
ESSAYS IN PRODUCTIVITY AND EFFICIENCY ANALYSIS

IN THE PRESENCE OF UNDESIRABLE OUTPUTS

by

Mykhaylo Salnykov

MA in Economics, Economics Education and Research Consortium, Kyiv, Ukraine, 2004

MSc in Environmental Sciences and Policy, Central European University, Budapest, Hungary, 2002

BSc in Ecology, National University of 'Kyiv-Mohyla Academy', Kyiv, Ukraine, 2001

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

In the
Department of Economics

© Mykhaylo Salnykov, 2008

SIMON FRASER UNIVERSITY

Spring, 2008

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.



APPROVAL

Name:

Degree:

Title of Thesis:

Examining Committee:

Chair:

Mykhaylo Salnykov

Doctor of Philosophy

Essays in Productivity and Efficiency Analysis in the
Presence of Undesirable Outputs

David Andolfatto
Professor, Department of Economics

Krishna Pendakur
Senior Supervisor
Associate Professor, Department of Economics

Ken Kasa
Supervisor
Professor, Department of Economics

Nancy Olewiler
Supervisor
Professor, Department of Economics

Brian Krauth
Internal Examiner
Associate Professor, Department of Economics

Timo Kuosmanen
External Examiner
Professor, Economic Research Unit
MTT Agrifood Research Finland

Date Defended/Approved: April 1, 2008

ii



SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the "Institutional Repository" link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or pUblication of this work for financial gain shall not
be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and pUblishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Revised: Fall 2007



ABSTRACTS
Essay 1 On the commensurability ofdirectional distance functions

In the paper we study commensurability property of the directional distance function (DDF).

We find that a popular OOF with a fixed directional vector is neither absolute nor ranking

commensurable. Nevertheless, this function can be commensurated if the directional vector

is commensurated along with the data. We identify a necessary and sufficient condition for a

vector that ensures commensurability of the DOF, which helps somewhat narrowing down

the key issue for this function in practice-the choice of direction of measurement.

Keywords production theory; directional distance functions; commensurability;
efficiency measurement

Subject Terms Production (Economic theory); Industrial efficiency - Measurement;
Input-output analysis

JEL Classification Numbers 02,024

Essay 2 Smooth homogeneous bootstrap bias correction in fi-ontier models: a Monte

Cado assessment when some outputs are undesirable

In this paper I test the performance of smooth homogeneous bootstrap bias-correction in

multi-output frontier models using hyperbolic efficiency function. I propose an approxima­

tion procedure that substantially reduces the nonparametric estimation time while sacrificing

little precision compared to the most precise nonparametric alternative. The performance of

the uncorrected and bias-corrected estimates is tested in samples of different sizes via Monte

Carlo simulation. All techniques perform well in large samples even without correction.

Both parametric and nonparametric estimators benefit from the correction regardless of the

sample size. Uncorrected nonparametric estimators perform well in large and require bias­

correction in smaller samples. In the small samples bias correction shows marginally better

results when applied to the parametric estimator.

Keywords

Subject Terms

production theory; hyperbolic efficiency function; efficiency measure­
ment; smooth homogeneous bootstrap; Monte Carlo simulation

Production (Economic theory); Industrial efficiency - Measurement;
Input-output analysis; Bootstrap (Statistics); Monte Carlo method

JEL Classification Numbers CIS, 02, 024
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Essay 3 Does emISSIOn permit trade hamper development? Capital and output

dynamics under an international transferable emission quota trade system

The paper studies the effects of nontradeable emission quota and transferable emission quota

systems on the accumulation of capital and output growth in small open economies. Both

types of regulation impede the growth. The transferable emission quota system has different

effects on the development of quota buyers and quota sellers. While quota buyers enjoy

faster growth in the both capital stock and output as compared to the nontransferable quota

system, quota sellers face slower capital accumulation and economic growth.

The simulation using advances in frontier modelling confirms the theoretical findings and

reveals that developmental consequences for quota sellers range from a slower capital

accumulation to capital stock shrinkage. It also suggests that quota sellers substitute

economic production for quota revenues and economic output falls over time.

Keywords

Subject Terms

production theory; input distance function; emission trade; bootstrap
application

Environmental policy - Economic aspects; Emissions trading;
Production (Economic theory); Input-output analysis; Bootstrap
(Statistics)

JEL Classification Numbers CIS, 02, 024, Q2S, Q28, QS6
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EXECUTIVE SUMMARY
In this dissertation I focus on various issues in productivity and efficiency analysis when the

technology produces some undesirable outputs.

In the first essay I study commensurability (independence of units of measurement) property

of the directional distance functions -- a common instrument that allows to treat outputs

asymmetrically. I discover that directional distance functions with fixed directional vectors, in

general, are not commensurable. I then identify necessary and sufficient condition the

function must satisfy to be commensurable.

The second essay is a Monte-Carlo study of the smooth homogeneous bootstrap bias

correction technique performance when applied to parametric and nonparametric estimators

of the hyperbolic efficiency function. Not surprisingly, in the large samples the bias of the

frontier estimates is small regardless of the estimator used. In small samples bootstrap allows

fixing some bias and performs comparably well when applied to various estimators. I further

propose a linear approximation technique for hyperbolic efficiency estimation that performs

better than previously used linear approximation based on Taylor expansion.

The final essay develops a theoretical model of the international emission trading scheme

similar to Kyoto protocol to study capital and output dynamics of the economies under such

an agreement. Advancements in productivity and efficiency analysis are used to simulate the

model and assess the magnitude of the effects. I discover that emission buyers will develop

faster than under simple cap systems, while emission sellers will suffer slower (or even

negative) growth in terms of capital and economic output.
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OVERVIEW
The concept of technology in general and production functions specifically is

one of the cornerstones of contemporary microeconomic theory. The traditional

microeconomic paradigm is based on the premise that all decision making units are

producing the maximum possible output or are collecting the highest possible profit

given the scarce input. Yet, even the biggest adherents of the rationality paradigm

admit there are cases in the real world where some businesses exploit more lucrative

market niches than the others or some financial institutions yield higher returns on

their investments. That is: in reality some firms produce more with less.

While the paradigm taken by the young and underexplored field of productivity

and efficiency analysis (PEA) may be seen somewhat unusual to mainstream

economists, the notions of best practice and benchmarking are common in the

business world despite seemingly contradicting the full-rationality approach taken by

most economic theory.

PEA takes as a given that there is a best-practice frontier, but that not all units

attain it. That is, some agents are, on the face of it, inefficient.

In classical economic theory, one can find a number of examples of failing to

reach the frontier, which still can be explained from the rationality premises. Let me

provide a short illustrative example.

Suppose a researcher observes a number of players playing a Prisoners Dilemma

(PO) game. She will most likely observe most of the players getting identical payoffs

in the game's Nash equilibrium. Yet, she may also occasionally observe some people

collaborating and getting higher payoffs, especially if the pair is playing multi-period

PD. Moreover, she may also observe some players defecting while others collaborate

resulting in very high payoffs for defectors and loss for collaborators 1. If the

1 Interestingly, my experience shows that this outcome is very common in the student environment: I
offered students to play Prisoners Dilemma in 6 separate classes I taught. Only twice the Nash
equilibrium was a result. Four times one person collaborated and the other defected.
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researcher observes the payoffs without being informed about the environment, she

may question the rationality of many players in these games. Indeed, given equal

resources, some players are more efficient (those defecting while the other

collaborates) and some are less efficient. Notably, the rational Nash equilibrium will

appear as an inefficient outcome in the researcher's dataset. The reason for this

inefficiency is that in this environment both parties cannot achieve the maximum

outcome in one game. Yet, this inefficiency is easy to reconcile with the rationality if

one knows about the PO setup.

It is often suggested that inefficiency is observed because some parameters of

the environment are unobserved. Indeed, observed inefficiency in the example

above is a result of the researcher's ignorance of the institutional design of the

problem.

In many cases difference in observed efficiency is a result of the unobserved

managerial abilities of the firms' management. It has been also suggested that

inefficiency may bea strategic decision of the incumbent firms to signal low

profitability of the market and defer entry of other firms. Inefficiency may also result

from rational decisions of the risk averse agents in uncertain environments when one

prefers a lower certain payoff to a higher (in expected terms), but less certain one.

One thing is sure though: whenever one observes heterogeneity in the economic

performance of different businesses, there is an underlying reason for it.

The literature often distinguishes between two types of inefficiency: technical

and allocative. A firm is considered technically efficient if it produces the greatest

technically feasible outputs given its inputs. Alternatively, one may view technical

efficiency from an input perspective: using the lowest technically feasible input level

to obtain given outputs.

A firm is considered allocatively efficient if it produces "the right mix" of

outputs or uses "the right mix" of inputs given the prices. Obviously, measuring

allocative efficiency requires input and output markets to exist. This is not always

-2-



the case, however. Many technologies produce so called non-market outputs. Very

often these outputs are undesirable, such as air or water pollution in polluting

technologies or bad debts in banking.

Non-existence of the markets IS not the only problem when dealing with

undesirable outputs. These outputs cannot be treated like desirable outputs. When

technologies produce desirable outputs only, the studies often depart from a

presumption that a firm becomes more efficient when all outputs are scaled up

proportionally, while keeping inputs unchanged. By doing so, they rely on so called

output distance function (OOF), which find the greatest technically feasible radial

expansion of outputs. Obviously, proportional increase of all outputs does not

necessarily mean increase of efficiency when one of the outputs is undesirable. A

number of solutions have been proposed to deal with this problem.

The earliest studies propose to treat outputs asymmetrically by finding the

greatest proportional contraction of the undesirable and the greatest proportional

expansion of undesirable outputs. The unit moves to the best practice frontier along

a hyperbolic curve, which gives the name to the efficiency measure - the hyperbolic

efficiency function (HEF).

Later an alternative to HEF was proposed. Directional distance functions

(OOFs) in general and output directional distance functions (OOOFs) specifically

allow movement to the best practice frontier along an exogenously set directional

vector. OOFs are often criticized for the lack of economic intuition as the choice of

the directional vector is arbitrary.

An alternative to the HEF and OOOFs that did not receive much popularity in

the literature is treating undesirable outputs similarly to inputs and contract inputs

and undesirable outputs proportionally using a measure similar to input distance

function (IOF).

This dissertation contains three essays dealing with each of the three

approaches to technologies when some outputs are undesirable.
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The first essay studies the independence of the DDFs to scaling data up or

down. This property is often known as the commensurability property of the

distance functions. In this essay I discover that DDFs with fixed directional vector

are neither absolutely nor ranking commensurable (i.e., the ranking of the firms

change when the data is transformed). I further find that to ensure commensurability

the directional vector must transform automatically when the data changes. This

allows to limit the scope of the directional vectors suitable for empirical studies.

The second paper studies performance of the smooth homogeneous bootstrap

(SHB) bias-correction in the frontier models of technologies producing undesirable

outputs. Efficiency estimates are inherently downward bias in most of the frontier

models and require bias correction. Statistical properties of the efficiency estimates

rarely have analytical formulation justifying use of nonparametric bootstrap to assess

statistical inferences. Yet, traditional bootstrap ignores the fact that efficiency

estimates are bounded from either above or below. To address this issue SHB was

proposed for a use in nonparametric frontier models. Yet, SHB's performance in

parametric frontier regression models was never tested. The second paper is a Monte

Carlo study of the SHB bias correction performance in nonparametric and parametric

models when the technology produces undesirable outputs. I use HEF as a measure

of efficiency and propose an alternative nonparametric estimation procedure that is

much less computationally demanding and does not sacrifice much of the preciseness

as compared to the traditional nonlinear optimization technique.

In the third paper I use the estimated parametric Translog formulation of the

IDF to asses the magnitude of the effect of an emission trading scheme on capital

and output dynamics of participating countries. I first develop a theoretical model

that shows that emission trading promotes faster development in permit buying

countries and slower development in quota selling countries as compared to a simple

cap system. I then use the parametric IDF estimate to assess the magnitude of this

effect, which turns out to be quite substantial.

-4-
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Abstract

Recently, a popular tool for characterizing and estimating production technology and efficiency, known
as Shephard's distance functions, was generalized by Luenberger shortage function or the Chambers­
Chung-Fare directional distance function. This function possesses many desirable properties;
however, it was not known whether it satisfies the commensurability property (independence of units
of measurement up to a scalar transformation). We address this question in our study and discover
interesting results: both positive and negative. We find that a popular directional distance function
with a fixed directional vector is not commensurable. Moreover, when the units of measurement
change, decision making units may change their ranking if the fixed vector is used. Nevertheless, this
function can be commensurated if one is willing to commensurate the directional vector along with the
data. We identify a necessary and sufficient condition for a directional vector that ensures
commensurability of the function. These results also help somewhat narrowing down the key issue for
this function in practice-the choice of direction of measurement.

Keywords production theory; directional distance functions; commensurability;
efficiency measurement

JEL Classification Numbers 02, 024

1 An earlier version of this paper was submitted to the Journal of Productivity Analysis. The Journal
has requested a revision. We would like to thank Rolf Fare, Peter Kennedy, Robin Sickles, Scott Skjei
and anonymous referees for their valuable comments and suggestions on the earlier versions of this
paper.
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1. INTRODUCTION

Since Shephard (1953), the production theory in neo-classical economics, and

especially its duality issues, has been dominated by what his followers called

Shephard's distance functions (DFs). Recently, Luenberger (1992, 1994) and

Chambers, Chung and Fare (1996, 1998) have introduced and explored what is now

widely known as the directional distance function (DDF), or the shortage and benefit

function in the terminology of Luenberger. Under quite weak regularity conditions,

DDF gives a complete characterization of a technology set and is a generalization of

the input and output oriented Shephard's DFs. In a recent paper Fare and Primont

(2006) outlined a comprehensive system of duality relationships related to the DDF.

Similarly to the traditional DFs, the DDF gives a complete characterization of regular

technologies, yet has a somewhat more powerful duality relationship-not only to the

revenue or cost functions, but also to the profit function. The DDF also satisfies

many desirable properties (e.g., see Luenberger (1992, 1994) and Chambers, Chung

and Fare (1996, 1998». Yet, one very important for an economic measure property

has not being investigated for the DDF-the commensurabjjjty property­

introduced to the efficiency analysis by Russell (1987), on the analogy of property

introduced by Eichhorn and Voeller (1976). Intuitively, commensurability of an

efficiency measure is a property related to the issue of independence of this measure

from units of measurement (usually, up to scalar transformation) of the data.

One of the major empirical critiques of the DDF is that it is often not clear what

directional vector must be chosen for each empirical study. Indeed, researchers often

argue whether input or output orientation must be chosen in a particular research

involving Shephard's DFs. For the DDF, however, the choice is even more

complicated-there is a continuum of possibilities. A natural way to reduce the set of

the feasible directional vectors would be to postulate a list of desirable properties that

the DDF must satisfy. Taking this route would be in the fashion of axiomatic

approach to efficiency analysis (where DF and DDFs are extensively used) proposed

by Fare and Lovell (1978) and elaborated by Bol (1986), Russell (1987, 1990) and

-6-



others to justify the use of some measures and warn about using others for various

cases. This question, however, has not been resolved yet for the DDF.

Our study contributes to the theory of DDF from two perspectives. First, we

explore the DDF for the commensurability property and discover quite interesting

results: some positive and some negative. Second, our results on commensurability of

DDF help narrowing down the key empirical issue for this function-the choice of

direction of measurement.

We show that DDFs with a fixed directional vector result in different efficiency

scores when the dataset's units of measurement are changed. Moreover, the ranking

of the decision making units may change when a fixed directional vector is used.

Nevertheless, this shortcoming can be avoided if the directional vector changes when

the data is commensurated. We also identify a necessary and sufficient condition for

the directional vector that ensures that the DDF is commensurable.

The rest of the paper is organized as follows. We first postulate basic

assumptions and definitions. Then we provide and prove sufficient and necessary

condition for the absolute commensurability of the directional efficiency measure on

an arbitrary technology set. Next we study, the absolute-commensurability and the

ranking-commensurability properties for the DDF with the um"t directional vector.

To our surprise, we find that none of these properties is satisfied in the general

context. We then also examine whether such DDF can be 'de-commensurated' both

ex post and ex ante. Finally, we find a particular type of DDF that does possess

commensurability property.

2. BASIC DEFINITIONS

Let x E 91~ denote a vector of inputs, while y E 91~ denote a vector of outputs

and assume technology can be characterized by a technology setT, defined in general

terms as

T == {(x, y):x can producey}.

-7-



We assume T satisfies the standard regularity conditions of neo-classical

production economics.

Al. Tis closed and non-empty.

A2. Inputs and outputs are freely disposable:

(x,y) E T => (x',y') E T, \ix'~x, y'~y.

A3. Thereisnofreelunch,ie. (ON,y)ET=>y=OM.

A4. Doing nothing is possible, J:e. (x,O M) E T, \ix E 9t~ .

AS. P(x)::{y:(x,Y)ET} is bounded \iXE9t~.

A6. Technology is productive, i.e. ::Ix E 9t~ : P(x) :;:. {OM}.

Assume an arbitrary nonzero directional vector (- dx,dy) E 9t~ x 9t~ ;

(- d x' d y ):;:' 0 N X 0 M (further we assume these conditions without explicitly stating

them). Given the regularity conditions (A1-6) and the directional vector, the

directional distance function (DDF) defined on a regular technology set Tas

(1)

gives a complete characterization of technology set T. Luenberger (1992, 1994),

Chambers, Chung and Fare (1996, 1998), Fare and Grosskopf (2000) and Fare and

Primont (2006) derived other properties of the DDF. However, the

commensurability property of the DDF-the issue we address next-has not been

studied yet.

3. COMMENSURABILITY OF DISTANCE FUNCTIONS

When Russell (1987) introduced the commensurability axiom, he convincingly

argued that commensurability (independence of units of measurement up to scalar

transformation) is a very desirable property of any efficiency measure. Indeed, an

efficiency measure not satisfying commensurability may cause different researchers

using the same data and methodology to arrive at different results-just because one

-8-



used, for example, kilograms and the other one used pounds to measure inputs or

outputs. In the next definition, we will extend the definition of commensurability

proposed by Russell, to cover the measures of the type of DDF.

Definition 1 (Absolute Commensurability)

Let E(x,ylp(x,y),T)E91+ VXE91~,YE91~t be an efficiency measure on a

regular technology set T, where p is a 91~ x 91~ ~ 91: mapping resulting a Z-

dimensional vector of exogenous parameters of the efficiency measure (e.g.,

directional vector coordinates in the case of DDF). Let x = 0xx and y=OyY,

where Ox and Oy are (any) diagonal matrices (further called commensuration

matrices) of dimensions NxN and l'v1xM, respectively, with all diagonal elements

being strictly positive constants. The efficiency measure E(x, ylp(x, y), T) is

absolutely commensurable in inputs and outputs ifand only if

where

r == {(x, y): (x, y) E T} = {(x, y): (O~'x, o;'y) E T}

and where p(x, y) mayor may not be dependent on the data point 2.

(2)

Intuitively, the absolute commensurability can be understood as a property of

independence (of the efficiency score) from the scale of any inputs and any outputs.

For example, the efficiency score obtained for any observation with the inputs

expressed in tons and outputs in Watt-hours should be identical to the efficiency

score of the same observation when inputs are expressed in kilograms and outputs in

tons of oil equivalent.

Obviously, commensurability is a very desirable property for any efficiency

measure and before any measure is used it is crucial to test the robustness of it to a

2 As we will see later, allowing for such dependency is one of the simplest ways to ensure absolute
commensurability.
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change of units of measurement. This test is easy to implement for DDFs. Theorem

1 gives necessary and sufficient condition for absolute commensurability of a DDF.

Theorem 1 For any regular technology set T

ifand only if

(3)

(4)

The proof of this result is given in the Appendix, while here it might be worth

emphasizing its meaning. The theorem says that the directional distance function is

absolutely commensurable if and only if the directional vector is 'commensurated'

along with the data. In other words, if one does not commensurate the direction in

the same fashion as the data, then the scores obtained from DDF might differ for the

same data expressed in different units. Remarkably, such commensuration of the

directional vector is sufficient for DDF to be absolute commensurable.

4. COMMENSURABILITY PROPERTIES OF THE DDF WITH A UNIT

DIRECTIONAL VECTOR

Consider the DDF with a unit directional vector (henceforth UDDF), i.e.

15(x,y [-IN ,lM,T) == sup{e ~ 0: ((x - 81 N),(y + 81M)) E T}.

Notably, this directional vector is among those recommended in a new textbook

on productivity and efficiency analysis (Fare, Grosskopf and Margaritis, 2007). This

direction is also a very common choice in many empirical works3 perhaps due to its

simplicity, normalizing nature and, as a consequence, convenience in explaining the

3 E.g., see Chambers and Fare (1998), who used this direction applied to the social welfare theory;
Chambers, Fare and Grosskopf (1996) who applied UDDF to measure productivity growth in Asian­
Pacific countries; and Fare, Grosskopf and Zelenyuk (2004), where this direction is used in the context
of aggregation issue.
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results of measurement. Specifically, an efficiency measure based on such a direction

gives one number indicating (regardless of the units of measurement) how many units

of each input must be deducted and how many units of each output must be added to

any particular point in the technology set to reach the (upper) frontier of T. Despite

its appealing nature, the UDDF is not absolute-commensurable. We show this in the

next corollary.

Corollary 1 UDDF is not absolute-commensurable for all technologies.

o The proof follows directly from Theorem 1 by noting that the UDDF does

not satisfy the necessary condition for absolute commensurability. •

The practical implication of this result is that different researchers using the

same data and methodology may arrive at different estimates-just because the

researchers used different units of measurement. One may wonder whether the

results would be qualitatively the same: i.e., if, under some units of measurement,

firm A was more efficient than firm B then this ranking would, hopefully, remain

unaffected under any other units of measurement (different by a scalar

transformation). We thus call this concept ranking-commensurability, and formally

define and apply it to UDDF below.

Definition 2 (Ranking-Commensurability)

An efficiency measure £\x, ~p(x, y), r) is said to be ranking-commensurable if

and only if

E(xk,Yklp(xk, Yk)' r) > E(x j,Yjlp(x j , Yj} r)¢:>

E(xk,Yklp(xk,Yk)' r) > E(x j ,Yjlp(xj ,yJ r) (5)

where xk= QxXk' Xj = Qxx j' Yk= QyYkand Yj = QyY j are as in definition 1.
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Figure 1-1. Graphical illustration of technology (6), observations A and B and their UDDF scores

The intuition behind (5) is that if an efficiency measure is ranking­

commensurable, then changing the units of measurement of any input or/and output

by a scalar transformation should not affect the ranking of the efficiency scores,

although may change the scores per se. It turns out that UOOF is also not ranking

commensurable, as we show in the next theorem.

Theorem 2 UOOF is not ranking-commensurable for all technologies.

D To prove this statement, consider a simple single-input-single-output

technology,

T ={(x, Y): Y ~ 6 if x ~ 1.5, Y =0 if 0 ~ x < 1.5} x, Y E 91 + , (6)

where the numbers are provided for the sake of illustration. Measuring the UOOF

scores of two observations: A at (x /1 =2'YA =0) and Bat (x B=3.5'YB =4.5), we

would conclude that observation A IS more efficient than B, SInce

15(2,01-1,1) =eA =0.5 and .i5(3.5,4.51-1,1) =eB =1.5. A graphical illustration of this

problem is provided in Figure 1-1.
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Figure 1-2. Graphical illustration of technology (7), observations A and B and their UDDF scores

Now, suppose we decide to transform inputs and outputs in such a way that we

measure inputs in x = 3x and outputs in ] = y / 3. Combining (2) and (6) implies

T= {(x,]) :] ::; 2 if x ~ 4.5,] = 0 if 0 ::; x < 4.5} (7)

Changing the units of measurement of observations would transform

observation A into A(x/j =6,]/j =0) and observation B into 13(xiJ =10.5,]iJ =1.5)

respectively. This would result In 15(6,01-1,1)= 8:j = 1.5 and

15(10.5,1.51-1,1)=88 =0.5, ie., observation Bis now concluded to be more efficient

than A (graphical illustration is provided in Figure 1-2).

So, the change in units of measurement has led to different ranking. Therefore,

the UDDF measure is not ranking commensurable for all technologies.•

The practical implication of this result is that even the qualitative difference in

efficiency measurement with UDDF may occur due to changes in the units of

measurement, which in turn may lead to different policy implications. It must be also

clear that the type of technology we used in our argument was simple for illustration

purposes. The same argument would also hold for many other technologies, but just

one is enough to prove our claim.

It should be noted, however, that for any regular technology, commensuration

will neither affect UDDF scores of the efficient units (i.e. units located on the
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frontier with the UOOF score equal to zero) nor make any previously inefficient

units efficient. In other words, commensuration does not affect identification of

efficient units by the UOOF (as a matter of fact, the same is true for any OOF). The

proof of this fact follows directly from (1) and definition 1.

5. ILLUSTRATIVE EXAMPLE

We used data from Kumar and Russell (2002) on capital and labor as inputs and

GOP as an output for 57 countries in 1990. Although the study used output oriented

Shephard's distance function to estimate Farrell efficiency scores, which are

commensurable, we showed that if UOOF was used instead, the estimates would be

non-commensurable. First we calculated UOOF efficiency scores based on the

original data using data envelopment analysis technique under variable returns to

scale; then we calculated UOOF scores based on the commensurated data, where

capital and GOP were measured in thousands of the US dollars instead of the US

dollars. Commensuration did not affect efficiency scores of the eleven efficient units

(UOOF being equal to zero), but did affect all 46 inefficient units. As expected

theoretically, not only the absolute values of the sCores have changed, but also the

ranking altered. Remarkably, 43 out of 46 inefficient observations changed their

rankings. The estimates are provided in Table 1-1.

6. DECOMMENSURATION

A natural question now is whether we could remedy the situation with UOOF­

with, for example, what we call here as expost and ex ante 'de-commensurations'.

Definition 3 (Ex post de-commensuration)

An efficiency measure ~x, ~p(x,y), T) is de-commensurable expost if and only if

(8)

and where x=0xx and y =OyY are as in definition 1.
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Table 1-1. UOOF scores for original and commensurated data

Efficiency before Efficiency after

ID commensuration commensuration

Score Rank Score Rank

1 6502.22 39 5863.1 36 30 4815.73 36 3915.71 30

2 1241.72 18 5926.91 38 31 2705.98 28 3460.46 27

3 926.24 17 982.51 15 32 0 * 0 *
4 508.65 8 559.5 7 33 862.84 14 245.58 1

5 1900.6 24 1754.93 22 34 0 * 0 *
6 484.05 7 843.05 11 35 901.89 16 917.47 13

7 2898.45 29 2613.55 25 36 446.28 6 463.02 5

8 7572.16 41 7448.71 42 37 0 * 0 *
9 859.17 13 899.45 12 38 337.98 4 435.33 4

10 1724.75 23 1555.22 21 39 623.13 11 669.93 10

11 2375.77 27 2367.54 24 40 0 * 0 *
12 534.72 10 644.11 8 41 5564.08 38 4269.24 32

13 3622.59 31 4416.73 34 42 18893.18 45 7826.45 43

14 0.15 2 5912 37 43 1668.94 22 1504.9 20

15 1947.32 25 1955.62 23 44 0 * 0 *
16 1388.65 20 958.87 14 45 3929.33 33 3906.31 29

17 1341.54 19 1181.87 17 46 5189.11 37 5100.62 35

18 0 * 0 * 47 879.35 15 992.45 16

19 0 * 0 * 48 0.01 1 358.68 3

20 0 * 0 * 49 1652.12 21 1495.88 19

21 373.49 5 336.78 2 50 4268.4 34 4338.42 33

22 533.87 9 481.39 6 51 22102.54 46 8194.33 44

23 3651. 3 32 3702.19 28 52 17998.61 44 15857.12 45

24 3179.37 30 1357.15 18 53 0 * 0 *
25 857.68 12 663.14 9 54 0 * 0 *
26 4.52 3 29312.57 46 55 7439.29 40 6708.06 40

27 10397.14 43 7434.55 41 56 2375.73 26 2900.18 26

28 9951. 74 42 6621.24 39 57 4433.43 35 4036.82 31

29 0 * 0 *

Notes: • marks efficienr unirs in rhe Rank column.

Source of original dara: Kumar and Russell (2002);

Original data is expressed in US dollars (for GOP and capiral) and workers (for employmenr); commensurared dara
is expressed in rhousands US dollars (for GOP and capiral) and workers (for employmenr).

Efficiency scores are estimated in MATLAB with optimization toolbox.

-15-



In words, this is a situation when it is possible to transform, ex post or after

computation, a UDDF score for 'commensurated' data in such a way that it becomes

identical to the UDDF score for the original data. Note that here we require that a

de-commensurating transformation G works for all technologies. Therefore,

transformation can depend on observed inputs and outputs as well as

commensuration matrices, but should be independent of the parameters of the

technology. We will now see that, in general, UDDF cannot be remedied by the ex

post de-commensuration.

Theorem 3

technology.

UDDF IS not de-commensurable ex post, independently of

o Consider a single-input-single-output CRS technology

Then,

D(x,y 1-1,1) == sup{e ~ 0: A(X - e) ~ y + e} = A.x.=-.Y .
A+I

(9)

(10)

Let Ox =r > 1 and °y =1, thus x =r x and y =y. Combining (2) and (9)

implies

T = {(x,]): ArX ~ ]},

and therefore,

t5(x,] 1-1,1) = ArX-rY = AX-Y
Ar+ 1 A+1/r

Finally, combining (10) and (11) implies

- ( ) A+ 1/r -(~ ~ )Dx,YI-1,1 = Dx,yl-1,1.
A+1

(11)

(12)

Thus, (12) proposes a (unique) way to transform (11) to obtain (10) under single­

input-single-output CRS technology when output is scaled up. However, this
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transformation depends on parameter of the technology A, while our definition

required such independence (since true technology sets are typically unobserved in

practice by researchers). Therefore, (8) does not hold and therefore UDDF is not de-

commensurable expost. •

What must be clear from the intuition of the proofs is that not only the UDDF

but any DDF with a non-base collinear4 fixed directional vector will not satisfy even

ranking-commensurability for all technologies (although perhaps for some it might).

The intuition for this can be explained by the additive nature of such DDFs, which

become irreconcilable with the muftipJjcative nature of the commensurability

property. This intuition raises another natural question: Is it possible to remedy the

UDDF measure in some way to ensure that an efficiency measure after

commensuration is equal to its value before commensuration? One possible remedy

might be applied to the (fixed) directional vector. We call this concept 'ex ante

absolute de-commensuration,' and formally define it below.

Definition 4 (Ex ante de-commensuration)

An efficiency measure E(x, ~p(x, y), T) is de-commensurable ex ante if and only if

(13)

and where x=0xx and y =OyY are as in definition 1.

In words, an efficiency measure is de-commensurable ex ante if and only if

along with the change of units of measurement of inputs and outputs one shall also

modify the parameter vector p (e.g., the directional vector in the case of DDF) to

obtain the same numerical value of efficiency as for the observation in the original

units of measurements.

4 By non-base collinear directional vector we mean a vector which is not collinear to any of the base
vectors. It is quite straightforward to see that if the directional vector is degenerate, then the DDF is
still not commensurable in absolute terms, but is ranking-commensurable for any regular technology.
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One may notice a similarity between the definitions 1 and 4 if F(P(x, y)) is

substituted for p(x, y) in the left hand side of (13). Indeed, definition 4 states that to

ensure ex ante decommensuration, one provide a mapping Ffor the directional vector

that modifies the vector when the data is commensurated. This vector transformation

should make the function absolutely commensurable for any technology.

Trying this on, for our UDDF, we finally get a positive result, which we

formally state next.

Corollary 2. UDDF is absolute de-commensurable ex ante if its directional

vector is 'commensurated' along with the inputs and outputs by pre-multiplying it by

the respective commensuration matrices, i.e.,

D(X,Y In x (-IN ),n y lM,r)= D(x,y l-lN ,lM,T). (14)

To prove this result, one just has to notice that (14) is just a corollary of the

Theorem 1. It is worth noting, however, that once the directional vector of UDDF's

has been pre-multiplied by the (non-identity) commensuration matrices, the DDF is

no longer a UDDF. Therefore, once commensuration takes place and a researcher

wants to compare her results to the results of the other study with the 'non­

commensurated' data, she cannot use UDDF, but should rather use a directional

distance function with a 'commensurated' directional vector. In other words, only the

'lucky first' gets to use DDF with a unit directional vector and thus sets the standard

for units of measurement. The others have to comply with this standard by

commensurating their unit directional vectors with the same matrices that relate their

units of measurement to that of this standard. As standard scale is rather a question of

tastes, traditions and practices, which may differ from school to school and from

society to society, it might be difficult to achieve a consensus over this issue, as it is

hard to convince Europeans, for example, to switch to British weights and measures

(e.g., pounds) or Americans to metric system (e.g., kilograms). A compromise might

be to use a directional distance function with a directional vector that would

'commensurate' itself according to (4) when the data is commensurated.

-18-



7. CONCLUDING REMARKS

An interesting special, but still quite broad, case that ensures (4), which actually

would not require commensuration of the directional vector explicitly, but would be

obtained automatically, is when (-dx ,dy )=(-3x x,3 y Y), where 3 x and3 y are any

diagonal matrices of dimensions NxN and A1XM, respectively, where the elements

are constants that define the direction or, intuitively speaking, assign weights of each

input (output) relative to other inputs (outputs) in measuring the distance to the

frontier. (The diagonal elements of 3 x and 3 y can be zero or even negative).

Special cases of this function have appeared in the past publications. For example,

Chung Fare and Grosskopf (1997) used it for

°GxB ),

- I BxB

where I GxG is a OxG identity matrix assigning equal weights to G good outputs, I BxB

is a BxB identity matrix assigning equal weights to B bad outputs and the rest are zero

matrices of dimensions indicated in subscripts. Also, Zelenyuk (2002) used it when

3 x and 3 y were scalars multiplied by corresponding identity matrices. Even more

special cases are the popular directional vectors ( - x, y) , as well as (0, y) and (- x, 0)

under which one-to-one closed-form relationships with the Shephard's distance

functions are known.

It is worth noting that the test for satisfying absolute (and ranking)

commensurability helps reducing the problem of choosing the direction of

measurement for DDF considerably. In particular, it might discourage one from

using DDF with any fixed vector, since such DDFs are not ranking-commensurable

in addition to not being absolute-commensurable. Alternatively, if for some reason

researchers must use a DDF with a fixed vector, then researchers seeking to replicate

this study in the future should pay special consideration to the issues of potential

non-commensurability associated with such DDFs. Specifically, researchers should
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try to decommensurate this DDF ex-ante or transform their data into the system of

measurement used by the original study. Moreover, since the DDF in (3)-(4) is a

special case of the general DDF, it thus not only passes the tests for

commensurability, but (under the regularity conditions) also satisfies all the general

properties derived by Luenberger (1992, 1994), Chambers, Chung and Fare (1996,

1998), Fare and Grosskopf (2000) and Fare and Primont (2006). Finally, our findings

give a simple necessary condition test for verifying computer codes for estimation of

DDF with vectors satisfying (4)-if estimates change after multiplication of some

input/output vectors by scalars, the code contains a mistake. Finally, a natural

extension to our work would be an exploration of other properties for DDF that are

generally desirable for theoretical or empirical characterizations of technologies and

efficiency measurement, and the ones that can help reducing the choice of direction

for measurement even further.
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ApPENDIX

ProofofTheorem 1

Suffidency

= sup{e ~ 01 ((~ - 6{1~), (y + 6{1~ )) E r}

=sup{e ~ 01 (Ox (x -6{l.),Oy (y + 6{ly ))E r}

= sup{e ~ 01 ((x - 6{lx)' (y + 6{ly)) E T}

=D(x,Yi-dx,d y ).

Necessity

o Suppose that (3) holds, i.e.

Also note that,

=sup{e ~ 01 ((~ - 6{1~), (y + 6{1~)) E r}

=sup{e ~ 01 (Ox (x - 6n~ld~10y (y + 6n;ld~)) E r}

=sup{e ~ 01 ((x - 6n~ldJ(y + 6n;ld~ ))E T}

= D(x,yl-O~ld~,O;ld~)

Combining this result with (3), gives us

-

(*)

Clearly, the statement (*) can hold only if dx=n~ld~; dy =n;ld~, or equivalently,

d: = Qxdx; d~ = Qydy ' which is what is needed to prove the necessity. _
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Abstract

Hyperbolic efficiency measures are popular tools in the assessment of the efficiency of multi-output
technologies when the outputs need to be treated asymmetrically. In this paper I test the performance
of bias-correction based on the smooth homogeneous bootstrap in multi-output frontier models. In
addition, I propose an approximation technique that substantially reduces the nonparametric
estimation time while sacrificing little precision compared to the most precise nonparametric
alternative.

The performance of the uncorrected and bias-corrected estimates is tested in samples of different sizes
via Monte Carlo simulation. Of course, all techniques perform well in large samples even without bias
correction. Both parametric and nonparametric estimators benefit from the nonparametric bias
correction regardless of the sample size. Uncorrected nonparametric estimators perform well in large
samples only and require bias-correction in the medium and small-sized samples. Notably, in the
small samples bias correction shows marginally better results when applied to the parametric estimator.

Keywords production theory; hyperbolic efficiency function; efficiency
measurement; smooth homogeneous bootstrap; Monte Carlo
simulation
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1. INTRODUCTION

Various distance functions are main tools in contemporary efficiency and

productivity analysis. Debreu (1951) and Shephard (1953) introduced these

instruments for analyzing producer behaviour; Malmquist (1953) proposed an

application for analyzing consumer behaviour. The commonly used today distance

functions give a complete characterization of technology under a fairly weak set of

assumptions about the properties of the technologies. The estimation of these

functions requires neither the knowledge of input prices and output prices, nor does

it rely on widely disputed assumptions about economic behaviour, such as cost

minimization or revenue maximization.

The seminal paper of Farrell (1957) commenced the use of the input and output

oriented distance functions in the efficiency analysis. Meeusen and van den Broeck

(1977), Aigner, Lovell and Schmidt (1977) and Charnes, Cooper and Rhodes (1978)

were among those who popularized the Farrell's overall efficiency measure in the

econometric and operations research literature.

The early studies in the field traditionally defined efficiency measures in radial

terms. Boles (1966) proposed the radial output orientation (l:e. finding the greatest

technologically feasible radial expansion of the output bundle) while Shepherd (1953)

suggested the radial input orientation (which is the smallest possible technologically

feasible radial contraction of the input bundle). Fare, Grosskopf and Lovell (1985)

combined these two approaches by formulating a hyperbolic ~fficiency function

(HEF), which does a simultaneous proportional contraction of the input bundle and

an expansion of the output bundle.

It has been widely agreed that HEF may be a convenient instrument for

analyzing technologies where outputs should be approached asymmetrically.

Polluting technologies are a common example of such a case. As a decision making
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!!nit (OMU) becomes more efficient, it either decreases its pollution (undesirable

output) or increases its economic (desirable) output or does both1.

An alternative to HEF, the Qutput directional distance functions (OOOF), was

proposed a decade later by Chambers, Chung and Fare (1996) and applied to

polluting technologies by Chung, Fare and Grosskopf (1997). OOOF suggests

movement towards the best practice frontier along the exogenously set directional

vector. A major argument for using OOOF instead of HEF is that the traditional

(nonparametric) approach towards OOOF estimation is executed using linear

optimization. It often consumes substantially less computing resources as compared

to the nonlinear optimization used in the nonparametric HEF estimation, especially

when numerous iterations are involved (such as in the bootstrapping). An alternative,

parametric technique towards HEF estimation recently developed by Cuesta and

Zofio (200S), relies on the almost homogeneity property of HEF and is as easy to

estimate as the parametrically specified OOOF. Yet, many researchers still prefer

nonparametric specification as it requires no ex-ante functional form specification.

Arguably, the main advantage of HEF against OOOF, however, is that in many

studies OOOF lacks theoretical justification for the choice of the directional vector.

Besides a choice of instruments, a researcher often faces choices regarding

estimation techniques. Nonparametric Data Envelopment Analysis (OEA) and the

parametric linear programming Translog-specified flexible functional form estimators

(hereafter Translog estimators) are the ones most often used when HEF is being

estimated. Both estimators are inherently downward biased, yet are consistent2, as is

common in the frontier estimation problems. The bootstrap bias-correction

procedure proposed by Simar and Wilson (1998) aims at reducing (and presumably

eliminating) the downward bias of the frontier estimates. However, the relative

performance of this procedure in parametric versus nonparametric frameworks is

underinvestigated.

1 Obviously, shrinking inputs is an alternative approach to the efficiency analysis.

2 Given absence of the specification bias for the Translog specification.
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In this paper I will focus on comparing the relative performance of the smooth

homogenous bootstrap bias correction in the alternative HEF estimation frameworks

in very small samples when stochastic noise can be neglected. My study is similar to

those of, for example, Guilkey, Lovell and Sickles (1983) or Fare, Martins-Filho and

Vardanyan (2006, FMV)3 as it also sets up a Monte Carlo experiment to construct a

sample of input-output combinations for each DMU. The crucial difference,

however, is that my approach involves analyzing the performance of different

techniques based on the bootstrap bias-corrected estimates of the efficiency scores as

opposed to the raw scores. This includes comparing the power of the bootstrap-based

bias correction in parametric versus nonparametric frameworks depending on the

sample size.

Further, my paper shows that by reciprocating some of the data it is possible to

linearly approximate HEF. This approach gives more precise results as compared to

previously used linear approximation based on Taylor expansion and allows to

substantially reduce computational time as compared to the nonlinear programming

approach.

The rest of the paper proceeds as follows. The following section provides a

brief introduction to the fundamentals of efficiency and productivity analysis and

discusses one of the tools used in the field - the hyperbolic distance function. The

third section reviews some of the most commonly used techniques for HEF

estimation. The fourth section shows how the data set can be modified to overcome

some of the shortcomings of the traditional estimation techniques. The fifth section

explains the smooth homogeneous bootstrap technique along with the procedures for

obtaining bootstrap statistical inferences (namely, bias-corrected estimates of the

efficiency scores and the confidence intervals). The sixth section describes the data

generating process and outlines the frontier comparison criteria. The seventh section

discusses the results and the last section is a conclusion of the paper.

3 Gulkey et al. (1983) examined the behaviour of three functions used to model cost functions; Fare et
al. (2006) studied goodness of approximation for parametric quadratic versus Translog specification of
the distance function.
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2. HYPERBOLIC EFFICIENCY MEASURE

Suppose the following dataset of i=(1, ... , 1) OMUs consisting of the triplets of

vectors (xj, y j, z), where Xi E 91~ is a vector of inputs, Yi E 91~ is a vector of economic

(desirable) outputs and Zi E 91: is a vector of undesirable outputs.

Further define a technology setas

T == {(x, y,z): x can produce (y,z)}. (1)

When using output oriented efficiency measures, it is often more convenient to

operate on output set defined as

p(x)== {(y,z):(X,y,Z)E T}. (2)

Both technology and output sets are equivalent representations of the

technological process.

In the spirit of the axiomatic approach proposed by Shephard (1970) and then

followed widely in the literature on productivity and efficiency analysis (e.g., Fare

and Primont 1995 and Fare, Grosskopf, Noh and Weber 2005), below I postulate a set

axioms the technology must satisfy to be a valid model of production when some

outputs are undesirable.

AI. Doing nothing is possible. (OM ,0 K) E P(x) for all x in 91~ .

A2. No fi-ee lunch. P(O N) =(0M,0K)'

A3. Strong disposabiJjty ofinputs. If (y,z) Ep(x) and x'~x then (y,z) Ep(x').

A4. Strong disposabiJjty of desirable outputs. If (y,z) Ep(x) and y~y' then

(y',z) Ep(x).

AS. Weak disposabiJjty ofoutputs. If (y,z) Ep(x) then (ey,ez) Ep(x) for all

e~1.

A6. Scarcity. For all x in 9t~ , P(x) is a bounded set.
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Figure 2-1. Typical shape of the output set when technology produces both desirable (y) and
undesirable (z) outputs and the illustration of the hyperbolical projection to the efficient frontier.

A7. Output c1osedness. For all x in 9t~ , P(x) is a closed set.

A8. Input convexity. Pis quasiconcave on 9t~, i.e. for all x,x' E 9t~ and

0::; A::; 1, P(x)n p(X')~P(AX+ (1- A)x') .

A9. Output convexity. For all x in 9t~ , P(x) is a convex set.

A typical shape of the output set P(x) is illustrated on Figure 2-1.

Define an output hyperbolic efficiency function on P(x) as

(3)

In Figure 2-1 Ho maximizes A hyperbolically by companng the ith DMU's

observed input-output combination (xr yr z) to the frontier combination

(x, A'y, z/ A'), whereA' is the maximized value of A.
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Similarly to the traditional radial distance functions, HEF gives complete

characterization of a technology. Unlike the traditional distance functions, however,

HEF allows for asymmetrical treatment of different outputs.

It has been shown by Fare, Grosskopf and Lovell (1985) that HEF possesses the

following four properties.

PI. Representation. H o(x,y,z) ~ 1if and only if (y,z) E p(x).

P2. Almost homogeneitY'

H 0 (x,JI-1
y,JI z) =JI H o(x,y,z)VJI > o.

of degrees 0,-1,1 and 1.

P3. Monoconicity in y. H o(x,JlY,z)~Ho(x,y,z)

P4. Monoconicity in z. H o(x,y,Jlz) ~ H o(x,y,z)

Strong disposability of inputs also implies monotonicity m inputs, which IS

formulated as following.

P5. Monoconicity in x. H o(JlX,y,z) ~ H o(x,y,z)

3. TRADITIONAL APPROACHES TO HEF ESTIMATION

Empirical estimation of the efficiency measures can be accomplished usmg

either nonparametric programming techniques, semi-parametric methods or

parametric frontier regressions.

The most common approach to the estimation of the hyperbolic efficiency

measures has been by nonparametric mathematical programming, namely Data

Envelopment Analysis (DEA) (see, for example, Fare, Grosskopf, Lovell and Pasurka

(FGLP), 1989 and Zofio and Lovell, 2001). An alternative nonparametric approach,

the Free Disposable Hull (FDH) technique, can also be used in HEF estimation, yet,

it did not gain much popularity as compared to the DEA technique.

4 A function F(x, y, z) is almost homogeneous of degrees kj, k;2> k3 and k 4 if and only if

F(;'/I X, ;./2 y, ,uk) z)= ;./. F(x, y) (Aczel, 1966).
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Semi-parametric and parametric frontier models necessitate an ex-ante

knowledge on the distribution of composite error terms or functional specification of

the technology, which should satisfy certain regularity conditions (e.g. Chambers,

1988). Ideally, these forms should be flexible, amendable to imposition of the

efficiency function properties (such as translation property or homogeneity) and

relative easiness of estimation (Cuesta and Zofio, 2005). Two by far most popular

parametric specifications are the Translog specification, first introduced by

Christensen, Jorgensen and Lau (1971, 1973), and quadratic specification proposed by

Fare and Sung (1986). While the literature on the nonparametric techniques of HEF

estimation is rather small, it used to be virtually nonexistent on the parametric and

semi-parametric side until recently. Yet, in the latest study Cuesta and Zofio (2005)

showed the way of incorporating almost homogeneous property of HEF into the

Translog flexible specification.

Below, I will review the most common traditional nonparametric and parametric

approaches to HEF estimation, namely the DEA and the Translog parametric frontier

regression methods.

3.1. DEAsPECIFICATIONS

Data envelopment analysis (DEA) approach to the frontier estimation gained

increasing popularity after the papers of Afriat (1972) and Charnes, Cooper and

Rhodes (1978). DEA is based on the activity analysis approach to compute efficiency

going back to von Neumann (1945), Karlin (1959) and Shephard (1970).

DEA constructs the smallest possible convex hull enveloping all of the data

points subject to the assumed returns to scale. As discussed above, each data point j

is characterized by a triplet of vectors (xr Yr z;), where x; E 91~, Yi E 91~, z; E 91: are

vector of inputs, desirable and undesirable outputs respectively. Denote the NxI

matrix of observed inputs for all DMUs by X the MxI matrix of desirable outputs by

Yand the KxI matrix of undesirable outputs by Z. The matrices X Yand Z are

nonnegative having strictly positive row sums and column sums (Karlin, 1959 and
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Shepherd, 1974). Further, let \fI E 91 1 denote an Ixl vector of intensity variables for

each of the DMUs. Then technology (1) satisfying regularity conditions A1-A9 can

be defined as

(4)

Technology set (4) defines the smallest convex cone enveloping all of the data

points. Modelling set (4) imposes globally constant returns to scale (CRS)

assumption.

Different returns to scale can be imposed by modifying constraints placed on

the intensity variables. Specifically, non-increasing returns to scale (NIRS)

technology set can be defined as

T NfRS - {( ), n/'X < IT/'Y> >0 n/'Z< n/'>O "n/ < I}- x, y, Z , T _ X, T = Y= M' T = Z, T = I' I T - ,

where i is an /xl vector consisting of ones.

(5)

Technology set (5) places an additional restriction i'\f ~ 1 on set (4) and defines

the smallest convex weakly disposable hull enveloping all of the data points.

Variable returns to scale (VRS) technology set is defined as

(6)

Technology set (6) places an additional restriction i'\fI =1 on set (4) and defines

the smallest convex hull enveloping all of the data points.

It can be easily seen that VRS set satisfies NIRS constraints and NIRS

, . f CRS N .. 1 T VRS T N1RS T CRS F d 'I dconstramts satls y ones. ot surpnsmg y, C C . or a eta! e

discussion of the returns to scale see Fare and Primont (1995).

CRS nonparametric frontier is both biased and inconsistent unless the true

technology is CRS. The same problem applies to NIRS specification. VRS

nonparametric frontier is also biased, but consistent even when true technology is

CRS or NIRS. Therefore, in this study I focus primarily on the VRS specification of

the DEA frontier.
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The consistency and the convergence rate of the DEA scores in multi-input,

multi-output setup were established analytically (see Kneip, Park and Simar, 1998).

Gijbels, Mammen, Park and Simar (1999) obtained limit distribution of the DEA

scores in I-input, I-output case depending on the curvature of the frontier and the

density at the boundary. These results were extended to higher dimensional cases by

Kneip, Simar and Wilson (2003).

Specification DEA T (REF estimation via VRS DEA: traditional approach)

Similarly to FGLP (1989), if VRS is assumed, DEA HEF score for DMU i can

be estimated by solving a nonlinear optimization problem

HgEA (Xi'Yi'Z;) =max A (7)

S.t.

(i) \}i' X ~Xi (iv) \}i~O I

(ii) \}i'Y~AYi (v) i'\}i =1

(iii) \}i' Z~-lZ
- I

Whereas nonlinear optimization IS more computationally complicated than

linear programming, FGLP (1989) also proposed to linearly approximate a nonlinear

constrain (iii) of equation (7) around A=1 resulting in the following specification.

Specification DEA LA (REF estimation via VRS DEA: linear approximation)

First order linear Taylor approximation of constraint (iii) of equation (7) around

A=1 allows to transform (7) into a linear programming problem

H DEA LA ( ) A (8)o xi' Yi'Zi =max

S.t.

(i) \}i' X ~Xi (iv) \}i'~O I

(ii) \}i'Y~AYi (v) i'\}i =1

(iii) \}i' Z~2Zi - AZ j
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3.2. PARAMETRIC SPECIFICATION

Parametric frontier regressions were pioneered by Aigner and Chu (1968).

Their study followed Farrell's idea of describing "an industry envelope isoquant" and

described a method of the frontier model estimation that constrained all residuals to

be nonpositive. For simplicity, Aigner and Chu estimated one-output, two-input

production function

(9)

where y is an output, x's denote two inputs, u is a random shock (inefficiency) and A,

a and fJ are parameters. (9) can be rewritten in logarithms to obtain

(10)

where e = In u. Aigner and Chu further assume that the shocks lie only on one side of

the production frontier, thus (10) can be solved by minimizing the linear loss function

as opposed to the sum of squared residuals as in, for example, ordinary least squares

regressions. Parameters of (10) can be estimated in the framework of linear

programming by finding A, a and fJ that solve

I

max l: [In Yi -In A - a Inx1i - fJlnx2i]
i=l

s.t.

(i) A,a,fJ?O

(ii) InYi -In A - a lnxli - fJlnx2i :-::; O.

(11)

Christensen, Jorgenson and Lau (1971) showed that a homogeneous Translog

aggregator function defined as

(12)

where "J a. = I, a .., = a.,.,"J a., =0 for j =1,..., J can gIve a second order
L...j=I} 11 }} L...j=1 jJ

approximation to any twice continuously differentiable linear homogenous function.
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Diewert (1976) used Aigner and Chu approach and Christensen, Jorgenson and

Lau finding to parameterize the Shephard's distance functions to what now is known

as Translog specification of the distance function by imposing additional conditions

on the parameters to account for the properties of the distance functions.

Traditionally, Translog specification was applied to estimate homogeneous

distance functions (see, for example, Fare and Grosskopf, 1990). HEF, however, was

purposefully avoided as it is not homogeneous of any degree. Cuesta and Zofio

(2005) extended Diewert's application to estimate a Translog-specified HEF by

using its almost homogeneity property.

In terms of this study, they defined HEF through a Translog function

lnH~L (x;,y;,z;) =
N M K

ao+ IPn lnx; +Irmlny; +ISk lnz;k
n=l m=l k=l

(13)

N M N K M K

+ IIPnm In x; lny;' +II 'nk In< lnz; +IIXmk lny;m lnz;
n=l m=l n=l k=l m=l k=l

where x(, y( and z( denote fth elements of vectors x;, y; and z; respectively.

Since HEF is almost homogeneous of degrees 0, -1, 1 and 1, the modified Euler

theorem introduced by Lau (1972) implies

Or alternatively,

K aH~L (.) Z;k M aH~L (.) y;'
I a k 'H TL ()- I a m 'H TL ()
k=l 'Z; o' m=l y; 0 •

K aIn H TL (.) M aIn H TL (.)

= I Ok - I 0 =1.
k=l aIn z; m=l aIn y;m
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Combining (13) and (1S) results

K[ K N M ]t; Ok + t;ekk, Inz;k' +~rnk In< +~Xmk Inyt'

M[ M N K ]
- ~ Ym + ~'7mm' Iny;' +~Pnm Inx;n + t;Xmk Inz; =1,

which holds if and only if

K M

Iekk, - IXmk =0 k = I..K
k'=l m=!

K M

I rnk -IPnm =0 n = I..N
k=l m=l

K M

IXmk - I'7mm' =0 m = I..M.
k=l m'=l

(16)

(17)

(18)

(19)

(20)

Spedfication TL T (HEF estimation via Translog: traditional approach)

If HEF is parameterized as in (13), then parameters of the Translog

specification can be estimated by solving the following linear programming problem

(i)

(ii)

I

min IlnH~L(x;,Ypz;)
;=1

s.t.

InH~L (Xi' y;,Zi) ~ 0

aIn H ~L (x i , y; , z; ) ~ 0
alnx;n

alnH~L (x;,y pzJ ~ 0

alny;

alnH~L(x;,ypZJ> 0
alnz; -

i =1..1

n = I..N,i =1..1

m = I..M,i =1..1

k = I..K,i =1..1
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(iii)
K M

L6k -LYm=1
k=! m=l

K M

LTnk -LPnm =0
k=l m=l

n=1..N

K M

LBkk, - LXmk = 0 k = l..K
k'=l m=1

K M

LXmk - L'7mm' = 0 m = l..M
k=! m'=l

(iv) n,n' = 1..N

k,k' = 1..K.

'7 mm' ='7m'm m,m' =1..M

(21) minimizes the linear loss function subject to the constraints that reflect the

properties of HEF, namely representation (i), monotonicity in arguments (ii), almost

homogeneity (iii) as well as ensure that the Young's theorem holds (iv).

Translog estimates of HEF scores for each data point is then estimated by

substituting the solution to (21) along with the input/output data into (13).

4. HEF ESTIMATION ON A MODIFIED TECHNOLOGY SET

In this section I will demonstrate how it is possible to modify the dataset to

enable HEF estimation using linear approximation as opposed to nonlinear

programming. Furthermore, HEF turns out to be homogenous in arguments on the

modified set.

Define a partially reciprocated technology set as

r R == {(x, y, z): xcan produce (y, z)},

where y E 9t~ is a vector consisting of the reciprocal values of y.

The output set is defined similarly to (2)

(22)

(23)

If original technology set T satisfies regularity assumptions A1-A9, then the

reciprocated technology satisfies the following.

AR3. Strong disposability of inputs. If (y,z) E pR (x) and x'~x then
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AR4. Strong reverse disposabijjty of reciprocated desirable outputs. If

(y,Z)E pR(X) and y'~y then (y',Z)E pR(X).

AR5. Hyperbojjc disposabijjty of outputs.

(e- I y,eZ)E pR(X) for all e::; 1.

AR7. Output closedness. For all x in 9t~ , pR (x) is a closed set.

AR8. Input convexity. pR is quasiconcave on 9t~, i.e. for all x,x' E 9t~ and

0::; A::; 1, pR(x)npR(x')~pR(Ax+(l-A)x').

AR9. Output convexity. For all x in 9t~ , pR (x) is a convex set.

Define an output hyperbojjc efficiency function on pR (x) as

(24)

Note that H~ looks similar to the classical input distance function (see Fare and

Primont, 1995). While the traditional input distance function finds the maximum

possible contraction of the input vector in the input space, H~ searches for the

maximum possible contraction of the modified output vectors in the (y, z) space. The

latter is equivalent to multiplication of y and division of z by the greatest number

possible while still staying inside the technology set, which is identical to the

traditional HEF. This identity is postulated in the following proposition.

Proposition 1. Ho(x,y,z)=H~(x,y,z) for all xin9t~,y,yin9t~and zin9t~,

where y and yare as in (22).

Proof: Ho(x,y,z) == sup{A: (Ay,A-1Z)E p(x)} = sup{A: (X,Ay,X1Z)E T}

= sup{A : (x, A-Iy, X1z) E T R}= sup{A : (Xly, A-1Z) E pR (x)}

=H~(x,y,z)
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Having established the identity between Ho(x,y,z) and H~(x,y,z), it IS

worthwhile to discuss the properties of H ~ (x, y, z).

pRl. Representation. H~ (x, y,z) ~ 1if and only if (y,z) E pR (x).

pRz. Homogeneity ofdegree 1 in (y, z). H~ (x, JL y, JL z) = JL H~ (x, y, z)VJL > 0 .

p R3. Monotonicity in y. H~(x,JLy,z)~H~(x,y,z) JL ~ 1.

p R4. Monotonicity in z. H~ (x, y,JLz) ~ H~ (x, y,z) JL ~ 1.

p R5. Monotonicityinx. H~(JLx,y,z)~H~(x,y,z) JL ~ 1.

While pR1, pR3-5 follow directly from Proposition 1 and the respective

properties of the H 0 (x, y, z), pRZ deserves a brief proof.

Proposition Z. (Homogeneity ofdegree 1 in (y,z))

H~ (x,JLY,JLz) = JL H~ (x, y,z)VJL > o.

= JLsuP{~: (JiY, JLZ) E PR(X)} = j.iH~(x,y,z). Q.E.D.
AI p JL A A

Given these properties, estimation of HEF on pR (x) is similar in its

methodology to the estimation of the input distance function that requires

simultaneous contraction of all inputs. Below, I will describe the methodologies for

HEF estimation on pR (x) using both DEA and Translog frontier regression methods.

4.1. DEAsPECIFICATION

The VRS estimator of the reciprocated technology set is defined as

TRVRS_~( ).UJ'X< u/'Y~<~lTJ'Z< lTJ'>O "U/-I}- ~ x, y, z . T _ x, T =y, T =Z, T = I' I T - ,

where Y is an A4x/ matrix of the reciprocated values of the desirable outputs.
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Specification DEA R (HEF linear approximation via VRS DEA on the

reciprocated set)

VRS HEF scores on pR (x) for DMU i can be approximated by solving a linear

optimization problem

s.t.

(i) \}I' X ~Xj

(ii) \}I'Y~AYj

(iii) \}I' Zgz.
- I

(iv)

(v)

\}I~Ol

i'\}I =1

(26)

Note that similarly to the estimation of the input distance function (see Fare

and Primollt, 1995), equation (26) estimates a reciprocated measure of the efficiency

score.

4.2. PARAMETRIC SPECIFICATION

Similarly to section 3.2, define HEF on pR (x) through a Translog function

N M K

a o+ LPn lnx jn+Lrm lnyjm +LOk lnz;
n=! m=l k=!

N M N K M K

+ LLPnm lnx jnlnyt +LL'nk In x; lnz; +LLXmk lnyjm lnz jk .
n=l m=! n=l k=1 m=l k=!

Homogeneity of degree 1 in (y, z) by Euler equation implies that

and consequently

Main H RTL
(.) K alnH RTL

(.)

" 0 +" 0 =1LJ al ~m LJ k '
m=l nYj k=l alnz j
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which after some simple algebra results that

Equation (30) holds if and only if for every possible data point

M K

Lrm +L6k =1
m~l k~l

M K

LXmk + LBkk,= 0 k = I..K
m~l k'~l

M K

L Pnm +L T nk = 0 n = I..N
m~l k~l

M K

L'lmm' + LXmk = 0 m = I..M.
m'~1 k~1

(30)

(31)

(32)

(33)

(34)

Spedfication TL R (HEF estimation VIa Translog on the redprocated set)

If HEF is parameterized as in (27), then parameters of the Translog

specification can be estimated by solving the following linear programming problem

(i)

(ii)

I

min LlnHgTL(xj,yj,Zj)
j~l

s.t.

InHgTL(xj'Yj,ZJ~ 0

8 In Hg
TL

(Xi' Yi' Zj) ~ 0

81nx;

81nHg
TL

(Xi'Yi' zJ ~ 0
81nyjm

81nH~TL(xi'Yj,Zj) > 0
81nz; -

i = 1..1

n = I..N,i =1..1

m = I..M,i =1..1

k = I..K,i =1..1
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(iii)
M K

LYm + Lt5k =1
m=! k=l

M K

L Pnm + L r nk =0 n = l..N
m=l k=!

M K

LXmk + LBkk, =0 k = l..K
m=1 k'=l

M K

L'7mm' + LXmk =0 m = l..M
m'=l k=1

(iv) n,n' = l.,N

k,k' = l..K.

'7mm' = '7m'm m,m'=l..M

(35) minimizes the linear loss function subject to the constraints that reflect the

properties of HEF on pR (x), namely representation (i), monotonicity in arguments

(ii), homogeneity in outputs (iii) as well as ensure that the Young's theorem holds (iv).

Translog estimates of HEF scores for each data point is then computed by

substituting the solution to (35) along with the input/output data into (28).

It is easy to see that since In Jim =-In Yim for all j and m, optimal parameters

found by (21) are identical to the solution to (35) except of 8s, p's and X's (i.e. para­

meters of the terms containing In Jim, but not (In Jim y,which differ by the sign only.

Consequently, the efficiency score estimates found by (21) and (35) are identical.

5. STATISTICAL INFERENCES

Statistical properties of the frontier estimates do not have an analytic

formulation in most of the cases (notable exceptions include, for example, early

attempts to estimate production frontiers by OLS regressions). As in other cases,

when analytic results are not comforting, bootstrap (Efron, 1979 and Efron and

Tibsharani, 1993) is an attractive alternative for making inferences.

Bootstrapping relies on the repeated simulation of the data generating process

(usually by resampling) and applying the original estimator to every simulated sample

so that resulting estimates mimic the sampling distribution of the original estimator. I

use the §.mooth homogeneous hootstrap (SHB) methodology proposed by Simar and

Wilson (1998) to obtain statistical properties of the frontier estimates. SHB was

proposed as an alternative to the na'ive bootstrap, which was shown to give
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inconsistent results in the frontier problems (Simar and Wilson, 1998). While the

naIve bootstrap draws a bootstrap sample from a discrete distribution, SHB uses

smoothing based on the kernel estimated densities of the obtained efficiencies to

draw a sample from a continuous distribution. In other words, SHB perturbs OMUs'

data around their observed values to create a bootstrap sample. Smooth resampling is

being repeated B times to obtain bootstrap samples' estimates of the original

estimators. I use B=I,OOO as Hall (1986) suggests to ensure the adequate coverage of

the confidence intervals. The bootstrap estimates are used to obtain bias-corrected

estimates of the efficiency scores, their standard errors and confidence intervals.

5.1. SHB PROCEDURE

Simar and Wilson (1998, 2007) multistep procedure for obtaining statistical

inference using SHB can be adapted for the aims of the current studies as following.

Along with the starting data on inputs and outputs for each of the OMUs, esti­

mation of each of the specifications provides one a vector of the estimated efficiency

scores, say, A= {~l ,...,~I }. Since a regular kernel estimate does not take into account

that A is bounded at 1, with any nonzero bandwidth, a regular kernel suffers from

bias in the neighbourhood of unity. Silverman (1986) proposed to solve this problem

by reflecting the values of Aby constructing a reflected matrix L = {A, 2i - A}, which

consists of the original vector Aand its values reflected around the unity. Simar and

Wilson (2007) note that A contains some spurious values equal to 1, which provides

with the spurious mass greater than 1/1at the boundary value in the discrete density

to be smoothed. These values are merely an artefact of the deterministic efficiency

analysis and may be excluded for the purpose of selecting a bandwidth.

Step 1. Calculate bandwidth, h, according to the Silverman's adaptive rule

h=1.06min{a iQr(L)}N-O
.
2 (36)

L'1.349 '

where aL is standard error of L; and iQr(L) is its interquartile range.
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Step 2. Draw a random sample B· = {P; ,...,P; }with replacements from A.

Step 3. Calculate X* = {~. ,... ,X; }as

if Pi· + hc;· ~ 1

otherwise
(37)

where c;· is a random deviate drawn from a standard normal distribution, i.e.

Step 4. As typical when kernel estimators are used, the variance of the bootstrap

generated sequence must be corrected by calculating A· = {A,~ ,..., A,~ }

(38)

where 8; is a sample deviation of A; 7T is a sample mean of B·.

Step 5. Perturb the original data {X, Y, Z} to create a bootstrap sample

{X; ,Yb• , Z; }as

X;=X, (39)

(40)

(41)

(39)-(41) projects each observation to its estimated efficient peer using the esti­

mate of the efficiency and then projects it off the frontier using a random efficiency

score drawn from the smooth kernel density estimate of the score distribution.

Step 6. Using the estimator defined by the specification being analyzed and the

bootstrap sample {X;, Yb·, Z;} as a reference set, obtain bootstrap estimates of the

efficiency scores Nb = {i:1 , ••• , i:, }for each of the original points {X;, 1';, Z; }.
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5.2. SHB STATISTICAL INFERENCE

The SHB procedure generates a set of B bootstrap estimates of the efficiency

scores {A"p...,A"B }. Then bootstrap estimated bias ofA" , Bias(A" ) is

( ~" ) 1 ~[~ ~"] ~ 1~ ~"Bias A =-L. A-Ab =A-- L.Ab·
B b=l B b=l

(42)

As usual in the bootstrap literature, I assume that the relationship between the

original sample (pseudopopulation) and the bootstrap sample mimics the relationship

between the true population and the original sample. Therefore, Bias(A" )= Bias (A),
~ ~ BC J ~BC ~BC }

which results bias corrected values of A, A = LA; ,...,Al

ABC =max{A + Bias (A} } {
~ 1~ ~"

1 =max 2A - - L. A b ,

B b=!

(43)

The max operator in (43) ensures that ABC is bounded by unity from below.

Bias corrected estimates of the efficiency scores are unbiased, i.e.

(44)

Upper bound, UB(ABC ), and lower bound, LB(ABC ), of the biased corrected

estimates' 95% confidence intervals are computed by finding the respective bounds

of A". Let A"c be a (Ex!) matrix consisting of all bootstrap estimated A"b'

b =1,... ,B. Further, let A"R be a (Ex!) matrix obtained from Nc by ranking elements

in each column from the highest to the lowest. Then, the upper bound, A"UB is the

(O.025B)th row of NR, while the lower bound, NLB is the (O.975B)th row of A"R.

Therefore,

UB(ABC )= ABC + (NUB - ~f A"b J
B b=l

LB(A
BC

)=maX{A
BC

+ (A"LB - ~f A"b)'
B b=1
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6. DATA GENERATING PROCESS AND FRONTIER COMPARISON

BENCHMARKS

In this study I assume that the true technology is known and produces one

desirable output and one undesirable output using single input. The variables along

the best practice frontier (e.g., efficient values) are related to one another by

production function

(47)

where y" is an efficient quantity of desirable output, z" - efficient quantity of

undesirable output and x- input.

I generate the quantities of x and z" by drawing three separate samples with

sizes 20, 50 and 100 respectively from a uniform distribution Xi ~ U[O,lOO],

Z; ~ U[O,lOO]. Efficient quantities of the desirable outputs are then obtained by (47).

I assume that the "true' hyperbolic efficiency score A is

(48)

where ui ~ Exp(}j), so that E[A] = jj, a reasonable scenano In the productivity

analysis literature (Gijbels, Mammen, Park and Simar, 1999).

The inefficient levels of desirable and undesirable outputs are then obtained as

(49)

(50)

where yand zare inefficient quantities of the desirable and undesirable outputs.

A good frontier estimator should be able to recover the values of the "true"

inefficiency terms {A, ,...,AJ } and, consequently, the values of the efficient peers for

each of the OMUs {(x"y;,z;~ ...,(x"y;,z;)} from the off-frontier data points

{(X"YI ,ZI } .."(x,,ypzJ )}.
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Define simulated efficient peer's triplet for DMU i (Xi'Y; ,z;) as

Xi =Xi ' (51)

(52)

(53)

Similarly to FMV (2006), the first benchmark is the average Euclidian distance

between the true efficient peers {(Xl' Y; ,z;}...,(x" Y;, z;)} and the simulated peers

{(Xl' Y; ,z; }...,(x"y;, z;)}, ~, defined as

- 1~~(. ,.)2 (. ,.)2
1l =If:: Yi - Yi + Zi - Zi • (54)

Unlike FMV (2006), who relied on the average shadow price discrepancy and

the mean Euclidean distance between the true and estimated Morishima elasticities

of substitution (Morishima, 1967), I do not rely on the derivative-based benchmarks.

Instead, I rely on the criteria of unbiasedness and efficiency of the estimators to

define the following two benchmarks.

Unbiasedness of an estimator is evaluated by the average discrepancy between

the true values of efficiencies and the estimated bias-corrected values, n(ABC
)

(55)

If n(ABC
) < 0, the estimator, on average, underestimates true efficiencies and, as

a result, the estimated frontier, on average, lies below the true frontier. If

-(, BC)n A > 0, the estimator, on average, overestimates true efficiencies and the

estimated frontier, on average, is above the true frontier. The least biased estimator

should have the smallest (in absolute terms) n(ABC
).
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Table 2-1. Descriptive statistics of the simulated datasets

DEAT DEALA DEAR I TLT I TLRIzy

N-lOO-
mean 44.2592 34.0720 76.4650 1.3659 1.2843 1.2161 1.2518 1.3406 1.3406

st. dey 29.7302 20.4642 49.2036 0.3600 0.3420 0.2293 0.3269 0.3605 0.3605

max 99.5908 86.4618 238.3247 2.4294 2.2374 1.7642 2.2353 2.3915 2.3915

mill 0.2054 1.5196 0.5488 1.0020 1.0000 1.0000 1.0000 1.0000 1.0000

time 1222.7 9.3 10.1 6.8 6.8

I Ix

N-SO-
mean 46.8064 32.5538 70.8071 1. 3772 1. 2699 1.2079 1. 2067 1.3481 1.3481

st. dey 29.5946 18.5904 44.646 0.3668 0.3352 0.2282 0.2969 0.3623 0.3623

max 94.1532 75.8103 167.9646 2.4519 2.2654 1.7026 2.1296 2.4077 2.4077

mill 1.7318 2.534 2.4549 1.0121 1.0000 1.0000 1.0000 1.0000 1.0000

time 103.9 1.9 2.0 1.4 1.4

N-20-

mean 54.8163 42.6058 84.7530 1.3461 1.1628 1.1277 1.1319 1.2015 1.2015

st. dey 30.7573 20.9900 46.4900 0.3418 0.2419 0.1777 0.2057 0.2516 0.2516

max 99.5423 85.7896 170.3358 2.0879 1. 7449 1.4781 1.6155 1.7629 1.7629

mill 5.6178 5.4295 0.6870 1.0289 1.0000 1.0000 1.0000 1.0000 1.0000

time 5.4 0.5 0.7 0.3 0.3

Efficiency of an estimator is evaluated by the mean squared deviation of the

estimated and the true efficiencies

(56)

The smallest <P(ABC
) will be demonstrated with the most efficient estimator.

7. MONTE CARLO SIMULATION RESULTS

Simulation of the data provides with series of input (X), desirable output ( nand

undesirable output (2) data along with the data on the true efficiency scores (-1.).

Estimation involving five techniques described above gives five series of the

efficiency estimates for each of the samples. Table 2-1 provides the descriptive

statistics of the generated samples and the efficiency estimates. In addition, it

documents the time taken to estimate the efficiencies using each of the techniquesS .

Note that although efficient values of Zs are generated from a uniform

distribution between °and 100, the reference set (inefficient) values are obtained by

5 Estimation time is given for the code executed in MatLab 6.0 using AMD Athlon 64 processor 1.2
GHz, 1.12Gb RAM.
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Table 2-2. Benchmarks for the bias uncorrected estimates (U) and bias corrected (Be) estimates

-
~ 0.4949 0.2719 1.0541 0.8712 0.6614 0.4169 0.1192 0.0921

n -0.0815 -0.0044 -0.1497 -0.0758 -0.1141 -0.0002 -0.0253 -0.0062

<I> 0.0141 0.0048 0.0470 0.0313 0.0276 0.0121 0.0024 0.0012

a 0.1188 0.0693 0.2168 0.1770 0.1662 0.1105 0.0491 0.0347

N-SO-

~ 1.3688 0.7764 1. 7354 1.1831 1.8082 1.0344 0.2497 0.1980

n -0.1073 -0.0066 -0.1694 -0.0765 -0.1705 -0.0265 -0.0291 0.0209

<I> 0.0203 0.0072 0.0556 0.0354 0.0474 0.0174 0.0016 0.0011

a 0.1424 0.0846 0.2357 0.1881 0.2176 0.1321 0.0394 0.0334

N-20-

~ 2.9525 2.3756 3.3736 2.6273 3.2219 2.4236 2.4351 1. 8360

n -0.1833 -0.0894 -0.2183 -0.1228 -0.2142 -0.0918 -0.1445 -0.0823

<I> 0.1086 0.0739 0.1244 0.0768 0.1193 0.0776 0.0897 0.0588

a 0.3296 0.2719 0.3527 0.2771 0.3453 0.2786 0.2995 0.2426

multiplying Zs by the efficiency scores. Therefore, the reference set values of Zs

may be greater than 100.

As expected, Translog estimates do not depend on the reference set

(unreciprocated versus reciprocated). Therefore, I will provide common statistics for

these two sets of estimates from now on. Both Translog and nonparametric estimates

are subject to downward bias in the samples of any size. In addition, one can note

that the traditional DEA estimate on the unreciprocated reference set takes 10 to 120

times longer than either its linear approximation or estimation on the reciprocated

reference set6•

To demonstrate the improvement in the estimates resulting from the smooth

homogeneous bootstrap bias correction, I present the performance benchmarks of

both the uncorrected and bias corrected estimates. These are provided in Table 2-2.

6 It's logical to expect that a 1,000 iteration bootstrap of the traditional DEA approach should take just
under 17 hours for, say, N=50. Yet, due to computational complexity of the nonlinear optimization
problems resulting in dumping of memory and the CPU overload, this bootstrap took over 30 hours.
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As the table suggests, without correction for bias Translog specification

performs very well in the large and medium-size samples, while the OEA

specification performs well in the large samples and shows relatively poor

performance in the medium-size and small samples. Nonlinear OEA specification on

the unreciprocated reference set is the most precise out of the nonparametric

alternatives before correction for bias; approximation of the OEA scores on the

reciprocated set provides with the estimates that are slightly less accurate than the

traditional OEA ones (but require less computing resources) and are more precise

than the linearly approximated ones.

Notably, nonparametric bootstrap methods developed for the nonparametric

OEA estimators demonstrate good performance when applied to the parametric

Translog estimator. This is largely due to the fact that the SHB's difference from the

traditional bootstrap techniques is in accounting for the existence of the frontier-a

fact independent of the estimation technique.

Figures 2-2 through 2-13 depict HEF (uncorrected and bias-corrected)

estimates against true efficiency scores for various sample sizes. The 45 degree line

indicates the exact estimation. If a diamond of a particular OMU is located above the

45 degree line then the efficiency score for that OMU is overestimated by the

estimator and is underestimated otherwise. In addition, they also depict UB and LB

of the bias-corrected estimates against true HEF scores. An ideal estimator should

provide with the upper bound values above the 45 degrees line and the lower bound

values below the line.

The diagrams suggest that all OEA estimators as well as the Translog

parametric estimator underestimate the true efficiencies in samples of any size. In

addition, it can be clearly seen that the OEA LA estimator, while accurate enough in

estimating efficiencies of relatively more efficient OMUs, does not perform well in

estimating efficiencies of the OMUs located further from the frontier. This finding is

not surprising as the OEA LA estimator linearly approximates HEF around unity ­

i.e. the best practice frontier.
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The diagrams demonstrate that the DEA estimator on the unreciprocated

reference set is the most precise of the nonparametric ones. Yet, it may be more

suitable to use a linear approximation of DEA estimator on the reciprocated reference

set, which is marginally less precise but is substantially less computationally

demanding. Depending on the sample size, this estimator requires up to 120 times

less computational time than the traditional nonlinear DEA HEF estimator.

The Translog parametric estimator clearly outperforms the nonparametric ones

in terms of both the Euclidian distance benchmark and deviations of the estimates

from the true efficiency scores. The Translog specification shows marginally worse

results in terms of the average bias than the traditional DEA specification.

As it follows from the diagrams, most of the accuracy loss in very small samples

occurs because of the relatively bigger part of the sample being on the estimated best

practice frontier.

The smooth homogeneous bootstrap allows for obtaining a set of bias-corrected

(Be) efficiency scores, along with their confidence intervals represented by the upper

and lower bounds (UB and LB respectively) for each DMU and each estimation

technique. Even in small samples all estimators correctly identify confidence

intervals for almost all DMUs. Notably, LBs are below the true efficiency scores for

all estimators and for each DMU regardless of the sample size. UB is often

incorrectly identified for very inefficient DMUs. Specifically, DEA LA estimator

particularly suffers with underestimating UBs for very inefficient DMUs.

Unsurprisingly, the only approach that gives realistic results in terms of the

upper and lower bounds is the Translog parametric. On the nonparametric side,

DEA technique on the unmodified reference set gives the most realistic confidence

intervals. For the medium size sample, 44 out of SO estimated confidence intervals

include the true efficiency scores and the rest of the confidence intervals somewhat

underestimate the true scores. The modification of the reference set leads to some

loss in the goodness of the fit of the DEA approach with 38 out of SO confidence
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intervals including the true efficiency scores, 2 overestimating the true scores and 10

underestimating them. The traditional linear approximation technique provides

realistic confidence intervals when the true efficiency scores are low, yet suffers from

a substantial downward bias when the true scores are high.

8. CONCLUSIONS

In this paper I have reviewed the popular frameworks for estimating the

production frontiers when some outputs are undesirable via the Hyperbolic

Efficiency Function - a hybrid of traditional efficiency measures that allows for

treating desirable and undesirable outputs asymmetrically. The inherent downward

bias of the frontier estimators was addressed by using the smooth homogeneous

bootstrap technique - a variation of the conventional bootstrap that takes into account

the existence of the frontier. Bootstrap bias-corrected estimates of the efficiency

scores and the respective confidence intervals were tested against three benchmarks

and the true efficiency scores. Notably, I find that the smooth homogeneous

bootstrap originally designed for the nonparametric framework can be applied to

parametric problems to substantially improve their estimates' fit.

Unsurprisingly, both parametric and nonparametric techniques gIve similarly

accurate results in large samples both before and after bias correction. Reducing the

sample size causes accuracy loss for all estimators. Notably, I find that in medium

size samples DEA estimators lose much accuracy both before and after bias

correction.

In very small samples both parametric and nonparametric estimators do not

perform accurately, primarily due to the larger proportion of DMUs being on the

estimated best practice frontier. It turns out that while bias correction procedure can,

with relative accuracy, cure the off-frontier DMUs' bias, it demonstrates poor

performance when dealing with the incorrectly estimated efficient DMUs.

Interestingly, I find that in very small samples the smooth homogeneous bootstrap
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bias correction performs equally well (if not better) when applied to the parametric

estimator as opposed to the DEA estimators.

Despite being relatively inaccurate in small samples, all estimators provide

correct confidence intervals for relatively efficient DMUs, but often underestimate

the upper bounds of the confidence intervals for relatively inefficient DMUs.

I propose an alternative approach to nonparametric DEA estimation of the

linearly approximated hyperbolic efficiency. This is a way to avoid computationally

demanding nonlinear programming which may be especially crucial when a large

sample and/or multiple iterations are involved. The proposed approach performs

substantially better than the previously proposed linear approximation estimator

based on the first order linear approximation about the frontier. Most of the

performance gain is achieved for the least efficient decision making units.

I conclude that the bias-corrected Translog parametric estimator should be

preferred to the uncorrected Translog estimator due to the smaller inward bias of the

former. An additional advantage of this estimator - its differentiability - makes it

particularly attractive for studies involving shadow prices estimation.

In studies which require nonparametric estimators, traditional bias-corrected

DEA estimates provide a relatively good fit, but require substantially more

computing resources. The computational time may be significantly reduced by

modifying the reference set and sacrificing the precision marginally.

Finally, I would like to point out that the results of this paper were based on the

deterministic data generating process and can be extrapolated only to the

environments when statistical noise is either absent or can be neglected. Performance

of the SHB in a stochastic environment may differ from the one in deterministic

environment and can be a subject of future studies.
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Abstract

I study the effects of nontradeable emission quota and transferable emission quota systems on the
accumulation of capital and output growth in small open economies. As in other papers, I find that
both types of regulation impede the growth. However, I further find that the transferable emission
quota system has different effects on the development of quota buyers and quota sellers. While quota
buyers enjoy faster growth in the both capital stock and economic output as compared to the
nontransferable quota system, quota sellers face slower capital accumulation and economic growth.

I estimate the input distance function yielding the production frontier and inefficiency parameters
using the cross-sectional data on output per capita, CO2 per capita and capital per capita. I then
implement a dynamic simulation using this information to characterise the magnitudes of the effects in
the theoretical model. The simulation reveals that developmental consequences for quota sellers
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will substitute economic production for quota trade revenues and that economic output will fall over
time.
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1. INTRODUCTION

In recent years, it has become increasingly apparent that the problem of global

climate change and the related issue of greenhouse gases (GHG) emissions may be

one of the biggest challenges humankind has ever faced. The Kyoto Protocol (KP) is

the largest scale attempt to take on this challenge. It is an amendment to the United

Nations Framework Convention on Climate Change (FCCC) adopted at the third

FCCC conference of the parties (COP) in 1997. The Kyoto Protocol assigns volunta­

ry emission targets (also known as assigned amounts) as a fraction of the emission

level in the base year (1990 for most of the KP parties). The assigned amounts are

imposed on the Protocol's Annex B' countries comprised of 39 industrialized OECD

economies as well transitional post-communist economies of Central and Eastern

Europe. To help the parties to achieve their commitments, the Protocol defines so

called flexibility mechanisms, a set of three clauses that allow the parties to reach

their target by using means other than directly via cuts of their emissions, thus

reducing the overall costs of meeting the targets. The mechanisms consist of

Emission Trading, Joint Implementation and Clean Development Mechanismsz.

This paper concerns mostly the Emission Trading mechanism that allows An­

nex B3 countries that emit at the level below their assigned amounts to sell the ba­

lance of their emission quotas (KP, Article 7). The trade system setup was finalized

by the Marrakech Accord, the outcome of the COP-7 in 2001. The Accord frames the

emission trade in terms of the assigned amount units (MUs), which is an equivalent

of physical reduction of the GHG emissions by one ton of COz equivalent4. The

1 The terms FCCC Annex I and KP Annex B are often used interchangeably. These lists are identical
except of Belarus and Turkey, who were not parties to the Convention when the Protocol was adopted.

Z For a detailed discussion of the KP framework and the flexibility mechanisms, see Barrett (1998).

3 The notable exceptions include US and Australia, which are Annex B countries that declined to ratify
the Protocol. Therefore they are not allowed to trade their credits under the treaty conditions.

4 The KP sets assigned amounts for six GHGs that differ in their global warming potential. To allow
for adequate calculation of total reductions, all gases are commensurated in terms of the global
warming potential of COz, the most common GHG. One tonne of COzequivalent is an amount of a
GHG that has the same global warming potential as one tonne ofCOz.
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Accord discourages the use of the emission trade revenues for purposes other than the

further abatement of greenhouse gases pollution, but does not prohibit it.

As trade is allowed between Annex B countries only, it is expected that the

transitional countries of Central and Eastern Europe will sell permits in the first

commitment period (2008-2012) as most of them are still below their base year

pollution levels due to the economic crisis in the region during the 1990s. It is also

expected that in the second commitment period, when the targets will become more

restrictive for these countries, they will still sell pollution permits.

This paper analyzes an international pollution permit trade model similar to the

Kyoto Protocol and simulates the trade process based on real-life data. Two types of

environmental treaties are studied: a simple emission cap system and a cap-and-trade

system. Both the theoretical model and the simulation exercise show that in the

regulated environments, capital will be accumulated slower in all countries, resulting

in slower economic output growth. However, for pollution permit buyers, a cap-and­

trade system will result in faster capital accumulation and output growth if compared

to a simple cap system. In contrast, pollution permit sellers will face a slower (and

occasionally even negative) capital accumulation and output growth if the

transferable emission quota (TEQ) trade system is in place.

The model is inspired by so-called green growth models on one hand (see

Forster, 1973; Stockey, 1998 and Brock and Taylor, 2004) and general equilibrium

models of environment and trade on the other hand (see Pethig, 1976; Copeland and

Taylor, 2004 and 2005). As in Copeland and Taylor (2005) I analyze small open

economies under an international TEQ trade system. My study differs in a number

of ways, however. Firstly, my main focus is on the effect of this system on the

development of the economies, namely economic output and capital accumulation

dynamics. Secondly, I approach the problem from a dynamic perspective by allowing

for technological progress. Finally, I simulate the model using real-life data to

estimate the magnitude of the TEQ trade effect on economic output and capital

accumulation.
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The model will be formulated in Section 2. Section 3 will contain the solution.

Discussion of the simulation procedure and results will be provided in Section 4.

Section 5 will conclude.

2. MODEL SETUP

I assume a world consisting of small open economies. In time period teach

economy j produces economic output, Y; and environmental pollution, Z; using

capital, K Although pollution is an undesirable by- product of economic output, it is

often treated as one of the factors of production (see Copeland and Taylor, 2005 and

Ishikawa, 2006 for examples). The intuition behind it is that the abatement

technologies consume economic resources (Copeland and Taylor, 2005). There exists

output augmenting technical change common for all economies, A, normalized to the

initial period. Capital stock consists of the undepreciated portion of the previous

period capital and the current period investments, 1

~i =A///(K:,Z:)

At = (1 + 17 )At_, = (1 + 17Y

K: =(1- 5)K:_1 + I:

(1)

(2)

(3)

where technological progress rate 11>0, and depreciation rate 0>0. From now on, I

will suppress subscripts and superscripts unless they differ within a single equation or

a system of equations.

¢ is a 91: ---+ 91+ monotonically increasing In capital, strictly concave and

continuously twice differentiable in both arguments function that mayor may not be

different across economies. I depict projections of on (Y, K) and (Y, Z) spaces on

Figure 3-1 (for illustration purposes A is normalized to 1). Concavity in Z may be

interpreted as an increasing marginal abatement cost of pollution phenomenon, a

common assumption in many environmental economics texts.
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Figure 3-1. Projections of ¢ on a) ( Y,K) and b) ( Y,Z) spaces. A is normalized to unity.

I impose a standard assumption from the productivity analysis of polluting

technologies literature (e.g. Fare, Grosskopf, Noh, and Weber, 2005). Specifically,

'11K' > 0 3Z' > O,:¢z(K',Z')= O. (4)

Note that concavity implies ¢z(K',Z»O if Z<Z' and ¢z(K',Z)<O if

Z > Z'. Naturally, a rational decision making unit (DMU) will not be located on the

negatively sloped portion of the boundary, since the same amount of economic

output may be produced with smaller level of pollution (see Figure 3-1 for

illustration).

¢ZK is positive on the domainS, i.e. capital and pollution are assumed to be

complements in the production process. If this is not the case, no caps are needed to

limit the pollution level down: as capital stock increases, optimal pollution level will

decrease, which decreases importance of environmental regulation. While assuming a

negative ¢ZK would not be unrealistic in general, it would be quite strange to expect

that a supranational authority would encourage such a country to be involved in an

environmental treaty, where it would be able to earn emission trade revenues without

any abatement efforts, i.e. by selling so called "hot air".

5 This condition is satisfied for standard production functions including Cobb-Douglass and Constant
Elasticity of Substitution production functions.
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¢ satisfies the conventional ''no free lunch II condition and limit conditions:

¢(K,O) = ¢(O,Z)= 0 VK,Z ~ 0, (5)

(6)

I assume that consumption (C), global pollution (Z) and locally produced

pollution are perfectly substitutable6 in the preferences of societies:

(7)

where (J.i is the shadow price of emissions for country 1; which can be interpreted as

the internal valuation of a pollutant by a society (Salnykov and Zelenyuk, 2005) or as

a revealed social preference of a given society with respect to pollution, ei
- shadow

price of the global pollution. These shadow prices is time invariant for each country,

but vary across countries. Undoubtedly, in reality shadow prices will depend on

many factors, such as the level of pollution or the wealth of the country and may

change over time. Nevertheless, the factual observations suggest that these changes

occur very slowly and may require a change of generations.

Note that by allowing separate valuation of global and local levels of pollution I

separate disutilities resulted by the global scale effect of pollution (such as global

climate change) and the local scale effect (e.g., health effect or even feeling bad that

one's country pollutes much).

Each country produces a small share of the global pollution. Therefore, Z IS

taken by each country as given.

Tw07 small open economies Band S enter an agreement that is intended to

limit their joint emissions. At the time of signing the treaty the countries are

characterized by {Z~, K~, as} and {zg, Kg, as}. The countries agree to allocate

6 Weak seperability of tastes across the set of consumption and pollution is a common assumption in
the public economics literature (see Copeland and Taylor, 2005). Assuming perfect substitutability is
more restrictive, however. I will elaborate on it below.

7 Later we will extend the model to an arbitrary number of the treaty participants.
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TEQ allowances (ZBand Zs) usmg the grandfathering principle, specifically

ZB = Z: and ZS = Z;. Any amount of quotas q may be sold by one country to the

other at a price p established by the competitive market. The seller cannot emit

more than Zi - q and the buyer cannot emit more than Zi + q.

The countries devote their economic output to consumption, investment in the

capital stock and quota purchases:

A¢(K, Z) 2: C + I + px, (8)

where xis a demand for quotas by a given country.

Note that (8) implies that if country is a quota seller, then its income (a total of

economic output and trade revenues) would be distributed between consuming and

reinvesting into capital.

The decision maker is taken to be a periodically elected governing structure.

Therefore, its choices in each period are aimed on maximizing the current period

social utility only.

Finally, I assume that capital stock and emission levels are at their long-run

equilibrium values in the initial period.

Although some of my assumptions seem untraditional or too restrictive (e.g.

myopic central planner, restrictions on the production function, etc.), in these cases I

sacrificed generality or conventionality to make the model more congruous with

reality.

3. SOLUTIONS TO THE MODEL

I solve the model in two benchmark frameworks: business-as-usual (BAD) and

non-transferable quota (NTQ) environment. Then I compare the competitive

market equilibrium TEQ solution to the benchmark outcomes.
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3.1. BUSINESS AS USUAL

Each country solves

max {Ct - Bit - (jiZ: }
K"Z,

s.t.

(9)

(i)

(iii)

A/jJ(Kt , Zt ) ~ Ct + It

Kt = (1- c5)Kt_, + It

(ii)

(iv)

. h .. d Z S l' {K BAU ZBAU} • fWit no constralOts impose on t' 0 utlOns I , t satis y

(10)

Here, (10) implies that both Kt
BAU and Zt

BAU are increasing over time. Naturally,

. yBAU •• • 11economiC output t is lOcreaslOg as we .

3.2. NON-TRANSFERABLE QUOTAS

If the quotas are assigned using the grandfathering rule, but cannot be traded,

then each country solves

max {Ct - Bit - (jiZ:}
K"Z,

s.t.

(11)

(i)

(iii)

A/p(Kp ZJ ~ Ct + It

Kt = (1- c5)Kt_, + It

(ii)

(iv)

(v) Ct ,Kt,It ~ O.

with solutions {K:TQ ,Z:TQ }satisfying

(12)

Here, (12) implies that K:TQ is increasing over time while Z:TQ is time

invariant. Naturally, economic output ~NTQ is increasing as well.
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3.3. TRANSFERABLE EMISSION QUOTAS

Ifquotas can change hands, each country solves

max {Ct -Bit -aiZ:}
K(,Z"x,

s.t.

(13)

(i)

(iii)

(v)

A/P(Kt,Zt ) ~ Ct + It + PtXt

Kt = (1- S)Kt_, + It

(ii)

(iv)

Optimal demand for quotas x' by a given country satisfies

M k 1 " " I" 'B 's d 1ar et c eanng Imp Ies x =-x =q an consequent y

(14)

(15)

Note that (15) is a modification of the factor price equalization theorem by

Samuelson (1949), where the factor has intrinsic value to the society.

Without loss of generality, I assume that x 'B ~ 0, i.e. B will buy TEQs while S

will sell them. The number ofTEQs that change hands will be q.

(15) is an implicit function of q, A, K B and K S
, where

aq >0'
aA '

~>o·
aK B

'

(16)

(17)

Proposition 1. For the TEQ buyer, quota trade will imply accumulation of

capital and output growth above the NTQ level, but below BAD level.

Proof:

See Appendix 1.
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Proposition 2. For the TEQ seller, quota trade will imply accumulation of

capital and output growth below the NTQ level.

Proof:

See Appendix 1.

Corollary (the Kurse). Introduction of the tradable emission quotas will lead to

faster development of quota buyers and slower development of quota sellers as

compared to the nontradable quota system.

The main conclusion of the model is that transferable emission quotas trade will

hamper economic development, specifically capital accumulation, in the quota selling

countries, while buyers will enjoy a higher rate of economic development as

compared to a simple cap regulation. I call this effect the KyotoS curse or the Kurse

for short9.

It should be emphasized, however, that although the model uses a two party

pollution permit trade treaty, the conclusions are valid for any multilateral treaty.

The competitive market equilibrium will then satisfy

N

l>i =0.
i=1

Vi = l..N (18)

where Nis the number of parties in the treaty.

In this case, for any country with Xi > 0, Proposition 1 will apply, and for any

country with Xi < 0, Proposition 2 will be valid. In other words, any party to the

treaty selling permits will experience slower development than in the case of a simple

cap system, while any buyer will enjoy faster development.

8 The Kyoto Protocol sets the international permit trade system with the initial quota levels (i.e.
assigned amounts) established using the gradfathering principle. This setup may lead to the
underdevelopment of the quota selling countries as the model suggests.

9 One can also think of this name as the capital (K) underaccumulation curse, or the K-curse. The
original idea of the name belongs to Dr. Nancy Olewiler.
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It should be also noted that my study did not analyze welfare effect of the

emission trade. As a matter of fact, decisions on the amounts of the quotas bought or

sold are based on the utility maximization problems, so countries are becoming better

off (at least within a short time span). However, such behavior may harm the future

generations as they inherit low capital stock after the treaty comes to an end.

All the way through my analysis I purposefully avoided many (quite realistic)

complications. Specifically, contrary to state-of-art papers I analyzed a single sector

economy rather than a l-clean-l-dirty-good economy to enable simulation using real­

life data. I also did not explicitly assume existence of an abatement technology. I do

recognize, however, that a potential shift in specialization to cleaner goods and more

intensive abatement processes will definitely play an important role in the countries'

commitment to meet their emission targets. Yet, this specialization change is more

likely to occur in the long run rather than in the short run. Complication of the

theoretical model to allow for these modifications would be a logical extension of the

current paper.

To assess the magnitude of the Kurse for quota buyers and sellers, I simulate

my model using real life data.

4. SIMULATION

The model involves two exogenous variables - 8 and 11 - common for all

countries. In addition, country specific 1/0 and (J"i are assumed to be exogenous.

Values of shadow prices are estimated based on the estimated functions ¢/O as

(19)

To estimate the production function, 1/0 I rely on tools from the literature on

productivity and efficiency analysis. A short exposure into the fundamentals of this

field is given in Appendix 2.
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The productivity analysis literature shares an understanding that all DMUs

(firms, countries, etc.) have an access to the same technology. However, the level of

access differs across the units, which results in a different efficiency, i.e. distance of a

given DMU to the best practice frontier. In terms of the present study it can be

interpreted as all countries sharing the same best practice frontier, but some are less

efficient than the others in producing economic output with the least amount of

capital and pollution, which is translated into a different distance to the frontier across

countries.

Efficiency IS traditionally measured by Shephard-class efficiency measures

(Shephard, 1970), such as the input .distance function (lDF) and the Qutput .distance

function (ODF). It has been shown that under relatively weak assumptions about the

technology, both IDF and ODF are complete characterizations of technology (Fare

and Primont, 1995)

Specifically, Fare and Grosskopf (1990) and Fare, Grosskopf, Lovell and

Yaisawarng (1993) demonstrated how the approach of Aigner and Chu (1968) can be

used to estimate the IDF and ODF. In this paper, by estimating the IDF, I obtain a

parametric estimate of an implicit function relating economic output, capital and

emissIOns.

The choice of IDF over ODF requires some elaboration. The ODF measure

expands an observation radially as much as technologically possible in the output

space, while IDF contracts the observation radially in the input space (Fare,

Grosskopf and Lovell, 1994). While IDF will always project the observation on the

portion of the best practice frontier, where economic output is produced with the

smallest capital and emissions, ODF may expand the observation to the point on the

frontier that is economically irrational to be at. Figure 3-2 provides an illustration of

the argument. If A is an observed combination of economic output and pollution

{Y,Z}, the ODF scales it up in the economic output space to the efficient peer

~* ,z}, where e* is the ODF score for observation A. The ODF score will seek for
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Figure 3-2. IOF projection vs OOF projection: A# denotes the IOF measure for observation A; e#­
the OOF measure.

the largest technologically feasible expansion of the economic output given the levels

of K and Z The IDF contracts the observation down in the (K, Z) space lO to the

efficient peer {y,~* }, where 2* is the IDF score for observation A. The IDF score

will search for the largest technologically feasible proportional contraction of K and Z

given the level of Y. As the diagram suggests, when the technology is polluting, the

ODF may yield an efficient peer that is located on the technologically efficient, but

economically irrational part of the best practice frontier, while the IDF will always

result an efficient peer to be both technologically efficient and economically rational.

Therefore, given assumption of the rationality of DMUs, I conclude that IDF is

a better choice of modelling a polluting technology.

Shephard IDF is defined on the technology set T, which is in my case

T == {(Y, K,Z): Y E 91+ can be produced given K E 91+ and Z E 91+}. (20)

10 For the purpose of illustration I depict ¢(K', Z) =¢(Kh * ,Z), but in general, contraction of K

will yield a best practice frontier not above an old one, so the justification will still hold.
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Then the IDF is defined as

D/(Y,K,Z)=SUP{A >o:(y, ~, ~)ET}. (21)

The IDF is a measure of the distance of a given observation towards the best

practice frontier in the (I(, Z) space. It was shown by Fare and Primont (1995) that if

the technology set, T, is regular, then IDF is nonincreasing in outputs and

nondecreasing in inputs, homogeneous of degree 1 in inputs, is equal to unity if the

DMU is on the frontier and is commensurable (independent of units of measurement

up to a scalar transformation) as defined by Russell (1987).

The econometric estimation of frontier functions was pioneered by Aigner and

Chu (AC) (1968). By following Farrell's (1957) idea of describing "an industry

envelope isoquant", they described a method of estimating the frontier model that

constrained all residuals to be negative, a full frontier model. For simplicity, AC

estimated one-output, two-input Cobb-Douglas production function

(22)

where y is an output, XI and X 2 are two inputs, u is a random shock and A, a and ~

are parameters. The authors rewrite (22) in logarithms to obtain

e =-In A + In y - a In X I - .B In X 2 ,

where e =Inu.

(23)

AC argue further that since the shocks lie only on one side of the production

frontier (i.e. e::; 0), (23) is easily solved by minimizing the linear loss function (rather

than sum of squared residuals as was done previously by OLS studies) within the

framework of linear programming by finding A, a and ~ that solve
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N

maxl:[lnyn -lnA-alnx1
n -,Blnx;]

n~l

s.t.

(24)

(i) A,a,,B?:.O

(ii) Inyn-lnA-alnx;-,Blnx;:-:;O Vn=l..N.

Later Christensen, Jorgenson and Lau (CJL) (1971) showed that if a

homogeneous Translog aggregator function of vector x E 9\ K is defined as

K K

where l:ak = 1, l:,Bjk = 0 and ,Bjk = ,Bkj for all j,k = l..K,
k~l k~l

(25)

then it can give a

second order approximation to any twice continuously differentiable linear

homogeneous function.

Diewert (1976) used AC approach and CJL finding to parameterize the

Shephard's distance functions to what now is known as Translog specification of the

distance functions by imposing additional conditions on the parameters to account for

the properties of the distance functions. This approach was later used in the

aforementioned studies of Fare and Grosskopf (1990) and Fare, Grosskopf, Lovell

and Yaisawarng (1993) to estimate IDF and ODF respectively.

In the spirit of the previous works, if the IDF is parameterized by a flexible

functional form

(26)

+ y1lnYInK + Y2lnYlnZ + Y31nKlnZ,

then the parameters of (26) can be estimated by solving
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N

min ~)nD[(yn ,Kn,zn)
n=l

s.t.

(27)

(i)

(ii)

(iii)

InD[(yn,Kn,Zn)~O Vn=l..N

81nDJyn,Kn,zn) ~ O. aInDJyn,Kn,Zn) ~ O. 81nD[ (yn ,Kn,zn) ~ 0
8lnyn '8lnKn ' 8lnZ n

a2+ a3= I; /32 + /33 + r3 = 0; rl + r2 = 1.

where n denotes the DMU number and N is the total number of the DMUs being

analyzed. The first constraint requires observations to be technologically feasible;

second - imposes regularity conditions on T; third - enforces homogeneity of degree

N N

+1 in inputs. Note that IlnD[(.)= I[lnD/)-lnl], i.e. (27) is equivalent to
n=l n=l

finding parameters that minimize the sum of all deviations from the frontier. (26)

represents a production function shared by all DMUs scaled down in the (K, Z) space

by a country-specific efficiency score D[ (yn, K n,Zn )~ 1.

It is worth pointing out that the estimates of (26) obtained by (27) are ML if

the disturbance is assumed to be half-normally distributed (Greene, 1980).

Unfortunately, statistical properties of the estimates of (26) do not have an analytic

formulation. As in other cases, when analytic results are not comforting, bootstrap

(Efron, 1979 and Efron and Tibsharani, 1993) is an attractive alternative for making

inferences. Bootstrapping relies on the repeated simulation of the data generating

process and applying the original estimator to every simulated sample so that

resulting estimates mimic the sampling distribution of the original estimator.

I use the ~mooth homogeneous Qootstrap (SHB) methodology proposed by

Simar and Wilson (1998) to obtain statistical properties of the frontier estimates. SHB

was proposed as an alternative to the naive bootstrap, which was shown to give

inconsistent results in the frontier problems (Simar and Wilson (SW), 1998). While

the naIve bootstrap draws a bootstrap sample from a discrete distribution, SHB uses a

smoothing module based on the kernel estimated densities of the obtained efficiency

scores to draw a sample from a continuous distribution. In other words, SHB perturbs
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(29)

DMUs' data around their observed data to create a bootstrap sample. Smooth

resampling is being repeated many times (in my case, 1,000 as Hall (1986) suggests to

ensure the adequate coverage of the confidence intervals) to obtain samples'

estimates of the original estimator (27). The bootstrap estimates are then used to

obtain biased corrected estimates of parameters in (26), their standard errors and

confidence intervals.

I identify that if a traditional SW smooth homogeneous bootstrap is used in the

parametric framework, some estimated variances of some parameters seem to be

unrealistically low. Therefore, SHB is executed in two variations: a traditional SW

bootstrap and, what I call, a cautious SHB bootstrap, which provide with more

realistically looking parameters' variances. Appendix 3 provides discussion of the

SHB algorithm, the bias-correction and the confidence interval estimation procedure,

as well as explains the difference between the SW and the cautious alternative.

Once one uses (27) to obtain the estimates of the parameters in (26)

S = {ao,al'a2,a3,,81',82,,83,r,,r2,r3}, they are used to calculate country-specific

estimates of the IDF scores. Therefore, an IDF estimate for country i, i*i IS

i*i = exp[ao+ a, In yi + a2In Ki + a3In Zi (28)

+,81 (lnyi y+,82 (InKiy+,83 (InZiy
+ rllnyi InK i + r21nyi InZi + r3 1nKi InZ i],

The IDF score estimates are then used to estimate the individual countries'

production functions, /// (.).It is given by the implicit function:

lao -lni*i J+allnY +a21nK +a31nZ

+,81 (In YY +,82 (InK)2 +,83 (InZY

+ r I In YIn K + r 2In YIn Z + r3In K In Z =0 .

(29) can be interpreted as follows: all countries share the same best practice

frontier, but the country-specific distance to this frontier determines their individual

time invariant production function.
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The final parameter of the model estimated using data is the shadow price of Z

Graphically, shadow prices can be interpreted as a slope of the production function in

the (Y, Z) space. Given parameterization of the production function (26), shadow

price of pollution for individual OMUs are estimated according to Fare and Primont

(1995) by applying the implicit function theorem.

Ai ali/az a3+2,B3InZi+Y2Inyi+Y3InKi yi
(j =- =- .-

ali/ay al +2,Bllnyi +YI lnKi +Y2 1nZi Zi
(30)

I use data in per capita terms on GOP (n capital stock (K) and CO2 pollution

(Z) on 81 countries in 1995 11 . Table 3-1 provides descriptive statistics on the data set.

Table 3-2 presents the estimated values of the parameters, bootstrap hias

£orrected (BC) parameter estimates of (26)12 obtained using the standard SW

approach (SW, the first line for each parameter) and a £autious £!Jternative (CA, the

second line) as well as the bootstrap estimated standard errors. Figure 3-3 provides

graphical representation of the findings. Each pair of candles provides bootstrap

estimated statistics for the SW approach (filled bodied candles) and the alternate

approach (hollow bodied candles). The candles are centered around the bias

corrected estimates of the parameters (marked with diamonds, .); the bodies denote

95% confidence intervals and the tails the extremes of the deviations from the bias

corrected values. The uncorrected values of the parameters are drawn as solid lines.

As the table and the figure suggest, the standard SW approach results estimated

variations of parameters related to Y as well as all cross terms seem to be

unrealistically low. The reason for that is that Simar and Wilson designed the

approach having a nonparametric framework in mind, where the estimates of the

efficiency scores rather than the underlying parameters were the major interest.

Therefore, the traditional approach creates bootstrap samples, where (I(, Z) duplets

are stochastic, but Y's and K/Z ratios are deterministic. In the cautious alternative

II The set was collected and discussed by Salnykov and Zelenyuk (2005).

12 The estimated frontier IOF satisfied convexity in Yin all observations and quasiconcavity in (K,z)

in 55 of SI observations. Although it was not modeled for explicitly, ¢KZ > 0 for aliSl observations.
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Table 3-1. Descriptive statistics of the dataset and estimates of the IDF and shadow prices

Units Mean Max Min St.dev.
y US$l,OOO l6.7945 80.2777 0.2249 22.0875

K US$l,OOO 2.06l5 l2.2794 0.Ol20 3.0042

Z metric tons lO.8655 59.092l 0.0l49 lO.335l

l l.7387 3.2042 l.OOOO 0.4752

(J' US$l,OOO/ton 0.5443 2.7552 3.7 e-ll 0.5330

approach I sample both K/Z ratios and Ys. As a result, the variances of the estimates

increase. The alternative bootstrap standard errors are much larger and I take them

as cautious. Moreover, as the diagram suggests, the SW bias-corrected estimates of

the parameters lie within the 95% confidence intervals of the alternate approach

estimates for almost all parameters.

Confidence intervals are asymmetric around the bias corrected values because

SHB draws a bootstrap sample from the asymmetric distribution of efficiency scores.

In the simulation exercise I use the cautious approach bias-corrected estimates;

however both sets of estimates were tried and I discovered that the simulation results

do not differ qualitatively.

The parameters are then used to obtain estimates of the IOF and shadow prices

of CO2 emissions for every observation. The descriptive statistics for these estimates

(the IOF is unlogged) are given in Table 3-1. The statistics show that, on average,

countries have a technical ability to decrease their CO2 pollution and capital stock by

44% without decreasing their GOP. The most inefficient country in the sample

(Azerbaijan) can potentially decrease emissions and capital by 69% and remain on the

same economic output level. Social willingness to pay for a reduction of CO2 emis­

sions varies from $2,755 per ton (Sweden) to virtually nothing (Turkmenistan). An

average country is willing to forfeit $544 of consumption to abate a ton of CO2 emis­

sions. The results generally support the findings of Salnykov and Zelenyuk (2005)

that developed countries generally have higher valuation of environmental pollution.
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Table 3-2. Parameter estimates, bias corrected parameter estimates and their standard errors

Value
SHB BC

St. err.
tYpe value

SW 1.3209 0.1834
a o 1.0724

CA 0.3056 0.4077

SW -1.0368 3.3e-l0
a j

-1.0316
CA -0.8699 0.1385

SW 0.7006 0.0339
a 2

0.6529
CA 0.3378 0.2152

SW 0.2994
a 3

0.3471
CA 0.6622

SW 0.0146 5.8e-11

131 0.0127
CA -0.0047 0.0157

Value
SHB BC

St. err.
type value

SW 0.1000 4.6e-11

132 0.1000
CA 0.0780 0.0255

SW -0.0847 5.ge-11

133 -0.0850
CA -0.1139 0.0250

SW -0.1513 9.6e-11
y, -0.1516

CA -0.1127 0.0464

SW 0.1513

Y2 0.1516
CA 0.1127

SW -0.0153

Y3 -0.0147
CA 0.0411

Note: Value - an estimate from the original sample before bias correction; BC value - bias
corrected estimates of the parameters; St.err. - standard errors. For each parameter the
first line indicates the value for the traditional SW approach, the second - for the
cautious alternative (CA).

02
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o ------- .
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I

•
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•
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Figure 3-3. Box plots of the parameters' statistics. The body of each candle depicts 95%
bootstrap estimated confidence intervals; tails show the highest and the lowest bootstrap
estimated deviation from the parameters' bias corrected values marked with diamonds (.).
Initial estimates of the parameters (before bootstrap bias correction) are drawn as solid horizontal
lines. Solid bodied candles denote original SW approach bootstrap; hollow bodied candles ­
cautious alternative.
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I simulate international COz permit trade among 31 Kyoto Protocol Annex B

countries. Pollution caps are set to the initial period and I assume relatively low

economic progress (11=0.01) and depreciation (&=0.05)13. In every period each country

simultaneously solves (13); market for pollution permits clears, i.e. (18) is satisfied at

any t. Results are then compared to the outcomes of the BAD and NTQ scenarios. I

run a simulation over a span of 11 periods.

As expected a priori, the simulation results show that Central and Eastern

European post-communist economies will be permit sellers, while developed

Western European and non-European Annex B countries will act as permit buyers14.

The simulation reveals that initially 21 of 31 countries will buy permits; later on,

when price for the permits increases, 2 of these countries start selling permits instead.

Pollution permit market size and price dynamics is demonstrated on Figure 3-4.

The total amount of pollution quotas allocated to the countries, which chose to be

permit sellers is 186.65 units. Market size in the last period simulated is 118.96, i.e.

permit sellers cut down their emissions by about 65% total. As quota sellers decrease

their emissions, they face increasing marginal abatement cost (which may be also

interpreted as opportunity cost of pollution abatement on the margin), which is

captured by the increasing pollution permits price.

As the simulation results suggest, the price for permits will increase from $8 per

ton to $67 per ton of COz within the first 5 periods of the treaty with the average of

$35 per ton. Although my model was not designed to estimate the prices for permits,

it is interesting to note that my estimates resemble closely what most experts agree

that realistic estimates of the permits in the first 5-year commitment period of the

Kyoto Protocol: between $25 and $55 per ton ofCOz (ICF,2005).

13 Later I test the sensitivity of the results to the change in parameters.

14 Notable exceptions include Belgium, which sells permits; Greece and Slovenia, which buy permits
initially when prices are low, but then switch to selling permits in the late periods.
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Figure 3-4. Pollution permit market size (a) and price (b) dynamics

Figure 3-5 in Appendix 4 displays simulated model dynamics for economIc

output, capital stock and emissions along with the corresponding growth rates for a

typical permit buying country using Germany as an example. All other quota buyers

reveal similar patterns and Germany was used as a typical representative of the

dynamic patterns. As the theoretical model predicts, for permit buyers capital

accumulation and output growth will be faster as compared to a simple cap regulation

outcome, but slower than in an unregulated environment. An interesting finding

revealed by the simulation exercise is that capital accumulation rate and output

growth rate are faster in the initial periods and slow down later on, when quotas

become more expensive, thus increasing cost of output growth for the quota buying

economIes.

There's a greater variation in behavior for sellers, however. Half of all sellers (6

out of 12)15 exhibit an initial growth of capital stock with decumulation of capital

starting at a particular instance (Latvia depicted on Figure 3-6 in Appendix 4 is a

typical representative of this pattern). At the same time, economic output mayor

may not display an initial growth, but is always following a downward sloping trend in

the late periods.

15 Belgium, Czech Republic, Latvia, Lithuania, Poland, Slovakia.
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A third of the sellers (4 out of 12)16 show a special case of the pattern described

above without any initial capital accumulation: both capital stock and economic

output start falling from the initial period.

A final category of the sellers17 exhibits another special case when capital and

output grow throughout the entire simulation span (if the simulation span is extended

beyond realistic lifetime of the treaty, those countries' growth slows down and

eventually goes negative).

As predicted by the theoretical model, both capital and output growth rates stay

below the ones under a simple cap regulation. Another interesting feature of the

model revealed by the simulation is that there is a certain rigidity in the quota selling

behavior: sellers increase the amount of quotas sold over time, primarily due to the

increasing quota prices.

The investments in the quota selling countries are still positive despite possible

capital stock shrinkage. Capital decumulation rate for all sellers does not go below

5% depreciation rate indicating that positive investments take place. If the

simulation is repeated for a high depreciation rate (5=0.10), no change 10 the

dynamics is being observed. However, this depreciation rate neutrality may be a

characteristics of this specific dataset.

A final group of the parties consists of the countries18 that buy permits in the

initial periods, but start selling them in the late periods when price of permits

increases. This case is illustrated on Figure 3-7 in Appendix 4. The diagram reveals

that the Kurse effect (capital growth below the NTQ level) starts at the instance

when emission level starts falling, i.e. when country starts acting as a seller in relative

terms with respect to the previous period emission level, not in absolute terms with

respect to its initial permit endowment.

16 Bulgaria, Estonia, Romania and Ukraine.

17 Namely Croatia and Hungary.

18 Greece and Slovenia.
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Running simulation with higher values of the technological progress parameter

does not yield qualitatively different results: the sets of quota selling and quota

buying countries remain unchanged; quota market volumes grow faster as well as the

permits price does; capital decumulation in quota selling countries start earlier, but

still stays above the pure depreciation rate.

As simulation suggests, quota buyers are characterized by higher values of

shadow prices of pollution. Shadow price of pollution at the equilibrium is equal to

the marginal abatement cost of pollution, i.e. an opportunity cost of pollution

abatement. By now, it should be clear that countries with higher shadow prices of

pollution buy permits, because an opportunity cost of abatement for them is

considerably higher than for the quota sellers.

When a quota seller faces favorable prices for emission permits, it shrinks the

amount of capital used in the economic production (in the framework of Copeland

and Taylor, 2005 that would be an equivalent of shifting capital to abatement from

economic production). As a result, capital accumulation rate slows down. As the

market price rises, incentives to abate increase and capital stock in the economic

production starts shrinking.

5. CONCLUSIONS

This paper has shown that an international tradable emission quota system may

hamper the development of a quota selling country. I test and simulate the model

against two benchmarks: business as usual and simple cap system. I discover that

while quota buyers' economic output is increasing above the output growth rate

under a simple cap system, but below business-as-usual output, an economic output

of the quota seller will decrease over time. I also identify that capital accumulation in

the quota buying economy is more intensive as compared to a simple cap system

environment. At the same time, capital accumulation shows a substantial slowdown

(and may even be reversed) in the quota selling economies. Such behaviour may

threaten economic welfare of future generations when the treaty comes to an end.
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The phenomenon I called the Kurse is surprisingly similar to the Dutch

Disease19, a term coined by The Economist (1997). Despite being similar in terms of

the effect on the national economy, the Kurse has a different mechanism: permit

sellers substitute revenues from economic production for the revenues from the

permit trade.

It should be apparent that the described international pollution permit trade

systems are not purely illustrative. The model itself as well as the simulation exercise

closely mimics conditions of the Kyoto Protocol, specifically the emission trading

between Annex B countries. Transitional of Central and Eastern Europe are

expected to be sellers of pollution permits under the conditions of the Protocol. It is

a common perception that by allowing these countries to sell permits under Kyoto

Protocol, economic development in them will be promoted. My study shows,

however, that international pollution permit trade may hamper the development of

permit selling economies.

On a positive note, I must emphasize that my study modeled a shortsighted

behaviour when pollution permit revenues are allowed to be consumed. If the treaty

participants are forced to spend their revenues on improving their abatement

technology efficiencies, it may be the case that the detrimental effect of the quota

trades is avoided. Alternatively, the national governments may be required to bank

the trade revenues for the benefits of the future generations.

19 Dutch Disease is a phenomenon which happens when a country rich in natural resources
experiences an appreciation of its currency leading to a declining demand for its exports and,
consequently, a fall of competitive sector production.
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ApPENDICES

APPENDIX 1

Proofs

Proposition 1. For the TEQ buyer, quota trade will imply accumulation of

capital and output growth above the NTQ level, but below BAD level.

Proof: (17) implies that for any quota buyer

ZTEQ =Z+q>ZNTQ and ¢K(KNTQ,ZNTQ)=¢K(KTEQ,ZTEQ).

Since Z TEQ > Z NTQ and ¢ZK > 0

¢AKTEQ ,ZTEQ» ¢K(KTEQ ,ZNTQ) and corollary ¢K (KNTQ ,ZNTQ» ¢K (K TEQ ,ZNTQ),

which implies that

KBTEQ > KBNTQ
t t

~BTEQ > ~BNTQ •

and consequently

The second part of the statement (KtBTEQ < KtBBAU, ~BTEQ < ~BBAU) IS easy to

prove by noting that K1BTEQ < K,BBAU and J';BTEQ < J';BBAU and usmg mathematical

induction to prove that KtBTEQ < KtBBAU and ~BTEQ < ~BBAU Q.E.D.

Proposition 2. For the TEQ seller, quota trade will imply accumulation of

capital and output growth below the NTQ level.

Proof: (17) implies that for any quota seller

ZTEQ = Z -q < ZNTQ and ¢K(K NTQ ,ZNTQ)= ¢K (KTEQ ,ZTEQ).

Since ZTEQ < ZNTQ and ¢ZK > 0

¢K (KTEQ ,ZTEQ ) < ¢K (KTEQ ,Z NTQ ) and corollary ¢K (K NTQ ,Z NTQ ) < ¢K (KTEQ ,Z NTQ ),

which implies that

~STEQ < ~SNTQ.

and consequently

Q.E.D.
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APPENDIX 2

Fundamentals of the efficiency and productivity analysis of polluting technologies (following Fare and
Primont, 1995 and Fare, Grosskopf, Noh, and Weber, 2005)

Let a vector of Ninputs be denoted by x =(XI""'xN); a vector of M desirable

outputs by y = (YI'''''YM )and a vector of K undesirable outputs by Z = (Zl'oo.,ZK)'

The technology set is then defined as

T == {(x,y,z): y E 9t~ can be produced given x E 9t~ and Z E 9t~}.

For each input vector x, let p(x) be a set of the feasible (producible)

combinations of desirable and undesirable outputs

p(x) ={(y,z): (X,y,Z)E T}.

This defines an output correspondence, which maps each x in 9t~ to an output

set, p(Xh;;;9t~+K. Obviously, (x,y,z)ET ifand only if (y,Z)EP(X).

I say that the polluting technology set T is regular if the following regularity

assumptions are satisfied:

AI. Doing nothing is possible. (OM ,0 K ) E p(x) for all x in 9t~ .

A2. Strong disposability of desirable outputs. For all (x,y,z)in 9t~+M+K, if

(y,Z)E p(x) and y'~y then (y',Z)E p(x).

A3. Strong disposability of inputs. For all (x,y,z)in 9t~+M+K, if (y,z) E p(x)

and X~X' then (y,z) E p(x').

A4. Scarcity. For all x in 9t~ , p(x) is a bounded set.

AS. Output closedness. For all x in 9t~ , p(x) is a closed set.

A7. Output convexity. p(x) is convex for all x in 9t~ .
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While technically undesirable products are technological outputs, their

properties more closely resemble those of the inputs. A rational decision making unit

(DMU) would want to produce the highest possible economic output while keeping

x and z constant. Alternatively, a DMU would want to produce the smallest

possible undesirable output keeping y and x unchanged or produce a given amount

of y and z with the smallest possible investment of capital.

In spirit of this, the Qutput .distance function (ODF) is defined as

Do (x, y, z) =inf{() : ( x, ~ ,zJET} .

In other words, the ODF score indicates the biggest technologically feasible

radial expansion of the economic output given the levels of inputs and undesirable

outputs.

Similarly, the input .distance function (lDF) is defined as

D/(x,y,z)= SUP{A :(; ,y, ~J E T}

The IDF score displays the biggest technologically feasible proportional radial

contraction of inputs and undesirable outputs keeping the economic outputs

unchanged.

Both ODF and IDF are complete characterizations of regular technologies and

are the most common instruments for estimating production frontiers in the

efficiency and productivity analysis literature.
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ApPENDIX 3

Smooth homogeneous bootstrap and bootstrap statistical inference (adapted from Simar and Wilson,
1998,2007)

Smooth homogeneous bootstrap algorithm

Let us denote a set of estimated parameters 10 (26)

vectors of economic output, Y, capital, K, and emissions, Z, determine a set of

estimates of technical efficiencies (lDF scores) for I individual DMUs A= {-·t...,~I }.

Since a regular kernel estimate does not take into account the condition that A is

bounded at 1, with any nonzero bandwidth, a regular kernel estimator suffers from

bias in the neighborhood of A=1. Silverman (1986) proposed to solve this problem by

reflecting the values of A by constructing a reflected matrix L ={A, 2i - A}, which

consists of the original vector Aand its values reflected around the unity. Note that

as suggested by Simar and Wilson (2007), I ignore spurious values equal to 1, which

provides with the spurious mass greater than 1/1at the boundary value in the discrete

density to be smoothed. These values are merely an artefact of the deterministic

efficiency analysis and may be excluded for the purpose of selecting a bandwidth.

Step 1. Calculate bandwidth, h, according to the Silverman's adaptive rule

h= 1.06 min{(J" iqr(L)}N-0.2

L'1.349 '

where (J"L is standard error of L; and iqr(L) is its interquartile range.

Step 2. Draw a random sample B" ={P; ,...,p; }with replacements from A.

Step 3. Calculate X: = {X; ,...,X; }as

if p;" + he;" ~ I

otherwise
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where Gi* is a random deviate drawn from a standard normal distribution, i.e.

Step 4. As typical when kernel estimators are used, the variance of the bootstrap

generated sequence must be corrected by calculating A* = {A; ,...,A~}

where 0-; is a sample deviation of A; 13* is a sample mean of B* .

Step Sa. (SWapproach) Perturb the original data {Y, Z, K} to create a bootstrap

sample {yb*,Z;,K;} as

Step Sa projects each observation to its estimated efficient peer using the

estimate of the efficiency measure and then projects it off the frontier using a random

efficiency score drawn from the smooth kernel density estimate of the score

distribution.

Step 5b. (Cautious alternative) Sample the original data {y,Z,K} with

replacements to create a nonsmoothed bootstrap sample {Y, Z, K} ; use it to create a

smoothed bootstrap sample as {yb*, Z;, K; }

Step Sb projects each observation in the nonsmoothed bootstrap sample to its

estimated efficient peer using the estimate of the efficiency measure for this data

point and then projects it off the frontier using a random efficiency score drawn from

the smooth kernel density estimate of the score distribution.
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Step 6. Run estimator (27) using the perturbed sample {Yb*, Z;, K;} to obtain

bootstrap estimators of the parameters S* of (26).

SHB stadstical inference

The SHB procedure generates a set of B bootstrap estimates of the parameters

of (26) SBS = {s; ,...,S~}. Then bootstrap estimated bias ofS* , Bias(S*) is

( ~ *) 1~ [~ ~ *] ~ 1~ ~ *Bias 2. =- LJ E-B b ==3-- LJSh·
B b~l B b~l

As usual in the bootstrap literature, I assume that the relationship between the

original sample (pseudopopulation) and the bootstrap sample mimics the relationship

between the true population and the original sample. Therefore, Bias(S*)= Bias(S),

which results bias corrected values of S, SBC

,::;., BC ,::;., . (,::;.,) ,::;., 1 B,::;.,*
~ =~+Bras ~ =2~--L~b.

B b~l

Upper bound, UB(SBC), and lower bound, LB(SBC), of the biased corrected

estimates' 95% confidence intervals are computed by finding the respective bounds

of S*. Let S~ be a (Ex!) matrix consisting of all bootstrap estimated S:, b =1,..., B.

Further, let S~ be a (Ex!) matrix obtained from S~ by ranking elements in each

column from the highest to the lowest. Then, the upper bound, S~B is the

(O.OZ5B)th row of S~, while the lower bound, S:B is the (O.975B)th row of S~.

Therefore,

TTB(-2;BC)_ -2;BC (-2;* _! ~-2;*)
u~ ~ - ~ + ~UB ~~b

B b~l

and

LB(-2;BC)_-2;BC (-2;* _! ~-2;*)
~ - ~ + ~LB ~~b·

B b~l

-95-



ApPENDIX 4
Dynamics of economic output and capital stock for TEQ buyers, sellers and

early buyers/late sellers
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