
EFFICIENT ALGORITHMS FOR NETWORK

CENTER/COVERING LOCATION OPTIMIZATION

PROBLEMS

by

Qiaosheng Shi

B.S., Nanjing University of Science and Technology, 1999

M.S., Institute of Computing Technology, Chinese Academy of Sciences, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

© Qiaosheng Shi 2008

SIMON FRASER UNIVERSITY

Spring 2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Qiaosheng Shi

Degree: Doctor of Philosophy

Title of thesis: Efficient Algorithms for Network Center/Covering Location

Optimization Problems

Examining Committee: Dr. Joseph G. Peters,

School of Computing Science, SFU

Chair

Dr. Binay Bhattacharya, Senior Supervisor

School of Computing Science, SFU

Dr. Pavol Hell, Supervisor

School of Computing Science, SFU

Dr. Thomas C. Shermer, SFU Examiner

School of Computing Science, SFU

Dr. Pat Morin, External Examiner,

School of Computer Science,

Carleton University

Date Approved:

ii

SFU
I

SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users
of the Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make
a digital copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at
<http://ir.lib.sfu.ca/handle/1892/112>)and,withoutchangingthecontent,to
translate the thesis/project or extended essays, if technically possible, to any medium
or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of
any multimedia materials forming part of this work, may have been granted by the
author. This information may be found on the separately catalogued multimedia
material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in part,
and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, BC,Canada

Revised: Summer 2007

Abstract

We consider the algorithmic issues for the center and covering location optimization prob­

lems in network metric space. The demand set consists of all points of the network that

require services and the supply set consists of all candidate locations of facilities in the

underlying network. The center location problems aim to establish an optimal placement of

facilities in the supply set in order to minimize the maximum distance from a demand point

to its closest facility. The covering location problems seek to establish the minimum number

of facilities such that the maximum distance from a demand point to its closest facility is no

more than a predefined non-negative value. There is a tight relationship between the two

problems. Generally, a solution for the covering location problem with a given value can be

used to test the feasibility of the value in the corresponding center location problem.

Four cases of the center problem and the corresponding covering problem, where the

demand set and the supply set are either subsets of the vertex set or subsets of the point set

of the underlying network, are considered. Moreover, when the demand set is a subset of

the vertex set, its weighted version of the problem is considered where each demand vertex

is associated with a non-negative weight.

We study the center/covering location problems in general networks as well as specialized

networks, such as tree networks, cactus networks, and partial k-tree networks for fixed k.

We also look at some variations of the network center/covering location problem in an edge­

weighted tree network, including conditional extensive facility location problems, continuous

p-edge-partition problems, and constrained covering problems.

Keywords: facility location optimization, p-center problems, covering location problems,

extensive facility, p-edge-partitions, parametric pruning.

iii

IV

To my wife Bei

"The journey of a thousand miles begins with a single step."

- Lao Tzu

v

Acknowledgments

lowe deep debt of gratitude to my senior supervisor, Dr. Binay Bhattacharya, for his

continuous support, skillful guidance, enthusiasm and patience over the past five years.

Binay gave me not only invaluable remarks on my research, but also insightful advices for

my career development. Without his help this work would have not been possible.

I would also like to acknowledge the members of my committee, Dr. Pavol Hell, Dr.

Thomas C. Shermer, and Dr. Pat Morin, for their time and effort.

I would like to express my sincere thanks to Dr. Arie Tamir at Tel Aviv University. His

valuable feedback contributed greatly to this thesis. I enjoy the fruitful discussions with

Arie and all the help from him.

I thank as well my dear friends and colleagues in and out of Simon Fraser University.

Especially, I would like to thank Robert Benkoczi, Zhengbing Bian, David Breton, Yuzhuang

Hu, Zengjian Hu, Wei Luo, Feng Ni, Zhongmin Shi, Yong Wang, and Xiang Zhang, for

memorable years at Simon Fraser University.

Thanks full of love go to my wife, Bei, for her understanding and constant support. Bei,

I just want you to know how happy I am to have you in my life.

Finally, I thank all those who I have not mentioned, but have encouraged me in so many

ways.

vi

Contents

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

1 Introduction

1.1 Network center/covering location problems

1.2 Review of related works

1.2.1 General networks

1.2.2 Tree networks ..

1.2.3 Tree-like networks

1.3 Generalizations of network center/covering location problems

1.3.1 Conditional extensive facility location problems

1.3.2 Continuous p-edge-partition problems

1.3.3 Constrained covering problems

1.4 Scope of this thesis

vii

ii

iii

iv

v

vi

vii

xi

xii

1

2

4

5

7

10

11

12

13

15

17

2 Continuous center problems in general networks

2.1 Main idea and overall approach .

2.2 Transformation of a local feasibility test to a KMP

2.3 Summary

3 Weighted p-center problems in tree networks

3.1 Notation and definitions ..

3.2 Weighted I-center problems

3.2.1 Megiddo's approach for the A(T)jV(T)jl model

3.2.2 A parametric-pruning approach for the A(T) jV(T) jl model

3.3 Weighted p-center problems (fixed p) .

3.3.1 Formal definition of constrained (8, i)-center problems

3.3.2 The main idea and overall approach

3.3.3 Constrained (0, h)-center problems

3.3.4 Important properties

3.3.5 Review of the overall approach

3.4 Weighted p-center problems on the real line

3.4.1 Main idea

3.4.2 The conditional I-center problem

3.4.3 The weighted p-center problem (fixed p)

3.4.4 The conditional p-center problem (fixed p) .

3.5 Summary .

4 Various p-center problems in tree-like networks

4.1 Weighted p-center problems in a partial k-tree .

4.1.1 The weighted discrete p-center problem

4.1.2 The weighted continuous p-center problem.

4.2 Various center problems in a cactus network

4.2.1 Weighted discrete and continuous I-center problems

4.2.2 The weighted continuous 2-center problem.

4.2.3 Various p-center problems

4.3 Summary

viii

19

20

21

26

27

28

29

29

31

33

34

35

37

40

49

50

51

52

55

57

58

59

60

60

66

67

68

72

81

84

5 Conditional extensive facility location in trees

5.1 Main idea of our algorithms .

5.1.1 Locating non-dominating vertices in an optimal solution

5.2 The weighted path-shaped center problem

5.2.1 Pruning the tree .

5.3 The weighted tree-shaped center problem

5.3.1 Pruning the tree

5.4 Summary .

6 Continuous tree p-edge-partition problems

6.1 Related works .

6.1.1 Spine decomposition of T

6.1.2 A linear-time feasibility test for the max-min CEP problem

6.1.3 A linear-time feasibility test for the min-max CEP problem

6.2 The max-min continuous edge-partition problem

6.2.1 Computation of q(v), v E V(T) \ {rT} ..

6.2.2 The main idea and overall approach ...

6.2.3 Computing edge-partitions at all /h-level spines, 1 "S: j "S: T

6.3 The min-max continuous edge-partition problem .

6.3.1 Computing edge-partitions at all current cluster vertices

6.4 An algorithm for the ratio search problem

6.5 Summary

7 Constrained covering problems in tree networks

7.1 Path networks .

7.1.1 Recursive functions for computing an optimal solution

7.1.2 An algorithm to compute p~(Vi), U~(Vi), i = 1, ... , n .

7.2 Extended-star networks .

7.2.1 Computing T]*(v), v E V(G)

7.3 Tree networks .

7.3.1 An algorithm to compute coverage matrices M(v),v E V(T) .

7.4 Summary .

8 Conclusion

IX

86

87

87

91

92

94

94

· 103

104

· 105

· 105

· 106

· 107

· 109

.109

· 110

· 111

· 119

· 120

· 121

· 125

126

· 127

· 127

· 133

· 136

· 136

· 145

· 147

· 150

151

Bibliography

x

156

List of Tables

1.1 The sets R of different models in T [20, 21, 47] 8

xi

List of Figures

1.1 Observation 1.2.2. 5

1.2 Main difference between continuous edge-partition and continuous partition.

(a) a tree network; (b) the vertex cut on vertex U and edge UV4 in a continuous

edge-partition; (c) the vertex cut on vertex U and edge UV3 in a continuous

edge-partition; (d) (e) (f) possible cuts (partitions) at vertex U in a continuous

partition. 14

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Mapping a 2-center local feasibility test to a 2-dimensional KMP.

Close, half-close, and open regions.

The reason for constructing a new set of rectangles. .

Lemma 2.2.1 (a) Case 1: YI is located at the origin; (b) Case 2: X2(yI) = 0;

(c) Case 3: XI(yI) = 0; (d) Case 4: XI(yI) i= 0 and X2(YI) i= o..
Lemma 2.2.1: (a) Y2; (b) Y3; (c) Y4· .

Subtree T' is anchored to vertex v.

Examples for Tv(u), real subtree, and core subtree.

Megiddo's method: (a) Subtree T' contains an optimal I-center and IV(T') I ::;

n/2; (b) W(Ui) ~ w(u~) and w(ui)d(Ui,O) ~ w(u~)d(u~,o); (c) W(Ui) = w(u~)

and d(Ui,O) < d(u~,o); (d) W(Ui) > w(u~) and w(ui)d(Ui,O) < w(uDd(u~,o).

Answer the key question: does there exist an optimal I-center in T' within

distance t to 0. .

Comparison between Megiddo's method and parametric-pruning method.

T is divided into TI and T2 by type-l subtrees, i.e., S(T) = {TI , T2}.

An example of a subtree T' in S(T).

Lemma 3.3.12 and Lemma 3.3.13...

xii

22

22

23

24

25

28

28

30

31

32

38

39

40

3.9 Case 1 in proof of Lemma 3.3.14: v is served by an existing facility /k 42

3.10 Locate one big clear subtree. 45

3.11 Proof of Lemma 3.3.17. 47

3.12 The conditional I-center problem with a set S of existing facilities. 53

3.13 The number of intersections between the two service cost functions F({a} U

S',Ui) andF({O'}US',vi)' (a)(b) W(Ui) 2"W(Vi); (c)(d) W(Ui) <W(Vi)' 54

3.14 Locate p centers of V(.c) on the real line .c. 55

3.15 Case 1 and Case 3 57

4.1 A bag B and its neighbors in a binary smooth tree decomposition of treewidth

k . 61

4.2 The 2-separator {UI,U2} between C' and any point x outside C'. 63

4.3 A balanced binary search tree SXl over the sorted list Xl. 63

4.4 The set of vertices in V (C') to which the shortest path from x goes through UI. 65

4.5 A cactus network C and its corresponding tree structure Te. 68

4.6 Locate the sub-cactus where the center lies. 69

4.7 Locate 0'* in a cycle block O. 70

4.8 P(x). 71

4.9 Lemma 4.2.6. 73

4.10 An example with a split-edge set ~. 77

4.11 WI E Vu and W2 E Vv 78

5.1 The number of switch service costs for (u, v) in the conditional model 90

5.2 Case 2 - an optimal path facility lies in TI and T2 , which contains o. . 93

5.3 An example for Algorithm 2. . . . 100

6.1 Spine tree decomposition. 1st-level spine: 7r(rT, V7); 2nd-level spines: 7r(VI, Vll),

7r(V2, VI2), 7r(V3, V21), 7r(V3, V27), 7r(V4, V25), 7r(V4, V26), 7r(V5, V29), 7r(V6, V31);

3rd-level spines: 7r(Vs, VI3), 7r(V9, VI5), 7r(VlO, V17), 7r(VlO, VIS), 7r(V19, V22), 7r(V20, V23),

7r(V20,V24), 7r(V2S,V30); 4th-level spine: 7r(VI4,VI6).106

6.2 2nd-level spines and remainders of 3rd-level spines. III

6.3 A balanced binary tree structure over a lh-level spine <1>. . 112

6.4 z"(u" k), 1::::: s::::: h. .114

xiii

6.5

6.6

6.7

Lemma 6.2.7 shows a property of the next vertex-cut on vertex Vk and edge

ek+l after a vertex-cut on vertex Vi-l and edge ei.

Check if there is a vertex-cut in Tus and locate it if exists.

Vertex-cuts in the max-min and min-max models. (a) current vertex Vi and its

children Vi(l)' ... ,Vi(t) (assume that the sum of remainders of edges Vivi(k) , 1 :::;

k :::; t, is ::::: I); (b) a vertex-cut on vertex Vi and edge ViP(Vi) in the max-min

model; (c) vertex-cuts at vertex Vi and edge ViVi(k) , q + 1 :::; k :::; t, in the

max-min model, and the dashed part is the extension of edge ViP(Vi) that is

equal to the sum of remainders of edges ViVi(k)' 1 :::; k :::; q .

· 115

· 117

· 120

· 128

· 129

· 131

GAl (Vi), GBI(Vi), GA2(Vi), and GB2(Vi) .

A counter-example for the recursive functions in [45]

GB~(vi),GA;(vi) and GB;(Vi) .

7.1

7.2

7.3

7.4 Two-dimensional diagram, all points lie above or on the dotted line since

g(Vj) ::::: j, 1 :::; j :::; n. 134

7.5 The two-dimensional diagram for branch Xkl all points lie above or on the

dotted line since g~(Vt(k))::::: d(Vl(k),Vt(k))' 1 :::; t:::; nk 141

xiv

Chapter 1

Introduction

Almost every public and private sector enterprise that we can think of has been faced with

the problem of locating facilities. Government agencies need to determine locations of offices

and other public services such as schools, hospitals, fire stations, ambulance bases, and so

on. Industrial firms must determine locations for fabrication and assembly plants as well

as warehouses. In these cases, the success or failure of facilities depends in part on the

locations chosen for those facilities. Such problems are known as facility location problems

[28].

In other words, facility location problems investigate where to physically locate a set of

facilities (i.e., resources, servers) to satisfy some set of demands (i.e., customers, clients).

The goal is to place these facilities such that the quality of service provided is optimized.

In general, the quality of service is measured by some objective function, subject to a set of

constraints. There are many different objective functions of possible interests, among which

the minimization of maximum distance is one of the most studied. The corresponding

problem is referred to as the center problem in the literature [34]. In this thesis, we focus

on the center problem and a related problem, called the covering location problem. The

covering location problem is to locate the minimum number of new facilities such that the

maximum distance is no more than a predefined non-negative value.

One of the key components of facility location models is the metric space in which the

customers are located and the facilities are to be located. Location problems are generally

solved in one of the three basic spaces, Le., continuous space, network space, and discrete

space. Continuous space deals with the location problems in which customers and facilities

are located in some subset of the d-dimensional Euclidean space Rd. In discrete location

1

CHAPTER 1. INTRODUCTION 2

models, customers are positioned at a (often finite) number of points and facilities are

selected from a given (often finite) set of candidate points [28]. In a network space, the

customers and facilities are confined to the edges and vertices of an underlying network.

In this thesis, we discuss location problems in a network, which are referred to as network

location problems.

1.1 N etwork center/covering location problems

Almost all location models are concerned with distances between points in the underlying

space. Also, the cost of a facility to serve a client is a function of the distance traveled

between the facility and the client. Depending on the applications, many different forms of

distance measures are considered in the literature.

For location problems in a network G = (V(G),E(G)), where V(G) is the vertex set of

G and E(G) is the edge set of G, each edge e E E(G) is associated with a positive length

l(e), and each vertex v E V(G) is associated with a non-negative weight w(v). Let A(G)

denote the continuum set of points on the edges of G. We refer to interior points on an edge

by their distances, along the edge, from the two endpoints of the edge. Generally, we use

the length of the shortest path 1r(x, y) to measure distance between a pair of points x and

y in G, denoted by d(x, y). Let d(y, X) = minxEX d(y, x) be the distance between a point y

and a set X <;:; A(G).

To unify the formulations of different network location models, let V(G) be the set of

demand points (or the demand set) and let X(G) be the set of candidate facility locations

(or the supply set) in G. Note that it is possible that one or both of these two sets could

be infinite and V(G) and X(G) need not be disjoint.

p-center problems In a p-center problem, a set of p centers (i.e., X = {al, .. ' ,ap })

is to be located in X (G) so that the maximum (weighted) distance from a demand point in

V (G) to its nearest center in X is minimized, i.e. ,

min {F(X,V(G))= max {w(y)·d(y,X)}}.
XC;;X(G),lxl=p YED(G)

(1-1)

Here F(X, V(G)) denotes the cost of serving the demand set V(G) using facilities in X, and

w(y) is the non-negative weight associated with a demand point y E V(G). As the solution

to this problem may be not unique (there might be an infinite number of optimal solutions),

CHAPTER 1. INTRODUCTION 3

we usually settle for computing just one optimal solution. If w(y) is the same for all y in

V(G), then the problem is called the unweighted p-center problem. Otherwise, the problem

is called the weighted p-center problem. When the set X(G) of candidate center locations is

finite, the problem is known as the discrete p-centeT problem. Accordingly, the problem is

called the continuous p-center problem when X(G) is infinite. When both X(G) and V(G)

are infinite, the problem is called general p-center problem. The p-center problem and its

variants on general networks and in the plane have been shown to be N P-hard [47, 55].

Handler and Mirchandani [39] proposed a classification scheme for network center lo­

cation models. It is a 4-position scheme, i.e., Posl/Pos2/Pos3/Pos4. In Pos1 information

about where the new facilities will be located is given. Pos2 contains information about

where the demand points are located. In Pos3 the number of new facilities is given and

in Pos4 the network type is described. In this thesis, we will use a 3-position scheme by

simply removing Pos4 in the classification scheme of Handler and Mirchandani [39], that is,

X(G)/V(G)/p (supply set/demand set/number of facilities). Since the objective function

and underlying space are clear in each problem, a 3-position scheme is sufficient.

Covering location problems The objective of a covering location problem is to

locate the minimum number of new facilities needed to cover all of the demand points.

Each demand point y is associated with a non-negative weight w(y). Here we say a demand

point y is covered by x E X(G) if w(y) . d(y, x) is smaller than a predefined coverage radius

re . This model can be formulated as follows:

m(re) = min {IXI: w(y) . d(y, X) :::; Te , Vy E V(G)}.
X~X(G)

(1-2)

The objective function can be generalized by considering open-facility costs, that is, the

open-facility costs of the candidate locations in X(G) are not uniform. In this case, the

objective will be to minimize the total open-facility cost rather than the number of facilities

opened. Both versions of the covering location problems are N P-hard [31]. However, in

some special cases, such as the case when all the demand points are embedded on a tree

network, the covering location problems can be efficiently solved [20, 56].

For a p-center problem (i.e., X(G)/V(G)/p), a value r > 0 is feasible if there exists a

set of at most p points, say 001, ... ,ap , in X(G) such that the distance between any demand

point in V(G) and its nearest ai (1 :::; i :::; p) is not greater than 1". An approach to test

whether a given positive value is feasible is called a feasibility test. Clearly, if m(r) :::; p then

CHAPTER 1. INTRODUCTION 4

r is feasible in the corresponding p-center problem, and otherwise r is infeasible. Therefore,

an efficient solution for the covering location problem is useful for designing an efficient

algorithm for the corresponding p-center problem.

In this thesis we discuss the center/covering location problems in general networks as

well as specialized networks, such as tree networks, cactus networks, and partial k-tree

networks. A detailed literature survey on the center/covering location problems in general

networks, as well as various restrictive classes of networks, is given in Section 1.2. In Section

1.3, three generalizations of network center/covering location problems are presented. The

explicit mention of the scope of this thesis appears in Section 1.4.

1.2 Review of related works

The network center/covering location problem has been extensively studied in the literature.

In this section we review previous results on center location problems in an undirected

network G = (V(G), E(G». That is, p centers (i.e., X = {aI, ... ,ap }) are to be located in

the supply set X(G) such that the maximum weighted distance F(X, D(G» from a point

in the demand set D(G) to its nearest center in X is minimized. We will not separately

discuss the covering location models. Instead, their results are mentioned in the section for

the corresponding center location problem.

There are four special cases where the sets X (G) and D(G) are either subsets of V (G)

or subsets of A(G). When X (G) = A(G), an optimal p-center is called an absolute p-center.

In the case where X(G) = V(G) (that is, facilities are restricted to vertices), an optimal

p-center is called a vertex p-center. The service cost of an absolute (resp. a vertex) p-center

is called the absolute (resp. vertex) p-radius. When the centers serve all the points of the

underlying network not merely the vertices, i.e., D(G) = A(G), centers are called general

centers. Note that the weighted version of a p-center problem is considered only when

D(G) = V (G) since the weighted version of the continuous demand set is not well-defined.

In [47, 55], p-center problems in general networks have been shown to be N P-hard (even

when the network is a planar network of maximum vertex degree 4). The proofs use a simple

transformation from the dominating set problem, which is known to be NP-complete [31].

The dominating set problem is stated below.

Definition 1.2.1 (Dominating set problem) Given a network G = (V(G), E(G» and

CHAPTER 1. INTRODUCTION 5

a positive integer p, does there exist a dominating set V' ~ V(G) with IV'I :::: p such that

each vertex of G is either in V' or adjacent to a vertex in V'?

However, center problems are no longer N P-hard when either p is constant [47, 62, 69],

or the underlying network is restricted to be a specialized network, such as a tree [29, 46,

47,54,55,56], a cactus [8, 30, 48], or a partial k-tree (fixed k) [32]. In the following, we first

survey unweightedjweighted A(G)jV(G)jp problems when G is a general network. It is

followed by the survey on tree and tree-like networks. Later in Section 1.3, we discuss three

generalizations of center jcovering location problems in trees, such as conditional extensive

facility location problems, continuous edge-partition problems, and constrained covering

problems.

1.2.1 General networks

The best known algorithms [47, 62, 69] to solve the A(G)jV(G)jp problem are based on

the following two simple observations (Observations 1.2.2 and 1.2.3).

e
Vl,e----€...--~----....., V2
,x ,, ,, ,, ," ,, '

Ul· " ,
• U2

Figure 1.1: Observation 1.2.2.

Observation 1.2.2 {47} There exists an absolute p-center such that all the centers are

intersection points of service functions of pairs of vertices on edges and therefore, the optimal

objective value is of the form (w(u)· w(v)· Le(u,v))j(w(u) + w(v)), where Le(u,v) is the

length of some simple path connecting u and v through edge e for some pair of vertices

u, v E V(G).

Refer to Figure 1.1. The intersection point x of service functions of vertices Ul and U2 on

edge e is a candidate location of facilities. Also, w(ul)d(Ul, x) = w(u2)d(U2, x) is a candidate

CHAPTER 1. INTRODUCTION 6

value for the optimal objective value. Therefore, there are at most O(n2) candidate points

on each edge e where centers may be located in an optimal solution. Also, for each candidate

point x on e which is determined by a pair of vertices u and v, the weighted distance from

u (or v) to x is a candidate value for the absolute p-radius. It is not hard to see that the set

of O(mn2) candidate points and their candidate values (denoted by R) can be computed

in O(mn2) time. Based on Observation 1.2.2 and an O(mnlogn)-time algorithm for the

A(G)jV(G)j1 problem, Kariv and Hakimi [47] proposed an O(mPn2p- 1lognj(p -l)!)-time

algorithm for finding an absolute p-center of a vertex-weighted network. For the vertex­

unweighted network, the running time of the algorithm [47] is (O(mPn2p- 1 j(p - I)!).

The second observation is for feasibility tests of the continuous p-center problem.

Observation 1.2.3 (62] If a given non-negative value r is feasible for the A(G)jV(G)jp

problem, then there is a p-center solution in which each center is located at a (weighted)

distance of exactly r from some demand vertex and all demand vertices are covered with

service cost ~ r.

The advantage of Observation 1.2.3 over Observation 1.2.2 is that only O(mn) candidate

points are needed to be considered for a feasibility test. Based on this property, Moreno

[62] proposed an O(mPnP+1)-time algorithm for the feasibility test of a given value r.

Since the absolute p-radius, denoted by rp, of the A(G)jV(G)jp problem is an ele­

ment of a set R of cardinality O(mn2) (Observation 1.2.2), rp can be found by performing

O(log (mn2)) = O(log n) feasibility tests. This implies that the weighted continuous p-center

problem in general networks can be solved in O(mPnp+1logn) time [62].

Tamir [69] improved Moreno's result [62] by efficiently solving a feasibility test for the 2­

center problem in O(m2n 2a(n)) time (for a vertex-unweighted network, it is O(m2n log na(n))

time). Here a(n) is the inverse Ackermann function [26]. The improvements [69] for p ~ 3

are achieved as follows. To determine the feasibility of r for the p-center problem, a set of

(p - 2) points is selected from the O(mn) candidate points, and then the 2-center feasibility

test is applied to the vertices that are not covered by the selected (p - 2) centers within

(weighted) distance r. Therefore, the O(mPnPlog na(n)) and O(mPnP-1log 2na(n)) bounds

are achieved for the weighted and unweighted A(G)jV(G)jp problems, respectively.

In this thesis we propose an improved algorithm for the unweightedjweighted A(G)jV(G)jp

problem, which is based on the geometric properties of a transformed version of the problem.

The improved running time of this algorithm is O(m PnP/2log 2n) time.

CHAPTER 1. INTRODUCTION 7

The weighted discrete p-center problem, p :2: 2, in a general network is trivially solvable

in O(pnP+l/(p -1)1) time by testing all possible solutions. Unfortunately, the above ideas

cannot be applied to improve the exhaustive algorithm for finding a vertex p-center in a

general network.

1.2.2 Tree networks

In this section, we assume that the underlying structure of the network is a tree, denoted

by T = (V(T), E(T)). A centroid of T, which can be found in linear time [47], is a vertex

o E V(T) such that each subtree with the removal of 0 has the size at most IV(T)I/2. Note

that a tree might have either one centroid or two. In the latter case, the two centroid vertices

are connected by an edge [40].

Kariv and Hakimi [47] pointed out that the service cost function F(x, V(T)),x E A(T),

is convex on every simple path in T. Based on this convex property, Kariv and Hakimi

designed an O(nlogn)-time algorithm for I-center problems. Later, Megiddo [54] showed

that the unweighted/weighted A(T)/V(T)/l and V(T)/V(T)/l problems can be solved in

linear time with a clever "trimming" technique, which is described in Section 3.2. In fact, for

the unweighted I-center problems in T, a simpler and more efficient algorithm was proposed

by Handler [38]. It is based on one simple observation, that is, the absolute I-center in a

tree is the midpoint of a longest path. His algorithm is described as follows. Choose any

point x in A(T) and find the farthest point away from x in A(T), say VI. Then find the

farthest point away from VI, say V2. The absolute I-center of T is the midpoint of the path

n(vI,v2)' Vertex I-center is located at the closest vertex to the absolute I-center.

When p is a part of the input, Kariv and Hakimi [47] proposed the first polynomially

bounded algorithm, which runs in O(n2 logn) time for the weighted A(T)/V(T)/p and

V(T)/V(T)/p problems. The algorithms follow a common principle that is often adopted

when designing algorithms for center location problems in a tree. First, a finite set R of

real numbers, which is known to contain the optimal objective function value, is identified.

Next, R is searched for the minimum feasible value. The set R for various location problems

in T is listed in Table 1.1.

In a tree network, efficient algorithms to test the feasibility of a given r are known,

and hence the corresponding location problem can be solved by a binary search of R using

such a feasibility test. For the six problems listed in Table 1.1, the feasibility test on tree

networks runs in O(n) time [20, 47]. This implies that all of the six problems can be

CHAPTER 1. INTRODUCTION

Table 1.1: The sets R of different models in T [20, 21, 47]

Unweighted Weighted
V(T)jV(T)jp {d(Vi, Vj) }V;,VjEV(T) {w(Vi) . d(Vi, Vj)}v;,VjEV(T)

A(T)jV(T)jp {~d(Vi, Vj) }V;,VjEV(T)
{ w(v;)·w(Vj) d()}

W(Vi)+W(Vj) Vi, Vj v;,vjEV(T)

V(T)jA(T)jp {d(Vi, Vj), ~d(Vi'Vj)}Vi,VjEV(T) -

A(T)jA(T)jp {Jyd(Vi, Vj) }V"V;EV(T),l=l, ... ,p -

8

solved in O(IRI + nlog IR!) time. Therefore, the unweightedjweighted A(T)jV(T)jp and

V(T)jV(T)jp problems and the unweighted V(T)jA(T)jp problem can be solved in O(n2)

time, and the unweighted A(T)jA(T)jp problem can be solved in O(pn2
) time.

In order to get a better bound (i.e., sub-quadratic time complexity), one cannot afford

to compute the set R explicitly. This is essentially where the succinct representation of R

is applied. Since the sets R for the various versions of the p-center problem have a close

resemblance to the set M of inter-vertex distances in a tree network, we can use a succinct

representation of M instead. Based on this observation, efficient algorithms (i.e., the ones

in [56] by Megiddo et al. and [30] by Frederickson and Johnson) are designed for finding the

k-th largest element in M to support a binary search over R. In this way, Megiddo et al.

[56] showed that, the unweightedjweighted V(T)jV(T)jp, the unweighted A(T)jV(T)jp

and V(T)jA(T)jp problems are solved in O(nlog 2n) time. For the A(T)jA(T)jp problem,

their algorithm [56] runs in O(n min {p log 2n, n log n}) time. In [30], Frederickson and John­

son proposed an O(nlogn) algorithm for the unweighted V(T)jV(T)jp and A(T)jV(T)jp

problems as well as an O(n min (n, p) log (max (p, n))) algorithm for the A(T)jA(T)jp prob­

lem.

Another type of method for center problems on a tree network is based on the parametric­

searching technique. Since the early 1980s, the parametric-searching technique, proposed by

Megiddo [52, 53], has become a powerful and ingenious tool for efficiently solving a variety

of optimization problems. In this thesis we use this technique to design efficient algorithms

for center problems in cactus networks (in Chapter 4) and for continuous edge-partition

problems in tree networks (in Chapter 6).

The main principle of the parametric-searching technique is described as follows [2, 52].

Suppose we have a decision problem P(A) that depends on a real parameter A, and is

monotone in A, which means that if P(X) is true for some A', then P(A) is true for all

CHAPTER 1. INTRODUCTION 9

>. ::::: >.'. Our goal is to find the maximum>' for which P(>.) is true. Suppose further

that P(>.) can be solved by a sequential algorithm As whose input is a set of data objects

(independent of >') and >., and whose control flow is governed by comparisons, each of which

amounts to testing the sign of some low-degree polynomial in >., i.e., the number of roots of

this polynomial is constant. Megiddo's technique then runs As "generically" at the unknown

maximum >.*. Whenever As reaches a branching point that depends on some comparison

with associated low-degree polynomial f(>'), it computes all its roots and runs As with the

value of>. equal to each of these roots. This yields an interval between two adjacent roots,

known to contain >.*, and thus enables As to determine the sign of f (>'*), resolving the

comparison and allowing the generic execution to proceed. As the algorithm proceeds, the

interval known to contain >.* keeps shrinking as a result of resolving further comparisons,

and at the end either the interval becomes a singleton, which is thus the desired>.*, or

else >'* can be shown to be equal to its upper endpoint of the final interval, since the final

interval contains >'* and P(>.) is true for any value in it.

Megiddo and Tamir [55] proposed an O(n log 2n log log n)-time algorithm for the weighted

A(T)/V(T)/p problem and an O(nlog 3n) algorithm for the A(T)/A(T)/p problem, which

are based on Megiddo's parallel version [53] of the above parametric-searching technique.

Both of the algorithms can be improved to O(n log 2 n) by applying the result by Cole [25].

Megiddo's parallel version [53] of the parametric-searching technique and the result by

Cole [25] are briefly described as follows.

A parallel algorithm Ap for the decision problem P(>.) is needed, which uses P processors

and runs in O(Tp) parallel steps. In each parallel step, we need to find out the results of

P comparisons. As we know, the result of one comparison with the unknown value >'* is

determined by solving a constant number of decision problems. In Megiddo's parallel version

[53], since P(>.) is monotone in >., the results of all the P comparisons can be computed by

solving O(log P) decision problems. Clearly, the time complexity to compute the results of

all the PTp comparisons is o(TsTp log P) where Ts is the running time of algorithm As.

Cole [25] observed that in certain applications of the parametric-searching technique, the

running time can be improved to O((P+ Ts)Tp) by mixing the parallel steps of the algorithm

Ap • Instead of invoking the decision procedure o(log P) times at each parallel step to resolve

all the P comparisons, we invoke it only a constant number of times, say, three times. This

will determine the outcome of 7/8 of the comparisons and will leave 1/8 of them unresolved.

Assume that each of the unresolved comparisons can influence only a constant number, say,

CHAPTER 1. INTRODUCTION 10

two, of comparisons executed at the next parallel step. The assumption is very important

when Cole's idea is adopted to speed up Megiddo's parametric search technique. Then 3j4

of the comparisons in the next parallel step can still be simulated generically. Cole showed

that if carefully implemented (by assigning an appropriate time-dependent weight to each

unresolved comparison and choosing the weighted median each time), the number of parallel

steps of the algorithm increases only by an additive logarithmic term, as desired.

In this thesis, we study weighted center problems in a tree network, including the

weighted V(T)jV(T)jp and A(T)jV(T)jp problems, and propose optimal algorithms for

the problems when p is an arbitrary fixed constant.

1.2.3 Tree-like networks

Although most of the reported works on center problems are for trees or for general networks,

more and more attention has been paid to the classes of networks that are between these

two extremes [33]. The location problems in cactus networks [30, 48]' and in partial k-trees

[41, 32] are worth mentioning.

A tree decomposition of a network G = (V(G), E(G)) is a pair ({b i : i E I}, T = (I, Y)),

where {Bi,i E I} is a family of subsets of V(G) (called bags), I is its index set, and T is a

tree with the following properties [66]:

(i) UEI Bi = V(G);

(ii) For every edge e = (v,w) E E(G), there is an i E I with V,W E B i ;

(iii) For all i, j, k E I, if j lies on the path between i and kin T, then Bi n Bk ~ Bj .

The treewidth of a tree decomposition ({bi : i E I},T) is maxiEI IBil - 1. The treewidth of

G is the minimum treewidth over all possible tree decompositions of G. A partial k-tree is

a graph whose treewidth is k.

Partial k-trees One of the most important properties of trees, which is useful in

designing efficient algorithms, is the existence of a I-separator between any two disjoint

subtrees. Partial k-trees are a more general class of graphs for which similar property is

available. Let TD(G) denote a tree decomposition with treewidth k of a partial k-tree G.

Clearly, there exists an i-separator (i :s; k) between two subnetworks represented by two

disjoint subtrees ~,72 of TV(G).

CHAPTER 1. INTRODUCTION 11

It is known that TV(G) can be found in linear time for fixed k [17]. Given a tree decom­

position TV(G) with treewidth k of a partial k-tree G, an O(p2nk+2)_time algorithm [32] was

proposed by Granot and Skorin-Kapov [32] to solve the unweighted/weighted V(G)/V(G)/p

problems. The algorithm is based on a dynamic programming technique, which is described

in Section 4.1.1.

Cactus networks A cactus network is a connected graph where any two simple cycles

in the graph have at most one vertex in common. Cactus networks are partial 2-trees.

Frederickson and Johnson [30] showed that a feasibility test of the unweighted V(G) /V(G) /p
problem in a cactus network G can be solved in linear time (Lemma 13 in [30]). Observe

that the optimal objective value lies in the set R = {d(u, v) lu, v E V (Gn, which is the set

of inter-vertex distances. Actually, for any network G', the set R' that contains the optimal

objective value for the V(G')/V(G')/p problem has a close resemblance to the set M' of

inter-vertex distances in G'.

Similar to the case when the underlying network is a tree, the set M of all inter-vertex

distances in a cactus network G, has a special structure which enables searching in M

without generating the entire set in advance. Note that cactus network G is a partial 2­

tree. Indeed, it can be represented by a set of O(n) sorted lists, which is computed using

a centroid decomposition [56] of TV(G) of treewidth 2. This representation is very similar

to the succinct representation of all inter-vertex distances in a tree, which is proposed by

Megiddo et al. [56]. Here, instead of a centroid vertex decomposing a tree or a subtree

into smaller parts, there is a centroid 2-separator decomposing G or a subnetwork of G into

parts. Each list is associated with distances from a given vertex to some subset of vertices.

Using the linear-time feasibility test and the succinct representation of set R, the un­

weighted V(G)/V(G)/p problem is solvable in O(nlogn) time [30].

1.3 Generalizations of network center/covering location prob­

lems

Three generalizations of center/covering location problems in an edge-weighted network G

are introduced in this section. These are conditional extensive facility location problems,

continuous p-edge-partition problems, and constrained covering problems.

More notations are needed. For any two different points x, yon an edge e E E(G), if x

CHAPTER 1. INTRODUCTION 12

and yare not the two endpoints of e, then we call the simple path from x to y a partial edge

of e. We define the length of a subgraph G' of G, denoted by I(G'), to be the total length of

its edges and partial edges. The diameter of a subgraph G' is the length of a longest simple

path of G'.

1.3.1 Conditional extensive facility location problems

Usually a facility is represented by a point in a metric space [6, 14, 29, 30, 34, 46, 54, 56].

However, in recent years there has been a growing interest in studying the location of

connected structures (referred to as extensive facilities), i.e. those that cannot be represented

by isolated points but as some connected structures, such as subtrees [12, 15, 67, 70, 71, 73],

paths [12, 15,35,42,57,59], straight lines [1], line segments [3], or polygonal chains [5, 4, 27].

These studies were motivated by concrete decision problems related to routing and network

design [70]. Moreover, in many practical situations a number of facilities are already located

in the network and provide service to the customers. These service providers are fixed and

cannot be changed. However, due to some necessity, there might be a need to place more

facilities to provide improved services to the clients. This kind of facility location problem

is known as the conditional location problem [11, 58].

In this thesis we study conditional path-/subtree-center location problems in a tree

network. In specific terms the conditional I-extensive center location problem is to locate

a path-/subtree-shaped facility, whose length is no more than a predefined non-negative

value, such that the maximum weighted distance from demand points to the union of this

facility and existing facilities is minimized.

It is not hard to see that the subtree-shaped facility location problem in a general network

is N P-hard. The proof uses a simple transformation from the connected dominating set

problem which is known to be NP-complete [31]. The connected dominating set problem

is defined below.

Definition 1.3.1 (Connected dominating set problem) Given a networkG = (V(G),E(G))

and a positive integer p, does there exist a dominating set V' C V(G) with IV'I ~ p such

that V' is a dominating set of G and the subgraph induced by V' is connected?

In the case when there are no existing facilities in a tree network, Hedetmiemi et al.

[42] proposed linear-time algorithms for locating a path-shaped facility without length con­

straint. When the existing facilities are taken into consideration, Mesa [57] provided an

CHAPTER 1. INTRODUCTION 13

O(n log n)-time algorithm for the conditional path-shaped center problem in the pure topo­

logical case of a tree, where vertices and edges in the tree are unweighted.

In [70, 71], Tamir et al. presented O(n log n)-time algorithms to solve the conditional

problems in trees where the vertices and the edges are weighted. The basic technique used in

their algorithms is the parametric-searching technique. In this thesis we propose improved

algorithms by combining parametric-searching and pruning techniques (i.e., parametric­

pruning technique [15]).

1.3.2 Continuous p-edge-partition problems

Another way to look at various p-center problems (p > 1) in a network G = (V(G),E(G))

is through the network partitioning problems. A discrete partition of G into p connected

components is a collection of p connected subnetworks such that their vertex sets are pairwise

disjoint and the union of their vertex sets is the vertex set of G. It can be done by deleting

a subset of edges from G. For instance, when G is a tree network, a discrete partition of

G into p connected components (i.e., subtrees here) is achieved by removing p - 1 edges.

A continuous partition of G into p connected components is a collection of p connected

subnetworks such that no pair of them intersect at more than m points and their union is

the point set of G (i.e., A(G)). It can be achieved by splitting at a subset of points in G.

For instance, when G is a tree network, a continuous partition of G into p subtrees is done

by splitting at p - 1 points.

When the demand set is the vertex set V(G), a p-center problem (i.e., V(G)/V(G)/p and

A(G)/V(G)/p) is actually to find a discrete partition of G into p connected subnetworks,

and the objective is to minimize the maximum service cost of I-centers of these subnetworks.

Similarly, we need to find a continuous partition of G into p connected subnetworks with

minimum service cost when the demand set is the point set A(G) (i.e., V(G)/A(G)/p and

A(G)/A(G)/p models).

The continuous partition problem in a weighted tree network space T = (V(T), E(T), I)

is to partition a tree network space into p subtrees, minimizing (resp. maximizing) the

maximum (resp. minimum) "size" of the subtrees. When the size refers to the diameter

of the component, the min-max problem coincides with the general p-center problem (i.e.,

A(T)/A(T)/p). Polynomial-time algorithms solving this problem appear in [20,55]. When

the size is the length of the component, the continuous partition problem is N P-hard, since

the Partition problem is a special case of the problem. The Partition problem is stated as

CHAPTER 1. INTRODUCTION

follows.

14

Definition 1.3.2 (The Partition problem) Given a multiset B of integers, is there a

way to partition B into two subsets B 1 and B 2 such that the sums of the numbers in each

subset are equal? The subsets B 1 and B 2 are disjoint and they cover B.

Without loss of any generality, we assume that all integers in the multiset B are positive

and that any integer in B is less than one half of the sum of the numbers in B. We construct

a tree network consisting of IB I leaves and a central vertex. Each leaf is connected by an edge

to the central vertex and for each integer kin B, there is an edge in the tree network whose

length is equal to k. Then, it is not hard to see that the answer to the Partition problem

on B is "Yes" if and only if there is a continuous p(= 2)-partition of the corresponding tree

network such that the two subtrees induced by the continuous 2-partition have the same

length [37].

Due to the above N P-hardness result, in this thesis, we consider a class of continuous

partitions in the tree, where the p-1 cut points, splitting the tree network into p components,

are restricted to be on the edges, called continuous edge-partitions. Its difference from

continuous partition is as follows.

u u u u u

~ A\+~ ~\
(a) (b) (c)

(d) (e) (f)

Figure 1.2: Main difference between continuous edge-partition and continuous partition. (a)
a tree network; (b) the vertex cut on vertex u and edge UV4 in a continuous edge-partition;
(c) the vertex cut on vertex u and edge UV3 in a continuous edge-partition; (d) (e) (f)
possible cuts (partitions) at vertex u in a continuous partition.

Let x be a point on an edge e : uv E E(G). A cut at x is a splitting of e into two

closed partial edges: one is from vertex u to x and the other is from x to vertex v. A cut

CHAPTER 1. INTRODUCTION 15

at an interior point of an edge is called an interior cut. A cut at an endpoint of an edge is

called a vertex cut. The main difference between continuous partitions and continuous edge­

partitions is on vertex cuts. As illustrated in Figure 1.2(b)(c), a vertex cut in a continuous

edge-partition is uniquely defined by a vertex and an edge incident to this vertex. However,

a cut at a vertex in a continuous partition is a partition of branches attached to that vertex

(see Figure 1.2(d) (e) (f)).

Basically, a continuous p-edge-partition of T is a set of p subtrees induced by p - 1

cuts. The max-min continuous p-edge-partition problem (max-min CEP, for short) is to

find a continuous p-edge-partition of T that maximizes the smallest length of a subtree;

and the min-max continuous p-edge-partition problem (min-max CEP, for short) is to find

a continuous p-edge-partition of T that minimizes the largest length of a subtree.

Halman and Tamir [37] presented O(n2 log (min {p, n}))-time algorithms for the max-min

and min-max CEP problems. Recently, Lin et. al. [49] proposed more efficient algorithms

for the two problems. The proposed algorithms of Lin et. al. [49], which run in time

O(n2), are based on efficiently solving a problem, called the ratio search problem (defined in

Chapter 6). In this thesis we study the max-min and min-max CEP problems and propose

the first sub-quadratic algorithm for the max-min problem, which runs in O(n log 2n) time,

and an O(nhT log n) (or O(n LVEV(T) OT(v))) algorithm for the min-max problem, where

hT is the height of the underlying tree network and OT(V) is the degree of vertex v. When

hT = o(n/logn), our result for the min-max problem is better.

1.3.3 Constrained covering problems

The constrained covering problem is a generalization of the covering location problem, also

known as the conditional covering problem [44, 45] (first introduced by Moon and Chaudhry

in [60]). To distinguish from conditional location problem described above, we use the name

of constrained covering problem (for short, CCP). This problem is defined on a network

G = (V(G), E(G)). The vertex set V(G) represents the set of demand points that must be

covered by a facility, as well as the set of potential facility locations. A facility located at

vertex u E V (G) incurs a non-negative open-facility cost c(u), and provides a non-negative

coverage radius of r(u). A demand point v E V(G) is covered by a facility u if and only if

u =f v and d(u, v) ~ r(u). That is, a demand point is covered by a facility if it lies within

the coverage radius of the facility and an established facility must be covered by another

established facility. The CCP seeks to minimize the sum of open-facility costs required to

CHAPTER 1. INTRODUCTION 16

cover all vertices in V (G).

The CCP has applications in security and military services. An example is that a set

of service centers needs to be established, but due to the threat of terrorist attack, each

service center might be destroyed and in that case it must rely on other centers to provide

service to its customers. Another scenario is for inter facility support, for example, a set of

warehouses needs to be located and each warehouse must resort to other warehouses in case

of shortage of its inventory [60].

CCP in a general network is strongly N P-hard [44], because the total dominating set

problem, which is shown to be strongly N P-hard even on bipartite graphs by Pfaff et al.

[64], is a special case of CCP.

Definition 1.3.3 (Total dominating set problem) Given a networkG = (V(G), E(G))

and a positive integer p, does there exist a dominating set Vi C V (G) with IVII <:::; p such

that each vertex of G is adjacent to a vertex in Vi?

The total dominating set problem is a version of CCP where all the open-facility costs, edge

lengths, and coverage radii are l.

However, CCP is polynomially solvable on some special underlying networks. Lunday

et al. [50] considered CCPs with uniform coverage radius in path networks. They gave a

linear time dynamic programming algorithm for CCP with uniform open-facility cost and

an O(n2)-time dynamic programming algorithm for CCP with non-uniform open-facility

costs [50]. Horne and Smith worked on CCP with non-uniform coverage radii and proposed

an O(n2
) time algorithm for CCP on paths and extended stars [45], and an O(n4) time

algorithm for CCP on tree networks [44]. Their algorithms are also based oJ.l the dynamic

programming technique. It is worth mentioning that Moon and Papayanopoulos [61] solved

a variation of CCP optimally on tree networks. In their problem, the facilities with a

uniform open cost can be located at any place in the underlying network (not necessarily

at the vertices of the network) and each demand point (instead of facility) has a location

specific radius within which a facility must be located.

In this thesis, we study this problem in a path, extended-star, or tree network. An

extended star is a network in which three or more path networks are connected by a single

root vertex.

CHAPTER 1. INTRODUCTION

1.4 Scope of this thesis

17

In this section, we summarize the list of problems considered in this thesis, and the results

obtained on those problems.

In Chapter 2, we study continuous p-center problems in a general network. Here demand

points are located at the vertices of the network, and centers can be located anywhere

in the network. In the weighted case, each demand point is also associated with a non­

negative weight. The objective is to compute a set of p centers such that the maximum

unweighted/weighted distance from demand points to their closest centers is minimized.

We provide an efficient algorithm for both the unweighted and weighted problems in a

general network. The running time of the improved algorithm is O(m PnP/2log 2n).

In Chapter 3, we consider the restriction of p-center problems to tree networks in which

demand points are located at vertices and each demand point is associated with a non­

negative weight, including the weighted discrete and continuous p-center problems where

p is an arbitrary fixed constant. Megiddo [54] used a "trimming" technique to solve the

weighted I-center problems (i.e., the weighted discrete and continuous I-center problems)

in linear time. The problem of generalizing the trimming approach to solve the weighted

p-center problem for p > 1 has been open for over twenty years. Our results in this chapter

partially resolve this long standing open problem. Moreover, we present a simple parametric­

pruning approach for the weighted I-center problem, and the running time of this approach

is O(n). The proposed approach for the weighted I-center problem can be adapted to solve

the weighted p-center problem on the real line in linear time for any fixed value p. The

result for the real line has been published [14].

In Chapter 4, we discuss various p-center problems in tree-like networks, i.e., partial

k-trees, cactus networks. When the underlying network is a partial k-tree, we study the

weighted discrete p-center problem in which centers are restricted to the vertices of the

network and present an efficient algorithm for relatively small p. The running of our algo­

rithm is O(pnPlogk-1n), that is, when p < k + 2, our algorithm is better than the one of

Granot and Skorin-Kapov [32]. Following this result, we discuss the weighted continuous

p-center problem in which centers can be located at any place in the network, and devise

an O(p2kk+l n 2k+3log n)-time algorithm for it. When the underlying network is a cactus,

the following center problems are considered. We first provide an O(n log n)-time algorithm

to solve the weighted discrete and continuous I-center problems. We then show that the

CHAPTER 1. INTRODUCTION 18

weighted continuous 2-center problem can be solved in O(n log 3n) time. We also look at

various center problems in a cactus network where p is a part of the input. Our algorithms

for the p-center problems in cactus networks are based on the parametric-searching tech­

nique. We propose an O(n log 2n) algorithm for the weighted discrete p-center problem,

O(n2) algorithms for the weighted continuous p-center problem and the unweighted discrete

p-center problem with demand set of infinite size, and an O(n2 log2 n) algorithm for the

general p-center problem in a cactus network. The results for the center problems in cactus

networks have been published [8].

In Chapters 5, 6, and 7, we look at generalizations of the center/covering location prob­

lem in an edge-weighted tree network.

In Chapter 5, the conditional extensive facility location problem in a tree network is

discussed, in which a set of existing facilities is given. The objective is to locate a path­

/subtree-shaped facility with minimum service cost whose length is no more than a prede­

fined non-negative value. We propose optimal algorithms for them using the parametric­

pruning technique. The result in this chapter has been published [12].

In Chapter 6, we study the continuous p-edge-partition problem in a tree that is to

divide the underlying tree into p subtrees by selecting p - 1 cut points along the edges of

the underlying tree such that the maximum (minimum) length of the subtrees is minimized

(maximized). For the max-min continuous p-edge-partition problem in a tree, we propose

the first sub-quadratic algorithm, which runs in time O(n log 2n). For the min-max problem,

an O(nhT log n) (or O(nLvEV(T)8T (v))) algorithm is proposed, where hT is the height of

the underlying tree network and 8T (v) is the degree of vertex v.

In Chapter 7, we look at one generalization of the covering location problem in a tree,

that is, the constrained covering problem. The constrained covering problem in a tree seeks

to minimize the sum of open-facility costs required to cover all vertices with the constraints

that a vertex is covered by a facility if it lies within the coverage radius of the facility and

an established facility must be covered by another established facility. We propose efficient

algorithms for constrained covering problems on path, extended star, and tree networks. In

particular, we provide an O(n log n)-time algorithm for path networks, an O(n1.5 log n)-time

algorithm for extended-star networks and an O(n3 log n)-time algorithm for tree networks.

Finally, the concluding remarks on our studies in this thesis appear in Chapter 8. Here,

once again, we discuss our results on different problems along with their possible extensions

for future work.

Chapter 2

Continuous center problems

general networks

•In

In this chapter, we consider the unweightedjweighted continuous p-center problems in a gen­

eral network G = (V(G), E(G)) (IV(G)[= nand IE(G)I = m), i.e., the unweightedjweighted

A(G)jV(G)jp problems. Here demand points are located at vertices of the network G, and

centers can be located anywhere in G. Each demand point v E V(G) is also associated with a

non-negative weight w(v). In the unweighted case, w(v) = 1 for all v E V(G). The objective

is to compute a set X(c:: A(G)) of p centers such that the maximum unweightedjweighted

distance from demand points in V(G) to their closest centers in X, i.e., F(X, V(G)), is

minimized. We provide an improved algorithm for both the unweighted and weighted prob­

lems, which runs in time O(mPnP/2 log 2n). The best previous result for the weighted (resp.

unweighted) A(G)jV(G)jp problem, proposed by Tamir [69], is O(mPnPlogna(n)) (resp.

O(mPnP- 1 log 2na(n))) where a(n) is the inverse Ackermann function [26].

Organization of the chapter The main idea and overall approach of our algorithm

is presented in Section 2.1, in which we show that our problem is related to a general

geometrical problem called p-dimensional Klee's measure problem. In Section 2.2, we provide

the process of transforming our problem to a collection of p-dimensional Klee's measure

problems. Section 2.3 gives a brief summary.

19

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 20

2.1 Main idea and overall approach

As we mentioned in Section 1.2.1, the best known algorithms [47, 69] to solve the A(G)jV(G)jp

problem are based on two simple observations, that is, Observations 1.2.2 and 1.2.3. Ob­

servation 1.2.2 states that there is an absolute p-center such that all the centers are in a set

of O(mn2) points and the absolute p-radius is in a set R = {[w(u) . w(v) . (d(u, u') + l(e) +

d(v, v')]j(w(u) +w(V))L,vEV(G);eEE(G). Obviously, IRI = O(mn2
). On the other hand, from

Observation 1.2.3, we know that only O(mn) candidate points need to be considered for a

feasibility test of the A(G)jV(G)jp problem.

To achieve a better upper bound for the A(G)jV(G)jp problem, we continue to decrease

the size of the set that contains an absolute p-center. The following observation (Observation

2.1.1) shows that instead of O(mn) candidate points, only m candidate continuous regions

(i.e., edges) and n candidate points (i.e., vertices) are considered for a feasibility test.

Observation 2.1.1 If a given non-negative value r is feasible for the A(G)jV(G)jp prob­

lem, then there is a p-center solution in which every edge (not including its two endpoints)

in G contains at most one center and all demand vertices are covered with service cost :S r.

The reason for the above observation is that if an edge e : uv contains more than one center

in X (where IXI :S p, X <:;: A(G), and F(X, V(G)) :S r), then a new set of centers X',

constructed by replacing the centers in X n A(e) with u and v, has a service cost of no more

than r, Le., F(X' , V(G)):S r, and is of cardinality no more than p, i.e., IX'I:S p.

A local feasibility test of the A(G)jV(G)jp problem is to determine if there exists a set

of p centers on a given set Ep' of pi (0 :S pi :S p) edges {el, ... , ep'} (note that each edge

contains one center and does not include its two endpoints) and a given set of p - pi vertices

such that all demand points in V (G) can be served within a given non-negative value r.

It is easy to see that the feasibility test of a given value r can be completed by solving

O((m + n)P) = O(mP) local feasibility tests of r on all possible subsets of pi edges and p - pi

vertices, 0 :S pi :S p.

Our algorithm for the A(G)jV(G)jp problem is described as follows.

Step 1: Compute the set R that contains the absolute p-radius.

Step 2: Perform a binary search over R. At each iteration, test the feasibility of a non­

negative value r as follows. For each set E p' <:;: E(G) of pi edges and each set of p - pi

vertices, 0 :S pi :S p,

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 21

Step 2.1: remove all demand vertices that can be covered by the p - p' vertices with

service cost::::: r; and

Step 2.2: for the remaining demand vertices, execute the local feasibility test of ron

the set Epf as described in the remaining part of this chapter.

It is sufficient to show our approach for a local feasibility test of r on a set Ep of p edges.

The main idea of our decision approach is to transform the local feasibility test of r on Ep

to a general geometrical problem called p-dimensional Klee's measure problem (for short,

KMP) [63].

Definition 2.1.2 (Klee's Measure Problem) Given a set of intervals (of the real line),

find the length of their union.

The natural extension of KMP to d-dimensional space is to ask for the d-dimensional

measure of a set of d-boxes, where d is a positive integer. A d-box is the cartesian product

of d intervals in d-dimensional space. It is known that, given a set of n d-boxes, a d(?: 2)­

dimensional KMP can be solved in time O(nd/ 2 log n) using O(n) storage [63]. Thus, a feasi­

bility test of the unweighted/weighted A(G) /V(G)/p model can be solved in O(mPnP/ 2 log n)

time if we are able to transform a local feasibility test into a KMP. The following theorem

is then implied.

Theorem 2.1.3 The unweighted/weighted A(G)/V(G)/p center problems, for p ?: 2, can

be solved in O(mPn P/ 2 log 2n) time, where n is the number of vertices and m is the number

of edges.

In the remaining part of this chapter, we show the process of transforming a local

feasibility test of the weighted A(G) /V(G) /p problem to a p-dimensional KMP.

2.2 Transformation of a local feasibility test to a KMP

Let us consider the case where p = 2. The transformation for the case where p > 2 can be

developed in a similar way. Letel: ul VI and e2 : U2V2 be the two edges to test the local

feasibility of a given non-negative value r. A local 2-center solution is composed of two

points in which one point lies on el and the other one lies on e2.

We consider a 2-dimensional space in which xi-axis represents edge ei, i = 1,2. Let UI

and U2 be the origin, as shown in Figure 2.1(b). In this coordinate system, the Xi-coordinate

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 22

v

(b)

V2 a------------,

a2 -~.-:x={al,a2}

I I
I I

U2 L----l..---J..-'~---Xl

Ul

,
\

\

I
I

I
I

I

el al I

Ul ' ••HeB---~O~I-----4••'Vl

al(V) b1(v)

(a)

//I·~-__
,,/ ' ...

/ I '

/... / ""
/ I \

I I \
I I

"U2'I
\
\ , ,

Figure 2.1: Mapping a 2-center local feasibility test to a 2-dimensional KMP.

of a point represents a location on edge ei with respect to Ui, i = 1,2. Therefore, a point in

this 2-dimensional space can be considered as a possible 2-center solution on edges el, e2.

We denote a point y by (Xl (y), X2(Y))' Clearly, only points within the bounded rectangular

area 7-i : {yjO ::::; XI(y) ::::; l(ed, 0::::; X2(y) ::::; l(e2)} are candidate 2-center solutions on el, e2,

see Figure 2.1(b). In other words, 7-i consists of all possible 2-center solutions on el, e2.

For a demand vertex v, there is at most one continuous region on each edge ei, i = 1,2,

denoted by ~ (v), which contains all points on ei with (weighted) distance to v larger than

T. It is possible that Ri(v) is empty for some i (E {1,2}), in which case v can be served

by any 2-center solution on el,e2 with service cost::::; T. In Figure 2.1(a), the bold (partial)

edge of el (resp. e2) is RI(v) (resp. R2(V)). Let ai(v) (resp. Mv)) be the left (resp. right)

endpoint of Ri(v), i = 1,2. Note that ~(v), i = 1,2 might be a closed, half-closed, or open

region, see Figure 2.2. Furthermore, we observe that if ai(v) E Ri(v) (resp. bi(v) E Ri(v))

then ai(v) = Ui (resp. bi(v) = Vi), i = 1,2. In other words, if an endpoint of Ri(v), say

ai(v), is an interior point of an edge ei, that is, not Ui or Vi, then ai(v) tf- ~(v).

v v v v• • I· •I , , I , , I ,
I I ,

I
, I ,

I
, , I

,
I

,
I

,
I I

,
I

,
I

,
I

\
I

, , \ , ,
I

\ , \
I

\ , \
\ \ \ \

I \ I
\ I , I ,• • I

0 • • e • I •• • e 0
(a) a closed region (b) half-closed regions (c) an open region

Figure 2.2: Close, half-close, and open regions.

A rectangular area in the 2-dimensional space (the shadow part in Figure 2.1(b)) is

obtained for every demand vertex v, denoted by 7-i(v), which is constructed from the two

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 23

continuous regions Rl(v), R2(v). That is, H(v) = {yIXl(Y) E Rl(V), X2(Y) E R2(V)}. It is

easy to see that any 2-center solution (point) in H(v) cannot cover v with a service cost -:::: r

and any 2-center solution in H \ H(v) can cover v with a service cost of no more than r. In

Figure 2.1, the 2-center solution X = {al' a2} can cover v with a service cost no of more

than r, but any solution in the shadow area cannot cover v with a service cost -:::: r. We

call H(v) the forbidden area of v. Note that, in Figure 2.1(a), Rl(v) and R2(v) are open

regions, and then the boundary of H(v) is not included in H(v).

We compute such forbidden areas for all demand vertices in V(G). Thus, the local

feasibility test on edges el, e2 is transformed into the following question: does the union

UVEV(G) H(v) of forbidden areas coverH? If the answer is 'yes' then r is infeasible on edges

el, e2, otherwise r is feasible on edges el, e2. This question can be answered by solving a

2-dimensional KMP on a new set of rectangles, which are constructed from these forbidden

areas.

, ,

-.- -­
U

,,
I
, el

Ul .'-'--4.e~---.~Vl

" Q1 /" /
,

(a) (b)

Figure 2.3: The reason for constructing a new set of rectangles.

The reason for constructing a new set of rectangles, instead of directly using the forbidden

areas, is that the boundary or some part of the boundary of a forbidden area might not

be included in the forbidden area. For example, let u and v be a pair of demand points

such that R2(v) = R2(u) = [U2,V2] and such that Rl(v) = [ul,ad,Rl(u) = (al,vl] (i.e.,

w(v) . d(v,ad = w(u) . d(u,aI) = r). See Figure 2.3 for reference. Clearly, the union

of the two forbidden areas H(v), H(u) does not cover H (Le., any point in H with its Xl­

coordinate equal to d(Ul, al) is not covered.). However, the measure of the union of the two

corresponding rectangles is equal to the measure of H. To fix this problem, we construct a

new set of rectangles from these forbidden areas. Lemma 2.2.1 shows that we can construct

a set of rectangles in a way such that the above question can be answered by solving a KMP

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 24

on this new set of rectangles. Let

El = min {lai(U) - ai(v)l,l(ei): ai(u) cJ ai(v)},
u,vEV(G),i=1,2

E2 = min {lai(U) - bi(v)l, l(ei): ai(u) cJ bi(v)},
u,vEV(G),i=1,2

and

E3 = min {Ibi(u) - bi(v)I,l(ei): bi(u) cJ bi(v)}.
u,vEV(G),i=1,2

Let E be (min{El,E2,E3})j2. Clearly, E > 0 and E can be computed in O(nlogn) time.

, ,, ,
" 'Y_3 __- -+__Y4..., ...

C

C

(a)

Y4t----.v3
C

Yl ,Y2,
,

z -------,-------
,

'------------Xl

(c)

(b)

_+-11.,.'--- ' Y3

: Cl
, ,,",,",~~--I,
,
,

- _1­,
, Y2
, 2, C3 :

-r---I-------~---z, ,L-L----'- ----'---__ xl

(d)

Figure 2.4: Lemma 2.2.1 (a) Case 1: Yl is located at the origin; (b) Case 2: x2(yd = 0; (c)
Case 3: Xl (yd = 0; (d) Case 4: Xl (yd cJ 0 and x2(yd cJ o.

Lemma 2.2.1 For each v E V(G), let a~(v) = ai(v) + E if ai(v) tf- ~(v), and otherwise let

a~(v) = ai(v); let b~(v) = bi(v) - E if bi(v) tf- Ri(v), and otherwise let b~(v) = bi(v), i = 1,2.

Let H'(v) = {ylal(v) ::; Xl(Y) ::; bl (v),a2(v) ::; X2(y) ::; b2(v)}.

Therefore, the measure of L:vEV(G) H' (v) is equal to the measure of H if and only if the

union UVEV(G) H(v) covers H.

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 25

Proof It is trivial that H'(v) ~ H(v), v E V(G). Hence, if the measure of I:vEV(G) H'(v) is

equal to the measure of H then the union UVEV(G) H(v) covers H. We prove in the following

that if I:vEV(G) H(v) covers H, then the measure of I:vEV(G) H' (v) is equal to the measure

ofH.

We draw lines along boundaries of all forbidden areas H(v),v E V(G). These lines

partition H into rectangular cells. From the computation of E, it is evident that the vertical

(resp. horizontal) length of each cell is at least 2E.

Refer to Figure 2.4. Let Y1,Y2,Y3,Y4 be the four corner points of a cell C. Let a be the

horizontal length of C and b be its vertical length. Note that a 2: 2E and b 2: 2E. We want to

show that there exists a new rectangle H' (v) such that Y1 is contained by H' (v), and such

that all the points z in cell C with X1(Z) :::; X1(Y1) + a - E and X2(Z) :::; X2(Y1) + b ~ E lie

within H' (v). That is, the shadow part in C is contained by a new rectangle H' (v).

We have four possible cases according to locations of Y1, as shown in Figure 2.4. We

only consider Case 4, the other cases can handled analogously. In Case 4, Y1 is not on the

boundary of H. As we know, for a forbidden area H(v), any point that is on the boundary

of H(v) but not on the boundary of H, is not contained in H(v). Thus, a forbidden area

that contains Y1 must cover the interior part of cell C and the interior parts of cells C1,C2,C3

where C1 ,C2 ,C3 are cells adjacent to C, as shown in Figure 2.4(d). Note that the vertical

(resp. horizontal) length of each cell is at least 2E. Therefore, the new rectangle constructed

from this forbidden area must cover the shadow parts in cells C,C1 ,C2 ,C3 , as desired.

3

Y'~3 Y'~3
~

E

Y11 E a Y1 Y2 Y1 Y2

(a) (b) (c)

Figure 2.5: Lemma 2.2.1: (a) Y2; (b) Y3; (c) Y4·

Similarly, the above statement about Y1 is also correct for Y2, Y3, and Y4 (see Figure

2.5). Observe that the union of these four shadow rectangles cover the cell C (including the

boundary of C). Therefore, the measure of I:vEV(G) H'(v) is equal to the measure of H,

which completes the proof of this lemma. D

CHAPTER 2. CONTINUOUS CENTER PROBLEMS IN GENERAL NETWORKS 26

It takes O(n log n) time to compute the new set of rectangles 'H' (v), described in Lemma

2.2.1, from forbidden areas 'H(v), v E V(G). Also, it has been shown [63] that, given a set of

n axis-parallel rectangles, a 2-dimensional KMP can be solved in O(n log n) time. Therefore,

a local feasibility test of weighted A(G) jV(G) j2 model on edges el, e2 can be solved in time

O(nlogn). Thus, we have the following theorem.

Theorem 2.2.2 The unweighted/weighted A(G)jV(G)j2 center problems can be solved in

O(m2nlog 2n) time.

The extension of the above approach to the case where p > 2 is straightforward. Now

a local p-center solution is represented as a point in a bounded p-dimensional box (p-box)

'H' and for each demand vertex v, we obtain a p-box in 'H' containing all p-center solutions

that serve v with a service cost> r. Thus, the local feasibility test on edges el,.'" ep ,

is transformed into the following p-dimensional Klee's measure problem: does the union of

O(n) axis-parallel p-boxes cover 'H'? It is known [63] that the measure of the union of n

axis-parallel p-boxes (p 22) can be computed in O(nP/ 2 log n) time. Therefore, we have the

following lemma.

Lemma 2.2.3 A local feasibility test of the weighted A(G)jV(G)jp problem on p edges

el,'" ,ep can be solved in O(nP/ 2 log n) time, for p > 1.

This establishes Theorem 2.1.3.

2.3 Summary

An efficient algorithm for the unweightedjweighted continuous p-center problem in a general

network, where p is an arbitrary fixed constant, is presented in this chapter. The worst-case

time complexity of our algorithm is o(mPnP/ 2 log 2n). This is an improvement over the

existing result on this problem by a factor of almost O(nP/ 2) [69]. Further reduction in the

time complexity of the problem is an interesting open problem.

For the general p-center problem in which the demand set contains all points of the

underlying network, a candidate set containing the optimal solution value is characterized

in Tamir's paper [68]. In spite of the nice structure, the size of this set is not polynomial even

for simple structures such as cactus networks. Until now, no efficient algorithm is known

for the problem in a general network. It is a challenge to design an efficient algorithm to

solve the problem even for a relatively small p.

Chapter 3

Weighted p-center problems in tree

networks

In this chapter, we are concerned with the restriction of p-center problems to tree networks

where the demand points are located at vertices and each demand point is associated with

a non-negative weight, including the weighted discrete and continuous p-center problems.

Here we only consider the case where p is a fixed constant.

For the case when p = 1, Megiddo [54] used a prune-and-search technique to solve

the weighted I-center problems in linear time. The problem of generalizing the trimming

approach to solve the p-center problem for p > 1 was open for over twenty years. We propose

an optimal algorithm for the weighted p-center problems when p is a fixed constant. It is a

nontrivial generalization of Megiddo's prune-and-search approach [54]. This result partially

resolves the long standing open problem. Moreover, we introduce a simple parametric­

pruning approach for the weighted I-center problem, which can be adapted to solve the

weighted p-center problem on the real line in linear time for any fixed value p.

Organization of the chapter Notations and definitions are provided in Section 3.1.

In Section 3.2 Megiddo's prune-and-search approach for the weighted I-center problem is

reviewed. We also give a parametric-pruning approach for the I-center problem in Section

3.2. Sections 3.3 and 3.4 provide the main results of this chapter - linear-time algorithms

to solve the weighted p-center problems in a tree network and on the real line for a fixed

value p. Finally, Section 3.5 gives a brief conclusion.

27

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 28

3.1 Notation and definitions

For any real x, Ix l denotes the smallest integer that is at least x and LxJdenotes the largest

integer bounded above by x.

We denote the underlying tree network by T = (V(T), E(T), w, I), or simply by T. Recall

that the demand set is denoted by D(T) and the supply set is denoted by X(T). In this

chapter, we only consider the problems where D(T) = V(T).

v

Figure 3.1: Subtree T ' is anchored to vertex v.

Let T(V') be the induced subtree with vertex set V' ~ V. For a subtree T ' of T, let

bTl (v) be the degree of vertex v in T ' . By a leaf of T ' we mean a vertex v with bTl (v) = 1. A

subtree T ' is anchored to a vertex v with respect to T if v is a leaf of T ' and bTl (u) = bT(u),

for any u E V (T') \ { v }. In Figure 3.1, the bold part is T ' that is anchored to vertex v with

respect to T. The vertex v is called the anchor vertex of T ' .

V1 "
".

.. --_ .

(a) Tv(u) (b) Real subtree and core subtree

Figure 3.2: Examples for Tv(u), real subtree, and core subtree.

Let Vv (u) (v =1= u) denote the set of vertices Vi such that the vertex v lies on the simple

path from the vertex u to Vi, i.e., v E 7T(U, Vi). Let Tv (u) denote the induced subtree rooted

at v with the vertex set Vv(u) as demonstrated in Figure 3.2(a). A subtree T ' is called a

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 29

real subtree of T if the component T \ T' is connected. The vertex of a real subtree T' which

is closest to T \ T' is called the root of T', and the edge linking T' and T \ T' is called the

root-edge of T'. For example, T1, ... ,T7 in Figure 3.2(b) are real subtrees; V1 is the root of

T1, and e1 is the root-edge of T1. A subtree T' is called a core subtree of T if for v E V(T'),

either OT'(V) = I or OT' = OT(V), In Figure 3.2(b), Ts is a core subtree.

For a X(T)jV(T)jp problem, a vertex u (E V(T)) is called a dominating vertex of a set

X(<;: X(T)) of p centers if F(X, {u}) = F(X, V(T)).

Definition of split-edges Let X = {a1, ... , a p } C A(T) be a set of p centers in T. Let

Vi <;: V (T) be the set of vertices closest to a particular center ai E X (ties are broken in such

a way that T(Vi) remains connected where T(Vi) is a subtree induced by Vi). The edges

whose endpoints belong to different subtrees T(Vi) are called split-edges. Thus, locating p

centers in a tree is equivalent to finding a set of split-edges whose removal defines p connected

components such that the maximum service cost of the I-centers of these components is equal

to the optimal p-center cost of the entire tree.

It is trivial that the number of split edges is p - I for the V (T) jV(T) jp or A(T) jV(T) jP

problems.

3.2 Weighted I-center problems

The weighted I-center problem is to locate a center in X(T) (two cases are considered, that

is, either X(T) = A(T) or X(T) = V(T)) such that the maximum weighted distance from the

vertices of T to the center is minimized. Since our approach for weighted p-center problems is

a generalization of Megiddo's method [54], we begin with a brief introduction of Megiddo's

linear-time method for the weighted A(T)jV(T)jl problem, followed by our parametric

pruning approach, which also runs in linear time. The extensions of these techniques to

solve the V(T)jV(T)jl problem in linear time are not hard to obtain.

3.2.1 Megiddo's approach for the A(T)jV(T)jl model

Megiddo [54] proposed a prune-and-search algorithm for the weighted A(T)jV(T)jl prob­

lem, which is carried out in two phases. The first phase is to locate a subtree network T',

containing an optimal I-center, that is anchored to a centroid vertex 0 of T (refer to Figure

3.3(a)). It is easy to see that the optimal I-center provides services to all the clients in

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 30

T outside T' (i.e., T \ T') through the vertex o. Therefore, the topology of the subtree

network T \ T' is not important. For each vertex in T \ T', we only need to keep its distance

information to o. We call a subtree of T a big component if it contains a constant fraction

of the vertices of T. The subtree T \ T' is a big component since IV(T \ T')I ;::::: n/2.

a

(a)

a

a

(b)
a

" II I

I I
I I

I I
I I

I I

"Ui u~"______ :.:t_,1

I •
I

I I
I I

I I

" II I
I I

I I

I ,I
.!. _ 'Yi.. __ 7!:i- \

t - w(uj)d(uj,O)-W(Ui)d(Ui,O)

.: .~,)_W(""

(c) (d)

Figure 3.3: Megiddo's method: (a) Subtree T' contains an optimal I-center and IV(T') I ::;
n/2; (b) W(Ui) ;::::: w(uD and w(ui)d(Ui,O) ;::::: w(u~)d(u~,o); (c) W(Ui) = w(u~) and d(Ui, O) <
d(u~,o); (d) W(Ui) > w(u~) and w(ui)d(Ui, 0) < w(u~)d(u~,o).

In the second phase the following key question is answered: determine whether there is

an optimal I-center in T' within distance t to o. We call t a critical distance. An appropriate

value of t is determined in the following way. We arbitrarily pair the vertices in T \ T'. Let

(Ul,U~),(U2,U~),... ,(Ug,u~) be the pairs where W(Ui) ;::::: w(u~) for any i,l::; i::; g. For

every such pair (ui,uD, 1 ::; i ::; g, if w(ui)d(Ui,O) ;::::: w(u~)d(u~,o) then let ti = 0; or else

if W(Ui) = w(uD and d(Ui,O) < d(u~,o), then let ti = 00; otherwise (i.e., W(Ui) > w(uD

and w(ui)d(Ui, 0) < w(u~)d(u~,o)), let ti = [w(u~)d(u~,o) - w(ui)d(Ui,O)]/[W(Ui) - w(u~)].

The significance of ti is explained as follows. For any point y lying in T', if its distance

to a is less than ti (i.e., d(y,o) < ti) then w(ui)d(Ui,Y) < w(uDd(u~,y); otherwise (i.e.,

d(y,o) ;::::: ti), w(ui)d(Ui,Y) ;::::: w(u~)d(u~,y). In Figures 3.3(b), 3.3(c), and 3.3(d), the dotted

part represents the set of points whose distance to a is less than ti and the bold part

represents the set of points whose distance to a is at least k We let t be a median of these

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 31

ti values (1 :s: i :s: g).

d(o, Yi) = t, 1 ::; i ::; k

T\T'

Figure 3.4: Answer the key question: does there exist an optimal I-center in T' within
distance t to o.

If there is an optimal I-center in T' within distance t to 0 then, for any pair (Ui, uD with

ti :::: t, Ui is not a dominating vertex in an optimal solution (1 :s: i :s: g); otherwise (there

is an optimal I-center in T' with distance> t to 0), for any pair (Ui,U~) with ti :s: t, u~ is

not a dominating vertex in an optimal solution (1 :s: i :s: g). Hence, once the answer to the

key question is known, approximately 1/4 of the vertices in T \ T' cannot be dominating

vertices in an optimal solution, and therefore can be discarded.

Refer to Figure 3.4. The approach to answer the key question is described as follows.

Let Yl, .. . , Yk be the points in T' such that d(Yi, O) = t, 1 :s: i :s: k. For each i, 1 :s: i :s: k,

we denote by Ti the subtree rooted at Yi. Without loss of any generality, assume that

F(Yl' V(Td) :::: F(Yi, V(Ti)) for any i,2 :s: i :s: k. It is straightforward that if there is

an optimal I-center in T' with distance> t to 0, then T1 contains an optimal I-center.

Therefore, the answer to the key question can be achieved by checking if T1 contains an

optimal I-center. The checking can be done in linear time.

The algorithm performs O(log n) above iterations. Each iteration takes linear time,

linear in the size of the current tree. Therefore, the continuous I-center problem can be

solved in linear time.

3.2.2 A parametric-pruning approach for the A(T)/V(T)/l model

In this section, we present a parametric-pruning approach for the weighted continuous 1­

center problem in T. Our approach is also carried out in two phases. The first phase is

same as the one of Megiddo's approach[54]. The main difference between our approach and

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 32

Megiddo's approach is in the second phase. In the following, we present the second phase

of our parametric-pruning approach.

In the second phase, we still arbitrarily pair the vertices in T\T'. Let (Ul' u~), (U2' u~), ... ,

(ug , u~) be the pairs where W(Ui) ~ w(u~). For every such pair (Ui, u;), 1 <:::: i <:::: g, if

w(ui)d(Ui, a) ~ w(uDd(u~, a) (see Figure 3.3(b)) then u~ cannot be a dominating vertex in

an optimal solution; else if W(Ui) = w(u;) and d(Ui, a) < d(u~, a) (see Figure 3.3(c)), then

Ui cannot be a dominating vertex in an optimal solution. Therefore, we can immediately

discard one non-dominating vertex from such a pair that belongs to one of these two cases.

All the other pairs (Ui, u~) satisfy that W(Ui) > w(u~) and w(ui)d(Ui, a) < w(u~)d(u~, a).

For every remaining pair (Ui,U~), we compute ti = [w(u~)d(u~,a) - w(ui)d(Ui, a)] j[W(Ui)­

w(u~)]. It is easy to see that W(Ui) . (d(ui,a) + ti) = w(u;) . (d(u~,a) + ti). Let Ci =

W(Ui) . (d(Ui, a) + ti), which is called the switch service cast of (Ui,U;). Let ci denote the

optimal service cost of the A(T)jV(T)jl problem. If ci is larger (resp. no more than)

than Ci then u~ (resp. Ui) cannot be a dominating vertex. Let c be a median of these

switch service costs Gi, called critical service cast. We can find either ci > c or ci <:::: c after

solving the following feasibility test problem: does there exist a point y E A(T) such that

F(y, V(T)) <:::: c? We know that one feasibility test in a tree network can be solved in linear

time [56], linear in the size of the current underlying tree. Therefore, the pruning of the

vertices in T \ T' can be performed using this parametric-pruning method.

d(a, y;) = t

(a) Megiddo's method (b) parametric-pruning method

Figure 3.5: Comparison between Megiddo's method and parametric-pruning method

The advantage of our parametric-pruning approach over Megiddo's approach is shown

as follows. In Megiddo's method, one big component needs to be located, i.e. Til in Figure

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 33

3.5(a), which is served by same center lying outside of Til so that at least a constant fraction

of the vertices in Til can be identified for pruning. Here the center facility provides services

to the demand points in Til through the vertex 0 only. However, the parametric-pruning

method still works even if q disjoint components, q = O(n), (see Figure 3.5(b)) are being

served by same center from the outside. We will see this point in its application to solve

conditional extensive facility location problems in trees (in Chapter 5).

3.3 Weighted p-center problems (fixed p)

The problem of generalizing Megiddo's prune-and-search approach [54] to solve the p-center

problem for p > 1 was open for a long time. In [7], we used the interactions between

two centers and a split-edge to guide us in trimming the underlying tree, and proposed

an optimal algorithm for solving the weighted 2-center problems (i.e., A(T)/V(T)/2 and

V(T)/V(T)/2). In this section, we generalize the approaches proposed in [7, 54] to solve

the weighted p-center problem when p is a fixed constant.

A new type of problems, called constrained (s, t)-center problems, is described as follows.

In a constrained (s, t)-center problem, locations of t facilities are already known, and the

objective is to compute the locations of s new facilities such that the maximum weighted

distance from demand points to the t existing facilities and s new facilities is minimized.

There are s+t~1 split-edges in a solution of a constrained (s, t)-center problem. We have the

following constraints in a constrained (s, t)-center problem. A collection of q(l ::; q < s + t)

pairwise disjoint subtrees, called split-edge subtrees, is given such that all s + t - 1 split-edges

are distributed among them, and we are also given another collection of q'(O ::; q' ::; 8 + t)

pairwise disjoint subtrees whose center areas are predetermined. The formal definition of

constrained (8, t)-center problems is presented in Section 3.3.l.

It is easy to see that a weighted p-center problem in a tree T can be reformulated as a

constrained (p,O)-center problem, in which p - 1 split-edges lie in T and no subtree has its

center area predetermined. We show in the remaining part of this section that a constrained

(8, t)-center problem in T can be solved in linear time in an incremental way when both 8

and t are fixed constants (Theorem 3.3.19). Therefore, we have the following theorem.

Theorem 3.3.1 A weighted p-center problem in a tree can be solved in linear time, for any

fixed p.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 34

3.3.1 Formal definition of constrained (s, t)-center problems

A constrained (s, t)-center problem is actually a conditional center problem with extra re­

strictions. In the following, we focus on the continuous version of the problem. Its discrete

version can be defined similarly. Also, an optimal solution for the discrete version can be

obtained in a very similar way and therefore is omitted here. A constrained (8, t)-center

problem R is expressed as:

The parameters in a constrained (8, t)-center problem include:

• T: the underlying tree network;

• s: the number of new facilities to be opened;

• (3s+1,"" (3s+t: t existing facilities in A(T). An edge in T contains at most two existing

facilities, and if there are two existing facilities on an edge then the two existing

facilities are located at the endpoints of the edge;

• ~e, 1 ~ i ~ q: subtrees of T, called split-edge subtrees. A subtree is called a split-edge

subtree if it contains at least one split-edge. All 8 + t - 1 split-edges lie in these split­

edge subtrees. The following invariants are always maintained. For each i, 1 ~ i ~ q,

Tt is either a path or a core subtree. For ~e and TJe with i #- j, E(Tn n E(TJ) = 0.
It is not hard to see that q ~ 8 + t - 1. Let NS(Tn denote the number of split-edges

lying in Tie, 1 ~ i ~ q. A subtree T' is clear if E(T') n E(Tn = 0, i = 1, ... ,q, that is,

V(T') is served by the same I-center;

• (Ti, Tn, 1 ~ i ~ q': For each i, 1 ~ i ~ q', Ti is a clear subtree. The center serving

V (Ti) lies in subtree T2, and A(Ti) n A(Tn #- 0. We call Tic the center subtree of Ti

and Ti the Center-Area-Predefined (for short, CAP) subtree. Moreover, the following

conditions are also satisfied:

- For any existing facility (3j (8 + 1 ~ j ~ 8 + t), there is a CAP subtree which it

serves, that is, \:fj E [8 + 1,8 + t] 3i (1 ~ i ~ q') 1\ (TiC = (3j);

- A(Ti) n A(Tj) = 0, 1 ~ i < j ~ q';

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 35

There is at least one split-edge subtree that is a path between any two different

CAP subtrees. In other words, different CAP subtrees are served by different

centers. Hence, t :::; q' :::; (s + t) is always true.

Therefore, a weighted A(T) IV(T) Ip problem can be restated as the following constrained

(p, D)-center problem:

(T;p; 0; {T}; 0),

where the number of split-edges contained in T is p - 1, i.e., NS(T) = p - 1. It is easy to

see that, for fixed sand t, the total size of a constrained center problem is O(IV(T)I).

3.3.2 The main idea and overall approach

The proposed linear-time algorithm uses the solutions of lower-order constrained center

problems. That is, we assume that a linear-time algorithm is available for any constrained

(x, y)-center problem, where x :::; s and x + y :::; s + t (x < s if x + y = s + t).

Our linear-time algorithm follows the lines of Megiddo's method for weighted I-center

problems in a tree [54] (see Section 3.2.1). We call any change performed on a constrained

center problem a transfer. In Megiddo's method [54], only one type of transfer is performed,

that is, pruning vertices from the current underlying tree network. However, we also per­

form some other types of transfers in our algorithm, such as splitting a split-edge subtree,

shrinking center subtree of a CAP subtree, and so on. One common theme behind all these

different types of transfers is that, the optimal service cost remains unchanged.

Definition 3.3.2 (Safe transfer) A transfer from a constrained center problem RI to a

new constrained center problem R2 is called a safe transfer if the optimal service cost of Rz

is equal to the optimal service cost of R I .

Definition 3.3.3 (Safe operation for a center) Discarding one vertex v is called a safe

operation for a center a if it is already known that v is served by a, and v is not the farthest

weighted vertex to a.

Similarly, we have the following definition.

Definition 3.3.4 (Safe operation for a subtree) Discarding one vertex is a safe oper­

ation for a subtree T' if it is a safe operation for any center located in A(T').

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 36

For a clear subtree T' in a constrained center problem, if the vertices in T' are served

by some center in Til in an optimal solution, and if discarding v E V(T') is a safe operation

for Til, then pruning v is a safe transfer. In our approach, we construct CAP components

and shrink their center subtrees for this purpose.

Let R : (T;s;{,6s+1, ... ,,6s+t};{Tl, ... ,Tn;{(i\,Tf), ... ,('fqI,T~I)}) be a given con­

strained (s, t)-center problem. The stepwise description of our approach to solve R is given

below.

Step 1: Transfer R into a new constrained (s, t)-center problem R' that contains at least

one big clear subtree Ti (here a subtree T' is big if IT'I :::: ITI/2(s+t)). This is achieved

by applying split-edge-splitting transfers (Lemma 3.3.14) a constant number of times.

Step 2: In this step, we focus on shrinking center subtree Tic of Ti that is computed in Step

1. Step 2 consists of three sub-steps.

Step 2.1: Let 0i be a centroid vertex of Ti . We find the branch T! anchored to 0i such

that it contains the center serving vertices in t in an optimal solution, that is,

we safely transfer the current constrained center problem to a new one in which

the center subtree Tic of Ti is a subtree of T!. Hence, at least half of the vertices

in Ti are served by some facility in Tic through 0i.

Step 2.2: Compute critical distance di as follows. We arbitrarily pair the vertices in

Ti \ Tf. Let (Ul,U~), (U2,U~), ... , (Ug,u~) be the pairs where w(Uj) :::: w(uj),j =

1, ... ,g. For every such pair (Uj,uj), 1:::; j :::; g,

• if w(uj)d(uj, Oi) :::: w(uj)d(uj, Oi) then let Xj = 0;

• or else if w(Uj) = w(uj) and d(uj, Oi) < d(uj, Oi) then let Xj = 00;

• otherwise (i.e., w(Uj) > w(uj) and w(Uj)d(Uj,Oi) < w(uj)d(uj,Oi)), let Xj =
[w(uj)d(uj, Oi) - w(Uj)d(Uj, Oi)]/[W(Uj) - w(uj)].

Basically, Xj indicates the intersection of service functions of pairs of vertices

(Uj, uj), 1:::; j :::; g. We let di be the median of these Xj values (1 :::; j :::; g).

Step 2.3: We safely transfer the current constrained center problem to a new one in

which either d(oi,A(Tn) > di or maXxEA(Tn d(Oi, x) :::; di (recall that the center

serving V(t) lies in subtree Tn.

(Steps 2.1 and 2.3 are done by solving constrained (s - 1, t + I)-center problems as

described in Section 3.3.5.)

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 37

Step 3: Similar to Megiddo's method [54], discard non-dominating vertices in Ti thus com­

puted.

Step 4: Repeat the above process until the size of the underlying tree is no more than a

given constant.

It is not hard to see that after each iteration of the first three steps, at least a constant

fraction of vertices is discarded. Therefore the process terminates within O(log n) iterations.

If each iteration of executing the three steps can be done in linear time, then the total cost

is O(n) time.

The remaining part of Section 3.3 is organized as follows. Section 3.3.3 solves the

base step of our incremental algorithm, that is, a linear-time algorithm is proposed for

a constrained (0, h)-center problem where h is a fixed constant. Important properties used

for splitting split-edge subtrees and shrinking center subtrees are explored in Section 3.3.4.

Finally, Section 3.3.5 reviews the whole algorithm and establishes our result for constrained

center problems.

3.3.3 Constrained (0, h)-center problems

From the definition of a constrained (s, t)-center problem, we know that the number q' of

CAP components in it is between t and s+t. Therefore, there are exactly h CAP components

in a constrained (0, h)-center problem R, as shown in the following.

where (31, ... ,(3h are h existing centers. In this section, we present an algorithm for problem

R which runs in linear time and space.

We observe that T consists of three types of pairwise edge-set disjoint subtrees: CAP

subtrees t, I :::; i :::; h (type-I), split-edge subtrees Tj, I :::; j :::; q (type-2), and other clear

subtrees whose center areas are not yet predefined (type-3). Note that type-I and type-3

subtrees are clear subtrees. All these subtrees are glued together with hinge vertices, where

a hinge vertex is a common vertex contained in at least two different types of subtrees. Since

a clear subtree cannot be connected to another clear subtree, type-I and type-3 subtrees

are separated by type-2 subtrees.

For any clear subtree, such as a type-lor type-2 subtree, its vertices are served by same

center in a solution. Furthermore, the center serving a type-I subtree is predefined, i.e.,

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 38

vertices in Ti , 1 <;:;: i <;:;: h, will choose {3i to obtain service. We divide T into a collection of

subtrees, denoted by S(T), by considering type-1 subtrees as cuts. Figure 3.6 demonstrates

an example of T that is divided into two subtrees T i and T2 by type-1 subtrees. Type-1

subtrees are represented by bold circles with a point inside, type-2 subtrees are represented

by dashed ellipses (each type-2 subtree contains a number denoting the number of split­

edges), and type-3 subtrees are represented by solid circles.

Figure 3.6: T is divided into Ti and T2 by type-1 subtrees, i.e., S(T) = {Ti , T2}.

Observation 3.3.5 Each subtree in S(T) contains at least one type-2 subtree.

Observation 3.3.6 For each subtree T' in S(T), a type-l subtree is attached to at most

one type-2 subtree in T'. Let cI>1 be the set of type-l subtrees in T' and cI>2 be the set of

type-2 subtrees in T'. Then,

1cI>11 = :L NS(Tn + 1.
T i

e E<P2

Observation 3.3.7 The combination of optimal solutions of subtrees in S(T) is an optimal

solution of T since any two subtrees in S(T) are separated by a type-l subtree.

According to Observation 3.3.7, it is sufficient to show an algorithm to find an opti­

mal solution of a subtree in S(T). In Figure 3.7, an example of a subtree T' in S(T) is

demonstrated. Note that type-1 subtree Ti is served by {3i, i = 1,··· ,7.

Next, we present a simple method to find an optimal solution of a subtree T' E S(T).

For each type-2 subtree Tie in T', let N f (Tn be the number of type-1 subtrees attached

to Tr For example, Nf(Tf) = 1,Nf(T2) = 2,Nf(T3) = 1, and Nf(T4) = 3 in Figure 3.7.

Lemma 3.3.8 For each type-2 subtree T;"(l<;:;: i <;:;: q) in T', Nf(Tn <;:;: NS(Tn + 1.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 39

W(T{') = 1

NS(Ti) = 1

W(Ti) = 1
W(T1) = 3

Figure 3.7: An example of a subtree T' in S(T).

Proof If a type-l subtree Tj (1 ::; j ::; h) is attached to Tie, then at least one vertex in Tt

is served by (3j, i.e., the hinge vertex between Tj and Tr In other words, vertices in Tt

are served by at least Nf(Tt) existing facilities. Therefore, Tie contains at least Nfcrn-1

split-edges. 0

Lemma 3.3.9 For a type-2 subtree Ti
e(1 ::; i ::; q) in T' where Nf(Tt) = NS(Tn + 1, let

t.i be the set of existing facilities contained in type-l subtrees attached to Tie, i. e., t. i =

{(3jITj is attached to Tn. Then, all vertices in V(Tt) are served by facilities in t.i .

Proof The proof of this lemma is very similar to the one of Lemma 3.3.8. If a connected

subtree is served by k facilities in a solution, then it contains exactly k - 1 split-edges in

that solution. Since Nf(Tt) = NS(Tt) + 1, all vertices in V(Tt) are served by facilities in

t. i . 0

Lemma 3.3.10 There exists at least one type-2 subtree Ti
e(1 < < q) in T' such that

Nf(Tt) = NS(Tt) + 1.

Proof Suppose that there is no type-2 subtree Tie where Nf(Tt) = NS(Tn + 1. Then,

according to Lemma 3.3.8, for each type-2 subtree TJ(1 ::; j ::; q) in T', Nf (TJ) < NS(TJ)+ 1,

which contradicts with Observation 3.3.6.

Therefore, there exists at least one type-2 subtree Tie in T' where NfCrt) = NS(Tt) + 1

(For example, in Figure 3.7, Nf(Ti) = N S (T2) + 1). 0

Our approach is therefore as follows. At each step, we find a type-2 subtree Tt in T'

where Nf (Tt) = NS(Tt) + 1, 1 ::; i ::; q. Then we locate NS(Tt) split-edges in Tie, according

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 40

to the locations of existing facilities in type-1 subtrees attached to Tt Once split-edges are

located, the facility serving each vertex in Tie is determined. Therefore, Tie is divided into

pieces and each piece is merged into a type-1 subtree. The approach is repeated until no

type-2 subtree is left in T'.

Since q and h are constants, we have the following result.

Lemma 3.3.11 The optimal service cost of a constrained (0, h)-center problem in a tree

can be computed in linear time, if h is a fixed constant.

3.3.4 Important properties

We assume here that while solving a constrained (s, t)-center problem the solution to any

constrained (x, y)-center problem with x + y ::; s + t and x ::; s (x < s if y = t) is known.

In this section we explore several important properties that are crucial in our algorithm.

Based on them, we can split split-edge subtrees to locate a big clear subtree, and shrink

center subtrees to prune non-dominating vertices in the big subtree.

In a constrained (s,t)-center problem R:< T;s;f3s+1, ... ,f3s+t; {Tf, ... ,TD;{(T1,Tf),

... , (Tql,T~/)} >, we pick up a vertex v from a split-edge subtree Tie(l::; i::; q). Let e (uv)

be an edge in E(Tn that is incident to v. We divide R into two subproblems, i.e., R1 and

R2 , by considering e as a split-edge. As illustrated in Figure 3.8(a), the underlying tree

of R1 is T1 and the underlying tree of R2 is T2. We denote by Tk the intersection subtree

of Tt and Tk, k = 1,2. Other NS(Tn - 1 split-edges in ~e are distributed among T{ and

T~. Assume that T{ contains j split-edges with IE(T{)I ~ j, 0 ::; j ::; NS(Tn - 1. Then T~

contains NS(Tn - j - 1 split-edges (note that IE(T~)1 ~ NS(Tn - j - 1). Let tk be the

number of existing facilities in Tk and let Sk be the total number of split-edges of split-edge

subtrees (except Tn in Tk, k = 1,2. Therefore, we need to locate Sl + j split-edges in T1

and S2 + NS(Tn - j - 1 split-edges in T2. We have the following lemma.

(a) (b)

Figure 3.8: Lemma 3.3.12 and Lemma 3.3.13.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 41

Lemma 3.3.12 If the optimal service cost of the constrained (Sl + j - t1 + 1, td-center

problem R1 is larger than or equal to the optimal service cost of the constrained (S2 +
NS(Tn - j - t2, t2)-center problem R 2, then E(T{) U {e} contains at least j + 1 split-edges

in an optimal solution of R. Otherwise, E(T~) U {e} contains at least N S (Tn - j split-edges

in an optimal solution of R, in other words, E(T{) U {e} contains at most j + 1 split-edges.

Lemma 3.3.13 If it is known that E(T{) U {e} contains j + 1 split-edges and if the optimal

service cost of the constrained (Sl + j - t1 + 1, td-center problem R1 is smaller than the

op~imal service cost of the constrained (S2 + NS(T,n - j - t2, t2)-center problem R 2, then

edge e is an optimal split-edge in an optimal solution of R.

We show Lemma 3.3.12 and Lemma 3.3.13 by a simpler example. In Figure 3.8(b), an

edge e : uv separates the underlying tree into two subtrees Tu and Tv. If the service cost

of an optimal I-center solution of Tu is larger (resp. smaller) than or equal to the service

cost of an optimal I-center solution of Tv, then, in an optimal 2-center solution, the optimal

split-edge lies in E(Tu) U {e} (resp. E(Tv) U {e}) since it is impossible to have a solution

with a split-edge in Tv (resp. Tu) that has a smaller service cost. For Lemma 3.3.13, if it is

known that E(Tu) U {e} contains an optimal split-edge and the service cost of an optimal

I-center solution of Tu is smaller than the service cost of an optimal I-center solution of Tv,

then e is an optimal split-edge.

Lemma 3.3.14 (Split Lemma) Given a constrained (s, t)-center problem R :< T; s; (3s+1,

... ,(3s+t; {T1,... , T;}; {(T1, Tf), ... , (Tql, T~I)} > and a vertex v in T, either we solve R or

we can safely transfer R into a new constrained (s, t)-center problem in which v is not an

internal vertex in any split-edge subtree, and the process takes linear time.

Proof Since split-edge subtrees are pairwise edge-set disjoint, either v is not an internal

vertex of any split-edge subtree or v is an internal vertex of some split-edge subtree. In the

former case, R itself is the desired constrained center problem. Assume that v is an internal

vertex of split-edge subtree Tk(1 :S k :S q) where NS(Tk)= h, 1 :S h :S s + t - l.

If Tk is a core subtree, then v does not lie in any Ti ,1 :S i :S q', since Ti is a clear

subtree. Let T1 , ... , Tb be the subtrees anchored to v such that each of them does not

contain Ti (l:S i:S q') or TJ(I:S j i- k:S q). Subtrees T1, ... ,n do not contain any of

the existing facilities. The number of remaining subtrees anchored to v is no more than

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 42

s + t - 1 - h + q', since there are at most s + t - h split-edge subtrees (including Tk) in R,

i.e., q ~ s + t - h.

We first show that at most th + h + 1 subtrees among TI , ... , n need to be considered

that may contain split-edges in an optimal solution of R. Assume that b > th + h + 1. We

consider the following two cases.

v

- e ai

Figure 3.9: Case 1 in proof of Lemma 3.3.14: v is served by an existing facility fk

e Case 1: v is served by an existing facility. Suppose that !3i serves v, 1 ~ i ~ t,

and F(!3i, V(TI)) 2': F(!3i, V(T2)) 2': ... 2': F(!3i, V(Th)) 2': F(!3i, V(Tj)),j > h. Then,

in an optimal solution, Tj , j > h, does not contain split-edges. The reason is as follows.

Assume that a subtree Tj (j > h) contains r (~ h) split-edges in a solution. Let °
be the set of subtrees among {TI , ... , Th} that do not contain any split-edges in this

solution. Obviously, 101 2': r since NS(Tk) = h. Therefore, the service cost is at least

F(!3i, V(Th)). We can see that the service cost is not increased if we replace r split­

edges in T j by r edges vVa where Ta E °(see Figure 3.9). Hence, we can assume that

a subtree Tj(j > h) does not contain split-edges in an optimal solution if v is served

by !3i.

Therefore, in the case when v is served by some existing facility, at most th subtrees

might contain split-edges in an optimal solution.

e Case 2: v is served by a newly opened facility. Suppose that F(v, V(TI)) 2':

F(v, V(T2)) 2': ... 2': F(v, V(Th+l)) 2': F(v, V(Tj)),j > h + 1. In this case, subtree

Tj , j > h + 1 does not contain split-edges in an optimal solution. The reason is briefly

described as follows. We observe that the service cost of a solution 8, in which a

subtree Tj(j > h + 1) contains split-edges, is at least F(v, V(Th+d). Similar to the

idea in Case 1, we can find another solution with the same or smaller service cost in

which there is no split-edge in T j .

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 43

Since T:i contains split-edges in 8, there is at least one facility in T j . We create a

new solution by removing from 8 split-edges and facilities that are lying in Tj , and

inserting a facility v. It is not hard to see that the service cost of the new solution is

no larger than the service cost of 8.

Thus, there exists an optimal solution in which no split-edge lies in T j , j = h + 2, ... , b,

if v is served by a newly opened facility f3i, i :::: s.

Therefore at most th + h + 1 subtrees among TI , ... ,n need to be considered that might

contain split-edges in an optimal solution. Let r be the set of subtrees anchored to v that

might contain split-edges. We can see that If! :::: th + s +t +q' (note that there are no more

than s + t - 1 - h + q' subtrees anchored to v other than T I , ... , n). The set r can be found

in linear time since s, t, h, q' are fixed constants.

The second step is to compute the number of split-edges of each subtree in r. For each

such subtree Ti E r, 1 :::: i :::: b, we consider VVi as a split-edge. We denote by Tf the subtree

Ti \ v. Let ')'1 be the number of existing facilities in T! and ')'2 be the total number of split­

edges of split-edge subtrees (except Tn in Tf. If E(Tf) U E(Tk) contains j split-edges, then

T! contains ')'2 + j split-edges and T \ T! contains s + t - 2 -{2 - j split-edges. We compute

the smallest value of j E [0, h - 1] such that the optimal service cost of the constrained

(')'2 + j + 1 - ')'1, ')'I)-center problem on T! is smaller than or equal to the optimal service

cost of the constrained (s + ')'1 -')'2 - j - 1, t -')'1)-center problem on T \ T!. This value can

be computed by considering all possible values of j (if it exists). For each value of j, two

subproblems need to be solved, which can be done in linear time by assumption. We have

the following two cases.

• Let ji be the smallest value of j in [0, h - 1] such that the optimal service cost of the

constrained (')'2 + ji + 1 -{I, ')'I)-center problem on T! is smaller than or equal to the

optimal service cost of the constrained (s +{I -')'2 - ji - 1, t -{I)-center problem on

T \ T!. Then, in an optimal solution of R, at least ji split-edges of Tk lie in Ti and at

most ji + 1 split-edges of Tk lie in Ti .

• For any value of j in [0, h - 1], the optimal service cost of the constrained (')'2 + j + 1­

')'1, {I)-center problem on T! is larger than the optimal service cost of the constrained

(s + {I -{2 - j - 1, t -{I)-center problem on T \ Tf. Then, in an optimal solution of

R, all h split-edges of split-edge subtree Tk lie in Ti . We let ji be h.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 44

For each subtree T" in f, we compute its corresponding value of ji as described above.

Since only a constant number of subtrees anchored to v might contain split-edges, Le.,

If! ::; th + s + t + q', the above process of computing all ji's can be done in linear time.

It is easy to see that LTia ji ::; h. If LTia ji = h, then the distribution of h split-edges

of Tk among subtrees in f in an optimal solution is known. Thus, we update the information

in the constrained center problem R accordingly, i.e. delete split-edge subtree Tk, insert

new split-edge subtrees, and merge clear areas if they are now served by same center.

Otherwise, LTia ji < h. We already know that a subtree Ti in f contains at most ji +1

split-edges in an optimal solution. By using Lemma 3.3.13, if a subtree Ti in f contains

ji + 1 split-edges in an optimal solution, then VVi is an optimal split-edge. We conclude that

there are h - LTia ji split-edges among edges VVi, Ti E f. In this case, we are able to solve

R in linear time after locating h - LTia ji split-edges among edges VVi, Ti E f.

In the case when Tk is a path, we know that h split-edges of Tk are distributed in two

subtrees anchored to v, say T1 and T2 . We perform the second step described above to

compute the values of jl and 12, that is, in an optimal solution of R, at least ji split-edges

of Tk lie in Ti and at most ji + 1 split-edges of Tk lie in Ti , i = 1,2. Clearly, jl + j2 ::; h.

If jl + 12 = h, then the distribution of h split-edges of Tk among T1 and T2 in an optimal

solution is known. Thus, we update the information in the constrained center problem R

accordingly. Otherwise, jl + 12 < h. In this case, there are h - jl - j2 split-edges among

edges VVI and VV2. We solve R in linear time after locating h - jl - 12 split-edges among

edges VVI and VV2. 0

Split Lemma shows that, in linear time, we are able to compute the number of split­

edges contained in each subtree anchored to v. In the following, we show that, by using

Split Lemma at most flog (s + t)l times, we can obtain a new constrained center problem

that contains a big clear subtree (it contains more than IV(T)1/2(s + t) vertices).

Locate one big clear subtree

Let 0 be a centroid vertex of T. By using Split Lemma on 0, we get the number of split-edges

in each branch anchored to o. Refer to Figure 3.10(a). Let T1 ,··· ,Tb be subtrees anchored

to 0 such that each of them contains at least one split-edge. We denote by Tb+l the subtree

that consists of all subtrees anchored to 0 that do not contain any split-edge.

For each subtree Ti , 1 ::; i ::; b, we define its average size as IV(Ti) II Si if Ti contains Si

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 45

0'

split-edges. If Tb+l contains at least IV(T)I/(s+t) vertices then Tb+l is a big clear subtree.

We assume that lV(n+l)! < IV(T)I/(s+t). Among Tl ,'" ,n, there is at least one subtree

Ti with its average size 2': IV(T) I/ (s + t), since the total number of split-edges is s + t - l.

Therefore, IV(T;)[2': Si x IV(T)I/(s + t). Let Xl = Si. We can see that Xl .:::; (s + t)/2 since

a is a centroid of T.

Let 0' be a centroid vertex of Ti. The above process is repeated on a' and Ti. We

will see a minor difference in the following description. We first apply the Split Lemma on

vertex a'. Each of subtrees T{, ... ,T£ contains at least one split-edge. In Figure 3.10(b)(c),

the subtree T~+2 is union of Tl ,'" ,Ti- l ,Ti+l,'" ,Tb+l in Figure 3.10(a). Let Til be the

subtree anchored to 0' that contains T£+2' i.e., Til = T£+l U T£+2 in Figure 3.10(b). We

denote by T£+3 the subtree that consists of all subtrees anchored to 0' that do not contain

any split-edge. We have the following two cases.

• Case 1: the number of split-edges lying in Til is larger than the number of split-edges

lying in T£+2' i.e., there are split-edges in T£+l (see Figure 3.10(b)) .

• Case 2: all split-edges of Til lie in T~+2 (see Figure 3.10(c)). In this case, T~+l is a

clear subtree. Therefore, T£+4 = T£+l U T£+3 is a clear subtree.

If IV(T£+3) I 2': IV(Ti)I/(Xl + 1) in Case 1 or IV(T£+4)! 2': IV(T;)I/(Xl + 1) in Case 2, then a

clear subtree with size 2': IV(T)I/2(s + t) is found, since IV(T;)I 2': Xl x IV(T)I/(s + t) and

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 46

Xl is a positive integer. Otherwise, for each subtree Tj (1 ~ j ~ k+ 1 in Case 1, 1 ~ j ~ k
in Case 2), we compute its average size. There is at least one subtree Tj with its average

size ~ [V(Ti)I/(Xl + 1). We denote by X2 the number of split-edges contained in Tj. With

the same reason for Xl ~ (s + t)/2, X2 ~ (Xl + 1)/2.

We continue the process on Tj and its centroid vertex. Obviously, this process terminates

in ,log (s + t)l steps and we get a clear subtree whose size is at least [V(T)I . [xl/(s + t)] .

[X2/(Xl + 1)] 1/2, where Xi ~ [(Xi-l + 1)/2] with XQ = s + t - 1. This value is at least

[V(T)j/2(s + t) (it can be proved by induction). Therefore, we have the following lemma.

Lemma 3.3.15 Given a constrained (s, t)-center problem, a clear subtree whose size is at

least [V(T)I/2(s + t) can be found in linear time.

The following lemma is an extension of the Split Lemma.

Lemma 3.3.16 Given a set <1> of disjoint real subtrees in a constrained (s, t)-center problem,

we can safely transfer R into a new constrained (s, t)-center problem, in which the root

vertices of real subtrees in <1> are not internal vertices of any split-edge subtree, and the

process takes linear time.

Proof Let <1>' be the set of real subtrees in <1> whose roots are internal vertices of split-edge

subtrees. Similar to the first step in the proof of the Split Lemma, we show that only a

constant number of real subtrees in <1>' are candidates to contain split-edges in an optimal

solution and that they can be found in linear time.

If a real subtree in <1>' contains some existing facility or some split-edge subtree, then

apply the Split Lemma to its root. Since there are only a constant number of such real

subtrees, it can be done in linear time. Let <1>" be the set of real subtrees in <1>' that do not

contain any existing facility and any split-edge subtree. We assume that 1<1>"1 ~ s + t - 1.

For each subtree T' in <1>", we compute the service cost of an optimal I-center solution of

T'.

We observe that the first s + t - 1 subtrees with larger optimal I-center service cost are

candidates to contain split-edges in an optimal solution, by the same reason mentioned in

the proof of the Split Lemma. Therefore, we need to apply the Split Lemma only on the

root vertices of the s + t - 1 real subtrees. Note that it takes linear time to compute their

I-center service costs since they are pairwise disjoint.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 47

As desired, after the above processing, the root of each real subtree in <I> is not an internal

vertex of any split-edge subtree. The entire process takes linear time. 0

Lemma 3.3.17 Given two vertices u, v in a constrained (s, t)-center problem R, we can in

linear time safely transfer it into a new constrained (s, t)-center problem, in which either u

and v are served by same center or they are served by different centers.

Proof The idea is to, in linear time, safely transfer R into a new constrained (s, t)-center

problem, in which either

• 7l'(U, v) is clear. In this case, u and v are served by same center; or

• a split-edge path intersects 7l'(u, v). In this case, u and v are served by different centers.

VI

•,
U • - - - - - .. - - - ~ - - - - - - -. V

U' v' \
\

\
\

~

V2

(a) (b)

(c) (d)

Figure 3.11: Proof of Lemma 3.3.17.

We achieve the above goal by the following steps.

Step 1: apply the Split Lemma on u and v. If 7l'(U, v) is clear, then terminate the process.

Step 2: we do the following for each split-edge sllbtree that is a path 7l'(VI, V2) and that

intersects with 7l'(u,v), i.e., E(7l'(VI,V2)) n E(7l'(u, v))) =f- 0. Let u' (resp. v') be the

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 48

vertex in 71" (VI, V2) closest to U (resp. v) (see Figure 3.11 (a)). By applying the Split

Lemma on u', v' respectively, either 71"(u', v') is clear or 71"(u', v') contains at least one

split-edge. In the latter case, U and v are served by different centers, and we therefore

terminate the process.

Step 3: we do the following for each split-edge subtree that is a core subtree Tie and that

intersects with 71"(u, v), i.e., E(Tn n E(71"(U, v))) -I- 0. Let u' (resp. v') be the vertex in

Tie closest to U (resp. v). We can see that u' and v' are leaves of Tt Let u" (resp. v")

be the vertex in 71"(u',v') adjacent to u' (resp. v'). See Figure 3.11(b) for reference.

Note that it is possible that u" = v".

By using Lemma 3.3.16 on the set of real subtrees hanging from 71"(u", v"), their root

vertices are not internal vertices of any split-edge subtree in a new constrained center

problem. In this new constrained center problem, Tie is updated to be a core subtree

that is composed of vertices in 71"(u", v") and vertices adjacent to 71"(u", v") (see Figure

3.11(c)).

To each vertex in 71"(u", v") adjacent to a real subtree that hangs from 71"(u", v") and

contains an existing facility or a split-edge subtree, we apply the Split Lemma. We

note that there are only a constant number of such vertices, bounded by s + t. Now,

T{ is split into pieces.

For each piece TJ that intersects with 71"(u, v), we do the following. We assume that

TJ is not a path. Let UI,'" ,Ub be the vertices in TJ that lie on 71"(u,v) (see Figure

3.11(d)). We can see that UI and Ub are leaves of Tj. Let NS(TJ) = k.

We observe that all real subtrees hanging from 71"(U2,Ub-d are clear (otherwise, the

Split Lemma will be applied in the above). For each real subtree T' hanging from

vertex Uh, 2 :::; h :::; b - 1, we compute service cost F(Uh, V(T')). Let T{,··· ,T~+I be

subtrees that have the first k + 1 largest service costs. There is an optimal solution

in which the root-edge of a subtree T' hanging from 71"(U2,Ub-l) with T' -I- T~,l :::;

h :::; k + 1, is not a split-edge. Note that, in the proof of the Split Lemma, we use the

similar reason to show that there are only a constant number of subtrees containing

split-edges.

To each vertex in 71"(U2, ub-d that is adjacent to at least one ofthe subtrees T{, ... , T~+I'

we apply the Split Lemma. Then, either the root-edge of a real subtree T~ (1 :::; h :::;

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 49

k + 1) is a split-edge, or all k split-edges of TJ lie in 1r(UI,Ub)'

It is not hard to see that all of these steps can be accomplished in linear time. This completes

the proof. 0

Lemma 3.3.18 (Shrink Lemma) Given a constrained (s, t)-center problem R :< T; s;

,8s+l, ... ,,8s+t;{T{, ... , T~};{(j\,T{), ... ,(tql,T~/)} > and an integeri,l:::; i:::; q', let v

be a non-leaf point in Tr We can in linear time safely transfer R into a new constrained

(s, t) -center problem R' in which v is a leaf point of T{.

Proof If v rf. t i then we first identify that either t i and v are served by same center or they

are served by different centers. It can be done using Lemma 3.3.17 on v and any vertex in

t i .

We have two cases. If t i and v are served by different centers, then we are able to shrink

the center subtree TiC of t i such that v is a leaf vertex of Tr

Otherwise, t i and v are served by same center. In this case, we obtain a desired con­

strained center problem R' by solving a constrained (s - 1, t + I)-center problem R" :<

T; s -1,,8s = v, ... , (3s+t; {Tie, ... ,Tn; {(tl , Tn, ... , (ti, ,8s),"" (tql, T~I)} >. Byassump­

tion, R" can be solved in linear time. Let T' be the subtree, anchored at v, that contains

the dominating vertex which realizes the optimal service cost of R'. Then, we replace T{

with TiC n T'. It is easy to see that this transfer is safe. 0

3.3.5 Review of the overall approach

In this section, we review the steps of our linear-time algorithm for a constrained (s, t)-center

problem R, which are described in Section 3.3.2.

In step 1, we locate a big clear subtree t i whose size is at least IV(T) 1/2 (s + t). Our

method for this step is presented in Section 3.3.4. The objective of step 2 is to shrink the

center subtree of T' for pruning. However, we first need to make certain that either the

center serving t also serves another CAP subtree or the center serving t does not serve

any other CAP subtree, which can be done by Lemma 3.3.17.

Among the three sub-steps of step 2, steps 2.1 and 2.3 can be achieved by applying the

Shrink Lemma. However, in step 2.3, there might be many points which have the distance

di (defined in Section 3.3.2) to Oi (a centroid vertex of t i). We cannot afford to check the

points one by one using the Shrink Lemma. Instead we use the following procedure.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 50

Let Yl,'" ,Yb be the points with the distance di to 0i. Let Vj be the vertex closest to

Yj such that Yj lies in 1r(Vj,Oi), 1 S; j S; b, and let <1> = {Tvj(Oi),j = 1"" ,b}. By using

Lemma 3.3.16, in linear time, we can obtain a new constrained center problem in which

the roots of subtrees in <1> are not internal vertices of any split-edge subtree. Therefore, the

number of split-edges in each subtree of <1> is known.

Let <1>' : {T{, ... ,T£} be the set of real subtrees in <1> that do not contain any split-edge

or CAP subtree. Here Tj is rooted at Vj, j = 1, ... ,k (consider 0i as the root of T). It is

not hard to see that there are a constant number of elements in <1> \ <1>', i.e., 1<1> \ <1>'1 S; s + t.

Without loss of generality, we assume that F(Yl' V (T{)) 2: '" 2: F(Ys+t, V (T;+t))

and F(Ys+t, V(T;+t)) 2: F(Yj, V(Tj)),s + t < j S; k. Obviously, at least two subtrees in

{T{, ... ,T;+t} are served by same center in a solution, which implies that the optimal ser­

vice cost is at least F(Ys+t, V(T;+t)). Therefore, there exists an optimal solution in which

the center serving Ti does not lie in YjVj + Tj, s + t + 1 S; j S; k.

Therefore, there are at most 2(s+t) points in the set of {Yl,' .. ,Yb} (including Yl,'" ,Ys+t

and points adjacent to real subtrees in <1> \ <1>') which need to be checked by using the Shrink

Lemma.

In summary, it takes linear time to locate a big clear subtree, and the step of pruning

a constant fraction (around 1/8) of vertices in it also takes linear time. We can find an

optimal solution within O(log n) iterations. Therefore, we have the following theorem.

Theorem 3.3.19 A constrained (s, t)-center problem in a tree can be solved in linear time,

where sand t are fixed constants.

3.4 Weighted p-center problems on the real line

In this section, we study the weighted p-center problem for points on the real line £ when

p is an arbitrary fixed constant. The input is a set V(£) of n points lying on £ where

each point v E V(£) is associated with a non-negative weight w(v). Let qL(U) denote the

coordinate of a point U on £. Clearly, for a pair of points u and v, d(u, v) = IqL(u) - qL(v)l.

The continuous p-center problem on £ is to determine a set X of p points on £ such that

F(X, V(£)) is minimized. The discrete p-center problem on £ is to determine a set X of p

points on V(£) such that F(X, V(£)) is minimized. The algorithm for the discrete problem

is very similar to the one for the continuous problem and therefore is omitted here.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 51

The main difference between the problem of computing the weighted p-center for points

on the real line and the weighted p-center problem in a path network is that the path

topology provides the ordering of these n points, whereas no ordering information of the

demand points on £ is available.

The point in V(£) with the smallest (resp. largest) coordinate is labeled V1 (resp.

vn). It is easy to see that there exists an optimal solution X* = {O:l,""O:p} such that

qdvd::::: qL(O:i)::::: qL(Vn), 1::::: i::::: p. A link connecting two consecutive points u,v in V(£)

is called an edge e : uv. Let E(£) denote the set of edges constructed from points in V(£).

We note that E(£) is not available without the ordering information of points on V(£).

Clearly, IE(£) I = n - 1.

Given two real values X1,X2 (Xl::::: X2), [X1,X2] denotes the interval on £ from Xl to

X2 (inclusive); Xl (resp. X2) is called the left (resp. right) endpoint of this interval. Two

subsets, say V1 and V2 , of V(£) are disjoint if the coordinate of any point in one subset is

smaller than the coordinates of all the points of the other subset.

The remaining part of this section is organized as follows. Section 3.4.1 discusses the

main idea of our linear-time algorithm. Then, in Section 3.4.2, we present a linear-time

algorithm for the conditional I-center problem on £. Our algorithm for the weighted p­

center problem of V(£) on £ is described in Section 3.4.3.

3.4.1 Main idea

Our linear-time algorithm to solve the weighted continues p-center problem on £ is an

incremental one. We assume that linear-time algorithms for any k-center problem and any

conditional k-center problem (note that we only consider conditional problems in which

there are a constant number of existing facilities), where k < p, are available.

Let X = {0:1' ... ,O:p} be a set of p centers on £. Recall that a demand point v is called

a dominating demand point of X if F(X, v) = F(X, V(£)). Observe that, in an optimal

solution, its center set always has an equal or smaller service cost to the dominating demand

points of X. Let Vi <;;; V(£) denote the set of demand points closest to a particular center

O:i E X, i = 1,' .. , p. Clearly, these subsets are mutually disjoint. Hence, there is at least

one subset Vi(1 ::::: i ::::: p) that contains at least nip demand points in V(£). Let v~ denote the

leftmost point and V~' denote the rightmost point in Vi, that is, qL (vD ::::: qdv) ::::: qdvn, v E

Vi, The edges of E(£) whose endpoints belong to different subsets of Vi, 1 ::::: i ::::: p, are

split-edges. Thus, locating an absolute p-center on £ is equivalent to finding a set of p - 1

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 52

split-edges which define p regions such that the maximum service cost of absolute I-centers

of these regions is equal to the absolute p-radius of V(£).

Discarding one demand point v is called a safe operation for a center oc, if v is served by

oc, and v is not the farthest weighted demand point to oc. Similarly, discarding one demand

point is called a safe operation for an interval [x, y], if it is a safe operation for any center

located in [x, y]. Our main idea here is to locate one subset of demand points that are

served by the same center in some optimal solution. Safely pruning a fraction of demand

points in this subset will result in a smaller-size similar problem whose optimal solution is

the same as that of the original problem. The pruning step at each iteration is done using

the parametric-pruning technique introduced in Section 3.2.2.

Let 5 represent the set of existing facilities (151 = s is a constant number). In a center

problem without any existing facility, s = O. A value r 2 a is feasible for a conditional

p-center problem on £ if there exists a set of at most p points X = {OC1,"" ocp } on £

such that F(X U 5, V(£)) :::; r. Clearly, the optimal cost is the minimum value of r that is

feasible. In the following, we show that a feasibility test for a conditional p-center problem

on £ can be done in linear time.

An algorithm to test the feasibility of r Each demand point v in V(£) is bundled

with a center region [qL(v) - r jw(v), qL(v) + r jw(v)] which contains all the points of V(£)

with a weighted distance to v of no more than r. A given value r is feasible if there exists

a solution (a set of p points on £) such that at least one center in this solution lies in the

center region of each demand point.

Initially, X = 0. Among all these center regions, we find a region whose right endpoint

has the smallest coordinate. Let it be a center (Le., insert it into X) and remove all demand

points whose center regions contain it. Repeat this process on the remaining demand points.

Finally, if IXI :::; p, then r is feasible, and otherwise r is infeasible. This process takes O(pn)

time.

Lemma 3.4.1 A feasibility test of a given non-negative value r for a conditional p-center

problem can be done in O(pn) time.

3.4.2 The conditional I-center problem

In this section, we describe a linear-time algorithm for the conditional I-center problem for

points on £ with a fixed number of existing facilities (Le., 5 = {,8l,"" ,8s})' We assume

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 53

that qL((3i) < qL ((3i+d, 1 :::; i :::; 8 - 1.

The set S divides £ into 8+1 continuous regions, i.e., (-00, qL((31)) , (qL((31) , qL((32)) , ... ,

(qL((3s) , 00). Let QL(e;;. V(£)) be the set of dominating demand points of S. Since 8 is a

constant, Q can be computed in linear time. If the points in Q are distributed in more than

one continuous region listed above, then for any point x in £, F({x}US, V(£)) = F(S, V(£)),

and therefore, any point in £ is an optimal I-center solution.

VI (31 (3j a (3j+l (38 Vn•• --e- --(;l.-- -. • (;l -e -.
IE V'(.c) .[

Figure 3.12: The conditional I-center problem with a set S of existing facilities.

Otherwise, without the loss of any generality, we assume that all demand points in Q

lie in region (qL((3j),qL((3j+d),O:::; j:::; 8 (let qL((3o) = -00 and qL((3s+d = 00). Refer to

Figure 3.12. Then, in an optimal solution, the center lies in (qL((3j) , qL((3j+l)) and therefore,

demand points lying in other regions are served by existing facilities. For each demand point

V not lying in (qL((3j) , qL((3j+d) , find its closest existing facility (3i, 1:::; i :::; 8, and compute

the service cost w(V)d((3i, v). Let f.L = maxvEV(L:) and vif-(qd(3j),qd(3j+d) w(v)d(S, v). Let

V'(£) be the set of demand points in (qL((3j),qL((3j+l)). We solve the conditional I-center

problem of V' (£) with existing facilities (3j and (3j+l, using the parametric-pruning technique

as follows.

Let S' = {(3j, (3j+l} and a be a median point of V'(£). Based on the location of the

dominating demand points of center set {a} U S', we can determine the relative location of

new facility with respect to a in an optimal solution. Without loss of generality, assume

that all dominating demand points of {o}US'lie in (qL(o),qL((3j+d). Then, arbitrarily pair

the demand points in (qL((3j),qL(o)). For each such pair (Ui, Vi), the new facility a serves

them through a (see Figure 3.13).

Below we show that at most one intersection exists between the two service cost func-

tions F({a} U S',Ui) and F({a} U S',vd. If d(o,v) 2' d(S',v) for a demand point v in

(qL ((3j) , qL (0)), then v will always be served by some existing facility in S'. Without loss of

generality, assume that d(O,Ui) < d(S',Ui),d(o,Vi) < d(S',Vi), and d(Ui,O) 2' d(Vi,O).

Lemma 3.4.2 For any two points U and v in (qL((3j),qL(o)), if d(o,u) 2' d(o,v) then

d(S', u) - d(o, u) :::; d(S', v) - d(o, v).

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 54

O
'-------------+- d(a,o)

d(S', vi) - d(o, vi)

- cl(o, 'u"i.)deS' ,

~-- F({a} U S',v;)
,---:Rf~--F({a} U 5', u;)

d(S', 'U.i) - d(o, U'i.),,,,
j----+-'--F({a} US',u,),

",:--F({a}uS',vd,,,,,,,,
,
,,

0'---01(-8''-,V-',-)--'-'(O-,-v,-)-'--------+- d(a,o)

o •

Vi.,Ui.
(a) (b)

deS', -d(o,ud deS', ui) - riCo, ui)

..-;------,--- F({a} U 5',
.-r--- F({a} US',,----- F({a} U 5', v;)

......r-----:'II¥--+-- F ({ a} U 5', u;)

0'--01(-8'-,V---',)---o1-(O-,-Vi-)------+-~ d(a,o) 0'------01(-8-',-Vi-)-_-"(-O,-V,-)--'-------- d(a, 0)

(e) (d)

Figure 3.13: The number of intersections between the two service cost functions F({o:} U
S',Ui) and F({o:} U S',Vi). (a)(b) W(Ui) :2 W(Vi); (c)(d) W(Ui) < W(Vi)'

Proof There are three cases for d(S', u) and d(S', v), that is, either d(S', u) = d((3j, u) and

d(S', v) = d((3j, v), d(S', u) = d((3j, u) and d(S', v) = d((3j+l, v), or d(S', u) = d((3j+l, u) and

d(S', v) = d((3j+l, v). In anyone of them, it is true that d(S', u) -d(o, u) <::: d(S', v) -d(o, v).

D

As illustrated in Figure 3.13, at most one intersection exists between the two service

cost functions F ({ 0: } US', Ui) and F ({ 0: } US', Vi)' We can prune one by solving at most one

feasibility test. Thus, similar to our parametric-pruning approach for the weighted continu­

ous I-center problem in a tree, we are able to prune at least llV'((L))1/8J non-dominating

demand points in (qL((3j),qdo)) from further consideration by solving one feasibility test.

Therefore, the conditional I-center problem of V'(£) with existing facilities (3j and (3j+l can

be solved in linear time. Let p,' be its optimal service cost. The optimal service cost of the

conditional I-center problem of V(£) with existing facility set S is max {lL, Ii}.

In summary, we have the following theorem.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 55

Theorem 3.4.3 The weighted conditional I-center problem of V(.c) with a fixed number of

existing facilities on the real line .c can be solved in linear time.

3.4.3 The weighted p-center problem (fixed p)

Suppose that a weighted k-center problem and a conditional k-center problem (with a fixed

number of existing facilities) of V (.c) on .c can be solved in linear time, for all k less than

p. We show that for fixed p the weighted p-center problem of V(.c) can also be solved in

linear time.

We first determine one region which contains at least lnipJ demand points of V(.c)

served by same center in some optimal solution. Such a region is called a big region.

Since the ith largest element of a set can be found in linear time [16], it costs O(nlogp)

time to divide V(.c) into p mutually disjoint subsets: {Vi,.'" Vp } where In/pJ ::::: IViI :::::
Inipl, 1 ::::: i ::::: p, and the coordinate qdvn of the rightmost point v? of Vi is less than the

coordinate qL (v;+ 1) of the leftmost point v;+ 1 of Vi+ 1, i = 1, ... ,p - 1. Note that v~ = Vi

d 1/an V p = vn .

Consider the split-edge v?v~+l' 1 ::::: i < p. Refer to Figure 3.14. It is easy to prove the

following lemma.

Vi = Vl V" v~! Vi v~! v~+l v;J v~ = Vn1 1 ,-1 ,

• ----. • .--------. • • •
I· VI

~I I· V;
~I I· Vp , I

Figure 3.14: Locate p centers of V(.c) on the real line .c.

Lemma 3.4.4 Let c be the optimal cost of the weighted i-center problem of demand set

U~=iVi· If c is feasible for V (.c), then :J an optimal solution such that the region served by

the first i centers contains all demand points in [qL(v~), qL (v;')], and the interval [qL(v~), qL (v;')]

contains a big region. Otherwise, in some optimal solution, the region served by the first i

centers is contained in [qL(vD,qL(V;')].

As a consequence of Lemma 3.4.4, one of the following cases must be true for the p-center

problem on .c.

Case 1 The optimal cost of the I-center problem with demand set Vi is feasible. In this

case, the subset Vi is served by the same center in some optimal solution.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 56

Case 2 The optimal cost of the I-center problem with demand set Vp is feasible. Similar

to Case 1, the subset Vp is served by the same center in some optimal solution.

Case 3 There exists an i, 2 ::::: i ::::: p - 1, such that the optimal cost of the i-center problem

with demand set U~~~ Vj is feasible, and the optimal cost of the (i - 1)-center

problem with demand set U~~~-l Vj is not feasible. In this case, there exists some

optimal solution where Vi is served by the same center. The reason is as follows.

In some optimal solution, the first i centers serve all demand points lying within

[qL(vD, qL(v~')], since the cost of an optimal i-center solution of U~~~ Vj is feasible

(Lemma 3.4.4). Similarly, all demand points served by the first i-I centers lie

within [v~,v?_l], since the cost of an optimal (i -I)-center solution of U~~~-l Vj

is not feasible (Lemma 3.4.4).

Thus we can find one big region after considering each edge v~'v~+l' i = 1, ... ,p - 1, as a

split-edge. Note that we need to solve one center problem and one feasibility test for each

split-edge v?v~+l: one i-center problem on a demand set U~~~ Vj and one feasibility test of

its optimal cost. The total time is linear when p is fixed. Therefore, we have the following

result.

Lemma 3.4.5 It takes a linear time to locate one big region served by the same center,

in some optimal solution to the weighted p-center problem of V(L) on.c when p is a fixed

number.

Actually, one big region can be located using a binary search instead of a linear search on

the edges v~'v~+l' 1 ::::: i ::::: p - 1. Let Vh be the big region thus computed.

Next, we show a method to identify approximately 1/8 of demand points of Vh that are

not dominating, and hence can be discarded. This method is very similar to the method

described in Section 3.4.2. Let 0 be a median point of Vh which can be found in O(nlp)

time. Consider a facility (center) located at 0 to serve the points of Vh . Let V~ (resp. V';)

be the subset of demand points of Vh lying to the left (resp. right) of o.

We now consider Case 1 described above, i.e., when h = 1. The arguments for Case 2

(i.e., when h = p) are similar. Refer to Figure 3.15(a). For Case 1, we compute Cl = F(o, Vl)

and check the feasibility of Cl. If Cl is feasible, then in some optimal solution, the center

serving V1 lies to the right of o. Otherwise, in some optimal solution, the center serving V1

lies to the left of o.

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 57

v~ = vi 0 vi' = v;' v~.... - ..
I. Vjl .1 I. v? .1
I. VI ,1

(a) Case 1

v~ = Vn

•

Vi V" v" Vi 0 V" vf+l v~ = V n1 1 1-1 I I.- .- -. • -... • • •
VI I.

~1 I.
~2 ,1I- ·1 I ·1 I

I· V[·1

(b) Case 3

Figure 3.15: Case 1 and Case 3

In Case 3 (see Figure 3.15(b)), where 2 -s: h -s: p ~ 1, we solve the (h - I)-center problem

of V~ U U~~~-l Vj with one existing center located at o. Let C2 be its optimal cost. Like

Case 1, after checking the feasibility of C2, either we find that in some optimal solution the

center serving Vh lies to the left of 0 or we find that the center serving Vh lies to the right

of o.

Now, our parametric-pruning approach for conditional I-center problems (in Section

3.4.2) can be applied to prune approximately 1/8 of demand points of Vh, i.e., ln/8pJ
demand points of V(£). The process is repeated with the reduced set of demand points.

Thus, for fixed p, the algorithm performs O(log n) such iterations, and each iteration takes

linear time, linear in the size of the current demand set.

Therefore, we have the following theorem.

Theorem 3.4.6 For any fixed p, the weighted p-center problem of V(£) on the real line £

can be solved in linear time.

3.4.4 The conditional p-center problem (fixed p)

In this section, we briefly describe a linear-time algorithm for the conditional p-center prob­

lem on £ with a fixed number existing facilities. The method for this problem is an extension

of the steps described in Section 3.4.2 and Section 3.4.3.

We divide V(£) into p mutually disjoint subsets of almost equal size. One big region of

size no less than ln / pJ can be located in linear time, using steps similar to the ones described

CHAPTER 3. WEIGHTED P-CENTER PROBLEMS IN TREE NETWORKS 58

in Section 3.4.3. The only difference is that the subproblems are conditional center problems

here. Still, our parametric-pruning approach is applicable to prune approximately 1/8 of

the demand points lying in the big region.

Theorem 3.4.7 For any fixed p, the weighted conditional p-center problem of V(L:) with a

fixed number of existing facilities located on the real line L: can be solved in linear time.

3.5 Summary

The weighted version of discrete/continuous p-center problems in a tree network and the

real line are studied for a fixed constant p. The time complexity of our proposed algorithms

for them are O(n). The results partially resolve the long standing open problem, that

is, generalizing Megiddo's trimming approach [54] to solve the p-center problem in a tree

network or the real line for p > 1. It needs to be mentioned that the running time of

our algorithms is exponential in p. One challenging task is to design an O(f(p) . n)-time

algorithm for the weighted p-center problem in a tree network or a real line where f(p) is a

low-degree polynomial of p.

Chapter 4

Various p-center problems

tree-like networks

•
In

In this chapter we focus on various p-center location problems in tree-like networks, such

as cactus networks and partial k-trees. When the underlying network is a partial k-tree,

Granot and Skorin-Kapov [32] gave an O(p2n k+2)-time algorithm for the weighted discrete

p-center problem in which centers are restricted to the vertices of the network and p is a

part of the input. We study this problem and present an efficient algorithm for relatively

small p. The running time of our algorithm is o (pnP log kn). Then, when p < k + 2, our

algorithm is better. We also discuss the weighted continuous p-center problem in which

centers can be located at any place in the network, and we devise the first polynomially

bounded algorithm for fixed k, which runs in O(p2kk+l n 2k+3log n) time.

For a cactus network, we first provide an O(n log n)-time algorithm to solve the weighted

discrete and continuous I-center problems. We then show that the weighted continuous 2­

center problem can be solved in O(n log 3n) time. We also, for the first time, look at various

p-center problems in a cactus network where p is a part of the input, including the weighted

discrete and continuous p-center problems, the unweighted discrete p-center problem with

the demand set of infinite size, and the unweighted general p-center problem. Our algorithms

for these p-center problems are based on the parametric-searching technique.

Organization of the chapter In Sections 4.1 and 4.2, we discuss various center problems

in partial k-trees and cactus networks respectively. A brief summary is given in Section 4.3.

59

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 60

4.1 Weighted p-center problems in a partial k-tree

It is known that a tree decomposition (of treewidth k) of a partial k-tree G, denoted by

TD(G), can be found in linear time for fixed k [17]. A tree decomposition TD(G) : ({Bi :

i E I}, T = (I, Y)) of treewidth k is called smooth if for all i E I : IBil = k + 1, and for

all (i, j) E Y : IBi n Bj I = k. A tree decomposition of a graph G can be transformed to a

smooth tree decomposition of G with the same treewidth in linear time [17].

For a partial k-tree G, there exists an i-separator (i ::::: k) between two subnetworks

represented by two disjoint subtrees ~, 72 of TV(G). Let B l be the closest bag in ~ to 72
and B 2 be the closest bag in 72 to~. It is easy to see that B l n B 2 is a separator between

the two subnetworks represented by ~&72 and that IBl n B21 ::::: k.

A leaf bag is arbitrarily chosen to be the root of TV(G). Let TB denote the subtree

rooted at a bag B, and let V(TB) denote the union of bags of vertices in the subtree TB .

Note that there is a k-separator between the subgraphs induced by V(TB) and V(T \ TB).

Let the k-separator be denoted by the set {vf, ... ,vf}.

Observation 4.1.1 Given a bag B in TV(G), let B l ,'" ,Bi be the bags adjacent to B.

There is a k-sepamtor between Band B j , 1 ::::: j ::::: i. The union of these k-sepamtors is a

subset of B and therefore contains at most k + 1 vertices in V (G).

A smooth tree decomposition can be transformed into a binary smooth tree decomposi­

tion in linear time by replacing every bag containing more than two children with a path.

It is easy to see that the size of the binary smooth tree decomposition obtained is O(n).

Without loss of generality, we assume that TV(G) of treewidth k is smooth and binary.

4.1.1 The weighted discrete p-center problem

Given a tree decomposition TV(G) of treewidth k, an O(p2 nk+2) algorithm [32] was pro­

posed to solve the unweightedjweighted V(G)jV(G)jp problems. The result is true for

any value of p. The algorithm of Granot and Skorin-Kapov [32] is based on the dynamic

programming technique, which is described as follows.

For each bag B in TV(G), we solve the following q-center subproblems on the subtree TB

where q is a nonnegative integer no more than p. Recall that {vf, ... , vf} is the k-separator

between the subgraphs induced by V(TB) and V(T\ TB). Given a set of vertices Ul," ',Uk

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 61

(it is possible that Ui = Uj for 1 s: i i- j s: k), the subproblem on TB is to compute the

minimum value of F(X, V(TB)) such that

• Ui E X, i = 1, ... , k,

• vf is served by a center located at Ui, i = 1, ... , k.

Obviously, IV(TB) n {Ul, ... ,udl > q. We can see that there are O(pnk) such subproblems

on TB . Let B 1 and B2 be the two children of B, and B' be the parent of B (see Figure 4.1).

We assume that the optimal solutions of all subproblems on TBj are available, j = 1,2.

{vf . ,vn

{vf',· . ,vf'}

Figure 4.1: A bag B and its neighbors in a binary smooth tree decomposition of treewidth
k.

A q-center subproblem on TB (0 s: q s: p) can be solved by considering all possible

subproblems on TBI and TB2 , i.e., q'-center subproblems on TBI (0 s: q' s: q) and (q - q')­

center subproblems on TB2 (where vf is served by a center located at Ui, i = 1, ... , k).

According to Observation 4.1.1, {vf,· .. ,vf,vfl, ... ,v~l,vf2, ... ,V~2} <:;;; B. Therefore,

th . t t t' {BI BI B2 B2} \ { B B}ere IS a mos one ver ex In VI , ... , vk ,vI ,"', Vk VI , ... ,vk ,say v.

Lemma 4.1.2 V is served by some center in V(TB) U {Ul,"" ud \ {vf, ... ,vf} in the

V(G)jV(G)jp model.

Proof The reason is that {vf, ... ,vf} is the k-separator between the subgraphs induced

by V(TB) and V(T \ TB) and vf is served by Ui, i = 1, ... , k. 0

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 62

Hence, O(q· W(TB)I) subproblems on TBl ,TB2 need to be solved to obtain an optimal

solution for one q-center subproblem on TB , since in the V (G) jV(G) jp model there are

O(n) candidate centers.

Using a dynamic programming approach, each subproblem can be solved in time O(pn)

and therefore the optimization problem on the whole tree decomposition TV(G) can be

solved in time O(n) . O(pnk) . O(pn) = 0(p2nk+2).

Theorem 4.1.3 /32} Given a tree decomposition with treewidth k of a partial k-tree G, the

weighted V(G)jV(G)jp problem can be solved in O(p2nk+2) time.

Next, we present an O(pnPlogkn)-time algorithm for the V(G)jV(G)jp problem when

p is small, i.e., p ::; k + 1.

An algorithm for the V(G)jV(G)jp problem when p::; k + 1

A distance query of a pair of points x, y in a network is to obtain the distance between x, y.

Considering the tight relationship between the service cost and distance queries, an efficient

approach is to preprocess the network so that distance queries can be efficiently answered.

This approach is particularly promising when the network is sparse [22]. Chaudhuri and

Zaroliagis [22] gave algorithms for distance queries that depend on the treewidth of the

input network. Their algorithms can answer each distance query in 0(1) time for constant

treewidth networks after O(nlogn) preprocessing. Based on this result, we introduced a

two-level tree decomposition structure on a partial k-tree network [6], which can be built

on any partial k-tree G in 0(nlog 2n) time requiring O(nlog 2n) storage space for k = 2

and in O(nklogk-1n) time requiring O(nklogk-1n) storage space for k > 2. Given such

a two-level tree decomposition structure, the service cost of any set X of p centers to the

demand set V(G), i.e., F(X, V(G)), can be answered in time O(plog2n) for k = 2 and in

time O(pk logk-l n) for k > 2. The main idea behind this two-level tree decomposition data

structure is described as follows.

We consider the case when G is a partial 2-tree. Refer to Figure 4.2. Given a subgraph

G' represented by a subtree of TV(G) and a point x outside G', there is a 2-separator in G'

between G' and x. Let {u1, U2} be the 2-separator. The service cost of x to cover v E V (G')

is w(v) . min {d(v, Ul) + d(Ul,X), d(v, U2) + d(U2' x)}. Suppose a = d(x, Ul) - d(x, U2) and

a' = d(V,Ul) - d(V,U2)' Clearly the shortest path 7r(v, x) from v to x will go through Ul if

a+a' is negative, otherwise 7r(v,x) will go through U2.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 63

•

•
G'

Figure 4.2: The 2-separator {U1,U2} between G' and any point x outside G'.

Based on the above observation, we create two lists of the vertices in G', :It and :12. The

vertices of 31 are sorted in the increasing order of Xl (.) where Xl (v) is the distance difference

from a vertex v(E V(G')) to the 2-separator {U1,U2}, i.e., X1(V) = d(V,U1) - d(V,U2)' The

vertices of 32 are sorted in the increasing order of X2(-) where X2(V) = d(V,U2) - d(V,U1)

for all v E V(G'). These two lists 31 and 32 are associated with U1 and U2 respectively.

F'(y,v)
rl

31 : ~, Xl (-)

0
y

(a) (b)

Figure 4.3: A balanced binary search tree SXl over the sorted list Xl.

A balanced binary search tree over 31 (resp. 32) is built (see Figure 4.3(a)), denoted by

T1 (resp. T2). Let r1 and T2 be the root nodes of T1 and T2 respectively. The set of vertices

in G' whose shortest paths to a point x outside G' go through U1 (resp. U2) is represented

by O(log IV(G')I) sublists in 31 (resp. 32)' It is not hard to see that, given a point x outside

G' and its distances to U1 and U2, these sublists can be identified in O(log IV(G')I) time.

Note that d(X,U1) and d(X,U2) can be computed in constant time after O(nlogn)-time

preprocessing [22].

Compute F(x, V(G')) for any point x. outside G' In the following we show that

F(x, V(G')) can be computed in O(log IV(G')I) time by applying the fractional cascad­

ing technique [23]. The fractional cascading technique is a technique to reduce the query

time in the case of many I-dimensional searches with the same range, using the result of

one search to speed up other searches. We briefly describe the application of the fractional

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 64

cascading technique on T1 as follows.

For every node v in T1, let L(v) be the set of leaves descending from v in T1 (see Figure

4.3(a)), and let F'(y,v) denote the service cost function of a point, lying outside G' with

distance y to Ul, to cover the vertices in L(v) via Ul. For every vertex v E L(v) (v is a node

in T1), there is at most one continuous region of y in which v determines the service cost

F'(y, v) (i.e., v is the weighted farthest vertex in the sublist L(v) to a point lying outside

G' with distance y to ud, called the dominating region of v in the sublist L(v). Moreover,

these dominating regions are sorted in increasing order of weights of vertices in L (v) (see

Figure 4.3(b)).

Therefore, in a bottom-up way, we can compute the service cost function F'(y, v) for

every v in T1 in time O(IV(G')llog IV(G')I). By applying the fractional cascading technique

[23], we are able to locate the weighted farthest vertex in L(v) for every v in T1 in constant

time after an o (log IV(G') I)-time computation of the weighted farthest vertex in L(rd. A

similar result is obtained after applying the fractional cascading technique on T2 . As we

already know, the set of vertices in G' whose shortest paths to x go through Ul (resp.

U2) is represented by O(log IV(G')I) sublists in :h (resp. ':12). Therefore, the total cost of

computing the maximum service cost F(x, V(G')) of x to the vertices in G' is o (log IV(G')I)

after O(IV(G')llog IV(G')I) preprocessing time.

A two-level tree decomposition of G Since the tree decomposition TV(G) of G might

not be balanced, we add another balanced tree structure over TV(G), such that the height

of the new tree TV(G) is logarithmic. We call such a balanced tree structure TV(G) a two­

level tree decomposition of G. There are several methods to achieve this, such as centroid

tree decomposition [55], spine tree decomposition [9] etc.. After completing the two-level

tree decomposition of G, for each bag in TV(G), there are O(logn) subtrees of TV(G)

containing all the other bags in TD(G). Moreover, for a set X of p vertices (resp. points)

in V(G) (resp. A(G)) there are O(plogn) subgraphs, represented by O(plogn) subtrees of

TV (G), that contain the rest of the vertices in G. A 2-separator exists between a vertex

(resp. point) in X and each such subgraph. We get the following lemma.

Lemma 4.1.4 A two-level tree decomposition data structure of a partial 2-tree can be com­

puted in O(n log 2 n) time requiring O(n log n) storage space, such that the service cost of a

set of p points in the partial 2-tree can be answered in O(p log 2n).

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 65

Thus, the unweightedjweighted V(G)jV(G)j2 problem in a partial 2-tree can be solved

in O(pnP log Zn) time, using a brute-foree-like approach.

Theorem 4.1.5 Given a tree decomposition (of treewidth 2) of a partial 2-tree G, the

weighted V(G)jV(G)j2 problem can be solved in o(pnP log Zn) time.

--
- -

v E V(G')

-d(X,Ul) -d(X,U3}------------~--------------

1__.,--------:1_-.,-----_.,-----_-_., d(V,U2) - d(V,Ul)
o d(x, uJl- d(x, U2)

Figure 4.4: The set of vertices in V(G') to which the shortest path from x goes through Ul.

This result can be extended to a partial k-tree, k > 2. In the case when G is a partial k­

tree, given a subgraph G' represented by a subtree of TD(G) and a point x outside G', there

is a k-separator in G' between G' and x. Let {Ul,'" ,Uk} be the k-separator. The main

difference from the case when the underlying network is a partiaI2-tree, is the representation

of the set of vertices to which the shortest path from x goes through Ui, i = 1, ... ,k. Refer

to Figure 4.4 in which G is a partial 3-tree. All vertices in V (G') are embedded in a 2­

dimensional space (note that it is a (k - I)-dimensional space when G is a partial k-tree).

Given a point x with its distances to the 3-separator {Ul' Uz, U3}, all the vertices lying

above and right of the bold line in Figure 4.4 are the vertices in V(G') to which the shortest

path from x goes through Ul. The service cost of x to these vertices can be computed in

O(log IV(G')I) time by the combining priority search tree [51] (Algorithm 2 in Chapter 6

shows the steps to construct a priority search tree) and the fractional cascading technique

[23] after O(IV(G')llog IV(G')I) preprocessing time. We build such a data structure for

every vertex in the 3-separator (or a k-separator for a partial k-tree).

Similarly, when G is a partial k-tree, we can compute F(x, V(G')) in O(klogk-2 1V(G')I)

time after O(klV(G')llogk-ZIV(G')I) preprocessing time.

To compute the service cost of a set of p vertices (or points) to a partial k-tree G, we

build a two-level tree decomposition data structure over G. We have the following lemma.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 66

Lemma 4.1.6 For k > 2, a two-level tree decomposition data structure of a partial k-tree

can be computed in O(nklogk-1n) time requiring O(nklogk-1n) storage space such that the

service cost of a set of p points in the partial k-tree can be answered in O(pk log k-l n).

Thus, the unweightedjweighted V(G)jV(G)jp problem in a partial k-tree (k > 2 is

fixed) can be solved in O(pknPlog k-l n) time, using a brute-foree-like approach.

Theorem 4.1.7 Given a tree decomposition (of treewidth k > 2) of a partial k-tree G, the

weighted V(G)jV(G)jp problem can be solved in O(pknPlogk-1n) time.

4.1.2 The weighted continuous p-center problem

In this section, we discuss the weighted A(G)jV(G)jp problem on a partial k-tree G and

devise two simple algorithms for it. The algorithms described below for the weighted

A(G)jV(G)jp problem are based on dynamic programming technique.

The 1st algorithm According to Observation 1.2.2, for the weighted A(G)jV(G)jp prob­

lem, there is a set of O(kn3) candidate points where centers may be located in an optimal

solution and the optimal cost is in a candidate set of cardinality O(kn3), since the num­

ber of edges m of a partial k-tree is no more than kn. The two sets can be computed in

O(kn3) time. Combining the results from Observation 1.2.2 and the method of Granot and

Skorin-Kapov [32], we can design an algorithm for the A(G) jV(G) j p problems, which runs

in O(p2 . (kn3)k+l . n) = O(p2kk+1 n 3k+4).

Unlike the algorithm of Granot and Skorin-Kapov [32], the next algorithm does not solve

the optimization problems directly. Instead, we focus on designing an efficient algorithm for

solving the corresponding feasibility tests.

The 2nd algorithm Recall that if a non-negative value c is feasible, then there is a p­

center solution in which each center is located at a (weighted) distance of exactly c from

some demand vertex, and all demand vertices are covered with service cost :s; c (Observa­

tion 1.2.3). Therefore, only O(kn2) candidate points are needed to be considered for the

feasibility test of c. Let W denote the set of these O(kn2) candidate points.

Similar to the method of Granot and Skorin-Kapov [32], for each bag B in TD(G),

we test the feasibility of c on the subtree TB with q centers lying in W n A(G(V(TB)))

(0 :s; q :s; p). Each vertex vf in the k-separator between the subgraphs G(V(TB)) and

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 67

G(V(T \ TB)) is associated with a point Ui E W(i = 1, ... , k). We assume that the results

of possible feasibility tests of c on TB] 1 ~ j ~ 2 are available (B1 and B2 are the two

children of B in TV (G)).

If d(Ui, vf) > c for some i, 1 ~ i ~ k, then c is infeasible. Otherwise, the feasibility

of of c can be evaluated by testing the feasibility of c on TBI with q' centers lying in

W n A(G(V(TBI))) and on TB2 with q - q' centers lying in W n A(G(V(TB2))), q' = 0, ... , q.

Hence, the feasibility test of con TB with q centers lying in WnA(G(V(TB))) can be done in

O(qkn2) time. Combining this result and the method of Granot and Skorin-Kapov [32], an

algorithm can be obtained for a feasibility test of the A(G)/V(G)/p problems, which runs in

O(n· p. (kn2)k. pkn2) = O(p2kk+ln2k+3) time, since we consider O(p· (kn2)k) subproblems

on each rooted subtree of TV(G), which implies that the A(G)/V(G)/p problem can be

solved in O(p2kk+ln2k+3logn) time by a binary search of the set of size O(kn3) containing

the optimal cost.

Theorem 4.1.8 Given a tree decomposition (of treewidth k) of a partial k-tree G, the

weighted A(G)/V(G)/p problem can be solved in O(p2kk+ln2k+3logn) time.

4.2 Various center problems in a cactus network

In this section, various types of center location problems in a cactus network G are discussed.

Section 4.2.1 provides an O(nlogn)-time algorithm to solve the weighted A(G)/V(G)/1

and V(G)/V(G)/1 problems. We then show that the linear-time solutions to unweighted

A(G)/A(G)/l and V(G)/A(G)/1 problems follow quite easily. Our algorithms for the

weighted V(G)/V(G)/2 and A(G)/V(G)/2 problems are presented in Section 4.2.2. Sec­

tion 4.2.3 describes some results on the weighted/unweighted p-center problems in cactus

networks.

In order to facilitate the overview of the proposed algorithms, we start with the well­

known tree structure of a cactus network [19]. The vertex set V (G) is partitioned into three

different subsets. A C-vertex is a vertex of degree 2 which is included in exactly one simple

cycle. A T-vertex is a vertex not included in any simple cycle. The remaining vertices, if

any, will be referred to as H-vertices or hinges (See FigA.5(a)). We use the dotted ellipses

to emphasize blocks.

It is not difficult to see that a cactus consists of blocks where each block is either a

cycle or a subtree, and these blocks are glued together with H-vertices. Therefore, we can

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 68

2

3 4

8

(a) (b)

Figure 4.5: A cactus network G and its corresponding tree structure Te.

use a tree Te = (Ve , Ee) to represent the important structure of G, where each node in

Ve represents a block or a hinge vertex in G (see Figure 4.5(b)). Let B b denote the block

represented by a block node b EVe. There is an edge between a block node b and a hinge

node h if h E V(Bb). In this case we say that B b is attached to h.

4.2.1 Weighted discrete and continuous I-center problems

Let G I , ... , Gk denote the connected components attached to a hinge vertex h. If the

maximum value of F(h, V(GI)),··· ,F(h, V(Gk)) is attained at more than one component

then clearly h itself is an optimal I-center. On the other hand, if the maximum value is

attained in a unique Gi (1 ::::: i ::::: k), then Gi must contain an optimal I-center. This allows

one to find in linear time whether a given hinge vertex h is an optimal I-center, and in the

case when h is not an optimal I-center, determines which component attached to h contains

an optimal I-center. The proposed algorithm has two steps. The first step is to locate the

block containing an optimal I-center DC' denoted by B*. The second step is to determine

DC in B*. Similar steps were discussed in [24] for general networks. Our version here for

the cactus networks is slightly modified.

Step 1: locating the block B*

Let 0 be a centroid node of Te, the tree structure of G described earlier. The node 0 could

be a hinge vertex or a block (either a cycle or a subtree) in G. These cases are separately

considered below.

Case 1: 0 is a hinge vertex (Figure 4.6(a)). If there exist subnetworks Gi and Gj attached

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 69

a

(a) a is a hinge vertex

,;'-----, ,, ,

J
l'" Eo D'Vk...... _-_ '

........

(b) a is a block node

Figure 4.6: Locate the sub-cactus where the center lies.

to 0,1 :::; i t- j :::; k, such that F(a, V(Gi)) = F(a, V(G j)) 2: F(a, V(Gs)) for every Gs ,

s t- i,j (1 :::; s :::; k), attached to 0, then a itself is an optimal I-center Qc' Suppose

that the subnetwork Gi with the largest F(0, V(Gi)) is unique. In this case an optimal

center lies in Gi . Clearly, F(a, V(Gj)), for all j, 1 :::; j :::; k can be evaluated in linear

time.

Case 2: a is a block node (Figure 4.6(b)). If there are two subnetworks Gi and Gj attached

to Bo , such that F(Vi, V(Gi)) = F(vj, V(G j)) 2: F(vs , V(G s)) for every Gs attached

to Bo , s t- i, j, then an optimal center lies in the block Bo . In this case B o is B*.

Suppose that Gi with the largest value of F(Vi, V(Gi)) is unique. Therefore an optimal

I-center either lies in block B o or in sub-cactus Gi. We compare F(Vi, V(Gi)) with

F(Vi, V(G \ Gi)). If F(Vi, V(Gi)) < F(Vi, V(G \ Gi)), then an optimal center certainly

lies in block B o . Similarly, if F(Vi, V(Gi)) > F(Vi, V(G \ Gi)), then an optimal center

lies in Gi . The remaining case is when F(Vi, V(Gi)) = F(Vi, V(G \ Gi)). In this case,

the hinge vertex Vi itself is an optimal center Qc' Clearly all of these steps require

linear time to compute.

Thus we have the following situations: either Qc is found and in this case the algorithm

terminates, B* is found, or a sub-cactus Gi containing Q c is found and in this case the

process is repeated on Gi . The above situation can be tested in linear time. Therefore, it

takes O(nlogn) time to locate B*.

Lemma 4.2.1 It takes O(n log n) time to locate B*.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 70

Observation 4.2.2 The process of identifying B* can be performed in linear time if the

points in V(G) are unweighted. This is due to the fact that, unlike the weighted case, the

complement of G i , i.e. G \ G i , can be replaced by just one demand point in V(G \ G i).

Step 2: determining ac in B*

We now consider the problem of locating a cin B*. If B* is a subtree, F(x, V(G)) is convex

on every simple path of B* [47]. Note that the structure of the cactus network G, except for

the part of B*, can be transformed to an equivalent tree structure. Thus, the O(n log n)­

time algorithm in [47] can be used to determine local center a cin B*. Also the linear-time

algorithm for the weighted V(G)/V(G)/I and A(G)/V(G)/I problems in trees [54] can be

applied here.

Suppose B* is a cycle block. Observe that locating a c in the cycle block B* is very

similar to locating I-center in a cycle. In [65], Rayco et al. mentioned that the weighted

continuous I-center problem (i.e. weighted A(G)/V(G)/I problem) in a cycle is solvable

in O(n log n) time. Here, for completeness, we describe an algorithm to solve the weighted

I-center problem in a cycle block.

Weighted continuous I-center problem in a cycle block Let VI, V2, ... , Vt be the

vertices of a cycle O. Let a* denote an optimal I-center of 0 we are interested in computing.

We notice that there is exactly one edge in 0 not used by a* to cover the vertices of O.

We call this edge as the optimal cut-edge of a*. Thus the I-center on the path constructed

by removing the optimal cut-edge from 0 is also an optimal I-center of O. Thus our idea

is to consider each edge as a cut-edge and compute the I-center on the resulting path. The

data structure described below is dynamic, which allows efficient updating of the structure

as the cut-edge changes.

V} v~

Figure 4.7: Locate a* in a cycle block O.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 71

The algorithm is described as follows. Consider Figure 4.7 for reference. The vertices

on the cycle are indexed as VI, V2, ... ,Vt in counterclockwise order and the edge connecting

the vertices Vi-I and Vi is indexed as ei-I,1 < i ::; t (et = VtvI). We put the 2t - 1

vertices {Vf = VI, vJ = V2,···, vi = Vt, vf = VI,··" V[_I = Vt-d on the real line. Let

Pos(z) denote the position of z on the real line. The positions of the 2t - 1 vertices are

determined in the following way. Pos(vi) = 0, Pos(v{) = Pos(VLI) + l(ei-I), 1 < i ::; t;

and pos(vn = Pos(vI) + l(et), Pos(v'f) = Pos(V;_I) + l(ei-I), 1 < i ::; t-l.

The path constructed by removing edge ei from 0 is called the i-th path, which is the

path from v;+! to v;' Let Vi be the vertex set of the i-th path. The service cost function

fi (x) on the i-th path is defined as

fi(X) = maxw(v)ld(x,vf) - Pos(v)l,
vEV'

where x is a point on the i-th path at a distance d(x, vi) from Vf. Let Xi denote an optimal

I-center of the i-th path. It is easy to compute fi(x) and determine xi in linear time [18].

However, it is not efficient to separately compute functions fi(X), 1 ::; i ::; t.

Figure 4.8: r(x).

We can represent the function w(v)ld(x,vf) - Pos(v)1 for all x by two straight lines

through the point (Pos(v),O) with slopes w(v) and -w(v) (Figure 4.8). Then r(x) is the

upper envelope of 2t linear functions where t linear functions have positive slopes and t linear

functions have negative slopes. Since r(x) is convex, the optimal solution can be easily

computed. Observe that the upper envelope of the lines generated by the (i + 1)-th path is

constructed from the upper envelope of the lines generated by the i-path by simply removing

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 72

the lines generated by vl+ 1 and inserting the lines generated by V;+l' The upper envelope

can be maintained by the algorithm proposed by Hershberger and Suri [43]. Each updating

step can be performed in amortized logarithmic time, since the sequence of insertions and

deletions of lines is already known [43]. We observe that the above approach also works

if some of the vertices in 0 are hinge vertices and are attached to other components. If

v is a vertex in a component attached to a hinge vertex, say Vi, the corresponding two

lines generated by v will have slopes w(v) and -w(v) and they will go through the point

(POS(Vi), bv), where bv is the weighted distance of v to Vi. Thus

Lemma 4.2.3 Optimal solutions corresponding to all the cut-edges in 0 can be computed

in total O(nlogn) time. The storage space requirement is linear.

In summary, we have the following theorem.

Theorem 4.2.4 The weighted A(G)jV(G)jl and V(G)jV(G)jl problems in cactus net­

works can be solved in O(n log n) time using linear space.

We also have the following result.

Theorem 4.2.5 The four unweighted models (V(G)jV(G)jl, V(G)jA(G)jl, A(G)jV(G)jl,

A(G)jA(G)j1) in cactus networks can be solved in O(n) time using linear space.

Proof The result for the models where D(G) = V(G) is in [18, 48]. From Observation 4.2.2,

we note that in O(n) time we can restrict the problems A(G)jA(G)j1 and V(G)jA(G)jl

to a cactus having at most one cycle. But then in this case the A(G) j A(G) j1 problem is

equivalent to A(G)jV(G)j1 and V(G)jA(G)j1 is equivalent to V(G)jV(G)jl. 0

4.2.2 The weighted continuous 2-center problem

In this section, an efficient algorithm for the weighted A(G)jV(G)j2 problem in cactus

networks is proposed. As we know, locating an optimal 2-center in G is equivalent to

finding a set of split-edges whose removal defines two connected components and optimal

I-centers of the resulting two components constitute an optimal 2-center solution of G. The

split-edges in an optimal solution are called optimal split-edges.

In a tree network, the number of optimal split-edges is just one. However, for a cactus

network the number of optimal split-edges is at most two. As a matter of fact, it can be

shown that

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 73

Lemma 4.2.6 Optimal split-edges in a cactus network G lie in one block Bi. If B i is a

subtree, there is one optimal split-edge, otherwise (B i is a cycle) the number of optimal

split-edges is two.

Figure 4.9: Lemma 4.2.6.

Proof Suppose that optimal split-edges lie in more than one block. Let al and a2 be the

centers of the subnetworks obtained after the removal of the optimal split-edges from the

cactus network. Let B i and B j be the blocks containing the split-edges el = Ul VI and

e2 = U2V2 respectively. (Figure 4.9). Assume that Ul and U2 are served by aI, and VI and

V2 are served by a2. Let h be a hinge vertex lying between Bi and B j , that is, the shortest

path between any vertex in B i and any vertex in Bj passes through h. Such a hinge vertex

h always exists, since B i and BJ are two different blocks. Since the subnetwork served by

each I-center is connected, and since h lies in the shortest paths 7f(Ul,U2) and 7f(Vl,V2), h

is served by both al and a2, which is impossible. Hence, optimal split-edges must lie in one

block of G. Therefore, if the block containing an optimal split-edge set is a subtree, then

there is only one split-edge in the set, and if the block containing optimal split-edge set is

a cycle, then there are two split-edges in the set. D

Let ~ denote a set of split-edges of G where, if I~I = 2, both the split-edges come from

one cycle block. Let G~, G~ denote the two subnetworks obtained after the split-edges in ~

are removed from G. Let "fei be the optimal service cost of the A(G~)/V(G~)/1problem,
Ll.

i = 1,2. Let ¢(~) = max bel, "fe2 }. A split-edge set ~* is called an optimal split-edge set
Ll. Ll.

of G if ¢(~*) = minA~Bi,i=l, ... ,t' ¢(~). Here B l , B 2 , ... , Bt' are the blocks in G.

Step 1: locating the optimal split-block B*

We now focus on exploring the properties of the optimal split-edge set in cactus networks.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 74

Lemma 4.2.7 (Figure 4. 6(a)) Let GI, ... , Gk be the subnetworks of G attached to a hinge

vertex o. In O(nlogn) time we can either identify an optimal split-edge set or determine

the subnetwork attached to ° that contains an optimal split-edge set.

Proof Suppose that F(o, V(GI)) ::::: F(o, V(G2)) ::::: F(o, V(Gj)),j = 3, ... , k. Let ~i

denote the set of edges of Gi incident to 0, i = 1, ... , k. Obviously, l~il :::; 2 for all i. The

service cost ¢(~j) with a split-edge set ~j, j -I- 1,2, is greater than max bc l , F(o, V(G2))},

since GI and G2 are served by the same I-center. But, the service cost ¢(~I) is no more

than max {F(o, V(G2)), ICJ. Therefore, there exists an optimal split-edge set in G I U G2 .

In the following, we determine whether G I or G2 contains an optimal split-edge set. We

consider three cases based on the service costs ¢(~l) and ¢(~2)'

• ¢(~l) is determined by the service cost of the center in subnetwork G I . It implies

that GI contains an optimal split-edge set.

• ¢(~2) is determined by the service cost of the center in subnetwork G2 . It implies

that G2 contains an optimal split-edge set.

• ¢(~l) is determined by the service cost of the center in subnetwork G \ GI and ¢(~2)

is determined by the service cost of the center in subnetwork G \ G2 . In this case, if

¢(~l) :::; ¢(~2), ~l is an optimal split-edge set, otherwise (i.e., ¢(~2) :::; ¢(~l)) ~2

is an optimal split-edge set.

In Theorem 4.2.4 we have shown that the weighted A(G)jV(G)jl problem in cactus net­

works can be solved in O(nlogn) time. Therefore, it takes O(nlogn) time to either identify

an optimal split-edge set or determine the subnetwork that contains an optimal split-edge

set. 0

Lemma 4.2.8 (Figure 4. 6(b)) Let GI , ... , Gk be the subnetworks of G attached to a cycle

block B o . In O(nlogn) time, we can either identify an optimal split-edge set, locate the

block B* containing an optimal split-edge set, or determine the subnetwork attached to B o

that contains an optimal split-edge set.

The proof of Lemma 4.2.8 is very similar to that of Lemma 4.2.7, and, therefore, is

omitted here.

We can recursively search either G I or G2 that contains an optimal split-edge set. Thus,

in O(nlogn . log IYcl) time, we either identify an optimal split-edge set or determine the

block B* that contains an optimal split-edge set ~* .

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 75

Step 2: computing .6.* in B*

If B* is a subtree, .6.* contains exactly one edge. We can locate Do* in B* recursively using a

centroid tree decomposition [55] of B*. Each recursive step takes O(n log n) time (note that

Lemma 4.2.7 also works for T-vertices). Therefore, .6.* in a subtree B* can be computed in

O(nlogn . log IB*I) time.

When B* is a cycle, an optimal split-edge set .6.* contains two edges. Let Vi, V2, ... ,Vt be

the vertices of B* in counterclockwise order, and let el = V1V2, ... , et = VtVl be the edges of

B* in counterclockwise order. Let lei, ej] denote the chain of B* in counterclockwise order

from ei to ej in B*. Similarly, let [Vi, Vj] denote the sequence of vertices in counterclockwise

order from Vi to Vj in B*.

If one of the two optimal split-edges in B* is known, we can locate the other one in

O(n log n . log IB* I) time, since it is equivalent to locating one optimal split-edge in a subtree.

Here the subtree is path-like. An edge e~ E E(B*) is called a match-edge of ei if ¢({ei, ea) =

minekEE(B*) and ekiei ¢({ei, ed)· The match-edge of an edge ei may not be unique, but all

the match-edges must be consecutive along the path 1r :< Vi+l, VH2, .. . , Vi, ... , Vi-l >. This

is due to the unimodality property of ¢({ei, e}) as e moves away from ei along the path 7L

For uniqueness, the last match-edge is paired with ei. We cannot afford to separately find

the match-edge of each edge in B*. However, the following simple observation is helpful.

Assume that e~ is the match-edge of ei, i = 1, ... , t, and ej E (ei, e~). The match-edge ej of

ej must lie in [e~, ei] (the unimodality property).

The algorithm to locate .6.* in the cycle block B* proceeds as follows. The process starts

from el. After the match-edge e~ of ei is found, the first edge ej E [e~, ei] which satisfies

¢({eHl' ej}) < ¢({ei+l' ej+d), is taken to be the match-edge e~+l of ei+l (the unimodality

property). Thus, the running time to compute .6.* in B* is O(IB* I) times the time complexity

of computing the maximum service cost ¢(.6.) for a given split-edge set .6. = {ei, ej}.

Computing ¢(.6. = {ei, ej}): Let G~ denote the subnetwork of B*, attached to vk

(1 :::::: k :::::: t). Let il and i2 be two different integers in [1, t] such that F(Vil' V(G~J)

::::: F(Vi2' V(G~2)) ::::: F(Vk' V(G~)), for any k, 1:::::: k :::::: t and k #- ii, i2 . The following lemma

is crucial to the algorithm of computing ¢(.6. = {ei, ej}).

Lemma 4.2.9 Two centers corresponding to a given split-edge set .6. E B* lie in either

block B*, subnetwork G~l' or subnetwork G~2'

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 76

Proof Suppose that the vertices in [Vi+1,Vj] are contained in V(G}J. It is clear that an

optimal I-center of G~ (resp. G~) lies either in B* or in some subnetwork G~ where

k E [i + l,j] and F(vk, V(GU) 2': F(vj, V(G'r)), for all f E [i + l,j] (resp. k E [j + 1, i] and

F(vk, V(G~)) 2': F(vj, V(G'r)), for all f E [j + 1, i]).

If possible, suppose that one of the two centers, say a1, lies in G~ where k 1= i1, i2. In

this case, the service cost "rcl must be less than or equal to F(Vk, V(G~)). The vertices
l>

ViI and Vi2 are not served by a1, since if either ViI or Vi2 is served by a1 then "rCI is at
l>

least F(Vi2' V(G~2)) k F(Vk' V(GU))· Therefore, the service cost "rc~ must be at least

F(Vi2' V(G~J), since both ViI and Vi2 are served by a2. We can see "rci ::; F(Vk' V(GU) ::;

F(Vi2' V(G~2))::; "rc~' Therefore, F({vk,a2}, V(G))::; max {F(vk, V(G~)),F(a2,V(G~))} =

F(a2' V(G~)) = ¢(fl). We can use the vertex Vk as the center instead of a1 without in­

creasing the service cost ¢(fl). Hence G~ where k 1= i 1 , i 2 can be eliminated from searching

two centers for any given split-edge set fl E B*. 0

Suppose that ViI E V(G~). We can determine ¢(fl) by computing

• an optimal center a~ of G~ constrained to lie on B*,

• an optimal center a~ of G~ constrained to lie on G~I '

• an optimal center a~ of G~ constrained to lie on B*, and

• an optimal center a~ of G~ constrained to lie on G~2 if Vi2 E V (G~), otherwise, a~ is

undefined.

All a~ and all a~ are restricted to be on the cycle block, B*. Hence, they can be found

in O(nlogn) time by the algorithm for the weighted continuous I-center problem in a cycle

block described in Section 4.2.l.

Since computing a~ is similar to computing a~, we concentrate on computing a~ only.

Let G' = G~ \ G~I' We can see that G' changes as fl changes (refer to Figure 4.10(a)). Let

XiI be an optimal I-center of G~I' and B denote the block in G~I where XiI lies.

Lemma 4.2.10 (Figure 4.1 O(b)) a~ lies in one of the blocks that the shortest path 7r(ViI' XiI)

goes through.

Proof Suppose that a~ lies in some block B' that 7r(ViI' XiI) does not go through. Let h

be the closest vertex to a~ in the blocks that 7r(ViI' XiI) goes through. Clearly, h is a hinge

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 77

0'

Current split-edge set .6-

~1----------------1,
: Vi: __ ...
I

:0' = 01. \ '

(a) (b)

Figure 4.10: An example with a split-edge set ~.

vertex. It is not difficult to see that the service cost F(h, V(G1J) is less than the service

cost F(a~,V(G1)). Therefore, a~ cannot lie in B ' . D

Forcing the convexity of F(x, V(G~I)) on an edge Unlike in tree structures, the service

cost function F(x, V(G)) in a cactus network may not be convex as x moves from one

endpoint of the edge to the other [47]. Fortunately, for a cactus network, it is possible

to force the service cost function to be convex on each edge of the block path, denoted by

P(ViI' XiI)' which is a list of blocks that the path 7f(Vill XiI) goes through. This is achieved

by adding extra vertices as follows. If a block on the block path is a subtree, then clearly the

service cost function is convex on each edge of this block. When a block on the block path is

a cycle, for every vertex V in this block, we find its match-point v' in the same block such that

d~,v' = d~~v' where d~,v' and d~~v' are the respective clockwise and counterclockwise distances

from v to v' in the block. Then, v'is added as a vertex to the network by breaking the edge

containing v'. We assign weight zero to these added vertices. In this way, the service cost

function F(x, v), for every v is monotone as X ranges over an edge in the updated network.

Due to the insertion of match-points, the service cost function on each edge is therefore

convex. The total number of match-points added to force the convexity is no more than 2n.

These match-points can easily be determined in O(n) time.

An algorithm to locate a~ in G~I In the following, we assume that G~I contains the

match-point vertices in the cycle blocks of the block path. Also, G1, G' and G~I are prepro­

cessed to construct two-level tree decomposition data structures, described in Section 4.1.1.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 78

Note that a cactus network is a partial 2-tree. Thus, a two-level tree decomposition struc­

ture TV(G~J of G~l is built in O(IG~1Ilog2IG~11) time (Lemma 4.1.4). The storage space

requirement is O(IG~lllog IG~ll). Using this data structure, the service cost F(x, V(G~J) of

any point x in G~l can be answered in O(log2IG~11)) time.

u v

Figure 4.11: Wi E Vu and W2 E Vv '

We first show that the optimal local I-center of G~l on an edge e = uv of G~l can be

computed in 0 (log 3n) time. Let u be the counterclockwise neighbor of v (Figure 4.11). Let

Vu be the set of vertices in G~l which are closer to u than v, and let Vv = V(G~l) \ Vu '

The vertices in Vv are closer to v than u. There are O(logn) subtrees of TV(GU, say H,

spanning all the vertices of G~l and there is a 2-separator (or I-separator, but it is safe to

only consider 2-separator) between any point in the edge uv and each of the subtrees in H.

We start from a node of TV(G~l) that contains both the vertices u and v. Let Wi and W2 be

the 2-separator between u (resp. v) and a subtree Gil (an element of H). We can compute

d(u, Wi) and d(v, Wi) in constant time using the results in [22]. Clearly, ifwi,W2 E Vu (or

Wi, W2 E Vv), then all the vertices in Gil belong to Vu (or Vv); if Wi E Vu , w2 E Vv (resp.

Wi E VV , W2 E Vu), then all the vertices in Gil, whose shortest path to u goes through Wi,

belong to Vu (resp. ~) and the remaining vertices in Gil belong to Vv (resp. Vu). The

latter case can be observed in Figure 4.11. Let u' and v' be the match-points of u and v,

respectively, on the cycle block that contains uv. All the vertices on the counterclockwise

path from u to v' together with the vertices in the components attached to the path are

closer to u than v. The shortest paths from u to these vertices do not use the edge v'u'.

These vertices determine Vu ' Similarly, all the vertices on the clockwise path from v to u',

together with the vertices in the components attached to the path, are closer to v than u.

The shortest paths from v to all these vertices also do not use the edge v'u'. These vertices

determine Vv ' From TV(G~J, the vertices in Gil that belong to Vu can be reported in a

sorted list of distances from Wi in O(log n) time. Similarly, all distances from W2 to the

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 79

vertices in Gil that belong to 11,; can be reported in a sorted list in 0 (log n) time. Therefore,

Vu and Vv can be represented by 0 (log n) sorted lists and the maximum service cost function

of each such list is monotone on UV. More precisely, the maximum service cost function of

each list in Vu monotonically increases on uv from U to v and the maximum service cost

function of each list in Vv monotonically decreases on uv from U to v. Since the maximum

service cost to G~l of a point on uv can be computed in O(log2n) time (Lemma 4.1.4), we

have the following lemma.

Lemma 4.2.11 The optimal local center of G~l constrained to lie on a given edge can be

computed in O(log3n) time. The preprocessing step takes O(nlog2 n) time and O(nlogn)

space.

Thus, in the following, it is assumed that the optimal local center of G~l on every

edge of G~l is already known. The remaining step to compute a~ has two parts. We first

determine the block that contains a~ and then determine a~ within this block. Suppose

that Ul = Vi!, U2, ... ,Uk are the hinge vertices lying on the path 71"(Vi!, XiI).

Locating the block Bu' containing a~: Observe that the farthest (weighted) vertex,
vj in G~l to Uj must lie below Uj (further away from Vi! compared to Uj), otherwise, Xi!

cannot be a weighted I-center of G~l. Therefore, we can have the following lemma.

Lemma 4.2.12 For any j, 1 ::; j ::; k, if the farthest (weighted) vertex to Uj in G~ comes

from G' = G~ \ G~!, then a~ can not lie on the block path P(Uj, Xi!)" otherwise (the farthest

(weighted) vertex to Uj lies in G~), a~ can not lie on the block path P(Vip Uj).

Using Lemma 4.2.12, it is easy to locate the block that contains a~ in O(logn) time.

In each step, we need to compute F(Ui, V(G~)), 1 ::; i ::; k. We already know that, for

any Ui, F(Ui, V(G~!)) can be computed in O(log2n) time using the structure TD(G~J.

Since F(Ui, V(G~)) = max {F(Ui, V(G')), F(Ui, V(G~!))}, we need to compute F(Ui, V(G'))

effciently. Observe that the upper envelope fi(x) of the lines generated by the vertices of

G' can be dynamically maintained. There are O(n) insertions and deletions in all, and each

operation costs O(logn) amortized time [43]. Once fi(x) is known, F(Ui, V(G')) can be

computed in O(logn) time for any Ui. Therefore,

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 80

Lemma 4.2.13 After a preprocessing step requiring O(nlog 2n) time, the block ofG~l con­

taining a~, say B u *, can be found in o(log 2n) time. The storage space requirement is,
O(nlogn).

Locating a'l' in the block Bu *: We now prune away most of the edges of Bu * using, ,
the information of optimal local centers on edges. Note that Ui* is the closest hinge vertex

of Bu* to Vil' We partition the edges of Bu* into two groups if Bu* is a cycle block: 7rccw =, "
[Ui*,""u~*] and 7rcw = [Ui*,''''U~*], where u~* is the match-point ofui* and the edges of

7rccw and 7rcw are traversed in counterclockwise and clockwise orientations respectively. The

edges of 7rccw and 7rcw are, therefore, ordered in increasing order from Ui*. Note that, when

B u ; is a subtree, only the edges on 7r(ui,ui+l) need to be considered and the procedure for

this case is similar to the one described in the following. Thus, we assume that Bu; is a

cycle block in the following.

We consider the 7rccw chain only. The process is similar for the other chain. The following

lemma eliminates some edges of Bu;.

Lemma 4.2.14 If the optimal local center q of G~l on an edge e E 7rccw has a larger service

cost to G~l than a point y on another edge of 7rccw closer to ViI' then a~ cannot lie on e.

Proof It is clear that F(x, V(G~)) = max {F(x, V(G')), F(x, V(G~J)} for any x in G~I'

Since the local minimum service cost to G~l on e is greater than F(y, V(G~J) and y is closer

to Vil than any point in e, the service cost F(y, G~) is always less than the service cost of

any point on e. 0

As a consequence of the above lemma we can order the edges of 7rccw in increasing

distances from ui and with decreasing optimal local center service costs. Similar ordering

of the edges is performed on 7rcw . These orderings are possible without the knowledge of

G', and, therefore, are done once. The rest of the edges of Bi are labeled and will not be

considered further. We only need to consider the unlabeled edges of Bu * to find a~. The,
following lemma allows us to prune the unlabeled edges of Bu ; further.

Lemma 4.2.15 Consider any unlabeled edge e = uv in 7rccw (u is closer to Ui* than v) and

its optimal local center q to G~l' If the service cost of G~ from q is determined by some

vertex in G', then all the unlabeled edges in 7rccw [v, ... ,u~*] cannot contain a~. Otherwise

(i.e., F(q, V(G')) < F(q, V(G~l)))' all the unlabeled edges of7rccw [ui*,'" ,u] cannot contain

a~.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 81

The reason why we can not directly use Lemma 4.2.15 on all the edges in 7l"ccw, is

that, if e = uv is a labeled edge, then it is possible to have the case where F(q, V(G')) <
F(q, V(GU) (q is the local center of e to GU and a~ lies in 7l"ccw[Ui" .•. ' u].

Therefore, we can apply the binary-search technique to the unlabeled edges in 7l"ccw until

one unlabeled edge is left, sayeccw . We can similarly determine ecw by performing a binary

search on 7l"cw. Since the service cost of any point in G~ to G~ can be computed in O(log2 n)

time (Lemma 4.1.4),

Lemma 4.2.16 The number of candidate edges on which a~ could lie can be narrowed down

to at most two in 0 (log 3n) time.

The remaining step of locating a~ on eccw and ecw is very similar to computing the

optimal local center of G;l on a given edge.

The above results can now be summarized as follows. After an O(n log 2n)-time process­

ing, either we already have an optimal split-edge set or know the block B* that contains an

optimal split-edge set ~*. If B* is a subtree, then it takes an additional O(n log 2n) time

to compute an optimal split-edge and the optimal service cost. Otherwise, B* is a cycle

block. It is easy to see that finding G;l and G;2 and adding match-points can be done in

linear time. Due to the unimodality property of split-edges on a simple path, we only need

to compute the service costs for O(IB*I) pairs of split-edges. After an O(nlog 3n)-time pre­

processing (including building two-level tree decomposition data structures and computing

local centers), the service cost for each pair of split-edges can be computed in O(log3n)

time. Therefore, we can claim Theorem 4.2.17.

Theorem 4.2.17 The weighted A(G)jV(G)j2 problem in a cactus network can be solved

in O(n log 3n) time complexity. The storage space complexity is O(n log n).

4.2.3 Various p-center problems

Frederickson and Johnson [30] designed an O(n log n)-time algorithm for the unweighted

V (G) jV(G) j p problem in a cactus network. They showed that a feasibility test in a cactus

network where vertices are unweighted, can be performed in linear time (Lemma 13 in [30]).

Using this linear-time feasibility test and a succinct representation of the set of all the inter­

vertex distances, the unweighted V(G)jV(G)jp problem in a cactus network is solvable in

O(nlogn) time [30].

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 82

The weighted V(G)/V(G)/p problem

Actually, the algorithm for feasibility tests described in [30] can also be applied to the

case when the demand points in V (G) are weighted. In this case, for a given service cost

r, the demand points may now have different covering radii. We present below a simple

transformation that transforms a feasibility test in the weighted model to a feasibility test

in the unweighted model.

In the weighted model, we have a cactus where each demand vertex Vi is associated with

a nonnegative covering radius ri = r /Wi. The problem is to find a subset of vertices, X, of

minimum cardinality, such that for each vertex Vi E V(G), F(X,Vi) ::::: rio Lemma 13 in [30]

provides an O(n) algorithm for the case where ri = re , for each Vi E V(G). We can convert

the above weighted model to an equivalent unweighted model as follows. Each vertex Vi

is augmented by a new edge, say ViV~ of length rc - ri, where rc = max {rj : Vj E V(G)}.

Let G' be the augmented graph with 2n vertices. Clearly, G' is a cactus network. We now

associate a radius rc with each vertex Vi and v~. The feasibility test on G is equivalent to a

feasibility test on G', and, therefore, can be done in linear time. Thus,

Lemma 4.2.18 The feasibility test in a weighted model of a cactus network can be per­

formed in O(n) time.

Frederickson and Johnson [30] gave a succinct representation of the inter-vertex distances

of the vertices of a cactus. The representation allows one to implement an efficient binary

search on the distances. Similarly, the set of all inter-vertex distances in a partial 2-tree

[32] has a special structure that enables searching the set without explicitly generating the

entire set in advance. Indeed, the set of inter-vertex distances can be implicitly represented

by a set of O(n log n) sorted lists. Each sorted list is associated with weighted distances

from a given weighted vertex u to some subset Vu of the vertices of G whose shortest path

distances to u pass through a separator vertex. These distances to the separator vertex are

kept in sorted order. There are o(log n) such sorted lists for every vertex u. In this way the

inter-vertex distances of any partial 2-tree can be represented by a set of O(n log n) sorted

lists. This representation is very similar to the succinct representation of all inter-vertex

distances in a tree proposed by Megiddo et al. [56]. Therefore, using the method proposed

by Megiddo et al. [56], one can solve the discrete p-center problem in a weighted cactus

network for any p, in O(n log 2n) time.

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 83

Theorem 4.2.19 The weighted V(G)/V(G)/p problem in a cactus network can be solved

in O(nlog 2n) time. The storage space requirement is O(nlogn).

Weighted A(G)/V(G)/p and unweighted V(G)/A(G)/p problems

From the fact that Lemma 4.2.18 is also applicable to the test corresponding to the weighted

A(G)/V(G)/p and the unweighed V(G)/A(G)/p models, we can obtain an O(n2) algo­

rithm for these problems. Since the numeric operations of the feasibility test are addi­

tions/subtractions and comparisons, we can directly apply Megiddo's generic parametric­

serching technique [52] and get the O(n2) time algorithm. Therefore, we have the following

theorem.

Theorem 4.2.20 The weighted A(G)/V(G)/p and unweighted V(G)/A(G)/p problems in

a cactus network can be solved in O(n2) time.

The unweighted A(G)/A(G)/p problem

A candidate set containing the optimal solution value for the A(G)/A(G)/p model for a

general graph is characterized in Tamir's paper [68]. In spite of the nice structure, this set

is not of polynomial cardinality, even for cactus networks. Nevertheless, in the discussion

below, we show that the A(G)/A(G)/p problem in a cactus is efficiently solvable.

The idea is again to use the feasibility test parametrically [52]. First, we note that, for

this model, p can be significantly larger than n. Nevertheless, the allocation of the p centers

to the edges can be properly bounded. Let t(e) denote the number of centers established

at optimality on an edge e of length l(e). Therefore, jl(e)/2c*l - 1 :::; t(e) :::; jl(e)/2c*l + 1

where c* is the optimal service cost. It is shown in [68] that p-m :::; 1(G)/2c* :::; p+m where

m and 1(G) are the number of edges and the total length of the edges in G respectively.

Therefore,

max {O, l(e)(p - m)/l(G) - I} :::; t(e) :::; min {p, l(e)(p + m)/l(G) + I}.

Hence, t(e) can a priori bounded in a range of length O(n) for cactus networks. In particular,

when applying the test parametrically, we will need O(log n) tests per edge to find the exact

value of t(e). An O(nlogn) test for a more general class is mentioned in [33, 68]. It is

not hard to obtain the following theorem by using Megiddo's generic parametric-searching

technique [52].

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 84

Theorem 4.2.21 The A(G)jA(G)jp problem in a cactus network can be solved in O(n2 log2 n)

time.

We remark that when the data of the above p-center problems are integers or even

rational, and "relatively small", (e.g. sub-exponential in n), better complexity bounds can

be achieved by applying an efficient search for rational techniques [75].

For the weighted A(G)jV(G)jp model, the optimal objective value is of the form

w(u)w(v)L(u, v)j(w(u) + w(v)),

where L(u, v) is the length of some simple path connecting u and v for some pair of vertices

u,v E V(G) [47]. For the A(G)jA(G)jp model, the optimal solution value is of the form

Mjq, where M is the sum of the edge lengths of an Eulerian tour of some subgraph of G,

and q is an integer, I :::; q :::; 4p. The respective value for the V(G)jA(G)jp model is of the

form Mjq, where M is the sum of the edge lengths of an Eulerian tour of some subgraph

of G, and q is integer, I ::::: q :::; 4 [68].

Assuming integer data, denote Wmax = maxvEV(G) {w(v)}. Then, observing that M :::;

21(G) and using the results in Zemel [75], we conclude that the weighted A(G)jV(G)jp, the

V(G)jA(G)jp and the A(G)jA(G)jp problems can be solved in O(nlog (n + I(G) + wmax)),

O(nlog (n + I(G))) and O(nlognlog (n + I(G) + p)) times, respectively.

4.3 Summary

In this chapter we have studied the center problems in tree-like networks, Le., partial k-trees,

cactus networks, and proposed non-trivial algorithms to solve a variety of problems. When

the underlying network is a partial k-tree, we study the weighted discrete p-center problem

and present an efficient algorithm for relatively small p. The running time of our algorithm

is O(pnPlogkn), which is better than the O(p2nk+2) result of Granot and Skorin-Kapov [32]

when p < k + 2. We also discuss the weighted continuous p-center problem and devise an

O(p2kk+l n2k+3log n)-time algorithm for it.

For a cactus network, we have proposed, for the first time, an O(nlogn)-time algorithm

to solve the weighted continuous I-center problem, an O(nlog 3n)-time algorithm for the

weighted continuous 2-center problem, and efficient algorithms for various p-center problems

where p is a part of the input. Our algorithms for the p-center problems are based on the

CHAPTER 4. VARIOUS P-CENTER PROBLEMS IN TREE-LIKE NETWORKS 85

parametric-searching technique. In particular, we propose an O(n log 2n)-time algorithm

for the weighted discrete p-center problem, O(n2
) algorithms for the weighted continuous p­

center problem, and the unweighted discrete p-center problem with a demand set of infinite

size, and an O(n2 log2 n) algorithm for the general p-center problem.

Many issues in a cactus network are still unresolved. For instance, it would be interesting

to find out whether there exists an optimal linear-time algorithm for the weighted I-center

problem. We conjecture that the weighted A(G)jV(G)jp problem and the unweighted

V(G)jA(G)jp and A(G)jA(G)jp problems can be solved in subquadratic time by designing

a polylog parallel algorithm for the feasibility test, and using the results in Megiddo [53].

For example, we suspect that the O(log3 n) parallel time algorithm of Wang [74] for the

test on trees, can be extended to cactus networks. If indeed, there is an O(log qn) parallel

algorithm for cactus networks (with O(n) processors), Megiddo [53] implies an O(nlog q+1n)

serial agorithm for the weighted A(G)jV(G)jp problem in cactus networks. To obtain the

result in Theorem 4.2.21 we have used an existing O(nlogn) feasibility test. We suspect

that an O(n) test for A(G)jA(G)jp in a cactus can be derived by properly modifying the

test for V(G)jV(G)jp in [30]. This will lead to the improved bound O(n2) for A(G)jA(G)jp

in a cactus network.

The most challenging problem is to find more efficient algorithms to solve the p-center

problems in edge-weighted partial k-trees of bounded treewidth.

Chapter 5

Conditional extensive facility

location in trees

In this chapter, we consider the problems of locating a path-shaped or tree-shaped facility

in a tree under the condition that existing facilities are already located and propose optimal

algorithms for them, which improve the recent results of O(nlogn) by Tamir et al. [70].

Our algorithms are based on the parametric-pruning technique introduced in Section 3.2.2.

The formal definitions of the problems are descried as follows.

Let T = (V(T), E(T), w, I) be the underlying tree network. A subtree network is called

discrete if all its leaf points are vertices of T, and otherwise is called continuous. Let S

represent the set of existing facilities, which by itself can be a subtree network or even a

forest network [70]. We assume that the size of S is at most O(n). Let f 1 (resp. f2) be the

set of all the continuous path networks (resp. subtree networks) in T whose lengths are at

most a predefined nonnegative value L e , and let 1>1 (resp. 1>2) be the set of all the discrete

path networks (resp. subtree networks) in T whose lengths are at most L e . The goal is to

establish one facility K*, either a path network in f 1/1>1 or a subtree network in f 2/1>2,

such that

F(K* U S, V(T)) = min F(K U S, V(T)).
KErl(or <Pl,r2,<P2)

When the facility K is selected from f 1 or f 2 , we call the model continuous, and if K

is chosen from 1>1 or 1>2, we call the model discrete. An extensive facility is valid if it is

in f 1 (or 1>l/f2/1>2) for the continuous path-shaped (or discrete path-shaped/continuous

tree-shaped/discrete tree-shaped) center problem.

86

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 87

Since a problem in the unconditional model is a special case of the conditional one, it

suffices to develop algorithms for problems in the conditional model only.

Organization of the chapter In Section 5.1, we present the main ideas of our algorithms.

The linear-time algorithms for the conditional path-shaped and tree-shaped center problems

in tree networks are provided in Sections 5.2 and 5.3 respectively. Section 5.4 gives a brief

summary and shows that our approach can be extended to optimally solve the problem for

more general service cost functions.

5.1 Main idea of our algorithms

Given an extensive facility K and a set 5 of existing facilities, a vertex v E V(T) is called

a dominating vertex of K U 5 if w(v) . d(K U 5, v) = F(K U 5, V(T)). Observe that, in the

center problem, an optimal facility K* U 5 always has an equal or smaller service cost to

the dominating vertices of a valid facility K U 5. In other words, given such dominating

information of a valid facility K, we are able to determine the relative location of an optimal

facility K* with respect to the location of this valid facility. In the Path Lemma and Tree

Lemma discussed later, we will see how this idea works in solving our problems.

The main idea of the proposed algorithms is to 'prune' the vertices that do not determine

the optimal service cost (i.e., vertices which are not dominating), and to 'shrink' the facility

if some path or subtree network is known to be a part of an optimal facility. In the following,

we present an algorithm to locate non-dominating vertices in an optimal solution.

5.1.1 Locating non-dominating vertices in an optimal solution

For the path/tree-shaped center problems, more idea is needed in order to make the parametric­

pruning work. In the conditional model, we cannot afford to keep the information of the

existing facilities in 5 at each pruning iteration, as the size of 5 could be O(n). However,

it is not difficult to design a linear-time computation step to find the distance d(5, v) for

each vertex v E V (T) [70]. Arbitrarily choose one vertex as the root of T. Let Tv denote

the subtree rooted at v. In the first round, visit the vertices in a bottom-up manner, and,

for the current visiting vertex v, compute its distance to the closest existing facility within

Tv, i.e., d(5 n V(Tv), v). In the second round, visit the vertices in a top-down manner and

for the visiting vertex v, compute its distance to the closest existing facility outside Tv, i.e.,

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 88

d(S \ V(Tv), v). We note that d(S, v) = min {d(S n V(Tv), v), d(S \ V(Tv), v)}. After this

preprocessing step, it is safe to discard the vertices of S in the subsequent steps.

The following lemma is established in [70]. We provide a different proof here for com­

pleteness.

Lemma 5.1.1 [70} Given a point y in A(T) and a nonnegative value c, the tree-shaped

facility K of shortest length with y E A(K) and F(K U S, V(T)) :::; c can be computed in

linear time.

Proof Consider y as the root ofT. For each v E V, define dv = c/w(v). If d(S, v) :::; dv, reset

dv = 00. We define the maximal service distance dTv of Tv as follows. If F({v} US, V (Tv)) >
c then dTv = 0, since, in this case, the facility K to be computed must contain v. If

F({v} US, V(Tv)) :::; c, dTv = minuEV(Tv) (du - d(v,u)).

Starting from the leaves of T, and proceeding recursively towards the root y, we do

the following for each vertex v. Let ev be the edge linking v with its parent vertex. If

v is a leaf vertex, then dTv = dv . Suppose v is an internal vertex. Let Ul, ... , Uk be its

children. If Tv contains some marked point (described below), then dTv = O. Otherwise,

dTv = min {dv , dTu1 - l(eU1), ... ,dTuk - l(euk)}, and, if l(ev) > dTv ' then label the point on

ev with the distance dTv from v as marked. Note that, in discrete problems, v is marked

instead. All the marked points must lie on the facility K, if it exists.

The maximal service distance of any rooted subtree is computable in linear time. The

spanning subtree of y and the marked points is the new facility K, with shortest length such

that F(K US, V(T)) :::; c. The whole process takes linear time. This completes the proof of

Lemma 5.1.1. D

An algorithm for feasibility decision problems

To solve the path/tree-shaped center problems with the parametric-pruning technique, we

need an algorithm to solve the following feasibility decision problem: given a nonnegative

real number c, does there exist a path/tree facility K of length not exceeding Lc in A(T)

such that F(KUS, V(T)) :::; c? The number c is feasible if F(K*US, V(T)) :::; c (i.e., c::::: c*),

and is infeasible otherwise (i.e., c < c*). Here c* is the service cost of an optimal solution

for the path-shaped (resp. tree-shaped) center problem.

A linear time algorithm is already presented in [70]. For completeness, we briefly restate

such an algorithm based on the use of Lemma 5.1.1 above. We first select a leaf vertex as

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 89

the root of T. For each v E V(T), define dv = c/w(v). If d(5, v) :::; dv , reset dv = 00. A

procedure similar to the one in Lemma 5.1.1 is used, but it is terminated when a point y

(or a vertex in discrete problems) is marked. We then compute the facility K with shortest

length such that y E A(K) and F(KU5, V(T)) :::; c (Lemma 5.1.1). If the facility K is valid,

i.e., K is a path/tree with length at most L c , then the service cost c is feasible, otherwise,

c is infeasible.

The correctness of this process is shown as follows. The possible error happens when c is

feasible, and when for any valid facility K containing y, F(K U 5, V(T)) > c. Let Ty be the

subtree rooted at y. It is easy to see that F({y} U5, V(Ty)) = c (or F({y} U5, V(Ty)) ::; c in

discrete problems). So the facility, which can serve all the clients within service cost c, must

lie in Ty entirely (which is also true for the discrete case). Let K' be such a facility. We can

see that, F(K'U5, V(T) \ V(Ty)) :::; c =} F({y}u5, V(T) \ V(Ty)) :::; c =} F(KU5, V(T)) :::; c,

which contradicts that F(K U 5, V(T)) > c.

N umber of switch service costs for a pair of vertices

Suppose that a facility K serves a pair of vertices (u, v) through ° (see Figure 5.1). In the

unconditional model, it is trivial to see that there exists at most one switch service cost of

the pair (u, v). However, in the conditional model, each service cost function F(K U 5, u)

(F(K U 5, v)) is a continuous, concave piecewise linear function of distance d(K, 0) with at

most one break point, therefore, there might be more than one switch service cost. In the

following, we show that, in the conditional model, at most two switch service costs exist

for a given pair of vertices (u, v). If d(o, v) ~ d(5, v), then v will always be served by some

existing facility. Without loss of generality, assume that d(o, u) < d(5, u), d(o, v) < d(5, v),

and w(u) ~ w(v). Figure 5.1 shows the service cost functions F(K U 5,u) and F(K U 5,v)

with the change of d(K,o) .

• d(5, u) - d(o, u) ~ d(5, v) - d(o, v): see Figure 5.1(a). We fix the function F(K U5, u)

and use the dashed lines to represent all possibilities of the function F(K U 5, v).

There is at most one switch service cost between the service cost functions F(K U

5,u),F(K U 5,v) .

• d(5,u)-d(0,u) <d(5,v)-d(0,v): seeFigure5.1(b). We fix the function F(KU5,v)

and use the dashed lines to represent all possibilities of the function F(K U 5, u). In

this case, it is possible to have two switch service costs, but at most two.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 90

d(K,o)

1
1

1
1
1 1...,-----T----

.... : 1 F(KUS,u)
1 1

) ...L _
.... 1 1

1 1

1'1-----,----
1 1

.... ~ - - - - - ~ - - - - F(K U S, v)
....

1 1
1 1
1 1

drS, v) - d(o, v) drS, u) - d(o, u)o

I
I

I
I

01

~
I \

I \
I \

I
I \. ..

U v

(a) d(S, u) - d(o, u) 2: d(S, v) - d(o, v)

o

1
1
1

1 1"'1-----...,----
1 1
1 1

..... :_ _ _ _ 1 F(KUS,v)
.... 1 1

,,;1 - - - -1- - - -

1 r 1
I Cu V I

", cl I' I
u,~"",- - - - - -,- - - -F(KUS,u)

.... 1 1
1 1
1 1
1 1

1 1 .. d(K,o)
d(S,u) - d(o,u) d(S,v) - d(o,v)

(b) d(S, u) - d(o, u) < d(S, v) - d(o, v)

Figure 5.1: The number of switch service costs for (u, v) in the conditional model

When there are two switch service costs for (u, v), we call the switch service cost with

the smaller value the left switch service cost and call the other one the right switch service

cost.

In fact, given any pair of real continuous piecewise linear functions defined on a common

domain on the real line, if the number of pieces is constant, the pair has a constant number of

isolated intersection points. In particular, in our case, considering the service cost functions,

each of a pair of vertices has a constant number of dominating regions. Zemel [76] provided

a prune-and-search method for the case when there are a constant number of dominating

regions for each vertex. Here we describe an algorithm to locate non-dominating vertices in

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 91

our simpler case.

Compute non-dominating vertices

For those pairs having only one switch service cost, we can locate the non-dominating

vertices easily by checking the feasibility of the median switch service cost. In this way, half

of such pairs in which one vertex in a pair is identified as a non-dominating vertex. Those

non-dominated vertices can now be disregarded. Let (Ul,Vl),(U2,V2), ... ,(Uk,Vk) be the

pairs of vertices with two switch service costs, where W(Ui) ~ W(Vi), 1 :::; i :::; k. Let C~i,Vi

(resp. C~i,vJ be the left (resp. right) switch service costs of (Ui, Vi), i = 1, ... ,k. Select one

value c1 (resp. cT
) such that one third of left (resp. right) switch service costs CL,Vi > c1

(resp. C~i,Vi :::; cT
), and the remaining ones are no more than (resp. larger than) it. We call

cl (resp. cT
) the left switch value (resp. right switch value). After solving the feasibility

decision problems with parameters cl and cT
, we can determine at least l~J non-dominating

vertices for an optimal facility, as shown in the following cases:

• c* :::; cl
• For any pair (Ui, Vi) with C~i'V, ~ cl

, Ui is a non-dominating vertex (dominated

by Vi) of an optimal facility.

• c* > CT. For any pair (Ui, Vi) with C~i,Vi :::; cT
, Ui is a non-dominating vertex (dominated

by Vi) of an optimal facility.

• c1 < c* :::; cT (if possible). There are at least one third of pairs (Ui,Vi) such that

C~i,Vi < c1 < c* < cT < c~"v" since at most one third of such pairs (Ui, Vi) satisfy

cl
u . v. > c1 and at most one third of such pairs (Ui, Vi) satisfy cT

U . v. < CT. In each of
Z.,'/, tJ t

such pairs (Ui, Vi), Vi is a non-dominating vertex of an optimal facility.

5.2 The weighted path-shaped center problem

In this section we apply the ideas introduced in Section 5.1 to design a linear-time algorithm

that solves the path-shaped center location problem in a tree.

Lemma 5.2.1 (Path Lemma) Given a point q in T, we can find in linear time either the

optimal service cost c*, one subtree network anchored to q containing an optimal path facility,

or two subtree networks anchored to q containing an optimal path facility that contains q.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 92

Proof Let Ti , ... ,Tm be the subtree networks anchored to q such that F({q} US, V(Ti)) ::>:

F({q} U S, V(T2)) and F({q} U s, V(T2)) ::>: F({q} US, V(Ti)), i = 3, ... , m. Let Z be the

set of dominating vertices for the facility set {q} U S.

• If some dominating vertices are in T \ {Ti UT2}, then c* = F ({ q} U S, V (Td) and q is

an optimal path facility. In this case, both T i and T2 contain dominating vertices.

• All the dominating vertices are distributed in Ti and T2 only. That is, F({q} U

S, V(Ti)) = F({q} US, V(T2)) > F({q} U s, V(Td), i = 3, ... , m. In this case, an

optimal facility lies in Ti U T2 , and q lies on it.

• Ti contains all the dominating vertices, i.e., Z ~ V(Td. Let c = F({q} US, V(T2)). If

c is infeasible, then T i contains an optimal path facility; otherwise, c* ::; c. Note that

q must be on an optimal path facility if c* < c. By Lemma 5.1.1, we can find whether

or not there is a valid path facility containing q with a service cost of no more than

c. If there exists such a facility, then an optimal path facility lies in Ti UT2 and q lies

on it. If not, c* = c.

o

5.2.1 Pruning the tree

One of the following cases occurs when the Path Lemma is applied to a centroid vertex 0

of T. Let Ti ,T2,.'" Tm be the subtree networks anchored to 0, as described in the proof of

the Path Lemma.

• Case 1: an optimal path facility lies in a subtree, i.e., Ti, anchored to o.

• Case 2: an optimal path facility lies in two subtrees anchored to 0, i.e., T i and T2 ,

which contains o.

In Case 1, if a vertex v E V(T) \ V(Ti) is served by the new facility, then v is served by the

new facility through o. Since 0 is a centroid vertex, IV(T \ Tdl ::>: n/2. Our goal now is to

prune a fraction of the vertices in T \ Ti . Randomly pair the vertices in T \ Ti , and compute

the switch service costs for each pair. At least In/4 x 1/3J non-dominating vertices in T\Ti

can be found and then discarded in linear time, using the method described in Section 5.1.

In Case 2, 0 is the closest point in an optimal path facility to any vertex in T\ (Ti UT2).

We discard all the vertices in T \ (Ti UT2) except one vertex v with w(v) x d({o} uS, v) =

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 93

o
------------, , •• _---_ ••• I~--------------

0' v~ ,'''''~'~1 0 0' V~>~ ~l 0
.,. - •••• I

, ' ,, ' ,, ' ,, ' ,, ' ,, ' ,
:. u :

:T{ :
I!! ------~~~~~~~]--------

······,,
: T' I '----->

c!~ ~~~~~~;--------

(a) Case 2.1 (b) Case 2.2 (c) Case 2.3

Figure 5.2: Case 2 - an optimal path facility lies in T1 and T2 , which contains o.

maXuEV(T\(TI UT2)) w(u) . d({a} U 5, u). If IV(T) \ V(T1 U T2)1 ~ n/3 (Case 2.1, see Figure

5.2(a)), then at least n/3 -1 vertices in T have been removed. Therefore, assume that

IV(Td U V(T2)1 > 2n/3 and IV(Tdl > n/3. Let a' be a centroid vertex of T1. We get the

following cases after applying the Path Lemma to 0':

• Case 2.2: the path facility lies in one subtree network T{, anchored to a'. It is easy

to see that T{ contains 0, since we are considering the case when a lies on an optimal

facility. Therefore, the path facility serves the vertices in T \ T{ through 0'. Since

IV(T1 \ Tn I > n/6, we can discard at least ln/12 x 1/3J vertices in T1 \ T{, using the

same idea described for Case 1.

• Case 2.3: the path facility lies in two subtrees, T{ and T~, anchored to 0'. Assume

that T{ contains o. We observe that an optimal facility contains 7r(0, a'), the path from

a to a'. It implies that, in an optimal solution, the closest point of the new facility to

any vertex in V(Td \ V(T~) is determined. We are also able to contract 7r(0, a') to a

and update Lc correspondingly. Therefore, all the vertices in T1 \ T~ can be discarded,

except a vertex u with the maximum service cost. Since IV(T1 \ T~)I ~ n/6, at least

n/6 - 1 vertices are removed from T in this case.

Denote by T' the new tree thus computed. The size of T' is at most i35n/36l and the

process is repeated until the size of the new tree is small. The process terminates within

O(1og n) iterations. Since each iteration takes linear time, linear in the size of the current

underlying tree, the total cost is linear in n.

It is not hard to see that the algorithm works for the discrete case as well. Summing

up, we have the following theorem.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 94

Theorem 5.2.2 The conditional discrete/continuous path-shaped center problem with length

constraint in tree networks can be solved in linear time.

5.3 The weighted tree-shaped center problem

In this section we present a linear-time algorithm to locate a tree-shaped center in a weighted

tree. The following lemma shows a property for the tree-shaped facility location problem,

which is similar in spirit to the Path Lemma. Its proof is also very similar.

Lemma 5.3.1 (Tree Lemma) Given a vertex u in T, we can find, in linear time, either

the optimal service cost c*, that one subtree anchored to u contains an optimal facility, or

that u lies in an optimal facility.

Proof Let TI ,··· ,Tm , be the subtree networks anchored to u such that F({u }uS, V(Tr)) ~

F({u} U S, V (Ti)), i = 2, ... ,m. Let Z be the set of dominating vertices for the facility set

{u} uS.

• If some dominating vertices are in T \ TI , then u lies in an optimal facility.

• Otherwise, T I contains all the dominating vertices, i.e., Z ~ V(TI). Let c = F({u} U

S, V (T2)). If c is infeasible, then TI contains an optimal tree-shaped facility; otherwise,

c* ::; c. Note that u must be on an optimal facility if c* < c. By Lemma 5.1.1, we can

find whether or not there is a valid tree-shaped facility containing u with a service

cost of no more than c. If there exists such a facility, then u lies in an optimal facility.

If not, c* = c.

o

5.3.1 Pruning the tree

Two cases arise after the application of the Tree Lemma to a centroid vertex 0 of T.

Case 1: here we consider the situation when one subtree network anchored to 0 contains

an optimal facility. In this case we can discard In/12J vertices in linear time by a procedure

similar to the one described for Case 1 in the path-shaped center problem.

Case 2: here we consider the situation when 0 is contained in an optimal facility. Let 0

be the root of T. For a leaf vertex u of T, let p(u) denote the unique vertex adjacent to u

in T, and let eu be the edge connecting u with p(u).

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 95

In Case 2, we focus on pruning the vertices in T that are of no more than two degrees.

The main reason is that it is easy to remove non-dominating vertices of no more than two

degrees from T. To prune a leaf vertex u, we simply remove it and the edge eu incident

on u; and, to prune a vertex u of degree two, we remove it and merge the two edges el, e2

incident to u into one new edge whose length is equal to I(el) + I(e2)' Also, we note that the

number of vertices whose degrees are at most two is at least n/2. To verify this result, let

nl, n2 and nj, denote the number of vertices whose degrees are equal to one, equal to two,

and greater than two, respectively. Then, counting the degrees, we have nl + n2 + nj = n,

and nl + 2n2 + 3nj :::; 2(n -1). Therefore, nj :::; nl - 2 and nl + n2 ~ n/2 + 1. We will next

show how to prune a fixed proportion of the vertices whose degrees are bounded by two.

Prune the tree in Case 2

In Section 5.1, we describe a linear-time algorithm to test the feasibility of a given nonneg­

ative real number c. If c is feasible, then c ~ c*, and otherwise c < c*. For the continuous

tree-shaped center problem, we can find out whether c > c*, or c = c*, or c < c* in linear

time in Case 2.

Lemma 5.3.2 Given a point x E A(T) and a nonnegative value c, if there exists an optimal

continuous tree-shaped center containing x, then we can find out whether c > c*, or c = c*,

or c < c* in linear time.

Proof We can identify whether c ~ c* or c < c*, after a linear-time feasibility test of c.

Suppose that c ~ c*.

For any vertex v E V (T) with w(v) . d(5, v) = c, we update d(5, v) = 00. By applying

Lemma 5.1.1 with the point x and the nonnegative value c, the facility K of shortest length

with x E A(K), and F(K U 5, V(T)) :::; c can be computed in linear time. If the length of

K thus computed is ~ L c , then c = c*, and otherwise c > c*. The reason is that now all

demand vertices v with w(v) . d(S, v) ~ c are served by the new facility K. Therefore, the

optimal service cost c* must be smaller than c if the length of K is shorter than the length

constraint L c , and c* ~ c otherwise. D

For each leaf vertex u of T, we compute Cu = w(u) . d({p(u)} U 5, u). We observe that,

for any leaf vertex u,

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 96

• if c* < cu , then u is a dominating leaf vertex. A part of the edge eu must lie in an

optimal facility. In this case, p(u) is contained in the new facility and u is served by

the new facility. Therefore, we can shrink the path 1f(0, p(u)) to one point, 0, and

update Lc correspondingly. Lemma 5.3.3 provides a linear-time process to prune such

dominating leaf vertices; and

• if c* > cu , the new facility lies outside the edge eu in an optimal solution. In this case, if

p(u) is contained in the new facility in an optimal solution, then u is a non-dominating

vertex and therefore can be discarded.

Given two dominating leaf vertices u and v, let T' be the tree after deleting u, eu , v, ev

from T, adding a new leaf vertex v' with w(v') = w(u) . w(v)j(w(u) + w(v)), and linking

v' to 0 with l(ev/) = l(eu) + l(ev). We have the following lemma, which is used to prune

dominating leaf vertices. But first we need to shorten an edge eu if u is a dominating leaf

vertex and d(S,u) < l(eu), i.e., we let L c = Lc-l(eu)+d(S,u) and l(eu) = d(S,u). Now, for

any dominating leaf vertex u, the optimal service cost is less than w(u) ·l(eu) and p(u) = o.

Lemma 5.3.3 The optimal service cost in T' is equal to the optimal service cost c* in T.

Proof First, in T, p(u) = p(v) = 0 and u, v are served by the optimal facility K* (not served

by some existing facility), since c* < min {w(u) . l (eu), w(v) . l (ev)}, d(S, u) 2 l(eu), and

d(S,v) :::: l(ev). Let d1,d2 be the distance from u,v to the optimal facility K* respectively.

Clearly, w(u) . d1 = w(v) . d2 = c*. The total length of the parts of K* on eu and ev in T is

equal to l(eu) + l(ev) - dl - d2 .

In T', it is not hard to see that v' is a dominating leaf vertex. Since (d 1 + d2) . w(u) .

w(v)j(w(u) + w(v)) = w(u)· d1 = w(v)· d2 , the length of the part of the new facility on the

edge evl is l(eu) + l(ev) - d1 - d2 with the same service cost c*, which is equal to the total

length of the parts of K* on eu and ev in T. Therefore, the optimal service cost in T' is

equal to c*. 0

The above discussion shows that we are able to prune dominating leaf vertices u (i.e.,

c* < cu) and non-dominating leaf vertices v (i.e., c* > cv, and p(v) is contained in the new

facility).

Next, we introduce two types of pairs of vertices with degree one or two, and show how

to prune non-dominating vertices among them.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 97

A pair of vertices (Vi, V2) is called a Type- I pair if the new facility lies outside subtree

Tu in an optimal solution where u is the least common ancestor of Vi and V2. We know

that, if the new facility lies outside subtree Tu in an optimal solution, then the topology

information of Tu is not important and, therefore, for each vertex in Tu , we only need to

keep its distance information to u (like a leaf vertex). In Section 5.1, we show that there

are at most two switch service costs between Vi and V2, and among k such Type-I pairs, at

least lk/3J non-dominating vertices can be identified after solving at most two feasibility

decision problems.

A pair of vertices (Vi, V2) is called a Type-II pair if the degrees of Vi and V2 are no

more than two, and Vi, V2 have an 'ancestor-descendant' relation, i.e., Vi is on the path

n(v2'0) or V2 is on n(vi,o). We claim that for each such pair (Vi,V2), there are at most

two switch service costs between Vi and V2, regardless of the location of the optimal facility.

Suppose that V2 lies on the path n(vi, 0). Note that the new facility contains 0. If the new

facility in an optimal solution contains V2, then V2 is a non-dominating vertex. Otherwise,

the new facility lies outside the path n(Vi, V2), in which case we already know there exist

at most two switch service costs. This implies that among k such Type-II pairs, at least

lk /3J non-dominating vertices can be identified after solving at most two feasibility decision

problems.

The algorithm for the weighted continuous tree-shaped center problem in T, is descried

in Algorithm l.

In the following, we first describe a simple algorithm to determine disjoint Type-II pairs

of vertices, and show that the output size depends on the number of leaf vertices in the

tree. We then discuss Lines 10 ~ 15 in Algorithm 1 to prune the dominating leaf vertices or

non-dominating vertices for the case when there are at least n/5 leaf vertices in T.

Generate Type-II pairs of vertices: We first remove all the vertices of T with degrees

greater than two, along with the edges incident on them. Each component of the remaining

forest is a sub-path of some path connecting a leaf vertex to the root 0. We arbitrarily

group the vertices of each component into disjoint pairs (leaving one vertex if the number

of vertices is odd).

Lemma 5.3.4 Let ni be the number of leaf vertices in T. Then the number of vertices not

in any selected pair cannot be more than 3ni.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 98

Algorithm 1 ContinuousTree-Center(T = (V(T), E(T)), 5, Le)

Input: an undirected tree network T with vertex set V(T) (IV(T)I = n) and edge set E(T),
a set 5 of existing facilities, and a nonnegative real number L e .

Output: the optimal service cost c*.
begin

1: repeat
2: Compute the centroid 0 of T. Apply the Tree Lemma on 0 and consider two cases:
3: if a subtree T' anchored to 0 contains an optimal facility then
4: prune non-dominating vertices in the subtree T \ T' and update T accordingly.
5: else
6: (In this case, 0 lies in an optimal facility.)
7: if the number of leaf vertices is no more than n/5 then
8: we obtain at least n/5 Type-II pairs of vertices (Lemma 5.3.4). Prune non­

dominating vertices among them and update T accordingly.
9: else

10: Compute Cu for each leaf vertex u. Let c be the value such that at least one third
of these values are::::: c, and such that at least two thirds of these values are::; c.

11: if c* < c then
12: prune dominating leaf vertices (Lemma 5.3.3).
13: else
14: Algorithm 2.
15: end if
16: end if
17: end if
18: until the size of T is no more than 270.
19: Solve the problem on T with a constant size.

end

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 99

Proof There are at most nl vertices of degree more than two in T. Then there are at most

2nl disjoint paths after the removal of all the vertices of degree more than two. Note that

there is at most one vertex in each path that is not in any selected pair. Therefore, the

number of vertices not in any selected pair cannot be more than 3nl. 0

In the case when the number of leaf vertices is no more than n/5, we can obtain at least

n/5 (Type-II) pairs of vertices (Lemma 5.3.4). As we know, for each Type-II pair, there are

at most two switch service costs. Then the parametric-pruning method proposed in Section

5.1 is applied to prune non-dominating vertices in these Type-II pairs. In this way, at least

ll/3 x n/5J vertices can be discarded after solving the corresponding feasibility decision

problems (at most two).

We now consider the case when the number of leaf vertices in T is more than n/5. Let c

be the value described in Line 10 in Algorithm 1. According to Lemma 5.3.2, we have three

cases.

In the case when c = c*, output c and then terminate the procedure.

In the case when c* < c, for each leaf vertex u with Cu ::::: c, u is a dominating vertex

served by the new facility, and p(u) lies in the new facility. Hence, there are at least 1/3 x n/5

such dominating vertices. Lemma 5.3.3 provides the process to prune these dominating leaf

vertices.

In the case when c* > c, see Algorithm 2 described as follows.

Algorithm 2: pruning when nl is greater than n/5 and c* > c. For each leaf vertex

u with Cu ::::; c, the new facility in an optimal solution lies outside eu. Let X be the set of

such leaf vertices and let X' be the set of vertices that are parents of leaf vertices in X.

Clearly, IXI ::::: 2/3 x n/5 (the definition of c). For each v E V(T), we denote by n{(v) the

number of leaf vertices in X that are children of v, and by N{ (v) the number of leaf vertices

in X that are descendants of v. Obviously, N{(o) = IXI. Let T ' be the smallest subtree of

T that contains all the vertices in X' U {a}.

We next show how to find a set of vertices V' of T ' satisfying the following three condi­

tions .

• Condition 1: there is no pair of vertices in V' with 'ancestor-descendant' relationship.

• Condition 2: LVEVI Nz(v) ::::: 1/2 x N{(o) (Lemma 5.3.5).

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 100

• Condition 3: for any subset V" of V', let U" be the set of vertices that are proper

ancestors of vertices in V". Then LVEunuvn nl(v) ::::: 1/2 x LVEVn N1(v) (Lemma

5.3.6).

To generate the above sets, we use a depth-first search on T'. We denote by U the current

vertex and define a term g(v) for each vertex in T'. Initially, g(0) = 0, U = 0, and V' = 0.

Let Vi,'" , Vk be the children of u. If g(u) + nl(u) ::::: N1(u) - nl(u), then insert the vertex u

into V' and update u to be the next vertex after visiting all vertices in Tu in a depth-first

order. Otherwise, for each i, 1::::: i ::::: k, we compute g(Vi) = Nl(Vi)' (g(u)+nl(u))/ Lj Nl(vj)

(Note that Lj N1(vj) = Nl(u) - nl(u)). Update u to be Vi. The process is repeated on a

new vertex u.

•

o

,. .
.....­

V8

•

nl(O) = O,Nl(o) = 21;

nl(vd = 2,Nl(vd = 7;

nl(v2) = 1, Nl(V2) = 9;
nl(v3) = 4, N1(V3) = 5;
nl(v4) = 1, N1(V4) = 1;
nl(vS) = 1, N1(vs) = 4;
nl(v6) = 2, N1(V6) = 2;
nl(v7) = 0, N1(V7) = 6;
nl(V9) = 3, N1(vg) = 3;

nl(vlO) = 3, N1(VlO) = 6.

Figure 5.3: An example for Algorithm 2.

For example, in Figure 5.3, the leaf vertices incident to dashed edges are in the set X,

and T' is the tree without dashed edges (i.e., the vertex set of T' is {o, Vi, V2, ... ,V12}).

The nl (-) and Nl (.) values of the non-leaf vertices are listed at the right side of Figure 5.3.

Initially, g(o) = O. Since g(o) + nl(o) < Nl(O) - nl(o), we distribute g(o) + nl(o) = 0 among

the children of 0, based on their N l (-) values, i.e., g(vd = g(V2) = g(V3) = O.

For the vertex Vi, since g(vd + nl(vi) = 2 < 5 = Nl(vd ~ nl(vd, we distribute g(vd +

nl(vd = 2 among the children of Vi, i.e., g(V4) = 2/5 and g(vs) = 8/5. Then the algorithm

visits V4. Since g(V4) + nl(v4) = 7/5 ::::: 0 = Nl(V4) - nl(v4), the algorithm outputs V4 and

jumps to vertex Vs.

The final output list of the algorithm on this example will be V' = {V4' Vg, V6, VlO, V3}.

The corresponding g(.) values are g(V4) = 2/5, g(vg) = 13/5, g(V6) = 1/4, g(VlO) = 3/4,

g(V3) =0.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 101

It is not hard to see that this procedure takes linear time. Let U' be the set of vertices

in T' that are proper ancestors of vertices in V'. We can see that the sets V' and U' satisfy

the three conditions described above.

Lemma 5.3.5 Let V' and U' be the two sets defined above. Then L:vEvl Nz(v) :::: 1/2 x

Nz(o).

Proof First, L:vEU1nZ(V) = L:vEVlg(V). In the above example, V' = {V4,v9,v6,VlO,V3},

U' = {0,Vl,V2,VS,V7}, L:vEVlg(v) = 4, and L:vEU1nZ(v) = 4. Second, for each vertex

v E V', g(v) < Nz (v). Since all the vertices in T ' are either in U' or descendants of vertices

in V', Nz(o) = L:vEVI Nz(v) + L:vEUI nz(v). Therefore, L:vEVI Nz(v) :::: 1/2 x Nz(o). 0

Lemma 5.3.6 Let V' be the set defined above. For any subset V" of V', let U" be the

set of vertices in T ' that are ancestors of vertices in V". Then L:vEU"UV" nz(v) :::: 1/2 x

L:vEV" Nz(v).

Proof Let VU" be the set of vertices that are children of vertices in U" but not in U". It

is not hard to see that V" ~ Vu" (Condition 1). From the computation of g(v), we know

that g(v) is contributed from the nz(-) values of the ancestors of v, and the nz(·) value of

a vertex is distributed among its children. Thus, L:vEU" nz(v) = L:vEvu" g(v) (with the

same reasoning, we obtain L:vEUI nz(v) = L:vEVI g(v) in Lemma 5.3.5), which implies that

L:vEU" nz(v) :::: L:vEV" g(v).

Note that when a vertex v is inserted in V', g(v) + nz(v) :::: Nz(v) - nz(v). Therefore,

vEU"UV" VEV"

> L max {nz(v), Nz(v) - nz(v)}
vEV"

> 1/2 x L Nz(v).
vEV"

o

In the remaining part of this section we will discuss the procedure of the algorithm after

we obtain the set V'.

For each v E V', we compute F({v} U 5, V(Tv)), which can be done in linear time

(Condition 1). Let c' be the weighted median of these values, where the weight of each

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 102

value F({v} U S, V(Tv)) is Nl(v). According to Lemma 5.3.2, we have three cases. It is

trivial to deal with the case when c' = c*.

When c* < c', for any v E V' with F({v} U S, V (Tv)) ~ c', v is contained in the new

facility in an optimal solution, and therefore, we can shrink the path 7f(v, 0) and discard all

leaf vertices in X that are adj acent to vertices on 7f (v, 0). These leaf vertices u in X can

be discarded, since p(u) is contained in the new facility in an optimal solution (i.e., u is a

non-dominating leaf vertex). The number of leaf vertices thus discarded is at least

1/2 L N[(v) (Condition 3)
vEV' :F({v }US,Tv)::C:c'

> 1/4 x L NI(V) (the definition of c')
vEV'

> 1/12 x n/5 (Condition 2).

In the case when c* > c', let VIII be the set of vertices v in V' with F({v} US, V(Tv)) :s: c'.

For any v EVil', v is not contained in the new facility in an optimal solution. For each

vertex v E VIII, we arbitrarily pair the vertices in V (Tv) \ {v} (leaving one vertex if there is

an odd number of vertices in V(Tv) \ {v}), and if ITvl = 2 then the two vertices in Tv have

the Type-II relation. Note that LVEV'/I N[(v) ~ 1/4 x IXI. For each v E V"', at most one

leaf vertex in Tv is not in any pair, and if there is one leaf vertex in Tv that is not in any

pair, then IV(Tv) \ {v}1 ~ 3. Therefore, there are at least 1/12 x IXI ~ n/90 disjoint Type-I

pairs. Observe that each Type-I pair has at most two switch service costs. Therefore, the

algorithm described in Section 5.1 can be used to prune at least In/270J vertices in IXI.

From the above discussion, it takes linear time to prune at least a constant fraction of

vertices of the current tree at each iteration, linear in the size of the current tree. Therefore,

we establish Theorem 5.3.7.

Theorem 5.3.7 The conditional weighted continuous tree-shaped center problem with length

constraint in trees can be solved in linear time.

Adapting the algorithm for the discrete case is not difficult. For example, we can get

Lemma 5.3.8, which is similar to Lemma 5.3.2, in the discrete case.

Lemma 5.3.8 Given a vertex u E V(T) and a nonnegative value c, if there exists an

optimal discrete tree-shaped center containing u, then we can find out whether c > c*, or

c = c*, or c < c* in linear time.

CHAPTER 5. CONDITIONAL EXTENSIVE FACILITY LOCATION IN TREES 103

Proof The proof of this lemma is very similar to the proof of Lemma 5.1.1.

It is sufficient to show a procedure to construct a discrete tree-shaped facility K of

shortest length that contains u and F(K U S, V(T)) < c. Consider u as the root of T. For

each v E V, define dv = c/w(v). If d(S,v) :s: dv , reset dv = 00. For each rooted subtree Tv,

we define a term dTv ' whose initial value is 00.

Starting from the leaves of T, and proceeding recursively towards the root, we do the

following for each vertex v. If Tv contains some marked vertex (described below) then

dTv = O. Otherwise, let Vl, ... , Vk be the children of v (if v is a leaf vertex, then k = 0).

dTv = min {dv , dTu1 - I(eU1), •.• ,dTuk - I(eUk)}, and if I(ev) 2': dTv then label the vertex v

as marked. All the marked vertices must lie in the facility K, if F(K U S, V(T)) < c.

The spanning tree of u and the marked vertices is the new facility K with shortest length

such that F(K US, V(T)) < c. The whole process takes linear time. 0

For a leaf vertex v with c* < Cv in Case 2, v is contained in an optimal facility in the

discrete case. It is easy to adapt all the other components of the algorithm for the discrete

case. Therefore, we have the following theorem.

Theorem 5.3.9 The conditional weighted discrete tree-shaped center problem with length

constraint in trees can be solved in linear time.

5.4 Summary

In this chapter, we propose optimal algorithms for the extensive facility location problems

in tree networks, where the new facility (center) is either path-shaped or tree-shaped. The

main technique is to 'prune' the non-dominating vertices and to 'shrink' the facility if some

path or subtree is known to be a part of an optimal facility. These results improve the

recent O(n log n) results of Tamir et al. [70].

For the case where the service cost Ji(x) of a client Vi is a nondecreasing piecewise linear

function of the service distance x to the facility with a fixed number of breakpoints (in the

'conditional' case Ji(x) has only one breakpoint), all the ideas presented in this chapter

can be extended to achieve an optimal algorithm for locating the facility in the new case.

Actually, our method works even when the piecewise linearity assumption is relaxed to

piecewise polynomiality (e.g. quadratic, or cubic) of fixed degree.

Chapter 6

Continuous tree p-edge-partition

problems

In this chapter we consider continuous tree edge-partition problems (CEPs, for short) on an

edge-weighted tree network T = (V(T), E(T), l). A continuous p-edge-partition of T is to

divide it into p subtrees by selecting p - 1 cut points along the edges of T. The objective is

to minimize (maximize) the maximum (minimum) length of the subtrees.

Recently, Lin et. al. [49] proposed O(n2)-time algorithms for the two problems, which

improves the O(n2 log (min {p,n}» result of Halman and Tamir [37]. The proposed algo­

rithms of Lin et. al. [49] are based on efficiently solving a problem called the ratio search

problem. In this chapter we consider a more general version of the ratio search problem that

is defined as follows.

Definition 6.0.1 (Ratio search problem) Given a positive integer q, a real number t,

a non-increasing junction F : R ----> R, a set oj k non-negative real numbers ~ = {bi , i =
1, ... , k}, and each number bi in ~ is associated with a nonnegative integer number gi, 1 :s:
i:S: k, compute the largest real numberz in {bdai,i = 1,··· ,k I ai E [gi+1,gi+q],bi E~}

such that F(z) ::" t.

Lin et. al. [49] proposed an algorithm for the ratio search problem with uniform values

of gi = 0, i = 1,· .. ,k. We present an approach that solves the ratio search problem with

the same time complexity, for non-uniform values of gi, i = 1,··· ,k. Using our efficient

algorithm for the ratio search problem, we are able to solve the max-min CEP problem in

104

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 105

O(n log 2n) time, which is a substantial improvement of previous results. For the min-max

CEP problem, the proposed algorithm runs in time O(nhTlogn), where hT is the height of

the underlying tree. When hT = o(n/logn), our result for the min-max problem is better.

Organization of the chapter Related works are reviewed in Section 6.1. Sections 6.2

and 6.3 provide the main results of this chapter - algorithms to solve max-min and min-max

CEP problems on a weighted tree network. An algorithm for the ratio search problem is

presented in Section 6.4. Finally, Section 6.5 gives a brief conclusion.

6.1 Related works

In this section, related works are discussed, including spine tree decomposition [9] (Section

6.1.1) and linear-time feasibility tests for the max-min and min-max CEP problems [37]

(Sections 6.1.2 and 6.1.3).

6.1.1 Spine decomposition of T

We consider a rooted tree T whose root vertex rT is of degree one. We denote by p(v) the

parent of v in T. Let Tv be the subtree of T that is rooted at a vertex v and let C (v) denote

the set of all immediate children of v. In the following, we introduce a spine decomposition

of T [9] to control the depth of the recursion in our algorithm for the max-min problem.

Let Nl (v) be the number of leaves that are descendants of v in T.

A path 1r(rT, Vi) from the root rT to a leaf Vi of T is first identified such that for any

two consecutive vertices Vi and Vi+l on 1r(rT' Vi) (va = rT, p(Vi+l) = Vi, and Vm = Vi), the

following condition is satisfied: for any child U of Vi other than Vi+1, Nz(u) :::: Nz(vi+d.

That is, the path follows vertices from the root to a leaf such that the next vertex chosen is

always the child of the current vertex with the most number of leaf descendants. The path

1r(rT' Vi) is called a spine and rT is the root of this spine. We label the spine as the l't-level

spine.

The procedure is then applied recursively on each T~ where u is a child of vertex Vi and

T~ is composed of Tu and the edge UVi, i = 1,··· ,m -1. Note that Vi is the root of T~. We

label a spine that hangs from another lh-level spine, a (j + l)th-level spine. See Figure 6.1

for reference.

We have the following property about this spine decomposition of T.

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS

rr_-...Vl"--_t'-----------..c-----_---a-=-----.=-----e=-_V7

Vs

Vg 41__-..

106

Figure 6.1: Spine tree decomposition. pt-Ievel spine: 1f(rr, V7); 2nd-level spines: 1f(VI, Vll),

1f(V2,V12), 1f(V3,V21), 1f(V3,V27), 1f(V4,V25), 1f(V4,V26), 1f(V5,V29), 1f(V6,V3I); 3rd-Ievel spines:
1f(VS,VI3), 1f(v9,vI5), 1f(VlO,V17), 1f(VlO,VlS), 1f(VI9,V22), 1f(V20,V23), 1f(V20,V24), 1f(V2S,V30);
4th-level spine: 1f(V14, VI6).

Lemma 6.1.1 [9} For any vertex v E V(T), the simple path 1f(rr,v) goes through at most

O(1og n) spines.

In other words, the maximum level of spines in a spine decomposition of T is O(log n),

denoted by T.

6.1.2 A linear-time feasibility test for the max-min CEP problem

Let 1;(1) be the length of the smallest subtree in an optimal solution to the max-min CEP

problem. For any positive real number I:::; I(T), define ZI(I) to be the largest number such

that there exists an ZI (l)-edge-partition in which the length of each subtree is at least I. A

length I is feasible in the max-min model if ZI(I) 2: p, and infeasible, otherwise.

Lemma 6.1.2 In the max-min model, 1;(1) :::; I(T)jp.

In [37], Halman and Tamir presented an O(n)-time algorithm for determining the feasibility

of a given length I, as mentioned in Lemma 6.1.3.

Lemma 6.1.3 [3'l} Whether a given positive length I is feasible in the max-min CEP model

can be determined in O(n) time.

Algorithm: computing ZI (l) [37]

We use a bottom-up approach, starting with the leaves of T rooted at rr. Recall that for

each vertex v, C(v) denotes the set of all immediate children of v and Tv denotes the subtree

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 107

of T rooted at v. A vertex v is called a cluster vertex of a rooted tree, if all of its children

are leaves of this tree.

The algorithm to compute Zl (I) [37] is described as follows.

We start with the rooted tree T. Initially we set Zl(l) = O. In a generic iteration of the

algorithm we select a cluster vertex Vi of the (current) tree. Let {Vi(l)" .. ,Vi(t)} be the set

of children of Vi.

Step 1: Trimming a cluster. For each k = 1,··· ,t, define nk = ll(vivi(k))/IJ, and add

nk to Zl(l). Reduce the length of the edge ViVi(k) from l(vivi(k)) to ak = l(vivi(k)) - nk x I.

(This accounts for adding nk cut points on the edge, where the distance between adjacent

cut points is exactly I.) If l(ViVi(k)) = nk x I then delete the edge Vivi(k) from the current

tree. Define J-L = I:~=l ak· If Vi = rT delete all edges ViVi(k) from the current tree, and go to

Step 3. If all edges are deleted (i.e., J-L = 0) and Vi i- rT, repeat the process with a cluster

of the updated tree.

Step 2: Deleting a cluster. Delete all remaining edges ViVi(k), k = 1,·,· ,t, from the

current tree. If Vi = rT go to Step 3. If Vi i- rT and J-L 2" I, add 1 to Zl (I) (corresponding to

the vertex-cut on Vi and ViP(Vi)). Repeat the process with a cluster of the updated tree. If

Vi i- rT and J-L < I, increase the length of the edge ViP(Vi) from I (ViP(Vi)) to I (ViP(Vi)) + J-L,

and repeat the process with a cluster of the updated tree.

Step 3: Termination at the root rT. If J-L 2" I add 1 to Zl(l). Stop and return the

current value of Zl(l). If J-L < I remove the cut point which is the closest to rT amongst all

Zl(l) cut points that have been established. Stop and return the current value of Zl(l).

Clearly, the algorithm runs in linear time.

6.1.3 A linear-time feasibility test for the min-max CEP problem

Similarly, we define 1;(2) and Z2(l) for the min-max model as follows. Let 1;(2) be the largest

length of the subtrees in an optimal solution to the min-max CEP problem. For any positive

real number I :::; I(T), define Z2(1) to be the smallest number such that there exists an Z2(1)­

edge-partition in which the length of each subtree is at most I. A length I is feasible in the

min-max CEP model if Z2(1) 2" P, and infeasible otherwise.

Lemma 6.1.4 In the min-max model, 1;(2) 2" I(T)/p.

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 108

The linear-time algorithm of Halman and Tamir [37] for determining the feasibility of a

given length l in the min-max model is presented as follows.

Lemma 6.1.5 (37] Whether a given positive length l is feasible in the min-max CEP model

can be determined in O(n) time.

Algorithm: computing Z2(l) [37]

The computation of Z2(l) is very similar to the computation of Zl(l). As before, a bottom­

up approach is used to compute Z2(l) [37], starting with the leaves of T, which is described

as follows.

Initially we set Z2(l) = 0. We select a cluster vertex Vi of the (current) tree and let

{Vi(l)' ... ,Vi(t)} be the set of children of Vi.

Step 1: Trimming a cluster. For each k = 1"" ,t, define nk = ll(vivi(k))jlJ, and add

nk to Z2(l). Reduce the length of the edge ViVi(k) from l(ViVi(k)) to ak = l(ViVi(k)) - nk x l. If

l(vivi(k)) = nk x l delete the edge ViVi(k), from the current tree. Define fL = L~=l ak. If all

child edges are deleted and Vi = rT, go to Step 3. If all child edges are deleted and Vi # rT,

repeat the process with a cluster of the updated tree.

Step 2: Deleting a cluster. If fL = I, delete all remaining edges ViVi(k), k = 1,'" ,t,

from the current tree. Add 1 to Z2(l) (corresponding to the vertex-cut on Vi and ViP(Vi))

and repeat the process with a cluster of the updated tree.

If fL < l, delete all remaining edges ViVi(k), k = 1,'" ,t, from the current tree. Increase

the length of the edge ViP(Vi) from l(ViP(Vi)) to l(ViP(V;)) + fL, and repeat starting with a

cluster of the updated tree.

If fL > I, find q, and the subset C' (Vi) of children of Vi, corresponding to the q smallest

non-zero elements in the multiset {ak Ik = 1, ... , t}, such that the sum of these q smallest

elements, denoted by fL', is :::; l, and the sum of the smallest nonzero q + 1 elements is > l.

For each vertex Vi(k) ~ C'(Vi), such that ak > 0, delete the edge ViVi(k), and add 1 to Z2(l).

For each vertex Vi(k) E C'(Vi), delete the edge ViVi(k)' Increase the length of the edge ViP(V;)

from l (ViP(Vi)) to l(ViP(Vi)) + fL', and repeat the process with a cluster of the updated tree.

Step 3: Termination at the root rT. If fL = 0, stop and return the current value of

Z2(l) .

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 109

If 0 < IL s: I, add 1 to Z2(1). Stop and return the current value of Z2(1).

If JL > l, find q, and the subset C' (TT) of children of TT, corresponding to the q smallest

non-zero elements in the multiset {ak Ik = 1, ... , t}, such that the sum of these q smallest

elements, denoted by IL", is at most l, and the sum of the smallest nonzero q + 1 elements is

greater than I. Let t' = I{klak > 0; k = 1, ... , t}l. Add t' - q + 1 to Z2(1). Stop and return

the current value of Z2 (I).

The running time of the above algorithm is linear, since the time to process a vertex

is proportional to its number of children. (We can apply the linear-time median-finding

algorithm [16] successively to find the term C'(v;) defined above.)

6.2 The max-min continuous edge-partition problem

In this section, an O(n log 2n)-time algorithm for the max-min CEP problem is presented.

For each v E V(T) \ {rT}, let q(v) be the smallest positive integer s.t. l(vp(v))/q(v) is

feasible. In other words, q(v) = Il (vp(v)) / 1;(1)l. We first show that all q(v), v E V (T) \ {TT }

can be computed in O(n log n) time.

6.2.1 Computation of q(v), v E V(T) \ {TT}

Lemma 6.2.1 p s: LVEV(T)\{ry} q(v) s: (p + n - 1).

Proof In an optimal solution, there are at most q(v) + 1 cuts and at least q(v) - 1 cuts

on an edge vp(v) [49], which implies that (p - n - 1) s: LVEV(T)\{rT} q(v) s: (p + n - 1)

(since there are p - 1 cuts in an optimal solution). Moreover, since q(v) ~ l(vp(v))/l;,

LVEV(T)\{rY} q(v) ~ I(T)/I; =} LVEV(T)\{ry} q(v) ~ p (Lemma 6.1.2). 0

Let zi be the largest feasible real number in Zl = {l(vp(v))/ala E [l,p], v E V(T)\ {rT}}'

Lin et. al. [49] showed that q(v) = Il(vp(v))/zil

Lemma 6.2.2 !49} For each v E V(T) \ {rT}, q(v) = Il(vp(v))/zil

Therefore, it is sufficient to present an O(n log n)-time algorithm to compute zi-

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS

Compute zi It is not hard to obtain the following inequations.

l(vp(v)) p x l(vp(v))
q(v) = 1 1* 1 ::::: 1 l(T) 1,v E V \ {rT} (Lemma 6.1.2),

p(l)

'" p x l(vp(v))
p ~ ~ 1 l(T) 1< p + n - 1.

vEV\{rT}

By combining Equation 6-2 and Lemma 6.2.1, we have the following result.

'" (() ~ I P x I(vp(v)) 1) < _
~ q v I l(T) _ n 1,

vEV\{rr}

which implies that

p x l(vp(v))o~ q(v) -I I(T) 1~ n -l,v E V \ {rT} (Equation 6-1).

In other words, zi is the largest feasible real number in

I -- P x l(vp(v)) p x l(vp(v))
Zl = {1(vp(v))jalaE [I l(T) 1,1 l(T) 1+n-1],vEV\{rT}}.

110

(6-1)

(6-2)

The algorithm for the ratio search problem presented in Section 6.4 can be used to compute

zi. By using the linear time feasibility test (Lemma 6.1.3) and the result in Theorem 6.4.2,

zi can be computed in O(nlogn). Therefore, we have the following lemma.

Lemma 6.2.3 All q(v),v E V(T) \ {rT}, can be computed in O(nlogn) time.

6.2.2 The main idea and overall approach

Our approach for the solution of the max-min tree edge-partition model is to apply the

algorithm described in Section 6.1.2 parametrically, using I as the single parameter, to

compute Zl (l;(1)) without specifying the value of l;(l) a priori. Note that for a fixed value

of the parameter, the algorithm is executed in O(n) steps. At each step we possibly trim

the lengths of some edges of the cluster by an integer multiple of the parameter l, and

perform some additions and comparisons with the updated lengths of the edges. Imagine

that we start the algorithm without specifying a value of the parameter l. The parameter

is restricted to some interval which is known to contain the optimal value 1;(1)" (Initially,

we may start with the interval [O,I(T)].) As we go along, at each step of the algorithm we

update and shrink the size of the interval, ensuring that it includes the optimal value 1;(1)'

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 111

The approaches in [37, 49] are also based on Megiddo's general parametric approach

[52]. The main difference between our approach and the two previous approaches [37, 49]

is described as follows. In the approaches in [37, 49], one feasibility test is needed at each

vertex. But we plan to find the edge-partitions at all jth-level spines in an optimal solution

by solving O(log mj) feasibility tests where mj is the number of vertices in lh-level spines,

j = 1"" ,T. The details of this solution are presented in Section 6.2.3. Basically, we

show that the edge-partitions at lh-level spines in an optimal solution can be computed in

time O(nlogn+ m j log2mj). Therefore, based upon Lemma 6.1.1, i.e., T = O(logn), the

max-min CEP can be solved in O(nlog 2n) time since 2::.1=1 mj = n.

Theorem 6.2.4 The max-min CEP problem can be solved in O(n log 2n) time.

6.2.3 Computing edge-partitions at alllh-level spines, 1 :::; j :::; T

We assume that, for any k E (j, T], the number of cuts at edges in kth-level spines are known,

and that the remainder of each (j + 1)th-level spine is known. In Figure 6.2, an example

is demonstrated. The bold paths are 2nd-level spines and the dashed parts represent the

remainders contributed from 3rd-level spines. We note that the remainder from each 3rd_

level spine is a I-degree polynomial of l;(l) in the form of T) - ~ x l;(l) where T) is a positive

real number and ~ is a nonnegative integer number, and that each remainder is less than

l;(l) .

rT __-tV~1_--'= ~-----' -k-_-'='--_i'--_V7

Vg

~......
V21 '72 ~ "2 X 1;(1), ,

Figure 6.2: 2nd-level spines and remainders of 3rd-level spines.

We first merge the remainders that are attached to the same vertex. For example, in

Figure 6.2, two remainders T)1 - ~1 X l;(l) and T)2 - ~2 X l;(l) from 3rd-level spines are attached

to vertex V20, then we remove the two remainders and attach V20 with a new remainder

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 112

2::;=1 'f)s - 2::;=1 "'s X1;(1)· We note that now it is possible to have new remainders that are

::::: 1;(1)"
Let>. be the number of lh-level spines and mj be the total number of vertices on these

jth-level spines. For each jth-level spine, i.e., <I> : {vo, ... ,vt} (Vt is the root of <I» in Figure

6.3, we create a balanced binary tree structure over it. Before we present the balanced binary

tree structure over each lh-level spine <I> , more notations and definitions are introduced as

follows.

Tq,

a (j - l)th-level spine

Vo

\,
I

, ,
xi"

Vt

Figure 6.3: A balanced binary tree structure over a lh-level spine <I>.

The edge connecting Vi-1 and Vi is denoted by ei, i = 1, ... ,t. We define the remainder

Xi of each edge ei on <I> to be l(ei) - (q(vi-d - 1) x 1;(1)' i = 1,,·· ,t. Note that Vi is the

parent of Vi-1 in T and q(Vi-1) = ll(ei)/I;(1)l. Therefore, 0 < Xi :::; 1;(1). We continue with

the hypothesis that 0 < Xi < 1;(1). For each i, 1 :::; i < t, we denote by Yi the remainder

attached to vertex Vi (after merging remainders of (j + l)th-level spines). All Xi'S and yi's

are in the form of 'f) - '" x 1;(1) where 'f) is a positive real number and", is a nonnegative

integer number. Let Xi = 'f)i - "'i X 1;(1) and Yk = 'f)~ - "'~ x 1;(1) where i = 1,,·, ,t and

k = 1",· ,t - 1 (Yt is undefined).

Figure 6.3 demonstrates a balanced binary tree structure over a spine <I>, denoted by Tq"

where the vertices on <I> are leaves of Tq,. We denote by Tu the subtree of Tq, rooted at a

leaf or an internal node u of Tq,. Let V(Tu) be the set of leaf vertices in Tu . For example, in

Figure 6.3, V(TV2) = {V2} and V(TU2) = {V3,V4}. The term Iu is defined to be the smallest

index of vertices contained in the subtree Tu of Tq" i.e., Iu ! = IU3 = 1 and IU2 = 3 in Figure

6.3.

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS

Preprocessing step

113

In this step, we compute three sets of I-degree polynomials with unknown Z;(l)' i.e., Zr, Z;, Z~,

and sort elements in these sets respectively. The three sets are described below.

For each vertex Vi in V(Tu), let z(u,i) = I:~=Iu Xk+ I:~~ju Yk and z'(u,i) = I:~=Iu Xk+

I:~=Iu Yk· For example, in Figure 6.3, z(u2,4) = X3 + Y3 + X4, Z'(U2, 4) = X3 + Y3 + X4 +

Y4, Z(V4' 4) = X4, and z'(v4,4) = X4 + Y4. Clearly, there are O(mj logmj) such values in

lh-level spines since each vertex belongs to O(1ogmj) rooted subtrees. All these z(',·) and

z'(',·) values are in the form of rJ - '" x 1;(1) where rJ is a positive real number and", is a

nonnegative integer number. Also, we have the following property about these values.

Lemma 6.2.5 For each vertex Vi in V(Tu), z(u,i) < n x 1;(1) and z'(u,i) < n x 1;(1)'

Proof The reason is that z(u, i) (resp. z' (u, i)) is the sum of at most n remainders and

each remainder is less than 1;(1) by hypothesis. D

Let A be the set of constant parts of all these z(',·) I-degree polynomials. As we

know, each rJi in A is associated with a nonnegative integer "'i. According to Lemma 6.2.5,

"'i X 1;(1) < rJi < ("'i + n) x 1;(1) for each rJi E A. For each rJ E A, let q(rJ) be the smallest

positive integer s.t. rJ/q(rJ) is feasible. In other words, q(rJ) = IrJ/1;(1)l

Let z2 be the largest feasible real number in Z2 = {TJd IiITJi E A, Ii E ["'i + 1, "'i + n]}.

We obtain that q(rJ) = IrJ/z2l, for each rJ E A [49]. According to Theorem 6.4.2 and

Lemma 6.1.3, z2 can be computed in O(nlogn) since IAI = O(mjlogmj). Therefore, all

q(rJ) (rJ E A) can be computed in O(n log n) time.

Definition of Zr and Z;: For each vertex Vi in V(Tu), we let zr(u, i) be the remainder

of z(u,i) and let z;(u,i) be Yi + zr(u,i), i.e., if z(u,i) = rJ - '" x 1;(1) then zr(u,i) =
z(u, i) - (q(rJ) - '" -1) x 1;(1)' Clearly, 0 < zr(u, i) ::; 1;(1)' We continue with the hypothesis

that 0 < zr(u, i) < /;(1)' We define Zr (resp. Z;) to be the set of these zrC .) (resp. z;C·))

I-degree polynomials with unknown 1;(1)'

Definitions of Z~: Let Vi be a vertex lying in a lh-level spine 1> : {vo,'" ,vt}. In the

balanced binary tree structure T<f>, there are O(1og mj) subtrees containing all the vertices

in path 7f(Vi+l,Vt-1), say Tul"" ,TUh (where lUI = i + 1 < IU2 < ... < IUh < t). For each

subtree Tus,l::; s::; h, let zl/(us,i) = I:~~i~ll(Xk+Yk) (see Figure 6.4). Clearly, these

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS

Figure 6.4: Zll (u" k), 1 s: s s: h.

114

Zll(.,.) values are I-degree polynomials with unknown I;. Let z~(us,i) be the remainder

of Zll(us, i). Similar to the computation of zr(-, '), all these z~(-,·) I-degree polynomials

can be computed in O(nlogn) time. We define Z~ to be the set of these z~(·,·) I-degree

polynomials.

Sort elements in the sets Zr, Z;, Z~: Obviously, each of Zr, Z;, and Z~ is of size

O(mjlogmj). A comparison between two I-degree polynomials with unknown 1;(1) can

be resolved by solving one feasibility test. Under Valiant's comparison model [72], all the

zr(',') (resp. z;(-, '), z~(" .)) can be sorted in O(nlog 2mj) time by applying Megiddo's

parametric-searching technique [53].

Actually, this sorting step can be speeded up by applying the result of Cole [25]. In this

way, the sorting can be done in time O(nlogmj +mj log2mj).

Finally, we have the following lemma.

Lemma 6.2.6 The computation and sorting of elements of Zr, z;, Z~, that is, the pre­

processing step for computing edge-partitions at all lh-level spines, can be done in time

O(nlogn + mj log2mj), 1 s: j s: T.

Algorithm

Our algorithm to compute the edge-partitions at lh-Ievel spines in an optimal solution

consists of two steps.

The first step is to locate vertex-cuts on alllh-level spines in an optimal solution. The

second step is to compute the remainder of each jth-level spine.

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 115

First step: computing vertex-cuts We explore a property (see Lemma 6.2.7) between

two consecutive vertex-cuts in an optimal solution. Based upon this property, given a

vertex-cut on a lh-level spine, we are able to locate the next vertex-cut efficiently, if it

exists.

<> :o---~V;-~"';L~-~:k~;--~~~V'
I

Yi-l Yi YI Yk Yk+l I
I

Figure 6.5: Lemma 6.2.7 shows a property of the next vertex-cut on vertex Vk and edge
ek+1 after a vertex-cut on vertex Vi-1 and edge ei'

Lemma 6.2.7 Refer to Figure 6.5. Assume that there is a vertex-cut on vertex Vi-1 and

edge ei in an optimal solution. If the next vertex-cut is on vertex Vk and edge ekH (i S; k S;

t - 1), then

12:~=i ~xs + YS)l = 12:~~~ (xs*+ Ys) + Xh l , where i S; l < k,
lp(l) lp(l)

and

12::=i ~xs + Ys) l > 12:::i
1

(xs*+ Ys) + Xk l
lp(l) lp(l)

Proof In the algorithm to compute Zl(l) described in Section 6.1.2, we know that a vertex­

cut happens when the sum of remainders of child edges is ~ l. Obviously, it is true for

l = l;(l)'

Therefore, the next vertex-cut after the vertex-cut on Vi-1 and ei will be on vertex Vk

and edge vk+ 1 (i S; k S; t - 1) if the condition

12::=i (l~es) + YS)l > 12:::i1 (l(es)*+ Ys) + l(ek)l

lp(l) lp(l)

is satisfied the first time, which is equivalent to the two conditions described in this lemma.

o

Lemma 6.2.7 says that we can find all vertex-cuts on a lh-level spine <I> one by one,

starting from Va (we can assume that there is a vertex-cut on Va and e1 since Va is a leaf

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 116

vertex in T). However, this straightforward approach is inefficient and its running time is

O(mjn) (in the worst case, we need to solve O(mj) feasibility tests).

In order to improve the running time of computing vertex-cuts on alllh-level spines, we

propose a parallel approach that is described as follows. We first describe an algorithm to

compute the next vertex-cut for a vertex Vi in a lh-level spine <1> : {vo, ... ,vt} (0 ::::: i < t -1)

with the assumption that there is a vertex-cut on Vi and ei+l, and then present our parallel

approach to compute the next vertex-cuts for all vertices in lh-level spines.

Computing the next vertex-cut for a vertex Vi: refer to Figure 6.4. There are

o(log mj) subtrees of Tep containing all the vertices in path 7r(Vi+l, Vt-l), i.e., Tul' ... , TUh

(lUI = i + 1 < IU2 < ... < IUh < t). For each subtree Tus ' 1 ::::: s ::::: h, we locate the first

vertex Vk E V(TuJ s.t. the following condition is satisfied.

Cl: 1I:~=i+l*(Xa+Ya)l> 1I:~:;+dX:+Ya)+Xkl
lp(l) lp(l)

Note that we might not be able to find such a vertex in some subtrees. If such a vertex

does not exist for any subtree Tus ' 1 ::::: s ::::: h, then the next vertex-cut does not exist after

Vi on spine <1>. Otherwise, let TUS1 be the first subtree in which such a type of vertex, say

Vii, does exist. It is not difficult to see that the next vertex-cut after Vi will be on vertex

Vii and edge eil+1·

We next show an approach to locate the first vertex Vk E V(Tus) (1 ::::: s ::::: h) s.t. Cl is

satisfied.

We depict important information of vertices in V(Tus)' 1 ::::: s ::::: h, using a two-dimensional

diagram (see Figure 6.6). For each Vk E V(Tus)' the horizontal coordinate of Vk in the two­

dimensional diagram corresponds to Zr (us, k) and the vertical coordinate of Vk corresponds

to z;(us, k). Note that these zr(us,·) and z;(us,·) values are I-degree polynomials and are

already sorted in the preprocessing step. We denote by I the region in the two-dimensional

diagram that contains all points whose horizontal coordinates are in [0,1;(1) - z~(us,i)]

and whose vertical coordinates are in (l;(1) - z~(us,i),()()). We denote by II the region in

the two-dimensional diagram that contains all points whose horizontal coordinates are in

(l;(1) - z~(us,i),()()) and whose vertical coordinates are in (21;(1) - z~(us,i),()()).

Lemma 6.2.8 Suppose that there is no vertex-cut in 7r(Vi+l, VIs-d. Then, there is a vertex­

cut in 7r(V Is' V 1
8
+1 -1) if and only if I UII contains at least one point. Also, if points exist in

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 117

Z~(Us, k)

•

•
•

II

•

I
•

I
I
1---------

,
,
,
,. ,,

Z;-z:(us>i) ---------:.,
,
,
,'.I

,---------'-'----~3 zr(us, k)
a Z;-z:(u."i)

Figure 6.6: Check if there is a vertex-cut in Tus and locate it if exists.

I UTI, let il be the smallest index among them, then the first vertex-cut in 7f(vI." VIs+l~d

is on vertex Vi1 and edge ei1+1.

Proof We know that a vertex-cut happens after Vi if Cl is satisfied for some vertex Vk, i <
k < t. By assumption, there is no vertex-cut in 7f(Vi+1, VIs-1). That is,

r L:~=i+1 (xa + Ya)l = rL:~:~+1 (xa + Ya) + Xb
l

h .+ 1 < b < I
1* Z*' w ere ~ - s'
p(l) p(l)

Therefore, there is a vertex-cut in 7f(VIs' VI
S
+l-1) if and only if Cl is satisfied for some vertex

Vk E V(Tus)'

Note that zr(us, k) is the remainder of z(us, k) = L:~=Is Xa + L:~:~s Ya and z~(us, i) is

the remainder of z"(us, i) = L:~~~1 (xa + Ya). Assume that z(us, k) = zr(us, k) + K X Z;(l)

and z"(us, i) = z~(us, i) + K" X Z;(l) where K and K" are non-negative integers.

Since L:~:i+1 (xa + Ya) +Xk = z"(Us> i) + z(Us, k) = z~(Us, i) + zr(Us> k) + (K+ K") X Z;(l)'

r L:~:i+1(Xa+Ya)+Xkl_ rz~(us,i)+zr(us,k)l "
Z* - Z* + K + K ,
p(l) p(l)

and

rL:~=i+1*(Xa+ Ya)l
Zp(l)

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 118

It is known that 0 < zr(us, k) < Z;(l) and 0 < z~(us, i) < Z;(l)" If zr(us, k) :<::::

Z;(l) - z~(us, i) then I(Z~(Us, i) + zr(us, k))jZ;(l)l = 1. To satisfy Gl, we need I(Z~(Us, i) +
z~(Us, k)) j Z;(1) l > 1, i.e., z~ (us, k) > Z;(l) - z~ (us, i). Hence, all points in the region I satisfy

Gl. Similarly, all points in the region II also satisfy Gl. 0

Using a priority search tree structure [51] to maintain the two-dimensional diagram

for subtree Tus ' we can check if there exists a vertex-cut and locate it if exists after

O(IV(TuJI) ~ O(logmj) comparisons between I-degree polynomials with unknown Z;(l)"

Note that one feasibility test needs to be solved for each comparison.

A priority search tree over II = V(TuJ is created as follows (Algorithm 2).

Algorithm 2 Create-PrioritySearchTree(II)

Input: a set II of points that are depicted in the two-dimensional diagram described above.
Output: the root of a priority search tree data structure over II.
begin

1: If II is empty, terminate the process and return "NULL".
2: The point u in II with the largest vertical coordinate becomes the root.
3: Let II = II \ {u} and if II is empty, then terminate the process and return the pointer

to u.
4: Let xm(II) be a value such that half of points in II have horizontal coordinates lower

that xm(II), and half have higher.
5: Recursively create a priority search tree on the lower half of II and let its root be the

left child of u.
6: Recursively create a priority search tree on the upper half of II and let its root be the

left child of u.

end

Note that the vertical and horizontal coordinates of points in II are I-degree polynomials

and are already sorted in the preprocessing step. Hence, we are able to create the priority

search tree in O(IIIllog IIII) time [51].

Computing the next vertex-cuts for vertices in lh-Ievel spines Since it is

inefficient to locate vertex-cuts one by one, in order to speed up the computation, we can

compute them in a parallel way. For each vertex v in a lh-Ievel spine, we need to locate

candidates for its next vertex-cut among o(log mj) subtrees. As shown above, a candidate

in a subtree (for v) can be computed in o (log mj) steps where each step is a comparison

between two I-degree polynomials with unknown Z;(l)"

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 119

Therefore, the computation of all possible vertex-cuts can be done in o(log mj) parallel

steps by using O(mj log mj) processors (there are o (log mj) processors associated with each

vertex), where each step is a comparison between two I-degree polynomials with unknown

l;(l)' By applying Cole's idea [25], the computation can be done in time O(n log mj +
mj log 2mj).

Second step: computing remainders of spines After locating vertex-cuts on all /h_
level spines in an optimal solution (the first step), we are able to compute the remainder of

each lh-level spine efficiently. For a lh-level spine <I> : {vo,'" ,vt}, assume that the last

vertex-cut is on vertex Vk and edge ek+ 1, 0 ::::: k ::::: t - 1 (k = 0 means that there is no vertex­

cut on <I». Then the remainder of spine <I> is the remainder of L~=k+l Xi + L~:k+l Yi. It is

trivial that the I-degree polynomial L~=k+l Xi + L;:k+1 Yi is less than n x l;(l)' We need

to compute the remainders of A I-degree polynomials (A is the number of lh-level spines).

Similar to the computation of zr(',') (in the preprocessing step), all these remainders can

be computed in O(n log n) time.

From the above discussion, the total effort (including the effort for the preprocessing

step) to compute the edge-partitions in /h-level spines in an optimal solution is O(n log n +
mj log 2mj). It completes the proof of Theorem 6.2.4.

6.3 The min-max continuous edge-partition problem

Unfortunately, we cannot use the same approach to solve the min-max CEP problem as the

one for the max-min CEP problem (described in the previous section). The main difficulty

is caused by vertex-cuts in the min-max model.

Recall that in Step 2 of the feasibility test of a given positive value l for the max-min

model, a vertex-cut on Vi and ViP(Vi) is added if J..1 :::: l where J..1 is the sum of remainders

of edges ViVi(k) , 1 ::::: k ::::: t (Vi(k) is a child of Vi, see Figure 6.7(a)(b)). However, in Step

2 of the feasibility test of l for the min-max model, if J..1 > l, we need to find the largest

q(I ::::: q ::::: t) such that the sum of the q smallest remainders of edges ViVi(k)' 1 ::::: k ::::: t,

is ::::: l. Assume that the remainder of edge ViVi(k) is no more than the remainder of edge

ViVi(k+l) , 1 ::::: k ::::: t - 1. A vertex-cut on Vi and Vivi(k) is added, q + 1 ::::: k ::::: t, and the edge

ViP(Vi) is extended by the sum of remainders of edges ViVi(k) , 1 ::::: k ::::: q (see Figure 6.7(c)).

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 120

Vi

(a)

P(Vi)

Vi(l) Vi(2)

(b)

P(Vi)

Vi(q+1)

(C)

Figure 6.7: Vertex-cuts in the max-min and min-max models. (a) current vertex Vi and its
children vi(I), ... , vi(t) (assume that the sum of remainders of edges ViVi(k) , 1 ::::: k ::::: t, is

2': I); (b) a vertex-cut on vertex Vi and edge ViP(Vi) in the max-min model; (c) vertex-cuts at
vertex Vi and edge ViVi(k) , q + 1 ::::: k ::::: t, in the max-min model, and the dashed part is the

extension of edge ViP(Vi) that is equal to the sum of remainders of edges ViVi(k) , 1::::: k ::::: q.

Therefore, in the max-min model, we are able to locate next vertex-cuts for all vertices

on a spine in a parallel way, but, we cannot do it in a parallel way for the min-max model

since the length of edge vp(v) is changed even if we have vertex-cuts on vertex V and edges

incident to it.

Main idea Our approach for the min-max problem is also to apply the algorithm described

in Section 6.1.3 parametrically, using I as the single parameter, to compute Z2(l;(2)) without

specifying the value of 1;(2) a priori.

From the feasibility test for the min-max problem in Section 6.1.3, we can see that

all current cluster vertices can be handled in a parallel way. In Section 6.3.1, we present

an algorithm to compute the edge-partitions at all current cluster vertices in an optimal

solution by solving logarithmic feasibility tests.

More notations are introduced as follows. For each v E V(T) \ {rT}, let q'(v) be the

smallest positive integer s.t. l(vp(v))jq'(v) is feasible in the min-max model. In other

words, q' (v) = Il (vp(v)) j 1;(2) l Similar to the computation of q(v), v E V (T) \ {rT }, we can

compute all q'(v),v E V(T) \ {rT}, in O(n log n) time.

6.3.1 Computing edge-partitions at all current cluster vertices

Let UI, ... , Uk be current cluster vertices. Let Vi(I), ... , Vi(n;l be the children of Ui, i

1 ... , k. Assume that the remainder of each edge UiVi(j) , 1 ::::: i ::::: k,l ::::: j ::::: ni, is known,

denoted by Xi(j) , which is a I-degree polynomial of unknown 1;(2)'

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 121

The algorithm consists of four steps as follows.

The first step is to compare L7'=lXi(j),i = 1, ... ,k, with 1;(2)' which can be done by

solving O(log k) feasibility tests. Assume that L T.J:=l xi(j) ::::: 1;(2),1 < < k' (::::; k). Let

",ni k'· < kYi = 6j=1 xi(j)' < t _ .

The second step is to sort the elements in the set {Xi(j) : 1 ::::; i ::::; k', 1 ::::; j ::::; nd.

Similar to the sorting of elements in the sets Zr. Z;, Z~ (defined in Section 6.2.3), this step

can be done in time O(nlogL~~lni)' Without loss of any generality, we assume that

Xi(l) ::::; Xi(2) ::::; ... ::::; Xi(ni)' 1 ::::; i ::::; k'.

The third step is to compare L3~1 Xi(j), i = 1, ... , k', 1 ::::; qi ::::; ni, with 1;(2)' which

can be done by solving O(log L~~l ni) feasibility tests. Then, for each i,1 ::::; i ::::; k', in

O(n;) time, we can find the largest qi(1 ::::; qi ::::; ni) such that the sum of the qi smallest

remainders of edges Uivi(j), 1 ::::; j ::::; ni, is ::::; 1;(2)" In other words, there are vertex-cuts

on vertex Ui and edges UiVi(j) , qi + 1 ::::; j ::::; ni, i = 1, ... , k' in an optimal solution. Let

Yi = L3~1 Xi(j) , 1::::; i ::::; k'.

The last step is to compute the remainder of new edge UiP(Ui) since UiP(Ui) is extended

by Yi, 1 ::::; i ::::; k. In this step, we only need to compare Yi + l(uip(ui)) - (q'(Ui) - 1) x 1;(2)

with 1;(2),i = 1, ... ,k. Obviously, it can be done by solving O(logk) feasibility tests. For

each i, 1 ::::; i ::::; k, if Yi + I(Uip(Ui)) - (q' (Ui) ~ 1) x 1;(2) > 1;(2) then the remainder of new edge

UiP(Ui) is Yi + l(uip(ui)) - q'(Ui) x 1;(2)' and Yi + l(uip(ui)) - (q'(Ui) - 1) x 1;(2)' otherwise.

Time analysis Clearly, the time complexity to compute the edge-partitions at all

current cluster vertices in an optimal solution is O(nlogL~=l ni) = O(nlogL~=l 6T(Ui)) ~

o (n log n) (recall that 6T (Ui) is the degree of vertex Ui in T).

We denote by hT the height of the underlying tree T. Then, the algorithm described

above runs hT times. The total time cost is therefore O(nhT logn) (or O(n LVEV(T) 6T(V))),

Theorem 6.3.1 The continuous min-max tree edge-partitioning problem can be solved in

O(nhT logn) (or O(n LVEV(T) OT(V))) time, where hT is the height of the underlying tree

network and 6T(V) is the degree of vertex v.

6.4 An algorithm for the ratio search problem

In the ratio search problem, we are given a positive integer q, a set of k non-negative real

numbers D. = {bi , i = 1, ... , k}, a non-increasing function :F : R ----+ R, and a real number

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 122

t. Each number bi in ,6, is associated with a nonnegative integer number 9i, 1 ~ i ~ k.

The problem is to find the largest real number, denoted b z*, in {bdai,i = 1"" ,k I ai E

[gi + 1,gi + q],bi E ,6,} such that F(z*) 2' t. Let a*,b* be numbers s.t. b* E ,6" a* is

an integer number in [g* + 1,g* + q] (g* is the value associated with b*), and z* = b* la*.

Without loss of any generality, we assume that F(O) 2' t.

Lin et. al. [49] proposed an algorithm for the ratio search problem with the uniform

value of gi = 0, i = 1" .. , k, which runs in time O(k + tF x (log k + log q)), where tF is the

time required to evaluate the function value F(z) for any real number z. In this section, we

present an approach that solves the ratio search problem with the same time complexity,

for non-uniform values of gi, i = 1, ... , k.

Notation ,6,': Let,6,' be the subset of,6, s.t. F(bi/(gi + q)) 2' t for any bi E ,6,'.

Clearly, b* E ,6,' since F(·) is a non-increasing function. If ,6,' is empty then z* does not

exist, and if ,6,' contains only one element then b* is determined. In the latter case, we can

compute z* by a binary search of the corresponding a* in [g* + 1, g* + q], which takes time

O(tF x logq). We assume that ,6,' contains at least two elements in the following.

For each bi E ,6,', we denote by a(bi) the smallest integer number in [gi + 1, gi + q] with

F(bla(bi)) 2' t.

Notations ,6,~, ,6,~: Let,6,~ = {bila(bi) > gi + 1, bi E ,6,'} and let ,6,~ = ,6,' \ ,6,~.

Obviously, F(bd(gi + 1)) 2' t for any bi E ,6,~, but, F(bd(gi + 1)) < t for any bi E ,6,~.

We can identify the elements in ,6,~ and ,6,~ by sorting the elements in ,6,' and evaluating

values of F(·) for O(log 1,6,'1) elements in ,6,'.

Notation z~: Let z~ = maxbiEb.; bd(gi + 1).

It is trivial to see that z* 2' z~ since F(z:i) 2 t. In the following, we assume that z* > z:i.

The case when z* > z:i In this case, b* must be in ,6,~. We define kb(z) = LblzJ for each

b E ,6,~ where z is a parameter in (0,00). Let f(z) = LbEb.' kb(z). We observe that f(z) is
1

a step function with jumps, including the jump point at z*.

Notations a', z':

z' = (LbEb.~ b)la'.

Let a' be the smallest integer number s.t. F((LbEb.' b)la') 2' t. Let
1

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 123

Proof Since F(bj /(gJ+1)) < t for any bj E.6.~ and F((L:b;El>~ bi)/a') 2': t, (L:b;El>~ bi)/a' <
bj/(gj + 1) for any bj E .6.~ (because F(·) is a non-increasing function). For any bj E .6.~,

(L bi) x (gj + 1) < bj x a'.
b; El>~

Then,

(L bi) x (L gi + 1.6.~I) < (L bj) x a',
b;El>~ biEl>~ bjEl>~

which implies that a' > L:biEl>~ gi + 1.6.~I·

Let b' = maxbiEl>~ bi/(gi + q). Therefore,

b' x (L gi + q x 1.6.~ I) 2': L bi.
~El>~ ~El>~

Since F(b') 2': t and F(·) is a non-increasing function, F((L:bEl>~ b)/(L:b;El>~ gi + q x

1.6.~I)) 2': t. Hence, a' :s: L:biEl>~ gi + q x 1.6.~1 because a' is the smallest integer number

s.t. F((L:bEl>' b)/a') 2': t. 0
1

Since there are at most (q -1) x 1.6.~1 candidate integer values for a' (Lemma 6.4.1), we

are able to compute a' in time O(k + t:;: x (log q + log k)) (note that 1.6.~ I :s: k).

For any b E .6.~, we can see that b/a(b) < (L:biEl>~ bi)/(a' -1) since F((L:biEl>~ bi)/(a'­

1)) < t and F(b/a(b)) 2': t. (Recall that a(b) is the smallest integer number in [g + 1,g + q]

with F(b/a(b)) 2': t where 9 is the value associated with b.)

Similarly, for any b E .6.~, z' < b/(a(b) -1) since F(z') 2': t and F(b/(a(b) -1)) < t (note

that a(b) > 1).

For any b E .6.~,

b/a(b) < (L bi)/(a' - 1)
b; El>~

=} a(b) > b(a' - 1)/ L bi
b;El>~

=} a(b) > (b/z') - 1 (since z' = (L b)/a');
bEl>~

and

z' < b/(a(b) - 1)

=} a(b)«b/z')+1.

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 124

Therefore, (biz') - 1 < a(b) < (biz') + 1 for any b E .6.~. We note that a(b) is an integer

and that there are at most two integers between (biz') - 1 and (biz') + 1 (not including

(biz') - 1, (biz') + 1), denoted by a~ and a~. It is not difficult to see that z* is in the set

{bla~, bla~lb E .6.D if z* > z2'

The finding can be made by using the prune-and-search technique. First, we compute

the median x of the numbers in {bla~, bla~lb E .6.D by the linear-time select algorithm in

[16]. If F(x) 2:: t we prune away all numbers smaller than x in this set; otherwise, we prune

away all numbers larger than x. The process is repeated on the remaining numbers. Note

that the size of this set is no more than 21.6.~ I ::; 2k. Therefore, the above finding of the

largest real number z3 in {bla~,bla~lbE.6.D such that F(z3) 2:: t requires O(k+tF x logk)

time.

Based upon the above discussion, an algorithm for the ratio search problem is presented

as follows (Algorithm 3).

Algorithm 3 Ratio-Search(q, F, t,.6.)
Input: an integer q > 0, a non-increasing function F, a real number t, a set .6. of k non­
negative real numbers, and each real number bi in .6. is associated with a nonnegative integer

gi, i = 1"" , k.
Output: the largest real number z in {bi/ailai E [gi + 1,gi +q], bi E.6.} such that F(z) 2: t.
begin

1: b" f- the largest number in {bd(gi + q)lbi E .6.} s.t. F(b") 2:: t.
2: .6.' f- the subset of .6. that contains all the numbers bi E .6. with bi/(gi + q) ::; b".
3: z2 f- the largest real number in {bi/(gi + l)lbi E .6.'} U {O} s.t. F(z2) 2:: t.
4: .6.~ f- the subset of .6.' that contains all the numbers bi E .6.' with bi/ (gi + 1) > z2'
5: a' f- the smallest integer number s. t. F((I:bE6.~ b)Ia') 2:: t.
6: z' f- (I:bE6.' b) Ia'.

I

7: a~, a~ f- the two integers between (biz') - 1 and (biz') + 1, for each b E .6.~.

8: z3 f- the largest real number in {blat, bla~lb E .6.D such that F(z3) 2:: t.
9: return max{z2,z3}.

end

The time complexity of Algorithm 3 is analyzed as follows. Both Line 1 and Line 3 can

be done in time O(k + tF x log k) by the prune-and-search technique described above for

completing Line 8. It is easy to see that the steps in Line 2, Line 4, Line 6, and Line 7 can be

done in O(k) time. It is known that Line 5 can be completed in time O(k+tFX (logq+log k)).

Therefore, the ratio search problem can be solved in time O(k + tF x (log q + log k)).

CHAPTER 6. CONTINUOUS TREE P-EDGE-PARTITION PROBLEMS 125

Theorem 6.4.2 The ratio search problem can be solved in time O(k + t;: x (log q + log k)).

6.5 Summary

In this chapter we study continuous tree p-edge-partition problems on a tree network. Ba­

sically, a continuous p-edge-partition of a tree T is to divide T into p subtrees by selecting

p - 1 cut points along the edges of the underlying tree. The objective is to minimize (max­

imize) the maximum (minimum) length of the subtrees. We propose an O(nlog 2n)-time

algorithm for the max-min problem and an O(nhT log n)-time algorithm for the min-max

problem where hT is the height of the underlying tree network.

Similar to the approaches developed in [37, 49], our approaches are also based on the

general parametric approach of Megiddo [52]. The main difference between our approach

and the two previous ones [37, 49] is that: In their approaches, one feasibility test is needed

at each vertex; However, in our approach for the max-min problem, we build a spine tree

decomposition structure [9] over the underlying tree and locate edge-partitions at all spines

at the same level by solving logarithmic feasibility tests, and in our approach for the min-max

problem, we locate the edge-partitions at all current cluster vertices by solving logarithmic

feasibility tests. In this way, we are able to solve the max-min CEP in sub-quadratic time

since the highest level is O(log n) in a spine tree decomposition structure, and we are able

to solve the min-max CEP in time O(nhT log n).

In [37], Halman and Tamir mentioned that their algorithms for the CEP problems can

be extended to yield polynomial algorithms of the same complexity for the CEP problems

in cactus networks, that is, O(n2 log(min{p,n})). We conjecture that our algorithms for

the CEP problems in tree networks can be extended to cactus networks.

Chapter 7

Constrained covering problems

tree networks

•In

In this chapter we consider a variant of the covering location problem called a constrained

covering problem (for short, CCP). This problem is defined on a network G with vertex set

V(G) and edge set E(G). The vertex set V(G) represents the set of demand points that

must be covered by a facility, as well as the set of potential facility locations. A facility

located at vertex u E V(G) incurs a non-negative open-facility cost c(u), and provides a

non-negative coverage radius of r(u). A demand point v is covered by a facility u if and

only if u =/=- v and d(u,v) :::: r(u). In other words, a demand point is covered by a facility if

it lies within the coverage radius of the facility and an established facility must be covered

by another established facility. The CCP seeks to minimize the sum of open-facility costs

required to cover all vertices in V (G).

We propose efficient algorithms for CCPs on path, extended star, and tree networks in

this chapter. Our results improve the previous results in [45, 44]. In particular, we provide

an O(nlogn)-time algorithm for path networks (the algorithm in [45] for path networks runs

in O(n2) time), an O(n1.5 logn)-time algorithm for extended-star networks (the algorithm

in [45] for extended-star networks runs in O(n 2) time), and an O(n 3 log n)-time algorithm

for tree networks (the algorithm in [44] for tree networks runs in O(n4) time).

Organization of the chapter Section 7.1 and Section 7.2 present our sub-quadratic

algorithms for the CCP on path networks and extended-star networks, respectively. Section

7.3 develops an O(n3 log n)-time algorithm for the CCP on tree networks. A brief conclusion

126

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 127

is given in Section 7.4.

7.1 Path networks

In this section, we present a sub-quadratic algorithm for the CCP on a path network G.

The path network G has vertex set V(G) = {Vl,'" ,vn} and edge set E(G) = {ViVi+l,i =

1, ... , n - I} with vertex Vl designating the beginning of the path and vertex V n designating

the end of the path.

7.1.1 Recursive functions for computing an optimal solution

Lundayet al. [50] considered the CCP problem on a path network with uniform coverage

radius, that is, r(Vl) = r(Vi), i = 2, ... ,n, and proposed a dynamic programming algorithm

for it. The dynamic programming algorithm iteratively calculates two costs for each vertex

Vi E V(G): the protected cost Pc(Vi), and the unprotected cost Uc(Vi)' The protected cost

Pc(Vi) of Vi is the minimum cost to locate a facility at vertex Vi and cover vertices Vl through

Vi, with no facilities placed at vertices Vi+l, ... , Vn. The unprotected cost Uc(Vi) of Vi, is the

minimum cost to locate a facility at vertex Vi and cover vertices Vl through Vi-l, with no

facilities placed at vertices Vi+l, ... , Vn .

Later, Horne and Smith [45] generalized the algorithm of Lunday et al. [50] to solve

the CCP on path networks with non-uniform coverage radii. We will present the recursive

functions introduced in [45], which are used to compute the protected costs and unprotected

costs. Before that, more notations are needed.

The upper reach g(Vi) and the lower reach h(Vi) of vertex vi(l :s; i :s; n) are defined as

follows.

g(Vi) = maxi::;j::;n {j: d(vi,vj) :s; r(vi)};

h(Vi) = minl::;j::;i {j : d(vi, Vj) :s; r(vi)}.

In other words, the upper reach g(Vi) (resp. lower reach h(Vi)) indicates the largest (resp.

smallest) index of the vertex that is within the coverage radius of vertex Vi. The reach

functions g(Vi) and h(Vi), i = 1, ... ,n, are easily computable in O(n log n) time.

To compute the protected cost Pc (Vi), 1 :s; i :s; n, all vertices between Vl and Vi-l that

can cover Vi need to be identified. The indices of these vertices are identified in two separate

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 128

sets GAl (Vi), GA2 (Vi) (see Figure 7.1(a)(b) for reference), defined as follows. Additionally,

a dummy vertex Va is defined with r(va) = g(va) = Pc(va) = 0 to initialize the algorithm.

GAI(Vi) = {j : 1 :::: j < h(Vi) :::: i :::: g(Vj)}

GBI(Vi) = {j : h(Vi) :::: j < i :::: g(Vj)}

r(Vi)

.~-

r(Vj)

(a) j E GAI(Vi)

.......... ~--
Vj Vi

.~-

The difference between GAl (Vi) and GB I(Vi) is that for a vertex Vj, 1 :::: j < i, that can

cover Vi. If Vi can cover Vj, then j E GBI(Vi) and j E GAI(Vi), otherwise. The subsets

GA2 (Vi),GB2 (vd, defined as follows, are identified for each vertex Vi, 1:::: i:::: n, in order to

calculate the unprotected costs.

GA2 (Vi) = {j : 0 :::: j < h(Vi) :::: g(Vj) + 1 :::: i}

GB2 (Vi) = {j : h(Vi) :::: j and g(Vj) < i}

Note that the union of GA2(Vi) and GB2 (Vi) contain the indices of all vertices Vj,j < i, that

do not cover Vi, but that can cover demand vertices Vj+l through Vi-l in conjunction with

Vi. For a vertex Vj,j < i :::: n, with g(Vj) < i and with h(Vi) :::: g(Vj) + 1, if Vi cannot cover

Vj, then j E GA2 (Vi) (see Figure 7.1(c)) and j E GB2 (Vi), otherwise (see Figure 7.1(d)).

The recursive functions to compute the protected cost Pc(Vi) and unprotected cost uc(vd

for vertex Vi, i = 1 ... , n, are presented as follows [45].

(7.1-1)

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 129

(7.1-2)

The optimal solution is determined by the minimum protected cost for all vertices having

an upper reach equal to n.

However, the above recursive functions [45] cannot always produce an optimal solution.

A counter-example is shown in Figure 7.2. Numbers below edges indicate the length of

(r(v;),c(v;)) = (2,3) (4,3) (1,1) (2,2) (2,8)

~~QI---2--Q

Vertex VI V2 V3 V4 V5

GA l (-) 0 0 0 {2} 0

GB2 (·) 0 {I} {2} 0 {4}

GA2 (-) {O} {O} {I} 0 {2}

GB2 (·) 0 0 0 0 0

Pc(-) 00 6 4 8 16

uc(-) 3 3 4 8 14

Figure 7.2: A counter-example for the recursive functions in [45]

edges. According to Equations 7.1-1 and 7.1-2, {VI,V2,V4} is the computed solution, and

the cost is 8. But the optimal solution is {V2, V3, V4}, and the optimal cost is 6. In this

counter-example, the protected cost Pc(V4) is not computed correctly. It is easy to see that

GA I(V4) = {2} and GBI(V4) = 0. According to Equation 7.1-1, the protected cost Pc(V2) is

used to compute Pc(V4). But, the correct computation of Pc(V4) uses the unprotected cost

U c(V2) since V2 can be covered by V3, and the open-facility cost C(V3) of V3 is small.

From the above counter-example, we can see that to compute the protected cost Pc(Vi), 1 ::;

i ::; n, it is possible to use the unprotected cost uc(Vj),j E GAl (Vi), if Vj is covered by Vk,

located between Vj and Vi, and has a small open-facility cost. We redefine the four subsets

and two recursion functions in the following.

Definitions of GA~ (Vi), GBi (Vi), GA;(Vi), and GB~(Vi)'1 ::; i ::; n: In a solution e :
{ Vii' ... , Vik} (i l < ... < ik) of the CCP on path G, a facility Vij' 1 ::; j ::; k is called a

critical facility in e if h(Vi) < h(Vi,), j' = j + 1, ... , k, and otherwise called a non-critical
J J

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 130

facility. Clearly, the purpose to open a non-critical facility Vi] is to cover some critical facility

Vi, in 8. All the vertices (except Vi,) that can be covered by the non-critical facility Vi
]]]

are covered by Vi,.
]

For each i = 1, ... ,n, let

and

W~(Vi) = min {c(Vj) : h(vj) ::; i}.
'<J'5cn

That is, W~(Vi) (resp. W~(Vi)) is the smallest open-facility cost of vertices which can cover

Vi and whose indices are smaller (resp. larger) than i. It is possible that one of w~ (Vi) and

W~(Vi) does not exist, in which case we assume its value to be 00. Let

that is, W'(Vi) is the smallest open-facility cost of vertices that can cover Vi.

Observation 7.1.1 In an optimal solution, the open-facility cost of a non-critical facility

used to coveT' a critical facility Vi is equal to w' (Vi) .

In our algorithm, we will pre-compute the value of w'(Vi) for all i = 1, ... ,n, and hence

the focus is to locate critical facilities in an optimal solution.

The four subsets, GA~ (Vi), GB~ (Vi), GA~(Vi), GB~(Vi) for each vertex Vi, 1 ::; i ::; n, are

defined as follows.

GA~(Vi) = GAl (Vi)

GB~(Vi) = {j : h(Vj) < h(Vi) ::; j < i ::; g(Vj)} (Figure 7.3(a))

GA~(Vi) = {j : 0::; j < h(Vi) ::; g(Vj) + I} (Figure 7.3(b)(c))

GB~(Vi) = {j : h(vj) < h(Vi) ::; j < i} (Figure 7.3(d))

Similar to GAl (Vi), GB I (Vi), GA2(Vi), and GB2(Vi), we identify subsets GA~ (Vi), GB~ (Vi)

to compute the protected cost of Vi, and subsets GA~(Vi),GB&(Vi) to compute the unpro­

tected cost of Vi.

From the definitions of GA~(Vi),GB~(Vi),GA~(Vi),and GB&(Vi), 1 ::; i ::; n, we can see

that for any index j in GA~ (Vi) UGB~ (Vi) UGA~(Vi) UGB&(Vi), h(Vj) < h(Vi)' Therefore, if Vi

is a critical facility in an optimal solution, then Vj, j E GA~ (vi)UGB~ (vi)UGA~(Vi)UG B&(Vi),

is a candidate for a critical facility lying left of Vi in that optimal solution.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 131

~A·······~·······~··

·~Vj~

r(Vj) r(Vj)

(a) j E GB~ (Vi)

..~.

(7.1-4)

(7.1-3)

Recursive functions P~(-) and u~(-): Equations 7.1-3 and 7.1-4 are recursive functions

used to compute the new protected costs p~(Vi) and unprotected costs U~(Vi), 1:::; i :::; n.

I _. {m~njEGA~(Vi){p~(Vj),U~(Vj)+w~(Vj)}+C(Vi), }.
Pc(Vi) - mm mmjEGB~(Vi){uc(Vj)} + C(Vi), ,

U~(Vi) + w~ (Vi)

I (.) _ . {minjEGA;(Vi) {p~(Vj), U~(Vj) + W~(Vj)}, } + (.)
U c V t - mIn C V t .

minjEGB~(vi) {u~(Vj)}

In the computation of the protected cost P~(Vi)' 1 :::; i :::; n, current critical facility

Vi is covered either by a non-critical facility, in which case the protected cost p~(Vi) =

U~(Vi) + W~(Vi), or by a critical facility in GA~(Vi) U GB~(Vi)' The vertex in GA~(Vi) must

be covered either by a smaller indexed facility or by a non-critical facility lying between

Vj+I and Vi-I. Because the vertices in GB~(Vi) are covered by Vi, the unprotected costs for

these vertices are examined when computing p~(Vi)'

In the computation of the unprotected cost U~(Vi), 1 :::; i :::; n, since a vertex Vj in GA~(i)

is not covered by Vi, its protected cost is used if Vj is covered by a smaller indexed facility

or its unprotected cost is used if Vj is covered by a non-critical facility lying between Vj+l

and Vi-I. On the other hand, vertices in GB~ (Vi) are covered by Vi, and hence we use their

unprotected costs when computing U~(Vi).

The optimal cost is still determined by the minimum protected cost for all vertices having

an upper reach equal to n, that is, minI~i~n:g(vi)=n p~(Vi)'

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 132

We next present another pair of recursions p~ (.) and u~ ('), which can be used to compute

an optimal solution and are simpler than Equations 7.1-3 and 7.1-4.

Recursive functions p~ (.) and u~ (.): We relax the constraint mentioned in the definition

of protected costs, that is, to compute the protected cost p~(Vi) of Vi, it is allowed that Vi

may be covered by Vj(j > i) with open-facility cost W'(Vi). Then, we redefine the four

subsets and two recursion functions as follows.

GA~(Vi) = GA1(Vi) = {j : 1 :::; j < h(Vi) :::; i :::; g(Vj)}

GB~(Vi) = GB1(Vi) = {j : h(Vi) :::; j < i :::; g(Vj)}

GA~(Vi) = GA;(Vi) = {j : 0:::; j < h(Vi) :::; g(Vj) + I}

GB~(Vi) = {j : h(Vi) :::; j < i}

(7.1-5)

(7.1-6)"(.) _ . {minjEGA~(Vi) {p~(Vj)}, } + (.)
U c v, - mln c v, .

minjEGB~(vil {u~(Vj)}

It is not hard to verify that the pair of recursions will generate a solution that can

cover all vertices if the optimal cost is not infinite. We next show that p~(Vi) :::; p~ (Vi) and

U~(Vi) :::; U~(Vi), 1 :::; i :::; n (Lemma 7.1.2). Therefore, minl:Si:Sn;g(vi)=nP~(Vi) is the optimal

cost.

Proof We prove the lemma by induction. When i = 1, the lemma is trivially true since

p~(Vi) = OO,U~(Vi) = C(Vl) and p~(Vi) = c(vd + W'(Vl),U~(Vi) = c(vd. Assume that the

lemma is true for any i, 1 :::; i :::; j < n. Next, we prove that the lemma is true for i = j + 1.

For any k (k :::; j), P~(Vk) :::; U~(Vk)+W'(Vk), U~(Vk) :::; U~(Vk), and p~(Vk) :::; P~(Vk)' Then,

p~(Vk) :::; min {p~(Vk), u~(Vk) + w'(Vk)}' Since GA~(vj+d = GA;(Vj+l) , minkEGA~(VHd p~(Vk)

:::; minkEGA~(VHd {P~(Vk),U~(Vk) +W'(Vk)}:::; minkEGA~(VHd {P~(Vk),U~(Vk) +W;(Vk)}. Note

that GB~(Vj+l) <:;:: GB~(vj+d and U~(Vk) :::; U~(Vk), k :::; j. Hence, minkEGB~'(vJ+d U~(Vk) :::;

minkEGB~(vJ+l) U~(Vk)' Therefore, u~(Vj+l) :::; u~(Vj+l)'

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 133

Similarly, we can prove that p~(Vj+I) < p~(Vj+I), which completes the proof of this

lemma. 0

7.1.2 An algorithm to compute p~(Vi)' u~(Vi)' i = 1, ... ,n

In this section, an O(n log n)-time algorithm is presented to compute p~ (Vi) and u~ (Vi), i =
1, ... ,no

Computing w'(vi),i = 1, ... ,n

We show that the values of W~(Vi), W~(Vi), and w'(vi),i = 1, ... ,n, can be computed in

O(n log n) time, which is sufficient to present our O(n log n)-time solution to compute all

w~ (o)'s. A balanced binary search tree (BST, for short) is constructed and dynamically

maintained during a sweep approach from VI to V n . The data structure is a list of visited

vertices sorted in their remaining coverage radii with respect to the current vertex (the

remaining coverage radius of Vj with respect to Vi (j < i) is r(vj) - d(Vi, Vj)). At each step

of the forward approach, the vertices in the data structure that cannot cover current vertex

Vi are removed. Each node in the BST stores the minimum open-facility cost of vertices

that are descendant of the node. We have the following properties of the balanced BST.

• An update operation, such as deleting a leaf vertex and inserting a leaf vertex, can be

performed in O(logn) time.

• The w~ (0) value of the current vertex is the minimum open-facility cost of vertices in

the current data structure, which is stored in the root of BST.

The algorithm to compute w~ (Vi), i = 1, ... ,n, is described as follows. We denote by ITb the

balanced BST.

1. Initially, IT only contains VI.

2. For each i, i = 2, ... ,n,

(a) remove all vertices that cannot cover Vi from ITb;

(b) let w~ (Vi) be the minimum open-facility cost of vertices in ITb; and

(c) insert Vi into ITb.

Clearly, each vertex in V(G) is inserted into and deleted from the BST at most once.

Therefore, the values of w~ (Vi), i = 1, ... ,n, can be computed in a total of 0 (n log n) time.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 134

Computing p~(Vi) and u~(vi),i = 1, ... ,n

In order to compute p~(Vi) and U~(Vi), we create a dynamic priority search tree data struc­

ture [51] to answer range queries such as GA~(Vi),GB~(Vi),GA~(Vi), and GB~(Vi),i =

1, ... , n. Actually, a balanced binary search tree structure is enough to dynamically main­

tain GB~ (Vi), since there is only one piece of information (i.e., the relative positions on the

path G) in the definition of GB~(Vi)' However, there are two pieces of information, includ­

ing the relative positions on the path and the corresponding g(·)-values, in the definitions

of GA~(Vi),GB~(Vi), and GA~(Vi)' To simplify the description of our algorithm, we use the

dynamic priority search tree to answer range queries GB~ (Vi), i = 1, ... , n.

Note that p~(vd = C(VI) + W'(VI) and U~(VI) = C(VI)'

g(.)-values

GA{(Vi) = {V3}

GB~'(Vi) = {V4,V7}
GA~(Vi) = {Vl,V2,V3}
GB~(Vi) = {V4,V5,V6,V7}

.,
V3 : •

______ _• Vl -;.~. _

'U4 .'. , ... '

V2 : 7.!6·
, ., .

Vs

,
-,-----------,

,
,
,

'"-------',------- Indices of vertices
h(Vi)

Figure 7.4: Two-dimensional diagram, all points lie above or on the dotted line since g(Vj) ~

j,l :; j :; n.

We use a two-dimensional diagram to depict important information about vertices in

V(G) (see Figure 7.4). For each Vi, 1 :; i :; n, the horizontal coordinate of Vi in the

two-dimensional diagram corresponds to indices of vertices, and the vertical coordinate of

Vk corresponds to the g(vi)-value. A priority search tree (PST, for short) data structure

[51] is constructed and dynamically maintained during a sweep approach from VI to Vn .

Each node v in the PST maintains the following two values: JLp(v) = minuEv' p~(u) and

JLu(v) = minuEv' u~(u) where V' is the set of vertices contained in the subtree rooted at

node v in the PST. We have the following properties of the PST.

• Inserting a vertex Uwith the values of p~(u) and u~(u) can be performed in logarithmic

time.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 135

• For any two-sided range query, all vertices within it are contained in logarithmic

subtrees.

The algorithm to compute p~(Vi) and U~(Vi), i = 2, ... , n, is described as follows. We

denote by TIp the dynamic PST.

1. Initially, TIp only contains vI.

2. For each i, i = 2, ... ,n,

(a) find the log ITIp] subtrees that contain all vertices in GA~(Vi),GBr(Vi), GA~(Vi),

and GB~(Vi) (they are two-sided range queries in the two-dimensional diagram),

respectively;

(b) let U~(1)(Vi) be the minimum value of /-lp(') stored at the roots of O(log]TIpl) sub­

trees for GA~ (Vi) and u~(2) (Vi) be the minimum value of /-lu (-) stored at the roots of

O(log ITIpl) subtrees for GB~(Vi)' Then, u~(Vi) = min {«I) (Vi), U~(2) (Vi)} +c(Vi);

(c) compute p~(Vi) from U~(Vi) and the values stored at the roots of O(log ITIpl)

subtrees for GA~(Vi) and GB~'(Vi); and

(d) insert Vi with the values of p~(Vi) and U~(Vi) into TIp.

Clearly, each minimal query such as U~(Vi) or p~(Vi), can be answered in O(logn) time.

Therefore, O(n log n) time is required to compute the values of u~(Vi), p~(Vi), i = 1, ... ,n.

Computing an optimal solution

We already know that the optimal cost is equal to minl~i~n:g(Vi)=np~(Vi)' Thus, the optimal

cost is computable in O(nlogn) time. To locate facilities opened in an optimal solution, we

only need to remember the best previous critical facility and non-critical facility (if needed)

for the current critical facility Vi during the step to compute U~(Vi),p~(Vi),i = 2, ... ,n.

Obviously, it takes extra O(n) time and O(n) space to obtain such information for each

Vi, 2 ~ i ~ n.

Therefore, the constrained covering problem on a path network can be solved in O(n log n)

time.

Theorem 7.1.3 The constrained covering problem on a path network can be solved in

O(nlogn) time.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 136

7.2 Extended-star networks

An extended-star is a network in which three or more path networks are connected by a

single root vertex, which we label vn . In this section, two algorithms for the CCP on an

extended star network G are presented. One runs in O(nT log n) time (T is the number

branches in G) and the other runs in O(n1.5 logn) time.

Let Xl, ... X T be the branches of the root vertex Vn where each branch Xi contains the set

of vertices on the path from a leaf vertex Vl(i) to vertex Vni(i) (ni is the number of vertices

on the branch Xi). Clearly, Vni(i) is adjacent to Vn , i = 1, ... ,T.

For each vertex v E V(G), define the external coverage of vas ext(v) = r(v) - d(v,vn).

This measure represents the amount of coverage that vertex v can provide to branches not

containing v.

The following property, which is described in [45], is easy to obtain.

Observation 7.2.1 In any optimal solution, there exists a vertex v E V(G) such that

d(v,vn) :s r(v) and no facility is located at vertex v' E V(G) with ext(v') > ext(v).

A vertex that satisfies these conditions is referred as the external covering vertex. We have

the following cases regarding the external covering vertex.

• Case 1: Vn is the external covering vertex. In this case, vertices in a branch Xi are

covered either by Vn or by facilities in Xi, 1 :s i :S T .

• Case 2: v -I- Vn is the external covering vertex (clearly, ext(v) ::::: 0). Assume that v is

on a branch Xi, 1 :S i :S T. In this case, vertices in Xi (possibly except v) are covered

by facilities in Xi, and vertices in branch Xj, 1 :S j -I- i :S T are covered either by v or

by facilities in Xj.

Our strategy is to consider each vertex v E V (G) as an external covering vertex and then

compute the optimal cost under this constraint, denoted by T/*(v).

Note that some value of T/* (v) (v E V (G)) is undefined if ext(v) < 0, in which case, we

let the value T/*(v) be 00. It is trivial that the optimal cost is minvEv(G) T/*(v).

7.2.1 Computing 1]*(v), v E V(G)

In this section, we first introduce a pseudo vertex for each branch and show that the pro­

tected and unprotected costs of the pseudo vertices can be computed efficiently. Then, we

present two methods to efficiently compute costs T/* (v), v E V (G).

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 137

Pseudo vertices We observe that the cost of each branch is only affected by the external

covering vertex v if the branch does not contain v, and hence a pseudo vertex v + (') isn i ~

introduced for each branch Xi to simulate an external covering vertex located outside Xi, 1 :::::

i ::::: T. The pseudo vertex vni(i) is appended after vertex Vni(i) (Recall that vni(i) is the vertex

of the branch Xi that is adjacent to v n).

For each i, i = 1, ... , T, the open-facility cost c(v +(')) of v +(') is set to be zero, and then i ~ n i 'l

coverage radius of vni(i) and the distance d(Vni(i)' vni(i)) are not fixed. In the following, we

construct a new PST for branch Xi such that, using the PST, the values of u~(v + (')) andn i 'l

p~(v +(')) can be computed in O(logni) time for any given values of the coverage radiusn i 'l

r(vni(i)) of vni(i) and d(Vni(i)' vni(i))'

Computing u~(Vni(i)) and P~(Vni(i))'1 ::::: i ::::: T For all j,l ::::: j ::::: ni, we can

compute the P~(-) and u~(-) values of vertices Vi(i),"" Vni(i) in O(ni log ni) time, using the

dynamic PST described in Section 7.1. However, we cannot directly use the dynamic PST

to compute u~(vni(i)) and p~(vni(i)) since the upper reach values of vertices (Vi(i)' ... ,Vni(i))

on Xi might be incorrect without knowing the position of Vni (i)' In the following, we show

a simple method to fix the problem.

For a vertex Vj(i)(l ::::: j ::::: nt = ni + 1), we define its upper cover g~(Vj(i)) and lower

cover h~(Vj(i)) as follows.

g~(Vj(i)) = d(Vi(i)' Vj(i)) + r(Vj(i));

h~(Vj(i)) = max {a, d(Vi(i)' Vj(i)) - r(Vj(i))}'

Note the tight relation between the upper (resp. lower) cover and the upper (resp. lower)

reach of a vertex. Also, the g~(-) and h~(-) values of a vertex are not affected by the position

of vni(i)' We redefine GA~(vj(i))' GB~(Vj(i))'GA~(vj(i))' and GB~(Vj(i)) by upper cover and

lower cover as follows, 1 ::::: j ::::: ni- Let bj = h(Vj(i)) - 1 where h(Vj(i)) is the lower reach of

Vj(i) on the path Xi.

GA~(Vj(i)) = {k: d(Vi(i),Vk(i)) < h~(Vj(i)) ::::: d(Vi(i),Vj(i)) ::::: g~(Vk(i))}

GB~(Vj(i)) = {k: h~(Vj(i)) ::::: d(Vi(i),Vk(i)) < d(Vi(i),Vj(i)) ::::: g~(Vk(i))}

GA~(Vj(i)) = {k : d(Vi(i)' Vk(i)) ::::: d(Vi(i)' Vbj(i)) ::::: g~(Vk(i))}

GB~(Vj(i)) = {k: h~(Vj(i))::::: d(Vi(i),Vk(i)) < d(Vi(i),Vj(i))}

That is, we can determine whether a vertex Vk(i) is in GA~(Vj(i))'GB~(Vj(i))'GA~(Vj(i))'

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 138

or GB~(vj(i)) (k < j), if we know information about Vk(i), such as

1. the position of vk(i) (i.e., d(Vi(i), Vk(i))) and

2. the upper cover 9~(Vk(i)) of Vk(i),

and information about Vj(i), such as

1. the position of Vj(i) (i.e., d(Vi(i),Vj(i)))'

2. the lower cover h~(Vj(i)) of Vj(i) , and

3. the lower reach h(Vj(i)) of Vj(i)'

Recall that in Section 7.1, to compute the p~(-) and u~(-) values of vertices on a path, a pri­

ority search tree structure is constructed and dynamically maintained during the sweep ap­

proach from one end of the path to the other. Each vertex is embedded in a two-dimensional

diagram where the horizontal coordinates correspond to indices of vertices and the vertical

coordinates correspond to the g(-)-values.

Here we put the vertices, Vi(i),'." Vni(i) , in a two-dimensional diagram where the hor­

izontal coordinates correspond to locations of vertices instead of indices and the vertical

coordinates correspond to the g~(-)-values instead of the g(.)-values. A new PST data struc­

ture [51] is then constructed over the set of points in the two-dimensional diagram. Similar

to the dynamic PST in Section 7.1, each node w in the new PST maintains two values:

/-Lp(w) = minuEv' p~(u) and /-Lu(w) = minuEv' u~(u) where Viis the set of vertices contained

in the subtree of the new PST rooted at node w.

It is easy to see that for any two-sided range query in the two-dimensional diagram, all

vertices within it are contained in logarithmic subtrees of the new PST.

For the vertex Vn;(i) , we can obtain its position, lower cover, and lower reach from given

values of d(Vni(i)' vn;(i)) and r(vn;(i))' Its position and lower cover can be computed in 0(1)

time and its lower reach can be computed in O(log ni) time [45]. Therefore, using the new

PST structure, we can compute u~ (vn ; (i)) and p~ (Vn ; (i)) in time O(log ni) for any given

values of d(Vni(i),Vn;(i)) and r(vn;(i)).

Lemma 7.2.2 For a branch Xi, 1 ::; i ::; T, after O(nilogni) preprocessing time, we can

compute u~(Vn;(i)) and p~(Vn;(i)) in time O(log ni) for any given values of d(Vn,(i), vn;(i))

and r(vn;(i)).

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 139

An O(nTlogn) approach

To meet the constraint of the CCP, the external covering vertex itself must be covered by

some other facility.

We consider the two cases described above.

Case 1 In this case, Vn is the external covering vertex. Only one branch, say Xi(l ::; i ::; T),

is needed to contribute one facility to cover Vn . The cost of branch Xi is then equal to

P~(Vn;(i)) with r(vn;(i)) = r(vn) and with d(Vn;(i)' vn;(i)) = d(Vn;(i)' vn). The cost of any

other branch Xj(l ::; j -I- i ::; T) is equal to u~(vnj(j)) with r(vnj(j)) = r(vn) and with

d(vnj(j),Vnj(j)) = d(vnj(j),vn). The total cost will be

C(Vn) + p~(vn;(i)) + L u~(vnj(j))
j=1, ... ,7;]#i

C(Vn) + P~(Vn;(i)) - u~(Vn;(i)) + L u~(vnj(j))'
j=1, ... ,7

Therefore, the distinguished branch Xi will be the branch that has the minimum value

of p~(v +(.)) - u~(v +(.)). Since each cost such as p~(vn+(.)) and u~(v +(.))(1 ::; j ::; T) cann i 't n i 't j J n j J

be computed in O(lognj) (Lemma 7.2.2), we can compute 1]*(vn) in O(T log n) time.

Case 2 Assume that the external covering vertex, say Vj(i) , is located in branch Xi, 1 ::; i ::;

T,l ::; j ::; ni, Note that if ext(Vj(i)) < 0 then 1]*(Vj(i)) = 00. We assume that ext(Vj(i)) ? 0

and consider the following three cases.

• Case 2.1: Vj(i) is covered by Vn (if r(vn) < d(Vj(i), vn) then Case 2.1 does not exist);

• Case 2.2: Vj(i) is covered by some facility in Xi;

• Case 2.3: Vj(i) is covered by some facility in Xk(l ::; k -I- i ::; T).

Case 2.1: In this case, the cost of Xi is U~(Vj(i)) and the cost of Xt, 1 ::; t -I- i ::; T,

is u~ (Vni (t)) with r(vni (t)) = r(Vj(i)) and with d(Vn,(t), vni (t)) = d(vn,(t) , Vj(i))' Thus, the

total cost in Case 2.1 is

C(Vn) + U~(Vj(i)) + L u~(vni(t))·
t=1, ... ,7;t#i

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 140

Case 2.2: In this case, the cost of Xi is P~(Vj(i)) and the cost of Xt, 1 ::; t of i ::; T, is

u~(vnt(t)) with r(vnt(t)) = r(Vj(i)) and with d(vnt(t) , Vnt(t)) = d(vnt(t), Vj(i))' The total cost

in Case 2.2 is

P~(Vj(i)) + L u~(vni(t))·
t=l, ... ,T;t,ii

Case 2.3: In this case, the cost of Xi is U~(Vj(i))' Suppose that branch Xk(l ::; k of i ::;

T) contributes a facility to cover Vj(i)' Then, the cost of Xk is P~(Vnt(k)) with r(vnt(k)) =

r(Vj(i)) and with d(Vnk(k),Vnt(k)) = d(Vnk(k),Vj(i))' For each branch Xt, 1 ::; t ::; T and t of
i, k, its cost is u~ (vni (t)) with r(vni(t)) = r(Vj(i)) and with d(vnt(t), vni(t)) = d(Vnt(t), Vj(i))'

The total cost in Case 2.3 is

U~(Vj(i)) + P~(Vnt(k)) + L u~(vni(t))
t=l, ... ,T;t,ii,k

Therefore, the distinguished branch Xk will be the branch (among Xl, ... ,Xi-I, Xi+l, ... ,XT)

that has the minimum value of p~(vnt(k)) - u~(vnt(k))'

From the above discussion, the cost of 7)*(Vj(i)) can be computed in O(Tlogn) since

each protected/unprotected cost can be computed in O(lognj) (Lemma 7.2.2). Therefore,

in O(nTlogn) time, we can compute the values of 7)*(v),v E V(G).

Theorem 7.2.3 The constrained covering problem on an extended-star network can be

solved in O(nT log n) time, where T is the number of branches in the extended-star network.

An O(n1.5 log n) approach

We call the above O(nTlog n) approach the first approach for CCP on an extended-star

network. Note that, in the worst case, T might be O(n). Next, we present another approach

which runs in O(n1.5 logn) time.

We separate the set of branches in G into two classes according to their sizes. If one

branch contains at least vn vertices, we call it a big branch, and the branch is called a

small branch, otherwise. Obviously, the number of big branches in G is no more than

vn. Using the PST constructed for each branch in the first approach, we can compute

the (protected and unprotected) costs of these big branches in O(vnlog n) time for a given

external covering vertex.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 141

In the following, we create a data structure to merge the information contained in all

small branches, which can answer a total cost (of these small branches) query in amortized

o(yin: log n) time, for any given external covering vertex.

We only consider Case 2 in which the external covering vertex vj(i)(l ::; j ::; ni) is located

in branch Xi(l ::; i ::; T).

For each branch Xk(l ::; k -I- i ::; T), we need to compute the values of p~(Vnt(k))' u~(Vnt(k))

with r(Vnt (k)) = r(Vj(i)) and with d(Vnk(k), Vnt (k)) = d(Vnk(k), Vj(i))' In the first approach,

we embed all vertices (Vi (k), ... , Vnk (k)) of a branch xd1 ::; k -I- i ::; T) in a two-dimensional

diagram (denoted by 7t, where the horizontal coordinates correspond to locations of ver­

tices and the vertical coordinates correspond to g~(-)-valuesof vertices) and then construct

a PST to compute p~(vnt(k))'u~(Vnt(k)) in O(lognk) time for any given values of r(vnt(k))

and d(VnkCk) , Vnt(k))'

Here we first show that there are at most nk (nk + 1) possible different pairs of values of

P~(Vnt(k)) and u~(Vnt(k)) as follows.

g~ (-)-values

I

I

1-- - - - - -~2_ - - ..; - -////
I

I
I
I.
I
I

I
I

I
I

I
I

Figure 7.5: The two-dimensional diagram for branch Xk, all points lie above or on the dotted

line since g~(Vt(k)) 2' d(Vi(k), Vt(k))' 1 ::; t ::; nk·

As demonstrated in Figure 7.5, we draw horizontal and vertical lines through nk points in

the two-dimensional diagram 7t. These lines partition 7t into at most nk (nk +1) rectangular

cells and we assume that each cell is only associated with its upper boundary and right

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 142

boundary.

We know that, for given values of r(Vnt(k») and d(Vnk(k)' Vnt(k»)'

• GA~(vnt(k») contains all vertices whose horizontal coordinate is less than h~(vnt(k») =

max {O, d(Vl(k)' Vnt(k») - r(Vnt(k»)} and whose vertical coordinate is;:::: d(Vl(k)' Vnt(k»)'

• GBr(vnt(k») contains all vertices whose horizontal coordinate is at least h~(Vnt(k»)

and whose vertical coordinate is at least d(V1(k) ,Vnt(k»)'

• GA~(Vnt(k») contains all vertices whose horizontal coordinate is less than h~(vnt(k»)

and whose vertical coordinate is at least d(Vl(k)' Vb(k») (where vb+l(k) is covered by

Vnt(k) and Vb(k) cannot be covered by Vnt(k»)' and

• GB~(Vnt(k») contains all vertices whose horizontal coordinate is at least h~(vnt(k»)'

We can see that GA~(vnt(k»)'GBr(vnt(k»)' GA~(vnt(k»)' and GB~(vnt(k»)stay unchanged

when (h~(vnt(k»),d(Vl(k),Vnt(k»))lies in a cell since b is fixed for any point (h~(vnt(k»)'

d(v1(k) ,Vnt(k»)) in a cell. Therefore, for any given values of r(vnt(k») and d(Vnk(k)' Vnt(k»)

such that (h~(Vnt(k»),d(Vl(k),Vnt(k»))lies in a cell, their p~(vnt(k»)-values(resp. u~(vnt(k»)­

values) are equal, which implies that there are at most ndnk + 1) possible different pairs of

values of P~(Vnt(k»)'u~(Vnt(k»)'

In our approach, we pre-compute all these possible values of p~(Vnt(k»)' u~(Vnt(k») for

each small branch Xb 1 ::::: k ::::: T. Each pair of p~(vnt(k»),u~(vnt(k») values represents a

range of values of h~(Vnt(k») and a range of values of d(Vnk(k)' Vnt(k»)'

Let v be the external covering vertex. Recall that the pseudo vertex Vnt(k) is introduced

for branch Xk to simulate an external covering vertex outside Xk. To merge the information

contained in all small branches, we use distance d(Vnk(k)' Vnt(k») - d(Vnk(k)' vn) instead of

d(Vnk(k)' Vnt(k») for each small branch Xb 1 ::::: k ::::: T since when v is given, d(Vnk(k), Vnt(k»)­

d(Vnk(k)'Vn) = d(v,vn) for any k,l::::: k::::: T and Xk does not contain v. Furthermore,

if Xk does not contain v then h~(vnt(k») = max {O,d(Vl(k),Vnk (k») - ext(v)}. Note that

d(Vl(k)' Vnk(k») is known for each branch Xk.

Hence, we are able to say that for each small branch Xk, 1 ::::: k ::::: T (v is not on Xk),

each pair of p~(v), u~(v) values represents a range of values of ext(v) and a range of values

of d(v,vn), and each range of values of ext(v) corresponds to at most nk + 1 pairs of

p~(v), u~(v) values. It is easy to see that it costs o(nklog nk) time to compute all these

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 143

nk (nk + 1) possible different pairs of p~(v) & u~ (v) values and their corresponding ranges

of ext(v) & d(v, vn), 1 <::: k <::: T.

The following lemma (Lemma 7.2.4) shows that we are able to compute such values for

all small branches in 0 (n1.5 log n) time.

Lemma 7.2.4 Given a set of positive numbers ~ = {aI, ... ,aq } where each number is no

more than vn and "f:,{=l ai = n, let W(~) = "f:,{=l a;. Then W(~) <::: n1.5.

Proof Obviously, q ;:::: vn. We prove the lemma by induction. When q = vn, the lemma

is trivially true. Assume that the lemma is true for any q, vn <::: q <::: k. Next, we prove that

the lemma is true for q = k + 1.

If there are two numbers in ~, say ai and aj (i < j), such that ai + aj <::: vn then

the new set of positive numbers ~' = {al, ... , ai-I, ai+l, ... , aj-l, aj+l, ... aq , ai + aj} has

a larger value of W(~I)(> W(~)). Without loss of any generality, we assume that for any

two numbers ai and aj in ~, their sum is larger than vn.
If there is a number in~, say ai, equal to vn, then W(~) = "f:,{=l a; <::: (n-vn)1.5+a; <

n1.5 . Hence, we assume that any number in ~ is smaller than vn.
Without loss of any generality, assume that al is no less than any other number in ~.

Then,

W(~)

q

ai + [(vn - al) + (al + a2 - vn)]2 + La;
i=3

q

ai + (vn - aI)2 + 2(vn - aI)(al + a2 - vn) + (al + a2 - vn)2 + La;
i=3

< ai + 2(vn - al)(al + a2 - vn) + (vn - al)2 + (n - vn)1.5 (by assumption)

< (al + vn - aI)2 + (n - vn)1.5 (since a2 <::: al < vn)
< n1.5.

It completes the proof of Lemma 7.2.4. o

We denote by f l the set of indices of big branches and by f 2 the set of indices of small

branches.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 144

In our algorithm, the optimal costs TJ* (v) of external covering vertex candidates v (v -I- Vn

and ext(v) ;:::. 0) are queried in a non-decreasing order oftheir external coverage ext(v). Let v

be the current external covering vertex and Xi be the branch containing it. The computation

of TJ* (v) is described as follows.

Step 1: Get the values of /11 = p~(v) and /12 = u~ (v) on branch Xi (both of them are already

computed), and compute the value of /13 = u~(Vn;(i)) with ext(vn;(i)) = ext(v) and

with d(v +(')'vn) = d(v,vn) (it can be computed in logni time).n i 1,

Step 2: For all big branches Xt, t E f 1 \ {i}, compute the values of u~(vnt(t)) and p~(vnt(t))'

using the PST described in the first approach. Let /14 = 2:tEf\\{i} u~(vnt(t)). Find

the branch among them with minimum value /15 of p~(vnt(t)) - u~(vnt(t))·

Step 3: Do the following for small branches:

• If v is the first external covering vertex visited, a segment tree structure is con­

structed to maintain the possible values of u~ (.) and p~ (.) from all small branches

Xk,l ::::: k ::::: T with ext(v), which is described later. Search the structure with

the value of d(v, vn) to obtain the value of /16 = 2:kE12 u~ (vnt (k)) and the branch

with minimum value /17 of p~(vnt(k)) - u~(Vnt(k))'

• Otherwise, update the segment tree structure such that for each pair of u~ (.)

and p~ (.) values, the range of external coverage associated with the pair contains

ext(v). Search the structure with the value of d(v,vn) to obtain the value of

/16 = 2:kE12 u~(Vnt(k)) and the branch with minimum value /17 of P~(Vnt(k)) ­

u~(vnt(k))'

Step 4: TJ* (v) is the minimum value of the following three values:

• The value of TJ* (v) in Case 2.1 is c(vn) + /12 + /14 + /16 - /13 if Xi is a small branch,

and c(vn) + /12 + /14 + /16, otherwise.

• The value of TJ* (v) in Case 2.2 is /11 + /14 + /16 - /13 if Xi is a small branch, and

/11 + /14 + /16, otherwise.

• The value of TJ*(v) in Case 2.3 is /12 + min {/15, /17} + /14 + /16 - /13 if Xi is a small

branch, and /12 + min {/15, /17} + /14 + /16, otherwise.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 145

A segment tree structure for small branches For a given value of ext(v), there are

at most nk + 1 possible pairs of values of u~ (.) and p~ (.) from a small branch Xk, 1 ::; k ::; T,

and therefore at most n pairs in total. Each pair of u~(·) and p~(-) values is associated with

an interval (a range of d(·,vn)) and two pairs from the same branch are associated with

disjoint intervals (note that each pair is associated with a range of external coverage and

distance to Vn of an external covering vertex). We create a segment tree [10] to maintain

the set of such pairs for current v.

We define a set of coordinates by the endpoints of the intervals. Any two adjacent

coordinates build an elementary interval. Every leaf corresponds to an elementary interval.

Inner nodes correspond to the union of the subtree intervals of the node. Each node u

contains a list that contain all pairs of u~ (.) and p~ (.) values, such that the interval associated

with each pair contains the interval of node u but not the interval of the parent node of u.

At each node, we maintain the sum of u~ (-) values and the minimum value of p~ (-) - u~ (.).

Using this segment tree, we can answer a query in step 3 in O(logn) time, and insert or

delete a pair of u~ (-) and p~ (-) values in O(log n) time.

When the value of ext(v) is moving forward, the set of pairs of u~ (.) and p~ (.) values

from some branch (say Xk) might change, in which case, we need to delete all old nk + 1

pairs and insert new nk + 1 pairs from Xk into the structure. Since each pair is inserted

and deleted at most once, the total number of inserting and deleting operations is O(n1.5)

(Lemma 7.2.4).

Therefore, it costs O(n1.5 Iogn) time to complete step 3 for all possible external covering

vertices.

Since step 2 can be done in time 0 (jn log n) for each external covering vertex, we have

the following theorem.

Theorem 7.2.5 The constrained covering problem on an extended-star network can be

solved in O(n1.5 Iogn) time.

7.3 Tree networks

Our algorithm for the CCP on a tree network T = (V(T),E(T)) is based on the dynamic

programming technique, which is similar to the method of Horne and Smith [44]. The main

difference is in the definition of a coverage matrix (refer to [44] for their definition of a

coverage matrix).

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 146

A vertex is arbitrarily chosen to be the root vertex of the tree, denoted by rT. Let Tv

denote the subtree rooted at v and V(Tv) be the vertex set of Tv. For a vertex u in V(Tv),

we define its external coverage with respect to v to be r(u) ~ d(u, v), denoted by extv(u).

For a vertex u' lying outside Tv (u' E V(T) \ V(Tv)), we define its internal coverage with

respect to v to be r(u') - d(u', v), denoted by intv(u').

In a solution to the CCP on T, we call a facility u E V(Tv) an external covering vertex

with respect to v if no facility is located at a vertex u' E V (Tv) with extv(u') > extv(u).

Similarly, a vertex u, which satisfies that u E V(T) \ V(Tv) and that no facility is located

at a vertex u' E V(T) \ V(Tv) with intv(u') > intv(u), is called an internal covering vertex

with respect to v.

Coverage matrix A coverage matrix M (v) is constructed for a rooted subtree Tv, v E

V(T).

The rows of M(v) represent external coverage provided by possible external covering

vertices in Tv. Only one distinguished row is used to represent the case where the external

coverage is negative, referred to as negative row and labeled as '-'. Let EC(v) be the set

of external coverage in M(v), i.e., EC(v) = {extv(u): u E V(Tv),extv(u)::::: O}. Note that

each external coverage is associated with an external covering vertex with respect to v.

The columns represent internal coverage provided by internal covering vertices in V (T) \

V(Tv). Also, one column is used to represent the case where internal coverage are negative,

referred to as negative column and labeled as '-'. Let IC(v) be the set of internal coverage

in M(v), i.e., IC(v) = {intv(u) : u E V(T) \ V(Tv),intv(u) ::::: O}. Similar to EC(v), each

element in I C (v) is associated with an internal covering vertex with respect to v.

Rows (resp. columns) of a coverage matrix are sorted in a non-decreasing order of

external (resp. internal) coverages. Element M(v)[x, y] is the optimal cost to cover vertices

in Tv, using only facilities in Tv, given that the external coverage of the external covering

vertex with respect to v is x and the internal coverage of the internal covering vertex with

respect to v is y. M(v)[-, -] is undefined, since every vertex should be covered by some

facility in a solution.

Observation 7.3.1 (44) The optimal solution for the CCP on T is determined by the min­

imum cost of the negative column in the coverage matrix M (rT).

Additionally, we add a balanced binary tree structure over each row (resp. each column)

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 147

to find the minimum value of a sub-row or a sub-column efficiently.

7.3.1 An algorithm to compute coverage matrices M(v),v E V(T)

In this section, a dynamic programming algorithm is presented to compute the coverage

matrices in a depth-first order.

First, it is easy to see that the sets EC(v) and IC(v), v E V(T), can be computed and

sorted in O(n2 logn) time.

Let v be the current vertex and VI, ... , vk be the immediate children of v. We assume

that M(vI), ... , and M(Vk) are known.

Computing M (v) [-, .] We first examine the case where the external coverage provided by

an external covering vertex is negative, that is, the computation of elements in the negative

row of M (v). The following facts are trivial in this case:

• v cannot be a facility (otherwise, the external coverage of Tv cannot be negative),

• v is covered by some facility located at a vertex in V(T) \ V(Tv) since v can not cover

itself, and

• vertices in Tv; are not be covered by facilities located in TVj for any i, j with 1 ::::: i, j ::::: k

and i 1= j.

Therefore, for any y E I C (v),

k

M(v)[-,y] = L min M(Vi)[X,y - d(V,Vi)]'
i=1 xEEC(vil;x<d(v.vil

Note that M(Vi)[X, y - d(v, Vi)] = M(Vi)[X, -] if Y < d(v, Vi), and otherwise y - d(v, Vi) E

IC(vi),l ::::: i ::::: k. Using the binary search trees built for each column of coverage matrices,

it costs O(k logn) time to compute the value M(v)[-, y] for any y E IC(v). Thus, the values

of elements in the negative row of M (v) can be computed in O(nk log n) time.

Computing M(v)[r(v),·] In the case when the external covering vertex of Tv is v itself,

facilities in a subtree Tv; do not need to provide any covering service to vertices in Tvj , j 1= i.

Furthermore, if the internal coverage is negative (i.e., M(v)[r(v), -]), we need one subtree

Tv, to contribute one facility to cover v.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 148

M(v)[r(v), -]: We compute two values for each subtree Tvi , i = 1, ... , k. One value for

Tvi , denoted by cosh (TvJ, is the optimal cost to cover vertices in Tvi' using only facilities

in Tvi , given that the external coverage is no more than r(v) +d(V,Vi) (to make sure that v

is the external covering vertex of Tv) and the internal coverage is r(v) - d(v, Vi)' The other

value, denoted by cost2(TvJ, is the optimal cost to cover vertices in Tvi , using only facilities

in Tvi , given that the external coverage is in [d(v,vi),r(v) + d(V,Vi)] (to cover v) and the

internal coverage is r(v) - d(v, Vi)' Obviously, cost2(TvJ ~ costl (TvJ, i = 1, ... ,k.

If there is no need for a subtree TVi to provide one facility to cover v, then the cost of

TVi is cosh (Tvi)' Otherwise, its cost is cost2(TvJ. Since only one facility is needed to cover

v, the subtree with the smallest value of cost2(TvJ - costl(TvJ will contribute one facility

to cover v. Let TV1 be such a subtree, without loss of any generality. Then,

M(v)[r(v), -] = c(v) + cost2(Tv1) + L costl(Tvj).
2ScjSck

M(v)[r(v),yJ,y E IC(v): When the internal coverage y is non-negative, let v(y) be the

corresponding internal covering vertex. Now, v is already covered by v(y). We only need to

compute one value, denoted by cost~ (TvJ, for each subtree Tvi , i = 1, ... ,k, which is similar

to costl (TvJ. The only difference is that the internal coverage is max {r(v), y} - d(v, Vi) for

Tvi , instead of r(v) - d(V,Vi)' M(v)[r(v),y] (y E IC(v)) is computed as follows.

k

M(v)[r(v), y] = c(v) +L cost~ (Tvi)·
i=l

Since costl(TvJ,cOSt2(TvJ, and cost~(TvJ can be computed in O(logn) time for each

i,l :s: i :s: k, each element in the row r(v) of matrix M (v) is computable in O(k log n) time.

Computing M(v)[x,·J, x E EC(v) and v is not the corresponding external covering

vertex Let v(x) be the corresponding external covering vertex of external coverage x.

Without loss of any generality, assume that v(x) lies in subtree Tv1 .

To compute M(v)[x, -J, we consider three subcases:

• v(x) is covered by v (i.e., r(v) ~ d(v,v(x)) and r(v) :s: x). In this case,

M(v)[x, -] = c(v) + M(Vl)[X + d(v, VI), r(v) - d(v, VI)]
k

+ L { min M(Vi)[X', X - d(v, Vi)]};
i=2 x'EEC(v;);x'Scx+d(v,Vi)

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 149

• v(x) is covered by a facility in Tvl ' In this case, all vertices in TVl are covered by

facilities in Tvl ' Therefore,

M(v)[x, -] = M(VI)[X + d(v, VI),-]
k

+ L{ min M(Vi)[X',x-d(v,Vi)]};
i=2 x'EEC(Vi);X'::;x+d(v,Vi)

and

• v(x) is covered by a facility in Tvj,j of 1. In this case, all vertices in TVl \ {v(x)} are

covered by facilities in Tvl .

M(v)[x, -] = M(VI)[X + d(v, VI), d(v(x), vd]

+ min M(vj)[x',x - d(v,vj)]
x' EEC(vj);d(v(x),v])::;x'::;x+d(v,v])

min M(vj)[x', x - d(v, Vj)]
x'EEC(vj);x'::;x+d(v,vj)

k

+ L { min M(Vi)[X',X - d(V,Vi)]}'
i=2 x'EEC(Vi);X'::;x+d(v,Vi)

The distinguished subtree TVj is the subtree that has the minimum value of

min M(vj)[x',x - d(v,vj)]
x'EEC(vj);d(v(x),Vj):Sx' :Sx+d(v,v])

min M(vj)[x', x - d(v, Vj)].
x'EEC(vj);x'::;x+d(v,vj)

It is not hard to see that M(v)[x, -] can be computed in O(klogn) time.

The method to compute values of M(v)[x, y], y E IC(v) is very similar to the computa­

tion of M(v)[x, -]. Its details are omitted here.

In summary, the value of each element in the coverage matrix M(v) can be computed

in O(k log n) time, where k is the number of children of v. Thus, the total cost to compute

an optimal solution is

L O(n2kv logn) = O(n3 logn),
vEV(T)

where kv is the number of children of V in the rooted tree T.

Theorem 7.3.2 The constrained covering problem on a tree network can be solved in O(n3)

space and O(n 3 log n) time.

CHAPTER 7. CONSTRAINED COVERING PROBLEMS IN TREE NETWORKS 150

7.4 Summary

In this chapter we have studied the constrained covering problems (CCPs) in a path network,

an extended-star network, and a tree network. For the first time, sub-quadratic algorithms

are proposed to solve the CCP on a path network and an extended star network. For the

CCP on a tree network, an O(n 3 log n) algorithm is presented which improves the previous

result of O(n4) by Horne and Smith [44]. The main data structures used in our algorithms

are binary search tree structures, segment search tree structures [10], and priority search

tree structures [51].

Possible future studies on this problem include the design of more efficient algorithms

for the CCP on a tree network, and the examination of the CCP on various other graph

topologies such as cactus networks, partial k-trees, etc. Another direction might be the

design of polynomial-time approximation algorithms for the CCP on general networks, since

the CCP on a general network is strongly NP-hard [45].

Chapter 8

Conclusion

In this thesis, we consider the algorithmic issues for the center and covering location opti­

mization problems where the setting is a network. The demand set consists of all points of

the network that require services and the supply set consists of all candidate locations of

facilities in the underlying network. The center location problems aim to establish an opti­

mal placement of facilities in the supply set in order to minimize the maximum (weighted)

distance from a demand point to its closest facility. The covering location problems seek

to establish the minimum number of facilities such that the maximum (weighted) distance

from a demand point to its closest facility is no more than a predefined non-negative value.

There is a tight relationship between the two problems. Generally, a solution for the cov­

ering location problem with a given value can be used to test the feasibility of the value in

the corresponding center location problem. Therefore, using the binary search technique or

the parametric-searching technique, one can easily obtain an efficient solution for the center

problem from an efficient solution for the corresponding covering problem.

Four cases of the center problem and the corresponding covering problem, where the

demand set and the supply set are either subsets of the vertex set or subsets of the point

set of the underlying network, are considered. Moreover, when the demand set is a subset

of the vertex set, its weighted version of the problem is also considered where each demand

vertex is associated with a non-negative weight.

We first studied center/covering location problems in general networks as well as special­

ized networks, such as tree networks, cactus networks, and partial k-tree networks (fixed k).

We then studied some variations of the network center/covering location problem, includ­

ing conditional extensive facility location problems, continuous p-edge-partition problems,

151

CHAPTER 8. CONCLUSION 152

and constrained covering problems. Here, we have only considered three variations in an

edge-weighted tree network.

The specific problems considered in this thesis are

The continuous p-center problem in general networks: Here demand points are

located at vertices of a general network G with n vertices and m edges, and centers can be

located anywhere in G. The objective is to locate a set of p centers such that the maximum

distance from demand points to their closest centers is minimized. Two cases of this problem

are considered: (i) unweighted, and (ii) weighted. We provide an O(mPnp / 2 log 2n)-time

algorithm for both cases. An O(mPnPlog na(n))-time algorithm for the weighted case and

an O(mPnP- 1 log 2na(n))-time algorithm for the unweighted case were presented in [69],

where a(n) is the inverse Ackermann function [26]. Thus our algorithm is an improvement

over the existing result on the problem by a factor of almost O(nP/
2

).

For the general p-center problem in which the demand set contains all points of the

underlying network, a candidate set containing the optimal solution value is characterized

in Tamir's paper [68]. In spite of the nice structure, the size of this set is not polynomial even

for simple structures such as cactus networks. Until now, no efficient algorithm is known

for the problem in a general network. It is a challenge to design an efficient algorithm to

solve the problem even for a relatively small p.

Weighted p-center problems in trees: Here the underlying network is restricted to be

a tree and each demand point is associated with a non-negative weight. We only consider

the case when p is a fixed constant, and have considered the following two cases: (i) the

supply set is a subset of the vertex set, and (ii) the supply set is a subset of the point

set. An optimal algorithm is provided for both cases, which is a nontrivial generalization

of Megiddo's 'trimming' technique [54]. When p = 1, Megiddo [54] used the trimming

technique to solve the weighted I-center problems in linear time. The problem of generalizing

the trimming approach to solve the p-center problem for p > 1 has been open open for over

twenty years. This result partially resolves the long standing open problem.

Moreover, we introduce a simple parametric-pruning approach for the weighted I-center

problem, which is adapted to solve the weighted p-center problem on the real line in linear

time for any fixed value p.

Note that the running time of our algorithms for the p-center problems in a tree network

or the real line is exponential in p. One challenging task will be to design an o(f(p) ·n)-time

CHAPTER 8. CONCLUSION

algorithm for the problems where f(p) is a low-degree polynomial of p.

153

Various p-center problems in tree-like networks: Here the center problems are stud­

ied in a tree-like network. We consider two cases: (i) a partial k-trees, and (ii) a cactus

network.

When the underlying network is a partial k-tree, we consider the weighted case only,

and have considered both discrete and continuous versions of the problem. For the dis­

crete version, we proposed an o (pnP log k n)-time algorithm. This result is better than the

O(p2n k+2) result of Granot and Skorin-Kapov [32] when p < k + 2. For the continuous

version, we devised the first polynomially bounded algorithm for fixed k, which runs in

O(p2kk+l n2k+3Iog n) time.

When the underlying network is a cactus network, we have considered several variations

of the problem for the first time. When p = 1, an O(n log n)-time algorithm is proposed

to solve the weighted continuous I-center problem. When p = 2, an O(nlog 3n)-time al­

gorithm is proposed for the weighted continuous 2-center problem. When p is a part of

the input, we have devised efficient algorithms for various p-center problems, using the

parametric-searching technique. In particular, we propose an O(nlog 2n)-time algorithm

for the weighted discrete p-center problem algorithm, O(n2) algorithms for the weighted

continuous p-center problem and the unweighted discrete p-center problem with a demand

set of infinite size, and an O(n2 log2 n) algorithm for the general p-center problem.

Many issues in a cactus network are still unresolved. For instance, it would be interesting

to find out whether there exists an optimal linear-time algorithm for the weighted I-center

problem. We conjecture that all the p-center problems can be solved in subquadratic time

by designing polylog parallel algorithms for the corresponding feasibility tests, and by using

Megiddo's results [53]. Furthermore, we suspect that an O(n) test for the general p-center

problem can be derived by properly modifying the test for V(G)jV(G)jp in [30]. This will

lead to the improved bound O(n2) for A(G)jA(G)jp in a cactus network.

The most challenging problem is to find more efficient algorithms to solve the p-center

problems in an edge-weighted partial k-tree of bounded treewidth.

Conditional extensive facility location problems in tree networks: Here the new

facility is not represented by a point, and a set of existing facilities are already located in

the underlying tree. The objective is to minimize the maximum weighted distance from the

demand points to the union of this new facility and the set of existing facilities. Two cases of

CHAPTER 8. CONCLU~ON 154

the problem have been considered: (i) a path-shaped facility, and (ii) a tree-shaped facility.

We propose optimal linear-time algorithms for both cases, using the parametric-pruning

technique. These results improve the recent O(n log n) results of Tamir et al. [70].

For the case when the service cost fi (x) of a demand point Vi is a nondecreasing piecewise

linear function of the service distance x to the facility with a fixed number of breakpoints

(in our 'conditional' problems fi(X) has only one breakpoint), all the ideas presented to

solve the conditional extensive facility location problem in a tree network can be extended

to achieve an optimal algorithm for the new case in a tree network. Actually, our method

works even when the piecewise linearity assumption is relaxed to piecewise polynomiality

(e.g. quadratic, or cubic) of fixed degree.

Continuous tree p-edge-partition problems: Here the vertices in the underlying tree

network are unweighted. A continuous p-edge-partition of a tree is to divide it into p sub­

trees by selecting p - 1 cut points along the edges. We have considered two objective

functions: (i) maximize the minimum length of the p subtrees, and (ii) minimize the maxi­

mum length of the p subtrees. An O(n2)-time algorithm for both objectives was presented

in [49]. We propose an O(nlog 2n)-time algorithm for the max-min objective, which is a

substantial improvement of the previous result. For the min-max objective, an O(nhT log n)­

time algorithm is proposed where hT is the height of the underlying tree network. When

hT = o(n/ log n), our result for the min-max problem is better. We conjecture that our

algorithms for the tree network can be extended to cactus networks.

Constrained covering problems in tree networks: Here open-facility costs and cov­

erage radii of vertices in the underlying tree networks are considered. A facility located at a

vertex u incurs a non-negative open-facility cost c(u), and provides a non-negative coverage

radius of r(u). A demand point is covered by a facility if the demand point lies within

the coverage radius of the facility, and an established facility must be covered by another

established facility. The objective is to minimize the sum of open-facility costs required to

cover all demand vertices.

We have studied the constrained covering problems in a path network, an extended star

network, and a tree network. In [45], O(n2)-time algorithms for the problem in a path

network and an extended star network were presented, and in [44]' an O(n4) result for a

tree network was presented. We proposed the first sub-quadratic algorithms to solve the

problem in a path network and an extended star network. In particular, our algorithm for

CHAPTER 8. CONCLUSION 155

a path network runs in time O(nlogn) and our algorithm for an extended-star network

runs in time O(n1.5 logn). For the problem in a tree network, we proposed an O(n3 logn)

algorithm. The main data structures used in our algorithms are the binary search tree

structure, the segment search tree structure [10], and priority search tree structures [51].

Possible future studies on this problem include the design of more efficient algorithms for

the problem on a tree network, and the examination of the problem on various other graph

topologies such as cactus networks, partial k-trees, etc. Another direction might be the

design of polynomial-time approximation algorithms for the problem on general networks,

since the problem on a general network is strongly NP-hard [45].

Bibliography

[1] P.K. Agarwal and M. Sharir. Planar geometric location problems. Algorithmica,
11(2):185-195, 1994.

[2] P.K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM
Comput. Sum, 30(4):412-458,1998.

[3] J.A. Barcia, J.M. Dfaz-Bariez, A.J. Lozano, and 1. Ventura. Computing an obnoxious
anchored segment. Oper. Res. Lett., 31(3):293-300, 2003.

[4] B. Ben-Moshe, B.K. Bhattacharya, S. Das, D.R. Gaur, and Q. Shi. Computing a planar
widest empty alpha-siphon in o(n3) time. In CCCG, pages 33-36, 2007.

[5] B. Ben-Moshe, B.K. Bhattacharya, and Q. Shi. Computing the widest empty
boomerang. In CCCG, pages 80-83, 2005.

[6] B. Ben-Moshe, B.K. Bhattacharya, and Q. Shi. Efficient algorithms for the weighted
2-center problem in a cactus graph. In ISAAC, pages 693-703, 2005.

[7] B. Ben-Moshe, B.K. Bhattacharya, and Q. Shi. An optimal algorithm for the continu­
ous/discrete weighted 2-center problem in trees. In LATIN, pages 166-177, 2006.

[8] B. Ben-Moshe, B.K. Bhattacharya, Q. Shi, and A. Tamir. Efficient algorithms for
center problems in cactus networks. Theor. Comput. Sci., 378(3):237-252, 2007.

[9] R. Benkoczi. Cardinality constrainted facility location problems in trees. PhD thesis,
School of Computing Science, SFU, Canada, 2004.

[10] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry:
algorithms and applications. Springer-Verlag, second edition, 2000.

[11] O. Berman and D. Simchi-Levi. Conditional location problems on networks. Trans­
portation Science, 24:77-78, 1990.

[12] B.K. Bhattacharya, Y. Hu, Q. Shi, and A. Tamir. Optimal algorithms for the path/tree­
shaped facility location problems in trees. In ISAA C, pages 379-388, 2006.

[13] B.K. Bhattacharya and Q. Shi. Optimal algorithms for weighted p-center problem in
trees, any fixed p. SFU, 2006.

156

BIBLIOGRAPHY 157

[14] B.K. Bhattacharya and Q. Shi. Optimal algorithms for the weighted p-center problems
on the real line for small p. In WADS, pages 529-540, 2007.

[15] B.K. Bhattacharya, Q. Shi, and A. Tamir. Optimal algorithms for the path/tree-shaped
facility location problems in trees. Algorithmica, 2008.

[16] M. Blum, RW. Floyd, V.R Pratt, RL. Rivest, and RE. Tarjan. Time bounds for
selection. 1. Comput. Syst. Sci., 7(4):448-461, 1973.

[17] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305-1317, 1996.

[18] RE. Burkard and H. Dollani. Center problems with pos/neg weights on trees. Eur. 1.
Oper. Res., 145(3):483-495, 2003.

[19] RE. Burkhard and J. Krarup. A linear algorithm for the pos/neg-weighted I-median
problem on a cactus. Computing, 60(3):193-215, 1998.

[20] R Chandrasekaran and A. Tamir. An o((n log p)2) algorithm for the continuous p-center
problem on a tree. SIAM J. Alg. Disc. Meth., 1:370-375, 1980.

[21] R Chandrasekaran and A. Tamir. Polynomially bounded algorithms for locating p­
centers on a tree. Math. Prog., 22(1):304-315, 1982.

[22] S. Chaudhuri and C.D. Zaroliagis. Shortest paths in digraphs of small treewidth. part
i: sequential algorithms. Algorithmica, 27(3):212-226, 2000.

[23] B. Chazelle and L.J. Guibas. Fractional cascading: 1. a data structuring technique.
Algorithmica, 1(2):133-162, 1986.

[24] M.-L. Chen, RL. Francis, and T.J. Lowe. The I-center problem: exploiting block
structure. Transport. Sci., 22(4):259-269, 1988.

[25] R Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34(1):200-208, 1987.

[26] T.H. Cormen, C.E. Leiserson, RL. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

[27] J.M. Diaz-Baez, M.A. Lopez, and J.A. Sellares. On finding a widest empty I-corner
corridor. Inf. Process. Lett., 98(5):199-205, 2006.

[28] Z. Drezner and H.W. Hamacher. Facility location: application and theory. Springer­
Verlag, 2002.

[29] G.N. Frederickson. Parametric search and locating supply centers in trees. In WADS,
pages 299-319, 1991.

BIBLIOGRAPHY 158

[30] G.N. Frederickson and D.B. Johnson. Finding k-th paths and p-centers by generating
and searching good data structures. J. Algorithms, 4(1):61-80, 1983.

[31] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[32] D. Granot and D. Skorin-Kapov. On some optimization problems on k-trees and partial
k-trees. Disc. App. Math., 48(2):129-145, 1994.

[33] Y. Gurevich, 1. Stockmeyer, and U. Vishkin. Solving np-hard problems on graphs that
are almost trees and an application to facility location problems. J. ACM, 31(3):459­
473,1984.

[34] S.L. Hakimi. Optimum location of switching centers and the absolute centers and
medians of a graph. Oper. Res., 12:450-459, 1964.

[35] S.L. Hakimi, E.F. Schmeichel, and M. Labbe. On locating path or tree shaped facilities
on networks. Networks, 23:543-555, 1993.

[36] N. Halman. Discrete and lexicographic helly theorems and their relations to LP-type
problems. PhD thesis, Tel Aviv Univ., 2004.

[37] N. Halman and A. Tamir. Continuous bottleneck tree partitioning problems. Discrete
Appl. Math., 140(1-3):185-206, 2004.

[38] G.Y. Handler. Minimax location of a facility in an undirected tree graph. Transport.
Sci., 7:287-293, 1973.

[39] G.Y. Handler and P.B. Mirchandani. Location on networks theory and algorithms. MIT
Press, Cambridge, 1979.

[40] F. Harary. Graph theory. Addison-Wesley, 1969.

[41] R. Hassin and A. Tamir. Efficient algorithms for optimization and selection on series­
parallel graphs. SIAM J. Algebraic Discrete Methods, 7(3):379-389, 1986.

[42] S.M. Hedetniemi, E.J. Cockaine, and S.T. Hedetniemi. Linear algorithms for finding
the jordan center and path center of a tree. Transport. Sci., 15:98-114, 1981.

[43] J. Herschberger and S. Suri. Offline maintenance of planar configurations. In SODA '91:
Proceedings of the second annual ACM-SIAM symposium on Discrete algorithms, pages
32-41, Philadelphia, PA, USA, 1991. Society for Industrial and Applied Mathematics.

[44] J.A. Horne and J.C. Smith. A dynamic programming algorithm for the conditional
covering problem on tree graphs. Netw., 46(4):186-197, 2005.

[45] J.A. Horne and J.C. Smith. Dynamic programming algorithms for the conditional
covering problem on path and extended star graphs. Netw., 46(4):177-185, 2005.

BIBLIOGRAPHY 159

[46] M. Jeger and O. Kariv. Algorithms for finding p-centers on a weighted tree (for relatively
small p). Networks, 15(3):381-389, 1985.

[47] O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems. i:
the p-centers. SIAM Journal on Applied Mathematics, 37(3):513-538, 1979.

[48] Y.-F. Lan, Y.-L. Wang, and H. Suzuki. A linear-time algorithm for solving the center
problem on weighted cactus graphs. Inf. Process. Lett., 71(5-6):205-212, 1999.

[49] J.-J. Lin, C.-Y. Chan, and B.-F. Wang. Improved algorithms for the continuous tree
edge-partition problems. submitted to Disc. App. Math., 2007.

[50] B.J. Lunday, J.C. Smith, and J.B. Goldberg. Algorithms for solving the conditional
covering problem on paths. Naval Res Logistics, 52(4):293-301, 2005.

[51] E.M. McCreight. Priority search trees. SIAM J. Comput., 14(2):257-276, 1985.

[52] N. Megiddo. Combinatorial optimization with rational objective functions. Math. of
Oper. Res., 4(4) :414-424, 1979.

[53] N. Megiddo. Applying parallel computation algorithms in the design of serial algo­
rithms. J. ACM, 30(4):852-865, 1983.

[54] N. Megiddo. Linear-time algorithms for linear programming in r3 and related problems.
SIAM Journal on Computing, 12(4):759-776, 1983.

[55] N. Megiddo and A. Tamir. New results on the complexity of p-center problems. SIAM
J. Comput., 12(4):751-758, 1983.

[56] N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An o(nlogn) algorithm
for the k-th longest path in a tree with applications to location problems. SIAM 1.
Comput., 10(2):328-337, 1981.

[57] J.A. Mesa. The conditional path center problem in tree graphs. presented to EWGLA8
held in Lambrecht, Germany, 1995.

[58] E. Minieka. Conditional centers and medians on a graph. Networks, 10:265-272, 1980.

[59] E. Minieka. The optimal location of a path or tree in a tree network. Networks,
15:309-321, 1985.

[60] 1. Douglas Moon and S.S. Chaudhry. An analysis of network location problems with
distance constraints. Manag. Sci., 30(3):290-307, 1984.

[61] 1.D. Moon and L. Papayanopoulos. Facility location one a tree with maximum distance
constraints. Compu. Oper. Res., 22(9):905-914, 1995.

[62] J.A. Moreno. A new result on the complexity of the p-center problem. Technical report,
Universidad Complutense, Madrid, Spain, 1986.

BIBLIOGRAPHY 160

[63] M.H. Overmars and C.-K. Yap. New upper bounds in klee's measure problem. SIAM
J. Comput., 20(6):1034-1045, 1991.

[64] J. Pfaff, R. Laskar, and S.T. Hedetniemi. Np-completeness of total and connected dom­
ination, and irredundance for bipartite graphs. Technical report, Dept. Mathematical
Sciences, Clemson University, Clemson, South Carolina, 1983.

[65] M.B. Rayco, R.L. Francis, and A. Tamir. A p-center grid-positioning aggregation
procedure. Computers fj Oper. Res., 26(10-11):1113-1124, 1999.

[66] N. Robertson and P.D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
J. Algorithms, 7(3):309-322, 1986.

[67] A. Shioura and M. Shigeno. The tree center problems and the relationship with the
bottleneck knapsack problems. Networks, 29(2):107-110, 1997.

[68] A. Tamir. On the solution value of the continuous p-center location problem on a graph.
Math. Oper. Res., 12(2):340-349, 1987.

[69] A. Tamir. Improved complexity bounds for center location problems on networks by
using dynamic data structures. SIAM J. Discret. Math., 1(3):377-396, 1988.

[70] A. Tamir, J. Puerto, J.A. Mesa, and A.M. Rodriguez-Chia. Conditional location of
path and tree shaped facilities on trees. J. Algorithms, 56(1):50-75, 2005.

[71] A. Tamir, J. Puerto, and D. Perez-Brito. The centdian subtree on tree networks.
Discrete Appl. Math., 118(3):263-278, 2002.

[72] L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4(3):348-355, 1975.

[73] B.-F. Wang. Efficient parallel algorithms for optimally locating a path and a tree of a
specified length in a weighted tree network. 1. Algorithms, 34(1):90-108, 2000.

[74] B.-F. Wang. Finding r-dominating sets and p-centers of trees in parallel. IEEE Trans.
Parallel Distrib. Syst., 15(8):687-698, 2004.

[75] E. Zemel. On search over rationals. Oper. Res. Lett., 1:34-38, 1981.

[76] E. Zemel. An o(n) algorithm for the linear multiple choice knapsack problem and
related problems. Inf. Process. Lett., 18(3):123-128, 1984.

	thesis-0001
	thesis-0002
	thesis-0003
	thesis-0004
	thesis-0005
	thesis-0006
	thesis-0007
	thesis-0008
	thesis-0009
	thesis-0010
	thesis-0011
	thesis-0012
	thesis-0013
	thesis-0014
	thesis-0015
	thesis-0016
	thesis-0017
	thesis-0018
	thesis-0019
	thesis-0020
	thesis-0021
	thesis-0022
	thesis-0023
	thesis-0024
	thesis-0025
	thesis-0026
	thesis-0027
	thesis-0028
	thesis-0029
	thesis-0030
	thesis-0031
	thesis-0032
	thesis-0033
	thesis-0034
	thesis-0035
	thesis-0036
	thesis-0037
	thesis-0038
	thesis-0039
	thesis-0040
	thesis-0041
	thesis-0042
	thesis-0043
	thesis-0044
	thesis-0045
	thesis-0046
	thesis-0047
	thesis-0048
	thesis-0049
	thesis-0050
	thesis-0051
	thesis-0052
	thesis-0053
	thesis-0054
	thesis-0055
	thesis-0056
	thesis-0057
	thesis-0058
	thesis-0059
	thesis-0060
	thesis-0061
	thesis-0062
	thesis-0063
	thesis-0064
	thesis-0065
	thesis-0066
	thesis-0067
	thesis-0068
	thesis-0069
	thesis-0070
	thesis-0071
	thesis-0072
	thesis-0073
	thesis-0074
	thesis-0075
	thesis-0076
	thesis-0077
	thesis-0078
	thesis-0079
	thesis-0080
	thesis-0081
	thesis-0082
	thesis-0083
	thesis-0084
	thesis-0085
	thesis-0086
	thesis-0087
	thesis-0088
	thesis-0089
	thesis-0090
	thesis-0091
	thesis-0092
	thesis-0093
	thesis-0094
	thesis-0095
	thesis-0096
	thesis-0097
	thesis-0098
	thesis-0099
	thesis-0100
	thesis-0101
	thesis-0102
	thesis-0103
	thesis-0104
	thesis-0105
	thesis-0106
	thesis-0107
	thesis-0108
	thesis-0109
	thesis-0110
	thesis-0111
	thesis-0112
	thesis-0113
	thesis-0114
	thesis-0115
	thesis-0116
	thesis-0117
	thesis-0118
	thesis-0119
	thesis-0120
	thesis-0121
	thesis-0122
	thesis-0123
	thesis-0124
	thesis-0125
	thesis-0126
	thesis-0127
	thesis-0128
	thesis-0129
	thesis-0130
	thesis-0131
	thesis-0132
	thesis-0133
	thesis-0134
	thesis-0135
	thesis-0136
	thesis-0137
	thesis-0138
	thesis-0139
	thesis-0140
	thesis-0141
	thesis-0142
	thesis-0143
	thesis-0144
	thesis-0145
	thesis-0146
	thesis-0147
	thesis-0148
	thesis-0149
	thesis-0150
	thesis-0151
	thesis-0152
	thesis-0153
	thesis-0154
	thesis-0155
	thesis-0156
	thesis-0157
	thesis-0158
	thesis-0159
	thesis-0160
	thesis-0161
	thesis-0162
	thesis-0163
	thesis-0164
	thesis-0165
	thesis-0166
	thesis-0167
	thesis-0168
	thesis-0169
	thesis-0170
	thesis-0171
	thesis-0172
	thesis-0173
	thesis-0174
	thesis-0175

