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Abstract

The generalized graph colouring problem (GCOL) for a fixed integer k, and fixed classes

of graphs PI, ... ,Pk (usually describing some common graph properties), is to decide, for

a given graph G, whether the vertex set of G can be partitioned into sets \Ii, ... ,Vk such

that, for each i, the induced subgraph of G on \I,; belongs to Pi. It can be seen that GCOL

generalizes many natural colouring and partitioning problems on graphs.

In this thesis, we focus on generalized colouring problems in chordal graphs. The struc­

ture of chordal graphs is known to allow solving many difficult combinatorial problems,

such as the graph colouring, maximum clique and others, in polynomial, and in many cases

in linear time. Our study of generalized colouring problems focuses on those problems in

which the sets Pi are characterized by a single forbidden induced subgraph. We show, that

for k = 2, all such problems where the forbidden graphs have at most three vertices are

polynomial time solvable in chordal graphs, whereas, it is known that almost all of them

are NP-complete in general. On the other hand, we show infinite families of such problems

which are NP-complete in chordal graphs. By combining a polynomial algorithm and an

N P-completeness proof, we answer a question of Broersma, Fomin, Nesetfil and Woeginger

about the complexity of the so-called subcolouring problem on chordal graphs. Additionally,

we explain, how some of these results generalize to particular subclasses of chordal graphs,

and we show a complete forbidden subgraph characterization for the so-called monopolar

partitions of chordal graphs.

Finally, in the last part of the thesis, we focus on a different type of colouring problem

- injective colouring. We describe several algorithmic and (in-)approximability results for

injective colourings in the class of chordal graphs and its subclasses. In the process, we

correct a result of Agnarsson et al. on inapproximability of the chromatic number of the

square of a split graph.

Keywords: chordal graphs; graph colouring; subcolouring; injective colouring; forbidden

subgraph characterization; polynomial time algorithms

Subject Terms: Graph Theory; Graph Coloring; Graph Algorithms; Perfect Graphs;

Homomorphisms (Mathematics); Graph Grammars
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Chapter 1

Introduction

The graph colouring problem is probably one of the oldest problems of graph theory. Here,

the task is to label the vertices of a given graph using as few colours as possible in such

a way that no adjacent vertices receive identical labels. The origins of this problem can

be traced all the way back to the famous problem of four colours, formulated by Francis

Guthrie in 1852, which asks whether any map of countries can be coloured using at most

four colours in such a way that no two countries sharing a boundary use the same colour.

As it turned out later, this is just a special case of the graph colouring problem in planar

graphs. Since then, graph colouring and its variants have appeared in many different guises

in combinatorics, optimization, discrete geometry, set theory, and many other branches of

discrete mathematics. Also, many practical problems such as time tabling, sequencing, and

scheduling are related to the problem of graph colouring.

Unfortunately, graph colouring is one of the first known NP-complete problems. This

tells us that it is unlikely that an efficient algorithm for graph colouring exists, where, of

course, by efficient, we mean running in polynomial time (possibly also randomized). This,

however, does not mean that the problem is not efficiently solvable in some special case,

and indeed, there are numerous special cases in which the problem has a nice algorithmic

solution. These cases usually form classes of graphs with some structural property which

allows solving the problem efficiently.

Another line of research on graph colouring focuses on variants and generalizations of

this notion. This is, of course, inspired by practical problems for which the language of

1



CHAPTER 1. INTRODUCTION 2

graph colourings is not very convenient. Such examples are the problems of edge colour­

ing, subcolouring, circular colouring, graph homomorphism, and many others [47J. In

particular, the graph homomorphism problem is noted for having many practical appli­

cations [17, 29,49, 54].

In this thesis, we study a particular common generalization of graph colouring and

related graph problems. It is defined as follows.

The generalized graph colouring problem (GCOL) for a fixed integer k, and fixed classes

of graphs PI," . , Pk, is to decide, given a graph G, whether the vertex set of G can be

partitioned into sets VI, .. " Vk such that, for each i E {I, ... , k}, the induced subgraph of

G on Vi belongs to Pi. In some cases, we shall consider the following list version of GCOL.

The generalized list colouring problem (List-GCOL) for a fixed integer k, and fixed

classes of graphs PI, .. " Pk, is to decide, given a graph G with lists £(v) ~ {I, ... , k}

for all v E V(G), whether there exists a partition VI,"" Vk of V(G) with G[Vi] E Pi for

each i E {I, ... , k}, which respects the lists £, that is, for any vertex v E V(G) and any

i E {I, ... , k}, if v is in Vi, then i E £(v).

We say that a class P of graphs is (induced) hereditary, if P is closed under taking

(induced) subgraphs, that is, if H is an (induced) subgraph of G E P, then also H E P.

We say that P is (co-) additive, if P is closed under taking disjoint unions (respectively

joins) of graphs. It can be seen that for any set P of graphs, the membership problem

of P can be expressed as GCOL simply by putting k = 1 and PI = P. Hence, GCOL,

in general, can be as difficult as it gets, even undecidable. This is still true even if we

insist that P is additive and hereditary. (Consider the smallest additive hereditary class

of graphs containing chordless cycles whose sizes are from an undecidable set of integers.)

We therefore focus on those GCOL problems for which the membership problem of the

classes Pi is decidable in polynomial time. Observe that all such problems are clearly in

the class N P. In particular, if all Pi are additive and induced hereditary, the complexity of

GCOL is completely resolved by the following result of Farrugia.

Theorem 1.1. [26] Let k 2: 2, and let PI, ... , Pk be additive induced-hereditary classes.

Then the problem GCOL for PI, ... , Pk is N P-hard, unless k = 2 and PI = P2 = 0 (the set

of all edgeless graphs), in which case the problem is polynomial time solvable.

Note that this theorem does not assume polynomial time membership of the classes Pi.

Similarly, Farrugia proves the following result.



CHAPTER 1. INTRODUCTION 3

Theorem 1.2. [26] Let k 2: 2, and let PI,"" Pk be additive or co-additive induced­

hereditary classes. Then the problem GCOL for PI, ... , P k is NP-hard, unless k = 2 and

the membership for both PI and P2 is polynomial time solvable.

Observe that this theorem does not say anything about the complexity in the case when

k = 2, PI is additive, P2 is co-additive, and both are polynomially recognizable. In fact,

not much is known in this case with the exception of the following result of Feder, Hell,

Klein, and Motwani [27], which was also independently shown by Alekseev, Farrugia, and

Lozin [3J in a somewhat weaker form.

Theorem 1.3. [3, 27J Let PI be a class of graphs G with clique number w(G) < k, and

P2 be a class of graphs G with independence number o:(G) < e. Then GCOL for p], P2 can

be solved in time O(n2R(k,£l+2T(n)), where R(k, e) is the Ramsey number of k and e, and

T(n) is the time complexity of the membership problem for PI, respectively P2.

We remark that (induced) hereditary classes P are particularly interesting since they

can be characterized by sets of forbidden (induced) subgraphs F(P), that is, graphs such

that G E P, if and only if, G does not contain F as an (induced) subgraph for all F E F(P).

This follows from the fact the (induced) subgraph order of graphs has no infinite descending

chain. We note that, in particular, if the set F(P) is finite, then the membership problem

for P is polynomially solvable, which is a fact frequently used in the literature.

In the following chapters, we do not consider the GCOL problem in its full generality,

but rather focus on a restricted case, where all classes Pi are induced hereditary and each is

characterized by a single forbidden induced subgraph. As follows from the above, almost all

such problems are NP-complete in general. However, this is not necessarily the case when

the input of the problem is restricted.

This motivates us to study the complexity of GCOL in structured classes of graphs,

whose properties may allow us to solve many instances of GCOL efficiently. In this thesis,

we focus on the class of chordal graphs and its subclasses. This is a class of graphs with

particularly nice structure, and one for which many combinatorial problems are known to

be efficiently solvable.

The thesis is structured as follows. In the remaining sections of this chapter, we first

introduce chordal graphs and describe their structural properties, and then briefly mention

some similarly structured classes of graphs which are related to chordal graphs. After that,

we describe three simple, yet important cases of the GCOL problem which are polynomially
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solvable in all graphs, but are not all covered by the above theorems. Next, in Chapter 2, we

describe some general tools for constructing efficient algorithms for combinatorial problems

on graphs, namely dynamic programming techniques, greedy algorithms, graph grammars,

and MSO-definable properties. After that, in Chapters 3, 5, and 6, we establish the com­

plexity of selected GCOL problems in chordal graphs, namely the monopolar partition, the

polar partition, the subcolouring, and the Pj- and Kj-free Pk-transversal problems, in that

order, either by giving a polynomial time algorithm, or by proving N P-completeness of the

problem. Additionally, in Chapter 4, we completely describe all forbidden induced sub­

graphs for the monopolar partition problem in chordal graphs. After that, in Chapter 7,

we establish the complexity of several other cases of the GCOL problem in chordal graphs

which, in particular, will allow us to deduce the following theorem.

Theorem 1.4. Let PI and P2 be induced hereditary classes of graphs, each characterized by

a single forbidden induced subgraph having at most three vertices. Then GCOL for PI, P2

is polynomial time solvable in the class of chordal graphs.

Later, in Chapter 7, we also discuss extensions of these results to strongly chordal graphs

and chordal comparability graphs. Finally, in Chapter 8, we describe a different colouring

problem on graphs, the injective colouring problem, and solve a number of complexity results

for this problem in chordal graphs.

1.1 Definitions

A graph G is a pair (V, E) where V is a set of vertices (also called a vertex set), and E, called

a set of edges (or an edge set), is a binary relation on V, that is, E <;;;; V x V. For a graph

G, the set of vertices and the set of edges of G is denoted by V (G) and E(G), respectively.

A graph G is undirected, if E(G) is symmetric. In case we want to emphasize that G is not

necessarily undirected, we say that G is directed, or that G is a digraph. A graph G is loopless,

if E(G) is irreflexive. Note that the definition of graph above does not allow multiple edges

between two vertices; in other words, our graphs are what is sometimes referred to as simple.

We say that vertices u and v are adjacent in G (or that u and v are neighbours in G), if

uv E E(G) or vu E E(G). A walk W in G is a sequence of vertices W = UI, U2, Uk such

that for each 1 :S i < k, the vertices Ui and ui+1 are adjacent. A walk W = UI, ,Uk in

G is closed, if the vertices UI and Uk are also adjacent. A (closed) walk W in G is a path
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(respectively a cycle), if no vertex of W appears on W more than once. We denote by Pk

the path on k vertices with k - 1 edges, and denote by Ck the cycle on k vertices with k

edges. We say that G is connected, if, for any two vertices u, v of G, there exists a path

that connects them, that is, a path u = Ul, U2,'" ,Uk = v. Otherwise, we say that G is

disconnected. We say that a graph is acyclic, if it contains no cycle. An undirected acyclic

graph is called a forest. A connected forest is called a tree.

We say that a graph H is a subgraph of G and denote it by H ~ G, if V(H) ~ V(G) and

E(H) ~ E(G). We say that a subgraph H of G is induced, if E(H) = E(G) nV(H) x V(H);

in that case we write H ~ G. For any subset S of the vertices of G, we denote by G[S]

the induced subgraph of G whose vertex set is S. We also say that G[S] is a subgraph of

G induced on S. For a subset S of vertices (respectively edges), we denote by G - S the

subgraph of G that is obtained by removing from G the vertices (edges) of S. (Note that

with each removed vertex we must also remove all edges incident to it.) In the case that S

consists only of a single element x, we write G - x instead of G - {x}.

For a connected graph G, a vertex U is a cutpoint of G, if the graph G -u is disconnected.

An edge e = uv is a bridge of G, if the graph G - e is disconnected. A subset S of vertices

(edges) of G is a vertex (edge) separator of G, if G - S is disconnected.

We say that two graphs G and H are isomorphic and denote it by G ~ H, if there exists

a bijective mapping f : V(G) ---t V(H) such that uv E E(G), if and only if, f(u)f(v) E E(H)

for any u, v E V(G). The complement of a graph G is the graph G with vertices V(G) and

edges uv where u 1= v and uv tJ E(G). The union G U H of two graphs G and H is the

graph with vertices V(G) U V(H) and edges E(G) U E(H). The disjoint union G l±J H of G

and H is the union of graphs G' and H, where G ~ G' and V(G') n V(H) = 0. The join

G + H of two graphs G and H is the complement of G l±J H.

A graph G is complete, if it contains edges between all pairs of distinct vertices. We

denote by K n the complete graph on n vertices. A clique of G is a complete subgraph of G,

and an independent set of G is an induced subgraph of G having no edges. For any graph

G, we denote by w(G), and a(G), the size of a maximum clique in G, and the size of a

maximum independent set in G, respectively.

For a subset S of the vertices of G, we denote by N(S) the open neighbourhood of S, that

is, the set of vertices of G-S that are adjacent to at least one vertex of S. We denote by N[S]

the closed neighbourhood of S, that is, N[S] = N(S) uS. If S contains only one element u,

we abbreviate N({u}) and N[{u}] to N(u) and N[u], respectively. We let deg(u) = IN(u)1
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be the degree of u, and let ~(G) be the maximum degree among the vertices of G.

Throughout the whole thesis, unless indicated otherwise, n denotes the number of ver­

tices of G, and m denotes the number of edges of G.

A colouring of a graph G is a mapping c : V(G) --+ N where N is the set of all natural

numbers. A k-colouring of G is a mapping c : V(G) --+ {I, 2, ... ,k}. A colouring c of G

is a proper colouring, if, for any u, v E V(G), we have c(u) =I- c(v) whenever uv E E(G).

The chromatic number of G, denoted by X(G), is the smallest integer k such that G admits

a proper k-colouring.

A dominating set S in G is a subset of vertices of G such that any vertex of G not in S

has at least one neighbour in S. The domination number of G, denoted by 'Y(G), is the size

of a smallest dominating set in G.

For any two vertices u, v of a connected graph G, we denote d(u, v) the distance between

u and v, that is, the length of a shortest path between u and v in G. We denote by Gk the

k-th power of G, that is, the graph obtained from G by making adjacent any two vertices

in distance at most k.

A tree decomposition of a connected graph G is a pair (T, X) such that T is a tree, X is

a mapping which assigns each vertex u E V(T) a bag X(u) of vertices of G, and

(i) for each edge xy E E(G), there exists u E V(T) with x, y E X(u), and

(ii) for each vertex x E V(G), the vertices u E V(T) with x E X(u) induce a connected

subgraph of T.

The width of a tree decomposition (T, X) is the size of a largest bag of T minus one.

The treewidth tw(G) of G is the minimum width of a tree decomposition of G.

For a graph H, we say that G is H-free is G contains no induced subgraph isomorphic

to H. For a set of graphs 1t, we say that G is 1t-free is G contains no induced subgraph

isomorphic to some H E 1t.

We say that a partition of the vertex set V (G) of a graph G into sets VI UV2 is monopolar,

if Vi induces an independent set (that is, a K 2-free graph), and V2 induces a P3-free graph.

A partition of the vertex set V( G) of a graph G into sets VI UV2 is unipolar, if VI induces a

clique (that is, a K 2-free graph), and V2 induces a P3-free graph. A partition of the vertex

set V(G) of a graph G into sets Vi UV2 is polar, if Vi induces a P 3-free graph, and V2 induces

a P3-free graph. A k-subcolouring of a graph G is a partition of the vertices of G into k

sets VI U V2 U ... U Vk, such that each Vi induces a P3-free graph.
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An H -transversal of a graph G is a subset S of the vertices of G that intersects each

induced copy of H in G, that is, G - Sis H-free. In particular, an F -free H -transversal of G

is an H-transversal S of G which induces an F-free subgraph of G. Any such H-transversal

S can be interpreted as a partition of vertices of G into sets VI = Sand V2 = V (G) \ S such

that VI is F-free, and V2 is H-free.

1.2 Chordal graphs

A graph G is chordal (triangulated or rigid-circuit [38]), if it does not contain an induced

subgraph isomorphic to Ck for k 2: 4. The class of chordal graphs is an interesting and

widely studied class of graphs. The graphs in this class possess numerous useful structural

properties. Here, we shall mention some of them.

An elimination ordering 11" of a graph G is a numbering of the vertices of G from 1 to n.

The fill-in Fn caused by the ordering 11" is the set of edges defined as follows.

u =I v, uv tJ- E(G) and there exists a u-v path Pin G }

with 11"(w) < min{11"(u) , 11" (v)} for all u,v =I W E P

An elimination ordering 11" is perfect, if F rr = 0. Equivalently, one can say that a total

ordering -< on the vertices of G is a perfect elimination ordering of G, if whenever y and

z are neighbours of x such that x -< y and x -< Z, we have that y and Z are adjacent.

An elimination ordering 11" is minimal, if there is no elimination ordering (T with Fa ~ Fn.

The graph Gn = (V, E U Fn ) is the fill-in graph for 11".

Elimination orderings arise in the study of Gaussian elimination of sparse symmetric

matrices [56]. The following properties establish a connection between perfect elimination

orderings and chordal graphs. We say that a vertex v in a graph G is simplicial, if the

neighbourhood of v induces a clique in G.

Proposition 1.5. [19] Any chordal graph contains a simplicial vertex.

Proposition 1.6. [57] Any elimination ordering 11" is a perfect elimination ordering of Gn .

Proposition 1.7. [19, 57] A graph G has a perfect elimination ordering, if and only if, G

is chordal.

Perfect elimination orderings play an important role in many algorithms for chordal

graphs. In particular, it can be shown [38] that using a perfect elimination ordering of a
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chordal graph G, one can compute in time O(n + m) the chromatic number x(G) of G, the

size of a maximum clique w(G) of G, and also the size of a maximum independent set a(G)

of G; all these problems are intractable in general. Moreover, for any chordal graph G, the

chromatic number of G and the size of a maximum clique of G are equal. Hence, since the

class of chordal graphs is induced hereditary, this shows that chordal graphs are perfect.

We discuss more examples of perfect graphs in the next section.

Now, let T be a tree and T = {TI , ... , Tn} be a collection of (connected) subtrees of T.

The vertex intersection graph of T is a graph G with vertex set V (G) = {VI, ... , vn } in

which two vertices Vi and Vj are adjacent, if and only if, the trees Ti and Tj share a vertex,

that is, V(1i) n V(Tj ) #- 0. (A similar class of so-called edge intersection graphs of paths in

a tree has also been studied [39J.) We have the following property.

Proposition 1.8. [36] A graph G is chordal, if and only if, G is the vertex intersection

graph of subtrees of some tree.

A family of sets {Xl, ... , X n } is said to satisfy the Helly property, if, for each collection

{XdiEI of pairwise intersecting sets of the family, there exists an element which belongs to

each set of the collection, that is, niEI Xi #- 0. The following claim is easy to observe.

Proposition 1.9. A family of subtrees of a tree satisfies the Helly property.

This implies the following well-known fact.

Proposition 1.10. [33J Any chordal graph G on n vertices has at most n maximal cliques.

Lastly, we have the following property.

Proposition 1.11. [38J Every minimal vertex separator in a chordal graph induces a clique.

This property allows one to construct a decomposition of any chordal graph using its

minimal separators. This is captured by the following notion.

A clique-tree T of a connected chordal graph G is a tree such that (i) each vertex

v E V(T) corresponds to a maximal clique Cv of G, and (ii) for any vertex x E V(G), the

vertices v E V(T) with x E Cv induce a connected subgraph Tx in T.

The following property explains a connection between vertex intersection graphs of sub­

trees of a tree and clique-trees of chordal graphs.

Proposition 1.12. Any chordal graph G is the vertex intersection graph of subtrees Tx of

a clique-tree T of G.
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Finally, we establish a connection between perfect elimination orderings and clique-trees

of chordal graphs.

Let T be a fixed clique-tree of a chordal graph G. Let us consider T rooted at a vertex r

chosen arbitrarily, and let c be a strict partial order on the vertices of T defined as follows:

u c v ¢=::} u is a descendant of v. Based on this, one can easily observe that the vertex

set of any (connected) subgraph of T has a (unique) maximal element with respect to c.

Hence, for any vertex x E V (G), let m x be the unique maximal element of Tx (the connected

subgraph of T formed by vertices v E V(T) with x E Cv ) with respect to C.

Now, let -< be a strict partial order on the vertices of G defined as follows: x -< y ¢=::}

m x C my. We have the following property, which characterizes the strict partial order -<.

Proposition 1.13. Any linear extension of -< is a perfect elimination ordering of G.

(We remark that this useful fact appears to not have been previously observed explicitly.)

Proof. First, we prove that y -I< x implies y E Cmx ' for any two adjacent vertices x, y.

Since xy E E(G), there must exist a clique Cu such that x, y E Cu' Hence, by the definition

of m x and my, we have u C m x and u C my. This implies that both m x and my belong

to the path from u to the root of T. Hence, either m x C my, or my C m x . But, since we

assume that y -I< x, it follows that u C m x C my. Now, since y E Cmy and y E Cu , it follows

that y must belong to each clique on the path from u to m x , and hence, y E Cmx '

Now, let 1r be a linear extension of -<, and let x, y, z be vertices such that 1r(x) < 1r(Y) <
1r(z), and xy and xz are edges of G. Since 1r(x) < 1r(Y), and 1r is a linear extension of -<,

we must have y -I< x. Similarly, we have z -I< x. By the above, it follows that y E Cm ", and

also z E Cmx ' Now, since Cmx is a clique, yz must be an edge. This shows that 1r is indeed

a perfect elimination ordering. 0

Now, we introduce a fundamental concept for exploring the structure of a graph. Lexico­

graphic breadth-first search is an algorithm that, given a graph G, constructs a special

breadth-first search ordering of the vertices of G. In the process of exploring the graph, the

algorithm assigns to the vertices labels formed by (ordered) lists of numbers from {I, ... , n},

and using these labels, it decides which vertex to explore next. The algorithm always chooses

an unprocessed vertex with lexicographically largest label among the unprocessed vertices

(ties are broken arbitrarily), where lexicographic order is just the usual dictionary order,

e.g., 9,7,6,1 < 9,8,5 and 6,4,3 < 6,4,3,2. The algorithm as just described is summarized

below as Algorithm 1.1.
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Algorithm 1.1: Lexicographic Breadth-First search.

Input: A graph G

Output: An elimination ordering 7r

1 set label(v) f--- 0 for all v E V(G)

2 for i f--- n downto 1 do

3 pick an unnumbered vertex v with lexicographically largest label

4 7r(i) f--- v /* the vertex v becomes numbered */
5 for each unnumbered w adjacent to v do

6 append i to label (w)

We have the following property of this algorithm.

10

Proposition 1.14. [38] A graph G is chordal, if and only if, Algorithm 1.1 on G produces

a perfect elimination ordering 7r of G.

Now, it follows that one can decide in time O(n+m) whether a given graph G is chordal

just by computing an elimination ordering 7r using Algorithm LIon G, and then testing

whether 7r is a perfect elimination ordering by simply checking whether the neighbours of

any vertex v that appear in 7r after v form a clique; both steps can easily be implemented

in time O(n + m) [38].

We remark that Lexicographic breadth-first search algorithm was originally introduced

by Rose, Tarjan and Leuker in [57] as a simple linear time algorithm for recognizing chordal

graphs (as we just described). It has since found numerous applications outside chordal

graphs, for instance, efficient recognition of cographs (P4-free graphs), P4-sparse graphs, P4­

reducible graphs, AT-free graphs, interval graphs, unit interval graphs, and their powers [11].

We should mention that there exists yet another efficient algorithm by Tarjan [64] for

recognition of chordal graph. Maximum cardinality search is an algorithm that numbers

vertices of a graph from n to 1 where the next vertex to be numbered is one that is adjacent

to the most numbered vertices (ties are broken arbitrarily). This algorithm also produces

a perfect elimination ordering given a chordal graph, yet it should be pointed out that

the orderings produced by Maximum cardinality search and the orderings produced by

Lexicographic breadth-first search are not exactly the same, and moreover there are perfect

elimination orderings that neither of these algorithms can produce.
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We close by mentioning that recently a unified approach to graph search algorithms

generalizing both the above algorithms has been discovered [12].

1.3 Related classes

A graph G is perfect if, for every induced subgraph H of G, the chromatic number X(H)

is equal to the clique number w(H). The class of perfect graphs includes such classes

of graphs as bipartite graphs, chordal graphs, cographs, comparability graphs, and their

complements [38, 61J. It is an interesting and important class of graphs, and has been a

focus of attention for more than a half of a century now, which is in part due to the result

of Grotschel, Lov8.sz and Schrijver [41] who gave a polynomial time algorithm for all the

basic combinatorial problems (X,o:,w) in perfect graphs. There are many interesting results

known about perfect graphs. We mention here only the most notable ones conjectured by

Berge [4], namely The Weak Perfect Graph Theorem proved by Lov8.sz [18] and The Strong

Perfect Graph Theorem proved by Chudnovsky, Robertson, Seymour and Thomas [10].

Theorem 1.15 (The Weak Perfect Graph Theorem). [18]

A graph is perfect, if and only if, its complement is also perfect.

Theorem 1.16 (The Strong Perfect Graph Theorem). [10]

A graph is perfect, if and only if, it has no induced odd cycle or its complement.

As we already remarked, some problems that are difficult in general like the graph

colouring or the maximum clique problem, admit a polynomial time solution in perfect

graphs. Unfortunately, the algorithms for these problems are not always combinatorial,

and in addition, there are problems that are not tractable even in perfect graphs. It is

therefore natural to ask in which restricted classes of perfect graphs these problems have

nice combinatorial solutions and perhaps a polynomial solutions for problems intractable in

perfect graphs. We already mentioned such a subclass, namely the class of chordal graphs

in which many difficult problems admit even linear time algorithms.

In what follows, we briefly describe some other interesting examples of such classes, and

summarize complexities of selected combinatorial problems in these classes at the end.
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A graph G is split, if G can be partitioned into a clique and an independent set with no

other restriction on the edges between the two. A graph G is co-chordal, if G is chordal.

It can be seen that any split graph is also chordal, and since the complement of a split graph

is also split, any split graph is also co-chordal. In fact, the converse is also true.

Theorem 1.17. [38] A graph G is split, if and only if, G is both chordal and co-chordal.

A subset of edges P S;;; E(G) of an undirected graph G is an orientation of G, if

P n p-1 = 0 and P U p-l = E(G), where p-l is the set of edges vu such that uv E P.

A graph G is a comparability graph, if there exists a transitive orientation of G, that is,

an orientation P of G with p2 S;;; P where p2 = {ac lab, bc E P for some b}. A graph G

is co-comparability, if G is comparability. We remark that basic facts about comparability

graphs go all the way back to the paper of Gallai [35].

For a permutation n of {I, ... ,n}, let G[n] be a graph with vertices V(G[n]) = {I, ... ,n}

and edges ij E E(G[n]) {:::=? (i - j)(n-1(i) - n-1(j)) < O.

A graph G is called a permutation graph, if G ~ G[n] for some permutation n. It can

be shown that any permutation graph is also a comparability graph. Moreover, one can

observe that the complement of a permutation graph G = G[n] is the graph G[nR] where

nR is the reverse of n, that is, nR(i) = n(n + 1 - i) for all 1 :S i :S n. Hence, G is also

a permutation graph, and it follows that any permutation graph is also a co-comparability

graph. In fact, again the converse (of both these statements) is also true.

Theorem 1.18. [38] A graph G is permutation, if and only if, G is both comparability and

co-comparability.

A graph G is a cograph, if G can be constructed from single vertex graphs using the

operations of join and union (or equivalently the operations of complement and union).

This construction can be represented by a tree whose leaves are the vertices of G, and inner

nodes are labeled either aor 1, denoting the operation of union or join respectively. We call

this tree a tree representation of G. In addition, it can be shown [13] that for any cograph

G, there exists a unique minimum size tree that represents the construction of G; such a

tree is called the cotree of G. We remark that using the cotree of a cograph G, one can solve

many graph problems on G efficiently and usually in linear time.

In addition, cographs can be also described in terms of minimal forbidden induced sub­

graphs. The following theorem is from [13].



CHAPTER 1. INTRODUCTION

Theorem 1.19. [13] A graph G is a cograph, if and only if, G contains no induced P4.

13

Moreover, the authors in [13] show a multitude of equivalent definitions of cographs that

independently appeared in the literature. In particular, it can be observed that cographs

form a proper subclass of permutation graphs.

For a family of intervals I = {h, ... , In} on the real line, the intersection graph of I is

the graph with vertices {VI, ... , vn } and edges ViVj -{::=} Ii n I j # 0.

A graph G is an interval graph, if G is the intersection graph of a family of intervals

on the real line. It is easy to see that an interval graph cannot contain an induced Ck

with k 2: 4; thus, each interval graph is also a chordal graph. On the other hand, of any

two disjoint intervals, one must lie before the other one, and hence, the complement of an

interval graph is a comparability graph. The converse of this is also true.

Theorem 1.20. [38] A graph G is interval, if and only if, G is both chordal and co­

comparability.

In fact, it is shown in [38], that a graph is an interval graph, if and only if, it is co­

comparability and has no induced 0 4 . Additionally, by a result of Lekkerkerker and Boland

[53], we have the following characterization of interval graphs. An asteroidal triple of a

graph G is a triple of mutually non-adjacent vertices such that for any two vertices of the

triple there exists a path in G that avoids the neighbourhood of the third vertex in the

triple. We say that a graph G is AT-free, if G does not contain any asteroidal triple.

Theorem 1.21. [53] A graph G is an interval graph, if and only if, G is chordal and

contains no asteroidal triple (is AT-free).

We remark that AT-free graphs form an interesting class of their own. Though not

necessarily perfect, they nevertheless possess a structure useful for the design of efficient

algorithms [61].

A graph G is a circular-arc graph, if G is the intersection graph of arcs of a circle.

Circular-arc graphs are not necessarily perfect, e.g., Os is circular-arc, but not perfect.

We close this section by summarizing complexities of selected combinatorial graph prob­

lems in these graph classes. The results are presented in Table 1.1 and are taken from [61].

Here, nand m, as usual, refer to the number of vertices respectively edges of an input graph,
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and nCt is the complexity of matrix multiplication. We remark that all problems with the

exception of recognition assume that an appropriate representation of a graph is given, e.g.,

a set of intervals for an interval graph.

HAMa(G) ~ ,(G)x(G)~ Recognition I

All graphs - NPc NPc NPc NPc

Perfect O(n9 ) polynomial polynomial NPc NPc

I-
Chordal O(n + m) O(n + m) O(n + m) NPc NPc

Split O(n + m) O(n + m) O(n + m) NPc NPc

AT-free O(nCt ) open O(n3 ) O(n6 ) open

~
Interval O(n + m) O(n) O(n) O(n) O(n)

Circular-arc O(n + m) NPc O(n) O(n) O(n2 Iogn)

Comparability O(nCt ) O(n + m) O(n2m) NPc NPc

Co-comparability O(nCt ) O(n2m) O(n + m) O(nm2
) O(n3 )

Permutation O(n + m) O(n log log n) O(nloglogn) O(n) O(n + m)

Cographs O(n + m) O(n) O(n) O(n) O(n)

Table 1.1: A summary of complexities of selected graph problems.
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1.4 Polynomial time cases

15

In this section, we mention three simple examples of GCOL problems solvable in general

graphs in polynomial time, namely, the 2-colouring problem, the split partition problem,

and the unipolar partition problem. In all these problems k = 2, and the classes PI and P2

are induced hereditary and are characterized by exactly one forbidden induced subgraph,

namely, K 2 for PI = P2 for the 2-colouring problem, K 2 for PI and K 2 for P2 for the

split partition problem, and K 2 for PI and P3 for P2 for the unipolar partition problem.

We remark that, by complementation, it will follow that the graphwise complements of

these problems are also polynomially solvable. Additionally, we will also mention how these

algorithms can be extended to solve the list versions of these problems. In all the cases,

since k = 2, this is equivalent to allowing precoloured vertices of the input graph (that is,

preassigned to either the set VI or V2 of the partition we seek).

2-colouring

A polynomial time algorithm for this problem is probably the best known graph algorithm

and probably one of the simplest ones. The algorithm performs a depth-first search on a

given graph while labelling its vertices with labels 0 and 1. The first vertex is labeled 0 and

its neighbours 1. Then each time a vertex v is visited, the neighbours of v are labeled with a

label different from the label of v. After all vertices are processed, the graph is 2-colourable

(or bipartite), if and only if, the labeling is a proper 2-colouring. The correctness of this

algorithm is straightforward. The complexity is also simple to analyze, since each vertex is

clearly processed in time O(IN(v)l), and hence, we have O(n + m) total running time. We

summarize this in the following theorem.

Theorem 1.22. There exists an O(n + m) time algorithm for the 2-colouring problem.

It can be immediately seen that this algorithm also allows precoloured vertices. Now, we

discuss the complementary problem, that is, the problem of recognizing co-bipartite graphs

(the complements of 2-colourable graphs). As remarked above, we can use the algorithm for

2-colourability to solve this problem by first, computing the complement of a given graph,

and then running the above 2-colouring algorithm on the complement. This can take as

much as 8(n2 ) time, since computing the complement takes 8(n2 ). Fortunately, it can be

observed that if a graph is co-bipartite, then it must have at least G) + (n;-t) edges for some t,
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which is at least n 2 /4 - n/2. Hence, if the input graph has less than n 2 /4 - n/2 edges, we

reject, and otherwise, we compute the complement and run the 2-colouring algorithm on the

complement. The former can be clearly accomplished in time O(m), whereas in the latter,

we have m 2: n2 /2 + n/2, and hence, O(n2
) = O(n + m). This gives the following theorem.

Theorem 1.23. There exists an O(n+m) time algorithm for recognizing co-bipartite graphs.

Again, this algorithm can be seen to also allow precolouring. Finally, we remark that

bipartite graphs and also co-bipartite graphs form induced hereditary classes, where the

former is characterized by all odd chordless cycles, and the latter by their complements.

Split partition

The split partition problem is a problem of partitioning a graph into a clique and an in­

dependent set. The first linear time algorithm is due to Hammer and Simeone [38J. Their

algorithm is based on degree sequences of graphs.

Theorem 1.24. [38] Let G be a graph with vertices VI, ... ,Vn such that deg(VI) 2: deg(V2) 2:

... 2: deg(vn ), and let M = max{i I deg(vi) 2: i -1}. Then G is a split graph, if and only if,

M n

Ldeg(vd = M(M -1) + L deg(vi)'
i=I i=M+I

Furthermore, if this is the case, then w(G) = M.

This theorem implies that deciding whether G is split can be done by computing the de­

grees of the vertices of G, then sorting the vertices according to their degrees, computing the

value M, and verifying the above condition. Each of these steps can be easily accomplished

in time O(n + m) (note that we can sort the degrees in time and space O(n)). Hence, this

proves the following theorem.

Theorem 1.25. There exists an O(n + m) time algorithm for recognizing split graphs.

On the other hand, it is not clear how to extend this algorithm to allow precoloured

vertices. This was resolved much later by Hell et al. in [43J. In fact, they solve a more general

problem of recognizing chordal (k, f) -graphs, that is, chordal graphs which are partitionable

into k independent sets and f cliques. As a special case they obtain a simple greedy algorithm

for recognizing split graphs which also allows precolouring.
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We now briefly explain their algorithm. The algorithm first tests whether the input

graph G is chordal, since any split graph is necessarily also chordal [38]. If yes, it constructs

a perfect elimination ordering 7r = VI, ... ,Vn of G, and finds a largest index j such that

G[VI' ... ,Vj-I] is an independent set. Then it assigns VI, . .. ,Vj-I to the independent set

and Vj to the clique, and processes the remaining vertices Vi of G in the order of 7r as follows.

If Vi is adjacent to Vj, then it assigns Vi to the clique, otherwise, if Vi is not adjacent to

any of the vertices assigned so far to the independent set, it assigns Vi to the independent

set. If even that is not possible, the algorithm declares G not split. After all vertices are

processed, the algorithm returns the clique and the independent set that it constructed.

We now discuss the correctness of this algorithm. First, it can be seen that if the

algorithm does not declare G not split, it returns a valid split partition. This follows, since

each time a vertex Vi is assigned to the independent set, it is not adjacent to all other

vertices of this set, and each time Vi is assigned to the clique, it is adjacent to Vj, which

is the first vertex of the clique in 7r, and hence, Vi is also adjacent to all other vertices of

the clique. (Any two vertices adjacent to Vj which appear in 7r after Vj must be necessarily

neighbours, because 7r is a perfect elimination ordering.)

Now, if the algorithm declares G not split, then we have a vertex Vi which is not adjacent

to Vj, but it is adjacent to some vertex Vk of the independent set. Also, since the independent

set VI, ... , Vj-I is maximal possible, the vertex Vj must also be adjacent to a vertex V£

with £ < j. Now, observe that Vj is not adjacent to Vk. Otherwise, if VkVj is an edge of

G and k < j, then we have edges VkVj and VkVi with k < j < i, and hence, there must be

an edge VjVi, since 7r is a perfect elimination ordering. Also, if VkVj is an edge and j < k,

then we have that the algorithm, when processing Vk, would put Vk into the clique instead.

Similarly, there is no edge between V£ and Vi and no edge between V£ and Vk, since otherwise

we would have VjVi and VjVk in the edges set, respectively. This gives us that the vertices

Vi, Vj, Vk, V£ induce a copy of 2K2 (two independent edges), which is known to be not split,

and hence, G is not split.

Altogether, if G is not split, then either G is not chordal and we have a chordless

cycle Ck with k 2: 4 in G, or G contains 2K2 . This proves the well known result that the

minimal forbidden induced subgraphs of split graphs are C4 , C5 and 2K2 . (Observe that

any chordless cycle with six or more vertices already contains an induced 2K2 .)

Theorem 1.26. A graph G is split, if and only if, G does not contain an induced C 4 , C5,

and 2K2 .
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Now, it is not difficult to see how the above algorithm can be modified to also allow

precoloured vertices. Let So and Co denote the precoloured vertices of G, that is, vertices

preassigned to the independent set and the clique, respectively. The modified algorithm

works almost exactly as the original algorithm, but instead of finding largest j such that

G[VI' ... ,Vj-d is an independent set, it finds largest j such that G[VI, . .. ,Vj-I] U So is an

independent set. Also, when processing a vertex Vi, it assigns Vi to the clique, if Vi is adjacent

to Vj, and Vi ~ So, and otherwise, it assigns Vi to the independent set, if Vi ~ Co, and Vi is

not adjacent to all vertices assigned (so far) to the independent set and also not adjacent

to all vertices in So. Again, if neither of these steps is possible, the algorithm declares G

not split partitionable with respect to the precolouring. The correctness of this (modified)

algorithm follows similarly as for the original algorithm.

Theorem 1.27. There exists an O(n + m) time algorithm to decide, for a graph G with

precoloured vertices, whether there exists a split partition of G that extends the precolouring.

In addition, the analysis of this algorithm gives us all precoloured minimal forbidden

induced subgraphs for split graphs. (A more formal treatment of this notion is given in

Chapter 4.) These are the graphs depicted in Figure 1.1; the vertices marked with {b}

are the vertices preassigned to the clique, the vertices marked with {r} are the vertices

preassigned to the independent set, and the dotted lines represent non-edges.

Theorem 1.28. A graph G with precoloured vertices admits a split partition that extends

the precolouring, if and only if, G does not contain any of the configurations in Figure 1.1

as an induced subgraph.

0-. .0 (),..... . .

1
··············1 .····i······. r·············1----/..>

{b}
o

b--b

{b}
o

o
{b}

AT
{r}

{r}
o

{b}

Figure 1.1: All minimal precoloured forbidden induced subgraphs of split graphs.

Finally, since the complement of a split graph is also split, we use the same algorithm

for the complementary problem.
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Unipolar partition

19

In this final section, we describe a polynomial time algorithm for the unipolar partition

problem in general graphs. Recall, that a partition of the vertex set of G into sets VI and

V2 is unipolar, if Vi induces a clique, and V2 induces a P3-free subgraph in G. (Note that

a graph is P3-free, if and only if, it is a disjoint union of cliques.) The first polynomial

algorithm for this problem is reportedly due to [67], however, we were unable to obtain the

aforementioned paper, and hence, we describe here our solution to this problem.

First, we need to mention a useful property of elimination orderings and their fill-in (see

page 7). A minimal ordering 1r of a graph G with fill-in F7[ is an elimination ordering of G

such that there is no other elimination ordering () of G with Fu ~ F7[' It is known that a

minimal ordering of a graph can be found in time O(nm) [57].

The following lemma is taken from [66].

Lemma 1.29. [66] Let 1r be a minimal ordering of a graph G, and let C be a clique separator

of G. Then no edge in F7[ joins vertices in different connected components of G - C.

In fact, it is easy to observe that this lemma is true even if C is not a separator.

Proposition 1.30. Let 1r be a minimal ordering of G. Then G is unipolar, if and only if,

there exists a maximal clique M of G7[ and a connected component K of G - M (or K = 0)

such that

(i) G - M is a disjoint union of cliques, and

(ii) there exists co-bipartite partition Xu Y of G[M U K] such that X contains all vertices

of M U K which have neighbours in G - 1\1[ - K.

Proof. First, let G be unipolar, and let BuD be a unipolar partition of G, where B

induces a clique, and D induces a P3-free subgraph in G. Since G is a subgraph of G7[' there

must exist a maximal clique M of G1r which completely contains B. Since B is a clique of

G, by Lemma 1.29 (and the remark below the lemma), there are no edges in G1r that join

two connected components of G - B. Hence, since 1\1[ is a clique in G1r which contains B,

there exists at most one connected component C of G - B having vertices in M. (In case

no such component exists, we let C = 0.) Now, we let K = C \ Band T = en M. Hence,

M = BuT and T ~ C. We observe that K is a connected component of G - M (or K = 0),

and that G - 1\1[ is a disjoint union of cliques, since V (G - M) ~ D.
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Now, let S ~ M be the vertices of MUK which have neighbours in G-M-K. Since C is

a connected component of G - B, no vertex of C is has a neighbour in G - B - C = G - M - K,

and we must have S n T = 0, and hence, S ~ B. It follows that there exists a co-bipartitie

partition Xu Y of G[M U K] with X ~ S, since we can take X = Band Y = C.

Conversely, let X U Y be a co-bipartite partition of G[M U K] with S ~ X. Clearly,

both X and Y induce cliques in G, and the vertices of Yare not adjacent to the vertices of

G - M - K, because S n Y = 0. Also, by (i), G - M is a disjoint union of cliques. Hence,

it follows that BUD, where B = X and D = V(G) \ X, is a unipolar partition of G. 0

Now, the algorithm for recognizing unipolar graphs follows. Given a graph G, we first

compute the connected components of G. Clearly, G is unipolar, if and only if, some con­

nected component of G is unipolar, and all other connected components are cliques. Hence,

if G contains two connected components which are not cliques, we reject G. Otherwise,

we let H be a connected component of G such that G - H is a disjoint union of cliques.

Next, we obtain a minimal ordering 1r of H, construct the graph H7[' and enumerate all

maximal cliques of H7[' For each maximal clique M of H7[' we first test that H - M is a

disjoint union of cliques, and then for each connected component K of H - M (and also for

K = 0), we determine the set S of all vertices of M having neighbours in H - M - K. After

that, we precolour the vertices of S with 0 and run the co-bipartite recognition algorithm

on G[MUK]. If successful, we obtain cliques X and Y which partition G[MUK] such that

S ~ X, and we return the partition Xu V(G) \ X. If any of these tests fails, we choose

another M or K. If the tests fail for all M and K, we declare G not unipolar.

The correctness of the above algorithm follows directly from Proposition 1.30. We now

discuss its complexity. It is known that for any connected graph H, a minimal ordering

1r of H and the graph H7[ can be both obtained in time O(nm) [57]. Also, computing

connected components and testing whether a graph is a disjoint union of cliques can be

each accomplished in time O(n + m). Observe that H7[ is a graph on the vertices of H.

Therefore, enumerating the maximal cliques M of H7[ takes O(n2
) time. Now, for each clique

M, computing the connected components of H - M and testing whether H - M is a disjoint

union of cliques, both takes O(n + m) time. Also, computing the set S for some choice of

K, and the co-bipartite test (by Theorem 1.23), each take O(n + m) time. Since there can

be at most n connected components of H - M, and there are at most n cliques M in G7[,

the total running time is clearly O(n2m). We summarize this in the following theorem.
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Theorem 1.31. There exists an O(n2m) time algorithm for recognizing unipolar graphs.

Now, it is not difficult to adapt the above algorithm for precolouring. Let B o and Do be

the vertices of G which are preassigned to the clique part, respectively, to the P3-free part

of the unipolar partition. Any time we choose a maximal clique M, if G - M contains a

vertex from Bo, we reject such choice of M. Also, in the co-bipartite test, we in addition

precolour by 0 the vertices from B o and precolour by 1 the vertices from Do. It follows

that for any partition BUD returned by this (modified) algorithm, no vertex of Do belongs

to B, since the vertices of Do are precoloured by 1 in the co-bipartite test, and hence, for

the co-bipartite partition Xu Y we obtain, the vertices of Do in M are assigned to Y, and

B = X. The same argument also gives that no vertex of Bo in M belongs to D. Finally, no

vertex of B o in G - M belongs to D, since B ~ M, and G - M cannot contain a vertex from

B o, because we would reject such M. On the other hand, if BUD is a unipolar partition of

G such that Bo ~ B and Do ~ D, it can be seen that for a maximal clique M of G7f which

contains B, we have that G - M contains no vertex from Bo. Also, by Proposition 1.30,

there must exist a connected component K of G - M (or K = 0) with M u K = B u C,

where C is a connected component of G - B (or C = 0). Hence, since B o ~ B, and no

vertex of Do is in B, because BuD is a partition of the vertex set of G, we obtain that

B U C respects the precolouring in the co-bipartite test, which proves that the co-bipartite

test will succeed for this choice of K. Hence, the (modified) algorithm is correct.

Theorem 1.32. There exists an O(n2m) algorithm to decide, for a graph G with precoloured

vertices, whether there exists a unipolar partition of G that extends the precolouring.

We close by mentioning that, at the time of writing, a complete minimal forbidden

induced subgraph characterization of unipolar graphs is not known. However, by a result of

[34], chordal unipolar graphs are precisely those chordal graphs which do not contain 2P3

(two copies of P3 with no edges between the copies) as an induced subgraph.
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Tools

2.1 Matrix Partitions

In this section, we introduce and discuss matrix partition problems, which form a class of

interesting graph problems related to the problem of GCOL. In particular, the techniques

and algorithms presented here will become useful in later chapters.

Let M be a k x k symmetric matrix with entries from {O, 1, *}. An M -matrix partition

(or just M-partition) of a graph G is a partition of the vertices V(G) into sets VI, ... ,Vk

such that for any i,j E {I ... k} and vertices x E Vi and y E Vj, if Mi,j = 1 and x -=I y, then

we have xy E E(G), and if Mi,j = 0, then we have xy rt E(G). For a fixed k x k matrix M,

the M -partition problem is a problem of deciding, given a graph G, whether G admits an

M-partition. Similarly, the list M -partition problem is a problem of deciding, given a graph

G with lists £(v) ~ {I ... k} for all v E V(G), whether G admits an M-partition VI, ... , Vk

such that for all v E V(G) and i E {I ... k}, if v E Vi, then i E £(v).

Matrix partition problems are a natural generalization of colouring problems. They

are simpler than GCOL problems, because each part of the partition can only be either a

clique, an independent set, or a graph with no restriction. However, using the off-diagonal

entries, we may in addition specify connections between the parts of the partition, that is,

all edges, no edges, or unrestricted, which makes this problem different from GCOL. On

the other hand, a number of special cases of the GCOL problem are expressible as matrix

partition problems, which will allow us to use results about matrix partitions to solve these

problems efficiently. (This connection is further discussed in Chapter 7.)

We now briefly discuss the complexity of matrix partition problems. It is known, by a

22



CHAPTER 2. TOOLS 23

result of [9], that if the size of the matrix M is at most four, and it is not one of the first two

matrices in Figure 2.1, then the list M-partition problem is polynomial time solvable or NP­

complete. Namely, it is polynomial time solvable, unless M or its complement is the third

or the fourth matrix in Figure 2.1, or contains a submatrix corresponding to the 3-colouring

problem, or the stable cutset problem, in which cases the problem is NP-complete.

( 0* 0*) (1 * 1*) (* * 0*) (* * 00)*0** *1** ***0 *0*00*** 1*** 0*** 0*0****1 ***0 *0** 00**
Figure 2.1: The stubborn problem, its complement, and two NP-complete cases.

For larger matrices M, the complexity of the (list) M-partition problem is largely un­

known. A notable exception are the problems solvable by the following sparse-dense partition

algorithm introduced in [27].

Let S and V be two induced hereditary classes of graphs, and let c be a constant such

that any graph in S n V has at most c vertices. We can think of S as a sparse class and of V

as a dense class. A sparse-dense partition of a graph G is a partition of V(G) into two sets

Vs, Vv such that G[Vs] E Sand G[Vv ] E V. The following theorem from [27] characterizes

all sparse-dense partitions of graphs.

Theorem 2.1. [27] Any graph G on n vertices has at most n 2c sparse-dense partitions.

Moreover, all sparse-dense partitions ofG can be enumerated in time O(n2c+2T(n)), where

T(n) is the time needed to recognize an n-vertex graph in S or an n-vertex graph in V.

(Note that we have already mentioned a simpler version of this theorem as Theorem 1.3.)

On the other hand, in chordal graphs, large classes of matrices are solvable in polynomial

time. The following theorem is proved in [28].

Theorem 2.2. [28] Let M be a k x k matrix with entries {O, 1, *}. If all diagonal entries of

M are zero, or all diagonal entries of M are one, then the chordal list M -partition problem

can be solved in time O(nk3 (4k)k), or O(n2k+1 ), respectively.

In addition, this theorem, when combined with the sparse-dense algorithm, gives a more

general result [28], which is described in the theorem below. We say that a square matrix M

of size k +eis an (A, B, C)-block matrix, if M is oflhe form M ~ ( ~ IC;; ), where A is a
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symmetric k x k matrix with all zeroes on the main diagonal, B is a symmetric £ x £ matrix

with all ones on the diagonal, and C is a k x £ matrix. It is easy to see that any symmetric

matrix M with no * on the main diagonal can be transformed into an (A, B, C)-block matrix

M' by simultaneously permuting rows and columns. Moreover, the M'-partition and the

M-partition problems are clearly equivalent. A matrix is said to be crossed, if each non-*

entry in the matrix belongs to a row or a column of non-* entries.

Theorem 2.3. [28] Suppose that M is an (A, B, C)-block matrix. If C is crossed, then the

chordal list M -partition problem can be solved in polynomial time.

2.2 Dynamic programming

In this section, we introduce a general model for solving combinatorial problems in graphs

using dynamic programming on a tree-like structure associated with the graph.

Recall that a tree decomposition of a (connected) graph G is a pair (T, X) where T is a

tree and X is a collection of sets X(u) ~ V(G), for all u E V(T) with the properties, (i) for

each edge xy E E(G), there exists U E V(T) with x,y E X(u), and (ii) for each x E V(G),

the vertices u E V(T) with x E X(u) induce a connected subgraph of T. We remark that

we include in our consideration all tree decompositions (not just those of minimum width).

We shall consider any tree decomposition (T, X) rooted as some vertex r E V(T). For

a vertex v E V(T), we denote by Tv the subtree of T rooted at v. For a subset W of the

vertices of V(T), we denote by C(W) the set UWEW X(w). In particular, Gv = G[C(Tv)].

Tree decompositions play an important role in efficient algorithmic solutions for graph

problems. In particular, for the graphs that admit a tree decomposition of a constant width,

many difficult graph problems are solvable in polynomial time. (We discuss this case in detail

in Section 2.5.) On the other hand, there are classes of graphs with unbounded treewidth,

which nevertheless admit special tree decompositions also allowing efficient solutions to

difficult graph problems. An example of such class is the class of chordal graphs; each

chordal graph has a clique-tree, which is a tree decomposition whose each bag induces a

clique. In what follows, we shall investigate some properties of tree decompositions, which

make particular graph problems efficiently solvable.

As a first problem, we mention the well-known algorithm for the proper k-colouring

problem. Let G be a graph, and let (T, X) be a (rooted) tree decomposition of G. The
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algorithm processes the vertices of T in a bottom-up order, and for each vertex v, it computes

the set C (v) of all possible proper k-colourings of G[X(v)], which can be extended to a proper

k-colouring of Gv . For any leaf v, the set C(v) is just the set of all proper k-colourings of

G [X (v)]. For any other node v, the set C (v) is the set of proper k-colouring c of G [X (v)]

such that, for each child w of v, there exists a k-colouring Cw in C(w) such that c and Cw

match on the vertices of X (v) n X (w). After all vertices are processed, G has a proper

k-colouring, if and only if, the set C(r), for the root r of T, is non-empty. The correctness

of this algorithm is easy to see. Now, we discuss its complexity. Let t be the size of a

maximum bag X (u) for u E V (T), and let N = IV(T) I. Clearly, there are at most kt

possible colourings of any bag X (u) with k colours, and hence, at most k t possible proper

k-colourings. For each such colouring, we search for matching colourings in the sets C (w) for

each child w, which takes O(t) time (after some preprocessing of C(w)). Thus, processing

a single vertex of T takes O(t . kt . deg(v)). Altogether, for all vertices of T, we have

L:vEV(T) O(t· kt
. deg(v)) = O(IE(T)I . t· kt

) = O(N· t· kt ). Hence, if t is a constant, then

the complexity is linear in N. (Note that for k 2: t, the graph G is always k-colourable.)

Now, it follows that for graphs G, whose treewidth is bounded above by a constant, the

k-colouring problem has a linear time solution for any k. This is in contrast to the fact that

in general the k-colouring problem in NP-complete.

Now, we modify the above algorithm so it actually computes the chromatic number of G.

We do it as follows. Instead of considering only proper k-colourings of each bag X (v), we

consider all proper n-colourings, but, in addition, for each such colouring c, we store the

minimum number of colours m(c) we need to extend this colouring to Gv . Each time we

consider a k-colouring c of G[X(v)] and matching colourings Cw of G[X(w)] for all children

w of v, we compute the maximum m of m(cw ) among the children w of v, and the minimum

number of colours m(c) for c is just the maximum of k and m. This follows from the fact

that, since the colourings are matching, we do not need more colours than what we already

use. The chromatic number of G is then m(c) for a colouring c from C(r), where r is the

root of T, such that m(c) is smallest possible. The correctness is straightforward. We now

discuss the complexity of this algorithm. Again, let t be the size of a maximum bag X(u)

for u E V(T), and N = IV(T)I. Observe that for each bag X(u), we never need to use more

than IX(u)1 ::::; t colours when colouring G[X(u)]. Hence, using the analysis from the above

algorithm, we obtain that the complexity of this algorithm is O(N . t . tt), which is again

linear in N, if t is a constant.
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Now, suppose that t is not a constant, in which case, both the above algorithms are

inefficient. However, this may not be so if we know something more about the tree decom­

position we use. For instance, if the graph G[X(u)], for each u E VeT), has only a small

number of possible different proper colourings, say at most a, then the running time is

clearly O(N . t . a). Even better, if we know that each G[X(u)] has at most a possible non­

isomorphic colourings, that is, colourings such that no one can be obtained from another by

renaming the colours. Again, the running time is O(N . t . a). Things also become simpler,

if for each vertex v, and each child w of v, the set XCv) n X(w) induces a clique. Then any

proper colouring Cw of G[X(w)] will match any proper colouring c of G[X(v)] (up to renam­

ing the colours). Then all we have to do is to test, for each v E VeT), whether there exists a

proper k-colouring of G[X(v)] for the former algorithm, or determine the chromatic number

of G[X(v)] for the latter algorithm. Finally, if G is chordal and (T, X) is a clique-tree of G,

then we have all of the above, since each bag X (u) of T is a clique, and the running time is

O(N·t) for both algorithms, since each clique has only one non-isomorphic proper colouring.

From the above examples, the reader should be able to get sufficiently acquainted with

the general idea of dynamic programming on tree decomposition. Therefore, we can now

proceed to defining this idea formally. Before going further, we would like to caution the

reader that the following definitions are not meant to give a substantially different perspec­

tive on known dynamic programming methods, but rather, are an attempt to capture the

common properties of these methods on tree decompositions of graphs, to the extent they

are used in our algorithms in the later chapters.

Dynamic programming on graphs (Formal definition)

Let JU denote the set of all graphs. An (induced hereditary) graph problem II is a tuple

(~, p, 7l", (j,}1, rJ) such that

(i) ~ is a (finite) alphabet,

(ii) p: IU --. 22;0 maps graphs G E IU to all (feasible and infeasible) solutions to II for G,

(iii) }1: ~* --. ~ is a valuation function which assigns real numbers to the solutions to II,

(iv) 7l": JU --. 22;0 maps graphs G E IU to the feasible solutions to II for G (7l"(G) <:;;; p(G»,

(v) (j : IU x ~* --. ~* is a subgraph mapping which for each G E IU, each induced subgraph

H of G, and each s E p(G), satisfies
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(a) (}"(H,s) E p(H), and

(b) if SE 1r(G), then also (}"(H, s) E 1r(H), and f1((}"(H, s)) :S f1(s);

(vi) rJ : ~* x ~* --+ ~* is an exchange mapping which for each G E lU, each induced subgraph

H of G, each Sa E p(G), and each SH E p(H), satisfies

(a) rJ(sa, SH) E p(G), and

(b) (}"(H,rJ(SG,SH)) = SH

The decision problem for II is the problem of deciding, given a graph G, whether

1r(G) -10. The search problem for II is the problem of finding S E 1r(G) for a given graph G,

if Sexists. An optimization problem for II is the problem of finding Sopt E 1r(G) (if it exists),

for a given graph G, such that f1(sopd = minsE1f(G) f1(s).

A dynamic programming scheme S for II is a tuple (r, A, cp, ~) such that

(i) r is a (finite) alphabet,

(ii) ~ is an equivalence relation on r*,
(iii) cp: lU x ~* --+ r* is a fingerprint mapping,

(iv) for each G E lU, each rooted tree decomposition (T, X) of G, each v E V(T) with a

parent u, and each SG E 1r(G), SV E 1r(Gv) the following exchange condition is satisfied;

if cp(G[X(u) n X(v)] , (}"(Gv,SG)) ~ cp(G[X(u) n X(v)], sv), then

(a) rJ(sG, sv) E 1r(G), and

(b) if f1(sv) :S f1((}"(Gv, sG)), then f1(rJ(sG, sv)) :S f1(sG),

(v) if, for each vertex v with a parent u, we denote by F(v) the pairs U, sv) such that

Sv E 1r(Gv), and f = cp(G[X(u) n X(v)] ,sv), then A is an algorithm which, given

(a) a vertex v of a (rooted) tree decomposition (T, X) of G,

(b) the sets F(z) for all z E V(Tv ) \ {v}, and

(c) f E r* if v is not the root of T,

returns Sv E 1r(Gv) such that

(a) f1(sv) = min{f1(s) Is E 1r(Gv)}, if v is the root of T, or

(b) f1(sv) = min{f1(s) I U,s) E F(v)}, if v is not the root ofT,

or announces that such Sv does not exists.

We remark that the above exchange condition justifies the behaviour of the algorithm

A, meaning that, for each fingerprint f, we only need to keep one solution Sv which has
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the fingerprint f on G[X(u) nX(v)], since all other solutions with the same fingerprint are

equivalent by the exchange condition. Also, we explain why the (partial) solution Sv E 7f(Gv)

for f can be taken with the smallest value. If there exists an solution s' E 7f(G) whose

fingerprint f' = <p (G [X(u) n X (v)], s~), where s~ = 0"(Gv , s'), is equal to f, that is, f :::::; f',

then, by the exchange condition, S = 7](s', sv) E 7f(G), and by the properties of the subgraph

function, s~ E 7f(Gv ). Also, the fingerprint for S on G [X (u) n X (v)] is necessarily f, since,

by the properties of the exchange function, O"(Gv, s) = O"(Gv,7](s', sv)) = sv, and hence,

<p(G[X(u) nX(v)],O"(Gv,s)) = <p(G[X(u) nX(v)],sv) = f. Therefore, if Sv has smallest

possible value for f, then p,(sv) :::; p,(s~), and hence, by the exchange condition, p,(s) :::; p,(s').

This shows that s is at least as good solution as s', and also proves that any optimal solution

for G gives rise to optimal solutions on all subgraphs Gv, which justifies the choice of Sv'

Finally, we remark that the above definitions are tailored to capture the problems which

we investigate here, and may be too specific to capture other graph algorithms which use

dynamic programming on a tree decomposition of a graph.

Now, we explain how to solve the optimization problem for II, using a dynamic pro­

gramming scheme S for II; this will also imply algorithms for both the decision and the

search problem. First, for a given graph G, we construct a (not necessarily optimal) tree

decomposition (T, X) of G. Then, for each leaf v of T, we construct the set F(v) as follows.

We enumerate all possible fingerprints f, and then add (I, sv) into F(v), if the algorithm

A on v and f returns sv. After that, for each vertex v in T, for which the sets F(z) of all

descendants z of v have been computed, we compute the set F(v) by, again, enumerating

all fingerprints f and running A on v, f, and the sets F(z). Finally, for the root of T, we

simply run A on the sets F(z), and the answer we obtain will be the answer for G.

It can be seen from the above description that the complexity of this algorithm is

O(N x M x h(W, M)), where N is the number of vertices in T, M is the number of possible

fingerprints, W is the size of a largest set X (v), and h(W, M) is the running time of A.

Next, we illustrate the above definitions on the example from the beginning of this sec­

tion. Namely, for the graph colouring problem II, the tuple (I;, p, 7f, 0", p" 7]) is as follows.

(i) the alphabet I; is {O, I},

(ii) p(G) are all possible (not necessarily proper) IV(G)I-colourings of G,

(iii) p,(c) is the number of colours used in the colouring C E p(G),
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(iv) 7r(G) are all proper IV(G)I-colourings of G,

(v) O"(H, c) is the restriction of c onto H, where c E p(G), and

(vi) 77(CG,CH) is the colouring of G obtained from CG by recolouring the vertices of H by

CH, where CG E p(G), CH E p(H), and H is an induced subgraph of G,

The dynamic programming scheme 5 for the graph colouring problem II is as follows.

(i) the alphabet r is again {O, I},

(ii) <p(G, c) is the colouring f of G obtained by restricting c onto the vertices of G,

(iii) we have f ;:::j 1', if and only if, both f and l' are the same colourings (up to renaming

colours), and

(iv) the algorithm A, given v, (possibly) f, and fingerprints F(z) for z E V(Tv ) \ {v},

considers all possible proper colourings c of G[X(v)] (up to renaming colours) which

are extensions of f (if f is provided as input), and for each such colouring c, if, for

each child w or v, there is a pair (fw, cw) in F(w) such that fw is a restriction of c onto

X(w) nX(v) (again, up to renaming colours), and J..L(ew) is smallest possible, then the

algorithm combines c and the colourings ew into a colouring Cv of Gv , and returns cv ,

otherwise announces that Cv does not exist.

It is not difficult to verify that the above satisfies the definition of II and 5, and, in

particular, it can be seen that the exchange condition is satisfied, since for any vertex v

with a parent u, the set X (u) n X (v) is a separator of G, and hence, if proper colourings

c and Cv of G and Gv , respectively, are the same on X (u) n X (v), we can colour G with

c and then recolour the vertices of Gv by cv , and we must obtain a proper colouring c',

because there are no edges between different connected components of G - (X(u) n X(v))

and Gv - (X (u) n X (v)) is one (or more) of those components. Also, the number of colours

used in c' is never more than the maximum of the number of colours used in c and the

number of colours used in cv , which shows the second part of the exchange condition.

Now, using the scheme 5, we already know that we can solve the optimization problem

for II using dynamic programming on a tree decomposition. Let us look at the complexity

of this algorithm. Again, let (T, X) be a tree decomposition of a graph G of width t - 1, let

N = IV(T)I, and let a denote the maximum number of non-isomorphic proper colourings

of G[X(u)] for u E V(T). Recall that the fingerprints in the scheme 5 are the proper

colourings of G[X(u) n X(v)] where uv E E(T). Hence, there are at most a possible

different fingerprints, and it can be seen that the running time of the algorithm A on any
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node v E V(T) altogether for all fingerprints is 0 (cy.f.deg(v)). This gives us that the running

time of the algorithm for the graph colouring problem is 0 ( L:v a .t .deg(v)) = 0 (N .t . a) .
We remark that the running times from the beginning of the section are just special cases

of this formula. For later use, we now summarize this algorithm in the following theorem.

Theorem 2.4. Let G be a graph, and (T, X) be a tree decomposition of G of width t - 1.

Then one can compute X(G) in time O(N . t· a), where N is the number of nodes in T, and

a is the maximum number of non-isomorphic colourings ofG[X(v)] for v E V(T).

Finally, the last example of an algorithm which uses dynamic programming on a tree

decomposition that we discuss here is the algorithm from Theorem 2.2 for the M-partition

problem in chordal graphs for matrices M with all diagonal entries O.

First, we observe that an M-partition of a graph G for a matrix M, which has all 0 on

the main diagonal, is a partition of the vertices of G into k independent sets with possibly

(depending on !v!) all, or no edges between some of the sets. It can be seen that any graph

G admitting such M-partition must necessarily be properly k-colourable. This implies, in

particular, that the clique number w(G) of G is at most k. Moreover, if G is chordal, this

gives us that the treewidth of G must be at most k - 1. The algorithm from [28], which we

are going to describe, works, in fact, for any (not necessarily chordal) graph G of bounded

treewidth, and any matrix M (not only for O-diagonal matrices), and also solves the list

version of the problem.

We say that a node v of a rooted tree decomposition (T, X) of G is an introduce node, if

v has at exactly one child u, and X(u) = X(v) \ {x} for some x E V(G); v is a forget node, if

v has exactly one child u, and X(v) = X(u) \ {x} for some x E V(G); v is a start node, if v

has no children and IX(v)[ = 1, and v is a join node, if v has exactly two children u and w,

and X (v) = X (u) = X (w). We say that a rooted tree decomposition (T, X) is a nice, if

each node of T is either an introduce node, a forget node, a start node, or a join node. It

can be easily seen that any tree decomposition (T, X) of width t can be transformed into an

equivalent nice tree decomposition (T', X') of the same width, where IV (T') I ~ t . IV(T) I.
Now, let (T, X) be a nice tree decomposition of G. Recall the definitions of Tv and

Gv from before. The algorithm for the list M-partition problem is based on dynamic pro­

gramming on a nice tree decomposition (T, X) of G. It works as follows. For each vertex

v E V(T), it computes the set F(v) of pairs (2, S), where S <:;;;; {l ... k}, and 2 is an M­

partition of X(v) which can be extended to an M-partition ~ = VI U ... U Vk of Gv such
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that 8 is the set of those i for which Vi \ XCv) is non-empty. The sets F(v) are computed

first for the leaves of T and then for other vertices of T in a bottom-up order. Clearly, if

the set F(r) for the root r ofT is non-empty, then G admits an M-partition, otherwise not.

We now explain how the algorithm computes the sets F(v). If v is a start node then

X (v) = {x} for some x E V (G), and the set F(v) consists of all pairs (2,8) where 2 is a

partition VI U ... U Vk with Vi = {x} and Vj = 0 for all j i- i, and 8 = 0.
If v is a forget node, then v has a unique child u with X (v) = X (u) \ {x} for some

x E V(G), and the set F(v) consists of pairs (2,8) such that (2',8') E F(u), 2 is a

restriction of 2' = V{ u ... u V~ onto XCv), and 8 = 8' u {i} where x E Vi'.
If v is an introduce node, then v has a unique child u with X (u) = X (v) \ {x} for

some x E V(G), and the set F(v) consists of pairs (2,8) such that 2 = VI U ... U Vk is an

M-partition of XCv) with the property that x E Vj implies i t/. 8 for each i with Mi,j = 1,

and also (2',8) E F(u) where 2' is a restriction of 2 onto X(u).

Finally, if v is a join node, then v has exactly two children u, w with X(u) = XCv) =
X(w), and the set F(v) consists of pairs (2,8) such that (3,8') E F(u) and (3,8") E F(w)

where 8 = 8' U 8", and there is no i E 8', and j E 8" such that Mi,j = 1.

Now, the problem II and the scheme S corresponding to the above algorithm can be

defined as follows. The sets p(G) and 11"(G) consists of all colourings of G using k colours, and

all M-partitions of G, respectively. The valuation function /-L(e) is 0 for any e, and r, L:, (T, 1]

are exactly like for the graph colouring problem. The fingerprint mapping (T(H, e) for

e E p(G), gives a pair (3,8), where 3 is the restriction of e onto H, and 8 is the list of colours

that appear in G- V (H). Fingerprints f and l' are the equivalent, f ::::! f', if and only if, they

are equal, f = f'. Finally, the algorithm A is what is described in the above paragraphs.

The complexity is analyzed similarly as before. Let t -1 be the treewidth of G. First, we

observe that the number of possible fingerprints (3, 8) is at most 2k k t (at most t vertices in

each bag, and exactly k colours). Next, it can be seen that for each node of the tree

decomposition and any 2, processing fingerprints (2,8) for all 8 can be done in time

O(k24k ); observe that this comes from the complexity of testing the condition for the join

nodes. Hence, the complexity of A for all fingerprints is O(k24k k t ). Finally, it is known

that for any graph G, there exists an optimal tree decomposition of G whose tree has at

most n nodes. This tree decomposition can be transformed into a nice tree decomposition

of G which has the the same width and has at most n . t nodes. Therefore, it follows that

for the whole algorithm the complexity is O(n . t· k 24k k t ).
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We close by remarking that, as in the earlier examples, the problems we investigate

in Chapters 3, 5 and our solutions to them can be seen to be (formally) expressible as

(induced hereditary) graph problems II with dynamic programming schemes S which use

tree decompositions of particular properties (e.g., the so-called block-cutpoint tree).

2.3 Greedy algorithms

In this section, we describe some examples of problems for which an optimal solution is

obtained using greedy choices, rather than using an exhaustive (dynamic) enumeration of all

possibilities as in the previous section. In chordal graphs, such algorithms are usually based

on perfect elimination orderings. Using the properties of these orderings, the algorithms are

allowed to make greedy choices, which always lead to correct solutions.

First, we remark that we have already discussed examples of this type of algorithms in

Chapter 1, namely, the algorithm LexBFS, and the algorithm for split graph recognition

(see Theorem 1.25). Here, in addition, we mention three other such algorithms. The sim­

plest one is the well-known algorithm for the graph colouring problem in chordal graphs

[38]. The algorithm processes vertices of a given graph G in the reverse of a perfect elimina­

tion ordering of G, and colours vertices with numbers {I ... n}. Every time the algorithm

processes a vertex, it assigns this vertex the smallest possible colour (number) which is not

present in the already coloured neighbours of that vertex. This always leads to an optimal

proper colouring, since the set of forward neighbours in a perfect elimination ordering forms

a clique. Hence, if a vertex v is given a colour i, there must exist a clique of size i-I in the

neighbourhood of v, which clearly cannot be coloured with less then i-I colours.

Theorem 2.5. There exists an O(n + m) algorithm to find the chromatic number and an

optimal proper colouring of a chordal graph.

Next, we discuss the algorithm for computing the maximum size independent set in

chordal graphs [38] due to Gavril. This algorithm also processes the vertices of G, but

this time, in the order given by a perfect elimination ordering 7f of G. When a vertex v is

processed, the algorithm assigns v to the set 8, and removes from G the forward (in 7f) neigh­

bours Fv of v. After all vertices are processed, 8 is a maximum independent set of G. This

can be seen as follows. First, 8 is clearly independent, since whenever we process a vertex,

we remove all its neighbours from further consideration; hence, 181 :::; a(G). On the other
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hand, the sets Fv , v E S, are all cliques, since 1r is a perfect elimination ordering. Also, they

are pairwise disjoint and, clearly, cover each vertex of G. Hence, they form a proper colour­

ing of G; thus, 181 2: X(G). But G is perfect, and hence, by Theorem 1.15, also G is perfect;

thus, X(G) = w(G) = o:(G). Hence, 8 is indeed a maximum size independent set of G.

Theorem 2.6. There exits an O(n+m) time algorithm to find a maximum size independent

set and an optimal clique cover of a chordal graph.

Finally, we explain a more complex algorithm, which also uses perfect elimination

orderings and makes greedy choices. It is the algorithm from Theorem 2.2 for the M­

partition problem in chordal graphs for matrices M with all diagonal entries 1. Note that

an M-partition of a graph G for M with all diagonal entries 1 is a partition of the vertices

of G into k cliques with possibly all, or no edges between some of the cliques.

The algorithm starts by computing a perfect elimination ordering 1r of G, and by assign­

ing to each vertex v E V (G) a list f(v) = {I ... k}. Then, for each clique i, it either decides

that the clique is empty and removes i from all lists, or it chooses vertices Xi, Yi E V (G),

and sets f(Xi) = {i} and f(Yi) = {i}. Then it removes i from each vertex that appears

in 1r before Xi or after Yi, and, for each j E {I ... k}, it removes j from the list of each

vertex Z E V(G) such that ZXi or ZYi is an edge and Mi,j = 0, or ZXi or ZYi is not an

edge and Mi,j = 1. If the list of some vertex v becomes empty, the algorithm declares G

not M-partitionable. Otherwise, for each v E V(G), it chooses i E f(v), and assigns v into

the clique i. The correctness of this algorithm can be easily argued using the properties

of perfect elimination orderings (cf. Theorem 7.5). The running time of this algorithm is

O(n2k+1k 2
), since there are at most 1 +n + G) ::; n 2 choices for each clique, and processing

the lists, for each choice, takes O(k2 n) time. In addition, the algorithm can be immediately

adapted for solving the list case by replacing the initial lists f with the input lists fa. Finally,

we remark that the algorithm actually computes all possible M-partitions of G; each such

partition can be obtained from some lists computed by the algorithm by a greedy choice.

We conclude this section by mentioning other examples of greedy algorithms we discuss

in later chapters. Namely, in Chapter 7, we have an algorithm for the P4-free P4-transversal

problem in chordal comparability graphs, which is based on a modification of LexBFS, and

also the algorithm in Theorem 7.5, which is based on the above M-partition algorithm.
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2.4 Graph Grammars
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Graph grammars originated as a natural generalization of formal language theory to graphs

and since found their applications in numerous areas of computer science such as VLSI layout

schemes, database design, modeling of concurrent systems, pattern recognition, compiler

construction and others. Several different flavours of grammars for graphs have been studied;

some are based on replacing vertices, and some based on replacing (hyper)-edges, while

others replace whole subgraphs; here, additionally, mechanisms for "gluing" graphs can

vary. In all of these models, nodes or edges of graphs are usually labeled, and it is the labels

that control the way graphs are transformed by the grammar.

In this section, we discuss one particular model of graph grammars, namely, the so-called

hyperedge replacement grammars (HRG) , These grammars are especially interesting, since

they are based on a context-free graph transformation mechanism, which allows, in most

cases, efficient algorithms for recognition and other problems.

Let C be an arbitrary (fixed) set of labels and let type: C ---t N be a typing function. A

hypergraph Hover C is a tuple (VH, EH, attH, labH, extH) where VH is a finite set of nodes,

EH is a finite set of hyperedges, att : EH ---t VRis a mapping assigning a sequence of pairwise

distinct attachment nodes attH(e) to each e E EH, labH : EH ---t C is a mapping that labels

each hyperedge such that type(labH(e)) = lattH(e)l, and extH E VR is a sequence of pairwise

distinct external nodes. Note that, in this model, hyperedges are ordered subsets of vertices

and are labeled according to their cardinality. Also note that the external nodes extH,

usually, are not needed to be specified. We denote by He the set of hypergraphs over C.

Now, we define the hyperedge replacement mechanism. Let HE He and let el, ... ,ek be

hyperedges of H to be replaced by hypergraphs HI, . .. , Hk E He where type(ed = lextHi I
for 1 ::; i ::; k. The hypergraph H[ed HI, ... , ek/Hk] is constructed from the disjoint union

of H and HI, .. . ,Hk by identifying the vertices of attH(ei) with the vertices of extHi in

their respective orders, for each 1 < i ::; k, and then removing hyperedges el, ... ,ek. It

can be seen that this mechanism is "context-free", because the result of a replacement

depends only on the hyperedges that are being replaced, and not on their relationship

with the rest of the hypergraph. Also, it does not matter whether the hyperedges are

replaced simultaneously or one by one, or in what order they are replaced. That is, we have

H[ed HI," . ,ek/Hk] = H[ed HI] '" [ek/Hk] and H[edHIHe2/H2] = H[e2/ H2][edHI], and

H[ed HIHe2/ H2] = H[edHde2/H2]] for edges ei in appropriate hypergraphs.
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A hyperedge replacement grammar H RG is a tuple (N, T, P, S) where N ~ C is a set of

nonterminals, T ~ C with T n N = 0 is a set of terminals, P ~ N x He is a finite set of

productions with type(A) = lextRI whenever (A, R) E P, and SEN is the start symbol.

A derivation step in H RG is the binary relation ===} on He with H ===} H' whenever
p p

H' = H[e/R] where labH(e) = A and (A, R) E P. We denote by ===}* the transitive closure
p

of ===}. For A E C, we denote by Ae the hypergraph with a single hyperedge A attached
p

to type(A) vertices. (Ae is usually called a handle.) The hypergraph language L(HRG)

generated by the grammar H RG is Ls(HRG), where for A E N, the set LA(HRG) consists

of all hypergraphs in Hr derivable from Ae by applying productions of P. That is,

The context-free nature of hyperedge replacement allows one to define derivation trees

for hyperedge replacement grammars similar to the ones defined for context-free languages.

(For simplicity we deviate, in what follows, from the standard definition given in [58].)

A derivation tree Tin H RG = (N, T, P, S) is a tree whose each node is labeled either by

a terminal symbol A E T, a nonterminal symbol A E N, or by a production rule (A, R) E P

such that

(i) a node v labeled by A E T has no children, and we define res(v) = Ae,

(ii) a node v labeled by A E N either has no children and res(v) = Ae, or has exactly one

child w labeled by a production rule (A, R) E P and res (v) = res(w), and

(iii) a node v labeled by a production rule (A, R) E P has a child Vi labeled by labR(ei),

for each hyperedge ei E E(R), where 1 ::; i ::; k = IE(R)I, and we define res(v) =

R[edH l , ... , ek/H k], where Hi = res(vi)'

The graph defined by T is res(r), where r is the root of T. Also, it can be seen that,

for any hypergraph H E LA(HRG), there exists a derivation tree T such that res(r) = H,

where r is the root of T, and is labeled by A.

A hyperedge replacement grammar H RG = (N, T, P, S) is said to be of order k, if

type(A) ::; k for all A E N. An example of a grammar of order three generating all partial

3-trees (graph of treewidth at most three) can be seen in Figure 2.2. This grammar uses

two nonterminal labels A and S, where S is the starting nonterminal, and one terminal

label T. The vertices marked as 0 and. represent nodes, where the latter are the external

nodes extH (the labels indicate their ordering in extH). The vertices in boxes represent
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hyperedges, and the edges in the diagram connect each hyperedge e with its attachment

nodes attH(e), where the labels on the edges indicate their ordering in attH(e).

1

/~\ /-\
1 1 1 2

S .. - 2f2T2~3 I \
3 2 3 2 1

Ll----4-3~ L l-----(A}--2~
2 3 2 3

A .. -
--1----m-2-- - -..
1 2 1 2

Figure 2.2: An example of a hyperedge replacement grammar generating all partial 3-trees.

We now briefly explain how this grammar generates all partial 3-trees. In the first step

of the derivation, if we apply the second rule for S, we obtain a triangle whose edges are

labeled with A; subsequent applications of the rules for A either remove some of these edges,

or replace them with a terminal edge. On the other hand, if we apply the first rule for S,

we obtain a hypergraph with four vertices such that any three of them form a hyperedge

labeled with S. Each subsequent application of this rule to a hyperedge e labeled with

5, replaces e with four new vertices, where three of them (marked 1, 2, 3) are identified

with the vertices incident to e, and such that, again, any three of these four vertices form

a hyperedge labeled with S. This precisely mimics the generation of 3-trees, and the role

of the hyperedges labeled with S is to maintain all possible triples of vertices forming a

triangle in the generated 3-tree. Eventually, each hyperedge labeled with S is replaced with

a triangle (using the second rule for S), some of whose edges are removed later and other

are turned into terminal edges. Note that in the graph generated this way we can have

many parallel edges between any two vertices. The final simple graph representing a partial

3-tree is obtained by removing all but one parallel edge between any two vertices.

Next, we briefly mention some properties of hyperedge replacement grammars. In terms

of their generative power, they can generate all context-free string languages as well as some
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context-sensitive languages (for appropriately defined string graphs). Also, as a consequence

of the hyperedge replacement rule, graphs generated by a hyperedge replacement grammar

of order k are always at most k-connected. Hence, since the description of HRG is finite,

no HRG can generate graphs of arbitrary large connectivity. Also, for any k, there exists a

HRG of order k generating all partial k-trees (see Figure 2.2 for an example), whereas no

HRG of order k - 1 can generate them [58]. It follows that graphs generated by HRG's of

different orders form a proper infinite hierarchy.

Now, we discuss the complexity of the membership problem for HRG. It is not difficult to

see that the problem is in N P. One has to guess the derivation and test whether it generates

the input graph; the derivation can be described by a polynomial (in fact even linear [58])

number of bits, since it is not possible to erase vertices. In general, the membership problem

turns out to be N P-hard, and in particular, the following is true.

Theorem 2.7. [50] There exists a hyperedge replacement grammar of order two that gen­

erates an NP-complete graph language of maximum degree two. There exists an hyperedge

replacement grammar of order two that generates an NP-complete graph language of con­

nected graphs.

Note that, in this theorem, the first grammar generates disconnected graphs with un­

bounded number of connected components, whereas the second grammar generates graphs

of unbounded degree. This is in particular important, since if the grammar only gener­

ates hypergraphs of bounded degree and of bounded number of connected components (or

more precisely, hypergraphs whose k-separability is O(log n)), the membership problem is

polynomial time solvable. Note that the k-separability of a hypergraph H is the maximum

number of connected components of H - X where X ~ VH and IXI = k.

Theorem 2.8. [52, 58] Let H RG be a hyperedge replacement grammar of order k. If for

each n-verlex hypergraph H E L(HRG), k-separability of H is O(logn), then the member­

ship problem for H RG is polynomial time solvable. In case k-separability is 0(1) for all

HE L(HRG), the membership problem is in LOGCFL.

We conclude by mentioning the following results. A k-uniform hypergraph or simply a

k-hypergraph is a hypergraph whose all hyperedges are of cardinality k. In [21], it was shown

that, if an H RG of order k generates only k-hypergraphs, there exists a cubic time algorithm

(for any k) recognizing graphs in L(HRG), whereas, if the grammar of order k is allowed

to use hyperedges of all cardinalities, it can generate an NP-complete graph language [20].
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Theorem 2.9. [21] Let HRG be a hyperedge replacement grammar of order k. Then there

exists a cubic time algorithm to decide, given a k-hypergraph H, whether H E L (HRG).

Theorem 2.10. [20] For k 2: 3, there exists a hyperedge replacement grammar of order k

that generates an NP-complete set of k-connected hypergraphs.

2.5 Treewidth and Monadic Second Order Logic

In this final section of this chapter, we discuss a connection between graphs of bounded

treewidth and monadic second order logic of graphs.

Let V be a countable alphabet of variables (denoted by x,y,z .. . ). Let R be a (finite)

vocabulary of relational symbols R and their arities p(R). Let A' be a countable alphabet

of relational variables (denoted by X,Y,Z. .. ) and their arities p(X).

A second order formula (SO) is a (finite) formula that can be constructed from atomic

formulas using binary operations 1\, V", =>, ¢:> and quantification symbols "Ix, :3x, "IX, :3X,

where atomic formulas are x = y, R(XI, ... , Xk), and X(XI, .. . ,Xk) for x, y, Xl, ... ,Xk E V,

R E R, and X E A' with p(R) = p(X) = k.

A second order formula <p is called a monadic second order formula (MS), if <p contains

only relational variables X E A' of arity one (the so-called set variables); the arities of

relational symbols R ERin <p are unrestricted.

The (relational) structures of second order logic and satisfiability of a formula in a struc­

ture are defined in the usual way. (We omit the formal details.)

The main theorem of this section is the following theorem, which deals with hypergraph

replacement grammars and their relation to properties of hypergraphs definable by MS.

Theorem 2.11. [14, 15, 16] Let L be a M S -definable set of (labeled) hypergraphs (that is,

the set of (labeled) hypergraphs satisfying some M S formula <p). Let H RG be any hyperedge

replacement grammar.

i) One can construct a hyperedge replacement grammar H RG' generating L n L (HRG).

ii) For every derivation tree T of H RG, one can decide in time O(size(T)) whether the

graph G in L(H RG) defined by T is in L.

We remark that the set of all partial k-trees (graphs of treewidth at most k) is definable

by a hypergraph replacement grammar [58] (see Figure 2.2 for the case k = 3) . Additionally,
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it can be observed that for each graph H generated by this grammar, there exists a derivation

tree T whose size is O(IV(H)I). This gives us the following fundamental theorem.

Theorem 2.12. [14, 15, 16] Any property of graphs of treewidth at most k that is expressible

in Monadic Second Order Logic is decidable in linear time.

We close this section by remarking that many graph problems (including the ones we

study in later chapters) are expressible as MS formulas; hence, by this theorem, they are

efficiently solvable on graphs of bounded treewidth.
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Polar colourings of Chordal Graphs

3.1 Monopolar Chordal Graphs

Recall, that a partition of the vertex set V (G) of a graph G into sets Vi U V2 is monopolar,

if VI induces an independent set, and V2 induces a P3-free graph. We say that a graph Gis

monopolar, if G admits a monopolar partition. It can be seen that a graph is P3-free, if and

only if, it is a disjoint union of cliques. In the following, for simplicity, we shall always refer

to the independent set of a monopolar partition as A, and to the disjoint union of cliques in

the partition as D. Hence, we say that a graph is monopolar, if it can be partitioned into

an independent set A, and a disjoint union of cliques D.

The problem of monopolar partitions of graphs was previously studied in the literature

for some restricted classes of graphs. In particular, in [24]' the authors show a polynomial

time algorithm for finding a monopolar partition of a cograph, which follows from a finite

forbidden induced subgraph characterization of monopolar cographs which they describe.

They also show a similar result for unipolar cographs and polar cographs. We remark that

their definition of monopolarity slightly differs from ours, namely, our monopolar graphs

corresponds to the so-called stable monopolar graphs of [24].

In this section, we describe a linear time algorithm for recognizing monopolar chordal

graphs. In fact, our algorithm solves the more general case of the list monopolar partition

problem in the class of chordal graphs. We observe that the disjoint union of two monopolar

graphs is again monopolar. Hence, in what follows, we shall focus on connected graphs.

First, we prove the following interesting property of chordal graphs which will allow

us to construct the algorithm for testing monopolarity. Recall that w(H) is the size of a

40
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maximum clique in H, and K(H) is the vertex connectivity of H.

Proposition 3.1. For any separator S of a chordal graph G, we have w(G[S]) 2: K(G).
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Proof. Let S be a separator of G, that is, G - S is a disconnected graph. Since G

is chordal, by Proposition 1.11, there must exist a clique C ~ S, such that G - C is

disconnected. Clearly, ICI ::; w(G[S]). Now, let a and b be vertices from two different

connected components of G - C. By Menger's Theorem [18], there must exist at least K(G)

internally vertex disjoint paths connecting a to b in G, that is, paths no two of which share

vertices other than a and b. Since C separates a from b, all these paths must go through C.

Moreover, since the paths are internally vertex disjoint, and a, b (j. C, there cannot be more

than ICI such paths. This implies K(G) ::; ICI ::; w(G[S]) as required. 0

For 2-connected graphs, we have the following simple corollaries.

Proposition 3.2. In any monopolar partition AU D of a 2-connected chordal graph G, the

set D induces a clique.

Proof. Suppose that D induces a disconnected graph. Then, since G is 2-connected, we

have K(G) 2: 2, and A is a separator in G (separating the connected components of G[D]).

Hence, by Proposition 3.1, we have w(G[A]) 2: K(G) 2: 2, but A is an independent set, and

hence w(G[A]) = 1. It follows that G[D] is connected, hence it must be a clique. 0

Proposition 3.3. A 2-connected graph G is both chordal and monopolar if and only if it is

a split graph.

Proof. Clearly, any split graph is both chordal and monopolar. Conversely, let G be a

2-connected monopolar chordal graph, and let A U D be a monopolar partition of G. By

Proposition 3.2, the set D induces a clique, hence AU D is clearly a split partition of G. 0

It follows now that, if we have a 2-connected graph, checking its monopolarity amounts

to checking whether the graph admits a split partition. This can be accomplished in time

O(n + m) (cf. Theorem 1.25) even in the list case, that is, if some vertices are precoloured

(preassigned either to the independent set or the clique).

If the graph is not 2-connected, we consider the structure of its blocks. A block of a

graph G is a maximal induced subgraph of G which cannot be disconnected by the removal
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of a single vertex. Hence, a block is either a 2-connected maximal induced subgraph of G,

or an induced subgraph isomorphic to K 2 . We call the former a non-trivial block, and the

latter a trivial block. Recall that a cutpoint of a graph is a vertex whose removal disconnects

the graph. We shall need the following definition.

Let X be a set, and B be a collection of sets. The incidence graph of X and B is the

bipartite graph whose vertices are the elements of X and the sets of B, such that x E X is

adjacent to B E B, if and only if, x E B.

The block-cutpoint tree of a graph G is the incidence graph of the cutpoints and blocks of

G. It is an easy observation, that it is in fact a tree [68]. Similarly, we define a modified ver­

sion of the block-cutpoint tree which we shall need for our algorithm. The block-vertex tree

T(G) of a graph G is the incidence graph of the vertices, and the blocks of G. Again, it can

be seen that it must be a tree. In the subsequent text, we shall refer to the vertices of T(G)

as nodes to distinguish them from the vertices of G, in cases where ambiguity may arise.

We shall always consider the tree T(G) rooted at some arbitrarily chosen node root which

is a vertex of G, that is, not a block of G. We shall say that a trivial block respectively a

non-trivial block of G, which is a child of a node v in T(G), is a trivial child respectively

non-trivial child of v. Also, we shall call the children of the children of v, the grandchildren

of v, and in particular, the children of the trivial children of v will be referred to as the

trivial grandchildren of v.

Now, we are ready to describe our algorithm for monopolarity. The algorithm takes as

the input a chordal graph G with lists £o(v) ~ {r, b}, for each v E V(G), and outputs a

monopolar partition Au D of G which respects the lists £0 (that is, a partition Au D such

that r E £o(v), for each v E A, and b E £o(v), for each v E D) or announces that none exists.

The algorithm performs the following steps. First, it constructs the block-vertex tree of G.

Then, it performs a bottom-up search On the block-vertex tree while modifying the lists

£o(v) of processed vertices by removing from £o(v) those colours which are never used to

colour v in any desired monopolar partition of G. After this procedure, the modified lists £*

are used to greedily construct a monopolar partition of G by again processing the vertices

of the block-vertex tree of G, but now in a top-down order, and greedily choosing colours

for the vertices while propagating the colours to the rest of the graph to ensure a monopolar

partition is obtained. We show that, unless we have £*(v) = 0, for some v E V(G), this

greedy procedure will always succeed in finding a desired monopolar partition of G.

The algorithm is summarized below as Algorithm 3.1.
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Algorithm 3.1: Monopolar graph recognition.

Input: A connected chordal graph G with lists Po(v) ~ {r, b}, for v E V(G).

Output: A monopolar partition of G respecting Po (if it exists).

1 Obtain the block-vertex tree T of G, root T at arbitrary root E V(G).

2 Construct the reduced lists P* using Algorithm 3.2

3 if P*(v) = 0 for some v in G then

4 return "G has no monopolar partition respecting Po"

5 else

6 Extract a monopolar partition Au D from P* using Algorithm 3.4

7 return AUD
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Now, we explain how to obtain the reduced lists P*. Starting with the initial lists P +-- Po,

we explore the block-vertex tree of G in a bottom-up fashion eliminating colours from P(v)

for the explored vertices v. The elimination is performed by applying a set of rules (explained

later). Once root is reached, the lists P* +-- P are returned. The algorithm is summarized

below as Algorithm 3.2.

Algorithm 3.2: Constructing reduced lists.

Input: A chordal graph G with lists Po(v) ~ {r, b}, for v E V(G), and the

block-vertex tree T of G.

Output: The reduced lists P*.

1 Initialize P +-- Po and 5 +-- 0 (the set of processed vertices)

2 while 5 =I- V(G) do

3 pick a vertex v E V (G) \ 5 which has all grandchildren in 5

4 add v to 5, and process its list P(v) by performing the following two steps.

5 Apply the Rules 1 - 8.

6 Apply the Block Rule for each non-trivial child of v.

7 P* +-- P (the final lists)

8 return P*

Note, that for any vertex v of G chosen by the algorithm in line 4, the role of the rules is
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to (possibly) reduce the list £(v) by eliminating the colours that we know can no longer be

used. The rules are depicted in Figure 3.1, in left to right order. We use r8J to denote trivial

blocks, 0 for non-trivial blocks, and 0 for cutpoints. The description of the rules follows.

b

V (-b)

b

V (-b)I-b))\b) /vtb)
I \ bb

V (-b)

b

Figure 3.1: Rules 1 - 8.

Algorithm 3.3: The Rules 1 - 8 and the Block Rule.

Rule Ilf some trivial grandchild W of v has £(w) = {r}, then remove r from £(v).

Rule 2 If some trivial grandchild w of v, and some trivial grandchild Wi of w, have

£(w) = £(w' ) = {b}, then remove b from £(v).

Rule 3 If some trivial grandchildren w, Wi of v have £(w) = £(Wi) = {b}, then

remove b from £(v).

Rule 4 If some trivial grandchild w of v has £(w) = {b}, and v has a child that is a

non-trivial block, then remove b from £(v).

Rule 5 If v has two children that are non-trivial blocks, then remove b from £(v).

Rule 6 If both the parent of v and some child of v are non-trivial blocks, then

remove b from £(v ).

Rule 7 If some trivial grandchild w of v has £(w) = {b}, and w has a child that is a

non-trivial block, then remove b from £(v).

Rule 8 If some trivial grandchild w of v has £(w) = {b}, and the parent of v is a

non-trivial block, then remove b from £(v).

The Block Rule If v has a non-trivial child H, remove from £(v) the colour r

respectively b, if there exists no split partition Xu Y of H respecting £ (that is, a

partition where X is an independent set, Y is a clique, and r E £(x) and bE £(y) for

each x EX, Y E Y) such that v E X respectively v E Y.
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We remark that the rules can be justified by simple observation about monopolar par­

titions. For example, in the first rule, the colour r is removed from the list of the vertex v,

if v has a trivial grandchild w whose list contains only r. In other words, we have that v

is adjacent to w, and for any monopolar partition AU D, the vertex w must belong to the

independent set A. Hence, since A is an independent set, v will never belong to A, so we

can safely remove r from the list of v. The other rules are justified quite similarly.

Now, note that the rules are easy to implement directly. The Block Rule requires us to

test whether a graph with some vertices precoloured r or b admits a split partition; there is

a simple linear time algorithm for this (d. [43] or Theorem 1.25).

We have illustrated an example application of the rules in Figure 3.2. On the left is a

chordal graph. It has one vertex with list {r}, all other vertices have lists {r, b}. In the

middle is its block-vertex tree. The unlabeled vertices of the tree all have lists {r, b}, and

the vertex with list {r} can be seen at the bottom of the tree as a child of a non-trivial

block. When the Block Rule is applied to this block, it forces the list of the parent of this

block to be {b}. Further applications of Rules 7, 1, 5, 1, and 2, in that order, result in what

can be seen on the right.

'~- I

or

b

Figure 3.2: An illustration of the monopolarity recognition algorithm.

It remains to explain how to find a monopolar partition respecting £*, provided that

£*(v) =!=- 0, for all v E V(G). We use a top-down procedure which reduces the lists £*(v)

to single element lists, starting from root, and proceeding down in the tree. After all the

vertices are processed, a monopolar partition Au D of G respecting £* is constructed. The

algorithm is summarized below as Algorithm 3.4.
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Algorithm 3.4: Extracting a monopolar partition.

Input: A chordal graph G with reduced lists R*(v) i- 0, for v E V(G).

Output: A monopolar partition Au D respecting R*.

1 Initialize R+-- R* and S +-- 0 (processed vertices)

2 ifR(root)={r,b} then

3 set R(root) to either {r} or {b}

4 while S i- V(G) do

5 pick v E V (G) \ S that has all ancestor vertices in S, and add v to S

6 if R(v) = {r} then set R(w) +-- {b} for all trivial grandchildren w of v

7 if R(v) = {b} then

8 set R(w) +-- {r} for all trivial grandchildren w of v which have r E R(w)

9 if there is a trivial grandchild Wo with rtf. R(wo) then

10 set R(wo) +-- {b} and set R(w') +-- {r} for all trivial grandchildren w' ofwo

11 add Wo to S

12 for each non-trivial child (block) H of v do

13 Obtain a split partition X U Y of H respecting R

14 set R(x) = {r}, for x E X, and R(y) = {b}, for y E Y

15 A +-- the vertices v with R(v) = {r}

16 D +-- the vertices v with R(v) = {b}

17 return Au D
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Now, we prove the correctness of all the above algorithms. We start with an easy

observation which we will use frequently.

Proposition 3.4. Every vertex of a 2-connected chordal graph lies in a triangle.

Proof. Suppose otherwise. Let v be a vertex in a 2-connected chordal graph G whose

neighbourhood N(v) is an independent set. Since Gis 2-connected, we have I'i:(G) 2: 2, and

IN(v)1 2: 2. Also, there must exist a vertex w which is not adjacent to v, since otherwise

v is a cutpoint of G. It follows that N(v) is a cutset of G separating v from w, and by

Proposition 3.1, we have w(G[N(v)]) 2: I'i:(G) 2: 2. But N(v) is an independent set, and

hence w(G[N(v)]) = 1, a contradiction. 0
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Proposition 3.5. In any monopolar partition A U D of a non-trivial block of a chordal

graph, each vertex has a neighbour in D.

Proof. Let v be a vertex of a non-trivial block H of G. Since H is 2-connected, by Propo­

sition 3.4, the vertex v must have two neighbours u and W in H joined by an edge. Hence, if

Au D is a monopolar partition of G, then both u and w cannot belong to the independent

set A since they are adjacent, and hence, at least one of them must belong to D. 0

Next, we show that any monopolar partition of G respecting the input lists £0 also

respects the reduced lists r.

Proposition 3.6. A monopolar partition AuD of G respects £0, if and only if, it respects £*.

Proof. Let A U D be a monopolar partition of G respecting r. It follows directly from

Algorithm 3.2 that we have r(v) ~ £o(v), for any v E V(G). Hence, Au D also respects £0.

Conversely, let Au D be a monopolar partition of G respecting £0, and let £(t) denote

the lists £ during the execution of Algorithm 3.2 on G after applying t rules. We prove the

following statement by induction on the number of applications of the rules.

For all t, the partition Au D respects £(t).

For t = 0, clearly, £(t) = £0 so the claim is true. Hence, suppose that t 2: 1, and assume

that Au D respects £(t-l). The lists £(t) are obtained from £(t-l) by applying a single rule,

either one of Rules 1 - 8, or the Block Rule.

(i) If Rule 1 is applied, we must have a vertex v with a trivial grandchild w such that

£(t-l)(w) = {r}, £(t)(v) = £(t-l) (v) \ {r}, and £(t)(u) = £(t-l)(U), for all u -=f v. Since

Au D respects £(t), we must have w E A. Now, since v and ware adjacent in G, we

must have v tt A, which shows that Au D also respects £(t).

(ii) If Rule 2 is applied, we have vertices v, w, Wi where w is a trivial grandchild of v,

and Wi is a trivial grandchild of w, such that £(t-l)(w) = £(t-l)(w' ) = {b}, £(t)(v) =
£(t-l)(v) \ {b}, and £(t)(u) = £(t-l)(u), for all u -=f v. Since Au D respects £(t-l), we

have w, Wi E D, hence v tt D since otherwise v, w, Wi is an induced P3 in G[D]. It

follows that Au D respects £(t).

(iii) If Rule 3 is applied, the proof follows similarly.

(iv) If Rule 4 is applied, we have a vertex v with a trivial grandchild w, and a non-trivial

child H, such that £(t-l)(w) = {b}, £(t)(v) = £(t-l)(v) \ {b}, and £(t)(u) = £(t-l)(u),
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for all u i- v. By Proposition 3.5, the vertex v must have a neighbour Wi in H such

that Wi ED. Also, since Au D respects £(t-1), we have wED. Again, it follows that

v tt D, and hence, A U D respects £(t) .

(v) If Rule 5 is applied, we have a vertex v with non-trivial children H, H', such that

£(t)(v) = £(t-1) (v) \ {b}, and £(t)(u) = £(t-1) (u), for all u i- v. By Proposition 3.5, the

vertex v must have neighbours W in H, and Wi in H' such that w, Wi E D. Again,

v tt D, and hence A U D respects £(t).

(vi) If Rule 6 is applied, the proof follows similarly.

(vii) If Rule 7 or 8 is applied, the proof is similar to (iv).

(viii) Finally, if the Block Rule is applied, we have a vertex v with a non-trivial child H,

and £(t)(u) = £(t-1)(u), for all u i- v. Let X = AnV(H), and Y = DnV(H). Clearly,

Xu Y is a monopolar partition of H. In fact, since H is 2-connected, by Proposition

3.2, Xu Y is a split partition of H. Now, recall that v E V(H). Hence, if v E X, then

clearly v E A, and since Au D respects £(t-1), we must have r E £(t-1)(v). It follows

that r E £(t)(v), since Xu Y is a split partition of H respecting £(t-1) as required by

the Block Rule. Similarly, if v E Y, then v E D, which implies b E £(t-1)(v), and hence

b E £(t) (v) by the same argument. In both cases, we obtain that A U D respects £(t).

Now, since £* = Ret) for some t, the claim follows. o

Next, we prove the following statement about the reduced lists £*, which will be used to

prove the correctness of the extraction procedure in Algorithm 3.4.

Proposition 3.7. Suppose that £* (v) i- 0, for all v E V (G). Then, for any v E V (G),

(i) r E £* (w) for any trivial grandchild w of v, except possibly for one

trivial grandchild wo, and if Wo exists, then

ifb E £*(v), then

(a) £*(wo) = {b},

(b) r E £*(w' ) for any trivial grandchild Wi of WO,

(c) both v and Wo have only trivial blocks as children, and

(d) if v i- root, then the parent of v is a trivial block,

(ii) there exists a split partition Xu Y of H respecting £* with v E Y,

for any non-trivial child H of v,

(iii) v belongs to at most one non-trivial block,
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and if r E e' (v), then {

(i) bE £*(w) for any trivial grandchild w of v,

(ii) there exists a split partition X U Y of H respecting £* with

v E X, for any non-trivial child H of v.

Proof. First, we note that during the execution of Algorithm 3.2, once a vertex v is

processed, its list £(v) remains the same in all subsequent steps of the algorithm, and hence,

it is equal to £* (v). In the remainder of the proof, we shall use this fact frequently.

Suppose that r E £* (v) but b (j. £* (w) for some trivial grandchild w of v. Then £* (w) = {r}

since otherwise £*(w) = 0. Now, since v is processed after w, it follows, by Rule 1, that we

must have r (j. £*(v), a contradiction.

Similarly, suppose that b E £*(v) but r (j. £*(wo), for some trivial grandchild Wo of v.

Then £* (wo) = {b}, and, by Rules 4, 7 and 8, both v and Wo do not have any non-trivial

children or parents, since otherwise b (j. £*(v). Moreover, by Rules 2 and 3, both v and Wo

have no other trivial grandchildren w with lists £*(w) = {b}. Hence, r E £*(w), for all trivial

grandchildren w # Wo of v, and also r E £*(w'), for all trivial grandchildren w' of woo

Now, suppose that v belongs to two non-trivial blocks. Then either both blocks are

children of v, or one is a parent of v and one a child of v. In the former case, by Rule 5, we

have b (j. £* (v), and in the latter case, by Rule 6, also b (j. £* (v).

Finally, let H be a non-trivial child of v. If r E £*(v), then we clearly must have a split

partition Xu Y of H respecting £* with v E X, as otherwise r would be removed from the

list of v by the Block Rule. Similarly, if b E £* (v), it follows that there must exist a split

partition Xu Y of H respecting £* with v E Y. Note that here we use the fact that v is

processed after all the other vertices of H are processed. 0

Finally, we show the correctness of Algorithms 3.4 and 3.1, in that order.

Proposition 3.8. If £*(v) # 0, for all v E V(G), then Algorithm 3.4 correctly outputs a

monopolar partition of G respecting £*.

Proof. Let S(t) and £(t) denote the set S and the lists £ during the execution of the

algorithm after t iterations of the while-loop. Let G(O) = G[{root}] , and for t ~ 1, let G(t)

denote a subgraph of G induced on the vertices of the blocks of G which contain at least

one vertex of S(t). Observe that the graph G(t) is precisely the graph on all vertices of G

whose list was altered by the algorithm in the first t iterations of the while-loop. Hence, for

all v (j. V(G(t)), we have £(t)(v) = £*(v). In what follows, we shall use this fact frequently.
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Let Q(t) denote the vertices of G having all ancestor vertices in S(t). Observe that

Q(t) ~ V(G(t)). Let A(t) denote the vertices v of G(t) with £(t)(v) = {r}, and let D(t) denote

the vertices v of G(t) with £(t)(v) = {b}.

We now prove that the following claims are true for all t.

(i) For all v E Q(t), if v -I root, then either the parent of v is a non-trivial block, or v is

a trivial grandchild ofw, and £(t)(v) n£(t)(w) = 0.

(ii) A (t) u D(t) is a monopolar partition of G(t) respecting £*.

We prove the claims by induction on t. If t = 0, then V(G(t)) = {root}, S(t) = 0,
Q(t) = {root}, and £(t)(root) ~ £*(root) is either {r} or {b}. In both cases, both claims

are satisfied. Hence, suppose that t 2 1, and assume the claims hold for t - 1. Let v be

the vertex picked in the t-th iteration of the while-loop. Observe that v E Q(t-l). Also,

observe that, since the lists of the vertices of G(t-l) are not altered in the t-th iteration of

the while-loop, we have that A(t-I) ~ A(t), and D(t-l) ~ D(t).

Now, let Xl, ... ,Xr and HI,"" Hp be the trivial grandchildren and the non-trivial chil­

dren of v, respectively. Let Xl uYI , ... ,XpUYp be the split partitions of HI, . .. ,Hp respect­

ing £(t-l) which are used by the algorithm. Note that since A (t-I) U D(t-l) is a monopolar

partition of G(t-l) respecting £*, and v E G(t-l), we have £(t-l) (v) ~ £*(v). Also, for any

i E {I .. . p}, all vertices w of Hi except v are not in G(t-l), and hence £(t-I)(W) = £*(w).

Hence, it follows from Proposition 3.7, that the split partitions Xl U YI , ... ,Xp U Yp of

HI, ... ,Hp must exist, and they all respect £*.

First, suppose that £(t)(v) = {r}. Hence, A(t) = A(t-l) U Xl U '" U X p, and D(t) =

D(t-l) u {Xl} U ... U {Xr } U YI U ... U Yp. Observe that Q(t) contains the vertices Xl, ... ,Xr

as well as all children of HI, ... ,Hpo It follows immediately that the claim (i) is satisfied.

We now show that (ii) is also true. Since r E £(t)(v) = £(t-l) (v) ~ £*(v), by Proposition 3.7,

we have b E £*(Xi), and hence £(t)(Xi) ~ £*(Xi), for all i E {I ... r}. Moreover, since the split

partitions of HI, ... ,Hp respect £*, and A (t-l) U D(t-l) respects £*, it follows that A (t) U D(t)

also respects £*. It remains to show, that A (t) u D(t) is a monopolar partition. Observe

that v is clearly separating the vertices of A(t-l) and the vertices Xl U ... U X p. Also, v is

separating the sets Xi, Xj, for i -I j. Since, in addition, both A(t-l) and the sets Xl, .. ' ,Xp

are independent, we obtain that A(t) must be an independent set. Similarly, we obtain

that the set D(t) induces a disjoint union of cliques, since v separates any two of the sets

D(t-l), {xd, ... , {xr }, YI , ... , Yp, and each of these sets induces a disjoint union of cliques.
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Next, suppose that £(t) (v) = {b} and the vertex Wo does not exist. Hence, A (t) =
A(t-l) U {xI} u ... U {xr } U Xl U ... U Xp , and D(t) = D(t-l) U YI U '" U Yp . Again, the

claim (i) follows immediately, and since b E £(t)(v) = £(t-l)(v) ~ £*(v), by Proposition

3.7, we have that r E £*(Xi), for all i E {l ... r}. Since, in addition, the split partitions of

HI, ... , Hp respect £*, and A(t-l) U D(t-l) respects £*, we obtain that A(t) U D(t) respects

£*. Now, since v separates any two of the sets A(t-l), {xI}, ... , {xr }, Xl, ... ,Xp , and each is

an independent set, we have that A(t) must be an independent set. Now, we show that D(t)

induces a disjoint union of cliques. Since b E £* (v), by Proposition 3.7, we must have that v

either has no non-trivial children, that is, p = 0, or it has exactly one non-trivial child, p = 1,

and has a trivial parent. If v has no non-trivial children, then D(t) = D(t-l), and the claim

follows. On the other hand, if v has a exactly one non-trivial child, and a trivial parent,

then v is a grandchild of w, and since v E Q(t-l), we have that £(t-l)(v) n £(t-l)(w) = 0. It

follows that w E A(t-l), and we observe that v E YI . Hence, D(t) = (D(t-l) \ {v}) U YI , and

the vertex w clearly separates the set D(t-l) \ {v} from YI . Since each of these sets induces

a disjoint union of cliques, the claim again follows.

Finally, suppose that £(t)(v) = {b} and the vertex Wo exists. Without loss of generality,

we may assume that Xr = woo Let YI, ... ,Ys be the trivial grandchildren of woo Hence, we

have A(t) = A(t-l) U {xI} U ... {xr-I} U {yI} U ... U {Ys}, and D(t) = D(t-l) U {wo}. Since

bE £(t)(v) = £(t-l)(v) ~ £*(v), by Proposition 3.7, we have r E £*(Xi), for all i E {I ... r-1},

and r E £*(Yj), for all j E {l ... s}. Now, it follows that A(t) U D(t) respects £*, since also

A(t-l) UD(t-I) respects £*. We observe that the vertices v and Wo clearly separate any two of

the sets A(t-l), {xI}, ... , {xr-I}, {yI}, ... , {Ys}, and since any ofthese sets is an independent

set, we obtain that A(t) must be an independent set. Now, again by Proposition 3.7, since

b E £*(v), we have that both v and Wo have no non-trivial children, and v has a trivial

parent. It follows that A(t) UD(t) = V(G(t)), and that Q(t) = {XI, ... ,Xr-I,YI, ... ,Ys};

hence, the claim (i) follows. Also, we have that v must be a grandchild of a vertex w, and

since v E Q(t-l), we have £(t-l)(v) n£(t-l)(w) = 0, and hence wE A(t-l). We again observe

that w separates the set D(t-l) \ {v} from {v, wo}, and since each induces a disjoint union

of cliques, we obtain that also D(t) induced a disjoint union of cliques, and that completes

the proof of (i) and (ii).

Now, since the partition AU D returned by the algorithm is A(t) U D(t) for some t, the

claim (ii) implies the correctness of Algorithm 3.4. 0
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Theorem 3.9. Algorithm 3.1 is correct.
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Proof. The correctness of Algorithm 3.1 now follows easily. First, suppose that G admits

a monopolar partition Au D respecting £0. By Proposition 3.6, we have that Au D also

respects £*, and hence, £* (v) i= 0 for all v E V (G), and the algorithm will answer correctly.

On the other hand, suppose that G does not admit any monopolar partition respecting

£0, and let £* be the reduced lists computed by the algorithm. If £*(v) i= 0, for all v E V(G),

it follows from Proposition 3.8, that Algorithm 3.4 will produce a monopolar partition AUD

of G respecting £*. By Proposition 3.6, the partition Au D must also respect £0. That leads

to a contradiction. Hence £* (v) = 0 for some vertex v E V (G), and the algorithm will again

answer correctly. 0

We now briefly discuss the complexity of Algorithm 3.1. It is known that all blocks of

a connected graph can be obtained in time O(n + m) [65]. Hence, constructing the block­

vertex tree clearly also takes O(n+m) time. Now, we look at Algorithm 3.2. As mentioned

already, there exists an O(n + m) time algorithm for list split partition problem. This is

used as a subroutine in Algorithm 3.2, but only once on each block of G, and hence, it can

be easily argued that this takes in total O(n+m) time. Next, it can be seen that Rules 1 - 8

can be implemented in time O(deg(v)) for any vertex v, if we, in addition, store in each

vertex after its processing whether it has a non-trivial child, and whether it has a trivial

grandchild w with few) = {b}. This implies that Algorithm 3.2 can be easily implemented

in time O(n + m). Similarly, it can be argued that also Algorithm 3.4 can be implemented

in time O(n + m). Hence, it follows that the time complexity of Algorithm 3.1 is O(n +m).

Note that here we assume that the graph G is connected. However, it can be seen that,

if G is disconnected, we can run the algorithm on each of its connected components, and

then combine the results. Clearly, the time complexity is still O(n + m).

So, we can summarize the results of this section in the following theorem.

Theorem 3.10. (Monopolar chordal graphs) There is an O(n + m) time algorithm to

decide, for a chordal graph G with lists £, whether G admits a monopolar partition which

respects £, and to find such partition if exists. In particular, the algorithm can be used to

decide, whether a chordal graph is monopolar.
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3.2 Polar Chordal Graphs
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Recall, that a partition of the vertex set V (G) of a graph G into sets VI U V 2 is polar, if VI

induces a P3-free graph, and V2 induces a P3-free graph. It can be seen that a P3-free graph

is a disjoint union of cliques, and a P3-free graph is a complete multipartite graph. We say

that a graph G is polar, if G admits a polar partition.

We remark that, a complete multipartite chordal graph G, that is, the join of independent

sets WI, ... , Wi, cannot have more than one vertex in more than one set Wi. (Otherwise,

the vertices U1, U2 E Wi, and VI, V2 E Wj , j i- i, yield an induced four-cycle U1, VI, U2, V2

in G.) Hence, a chordal graph G is P 3-free, if and only if, G is the join of a clique and an

independent set. (The clique represents all parts Wi having just one vertex.)

We adopt the following convenient notation. We shall refer to the vertices of VI and V 2

as red and blue vertices, respectively. We shall refer to the red independent set as A, the

red clique as B, and the blue cliques of the disjoint union as C1 , ... ,Ck . Hence, we say that

a graph is polar, if it can be partitioned into a red independent set A, a red clique B, and

blue cliques C1 , ... ,Ck , where A and B are completely adjacent, and there are no edges

between any two different cliques Ci , Cj. Using this notation, it can be seen that a polar

partition is also a monopolar partition (see Section 3.1), if and only if, it has the red clique

B empty, B = 0. Similarly, a polar partition is also a unipolar partition (see Section 1.4),

if and only if, it has the red independent set A empty, A = 0. These correspondences will

play an important role later in the algorithm.

In what follows, we describe a polynomial time algorithm for recognizing polar chordal

graphs. In fact, our algorithm solves the more general case of the list polar partition problem

in the class of chordal graphs. Hence, we say that a graph G with lists £(v), for all V E V (G),

is list polar, if G admits a polar partition A, B, C1 , . .. ,Ck which respects the lists £, that is,

for each v E Au B, we have r E £(v), and for each v E C1 U ... U Gk , we have bE £(v).

Let G be a chordal graph with lists £(v), for all v E V(G), and let M be a clique of

G. We say that M is good, if there exists a polar partition A, B, G1 , ... ,Gk of G which

respects £, and B = M. Note that, if M is a good clique, then G - Mis monopolar. We say

that M is nice, if there exists polar partition A, B, G1 , ... ,Gk of G which respects £, and

(M1) M = BuT where T ~ G1 , and

(M2) for each connected component K of G - M, if K contains a vertex a E A, then we

have N(a) n M ~ N(b) n M for each vertex b of K - a.
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Note that in both cases An M = 0. We say that a clique M is almost good, if it is good

or if M \ {a} is good for some a EM, and that a clique M is almost nice, if it is nice or if

M \ {a} is nice for some a E M.

We have the following structural characterization of polar chordal graphs.

Proposition 3.11. (Polarity of chordal graphs) Let G be a chordal graph with lists

R(v) ~ {r, b}, for all v E V(G). Then G is list polar, if and only if, at least one of the

following conditions holds.

(i) G admits a monopolar partition which respects lists e.
(ii) G admits a unipolar partition which respects lists e.

(iii) G has two non-adjacent vertices u, v such that N(u) n N(v) is an almost good clique.

(iv) G contains a maximal clique that is almost nice.

Proof. First, we observe that, by the definitions, any of the conditions (i) - (iv) implies

that G with lists e is list polar. To show the converse, we assume that G is list polar, and

the conditions (i) - (iii) are not fulfilled. We show that this implies that (iv) must be true.

Hence, consider a polar partition of G which respects eand has parts A, B, C1 , , Ck.

As usual, we assume that the vertices of A, B are coloured red, and the vertices of C1 , , Ck

are blue. Let T be the set of all vertices of C1 , ..• ,Ck which are adjacent to each vertex of

B. Since we assume that the condition (ii) is not fulfilled, the set A has to have at least two

vertices, and any two vertices u, v of A must have a common blue neighbour z, otherwise

N(u) n N(v) = B is a good clique, contradicting (iii). We now observe that z must be

adjacent to every vertex w in B, else we would have the induced four-cycle u, z, v, w without

chords. In other words, z E T, and hence the set T must be non-empty.

Now, we show that any two vertices u, v of T must be adjacent. Suppose otherwise,

and let N = N(u) n N(v). By the definition of T, we have N 2 B. We observe that N

cannot contain any blue vertex w, since otherwise u, w, v is a blue P3. Now, it follows that

either N or N \ {a}, for some a E A, is equal to B, since A is an independent set. Hence,

N = N(u) n N(v) is an almost good clique, which contradicts (iii).

It follows that T induces a clique in G, and since it consist only of blue vertices, it must

be contained in some blue clique of the polar partition, without loss of generality, the clique

C1 . Hence, we have that M = TuB is a clique with T ~ C1 .

Now, we show that each connected component of G - M contains at most one red vertex.

Suppose otherwise, and let K be a connected component of G - M that contains two distinct
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red vertices; let u and v be two closest such vertices. Note that, since u, v must be in A,

they are not adjacent. Now, since K is connected, there exists in K a shortest path P from

u to v (of length at least two); it follows from the choice of u,v that P - {u,v} contains

only blue vertices. Since B is not empty, consider the cycle wPw for any wEB. (Since

u, v are in A, they must be adjacent to w). By chordality of G, and the fact that P is a

shortest (and hence induced) path, w must be adjacent to all vertices of P. It now follows

that each vertex x of P - {u, v} must be adjacent to all vertices w of B, and hence x belongs

to T ~ M, contradicting the fact that x is in G - M. (Recall that T consists of those blue

vertices which are completely adjacent to B.) Thus, every component K of G - M has at

most one red vertex.

Now, let K be a connected component of G that contains a red vertex a E A. Since

a belongs to A, it must be adjacent to each vertex of B, and hence N(a) n M ~ B. By

the previous paragraph, K cannot contain more than one red vertex, and hence K - a is

a disjoint union of cliques which consist of blue vertices only. Now, let b be any vertex of

K - a. Since b is blue, it must belong to some clique Ci .

Suppose first that i =I 1. Since T ~ C 1, the vertex b E Ci is not adjacent to any

vertex in T. It follows that N(b) n M ~ B. Now, if N(b) n M = B, then, for any z E T,

N = N(z) n N(b) is an almost good clique; this is because N(z) ~ B, and band z are

non-adjacent blue vertices, which implies that either N = B or N = B u {a}. (Note that

the only red vertex that b can be adjacent to is a.) This contradicts (iii), and therefore, we

must have N(b) n M ~ B, which implies N(a) n M ~ N(b) n M.

Now, suppose that i = 1. Let c be the first vertex after a on a shortest path from a to b

in K (possibly c = b). Clearly, we must have c E C1 \ T. Now, since C1 is a clique, we have

that N(c) n M ~ T. Since c f/. T, there must exist a vertex wEB, which is not adjacent to

c. Now, it follows that a must be adjacent to each vertex z in T, since otherwise a, w, z, c

is an induced four-cycle. Hence, N(a) n M = M. Now, since also b f/. T, we must have

N(b) n B =I B, and hence N(b) n M =I M, which implies N(a) n M ~ N(b) n M.

It remains to observe that M is either a maximal clique of G, or becomes a maximal

clique of G by the addition of a single vertex a of A, in which case M U {a} is almost nice.

This follows from the fact that A is an independent set, and that no blue vertex can be

completely adjacent to M, since, by the definition of T, it would already be in T ~ M. 0

Next, we describe how to test whether a clique B is good.
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Proposition 3.12 (Good Clique). Let B be a clique in a chordal graph G with lists

e(v) ~ {r, b}, for all v E V(G). Remove r from the list e(v) of each vertex v in G - B which

is not completely adjacent to B, and denote these modified lists I!*. Then B is good, if and

only if, G - B admits a monopolar partition which respects the (modified) lists I!*.

Proof. If there exists a monopolar partition A U D of G - B which respects I!*, then

A, B, C1 , ... , Ck, where C1 , ... ,Ck are the connected components of G[D], is clearly a polar

partition of G, since for each vertex v E A, we have r E I!*(v), and hence, v is completely ad­

jacent to B. Conversely, if B is good, then there must exist a polar partition A, B, C1 , ... , Ck

of G which respects e. This implies that r E e(v) for each v E A. Hence, Au D, where

D = C1 U ... U Ck, is a monopolar partition of G - B, and it respects I!*, because the vertices

of A are completely adjacent to B, and hence, r E e*(v) for each v E A. 0

Now, it clearly follows from Theorem 3.10 that testing for a good clique can be imple­

mented in O(n + m) time.

In the remainder of this section, we describe how to test whether a maximal clique M is

almost nice, assuming we have a chordal graph G with lists e(v) ~ {r, b}, for all v E V(G),

such that G does not admit a monopolar, or a unipolar partition which respects e, and has

no non-adjacent vertices u, v for which N(u) n N(v) is an almost good clique.

We proceed as follows. First, for each connected component K of G, we search for a

vertex VK E V(K) such that N(VK) n M ~ N(x) n M, for all x E V(K), xi- VK. Clearly,

there cannot be two such vertices, so, if there is none, we set VK = nil. If this happens, and

K is not a clique, then we must reject M. Also, we reject M, if K - VK is not a disjoint

union of cliques. Otherwise, we precolour by blue the vertices of K - VK, and if K is not a

clique, we also precolour by red the vertex VK. Note that at this point, all but possibly a

single vertex of each connected component of G - M is precoloured by blue, and the blue

precoloured vertices form a disjoint union of cliques. Now, we colour by blue each vertex

v E V(G) with r t/. e(v), and colour by red each vertex v E V(G) with b t/. e(v). If some

vertex receives both colours by the above steps, we reject M.

Otherwise, we proceed to finding the clique C1 . In particular, we want the set C = C1 \T

which belongs to G - M. For this, we try all possible choices, that is, either C = 0, or

C = V(K), where K is a clique connected component of G - M, or C is a connected

component of K - VK for some connected component K of G - M. For any such choice,

we precolour by blue all vertices of C, and precolour by red each vertex of M which is not



CHAPTER 3. POLAR COLOURINGS OF CHORDAL GRAPHS 57

adjacent to at least one vertex of G. Then, we propagate the colours of the vertices using

the following rules as long as possible.

• Propagation Rule 1. If v in G - M is red, then all its non-neighbours in ]vf are blue.

• Propagation Rule 2. If u in M is blue, then all its neighbours in G - (MUG) are red.

If a vertex receives both red and blue colours by the above, then we declare M not

nice. Otherwise, we colour red all uncoloured vertices in ]Vf, and colour blue all uncoloured

vertices in G - M. Then, we set A to consist of all red vertices in G - ]Vf, set B to consist

of all red vertices in M, set G1 , ... ,Gk to be the connected components of G - A - B, and

we declare M nice. The details of this algorithm are summarized as Algorithm 3.5. Now

we prove its correctness.

Proposition 3.13 (Nice Clique). Algorithm 3.5 is correct.

Proof. Let A, B, G1,'" ,Gk be the sets computed by Algorithm 3.5 when it declares M

nice. Observe that the partition A, B, G1, ... ,Gk clearly satisfies the conditions (M1), and

(M2) in the definition of nice clique. It also clearly respects the lists e. Hence, it remains

to show that A, B, G1,'" ,Gk forms a polar partition of G.

First, we show that A must be an independent set. This follows easily, because A is

formed by the red vertices in G - ]Vf, and hence, from each connected component K of

G - M, it can only contain at most one red vertex VK (all other vertices of K must be blue

by our precolouring). Similarly, it follows that B is a clique, since B ~ M, and M is a

clique. Also, it can be seen that A is completely adjacent to B. This follows immediately,

since by Propagation Rule 1, for any red vertex v in G - M, any non-neighbour of v in

M will be coloured blue, and B consists of the red vertices in M. Finally, suppose that

there exist blue vertices u, v, w in G forming a P3, that is, UV, vw E E(G) but uw f/- E(G).

Clearly, the three vertices cannot be all in G - M, nor they can be all in M, which follows

from the precolouring rules, and the fact that M is a clique. Hence, suppose that u, v belong

to a connected component K of G - ]Vf, and w E M. If u E G, then clearly w must be red,

since by the precolouring rules, any vertex of M that is non-adjacent to at least one vertex

of G is coloured red, and w is not adjacent to u, a contradiction. Similarly, if u f/- G, then

also v f/- G, since they are both blue and both in the same connected component of G - M.

Hence, by Propagation Rule 2, v must be red, since w E M and v is a neighbour of w in

G - (M U G), again a contradiction. Hence, suppose that u is in K, and v, wE M. By the
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same argument, if u E C, then w must be red, and if u ~ C, then by Propagation Rule 2, u

must be red. Hence, it follows that u and w must be in G - M, and v E M. Since u and w

are not adjacent, they both cannot be in C; without loss of generality, suppose that u ~ C.

Now, by Propagation Rule 2, u must be red, since v E M, yielding again a contradiction.

Therefore, the blue vertices must form a P3-free graph, which proves that A, B, C1 , ... , Ck

is a polar partition of G.

On the other hand, let M be a nice clique, and let A, B, C1 ,. " , Ck be a fixed polar

partition which respects £ and satisfies (Ml), and (M2) for M. We show that M will be

declared nice by Algorithm 3.5. We also show that the following invariant is maintained

during the execution of the algorithm, for the choice of C = C1 \ M.

{the red coloured vertices of G} ~ A u Band

{the blue coloured vertices of G} ~ C1 U ... U Ck

Note that at the beginning of the algorithm, no vertex is coloured, and hence (*) holds.

The algorithm starts by searching for vertices VK E V(K), for each connected component

K of G - M. Observe that it follows from (M2) that any vertex of K, which also belongs to

A, satisfies the conditions for vK, and there can be at most one such vertex in K. So, if K

contains a vertex a from A, then, for such K, the algorithm must successfully find VK = a.

Also V(K - VK) ~ C1 U ... U Ck, and hence, K - VK must be a disjoint union of cliques.

On the other hand, if K does not contain any vertex from A, then V(K) ~ C1 U ... U Ck,

and K must be a clique. This shows that the algorithm will not reject M and will proceed

to precolouring the components of G - M at which point the condition (*) will be satisfied.

Next, the algorithm colours by red the vertices of the set X = {v E V(G) I b ~ £(v)}, and

by blue the vertices of the set Y = {v E V(G) I r ~ £(v)}. The fact that A, B, C1 ,···, Ck

respects £ immediately gives that X ~ Au B, and Y ~ C1 U ... U Ck. This shows the

algorithm will not reject M, and also that (*) will be satisfied.

Now, let C = C1 \ M, and let T = C1 n M. Since C clearly induces a clique in G - M,

C must completely belong to a connected component K of G - M. Note that any neighbour

of C in G - M must belong to A. Hence, either C = 0, or C = K, or C is a connected

component of K - VK, since only VK (if exists) can belong to A. It now follows that the

algorithm will correctly find C as one of the possible choices it investigates. After that, the

algorithm colours by blue the vertices of C, and colours by red the vertices of M which are

not completely adjacent to C. Since C1 = CUT is a clique, we have that each vertex of
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T is completely adjacent to C, so any vertex of M non-adjacent to at least one vertex in

C must belong to B. (Recall that, by (MI), we have M = BUT.) This shows that after

colouring C and its non-neighbourhood, the condition (*) is again satisfied.

Now, the algorithm applies the propagation rules. We show, by induction on the number

of applications of the rules, that (*) will be maintained during this process. Clearly, before

applying the rules, (*) is true. Now, assume that (*) is true, and a propagation rule is

applied. First, suppose that Propagation Rule 1 is applied, that is, we have a red vertex

in G - M, and a non-adjacent vertex u in M which is given blue colour by the rule. Since

v is red, by (*), we must have v E A. Suppose that u is red before the application of the

rule. By (*), we have that u E B. However, since the vertices of A and B are completely

adjacent, we obtain a contradiction, since u and v are not adjacent. Hence, u E T, and

therefore u E C1 U ... U Ck. This shows that (*) is true after the rule is applied. Now,

suppose that Propagation Rule 2 is applied, that is, we have a blue vertex v EM, and a

neighbouring vertex u in G - (M U C) which is coloured red by the rule. Since v is blue,

by (*), we have v E C1 . Suppose that u is red before the rule is applied. By (*), we must

have u E C1 U ... U Ck . However, u ¢ M and u ¢ C, and hence, u ¢ C1 . Therefore, u E Ci

for some i f- 1. However, since the vertices of Ci and C1 are non-adjacent, and v and u are

adjacent, we obtain a contradiction. Hence, u E A which shows that (*) is true after the

rule is applied.

Now, it follows from (*) that no vertex will receive both colours by the propagation

rules, and hence, M will be declared nice by the algorithm, which concludes the proof. 0

Proposition 3.14. Algorithm 3.5 has time complexity O(n(n + m)).

Proof. First, we find the connected components of G - M and identify, which of them

are cliques, easily in time O(n + m). Then, for each connected component K of G - M,

we find a vertex XK E V(K), who has the most neighbours in M among the vertices of K.

We then test whether N(Xk) n M ~ N(b) n M is true for each b E V(K), b f- XK. If the

test succeeds, we set vK = XK, otherwise, we set vK = nil. For any vertex b, finding the

number of neighbours of bin M clearly takes O(deg(b)). Testing N(XK) n M ~ N(b) n M

for b E V(K) also takes O(deg(b)). It clearly follows that finding the vertices VK for all

components K of G - M takes O(n + m) time.

Next, it can be seen that there are at most n different choices for C. For each choice

of C, we colour the vertices of C by blue, and colour by red any vertex of M which has a
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non-neighbour in C. This can be done, by computing X = (nUEC N(u)) nM, and colouring

by red all vertices of M \ X; both steps in time O(n + m).

We now apply the propagation rules. In what follows, we show how to implement this

step in time O(n + m), which will imply the claim. We say that a vertex v is weak, if v is

either a red vertex of G - M, and all its non-neighbours in M are blue, or v is a blue vertex

of M, and all its neighbours in G - M - C are red. Clearly, if a vertex is weak, there is no

need to apply any propagation rules to it any more.

We start by computing the set S of all red vertices of G - M in time O(n). We then

colour by blue each u E M such that S \ N(u) "# O. Clearly, if, for u E M, we have

v E S \ N(u), then by Propagation Rule 1, u must be blue. Hence, after this, all vertices

of S become weak. For each u E M, testing S \ N(u) "# 0, can be easily done in O(deg(u))

time by computing S n N(u), and hence, O(n + m) altogether for all u E M.

Note that, at this point, each red vertex of G - M is weak. We now choose a blue vertex

v of M, and perform a series of operations after which v will become weak, and all red

vertices in G - M will again be weak. (Note that, in the process, some vertices of G - M

may become red, and some vertices of M may become blue.)

Hence, let v be any blue unprocessed vertex of M. We first compute, in time O(deg(v)),

the set Sv = N(v) \ (M U C), and then remove from Sv all red coloured vertices, again,

in time 0 (deg(v)). If Sv "# 0, we colour the vertices of Sv by red, compute the set

Xv = (nUESv N(u)) nM, and colour by blue each vertex w E M \ Xv' Clearly, the set

Xv can be computed in time O(L:uES" deg(u)), and colouring M \ Xv takes O(deg(v))

time. After these steps, v becomes weak, because all neighbours of v in G - (M U C) either

belong to Sv or were already red. Also, each vertex u in Sv becomes weak, since each non­

neighbour of u, which is in M, must belong to M\Xv ' Moreover, each w E M\Xv must be

non-adjacent to at least one u E Sv, and hence, by Propagation rule 1, w must necessarily

be blue. Finally, we observe that, again, all red vertices in G - M are weak.

We repeat the above process until there are no more blue unprocessed vertices in M. We

now look at the complexity of this procedure. Let VI, ... ,Vt be all blue vertices we processed

using the above procedure, in the order in which they were processed. Observe, that for each

i < j, we must have SVi n SVj = 0, since any w E SVi n SVj would have been given red colour

when Vi was processed, and hence, it would have been removed from SVj' when processing Vj'

As we discussed earlier, each Vi is processed in time 0 (deg(vi) + L:uEsvi deg(u)). Hence,

altogether 0 (L:~=I (deg(vi) + L:uESvi deg(u))) :S 0 (L:vEV(G) deg(v)) = O(n + m). 0
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Algorithm 3.5: Testing whether a clique is nice.

Input: A clique M in a chordal graph G with list £(v) ~ {r, b}, for all v E V(G).

Output: Answer whether M is nice.

1 Find the connected components of G - M

2 for each connected component K of G - M do

3 Find a vertex VK E V(K) with N(VK) n M ~ N(b) n M for all b E V(K - VK)

4 if vK does not exist then

5 if K is not a clique then

return "M is not nice"

6 VK f- nil

7 else Colour red the vertex vK

8 Colour blue the vertices of K - vK

9 Colour red each v E V (G) with b rf- £(v)

10 Colour blue each v E V (G) with r rf- £(v)

11 for each choice of C - either C = 0,
or C = V(K) for a clique component K of G - M,

or C is a connected component of K - vK for a

connected component of K of G - !v! do

12 Colour blue the vertices of C

13 Colour red the vertices of M which are not completely adjacent to C

14 Apply Propagation Rules 1 and 2 as long as possible

15 if no vertex receives both colours then

16 Colour red all uncoloured vertices of M

17 Colour blue all uncoloured vertices of G - M

18 return "M is nice"

19 return "!v! is not nice"
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The final algorithm for polarity of chordal graphs is summarized below.

Algorithm 3.6: Polar graph recognition.

Input: A chordal graph G with lists f(v) ~ {r, b}, for all v E V(G).

Output: Answer whether G is list polar.

1 Test if G admits a monopolar partition which respects f

2 Test if G admits a unipolar partition which respects f

3 for each pair of non-adjacent vertices u and v of G do

4 Test whether N(u) n N(v) is an almost good clique

5 for each maximal clique M of G do

6 Test whether M is an almost nice clique

7 if any of the tests succeeds then

return "G is list polar"

8 else return "G is not list polar"
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The correctness of this algorithm follows from Proposition 3.11. We now analyze its

complexity. For unipolarity in general graphs, we have a O(n2m) time algorithm explained

in Theorem 1.31. Similarly, for monopolarity in chordal graphs, we have an O(n + m) time

algorithm as shown by Theorem 3.10. Next, we test n 2 times a set for being an almost good

clique. Each such test consists of O(n) tests for being a good clique, which according to

Proposition 3.12 amounts to testing for monopolarity. In all, we need O(n2 x n x (n + m))

time. Finally, we test at most n sets for being an almost nice clique. Again, each such test

consists of O(n) tests for being a nice clique, which according to Proposition 3.14 requires

time O(n(n + m)), and hence, O(n2 x n(n + m)) time for this step.

It follows that the total time complexity of this algorithm is O(n3 (n + m)).

Theorem 3.15. There is a O(n3(n+m)) time algorithm to test polarity of chordal graphs. 0



Chapter 4

Forbidden Subgraphs for

Monopolarity

For cographs, it has been shown in [24] that monopolarity (and polarity) can be characterized

by the absence of a finite set of forbidden induced subgraphs. By contrast, for chordal graphs,

as we shall see, there are infinitely many minimal non-monopolar graphs. Additionally, since

it can be seen that any polar graph of diameter more than six is necessarily monopolar, it

will follow that there are also infinitely many minimal non-polar chordal graphs.

Interestingly, it turns out that all chordal minimal non-monopolar graphs can be gen­

erated by a simple recursive procedure (which unwinds the operation of the monopolarity

recognition algorithm in case it rejects the graph). This turns out to be a particular example

of the so-called hyperedge replacement grammars (see Section 2.4, and [58]). The grammar

r constructs a tree-like structure (with at most three branches at any node) consisting of

very simple blocks (with at most six vertices each). In fact, we shall prove a more general

statement about minimal forbidden monopolar graphs by additionally considering lists.

Let G be a graph with two sets of lists £(v) and £'(v), for all v E V(G). We say that

£' is a list extension of £, if £(v) ~ £' (v), for all v E V (G). In particular, £' is a proper list

extension of £, if £' is a list extension of £, and for some v E V(G), we have £(v) ~ £'(v). For

a graph G with lists £ and a graph G' with lists £', we say that G' is an induced list extension

of G, if G' is an induced subgraph of G, and £' is a list extension of £ on G'. Similarly, G'

is a proper induced list extension of G, if G' is an induced list extension of G, and either G'

is a proper induced subgraph of G, or £' is a proper list extension of £ on G'.
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We can immediately observe that the relation "being an induced list extension" is a

partial order ~ on the graphs with lists. This partial order clearly generalizes the "induced

subgraph" partial order on graphs (without lists). Note that there is no infinite descending

chain in the (induced) subgraph order, but there exists an infinite descending chain in ~.

However, this is no longer the case, if we only deal with graphs whose lists have bounded size.

Therefore, we call the order ~ on graphs with lists of size at most k a k-bounded ~. Now,

it follows from Proposition 2.1.1 in [26], that any set C of graphs (with lists) closed under

k-bounded ~ for some k, is characterized by avoiding the set F~(C) of minimal forbidden

~-predecessors, that is, graphs with lists which are not in C, but such that any proper

induced list extension of any of them belongs to C. We shall call such graphs minimal list

non-extendable forbidden induced subgraphs for C.

Now, let G be a graph with lists f(v) ~ {r, b}, for all v E V(G). We say that G with

lists f is list monopolar, if there exists a monopolar partition of G respecting f.

Let M denote the class of all list monopolar chordal graphs. It can be observed that M

is closed under 2-bounded induced list extension, since if a monopolar partition of a graph

respects lists f, it must clearly also respect any list extension f' of f on any induced subgraph.

Hence, since the size of lists in M is at most two, it follows that M is characterized by the

set F~(M) of minimal list non-extendable forbidden induced subgraphs. Note that these

include all minimal forbidden induced subgraphs for M (in the usual sense); the graphs

in F~(M) having lists {r, b} for each vertex, are precisely the minimal forbidden induced

subgraphs for M.

In the remainder of this chapter, we shall completely describe the set F~ (M) of minimal

list non-extendable forbidden induced subgraphs for monopolarity of chordal graphs.

4.1 The two-connected case

First, we focus on 2-connected chordal graphs. Surprisingly, for 2-connected chordal graphs,

there is only finitely many minimal list non-extendable forbidden induced subgraphs for

monopolarity. The following observation is easy to see.

Observation 4.1. All configuration in Figure 4.1 are minimal list non-extendable forbidden

induced subgraphs for monopolarity. 0

For the proof of the next statement, we shall need the following lemma from [53].
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Figure 4.1: All minimal list non-extendable forbidden induced subgraphs for monopolarity
of 2-connected chordal graphs.

Lemma 4.2. [53] Let G be a chordal graph, and let UI, U2, .. . ,Uk be a cycle in G. If UIU3

is not an edge of G, then U2Uj is an edge of G for some 4 ::; j ::; k.

Theorem 4.3. Let H be a 2-connected chordal graph with lists £(v), v E V(H), which is

not list monopolar. Then H contains one of the configurations in Figure 4.1.

Proof. First, suppose that H is not monopolar (without considering the lists). Then by

Proposition 3.3, H is not split. Recall that a graph that is not split either contains an

induced cycle C4 or C5 , or two independent edges 2K2 . Hence, since H is chordal and not

split, it must contain two independent edges.

Let xx' and yy' be two independent edges of H. We show that they must belong to a

cycle of H. Using Menger's theorem (d. [18]) on the vertices x, x' and y, y', we obtain that

there must exist two induced vertex-disjoint paths P, P' between the sets {x, x'} and {y, y'}.

Clearly, both x and x' cannot belong to P nor both to P'. The same holds for y, y'. Hence,

without loss of generality, we may assume that x, y belong to P, and x', y' belong to P'. It

follows that xPyy'(p,)-lx' is a cycle in H.

Now, assume that the edges xx' and yy' were picked such that the cycle C containing

these edges is smallest possible. We show that it must have exactly six vertices. Suppose

otherwise, and assume, without loss of generality, that P contains at least four vertices. Let

U be the first vertex on P after x, and v be the last vertex on P before y. Since P contains

at least four vertices, we must have U of- v. Hence, since P is an induced path, v is not

adjacent to x, and u is not adjacent to y.

Now suppose that x' is not adjacent to v, and that v is adjacent to y'. Let Pv be

the subpath of P from x to v. It follows that xPvvy'(p,)-lx' is a cycle in H with two

independent edges xx' and vy' whose length is less than the length of C, which contradicts

the fact that C was chosen smallest possible. Hence, v is not adjacent to y'. But then, since
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H is chordal and y is not adjacent to any vertex on P except v, it follows from Lemma 4.2

that y must be adjacent to a vertex v' of pI other than y'. Let P~, be the subpath of pI

from x' to Vi. Again, we obtain that xPyv' (P~, )-1 X' is a cycle in H with two independent

edges XXi and yv whose length is less than the length of C, which is a contradiction.

Therefore, x' must be adjacent to v. By symmetry, we have that y' must be adjacent to

u. But then xuy'yvx' is a cycle in H with independent edges xx' and yy' whose length is

exactly six, which is, by our assumption, less than the length of C. This shows that C has

length at most six, and clearly, since the edges xx' and yy' are independent, C cannot have

length less than six. Finally, by chordality of H, it is easy to show that C is one of the first

four configurations in Figure 4.1.

Now, suppose that H is monopolar (without lists) but not list monopolar with lists £.

First, if H contains a vertex v with £(v) = 0, then v itself forms the last configuration in

Figure 4.1. Hence, assume that £(v) #- 0, for all v E V(H), and denote by R the vertices v

of H with £(v) = {r}. If R contains adjacent vertices v and v', then H contains the second

from the right configuration in Figure 4.1 on the vertices v, v'. Hence, we may assume that

R is an independent set of H. Now, suppose that R contains a vertex v adjacent to distinct

vertices u and u' such that uu' is not an edge. Then, since H is 2-connected, there must

exist an induced path P from u to u' in H - v (of length at least 2). By chordality, v must

be adjacent to each vertex of P. Let w, Wi, wI/ be some three consecutive vertices of P.

Clearly, v is adjacent to all three of these vertices. Hence, H contains the third from the

right configuration in Figure 4.1 induced on the vertices v, w, w', wl/.

So, we may assume that the neighbourhood of each vertex of R induces a clique. Now,

let B be the set of vertices v of H with £(v) = {b}. We construct a graph H' from H as

follows. Starting with G = H, we add, one by one, for each vertex v E B, a new vertex

v', and make it adjacent to v and all neighbours of v in (the current) G. The final graph

G is the graph H'. Observe that, for any v E B, the vertices v and Vi are twins in H'.

Hence, it follows from Proposition 7.12, that H' is chordal, since H is chordal. Clearly,

H' is also 2-connected. Now, we define lists £' for the vertices of H' as follows. For each

v E V(H), if £(v) = {r}, then we set £'(v) = {r}, otherwise we set £'(v) = {r, b}, and also

set £' (v') = {r, b} if v' exists. (Recall that we assume that £(v) #- 0.)

We show that H' with lists £' is list monopolar, if and only if, H with lists £ is list

monopolar. For the forward direction, let A U D be a monopolar partition of H' respecting

£'. Clearly, for each vertex v E B, both v and Vi cannot belong to A, since A is an
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independent set. Hence, without loss of generality, we may assume that v E D, for each

v E B. But then AU(DnV(H)) is clearly a monopolar partition of H respecting f. On the

other hand, if Au D is a monopolar partition of H respecting f, we must have B ~ D, and

hence Au (D U B'), where B' are the vertices v' for v E B, is a monopolar partition of H',

which follows from the fact that adding a twin to a vertex of a clique also creates a clique.

Suppose now that H' is not monopolar (without lists). By the first five paragraph of

this proof, we have that H' must contain an induced subgraph F' which is one of the first

four configurations in Figure 4.1. Now, let F be the graph obtained from F' by contracting

the edges vv', for all v E B. Clearly, F is an induced subgraph of H, and it can be observed

that F must be one of the first eight configurations in Figure 4.1.

Hence, we may assume that H' is monopolar. By Proposition 3.2, H' is also a split

graph. We now show that this implies that H' with lists £I is list monopolar, which by

the above equivalence will lead to a contradiction. Since H' is split, there exists a split

partition Au D of H'. If R ~ A, then, clearly, Au D respects f', and we are done. Hence,

we must have a vertex v E R which belongs to D. Since R is an independent set, no other

vertex of R can belong to D. Now, if v is not adjacent to any vertex of A, then we obtain

that (A U {v}) U (D \ {v}) is a monopolar partition of H' respecting £I. Hence, v must be

adjacent to u E A. Since R is independent, u ¢ R, and hence, £leu) = {r, b}. Now, since

the neighbours of v in H induce a clique, it can be seen that also the neighbours of v in H'

must induce a clique. Hence, since v E D, we obtain that u must be adjacent to each vertex

of D. Now, this implies that A' U D' is a monopolar partition of H' respecting £I, where

A' = A \ {u} U {v}, and D' = D \ {v} U {u}. That concludes the proof. D

We now explain how to find in time O(n + m) a minimal list non-extendable forbidden

induced subgraph in a chordal 2-connected graph G with lists f, if G is not list monopolar.

We first run in time O(n + m) the algorithm for testing whether G (without lists) is a

split graph. If G is not split, then the algorithm produces a minimal forbidden subgraph

F. Since G is chordal, F must consists of two independent edges xx' and yy'. Now, by

considering the maximal cliques that contain these edges, and exploring the (unique) path

between these cliques in the clique-tree of G, one can find the vertex disjoint paths P and

P' connecting xx' to yy', and hence the cycle C = xPyy'(P')-lx'. Then using the argument

of the proof, one can reduce the cycle C to one of the first four forbidden configurations in

Figure 4.1. Since this step amounts to at most O(n) tests for adjacent vertices, it follows
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that this whole procedure can be easily implemented in time O(n + m).

On the other hand, if G is a split graph, the algorithm provides a split partition A U D

of G. We construct the sets Rand B as in the proof, and then we check whether R is

an independent set. If not, the two neighbours in R give us a forbidden configuration.

Otherwise, we test whether the neighbourhood of each vertex of R is a clique. We observe

that it suffices to check those v E R which belong to D, since for v ERn A, this is trivially

true. Also, since D induced a clique, there will be at most one vertex to check, hence

this can be easily implemented in time O(n + m). If we find that a vertex v E R has

two non-adjacent neighbours, we find the shortest path between these neighbours in G - v,

and then pick some three consecutive vertices of this path together with v which gives us

a forbidden configuration. Note that finding a shortest path between two vertices can be

implemented in time O(n + m) by breadth-first search. If no such vertex v E R is found,

then we double every vertex in B as described in the proof to obtain G', and test whether

G' is split. Clearly, G' has at most 2n vertices and 2m edges, and it can be constructed

in time O(n + m). Now, if G' is not split, then we find the forbidden graph the same way

we did for G, and by (possibly) contracting some of its edges, we again obtain a forbidden

configuration. On the other hand, if G' is split, we obtain a split partition A' U D' of G',

which will contain a split partition Au D of H, and using the argument from the proof, we

can find a monopolar partition of G by (possibly) exchanging up to two vertices between A

and D. Again, this can be accomplished in time O(n + m), which concludes the analysis.

We summarize this in the following theorem.

Theorem 4.4. There exists an O(n + m) time algorithm to test, for a given 2-connected

chordal graph G with lists £(v) ~ {r, b}, whether G is list monopolar, that is, whether G

admits a monopolar partition respecting £. If G is not list monopolar, the algorithm produces

a minimal list non-extendable forbidden induced subgraph contained in G. D

4.2 The general case

Now, we turn our attention back to all (not necessarily 2-connected) chordal graphs. In this

section, we shall describe a procedure generating all chordal minimal list non-extendable for­

bidden induced subgraphs using a graph grammar (see Section 2.4), and, as in the previous

section, we also describe an O(n + m) time algorithm to find a minimal list non-extendable

forbidden induced subgraph in a chordal graph which is not list monopolar.
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We use two hyperedge replacement grammars. The grammar r generates all minimal

non-monopolar chordal graphs, and the grammar r ' all minimal list non-extendable non­

monopolar chordal graphs. The rules of both grammars are shown below. They are followed

by a formal description. Before reading any further, we recommend that the reader revisits

Section 2.4 in Chapter 2 to get better acquainted with the terminology of graph grammars.
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Figure 4.2: The rules of the grammar r.

R" .. - 1.--lIJ B .. -

Figure 4.3: Additional rules of the grammar r/.

The hyperedge replacement grammar r is a tuple (N, T, P, S), where N = {S, R, R /,

R", B, B /, B"} are the nonterminal symbols, T = {X} are the terminal symbols, S is the

starting symbol, the types (arities) of the symbols are type(S) = 0, type(R) = type(R/) =

type(R") = type(B) = type(B/) = type(B") = 1, and type(X) = 2, and the production

rules P are the rules in Figure 4.2. Similarly, the grammar r ' is a tuple (N, T ' , pi, S) where

N, and S are as before, T ' = Tu {r, b} where type(r) = type(b) = 1, and pi are the rules P

and the additional rules shown in Figure 4.3.
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Figure 4.4: Example of a derivation of the grammar.

Recall that each production rule is a pair (Q, H) where Q E N, and H is a hypergraph

whose type is equal to type(Q), that is, H has exactly type(Q) distinct external nodes extH

marked 1, ... , type(Q). The hypergraph H of any rule (Q, H) in Figures 4.2 and 4.3 is

depicted as the (bipartite) incidence graph of its vertices and hyperedges. Recall, that this

is a graph whose vertices are the vertices and hyperedges of the hypergraph, and whose edges

are between vertices and hyperedges incident in the hypergraph. Note that for simplicity,

all hyperedges of type (arity) 2 are depicted as regular edges; all these edges are labeled

with the symbol X, however, for simplicity, this is also not shown. Finally, observe that the

hypergraphs in Figures 4.2 and 4.3 for the nonterminal S have no vertices marked, since the

type of S is 0, and the rules for all other nonterminals have exactly one vertex marked 1,

since their type is 1.

We say that a hypergraph H generated by a grammar is terminal, if H contains only

hyperedges labeled with the terminal symbols of the grammar.

Now, let H be a terminal hypergraph that is generated by the grammar r', that is,

HE Ls(r'). We define lists fH(V) for each vertex v E V(H) as follows. Initially, we set

£H(V) = {r, b}. Then, if v is incident to a hyperedge labeled r, we remove b from £H(V),

If v is incident to a hyperedge labeled b, we remove r from fH(v). Hence, the final list

for £H(V) can be either {r, b}, or {r}, or {b}, or empty. After we construct the lists, we

remove all terminal hyperedges of type 1. Since the only remaining terminal hyperedges

are of type 2, that is, they are ordinary edges, the resulting hypergraph will be a graph.

In the subsequent text, whenever dealing with a terminal hypergraph H generated by the

grammar r', we shall always assume that we have the lists £H as described above, and that

H is a graph as explained.

Recall, that extH is the external vertex (or vertices) of a hypergraph H, and N H(v) is

the set of neighbours of v in H. We have the following property of r'.
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Lemma 4.5. Let Q -=/- S, and H be a terminal hypergmph in LQ(r') with lists £H. Then,

(*) there exists a monopolar partition A U D of H respecting £H, and if Q = R', then

N H(extH) U {extH} ~ D.

Moreover, for any monopolar partition AU D of H respecting £H,

(i) if Q E {R, R"}, then extH E A,

(ii) ifQ=R', then NH(extH) nD-=/-0,

(iii) if Q = B, then extH E D and NH(extH) ~ A,

(iv) ifQE{B',B"}, thenextHED andNH(extH)nD-=/-0.

Additionally, for any y E V(H) \ {extH} (respectively any proper list extension i of £H),

there exists a monopolar partition Aub of fI = H - y respecting £H (respectively of fI = H

respecting i) such that

(i') if Q = R, then extH E b,

(ii') ifQ = R', then NiI(extH) ~ A,

(iii') if Q = R", then extH E band NiI(extH) ~ A,

(iv') if Q E {B, B'}, then extH E A.
(v') ifQ = B", then either extH E A or NiI(extH) ~ A.

Proof. Let Q- = Ho :::} HI :::} ... :::} H t = H be a derivation of H in f'. We prove the

claim by induction on the length of the derivation of H.

If t = 1, then H is either the hypergraph of the 3rd or the 4th rule for Q = R, or the

hypergraph of the 2nd rule for Q = R', or the hypergraph of the 2nd or the 3rd rule for

Q = B' respectively Q = B", or the hypergraph of the additional rule for Q E {R", B}.

If Q = R or Q E {B', B"}, then the claim follows from Observation 4.1. If Q = R',

then H is a triangle; hence, (*) and (ii) follow. Also, removing any vertex from NH(extH)

leaves a single vertex in NH(extH); hence, (ii') follows. (Note that in this case no proper

list extension of £H exists.) Finally, if Q E {R", B}, then H is a single vertex x with

£H(X) = {r} respectively £H(X) = {b}; hence, (*), (i), and (iii) follow, and for (the only)

proper list extension £'(x) = {r, b}, the partitions A = 0, b = {x} respectively A = {x},

b = 0 satisfy (iii') respectively (iv').

Now, let t 2 2, and assume that the claim holds for t - 1. First, suppose that Q = R.

Then HI is either the hypergraph of the pt, the 2nd , or the 3rd rule for R. Suppose that HI
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is the hypergraph of the pt rule. Then H = Hde/HI, el/ H"]' where HI, H" E LR,(r/), and

e, el are the two hyperedges labeled R' incident to extH. Let Au D be a monopolar parti­

tion of H respecting £H. Then Au D induces monopolar partitions of HI and H" respect­

ing £H' and £HI/, respectively. Using the inductive hypothesis, it follows that there exists

u E NH,(extH) n D and v E NHI/(extH) n D. Hence, extH E A, since otherwise u, extH, v is

a P3 in H[D]. This proves (i). On the other hand, by the inductive hypothesis, there exists a

monopolar partition AI U D' of HI respecting £H' with extH E D' and N H' (extH) ~ D' , and

a monopolar partition AluD" of H" respecting £HI/ with extH E D" and NH',(extH) ~ D".

Hence, AUD, where A = AluA"u {extH} and D = (D' UD") \ {extH}, is a monopolar par­

tition of H respecting £H, which shows (*). Now, let y E V(H) \ {extH}. If y E V(H' ), then,

by the inductive hypothesis, there exists a monopolar partition A~ U D~ of HI - y = iII

respecting £HI with NfI!(extH) ~ A~. Hence, Au D, where A = A~ \ {extH} U A" and

D = D~ U D", is a monopolar partition of H - y respecting £H with extH ED. The case

when y E V(H") is clearly symmetric. Now, let £be a proper list extension of £H. Clearly,

there must exist a vertex y E V(H) such that £H(Y) ~ £(y). Again, either y E V(H' ) or

y E V(H"), and the proof is identical to the above. This shows (i /).

Now, suppose that HI is the hypergraph of the 2nd rule for R. Hence, H = Hde/ HI],

where HI E LBI/(r/), and e is the only hyperedge of HI labeled B". Let v denote the vertex

incident to e, and let Au D be a monopolar partition of H respecting £H. Again, by the

inductive hypothesis, v E D, and there exists U E NH,(v) n D. Hence, extH E A, since

otherwise u, v, extH is a P3 in H[D]. On the other hand, by the inductive hypothesis, there

exists a monopolar partition AI U D' of HI respecting £H' with v E D' . Hence, Au D,

where A = AI U {extH} and D = D' , is a monopolar partition of H respecting £H. Now, let

y E V(H) \ {extH}. If y = v, then Au D, where A = AI and D = D' \ {v} U {extH}, is a

monopolar partition of H - y respecting £H with extH E D. Otherwise, y E V(H' ) \ {v};

hence, by the inductive hypothesis, there exists a monopolar partition A~ UD~ of H'-y = iII

respecting £HI with either v E A~ or NiI,(v) ~ All' It follows that AUD, where A = A~ and

D = D~ U {extH}, is a monopolar partition of H - y respecting £H with extH E D. Now,

if £is a proper list extension of £H, then there exists y E V(H' ) with £H(Y) ~ £(y), and the

proof again follows identically.

Now, suppose that HI is the hypergraph of the 3rd rule for R. Hence, H = HI[e/HI],

where HI E LB(r/), and e is the hyperedge of HI labeled B. Let v be the vertex incident

to e, and let U and w be the two remaining vertices of HI. Now, suppose that Au D is a
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monopolar partition of H respecting £H. Again, by the inductive hypothesis, we have v ED

and NHI(v) ~ A. Hence, extH E A, since otherwise either extH,u,V or extH,w,V is a P3

in H[D]. On the other hand, there exists a monopolar partition A/UD' of H' respecting £H'

with v E D' and NH,(v) ~ A'. Hence, AUD, where A = A/U{extH} and D = D'U{u, w}, is

a monopolar partition of H respecting £H. Now, let y E V (H) \ {extH}. If y = v, then AU D,

where A = A' and D = D' \ {v} U {extH,U, w}, is a monopolar partition of H - y respecting

£H with extH E D. If y = w, then AU D, where A = A' U {u} and D = D' U {extH},

is a monopolar partition of H respecting £H with extH E D. Similarly if y = u. Finally,

if y E V (H') \ {v}, we have, by the inductive hypothesis, that there exists a monopolar

partition A~ U D~ of H' - y respecting £H with v E A~. Hence, Au D, where A = A~ and

D = D~ U {extH, U, w}, is a monopolar partition of H - y respecting £H with extH ED.

Again, the proof is identical for any proper list extension i of £H.

Now, suppose that Q = B. Then HI is either the hypergraph of the 1st or the 2nd rule

for B. If HI is the hypergraph of the 1st rule, then H = HI[e/ H'], where H' E LR(r/) ,

and e is the hyperedge of HI labeled R. Let v be the vertex incident to e, and let AU D

be a monopolar partition of H respecting £H. Then, by the inductive hypothesis, v E A,

and hence, extH E D and NH(extH) ~ A. Also, by the inductive hypothesis, there exists

a monopolar partition A' U D' of H' respecting £H' with v E A', and hence, AU D, where

A = A' and D = D' U {extH}, is a monopolar partition of H respecting £H. Now, let

y E V(H) \ {extH}. If y = v, then AU D, where A = A' \ {v} U {extH} and D = D' , is a

monopolar partition of H - y respecting £H with extH E A. If y E V(H' ) \ {v}, then, by the

inductive hypothesis, there exists a monopolar partition A~ U D~ of H' - y respecting £H'

with v E D~. Hence, AU D, where A = A~ U {extH} and D = D~, is a monopolar partition

of H respecting £H with extH E A. Similarly for any proper list extension of £H. Now, if

HI is the hypergraph of the 2nd rule for B, the proof is identical to the above.

Now, suppose that Q = R /. Then HI is the hypergraph of the 1st rule for R ' , and

H = HI[e/H' ]' where H' E LB(r/), and e is the hyperedge of HI labeled B. Let v be the

vertex incident to e, and suppose that Au D is a monopolar partition of H respecting £H.

By the inductive hypothesis, v E D, and hence, NH(extH) n D #- 0. Also, by the inductive

hypothesis, there exists a monopolar partition A' U D' of H' respecting £H' with v E D' and

NH,(v) ~ A'. Hence, Au D, where A = A' and D = D' U {extH}, is a monopolar partition

of H respecting £H with NH(extH) U {extH} ~ D. Now, let y E V(H) \ {extH}. If y = v,

then AUD, where A = A' and D = D' \ {v}U{extH}' is a monopolar partition of H -y = if
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respecting £H with NiJ(extH) <:;;; A. If y E V(H') \ {v}, by the inductive hypothesis, there

exists a monopolar partition A~ U D~ of H' - y respecting £H' with v E A~. Hence, Au iJ,
where A = A~ and iJ = D~ u {extH}, is a monopolar partition of H - y = iI respecting £H

with NiJ(extH) <:;;; A. Again, it follows similarly for any proper list extension of £H.

Now, suppose that Q = R". Hence, HI is the hypergraph of the pt rule for R", and

H = HI[e/ H'], where H' E LB/(r'), and e is the hyperedge of HI labeled B'. Let v be

the vertex incident to e, and suppose that A U D is a monopolar partition of H respecting

£H. Then, by the inductive hypothesis, v E D and there exists u E NHI(v) n D. Hence,

extH E A, since otherwise extH,v,U is a P3 in H[D]. On the other hand, by the inductive

hypothesis, there exists a monopolar partition A' U D' of H' respecting £H' with v ED'.

Hence, Au D, where A = A' u {extH} and D = D', is a monopolar partition of H respecting

£H. Let y E V (H) \ {extH}. If y = v, then Au iJ, where A = A' and iJ = D' \ {v} U {extH},

is a monopolar partition of H -y = iI respecting £H with extH E iJ and NiI(extH) <:;;; A. If

y E V(H')\ {v}, then, by the inductive hypothesis, there exists a monopolar partition A~ UD~

of H' - y respecting £H' with v E A~. Hence, Au iJ, where A = A~ and iJ = D~ u {extH},

is a monopolar partition of H - y = iI respecting £H with extH E iJ and NiJ(extH) <:;;; A.
Similarly for any proper list extension of £H.

Now, suppose that Q = B'. Hence, HI is the hypergraph of the pt rule for B', and

H = HI[e/H']' where H' E LR/(r'), and e is the hyperedge of HI labeled R'. Let v be

the vertex incident to e, and u be the remaining vertex of HI. Let Au D be a monopolar

partition of H respecting £H. Then, by the inductive hypothesis, there exists wE NHI(v)nD.

It follows that v E A, since otherwise either extH,v,W or u,v,w is a P3 in H[D]. Hence,

extH E D and NH(extH) n D i- 0. On the other hand, there exists a monopolar partition

A' U D' of H' respecting £H' with NHI(v) u {v} <:;;; D'. Hence, Au D, where A = A' u {v}

and D = D' \ {v} U {extH,u}, is a monopolar partition of H respecting £H. Now, let

y E V(H) \ {extH}. If y = v, then Au iJ, where A = A' u {extH} and iJ = D' \ {v} u {u},

is a monopolar partition of H - y respecting £H with extH E A. If y = u, then Au iJ,
where A = A' u {extH} and iJ = D', is a monopolar partition of H - y respecting £H with

extH E A. Finally, if y E V(H') \ {v}, then, by the inductive hypothesis, there exists a

monopolar partition A~ U D~ of H' - y = iI' respecting £H' with N iJ' (v) <:;;; A~. Hence,

Au iJ, where A = A~ \ {v} U {extH} and iJ = D~ u {u, v}, is a monopolar partition of H - Y

respecting £H with extH E A. Similarly for proper list extensions of £H.

Finally, suppose that Q = B". Then HI is either the hypergraph of the 1st , or the 2nd
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rule for B". Suppose that H l is the hypergraph of the 1st rule. Hence, H = H l [el H', e'IH"],

where H' E LB(f'), H" E LR,(f'), and e, e' are the hyperedges of H l labeled Band R'

respectively. Let AUD be a monopolar partition of H respecting £H. Then, by the inductive

hypothesis, extH ED, NH,(extH) ~ A, and NH',(extH)nD # 0. Hence, NH(extH)nD # 0
and extH E D. On the other hand, by the inductive hypothesis, there exists a monopolar

partition A' U D' of H' respecting £H' with extH E D' and NH,(extH) ~ A', and also a

monopolar partition A" U D" of H" respecting £H" with N H" (ext H) U {extH} ~ D". Hence,

Au D, where A = A' U A" and D = D' U D", is a monopolar partition of H respecting £H.

Now, let y E V(H) \ {extH}' If y E V(H'), then, by the inductive hypothesis, there exists a

monopolar partition A~ U D~ of H' - y respecting £H' with extH E A~. Hence, AU iJ, where

A = A~ U A" and iJ = D~ U D" \ {extH}, is a monopolar partition of H - y respecting £H with

extH E A. If y E V(H"), then there exists a monopolar partition A1 U D1 of H" - y = if"
respecting £H" with Nif',(extH) ~ A1· Hence, Au iJ, where A = A' u A1 \ {extH} and

iJ = D' u D~, is a monopolar partition of H - y = if respecting £H with NiI(extH) ~ A.
Again, similarly for proper list extensions of £H.

Now, suppose that H l is the hypergraph of the 2nd rule for B". Then H = HIlel H'],

where H' E LR"(f'), and e is the hyperedge of H l labeled R". Let v be the vertex incident

to e, and let u be the remaining vertex of H l . Suppose that Au D is a monopolar partition

of H respecting £H. Then, by the inductive hypothesis, v E A; hence, extH E D and

NH(extH) n D # 0. Also, by the inductive hypothesis, there exists a monopolar partition

A'UD' ofH' respecting£H' with v E A'. Hence, AUD, where A = A' andD = D'U{extH,u},

is a monopolar partition of H respecting £H. Now, let y E V (H) \ {extH}. If y = v, then

AU iJ, where A = A' \ {v} U {extH} and iJ = D' U {u}, is a monopolar partition of H - Y

respecting £H with extH E A. If y = u, then Au iJ, where A = A' and iJ = D' U {extH}, is

a monopolar partition of H - y = if respecting £H with NiI(extH) ~ A. If y E V(H') \ {v},

then, by the inductive hypothesis, there exists a monopolar partition A~ U D~ of H' - y = if'
respecting £H' with v E D~ and Nif' (v) ~ A~. Hence, A U iJ, where A = A~ U {extH} and

iJ = D~ U {u}, is a monopolar partition of H - y respecting £H with extH E A. Again, it

follows similarly for proper list extensions of £H .

The proof is now complete. 0

Using this lemma, we can now prove that the grammar f' (and hence also f) generates

only minimal chordal list non-extendable forbidden induced subgraphs for monopolarity.
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Theorem 4.6. All terminal graphs generated by r' are minimal list non-extendable forbid­

den induced subgraphs for monopolarity of chordal graphs.

Proof. Let H with lists £H be a terminal graph generated by r'. It can be easily observed

from the rules of r' that H must be chordal. Now, let S· = Ho :::} HI :::} ... :::} Ht = H be

a derivation of H in r'. It follows that HI is the hypergraph of one of the rules of r' for S.

First, suppose that HI is the hypergraph of the pt rule for S. Then H = Hde/ H', e' / H"],

where H' E LR(r'), H" E Ln(r'), and e, e' are the two hyperedges of HI labeled R

and B, respectively. Suppose that A U D is a monopolar partition of H respecting £H.

Using Lemma 4.5 for H', we have that extH E A. However, applying Lemma 4.5 to H"

yields extH E D, a contradiction. Hence, H is not list monopolar. Now, by Lemma 4.5,

we also obtain that there exists a monopolar partition A' U D' of H' respecting £H' with

extH E A', and a monopolar partition A" U D" of H" respecting £HI/ with extH E D" and

NHI/(extH) ~ A". Let y EV(H). If y = extH, then Au i:>, where A = A' \ {extH} uA" and

i:> = D' u D" \ {extH}, is a monopolar partition of H - y respecting £H. If y EV(H'), then,

by Lemma 4.5, there exists a monopolar partition A; u D; of H' - y respecting £H' with

extH E Di. Hence, Au i:>, where A = A; u A" and i:> = Di u D", is a monopolar partition of

H - y respecting £H. If Y E V(H"), then, by Lemma 4.5, there exists a monopolar partition

Ar u D~ of H" - y respecting £HI/ with extH EAr. Hence, Au fJ, where A = Ar u A' and

i:> = D~ u D', is a monopolar partition of H - y respecting £H. Now, let £be a proper list

extension of £H. It follows that there must exist y E V(H) with £H(Y) <;2 £(y). Again, either

y E V (H') or y E V (H"), and the proof is identical to the above.

Now, if HI is the hypergraph of the 2nd rule for S, then the proof follows exactly as

for the pt rule. Hence, suppose that HI is the hypergraph of the 3rd rule for S. Then

H = HI[e/H',e'/H"], where H' E LRI(r'), H" E Lnl(r'), and e,e' are the two hyperedges

of HI labeled R' and B', respectively. Suppose that Au D is a monopolar partition of

H respecting £H. Then, by Lemma 4.5, extH ED, and there exists U E NH' (ext H) n D
and v E NH',(extH) nD. Hence, u,extH,v is a P3 in H[D], a contradiction. On the other

hand, by Lemma 4.5, there exists a monopolar partition A' U D' of H' respecting £H' with

NH,(extH) U {extH} ~ D', and a monopolar partition A" U D" of H" respecting £HI/ with

extH ED" and NHI/(extH) nD" i= 0. Now, let y EV(H). Ify = extH, then AUi:>, where

A = A' u A" and i:> = (D' u D") \ {extH}, is a monopolar partition of H - y respecting

£H. If Y E V(H'), then, by Lemma 4.5, there exists a monopolar partition A; u Di of

H'- y = iI' with Nk(extH) ~ A;. Hence, Aui:>, where A = A; uA" and i:> = D; UD",
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is a monopolar partition of H - y respecting £H. If Y E V(H"), then, by Lemma 4.5, there

exists a monopolar partition A~ U D~ of H" - y respecting £HII with extH E A~. Hence,

Au b, where A = A' u A~ and b = D' \ {extH} U D~, is a monopolar partition of H - Y

respecting £H. Now, if £ is a proper list extension of £H, we again have y E V(H) with

£H(V) ~ £(v), and the proof is identical to the above.

Finally, if HI is the hypergraph of the 4th or the 5th rule for S, then the proof follows

exactly as for the pt and the 3rd rule, respectively, whereas if HI is the hypergraph of the

6th , ~h, 8th , or 9th rule for S, then the proof follows from Observation 4.1. D

In the rest of this section, we prove that, conversely, any chordal graph with lists, which

is not list monopolar, must necessarily contain some hypergraph generated by r'.
Let G be a graph with lists £(v), for all v E V(G), and H be a terminal hypergraph

generated by r'. We say that G contains H, if the graph associated with H is an induced

subgraph of G, and £H(X) ~ £(x) for each x E V(H). Also, we say that G with lists £ and H

are corresponding, if G is the graph associated with H, and £H(x) ~ £(x) for each x E V (G).

We shall need the following lemma. For a graph G, vertex v of G, and a block-vertex

tree T of G, let Tv denote the subtree of T rooted at v, and Gv denote the subgraph of G

formed by the blocks which are nodes of Tv.

Lemma 4.7. Let G be a chordal graph with lists £0, let v be a vertex of G, and let T be

a block-vertex tree of G. Let £* be the lists computed by Algorithm 3.2 on G, £0, and T.

Suppose that £*(x) i- 0 for all x E V(G).

If £* (v) = {b}, then

(i) if £o(v) = {b} or v has a trivial grandchild u with £* (u) = {r}, then

(a) Gv contains a hypergraph F E LB(r') with extF = v, and

(b) if, in addition, v either has a non-trivial child or has a trivial grandchild u' with

£*(u') = {b}, then Gv contains a hypergraph F' E LBII(r') with extF' = v,

(ii) otherwise, Gv contains a hypergraph F E LB(r') u LB,(r') with extF = v, and also

contains a hypergraph F' E L B,(r') u LBII (r') with extF' = v,

and if £* (v) = {r}, then

(i) Gv contains a hypergraph F E LR,(r') u LRII(r') with extF = v, and

(ii) if v has a trivial (or no) parent, then Gv also contains F' E LR(r') U LRII(r') with

extFI = v.
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Proof. Let G be a fixed chordal graph with lists .eo, let v be a vertex of G, and let T be a

fixed block-vertex tree of G. We prove the claim by induction on the size of Gv .

Hence, we assume that the claim holds for any w having Gw smaller than v, and we

prove the claim for v.

First, suppose that .€*(v) = {b}. Recall that .€*(x) ~ .eo(x) for all x E V(G). Hence,

if .eo (v) = {b}, then the vertex v with list .eo (v) corresponds to the hypergraph F of the

additional rule for B, which, clearly, belongs to LB(r'), and extF = v. Hence, Gv contains

the hypergraph F from LB(r') with extF = v. On the other hand, if .eo(v) = {r, b}, then

either Rule 1 or the Block Rule of Algorithm 3.2 must have removed r from the list of v.

Suppose that Rule 1 removed r from the list of v. Then v has a a trivial grandchild u with

.€*(u) = {r}. Hence, u has a trivial parent, and we have, by the inductive hypothesis, that

Gu contains a hypergraph F~ such that F~ E LR(r') or F~ E LRIf(r'), and extF~ = u. Let

F be a hypergraph such that F = H[ejF~l, where H is the hypergraph of the pt or the 2nd

rule for B, and e is the hyperedge of H labeled with R or R", respectively. Observe that F

corresponds to the subgraph of Gv induced on v and the vertices of F~. Hence, extF = v,

and it follows that Gv contains F, and F E LB(r').

Now, suppose that v has, in addition, a non-trivial child B. Then, since B is a 2­

connected block, there must exist vertices w, w' in B such that v, w, w' forms a triangle in

B. Let F' be the hypergraph F' = H'[e' j F, e" j Hill, where F is the hypergraph from one

of the above cases, H' is the hypergraph of the pt rule for B", e, e" are the hyperedges

of H' labeled with Band R', respectively, and H" is the hypergraph of the 2nd rule for

R'. Clearly, F' corresponds to the subgraph of G induced on w, w' and the vertices of F.

Hence, extF' = v, and Gv clearly contains F' E LBIf(r'). Finally, suppose that v has a

trivial grandchild u' with .€*(u') = {b}. We observe that u' has cannot have any non-trivial

children, because otherwise b would have been removed from the list of v by Algorithm 3.2

using Rule 7. Also, u' has no trivial grandchildren u" with .€* (u") = {b}, since, similarly, b

would have been removed from the list of v by Algorithm 3.2 using Rule 2. Hence, either

u' has no children at all, in which case we must clearly have .eo (u') = {b}, or u' has a trivial

grandchild u" with .€* (u") = {r}. Therefore, by the inductive hypothesis, we have that GUI

contains a hypergraph FUI E LB(r') with extFul = u'. Now, let F" be the hypergraph

F" = H'[e'jF,e"jHIII][ellljFu'l, where H', e', e", and F are from the previous case, Hili

is the hypergraph of the 1st rule for R', and e"' is the hyperedge of Hili labeled with B.

Clearly, F" is corresponding to the subgraph of G induced on the vertices of F and the
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vertices of FU" Therefore, extFI/ = v, and we have that G contains F" E LBI/(r').

Now, suppose that the Block Rule removed r from the list of v when processing a non­

trivial child (block) B of v. Let £' be lists constructed from £* by changing the list of v

to {r}, that is, £'(v) = {r}, and £'(x) = £*(x) for all x I- v. Since r was removed from the

list of v by the Block Rule, it follows that B with lists £' is not list manopalar. Hence,

by Theorem 4.3, B with lists £' contains a minimal list non-extendable forbidden induced

subgraph Fa, which is one of the configurations in Figure 4.1. Suppose that v does not

belong to Fa. Then all vertices of Fa are in B - v, and hence, B - v with lists £' is not list­

monopolar. But, since for all vertices x of B - v, we have £'(x) = £*(x), also B - v with lists

£* is not list-manopalar. However, by Theorem 3.9, G with lists £* is list monopolar, because

£*(x) I- 0 for all x E V(G), and hence, also Band B - v with lists £* are list-monopolar,

a contradiction. Thus, it follows that v must belong to Fa. Now, since £'(v) = {r} and

B with lists £* is list manopalar , we have that Fa is either the 9th or 10th configuration

in Figure 4.1. In the former case, the hypergraph F' corresponding to Fa with lists £* is

precisely the hypergraph of the 2nd rule for B' and the 3rd rule for B", and extF' = v.

Hence, F' E LB, (r') U LBI/ (r'), and F' is contained in Gv . On the other hand, in the latter

case, Fa is formed by v and a child u of B with £* (u) = {r}. Hence, by the inductive

hypothesis, Gu contains Fu E LR/(r') U LRI/(r') with extFu = u. Now, since both u and v

belong to B, which is a 2-connected block, there must exist w in B such that u, v, w forms

a triangle. Also, from the properties of block-vertex trees, we have that u separates all

vertices of Gu - u from the vertices of B - u. Hence, w does not belong to Gu , and hence,

w does not belong to Fu. Now, let F' be the hypergraph F' = H[e/ FuJ, where H is the

hypergraph of the pt rule for B' or the 2nd rule for B", and e is the hyperedge of H labeled

with R' or R", respectively. Clearly, F' E LB, (r') U LBI/ (r'), and, again, F' corresponds

to the subgraph of Gv induced on v, wand the vertices of Gu . Hence, extF' = v, and F'

is contained in Gv . If, in fact, F' E LB/(r'), then we also have F = F' E LB(r') U LBI(r')

with extF = v. Otherwise, we must have Fu E LRI/(r'), and we let F = H'[e' / FuJ, where

H' is the hypergraph of the 2nd rule for B, and e' is the hyperedge of H' labeled with R".

Clearly, FE LB(r') U LB/(r'), and F corresponds to the subgraph of Gv induced on v and

the vertices of Fu . Hence, extF = v, and F is contained in Gv .

Next, suppose that £*(v) = {r}. Again, recall that £*(v) ~ £o(v). Hence, if £o(v) = {r},

then the vertex v with list £o(v) corresponds to the hypergraph F of the additional rule

for R", which, clearly, belongs to LRI/(r'), and extF = v. Hence, Gv contains F, and
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FE LRI(r') U LRII(r'), and also F' = F E LR(r') U LRII(r').

On the other hand, if £o(v) = {r, b}, then either Rules 2 - 8 or the Block Rule of

Algorithm 3.2 must have removed b from the list of v. Let us assume that the algorithm

first applies Rules 6, 5, 8, 7, 4, 3, 2, in that order, and then applies the Block Rule.

Hence, suppose first that b was removed from the list of v by Rule 6. Then v has a non­

trivial parent B and a non-trivial child B'. Since v belongs to B', and B' is a 2-connected

block, there must exist vertices u, w in B such that u, v, w forms a triangle. Now, let F be

the hypergraph of the 2nd rule for R'. Clearly, F corresponds to the subgraph of Gv induced

on u, v, w, and hence, extF = v. Therefore, Gv contains F, and F E LR, (r') U LRII (r').

Now, suppose that b was removed from the list of v by Rule 5. Then v has two non­

trivial children Band B'. Observe that v must have a trivial or no parent, since otherwise

Rule 6 would remove b from v before Rule 5. Again, we have vertices u, W in Band u', w' in

B' such that u, v, wand u, v', w' are triangles. Let F be the hypergraph of the 2nd rule for

R', and let F' = H [e/ F, e' / Fl, where H is the pt rule for R, and e, e' are the hyperedges of

H labeled with R'. Again, clearly, F and F' correspond to the subgraphs of G v induced on

the vertices u, v, wand u, v, w, u', w', respectively. Hence, extF = v, extF' = v, and we have

that Gv contains both F and F', and F E LR/(r') U LRII(r'), and F' E LR(r') U LRII(r').

Next, suppose that b was removed from the list of v by Rule 8. Then v has a trivial

grandchild u, a non-trivial parent B, and £*(u) = {b}. Hence, by the inductive hypothesis,

Gu contains a hypergraph Fu such that either Fu E LB(r') or Fu E LB(r') U LB/(r'). If

Fu E LB(r'), we let F = H[e/Fu ]' where H is the hypergraph of the 1st rule for R', and e is

the hyperedge of H labeled with B. Similarly, if Fu E LB/(r'), then we let F = H'[e' / Fu l,

where H' is the hypergraph of the 1st rule for R", and e' is the hyperedge of H' labeled

with B'. In both cases, F corresponds to the subgraph of G induced on v and the vertices

of Fu . Hence, extF = v, and we have that G v contains F, and F E LRI(r') U LRII(r').

Now, suppose that b was removed from the list of v by Rule 7. Then v has a trivial

grandchild u, which has a non-trivial child B, and £*(u) = {b}. It can be seen that Gv

contains the hypergraph F from the case for Rule 8 (above), F E LR, (r') U LRII (r'), and

extF = v. Hence, we only need to find the hypergraph F'. Observe that v must have a

trivial parent, since otherwise Rule 8 would have removed b from the list of v before Rule 7.

Now, by the inductive hypothesis, we have that Gu contains a hypergraph F~ such that

F~ E LBII (r') or F~ E LB' (r') ULBII (r'). If F~ E LBII (r'), then we let F' = H[e/F~], where

H is the hypergraph of the 2nd rule for R, and e is the hyperedge of H labeled with B".
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Similarly, if F~ E LB , (f'), then we let F' = H'[e' / F~], where H' is the hypergraph of the pt

rule for R", and e' is the hyperedge of H' labeled with B'. In both cases, F' corresponds

to the subgraph of G induced on v and the vertices of F~. Hence, extp = v, and we have

that Gv contains F', and F' E LR(f') U LRII(f').

Next, suppose that b was removed from the list of v by Rule 4. Then v has a trivial

grandchild u, a non-trivial child B, and r (u) = {b}. Again, Gv contains the hypergraph

F E LR, (f') U LRII (f') with extF = v from the case for Rule 8. If, in fact, F E LRII (f'),

we let F' = F, and we obtain that Gv contains F' E LR(f') U LRII(f') with extp = v.

Otherwise, we must have F E LR/(f'). Now, since B is a 2-connected block, there must

exist vertices 'W, w' such that v, w, w' forms a triangle. Hence, we let F' = H[e/F, e' / H'],

where H is the hypergraph of the 1st rule for R, H' is the hypergraph of the 2nd rule for R',

and e, e' are the hyperedges of H labeled with R'. Clearly, F' corresponds to the subgraph

of G induced on w, w' and the vertices of F. Hence, extp = v, and we have that Gv

contains F', and F' E LR(f') U LRII(f').

Now, suppose that b was removed from the list of v by Rule 3. Then v has trivial

grandchildren u, w with r(u) = r(w) = {b}. Again, applying the argument from the case

for Rule 8 for both the branch for u and the branch for w, we obtain that Gv contains

F, F" E LR/(f') U LRII (f') with extF = extF" = v, where F contains u and F" contains w.

Hence, if either F E LRII(f') or F" E LR"(f'), then we let F' = F or F' = F", respectively,

and obtain that Gv contains F' E LR(f') U LRII(f') with extF' = v. Otherwise, we have

F, F" E LR' (f'), and we let F' = H[e/F, e' / F"], where H is the hypergraph of the 1st rule

for R, and e, e' are the hyperedges of H labeled with R'. Clearly, F' corresponds to the

subgraph of G induced on the vertices of F and the vertices of F". Hence, extp = v, and

we have that Gv contains F', and F' E LR(f') U LRII(f').

Now, suppose that b was removed from the list of v by Rule 2. Then v has a trivial

grandchild u, which has a trivial grandchild w, and £*(u) = r(w) = {b}. We observe

that both u and w cannot have any non-trivial children, since otherwise b would have been

removed from the list of u by Algorithm 3.2 using Rules 4 and 7, respectively. Also, either

£o(u) = {b} or u has a trivial grandchild u' with £*(u') = {r}. This follows from the

fact that u has no non-trivial children, and only Rule 1 and the Block Rule can remove r

from the lists. Hence, by the inductive hypothesis, we have that Gu contains a hypergraph

Fu E LB(f') with extJo~ = u, and a hypergraph F~ E LBII(f') with extF:' = u. Now, we

let F = H[e/Fu ], where H is the hypergraph of the pt rule for R', and e is the hyperedge



CHAPTER 4. FORBIDDEN SUBGRAPHS FOR MONOPOLARITY 82

of H labeled with B. Similarly, we let F' = H'[e' / F~], where H' is the hypergraph of the

2nd rule for R, and e' is the hyperedge of H' labeled with B". Clearly, F (respectively F')

corresponds to the subgraph of G induced on v and the vertices of Fu (respectively F~).

Hence, extF = extF' = v, and we have that Gv contains F E LR,(r') U LRI/(r'), and

F' E LR (r') U LRI/ (r').

Finally, suppose that b was removed from the list of v by the Block Rule when processing

a non-trivial child B of v. Let £' be lists constructed from £* be changing the list of v to {b},

that is, £'(v) = {b}, and £'(x) = £*(x) for all x i= v. Since b was removed from the list of v

by the Block Rule, we have that B with lists £' is not list monopolar. Hence, by Theorem

4.3, B with lists £' contains a minimal list non-extendable forbidden induced subgraph Fa,

which is one of the configurations in Figure 4.1. Again, we have that v must be in Fa, and B

with lists £* is list monopolar, both of which follow from the fact that G with lists £* is list

monopolar. Hence, since £' (v) = {b}, Fa must be either the 5th , or the 6th , or the 7th , or the

8th configuration in Figure 4.1. First, if Fa is either the 5th or the 6th configuration in Figure

4.1, then the hypergraph F~ corresponding to Fa is the hypergraph of either the 4th or the

5th rule, respectively, for R, and extF~ = v. Then, clearly, F~ E LR(r') U LRI/(r'), and F6

is contained in Gv . On the other hand, if Fa is the 7th configuration in Figure 4.1, then the

hypergraph F6 corresponding to Fa is the hypergraph of the 3rd rule for R, and extF.' = v.
o

Now, let u be the vertex of Fa with £'(u) = £*(u) = {b} (that is, the vertex opposite v in Fa).

Observe that u cannot have any non-trivial children, since otherwise Algorithm 3.2 would

have removed b from the list of u using Rule 6. Also, u cannot have any trivial grandchildren

u' with £*(u') = {b}, since otherwise Algorithm 3.2 would have removed b from the list of

u using Rule 8. Hence, either £a(u) = {b} or u has a trivial grandchild w with £*(w) = {r}.

Now, by the inductive hypothesis, we have that Gu contains a hypergraph Fu E LB(r')

with extFu = u. Hence, we let F' = F6[e/FuJ, where e is the hyperedge of F~ labeled with

B. (This is the hyperedge incident to u.) Clearly, F' corresponds to the subgraph of G

induced on the vertices of Fa and the vertices of Fu, and extF' = v. Therefore, Gv contains

F', and F' E LR(r') U LRI/(r'). Finally, suppose that Fa is the 8th configuration in Figure

4.1. Then Fa consists of three vertices u, w, z (one of which is v) with edges uw and wz.

Observe that, since B is 2-connected, there must exist a shortest path P from u to z which

avoids w. Then, since G (and hence also B) is chordal, and P is an induced (chordless) path

in B, each vertex of P must be adjacent to w. Now, if the length of P is two, then either

v is one of the vertices u, z and we obtain precisely the previous case (the 7th configuration
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in Figure 4.1), or v = wand then B with lists £* contains Fo, and hence, B with lists £*

is not list monopolar, which is a contradiction. Similarly, if the length of P is three, then

either u i= v or z i= v, and in both cases, B with lists £* contains Fo (the 5th configuration

in Figure 4.1), and hence, it is not list monopolar, a contradiction. Finally, if the length of

P is at least four, then B (even without lists) is not monopolar, since Fo then contains the

3rd configuration in Figure 4.1, and hence, again, a contradiction.

The proof is now complete. 0

We need to make one more observation. The following is easy to check.

Observation 4.8. Each hypergraph in Figures 4.5, 4.6, and 4.7 is generated by r'o 0

Figure 4.5: Hypergraphs (part 1) for the proof of Theorem 4.9.

We are now finally ready to prove the main theorem of this section.

Theorem 4.9. The grammar r ' generates (terminal hypergraphs corresponding to) all min­

imal list non-extendable forbidden induced subgraphs for monopolarity of chordal graphs.

Proof. By Theorem 4.6, we have that each hypergraph generated by r ' corresponds to a

chordal graph with lists, which is minimal list non-extendable forbidden induced subgraph

for monopolarity. Hence, it remains to prove that each chordal minimal list non-extendable

forbidden induced subgraph for monopolarity corresponds to a hypergraph, which is gener­

ated by r'o In what follows, we prove a more general statement, namely that each chordal

graph G with lists £0, which is not list monopolar, contains a hypergraph generated by r'o
Hence, let G be a chordal graph with lists £o(v) ~ {r, b}, for all v E V(G), which is

not list monopolar. If G is 2-connected, then, by Theorem 4.3, G must contain a minimal

list non-extendable forbidden induced subgraph Fo, which is one of the configurations in

Figure 4.3. Let F be the hypergraph corresponding to Fo. It can be immediately seen that

F is one of the hypergraphs in Figure 4.5. Hence, by Observation 4.8, F is generated by r ' ,
and therefore, G contains a hypergraph generated by r'o
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84

Now, let T be a fixed block-vertex tree of G, and let £* be the lists computed by

Algorithm 3.2 on G, £0, and T. Since G with lists £0 is not list monopolar, we have, by

Theorem 3.9, that there must exist a vertex v of G such that £*(v) = 0, and £*(x) -I- 0 for all

x E V(Tv ) \ {v}. If also £o(v) = 0, then the vertex v with its list £o(v) corresponds precisely

the right-most hypergraph F in Figure 4.5. Hence, by Observation 4.8, F is generated by

r', and therefore, G contains a hypergraph generated by r'.
Thus, we assume that £o(v) -I- 0. Suppose first that £o(v) = {r, b}. Since £*(v) = 0,

there are two rules among Rules 1 - 8 and the Block Rule, one of which removed r from the

list of v and the other removed b from the list of v.

First, suppose that both rand b were removed from the list of v by the Block Rule when

processing a non-trivial child B of v. It follows that B with lists £* is not list monopo­

lar. Hence, by Theorem 4.3, B contains a minimal list non-extendable forbidden induced

subgraph Fo, which is one of the configurations in Figure 4.1. If Fo is one of the first four

configuration in Figure 4.1, then, by Observation 4.8, the hypergraph corresponding to Fo
is generated by r', and hence, G contains a hypergraph generated by r'.

If Fo is either the 5th or the 6th configuration in Figure 4.1, then Fo contains a vertex

u with list £*(u) = {b}. Clearly, u is a child of B. Hence, we observe that u cannot have

any non-trivial children, since otherwise b would have been removed from the list of u by

Algorithm 3.2 using Rule 6. Also, u has no trivial grandchildren u' with £*(u') = {b}, since

otherwise b would have been removed from the list of u by Algorithm 3.2 using Rule 8.

Hence, either £o(u) = {b}, or u has a trivial grandchild u' with £*(u') = {r}. Thus, by

Lemma 4.7, we have that Gu contains a hypergraph Fu E LB(r') with extFu = u. Therefore,

we let F = H[e/FuJ, where H is the 1st or the 2nd hypergraph in Figure 4.6, and e is the

hyperedge of H labeled with B. Clearly, F corresponds to the subgraph of G induced on

the vertices of Fu and Fo, and F E Ls(r'), since, by Observation 4.8, H is generated by r'.

Hence, G contains a hypergraph generated by r'.
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Similarly, if Fa is the 7th configuration in Figure 4.1, then Fa has vertices u, w with

£* (u) = £* (w) = {b}, which are both children of B. Again, both u and w have no non­

trivial children and no trivial grandchildren u' with £*(u') = {b}. Hence, by Lemma 4.7,

Gu contains Fu E LB(f') with extFu = u, and Gw contains Fw E LB(f') with extFw = w.

Thus, we let F = H[e/Fu,e'/Fw]' where H is the 3rd hypergraph in Figure 4.6, and e,e'

are the hyperedges of H labeled with B. Clearly, F corresponds to the subgraph of G

induced on the vertices of Fu, Fw and Fa, and we have F E Ls(f'). Hence, G contains

a hypergraph generated by f'. Finally, if Fa is the 8th configuration in Figure 4.1, then

Fa has vertices u,w,z with £*(u) = £*(w) = £*(z) = {b}. Again, it follows that u,w,z

are children of B, and Gu , Gv and Gw contain Fu , Fw , Fz E LB(f'), respectively. Hence,

F = H[e/Fu,e'/Fw,e"/Fz]' where H is the 4th hypergraph in Figure 4.6, and e,e',e" are

the hyperedges of H labeled with B, is generated by f' and contained in G.

Now, if Fa is the 9th configuration in Figure 4.1, then Fa contains a vertex u with

£*(u) = {r}, which is a child of B. Hence, By Lemma 4.7, we have that Gu contains

Fu E LR/(f') U LR,,(f') with extFu = u. Thus, we let F = H[e/Fu]' where H is either the

5th or the 6th hypergraph in Figure 4.6, and e is the hyperedge of H labeled with R' or R",

respectively. Clearly, F corresponds to the subgraph of G induced on the vertices of Fu and

Fa, and FE Ls(r'). Hence, G contains a hypergraph generated by f'.

Finally, if Fa is the 10th configuration in Figure 4.1, then Fa contains vertices u, w with

£* (u) = £* (w) = {r}, which are both children of B, and hence, by Lemma 4.7, we obtain that

Gu and Gw contain Fu, Fw E LR/(f') U LRI/(f'), respectively. If, in fact, Fu, Fw E LRI/(f'),

then we let F = H[e/Fu,e'/Fw], where H is the 7th hypergraph in Figure 4.6, and e,e'

are the hyperedges of H labeled with R". Clearly, F corresponds to the subgraph of G

induced on the vertices of Fu and Fw, and F E Ls(f'), and hence, G contains a hypergraph

generated by f'. Otherwise, Fu E LRI(f') or Fw E LR/(f'). Now, since B is a 2-connected

block, there must exist a vertex z in B such that u, w, z forms a triangle. Hence, we let

F = H'[e/Fu, e' / Fw], where H' is the 8th or the 9th hypergraph in Figure 4.6, and e, e' are

hyperedges of H' labeled with R' or R" (depending on where Fu and Fw belong). Again, F

clearly corresponds to the subgraph of G induces on z and the vertices of Fu and Fw , and

we have F E Ls (f'). Hence, G contains a hypergraph generated by f'.

From now on, we can assume that no non-trivial child of v caused the removal of both r

and b from the list of v. Hence, suppose next that r (but not b) was removed from v by the

Block Rule when processing a child B of v. Let GB be the subgraph of Gv induced on v, the
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vertices of B, and all blocks in the subtree rooted at B. (Observe that v E V (GB).) Also,

let £' be lists constructed from £* by changing the list of v to {b}. Since the Block Rule did

not remove b from the list of v when processing B, it now follows that B with lists £' is list

monopolar, and hence, also G B with lists £' is list monopolar. Thus, we can apply Lemma 4.7

on GB with lists £', and we obtain that GB contains a hypergraph FB E LB(r') U LB,(r')

with extpB = v, and a hypergraph F1 E LBI(r') U LBI/(r') with extp~ = v.

First, suppose that v has a non-trivial parent B', or a non-trivial child other B' than B.

Hence, b was removed from the list of v by Algorithm 3.2 using Rules 6 or 5, respectively.

Since B' is a 2-connected block, there must exist vertices w, z in B' such that v, w, z forms

a triangle in B'. Thus, we let F = H[ejF1, e' j H'], where H is the hypergraph of the 3rd or

the 5th rule for 5, H' is the hypergraph of the 2nd rule for R', and e, e' are the hyperedges

of H labeled with B' or B" and R', respectively. Clearly, F corresponds to the subgraph of

G induced on v, w, z and the vertices of F~, and we have F E Ls(r'). Hence, G contains a

hypergraph generated by r'.
Now, suppose that v has no non-trivial children other than B, and has trivial (or no)

parent. Since b was removed from the list of v, it follows that v must have a trivial grandchild

u with £*(u) = {b}. Hence, by Lemma 4.7, Gu contains a hypergraph Fu , such that

Fu E LB(r') or Fu E LB(r') U LB,(r'), and extpu = u. If Fu E LB(r'), then we let

F = H[ejF'll e' j F1]' where H is the pt or the 2nd hypergraph in Figure 4.7, and e, e' are

the hyperedges of H' labeled with Band B' or B", respectively. If Fu E LB,(r'), then

we let F = H'[ejFu,e'jFB], where H' is the pt or the 3rd hypergraph in Figure 4.7, and

e, e' are the hyperedges of H labeled with B' and B or B', respectively. In both cases, F

corresponds to the subgraph of G induced on the vertices of Fu and FB, respectively, F1,

and we have F E Ls (r'). Hence, G contains a hypergraph generated by r'.

From now on, we can assume that no non-trivial child of v caused the removal of r from

the list of v. Hence, r must have been removed from the list of v by Rule 1, and it follows

that v has a trivial grandchild u with £*(u) = {r}. Thus, by Lemma 4.7, Gu contains a
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hypergraph F~ E LR(r') U LRII (f'). Now, let X denote the set of all trivial grandchildren

u' of v with £* (u') = {r}, and let G~ be the graph constructed from Gv by removing the

subgraphs Gu for each u EX. Also, let £' be lists constructed from £* be changing the list

of v to {r}. We observe that v no longer has any trivial grandchildren u' with £*(u') = {r}

in G~, and hence, G~ with lists £' must be list monopolar. First, suppose that v has a

non-trivial parent B. Then, since B is a 2-connected block, there exist vertices w, z in

B such that v, w, z forms a triangle. Now, we can apply Lemma 4.7 to G~ with lists £',

and we obtain that G~ contains a hypergraph Fv E LR/(f') U LRII(f') with extF" = v. If

Fv E LR/(f'), then we let F = H[e/F~,e'/Fv], where H is the 4th or 5th hypergraph in

Figure 4.7, and e, e' are the hyperedges of H labeled with R or R" and R', respectively.

Clearly, F corresponds to the subgraph of G induced on w, z and the vertices of F~. and Fv ,

and we have F E Ls(r'). Hence, G contains a hypergraph generated by f'. On the other

hand, if Fv E LRII (f'), then we let F = H'[e/ F~, e' / Fv], where H' is either the 7th , or the

8th hypergraph in Figure 4.7, and e, e' are the hyperedges of H' labeled with R or R" and

R", respectively. Clearly, F corresponds to the subgraph of G induced on the vertices of

F~. and Fv, and we have F E Ls(f'). Finally, if v has a trivial (or no) parent, then, by

Lemma 4.7, G~ additionally contains F~ E LR(r') U LRII(f') with extF~ = v. Thus, we let

F = H"[e/F~,e'/F~] where H" is either the 6th , the 7th , or the 8th hypergraph in Figure

4.7, and e, e' are the hyperedges of H" labeled with R or R" (depending on where F~. and

F~ belong). Clearly, F corresponds to the subgraph of G induced on the vertices of F~ and

F~, and we have F E Ls(r'). Hence, G contains a hypergraph generated by f'.

Now, we can assume that either £0 (v) = {r} or £0 (v) = {b}. Let £0 be lists constructed

from £0 by changing the list of v to {r, b}. If Gv with lists £0 is not list monopolar, then we can

consider Gv with lists £0 instead of £0, and repeat the above analysis. Hence, we can assume

that Gv with lists £0 is list monopolar. First, suppose that £o(v) = {r}, and let £' be lists

constructed from £* by changing the list of v to {b}. Since Gv with lists £0 is list monopolar,

it follows that Gv with lists £' is also list monopolar. Thus, by Lemma 4.7, Gv contains a

hypergraph Fv such that Fv E LB(r'), or Fv E LB(f') U LB/(f') with extF" = v. Hence,

we let F = H[e/ Fv,e' / H'], where H is either the hypergraph of either the 2nd or the 4th

rule for S, H' is the hypergraph of the additional rule for R", and e, e' are the hyperedges

of H labeled with B or B' and R", respectively. Clearly, F corresponds the subgraph of G

induced on the vertices of Fv , and we have F E Ls(r'). Hence, G contains a hypergraph

generated by f'.
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Now, suppose that £o(v) = {b}, and let £I be lists constructed from £* by changing the list

of v to {r}. Again, since Gv with lists £~ is list monopolar, it follows that Gv with lists £' is

also list monopolar. Hence, by Lemma 4.7, Gv contains a hypergraph Fv E LR, (f') ULR" (f')

with extpv = v. Suppose that v has a non-trivial parent B. Then, since B is 2-connected

block, there exist vertices w, z in B such that v, w, z forms a triangle. Hence, if Fv E LR, (f'),

we let F = H[el Fv l, where H is the 9th hypergraph in Figure 4.7, and e is the hyperedge

of H labeled with R'. Clearly, F corresponds to the subgraph of G induced on w, z and

the vertices of Fv , and F E Ls(f'). On the other hand, if Fv E LRII(f'), then we let

F = H[elFv , e'I H"l, where H is the hypergraph of the 2nd rule for S, H" is the hypergraph

of the additional rule for B, and e, e' are the hyperedges of H labeled with R" and B,

respectively. Clearly, F corresponds to the subgraph of G induced on the vertices of Fv ,

and we have F E Ls(f'). Finally, suppose that v has a trivial (or no) parent, and hence, by

Lemma 4.7, Gv additionally contains a hypergraph F~ E LR(f') U LRII(f') with extpf, = v.

Hence, we let F = H[el F~, e'IH"], where H is the hypergraph of the pt or the 2nd rule

for S, H" is as before, and e, e' are the hyperedges of H labeled with R or R" and B,

respectively. Clearly, F corresponds to the subgraph of G induced on the vertices of F~,

and we have FE Ls(f'). Hence, G contains a subgraph generated by f'.

The proof is now complete. 0

As a corollary, we immediately obtain the following theorem.

Theorem 4.10. The grammar f generates all minimal non-monopolar chordal graphs. 0

In closing, we remark that the proofs of Lemma 4.7 and Theorem 4.9 immediately imply

an O(n + m) time algorithm for finding a minimal list non-extendable forbidden induced

subgraph for monopolarity in a chordal graph with lists, which is not list monopolar.

Hence, we have the following strengthening of Theorem 3.10.

Theorem 4.11. (Monopolarity of chordal graphs - Certifying version)

There is an O(n + m) time algorithm to decide, for a chordal graph G with lists £, whether

G admits a monopolar partition which respects £, and to find such a partition if one exists.

If such a partition does not exist, the algorithm produces in time O(n + m) an induced

subgraph G' ofG with lists £lev) :2 Rev), for each v E V(G'), such that G' has O(n) edges, and

G' with lists £' is a minimal list non-extendable forbidden induced subgraph for monopolarity.



Chapter 5

Subcolourings of Chordal Graphs

Recall, that a k-subcolouring of a graph G is a partition of the vertices of G into k sets

VI U V2 U ... U Vk, such that each Vi induces a disjoint union of cliques (complete graphs)

in G, that is, each Vi induces a P3-free graph. A graph G is called k-subcolourable, if there

exists a k-subcolouring of G. The smallest integer k such that Gis k-subcolourable is called

the subchromatic number of G, and is denoted by Xs(G).

Subcolourings and the subchromatic number were first introduced in [2]. Initially, the

main focus was the properties of the subchromatic number Xs (G). More recently, the

complexity of recognizing k-subcolourable graphs has become a focus of attention. As

we remark in Chapter 1, in general graphs this problem is NP-complete for all k 2:: 2.

Interestingly, the problem remains NP-complete for all k 2:: 2, even if the graph is triangle­

free and of maximum degree four [31] (and also [37]), or if the graph is a comparability graph

[7]. On the other hand, there are several natural classes of graphs for which the problem

has a polynomial time solution for any fixed k, e.g., graphs of bounded treewidth [31], or

interval graphs [7], for which an O(n2k+I ) time algorithm is known (even for the list case).

In [7], the authors formulated the following open problem. Determine the complexity

of the k-subcolouring problem for the class of chordal graphs. In the following sections,

we completely answer this question by giving a polynomial time algorithm for k = 2, and

showing N P-completeness for all k 2:: 3.

89
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In this section, we describe an O(n 3 ) time algorithm for testing list 2-subcolourability of

chordal graphs. In comparison, the best known algorithm for this problem to date for

interval graphs is the algorithm of [7] which runs in time O(n5 ). Therefore, our algorithm

also improves the complexity of this problem for the smaller class of interval graphs.

Instead of considering a k-subcolouring of G as a partition V(G) = VI U V2 U ... U Vk,

one can view it as a mapping c : V(G) ----; {I, 2, ... ,k}, where for every i E {l, 2, ... ,k}, the

vertices of Vi are mapped to i. Therefore, we shall employ the terminology of colourings and

refer to c as a colouring of G, and refer to the elements of {I, 2, ... ,k} as colours. (Note that

c is not necessarily a proper colouring.) In particular, for a 2-subcolouring V(G) = VI U V2,

the associated colouring c is a mapping c : V (G) ----; {r, b}. We shall refer to the elements of

VI and V2 as red and blue vertices and use letters rand b for the two colours.

5.1.1 Subcolouring digraph

Observe first that a graph G is k-subcolourable, if and only if, each connected component

of G is k-subcolourable. Hence, let G be a connected chordal graph, and let T be a fixed

clique-tree of G. (Clique-trees are defined in Section 1.2.) Let Cu for u E V(T) denote the

maximal clique of G associated with u, and let C(X) denote the union of cliques associated

with the vertices of a set X ~ V(T), that is, C(X) = UUEX CU' In this section, we shall not

consider T to be rooted. We shall use parentheses (, ) to denote the edges of T, to distinguish

them from the edges of G. The removal of an edge (u, v) splits T into two subtrees; we shall

denote by Tu,v the subtree containing the vertex v, and by TV ,ll the subtree containing the

vertex u. We denote Gu,v = C(Tu,v) and Gv,u = C(Tv,u).

Observe that in any k-subcolouring c of G, a vertex a in a clique C of G can have

neighbours of the same colour as a in at most one connected component of G \ C. Based on

this, we construct a multidigraph 1Jc (G) with coloured edges to capture the properties of

the colouring c. We shall refer to 1Jc (G) as a subcolouring digraph for c. To avoid ambiguity,

the edges of 1Jc (G) shall be referred to as arcs and denoted using angle brackets (,) to

distinguish them from the edges of T and the edges of G. In particular, (u, v)i shall denote

an arc from u to v coloured i, and we shall write (u, v) for an arc from u to v (of some

colour). The digraph 1Jc (G) is constructed as follows. The vertices of 1Jc (G) are the vertices

of T, and for vertices u, v that are adjacent in T, there is an arc (u, v)i in 1Jc(G), if there
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exist vertices a E Cu and b E Gu,v \ Cu such that ab E E(G) and both a and b have the

same colour i in c. Note that we have arcs in Dc(G) only between vertices that are adjacent

in T. The construction is illustrated in Figure 5.1.

u v

Figure 5.1: Illustrating the case when there is an arc (u,v) in Dc(G).

Formally, we define Dc ( G) as follows.

(i) V(Dc(G)) = V(T)

(ii) E(Ve(G)) ~ { (u, v),
3a E Cu

3b E Gu,v \ Cu

(u,v) E E(T) }
abEE(G)

c(a) = c(b) = i

We have the following observations about Dc(G).

Proposition 5.1. Let u, v, w be vertices of Dc(G) and let i be a colour from {I, 2, ... ,k}.

If c is a k-subcolouring then Dc ( G)

(i) cannot contain both the arc (u, v)i and the arc (v, u)i'

(ii) cannot contain both the arc (u, v)i and the arc (u, w)i'

(iii) cannot contain all of the arcs (u, V)l , (u, v)2"" , (u, vh·

Proof. Suppose that (i) is false. Let a, b and a', b' be the vertices of G that caused

the arcs (u, v)i and (v, u)i respectively to appear in Dc(G). It is not difficult to see that

a, a' E Cu n Cv and bb' fj. E(G). Hence, the graph induced on a, b, a', b' must contain an

induced P3 coloured i, a contradiction. One can easily repeat this same argument for pairs

a, b and a', b' that falsify (ii).
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Finally, let aI, bl , a2, b2, ... , ak, bk be the pairs of vertices that falsify (iii). Since Cu

and Cv are two different maximal cliques of G, there exists a vertex d E Cu \ Cv ' Again, it

is not difficult to see that ai E Cu n Cv for all i, and d is not a neighbour of any bi . Now,

any colour j assigned to d creates an induced P3 coloured j on the vertices d, aj, bj , which

yields a contradiction. 0

Now, we turn to 2-subcolourings. In what follows, we shall assume that G is a connected

2-subcolourable chordal graph, T a fixed clique-tree of G, and c is a 2-subcolouring of G.

Recall that we have red and blue vertices in G, and rand b denote the two colours.

We shall call an edge (u, v) in T a strong edge of T, if Vc(G) contains both (u, v)r and

(v, u)b' or both (u, v)b and (v, u)r' We shall call an edge (u, v) in T a weak edge of T,

if there is at most one arc between u and v in Vc(G). It follows from Proposition 5.1 that

every edge in T must be either strong or weak.

Let u, v be adjacent vertices in T. Let Iu,v = Cu n Cv , and let Nu,v be the set of all

vertices of Gu,v \ Cu , which are neighbours of Cu nCv' Furthermore, let Lu,v = Gv,u \ Cv and

Ru,v = Gu,v \ (Iu,vUNu,v)' (Note that Cv ~ Iu,vUNu,v') We have the following observation.

Proposition 5.2. Let u, v be adjacent vertices in T.

(i) If (u, v)r E E(Vc(G)), or (u, v)b E E(Vc(G)), then the vertices of Cu \ Cv are all blue,

or all red, respectively.

(ii) If (u, v) tf- E(Vc(G)) then the vertices of Iu,v and Nu,v are all red and all blue respec­

tively, or all blue and all red respectively.

(iii) G has no induced P3 having both a vertex of Lu,v and a vertex of Ru,v.

Proof. For (i), suppose that (u, v)r E E(Vc(G)) (the other case is clearly symmetric), and

let a, b be the red vertices that caused this arc. It is easy to see, that a E Cu n Cv and b

is not adjacent to any vertex in Cu \ Cv ' Hence, no vertex d of Cu \ Cv can be red, since

otherwise d, a, b is an induced red P3 .

For (ii), let a E Iu,v and b E Nu,v be adjacent. Then a and b must have different colours,

since otherwise we would have an arc (u, v) E E(Vc(G)). Since Cu and Cv are different

maximal cliques, there exists d E Cv \ Cu' Now, the claim follows, because d is adjacent to

all vertices of Iu,v, and hence any a' E Iu,v must have different colour from d.

Finally, for (iii), let b, a, d be an induced P3 in G (with edges ba and ad), which contains
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both a vertex of Lu,v and a vertex of Ru,v' Now, since Lu,v and Ru,v are completely non­

adjacent, it follows that a rt Lu,v U Ru,v. Hence, we can assume that b E Lu,v, and d E Ru,v'

Now, if a E Iu,v, then we must have d E Nu,v, but Nu,v n Ru,v = 0. Hence, a E Nu,v, and

bE Iu,v, but Lu,v n Iu,v = 0. Therefore, no such vertices b, a, d exist in G. 0

Note that this observation allows us to consider independently the subgraphs of T, which

no longer contain any weak edges. For strong edges in T we have the following observations.

Observation 5.3. Every vertex of T has at most two incident strong edges, that is, the

connected components formed by the strong edges of T are paths.

Proof. It is not difficult to see that if a vertex u in T has three adjacent strong edges, then

for at least two of them, say (u, v) and (u, w), we have arcs (u, v) and (u, w) of the same

colour in Dc(G). By Proposition 5.1(ii) this is not possible. 0

Proposition 5.4. Let u be a vertex in T with distinct neighbours v, w, z.

(i) If (v, u) is a strong edge and (w, u) rt E(Dc(G)), then (z, u) is not a strong edge.

(ii) If (v,u) is a strong edge, (w,u) rt E(Dc(G)), and (z,u) rt E(Dc(G)), then Iu,w = Iu,z.

(iii) If (v,u) rt E(Dc(G)), (w,u) rt E(Dc(G)), and (z,u) rt E(Dc(G)), then Iu,v = Iu,w or

Iu,w = Iu,z or Iu,z = Iu,v'

Proof. For (i) suppose that the edges (v, u) and (z, u) are strong and that (w, u) rt
E(Dc(G)). Since G is connected, there exists a E Iu,w. Without loss of generality, we may

assume that (u, z)r E E(Dc(G)). Hence, by Proposition 5.2(i), we obtain that Cz \ Cv is all

red, Cv \ Cz is all blue, and Cu ~ Cv U Cz. Also, since Cu, Cz and Cv are different maximal

cliques, we have d E Cz \ Cu and b E Cv \ Cu' Now, clearly, a E Cv U Cz. Hence, if a is

red, then a E Cz , and hence (w, u)r E E(Dc(G)), and if a is blue, then a E Cv, and hence

(w, uh E E(Dc(G)), a contradiction.

For (ii) suppose that (v,u) is strong, (w,u) rt E(Dc(G)), and (z,u) rt E(Dc(G))

but Iu,w i- Iu,z' Without loss of generality, we may assume that Iu,w rz. Iu,z and that

(u, v)r' (v, u)b E E(Dc(G)). Hence, there must exist a vertex a E Iu,w \ Iu,z, a vertex b E Iu,z

(since G is connected), and a vertex d E Cv \ Cu (since the cliques are maximal). Clearly,

c(a) i- c(b), otherwise we have (z, u) E E(Dc(G)). Now, since (v, uh E E(Dc(G)), it follows

that the vertex d is red. Similarly, since (u, v)r E E(Dc(G)), we have that Cu \ Cv is all
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blue. Hence, if a is red, then a E Iu,v, and hence (w, u)r E E(Vc(G)), and if b is red, then

bE Iu,v, and hence (z, u)r E E(Vc(G)), a contradiction.

Finally, for (iii) suppose that none of (v, u),(w, u), and (z, u) is in E(Vc(G)), but the

three sets Iu,v, Iu,w and Iu,z are pairwise different. Without loss of generality, we may

assume that Iu,v ~ Iu,w ~ Iu,z, and either Iu,v ~ Iu,z, or Iu,v R. Iu,z. If Iu,v ~ Iu,z, suppose

first that J 1- 0, where J = Iu,v \ (Iu,w U Iu,z). It follows that we must have a vertex

a E J, a vertex b E Iu,w \ Iu,z and a vertex c E Iu,z. Now, at least two of the vertices

a, b, c must have the same colour. That gives us one of the arcs (v, u), (w, u), (z, u) in

E(Vc(G)), and hence, a contradiction. If J = 0, we similarly obtain a contradiction for

vertices a E (Iu,w n Iu,v) \ Iu,z, bE (Iu,z n Iu,v) \ Iu,w, and c E Cu \ Cv· Now, if Iu,v R. Iu,z, it

follows that we have a vertex a E Iu,v \ Iu,w, a vertex b E Iu,w \ Iu,z, and c E Iu,z \ Iu,v, and

again a contradiction follows. D

Let Pu,v denote the (unique) path from u to v in T. We shall call the path Pu,v strong, if

it is formed only by strong edges of T. Note that we also allow paths of zero length (paths

Pu,v with u = v); all such paths are trivially strong. A strong path is maximal, if it is not

properly contained in another strong path. A vertex z in T adjacent to a vertex u is a

special neighbour of u, if (z, u) tf- E(Vc(G)). For strong paths, we have the following claim.

Proposition 5.5. For any strong path Pu,v in T (possibly with u = v), there exist sets Au,v

and A~,v (both possibly empty) such that for any special neighbour s of some t E Pu,v, we

have 1st = A uv or 1st = Au' v·
l , ) ,

Proof. If u 1- v, then, by Proposition 5.4(i), only u and v can have special neighbours.

Hence, if u has a special neighbour z, we let Au,v = Iz,u, and Au,v = 0 otherwise. If v has

a special neighbour w, we let A~,v = Iw,v, and A~,v = 0 otherwise. Now, the claim follows

from Proposition 5.4(ii).

If u = v and u has two special neighbours z and w with Iz,u 1- Iw,u, we define Au,v = Iz,u,

and A~,v = Iw,u. Otherwise, we let Au,v = Iz,u and A~,v = 0, if u has a special neighbour

z, but does not satisfy the previous condition. Finally, we let Au,v = A~,v = 0, if u has no

special neighbours. Now, the claim follows from Proposition 5.4(iii). D

Finally, we give a complete characterization of the structure of the colouring c on the

vertices of C(Pu,v) of the strong paths Pu,v. Let Bu,v and B~,v denote the sets of neighbours

of Au,v and A~,v in C(Pu,v), respectively.
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Theorem 5.6. For any strong path Pu,v in T (possibly with u = v), we have
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(i) C(Pu,v) = Cu U Cv, and the vertices of Cu \ Cv and Cv \ Cu are all red and all blue

respectively, or all blue and all red respectively,

(ii) for every weak edge (s, t) incident to Pu,v, the vertices of Is,t are all red or all blue,

(iii) the vertices of Au,v U B~,v and A~,v U Bu,v are all red and all blue respectively, or all

blue and all red respectively, and

(iv) if in addition Pu,v is maximal, then any colouring e' ofC(Pu,v) satisfying (i) - (iii) is

a 2-subeolouring of C(Pu,v) and can be extended to a 2-subeolouring of G.

Proof. We prove (i) by induction on the length of the path Pu,v' If u = v, then there is

nothing to prove. Hence, let w be the neighbour of v on Pu,v, and assume that C(Pu,w) =
Cu U Cw and that the vertices of Cu \ Cw and Cw \ Cu are all red and all blue, respectively.

Since (w,v) is a strong edge, by Proposition 5.2(i), we have that Cv \ Cw is all blue, and

Cw \ Cv is all red. From this we deduce Cw \ (Cu U Cv) = 0, which implies Cw ~ Cu U Cv ,

and the claim follows.

Now, claims (ii) and (iii) follow directly from Proposition 5.2(ii) and Lemma 5.5, since

for any special neighbour s of t E Pu,v, we have Is,t = Au,v and Ns,t n C(Pu,v) = Bu,v, or

Is,t = A~,v and Ns,t n C(Pu,v) = B~,v'

Finally, let e' be any colouring of C(Pu,v) satisfying (i) - (iii). Let e" be a colouring of G

constructed from the colouring c as follows. First, we exchange the colours red and blue on

the vertices of Gt,s for each neighbour s tf. Pu,v of t E Pu,v, so that the colours of Is,t match

the colouring e'. (Note that since Pu,v is maximal, the edge (s, t) is weak.) Then we replace

the colours of C(Pu,v) bye'. Clearly, e" extends e'. We show that e" is a 2-subcolouring

of G. Suppose otherwise, and let b, a, d be an induced P3 in G with edges ba and ad such

that e"(b) = d'(a) = el/(d). If b, a, d E C(Pu,v), then, by (i), it follows that the vertices

b, a, d are all in Cu, or all in Cv, but that is not possible, since bd tf. E(G). On the other

hand, if a tf. C(Pu,v), then it follows from the construction of d' that e(b) = e(a) = e(d),

which is not possible, since e is a 2-subcolouring. Hence, for some neighbour s tf. Pu,v of

t E Pu,v, we have that a E It,s and bENt,s and dE Ns,tnC(Pu,v)' Now, if (t, s) tf. E(Vc(G)),

then, by Proposition 5.2(ii), we have that e(a) =J- e(b), and hence e"(a) =J- d'(b), because

a, b E Gt,s' On the other hand, if (t, s) E E(Vc(G)), then s must be a special neighbour

of t, but then, by (iii), we have that a E Au,v and d E Bu,v, or a E A~,v and d E B~,v, and

hence, e" (a) =J- e" (d), a contradiction. D
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5.1.2 Algorithm
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Now, we are ready to describe the algorithm for deciding (list) 2-subcolourability for chordal

graphs. We assume that we are given a chordal graph G and a fixed clique-tree T of G, and

we want to decide whether or not Gis 2-subcolourable. Later, we describe how to obtain a

list version of the algorithm.

This time, we consider T rooted at an arbitrary fixed vertex r. Therefore, we write p[v]

to denote the parent of a vertex v in T. For a vertex v in T, we denote by Tv the subtree of

T rooted at v. We shall say that Tv is (-) colourable, if there exists a 2-subcolouring Cv of

C(Tv) such that the vertices of Ip[vJ,v are all red or all blue. Similarly, Tv is (+) colourable,

if there exists a 2-subcolouring Cv of C(Tv) such that the vertices of Ip[vJ,v and Np[vJ,v are

all red and all blue, respectively, or all blue and all red, respectively. In the special case of

the root r, when p[v] does not exist, we shall say that Tr is (-) colourable, if there exists a

2-subcolouring c,. of C(Tr) = G.

Note that, by Lemma 5.5, for every strong path, we only need to consider up to two

special neighbours z and w. If the path has only one such neighbour (or none), we use nil

as the value of z or w. Therefore, we always view a path Pu,v having two special neighbours

z and w of u and v, respectively, but allow one (or both) of z and w to be nil. We shall say

that the path Pu,v is (z, w)-colourable, if there exists a 2-subcolouring Cu,v of C(Pu,v) such

that for every edge (8, t) incident to Pu,v in T, the vertices of Is,t are all red or all blue, and

such that if z is not nil (w is not nil), then the vertices of Nz,u (Nw,v respectively) in C(Pu,v)

are all red or all blue.

The algorithm works as follows. It processes the vertices of T in a bottom-up order and

identifies which edges of T could be weak for some 2-subcolouring of G. This is done by

testing and recording for every vertex v in T, whether or not the subtree Tv is (+) colourable,

and whether or not the subtree Tv is (-) colourable. (Note that Tv must be either (+)

colourable or (-) colourable if (v,p[v]) is a weak edge in T for some 2-subcolouring of G.)

For a vertex x of T, the test for colourability of Tx is done as follows. First, if we are

testing (-) colourability, we precolour the vertices of Ip[xJ,x by red or blue, otherwise we

precolour the vertices of Ip[xJ,x and Np[xJ,x by red and blue, respectively, or by blue and red,

respectively. Then we choose a strong path Pu,v in Tx that passes through x, and we choose

special neighbours z and w of u and v, respectively. (See the above remark about special

neighbours.) Then we test for the colourability of Pu,v with respect to the chosen special
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neighbours by applying Theorem 5.6. Finally, we recursively test, for every special neighbour

y of Pu,v, whether or not the corresponding tree T y is (-) colourable or (+) colourable, and

for all other neighbours of Pu,v, whether or not their corresponding trees are (+) colourable.

We declare Tx (-) colourable (or (+) colourable, depending on the particular case), if and

only if, the above tests succeed for some choice of u, v, and some choice of special neighbours

of u and v. Note that, since we process the vertices in a bottom-up order, each recursive

call amounts to a constant time table look-up.

If the algorithm succeeds to declare Tr (- ) colourable, then the graph G is 2-subcolourable,

otherwise G is not 2-subcolourable. The correctness of this algorithm follows directly from

Proposition 5.2 and Theorem 5.6. A more precise description of the algorithm can be found

below (see Algorithms 5.1-5.4). Now, we shall discuss some implementation details.

Note that, in the procedure for testing colourability of a strong path Pu,v (Algorithm 5.2),

we need to precolour for each edge (8, t) incident to Pu,v, the vertices of the set Is,t either

all red or all blue (as follows directly from Theorem 5.6). However, we cannot do this

independently for each edge (8, t), since if two such sets Is,t and Is',t' intersect, and we

want that in each set all vertices must have the same colour, then also all vertices in their

union Is,t U Is',t' must have the same colour. Similarly, by transitivity, if there are sets

Is,t = I s1 ,iI, I s2 ,l2, ... , ISk,tk = lsi ,t' such that Isi,ti n I Si+1,ti+l =I- 0 for each 1 :s; i :s; k, then

also all vertices of I s1 ,iI U ... U ISk,tk must have the same colour; we say that the sets Is,t

and Is',t' are conflicting.

Hence, instead, our algorithm constructs a special collection £ of sets with the property

that no two sets of £ intersect, each set L E £ is a union of pairwise conflicting sets Is,t,

and for any edge (8, t) incident to Pu,v, there is a set L E £ which contains all vertices of

Is,t. Once £ is constructed, we can independently choose the red or blue colour for each set

L E £, and colour all vertices of L using that colour. Since different sets from £ are not

intersecting, this procedure never colours a vertex both red and blue. Also, since each set

Is,t is a subset of some L E £, this way we colour the vertices of Is,t all blue or all red for

each edge (8, t) incident to Pu,v'

We obtain the sets £ using a variant of the Union-find algorithm as follows. Initially, we

let £ be empty. Then we process the edges incident to Pu,v one by one, and for each such

edge (8, t), we first find all sets L E £ that intersect Is,t. Then we remove all these sets and

take their union augmented with the vertices of Is,t, and add this newly created set into £.

Then we process next edge. It is not difficult to see that this procedure creates the sets £
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as described above. We implement this procedure as follows. We assign to each vertex of

G a label indicating to which set of £ that vertex belongs (or no label if it does not belong

to any set of £). When processing an edge (s, t), we find the sets of £ that intersect Is,t

by computing the set S of different labels on the vertices of Is,t. This can be done using a

table of size O(n) in time O(n). After that, we create the new set L 2 Is,t by labeling with

a new label i all vertices whose label belongs to S and also all vertices of Is,t. This can be

again accomplished in time O(n). After all edges (s, t) are processed, we construct the sets

L E £ by scanning the labels of all vertices again in time O(n).

Additionally, it is not difficult to see that this algorithm can be easily extended to solve

the list 2-subcolouring problem in chordal graphs. Recall that this is the problem where

each vertex v has a (non-empty) list £(v) of admissible colours, in our case colours red and

blue, and the task is to decide whether G has a 2-subcolouring that respects these lists.

To obtain a modified algorithm solving the list version of this problem, we only need to

modify the procedure for testing strong paths (Algorithm 5.2). In the procedure, we add

an initial step in which we precolour by red all vertices v whose list contains only the red

colour, and precolour by blue all vertices v whose list contains only the blue colour. Then

in steps 3, 4, and 5, we choose the colours of the sets precoloured in these steps so that no

vertex is precoloured both red and blue. If we cannot make such a choice, we declare Pu,v

not (z, w)-colourable. The correctness of this (modified) algorithm is straightforward.

Finally, we briefly explain how to construct a 2-subcolouring of G, if the algorithm

declares G 2-subcolourable. To do that we modify the algorithm so that anytime it declares

Tx (+)-colourable or (- )-colourable, we store the vertices u, v, z, w for which the test in

Algorithms 5.3, 5.4 was successful. Using this additional information, we can construct a

2-subcolouring of G by backtracking from the root and colouring the vertices of strong paths

Pu,v that we used when declaring the subtrees of T (+)- respectively (- )-colourable, using

the colourings constructed for Pu,v by Algorithm 5.2. Since in the tests we always make sure

that the colourings of different strong paths are compatible in the sense of Proposition 5.2,

it can be seen that this procedure indeed gives a 2-subcolouring of G.

We summarize the main result of this section in the following theorem.

Theorem 5.7. There exists an O(n3 ) time algorithm deciding, for a given chordal graph

G (with lists £(v), for all v E V (G)), whether G is (list) 2-subcolourable; the algorithm also

constructs a 2-subcolouring of G if one exists.
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Proof. As noted before, one can determine the maximal cliques of G and construct a

clique-tree T of G in time O(n + m). Also, it follows from the above remark that for any

pair of vertices u, v and a choice of special neighbours z and w of u and v, respectively,

one can determine (z, w)-colourability of the path Pu,v in time O(n2 ). In the first part of

the algorithm, this test is performed for every pair of vertices (including the choice of their

special neighbours). This step can be implemented more efficiently by reusing the results for

the subpaths, that is, starting from some vertex v and computing all paths from v, altogether

in time O(n2 ). Therefore, the total running time for the first part of the algorithm is O(n3 ).

In the second part, note that during the course of the algorithm (in the procedures for

testing the colourability of a subtree Tx , Algorithms 5.3 and 5.4), we consider every path

(including the choice of special neighbours) in T only once. Each path is processed in time

O(n), so in total, we have O(n3 ) time. Finally, constructing a 2-subcolouring of G (if exists)

as describe above the theorem, can be easily done by reusing the colourings of strong paths

we computed earlier, which only takes O(n) time. 0

Algorithm 5.1: The test for 2-subcolourability of G.

Input: A chordal graph G and a clique tree T of G rooted at r

Output: Decide whether Gis 2-subcolourable

1 for every two vertices u, v in T do

2 for every neighbour z and w (including nil) of u and v respectively do

3 test and record whether Pu,v is (z, w)-colourable

4 initialize S +-- 0 (S is the set of processed vertices)

5 while S =I- V(T) do

6 pick a vertex v (j. S whose all children are in S

7 test and record whether Tv is (-) colourable

8 test and record whether Tv is (+) colourable (if v =I- r)

9 S+--SU{v}

10 if Tr is (-) colourable then

return "G is 2-subcolourable"

11 else return "G is not 2-subcolourable"
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Algorithm 5.2: The test whether Pu,v is (z, w)-colourable.

Input: Vertices u, v of T, vertices z, w neighbours of u, v respectively or nil

Output: Decide whether Pu,v is (z, w)-colourable

1 compute C(Pu,v)

2 if C(Pu,v) # Cu U Cv then return "Pu,v is not (z, w)-colourable"

3 precolour the vertices of Cu \ Cv and Cv \ Cu by red and blue respectively

(or bl ue and red respectively)

4 if z # nil then precolour the vertices of Nz,u red (or blue)

5 if w # nil then precolour the vertices of Nw,v blue (or red)

6 initialize the set £: +- (/)

7 for each edge (s, t) incident to Pu,v do

8 compute the set £:s consisting of those sets from £: which intersect [s,t

9 £: +- £: \ £:s U {1s ,t U (ULE£, L) }

10 if some L E £: contains both a precoloured red and a precoloured blue vertex

then return "Pu,v is not (z, w)-colourable"

11 else return ''Pu,v is (z, w)-colourable"

Algorithm 5.3: The test whether Tx is (-) colourable.

Input: A vertex x in T

Output: Decide whether Tx is (-) colourable

1 for each u, v E Tx such that x E Pu,v do

2 for every child z and w (including nil) of u and v respectively do

3 if Pu,v is (z, w)-colourable

and for each child s # w, z of Pu,v the tree Ts is (+) colourable

and either z = nil (resp. w = nil) or Tz (resp. Tw ) is (+) or (-)

colourable then return "Tx is (-) colourable"

4 return "Tx is not (-) colourable"
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Algorithm 5.4: The test whether Tx is (+) colourable.

Input: A vertex x in T

Output: Decide whether Tx is (+) colourable

1 for each u E Tx do

2 for every child Z (including nil) of u do

3 if Pu,x is (z,p[x])-colourable

and for each child s 1- z of Pu,x the tree Ts is (+) colourable

and either z = nil or Tz is (+) or (-) colourable

then return "Tx is (+) colourable"

4 return "Tx is not (+) colourable"

5.2 3-subcolourings
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In this section, we continue our study of complexity of the k-subcolouring problem in chordal

graphs by showing, in contrast to the previous section, that it is NP-complete to decide,

for a chordal graph, whether it has a 3-subcolouring.

To show this, we construct a reduction from the following auxiliary problem.

Problem: AUX

Input: Given (8, zo, Zl, T) where 8 is a set, Zo, Zl are elements of 8, and T is a set

of ordered triples of distinct elements of 8.

Query: Decide whether there exists a partition of 8 into two sets 80 and 8 1 with

Zo E 80 and Zl E 8 1 such that for any triple (Xl, X2, X3) E T and j E {O, I},

if Xl, X2 E 8 j , then X3 E 8 j . (We say that the triples T are satisfied.)

Proposition 5.8. The problem AUX is NP-complete.

Proof. It is easy to observe that AUX is in the class N P since, given a partition of 8,

one can easily in polynomial time verify that this partition forms a solution to the problem.

Now, we show that the problem AUX is also N P-hard. We reduce the problem NAE-3-SAT

(not all equal 3-SAT) to the problem AUX. Consider an instance to NAE-3-SAT, namely

a formula 'P in conjunctive normal form with exactly three distinct literals per clause. Let
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Cl , C2, . .. , Cm be the clauses of <p, and VI, V2, .. . ,Vn be the variables of <p. Let WI, W2,··· ,Wn

be a set of new variables. For any k, define ",,(Vk) = Vk and ",,(-'Vk) = Wk.

An instance Lcp = (S, ZO, ZI, T) to the problem AUX is constructed as follows. The set

S = {Vl, ... ,Vn ,Wl, ... ,Wn ,XF,XT}, ZO = XF, ZI = XT, and the set of triples T consists

of triples (".,(l1),,,.,(l~),,,.,(-,l~))for each clause Ci = li V l~ V l~, and triples (Vi, Wi, XT) and

(Vi, Wi, XF) for each variable Vi·

We show that there exists a satisfying truth assignment T to <p such that in no clause

all three literals evaluate to true by T, if and only if, there exists a solution to the problem

AUX for Lcp. Suppose that there exists a truth assignment T to <p as described above. The

partition of S = So U SI is constructed as follows. Put XF into SO, XT into SI, and for each

variable Vi, if T(Vi) = true, then put Vi into SI and Wi into So, otherwise put Vi into So and

Wi into S 1. Now, we consider the triples of T. Triples (Vi, Wi, XT) and (Vi, Wi, X F) are clearly

satisfied, since Vi is never in the same set as Wi. Also, for a triple (17(l1),,,.,(l~),,,.,(-,l~))of T,

since T satisfies <p (in the sense described above), we have that at least one but at most two

of It, l~, l~ are evaluated to true by T. Now, if 17(l1) , ".,(l~) E SI, then li and l~ are both true,

and hence, l~ must be false, and -,l~ is true. Hence, by the above, it follows that ".,( -,l~)

belongs to SI. Similarly, if ".,(l1),,,.,(l~) E So, we obtain that ".,(-,l~) belongs to So. That

proves that So U SI is a solution for Lcp.

Now, consider a solution S = So U SI for Lcp. Since (Vi, Wi, XF) E T and (Vi, Wi, XT) E T,

we have that Vi and Wi never belong to the same set Sj, j E {O, I}, since otherwise both XF

and XT would have to belong to Sj which is not possible.

We construct the truth assignment T as follows. We let T(Vi) = true, if Vi E SI, otherwise

we let T(Vi) = false. Consider a clause Ci = li V l~ V l~ of <p. Since (".,(l1) , ".,(l~),,,.,( -,l~)) E T,

we have that, if".,(l1),,,.,(l~) E Sj, then".,(-,l~) E Sj; hence, ".,(l~) E SI-j. Thus, either It,l~ are

both true and l~ is false, or It, l~ are both false and l~ is true, or It, l~ have different truth

values. In any of these cases, at least one and at most two literals of Ci are true. It follows

that T is the required satisfying truth assignment for <p, and that concludes the proof. D

In fact, it can be seen that the above problem AUX can be easily reformulated in the

language of boolean constraint satisfaction. By a result of Shaefer [60], it is known that

all problems of boolean constraint satisfaction are either polynomial time solvable or N P­

complete, and there is a concrete description which problems fall into which category. This

provides us with an alternative proof of N P-completeness for AUX.
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H

Figure 5.2: The graph H and sample 3-subcolourings of H.
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Figure 5.3: The graph y(X) with a sample 3-subcolouring.

We remark that, just like in the previous section, we shall use the terminology of colour­

ings, refer to the three sets of a subcolouring partition as red, blue, and green vertices, and

denote the three colours by r, b, and g, respectively.

Lemma 5.9. Let H be the graph in Figure 5.2. Then, for any choice of colours Cl, C2, C3,

C4, C5 E {r, b}, there exists a 3-subcolouring c of H with C(Ul) = Cl, C(U2) = C2, C(U3) = C3,

C(U4) = C4, C(U5) = C5, if and only if, Cl = C3 or C2 = C3 or C4 = C5·

Proof. Consider some choice of colours for Cl, C2, C3, C4, and C5. If C1 = C3 = r, we

let c(U6) = b, and c(U7) = c(us) = g, and if Cl = C3 = b, then we let c(U6) = r, and

c(U7) = c(us) = g. We proceed similarly if C2 = C3· If Cl i- C3 i- C2, then clearly Cl = C2, and

we consider the following cases. If Cl = C2 = C4 = C5, then we let C(U6) = C3, and C(U7) =

c(us) = g, and if Cl = C2 i- C4 = C5, then we let C(U7) = Cl = C2, and C(U6) = c(us) = g.
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It can observed that in any of the above cases, we obtain a 3-subcolouring of H. Finally, if

C4 # C5, then either CI = C2 = C4 and C3 = C5, or CI = C2 = C5 and C3 = C4. In both cases, we

have that the vertices U6, U7 and Us must be coloured by g, since otherwise we have a P3 in

H in colour r or b. However, then the vertices U6, U7, Us form a P3 in colour g. Hence, in

these cases, a 3-subcolouring does not exist, and that concludes the proof. 0

Now, for a set of vertices X, let Q(X) be the graph in Figure 5.3; note that any two

vertices in the same circle are adjacent, in other words, the circles represent cliques, and

the set X are the vertices shown as o.

Lemma 5.10. The graph Q(X) is chordal, and in any 3-subcolouring C of Q(X), we have

C(VI) = C(V3) # C(V2) = C(V4) = C(V5) and c(x) # c(f) for each x E Xu {VI,V2,V3,V4,V5}.

Proof. It is not difficult to observe that the graph Q(X) is indeed chordal. Hence, suppose

that C is a 3-subcolouring of Q(X), and let N be the set of neighbours of the vertex f
which appear above f in Figure 5.3. The vertices of N form a 3-subcolourable graph which

is not 2-subcolourable (by Proposition 5.14). Therefore, in any 3-subcolouring of Q(X),

the vertices of N must use all three colours. Hence, there must be a vertex lEN with

c(f) = c(l). It follows that no neighbour of f below f can use the colour of f, in other

words, we obtain c(f) # c(x) for x E Xu {VI, V2, V3, V4, V5}. By the same argument, we

obtain that no neighbour of the vertex h below h uses the same colour as h, and, in particular,

this is true for the vertices g, i, j, k. Note that the vertices i, j, k form a P3 . Hence, at least

one of them, say k, must use the colour of g, that is, c(g) = c(k). Now, it follows that

C(V2) = C(V4) = C(V5), since the vertices V2, V4, V5 must be coloured differently from both g

and h, and there are only three colours available. Finally, since VI, V2, V5 is a P3 and V3, V2, V5

is a P3 , we obtain c(vI) = C(V3) # C(V2)' That concludes the proof. 0

Now, we are ready to prove the main result of this section. It is easy to observe that the

problem of 3-subcolouring is in the class N P, since, given a colouring of the input graph G,

one can easily check whether each colour class induces a disjoint union of cliques. To prove

that it is also N P-hard, we show a reduction from the problem AUX. Consider an instance

to the problem AUX, namely a 4-tuple (8, ZQ, Zl, T), where 8 is a set, ZQ, Zl E 8, and Tis

a set of ordered triples of distinct elements of 8. We construct a graph GI as follows. We

start with the graph G = Q(Xs), where X s = {x s I S E 8 \ {zQ, zd}, in which we relabel

the vertices VI, V2 to x zQ ' XZl' respectively. Then, for each triple (tl, t2, t3) E T, we add
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into C a copy H tI h ,t3 of the graph H, and identify the vertices U1, U2, U3, U4, U5 of H tI h ,t3

with the vertices Xtl' Xt2' Xt3' V3, V4 of C in that order. The final graph C we obtain after

considering all triples of T is the graph C I .

The following observation is easy to check.

Proposition 5.11. The graph C I is chordal. D

Proposition 5.12. The graph CI is 3-subcolourable, if and only, if there exists a solution

to the problem AUX for I.

Proof. Let 5 = 50U51be a solution for I. We construct a 3-subcolouring C of C I as follows.

First, we colour the vertices of the subgraph Q(Xs) of CI as shown in Figure 5.3. Then, we

colour the vertices of X o = {x s I S E 50} by r, and the vertices of Xl = {x s I S E 5d by b.

It is easy to see that this way we obtain a 3-subcolouring of Q(Xs). Now, we colour the

vertices of H tIh .t3' for each triple (t1' t2, t3) E T, as follows. Recall that, for each j E {O, I},

if t1, t2 E 5 j , then also t3 E 5 j , and hence, if C(Xtl) = C(Xt2)' then C(Xtl) = C(Xt2) = C(Xt3)'

It follows (and also by Lemma 5.10) that we can colour the vertices of H tIh ,t3 using one of

the colourings shown in Figure 5.2 without introducing a monochromatic P3 in CI . After

considering all triples of T, we dearly obtain a 3-subcolouring of CI.

Conversely, let C be a 3-subcolouring of CI . Then, by Lemma 5.10, we have that c(xzo ) #­
c(XZI )· We define 50 = {s E 5 Ic(xs ) = c(xzo )}' and 51 = {s E 5 I c(x s ) = c(XZI )}· Observe

that 50 and 51 form a partition of 5, and that Zo E 50 and Zl E 51' Now, consider a triple

(t1, t2, t3) E T, and suppose that t1, t2 E 5 j for j E {O, I}. Hence, C(Xtl) = C(Xt2) = c(XZj ).

Also, by Lemma 5.10, we have C(V3) #- C(V4), and therefore, using Lemma 5.9, we obtain

C(Xtl) = C(Xt2) = C(Xt3)' Hence, t3 E 5 j , and therefore, it follows that 50 U 51 is a solution

for I, which concludes the proof. D

We have proved the following theorem.

Theorem 5.13. It is NP-complete to decide, for a given chordal graph C, whether or not

C admits a 3-subcolouring. D

5.3 k-subcolourings

In this final section of this chapter, we complete the answer to the question of [7] by showing

N P-completeness of the k-subcolouring problem in chordal graphs for all k 2:: 3.
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Figure 5.4: The graphs Fk for small k, and the construction from Theorem 5.15.

Let Fa be the graph with a single vertex. For k :::: 1, let Fk be the graph constructed from

the disjoint union of two copies of Fk-l by adding a new vertex a and making it adjacent

to all other vertices. The graphs Fa, F l , F2 and F3 are depicted in Figure 5.4. We have the

following observation.

Proposition 5.14. For any k :::: 0, the graph Fk is chordal and minimal non k-subcolourable.

Proof. It is easy to observe that F k is indeed a chordal graph. We show that it is not

k-subcolourable, but any proper induced subgraph of Fk is k-subcolourable. We proceed

by induction on k. For k :::; 1, the claim is trivial. Hence, let k :::: 2, let F' and F" be

the two copies of Fk-l in Fk, and let a be the vertex dominating both F' and F". By the

inductive hypothesis, we have that both F' and F" are not (k - l)-subcolourable, but for

any x' E V(F') and x" E V(F"), the graphs F' - x' and F" - x" are (k - l)-subcolourable.

In particular, both F' and F" are k-subcolourable, and in any k-subcolouring of F' or F",

all k colours must be used. Hence, for any choice of the colour for a, there is a vertex in

F' and a vertex in F" of that colour, which creates a monochromatic P3 , and therefore,

Fk is not k-subcolourable. Now, let x be any vertex in Fk. If x = a, then Fk - a is just

the disjoint union of F' and F", and hence, it is k-subcolourable. On the other hand, if

x E V(F'), then, since F' is minimal non (k - l)-subcolourable, it follows that F' - x is

(k - l)-subcolourable. Therefore, we can colour F' - x and F" - x" with k - 1 colours, and

colour a and x" with a new colour. Clearly, we get a k-subcolouring of Fk -x. By symmetry,

we have that Fk - x for x E V(F") is also k-subcolourable. Therefore, this proves that Fk

is a minimal non k-subcolourable graph as claimed. 0
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Finally, we are ready to proof the main theorem of this section.
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Theorem 5.15. For any k 2: 3, it is NP-complete to decide, for a given chordal graph G,

whether or not C admits a k-subcolouring.

Proof. For any k 2: 3, the problem of k-subcolouring of chordal graphs is clearly in N P. We

show that it is also N P-hard. We proceed by induction on k. For k = 3, we obtain the claim

by Theorem 5.13. Hence, let k 2: 4, and assume that the problem of (k - l)-subcolouring

of chordal graphs is N P-hard. We reduce this problem to the problem of k-subcolouring of

chordal graphs, which will imply the claim. Consider an instance to the former problem,

namely a chordal graph G. Let C' be the graph constructed from the disjoint union of C and

Fk - 1 by adding a new vertex a and making it adjacent to all other vertices (see Figure 5.4).

We now show that Cis (k - l)-subcolourable, if and only if, C' is k-subcolourable. Let c be

a (k - l)-subcolouring of C. Also, by Proposition 5.14, let c" be a (k - l)-subcolouring

of Fk - 1 - x for some x E V(Fk - 1 ). The colouring c' of C' is obtained by combining the

colourings c and c", and then colouring a and x with a new colour. It is easy to see that c' is

a k-subcolouring of C'. Now, let c' be a k-subcolouring of C'. Again, by Proposition 5.14, it

follows that the vertices of Fk - 1 must use all k colours. Hence, let b be a vertex of Fk - 1 in C'

which uses the same colour as a. If some vertex d E V (C) also uses the colour of a, then b, a, d

forms a monochromatic P3 . Hence, the vertices of C use at most k-1 colours, which implies

that the colouring c' restricted to the vertices of C must be a (k - l)-subcolouring of C.

That concludes the proof. 0



Chapter 6

Pk-transversals of Chordal Graphs

Recall that an H-transversal of a graph G is a subset S of the vertices of G that inter­

sects each induced copy of H in G, that is, G - S is H-free. In this section, we study

the complexity of several types of Pk-transversal problems in chordal graphs, namely the

Pj-free and the Kj-free Pk-transversal problems. For both types of these problems, we show

that it is NP-complete to decide, for a chordal graph, whether it has such Pk-transversal.

This is summarized by the following theorem.

Theorem 6.1. Let 2 :::; j :::; k and 4 :::; k. Then it is NP-complete to decide, for a given

chordal graph G, whether G has a Pj -free Pk-transversal. It is also NP-complete to decide,

for a given chordal graph G, whether G has a Krfree Pk-transversal.

6.1 Stable P4-transversals

First, we prove Theorem 6.1 for the case j = 2, k = 4. This problem is also known as the

stable P4-transversal problem. (Note that any P2- or K 2-free graph contains no edges, and..
hence, it must be a stable set, whence the name). We remark that this problem is known

to be NP-complete for comparability graphs (and hence also for perfect graphs) [45].

We describe a polynomial time reduction from the problem 3SAT. Consider an instance

to the problem 3SATj namely, a formula r.p in a conjunctive normal form with n variables

VI, ... , Vn and m clauses C1 , ... , Cm such that each clause Cj has exactly three distinct

literals. (Recall that literal is either a variable Vi or its negation -,vd Let Jt denote the

indices j of the clauses Cj which contain the literal Vi, and let Ji- denote the indices j of

108
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the clauses Gj which contain the literal 'Vi'

We now describe a chordal graph Gcp which will have a stable P4-transversal, if and

only if, the formula <p is satisfiable. For any j E {1 ... m}, let Yj be the graph shown in

Figure 6.1 with the three distinguished vertices l{, l~, and l~. Let Go = Y1 U ... UYm be the

disjoint union of the graphs Y1 , ... , Ym, and for each i 2: 1, let G i be the graph constructed

as follows (see Figure 6.1). Starting from Gi - 1 , we add two adjacent vertices Vi and Vi,

and make them completely adjacent to all vertices of Gi - 1 . Then, for every j E Ji+, if Vi is

the k-th literal of the clause Gj , we add a vertex vI, and make it adjacent to Vi and to the

vertex l~ of Yj. Also, for every j E Ji-, if 'Vi is the k-th literal of the clause Gj , we add a

vertex vI, and make it adjacent to Vi and to the vertex l~ in Yj. (Note that we assume that

a literal occurs in a clause only once.) Finally, we let Gcp be the graph Gn .

-j
v·t

Figure 6.1: The graphs Gi and Yj.

We can also describe the graph Gcp in the following (non-inductive) way.

(i) The vertex set of Gcp consists of the vertices Vi, Vi for each 1 :::; i :::; n, the vertices vI
(respectively vi) for each occurrence of the literal Vi (respectively 'Vi) in the clause Gj ,

and the vertices of the graphs Yj for each 1 :::; j :::; m, which include the distinguished

vertices l{, l~, and l~.

(ii) The vertex Vi (respectively Vi) is adjacent to all vertices of Yj for each j E {1 ... m},

to the vertices Vi', Vi' for all i', to all vertices vI (respectively vi) that may exist, and

to all vertices vI" v{ that may exist for all 1 :::; i' < i.

(iii) The vertex vI (respectively vi) is adjacent to the vertex Vi (respectively Vi), to the

vertex l~, if Vi (respectively 'Vi) is the k- th literal of the clause Gj , and to the vertices

Vi' , Vi' for all i < i' :::; n.

(iv) The vertex l~ is adjacent to its only neighbour in Yj, to the vertex vI (respectively vi),
where Vi (respectively 'Vi) is the k-th literal of the clause Gj , and to the vertices
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Vi' , Vi' for all 1 :::; if :::; n.
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(v) The remaining vertices of Yj are only adjacent to their respective neighbours in Yj and

to the vertices Vi, Vi for all 1 :::; i :::; n.

First, we prove that the graph Gcp corresponding to the formula <p is chordal.

Proposition 6.2. For each °:::; i :::; n, the graph Gi is chordal. Hence, Gcp = G n is chordal.

Proof. We prove the claim by induction. For i = 0, we observe that the graph Yj is

chordal, and hence Go is chordal. Therefore, let i ~ 1, and suppose that Gi - 1 is chordal;

let 1r be a perfect elimination ordering of its vertices. It is straightforward to verify that vI,
V[, ... , vI, V[, ... , 1r, Vi, Vi is a perfect elimination ordering of Gi , and the claim follows. 0

We have the following observations about the graphs Gcp and Yj.

Observation 6.3. Every stable P4 -transversal of the graph Yj contains at least one of the

vertices li ,l~ or l§. Every maximal stable set of Yj is a P4 -transversal. 0

Proposition 6.4. Let 5 be a stable P4 -transversal ofGi , where 1 :::; i :::; n. Then the vertices

Vi and Vi are not in 5, and if vI fj. 5 for some j, then vI' E 5 for all (possible) j'.

Proof. First, observe that the vertex Vi is adjacent to all vertices of the graph Yj for all j.

Hence, if Vi belongs to the stable set 5, then all vertices of Yj must be in Gi - 5, and

hence G i - 5 contains an induced P4 , contrary to 5 being a P4-transversal. The same holds

for Vi. Now, suppose that vI fj. 5 and also vI' fj. 5 for some j, j'. Then by the previous

argument also Vi fj. 5 and Vi fj. 5, and hence 5 cannot be a P4-transversal, since the vertices
. "'] - -] . d n . G 5Vi,Vi,Vi,V i In uce a r4 In i - .

Proposition 6.5. The formula <p is satisfiable, if and only if, Gcp has a stable P4 -transversal.

Proof. First suppose that T is a satisfying truth assignment for <po We use T to construct

a stable P4-transversal of Gcp = Gn-

Let 5b be any maximal stable set in Yj with the following property. For all k, the

vertex l~ E 5~, if and only if, Vi is the k-th literal of the clause OJ and T(Vi) = true, or 'Vi

is the k-th literal of the clause OJ and T(Vi) = false. Clearly, since T satisfies <p and hence

satisfies the clause OJ, we have that at least one of the vertices li, l~, l§ must belong to 5b'
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Figure 6.2: The cotree for the graph G i - Si'
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Also, by Observation 6.3, sg is a P4-transversal of Yj. Now, let So = S"6 u ... U So' Since

the graphs Yj in Go are vertex disjoint, it follows that So is a stable P4-transversal of Go.

Now, let S = So u si u ... u s;t, where st = {vi I j E Ji-}, if T(Vi) = true, and

st = {vi I j E Ji+}, if T(Vi) = false. We show that S is a stable P4-transversal of Gcp.

First, let Si = So U st u ... U st· By definition, Si = Si-I u st and Si-I ~ Si. We now

show by induction that Si is a stable P4-transversal of Gi .

For i = 0, the claim follows from the above. Hence, suppose that i ~ 1, and assume that

Si-I is a stable P4-transversal of the graph G i - I . Without loss of generality, we may assume

that T(Vi) = true. Hence, by definition, Si = Si-I u {vi I j E Ji-}. Now, we observe that

each vertex vi is only adjacent to the vertex Vi and the vertex l{, if 'Vi is the k-th literal

of the clause OJ. Hence, if 'Vi is the k-th literal of the clause OJ, then lj tJ- sg ~ So ~ Si,

because T(Vi) = true. Also, Vi tJ- Si, by definition. This proves that Si is a stable set.

It remains to show that Si is a P4-transversal of Gi , that is, G i - Si is a P4-free graph.

By the inductive hypothesis, the graph Gi - I - Si-I is already P4-free. Therefore, there

exists a cotree Ii-I of this graph. (Cotrees are defined in Section 1.3.) To show the claim,

we construct a cotree for Gi - Si. Recall that, since T(vd = true, we have l{ E sg ~ Si, if Vi

is the k-th literal of the clause OJ. Hence, since l{ is the only neighbour of v; in G i - I , the

vertex vi has no neighbours in G i - I - Si-I' Therefore, it follows that the tree in Figure 6.2

is a tree representation (a cotree) of G i - Si, which shows that Gi - Si is P4-free; hence,

S = Sn is a stable P4-transversal of Gcp = Gn.

Now, suppose that Gcp has a stable P4-transversal S. We construct a truth assignment

T for the formula rp in the following way. For every variable Vi, we set T(Vi) = true, if for

some j, the vertex vi tJ- S; otherwise, we set T(Vi) = false. We show that T satisfies rp.
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Consider the clause Gj of <po Since S is a stable P4-transversal of G<p, the set S n Yj is a

stable P4-transversal of Yj. It follows from Observation 6.3 that there exists k E {I, 2, 3}

such that l{ E S n Yj ~ S. Now, if Vi is the k-th literal of the clause Gj , then vi is adjacent

to lk' which implies vi tf- S. Therefore, T(vd = true, and hence T satisfies Gj . Similarly, if

'Vi is the k-th literal of the clause Gj , then we deduce vi tf- s. Now, by Proposition 6.4, we

must have v{ E S for all (possible) j'. Hence, by definition, T(Vi) = false, and we again

conclude that T satisfies Gj . Finally, since T satisfies all clauses Gj of <p, it also satisfies the

formula <p itself, and that concludes the proof. 0

Now, the proof of Theorem 6.1 for j = 2, k = 4 is complete, once we observe that the

graph G<p can be constructed in time polynomial in the size of <po We summarize this below.

Theorem 6.6. It is NP-complete to decide, for a given chordal graph G, whether G has a

stable P4 - transversal. 0

6.2 Forcing graphs

For the proof of the general case of Theorem 6.1, we shall need the following special "forcing"

graphs. We first describe their structure, and then their properties.

Ff 0

v

k
A

U3 Uk-2

~
2 ••• Uk-l

UI Uk

p,k
2

v

,
k-2i+4

A.

v v

i = 1 i=2 2 < i < k/2 + 1 i 2 k/2 + 1

Figure 6.3: Forcing graphs for the Pk-transversal problem.

For every 1 ::; i ::; k, the graph Fi
k with a distinguished vertex v is defined inductively

as follows. For i = 1, the graph Ff is a single vertex v with no edges. For 2 ::; i ::; k,

let t = max{2, k - 2i + 4}; then the graph Fi
k is formed by t disjoint copies of FLI whose

vertices v are joined into a chordless path Ul,' .. ,Ut dominated by a new vertex v. This

construction is illustrated above in Figure 6.3.
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Proposition 6.7. Every induced path of Fi
k ending in v has length at most i-I.

113

Proof. By induction on i. If i = 1, the claim is trivially true. For i > 1, suppose that Fi
k

contains an induced path P of length at least i that ends in v, and let Uj be the last vertex

on P before v. If for some j' 1= j, we have uj' in P, then the vertices Uj and Ujl must be

adjacent, and hence v, Uj, uj' induces a triangle in P, contradicting that P is an induced

path. Hence, it follows that P - v forms an induced path in the copy of Fl'-l in Fi
k attached

to Uj' Since P - vends in Uj, using the induction hypothesis, we obtain that P - v has

length at most i - 2, and hence, P has length at most i-I, a contradiction. D

For a graph G, let Pj(G) denote the set of Pj-free Pk-transversals of G.

Proposition 6.8. Suppose that 1 ~ i ~ j < k or 1 ~ i < j ~ k. Then for each S E Pj(Fn,

either Fik[S] or Fik - S contains an induced path of length i-I ending in v. Furthermore,

there exists S E pj(Fn with v tf. S, and if i < j, there exists S E Pj(Fik) with v E S.

Proof. By induction on i. If i = 1 and 1 < j ~ k, then Pj(Ff) = {0, {v}}. Clearly, for

S = 0 respectively S = {v}, we have that v is an induced path in F{ - 0 = F{ respectively

F{[{v}] = F{ of length 0 ending in v. Also, we have 0 = S E Pj(F{) with v tf. S, and since

i = 1 < j, we have {v} = S E Pj (F{) with v E S.

If i = 1 and 1 = j < k, then Pj(F{) = {0}, and again, for S = 0, we have that v is an

induced path in F{ - 0 = F{ of length 0 ending in v, and for 0 = S E Pj(F{), we have

v tf. S. (Note that 1 1- j.)

This proves the claim for i = 1. Therefore, let i > 1, and let S E Pj(Fi
k). Let

t = max{2, k - 2i + 4}. Note that by definition of t, for any i > 1, the graph Fik contains

the vertices Ul, ... ,Ut. Let G1, ... ,Gt be the copies of Fl'_l in Fik attached to Ul, ... ,Ut,

respectively. Using the inductive hypothesis, for each 1 ~ r ~ t, let Qr be an induced path

of length i - 2 ending in Ur that either belongs to Gr[S] or Gr - S. We show that there

must exist 1 ~ £ 1= £' ~ t with ue E Sand ue tf. S. Otherwise either {Ul' ... , utl n S = 0
or {Ul, ... ,Utl ~ S. In the former case, P = QIU2 ... Ut_l(Qt)-1 forms an induced path

of length t - 1 + 2(i - 2) 2:: k - 2i + 4 - 1 + 2i - 4 = k - 1 in Fi
k

- S, contradicting

S E Pj(Fik). In the latter case, P = QIU2 ... Ut_l(Qt)-l forms an induced path of length

at least k - 1 2:: j - 1 in Fik[S], again contradicting S E pj(Fn. Hence, if v E S, then Qev

is an induced path in Fik[S] of length i-I, and if v tf. S, then Qev is an induced path in

Fik - S of length i-I. This proves the first part of the claim.
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Now, we show the second part of the claim. Using the inductive hypothesis and that

i-I < j, we have that, for 1 :s; r :s; t, there exists Sr E Pj(Gr) with Ur E Sr if r = 1, and

Ur t/. Sr if 2 :s; r :s; t. Let S = Sl U ... U Sr' We show that S E Pj(Fi
k). First, observe

that Fik[S] is the disjoint union of GdS1], ... ,GtlSt]. Since for each 1 :s; r :s; t, we have

Sr E Pj(Gr), it follows that Fik[S] is Prfree. Now, suppose that Fi
k - S contains a path P

of length at least k - 1.

First, assume that v E P. Hence, there exist induced paths pi, P" (both possibly empty)

such that p = PlvP". By Proposition 6.7, both plv and vP" are of length at most i - 1. If

either pi or P" is empty, then P has length at most i-I < k -1, a contradiction. Hence, let

ue be the last vertex of pi, and let Ul' be the first vertex of P". If i :s; k /2, we obtain that P

has length at most 2(i -1) :s; k - 2 < k -1, a contradiction. Otherwise, if k/2 < i < k/2 + 1,

then t :s; 3, because k - 2i + 4 < k - 2(k/2) + 4 = 4, and since U1 E S, it follows that ue

and Ul' must be adjacent, contradicting that P is an induced path. Finally, if i 2: k/2 + 1,

we have t = 2 since k - 2i + 4 :s; k - 2(k/2 + 1) + 4 = 2, and again since U1 E S, it implies

that either pi or P" is empty, a contradiction.

Therefore, v t/. P. If P n {U1, ... ,ut} = 0, then P ~ Gr - Sr for some 1 :s; r :s; t, which

contradicts Sr E Pj (Gr). Hence, let ue respectively Ul' be the first respectively the last

vertex of {U1' ... ,Ut} that appears on P. If £ = £1, then P ~ Ge - Se, contradicting that

Se E Pj(Ge). Hence, without loss of generality, we may assume that £ < £'. Let pi, Q, P"

be (possibly empty) induced paths in Fi
k such that P = P'ueQul'P". Clearly, we must have

pi ~ Ge, and P" ~ G€,. Now, since Q is an induced path, v t/. P, and each U r , 1 :s; r :s; t, is

a cut-vertex in Fi
k, we must have Q = UH1UH2." Ul'-l. Using Proposition 6.7, we obtain

that both plue and P"ul' have length at most i - 2. Now, since U1 E S, we have that £ 2: 2,

and hence ueQul' has length at most k - 2i + 2. Altogether, we obtain that P has length

at most k - 2i + 2 + 2(i - 2) = k - 2 < k - 1, a contradiction.

This proves that S E p j
k(Fi

k). Now, assuming i < j, we also show that S U { v} E p j
k(Fi

k)

which will conclude the proof. Clearly, since S E p}(Fi
k), we have that Fi

k - S is Pk-free,

so is Fi
k - (SU {v}). It remains to show that Fik[SU {v}] is Pj-free. Let P be an induced

path in Fi
k [S U {v}] of length at least j - 1. If v t/. P, then, since Ur t/. S for 2 :s; r :s; t, we

must have P ~ Gr[Sr] for some 1 :s; r :s; t, contradicting that Sr E Pj(Gr). Hence, v E P,

but then v must be the end-vertex of P, since only one neighbour of v, namely U1, is in S.

It follows, by Proposition 6.7, that P has length at most i-I < j - 1, a contradiction. 0
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2 ~ j < k/2

Hk
J

Ly
v

k/2 ~ j ~ k-1 j=k

Figure 6.4: Forcing graphs Hj for the proof of Theorem 6.1.

For 2 ~ j < k, let t = max{2, k - 2j + I}. Then the graph Hj with a distinguished

vertex v is defined as the graph formed by t disjoint copies of the graph Fj
k whose vertices v

are Zl,' .. ,Zt such that Z2,'" ,Zt is a chordless path, and the vertices Zl, Z2 are adjacent to

a new vertex v. Moreover, the graph Hk is defined as the graph F/:_ 1 whose vertex v is Zl,

and Zl is adjacent to a new vertex v. This construction is illustrated in Figure 6.4.

Proposition 6.9. Let 2 ~ j < k. Then for each 5 E Pj(Hj), we have v E 5. Furthermore,

there exists 5 E Pj(Hj) with N(v)n5 = 0. Additionally, for each 5 E P/:(HZ), we have that

either v E 5 and N(v) n 5 = 0, or v t/. 5 and N(v) ~ 5. Also, there exists 5,5' E P!:(Ht)

with v E 5, and v t/. 5'.

Proof. Let 5 E Pj(Hj), and let t = max{2, k - 2j + I}. Note that Hjk contains vertices

Zl,"" Zt. Let G I ,···, Gt be the copies of F/ in Hj attached to Zl,"" Zt respectively. Using

Proposition 6.8, for each 1 ~ r ~ t, we have that there exists an induced path Qr either

in Gr [5] or in Gr - 5 of length j - 1 ending in Zr' If for some 1 ~ .e ~ t, we have Zp E 5,

then Qp is a path of length j -1 in Hj[5], contradicting 5 E Pj(Hj). Hence, we must have

{Zl,"" zt} n 5 = 0. Now, it follow that v E 5, since otherwise QI, v, Z2,"" Zt-l, (Qt)-l

forms an induced path of length t + 2(j - 1) 2: k - 2j + 1 + 2(j - 1) = k - 1 in Hj - 5, and

that contradicts 5 E Pj(Hj).

Now, by Proposition 6.8, for each 1 ~ r :::; t, we have that there exists 5r E Pj(Gr)

with Zr t/. 5r· Let 5 = 51 u ... u 5t u {v}. Clearly, N(v) n 5 = {Zl,Z2} n 5 = 0. We show

that 5 E Pj(Hj). Observe that Hj[5] is the disjoint union of Gd51], ... ,Gtl5t], and v.

Hence, it follows that Hj[5] is Pj-free. It remains to show that Hj - 5 is Pk-free. Let P be

an induced path of length at least k -1 in Hj - 5. If pn {Zl,' .. ,Zt} = 0, then P ~ Gr - 5

for some 1 ~ r ~ t, contradicting that 5r E Pj[Gr]. Hence, let Zp respectively Zp' be the first

respectively the last vertex of {Zl,' .. ,Zt} that appears on P. If.e = .e', then P ~ Gp - 5,
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contradicting 5e E Pj[Ge]. Hence, we may assume that £ < £'. Since v E 5, this also implies

£' 2': 3, and hence t = k - 2j + 1. Let P', Q, P" be (possibly empty) induced paths in Hj

such that P = P'zeQze'P", Clearly, P' ~ Ge and P" ~ Ge,. Since, for each 1 :s; r :s; t, the

vertex Zr is a cut-vertex of Hj, we must have Q = Zf+lZf+2'" Ze'-l. Using Proposition 6.7,

we obtain that paths P'ze and Ze' P" both have length at most j - 1. Altogether, it follows

that P has length at most t - 2 + 2(j - 1) = k - 2j + 1 - 2 + 2j - 2 = k - 3 < k - 1,

a contradiction.

Finally, let 5 E P~(H~). Using Proposition 6.8, we have that there exists an induced

path P either in H~[5] or in H~ - 5 of length k - 2 ending in Zl. Now, if Zl, v E 5, then Pv

forms an induced path of length k - 1 in H~[5J, and if Zl, v tf- 5, then Pv forms an induced

path of length k - 1 in H~ - 5, both contradicting 5 E P~(H~). Hence, either Zl E 5 and

v tf- 5, or Zl tf- 5 and v E 5. Now, by Proposition 6.8, there must exist 5' E P~(H~ - v)

with Zl E 5'. It follows that 5' E P~(H~), and also that 5 = V(H~) \ 5' E P~(H~). Clearly,

we must have v E 5 and v tf- 5', which concludes the proof. 0

Figure 6.5: Forcing graphs Bj and Dj for the proof of Theorem 6.1.

Finally, for 2 :s; j < k, the graph Bj with a distinguished vertex v is the graph formed

by the disjoint union of a copy of the graph Hj and a copy of the graph FJ-l whose vertices

v are identified and adjacent to a new vertex v. The graph Dj with a distinguished vertex

v is the graph formed by the disjoint union of a copy of the graph Hj and a copy of the

graph FJ-2 whose vertices v are identified and are the distinguished vertex v of Dj. Both

constructions are illustrated in Figure 6.5.

Proposition 6.10. Let 2 :s; j < k. Then for each 5 E Pj(Bj), we have v tf- 5. Further­

more, there exists 5 E Pj(Bj) with N(v) ~ 5.

Proof. Let G1 and G2 denote the copies of Hj and Fj
k_ 1 in Bj, respectively, and let

5 E Pj(Bj). Then, by Proposition 6.9, we must have Zl E 5. Hence, by Proposition 6.8,

Bj[5j contains an induced path P of length j - 2 ending in Zl. Now, it follows that v tf- 5,

since otherwise Pv is an induced path oflengthj-1 in Bj[5J, contradicting 5 E Pj(Bj). On
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the other hand, using Propositions 6.8 and 6.9, we can obtain Sl E Pj(Gd and S2 E Pj(G2)

such that Zl E SlnS2, and all neighbours of Zl in G1 do not belong to Sl. We let S = Sl US2,

and it easily follows that S E Pj(Bj) with N(v) <;;; S. 0

Using a similar proof, we obtain the following.

Proposition 6.11. Let 3::; j < k. Then for each S E Pj(Dj), the graph G[S] contains an

induced path of length j - 3 ending in v. Furthermore, there exists S E Pj(Dj) such that

every induced path of G[S], which ends in v, has length at most j - 3. 0

6.3 Stable P5-transversals

Now, using a similar proof as in Section 6.1, we prove Theorem 6.1 for j = 2, k = 5. Again,

we construct a polynomial time reduction from the problem 3SAT. We shall explain how

to modify the construction from the previous proof. Hence, let us assume that we have

the formula 'P with variables VI, . .. ,Vn and clauses C1 , . .. ,Cm as before, and let Yj be the

graph in Figure 6.6. Let G~ = Y{ U ... U Y~ be the disjoint union of graphs Y{, ... , Y~, and

for i 2: 1, let G~ be the graph constructed as follows. Starting with G~_l' we add the vertices

Vi, Vi, v!, and v~ exactly as we did in the construction of Gi . Then we additionally add

vertices a, b, c, d, e, Xi, Xi, Zi, Zi as shown in Figure 6.6, and attach to the vertices a, b, c, d, e

individual copies of the graph B~. Again, we let G~ = G~.

lj a--
I a

X

B~C> c

B~ C> d

Y'
J

e__o lj
3

Figure 6.6: The graphs Yj and G~.
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Observation 6.12. For each 1 :s: i :s: n, the graph G~ is chordal; hence G~ = G~ is chordal.

Proof. We prove the claim by induction. For i = 0, the claim follows from the chordality

of Yj. Hence, let i 2: 1, and assume that G~_l is chordal, and let 11" be a perfect elimination

ordering G~_l' Also, let 1I"a, 1I"b, 1I"e, 1I"d, 1I"e be perfect elimination orderings of the copies of B~

attached to the vertices a, b, c, d, e, respectively, such that 1I"a ends in a, 1I"b ends in b, 1I"e ends

in C, 1I"d ends in d, and 1I"e ends in e. Then it is not difficult to verify that 1I"a, 1I"e, Xi, Xi, Zi,

Zi, 1I"b, 1I"d, 1I"e, vI, V[, ... , vI, v;, ... ,11", Vi, Vi is a perfect elimination ordering of G~. 0

Proposition 6.13. Every stable P5-transversal of the graph Yj contains at least one of

the vertices li,l~ or l~. For each non-empty subset X ~ {I, 2, 3}, there exists a stable

P5-transversal Sx ofYj such that l{ E Sx, if and only if, k E X.

Proof. Let S be a stable P5-transversal of Yj. Suppose that none of the vertices If, l~, l~

belongs to S. Then, by Proposition 6.10, none of the vertices a, b, c, d, e belongs to S. It

follows that xES, since otherwise If,a,x,b,l~ is an induced P5 in Yj - S. Also, XES,

since otherwise X, c, d, e, l§ is an induced P5 in Yj - S. But then S is not an independent

set, since x, XES and xx is an edge of Yj, a contradiction.

On the other hand, let X ~ {I, 2, 3} be a non-empty set. Let B be the disjoint union

of the copies of B~ in Yj. Using Proposition 6.10, we obtain that there exists a stable

P5-transversal Z of B such that {a, b, c, d, e} n Z = 0, but all neighbours of a, b, c, d, e in B

belong to Z. Now, if 1 E X or 2 E X, we let S = {l11 i E X} U {x} U Z, and if 3 E X, we

let S = {l11 i E X} U {x} U Z. In both cases, S is clearly a stable P5-transversal of Yj. 0

Proposition 6.14. Let S be a stable P5-transversal of G~, where 1 :s: i :s: n. Then the

vertices Vi and Vi are not in S, and if v1 tf. S for some j, then v{ E S for all (possible) j'.

Proof. Since Vi is adjacent to all vertices of Yj, if Vi belongs to S, then all vertices of Yj

must be in G~ - S, and hence G~ - S contains an induced P5 . Similarly for Vi. Now, suppose

that v1 tf. S and also v{ tf. S for some j,j'. Using Proposition 6.10, we obtain that none of

the vertices a, b, c, d, e is in S. Hence, since also Vi, Vi tf. S, we must have Xi E S and Xi E S,

since otherwise v1, Vi, Vi, Xi, e respectively v{, Vi, Vi, Xi, a is an induced P5 in G~ - S. But

that implies Zi, Zi tf. S, and hence, Zi, b, C, d, Zi is an induced P5 in G~ - S. 0
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Proposition 6.15. The formula <p is satisfiable, if and only if, the graph G~ has a stable

P5 -transversal.

Proof. Again, let T be a satisfying truth assignment for <p, and let X j be the set of indices

k from {I, 2, 3} such that k E X j , if and only if, Vi is the k-th literal of Cj and T(Vi) = true,

or 'Vi is the k-th literal of Cj and T(Vi) = false. Let sg be the P5-transversal SXj of Yj

obtained using Proposition 6.13. Again, let Sb = S6 u... USlr, and let S~ = S~_l Ust where

st = {vi I j E Ji-} U {Xi, zd U Zi, if T(Vi) = true, and st = {vI I j E Ji+} U {Xi, zd U Zi, if

T(Vi) = false, where Zi is the union of stable P5-transversals of the five copies of Bg in G~.

(Note that, by Proposition 6.10, there exists a P5-transversal of Bg.)

We show by induction that S' = S~ is a stable P5-transversal of G~. For i = 0, the claim

follows immediately. Hence, let i 2: 1, and assume that SLI is a stable P5-transversal of

G~_l' Without loss of generality, suppose that T(Vi) = true. Hence, S~ = S~_l U {Xi, zd U

{vI I j E Ji-} U Zi· Now, using the same argument as in the proof of Proposition 6.5, it

follows that S~ is a stable set. We now show that G~ - S~ is P5-free. Suppose otherwise, and

let A be an induced P5 in G~ - S~. Let B denote the disjoint union of the copies of Bg in

G~, and let C = B - {a, b, c, d, e}. First, we have that A does not completely belong to G~_l

or to B, since S~_l and Zi are stable P5-transversals of the respective graphs. Additionally,

no vertex of C can belong to A, since by Proposition 6.10, the neighbours of a, b, c, d, e in C

belong to Zi. Also, e is not in A, since Xi E S~. Hence, we have that all vertices of G~ - S~

except a, e, and the vertices of C, are adjacent to Vi, which implies that Vi is not in A.

Hence, a and Xi are not in A, since Vi is not in A and Zi E S~. Also, v{ is not in A, since

Vi is not in A and l{ E S~ (the only two neighbours of vI), because Vi is the k-th literal of

the clause Cj for some k E {I, 2, 3}, and hence k E X j , which implies l{ E SX
j
~ Sb ~ S~.

It remains to observe that all vertices, which we have not yet been ruled out, are adjacent

to Vi, which implies that Vi is not in A. That leaves only the vertices b, c, d, Zi, which clearly

do not form an induced P5 , and hence, we obtain a contradiction. This proves that S' is a

stable P5-transversal of G~.

Now, let S' be a stable P5-transversal of G~. We need to show that <p is satisfiable.

The proof is exactly as in Proposition 6.5, but we use Propositions 6.13 and 6.14 in place

of Observation 6.3 and Proposition 6.4, respectively. That concludes the proof. 0

Again, we summarize this in a theorem.
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Theorem 6.16. It is NP-complete to decide, for a given chordal graph G, whether G has

a stable Ps-transversal. [J

6.4 Prfree Pk-transversals

Now, we extend the results from the previous sections by showing a reduction from the stable

P4- and Ps-transversal problems in chordal graphs to the Pj-free Pk-transversal problem in

chordal graphs; thus, completely proving the first part of Theorem 6.1.

(DJ) (DJ)

BJ BJ (Dk)

~J7 pi'
~BJ(DJ)

(DJ)

FL2

pL2
FL2

Figure 6.7: The graphs G' (Gil) and Gill for the Pj-free Pk-transversal problem.

Hence, let 2 ::; j ::; k, and let G be a graph with vertices V!, ... , V n . The graph G'

(respectively Gil) is the graph constructed from the graph G by adding n disjoint copies

G I , ... ,Gn of the graph Bj (respectively Dj), and for each 1 ::; i ::; n, connecting Vi to

the vertex V of Gi . Similarly, the graph Gill is the graph constructed from G by adding n

disjoint copies GI , ... , Gn of the graph F/:_ 2 , a copy Gx of F/:_ 2 , a copy Gz of FI:-I' and

vertices x, y, z such that xy,xz,yz are edges, x and z are identified with the vertices v of Gx

and G z , respectively, and for each 1 ::; i ::; n, the vertex v of G i is connected to Vi and y.

The constructions are illustrated in Figure 6.7.

We have the following properties of the graphs G', Gil, and Gil'.

Observation 6.17. The graphs G', Gil, and Gill are chordal provided G is chordal. D
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Proposition 6.18. For 2 S; j < k, the graph G has a Pj-free Pk_2 -transversal, if and only

if, the graph G' has a Prfree Pk-transversal.

Proof. Let VI, ,Vn be the vertices of G, and G1 , ... , Gn be the copies of Bj in G'

adjacent to VI, , V n , respectively. Let v~, ... , v~ be the vertices V of G1 , ... , Gn . (Note

that ViV~ is an edge for each 1 S; i S; n.)

First, let 8 be a Pj-free Pk_2-transversal of G. By Proposition 6.10, we have that, for

each 1 S; i S; n, there exists 8 i E Pj(Gi ) with v~ tJ- 8 i , and N(vD n V(Gi ) ~ 8 i . Let

8' = 8 U 8 1 U ... U 8n . We show that 8' E Pj(G'). First, it is easy to see that G'[8'] is

Pj-free, since it is the disjoint union of G[8], G1 [81]" .. ,Gn [8n ]. On the other hand, suppose

that P is an induced path of length k - 1 in G' - 8'. Clearly, since for each 1 S; i S; n, the

edge ViV~ is a bridge of G', it follows that there can be at most two vertices of {v~, ... ,v~}

in P. Also, for any 1 S; i S; n, if v~ is in P, then it must be an end-vertex of P, since

N(vD n V(Gi ) ~ 8'. Hence, if P contains two vertices v~, vi with i #- j, then P is an

induced path from v~ to vi, and therefore, P - {V~, vi} is an induced path of length k - 3 in

G - 8, which contradicts 8 E pj-2 (G). Similarly, we get a contradiction with 8 E pj-2 (G),

if P contains only one, respectively, no vertex v~, and P - v~, respectively, P completely

belongs to G - 8. Therefore, it follows that P must completely belong to Gi - 8 i for some

1 S; i S; n, which also leads to a contradiction since 8 i E Pj(Gi ). Hence, it shows that

G' - 8' is Pk-free, and therefore, 8' E Pj(G').

On the other hand, let 8' be a Pj-free Pk-transversal of G', and let 8 = 8' n V(G). We

show that 8 E Pj-2(G). Clearly, G[8] is Pj-free, since G'[8'] is Pj-free. Now, suppose that

G - 8 contains an induced path P of length k - 3. Let Vi and Vj be the first and the last

vertex of P, respectively. By Proposition 6.10, we have v~ tJ- 8' and vi tJ- 8'. Hence, v~Pvi is

an induced path of length k - 1 in G' - 8', a contradiction. Therefore, G - 8 is Pk- 2-free,

and hence, 8 E Pj-2(G), which concludes the proof. 0

Proposition 6.19. For 3 S; j < k, the graph G has a stable Pk-transversal, if and only if,

the graph Gil has a Prfree Pk-transversal.

Proof. Let VI, ... ,Vn be the vertices of G, and G1 , ... ,Gn be the copies of Dj in Gil adja­

cent to VI, ... , Vn , respectively. Let v~, ... ,v~ be the vertices V of G1 , ... ,Gn , respectively.

First, let 8 be a stable Pk-transversal of G. By Proposition 6.11, for each 1 S; i S; n,

there exists 8 i E Pj(Dj) with v~ E 8 i and the property that every induced path of Gi [8i ],
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which ends in v~, has length at most j - 3. Let S' = S U Sl U .,. uSn. We show that

S' E pf(G"). It is easy to observe that Gil - S' is Pk-free, since Gil - S' is the disjoint

union of G - S, G l - Sl,'" ,Gn - Sn. Now, suppose that G"[S'] contains an induced path

P of length j - 1. Then, since S is a stable set, and ViV~ is a bridge for each 1 :::; i :::; n, we

have that at most one vertex of S can be in P. Hence, if, for some 1 :::; i :::; n, the vertex

Vi E S is in P, then Vi must be an end-vertex of P, and it follows that P - Vi is an induced

path of length j - 2 in GdSi], which ends in v~, a contradiction. Similarly, we obtain a

contradiction, if no vertex of S appears in P, since then P belongs completely to GdSi] for

some 1 :::; i :::; n. Hence, this shows that G"[S'] is Pj-free, and thus, S' E pf(G").

Now, let S' be a Prfree Pk-transversal of Gil, and let S = S' n V(G). We show that

S is a stable Pk-transversal of G. Clearly, G - S is Pk-free, since Gil - S' is Pk-free. On

the other hand, by Proposition 6.10, we have that, for each 1 :::; i :::; n, GdS'] contains an

induced path Pi of length j - 3 ending in v~. Hence, if S contains adjacent vertices vi, Vj,

then PiViVj(Pj)-l is an induced path in G"[S'] of length 2(j - 3) + 3 = 2j - 3 ~ j (since

j ~ 3), a contradiction. Hence, S is an independent set, and we have S E P~(G), which

concludes the proof. 0

Proposition 6.20. For 3 :::; k, the graph G has a stable Pk-transversal, if and only if, the

graph Gil' has a Pk-free Pk-tmnsversal.

Proof. Let VI, ,Vn be the vertices of G, and let G l , ... ,Gn be the copies of F!:_2 in G'II

adjacent to VI, ,Vn , respectively. Let vi, . .. ,v~ be the vertices V of Gl , ... ,Gn . Also, let

Gx be the copy of F!:-2 attached to x, and Gz be the copy of F!:_l attached to z. (Note

that we have edges ViV~ and v~y for each 1 :::; i :::; n.)

Let S be a stable Pk-transversal of G. By Proposition 6.8, we have that, for each

1 :::; i :::; n, there exists Si E P~(Gi) with v~ E Si, and also there exists Sx E P~(Gx) and

Sz E P~(Gz) with x tf- Sx and z E Sz, respectively. Let S' = S U Sl U ... uSn U Sx U Sz. We

show that S' E P~(GII/). Suppose that G"'[S'] contains an induced path P of length k - 1.

Since x,y tf- S', it follows that P belongs to GII/[SUSlU" .USn]. Also, S is stable, and hence,

either P or P - Vi is completely in Gi[Si] for some 1 :::; i :::; n. In the former case, we have a

contradiction, since Si E P~(Gi)' In the latter case, v~ is an end-vertex of P - Vi. Hence, by

Proposition 6.7, P - Vi has length at most k - 3 < k - 2, which is, again, a contradiction.

Now, suppose that Gil' - S' contains an induced path P' of length k - 1. Since z E S' and

v~ E S for each 1:::; i:::; n, we have that P must belong to G"'[V(G-S)UV(Gx -Sx)U{y}].
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Hence, clearly, P must contain x, since both G - Sand Gx - Sx are Pk-free, and y is adjacent

to each vertex of G - S. But then either P, or P - v for some v E V(G) U {y}, completely

belongs to Gx - Sx' In the former case, we get a contradiction since Sx E pt (Gx). In the

latter cases, x is an end-vertex of P - v, and hence, by Proposition 6.7, we have that P - v

has length at most k - 3 < k - 2, again, a contradiction. This proves that S' E pt(G"').

Now, let S' be a Pk-free Pk-transversal of Gil'. Without loss of generality, we may assume

that z E S', since otherwise we can take V(G"') \ S' for S' instead. By Proposition 6.8,

we have that Gz[S'] contains an induced path Pz of length k - 2 which ends in z. Hence,

x, y f/. S', since otherwise Pz x or Pz y is an induced path of length k - 1 in Gil' [S']. Therefore,

again by Proposition 6.8, Gx - S' contains an induced path Px of length k - 3 which ends

in x. This implies that, for each 1 :::; i :::; n, we have v~ E S', since otherwise Px y v~ is an

induced path of length k - 1 in G'" - S'. Hence, by Proposition 6.8, for each 1 :::; i :::; n, we

have an induced path PI in GdS'] of length k - 3 which ends in v~.

Now, let S = S' n V(G). We show that S is a stable Pk-transversal of G. Clearly, G - S

is Pk-free, since Gil' - S' is Pk-free. On the other hand, S must be an independent set,

since if S contains adjacent vertices Vi, Vj, then PIViVj(Pj)-l is an induced path in GII/[S']

of length 2(k - 3) + 3 2: k (since k 2: 3), which contradicts S' E pt(G"'). Hence, S is a

stable Pk-transversal of G, which concludes the proof. 0

Theorem 6.21. Let 2 :::; j :::; k and 4 :::; k. Then it is NP-complete to decide, for a given

chordal graph G, whether G has a Pj-free Pk-transversal.

Proof. The problem is clearly in N P. We prove that it is also N P-hard. First, we prove

the claim for j = 2 and all k 2: 4 using induction on k. For k = 4 and k = 5, the claim

is proved in Theorems 6.6 and 6.16, respectively. Hence, let k 2: 6, and assume that the

claim holds for all 4 :::; k' < k. We show the claim for k by reduction from the stable Pk-2­

transversal problem in chordal graphs. Let G be an instance (a chordal graph) to the stable

Pk_2-transversal problem in chordal graphs. Let G' be the graph constructed from G as

described below Figure 6.3. By Observation 6.17, G' is chordal, and, by Proposition 6.18, G

has a stable Pk_2-transversal, if and only if, G' has a stable Pk-transversal. By the inductive

hypothesis, the stable Pk_2-transversal problem in chordal graphs is N P-hard. Hence, the

stable Pk-transversal problem in chordal graphs is also N P-hard.

Now, for j 2: 3 and k 2: 4, we prove the claim by reduction from the stable Pk-transversal

problem, which, by the previous paragraph, is N P-hard. Let G be an instance (a chordal
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graph) to the stable Pk-transversal problem in chordal graphs. Let Gil and Gill be the graphs

constructed from G as described below Figure 6.3. By Observation 6.17, both Gil and Gill are

chordal. Now, if j < k, then, by Proposition 6.19, we have that G has a stable Pk-transversal,

if and only if, Gil has a Pj-free Pk-transversal. Similarly, if j = k, we have, by Proposition

6.20, that G has a stable Pk-transversal, if and only if, Gill has a Pk-free Pk-transversal. In

both cases, since the stable Pk-transversal problem in chordal graphs is N P-hard, it follows

that also the Pj-free Pk-transversal problem is N P-hard. That concludes the proof. 0

6.5 Kj-free Pk-transversals

Finally, we finish the proof of Theorem 6.1 by reducing the problem of stable Pk-transversal

in chordal graphs to the problem of Krfree Pk-transversal in chordal graphs for each j 2': 2.

,.
/;:-1

A

Figure 6.8: The graph G* for the Kj-free Pk-transversal problem.

First, note that, since K 2 = P2 , the case j = 2 is already proved in the previous chapter.

Hence, let j 2': 3, and let G be graph. The graph G* is the graph constructed from G by

adding k - 1 disjoint copies G I , ... , Gk - l of the complete graph K j , and adding a copy Gk

of K j - 2 such that the vertices of Gk are completely adjacent to the vertices of G, and for

each 1 ::; i ::; k - 1, the vertices of Gi are completely adjacent to the vertices of GHI . The

construction is illustrated in Figure 6.8.

Proposition 6.22. For all j 2': 3, all k 2': 3, the graph G has a stable Pk-transversal, if and

only if, the graph G* has a Kj-free Pk-transversal.

Proof. Let G I , .. , ,Gk-l be the copies of K j , and Gk be the copy of K j - 2 in G' , where, for

each 1 ::; i ::; k -1, the clique Gi is completely adjacent to Gi+l, and Gk is completely adja­

cent to G. First, we show that G*[V(GI)U .. .UV(Gk- I )] is Pk-free. Suppose otherwise, and

let P be an induced path on k vertices in G*[V(GI)U" .uV(Gk-d]. By the pigeonhole prin­

ciple, there must exist u, von P such that u, v E V(Gi ) for some 1 ::; i ::; k -1. Hence, u and
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v are twins in G', and hence, they are also twins in P, since P is induced in G'. However,

P is a chordless path on k 2: 3 vertices, and hence, contains no twins, a contradiction.

Now, let S be a stable Pk-transversal of G. Let S* = S U V(Gk)' We show that S*

is a Kj-free Pk-transversal of G*. First, we observe that G* - S* is the disjoint union of

G - Sand G*[V(Gd U U V(Gk-d]. Since G - S is Pk-free, and also, by the previous

paragraph, G*[V(Gd U U V(Gk-d] is Pk-free, we have that G* - S* is Pk-free. Now,

suppose that G*[S*] contains a clique K of size j. Since S is an independent set, K contains

at most one vertex of S. Hence, either K or K - v for some v E S, is completely contained

in Gk. But Gk has only j - 2 vertices, a contradiction. This proves that S* is a Kj-free

Pk-transversal of G*.

Now, let S* be a Kj-free Pk-transversal of G*. We observe that for each 1 S; i S; k - 1,

there exists a vertex Ui E Gi such that Ui rf- S*, since otherwise Gi is a clique of size j in

G*[S*], which contradicts that S* is Kj-free. Also, we must have v E S* for each v E V(Gk),

since otherwise Ul, ... ,Uk-I, v is an induced path of length k - 1 in G* - S*, but G* - S*

is Pk-free. Now, let S = S* n V(G). Clearly, G - S is Pk-free, since G* - S* is Pk-free. On

the other hand, G[S] must be an independent set, since if u, v are two adjacent vertices in

G[S], then V(Gk) U {u, v} induces a clique of size j in G*[S*]. Hence, we have that S is a

stable Pk-transversal of G, which concludes the proof. 0

Theorem 6.23. Let 2 S; j S; k and 4 S; k. Then it is NP-complete to decide, for a given

chordal graph G, whether G has a Kj-free Pk-transversal.

Proof. The problem is clearly in N P. We prove that it is also N P-hard. If j = 2,

then the Kj-free Pk-transversal problem is the stable Pk-transversal problem, and the claim

follows from Theorem 6.21. For j 2: 3, we prove the claim by reduction from the stable

Pk-transversal problem in chordal graphs. Let G be an instance to this problem (a chordal

graph). Let G* be the graph constructed from G as described below Figure 6.8. It is easy to

observe that, since G is chordal, also G* is chordal. Also, by Proposition 6.22, G has a stable

Pk-transversal, if and only if, G* has a Kj-free Pk-transversal. By Theorem 6.21, the stable

Pk-transversal problem in chordal graphs is N P-hard. Hence, the Kj-free Pk-transversal

problem in chordal graphs is also N P-hard, and that concludes the proof. 0
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Other cases

In this chapter, we further investigate the GCOL problem in the class of chordal graphs in

a number of special cases for which we establish their complexity. Then, in the second part,

we extend the results from the previous chapter to strongly chordal graphs, and discuss the

complexity of the P4-free P4-transversal problem in chordal comparability graphs.

The following is a series of results which establish complexity of a number of cases of

the GCOL problem in the class of chordal graphs.

k-l
~
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Figure 7.1: Matrices for selected GCOL problems in chordal graphs.

Theorem 7.1. The P 3 -free P 3 -transversal problem is solvable in the class of chordal graphs

in time O(nlO ).

Proof. Recall that a chordal graph is P 3-free, if and only if, it is a join of a clique and

an independent set. Let M1 be the matrix in Figure 7.1. It clearly follows that a chordal

graph G has a P 3-free P 3-transversal, if and only if, G admits an M1-partition. For the

matrix M 1, it was shown in [9] that the list M1-partition problem admits a polynomial time

solution already in general graph. We now explain how this algorithm works.

126
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Recall that an (k + e) x (k + e) matrix M is an (A, B, C)-block matrix, if M is of the

fO'm M ~ ( ~ I~T), whe'e A is a symmet,ic k x k matdx with all zewes on the main

diagonal, B is a symmetric ex e matrix with all ones on the diagonal, and C is a k x e
matrix. For such matrices A and B, if there is a graph H which is both A-partitionable

and B-partitionable, then H has at most k x evertices. This is due to the fact that, if His

A-partitionable, we have X(H) ::; k, and if H is B-partitionable, we have a(H) ::; e. Hence,

by Theorem 2.1, it follows that we can enumerate in time O(n2kH2T(n)) all n2k£ partitions

of an n-vertex graph G into an A-partitionable graph and a B-partitionable graph, where

T(n) is the complexity of the A-partition respectively B-partition problem. Clearly, G must

admit such a partition, if G is M-partitionable.

Hence, we apply the above to M I , and obtain, in time O(nlO(n+m)), all O(n8 ) partitions

of G into an AI-partitionable graph G[X] and a BI-partitionable graph G[Y], where the

matrices Al and B I correspond to bipartite and co-bipartite graphs, respectively. In fact,

we can improve this complexity, if we assume that G is chordal. As follows from the proof

of Theorem 2.1, it takes only O(n2k£T(n)) time to enumerate all sparse-dense partitions, if

we know at least one such partition. If G is chordal, a partition of G into a bipartite and a

co-bipartite graph can be obtained easily by trying all pairs of maximal cliques 0,0' of G

(possibly also 0' = 0, or 0 = 0' = 0), and testing whether G - (C u 0') is bipartite. The

complexity of this is clearly O(n2 (n + m)), since there are at most n maximal cliques in G,

if G is chordal. Hence, the above partitions of a chordal G can be found in time O(nlO ).

For each such partition X U Y, we find sets VI U V2 = X and V3 U V4 = Y such that

VI U V2 U V3 U 114 is an MI-partition of G. To find these sets, we construct an instance of

2SAT which will have solution, if and only if, such partition for X U Y exists.

We assign a variable Xv to each vertex v EX, and a variable Yv to each vertex v E Y.

For each u, v E X with uv E E(G), we add clauses Xu V Xv and ,Xu V ,Xv' Similarly, for

each u, v E Y with uv tJ- E(G), we add clauses Yu V Yv and 'Yu V 'Yv' Finally, for each

u E X and v E Y with uv tJ- E(G), we add clauses Xu V Yv and ,Xu V'Yv'

We show that the above clauses are satisfiable, if and only if, there exists an MI-partition

VI U V2 U V3 U V4 of G with X = VI U V2 and Y = V3 U V4 . Suppose that such partition

exists; set Xv = true, if v E Vi, and Xv = false, if v E V2 , and set Yv = true, if v E V3, and

Yv = false, if v E V4 . Consider clauses Xu V Xv and ,Xu V ,Xv for u, v E X with uv E E(G).

Since both VI and V2 are independent sets, it follows that u E VI and v E V2 , or u E V2 and
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v E VI. Hence, either Xu = true and Xv = false, or Xu = false and Xv = true. In either

case, the two clauses are satisfied. By symmetry, also the clauses Yu V Yv and 'Yu V 'Yv

are satisfied for each u, v E Y with uv tJ- E(G). Finally, consider u E X and y E Y with

uv tJ- E(G). Since we have all edges between VI and V3, and also all edges between V2 and

V4, it follows that either u E V2 and y E V3, or u E VI and y E V4. Hence, either Xu = false

and Yv = true, or Xu = true and Yv = false. Again, in either case the clauses Xu V Yv and

,Xu V 'Yv are satisfied. This shows that all clauses are satisfied.

Now, suppose that we have a truth assignment which satisfies the above clauses. We

put v E X into VI, if Xv = true, and into V2 if Xv = false. Also, we put v E Y into

V3, if Yv = true, and into V4, if Yv = false. Clearly, Vi U V2 = X, V3 U V4 = Y, and

VI U V2 U V3 U V4 is a partition of V(G). We show that it is, in fact, an MI-partition. First,

if Vi contains adjacent vertices u, v E X, then we must have Xu = Xv = true, but then the

clause ,Xu V ,Xv is not satisfied. Similarly, if V2 contains adjacent vertices u, v EX, then

the clause Xu V Xv is not satisfied. This proves that both VI and V2 are independent sets,

and, by symmetry, we also have that V3 and V4 are cliques. Now, consider u E Vi and v E V3

such that uv tJ- E(G). Hence, Xu = true and Yv = true, but then the clause ,Xv V'Yv is

not satisfied. Similarly, if u E V2 and v E V4, the clause Xv V Yv is not satisfied. Therefore,

this proves that Vi U V2 U V3 U V4 is indeed an MI-partition of G.

We now analyze the complexity. It is known that 28AT for m clauses C with n variables

VI, ... , V n can be solved by constructing a digraph D whose vertices are the variables and

their negations, and which has arcs (,x, y) and (,y, x) for each clause X V Y in C . (Note

that X E {Vi, ,vd and y E {Vj, 'Vj} for some i,j E {I ... n}.) Now, the clauses Care

satisfiable, if and only if, there is no variable i E {I ... n} such that there is a directed path

from Vi to ,Vi, and a directed path from 'Vi to Vi in D. In other words, clauses Care

satisfiable, if and only if, for each i E {I ... n}, the vertices Vi and 'Vi belong to different

strong components of D. The complexity now follows from the result of Tarjan [65], who

showed that computing strong components of any graph with n vertices and m edges can

be done in time O(n + m). Hence, also, solving 28AT for m clauses on n vertices can be

done in time O(n + m). (Observe that D has 2n vertices and 2m edges.)

In our instance of 28AT, we have a variable for each vertex of G, and at most one clause

for each pair of variables, that is, n variables, and O(n2 ) clauses.

Now, since we have O(n8 ) choices for sets X and Y, this gives total running time O(nlO ).

(Recall that enumerating sets X, Y also takes O(n lO ) since G is chordal.) 0
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Theorem 7.2. The P3-free Kk-transversal problem is solvable in the class of chordal graphs

in time a (n 2k (nk3(4k)k + m)).

Proof. Again, recall that a chordal graph G is P3-free, if and only if, G is a join of a clique

and an independent set. Also, a chordal graph G is Kk-free, if and only if, X(G) ::::; k - 1.

Now, let M 2 be the (k + 1) x (k + 1) matrix in Figure 7.1. It follows that a chordal graph

G has a P 3-free Kk-transversal, if and only if, G is M 2-partitionable.

As in the above proof, we have that M 2 is (A2, B 2, C2 )-block matrix, where A2 corre­

sponds to all k-colourable graphs, and B 2 corresponds to all cliques. Recall that a matrix

JVl is crossed, if each non-* element of M belongs to a row or a column of non-* elements.

It can be clearly seen that C2 is crossed. Hence, by Theorem 2.3, there exists a polynomial

time algorithm for the list M 2-partition problem. We now explain details of this algorithm.

Similarly, as in the above proof, we have that using the sparse-dense algorithm of

Theorem 2.1, we can enumerate in time O(n2k+2(n + m)) all O(n2k ) partitions of G into an

A2-partitionable graph G[X] and a B 2-partitionable graph G[Y]. In fact, since G is chordal,

we can find one such partition in time O(n(n + m)) by testing each maximal clique C of

G whether X(G - C) ::::; k. Hence, we only need O(n2k (n + m)) time to enumerate all such

partitions.

For each such partition X U Y, we assign to each vertex v of X a list R(v) = {I ... k},

and remove k from the list R(v) of each vertex v E X which has a non-neighbour in Y.

Then we use the algorithm from Theorem 2.2 to decide whether G[X] has an A2-partition

which respects the lists R. This has complexity O(nk3(4k)k). If such partition VI U ... U Vk

exists, we have that VI U ... U Vk U Y is a M 2-partition of G, since all vertices of Vk are

necessarily adjacent to all vertices of Y. (Each vertex v E Vk has k E R(v), and hence, by

the above, v must be adjacent to each vertex of Y.) Conversely, if G admits an M 2-partition

VI U ... U Vk U Vk+I such that Y = Vk+ll then all vertices of Vk are completely adjacent

to Y, and hence, the above procedure will not remove k from their lists. It follows that

VI U ... U Vk is an A2-partition of G[X] which respects the lists R, and hence, the algorithm

from Theorem 2.2 must successfully produce an A2-partition of G[X].

Altogether, the total complexity of the above algorithm is O(n2k (nk3(4k)k + m)), and

that concludes the proof. 0

In fact, using the above proof, one can show the following more general result.
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Theorem 7.3. Let M be a k x k matrix with entries {O, 1, *} and all 0 on the diagonal. Then

the problem of deciding, whether a chordal graph admits a partition into an M -partitionable

graph and a P 3 -free graph, is solvable in time O(n2k+2(nk 5 (4k)k + m)). 0

Theorem 7.4. The Krfree Kk-transversal problem is solvable in the class of chordal graphs

in time O(n + m).

Proof. First, we show that a chordal graph G has a Kj-free Kk-transversal, if and only

if, X(G) ::; k + j - 2. First, suppose that G has a Kj-free Kk-transversal S. Since G[S] is

Kj-free and G - S is Kk-free, we have w(G[S]) ::; j - 1 and w(G - S) ::; k - 1. Hence, also

X(G[S]) ::; j - 1 and X(G - S) ::; k - 1, since G is chordal (and hence perfect). Therefore,

X(G) ::; k +j - 2. On the other hand, if X(G) ::; k +j - 2, let SI U... USk+j-2 be a partition

of the vertex set of G into k + j - 2 independent sets (in other words, a proper colouring

of G). Let S = SI U ... U Sj-l. Clearly, X(G[S]) ::; j - 1 and X(G - S) ::; k - 1. Hence,

w(G[S]) ::; j -1 and w(G - S) ::; k -1, which shows that S is a Kj-free Kk-transversal of G.

Now, it follows that testing whether a chordal graph G has a Krfree Kk-transversal

amounts to computing X( G) and testing whether X( G) ::; k +j - 2, which can be easily done

in O(n + m) time. 0

Theorem 7.5. Let M be a k x k matrix with entries {O, 1, *} and all 1 on the diagonal, and

let P be an induced hereditary class of graphs recognizable in time T(n, m). Then the problem

of deciding, whether a chordal graph admits a partition into an M -partitionable graph and

a graph from P, is solvable in time 0 (n2k (T(n, m) + nk2)), or in a (T(n, m) . n) if k = 1.

Proof. The algorithm for this problem is a modification of the algorithm from Theorem

2.2 for matrix partitions of chordal graphs for I-diagonal matrices. It works as follow. First,

it finds a perfect elimination ordering 1r of the input graph G, and assigns to each vertex

v E V(G) a list £(v) = {I ... k}. Next, for each 1 ::; i ::; k, it either decides that the set Vi

is empty, or chooses two vertices Xi, Yi of G, and sets £(Xi) = £(Yi) = {i}. Then it removes

i from the list £(v) of each vertex v which appears in 1r before Xi or after Yi, and, for each

Z E V(G) and each j E {I ... k}, it removes j from £(z), if ZXi or ZYi is an edge and Mi,j = 0,

or if ZXi or ZYi is not an edge and Mi,j = 1.

After that, the algorithm finds the set X of all vertices v E V(G) with £(v) =I- 0, and

tests whether G - X belongs to P. If this succeeds, the algorithm returns Xu V(G - X)

as a partition of G into an M-partitionable graph and a graph from P. If this does not
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succeed for all of the above choices (of vertices Xi, Yi), the algorithm announces that no such

partition of G exists.

We now argue correctness of this algorithm. Suppose that the algorithm returns a

partition Xu V(G - X). Clearly, G - X is in P. Recall that X consists of all vertices v

with £(v) f 0. For each v E X, we pick i E £(v), and put v E Ui. We show that UI, .. ' ,Uk is

an M-partition of G[X]. Suppose otherwise, and let U E Ui and v E Uj be distinct vertices

such that either uv E E(G), and Mi,j = 0, or uv (j. E(G), but Mi,j = 1. Assume the

former, and without loss of generality, let 11"(u) < 11"(v). Then, clearly, v f Yi since j (j. £(Yi),

and YiV (j. E(G), because otherwise the algorithm would have removed j from £(v). Hence,

U fYi, and 11"(u) < 11"(Yi)' Now, since Mi,i = 1, we must have YiU E E(G), but then, also

YiV E E(G), since 11"(u) < 11"(Yi), and 11"(u) < 11" (v) , a contradiction. (Note that 11" is a perfect

elimination ordering.) Similarly, in the latter case, we obtain 11"(Xj) < 11"(u) < 11"(v), and

XjV E E(G), XjU E E(G), which gives uv E E(G), and hence, a contradiction.

On the other hand, suppose that G admits a partition into an M-partitionable graph

G[X*] and a graph G - X* E P, and let 11" be the perfect elimination ordering of G used

by the algorithm. Let Ui, ... , Uk be an M-partition of G[X*]. For each 1 ::; i ::; k with

ut f 0, let xi to be the first and yi to be the last vertex of Ut in the ordering 11". Now,

consider the step of the algorithm in which it considers Ui empty for those i such that

Ut = 0, and considers Xi = xi and Yi = yi for all other i. We show that the algorithm will

successfully return a partition of G. Let £ be the lists computed by the algorithm. First,

we observe that for each 1 ::; i ::; k, and each v E Ut, since Ui, ... ,Uk is an M -partition

of G[X*], we have that v is adjacent to Xj, Yj for those j such that Mi,j = 1, and v is not

adjacent to Xj, Yj for those j such that Mi,j = O. (Note that Xj, Yj E U;.) Hence, the

algorithm will not remove i from £(v), which implies that £(v) f 0.

It now follows that X* ~ X, where X is the set of vertices v with £(v) f 0, which is

constructed by the algorithm. Hence, G - X is an induced subgraph of G - X*, and, since

P is an induced hereditary class, we have G - X E P. This proves that the algorithm will

successfully return a valid partition of G.

Finally, we argue the complexity. Clearly, for each 1 ::; i ::; k, we have 1 + n + G) ::; n 2

choices for the vertices Xi, Yi (including the choice when Ui = 0). Hence, altogether, there are

n2k choices. For each such choice, we compute the lists £ in time O(k2n) by testing, for each

vertex v, the edges and non-edges between v and vertices Xl, YI, ... ,Xk, Yk. Then we find the

set X in time O(kn) by examining the lists £, and test whether G - X E P in time T(n, m).
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It clearly follows that the running time of the above algorithm is 0 (n 2k (T(n, m) +nk2)).

On the other hand, if k = 1, we necessarily have "NI = (1), and instead, we find all maximal

cliques of G in time O(n + m), and, for each such clique C, we test whether G - C E P.

The correctness of this procedure follows easily, and the complexity is clearly O(T(n, m) .n),

since there are at most n maximal cliques in G. That concludes the proof. D

As a corollary, we obtain the following theorem.

Theorem 7.6. The P3-free (the P 3-free) Kk-transversal problem is solvable in the class of

chordal graphs in time O(n2k - 2(nk2 + m)), or O(n(n + m)) if k = 2.

Proof. Let G be a chordal graph, and let X be the set of all dominating vertices of G. We

show that G is P3-free, if and only if, G - X is an independent set. Clearly, if G - X is an

independent set, then G is a join of a clique and an independent set, and hence, Gis P 3-free.

(Observe that the vertices of X induce a clique in G.) On the other hand, suppose that

G is P 3-free, but G - X contains adjacent vertices u, v. Then, since both u and v are not

dominating G, there exist vertices u' and v' such that uu' tf- E (G) and vv' tf- E (G). If also

uv' tf- E(G), then u,v,v' is an induced P 3 in G. Similarly, ifu'v tf- E(G), then u,v,u' is an

induced P3 in G. Hence, we must have uv' E E(G), and u'v E E(G). Now, if u'v' tf- E(G),

then u',v,v' is an induced P 3 . Hence, u'v' E E(G), which implies that u,v,u',v' is an

induced C4 in G, but G is chordal, a contradiction.

Hence, it clearly follows that the above implies an O(n + m) time algorithm for rec­

ognizing chordal P 3-free graphs. Also, recognizing P3-free graphs G can be done in time

O(n + m) by computing the connected components of G.

The claim now follows immediately from Theorem 7.5. D

Theorem 7.7. Let M be a k x k matrix with entries {O, 1, *} and all 0 on the main di­

agonal. Then the problem of deciding, whether a chordal graph admits a partition into an

M-partitionable graph and a P3-free graph, is solvable in time O(nk(nk34k )).

Proof. For an input chordal graph G on n vertices, let M 3 be the (n + k) x (n + k) matrix

depicted in Figure 7.1, which is constructed from !vI and n x n matrix whose all diagonal

entries are 1, and all off-diagonal entries are O. Recall a graph is P3-free, if and only if, it is a

disjoint union of cliques. Hence, it follows that G admits a partition into an "NI-partitionable
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graph and a P3-free graph, if and only if, G is M3-partitionable. (Note that for each size

of G, we have a different matrix.)

Now, recall the algorithm from Theorem 2.2 for the list M-partition problem on graphs

of treewidth at most k -1, which we describe in detail in Section 2.2. There, we remark that

this algorithm works, in fact, for any matrix M, not only those M with all diagonal entries O.

Hence, we can use this algorithm to decide whether or not G admits an M3-partition. All

we need to argue is the complexity.

Unfortunately, the treewidth ofG can be as large as n, and the matrix M 3 is of size n+k,

and hence, the analysis from Section 2.2 gives a running time of O(n4 (n + k)n 4n+k). That,

clearly, is not polynomial in n, and it is due to the fact that the analysis assumes that the

number of possible pairs (3, S) is 2n+k(n + k)n. However, this is not the case for M3 .

In what follows, we show that the number of pairs (3, S), which are explored by the algo-

rithm, is polynomial in n. First, since G is chordal, for any M3-partition :E = VI U U Vn+k

of G, and any v E V(T), there is at most k vertices in X(v) which belong to VI U U Vk

(the parts corresponding to the matrix M), since VI, ... ,Vk are independent sets. This gives

n k possibilities for such vertices. Moreover, X(v) can contain vertices of at most one set Vi,
where j E {k+ 1 ... n+ k}, since for each i, i' E {k+ 1 ... n+ k}, we have no edges between Vi
and ViI, and X (v) is a clique. This gives n choices for j, but, in fact, it suffices to investigate

only one such choice, because all other choices are obtained by renaming the sets Vi.
In addition, when processing a forget node v, every time we are adding a pair (3, S)

into F(v) (recall that 3 = VI U ... U Vn+k is an M 3-partition of X(v)), we remove from S

any j E {k + 1 ... n + k} such that Vi = 0. Clearly, no vertex of G considered later in the

algorithm will be adjacent to any vertex of Gv - X(v), and hence, for such j, there will be

nothing to check, so we can safely remove it from S. This gives that any such S will contain

at most one j E {k + 1 ... n + k}, and again, by symmetry, it suffices to investigate only two

choices (either there is such j in S or there is no such j in S). Hence, 2k+ I possibilities for S.

Altogether, we have that there are only 2(2n)k possible pairs (3, S) for any F(v). There­

fore the total running time of this algorithm is O(n2 k2 (4n)k), and, in fact, a more careful

analysis gives O(nk3 (4n)k), which concludes the proof. 0

As a corollary, we obtain the following theorem.

Theorem 7.8. For each k, the P3 -free Kk-transversal problem is solvable in the class of

chordal graphs in time O(nkk34k). 0
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Finally, we prove the following theorem whose special case has been shown in [3]. Recall

that the symbol I±J denotes the operation of disjoint union of graphs.

Theorem 7.9. Let P be an additive induced hereditary class of (chordal) graphs, and H be

any graph. Then the problem of deciding, whether a (chordal) graph admits a partition into

an H -free graph and a graph from P, can be polynomially reduced to the problem of deciding,

whether a (chordal) graph admits a partition into a (HI±JKI)-free graph and a graph from P.

Proof. Consider an instance to the former problem, namely, a graph G. Let F be any

minimal forbidden subgraph for P, and let G' be the disjoint union of G and F. Observe

that if G is chordal and P is a class of chordal graphs, then also G' is also chordal. Now, the

claim will follow once we show that G admits a partition into an H-free graph and a graph

from P, if and only if, G' admits a partition into an (HI±JKI)-free graph, and a graph from

P. First, let VI U V2 be a partition of G such that G[VI] is H-free, and G[V2] E P. Let v

be any vertex of F. Clearly, F - v is in P, since F is a minimal forbidden subgraph for P.

Hence, also G[V2] I±J (F - v) is in P, since P is additive. Moreover, G[VI] I±J {v} is clearly

(H I±J KI)-free, since G is H-free. Therefore, V{ = VI U {v} and V~ = V2 U V(F - v) is the

required partition for G'. Now, suppose that G' admits a partition VI U V2 such that G'[VI]

is (H I±J KI)-free, and G'[V2] E P. Clearly, the vertices of the subgraph F of G' cannot all

belong to V2 , since F is a forbidden subgraph for P. Hence, there must exist a vertex v in

F with v E VI. It follows that, if G[VI n V(G)] contains H as an induced subgraph, then

G'[VI] is not (H I±J KI)-free, since the copy of H together with the vertex v give a copy of

H I±J K I . Hence, it follows that V{ = VI n V(G) and V; = V2n V(G) is the required partition

of G, and that concludes the proof. 0

As a corollary, we obtain the following theorem.

Theorem 7.10. For each k ~ 4, the P 3 -free Pk-transversal problem is NP-complete in the

class of chordal graphs.

Proof. The proof follows easily from the previous theorem. The problem is clearly in N P.

By Theorem 6.1, the P2-free Pk-transversal problem is N P-hard in the class of chordal

graphs. Hence, by Theorem 7.9, also the P 3-free Pk-transversal problem in N P-hard in the

class of chordal graphs, which shows the claim. 0
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In this section, we extend the results of Chapter 6 to the class of strongly chordal graphs.

We say that a perfect elimination ordering -< of a graph G is a strong elimination

ordering, if for any vertices u -< v -< W -< z, if UZ, uw and vw are edges of G, then also vz is

an edge. A graph G is called strongly chordal, if there exists a strong elimination ordering

of the vertices of G. It can be seen that the class of strongly chordal graphs is a subclass

of chordal graphs, but also a superclass of the class of interval graphs and of the class of

chordal comparability graphs (the graphs both chordal and comparability).

We remark that for strongly chordal graphs, a forbidden induced subgraph characteriza­

tion is known due to Farber [25]. A k-sun is a graph formed by a cycle va, VI, ... , vk-I with

edges ViVi+1 (and possibly other edges), and an independent set Wo, WI, ... Wk-I, where Wi

is adjacent only to Vi and Vi+1 (all indices are taken modulo k).

Theorem 7.11. {25} A graph G is strongly chordal, if and only if, for all k 2: 3, G does

not contain a k-sun as an induced subgraph.

Recall that a block of a graph G is a (set) maximal induced subgraph that cannot be

disconnected by a removal of a single vertex, a cutvertex of G is a vertex of G whose removal

disconnects G, a dominating vertex of G is a vertex of G adjacent to all other vertices of

G, and a twin of a vertex of G is an adjacent vertex having the same set of neighbours. We

have the following simple observations (not only) about strongly chordal graphs.

Proposition 7.12. Let C be a induced hereditary class of graphs.

(i) If all minimal forbidden induced subgraphs of C have no cutvertices, Then for any

graph G, the graph G is in C, if and only if, all blocks of G are in C.

(ii) If all minimal forbidden induced subgraphs of C are connected, then for any graph G,

the graph G is in C, if and only if, all connected components of G are in C.

(iii) If all minimal forbidden induced subgraphs of C have no dominating vertices, then for

any graph G, the graph G is in C, if and only if, a graph constructed from G by adding

a dominating vertex is in C.

(iv) If all minimal forbidden induced subgraphs of C have no twins, then for any graph G,

the graph G is in C, if and only if, a graph constructed from G by adding a twin of a

vertex of G is in C.
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Proof. Suppose that G is in C. Then, clearly, since C is induced hereditary, all blocks of G

must be in C. On the other hand, if G is not in C, then G must contain a minimal forbidden

induced subgraph F of C. If F contains a cutvertex v of G, then v must be a cutvertex of F

as well, since F is an induced subgraph of G. But, by (i), F contains no cutvertices. Hence,

F must be contained in a block of G, which proves the claim.

Similarly, if G is in C, then all connected components of G must be in C, since C is

induced hereditary, and if G is not in C, then it contains a minimal forbidden induced

subgraph F, which, by (ii), is connected, and hence it completely belongs to a connected

component of G.

Now, suppose that the graph G' constructed from G by adding a dominating vertex v is

in C. Since G is an induced subgraph of G', also G must be in C. On the other hand, if G'

is not in C, then G' must contain a minimal forbidden induced subgraph F of C. Suppose

that v is in F. Since v is adjacent to all vertices of G, and F is an induced subgraph of

G', it follows that, in F, the vertex v is adjacent to all other vertices of F. But, by (iii),

F contains no dominating vertex. Therefore, v is not in F, and hence, F is an induced

subgraph of G which implies that G is not in C.

Finally, suppose that the graph G' constructed from G by adding a twin v of a vertex u

of G is in C. Then, similarly, since G is an induced subgraph of G', G must also be in C. On

the other hand, if G' is not in C, then G' contains a minimal forbidden induced subgraph F

of C. Suppose that F contains both u and v. Again, since F is an induced subgraph of G',

u and v must also be twins in F. But, by (iv), F contains no twins. Hence, either u is not

in F or v is not in F. In both cases, since G' - u is clearly isomorphic to G' - v = G, we

obtain that G also contains F as an induced subgraph, and that proves the claim. 0

We observe that all minimal forbidden induced subgraphs of chordal graphs and strongly

chordal graphs, by Theorem 7.11, are connected and contain no cutpoints, dominating

vertices, or twins. Hence, the previous observation applies to both classes.

We now prove that all graphs used in the proofs of Theorem 6.1 are strongly chordal,

which will prove the following extension of this theorem.

Theorem 7.13. Let 2 ::; j ::; k and 4 ::; k. Then it is NP-complete to decide, for a given

strongly chordal graph G, whether G has a Pj-free Pk-transversal. It is also NP-complete

to decide, for a given strongly chordal graph G, whether G has a Kj-free Pk-transversal.
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Proof. To prove this theorem, we show that the graphs in Figures 6.1, 6.3, 6.4, 6.5, 6.6,

6.7, and 6.8, are all strongly chordal.

We start with the graphs Gi and Yj in Figure 6.1. We observe that the graph Yj

is clearly strongly chordal, since it does not contain any k-sun. This proves that Go is

strongly chordal. For all other i 2: 1, we prove by induction on i that Gi is also strongly

chordal. Hence, assume that Gi - 1 is strongly chordal, and consider the graph Gi . Let 1r be

t 1·· t' d' f G YH h th t'l 2 -1 -2 - .as rong e1m1na Ion or ermg 0 i-I' vve S ow a 1r = V i ,Vi , ... ,Vi ,Vi , ... ,1r,Vi,Vi IS

a strong elimination ordering of Gi . First, it is easy to see that 1r' is a perfect elimination

ordering. Now, consider vertices u, v, W, z appearing in 1r' in this order such that UW, uz, vw

are edges of Gi , but vz is not an edge. Since both Vi and Vi are adjacent to all vertices of

Gi-1, it follows that umust be either a vertex vt or a vertex vt for some j. Hence, w is a

vertex of G i - 1 , and z is either Vi or Vi. Now, by the construction of Gi , w is not adjacent

to any other vertex v{ or v( Hence, V must be in Gi - 1 , so we have an edge between V and

z, a contradiction. This proves that 1r' is a strong elimination ordering of Gi , and hence Gi

is strongly chordal.

Now, consider the graphs Fi
k in Figure 6.3. The graph Ff is trivially strongly chordal.

Also, the graph F~ is strongly chordal, which follows, by Proposition 7.12, from the fact that

v is a dominating vertex of F~, and the chordless path U1, ... ,Uk contains no k-sun. Now,

by induction, suppose that Fi~l is strongly chordal. Observe that all blocks of Fi
k are either

copies of FL1 or the graph F{, where k' = max{2, k - 2i +4}. Hence, by Proposition 7.12,

also Fi
k is strongly chordal. Similarly, since the blocks of the graph Hj in Figure 6.5 are

either the graphs Fl or paths, we have that the graph Hj is strongly chordal. By the same

argument, the graphs Bj and Dj in Figure 6.5 are also strongly chordal.

Now, consider the graphs G~ and Yj in Figure 6.6. Again, we have that the blocks of

Yj are either copies of Bg or paths, which shows that both Yj and Gb are strongly chordal.

Now, by induction, assume for i 2: 1 that G~-l is strongly chordal. Let H be the disjoint

union of G~-l and the chordless path Zi, b, C, d, Zi of G~, and H' be the graph constructed

from H by adding the vertices Xi, Xi and vt, vt for all j. Observe that H is strongly chordal,

and it is an induced subgraph of H' dominated by Vi and Vi. Now, the argument from

first paragraph of this proof for Gi- 1 = Hand Gi = H', precisely gives that H' is strongly

chordal. Since H' is also a block of G~, and all other blocks of G~ are either copies of Bg or

paths, it follows that G~ is also strongly chordal.

Next, consider the graphs G' , Gil, and Gil in Figure 6.7. Assuming that G is strongly
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chordal, we immediately have that both G' and Gil are also strongly chordal, since their

blocks are the blocks of G, the copies of Bj or Dj, and paths, and, clearly, each is strongly

chordal. For Gill, consider the block H of Gil' containing G. Observe that y is a dominating

vertex of H, and hence, it suffices to show that H - y is strongly chordal. But the only

non-path block of H - y is formed by the graph G dominated by x, and hence, since Gis

strongly chordal, we have that H is also strongly chordal. Now, clearly, also Gil' is strongly

chordal, since all other blocks of Gil' are copies of F!:-2 or F!:_l'

Finally, consider the graph G* in Figure 6.8. Let H be the graph constructed from G

by adding a dominating vertex v, and a chordless path UI, ... ,Uk = v attached to v. Again,

by Proposition 7.12, if G is strongly chordal, H is also strongly chordal. Now, we observe

that G* is precisely the graph that is obtained from H by adding j - 1 twins of each of

UI, ... ,Uk-I, and j - 3 twins of v. By Proposition 7.12, this implies that G* is strongly

chordal, and that concludes the proof. 0

7.2 Chordal Comparability Graphs

Recall that a graph G is comparability, if there exists an orientation F of its edges E(G)

such that F is transitive. The class of chordal comparability graphs is defined as the class

of all graph which are both chordal and comparability.

In this section, we prove that the problem of P4-free P4-transversals is trivial in chordal

comparability graphs, that is, we show that any chordal comparability graph has a P4-free

P4-transversal. This is in contrast to both Theorem 6.1 and Theorem 7.13, since the class

of chordal comparability graphs is a subclass of both chordal and strongly chordal graphs.

We prove this theorem by proving an interesting property of perfect elimination orderings

of chordal comparability graphs.

A perfect elimination ordering -< of a graph G is called a simple elimination ordering,

if for any U -< v -< W, either the neighbours x >- U of ware also neighbours of v, or

the neighbours x >- U of v are also neighbours of w. It is known that a graph G has a

simple elimination ordering, if and only if, G is strongly chordal [25]. In fact, any strong

elimination ordering is also a simple elimination ordering, but not conversely, although, it

is known that one can in time O(n + m) transform any simple elimination ordering into a

strong elimination ordering [59]. Since chordal comparability graphs are strongly chordal,
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we also have that there exists a simple elimination ordering for any chordal comparability

graph. It turns out that there exists an O(n + m) time algorithm [6] which, given a chordal

comparability graph G, constructs a simple elimination ordering of G. This ordering can

be then used to solve a number of combinatorial problems, such as the maximum matching

problem, efficiently. In contrast, note that, at the time of writing, no linear time algorithm

for constructing a simple elimination ordering of a strongly chordal graph is known.

The actual algorithm which constructs a simple elimination ordering of a chordal com­

parability graph is known as Cardinality Lexicographic Breadth-First Search (CLexBFS),

which is a modification of the usual LexBFS (see Section 1.2). This algorithm works almost

exactly as LexBFS, but instead of choosing any vertex with lexicographically largest label,

it always chooses a vertex of the largest degree among the vertices with lexicographically

largest label. We summarize this algorithm below as Algorithm 7.1.

Algorithm 7.1: Cardinality Lexicographic Breadth-First search.

Input: A graph G

Output: An elimination ordering 1r

1 set label(v) <- 0 for all v E V( G)

2 for i <- n downto 1 do

3 pick an unnumbered vertex v with the largest degree among

the vertices with lexicographically largest label

4 1r(i) <- v /* the vertex v becomes numbered */
5 for each unnumbered w adjacent to v do

6 append i to label(w)

We shall make use of the following property of CLexBFS.

Proposition 7.14. Let -< be an elimination ordering of a graph G computed by CLexBFS.

Then, for any two vertices u, v of G with N(u) ~ N(v) or N[u] ~ N[v], we have u -< v.

Proof. Let u and v be two vertices of G with N(u) ~ N(v) or N[u] ~ N[v]. Observe that

at any step of the CLexBFS algorithm, the label of any vertex is formed by the numbers

assigned to the processed neighbours of that vertex. Since any neighbour of u is also a

neighbour of v, it clearly follows that until one of the two vertices is chosen by the algorithm,
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their labels are identical. Now, suppose that v -< u, and consider the step of the algorithm

at which u is chosen to be the next processed vertex. This is a step at which u is a vertex

with the largest degree among the vertices with lexicographically largest label. But since

the degree of u is smaller than the degree of v, and, by the above, the labels of u and v at

that point in the algorithm must be identical, the algorithm must choose v instead as the

next vertex, a contradiction. Hence, u -< v as claimed. D

Now, let F be an orientation of the edges of a graph G, and Jr = (VI, V2, .. . ,vn ) be any

permutation of the vertices of G. Let GF be the oriented graph formed by the vertices of G

and the arcs F. We shall call a vertex Vi smooth with respect to F and Jr, if Vi is neither a

source nor a sink in GF[VI, V2,'" ,Vi], that is, Vi has both an incoming edge in F from some

Vj, j < i, and an outgoing edge in F to some Vk, k < i.

Let CY1[(F) be the number of vertices in G which are smooth with respect to F and Jr.

We say that F is a uniform orientation of G with respect to Jr, if CY1[(F) = O.

Figure 7.2: Transforming a transitive orientation into a uniform transitive orientation.

Lemma 7.15. For any chordal comparability graph G, there exists a transitive orientation

F of G which is uniform with respect to some simple elimination ordering Jr of the vertices

of G. In addition, there exists an O(n + m) time algorithm for constructing F.

Proof. Let Jr be an elimination ordering of G computed by CLexBFS, and let F be a

transitive orientation of G with least possible value of CY1[(F). By [6], the ordering Jr is, in

fact, a simple elimination ordering of G. We show that F must be uniform with respect to

Jr, that is, CY1[(F) = O.
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If not, then let i be the largest index such that Vi is smooth with respect to F and 1r.

Let A be the neighbours Vk of Vi with ViVk E F and k < i, and A' be the neighbours Vk of

Vi with ViVk E F and k > i. Similarly, let B be the neighbours Vk of Vi with VkVi E F and

k < i, and B ' be the neighbours Vk of Vi with VkVi E F and k > i (see Figure 7.2a). Since Vi

is smooth, we must have A =f 0 and B =f 0. Moreover, since Vi has the largest index among

the smooth vertices, we have that no vertex in A' UB ' is smooth. Also, since F is transitive,

we must have ba E F for every b E B U B ' and a E A U A'. Now, let Vj be the vertex

with the smallest index j among the neighbours of Vi. Without loss of generality, we may

assume that Vj E A (otherwise, we use F- 1 in place of F). Clearly, every neighbour Vk of Vi

has k 2: j. Moreover, Vj is simplicial in G[Vj,Vj+l,'" ,vn ], since 1f is a perfect elimination

ordering. Hence, B U B' must be a clique, and since no vertex of B ' is smooth, we must

have bib E F for all b' E B ' and bE B. Now, consider any vertex bin B. From the above, b

is adjacent to all vertices of A, B, A', and B ' , and hence, we have N[b] ~ N[Vi]' However,

b appears in 1f before Vi, and hence, by Proposition 7.14, N[b] = N[viJ.

Now, let F ' be the orientation of G obtained from F by reversing the direction of the

arcs between Vi and the vertices of B (see Figure 7.2b). We show that F ' is a transitive

orientation of G. Suppose that x, y, z is a transitive violation in F ' , that is, xy E F ' , yz E F '

but xz t/. F'. Since F is transitive, we must have that either x = Vi, Y E Band z E A u A',

or x E B ' , y = Vi and z E B. But in both cases, we have xz E F ' , a contradiction. Hence,

this shows that F ' must be transitive. However, Vi is no longer smooth with respect to F '
and 1f, and, clearly, any vertex which was not smooth with respect to F and 1f is also not

smooth with respect to F' and 1f. This contradicts the choice of F, and the claim follows.

Now, we explain how we can construct a uniform transitive orientation of G with respect

to some simple elimination ordering 1f of G. First, we obtain a transitive orientation of G.

This can be accomplished in time O(n + m) using the algorithm of [46]. Then we run

the algorithm CLexBFS on G to obtain a simple elimination ordering 1f. After that, we

process the vertices of G in the reverse of 1f. If we encounter a smooth vertex Vi, we scan its

neighbourhood and pick a vertex Vj with the smallest index j. Then, again by scanning the

neighbourhood of Vi, we orient the edges between Vi and its neighbours Vk, where k < i, so

that they have the same direction as the arc between Vi and Vj in F. By the above argument,

this cannot create a transitive violation. After that, we process next vertex. Clearly, each

vertex Vi is processed in time O(IN(Vi)I). Hence, the total running time is O(n + m). 0
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Now, as a consequence of the above, we obtain the main theorem of this section.
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Theorem 7.16. Every chordal comparability graph G has a P4 -free P4 -transversal. This

transversal can be found in time O(n + m).

Proof. By Lemma 7.15, we have that there exists a simple elimination ordering Jr =
VI, ... ,Vn of G and a transitive orientation F of G, which is uniform with respect to Jr.

We partition the vertices of G into two sets X and Y with the property that for any two

adjacent vertices Vi, Vj with i < j, if Vi and Vj are both in X, then ViVj E F, and if Vi and

Vj are both in Y, then VjVi E F.

We process the vertices of G in the order given by Jr. A vertex Vk is placed into X, if

there is no Vi E X with i < k which is adjacent to Vk and VkVi E F. Similarly, Vk is placed

into Y, if there is no Vj E Y with j < k which is adjacent to Vk and VjVk E F. Since F

is uniform, the vertex Vk must be either a sink or a source in G[VI, ... , Vk], and hence it

follows that one of the above steps is always possible.

Now, we show that both X and Y induce P4-free subgraphs in G, which will give the

result. Suppose that Vi, Vj, vk, VI with edges ViVj, VjVk and VkVI is a P4 in X. Without loss

of generality, suppose that ViVj E F. Then, since F is transitive, we must have VkVj E F,

and VkVI E F, since otherwise we would either have ViVk E F, or VIVj E F, and ViVk, VjVI

are not edges of G. Hence, by the above property of X, we must have i < j, k < j and

k < l. But Jr is a perfect elimination ordering, which gives that Vj and VI must be adjacent,

a contradiction. A similar argument for Y shows that also Y induces P4-free subgraph.

Finally, we discuss the complexity of the above procedure. First, using Lemma 7.15, we

obtain F and Jr. Then we process the vertices of G in the order of Jr, and for each vertex

Vk, we look in the neighbourhood of Vk for a vertex Vi with i < k. If ViVk E F, we put Vk in

X, otherwise we put Vk in Y. Since F is uniform, we can pick any such vertex Vi, and the

outcome will be the same. This processing, clearly, takes only O(IN(Vi))1 time, and hence,

O(n + m) for the whole procedure. D

We close this section by mentioning the following open problems.

Problem 7.17. Determine the complexity of the stable P4 -transversal problem in the class

of chordal comparability graphs.

Problem 7.18. Determine the complexity of the P3 -free P4 -transversal problem in the class

of chordal comparability graphs.



Chapter 8

Injective Colourings

In this chapter, we investigate properties of injective colourings in chordal graphs.

An injective colouring of a graph G is a colouring c of the vertices of G that assigns

different colours to any pair of vertices that have a common neighbour. (That is, for any

vertex v, if we restrict c to the (open) neighbourhood of v, this mapping will be injective;

whence the name.) Note that injective colouring is not necessarily a proper colouring, that

is, it is possible for two adjacent vertices to receive the same colour. The injective chromatic

number of G, denoted Xi(G), is the smallest integer k such that G can be injectively coloured

with k colours.

Injective colourings are closely related to (but not identical with) the notions of locally

injective colourings [32] and L(h, k)-labellings [5,8,40]. In particular, L(O, l)-labellings, un­

like injective colourings, assign distinct colours only to non-adjacent vertices with a common

neighbour.

Injective colourings were introduced by Hahn, Kratochvfl, Siniii and Sotteau in [42].

They attribute the origin of the concept to complexity theory on Random Access Machines.

They prove several interesting bounds on Xi(G), and also show that, for k 2: 3, it is NP­

complete to decide whether the injective chromatic number of a graph is at most k. Here we

look at the complexity of this problem when the input graphs G are restricted to be chordal.

In the following sections, we show that determining Xi (G) is still difficult when re­

stricted to chordal graphs. In fact, it is not only N P-hard, but unless N P = Z P P, the

injective chromatic number of a chordal graph cannot be efficiently approximated within a

factor of n 1/3-£, for any E > O. (Here Z P P is the class of languages decidable by a ran­

domized algorithm that makes no errors and whose expected running time is polynomial.)

143
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For split graphs, this is best possible since we show an ij71-approximation algorithm for the

injective chromatic number of a split graph. Utilizing a result of [48], we show that this is

also true for all chordal graphs.

On the positive side, we show that for any fixed k, one can in time O(n . k . k(k/2+1)2)

determine whether a chordal graph can be injectively coloured using no more than k colours.

Moreover, we describe large subclasses of chordal graphs that allow computing the injective

chromatic number efficiently. We show that for a chordal graph G, one can efficiently

compute the injective chromatic number of G from the chromatic number of the square of

G - B(G), that is, the graph G with its bridges B(G) removed. It follows that for strongly

chordal graphs and power chordal graphs (the graphs whose powers are all chordal) the

problem is polynomial time solvable.

8.1 Basic properties

We start with the following simple observation.

Observation 8.1. For any graph G, we have Xi(G) 2: ~(G) and X(G2 ) 2: ~(G) + 1.

Proof. For any two neighbours u, w of v, the vertex v is their common neighbour; hence,

u, w must have different colours in any injective colouring of G. Similarly, since the distance

of u and w is at most two (u, v, w is a path of length two connecting them), they must have

different colours in any proper colouring of G2 , and in addition the colours of u, w must be

different from the colour of v, since they are adjacent to v. D

For trees this is also an upper bound.

Proposition 8.2. For any tree T, we have Xi(T) = ~(T) and X(T2 ) = ~(T) + 1.

Proof. Let u be a leaf in T, and let v the parent of u. Then we clearly have that

X(T2) = max {deg(v) + 1, X((T - u)2)} and Xi(T) = max {deg(v), Xi(T - u)}. The claim

now follows by induction on the size of T. D

Now, we look at the general case. Let G(2) be the common neighbour graph of a graph G,

that is, the graph on the vertices of G, in which two vertices are adjacent, if they have a

common neighbour in G. It is easy to see that the injective chromatic number of G is exactly

the chromatic number of G(2). In general, as we shall see later, properties of the graph G(2)
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can be very different from those of G. For instance, even if G is efficiently colourable, e.g.

if G is perfect, it may be difficult to colour G(2). Note that any edge of G(2) must be also

an edge of G2 (but not conversely). This yields the following inequality.

Proposition 8.3. For any graph G, we have Xi(G) ::; X(G2
). [J

In fact, this inequality can be strengthened. Let F(G) be the set of edges of G that

do not lie in any triangle. Note that an edge of G is also an edge of G(2) if and only if it

belongs to a triangle of G. This proves the following proposition.

Proposition 8.4. For any graph G, we have Xi(G) = X(G2 - F(G)). D

Now we turn to chordal graphs. The following is a direct consequence of Proposition 3.4.

Observation 8.5. Any edge in a bridgeless chordal graph lies in a triangle. D

Let B(G) be the set of bridges of G. Since a bridge of a graph can never be in a triangle,

we have the following fact.

Proposition 8.6. For any chordal graph G, we have Xi(G) = X(G2 - B(G)). D

Now, since B(G - B(G)) = 0, we have the following corollary.

Corollary 8.7. For any chordal graph G, we have Xi(G - B(G)) = X((G - B(G)?). D

It turns out that there is a close connection between Xi (G - B(G)) and both the injective

chromatic number Xi(G) of G and the chromatic number X(G2) of the square of G.

Proposition 8.8. For any graph G, we have X(G2) = max {.b.(G) + 1, X((G - B(G))2)}

Proof. Let k = max {.b. (G) + 1, X ( (G - B (G)?) }. It follows from Observation 8.1 and

Corollary 8.7 that X(G2) ~ k. We fix a set of k colours (k ~ X((G - B(G)?)), and consider

a colouring of (G - B(G))2 using these k colours. Now, using this colouring, we add the

bridges of G one by one, modifying the colouring accordingly. Let uv be a bridge of G and

let X and Y be the connected components which become connected by the addition of uv.

Suppose that u E X and v E Y. We can permute the colours of X and Y independently

so that u and v obtain the same colour i. Since we have k ~ .b.(G) + 1 colours, there must

be a colour j # i not used in the neighbourhood of v in Y. Using the same argument for

u, we may assume that j is not used in the neighbourhood of u in X. Finally, we exchange
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in X the colours i and j. It is easy to see that after adding all bridges of G one by one, we

obtain a proper colouring of G2 . 0

A similar argument proves the next proposition.

Proposition 8.9. For any split graph G, we have Xi(G) = max{.6.(G),Xi(G - B(G))}

Proof. As in the above proof, we let k = max{.6.(G),Xi(G - B(G))} and assume that we

have an injective colouring of G - B(G) using some fixed k colours. Now, if uv is a bridge of

G with deg(u) 2: deg(v), then either G is a tree and the claim follows from Proposition 8.2,

or deg(v) = 1. Hence, if the colour of u is not used in the neighbourhood of u, we can

use this colour to colour v. Otherwise, since we have k 2: .6.(G) colours, there must exist a

colour not used in the neighbourhood of u, and we can use it to colour v. This way we add

all bridges of G one by one, and clearly obtain an injective colouring of G. 0

Finally, combining Corollary 8.7, and Propositions 8.8 and 8.3, we obtain the following

tight upper and lower bound on the injective chromatic number of a chordal graph.

Proposition 8.10. For any chordal graph G, we have

8.2 Hardness and approximation results

In this section, we focus on hardness results for the injective chromatic number problem.

We begin by observing that it is N P-hard to compute the injective chromatic number of a

split graph. This also follows from a similar proof in [42]; we include our construction here,

since we shall extend it to prove an accompanying inapproximability result in Theorem 8.13.

Theorem 8.11. It is NP-complete for a given split (and hence chordal) graph G and an

integer k, to decide whether the injective chromatic number of G is at most k.

Proof. First, we observe that the problem is clearly in N P. We show it is also N P-hard.

Consider an instance of the graph colouring problem, namely a graph G and an integer l. We

may assume that G is connected and contains no bridges. Let HG be the graph constructed

from G by first subdividing each edge of G and then connecting all the new vertices. That is,

V(HG) = V(G) U {xuv I uv E E(G)}

E(HG) = {uxuv,vxuv I uv E E(G)} U {xstXuv I uV,st E E(G)}
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The graph H G can clearly be constructed in polynomial time. It is not difficult to see that

HG is a split graph, hence it is also chordal. Moreover, one can check that the subgraph of

Hb induced on the vertices of G is precisely the graph G. Since G is bridgeless, HG is also

bridgeless, hence using Proposition 8.6 we have the following.

Xi(HG) = x(Hb) = X(G) + m

Therefore, Xi(HG) is at most k = l+m, if and only if, X(G) is at most l. That concludes

the proof. 0

By Proposition 8.10, for any chordal graph G, the injective chromatic number of G is

either X( G2
) or X( G2

) - 1. Interestingly, merely distinguishing between these two cases is

already NP-complete.

Theorem 8.12. It is NP-complete to decide, for a given split (and hence chordal) graph G,

whether Xi(G) = X(G2
) - 1.

Proof. To show that the problem is in N P, one has to observe that by Propositions 8.8

and 8.9, for a split graph G, Xi(G) = X(G2
) - 1, if and only if, Xi(G - B(G)) ~ b.(G). For

chordal graphs, it follows similarly from Theorem 8.20. We now show that the problem is

also N P-hard. It is known [47] that it is NP-complete to decide whether a planar graph

has a 3-colouring. Consider an instance of this problem, a planar graph G. By the Four

Colour Theorem [18], we have X(G) ~ 4. Also, we can assume that X(G) 2: 3, since whether

G is bipartite can be determined in polynomial time. As in the proof of Theorem 8.11,

we assume that G is bridgeless. Now, let H be the graph HG from the proof of Theorem

8.11 augmented with a vertex z adjacent to all X uv and with four vertices a, b, c, d adjacent

only to z. Now, since HG is bridgeless, the edges az, bz, cz, dz are the only bridges of H.

Hence, Xi(H - B(H)) = X(G) + m + 1 2: m + 4. It is easy to see that b.(H) = m + 4, since

any X uv is adjacent to exactly two non-clique vertices. So, by Propositions 8.8 and 8.9, we

have the following.

X(G) + m + 1 = Xi(H) ~ X(H 2
) = max{b.(G) + 1, X(G) + m + I} = m + 5

Therefore, Xi(H) = X(H2
) - 1, if and only if, G is 3-colourable, which is N P-hard to

decide. That concludes the proof. 0

We remark that a 4-colouring of a planar graph G can always be efficiently constructed

[55]. Hence, in the proof above, an optimal colouring of H 2 is always efficiently constructible.
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Therefore, it follows that Theorem 8.12 holds even if, along with G, we are provided with

an optimal colouring of G2
.

Now, we extend the proof of Theorem 8.11 to show that under a certain complexity

assumption, it is not tractable to approximate the injective chromatic number of a split

(chordal) graph within a factor of n 1/3- f for all f > O.

Theorem 8.13. Unless NP = ZPP, for any f > 0, it is not possible to efficiently approxi­

mate X( G2 ) and Xi (G) within a factor of n 1/3-f, for any split (and hence chordal) graph G.

Proof. In [30], it was shown that for any fixed f > 0, unless NP = ZPP, the problem of

deciding whether X(G) ::; n f or a(G) < n f for a given graph G is not solvable in polynomial

time. Consider an instance of this problem, namely a graph G. Again, as in the proof of

Theorem 8.11, we may assume that G is connected and bridgeless. Let Hk,G be the split

graph constructed from k copies of H G (the graph used in the proof Theorem 8.11) by

identifying, for each uv E E(G), all copies of X uv ' That is, if VI, V2, ... ,Vn are the vertices

of G, we have

Now, since G is bridgeless, Hk,G is also bridgeless. Consider an independent set I of H~,G'

It is not difficult to check that either I trivially contains only a single vertex X uv , or for each

pair of vertices u i , vj E I, the vertices u and v are not adjacent in G. Hence, it follows that

from any colouring of H~,G' one can construct a fractional k-fold colouring of G (that is, a

collection of independent sets covering each vertex of G at least k times) by projecting each

non-trivial colour class of H~,G to G, that is, mapping each ui to u. Using this observation,

we obtain the following inequalities.

k·n 2
a(G) + m ::; k· Xf(G) + m ::; X(Hk,d = Xi(Hk,G) ::; k· X(G) + m

Therefore, if X(G) ::; n f , then x(H~,d ::; k . n f + m, and if a(G) < n f then x(H~,d >
k . n 1- f + m. Now, we fix k = m, and denote by N the number of vertices in Hm,G'

For n ::::: 21/ f, we obtain the following.

I-f + 1
m· n m > _nl-2f > nl-3f > (m. n + m)~(1-3f) = N~-f
m· n f + m - 2 - -
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1
Hence, if we can efficiently (N3-£)-approximate the colouring of H~ G' then we can,

decide whether X(G) :::; n£ or a(G) < n£. That concludes the proof. 0

Note that a seemingly stronger result appeared in [1]. Namely, the authors claim that the

chromatic number of the square of a split graph is not (nl / 2-£)-approximable for all E> O.

However, this result is not correct. In fact, we show below that there exists a polynomial

time algorithm vn-approximating the chromatic number of the square of a split graph G,

and also vn-approximating the injective chromatic number of G. Note that this is also a

strengthening of best known yin-approximation algorithm for the chromatic number of the

square in general graphs (d. [1]). We need the following lemma.

Lemma 8.14. For chordal graphs, the injective chromatic number is a-approximable if and

only if the chromatic number of the square is a-approximable. 0

Proof. First, suppose that we have an a-approximation algorithm A for the chromatic

number of the square of a chordal graph. Observe that, if G is chordal, then also the graph

G - B(G) is chordal. Hence, we can use A to a-approximately colour the square of G - B(G)

using k :::; a· X( (G - B(G))2) colours, which also gives us an injective colouring of G - B(G).

Then, using Corollary 8.27 and Theorem 8.31, we can extend this colouring to an injec­

tive colouring of G using no more than max{Xi (G), k} colours. This, clearly, is an a­

approximation of Xi(G), since k :::; a . Xi(G - B(G)) :::; a . Xi(G). The converse follows simi­

larly, since, by Proposition 8.8, we can similarly extend any injective colouring of G - B(G)

using k colours into a colouring of G2 using no more than max{k, ~ (G) + I} colours. 0

Theorem 8.15. There exists a polynomial time algorithm that given a split graph G ap­

proximates X(G 2) and Xi(G) within a factor of vn.
Proof. Let G be a connected split graph with a clique X and an independent set Y.

Denote by H the subgraph of G2 induced on Y. Let p = lXI, N = IV(H)I, and M =

IE(H)I. Clearly, X(G 2) = p+ X(H). Consider an optimal colouring of H with colour classes

VI, V2 , ... , Vx(H)' Let E ij be the edges of H between Vi and Vj. Clearly, for each edge

uv E E ij , there must exist a vertex X uv in X adjacent to both u and v. Moreover, for any

two edges uv, st E Eij , we have X uv i- Xst, since otherwise we obtain a triangle in H[Vi UVj]'

which is bipartite. Hence, p 2: IEijl, and considering all pairs of colours in H, we conclude

that p 2: M/(X(!j)) 2: 2M/X2 (H).
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Now, a simple edge count shows that any graph with t edges can be coloured with

no more than 1/2 + J2t + 1/4 colours. Such a colouring can be found by a simple greedy

algorithm [18]. We can apply this algorithm to H, and use additional p colours to colour the

vertices of X. This way we obtain a colouring c of G2 using at most p + 1 + v'2M colours.

Using the lower bound from the previous paragraph, we prove the following inequalities

(assuming M 2: 6).

p+ 1 + J2M < p+ 1 + J2M < (2M)1/6 < N1/3 < n 1/ 3

X(G2) - p+jYf - --

We concentrate on the second inequality (the other inequalities are obvious). We assume

p 2: 0, M 2: 0, and substitute z2 = P and a6 = 2M. We observe that the denominator in

the fraction on the left is always positive; hence, we can multiply the whole inequality by

the denominator without affecting the direction of the inequality sign. Hence, we have

Also, since z 2: 0, we can multiply both sides with z. By rearranging the terms, we obtain

Now, we fix sufficiently large a > 1, and consider the function f(z) on the left-hand side.

By taking the derivative of f(z), we can compute the extremes Zl = v!(a3 + 1)/(a - 1),

and Z2 = -v!(a3 + 1)/(a - 1). Using the second derivative, we obtain that f(z) achieves

minimum in Zl 2: 0 and maximum in Z2 :::; O. Hence, if f(Zl) 2: 0, then f(z) 2: 0 for all z 2: o.
By taking sufficiently large a, we can guarantee that f(Zl) 2: 0, and the above inequality

follows. (In fact, a more careful analysis reveals that a 2: 1.5, and hence, M 2: 6 suffices.)

Hence, the colouring c is an .vn-approximation of X(G2 ), and using Lemma 8.14, we can

also obtain a colouring which is a .vn-approximation of Xi(G). 0

It turns out that the above result can be strengthened and its proof simplified using the

following result from [48].

Theorem 8.16. [48] Let G be a chordal graph with maximum degree ~ 2: 1. Then:

x(G
k

) S l 91k - 118(~+ 1)(k+l)/2j + ~ + 1 = O(Vk~(k+l)/2)
384
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We remark that, in fact, the proof of the above result implies a simple polynomial time

greedy algorithm for obtaining a proper colouring of G2 achieving the bound.

Now, we can prove the strengthening of Theorem 8.15.

Theorem 8.17. There exists a polynomial time algorithm that given a chordal graph G

approximates X(G2) and Xi(G) within a factor of Vii.

Proof. Let G be a chordal graph on n vertices with maximum degree .6. 2: 1. First, suppose

that .6. 2: n2/3 - 1. Hence, by Observation 8.1, X(G2) 2: .6. + 1 2: n2/3 . Now, a colouring

that assigns a different colour to each vertex of G uses exactly n colours, and it is clearly

a proper colouring of G2, which achieves approximation ratio n/x(G2) ::; n/n2/3 = n 1
/ 3 .

On the other hand, if .6. < n 2/ 3 - 1, then, by the previous theorem, we can obtain in

polynomial time a proper colouring of G2 using at most !(.6. + 1)3/2 +.6. + 1 colours. Again,

X(G2 ) 2: .6. + 1, and hence, (assuming n 2: 8) the colouring achieves approximation ratio

!(.6. + 1)3/2 +.6. + 1 !(.6. + 1)3/2 +.6. + 1 _ 1 (A )1/2 1 1/3 1/3
X(G2) ::; .6.+1 -"2 u + 1 +1<"2n +1::;n .

The second part of the claim again follows by Lemma 8.14.

8.3 Exact algorithmic results

o

Now, we focus on algorithms for injective colouring of chordal graphs. Although, computing

the injective chromatic number of a chordal graph is hard, the associated decision problem

with a fixed number of colours has a polynomial time solution, that is, the problem is fixed

parameter tractable. We need the following lemma.

Lemma 8.18. For any chordal graph G, the treewidth of G2 is at most i.6.(G)2 + .6.(G).

Proof. Let (T, X) be a clique-tree of G and define X' (u) = X (u) U N (X (u)) for each

u E V (T). It is not difficult to check that (T, X') is a tree decomposition of G2 . We now

bound the size of X'(u) for all u E V(T), and thus, bound the treewidth of G2.

IX'(u)1 = IX(u)l+ L (deg(x)-IX(u)l+l)::; IX(u)I(.6.(G)-IX(u)I+2)::; (.6.~G) +1)~
xEX(u)

The inequalities above follow from the fact that X (u) is a clique, deg(x) ::; .6. (G), and that

the third expression attains its maximum when IX(u)1 = .6.(G)/2 + 1. 0
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Theorem 8.19. Given a chordal graph G and a fixed integer k, one can decide in time

O(n· k . k(k/2+1)2) whether Xi(G) ::; k and also whether X(G2) ::; k.

Proof. It is easy to see that if Xi(G) ::; k or if X(G2) ::; k, then .6.(G) must be at most k.

Thus, if .6.(G) > k, we can reject G immediately. Using Lemma 8.18, we can construct in

time O(nk2) a tree decomposition (T,X) ofG2 whose width is at most k2/4+k. Now, using

standard dynamic programming techniques on the tree T (d. [18, 28] and Theorem 2.4),

we can decide in time O(n· k· k(k/2+1)2) whether X(G2) ::; k and whether Xi(G) ::; k. 0

Now, we show that for certain subclasses of chordal graphs, the injective chromatic

number can be computed in polynomial time (in contrast to Theorem 8.11). First, we

summarize the results; the details are presented in subsequent sections.

We call a graph G a power chordal graph, if all powers of G are chordal. Recall that in

Propositions 8.8 and 8.9, we showed how, from the chromatic number of the square of the

graph G - B(G), one can compute X(G2) for any graph G, respectively Xi(G) for a split

graph G. The following theorem describes a similar property for the injective chromatic

number in chordal graphs. The proof will follow from Corollary 8.27 and Theorem 8.31,

which we prove in Sections 8.3.2 and 8.3.4, respectively.

Theorem 8.20. There exists an O(n + m) time algorithm that computes Xi(G) given a

chordal graph G and Xi(G - B(G)). Using this algorithm one can also construct an optimal

injective colouring of G from an optimal injective colouring of G - B(G) in time O(n +m).

Proof. Let G be a chordal graph, and let k be the injective chromatic number of G - B(G).

By Corollary 8.7, Xi(G) ::::: k. Now, using Corollary 8.27, we can obtain an injective clique

decomposition (T, X) of G such that the vertices of T can be partitioned into two sets Vb

and lit, where for each vertex v E Vb, the graph G[X(v)] is bridgeless, and for each vertex

v E lit, the graph G[X(v)] is perfectly tree-dominated. For v E Vb, the graph G[X(v)]

must clearly be a subgraph of G - B(G), and hence Xi (G[X(v)]) ::; k. For v E lit, we can

compute Xi (G[X(v)]) and an optimal injective colouring of G[X(v)] using Theorem 8.31.

Now, by Proposition 8.24, we can obtain Xi(G) by taking the maximum of k and the values

of Xi (G[X(v)]) for v E lit. By the same argument, if we have an optimal injective colouring

of G - B(G), we can obtain an optimal injective colouring of G. 0

For induced-hereditary subclasses of chordal graphs, we have the following property.
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Proposition 8.21. Let C be an induced-hereditary subclass of chordal graphs. Then the

following statements are equivalent.

(i) One can efficiently compute x(G2
) for any GEe.

(ii) One can efficiently compute Xi (G - B(G)) for any GEe.

(iii) One can efficiently compute Xi(G) for any GEe.

This follows from Theorem 8.20, Proposition 8.8, and the fact that each connected

component of G - B(G) must be in C. In some cases, e.g., in the class of power chordal

graph, this is true even if C is not induced-hereditary. The following corollary will follow

from Theorem 8.20 and Corollary 8.29, which we prove in Section 8.3.3.

Corollary 8.22. The injective chromatic number of a power chordal graph can be computed

in polynomial time.

This implies that the injective chromatic number of a strongly chordal graph can also

be computed in polynomial time.

Finally, observe that due to Theorem 8.12, one cannot expect the property from Propo­

sition 8.21 to hold for any subclass of chordal graphs.

8.3.1 Injective structure

In order to prove Theorem 8.20, we investigate the structural properties of graphs G that

allow efficient computation of Xi (G). In this section, G refers to an arbitrary connected

graph (not necessarily chordal).

We say that a vertex separator of G is a clique separator, if it induces a clique in G. A tree

decomposition (T, X) of G is a decomposition by clique separators, if for any uv E E(T), the

set X(u) nX(v) induces a clique in G. This type of decomposition of graphs was introduced

and studied by Tarjan [65]. The decomposition turns out to be particularly useful for the

graph colouring problem; namely, one can efficiently construct an optimal colouring of G

from optimal colourings of G[X(u)] for all u E V(T). We define and study a similar concept

for the injective colouring problem. Recall that G(2) denotes the common neighbour graph

of G defined in Section 8.1.

We say that a subset S of vertices of Gis injectively closed, if for any two vertices x, yES

having a common neighbour in G, there exists a common neighbour of x and y that belongs

to S. A subset S of vertices of G is called an injective clique, if S induces a clique in G(2).
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Note that an injective clique is not necessarily injectively closed in G. A subset of vertices

S of G is called an injective separator of G, if Sis injectively closed in G, S is a separator of

G(2), and G(2) is connected. Note that G(2) can be disconnected even if G is connected, e.g.,

if G is bipartite. An injective decomposition of G is a tree decomposition (T, X) of G such

that for any uv E E(T), the set X(u) n X(v) is an injective separator of G. An injective

separator S is an injective clique separator, if S is also an injective clique. An injective

clique decomposition is an injective decomposition (T, X) such that for any uv E E(T), the

set X (u) n X (v) is an injective clique. Note that any injective clique decomposition of G is

a decomposition of G(2) and G2 by clique separators.

We have the following properties.

Lemma 8.23. Let (T, X) be an injective decomposition of a graph G. Then for each

u E V (T), the set X (u) is injectively closed.

Proof. Let x, y be vertices of X(u) having a common neighbour z in G. Suppose that

z rf. X(u). Then, since (T,X) is a tree decomposition, the vertices u' for which z E X(u')

all belong to a connected component C of T - u. Let v be the (only) neighbour of u in C.

Now, since xz, yz are edges, there must exist w, w' E V(T) such that x, z E X(w) and

y, z E X(w'). Clearly, w, w' E C. Hence, it follows that x, y E X(v). But, since (T, X) is

an injective decomposition, the set X (u) n X (v) must be injective closed, and hence, there

must exists a common neighbour z' E X(u) n X(v) ~ X(u) of x, y. 0

Theorem 8.24. Let (T, X) be an injective clique decomposition of a graph G. Then

Xi(G) = X(G(2)) = max X(G(2) [X(u)]) = max Xi(G[X(U)]).
uEV(T) uEV(T)

Proof. The first equality is by definition. We obtain the second equality from the fact

that (T, X) is a decomposition of G(2) by clique separators. The last equality follows easily,

since by Lemma 8.23, we have G(2) [X(u)] = G[X(U)](2) , and by definition X(G[X(u)](2)) =

Xi(G[X(U)]). 0

8.3.2 Computing Xi(G) in chordal graphs

In this section, we focus on injective clique decompositions of chordal graphs. We have the

following simple fact.
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Observation 8.25. Let H be a bridgeless graph having a dominating vertex. Then H is an

injective clique.

Proof. Let u be a vertex that dominates H. Clearly, u is a common neighbour of any two

vertices of H - u. Now, if v is a vertex of H - u, then v must have a neighbour w in H - u,

hence w is a common neighbour of u and v. 0

We say that a graph Gis injectively decomposable, if G contains an an injective clique sep­

arator S; we say that S injectively decomposes G. A graph G is injectively indecomposable, if

it is not injectively decomposable. A graph G is called perfectly tree-dominated, if G contains

an induced tree T, such that any vertex and any connected component of G - V(T) has

exactly one neighbour in T. For such T, we say that T perfectly dominates G, or that G is

perfectly dominated by T.

The following statement relates injectively indecomposable chordal graphs and perfectly

tree-dominated graphs.

Proposition 8.26. Any perfectly tree-dominated graph is injectively indecomposable. Any

injectively indecomposable chordal graph is either perfectly tree-dominated or bridgeless. 0

Proof. Let G be perfectly dominated by a tree T. We can assume that G i= T since

otherwise G(2) is disconnected, and hence has no separators. Suppose that G has an injective

clique separator S. It is easy to check that S contains at most one vertex of T. Suppose that

S does not contain any vertex of T. Since S is an injective clique, G[S] must be connected,

and S belongs completely to some connected component of G - V(T). Hence, by definition,

there exists some vertex u in T that is adjacent to all vertices of S. But then S cannot be

a separator, since any vertex of G - S is reachable from u. Now, suppose that S contains a

vertex u of T. It follows similarly that u must be adjacent to all vertices of S \ {u }. Consider

any vertex x of G - S that is adjacent to some vertex of S. It easily follows that x must

be adjacent to u. But then S cannot be an injective separator, since u is adjacent to all

components of G - S.

Now, let G be an injectively indecomposable chordal graph that contains a bridge but

is not perfectly tree-dominated. Let F be the subgraph of G induced on the vertices of the

bridges B(G) of G, and let T be any connected component of F. Clearly, T is a tree. Since G

is not perfectly tree-dominated, there must exist a vertex x in G that is not adjacent to any

of the vertices of T. Since G is connected, consider the vertex u of T that is closest to x in G.
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Let v be any neighbour of u in T, and let 5 = {u} u 50, where 50 = N(u) \ V(T). Since G

is chordal, G[5] must be bridgeless, and it is dominated by u. Hence, by Observation 8.25,

5 is an injective clique in G, and 5 is injectively closed. Now, since 5 clearly separates x

from v in G(2), we have that S is an injective clique separator, therefore S decomposes G,

however, Gis injectively indecomposable. 0

The property above has an important corollary.

Corollary 8.27. For any chordal graph G, there exists an injective clique decomposition

(T, X) of G, such that for any u E V (T), the set X (u) induces either a bridgeless graph or

a perfectly tree-dominated graph. This decomposition can be constructed in time O(n + m).

Proof. First, we find the bridges B(G) of G. Then, we construct a tree decomposition

(T, X) of G such that for u E V(T), the set X(u) is either a connected component of

G - B(G), or a connected component T of G[B(G)] augmented with the neighbours of

T in G. It follows from the proof of Proposition 8.26 that (T, X) is a injective clique

decomposition. 0

8.3.3 Bridgeless chordal graphs

In this section, we describe some classes of chordal graphs G that allow efficiently computing

the chromatic number X(G2 ) of the square of G.

We focus on chordal graphs whose square is also a chordal graph. Clearly, for any such

graph G, one can efficiently colour its square. Chordal graphs whose powers are also chordal

were already studied in the past. In particular, it was shown by Duchet [22] that for any k,

if Gk is chordal, then also Gk+2 is chordal. Therefore, if a chordal graph G has a chordal

square, then any power of G must be chordal, that is, G is power chordal. Interestingly,

many known subclasses of chordal graphs, e.g. trees, interval graphs, and strongly chordal

graphs, were shown to be power chordal [1]. Moreover, Laskar and Shier [51] found the

following subgraph characterization of power chordal graphs. Recall that a k-sun is a graph

formed by a cycle va, VI, ,Vk-I with edges ViVi+1 (and possibly other edges), and an

independent set Wo, WI, Wk-I, where Wi is adjacent only to Vi and Vi+1 (all indices are

taken modulo k). A k-sun of a graph G is suspended in G, if there exists a vertex z in G

adjacent to Wi and Wj, where j i=- i and j i=- i ± 1 modulo k.
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Theorem 8.28. [51] A graph G is power chordal, if and only if, any k-sun of G, k 2: 4, is

suspended.

Using this characterization, we obtain the following corollary.

Corollary 8.29. If G is power chordal, the graph G - B(G) is also power chordal.

Proof. Let Va, ... ,Vk-l, Wo,.·· , Wk-l be a k-sun S in G suspended by z, that is, there exist

i < j such that z is adjacent to Wi and Wj' It follows that neither ZWi nor ZWj is a bridge,

since Wi, Vi+l, Vi+2, ... , Vj, Wj, Z is a cycle in G. Hence, S is also suspended in G - B(G). 0

Note that, by Theorem 8.28, strongly chordal graphs are trivially power chordal, since no

strongly chordal graph can contain an induced k-sun, k 2: 3 [25]. Also, notice that the class

of power chordal graphs is not induced-hereditary (closed under taking induced subgraphs),

since a graph that contains a k-sun can be power chordal, but the k-sun itself (taken as an

induced subgraph) is not.

8.3.4 Perfectly tree-dominated graphs

In this final section, we show how to efficiently compute the injective chromatic number of

a perfectly tree-dominated graph.

First, we have the following property.

Proposition 8.30. For any perfectly tree-dominated graph G, we have

Proof. Let G be perfectly dominated by T. Observe that any two vertices from G - V(T)

that are adjacent must be both adjacent to the same vertex of T. Hence, we can construct a

graph H from G by removing all edges between the vertices of G - V (T), and it follows that

X(G2 ) = X(H2 ). Now, clearly, H is a tree, and from Observation 8.1 and Proposition 8.2,

we obtain ~(G) + 1 S X(G2
) = X(H2

) = ~(H) + 1 S ~(G) + 1. 0

Now, let G be a perfectly tree-dominated graph. If G is a tree, then by Proposition 8.2,

we have Xi(G) = ~(G), and a greedy injective colouring of G will be optimal. Otherwise,

let Te be a minimal tree perfectly dominating G. We define a tree decomposition (T, X)

of G as follows. We set T = Te, and for u E V(T), we set X(u) = N(u) U {u}. Clearly,
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x (u) n X (v) = {u, v} is injectively closed, and the set X (u) n X (v) is a separator of C(2) .

Hence, it follows that (T, X) is an injective decomposition of C. Using this decomposition,

we can find Xi(C) in time O(n + m) as we show in the following theorem

Theorem 8.31. The injective chromatic number Xi (C) and an optimal injective colouring

of a perfectly tree-dominated graph C can be computed in time O(n + m).

Proof. The algorithm follows from Theorem 2.4. A straightforward application of this

theorem gives time complexity 0(.6. 2 . n), where .6. is the maximum degree in T. Unfortu­

nately, .6. can be as large as 8(n). To make the algorithm run in O(n + m), we need the

following simple observation.

Let PI, P2, ... ,Pt be integers and for any i let mi = max{Pj I j i- i}. Then the values mi

for all i can be computed in time O(t).

The proof is as follows. Let Ph and Pl2 be the largest and the second largest element

among PI, ... ,Pt respectively. Clearly, if h i- i then mi = h, otherwise mi = 12 .

Recall that, in the colouring algorithm from Theorem 2.4, we tested, for each colouring c

of a bag X (v), whether there are matching colourings ew of X (v) n X (w) for the children w

of v, and then we took the maximum of the number of colours used c, and m, which was the

maximum of m(ew) among all children w of v, where m(cw ) is the minimum colours needed

to extend Cw to the graph Cw ' Computing these numbers turns out to be costly in our case.

In what follows, we show how to compute these numbers faster, using the above observation.

Let UI, ... ,Uk be the children of v in T. Since C(2) [X (v) nX (Ui)] is just a pair of isolated

vertices, there are only two different colourings, that is, either both vertices have the same

colour or they have different colours; let ci and c1, respectively, denote these two colourings.

Similarly for v, the bag X(v) induces in C(2) a disjoint union of a clique of size k and an

isolated vertex, and hence, either the isolated vertex has a colour different from the colours

of the clique, or has the same colour as some vertex in the clique. It follows that each such

colouring c of C(2) [X(u)] matches with at most one colouring ci for some i, and, for all

other j i- i, it matches only with cj. Hence, we use the observation above for the numbers

m(c1), ,m(c~) to obtain, in time O(k), the numbers mi = max{m(cj) I j i- i} for each

i E {I k}. This also gives us the value d = max{m(c1) liE {I ... k}} in the same time.

Now, it can be seen that the number of colours m(c) is the minimum of d and the numbers

max{mi,m(ci)} for all i E {I ... k}. This clearly takes another O(k) time to compute.
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Therefore, for all vertices v, the complexity is 2:vEV(T) O(deg(v)) = O(IV(T)I) = O(n).

Finally, we observe that one can obtain the tree decomposition (T, X) by computing the

blocks of G in time O(n + m). Hence, the theorem is proved. D
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P4 8N ap 8N bN 9N ap 8N
N N
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Notes: k, l 2: 3 and i, j 2: 4

1 [23] and Theorems 3.10, 3.15

2 [67] and Theorem 1.31

3 [62] and Theorem 5.7

4 [27] and Theorem 7.1

5 [28] and Theorems 7.2, 7.5
6 [3, 27] and Theorem 1.3
7 Theorems 7.7, 7.8

8 [63] and Theorems 6.1, 6.6,
9 Theorem 6.1
a Theorem 7.5

b Theorems 7.9

P == Polytime in general

N == NP-complete in chordal
p = P in chordal graphs
N - NPc in general graphs

Table 9.1: A summary of complexity results in chordal graphs and general graphs.

In Table 9.1, we summarize our results from previous chapters. The entry in column

X and row Y in the table indicates the complexity (both in general graphs and in chordal

graphs) of the problem of partitioning a vertex set of a graph into two parts, where one part

induces a X-free subgraph and the other induces a Y-free subgraph. Here, P stands for

polynomial time and N stands for NP-complete. The fraction';; indicates that the problem

160
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is NP-complete in general but polynomial time solvable in chordal graphs, whereas an

entry with P respectively N indicates a polynomial time solvable respectively NP-complete

problem in both classes.

As one could predict, some problems difficult in general graphs are polynomial time

solvable in chordal graphs, while other ones remain NP-complete. As in the case of general

graphs (Theorems 1.1 and 1.2), one would hope to obtain a complete characterization of

complexity of partitioning problems for chordal graphs. In this thesis, we made an important

step towards solving this by establishing complexities in a number of cases of partitioning

problems in chordal graphs, which were previously not known. Based on these results, we

would like to propose some generalizations (possibly even) leading to dichotomy theorems for

these problems in chordal graphs. Although, it is probably too early to conjecture a complete

dichotomy, it seems likely that a dichotomy for special types of these problems, just like the

ones we study in this thesis, can be proved. In particular, we conjecture the following.

Conjecture 9.1. Let H be a connected graph. Then the stable H -transversal problem in the

class of chordal graphs is NP-complete, if H itself is chordal and contains an induced P4 ,

and polynomial time solvable otherwise.

We remark that the conjecture has been confirmed in all the special cases we have

addressed in this thesis; however, there is more evidence for the conjecture.

It can be seen, by examining the proof of Theorem 6.6, that this proof, in many ways,

relies on the fact that P4-free graphs are closed under the operation of join. (Actually, in

chordal graphs, this is equivalent to being closed under adding a dominating vertex.) In

general, if H does not contain a dominating vertex, then the class of H-free graphs is closed

under adding a dominating vertex (see Proposition 7.12). If, in addition, H contains an

induced P4 , it appears that it should be possible to adapt the proof of Theorem 6.6 to

prove N P-completeness of the stable H-transversal problem in chordal graphs for such H

as predicted by the conjecture.

On the other hand, if a connected chordal graph H is P4-free, then it can be seen that

H must contain a dominating vertex, and therefore, the class of H-free graphs is not closed

under adding a dominating vertex. This suggest that it is not immediately possible to carry

out the steps of the proof of Theorem 6.6 for such H. This provides additional evidence for

the conjecture. Finally, the case of H with a P4 and a dominating vertex is supported by

the following theorem.
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Theorem 9.2. Let H be a chordal graph having no dominating vertex. Then the stable

H -transversal problem in chordal graphs is polynomially reducible to the stable H' -transversal

problem in chordal graphs, where H' is obtained from H by adding a dominating vertex.

Proof. Let H be a chordal graph with no dominating vertex, and let H' be the graph

constructed from H by adding a dominating vertex v. Also, let H" be the graph constructed

from H' by adding a twin to each vertex of H' with the exception of v. By Proposition 7.12,

both H' and H" are chordal. Now, we observe that each stable H'-transversal of H" must

contain the vertex v, and also H" - v is H'-free, since H has no dominating vertex.

Hence, let G be a graph, and let G' be the graph constructed from G by (i) adding

a dominating vertex u into G, then (ii) taking a disjoint union with H", and finally, (iii)

adding an edge between u and v. Clearly, G' is chordal. In fact, it is easy to see that G has

a stable H-transversal, if and only, if G' has a stable H'-transversal. Clearly, if 8 is a stable

H-transversal of G, then 8 u {v} is a stable H'-transversal of G' , since H" - v is H'-free.

On the other hand, if 8' is a stable H'-transversal of G' , then we must have v E 8' , and

hence u ¢ 8 ' . If G - 8' contains a copy of H, then G' - 8' contains a copy of H', since u

dominates G and u ¢ 8' . This shows that 8' n V(G) is a stable H-transversal of G, which

concludes the proof. D

Note that, in the above theorem, H is not necessarily connected. Finally, we close by

mentioning two similar problems we have not discussed in this thesis and whose complexity

is unknown at the time of writing.

Problem 9.3. Determine the complexity of the following problem. Given a chordal graph G,

decide whether the vertex set of G admits a partition into sets VI UV2UV3 such that G[VI] is

an independent set, and both G[V2] and G[V3 ] are disjoint unions of cliques.

Problem 9.4. For any fixed symmetric O-diagonal matrix M with entries {O, 1, *}, deter­

mine the complexity of the following problem. Given a chordal graph G, decide whether the

vertex set of G admits a partition into sets VI U V2 U V3 such that G[VI] is M -partitionable,

and both G[V2] and G[V3 ] are disjoint unions of cliques.
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