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ABSTRACT 

One of the central controversies in cognitive science in the last decade is the issue 

of what kind of mental structure could support complex and systematic behaviour. On 

one hand, classicists believe that the human mind operates on explicitly structured 

symbolic representations, where mental representations are characterized by syntactic and 

semantic structure, and that mental processes operating over those representations are 

sensitive to their syntactic structure. On the other hand, eliminative connectionists believe 

the mind is a system composed of simple processing elements (i.e., nodes, units) that 

resemble biological neurons, and connections that resemble biological synapses between 

neurons, which can exhibit intelligent behaviour without operating on explicitly 

structured symbolic representations. 

In this thesis I closely look into a number of aspects of this controversy by 

analysing how several neural network models are able to perform an important high-level 

cognitive task, such as language understanding. I discovered that although a few of these 

connectionist models can learn some very specific and simple syntactic patterns, they all 

have serious problems generalizing their knowledge to novel input, especially when this 

input is formed with more complex (finite-state) grammars. The major reason for this 

behaviour is the fact that the training regimen employed by each of those neural networks 

renders the networks incapable of extracting the sequential structure of the input stimuli. 

With regard to the debate between classicism and eliminative connectionism, I 

argue that neither classicism, nor eliminative connectionism can explain the entire realm 



of high-level cognitive processes. Instead, I argue for a paradigm that embodies both 

classical, traditional symbolic methods and connectionist models. 
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THESIS OVERVIEW 

This thesis addresses one of the major debates in cognitive science, between 

classicists and eliminative connectionists, regarding the type of mental representations 

and mental processes that function in the human brain. 

As Fodor & Pylyshyn (1988) define it, a classical model of the mind is a system 

that is committed to complex mental representations that are characterized by 

"combinatorial syntax and semantics" (Fodor & Pylyshyn, 1988), and, at the same time, 

to mental processes that are sensitive to the syntactic structure of those mental 

representations. Classical systems are derived from the structure of Turing and von 

Neumann machines, i.e., they model the human mind by "storing, retrieving, or otherwise 

operating on structured symbolic expressions" (Fodor & Pylyshyn, 1988). Classicists 

argue that cognitive architectures need to involve operations on symbols and variables in 

order to explain and understand human cognition, and that only classical models are 

committed to that kind of operations (Fodor & Pylyshyn, 1988; Newell, 1980). 

Connectionists believe that mental processing resembles the dynamic and graded 

evolution of activity in a neural network, where each node's activation depends on the 

connection strengths and activity of its neighbours. In contrast to classicists, many 

connectionists argue that these neural networks can exhibit intelligent behaviour without 

involving operations on symbols, and that they represent a "more plausible paradigm for 

modeling cognition at all levels of abstraction than the traditional, algorithmic methods 

of AI" (Hadley, 1999). Following Fodor & Pylyshyn's 1988 study, some connectionists 



adopted a slightly different approach. The so-called implementational connectionists' 

believe that the brain may function like a neural network, but only if this network 

implements symbol-manipulating mechanisms, such as implementing operations over 

variables, or algebraic rules. However, there are many other connectionists (the so-called 

eliminative connectionists) who still argue that symbol-manipulation should be entirely 

eliminated from cognitive theories, because classical mechanisms cannot match the 

flexibility and efficiency of human cognition. 

In this thesis I take a closer look at some of the details of the debate between 

classicism and eliminative connectionism by examining whether eliminative neural 

networks can exhibit intelligent and systematic behaviour without relying on explicitly 

structured symbolic representations. In particular, I investigate how factors such as 

generalization outside the training space (Marcus, 1998, 2001), input representation, and 

training independence influence several connectionist models (Altmann, 2002; Altmann 

& Dienes, 1999; Christiansen, Conway, & Curtin, 2001; Christiansen & Curtin, 1999; 

Elman, 1999; Negishi, 1999; Shultz, 1999; Shultz & Bale, 2001) with regard to their 

ability to perform a very important cognitive process, namely learning simple and mildly 

complex artificial grammars. In later sections of this thesis, I analyse the strengths and 

weaknesses of those models with regard to learning artificial grammars, and explain the 

reasons for their success or failure. 

Each of these models has been proposed as an eliminative connectionist 

counterexample to one of the best known and controversial studies of grammar learning 

in humans (Marcus, Vijayan, Bandi Rao, & Vishton, 1999). Marcus et al. (1999) found 

' A term introduced by (Pinker & Prince, 1988). 



that, following habituation, 7-month-old infants are able to differentiate between stimuli 

formed with two different (but very simple) grammars, such as ABA vs. ABB. They 

concluded that the only possible explanation for the infants' learning behaviour is that 

they can extract and represent abstract algebraic rules. 

The eliminative connectionist models studied in this thesis have also been 

analysed with regard to their ability to replicate another important study on infants 

(Gomez & Gerken, 1999). Gomez & Gerken (1999) performed a similar experiment as 

Marcus et al. (1999) on 1-year-old infants. They showed that infants are still able to 

differentiate between grammatical and ungrammatical test stimuli even when those 

stimuli are formed with somewhat more complex (finite-state) grammars. 

In a recent book, The Algebraic Mind, Marcus (2001) evaluates most of these 

connectionist models with regard to their ability to replicate his experiment on infants 

(Marcus et al., 1999). In essence, Marcus argues that only the networks that implement 

some sort of symbol manipulation or an algebraic rule can be successful in replicating his 

results on infants. He states that none of the purely eliminative connectionist models 

constitute a serious counterexample to his original claim that eliminative networks are 

unable to differentiate between two simple grammars. In the following sections of this 

thesis, I analyse Marcus' arguments with regard to each connectionist model, and 

investigate whether or not, in my view, he is correct in his reasoning. 

The investigation will also contain discussions about the type of input 

representations employed in each of the connectionist models. Most of the networks 

discussed in the next chapters use distributed representations. The only exceptions are 

Altmann & Dienes (1999), and Altmann (2002), which employ localist representations. 



As mentioned in the latter sections of this thesis, distributed representations may have 

several advantages over localist representations, such as biological plausibility, and 

minimizing the effect of training independence. However, with regard to the networks' 

ability to differentiate between simple and (especially) more complex grammars, the type 

of input representation does not seem to have a significant influence. 

Other aspects that I will look at are the issues of generalization outside the 

training space and training independence. These two issues are closely related, and, 

according to Marcus (1998, 2001), represent some of the major weak points of 

eliminative connectionist models trained with the backpropagation algorithm. For each of 

the connectionist models under investigation in this thesis, I analyse the degree in which 

generalization outside the training space and training independence apply, and how these 

factors influence the performance of those neural networks. 

The discussion of each of these connectionist models will conclude with an in- 

depth knowledge representation analysis of those networks. The analysis is focused on 

discovering how networks internally process the input information in order to perform the 

task of learning a certain simple or more complex grammar. Various knowledge 

representation analysis techniques are employed, such as principal component analysis 

and hierarchical clustering, which are performed on both hidden activations and network 

contributions (products between hidden activations and connection weights). 

The thesis concludes with a discussion of the relevance of the various results 

obtained in my research with regard to the debate between classicism and eliminative 

connectionism, and the significance of the knowledge representation analysis performed 

on each connectionist model. 



Thesis Outline 

In Chapter 1, I describe the issues involving the controversy between classicism 

and connectionism, and introduce some of the important terms defined in connectionism, 

such as eliminative vs. implementational connectionism (with regard to the debate 

between classicism and connectionism), training in neural networks, input representation, 

training independence, generalization outside the training space, and how each of these 

factors influences the ability of connectionism models to perform certain tasks. 

Chapter 2 details the history of the studies of artificial grammar learning in 

humans, with focus on Marcus et al.'s (1999) and Gomez & Gerken's (1999) studies on 

infants. It also describes a multitude of analysis techniques that have been employed in 

my research, such as connection weight analysis, principal component analysis, 

hierarchical cluster analysis, and hidden activation analysis. I present the characteristics 

of these techniques, as well as the difference among them, and how they can help in 

understanding the behaviour of neural networks. At the end of chapter 2 I describe the 

simulators used in my research, focusing on my own simulator called Virtual Neural 

Network Simulator (VNNS). I outline the major characteristics of VNNS, and what 

prompted the introduction of this simulator. 

Chapters 3 to 7 describe several connectionist models that attempt to replicate 

Marcus et al.'s (1999) study. Each of these chapters starts with a presentation of the 

connectionist model (including the results reported by the author(s)), followed by 

Marcus' evaluation of the model, and my own investigation of both the neural network 

(with regard to its ability to replicate Marcus et al.'s and Gomez & Gerken's studies) and 



Marcus' reasoning. Each chapter ends with an in-depth knowledge representation 

analysis of the model. 

In Chapter 3, I analyse Elman's (1999) simple recurrent network. In Chapter 4, 1 

investigate the original Shultz (1999) model, as well as the subsequent Shultz & Bale 

(1999) network. Chapter 5 is dedicated to two very similar models: Altmann & Dienes 

(1999), and Altmann (1999). In Chapter 6 ,  I analyse a connectionist model that is the 

subject of two separate studies: Christiansen & Curtin (1999), and Christiansen et al. 

(2001). Chapter 7 contains the investigation of Negishi's (1999) simple recurrent 

network. 

Chapter 8 lists three attempts to replicate Marcus et al.'s (1999) study using 

implementational connectionist models, i.e., the models implement some form of 

classical mechanism (e.g., variable binding, operations over variables) within a neural 

network. 

Finally, Chapter 9 recapitulates the major findings of my research, and contains a 

discussion of the significance of these findings, as well as the conclusions that can be 

drawn from them. 



1 INTRODUCTION 

1.1 Connectionism 

Originally taking its inspiration from the biological neuron and neurological 

organization, connectionism is a computational paradigm, which attempts to explain 

human intellectual abilities in terms of artificial neural networks (or, simply, "neural 

networks", or "connectionist models"). Neural networks are collections of simple 

processing elements (often called "units', or "nodes"; they correspond to biological 

neurons), along with weighted interconnections among these elements (the weights 

measure the strength of connections between units; they correspond to the biological 

synapses between neurons). 

The units in a neural network are usually separated into three classes: input units, 

hidden units, and output units. Input units receive the information that needs to be 

processed by the network, and form the network's input layer. Output units provide the 

results of the processing, and constitute the network's output layer. Hidden units are in 

between units that help at the processing of the input information. They form the 

network's hidden layers. Figure 1 displays an example of a simple, feed forward2 neural 

network. 

In a feed forward network the information travels in only one direction, from the input units to the output 
units. There are other types of neural networks (e.g., recurrent networks) where the information can travel 
in both directions. 



Output Units 

Hidden Units 

Input Units 

Figure 1 A simple, feed forward neural network (some nodes and connections are not shown) 

The input stimuli are presented to the network's input units, each input unit 

having an activation value that typically represents a feature (or characteristic) of the 

input stimuli. An input unit sends its activation value to each of the hidden units to which 

it is connected. Each of these hidden units computes its own activation values depending 

on the activation values it receives from the input units, and the connection weights (i.e., 

the strength of connections) towards those input units. The activation values of all these 

hidden units are then passed on to output units, or to another layer of hidden units. Those 

hidden units compute their activation values in the same way, and then send them along 

to their upward neighbours. Eventually, the information propagates all the way through 

the network, from input units to output units. The activation values of all output units 

represent the result of the processing by the network of the current input stimulus. 

The activation value of each receiving unit is a function of the activation values of 

all sending units and the connection weights between the receiving unit and all sending 



units. There are various ways to compute these activation values. The most common way 

is to calculate the sum of the products between the activation values of each sending unit 

and the connection weights between the receiving unit and each sending unit. Sometimes 

this sum is scaled to a value between 0 and 1, andlor the activation value is set to 0 unless 

the sum is greater than a given threshold. 

1.1.1 Learning in a neural network 

When using a neural network to perform a certain task, the central goal is to find a 

set of connection weights that allows the network to accomplish that task. In order to do 

that, there are various training methods (or learning algorithms) that can calculate the 

weights. One of the most widely used training methods is called backpropagation 

(Rumelhart, Hinton, & Williams, 1986). According to the backpropagation algorithm, a 

network is presented with a set of training examples consisting of input stimuli ai~d the 

desired output values for each of those stimuli. For example, if a network is to distinguish 

between two types of shapes (squares vs. circles), the training set can contain various 

(say, black and white) pictures depicting squares and circles, along with information 

regarding the type of the shape for each picture. The network may have two output units: 

one output unit can indicate whether the input picture depicts a square, whereas the 

second output unit indicates whether the input shape is a circle. The network may have 

many input units; for example, each input unit can be associated with the brightness of a 

pixel (i.e., a small area) in the input image. Each input stimuli is represented by a vector; 

an element in this vector is associated with a pixel in the image. The size of the input 



vectors (which dictates the number of input units3) is given by the number of pixels in the 

input pictures (assuming that all pictures have the same size). Usually, the initial weights 

of the network to be trained are set to small random values. The training is performed by 

repeatedly presenting each member of the training set to the network. The elements of 

each input vector are provided to the input units; the information is then propagated 

through the network (in a similar manner as described earlier), and the activation values 

of the output units are compared to the desired (target) values associated to the current 

input. Then, the connection weights are adjusted in order to minimize the difference 

between the actual output values and the desired output values. For example, if the 

current input vector represents an image of a square, the connection weights of the 

network are changed in order to increase the activation value of the output unit that 

corresponds to the square-category, and to decrease the activation value of the output unit 

that corresponds to the circle-category. After many repetitions of all members of the 

training set, the network may learn to produce the correct output for each input in the 

training set. It is also possible that the network could generate the correct output for input 

patterns that were not part of the training set. For example, the network could distinguish 

between squares and circles in images that were not presented during training. 

One of the problems with backpropagation and other learning techniques is that, 

typically, in order to carry out a specific task, the training of a network may require 

numerous rounds of weight adjustments, and this may take a long time (hours, days, or 

even weeks). Also, especially with regard to backpropagation, these kinds of error 

measurements and weight adjustments are hard to justify biologically. It is unclear 

Each vector element corresponds to one input unit; the value of each vector element becomes the 
activation value of the corresponding input unit. 



whether the brain learns by a process like backpropagation, and is unrealistic to think that 

the human brain needs to employ so many repetitions of the training stimuli that are 

required by a learning method such as backpropagation. 

1.1.2 Simple recurrent networks (SRNs) 

The simple recurrent network architecture was introduced by Elman more than a 

decade ago (Elman, 1990), and has been extensively used to simulate various aspects of 

cognitive processes, especially language understanding. 

The SRN architecture is based on a multi-layer feed forward neural network (see 

Figure 2). Its main task is prediction: given a temporal sequence of input patterns, the 

SRN is trained (typically, with backpropagation) to output the most likely pattern that 

follows the current input stimulus. 

Output layer 

Pre-training unit m Habituation and test unit 

/ Hidden layer 

Input layer 

Figure 2 An example of a simple recurrent network (Elman, 1990,1999; Seidenberg & Elman, 
1999) 



A typical task for a SRN is the prediction of the next word in a sentence. When 

training with sentences, each word is presented to the input layer of the network one at a 

time. At each time step, the network is trained to output the next word in the current 

sentence. What facilitates this task is the presence of an additional layer, called context 

layer, which has the same size as the hidden layer, and stores the activations of the 

hidden units (see Figure 2). Each hidden unit has a corresponding context unit to which it 

is linked through two sets of connections. One set of connections is a one-to-one mapping 

between each hidden unit and its corresponding context unit (usually this set of 

connections is not trainable, having a fixed weight of 1). The other set of connections is 

trainable, and links each context unit to all hidden units. Using this mechanism, at each 

time step, the contents of the hidden layer are copied to the context layer, and at the next 

time step the contents of the context layer feed back to the hidden layer. In this way, the 

context layer works as a short-term memory of the hidden activations, making the 

network recurrent, and assisting it in its task of predicting the next item in a sequence. 

1.1.3 Connectionist representations 

Typically, input stimuli are presented to a neural network in two ways: using 

localist and/or distributed representations. Localist representations use individual nodes 

to represent an entire concept, whereas distributed representations use a set of nodes to 

represent a single concept. For example, consider the set of all 26 letters in the Latin 

alphabet: a, b, c, etc. In a localist representation, each of these letters is represented by a 

vector of 26 elements [ll, 12, 13, ..., 126), each element in the vector corresponding to a 

letter of the alphabet: 11 corresponds to letter a, 12 corresponds to b, etc. This means that, 

in order to represent a certain letter of the alphabet, only the element of the vector that 



corresponds to that letter is set to 1; all the other elements are 0. For instance, letter a is 

represented by the vector [I, 0, 0, .. ., 01, letter b is represented by [0, 1,0, . . ., 01, etc. In a 

distributed representation, each letter may be represented by a set of features (or 

attributes), such as is - vowel, is - voiced, is - nasal, etc. (Plunkett & Marchman, 1993). In 

this case, each letter is also represented by a vector, but each vector element corresponds 

to one of those features4. The representation of a letter is determined by the set of features 

that it contains: all vector elements that correspond to that letter's features will be set to 

1; all other elements will be set to 0. For instance, for letter a, the feature is-vowel will be 

set to 1, but for letter b, the feature is-vowel will be set to 0. 

Although distributed representations seem more difficult to understand than 

localist representations, they do exhibit important advantages. First of all, they are 

usually more biologically plausible. It is unrealistic to think that the human brain employs 

a single neuron to represent each possible concept. For example, empirical neurological 

evidence suggests that it is unlikely that there is just one neuron that activates when we 

think about the concept dog. Secondly, distributed representations can better explain 

various properties of the brain such as "graceful degradationm5, as demonstrated by 

several connectionist models (Sejnowski & Rosenberg, 1987; Wood, 1978). In a 

distributed representation, similar input stimuli will have similar representations. The 

intrinsic properties of the distributed representation of a stimulus determine its 

relationships with other stimuli. If a subset of the input nodes disappears, the neural 

network may still be able to recognize the new input stimuli based on the similarities of 

It is possible that a feature may be represented by more than one vector element. For example, a feature 
such as stress (with regard to a syllable within a word) may be represented by two vector elements, in order 
to indicate primary stress, secondary stress, or no stress (Christiansen, Allen, & Seideberg, 1998). 

Sometimes, in case of brain damage, the behavioural performance "gracef~lly~~ decreases, rather than 
exhibiting a complete and sudden breakdown. 



their representations to other, known representations. And thirdly, distributed 

representations typically need fewer nodes than localist representations do. For example, 

a network needs 26 input nodes to locally represent all 26 letters of the alphabet, whereas, 

based on Plunkett & Marchman's (1999) feature notation, a network may only need 6 

input nodes to represent each of the 26 letters. 

1.1.3.1 Superposition catastrophe 

In spite of their advantages over localist representations, many consider that 

distributed representations have their own problems. For instance, Marcus (2001) 

considers that distributed representations may be subject to a problem called 

superposition catastrophe (Hummel & Holyoak, 1993; von der Malsburg, 1981). This 

can occur when the representations of various input or output entities overlap. For 

example, based on the previous example with the Latin alphabet, considering a 

distributed representation, if letter a is represented by the vector [I, 0, 1, 0, 0, 11, letter b 

by [0, 1, 0, 1, 1, 01, letter c by [0, 1, 1, 1, 0, 01, and letter d by [I, 0, 0, 0, 1, 11, then the 

network will not be able to distinguish the simultaneous activations of letters a and b, 

from letters c and d (both combinations are represented as [I, 1, 1, 1, 1, I]). 

Typically, superposition catastrophe may occur when distributed representations 

are used on the output layer of a network (in general, entities are presented individually to 

the input layer). For example, in a simple recurrent network, the usual task is to predict 

the most probable items that can follow the current input item in a temporal sequence 

(Elman, 1990). For instance, if the next word in the current sentence is a noun, the 

network may activate all output units associated with the features of all possible nouns. If 



those features overlap with (say) the verb features, it may be impossible to 

unambiguously distinguish the network's response. 

I agree that, theoretically, superposition catastrophe can happen. However, I 

believe there are many ways to overcome it, and none of the connectionist models 

discussed in this thesis exhibits this "problem". One way to overcome superposition 

catastrophe is to employ a sufficiently rich and well-defined distributed representation 

that minimizes the amount of overlap among features. Although I agree that, for instance, 

some of the noun and verb features may overlap6, for a sufficiently rich distributed 

representation, many of those features do not overlap (Plunkett & Marchman, 1993). 

Another way to overcome this problem is to use localist representations on the output 

layer (Christiansen & Curtin, 1999; Elman, 1999). 

1.2 Classicism vs. Connectionism 

One of the central controversies in cognitive science in the recent years refers to 

the type of cognitive architectures that can model the human mind, with regard to 

explaining both the kind of mental structures that support complex and systematic 

behaviour, as well as the mental processes that operate over those structures. 

The controversy started with a very influential paper by Fodor & Pylyshyn 

(1988). They postulate that human mind exhibits a so-called "language of thought", 

where mental representations have "combinatorial syntactic and semantic structure" 

(Fodor & Pylyshyn, 1988). They argue that mental representations are structurally 

complex and have syntactic constituents that can be either structurally complex or 

For example, if the representation uses a feature like "isanimate", this may be included in both nouns 
and verbs. 



structurally atomic. Also, the semantic content of a mental representation depends on the 

semantic contents of its syntactic constituents. This entails that, according to Fodor & 

Pylyshyn, the mind exhibits compositionality and "systematicity", i.e., the ability to 

perform a certain mental process implies the ability to perform other semantically related 

mental processes. For example, English speakers who understand John loves Mary can 

also understand Mary loves John. In the classical point of view, this ability can easily be 

explained by assuming that English speakers represent the constituents John, loves, and 

Mary of the sentence John loves Mary, and compute its meaning from the meanings of 

those constituents. Based on this assumption, the understanding of a novel sentence like 

Mary loves John can be explained by the simple fact that it is a new instance of the same 

symbolic process. In Fodor & Pylyshyn's view, only classical models are committed to 

the "language of thought" theory, where mental representations are characterized by 

combinatorial syntax and semantics, and where mental processes are sensitive to the 

structure of those representations. They argue that connectionist systems cannot represent 

genuine models of the human mind, because they acknowledge "neither syntactic nor 

semantic structure in mental representations" (Fodor & Pylyshyn, 1988). According to 

Fodor & Pylyshyn, unless connectionism is used as an implementational theory7, it 

cannot explain why systematicity is found so pervasively in human cognition. Fodor & 

McLaughlin (Fodor & McLaughlin, 1990) also noted that connectionism does not 

guarantee systematicity, because, although connectionist models can be trained to be 

systematic, they can also be trained, for example, to understand John loves Mary, but not 

understand Mary loves John. 

That is, implementation of classical mechanisms. 



Many connectionists disputed Fodor & Pylyshyn's study as being simplistic, 

providing "no succinct and precise characterization of systematicity" (Niklasson & van 

Gelder, 1994), and minimizing the way in which connectionist representations possess 

internal structure, as noted in (Chalmers, 1990), and (Smolensky, 1988). Also, as 

mentioned in (Aizawa, 1997), (Hadley, 1997), and (Matthews, 1997), classical 

architectures have problems at explaining systematicity as well. For example, there are 

classical models that can be programmed to understand John loves Mary, but not 

understand Mary loves John. The opinion is that neither connectionist mechanisms alone, 

nor classical theories alone, can explain pervasive systematicity. In both architectures, 

further assumptions about the nature of the processing may be needed in order to ensure 

that Mary loves John is processed as well. 

However, following Fodor & Pylyshyn's controversial paper, many 

connectionists started adopting an approach that supports both classical and connectionist 

points of view. The so-called implementational connectionists believe that the brain is 

indeed a symbolic processor, but at a more abstract level, and that symbolic processing is 

implemented in a structure similar to a neural network. Irnplementational connectionists 

attempt to discover a way for classical processing to be carried out by neural networks. 

There are many other connectionists (the so-called eliminative connectionists) 

who believe that the mind does not operate on explicitly structured symbolic 

representations. According to eliminative connectionists, symbols should be eliminated 

from the study of cognitive processes. They argue that classical mechanisms cannot 

match the flexibility and efficiency of human cognition, and cannot explain several 

features of human intelligence, such as graceful degradation. 



It is noteworthy that, in a series of studies, Marcus (1998, 1999, 2001) defines a 

slightly different conception of classicism. He argues that symbols, variables, and 

operations over these variables represent the underlying features of the human mind, and 

they should constitute the basis for all scientific theories regarding cognition. In his view, 

in order to explain how humans perform various cognitive processes, such as extending 

universals to arbitrary items (for example, if humans know that all birds canfly, and that 

Tweety is a bird, they infer that Tweety can fly), or generalization to novel instances of 

variables (for example, if humans know that a rose is a rose, a tulip is a tulip, etc, they 

predict that blicket is the continuation to a blicket is a...), cognitive architectures need to 

implement operations over variables. 

With regard to the debate between classicism and eliminative connectionism that 

is analysed in this thesis, Marcus' concept of classicism is considered, rather than Fodor 

& Pylyshyn's. 

1.3 Training Independence 

As mentioned earlier, backpropagation is a training algorithm that is frequently 

used in today's neural networks. Figure 3 displays the backpropagation training rule, 

according to (Rumelhart et al., 1986). 



X Unit j 

Wji 

Unit i 

Figure 3 The backpropagation rule (Rumelhart et aL, 1986) 

wji represents the connection weight between the receiving unit j and sending 

unit i, is the learning rate (typically, a constant value between 0 and I), t j  represents 

the target value for unit j ,  and xi , x j  are the activation values of units i, and j ,  

respectively. 

According to this backpropagation rule, the weights feeding a given node are 

trained independently fiom the weights feeding any other node on the same layer: Awji 

only depends on the properties of units i and j. Marcus (1998, 2001) calls this output 

independence, because the set of weights connecting one unit to its input units is entirely 

independent fiom the set of weights feeding all other units on the same layer. 

At the same time, Marcus argues that, in many connectionist models, there are 

input nodes that are not correlated with the network's output for the entire duration of 

training. For example, if a neural network is trained with a subset of letters of the Latin 

alphabet (a, b, c, . . ., z) using localist representation (each letter corresponds to a single 

input node), there will be nodes that will have never been activated during training (i.e., 

their input activation will be zero for the entire duration of training). Based on the 

backpropagation rule (see Figure 3), since the weight changes are directly proportional to 



the activation of the sending units ( x i ) ,  the weights connecting those input units to their 

neighbours will never be updated. Therefore, training will not have any effect on those 

connection weights, i.e., the network is unlikely to "extend learning from trained input 

nodes to untrained input nodes" (Marcus, 1998). Marcus calls this input independence, 

and claims that training independence (the combination of input and output 

independence) represents a major limitation of eliminative neural networks trained with 

backpropagation. 

Although Marcus argues that training independence equally occurs in 

connectionist models using both distributed and localist representations, as specified later 

in this thesis, there are ways to minimize its effects in networks employing distributed 

representations. In essence, it is possible to define sufficiently rich distributed 

representations that can allow the training of all input andlor output nodes. According to 

Marcus' definition of input independence, as long as all input nodes are trained, input 

independence cannot occur. 

1.4 Generalization Outside the Training Space 

Marcus (1998, 1999, 2001) claims that eliminative connectionist models cannot 

perform those cognitive functions that require generalization outside the space of the 

training examples. 

In geometric terms, Marcus (1998, 2001) defines the input space as the set of all 

possible input vectors, the training set as the set of input vectors that are used during 

training, and the training space as the area of the input space where the training set 



resides. Subsequently, Marcus argues that any input vector that contains features that a 

connectionist model has not been trained on lies outside the training space. 

This definition is ambiguous, however, because it appears compatible with two 

differing notions of "outside the training space". In the first notion, any input value that 

corresponds to a feature that was entirely untrained is a value that lies outside the training 

space. This corresponds to a case where an input node is never activated during training. 

In the second notion, Marcus states that the training space is delimited by the values of 

the features that appear in the training set. This corresponds to a case where, if an input 

node is trained with values between (say) 0.1 and 0.9, and then, during the test phase, it is 

presented with a value of 1.2, this value will be outside the training space. But, according 

to the first notion, this value would lie within the training space, because the node was 

activated during training. In his discussions of various connectionist models regarding 

their ability to generalize outside the space of the training examples, Marcus (1 998,2001) 

uses the first notion, and argues that any neural network trained with the backpropagation 

algorithm (or any variant of it) is not able to generalize outside the training space. Marcus 

maintains that the reason for this behaviour is that essential aspects of the 

backpropagation algorithm (e.g., the training independence) preclude the network from 

generalizing to nodes that have not been specifically trained. 

The ability of connectionist models to generalize beyond the set of training 

examples is very important, especially when networks need to simulate various cognitive 

processes, like those in the sentence-prediction model (Marcus, 1998). Marcus showed 

that when humans are presented with a series of simple sentences such as "a rose is a 

rose", "a lily is a lily", "a tulip is a tulip", they easily predict that "blicket" is the 



continuation to the sentence "a blicket is a .. ." (Marcus, 1998). If eliminative 

connectionist models were able to perfom the same kind of generalization beyond the 

space of the training examples, this would support the theory according to which these 

networks are genuine models of the human mind. Therefore, in this thesis I investigate 

the ability of several connectionist models to generalize outside the training space within 

the task of learning simple or more complex grammars. I analyse if and how Marcus' 

definition of "generalization outside the training" applies to each model, and whether 

these models are able to generalize to stimuli that are not part of the training set. 



2 FURTHER PRELIMINARIES AND RELEVANT 
BACKGROUND 

2.1 Artificial Grammar Learning in Humans 

Artificial grammar learning has been extensively studied in humans. Typically, 

humans are exposed to a set of stimuli generated by a finite-state grammar (see Figure 4). 

After the acquisition of the training examples, participants are presented with a novel set 

of stimuli, and they are asked to discriminate between new valid (i.e., grammatical, 

familiar) examples and invalid (i.e., ungrammatical, unfamiliar) ones. It has been shown 

that humans can learn mildly complex artificial grammars (Altmann, Dienes, & Goode, 

1995; Mathews, Buss, Stanley, Blanchard-Fields, Cho, & Druhan, 1989; Reber, 1967). 

The learning can be retained over as much as two years (Allen & Reber, 1980), and can 

occur in both infants (Gomez & Gerken, 1996; Marcus et al., 1999), and adults (Gomez, 

Gerken, & Schvaneveldt, 2000; Meulemans & Van Der Linden, 1997). 

A very important aspect of artificial grammar learning in humans is generalization 

to a new vocabulary. This is important because it can demonstrate that humans are not 

only able to acquire specific sequential dependencies, but are also abstracting the 

sequential structure. Many studies have shown that humans (both adults and infants as 

young as 7 months of age) are able to generalize to a new vocabulary (Altmann et al., 

1995; Brooks & Vokey, 1991; Gomez & Gerken, 1999; Marcus et al., 1999; Mathews et 

al., 1989; Reber, 1967). In this thesis I focus on the ability of several connectionist 



models to replicate two of these studies: Marcus et al. (1999) and Gomez & Gerken 

(1 999). 

Figure 4 A finite-state grammar. Grammatical strings are generated by traversing the links from 
left to right, starting at the leftmost state, e.g.: ACB, BDBFD. 

2.1.1 Marcus et al. (1999) 

Marcus et al. (1999) studied the ability of 7-month-old infants to differentiate 

between sequences ("sentences") of two-letter syllables generated by very simple 

grammars, such as ABA, ABB, and AAB. Marcus et al. performed three different 

experiments: in the first two experiments they used the grammars ABA and ABB, 

whereas in the third experiment they employed the grammars AAB and ABB~. Besides 

the difference in grammars, the three experiments differed in input stimuli. Experiment 2 

had a slightly changed input corpus from experiment 1, to compensate for specific 

phonetic characteristics of the training and test patterns that occurred in the first 

Examples of ABA, ABB, and AAB sentences: ga ti ga, li nu li, ta ti ta, li gi gi, ni la la, le le di, wi wi li. 



experiment9. In experiment 3 the input corpus was the same as in experiment 2, but the 

grammars were different (ABB vs. AAB), to balance reduplications in the input stimuli 

(in the third experiment both grammars contain one duplicated element). Sixteen infants 

were randomly assigned to either an ABA condition or an ABB condition (in experiments 

1 and 2), or to either ABB or AAB (in experiment 3). They were familiarized with 16 

sentences generated with one grammar for a period of two minutes. After this habituation 

period, infants were presented with four novel sequences of syllables constructed from 

both the familiar (training) grammar, and an unfamiliar grammar (2 sentences with the 

familiar grammar, and 2 with the unfamiliar one). Marcus et al. (1999) discovered that 

infants showed an attentional preference for sentences that were constructed from the 

novel (unfamiliar) grammar. Marcus et al. argue that the only explanation for such 

behaviour is that infants possess a rule-learning mechanism that enables them to 

"represent, extract, and generalize abstract algebraic rules" (Marcus et al., 1999). Also, 

they claim that this rule-learning mechanism is not available to eliminative connectionist 

models, because these models "can simulate knowledge of grammatical rules only by 

being trained on all items to which they apply; consequently, such mechanisms cannot 

account for how humans generalize rules to new items that do not overlap with the items 

that appeared in training"(Marcus et al., 1999). In other words, Marcus et al. believe that, 

because this simple discrimination task performed by infants requires them to generalize 

outside the training space, and because, according to Marcus et al., eliminative 

Many A syllables in experiment 1 started with a voiced consonant, whereas the B syllables started with an 
unvoiced consonant. Therefore, infants who were familiarized with Al3A patterns (voiced-unvoiced-voiced 
structure) could have been surprised by the new voiced-unvoiced-unvoiced combinations of the unfamiliar 
Al3B patterns. 



connectionist models cannot generalize outside the training space, these models are not 

able to perform the same task as the infants'. 

One may argue that the grammars employed in this study are too simple to 

motivate such strong statements from Marcus et al. (1999). However, as I mentioned 

above, Marcus et al. run their experiments on very young infants, who are "on the cusp of 

language learning" (Marcus et al., 1999). I believe that Marcus et al.'s reason for using 

simple grammars was to demonstrate that even these young infants are able to learn 

simplified versions of algebraic rules. They assume that if they can prove that humans are 

able to learn artificial grammars at that young age, it is because they "extract abstract 

algebra-like rules" (Marcus et al., 1999), and that statistical mechanisms alone are not 

sufficient to explain their behaviour even when using such simple grammars. 

2.1.2 Gomez & Gerken (1999) 

PEL 

n 

RUD 

Figure 5 Gomez & Gerken's (1999) fmite-state grammar. Grammatical sentences are generated 
by traversing the links from the left-most state to right-most states. Examples of 
grammatical sentences: VOT PEL JIC, JIC TAM JIC RUD TAM RUD. 



Using the finite-state grammar shown in Figure 5, Gomez & Gerken (1999) 

performed four different experiments with 1-year-old infants. Similarly to Marcus et al. 

(1999), Gomez & Gerken familiarized 16 infants with ten 3-to-6-word sentences 

generated by a finite-state grammar, for a period of 2 minutes. 

Following the habituation period, Gomez & Gerken performed four different 

experiments: 

1. In experiment 1, infants were presented with 10 novel test sentences generated 

from the familiar grammar, and another 10 novel test sentences generated from the 

grammatical test sentences by switching the first and last words (i.e., 10 novel test 

sentences have illegal endpoints). For example, from the grammatical sentence VOT PEL 

PEL PEL JIC, the ungrammatical sentence JIC PEL PEL PEL VOT was generated. This 

procedure was done in order to avoid the possibility of infants discriminating between 

grammatical and ungrammatical test sentences solely based on the sentence length or 

word frequency. 

2. In experiment 2, infants were tested with the same set of grammatical sentences as 

in experiment 1, but the ungrammatical test sentences had internal grammatical 

violations. The ungrammatical test sentences started and ended with grammatical words, 

but the order of the internal words was ungrammatical. For example, the sentence VOT 

TAM PEL RUD JIC begins and ends with grammatical words, but the internal transitions 

VOT TAM, PEL RUD, and RUD JIC are ungrammatical. Similar to experiment 1, the 

ungrammatical test sentences were matched with the grammatical ones in terms of length 

and word frequency. 



3. In experiment 3, infants were tested with 10 novel grammatical sentences, and 

another 10 sentences generated with a different grammar (see Figure 6). The grammatical 

and ungrammatical test sentences begin and end with the same words, but the internal 

transitions are different. However, the grammatical and ungrammatical test sentences are 

matched in terms of length and word frequency. 

4. In experiment 4, infants were tested with the same sets of grammatical and 

ungrammatical structures as in experiment 3, but both types of test sentences were 

constructed with a different vocabulary of words (VOT, PEL, JIC, RUD, TAM) that the 

one used during the habituation period (JED, FIM, TUP, DAK, SOG). 

RUD JIC 

Figure 6 Finite-state grammar used to generate sentences in Gomez & Gerken's experiments 3 
and 4. Grammatical sentences are generated by traversing the links from left to right. 
Examples of grammatical sentences: VOT RUD JIC, PEL RUD JIC VOT RUD, VOT 
RUD JIC TAM VOT RUD. 

In all four experiments, Gomez & Gerken discovered that infants were able to 

discriminate between the test sentences that were generated from the familiar grammar, 

and the test sentences that were generated from the unfamiliar grammar or violated the 

familiar grammar. Gomez & Gerken claim that infants show "remarkable abstraction 



abilities" (Gomez & Gerken, 1999), by extracting information regarding the sequential 

structure of the input sentences, even when the test sentences are generated in a 

completely new vocabulary. 

During my investigation of various connectionist models discussed in this thesis, I 

have been mostly interested in analysing the ability of those networks to perform 

experiment 4 of Gomez & Gerken (1999). Only experiment 4 requires participants to 

generalize beyond the training examples, in a similar way to that in the Marcus et al.'s 

(1999) study, and tests the capacity of those participants to abstract the sequential 

structure of the input sentences. 

2.2 Knowledge Representation Analysis 

There are various ways to analyse and explain the behaviour of neural networks. 

Throughout this thesis I employ hierarchical cluster analysis, principal component 

analysis (PCA), connection weight analysis, and hidden unit activation analysis. 

2.2.1 Hierarchical Cluster Analysis 

Hierarchical clustering is a statistical method for identifying homogeneous 

subgroups (or clusters) of cases in a data set by creating a hierarchical cluster tree. 

Typically, cluster analysis involves three steps: 

1. Finding the similarity or dissimilarity between every pair of objects in the data 

set. This is usually done by calculating the Euclidian distance between every pair 

of objects, and generating a so-called distance or dissimilarity matrix. 

2. Grouping the objects into a binary, hierarchical cluster tree. Based on the 

dissimilarity matrix computed at step 1, the objects that are close together are 



paired into binary clusters. Then, the newly formed clusters are grouped into 

larger clusters until a hierarchical tree is formed with all objects in the data set. 

The tree diagram used to represent the results of a cluster analysis is called 

dendrogram. 

3. Determining the clusters generated at step 2 by detecting the natural groupings in 

the hierarchical tree or by forcing the grouping into an arbitrary number of 

clusters. 

Cluster analysis has been extensively used in the study of neural networks, 

especially with regard to the analysis of how networks form internal representations 

(Elman, 1990). In this thesis, cluster analysis is performed on the hidden activation 

vectors formed by the test items. This analysis is important because it can show the 

relationships among various internal representations of input stimuli, which may help at 

explaining the networks' reaction to those stimuli. For example, if a network's internal 

representations generated by certain input vectors cluster (or group) according to the 

hierarchical tree, one may conclude that there is a common pattern of network activity for 

those vectors (i.e., those input vectors are similar from the network's point of view). 

Alternatively, if several internal representations do not group, this may indicate that the 

network detected dissimilarities among the input vectors that generated those internal 

representations. 

2.2.2 Principal Component Analysis (PCA) 

PCA (also called Karhunen-Loeve transform, or Hotelling transform) is a 

statistical method for reducing the dimensionality of a data set, while retaining as much 



information as possible, by computing a compact and optimal description of the data 

(Flury, 1988; Jolliffe, 1986). 

PCA involves a mathematical technique that transforms a set of m correlated 

variables into a set of n uncorrelated variables, where, typically, n << m. The goal of 

PCA is to find a number of independent components10 (also known as principal 

components, or eigenvectors) that can explain the maximum amount of variation in the 

data set. The first principal component is the combination of variables that accounts for 

the greatest amount of variation in the data. The second principal component explains the 

next largest amount of variation that cannot be explained by the first component, etc. 

Jolliffe (1986) has proved that the representation generated by PCA is an optimal 

linear dimension reduction technique. The reduction in dimension is important because, 

besides decreasing the computational overhead and the noise, it allows a better 

visualization of the data, especially when n is small (less than 3). 

If the data set contains a significant amount of variation, the number of principal 

components generated by PCA can be high. However, there are methods to eliminate 

those principal components that do not account for much of the variance, such as the 

scree test" (Cattell, 1966), or by keeping only those components whose eigenvalues are 

greater than the average eigenvalue (Shultz & Bale, 2001). 

For several connectionist models that are analysed in this thesis, PCA reveals 

more than three principal components, even after applying the reduction techniques 

discussed above. In those cases, it is difficult to display all components on the same 

' O  There can be as many components as there are variables. 
" The scree test eliminates those components whose eigenvalues level out in the eigenvalue graph (i.e., 
they are close enough to zero that they can be ignored). 



graph. However, in each of those cases, I discovered that the first two principal 

components typically reveal the most important characteristics of the data. Also, the 

projections on the third and fourth components may reveal interesting characteristics 

(Altmann, 2002; Altmann & Dienes, 1999; Elman, 1999). Other combinations of 

principal components (e.g., the first and third components, the second and fourth 

components, etc) do not expose any new important features of the data. Based on these 

findings, in each of those situations, I have chosen to display a set of 2-dimensional 

graphs, where each graph contains the projections on only two principal components: the 

first graph projects the results of PCA on the first two principal components, whereas the 

second graph projects the results on the third and fourth components. 

PCA has been widely used in the analysis of neural networks in order to reduce 

the variability of the data being analysed. PCA is usually applied to the hidden 

activations of a neural network (Elman, 1989), or to the network contributions (Shultz & 

Elman, 1994; Shultz, Oshima-Takane, & Takane, 1995). As defined in (Sanger, 1989), 

contributions are the products between the hidden unit activations and the connection 

weights between the hidden units and the output units. Contributions are valuable in 

network analysis because they account for both hidden activations and connection 

weights, and can balance any extreme values for either connection weights or hidden 

activations. Contributions are also useful in the analysis of networks where hidden units 

are organized in such a way that the study of hidden activations alone is problematic. For 

example, in Shultz' model (1999), the cascade-correlation algorithm generates one unit 

on each hidden layer. The knowledge is distributed across many hidden layers, and there 

are connections that bypass some of the hidden units (the so-called cross-connections). In 



these situations, the analysis of network contributions may provide a more accurate 

picture regarding a network's behaviour. 

2.2.3 Connection Weight Analysis 

Not as widely used as other analyzing techniques, connection weight analysis may 

sometimes provide valuable information. Typically, the connection weights linking the 

output nodes to the units on the last hidden layer are studied, and certain roles for output 

units may be discovered. For example, by performing this kind of analysis, Shultz.& Bale 

(2001) discovered that the connection weights going into certain output nodes are similar 

to the connection weights going into another set of output nodes. This fact made them 

argue that those two sets of nodes represent the same entity12. 

2.2.4 Hidden Unit Activation Analysis 

The activations of hidden units may provide very valuable information with 

regard to how the networks internally represent the input stimuli. Because the number of 

hidden units is usually high (greater than 3), hidden activations are typically subjected to 

hierarchical cluster analysis (Elman, 1990), or PCA (Elman, 1989). By examining the 

hidden activations, one can discover important characteristics of a network, such as 

whether it forms clusters of representations for certain input stimuli (Elrnan, 1990), or 

whether the hidden units are sensitive to certain characteristics of the stimuli (Shultz & 

Bale, 2001). 

12 However, as argued later in the thesis, I believe that Shultz & Bale's argument is wrong. 
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2.3 Neural Network Simulators 

Most of the network simulations presented in this thesis have been performed 

with my own simulator called Virtual Neural Network Simulator (VNNS). The results 

were verified using Carnegie Mellon University's PDP++ 2.2 simulator (O'Reilly & 

Munakata, 2000) and Elman's TLearn software (Plunkett & Elman, 1997). Because of its 

very specific structure (i.e., simple recurrent network without hiddedcontext layers), the 

only instance where I have not used my own simulator was during the investigation of 

Negishi's model (1999). In that particular case, I have used Negishi's own simulator 

(Negishi, 1999). 

2.3.1 Virtual Neural Network Simulator (VNNS) 

This simulator is a C++, Windows-based system, which performs 

backpropagation training on both feed-forward neural networks, and simple recurrent 

networks. Additionally, VNNS implements the cascade-correlation algorithm (Fahlman 

& Lebiere, 1990). 

VNNS is highly parameterized, allowing for numerous alterations of training 

parameters such as learning rate, momentum, number of training epochs, distribution of 

initial weights (minimum and maximum values), initial activation of context units (for 

simple recurrent networks), etc., using a simple graphical interface. The input data is 

stored in external text files, one input item per line. VNNS reads the training and test data 

from those text files, and saves the results of training and test (including the activation 

values of all units after each training and test stimulus, the strength of all connection 

weights following training, output errors) onto text files. The names of the input and 

output files are also parameterized. 



Another important feature of VNNS is that it allows for running training 

simulations for any number of networks, in a sequential manner (i.e., batch simulations), 

without user intervention. The instructions for running the batch simulations are defined 

using a simple scripting language, and included in a text file. This text file is then loaded 

and executed by VNNS. 

For example, this is the script for running 8 different simulations of Elman's 

loadNet ("elman.net") 
for 8 cycles 

reset 
1oadTrPattern ("aba train50.pat") 
1oadTcPattern ("aba-teach50.~at") - 

train ("6") 
1oadTrPattern ("aba train96.patm) 
1oadTcPattern ("aba-tea~h96.~at") - 

train ("347") 
loadTestIn ("aba test.patm) 
1oadTestOut ("aba testout.patW) 
testAndSave ("ou&t.txt") 

end for 

where: 

loadNet: an instruction for loading the network's architecture from an external 

file. In this case, a file called "elman.netV contains the specifications of Elman's simple 

recurrent network (the number of input units, the number of hiddedactivation units, the 

number of output units, learning rate, momentum, initial weight limits). 

for 8 cycles: an instruction for running 8 different simulations (i.e., training of 8 

different networks). 



reset: initializes the network (connection weights, activations). 

1oadTrPattern: an instruction for loading the input training patterns from an 

external file. In the case of Elman's simulation, this instruction is called twice. Firstly, a 

file called "aba-train50.pat" containing 50,000 syllables (one syllable per line) used in 

the preliminary training phase is loaded. Following the pre-training phase, a file called 

"aba - train96.patV containing the ABA training patterns is loaded. 

1oadTcPattern: an instruction for loading the output (target) vectors for the 

training patterns fiom an external file. In this case, for the preliminary training phase, a 

file called "aba - teach50.patV containing all 50,000 target vectors (one vector per line) 

used in the pre-training phase is loaded. Following the pre-training phase, a file called 

"aba-teach96.patV containing the output (target) vectors for all ABA training patterns. 

train: instructs VNNS to train the network for a number of iterations. In Elman's 

case, it is called twice: once for the pre-training phase (6 iterations), and once for the 

training phase (347 iterations). 

1oadTestIn: an instructions for loading the input test patterns from an external file. 

In this case, a file called "aba - test.pat9' contains Elman's input test patterns. 

loadTestOut: an instruction for loading the output (target) test patterns fiom an 

external file. In this case, a file called "aba - testout.pat" contains Elman's output test 

patterns. 

testAndSave: instructs VNNS to run the test phase and then save the network's 

parameters (it saves the hidden activations for all training and test patterns, connection 

weights, output vectors). 



endfor: marks the end of the for cycle. 

I have used VNNS to simulate most of the simple recurrent networks discussed in 

this thesis, such as (Altmann, 2002; Altmann & Dienes, 1999; Chnstiansen & Curtin, 

1999; Elman, 1999; Shultz, 1999; Shultz & Bale, 2001). 

What prompted the creation of this simulator was the inability of the PDP++ 

software to deal with specific training techniques, such as the one employed by Elman 

(1999)13. Also, PDP++ is not able to simulate the cascade-correlation algorithm, which is 

used in two of the models discussed in this thesis: Shultz (1999), and Shultz & Bale 

(2001). However, whenever a connectionist model that I have been investigating could 

have been simulated by PDP++, the results reported by VNNS were verified against 

PDP++. There have been no statistically significant differences between the results 

reported by VNNS and those reported by PDP++. 

l 3  As mentioned later in the thesis, Elman (1999) does not update the connection weights for all training 
patterns. 



3 ELMAN'S MODEL 

Since the 1998 Marcus study on eliminative connectionist networks and their 

apparent inability to generalize outside the training space, Elman has tried to prove 

Marcus wrong in a series of studies (Elman, 1998, 1999, 2001; Seidenberg & Elman, 

1999). 

3.1 Network Architecture and Preliminaries 

In their original experiment on the ability of infants to differentiate between 

simple grammars, Marcus et al. (1 999) use novel stimuli during testing, and this prompts 

them to reiterate the theory that connectionist models will not be able to replicate their 

results (because, according to Marcus, connectionist models are not able to generalize 

outside the space of the training examples). However, shortly afterwards, Elman (Elman, 

1999; Seidenberg & Elman, 1999) presents a model that he believes represents a 

counterexample to Marcus et al.'s (1 999) claims: a simple recurrent network (SRN) with 

12 input units, 10 hidden units, and 2 output units (see Figure 2). 

When building his model, Elman makes an important assumption: he believes 

that, before their participation in Marcus et al.'s (1999) study, infants do experience 

familiarization to millions of words, and are "aware of the surrounding language's 

phonotactic regularities" (Elman, 1999). Based on this assumption, Elman argues that if 

connectionist models are to have any chance of success in replicating Marcus et al.'s 

results, they need to be presented with similar familiarization data. In Elman's view, this 



can be accomplished by a preliminary training process during which the network is 

exposed to a large number of words, intended to capture infants' prior experience. 

3.2 Input Representation 

The 12 input units of the network encode each word (2-letter syllable) that is 

presented to the network, based on the feature representation developed by Plunkett & 

Marchman (1993) for vowels and consonants (see Figure 7). The first 6 input units 

encode the consonant being presented, while the other 6 input units encode the vowel. 

Plunkett & Marchman represent each phoneme as a 6-bit vector having the following 

features : 

Type: Consonant or vowel (1 bit) 

Voicing: voiced or un-voiced (1 bit) 

Manner (2 bits) 

Place (2 bits) 

Examples of several input words based on Plunkett & Marchman's (1993) 

notation are displayed in Figure 7. If a phoneme has a certain feature, the vector elements 

associated to that feature are set to +l. Otherwise, they are set to -1. 

3.3 Training Procedure 

For the task of replicating Marcus et aL7s (1999) experiments, Elman trains the 

network in two phases. In the first phase (called preliminary training, or pre-training), he 

generates a corpus of 120 two-letter syllables (e.g., ba, po, je, etc; the first letter is a 

consonant and the second letter is a vowel), and then creates a sequence of 50,000 



syllables taken from the 120-syllable corpus. Each syllable from the sequence is 

presented to the input layer of the network, one at a time, and Elman pre-trains the 

network to distinguish whether two consecutive syllables in the 50,000-word sequence 

are identical or not. In this pre-training phase he only employs one of the two output 

units, the target outputs being 1 (when the current syllable is identical to the previous 

one), and 0 (when the syllables differ). With this process Elman intends to simulate the 

experience that infants have before participating in Marcus et al.'s study. 

Figure 7 Plunkett & Marchman's (1993) notation used in Elman's model. 

Following the pre-training phase, using a subset of 8 syllables from the 120- 

syllable corpus, Elman generates 32 sequences of syllables ("sentences") having the form 

ABA and ABB (16 ABA and 16 ABB sentences). For example, a few of the sentences 

used during training are: le di le, wi j e  wi, le di di, wi je  je. 

Elman presents each of these sentences to the network, in random order, one 

syllable at a time, and attempts to train the network to distinguish between the two 

grammars. In this phase, Elman employs only the second output unit (the one not used 



during pre-training), the target outputs being 0 in the case of ABA patterns, and 1 in the 

case of ABB patterns. The actual training (change of the connection weights) is done 

only after the last syllable in the sentence is presented. No training occurs immediately 

following the first two syllables of the sentence; only the activation changes. 

The reason for having different output units in the two training phases is that 

Elman relies on the output independence that presumably exists in networks trained with 

the backpropagation algorithm: because the pre-training phase is performed on an output 

unit that is different from the output unit used during subsequent training and testing, the 

pre-training does not change the connection weights between the hidden layer and the 

second output unit. Therefore, with respect to the second phase of training, all input 

stimuli are theoretically novel. However, even though the output connection weights are 

not directly affected by the pre-training phase, the network still embeds knowledge of all 

input stimuli in its hidden layer activations and connection weights between the input and 

hidden layers. This means that the pre-training phase indirectly affects the activation of 

the second output unit. 

It is noteworthy that in the case of Elman's network, all input nodes are trained 

(because of the distributed representation). Therefore, the first interpretation of Marcus' 

definition of generalization outside the training space does not apply (since there are no 

entirely untrained nodes). As mentioned in section 3.5 below (Marcus' Evaluation), 

Marcus does not even question the ability of this network to generalize outside the 

training space, because he claims that Elman7s model is not an example of an eliminative 

connectionist network. Instead, he argues that it is an implementational model. 



3.4 Testing and Results 

For testing, Elman generates four sentences, two of them having the form ABA, 

and the other two ABB. The syllables used in these test sentences are novel with respect 

to the second training phase, but they are not completely novel to the network. They are 

part of the initial 120-syllable corpus presented during pre-training. 

Table 1 shows Elman's results. He apparently demonstrates that his model is 

indeed able to do the same kind of discrimination as infants. At a closer look, however, 

this model's performance is not as good as Elman claims. 

Table 1 Elman's results (Elman, 1999; Seidenberg & Elman, 1999) 

Test stimuli I Network response I Target 

3.5 Marcus' Evaluation 

In his evaluation of this model, Marcus does not question the actual results 

reported by Elman (Elman, 1999; Seidenberg & Elman, 1999). Instead, Marcus argues 

that the reason for Elman's "success" is the fact that the model implements a symbolic 

mechanism. 

ABB 

As mentioned earlier, Elman employs a preliminary training phase in order to 

simulate the experience that infants have prior to their participation in the Marcus et al.'s 

(1999) experiment. During this preliminary phase, Elman trains the network to 

distinguish whether or not two consecutive input stimuli are identical. To Marcus, what 

ba po po 
ko ga ga 

0.853 
0.622 

1 
1 



Elman does is equivalent to having an external supervisor that teaches the network to 

apply a rule of the form "for all [adjacent] syllables x, y, if x = y, then output 1 else 

output 0" (Marcus, 2001). Since the existence of the external supervisor that induces this 

relation between variables seems to be the reason for the apparent success of the model, 

Marcus argues that Elman's network is not an example of eliminative connectionism, but 

a purely implementational connectionist model. According to Marcus, the supervisor of 

Elman's model may very well make use of abstract relations between variables (i.e., 

algebraic rules), which are purely symbolic, and these make the entire system, including 

the supervisor, a symbol manipulator, i.e., the system implements a symbolic model by 

incorporating the capacity to instantiate variables with instances and to manipulate the 

instances of those variables. 

In this argument, Marcus uses the notions "variables" and "symbols". It is 

certainly possible to define the term "symbol" or "variable" in such a way that all 

connectionist models make use of them. For instance, one of the definitions Marcus uses 

for symbols (Marcus, 2001) is that they are context-independent representations of a 

category (e.g., CATS, DOGS, etc) or individuals (e.g., Felix, Fido, etc). Based on this 

definition, according to Marcus, any neural network that employs the same set of input 

units to represent a certain item, regardless of context, makes use of symbols (for 

example, the word cat is always represented by the same set of input units, regardless of 

its position within a sentence). Taking this argument even further, Marcus considers that 

in the case of Elman's simple recurrent network, all input items represent instances of the 

same variable, called current-word (or current-syllable). 



Although I find Marcus' definition of the term "variable" to be tendentious, as 

Marcus argues, the heart of the matter is not whether a system is presented with context- 

independent representations that could be viewed as symbols or variables, but whether 

that system effectively implements operations (e.g., variable binding) over those 

representations. In the case of Elman's network, it is clear that the existence of the 

external supervisor that may implement an algebraic rule (as Marcus argues, Elman does 

not prove that the external supervisor does not implement an operation over variables) 

may entail that the entire model implements that rule. I will go even further, suggesting 

that, during the second phase of training, the external supervisor also implements a rule 

of the form: given three consecutive syllables ("variables") x, y, and z, if x = z z y, then 

output 0, else if x z y = z, then output 1. These rules do exist in the system, and they 

appear to be enforced by the external supervisor, rather than being implicitly learned by 

the network. These explicit rules seem to be necessary for the success of Elman's 

network. 

3.6 Personal Investigation 

Firstly, I would like to emphasize that Elman's simulation differs from Marcus et 

~ 1 , ' s  experiment (1999) in a few major aspects: 

The pre-training phase. It is hard to believe that the infants in the Marcus et al.'s 

(1999) study never heard the individual test syllables before participating in the 

experiment. Therefore, I think Elman is right in attempting to approximate this prior 

experience in his experiment. However, the way Elman did it (by training the network to 

distinguish whether or not two consecutive syllables are identical) is questionable. If 7- 



month-old infants know most of the words used in the Marcus et al.'s experiment, it is 

highly unlikely that this knowledge is acquired in terms of similarity between consecutive 

syllables. At the same time, Elman has not proved that the so-called external supervisor 

can be implicitly implemented in eliminative networks. 

The network is trained and tested on both grammars at the same time. Marcus et 

al.'s experiment is different: the infants are habituated with sentences constructed with 

only one of the two grammars, and afterwards they are presented with novel sequences of 

syllables constructed with both grammars. It is arguable whether the infants' task is any 

easier than the task performed by Elman's network, but, in either case, this important 

difference makes the outcome of Elman's simulation scarcely significant with regard to 

the infants' reported behaviour14. 

Secondly, even in the context of Elman's experiment, after further investigation, 

the reported results proved to be weak. In recent work (Vilcu & Hadley, 2001), we 

investigated Elman's study, and discovered that, in general, his model does not perform 

as well as Elman (Elman, 1999; Seidenberg & Elman, 1999) claims. 

3.6.1 Simulation of Marcus et aL's (1999) experiments 

The performance of SRNs (and, in general, any network using the 

backpropagation algorithm) is influenced by several training parameters, such as initial 

weights, learning rate, momentum, etc. Usually, the initialization of weights is performed 

randomly and if training parameters are not chosen properly (especially the learning rate), 

the network may end up in a region of local minimum of the error function. One way to 

l4  However, theoretically, if we ignored the other flaws of Elman's model, his experiment would rehte 
Marcus et al.'s theoretical arguments that no eliminative connectionist model is able to differentiate 
between novel grammatical structures (i.e., generalize outside the training space). 



reduce this liability is to perform a batch experiment, i.e., test the network with a large 

number of different weight initializations and training parameters. Another advantage of 

this approach is that following the batch sessions we have a more precise and statistically 

significant picture of the behaviour of the networks, and we also learn whether or not the 

results are generated fortuitously. 

In (Vilcu & Hadley, 2001), we conducted three different batch sessions on 

Elman's model, using at least 64 networks in each batch. In the first batch session, we 

used the same training and test stimuli that were employed by Elman (Elman, 1999; 

Seidenberg & Elman, 1999). During this first simulation, we noticed that even though 

there is a high degree of overlap among the training patterns (out of 12 bits, only 3 to 4 

bits are different), the average distance15 between the test and training patterns is much 

higher (6 to 7 bits are different). Since, in our view, the results of this simulation failed to 

prove Elman's strong claims (see Table 2 for the results of this simulation), in the second 

batch session we generated different training and test corpora, in an attempt to make 

those corpora more uniform. Therefore, we manually crafted all training and test stimuli 

such that the average distance among training patterns (4 to 6 bits) is closer to the average 

distance between the training and test patterns (6 to 7 bits). Finally, in the third batch 

session, we generated completely non-overlapping training and test patterns (using 

localist input representation). 

The distance between two vectors is given by the number of vector elements (i.e., bits) by which the 
vectors differ. 



Table 2 Percentage of the 64 trained networks that have good results during Elman's simulation, 
according to our evaluation criterion (Vilcu & Hadley, 2001) 

Batch session 

1 

Each network in all three-batch sessions had a different weight initialization, and 

Percentage of the 64 trained networks that have 
good results (%) 

(training and test corpora are similar 
to Elman's, 1999) 

2 
(input patterns are uniformly 

distributed between training and 
testing, to minimize the differences 

between the two corpora) 
3 

(no overlat, among intmt ~atterns) 

we generated at least 64 separate trained networks. Otherwise, our experiments were 

3 6 

66 

11 

conducted in the same manner as Elman's, i.e., we used the same network structure (12 

input units, 10 hiddenlcontext units, and 2 output units), and we followed the same 

training procedure (starting with pre-training using a 50,000-syllable corpus, then training 

using thirty-two 3-syllable sentences equally generated with ABA and ABB grammars, 

and finishing with the test phase involving 2 ABA, and 2 ABB novel sentences). We 

evaluated the networks' performance with a very lenient criterion, namely that all test 

sentences must be recognized with at least 50% accuracy16. The percentage of trained 

networks that yield good results according to this criterion is shown in Table 2. We 

simulated the model with both Elman's TLearn neural network simulator, and my own 

l6 Since the network's target output is 0 for ABA sentences and 1 for ABB sentences, we considered that 
the network produced a good result when both ABA test sentences generated a network output between 0 
and 0.5, and both ABB test sentences produced an output between 0.5 and 1. We also used other, less- 
lenient criterion (e.g., three of the four test sentences are recognized with 65% accuracy, and only one is 
recognized with 50% accuracy), and then the results were much weaker (less than 10% of the trained 
networks generated good results). 



network simulator (VNNS). There were no statistically significant differences between 

the results produced by each simulator. 

Our results show that Elman's initial claims that his model demonstrates "the 

ability to generalize a pattern beyond the specific stimuli which gave rise to that 

generalization" (Elman, 1999) are somewhat overstated. Granted, there is a certain 

tendency for networks to respond meaningfully, rather than randomly, to the input 

stimuli, but Elman's reported result is isolated. The extensive experiments reported in 

(Vilcu & Hadley, 2001) cast serious doubt upon Elman's arguments and the robustness of 

his result. The aspect regarding robustness is very important because there is a general 

consensus that learning of language in humans is a robust process. Therefore, all 

cognitive architectures that simulate language learning need to demonstrate similar levels 

of reliability. 

3.6.2 Simulation of Gomez & Gerken's (1999) experiments 

Establishing the limited capabilities of Elman's model with regard to replicating 

Marcus et al.'s (1999) experiment, the next step would be to discover in which degree 

this model is able to differentiate between more complex grammars, such as the ones 

employed in the Gomez & Gerken's (1999) experiment. Using exactly the training and 

test stimuli employed by Gomez & Gerken, I repeated their fourth experiment17 on a 

group of 32 Elman networks. None of the 32 networks correctly discriminates between 

grammatical and ungrammatical test stimuli. A good result is considered whenever the 

activation value of the second output unit (the one that is trained to output 0 for 

l7 The fourth experiment involves two different grammars (Figures 5 and 6). Test sentences use a novel 
vocabulary. 



grammatical sentences and 1 for ungrammatical ones) is less than 0.5 at the end of each 

of the 10 test grammatical sentences, and greater than 0.5 for each of the 10 

ungrammatical test sentences. Based on these results, it is clear that the model fails to 

learn more complex grammars1 

Following these latest sets of experiments, the conclusion is that Elman's model 

not only lacks robustness and generalization abilities, but also its design is somewhat 

unconvincing. Elman's pre-training procedure is implausible, because it is unlikely that 

infants acquire their knowledge based on similarities between consecutive words. In 

addition, Elman's training process is substantially different than Marcus et al.'s (1999)' 

because he trains the model on both grammars at the same time. I was not able to 

significantly replicate his reported result, and the network was unable to differentiate 

between both complex and simple grammars. 

3.7 Knowledge Representation Analysis 

In order to investigate the causes for this particular behaviour of Elman's 

network, I performed several knowledge representation analyses involving hidden 

activation vectors, and network contributions (products between hidden activations and 

connection weights). The data has been subjected to both Principal Component Analysis 

(PCA) and hierarchical clustering. Unless specified otherwise, for each network that is 

part of these analyses, the hidden activations were collected at the end of each training or 

test sentence, in order to capture the network's response to the entire sentence. 

l8 The simulations of this experiment were performed with my VNNS simulator. 
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3.7.1 Principal component analysis (PCA) 

For one of Elman's networks trained with both ABA and ABB patterns in order to 

simulate Marcus et al.'s (1999) study, performing PCA on the hidden activation vectors 

generated by the training patterns reveals four principal components. They account for 

about 95% of the variation existing in the data set. Figure 8 displays the projections of 

hidden activations onto the first two principal components, along with the input words 

(syllables) that generate those activations (i.e., the words that appear on the third position 

of each training sentence). Along the first principal component (which accounts for about 

44% of the variation), there is a clear demarcation between the internal representations 

formed by the words that end in "e" and the words that end in "i". Therefore, the first 

principal component reflects the separation between the two (and only) vowels that 

appear in the training set, which means that the network's primary task is to separate the 

input words based on their vowels. The second principal component (which accounts for 

about 25% of the variation) reflects the difference in the consonant values existing in the 

training set (see Figure 8). The demarcation is not as evident as in the case of the first 

principal component. However, when projected on the second principal component, the 

hidden activations tend to form several groups, depending on the type of consonants ("d", 

"j", "l", and "w") that exist in the last words of each training sentence. The words that 

start with "d" tend to form similar representations as the words that start with "j" and "l", 

reflecting the fact that the input representations of the " d  and "j" letters, and "d" and "l", 

respectively, differ in only one bit. On the other hand, with regard to the secondprincipal 

component, the representations of the words that start with "w" are relatively separate 

from the representations of the words that start with "d", regardless of the vowels that 



appear in those words, reflecting the fact that there are many differences between the 

input representations of those two consonants. 

ABA 
o ABB 

wia , 9 
w1 W1 

component I 

Figure 8 Projections of hidden activations onto the first two principal components, at the end of 
each training sentence (the last syllables for both ABA and ABB sentences are shown). 
The hidden activations separate based on the vowels that appear in the last syllables of 
each training sentence (along the first principal component), and based on the consonants 
that appear in those syllables (along the second principal component). 

When projecting the hidden activations onto the third and fourth principal 

components (which account for about 15% and 11% of the variation, respectively), two 

slightly separated clusters are formed: the hidden activations generated by ABA words 

are somewhat separated from the hidden activations generated by ABB words (see Figure 

9). However, the two clusters are not very well formed, and are not completely distinctive 

(the internal representations of about 4 of the 16 input patterns in each condition overlap), 



reflecting the fact that the network does not thoroughly succeed in separating the two 

categories of training sentences. 

-0.8 

component 3 

Figure 9 Projections of hidden activations onto the third and fourth principal components a t  the 
end of each training and test sentence (both ABA and ABB sentences are shown). 
Approximately 25% of the internal representations formed by the ABA training patterns 
overlap with those formed by the ABB training patterns. The internal representations of 
the ABA and ABB test patterns are very close to each other, and this makes their 
separation very difficult. 

In addition to the fact that the network is not able to completely separate the 

internal representations formed by the ABA training sentences from those formed by the 

ABB sentences, according to Figure 9, the network has problems separating the test 

representations as well. Indeed, the internal representations formed by all four-test 



sentences are in-between the training clusters, and, also, are very close to each other. 

Therefore, it is very difficult for the network to categorize the test patterns based on the 

proximity of their internal representations to the existing (training) clusters. This may 

explain why many networks fail in distinguishing the two types of grammatical 

sentences. Also, the fact that only 26% of the network resources (the third and fourth 

principal components) are allocated to separating the two types of input patterns indicates 

that this is not the network's main task. According to PCA of hidden activations, the 

network is mostly concerned with separating the various consonants and vowels whch 

are present in the training set (according to Figure 8, 70% of the network resources are 

allocated to identifying the training consonants and vowels). In order to robustly 

generalize to novel input, the network's main objective should be the separation of the 

two types of grammatical structures. This could explain this model's inability to 

consistently distinguish between the two grammars, as shown by my numerous 

experimental results on this model19. 

A similar conclusion can be drawn from the analysis of network contributions 

(based on the product between hidden activations and output weights). PCA of these 

contributions reveals two principal components. The projection of contributions onto the 

first and second principal components contains two somewhat separated clusters (see 

Figure 10). One cluster is formed by the network contributions produced by ABA 

patterns, whereas the other one is formed by the network contributions produced by ABB 

patterns. However, the two clusters do intersect (about 2 of the 16 contributions in each 

l9 It is noteworthy that more training does not improve this model's ability to robustly differentiate between 
the two types of grammatical patterns. I experimented with various numbers of training iterations, and 
discovered that the performance of this model does not improve when increasing the number of training 
iterations. 



training condition intersect), which means that the network succeeds only partially in 

separating the two categories of training sentences (ABA vs. ABB). During testing, the 

network may classify the test stimuli to either one of the two grammars, depending on 

which cluster the test representations are closer to. As shown in Figure 10, the network 

contributions produced by Elman's test stimuli are located exactly at the intersection 

between the two training clusters, making the separation of test stimuli very difficult and 

somewhat arbitrary. 

component 1 

Figure 10 Projections of network contributions onto the first two principal components during 
training and testing (both ABA vs. ABB patterns are shown). About 12.5% of the 
network contributions formed by the ABA training sentences overlap with those formed 
by the ABA training sentences. The network contributions formed by the test patterns in 
each condition are very difficult to separate. 



Based on the analysis performed up to this point, we would expect the network's 

performance to deteriorate even more when using more complex grammars (e.g., Gomez 

& Gerken's grammars). If in the simple case (ABA vs. ABB) there is a certain tendency 

of the network to form some meaningful internal representations during training 

(according to Figures 8, 9, 1 O), this tendency is completely lost when dealing with more 

complex grammars (see Figures 11 and 12). The internal representations formed during 

training with Gomez & Gerken grammars (1999) do not have any coherence with regard 

to the first four principal components produced by the PCA of hidden activations (the 

four principal components account for about 95% of the variation). 

component 1 
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Figure 11 Projections of hidden activation onto the first two principal components (Gomez & 
Gerken grammars). There is no meaningful separation among the internal 
representations formed by grammatical and ungrammatical training patterns. 
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Figures 11 and 12 display the projections of internal representations onto the first 

four principal components at the end of each training sentence formed by Gomez & 

Gerken grammars. Figure 11 also shows the input words that generate those 

representations (i.e., the words that appear on the last position of each sentence). There is 

no meaningful separation among the internal representations of various training patterns 

with regard to vowels, consonants, groups of words, etc., or between patterns constructed 

with one grammar or the other. The internal representations formed by the network at the 

end of each training sentence are quite unreliable, and this may explain why the network 

fails to differentiate between more complex grammars. 

component 3 

Grammatical 
Non-Grammatical 

Figure 12 Projectio~is of contributions onto the third and fourth principal components (Gomez & 
Gerken grammars). There is a high degree of overlap behveen the network contributions 
formed by grammatical patterns and those formed by ungrammatical patterns. 



3.7.2 Hierarchical clustering 

In order to show how Elman's model groups the test patterns, a cluster analysis 

has been performed on the hidden activations generated at the end of each test sentence 

on 8 separate networks trained with both ABA and ABB patterns. Because, originally, 

there are only 2 ABA and 2 ABB test sentences, to increase the statistical significance of 

this analysis, 6 new test sentences have been generated in each condition. The new test 

sentences were formed with words that did not occur in the training set (but they were 

part of the preliminary training corpus). Figures 13-20 display the results of the cluster 

analysis performed on 16 hidden activation vectors, generated at the end of 8 ABA and 8 

ABB test sentences, for 8 different networks. Since I am mostly interested in finding 

whether the networks can group the hidden activations into two clusters (ABA vs. ABB), 

I forced each cluster analysis to create two groups. In two different colours, Figures 13- 

20 display how the networks associate each hidden activation vector to one of the two 

clusters. As shown in Figures 13-20, none of the 8 networks is able to correctly separate 

all 16-test stimuli into two groups. There is an important level of overlap (see Figures 13- 

20 for details) between the hidden activations formed by ABA and ABB test patterns, and 

this confirms the previous argument that the model is unable to robustly separate the test 

stimuli. 

The following 8 graphs (Figures 13 to 20) display the results of cluster analysis 

for 8 different networks (denoted network #I to network #8). 



Figure 13 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8.4BB test sentences for network #1 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 (blue) there is one ABA and one ABB 

' 

sentence (50% ABA), whereas in cluster 2 (red) there are 7 ABA and 7 ABB sentences 
(50% ABA). 



Figure 14 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for network #2 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 (blue) there are 5 ABA and 7 ABB 
sentences (42% ABA), whereas in cluster 2 (red) there are 3 ABA and 1 ABB sentence 
(75% ABA). 



Figure 15 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for network #3 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 (blue) there are 2 AI3A and 2 ABB 
sentences (50% ABA), whereas in cluster 2 (red) there are 6 ABA and 6 ABB sentences 
(50% ABA). 



Figure 16 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for nehvork #4 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 (blue) there are 6 ABA and 6 ABB 
sentences (50% M A ) ,  whereas in cluster 2 (red) there are 2 ABA and 2 ABB sentences 
(50% ABA). 



Figure 17 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for nehvork #5 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 there is only 1 ABB sentence (100% 
ABB), whereas in cluster 2 (red) there are 8 ABA and 7 ABB sentences (47% ABB). 



Figure 18 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for network #6 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 (blue) there are 3 ABA and 2 ABB 
sentences (60% ABA), whereas in cluster 2 (red) there are 5 ABA and 6 ABB sentences 
(45% ABA). 



Figure 19 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for network #7 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 there is only 1 ABA sentence (100% 
ABA), whereas in cluster 2 (red) there are 7 ABA and 8 ABB sentences (47% ABA). 



Figure 20 The results of cluster analysis performed on 16 hidden activation vectors at the end of 8 
ABA and 8 ABB test sentences for network #8 (the horizontal values represent the 
Euclidian distances between vectors). In cluster 1 (blue) there is 1 ABA and 1 ABB 
sentence (50% ABA), whereas in cluster 2 (red) there are 7 ABA and 7 ABB sentences 
(50% ABA). 

In order to see how this connectionist model groups the internal representations 

during testing with Gomez & Gerken's (1999) grammars, a cluster analysis has been 

performed on 20 hidden activation vectors formed at the end of 10 grammatical and 10 

ungrammatical test sentences. Since I am mostly interested in finding whether the 

network is able to cluster the hidden activations into two groups (grammatical vs. 

ungrammatical), Figure 21 displays, in two different colours, the results of the cluster 

analysis, along with information regarding how the network generates the two clusters 

and how it assigns each hidden activation vector to one of the two clusters. As seen in 

Figure 21, there is a very high level of overlap between hidden activations formed by 



grammatical and ungrammatical test sentences, confirming that the network has 

difficulties distinguishing between the two categories of sentences. 

Figure 21 The results of binary cluster analysis on 20 hidden activation vectors formed at the end of 
10 grammatical (Gramm-1 to Gramm-10) and 10 ungrammatical (Ungramm-1 to 
Ungramm-10) test sentences for one network trained on Gomez & Gerken's grammars 
(the values on the horizontal line represent the Euclidian distances between vectors). In 
cluster 1 (blue) there are 3 grammatical and 4 ungrammatical sentences (43% 
grammatical), whereas in cluster 2 (red) there are 7 grammatical and 6 ungrammatical 
sentences (54% grammatical). 

According to Figure 2 1, the way the network groups the internal representations is 

rather arbitrary. For instance, in the case of cluster 1 (blue), the internal representation 

formed by the second ungrammatical test sentence (Ungramm-2) is very close to the 

internal representations of 3 other ungrammatical sentences (Ungramm-4, Ungrarnrn- 10, 

and Ungrarnm-8), but also groups with those formed by grammatical sentences Grstmm- 

1, Gramm-5, and Gramm-8. In cluster 2 (red) there is also a great level of overlap. The 



subgroup formed by G r a m - 4  and Gramm-9 firstly clusters with the subgroup formed by 

ungrammatical sentences Ungramm-5, Ungramm-9, and Ungramm-1 1 before clustering 

with Gramm-6, Gram-10,  and Gramm-7. Also, the grammatical subgroup G r a m - 2  

and G r a m - 3  clusters with the ungrammatical subgroup Ungramm-3, Ungramm-7, and 

Ungramm-6. 



4 SHULTZ', AND SHULTZ & BALE'S MODELS 

Shultz' (1999), and Shultz & Bale's (2001) simulations employ an encoder 

version of the cascade-correlation learning algorithm. Shultz & Bale (2001) use the same 

model as in Shultz (1 999), the only difference being the input representation. 

4.1 Network Architecture and Preliminaries 

The cascade-correlation (Fahlman & Lebiere, 1990) is a generative algorithm in 

feed-forward networks. The initial network structure only contains the input and output 

layers, without any hidden units. New hidden units are added to the network during 

training, each hidden unit on a separate layer. During training, the learning algorithm uses 

a set of hidden units (called candidate units), which are not part of the network structure 

yet. At each time step, each candidate unit is temporarily added to the network, one at a 

time, and the correlation between the activation of the newly added candidate unit and the 

network error is computed. The candidate unit that has the highest correlation (i.e., the 

unit whose activation minimizes the network error the most among all other candidate 

units) is permanently added to the network. Each new unit resides on its own hidden 

layer, and is fully connected to all the input and all the existing hidden units (see Figure 

22). The network is trained to output the same pattern that is presented at input. 



Shultz & Bale (2001) maintain that this learning algorithm is "neurologically 

plausible"20, and may account for some cognitive processes, such as neurogenesis and 

synaptogenesis. T. R. Shultz and others have extensively used this algorithm in recent 

years, to simulate various aspects of cognitive development in children. In the present 

cases (Shultz, 1999; Shultz & Bale, 2001), they employ an "encoder" version of the 

cascade-correlation model. This version precludes direct input-output connections, in 

order to avoid generating networks simply having connections of weight 1 between the 

input and output layers (see Figure 22). 

Output layer 

Second hidden unit 

First hidden unit 

Input layer 

Figure 22 The cascade architecture, after adding 2 hidden units (not all the units from the input 
and output layers are shown) 

20 However, the error corrections and error measurement that the algorithm uses are hard to justify 
biologically. 
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4.2 Input Representation 

The novelty of Shultz & Bale's simulation (2001) over Shultz' (1999) lies in the 

input representation. In the newer study, they use a sonority scale to encode each 

phoneme of the data set. The choice of this encoding reflects the fact that sonority 

represents the "quality of vowel likeness" (Shultz & Bale, 200 l), i.e. some phonemes can 

be considered to be "more vowel-like" than others. The sonority scale ranges from "low 

vowels", such as /a/ and /ad that were assigned a sonority of +6.0, to "voiceless stops", 

such as /p/, /t/, and /k/ that were assigned a sonority of -6.0. For example, a few of the 2- 

letter words (syllables) used in the simulation and their encoding are: ga = -5.0 6.0, w o  

= -1 .O 5.0, ti = -6.0 4.0. 

A sentence consists of three such syllables, generated using one simple grammar 

(having the form ABA, ABB, or AAB). E.g.: ga ti ga = -5.0 6.0 -6.0 4.0 -5.0 6.0, li nu 

na = -1.0 4.0 -2.0 6.0 -2.0 6.0. 

In his earlier work, Shultz (1999) assigns an odd number between 1 and 7 to 

category "A" syllables, and an even number between 2 and 8 to category "B" syllables. 

Forexamp1e:gatiga = 1 2  1 , l i na l i  = 3  4 3 , g a t i t i  = 1 2 2 , g a n a n a =  1 4 4 . T h e  

syllables used during testing are represented by values interpolated within the training 

patterns. For example: w o  fe w o  = 2.5 3.5 2.5, de ko ko = 5.5 6.5 6.5. 

4.3 Training, Testing, and Results 

Similar to Marcus et al. (1999)' Shultz & Bales7 (2001) simulation also consisted 

of three experiments2', each experiment involving 16 separate networks (one network 

2' In Shultz (1999), the second experiment of Marcus et al. (1999) i s  not performed. 
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corresponds to one infant). The first two parts (experiments 1 and 2) involved training 

eight networks with 16 sentences generated by the ABA grammar, and another eight 

networks trained with 16 ABB sentences. All 16 networks were then tested with four 

novel sentences derived from both grammars (2 sentences with each grammar). Part three 

(experiment 3) was similar to the first two, except that the grammars involved were AAB 

and ABB. 

In contrast to Elman (Elman, 1999; Seidenberg & Elman, 1999), Shultz (1999) 

and Shultz & Bale (2001) do not pre-train their model. They start directly with the 

training of networks using exactly the stimuli employed in Marcus et al.'s (1999) 

experiments. The training sentences are presented one at a time, the networks having 

three input and three output units (one unit per syllable, in the case of the Shultz's model, 

1999), or six input and six output units (one unit for each phoneme in the sentence, in the 

case of the Shultz & Bale's model, 2001). Shultz (1999), and Shultz & Bale (2001) use 

the same training parameters as Fahlman & Lebiere's (1991) default values, except for a 

score-threshold of 0.8, and input-patience and output-patience of 1. The score-threshold 

represents the tolerated difference between target and actual outputs, and it was raised 

from 0.4 in order to reduce the crispness of the knowledge representations. The patience 

parameter represents the number of epochs allowed to pass with little increase in error 

reduction or correlation, before shifting from input phase to output phase, or v i~e-versa~~.  

- - - 

22 The cascade-correlation algorithm alternates between two phases: output phase and input phase. During 
the output phase, connection weights entering the output units are adjusted in order to minimize the 
network error. During the input phase, connection weights entering candidate-hidden units are adjusted in 
order to increase the correlation between network error and activation of the candidates. Shultz & Bale state 
that both patience parameters are reduced to 1 because the network performance does not improve much 
after it fails to improve on a single epoch. 



Initially, the networks do not have any hidden units, these units being added 

during training, according to the cascade-correlation algorithm (i.e., hidden units are 

added in order to minimize the network error at each time step). The networks are trained 

to output the same pattern that is presented at the input layer, and it is shown that, at the 

end of training, the algorithm optimally generates two hidden units. During testing, 

Shultz (1999), and Shultz & Bale (2001) measure the network error when presented with 

novel, familiar (having the same structure as the training grammar) and unfamiliar 

sentences, and report fairly good results. Table 3 displays the average network error, i.e., 

the average of the square root errors between the actual output and target vectors of each 

network, during the test phase, reported by Shultz (1 999) and Shultz & Bale (2001). 

Table 3 Average network error reported by Shultz (1999), and Shultz & Bale (2001) 

2 
ABA vs. ABB 

4.4 Marcus' Evaluation 

Apart from the input representation, Shultz' (1999) and Shultz & Bale's (2001) 

simulations are conducted in the same way as each other, and generate similar results. 

Marcus' opinion about the new Shultz & Bale's (2001) experiment is not known. 

However, Marcus did reply to the original Shultz' work (1999), and argued that the main 

reason for the success of that network is the fact that "Shultz uses each node as a variable 

Network error (Shultz 
& Bale, 2001) 

8.2 

14.5 

Experiment 

1 
ABA VS. ABB 

3 
AAB vs. ABB 

Familiar 
Unfamiliar 

Test vs. training 
sentences 
Familiar 

Unfamiliar 

Familiar 
Unfamiliar 

Network error 
(Shultz, 1 999) 

0.649 

1.577 
not available 
not available 

13.1 
15.8 

0.570 
1.491 

12.9 
15.3 



that represents a particular position in the sentence" (Marcus, 2001). In other words, to 

Marcus, Shultz' model (1999) is not an example of eliminative connectionism, but an 

illustration of how connectionist models can successfully implement classical algorithms, 

namely copying the contents of one variable to the contents of another. Specifically, 

Marcus claims that each of the 3 input/output nodes in Shultz' network represents a 

variable corresponding to the word position in the input sentence23, and the nodes get 

instantiated with different values, depending on the sentence being currently presented. 

Marcus argues that what the model may be doing is to copy the activations of the input 

layer (the contents of three independent variables) to the output layer, as in Figure 23. 

1'' word 2nd word 31d word 

Output layer 

Hidden layer 

Input layer 

1 word 2nd word 31d word 

Figure 23 A simplified version of Shultz' model (1999)' according to Marcus' conjecture (2001) 

23 The first node represents the variablefirst-word, the second node represents the variable second-word, 
while the third node represents the variable third-word. 
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More specifically: 

The activations of the first two input nodes are copied to two hidden units. 

The third input node develops an insignificant connection weight (close to 0) 

towards the units from the hidden layer, i.e., it does not participate in 

subsequent training and testing, and it does not have any influence on the 

network's results. 

The activation of the first hidden unit is equally copied to the first and third 

output units, while the activation of the second hidden unit is copied to the 

second output unit. The connection between the first hidden unit and the 

second output unit, and the connections between the second hidden unit and the 

first and third output units are not significant during training and testing. 

I agree that Shultz' model (1999) could work the way Marcus suggests, and it is 

possible that the way Shultz designed his network can lead to the conclusion that it 

manipulates variables. It is noteworthy that there is one major difference between how 

this model makes use of "variables" and Elman's (1999): if the training space of interest 

is the space of all sentences, and a "variable" is associated with each word of the 

sentence, then a triplet of such variables identifies a point in that space. Since the model 

receives the entire triplet of "variables" all at once, it would be possible to implicitly 

implement the kind of operation that Marcus suggests. However, as I argue below, I think 

Marcus may over-simplify this model, and unnecessarily reduce it to a classical 

implementation. I believe the model does not do variable binding. My personal 

investigation on this model reveals that the connection weights develop in a much more 



complex way that in Marcus' conjecture, and that the model does not do operations over 

variables. 

4.5 Personal Investigation 

I would like to emphasize that there are a few factors that render Shultz' (1999), 

and Shultz & Bale's (2001) studies better than Elman's (Elman, 1999; Seidenberg & 

Elman, 1999), with regard to replicating Marcus et al. 's experiments (1 999): 

There is not a preliminary training phase; the network performance is based 

entirely on input representation and training phases. From this point of view, 

the simulations performed by Shultz (1999) and Shultz & Bale (2001) follow 

Marcus et al.'s (1999) closer than Elman (Elman, 1999; Seidenberg & Elman, 

1999) does. 

They use a generative algorithm (which, arguably, generates the best possible 

network structure for the current task). 

Shultz & Bale (2001) perfom all three experiments of Marcus et al.'s (1999)' 

using a similar procedure as in Marcus et al.. Elman (Elman, 1999; Seidenberg 

& Elman, 1999) only performs experiment 2, and, as specified in the previous 

chapter, trains the network on both grammatical structures at the same time. 

The reported results are closer to the infants' results. 

4.5.1 Simulation of Marcus et aL's (1999) experiments 

In recent work (Vilcu & Hadley, 2003), we took a closer look at both Shultz' 

(1999), and Shultz & Bale's (2001) studies. We performed the same experiments that 



Shultz (1999), and Shultz & Bale (2001) did, using various input corpora. To simulate 

their studies, I implemented the original cascade-correlation algorithm (Fahlman & 

Lebiere, 1990) within VNNS, and made those changes dictated by Shultz (1999) and 

Shultz & Bale (2001) specific models: eliminated the direct input-output connections, 

modified the score-threshold to a value of 0.8, and input-patience and output-patience to 

1. When we employed the same input corpora as in Shultz (1999), and Shultz & Bale 

(2001), we were able to replicate their reported results. However, we noticed that the 

connection weights developed in a more complex way than in Marcus' conjecture (Figure 

23). The input nodes7 activation is not simply copied from one unit to another, and all the 

connection weights developed during training are significant, all nodes being fully 

connected and participating in training and testingz4. This means that Marcus7 suggestion 

of how this model behaves is mistaken. 

According to Marcus, Shultz uses a "one-node-per-variable encoding scheme" 

(Marcus, 2001), where each node corresponds to one "variable" (first word, second word, 

and third word), and the instances of those variables are copied to the hidden layer: the 

instance of variable "first word" is copied to the first hidden unit, whereas the instance of 

variable "second word" is copied to the second hidden unit. In other words, Marcus 

claims that there is a simple and straightforward mapping between the "variables" 

encoded on the input layer, and the "variables" encoded on the hidden layer. However, 

our investigation shows that that is not the case. First of all, the third input is fully 

connected to both hidden units, and secondly, the network's layers are connected in a 

24 As an example, the third input node has significantly weighted connections with the hidden units, and 
participates in all phases of training and testing. 
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complex way. We believe that there are no apparent mappings between instances of 

"variables" is Shultz' network. 

Table 4 The original and the new test patterns in experiment 1,2, and 3 when testing 
interpolation on Shultz & Bale's model (the underlined values are changed) 

Original test patterns 
Letter I Numerical 

New test   at terns 

representation 
wo fe wo 

Letter 
representation 
wo fe wo 
de ko de 
vo fe fe - 
de ko ko 

representation 
-1 5 -4 5 -1 5 

Numerical 
representation 

-1 5 -4 5 -1 5 

Although Shultz (1999) and Shultz & Bale (2001) come close to replicating the 

results reported by Marcus et al. (1999), these models have limited generalization 

capabilities. In Vilcu & Hadley (2003) we altered the training corpus (by changing as 

little as one test syllable), and discovered that the models fail to recognize the two 

syntactic structures when presented with certain kinds of novel sentences that were not 

part of the training examples. All these new simulations were performed on 32 different 

networks, and the average network error (the average of the root square errors between 

the actual network outputs and the target ones) was measured. In experiment 1, we 

initially replaced just one instance of the letter "w" (sonority of -1 .O) with "v" (sonority 



of -3.0) in one of the ABB test sentences (see Table 4). In experiments 2 and 3, we 

replaced two instances of the same letter "b" (sonority -5.0) with the letter "m" (sonority 

-2.0) in one ABA test sentence (experiment 2), and one AAB test sentence (experiment 

3). Table 4 shows these changes for all three experiments. 

Table 5 Average of network error in the three experiments of Shultz & Bale using altered test 
patterns (both the interpolation and extrapolation abilities are tested) 

Experiment 

3 I Grammatical I 14.56 136.89 

Test vs. 
training 

sentences 

1 

J I Unmammatical 1 14.57 I 129.09 

Grammatical 
Ungrammatical 

- 

2 

In experiment 1, the novel value -3.0 (letter "v", or "z") represents the sonority 

average of all the consonants that are presented to the input layer during training. It can 

be considered a "generic" consonant. If the model had genuinely learned the underlying 

structure of the input patterns, and if it was trained on ABA patterns, it should have no 

difficulty in distinguishing between the unchanged ABA test sentences and the novel 

ABB sentences that contained one new consonant. Since this new letter was novel to the 

network, one would expect the error to be higher for the novel ABB sentences that 

contained it, along with even better differentiation between the familiar ABA sentences 

and the unfamiliar ABB sentences. In reality, our results showed that the error for the 

unfamiliar ABB patterns was smaller than for the ABA patterns. Although changes to the 

interpolation) 
8.83 
8.46 

Ungrammatical 
Grammatical 

extrapolation) 
97.29 
89.83 

13.83 
14.7 1 

122.83 
144.82 



test corpus were minimal, and all new values were well within the training space, the 

model was not able to differentiate the two categories of sentences in any of the three 

experiments. Table 5 shows the results of our simulations on each of the three 

experiments using the altered test set. 

One may argue that the new ABB sentence (vofefe: -3.0 5.0 -4.0 5.0 -4.0 5.0) in 

experiment 1 is difficult to distinguish because the new "A" syllable is close to the "B" 

syllables. The new "A" syllable may be closer to the "B" syllables, but so are another two 

of the four test sentences in experiment 1, and all original test sentences in experiments 2 

and 3. The network should deal with these small phonetic differences the same way as the 

Marcus et al.'s infants do. Moreover, as described below, the model likewise failed to 

differentiate between the ABA and ABB sentences even when we made a different 

change, i.e., we replaced consonant "f7 (-4.0) with "v" (-3.0) in the first ABB test 

sentence: wo ve ve (-1.0 5.0 -3.0 5.0 -3.0 5.0) replaced wofefe (-1.0 5.0 -4.0 5.0 -4.0 5.0). 

To address another possible concern (i.e., that the previous experiment may still 

be unfair because only one ABB sentence has been altered, whereas none of the ABA test 

sentences were changed), we performed yet another experiment and changed one 

sentence in each of the two conditions by replacing consonant "f' (-4.0) with "v" (-3.0). 

The new sentences are wo ve wo (-1.0 5.0 -3.0 5.0 -1.0 5.0) and wo ve wo (-1.0 5.0 -3.0 

5.0 -3.0 5.0), which replace wofe wo and wo fefe, respectively. The new "A" and "B" 

syllables are not close any longer, and the change affected both categories of sentences. 

But the model still failed to differentiate between the two categories (the average network 

error was greater for familiar test sentences: 7.86 vs. 7.36 in the case of the unfamiliar 



test sentences). Note that at this point we had tested the network for experiment 1 with 

just as many novel sentences as Shultz & Bale (2001) had used. 

In experiments 2 and 3, one instance of the familiar consonant "b" (-5.0) was 

replaced with the unfamiliar consonant "m" (-2.0). Thus, instead of having ba po ba, we 

now have ma po ma in experiment 2, and ma ma po, instead of ba ba po, in experiment 3. 

Admittedly, we cannot say with certainty what infants would have done if they were 

presented with these new test sentences. However, to an adult the changes seem minimal, 

and it is entirely credible that infants would still have been able to differentiate between 

the familiar and unfamiliar sentences. In contrast, the networks exhibit a smaller error for 

unfamiliar test sentences (14.23 in experiment 2, and 14.96 in experiment 3) than for 

familiar ones (14.67 in experiment 2, and 15.12 in experiment 3). 

A similar result is obtained when additional novel test sentences are employed. 

For example, replacing consonant "b" with "m" in the first ABB test sentence (-2.0 6.0 - 

6.0 5.0 -6.0 5.0 instead of -5.0 6.0 -6.0 5.0 -6.0 5.0), and consonant "g" with "f" in the 

second ABNAAB test sentence (-6.0 5.0 -4.0 6.0 -6.0 5.0 instead of -6.0 5.0 -5.0 6.0 -6.0 

5.0) result in a smaller network error for unfamiliar test sentences than for familiar ones 

(14.93 vs. 15.47). Contrary to their claim, our results show that Shultz & Bale's model is 

not able to "generalize [...I to novel sentences within the range of the training patterns" 

(Shultz & Bale, 2001). Note that these results are statistically significant. We have 

employed as many novel sentences for experiments 2 and 3 as did Shultz & Bale. 

In order to test the extrapolation ability of the model, we picked 6 different values 

outside the sonority scale: 4 of these values were below -6.0 and were used as 

consonants, and the other 2 were greater than +6.0 and were used as vowels (see Table 



6). These values were used to create 4 test sentences (2 test sentences with the familiar 

grammar, and 2 test sentences with the unfamiliar grammar) for all three experiments. 

Note that the number of test sentences is the same as in the Shultz (1999) and Shultz & 

Bale (2001) cases. 

Table 6 Sonority values used when testing extrapolation in Shultz & Bale's (2001) model 

Category A 

For instance, an ABA and an ABB sentence would be: -10.0 8.0 -9.0 8.0 -10.0 

8.0, and -10.0 8.0 -9.0 8.0 -9.0 8.0. 

Category B 
Consonant 

- 10.0 

As shown in Table 5, the average network error for all three experiments was 

smaller in the unfamiliar case. Thus, the network's ability to extrapolate is apparently 

weak, and the model does not reliably "recognize syntactic differences in sentences 

containing words with sonorities outside of the training range" (Shultz & Bale, 2001). 

One may argue that the sonority values used in this experiment are rather far from 

the training values, and this could explain why the networks are not able to extrapolate 

well. However, if the model really had learned the grammar, and the hidden nodes 

genuinely had acted as "category" nodes for the "A" and "B" words as Shultz & Bale 

claim, then the network should not have difficulty in dealing with those "extreme" 

sonority values. 

Vowel 
8.0 

Vowel I Consonant 
8.0 -9.0 



4.5.2 The peaks vs. valleys experiment 

One of the most important particularities that we discovered for both Shultz' 

(1999) and Shultz & Bale's (2001) models is the fact that the networks are driven by the 

numerical shapes (contours) of the input patterns, rather than by their grammatical 

structure. For instance, in the case of Shultz' model (1999), we performed a simple 

experiment by training the networks with ABA patterns that have the following 

numerical contour: the numerical representation of all syllables that denote the "B" 

category are greater than the numerical representation of the syllables that symbolize the 

"A" category (i.e., they form a shape of a "peak"). We then performed two test 

simulations. In the first simulation, we generated two novel ABA test sentences, and two 

novel ABB test sentences. The two ABA test sentences had a familiar shape (peaks) (see 

Table 7). In the second test simulation, we generated two new ABA test sentences having 

an unfamiliar shape (valleys)25, and used the same ABB test sentences as in the first 

simulation (see Table 7). While the networks are able to correctly differentiate between 

sentences drawn from the two grammars when ABA test patterns have a familiar shape 

(i.e., peaks), the networks cannot classify the test sentences when the ABA test sentences 

have a different form (i.e., valleys) than the one used during training (i.e., peaks) (see 

Table 7). The same behaviour was noticed in the newer Shultz & Bale's (2001) model 

(see Table 8). This discovery is important because it undermines Shultz & Bale's claims 

that their model recognizes "a syntactic pattern", and has the "ability to learn multiple 

syntactic forms simultaneously" (Shultz & Bale, 2001). 

25 The valleys are opposite to peaks: the numerical representations of the "B" syllables are lower than the 
numerical representations of the "A" syllables. 



It is noteworthy that the number of test sentences used in these peaks vs. valleys 

experiments is the same as the number of test sentences employed by Shultz (1999), and 

Shultz & Bale (2001). 

Table 7 Average network error when testing with "peaks" and "valleys" on Shultz' (1999) model 

Exveriment 

Table 8 Average network error when testing with "peaks" and "valleys" on Shultz & Bale's 

Test vatterns I Network error 

Testing "peaks" 

Testing "valleys" 

Grammatical 

Ungrammatical 

Grammatical 

Ungrammatical 

Experiment 

Testing 
"peaks" 

6 7 6 
4 5 4 
7 6 6 
5 4 4 
7 6 7  
5 4 5 
7 6 6 
5 4 4  

Test patterns 
Grammatical 1 -5.0 5.0 -6.0 6.0 -5.0 5.0 

Grammatical 

1.21 

3.29 

4.55 

3.29 

Network error 
13.36 

Ungrammatical 

Testing 

4.5.3 Simulation of Gomez & Gerken's (1999) experiments 

To further prove the conclusion that this model cannot robustly learn "syntactic 

patterns" (Shultz & Bale, 2001), I tested it with more complex grammars, like those used 

by Gomez & Gerken (1 999) (see Figures 5 and 6). 

-5.0 5.0 -4.0 4.0 -4.0 4.0 
-6.0 6.0 -5.0 5.0 -6.0 6.0 

1 -5.0 5.0 -4.0 4.0 -5.0 5.0 / 
"valleys" I Ungrammatical 

As specified earlier, Gomez & Gerken (1 999) performed four experiments on 1 - 

year-old infants involving context-free grammars. They showed that infants acquired 

-4.0 4.0 -5.0 5.0 -4.0 4.0 
-6.0 6.0 -5.0 5.0 -5.0 5.0 

55.64 

47.07 

-6.0 6.0 -5.0 5.0 -5.0 5.0 
-5.0 5.0 -4.0 4.0 -4.0 4.0 

47.07 



specific information about the training grammar as demonstrated by their ability to 

discriminate new grammatical sentences from those with illegal endpoints (experiment 

I), or with internal pair-wise violations (experiments 2 and 3), and, most importantly, the 

infants were able to discriminate between novel grammatical and ungrammatical 

sentences that were entirely generated with a new vocabulary (experiment 4). Only the 

fourth experiment required infants to generalize beyond the training vocabulary. I 

performed all these four experiments on Shultz & Bale's model, using the same finite- 

state grammars as Gomez & Gerken (1999). However, because of the particularity of 

Shultz & Bale's network structure, which only allows input sentences of the same length, 

I used a structure of 12 input and 12 output units, which is suitable for input sentences of 

6 words (each word is a two-letter syllable). Since only a subset of Gomez & Gerken's 

input sentences have 6 words, I generated new 6-word sentences with the two 

The model managed to replicate the infants' results on the first three 

experiments (where it was not required to generalize outside the set of the training 

patterns), but failed on experiment 4 (where generalization beyond the training set was 

necessary). 

This demonstrates once again that Shultz & Bale's model is not able to respond 

correctly to more general or complex stimuli. Granted, the results reported by Shultz 

(1999), and Shultz & Bale (2001) do replicate the infants' results from Marcus et al.'s 

study (1999), and both models represent genuine connectionist implementations of the 

26 In the original Gomez & Gerken experiments, only 4 of the 10 input sentences generated with the first 
grammar (Figure 5), and 5 of the 10 input sentences generated with the second grammar (Figure 6) contain 
6 words (the other sentences contain 3,4, and 5 words). In the simulation of Gomez & Gerken experiments 
with Shultz & Bale's model, I added 6 new 6-word sentences formed with grammar #1, and 5 new 6-word 
sentences formed with grammar #2. My simulations thus use 10 6-word training sentences, 10 novel 6- 
word test sentences formed with the familiar grammar, and 10 6-word test sentences formed with the 
unfamiliar grammar. 



Marcus et al.'s work. I believe, however, that these models mostly (if not entirely) rely 

on non-essential characteristics of the input patterns (e.g., numerical shape), rather than 

their grammatical structure. The training algorithm is not strong enough and does not go 

deep enough in order to induce the learning of abstract categories that ensures a robust 

discrimination of the input patterns and also, very importantly, generalization to novel 

items. This conclusion has been proved during my knowledge representation analysis on 

this model. 

4.6 Knowledge Representation Analysis 

In order to explain the behaviour of their model, Shultz & Bale (2001) employ 

three different analysing techniques: connection weight analysis, principal component 

analysis (PCA) of contributions, and hidden unit activation analysis. 

4.6.1 Connection weight analysis 

Within this analysis, Shultz & Bale (2001) display the connection weights of one 

network following ABA training in experiment 1. In this training condition, the network 

generates two hidden units. Shultz & Bale found that the connection weights between the 

first hidden unit and those output units that correspond to the first and third words (the 

"A" words) of a sentence are very similar to each other, and, at the same time, are 

significantly higher than the connection weights between the same first hidden unit and 

those output units that correspond to the middle word (the "B" word). Also, Shultz & 

Bale found that the connection weights between the second hidden unit and those output 

units that correspond to the "B" words are significantly higher than the weights between 

the same second hidden unit and those output units that correspond to the "A" words. 



Based on these findings, Shultz & Bale claim that their model learns the duplicate-word 

category (i.e., the "A" word for ABA training) in the first hidden unit, and the single- 

word category (the "B" word) in the second hidden unit. 

Although the connection weights of the network shown by Shultz & Bale (2001) 

seem to indicate that the network may learn the category of the two types of words, I 

found that this is frequently not the case. In my peaks vs. valleys experiment, in more 

than 25% of the networks that I trained (5 out of 16 networks that were trained in the 

peaks vs. valleys experiment), the hidden nodes are not reliable category recognizers. 

Those networks develop connection weights that do not conform to the Shultz & Bale's 

account (see Table 9): there are no significant differences among connection weights for 

both the first and the second output units to indicate that the network learns the category 

of the two types of words. The connection weights shown in Table 9 pertain to one such 

network but are very similar among all five networks that exhibit this behaviour. 

4.6.2 PCA of contributions 

Table 9 The connection weights of a Shultz & Bale network trained in the peaks vs. valleys 
experiment 

For each input pattern, Shultz & Bale record the activations of both hidden nodes, 

and the connection weights between the hidden and output units (i.e., the output weights). 

Then, they compute the network contributions for each input pattern, which are the 
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products between hidden activations and output weights, and generate a so-called 

contribution matrix, where each row in the matrix represents the network contributions of 

one input vector. The contribution matrix is transformed to covariance form27 and 

principal component analysis (PCA) is performed on the covariance matrix. For one 

ABA-trained network in experiment 1, Shultz & Bale argue that PCA reveals two 

principal components: the first principal component represents the variation of 

contributions caused by the sonority sums (the arithmetic sum between the sonority 

values of consonants and vowels) of the single word-category (i.e., the "B" word), 

whereas the second component represents the variation of contributions caused by the 

sonority sums of the duplicate word-category (i.e., the "A" word). Based on these 

findings, Shultz & Bale claim that their model learns to encode the input stimuli as whole 

words (consonant-vowel combinations), rather than as separate, individual letters. Figure 

24 displays the contributions of a network trained in experiment 1, along with the 

sonority sums of both the "A" and "B" words that form the input sentences. 

27 The covariance matrix consists of the variances of contributions corresponding to each output unit, along 
the main diagonal, and the covariances between contributions corresponding to each pair of output units, in 
the other matrix positions. The variance of a set of values is the arithmetic average of the squared distance 
from the mean of those values, whereas covariance provides a measure of how strongly correlated two sets 
of values are. 
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Figure 24 Projections of network contributions onto the first two principal components of an ABA- 
trained network in experiment 1. The labels show the sonority sums of the A and B words 
which form the input patterns that generate these contributions. The figure indicates 
possible dependencies between network contributions and sonority sums of B words 
(along the first principal component), and between network contributions and sonority 
sums of A words (along the second principal component). 

According to Figure 24, as Shultz & Bale claim, it is possible to argue that the 

variation in network contributions is caused by the sonority sums of the input syllables. 

However, as shown in Figure 25 (which displays exactly the same network contributions, 

but shows just the sonority values of consonants contained in the "A" and "B" words that 

form the input sentences), it can be argued that the variations in network contributions are 

rather caused by the individual sonority values of the consonants that appear in the "A" 

and "B" words: the first principal component reflects the variation in contributions 

caused by the sonority values of consonants in the "B" words, whereas the second 

component reflects the variation in contributions caused by the sonority values of 

consonants in the "A" words. Apparently, because there is so little variation in the vowel 



representations (all vowels in the input set are represented by a sonority value of either 

4.0 or 6.0), they do not have a significant impact on the network contributions. 

Figur 
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*e 25 Projections of network contributions onto the first two principal components of an ABA- 
trained network in experiment 1. The labels show the sonority values of consonants in the 
A and B words that form the input patterns that generate these contributions. The figure 
indicates dependencies between network contributions and consonant values within B 
words (along the first principal component), and between network contributions and 
consonant values within A words (along the second principal component). 

Similarly, in experiments 2 and 3 (where the input stimuli have changed to 

eliminate the differences between phonetic features that occur in the first experiment), the 

variation in network contributions is again dictated by individual sonority values of 

consonants. Figures 26 and 27 display the same projections of contributions onto the first 

and second principal components of a network trained with ABA patterns in experiment 

2. The labels in Figure 26 show the sonority sums of the "A" and "B" words, whereas the 

labels in Figure 27 show the sonority values of the consonants contained in the "A" and 

"B" words. 
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Figure 26 Projections of network contributions onto the first two principal components of an ABA- 
trained network in experiment 2. The labels show the sonority sums of the A and B words 
which form the input patterns that generate these contributions. The figure indicates 
possible dependencies between network contributions and sonority sums of B words 
(along the first principal component), and between network contributions and sonority 
sums of A words (along the second principal component). 
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Figure 27 Projections of network contributions to the first two principal components of an ABA- 
trained network in experiment 2. The labels show the sonority values of consonants in the 
A and B words that form the input patterns that generate these contributions. The figure 
indicates dependencies between network contributions and consonant values within B 
words (along the first principal component), and between network contributions and 
consonant values within A words (along the second principal component). 
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According to Figure 26, there seems to be a tendency of contributions to form 

several clusters with regard to the sonority sums of "A" and "B" words: the first principal 

component reflects the variation caused by the sonority sums of "B" words, whereas the 

second principal component reflects the variation caused by the sonority sums of "A" 

words. Therefore, as Shultz & Bale argue, it is possible to infer that the variation in 

contributions is caused by sonority sums. However, based on Figure 27, in reality, the 

variation in contributions is dictated by the individual sonority values of consonants that 

occur in the "A" and "B" words: the first principal component reflects the variation 

caused by the sonority values of consonants in "B" words, whereas the second 



component reflects the variation caused by the sonority values of consonants in "A" 

words. The sonority values of vowels do not have a significant impact on the network 

contributions. It is the consonants that have the greatest influence on network 

contributions. This suggests that, contrary to Shultz & Bale's claims, the network does 

not learn to encode the input stimuli as whole syllables, but as separate, individual 

sonority values. 

4.6.3 Hidden unit activations 

The final analysis performed by Shultz & Bale (2001) involved the values of 

hidden activations. For a network trained with ABA patterns in experiment 1, and another 

network trained with ABB patterns in experiment 3, Shultz & Bale discovered a negative 

correlation between the activation of the first hidden unit and the sonority sums of the 

duplicate word ("A" words in ABA training, and "B" words in ABB training). At the 

same time, there is a positive correlation between the activation of the second hidden unit 

and the sonority sums of the single word ("B" words in ABA training, and "A" words in 

ABB training). Shultz & Bale claim that this is yet another proof that the first hidden unit 

learns to encode the sonority sum of the duplicate word, whereas the second hidden unit 

learns to encode the sonority sum of the single word. 
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Figure 28 The correlation between the sonority sums of A and B words and the hidden activations 
of an ABA-trained network in experiment 1. There seems to exist a negative correlation 
between the activations of the first hidden unit and the sonority sums of the A words, and 
a positive correlation between the activations of the second hidden unit and the sonority 
sums of the B words. 
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Figure 29 The correlation between the sonority values of the consonants in A and B words and the 
hidden activations of an ABA-trained network in experiment 1. There exists a negative 
correlation between the activations of the first hidden unit and the sonority values of the 
consonants in A words, and a positive correlation between the activations of the second 
hidden unit and the sonority values of the consonants in B words. 
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Figure 29 displays the relation between the same hidden activations and the sonority 

values of consonants contained in the input words. According to Figure 28, it can be 

argued that there is a positivelnegative correlation between hidden activations and the 

sonority sums of the input words. However, Figure 29 shows that these correlations are 

actually caused by the sonority values of the consonants that are contained in the input 

words. The sonority values of the vowels contained in the input words barely affect the 

correlation between the hidden activations and the input syllables (see Figure 30). It is the 

consonants that have the greatest influence on how the network's internal representations 

are generated. This suggests that, contrary to Shultz & Bale's claims, the network does 

not learn to encode the input stimuli as whole syllables (consonant-vowel pairs). Instead, 

the network encodes the separate, individual sonority values that appear in the input 

patterns. 

hidden acitvations #I hidden activations #2 

Figure 30 The correlation between the sonority values of the vowels in A and B words and the 
hidden unit activations of an ABA-trained network in experiment 1. There is no 
difference in the way the sonority values of the A and B vowels correlate with the hidden 
activations. 



5 ALTMANN & DIENES', AND ALTMANN'S MODELS 

Altmann & Dienes' (1999) work is based on a previous model of their own: 

Dienes, Altmann, & Gao (1999). That earlier model incorporates a modified simple 

recurrent network that can "transfer its knowledge of artificial grammars across domains" 

(Dienes, Altmann, & Gao, 1999). Later, Altrnann & Dienes (1999) adapt that model to 

simulate Marcus et al.'s (1999) experiments on infants. More recently, Altmann (2002) 

further refines Altmann & Dienes' (1 999) model by adding a preliminary training phase, 

and modifying the test procedure. 

5.1 Network Architecture and Preliminaries 

Training Domain Testing Domain Output layer 
f 

core weights 
Context layer I l  

Encoding layer 'T=? 
mapping weights / \ 

Figure 31 Altmann & Dienes' (1999) model: a SRN with an extra encoding layer 
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Altmann & Dienes' model employs a simple recurrent network with an additional 

layer of units between the input and hidden layers of the SRN. This additional layer is 

used to re-encode the input representations of two domains (the training and test 

domains). The function of this extra layer is to provide an abstract, common encoding of 

two input sets (see Figure 3 1). 

Connection weights between the encoding and hidden layers, as well as between 

the context and hidden units, are called "core weights"; they are frozen after the initial 

training. All other connection weights are called "mapping weights", and are allowed to 

change even during testing, while the second input set (the test domain) is learned. 

5.2 Training Procedure and Input Representation 

Training is performed using the back-propagation algorithm, similar to other 

simple recurrent networks. However, unlike other simple recurrent networks, this model 

contains one extra layer between the input and the hidden layers (the encoding layer). 

This new layer introduces another set of training weights (between the input and the 

encoding layers), which are also adjusted with the back-propagation algorithm. The 

initial value of all connection weights is chosen randomly from a uniform distribution 

between -0.5 and +0.5. All input vectors are completely orthogonal: just one input unit is 

active at any time, corresponding to a given syllable (localist representation). Each 

sentence consists of three syllables, created in conformity to ABA and ABB grammars. 

Sentences are presented to the network one syllable at a time, starting with the activation 

of a special "start" unit and concluding with the activation of the "end" unit. Therefore, if 

there are n syllables, the input layer will have n + 2 units. The input layer consists of two 

parts, corresponding to the two domains: the units that are part of the first domain are 



only activated during training (the domain delimited by the training syllables), while the 

input units that are part of the second domain are only activated during testing (this 

domain is delimited by the test syllables) (see Figure 3 1). The same pattern of units exists 

for the output layer as well. 

During training, the units in the first domain are activated (activation is set to 0.9 

for the unit that corresponds to the current syllable, all other units having an activation of 

0.1). The network is trained to predict the next syllable in the sentence. Therefore, the 

target activation on the output layer is 0.9 for the unit associated with the next syllable in 

the current sentence, and 0.1 for all other syllables. 

Altmann & Dienes (1 999) use this model to simulate Marcus et al. 's (1 999) study 

on infants. They train eight instances of this network on 16 sentences formed with the 

ABA grammar and eight other networks on 16 sentences formed with the ABB grammar. 

5.3 Testing and Results 

During testing, for each test stimulus, the "core weights" are frozen, and only the 

"mapping weights" are changed for a number of iterations, until the network has learned 

the encoding of the test item. The mapping weights start at arbitrary random values. After 

this additional learning process, all connection weights are finally frozen, and the 

network is tested on the current test pattern. The procedure is repeated for all patterns in 

the test set. Although this traininghesting procedure may seem biologically implausible, 

Almann & Dienes argue it mimics an adaptive learning mechanism, where the learning 

rate gradually decreases while the learning progresses. 



In order to support their assumption, Altmann & Dienes argue that it is generally 

believed that humans' ability to learn artificial grammars steadily improves over hours of 

exposure (Mathews et al., 1989), and therefore "it seems unlikely [humans] do 

spontaneously freeze their weights just due to the passage of a few minutes learning" 

(Dienes et al., 1999). Furthermore, Altmann & Dienes argue that the network is not able 

to generalize to novel items if the connection weights are not frozen. According to 

Altmann & Dienes, this inability is caused by the so-called catastrophic interference 

(McCloskey & Cohen, 1989), which, in essence, means that novel input causes the 

unlearning of previously learned items. They claim that catastrophic interference can be 

reduced by interleaving the learning of different items (Hetherington & Seidenberg, 

1989), and that the human brain may solve this problem by using two complementary 

systems (McClelland, McNaughton, & O'Reilly, 1995): neocortex and hippocampus. 

According to McClelland et al. (1995), the hippocampus "continually reinstates new and 

old memories so as to integrate them into the structured neocortical memory system" 

(Dienes et al., 1999). McClelland et a1 (1995) argue that the neocortical system is 

responsible for abstracting the common structure of a set of items, and, therefore, needs 

to be protected against catastrophic interference by interleaving the input items so that 

novel input does not cause the forgetting of previously learned input. Altmann & Dienes 

claim that they simulate the two systems of the brain within their simple recurrent 

network. Catastrophic interference is avoided by freezing the core weights (which 

resemble the neocortex) when the network is presented with novel items (the mapping 

weights resemble the hippocampus). This way, Altmann & Dienes argue that the 

previously learned items are not forgotten by the network during testing. 



In order to simulate Marcus et al.'s (1999) study, during testing, Altmann & 

Dienes present 2 ABA and 2 ABB test sentences to the network, in random order, using 

input nodes that were not used during the first phase of training. Altmann & Dienes 

measure their results by computing the cosine of the angle between the vector of the 

actual syllables in each position of the sentence, and the vector of predicted syllables in 

each position. Altmann & Dienes report that, for a learning rate of 0.5 and momentum of 

0.01, and 10 iterations around each test syllable, that angle is smaller for familiar 

sentences (test sentences that have the same form as the training patterns) than for 

unfamiliar ones, and the Euclidian distance between prediction and target is smaller for 

familiar sentences than for unfamiliar ones. Therefore, they claim that "like the infants 

studied by Marcus et al., our networks successfully discriminated between the test 

stimuli", and "the conclusions by Marcus et al. stated in the report are premature" 

(Altmann & Dienes, 1999). 

5.4 Marcus' Evaluation 

Despite this report, Marcus is not convinced that Altmann & Dienes' model is a 

counter-example to his claims. He sees three reasons why this model does not provide a 

correct account of his results: 

The interpretation of network outputs is questionable. Marcus believes that the 

network outcome is highly dependent on the way the interpretation is performed. 

According to Marcus, the most common way to interpret a connectionist model is in 

terms of "the most active output unit at any time" (Marcus, 1999), and he argues that if 

Altmann & Dienes' model is interpreted in this way, "one finds that the model does not 



learn the training grammar, but instead oscillates between (say) the ABA and ABB 

grammars" (Marcus, 1999). 

I agree that the way one interprets a connectionist model is subjective. However, I 

think that Marcus' concern is exaggerated. Although interpreting a connectionist model 

in terms of the most active output unit at any given moment is indeed very common, 

there are other ways to measure network's performance depending on the task being 

performed and on the output representation. Although computing the cosine of the angle 

between the actual and target vectors is less common, it has been used in other 

connectionist studies, and it does make sense in this classification task. The fact that 

Altmann & Dienes' evaluation method is not typical should not be an issue of concern. 

There exists an external mechanism that can freeze a subset of connection 

weights, while iterating through test items. Marcus argues that this technique is not 

generally used in connectionist simulations, limiting this model's generality and 

plausibility. He states "it is unclear what sort of neural system could implement this in the 

brief period of time which the infants have in our experiments" (Marcus, 1999). 

I agree that this issue is problematic. Altmann & Dienes want to simulate an 

adaptive learning technique, in which the learning rate decreases while training 

progresses. The adaptive technique is based on the assumption that human learning is a 

continuous and lengthy process, without any sudden freeze of neural connections. 

Nevertheless, the way Altmann & Dienes carry out this mechanism is questionable. I 

agree with Marcus that freezing only a subset of the connection weights, while others 

remain trainable, is arbitrary and not biologically plausible. Later, Altmann (2002) 

proposed a slightly changed version of the same model that eliminates the need for the 



partial freezing of the connection weights. However, as I argue below, this new model 

has its own problems. 

The model just maps the encoding of one set of words onto the encoding of 

another set of words. Marcus performed a simple experiment on Altmann & Dienes' 

model: he habituated the model on 16 ABA sentences, and then tested it on the novel 

sentence wo fe wo. Marcus noticed that after a few iterations, the model mapped wo and 

fe into two training syllables (ga and ti). Subsequently, he tested the same network on 

two other sentences: fe wo wo and fe wo fe. Marcus reports that, according to the 

technique used by Altmann & Dienes to measure the network's outputs, the angle 

between the target and prediction was smaller for fe wo wo than for fe wo fe, because the 

model was already familiarized with wo appearing as the third word in the sentence. In 

other words, the model incorrectly favoured a sentence generated with the unfamiliar 

grammar. In a subsequent experiment on infants (Marcus & Bandi Rao, 1999), Marcus 

showed that the infants actually looked longer at fe wo fe than fe wo wo, i.e., they 

correctly favoured the sentence generated with the familiar grammar. 

The point raised here by Marcus is very important, because it suggests that 

Altmann & Dienes' model is fundamentally flawed, and behaves differently than how the 

authors claim. My own investigation of this model proved that. 

5.5 Personal Investigation 

In recent work (Vilcu & Hadley, 2003), we performed the same kind of 

experiments as Altmann & Dienes (1999), using the same network architecture, training 

algorithm, and input data, on double the number of networks. We trained 16 networks 



with ABA sentences, and another 16 with ABB patterns. We used both our own simulator 

(VNNS), and the PDP++ neural network simulator. There are no significant differences 

between the results reported by VNNS and those reported by PDP++. 

We discovered that the model behaves inconsistently, and that the Euclidian 

distance between target and actual outputs is always smaller for ABA test sentences, 

regardless of the training grammar. I find this incompatible with Altmann & Dienes' 

claims that their network "can model aspects of Marcus et al.'s data" (Altmann & Dienes, 

1999). I also tried various other learning parameters (learning rate, momentum, number 

of iterations, initial weights), and even more complex grammars (I repeated all four 

experiments of Gomez & Gerken using the finite-state grammars showed in Figures 5 

and 6). In each case my results show that Altmann & Dienes' results are not at all robust. 

None of the sixteen separate networks that I trained in these conditions generated results 

compatible with Altmann & Dienes' statements; in each case, the networks were unable 

to differentiate between familiar and unfamiliar test sentences. Therefore, I believe that 

Altmann & Dienes' claim that "like the infants (...), our networks successfully 

discriminated between the test stimuli" (Altmann & Dienes, 1999) is not sufficiently 

demonstrated. As discussed later in this chapter, my knowledge representation analysis 

performed on Altman & Dienes' model shows that this network does not thoroughly 

learn the sequential structure of the input sentences. Instead, it extracts non-useful 

information, such as the difference among the middle words of each sentence, which does 

not help the network differentiate between the two grammatical structures. 



5.6 Altmann's Model 

More recently, Altmann (2002) employed a variation on the Altmann & Dienes' 

(1 999) experimental design. He made the following two changes to the original model: 

Eliminated the partial freezing of the connection weights during testing. 

Added a preliminary training phase. 

Altmann argues that the freezing of the connection weights that exists in Altmann 

& Dienes (1999) may not be required if it is replaced with an equivalent mechanism that 

partitions the internal representational space of the network in such a way that makes the 

"unlearning" of previously trained items very difficult. Altmann claims that this can be 

achieved by densely populating the internal representational space using a pre-training 

phase that employs an "arbitrary grammar and associated vocabularq" (Altmann, 2002) 

(my emphasis). According to Altmann, the expected effect of this pre-training phase is 

that whenever the network needs to form a new internal representation as a result of a 

novel input item, this new representation will not replace any previously learned 

representations. Instead, it would "integrate with existing, previously entrenched, 

representations" (Altmann, 2002). 

5.6.1 Training and test procedures 

During the preliminary training phase, Altmann chose to use the same training 

procedure as in an earlier work by Elman (1990). According to this procedure, 252 

different sentences are generated using two very simple grammars such as Noun-Verb, 

and Noun- Verb-Noun. For example: man see book, woman eat sandwich, rock break, etc. 



Twenty-nine words are used in pre-training, each word being represented by one 

unit in the input layer (localist representation), and a ten thousand sentence pre-training 

corpus (approximately 40 repetitions of each individual sentence) is generated. This 

corpus is presented six times to 16 different networks. Following pre-training, the 

networks are trained to differentiate between two simple grammars (similar to the task 

performed by the infants in the Marcus et al. study, 1999): 8 networks are trained on 16 

ABA sentences and the other 8 are trained on 16 ABB sentences. The training sentences 

require 8 new words that are encoded on 8 new input units (that were not used in pre- 

training). The testing is performed with 4 novel sentences (2 ABA and 2 ABB sentences) 

that used 4 new words encoded on 4 other input units. The model is trained to output the 

next word (syllable) in the current sentence. 

5.6.2 Results 

To measure the networks' performance, Altmann calculated the product moment 

correlation between the target output vectors and the networks' actual predictions. 

According to these calculations, Altmann stated that the networks were better at 

predicting sentences that were generated with the familiar (training) grammar. Thus, his 

model would count as an example of a connectionist model that successfully reproduces 

the results reported by Marcus et al. (1999). 

However, as Altmann acknowledges, one possible reason for this result could be 

the fact that the pre-training corpus contained sentences that had an underlining ABA 

structure (for example, cat chase cat), which could facilitate the learning of that 

grammar. Altmann is aware of this possible problem and repeats his experiment by 

eliminating all those sentences from the pre-training corpus. He claims that the new 



results prove his initial assertion that the model is indeed able to differentiate between the 

two syntactic structures. 

5.6.3 Personal investigation 

Altmann states that the grammar used in the pre-training phase is completely 

arbitrary, and that the only reason for doing this initial phase of training is to populate the 

internal representational space of the networks densely enough so that any new 

representation is mapped into an existing one. According to this theory, the choice of a 

particular pre-training grammar is not relevant. However, by doing my own experiments 

on this model, I found that this is not the case. When I replaced the pre-training grammar 

with a more complex one (like the finite-state grammar shown in Figure 9, I discovered 

that the networks fail to discriminate between the two syntactic structures. This proves 

that, contrary to Altmann's claims, the structure of the pre-training patterns is very 

important for the success of the networks. 

Granted, the model does mirror the results reported by Marcus et al. (1999), and I 

was able to reproduce Altmann's results in my own experiments. However, in doing so, I 

found that - the model seems to rely on a very particular structure of the pre-training 

patterns, which facilitates the learning of these two simple grammars. As mentioned 

above, during the preliminary training phase, Altmann uses preliminary training 

sentences having the form Noun-Verb, and Noun-Verb-Noun. When presenting these 

patterns to the network, they can form underlying ABA or ABB structures that can help 

the network learning those simple grammars. For example, two consecutive sentences 

man see car and car break form an underlying ABB pattern (see car car). By analysing 

the entire pre-training corpus, I discovered that roughly 10% of the corpus form 



underlying ABA and ABB patterns. When I eliminated those patterns from the pre- 

training corpus, and repeated the experiments, the model failed to differentiate between 

the ABA and ABB structures. Alternatively, if the pre-training is performed with 

sentences generated by a different grammar (e.g., the context-free grammar shown in 

Figure 5), the model is still unable to learn the two ABA and ABB structures. 

With the original pre-training corpus (and grammar) in place, I discovered that the 

networks could not learn more complex grammars. I repeated all four experiments of 

Gomez & Gerken (1999), using the finite-state grammars shown in Figures 5 and 6, and 

found that none of the 16 networks that I trained was able to successfully replicate the 

results reported by Gomez & Gerken (1999). As my knowledge representation analysis 

shows, this model is unable to discover the sequential structure of the input sentences, not 

even when those sentences are formed with the simpler grammars. It focuses instead on 

non-essential and very particular characteristics of the input patterns (such as discovering 

the various consonants and vowels in the training stimuli), which do not help the network 

differentiate between two grammatical structures. 

5.7 Knowledge Representation Analysis 

5.7.1 Altmann & Dienes' model 

The analysis of Altmann & Dienes' model contains both principal component 

analysis (PCA), and hierarchical cluster analysis. Unless specified otherwise, all hidden 

activation vectors used in these analyses were collected at the end of each input sentence, 

and the networks were trained with ABA patterns. Since the input representation is 

localist, 4 of the input units act as "A" words (denoted "A" word #1, "A" word #2, "A" 



word #3, and "A" word #4), and other 4 units represent " B  words (denoted "B" word #1, 

" B  word #2, "B" word #3, and "B" word #4). 

5.7.1.1 Principal component analysis 

PCA of hidden activations for a network trained with ABA patterns reveals many 

principal components, reflecting a lot of variation in the internal representations (the first 

6 components account for about 85% of the variation). The projection of hidden 

activations onto the first 4 principal components (which account for about 75% of the 

variation) reveals a fairly complex representation of those activations. According to the 

first two principal components (see Figure 32), the network's internal representations at 

the end of each sentence show a dependency on the "B" words (i.e., the middle words in 

ABA training)28 of each sentence. Based on Figure 32, there is a certain tendency of the 

internal representations to form several clusters with regard to the "B" words that appear 

in the input sentences, but these clusters are not very well formed and separated. 

Although the internal representations formed by sentences that contain three middle 

words ("B" word #I7 #2, and #4) are quite distinctive, the internal representations formed 

by sentences that contain " B  word #3 crosscut other representations. 

28 With regard to the words at the end of each sentence, the "B" words are the previous words (considering 
ABA training). 
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Figure 32 Projections of hidden activations at the end of each training sentence onto the first two 
principal components (with regard to the middle words in each sentence). There is a 
certain tendency of internal representations to group based on the "B" words in the 
middle of each training sentence. 

Figure 33 displays the projections of hidden activations at the end of each 

sentence onto the third and fourth principal components. The projections are shown with 

regard to the "A" words that appear at the end of each sentence. According to Figure 33, 

there is a weak tendency for some of these projections to form several groups, but there is 

a high degree of overlap, especially between activations formed by the "A" word #2, and 

those formed by the "A" word #3. 
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Figure 33 Projections of hidden activations at the end of each training sentence onto the third and 
fourth principal components (with regard to the "A" word in each sentence). There are 
some weak tendencies of internal representations to group based on the "A" words at the 
end of each sentence. 

Although Figures 32 and 33 reveal that there are some (weak) tendencies within 

networks to group the internal representations, these groupings are not very useful with 

regard to assisting the network differentiate between ABA and ABB patterns. For 

example, according to Figure 32, 75% of the network's internal resources are used to 

separate the input sentences based on the middle words that appear in the training 

sentences. Even if the model were completely successful in performing this separation, it 

would not help it in differentiating between those ABA and ABB test sentences that have 

the same middle word (e.g., ga ko ga vs. ga ko ko). 
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Figure 34 Projections of hidden activations onto the first two principal components, formed by each 
input word in the training sentences (the first "A" word, the middle "B" word, and the 
last "A" word in each sentence are shown). There is a high degree of overlap among the 
internal representations formed by the first and second "A" words, and also among those 
formed by the middle "B" words. 
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In order for this model to robustly distinguish between the ABA and ABB 

grammars, the network needs, I believe, to abstract the syntactic structure of input 

sentences. When trained with ABA patterns, the network should be able to detect the fact 

that the first and third words are the same, whereas the middle word is different. Figure 

34 displays the projections of hidden activations onto the first two principal components 

for each input word of the training sentences. According to Figure 34, there is a high 

degree of overlap among words that appear in each of the three positions within 



sentences. Apparently, the network is not able to extract the syntactical structure of the 

input patterns, and this may explain why it fails to generalize to novel input. 

5.7.1.2 Hierarchical cluster analysis 

In order to see how the model groups the test stimuli, a cluster analysis on hidden 

activations at the end of each test pattern is performed. Because, originally, there are only 

2 grammatical and 2 ungrammatical test sentences, in order to increase the statistical 

significance of this analysis, 6 new test sentences were generated in each condition29. 

Figures 35-42 display the results of the cluster analysis performed on 16 hidden 

activations (8 grammatical and 8 ungrammatical) for 8 different ABA-trained networks. 

Since I am interested in seeing whether the networks are able to separate the hidden 

activations into two clusters, Figures 35-42 also display, in two different colours, how the 

networks form the two clusters, and how they associate the hidden activations to the two 

groups. According to Figures 35-42, none of the 8 networks is able to correctly separate 

all 16 test patterns into the grammatical vs. ungrammatical groups. There is an important 

level of overlap between the hidden activations formed by the ABA and ABB patterns 

(see Figures 35-42 for details), suggesting that the model cannot robustly separate the 

grammatical test sentences from the ungrammatical ones. 

The following 8 graphs (Figures 35 to 42) display the results of cluster analysis 

performed on 8 different networks (denoted network #I to network #8). 

29 The new test sentences are generated by permuting the words used in the original test sentences. For 
example, 4 test syllables are used in experiment 1: wo, de, fe, ko, and 4 initial test sentences: wo fe wo, de 
ko de, wo fe fe, and de ko ko. The 6 new ABA test sentences are: wo ko wo, de fe de, fe wo fe, ko de ko, fe 
ko fe, and ko fe ko. The 6 new ABB test sentences are: wo ko ko, de fe fe, fe wo wo, ko de de, fe ko ko, and 
kofe fe. 



Figure 35 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #1 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 (blue) contains 2 ABA and 1 ABB 
sentence (67% M A ) ,  whereas cluster 2 (red) contains 6 ABA and 7 ABB test sentences 
(46% ABA). 



Figure 36 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #2 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 (blue) contains 3 ABA and 4 ABB 
sentences (43% AFSA), whereas cluster 2 (red) contains 5 ABA and 4 ABB test sentences 
(56% ABA). 



Figure 37 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #3 (the horizontal values Indicate 
the Euclidian distances between vectors). Cluster 1 contains only 1 ABA sentence (100% 
ABA), whereas cluster 2 (red) contains 7 ABA and 8 ABB test sentences (47% ABA). 



Figure 38 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #4 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 contains only 1 ABB sentence (100% 
ABB), whereas cluster 2 (red) contains 8 ABA and 7 ABB test sentences (47% ABB). 



Figure 39 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #5 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 contains only 1 ABA sentence (100% 
ABA), whereas cluster 2 (red) contains 7 ABA and 8 ABB test sentences (47% ABA). 



Figure 40 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #6 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 (blue) contains 5 ABA and 7 ABB 
sentences (42% ABA), whereas cluster 2 (red) contains 3 ABA and 1 ABB test sentence 
(75% ABA). 



Figure 41 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #7 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 contains only 1 ABA sentence (100% 
ABA), whereas cluster 2 (red) contains 7 ABA and 8 ABB test sentences (47% M A ) .  



Figure 42 The results of the cluster analysis performed on 16 hidden activation vectors formed at 
the end of 8 ABA and 8 ABB test sentences for network #8 (the horizontal values indicate 
the Euclidian distances between vectors). Cluster 1 (blue) contains 2 ABB sentences 
(100% ABB), whereas cluster 2 (red) contains 8 ABA and 6 ABB test sentence (43% 
ABB). 

5.7.2 Altmann's model 

5.7.2.1 Principal component analysis 

In the case of Altmann's (2002) model, PCA of hidden activations reveals fewer 

principal components than in Altmann & Dienes' (1999) case, reflecting a lesser degree 

of variation in the internal representations. The first 4 principal components account for 

about 95% of the variation. The projections of hidden activations, at the end of each 

sentence, onto the four principal components are displayed in Figures 43 and 44. The 

internal representations form several clusters depending on the type of "A" words that 



appear at the end of each sentence (considering ABA training). Although some of these 

clusters are not completely disjoint, they are better formed than in the case of Altmann & 

Dienes (see Figures 43 and 44). 
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Figure 43 Projections of hidden activations onto the first two principal components, at the end of 
each sentence (with regard to the "A" words that appear in the training sentences). There 
are clearly demarcated clusters among the internal representations formed by input 
sentences that end in each of the four "A" words. 
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Figure 44 Projections of hidden activations onto the third and fourth principal components, at the 
end of each sentence (with regard to the "A" words that appear in the training 
sentences). There are clearly demarcated clusters among the internal representations 
formed by input sentences that end in each of the four "A" words. 

In addition, Figure 45 displays the projections of hidden activations for each word 

of the training sentences onto the first two principal components. According to this 

graphic, very importantly, the network is able to detect the fact that the first and third 

words of each sentence (for ABA training) are similar, whereas the middle word is 

different. In part, this can originate from the fact that the input units associated to the "A" 

words are somewhat separated from the "B" units (a wider gap between units than in the 

Altmann & Dienes model). In any case, this may explain why this model has better 

results than Altmann & Dienes'. 
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45 Projections of hidden activations onto the first two principal components, for each word 
of the training sentences (with regard to the first "A" word, the middle "B" word, and 
the second "A" word). The internal representations formed by the "A" words are close to 
each other, and are fairly separated from the internal representations formed by the "B" 
words, indicating that the model is able to detect the fact that the first and last words are 
the same, whereas the middle word is always different. 

If there is a certain tendency of Altmann's model to form some meaningful 

internal representations when dealing with simple grammars (ABA vs. ABB), this 

tendency is completely lost when the model is presented with more complex (Gomez & 

Gerken) grammars. When simulating the fourth experiment of Gomez & Gerken (1999) 

on Altmann's model, the projection of hidden activations, at the end of each training 

sentence, onto the first two principal components, reveals an erratic and arbitrary 

behaviour of the network, the internal representations forming no apparent coherent 

structures (see Figure 46). 
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Figure 46 Projections of hidden activations onto the first two principal components (with regard to 
the three words that can appear at the end of each training sentence) for a network 
trained with a finite-state grammar. There is no apparent grouping of the internal 
representations based on the words that can appear at the end of training sentences. 
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Figure 47 Projections of hidden activations onto the first two principal components (with regard to 
the grammatical vs. non-grammatical patterns, at the end of each test sentence) for a 
network trained with a finite-state grammar. There is no apparent separation between 
internal representations of grammatical and ungrammatical test sentences. 



Also, Figure 47 displays the projections of hidden activations onto the first two 

principal components, at the end of each test sentence, in each condition (grammatical 

and ungrammatical). There is no apparent separation between the internal representations 

formed by the two categories of sentences, and this may explain why the network fails to 

distinguish between the two types of patterns. 

5.7.2.2 Hierarchical cluster analysis 

In order to see how the model groups the test sentences, a cluster analysis on the 

hidden activations at the end of each test sentence was performed. Because, originally, 

there were only 2 grammatical and 2 ungrammatical test sentences, to increase the 

statistical significance of the cluster analysis, 6 new test sentences in each condition were 

generated (the new sentences were generated by permuting the words in the original test 

sentences in a similar manner as described in Altmann & Dienes' case). Figures 48-55 

display the results of the cluster analysis performed on 16 hidden activations (8 

grammatical and 8 ungrammatical) for 8 different ABA-trained networks. Since I am 

interested in seeing whether the networks are able to separate the test stimuli into two 

groups, Figures 48-55 also display, in two different colours, how each of the 8 networks 

forms the two clusters and how they assign the hidden activation to the two clusters. 

Although there is a slightly lower degree of overlap (see Figures 48-55 for details) 

between grammatical and ungrammatical categories than in the case of Altmann & 

Dienes (1 999), none of the 8 networks correctly separates all 16-test sentences into two 

groups. 

The following 8 graphs (Figures 48 to 55) display the results of cluster analysis 

performed on 8 different networks (denoted network #1 to network #8). 



Figure 48 The results of cluster analysis performed on 16 hidden activation vectors formed a t  the 
eud of 8 ABA and 8 ABB test sentences for network #1 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 ABA and 1 ABB test 
sentence (75% ABA), whereas cluster 2 (red) contains 5 ABA and 7 A3B test sentences 
(42% ABA). 



Figure 49 The results of cluster analysis performed on 16 hidden activation vectors formed at the 
end of 8 ABA and 8 ABB test sentences for network #2 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 2 ABA and 2 ABB test 
sentences (50% ABA), whereas cluster 2 (red) contains 6 ABA and 6 ABB test sentences 
(50% ABA). 



Figure 50 The results of cluster analysis performed on 16 hidden activation vectors formed a t  the 
end of 8 ABA and 8 ABB test sentences for network #3 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 ABA and 1 ABB test 
sentence (75% ABA), whereas cluster 2 (red) contains 5 M A  and 7 ABB test sentences 
(42% ABA). 



Figure 51 The results of cluster analysis performed on 16 hidden activation vectors formed at the 
end of 8 ABA and 8 ABB test sentences for network #4 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 ABB and 1 ABA test 
sentence (75% ABB), whereas cluster 2 (red) contains 5 ABB and 7 ABA test sentences 
(42% ABB). 



Figure 52 The results of cluster analysis performed on 16 hidden activation vectors formed at the 
end of 8 ABA and 8 ABB test sentences for network #5 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 ABA and 1 A3B test 
sentence (75% ABA), whereas cluster 2 (red) contains 5 ABA and 7 ABB test sentences 
(42% M A ) .  



Figure 53 The results of cluster analysis performed on 16 hidden activation vectors formed at the 
end of 8 ABA and 8 ABB test sentences for network #6 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 ABB and 1 ABA test 
sentence (75% ABB), whereas cluster 2 (red) contains 5 ABB and 7 ABA test sentences 
(42% ABB). 



Figure 54 The results of cluster analysis performed on 16 hidden activation vectors formed at the 
end of 8 ABA and 8 ABB test sentences for network #7 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 ABA and 1 ABB test 
sentence (75% ABA), whereas cluster 2 (red) contains 5 ABA and 7 ABB test sentences 
(42% ABA). 



Figure 55 The results of cluster analysis performed on 16 hidden activation vectors formed at the 
end of 8 ABA and 8 ABB test sentences for network #8 (the horizontal values indicate the 
Euclidian distance between vectors). Cluster 1 (blue) contains 3 AFSB and 1 ABA test 
sentence (75% ABB), whereas cluster 2 (red) contains 5 ABB and 7 ABA test sentences 
(42% ABB). 

In order to see how the model groups the Gomez & Gerken test stimuli, a cluster 

analysis has been performed on 20 hidden activations formed at the end of 10 

grammatical and 10 ungrammatical test sentences for one network trained with the 

Gomez & Gerken (1999) sentences (all other networks trained in this condition have the 

same behaviour). I am mostly interested in finding whether the network is able to cluster 

the data into two groups: grammatical and ungrammatical. Figure 56 displays the results 

of the cluster analysis, along with information, in two different colours, of how the 

network forms the two clusters and how it assigns the hidden activation vectors to either 

of the two clusters. According to Figure 56, there is a high degree of overlap between 



hidden activations formed by grammatical sentences, and activations formed by 

ungrammatical sentences. This suggests that the model cannot robustly differentiate 

between the two categories of patterns. 

Figure 56 Results of cluster analysis on 20 hidden activation vectors formed at the end of 10 
grammatical (Gramm-1 to Gramm-10) and 10 ungrammatical (Ungramm-1 to 
Ungramm-10) test sentences (the values on the horizontal line represent the Euclidian 
distances between vectors). Cluster 1 only contains 1 grammatical test sentence (100% 
grammatical), whereas cluster 2 (red) contains 9 grammatical and 10 ungrammatical test 
sentences (47% grammatical). 

The way the model clusters the internal representations formed by the Gomez & 

Gerken test sentences indicates a high degree of overlap that exists among hidden 

activations. For instance, although the model groups the internal representations of 

Gramm-6 and Gramm-10, and, respectively, Gramm-4 and Gramm-9, these two 

grammatical subgroups do not immediately cluster with each other. Instead, they both 



group with internal representations formed by ungrammatical sentences Ungramm-1, 

Ungramm-5, and Ungramm-9. The high degree the overlap visible in Figure 56 suggests 

that the model is unable to robustly separate the two categories of grammatical structures. 



6 CHRISTIANSEN'S MODEL 

6.1 Network Architecture and Preliminaries 

To simulate Marcus et al,'s (1999) experiments, Christiansen & Curtin (1999), 

and Christiansen et al, (2001) employ a simple recurrent network (see Figure 57), 

initially built to segment speech stream (Christiansen et al., 1998). Christiansen & Curtin 

(1999), and Christiansen et al. (2001) describe the same model, the only difference 

between them being a small change in the input representation (see below). Both studies 

focus on the third experiment of Marcus et al., where both grammars involved contain 

reduplications (ABB vs. AAB), and where there are no differences in phonetic features 

between the training and test syllables. Because of these characteristics, Marcus et al. 

(1999) argue that this third experiment cannot be driven by statistical mechanisms alone, 

and that infants must implement algebraic rules in order to perform the grammar 

discrimination task. Christiansen & Curtin (1999), and Christiansen et al. (2001) want to 

prove that even in this ''difficult" case the input patterns carry sufficient statistical 

information that can allow the networks to successfully replicate Marcus et al.'s results 

without implementing algebraic rules. Christiansen et al. assume that, if this is true for 

the third experiment, the first two experiments of Marcus et al. will be much easier to 

replicate by their model. 

6.2 Input Representations 

At input, Christiansen & Curtin's (1999), and Christiansen et al.'s ( 

networks are provided with three bits of information (cues): 



18 phonological features on the input3', and 36 phonemes on the output layer. 

Utterance (sentence) boundary (U-B) information marking sentence endings (the 

units marked "#" in Figure 57). 

Lexical stress: no stress, secondary stress (unit S), and primary stress (unit P). 

Phonemes U-B Stress 

i- 
Output Units 

Context Units 

Phonological Features U-B Stress 

Figure 57 Christiansen & Curtin's (1999), and Christiansen et al.'s (2001) model 

The sentences are presented to the network as sequences of words, each word 

being separated into phonemes. The phonemes are presented one at a time, each phoneme 

being represented at input by a set of phonological features, along with information about 

sentence boundaries (U-B unit) and stress (primary stress, secondary stress, or no stress). 

Each bit in the input vector corresponds to a phonological feature; if a phoneme has a 

certain feature, the corresponding bit will be set to 1, otherwise the bit will be 0. The 

30 18 phonological features are used by Christiansen et al. (2001). However, Christiansen & Curtin (1999) 
use only 11 features (similar to the original Christiansen et al., 1998). 



output representation is localist: the output layer consists of 36 units, one unit for each 

phoneme31, plus one utterance-boundary (U-B) unit, and two units to indicate stress. The 

U-B units are activated when the last phoneme of the last word of a sentence is presented. 

The words are transformed from orthographic format to phonological form (including 

lexical stress) using the MRC Psycholinguistic Database from the Oxford Text Archive. 

Some of the phonological features used in this representation are: sonorant, consonantal, 

voice, nasal, degree, palatal, pharyngeal, etc. For instance, the phoneme n from the word 

no has sonorant=O, voice=l, nasal=l, pharyngeal=O, etc. For all monosyllabic words, the 

stress is always primary, i.e., unit P is set to 1 and unit S is set to 0. For words such as 

beautiful, the stress is on the first syllable (primary stress), while the other two syllables 

do not have stress (both stress units are set to 0). 

6.3 Training and Testing 

The network is trained to predict the next phoneme in a word, as well as the 

values for stress and utterance (sentence) boundary. Christiansen & Curtin (1999), and 

Christiansen et al. (2001) believe that the network is able to integrate the input cues, and 

at the end of training it is capable of predicting not only the sentence boundaries, but also 

the word boundaries. Christiansen et al. (2001) use 16 different networks (each network 

resembles one infant in Marcus et aL7s simulation), having different sets of initial 

weights, randomized in the interval [-0.25, +0.25]. The learning rate was set to 0.1, while 

the momentum was 0.95. 

31 At the input layer, Christiansen & Curtin (1999), and Christiansen et al. (2001) use the phonological 
representation of phonemes (distributed representation), while at the output layer, they only activate one 
unit per phoneme (localist representation), in order to facilitate an easier analysis of the network's results. 



Similar to Elman's (Elman, 1999; Seidenberg & Elman, 1999) and Altrnann's 

(Altmann, 2002) simulations, Christiansen & Curtin (1999), and Chnstiansen et al. 

(2001) precede the training and test phases with a preliminary training phase, during 

which a multitude of speech utterances (sentences) is presented to the network in a single 

pass. In this phase, the network is trained to segment words spoken to infants aged 6-16 

weeks. The pre-training corpus is part of CHILDES database (MacWhinney, 1991 )~~ .  The 

corpus has a total of 24,648 words, with an average sentence length of 3 words. Like 

Elman, Christiansen & Curtin (1 999), and Christiansen et al. (2001) argue that the reason 

for this pre-training phase is to simulate the fact that "the 7-month-olds in the Marcus et 

al. study already have had a considerable exposure to language, and have begun to 

develop their speech segmentation abilities" (Christiansen et al., 2001). 

After pre-training, Christiansen & Curtin (1999), and Christiansen et al. (2001) 

train and test the model with sentences used in the Marcus et al.'s third experiment: 16 

AAB and 16 ABB training sentences, and 2 AAB and 2 ABB test sentences. For each 

phoneme in the training and test corpora that is presented to the networks, they record the 

activation of the utterance boundary output unit, and calculate the average of boundary 

unit activations for all training phonemes. Whenever the activation of the output 

boundary unit for a test phoneme is higher than this average, it is considered that an end 

of word is detected. 

32 Examples of pre-training sentences: Are you a sleepy head?, What a milky face!, etc. 

138 



6.4 Results 

Chnstiansen & Curtin (1999), and Christiansen et al. (2001) measure the 

performance of their model by computing the completeness scores for consistent 

(grammatical) and inconsistent (ungrammatical) sentences: 

Completeness = Hits / (Hits + Misses) 

This is a measure of how many words the network is able to discover, i.e., how 

well the consistent and inconsistent sentences are segmented. 

For instance, if two sentences were ba ba po, and ko ga ga, and the network 

segmented them as bab#a#po#ko#gag#a (# represents the predicted word boundary), it 

would discover two words po and ko (Hits = 2), and miss 4 words. This means a 

completeness score of 2 / (2 + 4) = 33.3%. 

Christiansen & Curtin (1999), and Christiansen et al. (2001) found that there is a 

difference in the way their model segments the words in sentences generated with the 

familiar (consistent sentences) and unfamiliar grammars (inconsistent sentences): the 

average completeness score for consistent sentences is 28.82%, while the average score 

for inconsistent sentences is 35.76%. According to Christiansen & Curtin (1999), and 

Christiansen et al. (2001), this means that the networks are better at segmenting words in 

inconsistent sentences than in consistent ones. Their conclusion is that the "knowledge 

acquired in the service of learning to segment the speech stream can be recruited to carry 

out the kind of classification task used in the experiment by Marcus et al." (Christiansen 

& Curtin, 1999), and therefore statistical mechanisms can indeed account for the infants' 

results. 



6.5 Marcus' Evaluation 

Marcus has, however, a few concerns about this model being capable of capturing 

his results: 

Marcus has the impression that Chnstiansen & Curtin (1999) implicitly suggest 

that infants can discern word boundaries in test sentences but not in the habituation 

sentences, which, he believes, "makes little sense" (Marcus, 2001). Indeed, Christiansen 

& Curtin (1999) claim that their model produces better results when segmenting 

consistent sentences than inconsistent sentences, and this is an analogy to infants 

spending more time listening to inconsistent items. Although this analogy is not clearly 

described (Christiansen & Curtin do not explain why segmentation ability should 

correspond to grammaticality, and, more importantly, why their model performed better 

when presented with inconsistent items), it is true that infants can display both 

familiarity-preference, and novelty-preference, depending on how the experiment is 

conducted. Christiansen & Curtin apparently show "a differential ability to predict word 

boundaries for the words in the two test conditions" (Christiansen & Curtin, 1999), but 

their attempt to explain this in terms of "inconsistent items [that] stand out more clearly 

in comparison with the consistent items" (Christiansen & Curtin, 1999) (my emphasis) is, 

at best, unfortunate. I believe that Christiansen & Curtin's highly psychological language 

used to explain the network's functional behaviour is very inappropriate. 

Marcus argues that Christiansen & Curtin's results may be caused by noise, and 

that these results are not statistically significant. Chnstiansen & Curtin's (1999) initial 

study was performed on only one network, and their result can easily be viewed as being 

accidental. However, in their more recent simulation, Christiansen et al. (2001) claim that 



they replicated their initial result on 16 different networks. If this were true, it would 

make Marcus' argument less powerful. 

6.6 Personal Investigation 

During my own analysis of this model, I discovered that Christiansen & Curtin's 

(1999), and Christiansen et al.'s (2001) claims are mostly overstated. I repeated their 

experiment on 32 different simple recurrent networks, using the same training 

parameters, input corpora, and evaluation criterion, with two different simulators (VNNS 

and PDP++). My results are not as good as Christiansen & Curtin's (1999), and 

Christiansen et at ' s  (2001). First of all, they report completeness scores in the range of 

30%, whereas the completeness scores computed on the networks that I trained are less 

than 10% (in general, higher completeness scores were measured for unfamiliar test 

sentences than for familiar ones). Secondly, a statistical check on these results show that 

they are not significant across the 32 networks that I trained. An analysis of variance 

(ANOVA) measurement generated F = 3.99, and p=0.35. This means that the networks 

contain significant noise, which supports Marcus' account on this model. Additionally, I 

trained the model on more complex grammars (such as the Gomez & Gerken's grammars 

shown in Figures 5 and 6) using 32 different networks (each network had its own set of 

initial weights). None of these networks generated results that were consistent with 

Christiansen & Curtin's (1999), and Christiansen et al.'s (2001) claims (ANOVA: 

F=4.12, p=O.32). 

In conclusion, Marcus' concerns about this model proved to be right. Although, 

unlike the other networks discussed in this paper, Christiansen & Curtin's (1999), and 

Christiansen et al.'s (2001) model was not specifically designed to simulate Marcus et 



al.'s experiment33, the authors claim they showed that "an existing connectionist model 

of early infant word segmentation (Christiansen et al., 1998) could utilize statistical 

knowledge acquired in the service of speech segmentation to fit the infant data from 

Marcus et al. (1999; Experiment 3) under very naturalistic circumstances" (Christiansen 

et al., 2001). However, I have serious concerns about the validity of this statement, and I 

agree with Marcus that the model is mostly driven by noise. My knowledge 

representation analysis of this model proved this. 

6.7 Knowledge Representation Analysis 

What is characteristic of this SRN model is the fact that, contrary to other models 

discussed here, Christiansen & Curtin (1999), and Christiansen et al. (2001) only perform 

the third experiment of Marcus et al. (1999), which involves the grammars AAB and 

ABB. Unless specified otherwise, all hidden activations used in this analysis have been 

collected at the end of each input sentence. But, since in this model the input words are 

not presented to the network as a whole, but as sequences of two phonemes, the hidden 

activations formed by both phonemes of the last word of each sentence have been used 

(both the vowel and consonant phonemes have been used in analysis). 

6.7.1 Principal component analysis 

PCA of hidden activations at the end of each sentence reveals four principal 

components (which together account for about 95% of the variation). The first principal 

component (-60% of the variation) separates all hidden activations into two well-formed 

clusters: activations generated by consonants and those generated by vowels. Figure 58 

33 Christiansen & Curtin (1999), and Christiansen et al. (2001) view this as a feature, not a disadvantage. 
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shows that, with regard to the first principal component, the internal representations 

formed by the vowels of the last word of each sentence are fairly separated from the 

representations formed by the consonants of those words. The next principal component 

(-20% of the variation) reveals the difference among various individual letters of the last 

words of each sentence: the activations generated by letters "d" and "1" are very close to 

each other (reflecting the fact that their input representations are very similar). At the 

same time, the activations for letters "w" and '3" are close to each other (because the 

difference between their input representations is only one bit). The activations formed by 

the letters "e" and "i" are quite separate from the activations formed by all other letters. 

A projection of the average hidden  activation^^^ onto the third and fourth 

principal components (which account for 10% and 5% of the variation, respectively) 

reveals four clusters (see Figure 59). Each cluster corresponds to a word that appears at 

the end of each sentence: "di", "li", "we" and "je". The group of activations formed by 

the words "di" and "li", on one hand, and the group formed by the words "we" and "je", 

on the other hand, are very close to each other, reflecting the similarity between the input 

representations of letters "d" and "l", and "w" and "j", respectively (which is consistent 

with the previous projections shown in Figure 58). 

34 This is the average between the hidden activation vectors generated by the consonant (first phoneme) and 
the vowel (second phoneme) that form the last word of each sentence. I used the average because I wanted 
to capture the network's response to the whole word. 



component 1 

Figure 58 Projections of hidden activations onto the first two principal components (with regard to 
the letters that occur in the last word of each sentence). There is a clear separation along 
the first principal component between the internal representations formed by consonants 
and those formed by vowels. The second principal component reveals the differences 
among various input words. 

PCA of hidden activations (Figures 58 and 59) reveals that most of the network 

resources (80%) are used to identify the various characteristics of the input words (such 

as the separation between words that end in "e" from those that end in "i"), information 

which is not at all useful to the more important task of learning the sequential structure of 

the input sentences. This finding is confirmed by the following two graphs, which 

demonstrate that the model is unable to abstract the sequential structure of the input 

stimuli. 



component 3 

Figure 59 Projections of average hidden activations onto the third and fourth principal components 
(with regard to the words that occur at  the end of each sentence). The internal 
representations form several groups depending on the input words. The relative 
distances between groups indicate the differences between input representations of those 
words. 
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component 1 

Figwe 60 Projections of all hidden activations onto the first two principal components (with regard 
to the first and second "A" words, and the "B" word in each AAB sentence). There are 
no apparent separations between input representations formed by the first and second 
"A" words, and those formed by the "B" words. 



Figures 60 and 61 display the projections of hidden activations onto the first four 

principal components of each input word within input sentences (during AAB trainir:g). 
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component 3 

Figure 61 Projections of all hidden activations onto the third and fourth principal components 
(with regard to the first and second "A" words, and the "B" word in each AAB sentence). 
There are no apparent separations between input representations formed by the first and 
second "A" words, and those formed by the "B" words. 

According to Figures 60 and 61, there is a large degree of overlap between 

internal representations formed by "A" and "B" words, indicating that the network may 

not differentiate the words that appear on the first and second positions (the "A" category 

for AAB training) from the words that appear on the third position (the "B" category), 

even though none of the "B" words is ever used as an "A7' word. The network does not 

seem to be aware of any particular grammatical structure of the input patterns. Therefore, 

the fact that the network is presented with AAB or ABB test patterns does not influence 

the network's ability to form specific internal representations, which may explain the 

amount of noise found in my experimental results. PCA of hidden activations during the 



test phase confirms this hypothesis: the network develops similar internal representations 

for both AAB and ABB test sentences. Figures 62 and 63 display the projections of 

hidden activations onto the first four principal components, for both grammatical and 

ungrammatical test sentences (the activations are recorded at the end of each sentence). 

According to these two pictures, there is an important degree of overlap between the 

internal representations formed by grammatical test sentences, and those formed by 

ungrammatical test sentences. This may explain why the network cannot rokustly 

differentiate between the two categories of sentences- 

H Grammatical 
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component 1 

Figure 62 Projections of hidden activations at the end of each test sentence onto the first two 
principal components (with regard to the grammatical and ungrammatical test 
sentences). There is a high degree of overlap between internal representations formed by 
grammatical and ungrammatical test sentences. 
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component 3 

Figure 63 Projections of hidden activations at the end of each test sentence onto the third and 
fourth principal components (with regard to the grammatical and ungrammatical test 
sentences). There is a high degree of overlap between internal representations formed by 
grammatical and ungrammatical test sentences. 

PCA of contributions (products between hidden activations and output weights) 

produces a similar result (the projections of network contributions are very similar to 

those shown in Figures 58-63). 

Based on the analysis performed up to this point, the fact that this model (also) 

fails when using more complex grammars is expected. Indeed, when using the Gomez & 

Gerken's grammars, PCA of hidden activations and network contributions in this 

condition reveals a very similar picture: the network is able to identify fairly well the 

individual letters of the input set, but there is no information in the hidden activations or 

output weights about the categories of words or the syntactical structure of sentences that 

are presented to the network. Figure 64 displays the projections of network contributions 

onto the first two principal components, for both grammatical and ungrammatical test 



sentences (the contributions are recorded at the end of each sentence). According to this 

graphic, the network contributions for grammatical and ungrammatical test sentences 

exhibit a very high degree of overlap. This may explain why the network is not able to 

robustly differentiate between grammatical and ungrammatical structures, as shown by 

my experimental results. 
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Figure 64 Projections of network contributions onto the first two principal components (with 
regard to the grammatical and ungrammatical test sentences formed with Gornez & 
Gerken grammars). There is a high degree of overlap between the netwark contributions 
formed by grammatical test sentences and the network contributions formed by 
ungrammatical test sentences. 
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Hierarchical cluster analysis 

A cluster analysis performed on the hidden activations at the end of each test 

sentence also reveals that this model is unable to robustly and consistently differentiate 

between grammatical and ungrammatical test patterns. Because, originally, there are only 

2 grammatical and 2 ungrammatical test sentences, to increase the statistical significance 



of this analysis, 6 new test sentences, in both conditions, were generated (by permuting 

the words in the original test sentences, in a similar manner as in Altmann & Dienes' 

case). Figures 65-72 display the results of the cluster analysis performed on 16 hidden 

activations formed at the end of 8 grammatical and 8 ungrammatical test sentences, for 8 

different AAB-trained networks (denoted network#l to network#8). Since I am mostly 

interested in finding whether the networks are able to group the hidden activations into 

two clusters (grammatical vs. ungrammatical), Figures 65-72 also display, in two 

different colours, how the networks actually form the two clusters and how they assign 

each hidden activation vector to those clusters. According to Figures 65-72, none of the 8 

networks are able to correctly categorize all 16 internal representations. There exists a 

high degree of overlap between activations formed by grammatical and ungrammatical 

test sentences (see Figures 65-72 for details regarding the overlap), confirming the 

previous finding that the networks cannot robustly differentiate between the two 

categories of sentences. 



Figure 65 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAB and 8 ABB test sentences, for network #I (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 5 AAB and 3 ABB 
sentences (63% M), whereas cluster 2 (red) contains 3 AAB and 5 ABB sentences 
(38% AAB). 



Figure 66 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAB and 8 ABB test sentences, for network #2 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 5 AAlB and 3 ABB 
sentences (63% AAB), whereas cluster 2 (red) contains 3 AAB and 5 ABB sentences 
(38% AAB). 



Figure 67 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAFS and 8 ABB test sentences, for network #3 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 4 AAB arid 4 AEB 
sentences (50% AAFS), whereas cluster 2 (red) contains 4 AAB and 4 A 3 3  sentences 
(50% AAFS). 



Figure 68 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAB and 8 ABB test sentences, for network #4 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 4 and 4 ABB 
sentences (50% AAB), whereas cluster 2 (red) contains 4 AAB and 4 ABB sentences 
(50% AAB). 



Figure 69 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAB and 8 ABB test sentences, for network #5 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 6 AAB and 2 ABB 
sentences (75% AAB), whereas cluster 2 (red) contains 2 AAB alid 6 ABB sentences 
(25% AAB). 



Figure 70 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAB and 8 ABB test sentences, for network #6 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 4 AAB and 4 ABB 
sentences (50% AAB), whereas cluster 2 (red) contains 4 AAB and 4 ABB sentences 
(50% AAB). 



Figure 71 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AAB and 8 ABB test sentences, for network #7 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 4 AAB and 4 ABB 
sentences (50% AAB), whereas cluster 2 (red) contains 4 AAB and 4 ABB sentences 
(50% AAB). 



Figure 72 Results of cluster analysis performed on 16 hidden activation vectors formed at the end 
of 8 AM5 and 8 ABB test sentences, for network #8 (the horizontal values indicate the 
Euclidian distances between vectors). Cluster 1 (blue) contains 3 AAB and 5 ABB 
sentences (38% AAB), whereas cluster 2 (red) contains 5 AAB and 3 ABB sentences 
(63% AAB). 

With regard to simulating Gomez & Gerken's experiment, the cluster analysis 

performed on the hidden activations formed at the end of each test sentence generated 

with a finite-state grammar confirms that the model is unable to robustly differentiate 

between grammatical and ungrammatical patterns. Figure 73 displays the results of the 

cluster analysis performed on 20 hidden activation vectors formed at the end of 10 

grammatical and 10 ungrammatical test sentences, on a network trained to simulate 

Gomez & Gerken's fourth experiment on infants. Figure 73 also shows, in two different 

colours, how the network generates two clusters, and how it assigns each hidden 

activation vector to the two clusters. 



Figure 73 Results of cluster analysis on 20 hidden activation vectors formed at the end of 10 
grammatical (Gramm-1 to Gramm-10) and 10 ungrammatical (Ungramm-1 to 
Ungramm-10) test sentences (the values on the horizontal line represent the Euclidian 
distances between vectors). Cluster 1 (blue) contains 7 grammatical and 7 ungrammatical 
sentences (50% grammatical), whereas cluster 2 (red) contains 3 grammatical and 3 
ungrammatical sentences (50% grammatical). 

Figure 73 illustrates the high level of overlap between internal representations 

formed by grammatical and ungrammatical test sentences. For example, in cluster 1 

(blue), although the internal representations of two ungrammatical test sentences 

(Ungramm-6 and Ungramm-7) group, they then cluster with the subgroup formed by the 

grammatical sentence Gramm-1, and ungrammatical sentences Ungrarnm-8, and 

Ungramm-10. According to the cluster analysis displayed in Figure 73, there is no 

subgroup of internal representations that contains more than 2 patterns of the same and 

only type. 



7 NEGISHI'S MODEL 

Negishi (1999) uses a variant of a SRN to replicate Marcus et al.'s (1999) 

experiments, and claims that the kind of statistical methods he employs is able to capture 

Marcus et aL7s stimuli. 

7.1 Network Architecture and Input Representation 

The model used by Negishi (1999) is a simple recurrent network without hidden 

units, i.e., all the output activations feed back directly to the input layer (see Figure 74). 

Figure 74 Negishi's model (1999). I t  is a simple recurrent network without a hidden layer (the 
activations of output units feed back to the input layer). POA, and VH, represent the 
place of articulation of the consonant, and the height of the vowel contained in the 
current syllable. POAHI and VH,+, represent the place of articulation and vowel height 
of the next syllable. 



The network has six input nodes, four output nodes, and no hidden nodes. Two of 

the input units receive input features, and the other four input units receive feedback from 

the output layer. The two input features are the vowel height (VH) and the place of 

articulation of consonants (POA), and represent one syllable at a time (as mentioned 

earlier, all syllables used by Marcus et al., 1999, consist of a single consonant followed 

by a single vowel). For example, syllable ba is presented to the network using the place 

of articulation of consonant b, and the height of vowel a. 

Depending on their height, Negishi classifies all English vowels into three 

categories: low (e.g., letter a), middle (e.g., letters e, o )  and high (e.g., letter i), and 

associates a value between 0 and 1 to each of these three classes: low=O, middle=0.67, 

and high=l. In speech, consonants can have different places of articulation, which 

linguists define as the relationship between the active and passive articulators as they 

shape or impede the airstream. In other words, consonants can be distinguished according 

to the location of their production in the humans' vocal tract3'. Negishi uses a value 

between 0 and 1 to represent all the consonants, depending on their place of articulation 

in the vocal tract (Giegerich, 1992). For example, k-0.125, g=O.lZ, d=0.725, 60.725, 

b=l, p=l,  etc. 

Examples of words (syllables) and their representation: 

ga: POA=0.125, VH=O 

li: POA=0.725, VH=1 

35 For example, consonants can be articulated by the use of the lips (like m, p), or by raising the tip of the 
tongue (llke d, t), etc. It is unclear, however, how the place of articulation can accurately model the way the 
infants in Marcus et al.'s study attend to the input stimuli, since infants could pay attention to many other 
(arguably, more relevant) phonetic features of consonants (e.g., palatal, lateral, sonorant, etc). 



de: POA=0.725 VH=0.67 

ji: POA=0.25, VH=1 

7.2 Training, Testing, and Results 

The input sentences are presented one word (syllable) at a time, and the network 

is trained to predict the next word in the current sentence (with two of the output units, 

marked POAt+l and VHt+l in Figure 74), and to mirror the current input features at the 

output units (using the other two output units, marked POAt and VHt in Figure 74). The 

input and output layers are fully connected (see Figure 74). 

Negishi performed Marcus et al.'s (1999) experiments on this modified simple 

recurrent network and measured the difference between the network's predictions and the 

expected outputs. He reports that the network's error is significantly lower for consistent 

test patterns (generated with the familiar grammar) than for inconsistent test sentences 

(generated with the unfamiliar grammar). Therefore, he claims, "the simulation results 

show that a type of statistical learning method captured regularity in Marcus et al.'s 

stimuli" (Negishi, 1999). 

7.3 Marcus' Evaluation 

In his analysis of this model, Marcus (2001) acknowledges that Negishi may 

provide a valid account of his results on infants. However, he believes that the reason for 

Negishi's result is the fact that the model relies on using nodes as variables, and the 

network operates over those two variables. In other words, according to Marcus, this 

model implements a classical mechanism (operation over variables), rather than being a 

genuine eliminative network. 



I find a few problems with this Marcus' analysis. First of all, as mentioned earlier, 

I think that the way Marcus makes use of the term "variable" is tendentious. The very 

fact that one can locate input nodes that may represent variables does not indicate how 

the network internally processes those input representations. As Marcus argues, it is how 

the network internally manipulates those "variables" which dictates the nature of a 

network with regard to being eliminative or implementational. Secondly, Marcus does 

not clearly identify the type of operations over variables that Negishi's model presumably 

performs36 and the realm where these operations may have occurred. 

According to Marcus, in Negishi's network, "each word is encoded by means of 

two variables" (Marcus, 2001), and the network connections implement operations that 

"apply to all instances of a class" (Marcus, 2001). If we assume that the "variables" that 

Marcus refers to are place of articulation of consonants (POA), and vowel height (VH), 

then the "class" is current-word in each sentence. Based on Marcus' definition, a symbol 

(which, in this case, represents a pair of variables) is a context-independent representation 

of the class current-word. However, at a closer look, the network cannot apply the same 

operation over all instances of the class current-word, because that operation depends not 

only on the current word, but also on the network's representation of the previous word. 

In other words, the operation is dependent on the context of current-word. Based on the 

structure of Negishi's network (Figure 74), the activation of the output units is 

determined by three pieces of input data: the current word's input representation, the 

network's representation of the previous word, and, finally, the network's representation 

36 Since all input values for both POA and VH vary between 0 and 1 (during both training and testing), the 
main task that the network performs is interpolation between the known values. According to the fust 
Marcus' definition of training space, Negishi's model does not generalize outside the training space. 
However, according to the second definition, this model does perform generalization outside the training 
space (which is also true in the Shultz & Bale's case). Apparently, Marcus failed to acknowledge this fact. 



of the current word. These three pieces of information, which are part of the input 

representation, are context-dependent, and this fact casts doubt upon Marcus' claim that 

the network applies the same operation to all instances of the current-word category. 

Another possibility is that the "variables" that Marcus refers to are current-word 

and previous-word, and the "class" represents the combination of current and previous 

words (the current-word & previous-word category). Considering that the network output 

at any time depends only on the current and previous words, the network seems to apply 

the same operation to all instances of the current-word & previous-word category. 

However, this fact alone does not render Negishi's model implementational. The network 

does learn a certain function that applies to both the current and previous words, but, as 

shown in the next two sections (Personal Investigation and Knowledge Representation 

Analysis), this function depends on very specific characteristics of the first word in each 

training sentence (e.g., the difference between the numerical representation of the vowel 

and the numerical representation of the consonant contained in the first word). If these 

characteristics are not found in test sentences, the function that the network applies fails 

to generate results that are consistent with those obtained during training. Therefore, I 

argue that the network does not learn an abstract relationship between the current-word 

and previous-word variables, i.e., it does not apply the same operation to all instances of 

the current-word &previous-word category. 

7.4 Personal Investigation 

In my own experiments on Negishi's model I was able to reproduce his original 

results. I trained a large number of networks (over 30), and the model seamed to robustly 

replicate Marcus et al.'s reported results (I used the same network simulator as Negishi). 



Unfortunately, problems arose when I started altering the input set. All test sentences 

contain the vowels a and o (like in ba po ba, or ko ga gay etc). By switching those two 

vowels between each other in all tests sentences where they occur (for example, bapo ba 

became bo pa bo, and ko ga ga became ka go go, etc), and repeating all experiments in 

(otherwise) the same conditions, I discovered that the networks consistently fail to make 

the same discrimination as before (lower errors for familiar test sentences than for 

unfamiliar ones). Granted, I do not know what infants would have done in these 

conditions, but to an adult the changes seem minimal and manageable. In any case, this 

casts doubt upon the robustness of Negishi's model, and shows that it lacks even the 

simplest generalization capabilities. 

I also tested the model's ability to deal with more complex grammars (such as the 

finite-state grammars shown in Figures 5 and 6). I used the same input sentences as 

Gomez & Gerken (1999): 10 training sentences formed with the grammar shown in 

Figure 5 (the training sentence have lengths between 3 to 6 words), 10 novel test 

sentences formed with the familiar grammar, and another 10 test sentences formed with 

the unfamiliar grammar (Figure 6). I trained 32 different networks in these conditions, 

and none of the network is able to correctly discriminate between familiar and unfamiliar 

test sentences. 

Similar to Shultz (1999), and Shultz & Bale (2001), Negishi's model seams to be 

able to replicate the results reported by Marcus et al. (1999), but when tested with 

slightly changed stimuli, or with more complex grammars, it shows a lack of robustness 

and generalization capabilities. This suggests that the training algorithm does not 

thoroughly make the networks learn the underlining syntactic categories of the input 



patterns, which is essential in order to generalize beyond the limited domain of the input 

data. This theory is confirmed by my knowledge representation analysis. 

7.5 Knowledge Representation Analysis 

One of the particularities of this SRN is that it does not have any hidden layers: 

the outputs feed back directly to the input layer. The network is presented with one 

syllable at a time (a pair of one consonant and one vowel), and is trained to predict the 

next syllable in the sentence (in two of the four output units), and also to mirror the 

current input syllable at the output layer (in the other two of the output units) (see Figure 

74). However, when measuring the network's performance, Negishi only uses the first 

two output units (i.e., only the ability to predict the next word is measured). More 

specifically, the network's performance is given by its ability to predict the third word of 

the sentence, i.e., only the first two words of the 3-word sentences are ever presented to 

the network (even during training). 

Since only the outputs of the first two output units (those which predict the next 

syllable) are used to measure the network error, I focused my analysis on how those two 

output values are computed. Additionally, in the second and third of Negishi's 

experiments, the consonants that appear on the "A" position have the same numerical 

representation as the consonants that appear on the "B" position (e.g., "b" and "p", and 

"k" and "g", respectively). This means that the network output associated with the next 

consonant (POAt+l) does not influence the way the network differentiates between ABA 

and ABB structures (because that output will be the same for both ABA and ABB 

patterns). Thus, in the second and third experiments, the only factor that affects the 



network's ability to differentiate between the two grammatical structures is how well it 

can predict the next vowel in the sentence (which is the second output unit: VHt+,). 

7.5.1 Connection weight analysis 

A comparative view of the connection weights developed by the network 

following ABA training in experiment 2 is shown in Figure 75. Black boxes denote 

negative weights, whereas white boxes denote positive weights. The relative size of each 

box indicates the value of the weight (the bigger the size, the stronger the weight). The 

numbers above each box indicate the input unit (fkom 1 to 7, where 7 is the bias unit). 

Unit # 1 I = = . m n n . I  
Output 

Output 
Unit #2 

1 2  3 4 5 6 7 

output 
Unit #3 

output 
Unit #4 

Figure 75 The distribution of the connection weights in Negishi's model following ABA training in 
experiment 2. The numbers above each box represent the input unit (from 1 to 7, where 7 
is the bias unit). Black boxes indicate negative weights, whereas white boxes indicate 
positive weights. The relative size of each box indicates the strength of the weight. 



Observing the connection weights developed by the second output unit following 

ABA training (we already established that the first output unit is not relevant with regard 

to the network error in experiments 2 and 3), I noticed that the most significant weights 

are towards the input units #5 (highly negative value) and #6 (highly positive ualue). All 

the other connection weights developed by this output unit are either at least three orders 

of magnitude smaller, or are constant (e.g., towards the bias unit37). This suggests that the 

output of this unit depends on the difference between the network prediction for the 

vowel (input unit #6) and the network prediction for the consonant (input unit #5) of the 

previous syllable. Since only the first two words of any sentence are presented to the 

network, and since the performance is measured after the second word, the network's 

ability to differentiate between ABA and ABB patterns depends entirely on the difference 

between the vowel and consonant representations of the first "A" word. Fortuitously, the 

"A" values that are part of the original test vectors used by Negishi (which are based on 

Marcus et al. 's stimuli) happen to generate "good" results. However, we can always find 

a consonant and a vowel whose difference in input representations is quite dissimilar 

from those presented during training. For example, by just switching the words between 

the first and second positions ("po ba po" instead of "ba po ba"), the network error is 

smaller for ungrammatical test sentences than for grammatical ones (0.42 vs. 0.53). 

Granted, I do not know what infants would do in this situation, but it is highly unlikely 

they would fail to differentiate the new, slightly different structures. 

37 The connection weights developed between the bias unit and the first and second output units are equal to 
the average numerical representation of all consonants, and the average numerical representation of all 
vowels, respectively. 



7.5.2 Principal component analysis 

PCA of contributions (products between hidden activations and output weights) at 

the end of each sentence (i.e., after the second word of each sentence is presented) 

unfolds a similar situation. It reveals 3 principal components, which account for about 

99.4% of the variation. According to Figure 76, the first principal component (50% of the 

variation) separates the network contributions based on the vowels that appear in the 

input patterns (two clusters, one for "em, and one for "i"). The next principal component 

(40% of the variation) separates the network contributions generated by the middle word 

based on the first word of each sentence (in particular, as mentioned above, this 

dependency is based on the difference between the vowel and consonant values of the 

first word). In Figure 76 the first word is specified in parenthesis. Letters "d" and "I" 

have the same input representations38, so their contributions are identical. Figure 77 

displays the third principal component (9% of the variation), which separates the network 

contributions into three groups, based on the consonant values of the middle word: one 

for letter "w", one for letter "j" (very close to the first cluster, since their input 

representations are close), and another one for letters "d" and "1" (they have the same 

input representation). 

38 According to Negihi's input representation, consonants "d" and "1" are represented by the same value: 
518. 
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re 76 Projections of network contributions onto the first two principal components (with 
regard to the middle word and the first word, in parenthesis, of each sentence). Along the 
first principal component, the network contributions are separated based on the vowels 
that appear in the middle word ("e" and "i"). Along the second component, the 
contributions are separated based on the words that appear on the first position on each 
sentence. 
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Figure 77 Projections of network contributions onto the first and third principal components (with 
regard to the middle word of each sentence). Along the third component, contributions 
are separated based on the middle word of each sentence. 



Below, Figures 78 and 79 display the projections of network contributions onto 

the first three principal components, generated by each input pattern (the first and second 

words of each sentence). The same pattern of network contributions emerges: the first 

principal component separates the contributions onto two clusters based on the vowels 

contained in the input vectors. The second principal component separates the 

contributions based on the previous word (for the first word of each sentence, the 

previous word is null, and this is why their contributions are null with regard to the 

second principal component). Finally, the third principal component separates the 

contributions based on the consonants contained in the input words. Significantly, 

according to PCA of contributions (which consist of hidden activations and output 

weights), most of the network's resources (99.4%) are used to encode very specific 

information about the particularities of the training patterns (such as the types of vowels, 

consonants, and the difference between the representations of vowels and consonants). 

The network does not allocate its resources to abstracting the grammatical structure of the 

input stimuli, which is essential in order to robustly generalize to novel input and deal 

with more complex grammars. 
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Figure 78 Projections of network contributions onto the first two principal components (with 
regard to both the first and second words of each sentence; the previous words are 
specified in parenthesis). There is a clear demarcation between words based on their 
vowels (first principal component), and based on the previous words in each sentence 
(the second principal component). 
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Figure 79 Projections of network contributions onto the first and third principal components (with 
regard to both the first and second words of each sentence). Along the third principal 
component, the network contributions separate based on the consonants that appear in 
the input words. 



According to the analysis performed up to this point, it is clear that the network 

will have problems handling more complex (Gomez & Gerken) grammars. In this case, 

PCA of contributions at the end of each sentence reveals two principal components 

(which account for about 97% of the variation). According to Figure 80, the first 

principal component (74% of the variation) separates the network contributions based on 

the vowels in the words that appear at the end of each sentence. The second principal 

component (23% of the variation) separates the network contributions based on the 

consonants in the words that occur at the end of each sentence. Similar to the case of 

simpler grammars, the network allocates most (if not all) of its resources to identifying 

very specific information about the particularities of the training patterns. It is not able to 

do any abstraction of the syntactical structure of those patterns, and this may explain why 

it fails at this task. Anyway, the fact that the network output at any time can only depend 

on the current and previous syllables suggests that it may have problems dealing with 

longer sentences. The network can only predict the next word based on two previous 

words. The network's structure makes it impossible to deal with more complex grammars 

where the position of a certain word within a sentence depends on more than two 

previous words39. 

39 However, the network structure can be altered to deal with certain complex grammars. 
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Figure 80 Projections of network contributions onto the first two principal components (with 
regard to the numerical representations of consonants and vowels occurring in the words 
at the end of each sentence). The first number indicates the numerical representation of 
consonants (i.e., the place of articulation), whereas the second number indicates the 
numerical representation of vowels (i.e., vowel height). Along the first principal 
component, network contributions separate based on the numerical representation of 
vowels, whereas, along the second principal component, contributions separate based on 
the numerical representation of consonants. 

In order to see how the network groups the Gomez & Gerken test stimuli, a 

cluster analysis has been performed on the 20 hidden activations formed at the end of the 

10 grammatical and 10 ungrammatical test sentences. Figure 81 shows the results of this 

analysis, along with information regarding how the network creates two clusters and how 

it assigns the hidden activations to one of the two clusters. 



Figure 81 Results of cluster analysis on 20 hidden activation vectors formed a t  the end of 10 
grammatical (Gramm-1 to Gramm-10) and 10 ungrammatical (Ungramm-1 to 
Ungramm-10) test sentences (the values on the horizontal h e  represent the Euclidian 
distances between vectors). Cluster 1 contains only 1 ungrammatical sentence (100% 
ungrammatical), whereas cluster 2 (red) contains 10 grammatical and 9 ungrammatical 
sentences (47% ungrammatical). 

According to Figure 81, there is a high degree of overlap between hidden 

activations formed by grammatical test sentences and hidden activations formed by 

ungrammatical test sentences. For instance, in cluster 2 (red), although activations formed 

by grammatical sentence Gramm-6 groups with Gramm-7, and those formed by Gramm- 

4 groups with Gramm-10, these two subgroups then cluster with activations formed by 

ungrammatical sentences Ungramm-5 and Ungramm-9. None of the subgroups in cluster 

2 contains more than 3 internal representations formed with the same (and snly) 

grammar. 



8 IMPLEMENTATIONAL CONNECTIONIST MODELS 

This section lists three attempts to replicate Marcus et al.'s (1999) study using 

implementational connectionist models, i.e., the models implement some form of 

classical mechanisms (e.g., variable binding, operations over variables) within a neural 

network. 

8.1 Hand-wired Network 

Gasser & Colunga (1 999) attempt to replicate Marcus et al.'s (1999) experiments 

with a hand-wired network called Playpen (Gasser & Colunga, 1997). This model 

employs so-called "relation units" (Gasser & Colunga, 1999), which are handcrafted 

clusters of basic units. For the purpose of simulating Marcus et al.'s experiments, Gasser 

& Colunga define two types of relation units: sameness units (clusters of input units that 

are associated with similar words), and difference units (clusters of input units that are 

associated with dissimilar words). These relation units are part of the so-called 

"correlations" layer (Gasser & Colunga, 1999). 

The input layer is divided into three sections, each section with its own set of 

input units (a section corresponds to a position of a word within a sentence). All three 

input sections have the same number of units, each unit corresponding to a word (localist 

representation). In each of the three input sections there is an additional, generic input 

unit called CV (consonant-vowel). 



In the correlations layer, Gasser & Colunga create sameness and difference units 

between pairs of input units from all three input sections (the two input units that are 

linked to a relation unit are in different input sections). For example, if two input units 

encode the same word in two different input sections, a sameness unit is created and hand 

wired to those two units. If two input units from different sections encode different 

words, a difference unit is created and hand wired to those two units. Sameness and 

difference units are also created between each pair of CV units. The units on the 

correlations layer are fully connected to each other. 

Citing Elman's work (Elman, 1999; Seidenberg & Elman, 1999), Gasser & 

Colunga argue that this kind of neural structure simulates the knowledge of "syllable 

similarity" (Gasser & Colunga, 1999) that the infants might have before participating in 

Marcus et al.'s (1 999) study. 

The sentences are presented to the network bne at a time, by activating the input 

units that correspond to the three words of the current sentence in each of the three input 

sections. All CV units are also activated, as well as all the corresponding sameness and 

difference units on the correlations layer. For example, when presenting the sentence "le 

le di", the unit associated with the word "le" in the first set of input units (the one 

corresponding to the first position), the unit associated with the word "leu in the second 

set (the one corresponding to the second position), the unit associated with the word "din 

in the last set (the one corresponding to the last position), and all three CV units are 

activated. Also, the sameness unit hand wired to the input units corresponding to the 

word "le" in the first and second positions, as well as two difference units hand wired to 

the input units that correspond to words "lev and "di" in the first and third positions, and 



to those that correspond to words "lev and "di" in the second and third positions, 

respectively, are all activated. In addition, one sameness unit hand wired to the first and 

second CV units, as well as two difference units hand wired to the first and third CV 

units, and to the second and third CV units, respectively, are all activated. 

Following the activation of all these units that correspond to the current training 

sentence, Gasser & Colunga apply a learning procedure called Contrastive Hebbian 

Learning (cHL)~' (Movellan, 1990) that causes the strengthening of all connections 

between active units and the weakening of all connections between inactive units, both 

within and towards the correlations layer. Following training, Gasser & Colunga test their 

network with novel sentences created with both the training grammar, and another, 

unfamiliar grammar. They show that the test patterns that are formed with the training 

grammar generate "more activation" (Gasser & Colunga, 1999) on the correlations layer 

(i.e., the sum of activation values of all relation units), than the test patterns that are 

inconsistent with the training stimuli. ~ a s e d '  on this result, Gasser & Colunga claim that 

they successfully replicate Marcus et al. 's (1 999) study. 

This network is, however, a clear example of an implementational model that 

performs variable binding. In this case, the variables are the positions of words in the 

input sentences, and the relation units "bind" the instances of those variables based on 

their similarity. Most (if not all) of the knowledge is provided by the external supervisor, . 
who hand wires both the relations between words, and the relations between the position 

40 Contrastive Hebbian learning is a Hebbian-type algorithm (Hebb, 1949) where the connection weights 
between two units are strengthened when both units are active. The connection weights are weakened when 
neither of the input units is active. Contrastive Hebbian learning is a supervised algorithm, and has two 
phases (states). In the first phase (the so-called "fkee state"), the input units are activated, and the Hebbian 
learning rule is applied to each pair of connections. In the second phase (the so-called "clamped state"), the 
output units (the relation units in the case of Gasser & Colunga's model) are activated and the connection 
weights are updated based on the Hebbian learning rule. 



of those words within sentences. In effect, the external supervisor handcrafts the 

syntactical structure of the training patterns. 

Although this model may be able to replicate the results reported by Marcus et al. 

(1999), it is questionable whether it can handle more complex grammars. First of all, in 

the current design, the Playpen model can only handle input patterns of the same length. 

But, even if the design is changed to support variable length patterns, the sameness and 

dissimilar rational units may not be enough to capture the higher variability in the finite- 

state grammars. For example, in a certain grammatical sentence, a word wl on position 

pl (denoted wl/pl) may be the same as word w2 on positionp2 (denoted ~ 2 4 2 ) .  This 

can be captured by one sameness unit between wl/pl and w2/p2, and another sameness 

unit between the CV units corresponding to pl and p2. But, in a different grammatical 

sentence (using the same grammar), the words on positions pl and p2  may not be similar 

anymore, which means that a dissimilar unit needs to be created between the CV units 

corresponding to pl and p2. As a result, those CV units will be part of both sameness and 

dissimilarity relation units, and this conflicts with the very design of the Playpen 

architecture. 

8.2 Shastri & Chang's Model 

Shastri & Chang (Shastri, 1999; Shastri & Chang, 1999) constructed a recurrent 

neural network that explicitly implements algebraic rules within neural substrate. The 

characteristics of their model are (see Figure 82): 

One set of nodes encodes the position of a word within a sentence (e.g., first 

word, second word, third word). These nodes are called positional role nodes (denoted 



PI, P2, and P3, indicating the first, second, and third position within a sentence), and act 

as both input and output nodes. 

Another set of nodes encodes each word based on a distributed representation 

having 12 phonetic features (e.g., voiced, nasal, etc). These are called feature nodes, and 

act as both input and output nodes. 

The network contains two fully connected hidden layers. The positional role 

nodes and feature nodes are both connected to the first hidden layer, whereas the 

activations of the second set of hidden units feed back to the positional role nodes and 

feature nodes. 

The network binds a positional role node with an input word by synchronously 

activating the positional role node that specifies the word's position within a sentence, 

and all the feature nodes that encode that word. 

Twelve hidden units m1 
Three positional role Twelve feature nodes 
nodes (inputtoutput) 

Six hidden units I I 

Figure 82 Shastri & Chang's (1999) time synchronous network. The feature nodes encode the 
current word, whereas the positional role nodes encode the position of the current word 
within the sentence. The layers are fully connected to each other. 

The training sentences are presented to the network one word at a time, by 

activating the feature nodes that correspond to the current word, as well as the positional 

role node that corresponds to the current position of that word within the sentence. For 



each word, once the input information propagates through the network, in a typical 

backpropagation fashion, the difference between the actual pattern of activations of the 

positional role nodes and the desired activations of those nodes is used to update the 

connection weights of the network. The connection weights are modified in order to 

minimize this difference for each training sentence. Based on this procedure, Shastri & 

Chang train their network to "detect coincident activity" (Shastri & Chang, 1999) of the 

input/output nodes. For example, the network learns the ABA grammar by learning that 

the positional role nodes P1 and P3 coincidentally fire. The connection weights linking 

the second hidden layer to the first and third positional nodes are very similar, and this 

means that they receive similar amounts of input activation. Therefore, whenever P1 fires 

(as a result of presenting a word in the first position of a sentence), P3 automatically fires 

as well. 

During testing, the positional role nodes and feature nodes are activated for each 

word in the same fashion as during training. Following the propagation of the input 

information through the network, the activations of positional role nodes for each input 

word (i.e., the position that the network predicts for the current word) are compared to the 

target activations of those nodes (i.e., the real position of the current word within the test 

sentence). Shastri & Chang found that the mean squared difference between the 

network's predictions of word positions and the actual positions is lower for test 

sentences that have the same form as the training patterns than for test sentences that 

have a different (unfamiliar) form. 

However, the network does rely on an external supervisor that provides very 

important feedback regarding the position of each word within a sentence. This external, 



explicit information is essential in order for the network to succeed at this task. In effect, 

the external supervisor teaches the network that one positional role node acts the same as 

another positional role (for example, during ABA training, the network is explicitly 

taught that the first positional role node fires at the same time as the third positional role 

node), i.e., the external supervisor explicitly teaches the network the repetitional structure 

of the input patterns. In a way, these positional role nodes can be considered "temporal 

variables" (Marcus, 2001) that are instantiated with the current position of a word within 

a sentence @st-word, second-word, third-word). Because of this, it does appear that the 

network implements some sort of classical mechanism, by binding those temporary 

variables to the same instantiations (for example, the instances offlrst-word are the same 

as the instances of third-word). 

Although Shastri & Chang are able to successfully replicate all the experiments 

performed by Marcus et al. (1999) on infants, it is unlikely that this model can handle 

more complex grammars. When using grammars similar to those by Gomez & Gerken 

(1999), the position of words within sentences varies. For example, in a certain 

grammatical sentence, the words in two different positions may be similar, but in another 

grammatical sentence, the words in those two positions may be different. It is unclear 

how Shastri & Chang's model can learn a more complex grammar just by learning the 

coincidental activities of the positional role nodes. 

8.3 Dominey & Ramus' Model 

In order to replicate Marcus et al.'s (1999) experiments, Dominey & Ramus 

(Dominey & Ramus, 2000) use a slightly changed version of a temporal recurrent 

network (TRN) called abstract recurrent network (ARN). 



A TRN is similar to a simple recurrent network, but has a few differences. Firstly, 

the connection weights between the context and hidden layers, as well as those between 

the input and hidden layers are fixed (i.e., they do not change during training). Only the 

connection weights between the hidden and output layers are allowed to change. The 

hidden layer encodes a so-called "internal state", which represents the position of the 

current element in a temporal sequence, as well as the duration of the sequence and the 

delay between elements. Learning is performed using a simple associative learning 

mechanism, which modifies the connection weights between the hidden and output layers 

in order to associate the internal state (the contents of the hidden layer) with the current 

output. Each connection weight between the active output unit41 and the hidden units that 

encode the current state is updated with the product among a fixed learning rate, the 

activation of the output unit, and the activation of the hidden unit (similar to the Hebbian 

learning method). All nodes in the network are "leaky integrators" (Dominey & Ramus, 

2000), i.e., they do not instantaneously become active. Instead, they are characterized by 

so-called charge and discharge times, which are the number of time steps needed by a 

node to activate and deactivate, respectively. At each time step, one element of the 

temporal sequence is presented to the network, and the network is trained to output the 

same item that is presented at input. The performance is dictated by the output nodes' 

response time, which is, the number of time steps needed to activate the output node that 

corresponds to the current input element. According to Dominey & Ramus, the logic 

behind this training procedure is that, during repeated presentations of the same 

sequential structure, there results a certain pattern of activity in the hidden layer that is 

41 The network uses localist representations on both input and output layers, i.e., only one input and one 
output unit is active at each time step. 



common to that sequential structure. As a result, the response times of the output nodes 

associated to temporal sequences that have the same structure are reduced. Dominey & 

Ramus claim that the TRN model is developed in order to explain the 

electrophysiological recordings of neurons in the prefrontal cortex of monkeys that 

perform temporal learning tasks (Barone & Joseph, 1989). 

When simulating Marcus et al.'s (1999) study, Dominey & Ramus discovered 

that a TRN is unable to reproduce the results reported by Marcus et al., because the 

model cannot generalize its knowledge to sequential structures formed with novel 

elements. In order to address this problem, Dominey & Ramus propose a slightly 

changed version of TRN called abstract recurrent network (ARN). The only difference 

between TRN and ARN is the fact that the latter does not use the current item in the 

temporal sequence as input. Instead, an abstract representation of the entire sequential 

structure is used as the network's input. This abstract representation is encoded on a 

special layer of units, called recognition layer, which is inserted between the input and 

hidden layers. This layer uses a recognition function to compare the current input element 

to up to 5 previous input elements (which are stored separately into a so-called working, 

or short-term memory, STM). The recognition layer contains 6 units. The first unit is 

activated when the current input is the same as the previous input. The second 

recognition unit is activated when the current input item is the same as the input element 

presented before the previous input, etc. If none of the previous 5 input elements matches 

the current input item, the sixth (and last) recognition unit is activated. Once the entire 

sequential structure has been encoded within the recognition layer, the training is 

conducted in the same way as described above for TRN. Since all training sentences in 



the Marcus et al. study have the same sequential structure (e.g., ABA, or ABB), the 

Dominey & Ramus network will always be presented with the same input pattern, 

namely, an abstract representation of the sequential structure of the training sentences. 

The training procedure will therefore minimize the response time of the one and only 

output node that corresponds to the unique input pattern. Dominey & Ramus found that, 

when presented with novel sequences of words, the response time of the node that 

corresponds to the new sequential structure is greater than the response time of the node 

that corresponds to the training structure. Using this procedure, Dominey & Ramus 

successfully replicate all three experiments of Marcus et al. (1 999). 

However, as Marcus (2001) argues, this is a clear example where a classical 

mechanism is employed. In a typical classical algorithmic fashion, the network stores up 

to five previous input items in a short-term memory and, at each time step, compares the 

current input with the previous five. The network does not learn this procedure. Instead, 

the entirely classical mechanism is handcrafted into the network42, and represents the 

main reason for its success. 

Dominey & Ramus' (2000) model may be suitable for more complex grammars 

(similar to those used by Gomez & Gerken, 1999). However, the size of the short-term 

memory may need to be adjusted accordingly. In the current configuration, Dominey & 

Ramus' model can handle grammars where the position of an item within a grammatical 

structure can be uniquely determined by up to 5 previous items. If the high-order 

42 It is noteworthy that, similar to Elman7s simple recurrent network (Elman, 1999; Seidenberg & Elman, 
1999), an external supervisor makes the decisions on the sameness of words. It is unlikely that the infants 
in Marcus et al. 's study have any knowledge regarding word similarities before participating in Marcus et 
al.'s study. 



dependencies in a grammar exceed 5, the size of the short-term memory (as well as the 

length of the recognition layer) will need to be increased. 



9 DISCUSSION AND CONCLUSIONS 

9.1 Classicism vs. Eliminative Connectionism 

The kind of mental representations functioning in the human mind has been the 

subject of debate between classicists and eliminative connectionists since the late 1980s. 

On one hand, classicists believe that the mental representations in the human mind are 

characterized by complex syntax and semantics, and that the mental processes operating 

over those representations are dictated by their syntactic structure. Classicists argue that, 

in order to model cognition, the cognitive architectures need to involve operations on 

explicitly structured symbolic representations (Fodor & McLaughlin, 1990; Fodor & 

Pylyshyn, 1988; Newell, 1980). On the other hand, eliminative connectionists believe 

that the mind is a system composed of simple processing elements (nodes) and 

connections (that resemble the biological neurons and synapses in the human brain), 

which can exhibit intelligent behaviour without involving operations on symbols and 

variables. Eliminative connectionists argue that this paradigm is more plausible than the 

classical theory with regard to simulating cognitive processes. 

Supporting the classical point of view regarding the type of mental 

representations in the human mind, in a series of studies, Marcus (1998, 1999, 2001) 

argues that symbols, variables, and operations over these variables represent the 

underlying features of the human mind, and they should constitute the basis for all 

scientific theories regarding cognition. He claims that a very important set of eliminative 

connectionist models (those trained with the backpropagation algorithm) are unable to 



explain certain cognitive processes that require generalization outside the space of the 

training examples. 

In a very well known study, Marcus et al. (1999) show that 7-month-old infants 

are able to differentiate between test stimuli formed with two different grammars (such as 

ABA vs. ABB). Since the test stimuli are novel with regard to the infants' habituation 

phase, and since, according to Marcus, backpropagation neural networks cannot 

generalize outside the space of the training examples, Marcus et al. (1999) claim that 

those networks will be unable to perform the same task as infants. 

9.1.1 Generalization outside the training space and training independence 

Marcus argues that the main reason for the inability of backpropagation neural 

networks to generalize outside the training space is the existence of the so-called training 

independence, which presumably occurs in those networks. In essence, according to 

Marcus, "training independence" means that the training of a node in the network does 

not depend on the training of any other node that resides on the same layer. Although the 

way in which backpropagation is conducted may suggest that networks are susceptible to 

training independence, in reality, there are ways to minimize (and even eliminate) its 

effects (e.g., using sufficiently rich and well-defined distributed representations). As 

argued during the analysis of Elman's network (Elman, 1999; Seidenberg & Elman, 

1999), even if the training of one node does not directZy influence the training of other 

nodes on the same layer, it does have an effect on the training of all the nodes on the 

onward layers. Because of this, the training of that particular node indirectly affects the 

training of all the other nodes that reside on the same layer. Also, there are cases where 



training independence does not occur at all. For instance, it is questionable whether this 

effect ever occurs in competitive networks (Hadley, Arnold, & Cardei, 1998). 

In my opinion, the significance of training independence that Marcus refers to is 

overstated. As shown in this thesis, for several connectionist models, such as Shultz 

(1999), Shultz & Bale (2001), and Negishi (1999), training independence is not an 

important factor. Although they are trained with b a ~ k ~ r o ~ a ~ a t i o n ~ ~ ,  each one of those 

models is able to mirror the reported behaviour of infants in Marcus et al.'s study, and 

generalize to novel input in the same way as demonstrated by Marcus et al. in infants. 

9.1.2 Symbols, variables, and operations over variables 

Another issue on which I disagree with Marcus is his definitions of "symbolic" 

systems and "variables", which I find to be somewhat misleading and tendentious. 

Marcus states that variables "allow us to extend generalizations to novel instances of 

categories" (Marcus, 1998), where a category ccconsists of all instances bearing a given 

label" (Marcus, 1998). For example, the words walked, ate, sang are instances of the 

category verb. Categories, instances, and variables are all represented by symbols. 

Marcus uses various definitions for symbols, but in essence, he calls a "system that has 

context-independent representations of categories symbolic" (Marcus, 2001) (Marcus' 

emphasis). For example, if a neural network is presented with various words, and each 

word is represented in the same way regardless of its context (e.g., the word cat always 

triggers the activation of the same input units, regardless of its position within a 

43 The cascade-correlation algorithm employed by Shultz (1999) and Shultz & Bale (2001) uses a variation 
of backpropagation called quickprop (Fahlman, 1988). Quickprop is very similar to backpropagation, 
except for a dynamically adjusted learning rate (the learning rate typically decreases during training). 
Fahlman (1988) demonstrates that quiclcprop may improve the learning speed of a feed-forward neural 
network. 



sentence), then that network makes use of symbols: "since multilayer perceptrons have 

context-independent representations of categories, I count them as having symbols" 

(Marcus, 200 1). 

Although Marcus acknowledges that this definition is "permissive" (Marcus, 

2001), he argues that the issue is not whether a network makes uses of context- 

independent representations (i.e., symbols), but whether the network "represents" 

(Marcus, 2001) variables and operations over variables. However, it appears that Marcus 

does not distinguish between variables that are "represented" on the external layers of a 

network (i.e., one can physically identify nodes or sets of nodes on the input and output 

layers of a network that represent "variables", according to Marcus' definition), and 

variables that reside on the internal (hidden) layers of a network. Therefore, with regard 

to the debate between classicism and eliminative connectionism, Marcus considers that if 

one can identify "variables" in a neural network, regardless of where and how those 

variables may be represented, that neural network will necessarily implement operations 

over those variables. 

On the contrary, I believe that the mere presence of an identifiable "variable" (in 

Marcus' sense) on the external layers of a network should not necessarily indicate an 

implementational character (as in an implementation of a classical mechanism) of that 

network. Instead, we should analyse whether those variables are implemented within the 

network's internal layers. There are at least two arguments that support this statement. 

Firstly, many eliminative connectionists view eliminativism as a paradigm that 

requires the elimination of explicitly structured symbolic representations from a 

network's internal layers. When analysing the implementational or eliminative character 



of a connectionist model, we need to ascertain the existence of symbols or variables 

within the network's internal representations, because this is what eliminative 

connectionists claim to eliminate. 

Secondly, according to Marcus' definition of symbolic systems (i.e., a network 

that is presented with context-independent representations of categories is symbolic), any 

connectionist model whose input or output layers are constructed in such a way that they 

accept explicit symbolic representations makes use of symbols and variables. This makes 

virtually all connectionist models implementational. However, eliminative connectionists 

should acknowledge that symbolic representations are valid as input representations for 

eliminative networks, since it is generally believed that humans accept explicitly 

structured symbolic representation as input. Therefore, we should not consider that a 

network is implementational just because it is presented with classical representations. 

Based on these considerations, I argue that when we analyse the existence of 

"variables" within neural networks, we should study the presence of those variables 

within the networks' internal representations. In other words, I argue that a connectionist 

model is implementational only when we can explicitly identify "variables" within the 

internal representations of the network. If we cannot identify such variables, I argue that 

the neural network is eliminative. Consequently, when analysing the connectionist 

models discussed in this thesis, I have closely investigated the nature of their internal 

representations with regard to implementing variables and operations over those 

variables. Based on this investigation, I believe that, in several cases, Marcus is mistaken 

in his evaluation. 



9.2 Connectionist "Counterexamples" to Marcus 

Elman (1999) was one of the first to propose a connectionist model specifically 

intended to replicate Marcus et al.'s (1999) results. He initially pre-trained a simple 

recurrent network to distinguish whether a given syllable is identical to a previous 

syllable. He then trained the same network to discriminate between sequences of 

syllables generated by two simple grammars (ABA and ABB). Elman claims that his 

experiment shows that SRNs successfully match the infants' reported results. 

In his analysis of this model, Marcus (2001) argues that the apparent success of 

the network is caused by the presence of the preliminary training phase, and the way this 

phase is performed. To Marcus, this preliminary training phase looks like an "external 

supervisor" (Marcus, 2001) that teaches the network an algebraic rule of the form "for all 

syllables x and y, if x=y, then output 1, otherwise output 0". I agree that this external 

supervisor may implement a rule of that form, and because the supervisor is part of the 

system, this could make the whole system implement that rule. Elman has not 

demonstrated how the neural network could internally implement this rule. 

In recent work (Vilcu & Hadley, 2001), we performed the same kind of 

simulation as Elman (1 999), using numerous simple recurrent networks and a wide range 

of training parameters. Our results show that, even with the pre-training phase in place, 

Elman's claim is premature, and his networks perform erratically. In particular, we 

trained 64 different SRNs, using the same procedure as Elman (1999), and showed that 

only a small percentage of networks successfully discriminated between the two 

grammars. I emphasize, however, that Elman's simulation differs from Marcus et al.'s 

experiment not only by the addition of a pre-training phase, but also by training the 



network on both grammars at the same time. It is arguable whether Elman's task is any 

more difficult than Marcus et al.'s infants, but it does make his results less relevant with 

regard to replicating Marcus et al.'s data. However, even if we ignore this flaw, the fact 

that this network performs inconsistently cannot be overlooked. In my opinion, this 

undermines Elman's claim that he provided a counterexample to Marcus et al.'s 

theoretical arguments that no eliminative connectionist model is able to differentiate 

between novel grammatical structures. 

The knowledge representation analysis that I have performed on this model shows 

that the primary task that Elman's simple recurrent network carries out is the learning of 

very specific characteristics of the training stimuli, such as the various vowels and 

consonants that occur in those stimuli, rather than extracting the abstract structure of the 

input sentences. According to the principal component analysis of the hidden activation 

vectors formed at the end of each training sentence, 70% of the internal resources are 

allocated to separating the training vowels and consonants. Only about 26% of those 

resources are used to extract more useful information about the sequential structure of the 

training sentences, such as recognizing the difference between the "A" and "B" words. 

Hierarchical cluster analysis performed on hidden activation vectors formed at the end of 

each test pattern for 8 different networks shows that there is a high degree of overlap 

between internal representations formed by the test patterns created with one grammar, 

and the test patterns created with the other grammar. These results confirm my 

experimental findings on this network, which show a rather unpredictable and erratic 

behaviour of the network when handling novel test patterns. 



Shultz' (1999) and Shultz & Bale's (2001) models represent two connectionist 

implementations that successfully mirror the infants' reported results. These simulations 

are perfonned on a slightly modified cascade-correlation network, called encoder. The 

models described by Shultz (1999) and Shultz & Bale (2001) are identical, except for the 

input representation. In the more recent experiment, Shultz & Bale (2001) used a sonority 

scale, while Shultz (1999) assigned a number between 1 and 8 to each syllable. Shultz & 

Bale (2001) claim that their results "show that an unstructured neural network model 

without symbolic rules can simulate infant familiarization and novelty results" (Shultz & 

Bale, 2001). They also argue that the network exhibits "extrapolative generalization 

outside the range of the training patterns" (Shultz & Bale, 2001). 

According to Marcus, Shultz' model succeeds at this task because it uses "nodes 

as variables" (Marcus, 2001), and the contents of these variables are copied from one 

node to another (as shown in Figure 23). In Marcus' view, this means that the model 

actually implements a classical mechanism (i.e., operations over variables), rather than 

being an eliminative connectionist structure. However, I have demonstrated that Marcus 

is mistaken in this argument. In Vilcu & Hadley (2003) we ran an extensive set of 

experiments very similar to Shultz (1999) and Shultz & Bale's (2001), and found that 

their model develops connection weights in a much more complicated fashion than in 

Marcus' conjecture. Although the input representations may indicate that the network 

could make use of variables on the external layers (e.g., variables current-word, second- 

word, and third-word of a sentence), I discovered that these "variables" are not simply 

copied to the network's internal layers. In other words, the network does not manipulate 

the instances of those variables in a classical algorithmic fashion. I believe there are no 



explicitly identifiable "variables" (in Marcus' sense) within this model's internal layers. 

Therefore, I argue that Shultz (1999) and Shultz & Bale (2001) networks are genuine 

eliminative connectionist models. 

Nevertheless, I also believe that Shultz' (1999) and Shultz & Bale's claims (2001) 

are substantially overstated. In recent work (Vilcu & Hadley, 2003), we found that even 

though this model closely mirrors Marcus et al.'s (1999) reported data, it has limited 

generalization capabilities. The network not only has problems extrapolating outside of 

the training set, but it also has difficulties doing generalization within the range of the 

training patterns (interpolation). Granted, Shultz (1999) and Shultz & Bale (2001) never 

explicitly claim their model learns a grammar. However, in saying that the network is 

able to "recognize a syntactic pattern" (Shultz & Bale, 2001), and has the "ability to learn 

multiple syntactic forms simultaneously~' (Shultz & Bale, 2001)' and "[the fact that the 

networks not only interpolated, but also extrapolated] shows that neural networks are not 

1 merely memorizing associations between input and output, but are abstracting functions 

~ relating inputs to outputs" (Shultz & Bale, 2001), they imply that their model learns the 

1 underlying syntactic structure of the input patterns and is able to successfully apply this 

1 knowledge to novel items. The conclusion drawn from our work (Vilcu & Hadley, 2003) 

is that Shultz' (1999) and Shultz & Bale's (2001) networks behave like a typical pattern 

recognizer, whose performance is conditioned by familiar shapes (numerical contours), 

1 rather than like a model capable of discovering abstract grammatical relationships. 

~ In accord with the knowledge representation analysis performed on this model, 

1 we found that, in general, test sentences closest (in Euclidian space) to the training 

1 vectors would generate the smaller network error, regardless of whether those test 



sentences had been generated with the familiar or unfamiliar grammar. Therefore, it is 

Euclidian closeness to the training data, rather than the learning of underlying structure of 

input patterns, which dictates the behaviour of this model. 

Altmann & Dienes (1999) represents another model designed to replicate Marcus 

et al.'s results, and is based on a modified simple recurrent network. One notable 

characteristic of their model is the partial freezing of weights after training (one set of 

connection weights are frozen, while another set is able to change even during testing). 

Another characteristic is the way they measured the network error: by computing the 

cosine of the angle between the actual and target output vectors. Altmann & Dienes 

(1 999) reported good results for their simulation. They state that they found "significantly 

higher correlation for congruent sequences than for incongruent ones (...), and a 

significantly smaller Euclidian distance between prediction and target for congruent 

targets than for incongruent ones" (Altmann & Dienes, 1999). 

However, Marcus has a few objections regarding this model. Firstly, he disagrees 

with the way Altmann & Dienes interpret the network outputs. He argues that if one uses 

the most common way to interpret a model, i.e., recording the most active output unit at 

any time, then the network will not be able to differentiate between the two syntactic 

structures. A second objection is the way Almann & Dienes do the testing, by freezing 

some of the connection weights while allowing others to change until the test patterns are 

learned. Marcus argues that this procedure is unrealistic and "it is unclear what sort of 

neural system could implement this in the brief period of time which infants have in our 

experiments" (Marcus, 1999). Finally, Marcus found that Altmann & Dienes' model is 

not able to correctly generalize to novel sentences, because the model only maps "the 



encodings of one set of words onto the encodings of another set of words" (Marcus, 

1999). 

In Vilcu & Hadley (2003) we duplicated Altmann & Dienes' experiments and 

discovered serious problems. We found that when the networks were trained with 

sequences of syllables generated by one grammar, the Euclidian distance between the 

actual and target vectors was consistently higher for unfamiliar sequences than for 

familiar sentences, whereas when the networks were trained on the other grammar, the 

distances were consistently smaller for unfamiliar sentences. We believe these findings 

are incompatible with the Altmann & Dienes' assertion (1999) that "like the infants (. . .), 

our networks successfully discriminated between the test stimuli". 

More recently, Altmann (2002) made a few changes to the Altmann & Dienes 

model and repeated the original simulations. He added a preliminary training phase that 

supposedly helps the network to "remember" the trained patterns by eliminating the need 

of generating new internal representations every time a novel input pattern is presented. 

According to Altmann, the preliminary training phase populates the internal 

representational space of the network using an extensive set of simple sentences (such as 

Noun Verb, and Noun Verb Noun). Another characteristic of Altmann's model is the 

elimination of the partial freezing of the connection weights during testing. Altmann 

claims that this model replicates Marcus et al.'s results. However, during my own 

analysis, I discovered that this network is highly dependent on very specific 

characteristics of the pre-training sentences (i.e., they form in a subtle fashion the 

underlying ABA and ABB structures), and on the pre-training grammar itself. 



The knowledge representation analyses performed on Altmann & Dienes' (1999) 

and Altmann's (2001) models reveal that these simple recurrent networks do not extract 

the underlying sequential structure of the input pattems. Principal component analysis 

shows that most of network's resources (75% in case of Altmann & Dienes, and 70% in 

Altrnann's) are allocated to learning non-useful and non-essential information (with 

regard to the sequential structure of input stimuli) about the training pattems, such as 

separating the training sentences based on the middle words. When such a network needs 

to differentiate between ABA and ABB patterns, it will be unable to separate test 

sentences that have the same middle word even when those sentences are formed with 

different grammars. Hierarchical cluster analysis performed on hidden activation vectors 

formed at the end of each test pattern shows a high degree of overlap between 

grammatical test patterns and ungrammatical test patterns. This confirms my 

experimental results, which show that the models of Altmann & Dienes (1999) and 

Altmann (2001) cannot robustly and consistently learn even the simpler grammars. 

Christiansen & Curtin (1 999), followed by Christiansen et al. (2001), employ the 

same model, namely, a simple recurrent network, initially built for early infant speech 

segmentation (Christiansen et al., 1998). Christiansen & Curtin (1 999), and Christiansen 

et al. (2001) used their existing speech segmentation model in order to replicate Marcus 

et al.'s study on infants. Since Marcus had objections to their earlier work (Christiansen 

& Curtin, 1999), Christiansen et al. (2001) responded with a more comprehensive and 

detailed experiment. Marcus was initially concerned about the statistical significance of 

their initial results, since Christiansen & Curtin (1999) only ran their experiments on a 

single network. Marcus also argued that Christiansen & Curtin's results (1999) were 



driven by the network's noise and they could not be replicated. In their most recent work, 

Christiansen et al. (2001) maintain that they replicate their initial experiment on 16 

different neural networks and that the results are consistent with regard to their previous 

study. However, my own analysis of this model shows that Marcus' interpretation is 

accurate, i.e., the network is mostly driven by noise. 

The knowledge representation analysis performed on this model confirms my 

experimental results. According to the principal component analysis of the hidden 

activation vectors formed at the end of each training pattern, Christiansen & Curtin's 

model (Christiansen et al., 2001; Christiansen & Curtin, 1999) learns very particular 

characteristics of the input stimuli (95% of network's resources are used to do this), such 

as the difference between various vowels and consonants, as well as the individual letters 

that are part of the input words. The network is unable to extract the sequential structure 

of the input stimuli. This indicates that the network will have serious problems with 

separating the test patterns formed with two different grammars in a robust and consistent 

way. Indeed, hierarchical cluster analysis performed on hidden activation vectors formed 

at the end of each test pattern shows a high degree of overlap between the two categories 

of patterns. This finding is consistent with my experimental results, which indicate that 

there exists an important level of noise in the network. 

Negishi (1999) proposed a modified version of a simple recurrent network 

without hidden units. Each syllable is presented to the network one at a time, and is 

represented by two input features: the vowel height and the place of articulation of 

consonants. Negishi reported very good results for his model, and claimed he reproduced 

the results reported by Marcus et al. (1 999). 



In his analysis of this model, Marcus (2001) argues that it is just an 

implementation of a classical mechanism, involving two input variables, the network 

operating in the same way for all instances of those variables. However, I believe that 

Marcus is mistaken in his interpretation. I have shown that if the two variables that 

Marcus refers to were place of articulation of consonants (POA) and vowel height (VH), 

the network could not apply the same operation to all instances of those variables, 

because such operation was dependent on the context of each instance. Also, if the 

variables were current-word and previous-word, my investigation showed that Negishi's 

model could not learn an abstract relationship between those variables, because the 

operation that the network learned generated inconsistent results for various test items. 

Therefore, I argue that Negishi's network does not implement operations over variables, 

and that it is a genuine eliminative connectionist model, which does simulate the results 

reported by Marcus et al. (1 999). 

Nevertheless, Negishi's model fails to thoroughly learn even the simpler 

grammars. When minimal changes to the test stimuli (for example, switching the words 

between the "A" and "B" positions) are made, the model cannot correctly detect the 

difference between the familiar and unfamiliar test sentences. This experimental result is 

confirmed by the knowledge representation analysis performed on this model. According 

to the principal component analysis, most of network's resources (99.4%) are allocated to 

identifying very specific information regarding the training patterns, such as the various 

vowels and consonants that occur in the training sentences, or the differences between the 

numerical representations of vowels and consonants in the first word of each sentence. 

Once again, this simple recurrent network is unable to extract more useful and important 



information from the training patterns (such as abstracting the sequential structure of the 

input sentences) that could help it differentiate between familiar and unfamiliar test 

stimuli. 

9.2.1 Handling of more complex grammars 

My analysis of all these connectionist models also contained the investigation of 

their abilities to perform the same discrimination task when more complex grammars are 

involved. Based on the Gomez & Gerken's (1999) study on 1-year-old infants, I 

performed various experiments on all the networks discussed in this thesis. None of these 

models displayed an ability to differentiate between novel test patterns formed with the 

familiar grammar, and test patterns formed with an unfamiliar grammar. 

9.3 Conclusions 

Although some of the eliminative connectionist models discussed in this thesis 

successfully reproduce Marcus et al.'s (1999) reported results, they all fail at the more 

important task of learning the grammars involved. They do not only have problems 

handling complex (finite-state) grammars, but they also fail with very simple grammars, 

such as ABA or ABB. The results of both my experimental studies, and those generated 

by the various analysis techniques employed in this thesis, demonstrate that each of those 

models is unable to extract the syntactical structure of the input patterns, i-e., they are not 

capable of discovering the relationship among the training stimuli. Instead, these models 

extract very particular and non-essential features of the training stimuli, such as their 

numerical contour (Shultz, 1999; Shultz & Bale, 2001), specific characteristics of various 

vowels or consonants that occur in those stimuli (Christiansen et al., 2001; Christiansen 



& Curtin, 1999; Elman, 1999; Negishi, 1999), or uninteresting dependencies on certain 

words (Altmann & Dienes, 1999). 

What is common to all connectionist models that have been discussed in this 

thesis is the fact that they are trained with the backpropagation algorithm (or a variation 

of backpropagation called quickprop). As mentioned in the early chapters of this thesis, 

backpropagation is a learning technique that adjusts the connection weights of a neural 

network based on the difference (i.e., error) between the target (desired) output and the 

actual output generated by the network for each training input. During training, the 

network is taught that, for each input item xi, i=l..n (where n is the size of the training 

set), it needs to output yi, and backpropagation adjusts the connection weights of the 

network in order to reach that goal. The algorithm is recursive (i.e., the training set may 

be presented to the network multiple times), and typically stops when it minimizes the 

difference between target and actual output values (the so-called error function) for each 

input item. In essence, generally speaking, the effect of backpropagation is to find the 

simplest function that minimizes the error function for all xi. However, since the set of all 

(xi, yi) pairs is just a set of numerical values, the objective of backpropagation is to teach 

a network how to numerically approximate the appropriate output for each input number 

xi. Consequently, backpropagation networks implement a numerical function that is 

purely statistical. 

Before analysing the significance of this fact with regard to learning artificial 

grammars with backpropagation networks, it is noteworthy that, in accord with the results 

of the various analysis techniques performed in this thesis, backpropagation networks 

(both feed-forward and simple recurrent networks) are able to discover certain statistical 



correlations among the numerical encodings of the input patterns. For example, 

Negishi's network discovers that the numerical difference between the encodings (input 

representations) of consonants and the encodings of vowels contained in the first word of 

all training sentences are similar. Another example is Shultz's network, which determines 

that the encodings of the training sentences form certain numerical contours. When 

presented with novel input, backpropagation networks attempt to numerically 

approximate that input to a value that is consistent with the network's output to the 

training patterns. However, this numerical approximation is not always successful. For 

example, when Negishi's network is tested with novel input that does not match the 

characteristics of the training patterns (i.e., the numerical difference between the input 

representations of consonants and vowels of the first word of the novel sentence is 

different than the numerical differences experienced by the network during training), the 

network output is inconsistent with the abstract structure of the training patterns (the 

network error for a novel sentence formed with the unfamiliar grammar is smaller than 

the network error for a novel sentence formed with the familiar grammar). 

Although I disagree with Marcus on several important issues, such as the 

significance of training independence, the definition of "symbolic" systems, his 

evaluation of Shultz' (1999), Shultz & Bale's (2001), and Negishi's (1999) models, I 

agree that backpropagation neural networks have limited generalization capabilities. As 

mentioned above, I believe that the ability of backpropagation networks to generalize to 

novel input is dictated by their capacity to numerically approximate a statistical function. 

Unfortunately for the eliminativists, as argued in (Hadley, 2000), the realm of 

natural language understanding is not a numerical domain. Although the kind of 



statistical functions approximated by backpropagation networks, especially simple 

recurrent networks, can be fairly complex (Churchland, 1995; Elman, 1990, 199 1, 1993), 

these functions still remain purely statistical. As shown by the various experimental 

results discussed in this thesis, these numerical, statistical functions appear unable to 

capture the subtle syntactical and symbolic relationships that are present in natural 

languages. 

Many eliminativists, including Elman, Christiansen, Shultz, Altmann, and others, 

argue that the kind of statistical functions implemented by backpropagation networks is 

sufficient in order to explain how humans learn natural languages. In particular, with 

regard to the ability of backpropagation networks to simulate the language learning 

processes shown by Marcus et al. (1999), Elman maintains that his networks are 

"inductio engines in which generalizations arise over abstract classes of items" (Elman, 

1999), and that "statistical patterns provide the evidence for those classes and for the 

generalizations over them" (Elman, 1999). On the same subject, Christiansen argues "the 

statistically-based single-mechanism approach embodied in our connectionist model 

provides the most simple account of the behavioral data, thus obviating the need for a 

separate rule-learning component" (Christiansen et al., 200 1). Also, Altmann claims that 

the ability of his simple recurrent network to reproduce Marcus et al.'s results "adds to 

the body of evidence which suggests that models of statistical learning can provide 

insights into the nature of the conditions that enable certain kinds of learning" (Altmann, 

2002). 

However, both the experimental results and the analysis techniques performed in 

this thesis indicate that the statistical mechanisms alone are not sufficient to handle the 



kinds of syntactical relationships that occur in Marcus et al.'s (1999) and Gomez & 

Gerken's (1999) training sentences. According to my results, there is no reason to believe 

that the type of statistical functions approximated by backpropagation networks are 

powerful enough to explain the symbolic relationships that take place in natural 

languages. In my opinion, Elman and other eliminativists have not proved yet that 

statistical functions are adequate to explain natural languages. Until that proof is made, 

there is no evidence to suggest that the type of backpropagation networks discussed in 

this thesis can abstract the sequential structures of the input sentences employed by 

Marcus et al. and Gomez & Gerken, and, consequently, are able to consistently 

generalize to novel input. 

Nevertheless, I believe that, in certain conditions, backpropagation networks can 

simulate high-level cognitive processes, such as first order logic, or natural language 

understanding. These conditions refer to applying certain "classically influenced" 

(Hadley, 2000) mechanisms to the backpropagation structure, such as handcrafting some 

or all of the network connections, or employing symbolic A1 (Artificial Intelligence) 

programs. For example, one of the three connectionist models discussed in chapter 8 of 

this thesis (Implementational Connectionist Models), namely, Shastri & Chang (Shastri, 

1999; Shastri & Chang, 1999), employs the backpropagation algorithm and is able to 

successfully replicate Marcus et al.'s study (1999), and freely generalize to novel input. 

What makes this network succeed is the fact that it uses a priori knowledge with regard 

to the structure of the language, i.e., the network is handcrafted to explicitly incorporate 

the grammatical pattern into the networks' structure. 



Shastri & Chang's network makes use of three special input/output units that 

encode the position of each word within a sentence (the positional role nodes). 

Significantly, the network does not actually learn the positions of words within 

sentences; this information is explicitly presented to the network. Since the positional 

role nodes act as output units as well, what the network is taught is to correlate the 

activation of positional role nodes in each training sentence. For example, during ABA 

training, the network is explicitly taught that the activation of the positional role node P1 

correlates with the activation of the positional role node P3. When presented with novel 

input, regardless of the encoding of the new item, the activation of P1 determines the 

activation of P3, and vice-versa. Since the network's performance is measured only based 

on the activations of the positional role nodes, the error will always be smaller for ABA 

sentences than for ABB sentences. 

Although the other two of the three implementational connectionist models 

discussed in the previous chapter do not employ backpropagation, it is noteworthy that 

they both are explicitly presented with the sequential structure of the input sentences. For 

example, Gasser & Colunga (1 999) handcraft special relation units, such as sameness and 

difference units, which are linked to pairs of input units, depending on whether those 

input units encode similar or different words. In this case, the programmer (the human 

being that programs the neural network into the computer) transfers hisher a priori 

knowledge regarding the grammatical structure of the input sentences to the network's 

structure. The network does not learn the grammatical structure, but, rather, the external 

supervisor explicitly hardwires that grammatical structure into the network. Similarly, 

Dominey & Ramus' network (2000) is explicitly presented with a numerical encoding of 



the abstract structure of the training patterns. This abstract encoding is provided by an 

external, handcrafted mechanism that employs a typical classical algorithm (it stores up 

to five input items, and compares the current input with the previous five inputs). This 

external mechanism (which, in essence, is a symbolic A1 program) generates the same 

numerical encodings for all input sentences that have the same grammatical structure, 

regardless of whether or not those sentences are "novel". The network is therefore able to 

freely generalize to any sentence that has the same syntactical structure as the training 

patterns. 

With regard to the debate between classicism and eliminative connectionism, my 

belief is that eliminative connectionist models in general, and backpropagation networks 

in particular, have serious difficulties modelling higher-level cognitive processes, such as 

natural language understanding. This is not to say that classical architectures are 

automatically the only alternative. Classical systems have their own problems, such as the 

fragility of their structure, their inability to tolerate noise, and their tendency to only solve 

domain-specific problems. As argued in (Hadley, 2000), I also believe that neither 

classicism, nor eliminative connectionism on their own can model all high-level cognitive 

processes. However, the so-called implementational connectionism looks like a 

promising paradigm. In addition to the implementational networks discussed in this thesis 

(Dominey & Ramus, 2000; Gasser & Colunga, 1999; Shastri & Chang, 1999), there are 

many other studies, such as (Hadley & Cardei, 1999; Hadley & Hayward, 1997; Shastri 

& Ajjanagadde, 1993), that show the ability of implementational connectionist networks 

to model many high level cognitive processes. 
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