS <P PS <PPM <PPB <P PL

PB <PNL <PNB <PNM <PNS <PPS <PPM <PPB <P PL

PL <PNL <PNB <PNM <PNS <PPS <PPM <PPB <P PL
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Then, an inference mechanism is used to calculate the degree to which each rule

fires for a given fuzzified input pattern (inpl' inp2) by considering the label sets and

rule. A rule is considered to fire when the conditions upon which it depends occur.

Since these conditions are defined by fuzzy sets which have degrees of membership,

a rule will have a degree of firing, called firing strength, Wn- In this work, the firing

strength is calculated by the product of the degrees of membership; that is,

2

W n = II /-LAm,n (inpm).
m=l

(3.21)

Finally, a defuzzifier converts the resulting fuzzy sets defined by the inference

mechanism to the output of the model to a standard crisp signal. Here, we use the

center-of-gravity, or centroid, method to calculate <I>i,i(k) as follows:

(3.22)

n=l

Actually, the centroid method of defuzzification takes a weighted sum of the des­

ignated consequences of the rules based on the firing strengths of the rules.

Remark 3.3 Comparing the iterative learning algorithm (3.12) and (3.19), clearly

(3.12) is equivalent to a Proportional-type controller with a constant coefficient, whereas

(3.19) is equivalent to a coefficient-varying Proportional-type controller. Therefore,

based on the performance of different Proportional-type controllers, if the coefficient

matrix is carefully updated, the switching gain will take less time to reach an optimal

value when it is updated by the iterative fuzzy model.

3.4 Properties of the Fault Diagnosis Scheme

The purpose of this section is to obtain some theoretical guarantees with respect to

the robustness and sensitivity of the proposed observer-based fault diagnosis scheme.
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3.4.1 Robustness Analysis

Robustness of a fault diagnosis scheme refers to its ability to prevent a false alarm in

the presence of system uncertainties. As for the robust FD scheme described above,

its robustness is achieved by setting a threshold on the generated residual.

Based on Assumption 3.3, we consider the time interval between the first-time

observation of states by using a sliding mode and the occurrence of any fault; i.e.,

t E [To, Tx ), where To denotes the time that all states have been estimated via the

sliding mode in the initial regulation phase, and Tx refers to the onset time of an

additive state fault. The finite-time convergence of the state estimation errors to zero

via the sliding mode will be given in Section 3.4.2. Regarding the robustness of this

fault diagnosis scheme, we have the following theorem.

Theorem 3.2 The proposed robust fault diagnosis scheme guarantees that Ily(t) II.). <
f>.., when To < t < Tx .

Proof: Using a contradiction method [31], we suppose that a time te exists (where

To < t e < Tx ) such that Ily(t)ll>.. < f>.. for To < t < te and

(3.23)

After the occurrence of a sliding motion in the initial regulation phase and prior

to any fault, the dynamics of the estimation error are

i(t)

y(t)

Ax(t) + D(E(x, u, t) - E(x, u, t)) + DTJ(t) - G(t)sign(rS)

Cx(t), x(To) = o. (3.24)

By solving the differential equation (3.24), we obtain

x(te ) = eA(te-To)x(To) + t e
eA(te-T) (D(E(x, T) - E(x, T))

lTo

+DTJ(T) - G(T)sign(rS(T)))dT

t e
eA(te-T) (D(E(x, T) - E(x, T)) + DTJ(T)

lTo

-G(T)sign(rS(T))) dT, (3.25)
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and

Ilx(ie)11 < t
e

IleA(te-T) II (1IDllllc;(x) - c;(x)11 + (1IDII770 + IIGII))dT
lTo

< t e

k3 1Ix(T)lldT + l (3.26)
lTo

where k3 = kllDl1 SUPTE[O,t'-To] lIeAT II, and

l = (1IDII770 + IIGII)100

IleAtlldi. (3.27)

The terms k3 and l are both finite numbers because matrix A is stable, and IIDII and

II Gil are finite values.

Using the Gronwall Lemma, we have

(3.28)

Multiplying e->.t on both sides of (3.28), and taking A > (ie/To - 1)k3 , we obtain

(3.29)

Taking the supremum on both sides of the above inequality, we obtain

(3.30)

Therefore, the output estimation error is

(3.31)

which contradicts (3.23). Thus, we concluded that for all To < t < Tx , the output

estimation error y(t) remains within the bound c>., and, consequently, the outputs of

the fault estimators remain zero. •

Moreover, in order to keep Ily(t)ll>. < c>. during the period before any fault, the

upper bound of the switching gain G(t) is set to

c>.
Go = IICII>. Jooo IleAtlldt - IIDIITlo. (3.32)

Using the proposed diagnostic observer, the threshold is chosen only according to

the characteristics of the system, and it is not affected by the initial estimation error.

Moreover, using sliding mode, the threshold for fault diagnosis can be chosen smaller

than a system that does not use sliding mode.
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3.4.2 Sensitivity Analysis

Not only does the fault diagnosis system need to be robust against the system uncer­

tainties, but it should also be sensitive to any fault. However, an inherent tradeoff

exists between the robustness and sensitivity of the fault diagnosis scheme because

high sensitivity to faults may reduce the robustness to system uncertainties. The sen­

sitivity property in this thesis specifies the set of faults that can be reliably detected,

and it focuses on the characteristics of the fault diagnosis scheme in the time interval

between the occurrence of a fault and the time of its detection.

Theorem 3.3 Consider the fault diagnosis scheme presented by (3.6). If a time

interval t x > 0 exists such that the state fault fa (t) satisfies

(3.33)

(3.35)

then the fault estimator M(t) will be activated to approximate the fault, that is,

lIy(Tx + tx)11 ;::: fA·

Proof: In the time interval between the occurrence of a state fault and the adaptation

of the fault estimator M(t), the dynamics of the estimation error satisfy

i(t) Ax(t) + D(~(x, u, t) - ~(x, u, t)) + D'rJ(t) - G(t)sign(rS) + D fa(t)

y(t) - Cx(t). (3.34)

Solving (3.34) for any t x > 0 gives
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Then using the triangle inequality on (3.35), we obtain

Using the Gronwall inequality again, we obtain

Computing A-norm on both sides of (3.37), when A > k3 , we have

According to the basic property of matrix norm, we have

Ily(Tx+ tx)II>. < IIGII>.llx(Tx+ tx)II>.

< IIGII>.II (TxHx eA(Tx+tx-T) Dfa(T)dTII + E>.. (3.39)
iTx

We use the triangle inequality again, and obtain

Therefore, if the nonlinear fault function satisfies (3.33), then lIy(Tx+ tx)ll>. 2:: E>.,

which implies the online fault estimators will be activated, and the state faults are

detected correspondingly. •
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3.5 Fault Isolation and Estimation Using Neural

State Space Models

3.5.1 Fault Estimator Design Using Neural State Space Mod­

els

Neural state space (NSS) models have been investigated for system modeling and con­

trol in [105], [106], [107], and [108]. Inherently, being recurrent neural networks, the

NSS models not only have similar nonlinear approximation abilities as feed-forward

neural networks, but they also have state-space-like structures, which may bring con­

venience to the theoretical analysis.

Based on NSS models, the fault estimators are designed as

M1,i(t)

M2,i(t)

where i = 1, ... ,p, and Wi:;' (i = 1, 2;j = 1, ... ,p; l = 1, ... ,4) are the parameters

of the ith NSS models. The activation function is set to be a tangent hyperbolic

function, i.e.,

1- e-z

cr(z) - (3.42)
1 + e- Z

The parameters of a NSS model can be updated by many optimization algorithms

that are usually used for neural networks. Here, an extended Kalman filter (EKF)-like

algorithm is used to update the parameters in M1(t) and M2(t), respectively.

and

K1,i(t)

P1,i(t)

W1,i(t)

K 2,i(t)

?2,i(t)

W2,i(t)

[ T ]-1P1,i(t)H1,i(t) H1,i(t) P1,i(t)H1,i(t) + R1,i(t)

-B~~: K 1,i(t)H(i(t)P1,i(t)

B~~l K1,i(t)Xl,i(t)

[ T ]-1P2,i(t)H2,i(t) H2,i(t) P2,i(t)H2,i(t) + R2,i(t)

-B~~lK 2,i (t)Hi,i (t)P2,i(t)

B~~: K 2,i(t)S2,i(t)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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where KI,i, K2,i E ~p are the Kalman gain matrices, H,i, g,i E ~pxp are the covariance

matrix of the state estimation error, and HI i, H2i E ~p are defined as, ,

HI,i (t)
8XI,i(t)

(3.49)
8WI,i

,

H2,i(t)
8X2,i(t)

(3.50)-

8W2,i

The terms B?:, Bi~:, B~~:, and B~~: are four p x p diagonal coefficient matrices

whose elements are positive update rates. The scalar RI,i and R2,i are the estimated

covariance of measurement noise. For single-input and single-output systems, RI,i

and R2 ,i can be estimated in a similar way to that in [134]' i.e.,

RI ·
ei,;(t) - RI,i(t)

(3.51),2 t

R2.
eL(t) - R2,i(t)

(3.52),2 t

where el,i(t) = i\i(t) - MI,i(t), and e2,i(t) = S2,i(t) - M2,i(t).

The convergence of this EKF-like algorithm is analyzed in the following theorem.

Theorem 3.4 The parameter update algorithm (3.43) - (3.45) is convergent, provided

that PI,i is a positive definite matrix.

Proof: If H,i(t) holds positive definite, the following inequality can be guaranteed,

(3.53)

Since, for S1S0 systems, RI,i(t) is the estimated variance of noise, it is nonnegative

for all time. Hence, with (3.53) we have

(3.54)

Consider a positive Lyapunov function candidate:

(3.55)
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The derivative of (3.55) with respect to time t is

V(t)

(3.56)

Therefore, if PI,i(t) remains positive definite for all time, then V(t) < 0, which implies

the state estimation error XI,i will converge to zero. •

In numerical computation, the guarantee of (3.53) for all time is not an easy

task. Usually, PI,i and P2,i are set to large diagonal matrices, and RI,i and R2,i are

set to small numbers in order to hold RI,i > 0 and R2,i > 0, and to prevent the

denominators in (3.43) and (3.46) from being zero. Moreover, pre-training of the NSS

models is necessary in order to achieve satisfactory estimation accuracy.

3.5.2 Stability Analysis

In this section, we explore the stability of the proposed fault diagnosis scheme. Prior

to any fault, only the sliding mode observer works to estimate the state of the system.

Therefore, the dynamics of the state estimation error before the occurrence of any

fault are given by

Xl X2 - gl(t)sign(flxl) (3.57)

X2 A2l XI + A22X2 + ~(XI' X2) - ~(XI, X2) + TJ(t) - g2(t)sign(f2s2). (3.58)

Regarding the stability of (3.57) and (3.58), we have the following theorem.

Theorem 3.5 If the system (3.1) satisfies Assumptions 3.1-3.4, and the following

inequalities are guaranteed

Amin(Q) > 2k21if211

Amin(gl(t)) > II x211

Amin(g2(t)) > Tlo

(3.59)

(3.60)

(3.61)



Chapter 3. Fault Diagnosis Using Sliding Mode and Learning Approaches 64

where Q is defined in Assumption 3.4, then the proposed observer can estimate the

states of the system in finite time, i. e., the state estimation error x( t) asymptotically

approach zero.

Proof: We first consider the dynamics of the output estimation error Xl, and design

a Lyapunov function as

(3.62)

where f l was defined in Chapter 3.3.1.

Based on (3.57), computing the time derivative of VI with respect to time t gives

VI iJflXl + xJflil

(X2 - 9lsign(flXl))TflXl + xJf l (X2 - 9lsign(fril))

2(flxd TX2 - 2(flXlf9lsign(flxl). (3.63)

By properly choosing 9l(t) to satisfy Amin(9l(t)) > Ilx211, we have VI < 0, which means

Xl reaches the sliding manifold in a finite time t l . Moreover, after t l , we have

and the dynamics of the state estimation error X2 becomes

(3.64)

Let us consider another Lyapunov function candidate:

(3.65)

where f 2 is defined in Assumption 3.4.
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The time derivative of V2 with respect to t is

V2 xif2X2+ xif2X2

xiAr2 f 2X2 + xrf2A 22 X2

+2xrf2(~(XI' X2) - ~(XI, X2)) + 2xrf2(17(t) - 92sign(f2x2))

< xr (Ai2 f 2 + f 2A 22 )X2 + 211xilllif211 (kIllxlll + k211 X211)

+2xrf2(17(t) - 92sign(f2x2))

-xrQX2 + 2k211f21111 x 211 2 + 2xrf2(17(t) - 92sign(f2x2))

< -pllx211 2 + 2xrf2(17(t) - 92sign(f2x2)) (3.66)

where AI2f2 + f 2A22 = -Q is the Lyapunov function defined in Assumption 3.4, and

P = Amin(Q) - 2k211f211· Therefore, when the inequalities p = Amin(Q) - 2k211f211 > 0

and Amin (92) > 170 are satisfied, then X2 goes to zero after finite time t 2 > t l · •

From the above proof, it is concluded that for a class of systems, if the switching

gains are properly chosen to guarantee (3.59) and (3.60), the proposed observer can

estimate their states in finite time. This result implies that both the state estimation

error and the output estimation error are zero or close to zero prior to the occurrence

of any fault, which means the threshold for fault detection can be very small.

After a state fault occurs, the estimation error would first deviate from zero be­

cause the fault works as a new unknown input to the system. However, due to the

compensation of the NSS models MI(t) and M2 (t), theoretically, the state estimation

error should return zero, if the NSS models can exactly specify the fault. In prac­

tice, due to the existence of fault estimation error, the state estimation error will not

exactly be zero, but it will remain within a small bound.

After the occurrence of a state fault, the dynamics of the estimation error become

Xl X2 - 9l(t)sign(fls l ) - MI(Wl , Xl, t) (3.67)

X2 A2lXI + A 22X2 + ~(XI, X2) - ~(Xl, X2) + 17(t) - 92(t)sign(f2s2)

+ fa(t) - M2(W2, X2, t). (3.68)

The stability of (3.67) and (3.68) is provided in the following theorem.
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Theorem 3.6 If system (3.1) satisfies Assumptions 3.1-3.4, the inequalities (3.59)­

(3.61) are all satisfied, and the following conditions (3.69) and (3.70) are both guar­

anteed

Amin(gl(t)) > II X211 + 6Ml

f 2ZT KJB~2)f3

(3.69)

(3.70)

then the state estimation error X2 is uniformly bounded, where 6MlJ Z, K 2, B~2), and

f 3 are defined in the following proof.

Proof: We first consider the convergence of Xl. From the above analysis, when

Ml (t) is activated, Xl is already zero by using the sliding mode. Moreover, Ml (t) is

initialized to be zero. Therefore, Ml (t) can be assumed not to go to infinity in a finite

time. In another words, Ml (t) is bounded by a finite number 6Ml; i.e., IIMl(t) II < 6M1 ,

within a finite time.

By still choosing the first Lyapunov function as VI = xlflxl, and computing its

time derivative with respect to time t, we obtain

Vl(t) :I:Iflxl + xIfl:I:l

(X2 - gl(t)sign(flsl ) - Ml(t))TflXl

+x!fl (X2 - gl(t)sign(fls l ) - Ml(t))

- 2(flXl)T (Xl - Ml ) - 2(flXl)Tgl(t)sign(flXl)' (3.71)

When we choose Amin(gd > IIx211 + 6Ml' then VI (t) < 0, which implies Xl converges

to the sliding manifold in a finite time.

Based on the universal nonlinear approximation ability of NSS models, (3.68) can

be rewritten as

X2 = A2l Xl + A22X2+ ~(Xl, X2) - ~(Xl, X2) + 'rl(t) - g2(t)sign(f2s2)

+M2(W;,X2,t) - M2(W2,X2,t) +vx(t) (3.72)

where vx(t) denotes a network approximation error defined as

(3.73)
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The optimal parameter W2' is selected such that the L2-norm distance between fa(t)

and M2(W;, X2, t) is minimized. Note that the artificial parameter W; is only used

for the analysis and is not for the parameter design of the fault diagnosis scheme.

Assuming M2 ,i (t) is a smooth function, we can formulate the ith NSS model as

(3.75)

where W2,i = W2',i - W2,i is the parameter estimation error vector, Mg,i(W2,i, X2,i, t)

represents the higher order term of the Taylor series expansion of M2,i(W2,i, X2,i, t)

with respect to W2',i' and Zi E ~p is the derivative of the ith NSS model output M2,i
. h 't t t W

A

• Z 8M2 iWIt respect to I s parame er vec or 2,i; I.e., i = 8W2:i'

Based on (3.74), we have

M2(W;, X2, t) = M2(W2, X2, t) + Z T W2 - Mg(W2,W;, X2, t)

where M2,i(W2',i, X2,i, t), M2,i(W2,i, X2,i, t), and Mg,i(W2,i, W2',i' X2,i, t) are the ith ele­

ment of the vectors M2(W2' , X2, t), M2(W2, X2, t) and Mg(W2' ,W2, X2, t), respectively.
.. 2 x - - T - T T 2The matnx Z = dWg{Zl"" ,Zp} E ~p P, and W2 = [W2,1"" ,W2,p] E ~p .

By substituting (3.75) into (3.72), we obtain

X2 = A2IXI + A22X2 + ~(XI, X2) - ~(XI, X2) + 'fl(t) - g2(t)sign(r2s2)

+ZT W2 + vx(t) (3.76)

where vx(t) = vx(t) - Mg is comprised of a network approximation error and a higher

order term. Based on the properties of NSS models, vx(t) is bounded by a finite

number.

Based on (3.48), we can obtain

(3.77)

where B~2) = diag{B~~{, ... ,B~~} E ~p2xp2, and K2 = diag{K2,1,'" ,K2,p} E ~p2Xp.

The second Lyapunov function is defined as

(3.78)
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where r 3 E RP2 xp
2

is also a symmetric positive definite matrix to be determined.

Based on (3.70), (3.76), and (3.77), the derivative of V2 with respect to t is

V2 = xi (Ai2 r 2+ r 2A 22 )x2 + 2xir2(~(Xl' X2) - ~(2:1, 2:2))

+2xir2(ry(t) + vx(t) - g2(t)sign(r2x2)) + 2xir2zT W 2

-2xiKiB~2)r3W2

< -pllx211 2 + 2xir2(ry(t) - g2(t)sign(r2x 2)) + 211 x21111r21111vxll
< -pllx2112- 2g311 x21111r211 + 211vxllllx21111r211 (3.79)

where g3 > 0 is guaranteed by choosing Am in(g2(t)) > ryo· If g3 > Ilvxll, then 112< 0,

which means the approximation error is also eliminated by the sliding mode term,

and X2 can reach the sliding manifold in a finite time. If 0 < g3 < IIvx ll, (3.79) is

continuously written as

112 < -pllx211
2 + 2(llvxll - g3)lIr21111x211

-p(lI x2 11- Ilvxl~- g311r211) 2+ (1lvxll - ~3?11f2112

Therefore, when

II X211 ~ 2(lIvxll - g3)11f211,
p

V2 < 0, which means X2 is uniformly bounded.

(3.80)

(3.81)

•
Remark 3.4 The conditions (3.69) and (3.70) are sufficient conditions to guarantee

the boundedness of X2 theoretically. It is not easy to test (3.69) and (3.70). In prac­

tice, simulation results demonstrate that the fault diagnosis algorithm works well even

without checking these two conditions.

Remark 3.5 The above analysis guarantees uniform boundedness of the state estima­

tion error. If the NSS model £12(t) can estimate the fault with certain accuracy, and

g2 is chosen large enough, then the estimation error asymptotically converges to zero.

Moreover, the performance of this fault diagnosis scheme can be improved by reduc­

ing the system uncertainties, properly increasing the switching gain g2, and carefully

selecting the online approximator £12(t).
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The proposed fault diagnosis scheme in Section 3.3.1 can be implemented using

the following algorithm:

• Step 1: Initialize the diagnostic observer (3.6).

• Step 2: Update sliding mode switching gain based on iterative learning algorithm

(3.12) or iterative fuzzy model (3.19).

• Step 3: Start NSS model-based fault estimators M(t) at t = Tm .

• Step 4: Obtain Xl(t) and S2(t) based on system dynamics (3.1) and the observer

(3.6).

• Step 5: Compare Ily(t)1I with a threshold tA·

• Step 6: If Ily(t) II ~ t A, then fault occurs, and the parameters of the fault

estimator (3.41) are updated using EKF-like algorithms. Otherwise, no fault

occurs.

• Step 7: Use M(t) to isolate and estimate the fault.

3.5.3 Application to a Satellite Orbital System

In this section, the proposed robust fault diagnosis scheme is applied to a fourth-order

dynamic satellite system which has been described in [31]. The nominal model of the

system is

r=v
. 2 k Ul
v=rw ---+-

mr2 m
¢=w
. 2vw U2
w=--+­

r mr

r(O) = ro

v(O) = 0

¢(O) = 0

w(O) = Wo

(3.82)

where m = 200kg is the mass of the satellite, (r, ¢) are the polar coordinates of

the satellite, v is the radial speed, and w is the angular velocity. Control inputs

Ul and U2 are the radial and tangential thrust forces, respectively. The parameter

k = KEm, where KE = 3.986 x 1Q5km3/s2 is derived from a parameter of the Earth
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(ME = 5.974 x 1024kg). The satellite is first observed in perigee, 375 km above the

surface of the Earth, resulting in TO = RE +375km (RE = 6.378 x 103km). The initial

angular speed, Wo, is computed using the orbital mechanics Wo = v(eorbit + 1)KE /T6,

where eorbit = 0.162 is the eccentricity. The Cartesian coordinates of the satellite are

the measured variables; i.e., Yl = Tsin(4)), Y2 = TCOS(4)). In order to compare the

results with those in [31], we use a similar local diffeomorphism in [135]; i.e.,

Zl Tsin(4))

Z2 Tcos( 4»

Z3 vsin(4)) + TWCOS(4))

Z4 v cos(4» - TW sin( 4»

the system (3.82) is transformed into the form represented by

Zl Z3

Z2 Z4
-Zl k UIZI + U2Z2 1

Z3 +(zi + zi)3/2 m (zi + zi)l/2 m
-Z2 k UIZ2 - U2Z1 1

Z4 -+ -
(zi + Zi)3/2 m (zi + zi)1/z m

Yl Zl

Y2 - Zz (3.83)

where Zl(O) = 0, Z2(0) = TO, Z3(0) = TOWO, and Z4(0) = O.

In the simulation, the mass of the satellite is assumed to be underestimated by

C;z = 3% (m* = m(l - C;z), k* = k(l - c;z))' The system (3.83) can be converted into a

state space model where (A, C) are given by

A=

o 0

o 0

o 0

o 0

1 0

o 1

o 0

o 0

c= [~
o
1

o
o



~(Z, u) =

1"/(Z, u, t) =
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The nonlinear term ~ (z, u) is expressed as

o
o

Zl k* U1Z1 + U2Z2 1...,....--;;,-------;::-:--:-;-:- - + ...,....--;;,---------;:-:--:-;::-
(zf + Zi)3/2 m* (zf + zi)l/2 m*

Z2 k* U1Z2 - U2Z1 1+ -
(zf + Zi)3/2 m* (zf + zi)l/2 m*

and the state uncertainty is represented by

o

°<;1)(2 + <;1)) Zl k* <;z U1 Z1+ U2 Z2
(1 + <;1))2 (zf + zi)3/2 m* - m* (zI + Zi)1/2

<;1)(2 + <;1)) Z2 k* <;z U1 Z2 - U2 Z1
(1 + <;1))2 (Zf + zi)3/2 m* - m* (ZI + zi)1/2

where <;1) = 2% is a coefficient of the uncertainty. Thus, the dynamics of the state and

sensor uncertainties can be expressed as

1"/y - [<;yr sin(cp),

1"/z [0, _<;_u_1 0, _<;~] T
m*' m*r

<;yr sin(cp)]T

(3.84)

(3.85)

If we define Xl = [Zl z2F and X2 = [Z3 Z4]T, (3.83) can be represented in a

triangular input form as (3.1). Therefore, the proposed robust fault diagnosis scheme

can be applied to this dynamic system.

Based on (3.83), we design a diagnostic observer as follows,

Y1

Y2

Z3 + gl(t)sign(Y1 - 1)1) + M1(t)

Z4 + g2(t)sign(Y2 - i12) + M2(t)
-Zl k U1Z1 + U2Z2 1 . A

(A2 + A2)3/2 + (A2 + A2)1/2 + g3(t)slgn(s3(t)) + M3(t)Zl Z2 m Zl Z2 m
-Z2 k U1Z2 - U2Z1 1 . A

C2 + A2)3/2 + C2 A2)l/2 - + g4(t)Slgn(S4(t)) + M4(t)
Zl Z2 m Zl + Z2 m

Zl

(3.86)
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where 21(0) = -0.1, 22 (0) = ro - 0.5, 23 (0) = rowo + 0.25, and 24 (0) = 0.01. The

equivalent estimation error S3(t), S4(t) are computed according to the anti-peaking

structure (3.7), and Nh (t) rv M4 (t) are four neural state space models. In order to

demonstrate the performance of this robust fault diagnosis scheme, a single incipient

fault, a single abrupt fault, and multiple faults are tested. The possible faults could

be system component faults, actuator faults or a combination of them. Here, in fault

detection and isolation, we indicate the occurrence of faults and determine which state

channel is faulty. Locating the faulty variable or actuator needs further work.

Example I-Single incipient fault: Consider an incipient state fault fi3
) (t) which

occurs in the third state

where (3(t - Tx ) is the time profile function defined in Chapter 3.3.1.

In this example, the switching gain of the sliding mode term is updated using an

iterative learning algorithm and an iterative fuzzy model.

Case 1-Adaptive switching gain using an iterative learning algorithm: The initial

switching gains of the four sliding mode terms are gl (0) = 5, g2(0) = 5, g3(0) = 60, and

g4(0) = 60. The learning coefficient matrix 1> = diag{10-3, 10-6 , 10-3 ,5 x 1O-3 } when

the gains increase, and 1> = diag{10-2, 85, 7 x 1O-5 ,0.14} when the gains decrease.

Figure 3.2 compares the outputs of the nominal system with those of the faulty system.

Under system uncertainties and state faults, the practical system output deviate from

the output of the nominal system.

Figure 3.3 shows the dynamics of the system states and observer states, (The vari­

ables X3 and X4 are shown for the sake of illustration and discussion. They may not

be available for measurement in practical situations). Clearly under the performance

of a sliding mode, the system states can be observed in a small period of time. More­

over, after Xl reaches the sliding manifold, the second observer state, X2, begins to

approach the actual state X2.

Figure 3.4 portrays the evolution of the adaptive switching gains. The gains are

kept steady after the state estimation errors reach the sliding manifold because we

desire to keep the switching gain under control and not allow it to become large. A
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over-large gain could counteract the effect of the fault.

Figure 3.5 depicts the norm of the output estimation error, which can be used to

detect the occurrence of faults. From the figure, as a fault appears, the norm of the

output estimation error immediately exceeds a threshold, which successfully indicates

the onset of the fault. However, selection of the diagnostic threshold depends on the

magnitude of the fault; that is, larger faults result in bigger differences between the

output and its estimation. Hence, (3.11) may fail to work in real applications due to

the presence of uncertainty.

Figure 3.6 illustrates the characteristics of the fault function and output of the

neural state space models. When an incipient fault occurs, both of the two NSS models

in the state dynamics generate nonzero signals, which, with a proper threshold, can

be used to indicate the occurrence of the fault. However, only the NSS model that

corresponds to the faulty state specifies the dynamics of the fault, and the output of

the NSS models associated with other healthy states returns back to zero or close to

zero. Therefore, this robust fault diagnosis scheme is useful for fault isolation and

estimation of single incipient fault.

Nominal output 1 Yo' and practical output 1 Y,

1.5 2.5
Time (hr)

3.5 4.5

Nominal output 2 Y02 and practical output 2 Y
2

6752.98

6752.96

:[ 8752.94

6752.92

67529 g
6752.88o 0.5 1 1.5 2 25

Time (hr)
3.5

'.

4.5

'.

Figure 3.2: Nominal system output and faulty system output for case 1 of Example 1
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Table 3.2: Values of switching gain <I>7,i

9i \ <I>n <PNL <PNB <PNM <PNS <PPS <PPM <PPB <PPL1,,2

gl -1.6 -1.4 -1.1 -0.7 10-8 3 x 10-8 6 X 10-8 10-7

92 -10 -7 -2.5 -1.3 10-9 5 x 10-9 7 X 10-9 10-8

g3 -14.1 -13 -12 -10 5 x 10-12 1O-11 5 X 1O-11 10-10

g4 -0.7 -0.5 -0.3 -0.1 7 x 10-5 10-4 3 X 10-4 10-3

Actual slate 1 z, and observer state 1 Zhl

1,---~---------,

0.8

0.6

E 0.4

~ 02
/.

0'

-0.2

-0.4'----------'
o 0.02 0.04 0.06 0.08 0.1

Time (hr)
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8.6,----~--_.,1=_==-=z3=1

~
-"3I::

8.3 ~~~~---1

8.2'-----------'
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Time (hr)
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6753.1,----------,
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6
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Time (hr)
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0.02,---------::1=._=_=z=.=:-II

0.015 -zh4
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~
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Figure 3.3: System states and observer states for case 1 of Example 1

Case 2-Adaptive switching gain using an iterative fuzzy model: The characteristics

of the system and the fault is set to be the same as those in case 1. The only

difference is that the switching gain is updated using the iterative fuzzy model which

was introduced in Section 3.3.4. The initial gain matrix is still set to diag{5, 5, 60, 60}.

We use the functions in Figure 3.1 as the fuzzification membership functions, where

the coordinates on the x-axis are set to [-0.1, -0.05, -0.01, -0.002, 0, 0.002, 0.01,

0.05, 0.1]. The crisp rule consequent of <I>7,i in the fuzzy rule base is set in Table 3.2.

Figure 3.7 shows the time-behavior of the switching gains in the four sliding mode

terms. Clearly, the sliding mode using an iterative fuzzy model to update the switching
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Switching gain g,(t) Switching gain g2(t)
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Figure 3.4: Four sliding mode switching gains updated using the iterative learning
algorithm for case 1 of Example 1
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Figure 3.5: Norm of output estimation error for case 1 of Example 1
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Fault characteristics and NSS model output 3
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Figure 3.6: Incipient state fault 3 and the NSS model output 3 and 4 for case 1 of
Example 1

gains takes less time to reach the sliding manifold than the sliding mode using the

iterative learning method. This feature is expected because the update law using a

fuzzy model is equivalent to a varying-coefficient proportional-type controller, while

the update law using the learning algorithm is equivalent to a traditional constant­

coefficient proportional-type controller.

In Figure 3.8, the NSS models also indicate the occurrence of the fault, and the

NSS model corresponding to the faulty state estimates the fault successfully.

Example 2-Single abrupt fault: Unlike incipient faults, an abrupt fault may cause

great change in the structure and/or parameters of the system in a very short time.

Here, we consider the case of an abrupt fault f~4) (t) = -1 x f3(t - 2.5), which is

assumed to occur in the fourth state at t = 2.5 hour. The initial estimation errors

and uncertainties are set to be the same as those in Example 1; therefore, the sliding

mode term is the same. The switching gain is updated using the iterative fuzzy

model. Figure 3.9 shows the characteristics of the fault and the outputs of two NSS

models. From this figure, when an abrupt fault occurs, both of the two NSS models
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Switching gain g,(t) Switching gain g,(t)

Figure 3.7: Four adaptive switching gains updated using the iterative fuzzy model for
case 2 of Example 1
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Figure 3.8: Fault 3 and the NSS model output 3 and 4 for case 2 of Example 1
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generate a large amount of chattering. Then, only the NSS model associated with

the faulty state specifies the fault, while the outputs of the NSS models associated

with the healthy states return zero or stay close to zero. When the fault changes so

abruptly that the NSS models can not update their parameters in a timely manner

to approximate the fault, and signum functions are used, the transient process with

chattering in the fault estimation signal occurs.

Characteristics of fault 4 and NSS model output 4

X 10-4
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0.5

-0.5
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1.5

NSS model output 3

2.5
Time (hr)

2.5
Time (hr)
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3.5

4.5

\

- - Fault 4 I
- NSS model 41

4.5

Figure 3.9: Abrupt fault 4 and the corresponding NSS model output 3 and 4 III

Example 2

Example 3-Multiple faults: We now consider the effectiveness of this FD scheme

for multiple faults. An incipient fault f2)(t) = -1 x (3(t - 2) and an abrupt fault

(4) ( Jrt Jrt Jrt Jrt )fa (t) = (3(t - 2) x 0.9 sin(2Jrt) cos(2Jrt) + 0.8 sin(2") cos(2") + 0.7 sin(4) cos(4)

occur simultaneously in the third and fourth states, respectively. The diagnostic re­

sults are shown in Figure 3.10, where the NSS models in the third and fourth state

demonstrate the characteristics of the two faults, respectively. Although some chat­

tering occurs in the early phase of fault approximation, the NSS models successfully
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Characteristics of fault 3 and NSS model output 3
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Figure 3.10: Abrupt fault 3, incipient fault 4 and the corresponding NSS model output
3 and 4 in Example 3

estimate the faults shortly after. Therefore, the proposed fault diagnosis scheme is

also effective for multiple faults.

3.6 Fault Isolation and Estimation Using Iterative

Learning Estimators

3.6.1 Design ofPID-type Iterative Learning Fault Estimators

In this section, a bank of PID-type iterative learning estimators is proposed to diag­

nose faults. The advantage of this kind of estimator is its parameters are updated in

the iteration domain such that the overshoot and transient process of fault estimation

can be reduced or even eliminated. Here, Ml(t) = [Ml,l (t), ... ,Ml,p(t)]T E RP repre­

sents a bank of PID-type iterative learning estimators associated with Xl, and M2 (t) =

[M2,1 (t), ... ,M2,p(t)]T E RP denotes another bank of PID-type iterative learning esti­

mators associated with ::[2. At each time t, the estimators Mi,j, (i = 1, 2;j = 1, ... ,p)
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are iteratively updated according to the following rule [136]:

",,3 (1)( (l)( )K· 61=1 Wi,j t)Zi,j t - T

",,3 (I) ( )
61=1 Wi,j t

(3.87)

where K is the gain, w?J (t), (l = 1,," ,3) are the three parameters of the (i, j)th

observer input, and T is the sampling time interval in the iteration domain. Three

external inputs of Mi,j (t) are chosen as

{

Z(1)(t)
t,]

Z(2) (t)
t,]

z(3)(t)
t,]

(3.88)

If we define

[

KW(1)(t)
W; . t - t,]

t,] ( ) - 2:3 (I) ( )
1 1 w· . t= t,]

and

KW(2)(t)
t,]

",,3 (I) ( )
61=1 Wi,j t

KW(3)(t) ]T
t,]

~ T
then Mi,j(t) = Wi,j(t)Zi,j(t - r).

The following adaptive law is used to update the parameters of (3.87):

L\Wi,j(t) - Wi,j(t) - Wi,j(t - r)
Qd;i,j(t)Zi,j(t - r)

Q2 + ZT.(t - r)z· ·(t - r)t,] t,]

(3.89)

where Q1 is the learning rate and Q2 is a small positive number used to prevent the

denominator becoming zero.

The proposed fault diagnosis scheme in Section 3.6.1 can be implemented using

the following algorithm:

• Step 1: Initialize the diagnostic observer (3.6) .

• Step 2: Update sliding mode switching gain based on an iterative learning al­

gorithm (3.12) or an iterative fuzzy model (3.19).
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• Step 3: Start PID-type iterative learning fault estimators Mi,j(t) at t = Tm .

• Step 4: Obtain Xl(t) and S2(t) based on system dynamics (3.1) and the observer

(3.6).

• Step 5: Compare Ily(t) II with a threshold CA'

• Step 6: If Ily(t)11 2: CA' then fault occurs, and the parameters ofthe fault estima­

tors (3.87) are updated using PID-type iterative learning algorithms. Otherwise,

no fault occurs.

• Step 7: Use Mi,j(t) to isolate and estimate the fault.

3.6.2 Stability Analysis

In this section, stability of the proposed fault diagnosis scheme using PID-type itera­

tive learning estimators is explored. Prior to any fault, the stability of the estimation

error dynamics can be investigated in the same way as that in Section 3.5.2.

Firstly, after the occurrence of a state fault, the estimation error deviates from zero

firstly, because the fault works as a new unknown input to the system. However, due

to the compensation of the observer input M(t), theoretically, the state estimation

error should return to zero if M(t) exactly specifies the fault. In practice, due to the

existence of fault estimation error, the state estimation error remains within a small

bound. This property is shown in the following theorem.

Theorem 3.7 If conditions (3.59)-(3.61) and the following equality and inequality

are both satisfied,

Amin(gr) > IIx211 + 6M1

f 2Zi (t - T) Z2(t - T)f3

(3.90)

(3.91)

where Z2 and Z2 are defined later, then the state estimation error X2 is uniformly

bounded.
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Proof: The boundedness of Xl is proved using the same method in Theorem 3.6.

Then, we consider the stability of X2.

The structure of the PID-type iterative learning estimator is similar to that of

the radial basis function (RBF) networks. Although only three inputs exist, and the

output of the estimator is a linear combination of the inputs, the PID-type iterative

learning estimator only needs to approximate a constant value in the iteration domain

at each sampling time. Therefore, due to the approximation ability of RBF networks,

it is reasonable to assume that the fault function fa(t) can be approximated by the

PID-type iterative learning estimator as

(3.92)

where V x denotes the network approximation error. The optimal parameter W2' is

selected such that the L2 norm distance between fa(t) and M2(W2', t) is minimized.

Note that the artificial parameter W2' is only used for theoretical analysis and is not

for the estimator design.

Based on (3.89), we have

~ * A T-
M2(W2,t) = M2(W2, t) + Z2 (t - T)W2 (3.93)

where Z2 = diag{z2,1(t - T),'" , Z2,p(t - Tn E ~3pXp, W2 = [W!l,'" ,W!p]T E ~3p,

and W2 = W2' - W2.

Substituting (3.92) and (3.93) into (3.68), we obtain

X2 = A2l Xl + A22X2+ ~(Xl, X2) - ~(Xl, X2) + "l(t) - g2(t)sign(r2s2)
T -

+Z2 (t - T)W2 + Vx ' (3.94)

Based on (3.89), we have

w;. .
~,J

Hence,

~ .6.Wi ,j

.6.t
O:lXi,j(t)Zi,j(t - T)

W2 -W

-22(t - T)X2

(3.95)

(3.96)
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where

The second Lyapunov function is still defined as

(3.97)

where f 3 E iRP2
xp

2
is also a symmetric positive definite matrix to be determined.

Based on (3.91), (3.94) and (3.96), the derivative of V2 with respect to t is

V2 = xr (Ar2 r 2+ r 2A22 )X2 + 2Xrr2(~(Xl' X2) - ~(Xl, X2))

+2xrf2(7](t) + vx(t) - 92(t)sign(f2x2))
T T - T -T -+2x2 f 2Z2 (t - T)W2 - 2X2 Z2 (t - T)r3W2

< -pll x 211 2 + 2xrf2(7](t) - 92(t)sign(f2x2)) + 211 x211/1f211/1vx ll
< -pll x2/12 - 29311x21111f211 + 2/1vxllllx21111f2/l (3.98)

where 93 > 0 is guaranteed by choosing Amin(92(t)) > 7]0· If 93 > Ilvx/l, then V2 < 0,

which means the approximation error is also eliminated by the sliding mode, and X2

can reach the sliding manifold in a finite time. If 0 < 93 < /Ivx /l, (3.98) is continuously

written as

V2 < -pll x2/12 + 2(llvxll- 93)llf211/1x211

-p(llx211- Ilvxl~- 9311f211) 2+ (IIvx ll - ~3)2I1f2112 (3.99)

Therefore, when

II x 211 ~ 2(lIvxll- 93)11f211,
p

then V2 < 0, which means X2 is uniformly bounded.

(3.100)

•
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Remark 3.6 Theorem 3.7 guarantees the uniform boundedness of the state estima­

tion error. If (3.90) and (3.91) are satisfied, and gl(t) and g2(t) are properly updated,

then the estimation error converges to zero in a finite time. Moreover, the performance

of this fault diagnosis scheme can be improved by properly choosing the switching gains,

and carefully designing the online estimators.

3.6.3 Application for a Flexible Satellite Control System

In this section, the dynamics of a satellite with flexible appendages is first presented.

Then, the proposed fault diagnosis scheme is tested on this flexible satellite.

The model of a flexible satellite is composed of a rigid central hub, which repre­

sents the satellite body, and two flexible appendages, which are usually solar arrays,

antennas, or any other flexible structures. The satellite is assumed to maneuver in

a circular orbit. A series of axes has been defined in [137] when deriving the motion

equation of this satellite:

XC,~,ZC

X o,Yo, Zo

Xs,~,Zs

Axes of right-handed coordinate frame,

Axes of an inertial frame,

Axes of an orbital frame.

(3.101)

When the satellite is slewed around the axis Zs, which is normal to the orbital

plane, the flexible appendages are deformed. We assume that the appendages suffer

elastic transverse bending only in the orbital plane X s -~. In [137], considering

the configuration of the satellite, assuming that the pitch maneuver excites the two

flexible appendages anti-symmetrically is reasonable.

The governing equations of the satellite motion were developed via the Lagrangian

procedure. The spatial discretization method was used to derive a group of ordinary

differential equations to describe the motion of the satellite, although the vibration

of the appendages can be described by partial differential equations. As a result, the

appendage deflections, which are strictly confined in the orbital plane, are expressed

in terms of a set of admissible or shape functions as

N

8(l, t) = L wi(l - r)pi(t)
i=l



(3.102)
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where Pi(t) are the generalized coordinates associated with these functions, l is the

distance from a point on the appendage to the center of the hub, and r is the radius of

the hub. Here, we assume that N modes are sufficient for the computation of elastic

deformation. \Iti are the shape functions that satisfy the geometric and physical

boundary conditions. The shape functions are given in [137] as

\Iti(l- r) = 1- cos C7r (lL- r)) + ~(_1)i+1 (i7r(lL- r)) 2

where L is the length of the appendage.

The formulation of the governing equations of this kind of spacecraft is discussed

in [138] and is expressed as

T .. T . T
[J + 2J1 + P M ppp]1/J + m1/Jpp + 2(1/J + wo)p Mppp

+3w5 sin(21/J)[J1 - ~PTMppp] + 3w5 cos(21/J)mJpp = Ut

MpppT + m1/Jp,¢ + ~w5 sin(21/J)m1/Jp + CppP
2· 2 . 2

+[Kpp - (1/J + 21/Jwo + 3wosm 1/J)Mpp]p = 0 (3.103)

(3.104)

where 1/J is the pitch angle, P = [PI,'" ,PNF is the vector of the generalized coor­

dinates of the appendage flexibility , Wo is the orbital rate, J and J1 are the mass

moments of inertia of the central hub and each appendage, respectively, Ut is the

control torque, and M pp , m1/Jp, C pp and K pp are the following modal integrals:

I
T+L

[Mpp]i,j = 2 T \Iti(l - r)\Itj(l - r)dl

I
T+L

[m1/Jp]i,j = 2r T l\Iti(l - r )dl

I
T+L

[Cpp]i,j = 2 T CI\It~'(l - r)\Itj(l - r)dl

I
T+L

[KppL,j = 2 T EI\It~(l - r)\Itj(l - r)dl

where \It~' = (fP\Itd8l2
), C and E are the damping coefficient and modulus of elasticity

of the appendages, and I is the sectional area moment of inertia with respect to the

appendage bending axis.
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When satellite maneuvers are relatively fast, the nonlinear terms associated with

the pitch angle 'IjJ will dominate over the terms associated with the flexibility gen­

eralized coordinates, p. Hence, the quadratic terms, PTMppp and pTMppp can be

neglected and resulting in simplified motion equations,

(3.105)

where

Jt J + 2J1

hI -3w6Jl sin(2'IjJ) - 3w6 cos(27/;)mJpp

'2· 2 2 3 2
h2 - (7/; + 27/;wo+ 3wosin 7/;)Mppp - '2 wo sin 27/;m'lj;p'

When we choose the state vector to be x = [7/;, P, '0, pF and the output vector

to be y = [7/;, p]T, the above equations can be written into a form similar to (3.1).

So, the proposed fault diagnosis scheme in this section can be applied to the satellite

with flexible appendages.

The simulation for the fault diagnosis in system (3.105) is presented here. The

satellite is assumed to maneuver in a circular orbit at an altitude of 400 km. The

nominal parameters of this satellite are listed in Table 3.3. In the simulation, because

the system has only one control torque, Ut, we consider the case when a single actuator

fault occurs at the 8th second. An incipient fault and an abrupt fault are tested. The

fault functions are described as

and

fi3)(t) = (3(t - 8)(OAsin(21ftj2) + 0.5sin(21ftj4) + 0.6sin(21ftj8)) (3.106)

(3.107)

The system dynamics are assumed to be subject to disturbances and measurement

noises. In simulation, the disturbance in the control torque is set to be a random
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Table 3.3: Nominal parameters of the satellite with flexible appendages
Parameters

Moment of inertia of central hub J
Moment of inertia of appendage Jl

Appendage structural damping CJ
Appendage stiffness EJ

Appendage length L
Appendage radius r

Orbital rate Wo

Number of coordinates N

Values (unit)
3972 (kg m2)

500 (kg m 2
)

545 (kg m 3
/ s)

1500 (kg m3 / s)
30 (m)
1 (m)

0.0047 (rad/s)
5

signal with a maximum magnitude 0.05, and the measurement noises are set to be

random signals with maximum magnitude 0.5%.

Moreover, this FD scheme can be easily extended to the case of multiple state

faults. The state is divided into four parts: x = [Xl, X2,1, ... ,X2,N, X3, X4,1, ... ,X4,N]T,

and only Xl and X2,l, ... ,X2,N are measurable. Correspondingly, a group of observer
. ~ ~ ~ ~ ~ ~ ~ T
mputs are constructed as M = [Ml , M2,l,'" ,M2,N, M3 , M4,1,'" ,M4,N] .

In the simulation design, the gain of the PID-type iterative learning estimator is

set to K = 1. The initial values of the external inputs are all set to 0.5. Simulation

results are shown from Figure 3.11 to Figure 3.14. Several conclusions can be derived

from these figures. Firstly, system performance deteriorates when an actuator fault

occurs. Secondly, prior to the onset of any fault, the sliding mode works to reduce

the estimation error close to zero, which illustrates that the proposed fault diagnosis

scheme is robust to system uncertainties with certain magnitudes. Thirdly, whether

an incipient fault or an abrupt fault occurs in a state channel, the corresponding

observer input can characterize the fault with satisfactory accuracy in the presence

of uncertainties and measurement noises. Other fault estimators still remain zero or

close to zero, which implies this FD scheme is able to locate and estimate the actuator

fault effectively. However, large magnitude of measurement noises impact the fault

estimation performance and probably fail the fault diagnosis scheme. Therefore, the

parameters of the sliding mode and fault estimators need to be adjusted carefully,

and filters are necessary in some cases.
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3.7 Conclusions

In this chapter, a unified framework of robust fault diagnosis schemes using sliding

mode and learning approaches was proposed for a class of nonlinear systems, which

has, or can be transformed into, a triangular input form. In this class of FD schemes,

the purpose of the sliding mode is only to deal with the effect of system uncertainties,

where the sliding mode with an adaptive switching gain helps to distinguish the fault

from other unknown inputs. The adaptive switching gain is updated using an iterative

learning algorithm followed by an iterative fuzzy model. The robustness with respect

to uncertainties and the sensitivity to faults were rigorously analyzed thereafter. After

the state estimation errors are stabilized by the sliding mode, two kinds of online fault

estimators were respectively designed to specify the faults. One fault estimator is

based on neural state space models, and the other uses an iterative learning algorithm.

The stability of these two observer-based fault diagnosis schemes were investigated.

To exemplify the theoretical results, the proposed robust fault diagnosis schemes

using sliding mode and learning approaches were applied to a satellite orbital control

system and a flexible satellite control system. The simulation results illustrate that

the proposed fault diagnosis schemes can successfully detect, isolate, and estimate a

single abrupt/incipient fault as well as multiple faults.

Although the studied robust fault diagnosis schemes are feasible for a class of

nonlinear systems with triangular input form, some typical satellite control systems

can not be classified into this family; e.g., the satellite attitude control systems in

Chapter 2. Therefore, other types of fault diagnosis schemes should be designed

based on the different dynamics of the satellite control systems.
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Figure 3.11: Nominal system output, actual system output and observer output when
an incipient state fault occurs at the 8th second
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Figure 3.12: Actual states and estimated states using the proposed diagnostic observer
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Figure 3.13: Incipient state fault f~3)(t), fault estimator M3(t), and the observer
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Chapter 4

Fault Diagnosis Using High Order

Sliding Mode Differentiators and

Learning Approaches

In this chapter, a class of nonlinear systems is studied where the unmeasurable sys­

tem state can be described as a nonlinear function of the system output and its

derivatives. Correspondingly, fault diagnosis schemes using high order sliding mode

differentiators (HOSMDs) and two learning approaches are proposed for this class of

nonlinear systems.

4.1 Introduction

In Chapter 3, a unified framework of fault detection, isolation, and estimation schemes

using sliding mode and learning approaches was proposed for a class of nonlinear sys­

tems which have, or can be transformed into, a triangular input form. The proposed

fault diagnosis strategies have been successfully applied to some satellite control sys­

tems, such as satellite orbital control systems and flexible satellite control systems.

Unfortunately, some typical satellite attitude control systems cannot be formulated

in this way.

Through studying the dynamics of a typical satellite attitude control system, we

91
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can easily see that the three unmeasurable angular velocities can be represented by

nonlinear functions of Euler angles and their derivatives with respect to time. This

feature implies that if we can obtain the exact derivatives of the measurable Euler

angles, the angular velocities can be precisely estimated. Additionally, according to

previous research [139], the accurate information of all the state variables of the system

being studied is helpful for designing algorithms to diagnose faults in system compo­

nents and/or actuators. Therefore, the method for obtaining the exact derivatives of

the system output becomes a primary task.

Exact differentiators have been studied for several years. For a dynamic system

with a finite relative degree more than one, the system is invertible if the exact

derivatives of the state and output are available. The invertibility of a control system

makes the controller design easier. As a result, various exact differentiators were

designed by many researchers; e.g., algebraic differentiators [140], high order sliding

mode differentiators [83], [84], [85]. These differentiators have been used in the design

of fault diagnosis schemes [87], [141]. Among these exact differentiators, HOSMDs

are distinguished from others since it can ensure the best-possible error asymptotic

order when the input noise is a measurable (Lebesgue) bounded function of time.

Moreover, although neural networks have powerful nonlinear approximation abil­

ities, for a specific problem, ad hoc neural networks models should be designed. For

example, a variety of neural networks based models with different adaptive laws were

proposed to design state observers for different kinds of systems; e.g., [37], [38], [39],

[40], [41], [42], [43]. Moreover, the last chapter shows that recurrent neural networks

and iterative learning estimators are both successful for fault isolation and estimation.

If these two techniques can be combined, the performance of the designed fault diag­

nosis scheme is expected to be better. Actually, similar strategies have been used in

controller designs, such as single neuron PSD control [136], [142], and neural network

direct control [143].

In this chapter, the advantages of high order sliding mode differentiators, neural

networks, and iterative learning algorithms are integrated. The purpose of the HOS­

MDs is to obtain an exact derivative of the system output, which will be used to
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estimate the unmeasurable state of the system. Then, diagnostic observers using neu­

ral adaptive estimators and iterative neuron PID estimators are proposed respectively.

After that, for the purpose of demonstrating their performance, these two kinds of

diagnostic observers are applied to a satellite attitude control system and a satellite

system with large angle maneuver, respectively.

The remaining parts of this chapter are organized as follows. In Section 4.2, the

system under study is described mathematically, and some necessary assumptions are

given. In Section 4.3, the high order sliding mode differentiators are introduced and

their properties that were provided in [84] are briefly reviewed. In Section 4.4, the

fault diagnosis scheme using HOSMDs and neural adaptive estimators is proposed

and applied to the satellite attitude control system studied in Chapter 2. Then, in

Section 4.5, the fault diagnosis scheme using HOSMDs and the iterative neuron PID

estimators is discussed and applied to a large angle satellite attitude control system.

Finally, conclusions are presented.

4.2 Problem Formulation

The class of nonlinear dynamic systems with modeling uncertainties and additive

state faults is presented as

Xl h(XI,X2) (4.1)

X2 j(XI,X2) + Bu(t) + T/(t) + (3(t - Tf)fa(t) (4.2)

X2 ht(XI,XI) (4.3)

Y Xl (4.4)

where Xl E Rn, X = [xT, xJ]T is the vector of the system state, u(t) = [UI, ... ,Um]T

and y(t) are the system input and output vectors. Function vectors j(XI' X2) =

[!I(XI, X2),'" ,fn(XI, X2)]T and h(XI' X2) = [hl(XI' X2),'" ,hn(XI' X2)]T describe the

system state and output dynamics, respectively, T/(t) = [T/I (t), ... ,T/n(t)]T denotes

the uncertainty vector, and fa(t) = [J~l)(t), ... ,f~n)(t)]T is the fault function vector.

Moreover, B E Rnxm is the control matrix, and, in (4.3), ht is a pseudo-inverse
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function of (4.1), which implies the state X2 can be described as a nonlinear function

of the system output and its derivative. The time profile function f3( t) is the same as

that in Chapter 3.

For the sake of designing and analyzing the actuator fault diagnosis scheme con­

veniently, the following assumptions are introduced.

Assumption 4.1 All the functions in f(X1' X2) and h(X1' X2) are known.

Assumption 4.2 The state function f(x(t)) is differentiable at :1;2, which is

A(t) = ~~ IX=X2

where A(t) is an n x n matrix. So, the following equation is derived through a series

expansion of f(x) at :1;2.

(4.5)

where ~(X1, X2, :1;2) = o(llx2(t)II), which contains the nonlinear high-order term of the

state estimation error X2(t) = X2(t) - :1;2(t).

Assumption 4.3 The nonlinear component ~(X1' X2) is Lipschitz at X2 with a known

constant kt;; that is

11~(y, X2) - ~(y, :1;2)11 < kd x2 - :1;211· (4.6)

Assumption 4.4 Matrix A is stable, which implies a symmetric positive definite

matrix r 1 exists such that

(4.7)

where Q is also a positive definite matrix. Even if the matrix A is unstable, we can

stabilize the linear part of the system by using a Luenberger gain.

Assumption 4.5 The minimum and maximum eigenvalues of the symmetric positive

definite matrix r 1 in Assumption 4.4 are (1 and (2, which satisfy

(4.8)

The purpose of this study is to design an actuator fault detection, isolation, and

estimation scheme for system (4.1)-(4.4) under Assumption 4.1-4.5.
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4.3 High Order Sliding Mode Differentiators
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From system (4.1)-(4.4), the relative degree from the input, U, to the output, Y, is

more than one. When f(Xl' X2) and h(Xl' X2) are general nonlinear functions, the

observer design for (4.1) and (4.2) becomes a challenging task if high order sliding

mode techniques are not used.

Equations (4.3) and (4.4) indicate that the unmeasurable state X2 can be repre­

sented as a nonlinear function of the system output and its derivative. Therefore, if

we can obtain the derivatives of Y, the state X2 can be estimated using (4.3) and (4.4).

In this chapter, second order or third order sliding mode differentiators [83] are

used to obtain the first and second order derivatives of y, which are formulated as

follows:

1. Second Order Sliding Mode Differentiator

Zo Vo

-AIIZ1 - voI 1/2sign(zl - vo) + Z2

-A2sign (Z2 - vd·

2. Third Order Sliding Mode Differentiator

Zo Vo

Vo -Aolzo - yI3/4 sign(zo - y) + ZI

ZI VI

VI -Allz1 - voI 2/3sign(zl - Vo) + Z2

-A21z2 - vlI 1/2sign(z2 - VI) + Z3

-A3sign (Z3 - V2)

(4.9)

(4.10)
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where Ao, AI, A2' and A3 are diagonal positive coefficient matrices, and for a vector

x = [Xl,'" ,Xn]T, Ixlql/q2 sign(x) is defined as [IXlIQl/Q2sign(xd,··· ,lxnIQl/Q2 sign(xn)]T.

The parameters of the differentiator can be easily adjusted because the estimation

accuracy is not very sensitive to their values. However, a tradeoff exists: the larger

the parameters, the faster the convergence and the higher sensitivity to input noises

and the sampling interval.

It has been proved that if no measurement noise exists and all the coefficients are

chosen properly, then, within a finite time, both the 2nd-order and 3rd-order sliding

mode differentiators can guarantee

Zo = y; Zl = y; Z2 = y. (4.11)

If measurement noise exists with a magnitude less than E, and all the coefficients

are chosen properly, the high order sliding mode differentiators can ensure

Iz· - y(i) I < /I·E(n-i+l)/(n+l) i = 0 1 ... n
2 _ f-N't ""

Iv· - y(i+l) I < VE(n-i)/(n+l) i = 0 1 ... n - 1
't _ 1 , '" (4.12)

where J1i and Vi are positive constants which are only dependent on the parameters

of the differentiators [85].

4.4 Fault Diagnosis Using HOSMDs and Neural

Adaptive Estimators

4.4.1 Diagnostic Neural Adaptive Observer Design

A neural adaptive observer which is used to diagnose faults is designed as follows,

f(y, :1;2) + Bu + f3(t - Tm )M2(t), :1;2(0) = X2D(O)

ht(y, YD) (4.13)

where :1;2 E ~n is the estimated state, YD is the first-order derivative of y computed

via the high order sliding mode differentiators, and X2D is the calculated state using
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y and im. If the high order sliding mode differentiators can exactly compute the

derivative of y, then X2D is completely equal to X2. Moreover, we assume that the

neural adaptive estimator M2 (t) is activated after all the states are estimated via

HOSMDs, but before the occurrence of any fault. This assumption guarantees the

performance of the neural adaptive estimators.

In addition, M2 (t), the diagnostic observer input, is described as

(4.14)

where ]\;[2,j is the jth element of ]\;[2, Wj and Vj = [Vj,l' .. , , Vj,p+q] are the parameters

of M2,j, and T denotes the time delay. The activation function is still a tangent

hyperbolic function. The external input I j (t) is defined as

~ ~ T
Ij(t) = [M2,j(t - T),'" ,M2,j(t - pT), X2D,j(t - T),'" ,X2D,j(t - qT)] (4.15)

where X2D,j is the jth element of X2D, which is defined as X2D = X2D - X2. Suitable

p and q are selected based on the time delay of practical systems and real time

requirement. Large values of p and q may take more computational time and cause

unnecessary delay.

Similar to neural state space models, the parameters of the neural adaptive esti­

mators can be updated using a variety of optimization algorithms. Here, in order to

achieve a fast convergence rate, the EKF-like algorithm is used as follows:

Kj(t)

Pj(t)

Bj(t)

Pj(t)Hj(t)[HJPjHj + Rjt1

-B1,jKj(t)HJ(t)Pj(t)

- B2,jKj(t)S[X2D,j(t)]

(4.16)

(4.17)

(4.18)

where the parameter vector is defined as

and the dead-zone operator S[·] is defined to be

(4.19)

if IX2D,j(t)1 2: ti

if IX2D,j(t)! < ti

(4.20)



Chapter 4. Fault Diagnosis Using HOSMDs and Learning Approaches 98

where Ei is a threshold for robust fault diagnosis.

The dead-zone operator assures that the parameter adaptation is insensitive to

fault estimation errors under a certain magnitude, allowing the fault diagnosis scheme

to be robust with respect to system uncertainties.

When the exact derivative of y is available using the high order sliding mode

differentiators, the dynamics of the unmeasurable state estimation error is obtained

by subtracting (4.13) from (4.1), resulting in

The proposed fault diagnosis scheme using HOSMDs and neural adaptive estima­

tors is implemented using the following algorithm:

• Step 1: Based on (4.1) - (4.4), obtain the first order derivative of system output

y using HOSMDs (4.9) or (4.10).

• Step 2: Design a neural adaptive observer based on (4.13) and (4.14).

• Step 3: If all states are estimated by HOSMDs, then activate the neural adaptive

estimator (4.14) at t = Tm . Otherwise, M2 ,j(t) = 0 and goes to Step 1.

• Step 4: Update the parameters of the neural adaptive estimator using an EKF­

like algorithm.

• Step 5: Compare M2,j(t) with a predetermined threshold to detect fault.

• Step 6: Use M2,j(t) to isolate and estimate fault.

4.4.2 Property Analysis

In this section, the convergence property of the observer input M2(t) is first investi­

gated. Then, the stability of the proposed fault diagnosis scheme is analyzed.
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Based on (4.14), the jth neural adaptive estimator M2,j can be rewritten as

M',j(t) ~ Wj(t)O" ( t V;,iM"j(t - iT) +t V;,P+i X2D,j(t - iT))'

99

(4.23)

If the time t is denoted as t = kT, and we set the time delay as one, then (4.22) is

expressed as

M2,j(k + 1) ~ WjO" ( t V;"M2J (k - i + 1) + Sj(k))

where Bj(k) = 2:;=1 Vj,p+i X2D,j(k - i + 1) is the bias.

We define a vector z = [zl(k),'" ,zp(k)F, where zi(k) M2,j(k - i + 1), for

i = 1"" ,p as a new state vector of the observer input. Hence, (4.23) can be written

as

(4.24)

Let z* = [z;,'" ,z;J be the equilibrium point of (4.24), which is well known to

satisfy z(k + 1) = z(k) = z*, k = 0,1,2,· ... Due to the recursive property of the

state z, clearly the equilibrium equation can be represented by

(4.25)

d * * *an Zl = Z2 =, ... ,= zp'

Lemma 1 The system x(k + 1) = 1>x(k) is asymptotically stable if and only if all

the eigenvalues of 1> are located within the unit circle of the complex plane [144].

A theorem regarding the stability of the equilibrium point of (4.24) is presented

as follows.

Theorem 4.1 The equilibrium point z* of (4.24) is asymptotically stable if the abso­

lute value of W j . .6. . 2:f=l Vj,i is less than one, where .6. is of the following form:

.6. = ~ [1 - a
2(~V ·z* + B)]2 L..t },l 1 } .

i=l
(4.26)
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Proof: Taking an approximation of Zl (k + 1) around the equilibrium point zr by

means of Taylor series, we have

zl(k+l) ~ WjCT(tV;,iZi(k)+Bj)

W.(J(~ v. ·z* + E.) + W· ~' ~ V. ·(Zl - z*)) ~ ),2 2 ) ) ~ ),2 I .

i=l i=l
(4.27)

The first order derivative of Zl (k + 1) evaluated at the equilibrium point z~ is

W j . ~ . .ELI Vj,i' The value of ~ is within the interval (0, 1/2). Therefore, the

equilibrium point z* is asymptotically stable if the absolute value of Wj . ~ . .Ef=l Vj,i

is less than one. •

Remark 4.1 For a healthy system with an ideal observer, X2 is supposed to approach

zero. As a result, M2 (t) becomes an autonomous system, and M2 (t) is asymptotically

stable to the equilibrium point zero. When a fault occurs, B j in (4.24), which contains

X2, is not longer zero. The value of Wr ~' .Ef=l Vj,i is modified to satisfy the Theorem

4.1. The observer input M2 will be asymptotically stable to the nonzero fault function.

After investigating the properties of the neural adaptive estimators, we study

the stability of the neural adaptive observer based fault diagnosis scheme using a

Lyapunov approach.

Based on the fundamental approximation theory, the fault function can be ap­

proximated by (4.22) in a compact set, provided fa(t) is a smooth function of the

system states. Therefore, if the structure and parameters of the neural adaptive esti­

mators are carefully adjusted, a bank of neural adaptive estimators exists that is able

to approximate the fault function with sufficient accuracy; i.e.,

(4.28)

Regarding the boundedness of X2, we have the following theorem.

Theorem 4.2 Consider the nonlinear dynamics (4.1)-(4.4) under Assumptions 4.1­

4.5, and the proposed neural adaptive observer (4.13), when the high order sliding
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mode differentiators work well, and the neural adaptive estimators are carefully tuned,

then the state estimation error X2 is bounded by a ball with radius b, i.e.,

(4.29)

Proof: Consider a Lyapunov function candidate

(4.30)

where r I is defined in Assumption 4.4.

Based on Assumption 4.1-4.5, and the estimation error dynamics (4.21) after the

occurrence of any fault, the derivative of V(t) with respect to time t is

V(t) - i~rti2 + x~rIi2

x~ (ATr I + r IA)X2 + 2x~r I (c;(y, X2) - c;(y, X2))

+2X~rI77(t) + 2xJrI (fa(t) - M2(t))

< -Amin(Q)IIx211 2+ 2k.;IIx21111 r lll + 277ollx21111fIli + 2b/llx21111 r III
-PIllx2112 + 2'Yllxll

( 'Y ) 2 'Y2-PI II x211 - - + -
PI PI

(4.31)

where PI = Amin(Q), and 'Y = IlflII (k.; + 770 + b/).

The inequality (4.31) implies that if IIx211 >
uniformly bounded.

b then V is negative and X2 is
PI

•
4.4.3 Application to a Satellite Attitude Control System

In this section, the proposed fault diagnosis scheme using high order sliding mode dif­

ferentiators and neural adaptive estimators is applied to the satellite attitude control

system, which has been studied in Section 2.6.

The dynamics of the satellite attitude control system is given in Section 2.6. A

third order sliding mode differentiator is used to obtain the derivatives of the three

angles. In order to guarantee the performance of the HOSMD, the sampling time
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interval is set to 5 x 10-4. The coefficients in the HOSMD are set to ),0 = ),1 = ),2 =
),3 = 40.

The jth neural adaptive estimator is selected to be

M2 ·(t) = W·(t)(} (~v. .M2 (t - iT) + V. 4X2D ·(t - T)),J J L J,2 ,J J"J

i=1

(4.32)

where the delays p = 3 and q = 1 are chosen based on a trial-and-error method.

The initial values of the parameters in the EKF algorithm are set to Pj(O) = 100ls,

and Rj(O) = 2 X 10-5 . The neural adaptive estimators are pre-trained before being

used for fault isolation and estimation. In the simulation, M2(t) is not activated until

t = 7.5sec, and we assume a fault exists in the third actuator; i.e.,

f~3)(t) = -3.2j3(t - 10) sin((t - 10)/0.35) (4.33)

The control torque is assumed to be subject to disturbance by <;"u = 1% * rand; i.e.,

T d = <;"uu, while the Euler angles have measurement noise with <;"y = 0.5% * rand; i.e.,

Bmeasure = (1 + <;"y)e, where rand is still a Gaussian white noise.

The simulation results are shown in Figure 4.1 to 4.3. Figure 4.1 and Figure 4.2

demonstrate the system states can be accurately estimated by using third order sliding

mode differentiators, no matter if the system is healthy or faulty. Figure 4.3 illustrates

that if the threshold for fault diagnosis is set to ±0.5, only the output of the third

estimator is out of the threshold after the 10th second and the others are not. The

activation of the fault estimator causes a large magnitude of chattering. That is due to

the transient learning process of neural adaptive estimators. The appearance of peaks

in the fault estimation is because corrupting measurement noise is introduced into

the HOSMDs, and the system itself is sensitive to modeling uncertainties. Detailed

discussion and methods attenuating the coupling peaks can be found in [87]. This

result implies the observer inputs can effectively detect and isolate the fault if a proper

threshold is chosen. Moreover, only the estimator M2,3(t) can characterize the fault

with a satisfactory performance.
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Figure 4.1: Actual states and estimated states using third order sliding mode differ­
entiators
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Figure 4.3: Characteristics of the fault f~3) (t) and neural adaptive estimators

4.5 Fault Diagnosis Using HOSMDs and Iterative

Neuron PID Estimators

In previous chapters, fault estimators based on neural networks and iterative learning

algorithm were designed. Although the PID-type iterative learning fault estimator is

able to reduce the overshoot and eliminate the transient-time process in fault estima­

tion, it may take too much time in the iterative learning process because the PID-type

iterative learning fault estimator is a linear combination of three inputs. Moreover,

the nonlinear activation functions in neural networks allow the neural networks to

approximate nonlinear functions. Therefore, inspired by this principle, an iterative

neuron PID fault estimator is proposed in this section.

4.5.1 Iterative Neuron PID Fault Observer Design

The structure of the fault diagnostic observer is the same as (4.13), and the only

difference is the observer input M2 (t), which is defined as the fault estimator. We
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assume the fault diagnosis algorithm is implemented using computers. Hence, at each

sampling time oft, M2(t) is iteratively updated in an iteration domain; i.e.,

M2,i(k + 1) = M2,i(k) + Wi(k)(J(Vi,l(k)Zi,l(k)

+Vi,2(k)Zi,2(k) + Vi,3(k)Zi,3(k)) (4.34)

where k is the index of the iterative learning domain, Wi, Vi,j, for i = 1"" ,n,

and j = 1"" ,3 are the parameters of the estimator, and (J(.) is still the tangent

hyperbolic function. Defining ei(k) = X2D,i - M2,i(k), we design the external inputs

of M2,i(k + 1) to be

ei(k)

~ei(k) = ei(k) - ei(k - 1)

f12ei (k) = ei(k) - 2ei(k - 1) + ei(k - 2)

(4.35)

The parameters to be updated are formulated in a vector form as

(4.36)

To update the parameters of this fault estimator, four update laws are designed and

analyzed, respectively.

Algorithm 1: Robust gradient descent algorithm (RGDA)-The robust gradient de­

scent algorithm is designed as

(4.37)

where Hi(k) is the derivative of M2,i(k) with respect to Bi(k). The positive scalar Ii

is the learning rate, which balances the convergence speed. The dead-zone operator

:=: [.] is defined as

if lei ( k) I 2: Ei

if lei ( k )I < Ei
(4.38)

where Ei is a threshold for robust fault diagnosis. The dead-zone operator guaran­

tees that the parameter updating is insensitive to estimation error under a certain

magnitude, which realizes robustness with respect to system uncertainties.
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The convergence of the proposed robust gradient descent algorithm is analyzed by

considering a cost function as

(4.39)

The purpose of the parameter updating law is to decrease the cost function J (()i (k)),

that is,

(4.40)

Based on the first-order Taylor series expansion of J(()i(k+ 1)) around ()i(k) and using

(4.37), we have

J(()i(k + 1)) J(()i(k) + tl()i(k))

;::::: J(()i(k)) + V J(()i) T tl()i(k)

J(()i(k)) - Hi(k) T ei(k)tl()i(k)

J( ()i (k)) - Ii IIHi(k) 112ei(k)3[ei (k)] (4.41)

where V J(()i) is the gradient of J(()i) at ()i(k). When lei(k)1 2: fi, J(()i(k + 1)) <
J (()i (k)), which implies the parameter updating process is convergent. When lei (k) I <
fi, tlJ(()i(k)) = 0, and the parameters stop updating, which shows the robustness of

the algorithm.

The convergence rate of the gradient descent algorithm is inherently slow, espe­

cially when the fixed learning rate is not properly chosen. Therefore, an adaptive law

with a time-varying learning rate is used.

Algorithm 2: Robust extended Kalman filter algorithm-The robust EKF algorithm

is formulated in a discrete-time form as

Ki(k)

~(k + 1)

()i(k + 1)

Pi(k)Hi(k)[Hi(k) T Pi(k)Hi(k) + Ri (k)]-l

~ (k) - K i (k)Hi (k) T~ ( k)

()i(k) + K i(k)3[ei(k)] (4.42)

where Ki(k) is the Kalman gain, Pi(k) is the covariance matrix of the state estimation

error, Hi (k) is still the derivative of M2 ,i (k) with respect to ()i (k), and Ri (k) is the
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noise covariance matrix. 3[·] is the robust operator described in (4.37). According to

[134], Ri(k) is recursively computed via

(4.43)

Convergence of the EKF algorithm is investigated in previous section.

Remark 4.2 Both the robust gradient descent algorithm and the robust EKF algo­

rithm belong to optimization algorithms, and their convergence properties can be an­

alyzed using the same cost function. In these two algorithms, !::J.()i (k) are both propor­

tional to the fault estimation error ei(k). However, the learning rate of the gradient

descent algorithm is a pre-determined number, Ii, while the learning rate of the EKF

algorithm is an iteration-varying term, ~ (k) [Hi (k )T~ (k) Hi (k )+Ri(k )] -1, which leads

to a faster convergence process. The local convergence of RGDA can be guaranteed

rigorously, while the convergence of EKF algorithm is harder to analyze. Chapter

{3.5.1} provides a method to investigate the convergence of EKF algorithm.

Algorithm 3: Robust iterative learning algorithm (RILA) I-A robust iterative learn­

ing algorithm is proposed to update each parameter respectively; that is

Wi(k + 1)

Vi,l(k+l)

Vi,2(k + 1)

Vi,3(k + 1)

Wi(k) + do3[ei(k)]

Vi,1 (k) + d13[Zi,1 (k)]

Vi,2(k) + d23[zi,2(k)]

Vi,3(k) + d33[Zi,3(k)]

(4.44)

where do rv d3 are the iterative learning rates.

Algorithm 4: Robust iterative learning algorithm (RILA) 2-Another robust iter­

ative learning algorithm is proposed by considering the directions of the parameters

variation; that is

Wi(k + 1)

Vi,1(k+l)

Vi,2(k+l)

Vi,3(k + 1)

Wi(k) + doI3[ei(k)]lsign(ei(k))sign(ei(k - 1))

Vi,l(k) + d1j3[Zi,1(k)]lsign(zi,1(k))sign(zi,1(k - 1))

Vi,2(k) + d213[zi,2(k)]lsign(zi,2(k))sign(zi,2(k - 1))

Vi,3(k) + d313[zi,3(k)]lsign(zi,3(k))sign(zi,3(k - 1))

(4.45)
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Defining a vector Si(k) = [ei(k), Zi,l(k), Zi,2(k), Zi,3(k)]T and the coefficient matrix

D = diag{ do, d1 , dz, d3 }, (4.45) can be formulated into a vector form as

(4.46)

where the dot multiplication operator "." represents the product of the corresponding

element in two vectors. The sign function and dead-zone operator, 3[·]' operate on

each element of a vector. For simplicity of expression, the iteration index k is written

as a subscript.

The convergence of RILA 2 is investigated in the following theorem, and the

convergence of RILA 1 can be similarly derived.

Theorem 4.3 The robust iterative learning algorithm (4.45) zs convergent, if the

inequality (4.51) is satisfied.

Proof: When the parameters are updated, we assume an optimal parameter e: exists

which enables the observer input to precisely characterize the fault. Subtracting both

sides of (4.46) from e: yields

(4.47)

where llei,k = e: - ()i,k' Doing inner product of both sides of (4.47) with themselves

via D-1 , we have

llelk+lD-1llei,k+l - elkD-1ei,k + ISZkIDISi,kl

-2llelklsi,kl . sign(Si,k) . sign(Si,k-d·

Integrating (4.48) over the time interval [0, t] results in

(4.48)

IIllei,k+lll~-l = Illlei,kll~-l + IISi,kll~

-21
t

llelk(T)ISi,k(T)I· sign(Si,k) . sign(Si,k_ddT

Illlei,kll~-l + IISi,kll~ - 21
t

Illelk(T)IISi,k(T)!dT (4.49)
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where II . IID-l is a functional norm defined as

116.8i,kllt-l = it 6.8Zk(T)D-16.8i ,k(T)dT.

If a positive constant a exists such that

then,

116.8i,k+lllt-l < 116.8i,kllt-l + IISi,kllt - (1 + a) IISi,kllt
116.8i,kllt-1 - aIISi,kllt·
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(4.50)

(4.51)

(4.52)

Inequality (4.52) shows that the sequence {116.8i,kIID-l} monotonously decreases as the

iteration number k increases, as long as IISi,kIID is nonzero. The monotonous decrease

of {1I6.8i,kIID-l} implies IIsi,kllD t-+ 0 as k t-+ 00, since {116.8i,kIlD-l} is bounded from

below. •

Remark 4.3 RILA 1 only uses Si at the kth iteration to update the parameters, while

RILA 2 considers the values of Si at both the kth and (k - l)th iterations. RILA 2

is inspired by the adaptation law in [124). The difference is that the adaptation coef­

ficients in RILA 2 are iteration-varying instead of constant values. This modification

will accelerate the convergence process.

Remark 4.4 Both RGDA and EKF algorithm need to calculate the derivative Hi(k),

where the computational complexity is determined by the structure of the fault es­

timators. RILA 2, though avoids the calculation of derivatives, has to call signum

functions, and more memories are needed to store variables at previous iterations.

The learning rates in RILA 1 and RILA 2 need to be carefully selected using a trial­

and-error method, in order to guarantee a fast convergence of the estimation error.

The proposed fault diagnosis scheme using HOSMDs and iterative Neuron PID

estimators is implemented using the following algorithm:
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• Step 1: Based on (4.1) - (4.4), obtain the first order derivative of system output

y using HOSMDs (4.9) or (4.10).

• Step 2: Design an iterative neuron PID observer based on (4.13) and (4.34).

• Step 3: If all states are estimated by HOSMDs, then activate the INPID esti­

mator (4.34) at t = Tm' Otherwise, M2,i (k) = 0 and goes to Step 1.

• Step 4: Update the parameters of the INPID fault estimator using either of the

four algorithms (4.37), (4.42), (4.44), and (4.45).

• Step 5: Compare M2,i (k) with a predetermined threshold to detect fault.

• Step 6: Use M2,i(k) to isolate and estimate fault.

4.5.2 Application to a Large Angle Satellite Control System

In this section, the proposed fault diagnosis scheme is applied to a satellite with

large angle attitude maneuvers [145], [146], [147]. The dynamics of the satellite are

described as follows:

(4.53)

where W = [WI, W2, W3]T is the angular velocity. JM is the symmetric moment of the

inertia matrix:

JM = [ ~~:2 -~:2 =~:: ]
-J13 -J23 J33

with Jii being the moment of inertia along the ith axis. Td is the disturbance torque

input, and u = [Ul U2 U3 U4]T is the control input. B 1 is the control matrix as follows,

2d1d2 d2 d1 /
where {31 = 15;'A, {32 = d2 - Do lA, {33 = d1 + Do lA, and Do = V dr + d§. The

satellite parameters used in the simulation are listed in Table 4.1.
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Table 4.1: Parameters of a large angle satellite

111

Parameters
Moment of inertia J11

Moment of inertia J12
Moment of inertia J13
Moment of inertia J22
Moment of inertia J23
Moment of inertia J33

Angle canted from x-axis A
Distance from center of mass l

Geometric parameter 1 d1

Geometric parameter 2 d2

The skew symmetric matrix S(w) is

Values (unit)
5.5384 (kg m2)

0.0276 (kg m2 )

0.0242 (kg m 2 )

5.6001 (kg m 2
)

0.0244 (kg m 2
)

4.2382 (kg m2 )

5 (deg)
0.5 (m)
0.1 (m)
0.2 (m)

(4.54)

Quaternions were invented as a result of searching for hypercomplex numbers that

could be represented by points in three dimensional space. Quaternions have no

inherent geometric singularity as do Euler angles. Moreover, quaternions are well

suitable for realtime computation since only products and no trigonometric relations

exist in the quaternion kinematic differential equations. Thus, spacecraft orientation

is now commonly presented in terms of quaternions. The kinematics of the satellite

is written as

{

q = ~ (q41 + S(q))w
. 1 T

q4 = --q w
2

where q = [q1 q2 q3]T and q4 are the quaternions of the satellite, which satisfy q T q +
q1 = 1.

Defining the state vector as x = [qT q4 WT]T, the attitude dynamics is summa-

rized by combining (4.53) and (4.54) as

x

y

f(x) + B(x)u + g1(x)Td

[q1' q2, q3, q4]T

(4.55)

(4.56)
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where
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f(q, Q4, w) =

1
-(q4w + S(q)w)
2 1

T--q w
2

-Ji:/S(w)JMw
,B = [ ~ J' 91 = [ ~ J

J;;/ B 1 Ji}

Based on (4.54), we can obtain

(4.57)

Therefore, (4.55) - (4.57) belong to the class of nonlinear systems (4.1)-(4.4).

Using (4.57) and third order sliding mode differentiators, we can estimate the

system unmeasurable state w. Then, an iterative neuron PID diagnostic observer is

designed according to (4.34).

In the simulation, we assume the system is subject to random uncertainties 0.03 *
rand. The system output is assumed to be subject to random noises with <; = 0.2% *
rand; i.e., Ymeasure = y(1 +<;), where rand is a Gaussian white noise signal. Four cases

are considered to verify the performance of the proposed fault diagnosis scheme. In

these four cases, the upper bound of the dead-zone operator is set to Ci = 0.005.

Case 1: Single incipient fault f2)(t) with RILA 2-An incipient fault f2)(t) is as­

sumed to occur in the dynamics of state WI; i.e.,

f~I)(t) = 3(3(t - 4) sin(27ft/4). (4.58)

Case 2: Single incipient fault f2) (t) with RILA I-An incipient fault fJ2) (t) is as­

sumed to occur in the dynamics of state W2; i.e.,

f~2)(t) = -2.5(3(t - 4) sin(27ftj2). (4.59)

Case 3: Single incipient constant fault fJ3) (t) with EKF algorithm-An incipient fault

fJ3) (t) is assumed to occur in the dynamics of state W3; i.e.,

f~3)(t) = 2.8(3(t - 4)(1- exp(-(t - 4)/0.2)). (4.60)



Chapter 4. Fault Diagnosis Using HOSMDs and Learning Approaches 113

Case 4: Multiple faults f~3)(t) with RGDA-An incipient fault f2)(t) and an abrupt

constant fault f2) (t) are assumed to occur in the dynamics of state W2 and W3, re­

spectively; i.e.,

fl 2)(t)

fl 3)(t)

(3(t - 4)( - 0.75sin(27ftj4) - 0.8sin(27ft/2) - 0.9sin(27ft)) (4.61)

2.5{3(t - 5)(1- exp(-(t - 5)/0.2)). (4.62)

The simulation results for these four cases are shown from Figure 4.4 to Figure

4.12. Figures 4.4, 4.7, 4.9 and 4.11 show that the system output will deviate from

their normal values when a fault or faults occur. Figure 4.5 demonstrates that the

unmeasurable states WI rv W3 can be accurately estimated by using third order sliding

mode differentiators and system dynamics. Figure 4.6, 4.8, 4.10, 4.12 characterize

the faults and outputs of the three INPID fault estimators using the four parameter

update algorithms, respectively. If we choose the threshold for fault detection to be

±0.5, after the system states are estimated via the HOSMDs, robust fault detection

can be successfully achieved. The spikes in the output of the fault estimators prior to

the onset of any fault can be explained by the estimation errors caused by the HOS­

MDs and the parameter update algorithms. Moreover, after a fault occurs, only the

estimator that corresponds to the faulty state specifies the fault, and other estimators

remain zero or close to zero. Comparing the proposed four robust parameter update

algorithms, though different algorithms are tested using different cases, their estima-.

tion performances are similar. In-depth investigation of the computational complexity

and real-time issues of these algorithms needs further work. These simulation results

demonstrate that the proposed fault diagnosis scheme can successfully isolate and

estimate a single fault as well as multiple faults.

4.6 Conclusions

In this chapter, a fault diagnosis scheme using high order sliding mode differentiators

and learning approaches was investigated in a class of nonlinear systems, where the

system state were represented by a nonlinear function of the system output and its

derivatives. Through HOSMDs, the system state was estimated, and then a diagnostic
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observer was designed using the obtained state information and learning approaches.

A neural adaptive observer and an iterative neuron PID observer were developed

to isolate and estimate the faults. After theoretical analysis, the proposed two fault

diagnosis observers were applied to a satellite attitude control system and a large angle

satellite control system, respectively. The simulation results showed the effectiveness

of the proposed fault diagnosis schemes.

A HOSMDs-based fault diagnostic observer offers a new way to diagnose faults,

which is different from traditional observer-based approaches. Its strength lies in its

capability to deal with difficult cases where traditional observer-based fault diagnosis

schemes might fail [148], [149]. The relationship between the traditional observer­

based approaches and the method in this chapter needs further exploration.

The necessity of using high order sliding mode differentiators is a limitation when

the measurement noise is present. Therefore, designing new input/output relation

based fault diagnosis schemes, which do not depend on high order derivatives of the

output, is a topic of future research.
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Chapter 5

Fault Diagnosis Using Second

Order Sliding Mode and Wavelet

Networks

In this chapter, a robust fault diagnosis scheme which synthesizes the techniques of

second order sliding mode and wavelet networks is proposed for a class of nonlinear

systems.

5.1 Introduction

In Chapter 3, a framework for designing robust fault diagnosis schemes using sliding

mode and learning approaches was proposed, where the sliding mode eliminates the

effect of uncertainties and approximation errors on state estimation and additional

online estimators are used to characterize various faults. Although online fault es­

timators based on neural networks and an iterative learning algorithm were studied

in previous chapters, for a specific problem, an ad hoc fault estimator is preferred in

order to simplify the algorithm and satisfy the real-time computation requirements.

Due to its inherent robustness to system uncertainties, generic sliding mode has

been used in the design of fault diagnostic observers, where the sliding mode restrains

the state estimation error within a small bound around zero prior to the occurrence

119
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of faults in the presence of system uncertainties and approximation errors.

In addition to first order sliding mode, high order sliding mode techniques have

also been studied and used for system observation by many researchers. For example,

the super-twisting algorithm provides the best possible asymptotic accuracy of the

derivative estimation at each sampling time [73], [74], [113], [114], [116], [66]. In

summary, the existing high order sliding mode observers hold the following attractive

features: 1) Robustness with respect to unknown inputs, 2) The possibility to use

the equivalent output injection to identify the unknown inputs, 3) Observation of

unmeasurable states without low-pass filtering, and 4) Finite-time convergence for

the systems with an arbitrary relative degree. Last but not least, a high order sliding

mode can reduce, or even avoid, chattering if the parameters are carefully selected.

Based on the advantages mentioned above, high order sliding mode has been used

in model-based fault diagnosis in recent years; e.g., [50], [26], [149], [87]. One fault

diagnosis scheme using high order sliding mode observers is to reconstruct faults by

appropriately manipulating the equivalent output injection signal. Through direct

reconstruction, short-term faults quickly distinguish themselves, and detection and

isolation are easily implemented. This approach is feasible for a class of nonlinear

systems with a relative degree more than one, which is not applicable for many tra­

ditionalobservers. Another possible approach is to design an observer in such a way

that the sliding motion is destroyed in the presence of faults. In this case, online

estimators are needed to characterize the faults.

Moreover, inspired by feed-forward neural networks and wavelet decomposition

theory, a new type of network, named wavelet network, was proposed a few years

ago [88]. Wavelet networks preserve the universal approximation ability and have

an explicit link between the network coefficients and some appropriate transforms.

These two distinguishing properties guarantee that wavelet networks can be treated

as an alternative to neural networks in nonlinear function approximation. Moreover,

wavelet networks have been used to identify and classify signal features to diagnose

faults [150].

This chapter establishes a nonlinear observer for the robust fault diagnosis in a

class of nonlinear systems, which was studied in Chapter 3. The diagnostic observer
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has the following characteristics: 1) The second order sliding mode algorithm is uti­

lized to observe the system state in the presence of system uncertainties. This strategy

prevents parameter drifting during the fault estimation caused by uncertainties and

approximation errors. 2) The wavelet networks can obtain the same approximation

accuracy as traditional neural networks with a simpler structure [88], [151]' which

simplifies the procedure of choosing online fault estimators. The observer is designed

such that the sliding motion is destroyed when a fault occurs. Thereafter, wavelet

networks based estimators are adopted to isolate and identify the fault. The theoret­

ical analysis is verified by applying the proposed FD scheme to a multiple satellite

formation flying system.

The remaining part of this chapter is organized as follows. Section 5.2 presents

a mathematical description of the system to be studied. In Section 5.3 and 5.4, a

nonlinear diagnostic observer is designed using second order sliding mode and wavelet

networks. After theoretically analyzing the convergence of the diagnostic second or­

der sliding mode observer, the proposed fault diagnosis scheme is applied to a mul­

tiple satellite formation flying system. Section 5.5 gives some simulation results that

demonstrate the performance of the proposed robust fault diagnosis scheme.

5.2 Problem Formulation

The class of nonlinear dynamic systems in this chapter is described in the state space

form as

X2 f(t, x, u) + ~(t, x, u) + (3(t - Tf )fa(t, x, u)

y (5.1)

where x = [Xl, X2]T is the state vector. The nominal system dynamics are represented

by the function f(t, Xl, X2, u), the internal uncertainties are denoted by the term

~(t, Xl, X2, u), and fa(t, Xl, X2, u) describes the dynamics of the process faults, which

are defined as additive actuator faults and/or component faults. The time profile
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function f3(t - Tf ) is still a step function, which is 1 when t > Tf , otherwise, it is zero.

Tf is the beginning time of the faults.

The solutions to (5.1) are understood in Filippov's sense. We assume that the sys­

tem dynamics function f(t, x, u) and the uncertainty function ~(t, x, u) are Lebesgue­

measurable in any compact region of x. Another two assumptions are introduced for

designing and analyzing the observer.

Assumption 5.1 Two positive constants k l and k2 exist such that

If(t, Xl, X2, u) - f(t, Xl, X2, u)1

df(t, Xl, X2, u) - df(t, Xl, X2, u)
dt

(5.2)

(5.3)

Assumption 5.2 The uncertainty function ~(t, X, u) satisfies

I~(t, X, u)1 < ~+

Id~(t~:, u) I< 6~+

(5.4)

(5.5)

where ~+ and 6~+ are two positive numbers.

The task of this work is to develop a finite-time convergent observer for fault

detection, isolation, and estimation of the system (5.1) where only output y(t) is

measurable. The relative degree from u to y is two. For the sake of simplicity,

only the scalar case Xl, X2 E ~ is considered. The vector case can be analyzed by

constructing a bank of observers in parallel for each component of X in the same way.
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5.3 Diagnostic Observer Design Using Second Or­

der Sliding Mode

5.3.1 Second Order Sliding Mode Observer

Based on the system dynamics (5.1), a nonlinear observer is proposed as follows:

Xl X2 + Zl, Xl(O) = Xl

X2 f(t, Xl, X2, U) + Z2 + (3(t - Tm )M2 (t), X2(0) = 0

(5.6)

where Xl and X2 are the estimated states, Zl and Z2 are the correction variables, and

M2(t) is a vector of online estimators used to characterize the process faults. Wavelet

networks based fault estimators are discussed in detail in Section 5.4. The term Tm

is the beginning time that enables the wavelet networks. In order to investigate the

properties of the sliding mode and the online estimators more clearly, we assume that

Tx < Tm < Tf , where Tx is the time when state X2 is observed by the second order

sliding mode. Hence, the online fault estimation does not intervene with the state

observation using the second order sliding mode.

The correction variables Zl and Z2 are expressed as

and

Allxl!1/2sign(Xl) + VI

CYlsign(Xl)
(5.7)

(5.8)I
Z2 = 0 iLi: l # 0, Xl # 0

= A2Izlll/2sign(zd +V2 ifil = O,and Xl = 0

V2 CY2sign(Zl)

where Xl = Xl - Xl and X2 = X2 - X2 are denoted as the state estimation errors, and

"sign" is the signum function.

Remark 5.1 In the above second-order sliding mode observer, we use an anti-peaking

structure (115), (66), where Xl and X2 reach the sliding manifold one by one in a

recursive way; that is, Xl reaches the manifold before X2.
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Considering the system dynamics before Xl reaches the sliding manifold, we have

Xl X2 - ).'1I XII
I
/

2sign(xd - VI

VI CYlsign(xd

(5.9)

where F(·) = f(t, Xl, X2, u) - f(t, Xl, X2, u) + ~(t, Xl, X2, u). Based on Assumption 5.1

and 5.2, we have

(5.10)

(5.11)

5.3.2 Convergence Analysis

The convergence property of a super-twisting second order sliding mode observer has

been provided by Davila et al. [74]' where the function F(t, Xl, Xl, X2, X2, u) is bounded

by a constant f+. Here, we are ready to use a similar approach to investigate the

convergence of the proposed second-order sliding mode observer (5.6)-(5.8), where

function F(.) only satisfies conditions (5.10) and (5.11).

Theorem 5.1 The first variable pairs (Xl, 5:1 ) converge to (Xl, Xl) in finite time, if

condition (5.1 0) holds for system (5.1) and the parameters of the observer (5.7) are

selected according to the following criteria:

(5.12)

(5.13)

where XIM and Xlo are defined later.
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Figure 5.1: The boundedness curve for the finite time convergence of Xl
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Proof: From (5.9) and (5.10), the state estimation errors, Xl and X2, satisfy the

following differential inclusion:

Xl X2 - Allxll l/2sign(Xl) - VI

VI O::lsign(xd

X2 E [-kllxll- E+, klixil + E+] (5.14)

Here and in the following part of this chapter, all differential inclusions are defined

in the Filippov sense. Using the identity dixi/dt = x sign(x), we obtain the derivative

of Xl with Xl =I- °as

(5.15)

The inclusion (5.15) is a mathematical description of the boundedness curve drawn in

Figure 5.1. Since the initial observer states are set to (Xl, X2) = (Xl, 0), the trajectory

enters the half-plane Xl > °with a positive initial value £10 = X2 and the half-plane

Xl < °with a negative value of X2.

In quadrant 1 (Xl> 0, £1 > 0), the trajectory is confined between the axis Xl = 0,

£1 = 0, and the trajectory of the equation Xl = kdl - O::~, where O::~ = 0::1 - E+. We
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define i 10 as the intersection of this curve with the axis Xl = 0, and we let X1M be

the intersection of this curve with the axis i 1 = O. Solving the differential equation

h = k1X1 - o:~, we obtain a general solution as

(5.16)

where C1 and C2 are two coefficients to be determined.

Setting the time from (0, i 10 ) to (X 1M ,0) be tM, we have the following four bound­

ary conditions:

X10 C1 y!k;e..Jklto - C2y!k;e-..Jklto

y!k;(C1 - C2)

C1 y!k;e..JkltM - C2y!k;e-..JkltM = 0

0:'

C1 + C2 + k~ = 0

0:'
C 1e..JkltM+ C2e-..JkltM + _1

k1

where to = 0 is the initial time.

From (5.17) and (5.19), we obtain

and from (5.18), we have

Consequently, based on (5.20), we eliminate t M , and attain

(_ o:~ )2 ( i 10 ) 2 _ (o:~) 2Xl - - + -- - -
M k

1
y'k; k

1
'

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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Two equivalent inequalities can be obtained from above deduction:
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0:' XI O1 > ° (5.25)----
k1 Vk;
0'1 - > ° (5.26)k; - XI M

Therefore, the trajectory of the boundedness curve in quadrant 1 is described by an

elliptical equation [see Figure 5.1, line (a)].

(5.27)

with Xl > 0,571 > 0.
From the above analysis, we can easily see that X1M is the maximal Xl' Therefore,

according to (5.12) and (5.15), we obtain for Xl > 0, 57 1 > °
(5.28)

Hence, the trajectory goes down to the axis Xl °and enters into the fourth

quadrant.

Then, consider the boundedness curve in quadrant 4 (Xl> 0, 57 1 < 0), where based

on (5.28), 571 continues to decrease until Xl returns back to zero from a negative value.

Therefore, the boundedness curve consists of two parts. The first part drops down

from (X1M' 0) to (X1M' 57 1Min ), where h Min = °implies 57 1Min reaches the smallest value

of 571 [see Figure 5.1, line (b)].

Let the right-hand side of (5.15) be zero in the worst case; we have 57 1Min =

- ;1 (k1X 1M +onxi~,where o~ = 01 +~+. Since, in quadrant 4, 57 < 0, the trajectory

approaches Xl = 0. Thus, the second part of the boundedness curve in the fourth

quadrant is the horizontal trajectory from (X 1M ,571MiJ to (0, 57 1MiJ [see Figure 5.1,

line (c)].

Based on (5.12), (5.13), and (5.24), we derive

(5.29)
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If we define Xl Min = xII, X1 2 ' •.• ,Xli' ... as the intersection points of system (5.9)'s

trajectory starting from (0, Xl o) with the axis Xl = 0, inequality (5.29) ensures the

finite-time convergence of the state (0, xd to Xl = Xl = 0. •

Remark 5.2 The boundedness curve that consists of segments (a), (b), and (c) is

the "worst" case of the trajectory. Actually, (Xl, Xl) moves along the direction of (a),

(b), (c) within the boundedness curve.

Remark 5.3 The choice of (}:l and >'1 depends on the bound of uncertainty and the

initial state estimation error in the worst case. The theoretical result is consistent

with that when only the bound of F(·) is known. In applications, a sufficiently large

(}:l is preferred in order to satisfy (5.12) and (5.13).

Now, we consider the finite time convergence of X2. Obviously, when Xl reaches

the sliding manifold, i.e., Xl = 0, Zl = X2, the dynamics of X2 become

(5.30)

Similarly computing the derivative of X2 with X2 i- 0, we obtain

(5.31)

Because (5.31) has a similar form as (5.15), the finite-time convergence of X2 can

be proved in the same way as Theorem 5.1.

Remark 5.4 Note that the traditional sliding mode techniques are a special case of

the high order sliding mode, and they can be considered as first order sliding mode.

Remark 5.5 The sliding mode parameters Ai and (}:i can not be chosen too large

because, in this work, the sliding mode is deemed only to eliminate the effect of the

uncertainties.
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5.4 Fault Diagnosis Using Second Order Sliding

Mode and Wavelet Networks

5.4.1 Robust Fault Detection Scheme

In model-based fault diagnosis schemes, a residual or residuals are usually generated

for diagnosing faults. The proposed fault diagnosis scheme is required to not only

detect the occurrence of a fault, but it also should determine its location and estimate

its magnitude. Here, the measurable output estimation error can be selected as the

residual for robust fault detection; i.e.,

{
No fault occurs, and M2 ~t) is set to zero

Fault has occured, and M 2 (t) works

if IXl(t)1 < Ef

if Ix1 ( t ) I~ Ef

where Ef is a threshold for robust fault detection. With the help of the sliding mode,

Ef can be set very small to increase the sensitivity without losing the robustness.

Moreover, when additive faults occur, the online estimator M2 (t) is used to determine

the location and to estimate the magnitude of the faults.

Remark 5.6 When the nonlinear system (5.1) is without any fault, i.e., fa(t) = 0,

ideally, the states of observer (5.6) should be identical to the states of the practical

system (5.1), and M2 (t) is supposed to be zero. When a fault fa(t) occurs, the sliding

mode motion is supposed to be destroyed, and the estimator M2 (t) is triggered to

specify the fault.

5.4.2 Fault Estimator Design Using Wavelet Networks

Based on wavelet transform theory, wavelet networks were proposed to be an alter­

native to neural networks with respect to nonlinear function approximation. In this

section, we build three-layer wavelet networks as the online fault estimators.

The proposed three-layer wavelet networks are comprised of an input layer (the i

layer), a wavelet layer (the ij layer), and an output layer (the 0 layer). The schematic

diagram of this wavelet networks model is shown in Figure 5.2. The relationship
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Output
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ij

Input Layer

Figure 5.2: Structure of the three-layer wavelet networks
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between the input and output of each node i in the input layer is represented as

follows:

net; = nii, no; = fl(net;) = net;, i = 1, ... ,P (5.32)

where nii is the input of the wavelet networks in which nil = Zl, and ni2 = Zl - £12.

Moreover, in the wavelet layer, a family of wavelets is established by performing

translations and dilations on a single fixed function called the mother wavelet. In this

study, the first derivative of a Gaussian function, ¢(x) = -x exp(-x2 /2), is selected

as the mother wavelet. This mother wavelet function has a universal approximation

property, because it can be regarded as a differentiable version of the Haar mother

wavelet, just as the sigmoid is the differentiable version of a step function [151]. For

the ijth node in the wavelet layer, we have

no} - Cij

(Jij

¢ij (net;j)

-net7j exp ( - (net7j)2/2), j = 1, ... ,q

(5.33)

(5.34)
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where Cij and Uij are, respectively, the translation and dilation in the jth term of the

ith input no; to the node of the mother wavelet layer, and q is the total number of

wavelets with respect to the corresponding input node.

In the output layer, the single node 0 is labelled as 2::, which adds all input signals

together; i.e.,

L Wi~OnOrj
ij

f;(net~) = net~, 0 = 1

(5.35)

(5.36)

where no~ = M2 (t) is the output of the wavelet networks, the connection weight Wi~O

is the output action strength of the oth output associated with the ijth wavelet, and

nOTj is denoted as the ijth input to the node of the output layer.

5.4.3 Parameter Update Algorithm

After determining the structure of the wavelet networks, we need to select an adaptive

algorithm to update the parameters during the process of fault diagnosis. Firstly, a

vector that includes all the parameters of the wavelet networks is defined as

~ 3 3 Te= [WUo'··· ,WpqO'Cu,··· ,Cpq,Uu,··· ,Upq ] . (5.37)

The parameters of the wavelet networks can be updated by many optimization

algorithms, which have been widely used for neural networks. Here, the EKF-like

algorithm is adopted again as

K(t)

?(t)

O(t)

- P(t)H(t) [H(t)T P(t)H(t) + R(t)r
1

-B1K(t)H(t) T P(t)

B2 K(t)Zl (t)

(5.38)

(5.39)

(5.40)

where K(t) E R(3pq) is the gain matrix, P(t) E R(3pq)X(3pq) is the covariance matrix of

the state estimation error, and H(t) E R(3pq) is the derivative of the state estimation
~ aX2

X2 with respect to the parameter vector e; i.e., H(t) = -~. The terms B1 and B2ae
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are two positive update rates. R(t) E R is the estimated covariance of measurement

nOIse. Here, R(t) is estimated as

R(t) = e
2
(t) - R(t)

t

where e(t) = Zl(t) - M2 (t).

H(t) is derived using the chain rule and back-propagation algorithm as

(5.41)

8X2

8Wi~O

8X2
8Cij

8X2
8CYij

(5.42)

The convergence of this EKF-like algorithm was analyzed in Chapter 3.

Prior to any fault, only the second order sliding mode works to estimate the state

of the system. The convergence of the state estimation error was investigated in

Section 5.3.2. After the occurrence of any process fault, the dynamics of the state

estimation error are described as

f(x, t) - f(x, t) + ~(x, t) - Z2 + fa(t) - M2 (t)

(5.43)

(5.44)

where Zl and Z2 are defined in (5.7) and (5.8).

Based on the universal nonlinear approximation ability of wavelet networks, opti­

mal parameters WiJo , C;j' and CY;j exist such that

(5.45)

where J is a finite bound for the network approximation error. Therefore, we can

define F'(x, X, u, t) = f(x, u, t) - f(x, u, t) + ~(x, u, t) +6f(t). Based on (5.10), (5.11),

and Theorem 5.1, the convergence of Xl and X2 after the occurrence of faults can be

analyzed similarly to that in Section 5.3.2.

The proposed fault diagnosis scheme using second order sliding mode and wavelet

networks is implemented by the following algorithm:
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• Step 1: Set parameters "\1, "\2, aI, and a2 of the correction variables Zl and Z2·

• Step 2: Initialize the wavelet networks M2 (t).

• Step 3: Build a nonlinear diagnostic observer based on (5.6).

• Step 4: Activate M2 (t) at t = Tm , and update the parameters of the wavelet

networks M2 (t) using an EKF-like algorithm.

• Step 5: Derive output estimation error Xl based on system dynamics (5.1) and

the observer (5.6).

• Step 6: Compare Ix(t)1 with a predetermined diagnostic threshold Ef.

• Step 7: If Ix(t)1 < Ef, no fault occurs, the fault estimator M2 (t) is set to zero,

and goes to Step 4. Otherwise, fault has occurred.

• Step 8: Use M2 (t) to isolate and estimate fault.

5.5 Application to a Multiple Satellite Formation

Flying System

In this section, we apply the proposed fault diagnosis scheme to a multiple satellite

formation flying system.

5.5.1 Dynamics of a Multiple Satellite Formation Flying Sys­

tem

An MSFF system is composed of a cluster of interdependent micro-satellites that com­

municate with each other and share payload, data, and missions. Relative distances

and orientations between the participating micro-satellites are controlled. In this sec­

tion, the MSFF fleet is only composed of a leader satellite and a follower satellite.

The leader satellite provides a reference motion trajectory and the follower satellite
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navigates in the neighborhood of the leader satellite based on the desired relative

trajectory.

The nonlinear position dynamics of the follower satellite relative to the coordinate

frame of the leader satellite is described in [152]

(5.46)

where C (w) denotes the Coriolis-like matrix

C = 2mfw [ ~
-1

o
o ~] (5.47)

N=

N(q, w, p, ut} denotes the following nonlinear vector

MG
qx 2 mf

mf II 11 3 - mfw qx + -Ulx
p+qx ml

(
qy + Ilpll 1) 2 mf

mfMG lip + ql13 - IIpll2 - mfw qy + ml Uly

qz mf
mfMG

11

11 3 + -Ulz
p+q ml

and Fa E R3 is the total constant disturbance force vector. The parameters of the sys­

tem (5.46) are listed in Table 5.1. If we choose state vector as x = [qx, qy, qz, qx, qy, qzF,

(5.46) can be described by (5.1). Therefore, the proposed fault diagnosis schemes in

this chapter can be applied to a multiple satellite formation flying system represented

by (5.46).

The designed relative trajectory is given as

[

100 sin(4wt) (1 - exp( -0.05t3
)) ]

qa(t) = 100cos(4wt)(1 ~ exp(-0.05t3
)) (m). (5.48)

The controller is designed using the method in [152], and the parameters of the

controller are selected as

K

r

diag(0.2, 0.2, 0.475)

diag(500, 300, 1500)

diag(500, 50, 300, 600, 850, 480).

(5.49)

(5.50)

(5.51)
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Table 5.1: Parameters of the MSFF system
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Parameter
Earth's mass M

Leader's mass ml

Follower's mass m f

Universal gravity constant G
Leader's position p
Angular velocity w

Disturbance force Td

Leader's control force Ul

Value (unit)
5.974 x 1024 (kg)

1550 (kg)
410 (kg)

6.673 x 10-11 (kg . m3 . S2)

[0,4.224 X 107, O]T (m)
7.272 x 10-5 (rad . S-I)

[-1.025,6.248, -2.415] x 1O-5 (N)
[0,0, of (N)

5.5.2 Simulation and Analysis

The simulation is implemented at a frequency of 2kHz since the high order sliding

mode algorithm is implemented. The gains of the second order sliding mode terms are

set to D:i = 0.5 and Ai = 1 via a trial-and-error method. In the EKF-like parameter

update algorithm, P(O) = 100142 , and R(O) = 2 X 10-4 . We use the method in [88]

to initialize the wavelet networks, and the domains are set to VI = [-1000, 1000],

and V 2 = [-2000,2000]. Since p = 2 and q = 7, there are totally 14 wavelet

functions in the wavelet layer of each wavelet network. In the simulation, we set

1:(0) = [0.45; -6.2; -201; 0.5; 0.75; -0.65]T. The wavelet network is assumed to be

activated at the 10th sec; i.e. Tm = 10. One incipient fault and one abrupt fault are

assumed to occur in the dynamics of qy and qz, respectively, and their dynamics are

f2)(t)

f2)(t) -

150 x (3(t - 18) sin(2nt/4)

200 x (3(t - 22)

(5.52)

(5.53)

Moreover, it is assumed that uf is subject to disturbances, which are set to 2 *
rand, where rand is a Gaussian white noise signal. The system output is subject to

measurement noise with c; = 0.5% * rand, i.e., Ymeasure = y(l + c;).

The simulation results are shown from Figure 5.3 to Figure 5.5. Figure 5.3 il­

lustrates the reference trajectory and the actual outputs of the faulty system. The
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actual system output deviates from their nominal values after the occurrence of any

process fault.

Figure 5.4 demonstrates the dynamics of the system states and observer states

(The states X4-X6 are shown for the sake of illustration and discussion only) in the

initial regulation phase by using the second order sliding mode. The results show that

with the help of the proposed second order sliding mode, the system states can be

estimated within a finite of time. Moreover, the observer state X2 begins to approach

the actual state X2 after the system output Xl reaches the sliding manifold. This

phenomenon is consistent with the theoretical analysis in the observer design.

Figure 5.5 characterizes the fault dynamics and the outputs of the wavelet networks

based fault estimators. The activation of wavelet networks generates a large amount

of chattering in all the output variables of wavelet networks at the 10th sec because

the wavelet networks need time to update the parameters to track a trajectory. When

the incipient fault occurs, due to the compensation of wavelet networks, there is no

large chattering. However, chattering still exist in the fault estimation, which is due

to random system uncertainties and measurement noises. Moreover, when multiple

faults occur, only the wavelet networks that correspond to the faulty states specify

the dynamics of the faults, and the wavelet networks associated with other healthy

states return zero or close to zero. Therefore, this robust fault diagnosis scheme is

effective for fault isolation and estimation of single fault as well as multiple faults.

5.6 Conclusions

In this chapter, a robust fault diagnosis scheme using second order sliding mode and

wavelet networks was proposed for the class of nonlinear systems that can be formu­

lated into a triangular input form. The second order sliding mode was used to achieve

finite-time robust state estimation in the presence of uncertainties. The wavelet net­

works, as an alternative to feed-forward neural networks, was used to estimate the

off-nominal behavior of the system caused by faults. The convergence of the second

order sliding mode observer was proved theoretically, and the performance of the
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proposed fault diagnosis scheme was tested by applying it to a multiple satellite for­

mation flying system, where the dynamics between the leader satellite and the follower

satellite were considered. The simulation results illustrate that wavelet networks can

achieve a similar approximation performance to neural networks.

Although the basic idea of this fault diagnosis scheme is the same as that in Chap­

ter 3, the use of second order sliding mode and wavelet networks provides versatility

for the design of fault diagnosis schemes. For example, second order sliding mode

avoids the use of filtering, which may cause time delay and bias in the computation of

equivalent output injection signal. Wavelet networks have some valuable properties

such as signal features identification and classification. Further investigation as well

as applications of these properties to the design of fault diagnosis approaches should

be the topics of future work. Moreover, in-depth comparison between wavelet net­

works and neural networks in terms of their computational complexity and real-time

implementation issues need to be investigated in the future.
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Figure 5.3: System outputs under multiple process faults
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Chapter 6

Fault Diagnosis in Nonlinear

Systems Using Fuzzy-Neural and

Sliding Mode Approaches

In this chapter, the fault diagnosis schemes using sliding mode and learning approaches

will be extended to a class of nonlinear systems which can be represented by Takagi­

Sugeno (TS) fuzzy models.

6.1 Introduction

In previous chapters, we investigated the fault diagnosis problems for two classes of

nonlinear systems: one class of systems is of triangular input form, and the other class

of systems with a special structure where the unmeasurable states can be represented

by nonlinear functions of the system outputs and their derivatives. The satisfactory

performance of the proposed fault diagnosis schemes using sliding mode and learning

approaches naturally inspires us to extend this class of methods to more general

nonlinear systems.

Since the first theoretical results presented by Zadeh [153] and the first application

in the area of the process control by Mamdani and Assilian [154]' fuzzy logic/models

have been widely applied to the modeling and control of nonlinear systems. In the

139



Chapter 6. Fault Diagnosis Using Fuzzy-Neural and Sliding Mode Approaches 140

existing fuzzy methods, the Takagi-Sugeno (TS) fuzzy approach has been extensively

studied and used in nonlinear system modeling and control. The basic idea of this

approach is to decompose the model of a nonlinear system into a set of linear subsys­

tems which are associated using nonlinear weighting functions. Then, the control task

is carried out by using the well-formulated linear control theory. The TS fuzzy models

of a nonlinear system can be obtained in two principal ways: 1) black box identifi­

cation via fuzzy clustering techniques, and 2) linearization of an existing nonlinear

plant model around the centers of the fuzzy regions partitioning the state space. The

TS fuzzy approaches play an important role in the modeling and control of nonlinear

systems due to the wide availability of TS fuzzy models for nonlinear systems.

In real applications, the state of a system is often not directly available. Under

such circumstances, one key step in the controller design is to determine the state

from the system response to some input over a certain period of time. For linear sys­

tems, a Luenberger observer can solve this problem if the system is observable. For

nonlinear systems, the systematic design methods of fuzzy observers have attracted

a great deal of attention from many researchers, since, by using fuzzy models, some

linear observer design methods can be extended to nonlinear systems. In the fuzzy

controller/ observer design, linear matrix inequality (LMI) is a main tool used to guar­

antee certain performance criteria. A thorough analysis of stability and simultaneous

design of fuzzy controllers and observers can be found in [95]. Further study on fuzzy

observer design are provided in the literatures, such as [91], [92], [93], [94], [96], [97],

[98], [155].

Moreover, fuzzy logic/model-based fault diagnosis has also been significantly in­

vestigated in recent years; e.g., [96], [101], [103], [104]. One class of methods is to

build a group of local linear models using TS fuzzy models to describe the original

nonlinear systems. As a result, the fault diagnosis schemes for linear systems can

be extended to nonlinear systems [101]. The second class of methods is to treat the

fuzzy models in the same way as neural networks, since both of them possess the

same approximation ability of nonlinear functions in a compact set. The third class

of approaches is to make full use of the powerful reasoning capabilities of fuzzy logic,

and in this case, fuzzy models are usually used to evaluate the residual signals and
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classify the faults [99].

This research is motivated by extending the previous work on TS fuzzy observers,

neural networks, and sliding mode observers to the fault diagnosis of a class of non­

linear systems which are not confined to triangular input forms [156]. In this work,

a fuzzy-neural observer (FNO) and a fuzzy-neural sliding mode observer (FNSMO)

are proposed for the purpose of fault detection, isolation, and estimation in a class

of nonlinear systems that can be represented by TS fuzzy models. When no fault

has occurred yet, a fuzzy controller and a fuzzy observer are used to stabilize the

system and to estimate its state, respectively. Then, a three-layer neural network is

established to isolate and estimate the fault after it occurs. In order to achieve robust

fault diagnosis, a sliding mode term is utilized to deal with the effect of system un­

certainties and approximation errors. A modified back-propagation (BP) algorithm

is used to update the parameters of the observer so that the stability of the proposed

observer-based system can be analyzed by Lyapunov's direct method. In the simula­

tion, the proposed FD scheme is applied to a reduced-order satellite orbital control

system to demonstrate its performance.

The remainder of this chapter is structured as follows. In Section 6.2, the class

of dynamic systems under study is formulated and some preliminaries are given. In

Section 6.3 and 6.4, two diagnostic observers using TS fuzzy-neural models and TS

fuzzy-neural models with sliding mode are designed for fault diagnosis. The stabilities

of these two observer-based fault diagnosis schemes are also rigorously proved in these

two sections. Then, the proposed fault diagnosis scheme is offered in Section 6.5. After

that, a simulation example is given in Section 6.6, and conclusions are presented in

Section 6.7.

6.2 Problem Formulation

Consider the nominal dynamics of a class of nonlinear systems:

x

y

f(x, u, t)

g(x, t) (6.1 )
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where x E Rn is the state vector, y E RP is the output vector, and U E Rm is the

control input vector of the system. The state function f : Rn x Rm x R+ -+ Rn and

the measurement function 9 : Rn x R+ -+ RP are both smooth vector fields.

As proved in [95], (6.1) can be represented or approximated by a TS fuzzy model

with linear rule consequence. The TS fuzzy model consists of a set of fuzzy rules,

where the ith rule is

(6.2)

where the vector of premise variables z E Rr is a subset of y and f-L) : R -+ [0, 1]. The

function f-Lj (Zj) is the jth membership function in the ith rule which is applied to the

jth premise variable.

The global TS fuzzy system is then written as

I

X = L hi(z)(Aix + Biu)
i=l

I

Y = L hi(z)CiX
i=l

where l is the number of fuzzy rules, and

(6.3)

r

Wi(Z) = rrf-L~(Zj).
j=l

(6.4)

Thus, the nonlinear system (6.1) with modeling uncertainties and process faults can

be described using a TS model as

I

X = L hi (z)(Aix + Biu) + TJ(t) + B(t - Tf )fa(t)
i=l

I

Y = L hi(z)CiX
i=l

(6.5)

where TJ(t) E Rn represents the system uncertainties, which is assumed to be bounded

by a constant, i.e., IITJ(t)11 < fl. The function vector fa(t) E Rn denotes the process
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faults in the system, which is composed of actuator faults and/or component faults.

The time profile function B(t - T j ) is 1 when t ~ T j ; otherwise it is zero. Time T f

represents the beginning time of the faults.

Remark 6.1 Usually, the fuzzy models of a nonlinear system can be constructed by

identifying fuzzy models using input-output data or directly by derivation from given

nonlinear system equations. Therefore, establishing fuzzy models is an effective way

to study nonlinear systems using linear system methods.

Remark 6.2 The purpose of this study is to timely detect, correctly isolate, and ac­

curately estimate the process faults in the presence of uncertainties for the class of

nonlinear systems that can be described by TS fuzzy models.

6.3 Diagnostic Fuzzy-Neural Observer

In this section, a nonlinear diagnostic observer is proposed for the purpose of robust

fault diagnosis. Firstly, a TS fuzzy Luenberger observer is constructed to estimate the

states in the fault-free case. Then, after a fault occurs, a recurrent dynamic neural

network is established to characterize the location and magnitude of the fault.

6.3.1 Observer Design Using Fuzzy-Neural Models

For the faulty system (6.5), a fuzzy-neural Luenberger observer is designed as

I

i:(t) = L hi(z){ Aix + Biu + Li(y(t) - y(t))}
i=l

+B(t - Tm)M(t)
I

y(t) = L hi (z)C/i;(t)
i=l

(6.6)

where x E Rn and y E RP are the state vector and output vector of the observer,

respectively. The term L i E ~nxp is the gain for the local linear observer in the center

of the ith fuzzy region. The observer input M(t) E ~n is designed to estimate the



Chapter 6. Fault Diagnosis Using Fuzzy-Neural and Sliding Mode Approaches 144

faults, and Tm is the time to start M(t). In order to separately demonstrate the

properties of the fuzzy models and the neural networks based fault estimators, we

assume that M(t) is not activated until all the states are estimated by the TS fuzzy

Luenberger observer, and no fault occurs prior to the activation of the fault estimator;

i.e., Tm < Tf .

The classic LMI-based fuzzy controller and observer design method are used to

construct the gain L i in the fuzzy observer [95]. Consequently, the system states are

able to be observed by the TS fuzzy observer within a finite time before the occurrence

of a fault. The matrices Ai, Bi, and Ci can be obtained through identification using

input-output data or directly derived from given nonlinear system dynamics. In this

work, we use the second method to attain these matrices.

The dynamic neural network-based fault estimator is of the following structure:

M(t) = Wcr(Vx(t)) (6.7)

where x(t) = W(t - T)T M(t - T)T]T is the input of the neural network, f) = y - fj is
A A

the output estimation error, Wand V are two parameters of the estimator, and T is

the time delay. The activation function is selected to be a sigmoidal function:

A 1 - e-2V;x
cr(Vix) = -

1 + e-2v;x

where Vi is the ith row of V, and cri(Vix) is the ith element of cr(Vx).

After the occurrence of a fault, the estimation error dynamics become

I I

i(t) = L L hi(z)hj(z)(Ai - LiCj)x
i=l j=l

+1](t) + fa(t) - Wcr(Vx(t))
I

f)(t) = L hi(z)CiX(t)
i=l

(6.8)

Since Li is designed to guarantee the stability of the estimation error dynamics without

any fault, the input of the neural networks is zero at Tm . Thus, M(t) still keeps zero

during the time interval t E [Tm , Tf ). When t 2:: Tf , the fault fa(t) breaks the stability

of the estimation error dynamics and the neural networks are triggered to approximate

the fault.
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6.3.2 Parameter Update Algorithm

For a neural network based observer, usually, a learning strategy should be estab­

lished to update its parameters after the structure of the observer is determined.

For example, back-propagation algorithm is a popular way to train neural networks.

The parameter update law should be defined in such a way that the stability of the

observer can be guaranteed.

Defining a cost function J = ~:i;Z, we design a similar parameter update law as

that in [157],

w· .t,]

v:.
t,]

(6.9)

(6.10)

where Wi,j and 1%,j are the (i,j)th element of Wand V, PI, P3 > 0 are the learning

rates, and P2 and P4 are small positive numbers. The second terms on the right hand

side of above equations are the e-modification terms which are used to guarantee

robustness.

Based on the chain rule of derivative, we have

aJ
aw·t,]

8J
a\% .t,]

aJ ay ax aM
ay . ax . aM' aWi,j
aJ ay ax anetv
ay . ax . anetv- a\%·

t,]

(6.11)

(6.12)

where netv = Vx.
Based on the cost function and (6.8), we obtain

aJ
aw··t,]

aJ
a\% .t,]

ax
dxM =-A

8M

-T -(y CdxM hXi . (Jj

d
_ ax

xV - ~unetv

(6.13)

(6.14)

(6.15)
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Using (6.11)-(6.15), we can formulate the update laws into a matrix form as

W

V

-Pl(:i?OdxM f (a(Vx)) T - P211yllW
-P3(YTOdxv )T XT - P41IYIIV.

(6.16)

(6.17)

Instead of using the static approximation of the gradients (6.15) in [157], the dynamics

of dxM and dxv can be derived based on (6.8) as

AdxM - I

Adxv - W(I - A(Vx))

(6.18)

(6.19)

- I I A_ • 2 A_

where A = 2::i=12::j=1 hi(z)hj(z)(Ai - Liej ), and A(Vx) = dlag{ai (\fix)}.

During the updating process of the neural networks parameters, we first initialize

dxM and dxv to be zero matrices, and then we dynamically update dxM and dxv

using equations (6.18) and (6.19). Correspondingly, the updated dxM and dxv are

substituted into (6.16) and (6.17) to compute the parameters Wand V.

6.3.3 Stability Analysis

Based on the universal approximation ability of neural networks model, on the com­

pact set, we have

(6.20)

where El(t) is the bounded neural network approximation error, and Wand V are

fixed optimal parameters which are selected such that the L 2-norm distance between

fa(t) and M(W, V, x, t) is minimized.

We assume that the upper bounds on the fixed ideal parameters Wand V satisfy

IIWIIF < WM

IIVIIF < VM

where II . IIF is the Frobenius norm of a matrix.

(6.21)

(6.22)
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Substituting (6.20) into (6.8), we obtain

i(t)

y(t)

Ax + Wa(Vi:) + E2(t) + 7](t)

CX(t)

(6.23)

(6.24)

where W = W - W, and E2(t) = W[a(Vi:) - a(Vi)] + El (t) is a bounded disturbance

term, i.e., IIE2(t)11 ~ E2, due to the boundedness of W, the boundedness of sigmoidal

function, and the boundedness of the uncertainty and approximation error.

The stability of the fuzzy-neural observer is guaranteed in the following theorem,

where we use the proposed modified back-propagation algorithm to update its param­

eters.

Theorem 6.1 Consider the TS fuzzy system (6.3) and its fuzzy-neural observer (6.6).

If the parameters of the neural networks are updated according to (6.16)-(6.19), then

the state estimation error i, the parameter estimation errors, W, V, and the output

estimation error yare all bounded.

Proof: We first prove the boundedness of x and W. Consider a positive definite

Lyapunov function candidate:

IT 1 -T-
~ = 2"X PIX + 2"tr(W W) (6.25)

where PI is a symmetric positive definite matrix satisfying

in which Q is a positive definite matrix, and W can be further written as

(6.26)

Since A is designed to be Hurwitz using the LMI method, according to (6.18), dxM is

stable and converges to A-I.
Based on (6.23) and (6.26), the time derivative of ~ is

. 1 ·T 1 T· - T :.
~ 2"x PIX + 2"x PIX + tr(W W)

1 T T - A

--i Qi+i P1(Wa(Vi)+E2+1])
2

+tr[WTl1ia(Vi)T + W TP21ICill(W - W)] (6.27)



Chapter 6. Fault Diagnosis Using Fuzzy-Neural and Sliding Mode Approaches 148

where h = Pll;MCT CJ.
Using the properties of the matrix trace and sigmoidal function in [157], we have

tr[WThiO"T] < IIWllll l lllllillO"m (6.28)

tr[WTP21ICiIlW] < (WM IIWII-IIWI12)p21ICllllill (6.29)

where O"m is defined such that 110"Til::; O"m·
Therefore, (6.27) can be further written as

1 -
Vs ::; -"2Amin(Q)lliI12 + lIillllPl ll(IIWIIO"m + E2 + fj)

+O"mllWllllhllllill + (WM IIWII-IIWI12)p21ICllllill
- -~Amin(Q)lliI12 - fhllilillWII2+ /3211i1111WII + /3311ill

< -~Amin(Q)lIiI12 - /3lllill(IIWII- ~l? + (:Jl + (33)lli!!

< -~Amin(Q)lIiI12 + (:;1 + (33)llill (6.30)

where

/31 P211CII
/32 - O"m(IIPlll + IlhlD + P2WMIICII
/33 IIHII(E2 + r;).

Thus, from (6.30), when

(6.31)

(6.32)

(6.33)

(6.34)

Vs < 0, which means Vs is negative definite outside the ball with radius bl described

as Xl = {i Illill ::; bl }. When i is increased outside of the ball Xl, the negative of Vs
results in reducing Vs and i. This analysis shows the ultimate boundedness of i.

Now, consider the boundedness of the parameter error W. Based on (6.16), the

dynamics of W can be written as

W Pl(yTCdxM )T (O"(V£)) T + P21!y11W - P211yllW

- -P21Iy!IW + P211yllW + /'i;l(i l,V) (6.35)
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where

(6.36)

We can see that Kl(-) is bounded since X, 0-(-), and 0 are all bounded, dxM is

bounded because .Ii is a stable matrix. Given the ideal weight W is fixed, (6.35) can

be treated as a linear system with bounded input P211y II W + Kl (Xl, V). Obviously,

system (6.35) is stable since P2 is positive and the input is bounded. Therefore, the

boundedness of W is guaranteed.

The boundedness of W implies the boundedness of W. From (6.19), dxv is also

bounded since 0-; (.) is a bounded function, and .Ii is a stable matrix.

The dynamic equation of V is

V P3(yTOdxv f xT + P411y!IV

- -P411y11V + P3(yTOdxv)TxT + P411YIIV (6.37)

The second and third terms on the right hand side of (6.37) are both finite because

X, W, 0-(')' 0, dxv are all bounded, and P3 and P4 are both positive finite values.

Consequently, we can conclude that the boundedness of V is also ensured. •

6.4 Fuzzy-Neural Sliding Mode Observer

From the above stability analysis of the fuzzy-neural observer, the fault estimation

accuracy might be affected by the system uncertainties and neural networks approx­

imation errors. Therefore, we modify the fuzzy-neural observer (6.6) by adding a

signum function

l

i(t) L hi(z){ Aix + Biu + Li(y(t) - y(t))}
i=l

y(t)

+B(t - Tm)M(t) + ,Pi-lOTsign(Y)
l

L hi(z)Cd;(t)
i=l

(6.38)
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where 1 > 0, and g is defined in Theorem 6.1.

Then, the estimation error dynamics become

x(t)

fJ(t)

Ax + Wa(Vx) + f2(t) + T](t) - 1Pl-ICTsign(fJ)

Cx(t) (6.39)

Regarding the stability of above dynamics, we have the following theorem.

Theorem 6.2 Consider the TS fuzzy system (6.3) and the fuzzy-neural sliding mode

observer (6.38). If the parameters of the neural networks model are updated according

to (6.16)-(6.19), then x, W, V, and fJ are all bounded, and x can converge to a small

bound.

Proof: The proof procedure is similar to that in theorem 6.1. We still use the

Lyapunov function (6.25), and its time derivative is rewritten as

l· T 1 T· -T-:'
-x PIX + -x gx + tr(W W)
2 2

_~xTQx + xTPl(Wa(Vx) + f2) + xTPIT] - fJT1sign(Y)

+tr[WThxa(Vx)T + WT P21ICxll(W - W)] (6.40)

Still using inequalities (6.28) and (6.29), we have

1 - T
~ ::; -2Amin(Q)llxIl2 + IlxllllPlll(IIWllam + E2) + 17llx HII-111Y11

+amllllllllWllllxll + (WM IIWII-IIWII
2
)p21ICllllxll

< -~Amin(Q)llxI12 - ,6lllxllllWl1
2

+ ,6211x111lWII + ,631Ixll-11IfJll

< -~Amin(Q)llxI12 - ,6lllxll(IIWII- ~1)2 + (:;1 + ,(3)llxll-1I1fJll

< -~Amin(Q)lIxIl2 + (:;1 + ,(3)llxll-1I1yll (6.41)

where ,61, ,62 and ,63 are defined in (6.31), (6.32) and (6.33).

Based on (6.41), we have, when
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V8 < 0, x is ultimately bounded by a ball with a radius b2 ; i.e., X2 = {x I Ilxll ::; b2 }.

Comparing b1 and b2 , based on the properties of quadratic functions, we obtain b2 ::; b1.

•
Remark 6.3 When the sliding mode term exactly counteracts the effect of modeling

uncertainty, the convergence of Ilxll to a smaller bound implies a more accurate fault

estimation. If the sliding mode gain, 'Y, is too large, the sliding mode may eliminate the

effect of fault and uncertainties, which are both treated as unknown inputs. Therefore,

the sliding mode gain 'Y should be carefully selected, in order to distinguish the effect

of fault and uncertainties. The methods for updating the sliding mode gain can be

found in {iS8].

6.5 Robust Fault Diagnosis Schemes

In model-based fault diagnosis strategies, a diagnostic residual is usually generated.

Due to the universal existence of system uncertainties and noises, robust fault di­

agnostic strategies are necessary to avoid false alarms. One robust FD approach

uses a dead-zone operator in the parameter update algorithm which makes the online

fault estimators only approximate the signal with a magnitude above a predefined

threshold [31]. However, this method reduces the accuracy of fault estimation. An­

other approach to realize robust fault diagnosis is to set a nonzero threshold for the

generated residual when making a diagnostic decision.

In this work, after all the states are estimated by using the TS fuzzy models, we

use the output error or the output estimation error to detect the fault; i.e.

or

{
No fault occurs

Fault occurs, and M(t) works

{
No fault occurs

Fault occurs, and M(t) works

if Iley(t)11 < cf

if II ey (t) II 2: Cf

if II y(t ) II < cf
if Ily(t) II 2: cf

(6.43)

(6.44)
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where ey(t) = Yd - Y is the system output error, Yd is the reference trajectory, and Ef

and Ef are two thresholds for robust fault detection. The choice of Ej and Ef relies on

the system characteristics and the diagnosis scheme in use.

In addition, a single residual is usually not sufficient for all the tasks of fault

diagnosis. Therefore, the neural networks based estimator M(t) is used to achieve

fault isolation and estimation.

The proposed fault diagnosis scheme using fuzzy-neural and sliding mode ap­

proaches is implemented in the following steps.

• Step 1: Construct TS fuzzy model for nominal nonlinear system (6.1) using

(6.3).

• Step 2: Determine gain L i for local linear observer using the LMI method.

• Step 3: Design a neural network based fault estimator M(t) based on (6.7), and

activate M(t) at t = Tm .

• Step 4: Construct a fuzzy-neural Luenberger observer (6.6) or a fuzzy-neural

sliding mode observer (6.38), and obtain ey(t) and y(t).

• Step 5: Compare Iley(t)11 with Ej, or compare lIy(t)1I with Ef to detect fault

based on (6.43) and (6.44).

• Step 6: Update the parameters, Wand \1, of the neural network based fault

estimator M(t ).

• Step 7: Use M(t) to isolate and estimate faults.

6.6 Application to a Satellite Orbital Control Sys­

tem

In this section, we apply the proposed fuzzy-neural observer and fuzzy-neural sliding

mode observer to the fault diagnosis for a point mass satellite dynamic system [135].

Firstly, we design a TS fuzzy controller for the nominal control system. Then, the
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fuzzy-neural observer and fuzzy-neural sliding mode observer are established, respec­

tively. The fault diagnosis performance using these two observers are demonstrated

and analyzed.

A fourth-order satellite model is considered in [135] as

r=v
. 2 k Ul
v=rw ---+-

mr2 m
¢=w
. 2vw U2

W= ---+­
r mr

r(O) = rO

V(O) = 0

¢(O) = 0

W(O) = Wo

(6.45)

where m = 200kg is the mass of the satellite, (r, ¢) are the polar coordinates of the

satellite, v is the radial speed, and w is the angular speed. Control inputs Ul and U2

are the radial and tangential thrust forces, respectively. When the control purpose

is to track the output rand w to their constant reference trajectory rr and W r , the

equation ¢ = w can be omitted.

By choosing x = [Xl X2 X3]T = [r v w]T, and y = [r w]T, the reduced-order system

is formulated as
Xl(O) = rO

(6.46)X2(0) = 0
. 2 k Ul

X2 = XIX - -- + -
3 mx2 m1

. 2X2X3 U2
X3= ---+--

Xl mXl

The parameter k = KEm, where K E = 3.986 x 1Q5km3/s2
, is derived from the

parameters of the Earth (ME = 5.974 x 1024kg). The satellite is first observed in

perigee 375 km above the surface of the Earth, ro = RE + 375km (RE = 6.378 x

103km). The initial angular speed, Wo, is computed using the orbital mechanics Wo =

J(eorbit + 1)KE /r6, where earbit = 0.162 is the eccentricity.

In the design of the fuzzy controller and observer, we define the nonlinear terms

as Zl (Xl, X3) = x~ - ~, X2(Xl, X3) = &, and Z3(Xl, X3) = ...l.. As a result, the state
mX I Xl Xl

matrix and control matrix become

A=[~l ~ ~] B=[;,~]
o -2z2 0 0 ~

m
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We assume that the output variables satisfy Xl E [rmin, r max ] and X3 E [Wmin, wmax],

where, in the simulation, rmin = 0.9ro, rmax = l.Iro, Wmin = -4 rad/hr, and Wmax = 4

rad/hI. Thus, we obtain

zmax = w 2
1 max

max Wmax
Z2 =--rrin

Zr
ax =-­

rmin

k
3mrmax

. k
Z

mln - _
I - 3

mrmin
W·min min

Z2 =--
. r 1in

Z
mln - __
3 -

r max

(6.47)

The nonlinear term Zl can be represented by

1/1 zmax + //2 zmin
1-"1 1 1-"1 1

fli + fli

So, the membership functions flt and f-li are

1 (6.48)

Zl - zrin

zmax _ Zmin
1 1

-Zl + Zr
ax

Zmax _ Zmin
1 1

(6.49)

(6.50)

and fl~, f-l~, fl~, and fl5 are similarly derived.

Since the TS model has three nonlinear terms, eight fuzzy rules are needed. The

membership functions for these eight fuzzy rules are computed using (6.4). The output

tracking controller is designed by using the approach in [98], where the feedback

gain for the controller and observer are calculated by solving a group of LMIs. The

controller output is assumed to be subject to uncertainty Ud = 2% * rand, and the

measurement noise is set with <; = 0.2% * rand, i.e., Ymeasure = y(l + <;), where rand

still represents Gaussian white noise.

In this simulation, the three-layer neural networks is of a structure 5 x 5 x 3, and

training the neural networks before using it for online fault isolation and estimation

is recommended. In the parameter update law, (6.18) and (6.19), the learning rates

are set to be PI = P3 = 20, and the damping coefficients are P2 = P4 = 0.1. The initial

values of dxM and dxv are a zero vector and zero matrix, respectively. The sliding

mode gain I is set to be 0.0025 using a trial-and-error method.
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The simulation results are shown from Figure 6.1 to Figure 6.5. Figure 6.1 il­

lustrates the performance of output tracking and state observation using TS fuzzy

models when the system is fault-free.

In the simulation, we assume that only an incipient fault occurs in the second

state at the 16th hour, and the neural networks is enabled at the 15th hour. Figure

6.2 shows the norm of the output error and the norm of the output estimation error,

respectively, when a fuzzy-neural sliding mode observer is used. Both of these two

signals can be used to detect the occurrence of faults. However, different threshold are

needed for each case. For the norm of output error, after the system output tracks the

trajectory, the threshold is chosen as Cf = 0.05. For the norm of output estimation

error, the threshold is set to cf = 0.001. After a fault occurs, ey(t) and Iliill quickly

exceed their respective threshold. However, in order to isolate and estimate the fault,

we need to use other signals.

Figure 6.3 portrays the characteristics of the fault functions and the three outputs

of the neural networks when using the diagnostic fuzzy-neural observer. When a fault

occurs, only the neural network output that corresponds to the faulty state specifies

the dynamics of the fault, and the other neural networks outputs associated with the

healthy states remain close to zero. This phenomenon illustrates the fault isolation

and estimation abilities of the proposed FNO-based fault diagnosis scheme. Due to

the approximation errors and system uncertainties, fault estimation errors exist.

Figure 6.4 demonstrates the reference states, actual states, and estimated states

when using the fuzzy-neural sliding mode observer. When a fault occurs, the actual

states and output significantly deviate from their nominal values. Additionally, the

fuzzy-neural sliding mode observer can accurately estimate the states, since the sliding

mode and neural networks compensate the effect of the fault and system uncertainties.

Figure 6.5 exhibits the same fault function and the three outputs of the neural

networks when using the fuzzy-neural sliding mode observer. Comparing the fault

diagnostic results with those using the fuzzy-neural observer in Figure 6.3, we achieve

better performance in fault estimation using FNSMO, though the chattering caused

by sliding mode might increase as well. The peaks in fault estimation is due to the

introduction of measurement noise to sliding mode, and the coupling peaks can be



Chapter 6. Fault Diagnosis Using Fuzzy-Neural and Sliding Mode Approaches 156
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Figure 6.1: System states and observer states using a TS fuzzy control and observer
in the fault-free case

reduced using a filter. Extensive work can be found in [87]. Another issue is there is

no coupling peaks in the fault estimation in Figure 6.3 because neural network itself

has redundancy and is tolerant to measurement noises.

6.7 Conclusions

In this chapter, a robust fault diagnosis scheme using TS fuzzy models, neural net­

works, and sliding mode was proposed for a class of nonlinear systems which can

be represented by the TS fuzzy models. In order to generate diagnostic residuals,

a fuzzy-neural observer and a fuzzy-neural sliding mode observer were designed, re­

spectively. In the proposed fuzzy-neural observer, the TS fuzzy model was integrated

with a neural networks based estimator which was used to characterize the possible

faults. The sliding mode in the second diagnostic observer helps to reduce the effect

of the system uncertainties and approximation errors in the fault estimation. The

parameters of these two observers were updated using a modified back-propagation
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Figure 6.2: Norm of the output error and the output estimation error using FNSMO
under an incipient fault

Fault 1 and neural network output 1

1210

:jf-:-::~'_1---:;-,.;,..,11
6 10 12 14 16 18 20 22 24

Time (hr)
Fault 2 and neural network output 2

~~l-:--------_....,_·~--·_-:~~~:'
14 16 18 20 22 24

Time (hr)
Fault 3 and neural network output 3

~r :: :
6 8 10 12 14 16 18

Time (hr)
20 22 24

Figure 6.3: Outputs of the fuzzy-neural observer under an incipient fault
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Figure 6.4: Nominal states, actual states and observed states using fuzzy-neural slid­
ing mode observer under an incipient fault
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Figure 6.5: Outputs of the fuzzy-neural sliding mode observer under an incipient fault
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algorithm, where the stability of the proposed fault diagnosis scheme can be rigorously

analyzed. After the theoretical analysis, the proposed robust fault diagnosis scheme

was applied to a reduced-order satellite orbital control system. The simulation results

demonstrate its satisfactory performance.

Although via TS fuzzy models, the fault diagnosis schemes using sliding mode

and learning approaches can be applied to a more general class of nonlinear systems,

the complexity of fuzzy models makes solving the LMIs difficult in real applications.

Therefore, building suitable fuzzy models becomes the primary task of using TS fuzzy

observers in fault diagnosis, and this area still needs in-depth research.

In addition, in this chapter, only the system modeling capability of fuzzy models

was used. Since fuzzy models have many other attractive features, further applications

of fuzzy models or integration of fuzzy models with other techniques in fault diagnosis

should be a topic of future research.



Chapter 7

Fault Diagnosis in Nonlinear

Systems Using High Order Sliding

Mode Differentiators and an

Uncertainty Observer

In this chapter, an actuator fault detection, isolation, and estimation scheme us­

ing high order sliding mode differentiators and a neural networks based uncertainty

observer is proposed for the class of nonlinear systems which have been studied in

Chapter 4.

7.1 Introduction

One of the most popular model-based fault diagnosis approaches is observer-based

techniques, which include the use of the estimation error as the diagnostic residual,

and reconstruction of the outputs of the system of interest with the aid of observers.

Although the available observer design methods provide freedom for achieving the re­

quired performance, efficient fault diagnosis relies on the robustness of the diagnostic

residual to modeling uncertainties and noises. A straightforward method to create

160
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robustness with respect to uncertainties and nOIses is to generate unknown input

decoupled residuals. There are three classes of time domain solutions: 1) unknown

input observer (VIa) based approaches, e.g., [159]; 2) eigenstructure assignment ap­

proaches, e.g., [160]; and 3) sliding mode observer based approaches, e.g., [56], [57],

[70], [66]. The advantage of the decoupling methods lies in the fact that they can

detect a small-magnitude fault, even if large modeling errors are present.

The above approaches are originally based on linear multivariable models, which

can not cover many practical systems with strong nonlinearity. The inherent nonlinear

nature of real systems makes exact or approximate decoupling difficult. Therefore,

robust fault diagnosis problems for nonlinear systems have attracted a great deal of

attentions in the past few years. One class of approaches uses learning strategies, in

which the fault is estimated using online approximators [28], [29], [31]. The robustness

is achieved through modifying the parameter update law of the approximators. Only

the bound information of the uncertainties is used to design a threshold for robust fault

detection. However, uncertainties with large magnitude probably affect the sensitivity

of the diagnosis scheme to faults. Hence, some researchers considered designing fault

diagnosis algorithms using the explicit information of the uncertainty. For example,

the information of the uncertainty is first estimated using a recursive approach or

an adaptive approach, and then it is used to generate a diagnostic residual. If an

accurate estimation of the uncertainty is achieved, the fault signature on the residual

becomes more evident [161]' [162]. This class of methods increases the sensitivity of

the diagnosis schemes to the fault. However, previous work only investigated discrete­

time systems with known nonlinearity, and all the states were available through first

order difference operators.

Moreover, fault diagnosis techniques based on sliding mode observers and/or differ­

entiators have been significantly investigated in the past few years. In some previous

works, the aim of building sliding mode observers was to reconstruct faults, which is

different from residual generation methods. By using a system transformation and

equivalent output injection, the faults can be directly reconstructed, so the detection,

isolation, and estimation of the faults become straightforward. For those systems

where the relative degree from the input to the output is more than one, high order
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sliding mode observersjdifferentiators demonstrate advantages over some traditional

observers [87], [149].

In this chapter, we take advantage of the high order sliding mode differentiators

(HOSMDs), and extend current fault diagnosis schemes using uncertainty estima­

tion approaches to a class of nonlinear systems. Correspondingly, a robust actuator

fault detection, isolation, and estimation scheme is designed. Unlike previous fault

diagnosis schemes using HOSMDs and learning approaches, the explicit information

of the uncertainty is estimated and used to achieve higher sensitivity to the faults,

while keeping robustness in the presence of uncertainties. Theoretically, the robust­

ness, sensitivity, and stability of the fault diagnosis scheme will be rigorously studied.

Practically, the proposed fault diagnosis scheme will be applied to a satellite attitude

control system, and simulation results illustrate its effectiveness.

The remaining sections of this chapter are organized as follows. In Section 7.2, the

system under study is formulated and some assumptions are given. In Section 7.3, a

new fault detection scheme using high order sliding mode differentiators and neural

networks based uncertainty observers is proposed, and some theoretical properties

of this fault diagnosis scheme are analyzed. Section 7.4 provides two approaches to

isolate and estimate faults. Thereafter, the proposed fault diagnosis scheme is applied

to a satellite attitude control system which has been studied in Section 7.5. Finally,

conclusions are presented in Section 7.6.

7.2 Problem Formulation

The class of nonlinear dynamic systems in this study is the same as that in Chapter

4, which is again presented here as

Xl h(XI' X2) (7.1)

X2 f(XI' X2) + Bu(t) + TJ(t) (7.2)

X2 ht(XI,xd (7.3)

y Xl (7.4)
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where Xl E !Rn, X = [xi, xIF is the vector of system states, and u(t) = [UI,··· ,Um]T

and y(t) are the system input and output vectors, respectively. The function vector

f(XI' X2) = [h(XI, X2),'" ,fn(XI, x2)F and h(XI' X2) = [hI (Xl, X2),'" ,hn(XI' X2)]T

describe the dynamics in system state and output, and T/(t) = [T/I(t),'" ,T/n(t)]T

represents the uncertainty vector. Moreover, B E !Rnxm is the control matrix, and

in (7.3), M is a nonlinear function, which implies the state X2 can be described as a

nonlinear function of the system output and its derivative.

For the sake of designing and analyzing the actuator fault diagnosis scheme con­

veniently, the following assumptions are introduced.

Assumption 7.1 All the functions in f(XI' X2) and h(XI' X2) are known.

Assumption 7.2 The state function f(XI' X2) is differentiable at X2, which is

A= 8flax .
X=X2

where A is an n x n matrix. So, the following equation can be derived through series

expansion of f(x) at X2'

(7.5)

where E(XI, X2) is the nonlinear part of the system dynamics.

Assumption 7.3 The nonlinear component E(XI, X2) is Lipschitz at X2 with a known

constant kE,; that is,

(7.6)

Assumption 7.4 Matrix A is stable, which implies a symmetric positive definite

matrix r I exists such that

(7.7)

where Q is also a positive definite matrix. Even the matrix A is unstable, we can

stabilize the linear part of the system by using a Luenberger gain.
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Assumption 7.5 Matrix B is of full column rank.

Assumption 7.6 The ith system uncertainty function 77i(t) is bounded by a constant

iii, i.e., l77i(t)! :::; 77i·

The purpose of this study is to design an actuator fault detection, isolation, and

estimation scheme for system (7.1)-(7.4) under Assumption 7.1-7.6.

7.3 Fault Detection Using High Order Sliding Mode

Differentiators and an Uncertainty Observer

7.3.1 State Estimation Using HOSMDs

For the dynamic systems (7.1)-(7.4), we can still use the high order sliding mode

differentiators and (7.3) to estimate the state X2. In order to obtain the first order

and second order derivatives of the system output, we use a third order sliding mode

differentiator, which is written again as:

Zo Vo

Vo -Aolzo - yI3/4 sign(zo - y) + ZI

ZI VI

VI -AIIZI - voI 2/3sign(ZI - Vo) + Z2

Z2 V2

V2 -A21Z2 - vII I /2sign(Z2 - VI) + Z3

Z3 -A3sign (Z3 - V2) (7.8)

where AO rv A3 are positive diagonal coefficient matrices.

When there is no measurement noise and all the coefficients are properly selected,

the third order sliding mode differentiator (7.8) can achieve

Zo = y; Zl = Y; Z2 = ii (7.9)
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Even though measurement noise exists, if the magnitude of the measurement noise

is known, the boundedness of the derivative estimation error can be theoretically

guaranteed [84].

Correspondingly, the system unmeasurable state X2 can be estimated using the

following function:

(7.10)

where X1D is the calculated derivative of Xl using the third order sliding mode differ­

entiator.

7.3.2 Design of Uncertainty Observer

Some researchers have used uncertainty observers to design nonlinear controllers [163],

[164], where the estimation of the uncertainty is used to assist controller design to

eliminate the effect of uncertainty on the systems.

In model-based fault detection, isolation, and estimation schemes, a diagnostic

residual is usually generated. For dynamic systems with modeling uncertainties, we

need to design robust fault detection strategies to determine whether a fault occurs

or not. One way to achieve robust fault detection is to use a nonzero threshold which

is established based on the magnitude of the uncertainty. However, this strategy pas­

sively makes use of partial information of the uncertainty. The robustness is achieved,

but the sensitivity of the fault diagnosis scheme is sacrificed.

In this study, we design an observer that is able to successfully characterize the

uncertainty. The estimated dynamics of the uncertainty is then used to generate a

residual. If the system function is known and the uncertainty dynamics is accurately

obtained, then the residual signal for fault detection could be very small before the

occurrence of any fault.

The proposed uncertainty observer is as follows,

f(y, 1:2 ) + Bu + Nh(t), 1:2 (0) = X2D(O)

ht(y,YD)

(7.11)

(7.12)
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where YD is the first-order derivative of y computed via the third order sliding mode

differentiator, and X2D is the estimated state using y and YD. If the third order sliding

mode differentiator can exactly calculate the derivative of y, then X2D is completely

equal to X2. Moreover, in (7.11), MI(t) is the observer input, which is used to estimate

the magnitude of the uncertainty. Since MI (t) is supposed to specify the uncertainty

only, it is distinguished from the fault with respect to its amplitude, i.e.,

if MI,i(t) < -fii
if IMI,i(t)!::; fli

if MI,i(t) > fJi

(7.13)

where MI,i(t) is the ith (i = 1, ... ,n) element of MI (t), which is described as

MI(t) = Wo-(Vx) (7.14)

in which x = [M;r(t - T),X~D(t - T)]T, X2D = X2D - X2, T is the time delay. The

activation function 0-(') is the tangent hyperbolic function.

In this study, we use a popular back-propagation algorithm to update Wand V.
Define a cost function J = !x~, the update law is formulated into a matrix form as

aJ A
(7.15)W -PI-A - P211x2DIIWaw

aJ A
(7.16)V -P3-A - P411 X2DIIVav

where PI, P3 > 0 are the learning rates, and P2, P4 are small positive numbers. The

second terms on the right side of above equations are e-modification terms to guarantee

robustness in estimation.

Based on the chain rule of derivative, we have

where netv = Vx.

aJ
aw
aJ
av

aJ aX2 aMI
aX2 . aMI . aw
aJ aX2 anetv
aX2 anetv aw

(7.17)

(7.18)
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When X2 = X2D is valid through using the high order sliding mode differentia­

tors, we have X2 = X2D. Subtracting (7.11) from (7.2), we get the dynamics of the

unmeasurable state estimation error, i.e.,

X2D = f(y, X2D) - f(y, 1;2) + TJ(t) - M1(t)

Ai2+ ~(y, X2D) - ~(y, 1;2) + TJ(t) - M1(t).

Based on (7.17), (7.18), and (7.19), the update law is

(7.19)

where

w
V

-P1(iJDdXM)T(O-CVX))T - P211 i 2DIIW
-P3(iJDdxV)TxT - P41Ii2D IIV.

(7.20)

(7.21)

oi
dxv =-­

onetv
(7.22)

Using a static approximation of the gradients, we have

(7.23)

(7.24)

where A(Vx) = diag{O";("Cix)}.

7.3.3 Stability Analysis

Based on the nonlinear approximation ability of neural networks, there exists a pair

of optimal parameters W* and V* such that on a compact set we have

(7.25)

where c1(t) is the bounded approximation error using neural networks. The optimal

parameters W* and V* are selected such that the LTnorm distance between TJ(t) and

its estimation is minimized. Usually, this approximation error is very small if the

structure and learning algorithm of the neural networks are carefully chosen.
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We assume that the upper bounds on the optimal parameters W* and V* satisfy

that

IIW*IIF < W M

IIV*IIF < VM

where II . IIF is the Frobenius norm of a matrix.

Substituting (7.25) into (7.19), when no fault occurs, we obtain

f(y, X2D) - f(y, X2) + T/(t) - M1(t)

AX2 + ~(y,X2D) - ~(y, X2) + Wo-(Vx) + C2

(7.26)

(7.27)

(7.28)

where W = W* - lV, and C2 = W*[o-(V*x) - o-(Vx)] + C1 is a bounded disturbance

term, i.e., 11c211 = E2, due to the boundedness of W*, the boundedness of sigmoidal

function, and the boundedness of approximation error.

Stability of the fault diagnosis algorithm is analyzed in the following theorem.

Theorem 7.1 For system (7.1)-(7.4) under Assumption 7.1-7.6, if the high order

sliding mode differentiators and the proposed uncertainty observer are used, the state

estimation error X2, the parameter estimation error Wand V are all bounded.

Proof: First, we prove the boundedness of xand W. Consider a Lyapunov candidate:

IT 1 -T-
VS = 2X2 r 1X2 + 2tr(W W)

where r 1 satisfies Assumption 7.4.

Based on (7.20), we obtain

Using (7.28) and (7.30), the time derivative of Vs is

l· T IT· -T":
Vs 2X2 r 1X2+ 2X2 r 1X2+ tr(W W)

1
-2xiQX2+ Xir1(~(X1' X2) - ~(X1, X2))

+xir1wo-(vx) + Xir1C2
-T T T -T A

+tr[W P1dxMX20- + W P21Ix21IW].

(7.29)

(7.30)

(7.31 )
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Based on the properties of matrix trace and sigmoidal function, we have

- T T T -tr(W P1dxMx20" ) < PIO"ml\WlllldxMllllx211 (7.32)

tr(WT P211x211W) < (WMIIWII-I\WI12)p21Ix211 (7.33)

where O"m is a bound of 0", i.e., 1\0"Til:::; CYm .

According to (7.32) and (7.33), (7.31) can be further written as

Vs :::; -~.Amin(Q)llx2112 + k~lIrlllllx2112

+llx211liflllllWIlCYm+ IIx2111ifll\f2 - P211 x21111WII2

+Plcym llWlllldxM llll x211 + WMIIWllll x211p2

-"IlIx211 2- f3111x21111W1I 2+ f3211 x21111WII + f3311 x211

< -"Illx211 2- f311Ix211(IIWIl - ~1)2 + (:Jl + (33)llx211

< -"Illx211 2+ (:Jl + (33)lIx211 (7.34)

where

1 (7.35)"I 2.Amin(Q) - k~lIrlll

f31 - P2 (7.36)

f32 - cym(llr11l + pllldxMII) + P2WM (7.37)

f33 - IIr11lf2 (7.38)

where dxM is bounded due to the stability of matrix A.

Thus, from (7.34), we can see that when

11
- II f3i + 4f31f33 - b
X2 > 4f3n - 1 (7.39)

Vs < 0, which means Vs is negative outside the ball with radius b1 described as

X = {x2111x211 :::; bd· When X2 increases outside of the ball X, the negative of Vs
results in reducing Vs and X2, which shows the boundedness of X2.

Then, we consider the boundedness of W, which can be written as

(7.40)
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The second and third terms on the right side of (7.40) are bounded, since X2, 0", and

W* are all bounded, and dxM is bounded, because A is a stable matrix. (7.40) can be

considered as a linear system with bounded input. Therefore, (7.40) is stable, since P2

is positive and input is bounded. Consequently, the boundedness of W is guaranteed.

The boundedness of W implies the boundedness of W.
From (7.24), dxv is also bounded since 0";(-) is a bounded function, and A is a

stable matrix. The dynamic equation of V can be written as

(7.41)

where the second and third terms on the right side of 7.41 are both finite, because X2,

W, 0", dxv are all bounded, and P3 and P4 are both finite positive numbers. Therefore,

the boundedness of V is ensured. •

Before a fault occurs, no matter what the magnitude of uncertainty is, if TJ( t)

can be precisely estimated by the neural network model M 1(t), 11£211 would approach

zero, which means the residual X2 will converge to a very small bound, prior to the

occurrence of a fault.

7.3.4 Robustness Analysis

As we design model-based fault detection strategies, we expect the generated residual

would be as small as possible prior to any fault, so it could be more sensitive to the

occurrence of faults. In addition, we also expect the robustness property of the fault

detection schemes is not affected.

The dynamics of X2 prior to the occurrence of any fault is described as

(7.42)

The initial condition X2(0) = 0 is guaranteed when the derivatives of y can be exactly

obtained by HOSMDs.

During the time interval [0, t e ), where 0 < te < T, (T is the beginning time of any
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fault), we get 1:2 by solving the differential equation (7.42)

ft e

X2 = io eA(te-T)(~(y,X2D) - ~(y, x2))dT

+l te
eA(te-T) (7](T) - M1(T))dT

Taking the norm on both sides of (7.43), we have the following inequality

(7.43)

111:211 ::; lte
IleA(te-T) 1111~(y, X2D) - ~(y, X2) IldT

+lte
IleA

(t
e -T)IIII7](T) - M1(T)lldT

< l te
k~lleA(t'-T)IIII1:2I1dT + l te

IleA(te-T)IIIIE21IdT. (7.44)

Using Gronwall's Lemma, we have

111:211 < (l te
IleA(t.-T) II IIE211dT) exp (l te

k~lleA(te-T)lIdT)

< (E21°O IleATlldT) exp (k~1
00

IleATlldT)

f2Ax exp(k~Ax) = E3 (7.45)

where f2 is defined as maxtE[0,T]{lk2(t)II}, and Ax is

Ax =100

IleAtlldt (7.46)

which is bounded according to Assumption 7.4.

From (7.45), as long as the uncertainty observer does not reach its bound 7]0 due

to the occurrence of a fault, 1:2 would stay within a bound E3. The magnitude of this

bound depends on the estimation accuracy of the uncertainty. If M1(t) can exactly

characterize the uncertainty 7](t), 111:211 will approach zero ultimately. This conclusion

is consistent with that in Section 7.3.3.

7.3.5 Fault Sensitivity Analysis

In addition to robustness, another important property of a fault diagnosis scheme is

its sensitivity to faults.
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The following theorem characterizes the set of additive actuator faults that can

be detected by the proposed fault diagnosis scheme.

Theorem 7.2 Consider the proposed fault diagnosis scheme using high order sliding

mode differentiators and uncertainty observers. If a time t x > °exists such that the

actuator fault uj satisfies the condition

(7.47)

then the fault will be detected, i.e., IIx211 > E3.

Proof: During the time interval between the occurrence of a fault and the saturation

of £11(t), the dynamics of X2 become

m

£2 = AX2 + ~(y, X2D) - ~(y, X2) +L Biu} + TJ - £11,

i=l

where B i is the ith column of B, uf is the additive fault in the ith actuator, and Tx

is the beginning time of a fault.

For any tx > 0, the solution of (7.48) is given by

(7.49)

Taking norm of (7.49) and using Gronwall's lemma, we have

(7.50)
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Therefore, when

fH> IleA1T>+t>-T)~ BiU~(T)lldT > 2i'2AT

the following inequality is guaranteed:

which indicates the fault is detected.
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(7.51 )

(7.52)

(7.53)

•
From (7.52), the threshold for robust fault detection also depends on the bound

of the approximation error t2. When M1(t) can accurately estimate the uncertainty,

the threshold becomes very small, and the detection of faults becomes easier.

7.4 Fault Reconstruction Using HOSMDs

Although fault detection is the primary task in fault diagnosis, in real applications, in

order to counteract the effect of faults, we need to distinguish the faults according to

their locations and even their magnitudes. In this section, we introduce two methods

that can be used for fault isolation and estimation.

For the system (7.1)-(7.4), since the uncertainty and fault are coupled after the

fault occurs, we can only estimate the combinational effect of the fault and uncertainty.

For the nominal system of (7.1)-(7.4), the control value u can be calculated through

the following way, if X2 and X2 are available.

(7.54)

where X2 and X2 can be obtained by using y, if, and ii, which are computed via the

high order sliding mode differentiators. Consequently, the reconstructed control signal

is

(7.55)
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where X2D is the derivative of X2D using HOSMDs.

Denote the control signal in a healthy (normal) system as u*, which is usually

obtained through controller design. When the system is fault-free, U = u*. However,

when an actuator fault is present, U deviates from u*. Therefore, based on (7.55) and

the normal control signals, we define the following signal to isolate and reconstruct

fault:

r = U - u* (7.56)

where r = [rl'··· ,rm]T is the residual vector.

In a noise free situation, ri i:- 0, (i = 1,··· ,m) means the ith actuator is faulty.

If the magnitude of the uncertainty and noise is small, the magnitude of ri would

still keep below a small threshold, bf' before the onset of any fault. If anyone of the

magnitudes of ri, (i = 1,··· ,m) is above the threshold, we can specify the location

and type of the fault.

The proposed fault diagnosis scheme using HOSMDs and uncertainty observers is

implemented in the following algorithm:

• Step 1: Obtain bounds of system uncertainties, i.e., f'Ji.

• Step 2: Obtain YD from system output using HOSMDs (7.8).

• Step 3: Design an uncertainty observer based on (7.11) to (7.14).

• Step 4: Update Wand 11 based on (7.15) and (7.16).

• Step 5: Generate residual 111:2 11.

• Step 6: Compare 111:2 11 with a threshold E3 to detect fault.

• Step 7: Calculate control signal u* for the healthy system.

• Step 8: Reconstruct control signal u based on (7.55).

• Step 9: Reconstruct fault signal r based on (7.56).

• Step 10: Compare ri with bf to isolate fault.

• Step 11: Use ri to estimate fault.
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7.5 Application to a Satellite Attitude Control Sys-

tern

In this section, we apply the proposed fault detection, isolation, and estimation

method to a satellite attitude control system. Consider a satellite flying in a cir­

cular orbit in an inverse square gravitational field. We assume that the attitude of

the satellite has no effect on the orbit. The motion dynamics of the satellite about

its center of the mass is given in [110] as

(7.57)

where W = [WI, W2, W3]T is the angular velocity vector of the satellite, I = diag{h, fz, I3 }

is the principal axis moments of inertia of the satellite, U = [UI, U2, U3]T is the control

torque vector, Td = [Td1 , Td2 , Td3 ]T is the disturbance torque vector, and the vector ~c

is defined as

[

-sin 81 cos 82 1
~c = cos 81 sin 83 + sin 81 sin 82 cos 83

cos 81 cos 83 - sin 81 sin 82 sin 83

where 81 , 82 , 83 are the pitch, yaw, and roll angles, respectively.

The notation wstands for the skew symmetric form of the vector w, i.e.,

(7.58)

(7.59)

The relationship between the angular velocity and the measurable Euler angles is

formulated as

(7.60)

where Wo is a constant used to denote the orbital angular velocity of the satellite.
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The system state variables are chosen as x

satellite is described as

[BT,W TjT. The dynamics of the

where

(7.61)

R(B)

(7.62)

The parameters of this satellite are given in Chapter 2. Since our research focuses

on the fault diagnosis in actuators, we directly use the controller design method in

[110]. In order to make the system output smooth enough that its derivatives can be

accurately obtained through HOSMDs, we replace the discontinuous term sign in the

controller by its continuous approximation as

x
sign(x) ~ Ixl + £5 (7.63)

where £5 is a small positive number.

In the simulation, we assume that a fault occurs in the third actuator at the 10th

second; i.e.,

(7.64)

where (3(t) is still a time profile function defined in Chapter 3.2. The control torque is

disturbed by C;u = 1%* rand; i.e., Td = C;uU, while the Euler angles have measurement

noise with C;y = 0.5% *rand; i.e., Bmeasure = (1 + C;y)B, where rand is a Gaussian white

noise.

The uncertainty observer is assumed not to be activated until the 7.5th second.

The reason for this assumption is that we expect that the derivatives of the system
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output can be exactly attained via HOSMDs before we start to estimate the uncer­

tainties. Otherwise, when X2D #- X2, the calculated estimation error X2D is probably

not equal to the real X2' The assumption that any fault is present after the activation

of the uncertainty observers guarantees no false alarm occurs prior to the start of the

uncertainty observer.

The sampling time of the simulation is set to 5 x 10-4
. The four coefficients Ao rv A3

in the third order sliding mode differentiator are all set to be 40. In the parameter

update algorithm, PI = P3 = 15, and P2 = P4 = 0.08. The neural network is pre­

trained before being used, in order to achieve a good performance in the estimation

of the uncertainty.

The simulation results are illustrated from Figure 7.1 to Figure 7.5. Figure 7.1

shows the unmeasurable states WI, W2, W3 and their estimations using third order

sliding mode differentiators and (7.60). The estimated states WI to W3 can approximate

the real states in a very short time, if the third order sliding mode differentiators work

well.

Figure 7.2 demonstrates the difference between the real unmeasurable states and

the calculated states in the presence of an actuator fault. It can be seen that prior to

the occurrence of any fault, the state estimation error decreases as the exact derivative

of the system output is obtained. When an actuator fault occurs, IIx211 will be quickly

above a threshold, e.g., 0.5, which indicates the onset of the fault. Moreover, under the

performance of the uncertainty observer, the state estimation error is almost reduced

to zero between the activating time of the uncertainty observer and the beginning time

of the fault. This result shows the sensitivity of the fault diagnosis scheme increases

by using the uncertainty observer.

Figure 7.3 portrays the characteristics of the uncertainties in the system dynamics

and their estimation using the neural networks model we discussed in Section 7.3. The

bound of MI(t) is set to Tlo = 2 X 10-3
. From Figure 7.3, MI(t) can basically estimate

the uncertainties during the period [7.5, 10] seconds. The uncertainty estimation

error is due to the introduction of measurement noises into the high order sliding

mode differentiators. After the onset of the fault, at least one uncertainty estimator

becomes saturated. This phenomenon also signals the presence of the fault.
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Figure 7.1: Unmeasurable states and their estimations using high order sliding mode
differentiators

Figure 7.4 and 7.5 exhibit the fault isolation and reconstruction results using

the third order sliding mode differentiators. When neither uncertainty nor noise is

present, the fault reconstruction signal can precisely characterize the fault. A small

threshold of 0.05 is successful enough to be used in the fault isolation. In addition, for

the system with small-magnitude of uncertainties and measurement noises, the fault

reconstruction signal can still specify the fault with certain accuracy. However, in this

case, the threshold for a correct fault isolation needs to be updated to 0.5 or above.

The mismatch between the reconstructed fault and the actual fault is also due to the

introduction of measurement noise into HOSMDs. This issue has been discussed in

Chapter 4 and some suggestive remarks are given in [87].

7.6 Conclusions

In this chapter, a fault diagnosis scheme using high order sliding mode differentiators

and uncertainty observers was studied for a class of nonlinear systems. In the proposed
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Figure 7.2: Calculated state estimation error m the presence of a fault m the third
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Figure 7.3: Uncertainties and their estimation using neural networks in the presence
of a fault and measurement noise
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Figure 7.4: Reconstructed fault and actual fault in uncertainty-free case
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Figure 7.5: Calculated fault and actual fault in the presence of uncertainty and mea­
surement noise
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fault diagnosis algorithm, the system uncertainty was first estimated using a neural

networks model. Then, the estimation of the uncertainty was used in the generation

of a diagnostic residual. As a result, the magnitude of the diagnostic residual prior to

the occurrence of any fault was reduced, and, correspondingly, the sensitivity of the

fault diagnosis scheme increases. Moreover, fault reconstruction was achieved by using

the high order sliding mode differentiators. The reconstructed signal makes the fault

isolation and estimation straightforward. The analytical properties of the proposed

fault diagnosis scheme were then rigorously proved. After that, an example that

applies the proposed fault diagnosis scheme to a satellite attitude control system was

given, and the simulation results demonstrated the effectiveness of this fault diagnosis

strategy.

Since high order sliding mode differentiators are used to provide exact deriva­

tives of the output, the performance of this fault diagnosis scheme is still affected by

the measurement noise and the sampling interval in discrete time implementation.

Therefore, methods to guarantee the real-time computational requirement need to be

carefully considered in practical applications.

Another important issue to be further investigated is how to select a suitable

upper bound for the uncertainty observer. Although a larger upper bound may be

more tolerant to the approximation error, it also reduces the sensitivity to faults. In

comparison, a small bound, though more sensitive to faults, will probably cause false

alarms in fault detection.



Chapter 8

Conclusions and Future Work

In this Chapter, the whole thesis is summarized and then some topics are pointed out

for further investigation.

8.1 Conclusions

In this thesis, fault detection, isolation, and estimation problems were studied in a

systematic way for several classes of nonlinear systems. In order to deal with the

uncertainties encountered in these systems, sliding mode observers, high order sliding

mode observersjdifferentiators, and various learning approaches were used to design

different robust fault diagnosis schemes. In addition, the applications of the proposed

fault diagnosis schemes to a series of satellite control systems were carried out in

this thesis. The contributions of this thesis are the subjects of several publications

[139], [162], [156], [158], [165], [166], [167], [149]. The key features are summarized as

follows .

• Since satellites belong to a class of safety-critical systems, the health monitoring

and fault diagnosis for satellite control systems become very important and have

been investigated in this thesis. According to the generations and operations

of different satellites, several typical satellite control systems were considered in

182
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this thesis: satellite attitude control systems, large angle satellite attitude con­

trol systems, flexible satellite control systems, satellite orbital control systems,

and multiple satellite formation flying systems. Although different satellite sys­

tems have distinct characteristics and work on different missions, their dynamics

can be classified based on their mathematical descriptions. The satellite control

systems belong to mechatronic systems, which are usually formulated by second

order ordinary differential equations. Using state space forms, the mathematical

models of the satellite control systems mentioned above can be divided into two

classes. The first class of dynamic systems have triangular input forms, where

the unmeasurable state is directly the derivative of the system output. In the

second class of systems, the unmeasurable state can be written as nonlinear

functions of the system output and its derivatives. Therefore, in this thesis, the

proposed fault diagnosis schemes are mainly designed for these two classes of

systems and applied to the satellite control systems mentioned above.

• Inspired by previous iterative learning observer-based fault diagnosis approaches,

a bank of PI-type repetitive learning observers were designed for a class of non­

linear Lipschitz systems. The generalized observer structure was chosen for each

observer so that only the coefficients which determine the learning rate have to

be selected. The simple architecture of this class of fault diagnosis scheme makes

it feasible in real applications.

• One important contribution of this thesis is, for a class of uncertain nonlinear

systems, which have triangular input forms, a framework of robust fault diagno­

sis schemes using sliding mode and learning approaches was proposed to achieve

fault detection, isolation, and estimation. Unlike some fault diagnosis strategies

using sliding mode observers, where the system uncertainties and faults are both

treated as unknown inputs and the fault signal is reconstructed through process­

ing the equivalent output injection signal, the proposed fault diagnosis schemes

distinguish the system uncertainties from the faults by using time-varying slid­

ing mode switching gains. An iterative learning algorithm and an iterative fuzzy

model were used to design the sliding mode switching gains, respectively. As
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a result, the sliding mode switching gain is large at the beginning regulation

phase to accelerate the state estimation process, and then it decreases in the

fault estimation phase to guarantee that other online estimators only specify

the faults.

• Moreover, besides the classic sliding mode observers, second order sliding mode

observers were also used to eliminate the effect of system uncertainties. The

second order sliding mode not only preserves features such as robustness to

system uncertainties, and finite-time convergence in state estimation, but it

also reduces or even removes the chattering. In addition, the high order sliding

mode approaches offer an efficient way to deal systems with a relative degree

greater than one.

• In the above framework of fault diagnosis schemes, three classes of online esti­

mators were used to characterize the faults. The first class is the neural networks

based estimators, which can successfully estimate the faults due to the powerful

approximation ability of the neural networks. The second class of diagnostic

estimators are wavelet networks, which may achieve the same approximation

capability as neural networks with a reduced-size network architecture. The

third class of fault estimators were based on iterative learning algorithms, where

the parameters of the estimators are iteratively updated in order to reduce the

overshoot and transient process in the estimation of fault functions.

• For a class of satellite attitude control systems, although their mathematical

descriptions do not satisfy triangular input forms, the unmeasurable state can

be represented by nonlinear functions of the output and its derivatives. To­

wards this class of nonlinear systems, high order sliding mode differentiators

were used to calculate the derivatives of the system output and then the un­

measurable state was obtained according to the system dynamic equations and

calculated derivatives. The zero initialization of the estimation error dynamics

helps to achieve satisfactory estimation of the faults. In this circumstance, neu­

ral adaptive estimators and iterative neuron PID estimators are used to estimate
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the faults, respectively. The neural adaptive estimators have a simple structure

and only the numbers of previous inputs and outputs need to be determined.

Additionally, the proposed iterative neuron PID estimators integrate the ad­

vantages of the neural networks and the iterative learning algorithms, where

the convergence rate is accelerated and the overshoot and transient process are

reduced or even eliminated in the fault estimation.

• In order to extend the robust fault diagnosis schemes to more general nonlinear

systems, a fault diagnosis strategy using learning and sliding mode approaches

was designed for the nonlinear systems which can be represented by TS fuzzy

models. A TS fuzzy observer was designed to estimate all the states by solving a

group of linear matrix inequalities. Neural networks based estimators were then

integrated with the TS fuzzy models to build a fuzzy-neural observer, which is

used to detect, isolate, and estimate possible faults. Although a stable parameter

update law is used to guarantee the stability of the proposed fault diagnosis

scheme, uncertainties and approximation errors still affect the accuracy of the

fault estimation. Therefore, the sliding mode term is then synthesized with the

fuzzy-neural observer to establish a fuzzy-neural sliding mode observer, which

is robust to the uncertainties and approximation errors, and is able to estimate

the fault with better performance.

• Unlike most existing robust fault diagnosis schemes which only use the bound

information of the uncertainties, a novel fault diagnostic observer was designed

to generate residual. In the proposed fault diagnosis scheme, high order sliding

mode differentiators were used to estimate the unmeasurable state, and then the

system uncertainty was characterized in an explicit way by using neural networks

based learning approaches, so that the information of the system uncertainty

can be directly used in the residual generation. If the uncertainty estimation

is successfully achieved, the diagnostic residual is not affected by the system

uncertainties, and the fault detection becomes easier.

In summary, the research in this thesis demonstrates that the proposed fault di­

agnosis schemes using sliding mode and learning techniques are effective in dealing
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with fault detection, isolation, and estimation for several classes of satellite control

systems. The versatile sliding mode and learning approaches provide multiple choices

for real applications.

8.2 Future Work

The proposed fault diagnosis schemes in this thesis are all model-based, more specif­

ically, observer-based approaches. Therefore, their performance, to some extent, de­

pends on the accuracy of the mathematical models of the systems under study, al­

though certain robust techniques are used. Moreover, since many other types of

challenging system complexities need to be dealt with, the area of fault diagnosis for

nonlinear systems still attracts many researchers. Some possible future studies are

listed as follows.

• In most cases of this thesis, only the actuator faults and additive component

faults were considered. However, in more realistic cases, the faults are possibly

represented by multiplicative faults, which are coupled with the system dynam­

ics. To deal with the multiplicative faults, more robust approaches are necessary,

and the structure of the systems need to be deeply investigated. Moreover, an

implicit assumption of this thesis is that the output measurement is accurate

and no fault occurs in the sensors. However, sensor faults, such as scalings er­

rors, dead zone, and parameter drift possibly exist in real systems. Therefore,

sensor fault diagnosis for various nonlinear systems should be carefully studied

in the future work.

• In this thesis, only the fault detection, isolation, and estimation problems were

studied. However, successful fault diagnosis is not the ultimate goal in many

real applications. The systems should have some fault accommodation strate­

gies to deal with the effect of faults. An analytical solution is to design fault

tolerant controllers through system or controller reconfiguration. The passive

fault tolerant control can be classified into robust control, and the active fault

tolerant controller design needs specific information about the faults. Therefore,
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correct fault isolation and accurate fault estimation can be very helpful in the

design of fault accommodation strategies.

• Additionally, neural networks, fuzzy logic/models, and wavelet networks were

used in this thesis, where only their partial characteristics have been used in the

fault diagnosis schemes. This situation is partly because the designed fault diag­

nosis schemes are quantitative model-based. If the model-based FD methods are

integrated with other types of techniques, for example, the memory, association,

and prediction features of neural networks, the reasoning and decision capabil­

ities of fuzzy models, and the signal processing abilities of wavelet networks

and so on, then the quantitative model-based, the qualitative model based, and

even the process history based fault diagnosis methods can be synthesized in

a systematic way. We can predict that the reliability and effectiveness of the

innovative fault diagnosis methods will significantly increase and they can deal

with more complicated systems.
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