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Abstract

The accuracy of the brain normalization method directly impacts the preciseness of statisti­

cal analysis of functional magnetic resonance imaging (fMRI) data. Furthermore, the study

of the medial temporal lobe and cortical layer structures requires an accurate co-registration

method due to large inter-subject variability. In this thesis, we first introduce a fully au­

tomated fMRI post-processing pipeline aimed to reduce the registration error during group

studies and we will demonstrate its superiority over two widely used registration methods

by conducting a comprehensive bleeding study using a synthesized fMRI data-set as well as

surface-to-surface distance quantifications over both cortical and sub-cortical regions. Fi­

nally, we apply our processing pipeline to a functional MRI data-set of a schizophrenia study

and show how accurate registration of hippocampus and inferior frontal gyrus structures can

increase the accuracy of functional maps over these regions when performing group analysis.

Keywords: functional MRI; spatial normalization; BOLD fMRI; brain normalization; com­

putational anatomy; schizophrenia
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"Man is descended from a hairy, tailed quadruped, probably arboreal in its habits."
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Chapter 1

Introduction

During late 1980s only a handful of research groups were performing human brain acti­

vation studies using ionizing radiation or electroencephalography (EEG). When functional

magnetic resonance imaging (fMRI) came into common use in early 1990s and its superior

flexibility and degrees of freedom over the common brain mapping techniques were realized

by the researchers, a breakthrough was happening in brain mapping experiments. After mid

1990s when the first fMRI papers were published, researchers could perform brain mapping

studies relatively easily: have the subject in the scanner, ask the subject to perform a task

and then look for activation maps of the brain. Although extremely powerful, the newly

available technology lead to a severe problem in the brain mapping community:

• A sudden rush to pick the scientific "low hanging fruit" lead to many poorly planned,

executed and analyzed experiments and the associated published articles.

Although through major fMRI courses offered four to six times a year at Massachusetts

General Hospital, twice a year at Medical College of Wisconsin and periodically elsewhere

through the past decade have likely helped the increase in correctness of the fMRI exper­

iments around the brain mapping community, there still exist major questions about the

validity of the obtained results. Considering the vast number of fMRI experiments being

undertaken and the related scientific articles being published (Fig. 1.1 shows the results

of science citation index reference search on fMRI related articles published since 1992 till

2008), the goal of this thesis is to address one of the largely overlooked problems in fMRI

group studies: how brain normalization affects the statistical analysis results and how we

can quantify the accuracy of the underlying normalization method.

1
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Figure 1.1: Number of fMRI related scientific articles published from 1992 till 2008 as
searched for using Coogle Scholar and the search terms "fMRI" or "functional MRI".

This chapter starts with an introduction to magnetic resonance imaging in Section 1.1

followed by a short review of functional magnetic resonance imaging and the related topics

in Section 1.2 and finally in Section 1.3 we will discuss the contributions of this thesis to

the functional brain mapping community. In Chapter 2 we will describe our functional MRI

processing pipeline together with the two other methods selected for comparison purposes.

Later on Chapter 3 we will apply our method to a real functional data-set and compare

the resulting statistical maps with the selected two other methods and finally Chapter 4

contains the conclusions of this thesis.

1.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) uses the signal from the nuclei of hydrogen atoms to

generate images. The proton of the nuclei possessing spin has two properties:

• angular momentum striving to retain the spatial orientation of its rotation axis
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• magnetic moment (B) behaving as a small magnet and identifying orientation of nu­

clies' rotation axis

Therefore, hydrogen nuclei are affected by external magnetic fields as well as electromagnetic

waves and can induce a voltage in a receiver coil.

1.1.1 Larmor Frequency and Excitation

When the hydrogen nuclei is exposed to an external magnetic field, Bo, its magnetic moment

aligns with the direction of the field. The alignment process is carried out in an oscillating

fashion which determines the associated Larmor or precession frequency. Larmor frequency

is proportional to the strength of the applied magnetic field and is given by

Wo = ,oBo

where 10 is the gyromagnetic ratio, a constant specific to a particular nucleus. Protons have

a gyromagnetic ratio of ,= 42.58 MHz/T, resulting in a Larmor frequency of 63.9 MHz at

1.5T.

Spins tend to align parallel and anti-parallel to the external magnetic field with parallel

alignment being slightly preferred as it results in spins residing in a more stable energy state.

Hence, under steady state conditions, majority of the magnetic fields of the aligned nuclei

cancel each other and small fraction being parallel to the external magnetic field, generate

the net magnetization, M, which depends on the strength of Bo.

Using an antenna coil, if an electromagnetic wave of the same frequency as the Larmor

frequency radiates to such an stable spin system (resonance condition), energy will be

induced to the system. In this way, assuming Bo and thus M are in the z direction, M will

move from the longitudinal direction (z) towards the transverse (xy-) plane. The transverse

magnetization (Mxy ) rotates about the z-axis and can induce an alternating voltage of the

same frequency as the Larmor frequency in a receiver coil; This induced signal is called the

magnetic resonance (MR) signal.

After excitation by the RF pulse, the nuclei spins move towards their previous stable

alignment with Bo and thus the transverse magnetization (and the associated MR signal)

rapidly fades. Returning of the nuclei spin is the result of two independent processes:

spin-lattice interaction and spin-spin interactions. These two processes cause T1 and T2

relaxations, respectively.
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1.1.2 T1 Relaxation
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The excess energy injected by the RF pulse into the nuclei slowly fades as the nuclei return

to the steady state by dissipating their excess energy to their surrounding lattice (which is

why this kind of relaxation is also called spin-lattice relaxation). Through this process, the

transverse component of M slowly vanishes as the longitudinal component of M returns to

its original magnitude aligned with Bo. This process is known as longitudinal relaxation or

T1 recovery. The time constant for this recovery, called Tl, depends on the strength of the

external magnetic field, Bo, and the internal Brownian motion of the molecules. Biological

tissues have T1 values of half a second to several seconds at 1.5T.

1.1.3 T2 and T2* Relaxations

Right after excitation, the individual transverse components of the magnetization are ro­

tating around the longitudinal component in an in-phase fashion. Energy transfer between

spins will affect the coherence phase of Mxy components and spins will start to cancel out

each other. Time constant associated with this process is called T2 and can be considered

independent of the strength of Bo. Time-independent inhomogeneities of Bo also contribute

to the dephasing process with a shorter time constant called T2*. While the effect of T2*

can be reduced by the design of the imaging process, T2 is a characteristic of the tissue

being imaged. T1 and T2 are completely independent but they occur more and less simul­

taneously. The effect of T2 relaxation can be observed within the first 100", 300msec while

it takes 0.5 '" 5sec for the longitudinal component of M to recover due to the T1 relaxation.

1.1.4 Image Contrast and Spatial Resolution

Three intrinsic features of a biological tissue contribute to its signal intensity on an MR

image:

• The T1 time of a tissue is the time it takes for the spins to recover from the excitation

and be available for the next excitation. T1 affects the image density indirectly and

images with contrasts that are mainly determined by T1 are called Tl-weighted images.

The contribution of T1 to image density can be controlled by the repetition time

(TR) [lJ.
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• The T2 time determines how fast the MR signal fades after excitation and can be con­

trolled using the echo time (TE) [1J. Images with contrasts mainly determined by T2

are called T2-weighted images. It should be noted that, when magnetic imperfection

effects are also parameterized in the image acquisition process, the resulting images

are called T2* images.

• The proton density (the excitable spins per unit volume) can be emphasized in an MR

image by minimizing the other two parameters, T1 and T2, and the acquired images

are called proton density images.

The spatial coordinate of the acquired signal is controlled by the magnetic field gradients

and the details are available from [1J and references within. Furthermore, without discussing

the related details, it can be said that signal-to-noise ratio (SNR) of a MR image is mainly

dependant on the following parameters:

• slice thickness and the receiver bandwidth

• field of view

• resolution of the image

• number of acquisitions

• scan parameters (TR, TE, flip angle)

• magnetic field strength

• RF coils

Although the resolution of the MR image and the SNR of the resulting image have, in

some extent, an inverse relation, high SNR and high image resolution can be achieved by

increasing the number of acquisitions or by a longer TR. The two mentioned techniques are

more suitable for imaging the tissue structures (which can be considered as spatially and

temporally stable), and the resulting images being called structural MRI (sMRI), rather

than imaging a dynamic effect (as functional responses, which will be covered in Section

1.2). Functional responses are mostly imaged using echo-planar imaging [2,3J where image

acquisition times of less than 40 ms for each image are achieved with the price of reduced

resolution (but still it has superior resolution to magneto-encephalography (MEG), positron

emission tomography (PET) and electro-encephalography (EEG)).
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1.2 Functional Magnetic Resonance Imaging
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In this section we will have a short review of how junctional magnetic resonance imaging,

and particulary blood-oxygen-level dependent (BOLD) contrast imaging, is done, what the

limitations are and what processing steps are typically applied to them. One should note

that although other techniques can be used to perform fMill, but echo planar imaging (EPI),

and more generally single-shot one-rf pulse-per-image techniques are the most common and

successful and our discussion will mostly consider EPI imaging.

1.2.1 Principles

Some of the most common physiological information which can be mapped using fMRI

are [4]:

1. base-line cerebral blood volume [5,6]

2. changes in blood volume [7,8]

3. quantitative measures of baseline and changes in cerebral perfusion [9]

4. changes in blood oxygenation [10-14]

5. resting state oxygen extraction fraction [15]

6. changes in cerebral blood oxygen consumption (eMR02 ) [16,17]

Deoxyhemoglobin (deoxy-Hb) is paramagnetic relative to the rest of the brain tissues and

water, and oxyhemoglobin (oxy-Hb) has the same susceptibility as brain tissues and water,

thus presence of dexoy-Hb will result in magnetic field distortions when placed in a magnetic

field whereas oxy-Hb will not. Furthermore, water molecules precess at a frequency that

is directly proportional to the magnetic field that they are experiencing and if the spins

are precessing at different frequencies, they rapidly become out of phase and destructive

addition of the spins results in no MRI signal. During the resting state, due to microscopic

field distortions caused by deoxy-Hb molecules, MRI signal is attenuated compared to a

stage where no deoxy-Hb molecules would be present. During activation, increase of blood

flow results in a decrease of dexoy-HB molecules and therefore magnitude of the magnetic

field distortions decreases leading to an increase in spin coherency and finally increase of

Mill signal; This process is shown in Fig. 1.2 [4].
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Figure 1.2: Stages of neuronal, physiological and biophysical relationships connecting neu­
ronal activity to measured signal changes in fMRl.

1.2.2 Limitations

The accuracy of fMRI in mapping the brain activation is limited by two factors [4J: l)the

method by which the functional images are acquired and 2)the relationship between neural

activity and the hemodynamic changes. In this section we will discuss the temporal, spatial

and interpretative limits of fMRl.

Temporal Resolution

The total time per plane for single-shot EPI time-series collection is about 65 ms allowing

for about 15 images to be collected in a second. Therefore, for a typical volume consisting of

30 slices a TR of 2 seconds is required. The hemodynamic response behaves like a low-pass

filter with a latency of about 4 seconds (at stimuli on-off rates of 6 seconds, BOLD response

starts to attenuate and at the rate of 2 seconds it is almost completely attenuated). Although

the hemodynamics response attenuates the fast responses, it has been shown that activities

with duration as low as 16 ms results in robust BOLD signal changes [4J. In principle, the

hemodynamics response together with the readout window duration of the current imaging

techniques largely affect precise temporal mapping of brain activities. Please refer to [4J

and the references within for a more conclusive discussion of this topic.

Spatial Resolution

While recently developed techniques allow functional image resolution of about Imm3 [18],

the upper in-plane resolution of standard single-shot EPI is about 2mm2• As with the
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temporal resolution, the spatial resolution is not only limited by the imaging techniques

but also the underlying spatial spread of oxygenation changes that accompany focal brain

activation [19]. The hemodynamic point spread function has been empirically determined to

be on the order of 3mm3 [20]. Although limited solutions have been proposed to overcome

these limitations leading to sub Imm3 delineations [21,22], the ongoing question is whether

detailed activation maps are precisely registered with the underlying function.

Interpretation

As fMill is based on hemodynamic changes resulting in signal changes, the accuracy of

fMill maps rely on how accurate is the relationship between hemodynamic change and the

underlying neural activity. Several strategies have been proposed to quantify the exact

relationship between neural activity and the associated hemodynamic-related fMRI signal

changes, which includes [4]:

• animal models and the simultaneous use of other measures of neuronal activity as via

multiunit electrodes [23, 24] or more precise measures of hemodynamic changes via

optical imaging [25]

• parametric modulation of magnitude or timing of activation in humans with corre­

sponding measurements of fMRI signal changes

• simultaneous measures of neuronal activity (via implanted electrode or EEG) and

fMill signal changes

• nonsimultaneous measures of neuronal activity (MEG,EEG) and fMill signal changes

[26]

• modeling of the hemodynamic response and comparing the fMRI signal changes to

precise activation magnitude, timing or pharmacological manipulations.

1.2.3 Post-Processing

There are a number of post-processing steps that should be taken to prepare the raw func­

tional images, especially BOLD contrast images, for statistical analysis which mainly in­

cludes (one should note that depending on the desired statistical inference, some of the

following steps might be removed from the processing pipeline):
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1. slice timing corrections: for correcting the differences in image acquisition time

between slices usually accompanying EPI systems [27,28J especially for long TRs.

When slices are acquired in an interleaved manner, timing of 1st and 2nd slices can

differ by as much as T2R. This process usually consists of re-sampling (filtering) the

slices.

2. re-alignment of time-series and unwrapping: for removing movement artifacts,

re-aligning the time-series fMRI volumes acquired from the same subject and com­

pensating the nonhomogeneity of EPI imaging systems [29-33J. As it has been shown

that some of these algorithms can cause spurious brain activations in the absence

of subject motion [34], realignment and motion-correction algorithms should be used

either when the subjects are prone to unwanted motion during scan time [35J or by

cautious monitoring of the results.

3. odd-even slice intensity correction: for removing the Nyquist ghost artifacts

caused by contiguous interleaved acquisition of the slices. This process is often called

Debanding and consists of computing a constant, a, and applying intensity scalings of

(1 - a) and (1 + a) to the odd and even slices respectively such that it minimizes an

error criteria, usually the variance of voxel intensities over time.

4. smoothing and intensity adjustment: for reducing the noise, hopefully without

significantly changing the over-all activation pattern of the functional images [36,37J.

Note that spatial smoothing can result in some other beneficial effects too [38J which

are not in the context of this work. The mean intensity level of each volume can

also be adjusted to help reduce the effect of global changes in intensity over the scan

time [39J.

5. co-registration: for registering the functional image to the corresponding structural

image of a subject the co-registration term is often used and it mostly involves simple

rigid transformation and re-sampling of the functional image. Normalization is mostly

referred to transforming image volumes of multiple subject to the same template space

and is covered in Section 1.2.4. A rather complete survey of the existing co-registration

and normalization methods can be found in [40J.
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As was discussed in the previous sections, the recent developments in the physiological

imaging modalities -positron emission tomography (PET) and functional MRl- have allowed

for imaging studies aiming to localize human function in the brain. These studies involve a

large number of subjects and one of the most important steps involved in statistical analysis

of population studies is transforming each individuals' brain, or a specific region of interest

(ROI), into a standard coordinate space. These normalizing transformations are designed

to remove inter-subject morphological differences to aid in appropriate interpretation of

functional signals in common coordinates.

Considering that fMRI and PET images have coarse resolutions and the functional pat­

terns are not necessarily the same for all the subjects, they are not suitable for accurate

normalization techniques, thus intrinsic study of brain functions will be based on the as­

sumption that normalization techniques are able to establish the link between physiological

responses and the high resolution structural images [41,42J. The idea of using structural

information in registering the physiological data was first suggested in [43J for PET images.

Current normalization approaches can be categorized into three major groups, voxel

similarity, surface similarity and landmark based. Landmark based approaches often require

manual human interference which can be susceptible to inter-rater variability and drift,

while voxel and surface based approaches are better candidates for automatic normalization

algorithms. Various automatic surface based normalization methods have been developed

which mainly consist of two approaches:

• Flattening two cortical surfaces to a plane [44J or to a sphere [45J using variational

methods or mechanical models and analyzing the data in the common flattened space

[46J.

• Working in the surface geometry itself rather than planes or sphere geometries by

constructing metric distances between the corresponding points [47, 48J. Note that

some of these approaches use manual delineated sulcal landmarks [48J to establish the

correspondence.

Therefore, as most of the surface based approaches are constrained to the cortical region or

require manual landmarks, they are not suitable for automatic analysis of large data-sets

studying both sub-cortical and cortical areas.
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Voxel similarity based normalization techniques can be divided into two major groups,

affine (linear) or non-linear (small, large deformation) approaches. In the former all the

voxels in a ROI go through the same transformation, while in the later each voxel can move

in a different fashion although there is usually a smoothness constraint in the transforma­

tion of neighboring voxels. One of the most famous affine normalization techniques is the

Talairach normalization procedure [49] where 12 rectangular regions of brain are mapped

to the ones of the template brain using 12 parameter affine transformation. Some of the

researchers compute the affine transformation of the whole-brain instead of computing a

separate transformation for each individual rectangular volume. Widely used non-rigid

small-deformation normalization technique implemented in statistical parameter mapping

(SPM5) software package [50,51] consists of first aligning the images using a 12 parameter

affine registration and then using discrete cosine transformation (DCT) basis functions to

warp the images into a standard coordinate space.

Viscous fluid approach [52] and large deformation mappings [53, 54] were developed to

register the objects whose alignment require large deformations. From the same group

of transformations, the large deformation diffeomorphic metric map (LDDMM) [55] uses

the flow of velocity vector fields to construct the normalizing transformation and smooth­

ness constraints on the velocity vector fields guarantee smooth and invertible diffeomorphic

transformations. Under diffeomorphic transformation, connected sets remain connected,

disjoint sets remain disjoint, smoothness of anatomical features is preserved and invertibil­

ity of transformation renders the choice of an anatomic template arbitrary. Since these

methods do not take into account the variability of the cortical structure among subjects,

the performance of these mappings can degrade in the cortex. In order to solve the perfor­

mance degradation in cortical areas, as we will discuss in Section 1.3 and later on Chapter

2, our method consists of first aligning the brain segmentations (cortical/sub-cortical) us­

ing an affine transformation and then refining the mapping by computing the LDDMM

transformation between the corresponding ROIs.

1.2.5 Statistical Analysis

Although many methods have been proposed for statistical analysis of functional MRI,

they can be divided into two broad groups; intra-subject(single subject analysis) and inter­

subject(group analysis):
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1. intra-subject statistical analysis: The aim is to observe the functional patterns of

the subject by assigning a value to each voxel based on time-series signal intensities

of that voxel alone or in conjunction with other voxels. The simplest method is called

the substraction method, where the mean of voxel intensities during the rest period

is subtracted from the mean of voxel intensities during the task period and a simple

student's t-test is applied to the whole brain to identify significant deviations from the

baseline (zero activity). Although there are numerous intra-subject statistical analy­

sis methods available to this date [56-58], fitting the data into a general linear model

(GLM) [38,59] and then performing t-tests or analysis of variance to generate statis­

tical maps is the most commonly adapted method to perform intra-subject statistical

analysis. Note that contrast images are not statistical maps but rather magnitude

of the desired responses generated using the coefficients calculated while constructing

the GLM.

2. inter-subject statistical analysis: Although most of the statistical analysis meth­

ods designed for intra-subject studies can be modified and applied to the inter-subject

statistical analysis, the main difference between the two is the inter-subject variability

of brain structures and the associated normalization problems (a good survey of exist­

ing methods can be found in [60]). The main contribution of this thesis is improving the

inter-subject registration by combining a powerful segmentation tool, FreeSurfer [61],

and a very powerful normalization method, large deformation diffeomorphic metric

mapping (LDDMM) [55], in order to improve the normalization part of the functional

MRI data analysis. This improvement tends to affect the later interpretation and the

statistical results which will be seen in the next chapters.

Fixed versus random-effect analysis in group studies

If the goal of a functional imaging study involving many subjects is to draw statistical

inferences regarding common effects occurring within that group which should be generalized

to the population which the group was sampled from, the statistical analysis should be a

random effect analysis [62J. In contrary to random effect analysis, fi:xed effect analysis

can be used when the goal of the study is to only draw statistical inferences regarding

Ithe subjects involved in that study and not the population from which the subjects where

\sampled from. In the context of our work, random effect analysis translates into constructing



CHAPTER 1. INTRODUCTION 13

contrast images from each subject using GLMs, normalizing the resulting contrast images

and performing voxel-wise statistical tests among corresponding voxels of the normalized

contrast images [63, 64]. Furthermore, fixed effect analysis involves generating a single

contrast image from all the subjects using a single multi-subject GLM and then performing

statistical tests across the voxels of that image.

Statistical significance and the multiple measurements problem

The goal of any statistical test is identifying the voxelsjregions which show significant de­

viation of the task signal from the baseline (control) signal. As was discussed previously,

numerous methods exist to generate raw (un-thresholded) statistical maps and the obvi­

ous follow-up task will be to threshold these maps to identify the statistically significant

voxelsjregions. The inherit correlation between neighboring voxels in functional images

imposes adapting multiple-measurement threshold correction approaches for identifying ac­

tivated voxelsjregions.

These approaches can generally be divided into the ones which set the activation thresh­

olds based on individual voxel-wise test statistics [65] and the ones which threshold the

activation maps based on the activity cluster size [66]. Controlling the false discovery rate

(FDR) [67] has been shown to be more sensitive to local signal changes than the other

common voxel-wise thresholing techniques (e.g. Bonferroni correction) and its rather easy

implementation is well suited for functional data analysis. Bonferroni correction controls

the chance of any false positives while FDR controls the expected proportion of the false

positives. Bonferroni correction divides the desired significant level by the number of neigh­

boring voxels (i.e. the number of voxels in the ROI) and finds the new threshold while FDR

works by selecting a desired limit Q on FDR, ordering the p-values in the ROI, finding the

largest i such that Pi ::; -it x Q (where N is the total number of voxels in that ROI) and

finally setting the new p-value threshold to Pi. It is worthwhile to note that as FDR is based

on adaptively thresholding the p-values resulted from any statistical test by incorporating

the number of voxels, unlike other thresholding methods which usually require adjusting

the threshold throughout a study, a single FDR threshold can be used throughout a study

regardless of the image volume size and the underlying statistical test.
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1.3 Contributions of this Thesis
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In group statistical analysis of functional MRI, localizing the statistically significant varia­

tions and the problem of multiple measurements associated with it, suggests the larger the

search space the less sensitive the localizing method, Le. if we study the whole brain it

is more possible to miss the small details when compared to only studying a smaller ROJ.

Furthermore, it was shown in [68] that a better normalization will in fact increase the power

of functional maps. These phenomena, together with the fact that normalization methods in

general tend to perform better when the image volume is smaller, promise a more sensitive

and better normalization for ROI-based functional MRI analysis. Moreover, although brain

has a very complex anatomical structure (specially the cortical area), we are able to auto­

matically segment it into well-defined anatomical regions [61,69,70]. It becomes intuitive

to segment the (sub)cortical region into less complex segmentations, construct appropriate

ROIs around these segmentations and perform accurate ROI-based statistical analysis after

applying proper normalizations.

Our registration method is based on segmenting the cortical/sub-cortical area using the

FreeSurfer software package [71, 72] into its constructing regions and normalizing the ROI

around each segmentation independently based on LDDMM transformations. One should

not that LDDMM had been previously used to normalize the functional images [68] but lack

of an automatic accurate segmentation tool in the processing pipeline prevented conduct­

ing automated bleeding studies to quantify the normalization accuracy and identifying the

sources of any functional patterns seen in a specific ROI by classifying it as bleeding from

surrounding regions or pure functional signals originated from that ROI in each subject.

It is of great interest to quantify the accuracy gained through using higher dimensional

normalization techniques over lower less-complex ones and see if less accurate normaliza­

tions can lead to false activation maps. In short words, the contributions of this thesis are

two-fold:

• We propose bleeding studies as not only a method of comparing the accuracy of nor­

malization techniques but also as an effective approach for identifying the source of

functional signals seen over the template space

• We propose a new ROI-based normalization pipeline aimed to increase the accuracy

of brain functional maps
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We hope the provided discussions will not only enable meaningful comparison of normal­

ization techniques in the human brain mapping community but will also encourage the

researchers to adapt our normalization pipeline in their future experiments.

In this thesis, in Chapter 2 we establish our ROI-based normalization method and com­

pare its normalization accuracy with the two other previously mentioned normalization

techniques by comparing the associated surface-to-surface distances together with a bleed­

ing study conducted over a synthetic functional data-set. In Chapter 3 we apply our nor­

malization technique to a real BOLD functional data-set and qualitatively compare the

resulting statistical maps with both the Affine and SPM5 normalization techniques; We

will see how more accurate normalization techniques indeed increase the accuracy of the

resulting functional brain maps and why the researchers in the brain mapping community

should consider using the higher dimensional normalization techniques. Note that although

Chapter 3 is mostly oriented around a BOLD functional data-set, as LDDMM+FreeSurfer

is a normalization method independent of the underlying functional imaging modality, it

will significantly improve the normalization results of any functional imaging study as well.

We will finish this thesis in Chapter 4 by presenting the concluding marks and potential

future works.



Chapter 2

Method

2.1 Introduction

As we previously discussed, the goal of this chapter is to formulate our normalization pipeline

and compare the registration accuracy with the Affine and SPM5 normalization methods

by comparing the surface-to-surface distance profiles between the transformed FreeSurfer

segmentations and the corresponding segmentation of the template and also conducting a

bleeding study using a synthetic functional data-set. It is important to notice that normal­

ization will be carried out using three different approaches:

1. Affine transformation: which is considered a linear transformation acting on the

whole brain

2. SPM5 transformation: which is considered a low-dimensional non-linear transfor­

mation acting on the whole brain

3. LDDMM+FreeSurfer transformation: which is considered a high-dimensional

non-linear transformation acting on a specific ROI

It is anticipated as the complexity of the spatial normalization method increases from Affine

to SPM5 and furthermore to LDDMM+FreeSurfer, the surface-to-surface distances become

smaller and the associated bleedings become less at the expense of the increased computation

complexity.

In [73] the performance of the LDDMM+FreeSurfer mapping approach, when applied to

the cortex, was studied using synthesized fMRI data-sets based on bleeding studies. In this

16
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chapter we are going to further evaluate the proposed normalization by not only studying a

much larger data-set but also constructing isosurfaces from the (normalized) segmentations

and quantifying the errors between the transformed segmentations and the corresponding

segmentations of the template. Furthermore, in [73J the process of constructing the ROIs for

the LDDMM normalization did not fully harness the segmentations provided by FreeSurfer

and we will show that a simple segmentation-to-segmentation Affine alignment, before nor­

malizing the corresponding ROIs, will greatly enhance the mapping accuracy.

In Section 2.2 we present the notations used in this chapter and then we will have a

short review of Affine, SPM5 and LDDMM normalization methods. In Section 2.3 we will

describe how each normalization is computed, how bleeding study is conducted and how

it is used to compare the accuracy of the mentioned normalization methods; We will also

present surface-to-surface distances not only as a validation of our bleeding study but also as

an additional accuracy measure. Section 2.4 contains the obtained bleeding results from our

synthetic functional data-set as well as the associated surface-to-surface distance profiles.

Conclusions of this chapter will be presented in Section 2.5.

2.2 The Normalization Techniques

2.2.1 Notation

Throughout this chapter the following notations will be used: <p 0 {.} denotes transforming

the {.} using the transformation <P, L:n3 is the sum over all the voxels in 'R3 and U~l (.)

is the union of (.) in the [1, NsJ range. Si is the ith subject, Si E W where W is the set of

all the subjects having Ns members and ST is the template. Segfi is the kth segmentation

of the ith subject provided by the FreeSurfer software package. ROlli is the lh ROI of

the ith subject, referring to the lh anatomical segmentation constrained in that region

and 9tDJ is the set of all the ROIs. Although each anatomical region contains one or

more segmentations, for simplicity, we assume that each anatomical region is constructed

from a single segmentation. SuriJi is the corresponding isosurface of Seg;i generated by

triangulation.

<P~i and <P~i are the Affine and SPM5 transformations taking Si to ST. In the case

of Affine and SPM5 normalizations, ROlj is the smallest possible rectangle containing

U~l(<p~. 0 S egj). <pA s is the Affine transformation taking lh segmentation of Si to the
, Seg

j
'
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lh segmentation of ST. In the case ofLDDMM normalizations, ROJj is the smallest possible

rectangle containing U~l«pA s. 0 Segj). <I>L s is the LDDMM transformations taking
Segj ' ROlj '

jth ROJ of <I>A s 0 Si to the lh ROJ of ST.
Segj '

2.2.2 Affine Normalization

Affine registration between each subject and the template was computed using an iterative,

multi-resolution, multi-stage optimization approach. At each level, normalized mutual in­

formation was used as the distance criteria and the line-search optimization was adapted

to minimize the cost function. The search space of the parameters for the Affine transfor­

mation was divided into four stages, 6 parameter rigid, 7 parameter iso-scale, 9 parameter

uniso-scale and 12 parameter full Affine transformation; We will denote them as <I>A,6, <I>A,7,

<I>A,9 and <I>A respectively. We optimize the parameters at each stage using the initial-state

parameters provided from the previous stage (except the first stage); Fig. 2.1 depicts the

multi-stage nature of our Affine registration.

In other words, the Affine transformation is computed based on the following hierarchical

equation set:
<I>A,6

(2.1)

Where S is the subject, ST is the template and H(S) is the Shannon entropy of image S

computed on the probability distribution of the gray level values. FUrthermore, at each

stage, 3 levels of resolution were incorporated to further avoid the local minimas. Note that

at each level, subject and template were resampled into the same isotropic voxel resolution.

2.2.3 SPM5 Normalization

The normalization algorithm implemented in the SPM5 software package [51] performs a

two-step iterative search to find the transformation parameters. The first step of normal­

ization is determining the optimum 12 parameter Affine transformation. Prior knowledge

of the variability of head sizes is included within a Bayesian framework in order to increase
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12 parameter
affine registration

6 parameter 7 parameter 9 parameter
affine registration affine registration affine registration

. , . .
1. •••••••• _ ••• _ •••• _ ._ •••• _ •• •• __ •••••• -:

Figure 2.1: A closer look at the 12-parameter Affine transformation used throughout this
thesis. The 12 parameter transformation can be divided into 4 stages: 6 parameter rigid
followed by a 7 parameter iso-scale followed by a 9 parameter uniso-scale and finally a 12
parameter full Affine parameter estimation stage. Each stage provides the initial parameter
values for the next stage.

the robustness and accuracy of the method. The second step is a non-linear normalization

for correcting gross differences in head shapes that can not be accounted for by the Affine

transformation alone. The non-linear warps are modeled by linear combination of smooth

discrete cosine transformations bases functions (approximately 1000 lowest frequency ones).

The coefficients of this bases function set are found by a maximum a posterior (MAP)

parameter estimation.

The Affine parameter estimation is based on minimizing the sum of squared differences

between target (5) and the template image (5T). The non-linear spatial transformation

from the 3D coordinate x = [Xl,X2,X3] at the target to the 3D coordinate y = [YI,Y2,Y3]

at the template can be formulated as:

{

Yl = Xl + Ul

Y2 = X2 + U2

Y3 = X3 + U3

Xl + Lj qj1dj(x)

X2 + Lj qj2 dj(X)

X3 + Lj qj3 dj(X)

(2.2)

Where qjk is the lh coefficient for dimension k and dj(x) is the lh basis function at position

x. MAP parameter estimation finds the best set of qjk 's based on the least-square Euclidean

distance measure. Non-linear parameter search minimizes the sum of squared differences

between the template and the target image while simultaneously minimizing the deviation

of the transformation from its expected value. This technique requires the estimates of the

likelihood of obtaining the fit given the data and accordingly prior knowledge of the spatial

variability and also the knowledge of the variance associated with each voxel of the image.
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As true variations associated with each voxel are not known, an empirical Bayesian method

is used where the variations are estimated from the residual errors. The main assumption

in this approach is the smoothness of both images which enables the method to use the

correlation between neighboring voxels when estimating the variance. This assumption

enforces smoothing images prior to registration which will accordingly reduce the accuracy

of the computed transformation and can be seen as one of the major drawbacks of this

approach.

2.2.4 LDDMM Normalization

The LDDMM algorithm [55] computes a transformation q>L : n - n where n ~ n3 is the

3D cube on which the data (structural and physiological) are defined. The transformation

computed by LDDMM is the end point q>L = cPl of a flow of vector field Vt E V; t E [O,lJ

given by the ordinary differential equation ¢t = Vt(cPt), where cPo is identity cPo(x) = x, x E n.
Enforcing smoothness on the vector fields v E V ensures that the solution to the differential

equation ¢t = Vt(cPt) , t E [O,lJ is in the space of diffeomorphisms [74J. Smoothness is

enforced by constraining the £2 norm of several derivatives of the vector field to be in a

Sobolev space with norm-square Ilfll~ [55].

The optimal q>L is the minimum of the endpoint of the inexact matching problem

(2.3)

Where cPl(X) = Jolllvtll~ + )..D4,>L and D4,>L is designed on the ROJ or the MRI imagery

and ).. > 0 is the relative weight assignment. If ST and S represent template and target

images respectively, the transformation of the target image S under such transformation

is a pull-back image defined by q>L 0 S = S 0 q>L -1 = S (q>L -1). If we denote the optimal

transformation in the space of smooth velocity vector fields Von the domain n as fl, it can

be formulated as:

(2.4)

LDDMM algorithm is based on solving the above equation using an Euler-Lagrange esti­

mation.
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Figure 2.2: A simplified model of the processing pipeline. This processing pipeline presents
two different normalization approaches: brain-to-brain normalization (SPM5 and Affine)
and ROI-to-ROI (LDDMM+FreeSurfer). FreeSurfer provides automatic segmentation of
the brain to be further processed by the LDDMM normalization.

2.3 Quantification of the Normalization Methods

2.3.1 Model

Fig. 2.2 depicts a simplified model of the processing pipeline. In this processing pipeline,

two different normalization approaches are present: the brain-to-brain normalization (SPM5

and Affine) method and the ROI-to-ROI normalization (LDDMM+FreeSurfer) method.

Although FreeSurfer segmentations are used to evaluate the performance of SPM5 and

Affine transformations, they are not incorporated in their normalization processes.

Affine Transformation

The first step of the processing pipeline is finding the 12 parameter Affine transformation,

cI>~i' taking Si : Si E W to the template, ST. The Affine transformations computed, cI>~i'

are applied to the corresponding segmentations and their respective ROIs of each subject.

Therefore, cI>~i 0 Si, cI>~i 0 ROIJi and cI>~i 0 Segr will be the results of transforming the

subjects' whole brain, the related ROI and the corresponding segmentations to the tem­

plate space using the Affine transformation. The accuracy of the Affine transformation

will be evaluated based on how close the transformed segmentations are to the templates'

corresponding segmentation, Le. how close cI>~; 0 Segf; is to SegfT.
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Estimation writing
Parameter Value Parameter Value

Template Image ST Preserve Concentrations
Template Weighting None Bounding Box Cover All The Brain

Source Image Si Voxel size Same As Input
Source Smoothing (T Interpolation Trilinear

Template Smoothing (T Wrapping None
Affine Regularization None

Nonlinear Frequency Cutoff 25
Nonlinear Iterations 16

Nonlinear Regularization 1

Table 2.1: SPM5 normalization parameters used throughout the course of this work.

SPM5 Transformation
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SPM5 software package was used to compute the normalization, <I>~i' taking <I>~i 0 Si to

the template, ST. Table 2.3.1 shows the configuration used for the SPM5 normalization.

<I>~i 0 Seg;i and <I>~i 0 ROlli are the related segmentation and the corresponding ROI of

each subject transformed to the template space using the SPM5 transformation. Same as

above, <I>~i 0 Seg;i will be compared to Seg;T in order to quantify the accuracy of the SPM5

normalization.

LDDMM+FreeSurfer Transformation

The Affine transformation taking any segmentation of the subject, S egf, to the corre­

sponding segmentation of the template, SeglT , were computed and applied to the cor­

responding ROI of that subject, ROlli. Finally, the LDDMM map which transforms

<I>A S 0 ROlr to ROIlT was computed. Same as the two previous cases, the accuracy
Segj '

of the LDDMM+FreeSurfer method is determined by quantifying how well the transformed

segmentation, <I>L Sf 0 (<I>A Si 0 Segli ), matches Seg;T.
ROlj Segj

2.3.2 Bleeding

In this section, we define the bleeding phenomena used to quantify the accuracy of a normal­

ization method, we discuss how two types of bleeding can be constructed and we show that

only one of them is relevant and is possible to be quantified. We also present the synthesized

fMRI data-set generated for this study and how bleeding is calculated using this data-set.
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Bleeding from inside a segmented structure to its surrounding regions and vice

versa

Assume each and every subject have functional activity localized inside its jth segmentation,

the segmentation is perfect and no functional artifacts are present. Upon perfect normal­

ization, there should be no observed activity outside the lh segmentation of the template,

i.e. no functional signal should bleed from inside the jth segmentation of the template to

the surrounding regions. Upon imperfect normalization, some of the signals associated with

each subjects' lh segmentation will be mapped to outside the templates' jth segmentation.

This effect can be called the outward bleeding.

The inward bleeding can be similarly defined as the amount of signal present inside the

lh segmentation of the template when all the subjects had functional signal only outside

their corresponding lh segmentation. However, there is a major flaw in the definition of

the inward bleeding:

In the case of a normalization which does not bring the analogous segmentation of each

subject to the same coordinate space, the functional activity localized outside each segmen­

tation, will entirely map to the outside region of the corresponding segmentation in the

template space, and inward bleeding will be zero.

Therefore, from this point on, the bleeding notion will only indicate bleeding from inside of

each segmentation to its surrounding regions (outward bleeding) and not vice versa.

Synthesized fMRI data-set and quantification of bleeding

Quantification of the bleeding effect described above requires a controlled data-set where the

only present variable is the inter-subject (and not the intra-subject) morphological variabil­

ity. The only possible way of eliminating the unwanted variables is creating a synthesized

functional data-set, where not only the fMR signal is generated in the same way for all the

subjects but also the generated signal is evenly distributed for each subject. Our method

of controlled fMR signal generation is based on smoothing the automatic black-and-white

segmentations provided by FreeSurfer , Beg;i, using a gaussian kernel, Cu' C u is designed

considering the image properties such that the result of smoothing resembles functional

activity covering both inside and peripheral areas of Begj.

For generating the synthesized functional activity localized inside the lh segmentation

of the ith subject, we mask the corresponding smoothed segmentation with the segmentation
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itself. This operation can be denoted by:
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(2.5)

(2.6)

Fj = (Gu * Segr) n SegJi for any i and j

Where Fj is the synthesized functional activity for the ith subject localized inside its lh

segmentation. Following the argument presented in Section 2.3.2, If we synthesize functional

activity inside the cortical/subcortical segmentation of each subject and then transform all

the subjects to the common template, a better normalization will be the one which results

in less activity observed outside the corresponding cortical/subcortical segmentation in the

template space, or in other words, the less erroneous functional activity found outside the

corresponding regions of the template the better the normalization. Therefore, the normal­

ized bleeding can be defined as sum of the intensity values of all the transformed synthesized

functional data masked with the complement of the corresponding segmentation of the

template, normalized by the sum of the intensity values of these transformed synthesized

functional data:

. ~i ~n3 { (<Pi 0 Fj) n camp (SegJ) }
BleedmgSegj = {.}

~i ~n3 <Pi 0 FJ
Where <Pi is the normalization computed through the Affine, SPM5 or the LDDMM method

and comp(.) is defined as:

{
o if A(i,j,k) >0

comp(A)li,j,k = 1
if A(i,j,k) = 0

2.3.3 Surface-to-Surface Euclidean Distance Computation and Statistical

Analysis of the Distance Profiles

We use isosurface generation to generate the triangulated graphs representing the corti­

cal/subcortical surfaces from the FreeSurfer segmentations, Segj. The Gueziec and Hum­

mel [75] algorithm is used to generate a tessellation of triangles for an isosurface of a given
. . S Triangulation S f h Sf' h' f d' h ·thmtensIty: egj I ur j were ur j IS t e Isosur ace correspon mg to t e J

Seg. Finally, a distance is calculated between each vertex on the template surface, Sur fl,

and the generated isosurface of the normalized subject, <Pi 0 Sur fIi , using the method

presented in [76]. Upon computing the distances, we generate the cumulative distribution

function (CDF) of the surface-t~surfacedistances and the better normalization will be the
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one which its related CDF approaches unity faster, i.e. the isosurfaces of the transformed

segmentations lie closer to the templates' matching isosurfaces. Moreover, random variable

X, with CDF F(x), is said to be stochastically larger than random variable Y with CDF H

if F(x) :S H(x) for all x, with strict inequality for at least one x [77]; After constructing the

CDF functions, we can also quantify which normalization method results in stochastically

larger distance values.

The nonparametric Wilcoxon rank-sum test [77,78], tests the null hypothesis that two

random variables have the same median where the assumptions are independent samples

and continues distribution function of the samples. The surface-to-surface distance values

for a segmentation of a subject can be averaged to give a representative of how well that

segmentation was registered to the templates' corresponding segmentations. These mean

values can be considered as independent samples of the average distance function associated

with the underlying normalization method when applied to that specific segmentation. Now

we can use the Wilcoxon rank-sum test on these mean values and quantify how any two

normalization methods are different, in the average sense, for any such segmentation.

2.4 Results and Discussions

The subjects set consists of 48 healthy adults and their healthy siblings plus 40 schizophrenia

patients and their siblings (total 176 subjects). Structural images were acquired using

a coronal MP-RAGE 3D Tl-weighted sequence (TR = 10 ms, TE = 4 ms, flip = 8°

performed on the 1.5T Siemens VISION system (Erlangen, Germany); voxel size = 1 x 1 x

1.25mm). For details of the image acquisition see [79]. FreeSurfer was applied to all the

subjects, Si E W, and Seg;; were extracted. 8 regions, 6 from the cortical region representing

the most complex and 2 from the subcortical region representing the less anatomically

complex areas of the brain, were selected to compare the methods. One should note that

some of the anatomical regions consists of multiple segmentations provided by FreeSurfer;

Table 2.4 denotes the selected regions and their constructing segmentations and they are

depicted in Fig. 2.3.

The brain-to-brain Affine transformations followed by the SPM5 transformations were

computed for all the subjects and the same series of transformations were applied to the

corresponding segmentations of each subject. In the case of the LDDMM+FreeSurfer nor­

malization, the segmentation related to a specific anatomical region of all the subjects were
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G Right Hippocampus

H Left Hippocampus

I Cortical Regions Of Interest
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Medial Temporal

Superior Temporal

Inferior Frontal Gyrus
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Figure 2.3: The cortical and su bcortical a.natomical regions selected for the comparison of
the normaliza.tion methods.
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ROJ ~ Constructing Segmentations
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Broca's Area ctx-Ib-(parsopercularis + parstriangularis)

Left Angular Gyrus ctx-Ih-inferiarparietal

Left Inferior Frontal Gyrus ctx-lh-(parsopercularis + parsorbitalis + parstriangularis)

Left Medial Temporal Gyrus ctx-Ih-middletemparal

Left Supra Marginal Gyrus ctx-Ih-supramarginal

Left Superior Temporal Gyrus ctx-lh-(bankssts + superiartemparal + transversetemparal)

Left Hippocampus left-hippocampus

Right Hippocampus right-hippocampus

Table 2.2: The anatomical regions and their constructing segmentations selected to compare
the normalization methods as provided by FreeSurfer.

initially registered to the template using the segment-to-segment Affine transformation and

then the LDDMM normalization was applied to the extracted ROls. The bleeding study was

performed based on the transformed segmentations and the results are shown in Fig. 2.4. It

can be seen that in the simple-shaped regions, like hippocampus, LDDMM+FreeSurfer out­

performs SPM5 by 35% in average, and this number drops to 10% in the more complex corti­

cal areas. Moreover, the bleedings associated with the SPM5 and the LDDMM+FreeSurfer

transformations show 0.093 and 0.070 standard deviation accordingly, which can lead to

the observation that SPM5 normalization has a wider accuracy spread over various brain

regions when compared to LDDMM+FreeS'urfer.

The CDF of the surface-to-surface distances were also computed and they are presented

in Fig. 2.5. It can be seen that the mapping accuracy has a direct relationship with the

amount of bleeding, i.e. the less bleeding means better normalization which also translates

to the CDF associated with the method reaching unity faster. It also can be observed that

whenever the gap between two CDF functions is bigger, the difference between the amounts

of bleeding is also higher which again confirms the validity of the proposed comparison

methods. From Fig. 2.5, it can be observed that the distance values of the Affine and

SPM5 normalized images are stochastically larger than the distance values of the corre­

sponding LDDMM+FreeSurfer normalized images. The results of the statistical tests are

also presented in Table 2.3 where it is shown that the null hypothesis that the average

surface-to-surface distance values associated with the SPM5 and LDDMM+FreeSurfer nor­

malization methods have the same median can be rejected at 5% significant level. As the

Affine registration is less accurate than the SPM5 method, the LDDMM+FreeSurfer vs.
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Segmented region

Left Angular Gyrus
Broca's Area

Left Inferior Frontal Gyrus
Left Medial Temporal Gyrus
Left Supra Marginal Gyrus

Left Superior Temporal Gyrus
Left Hippocampus

Right Hippocampus

Compared methods

LDDMM+FreeSurfer vs. SPM5
LDDMM+FreeSurfer vs. SPM5
LDDMM+FreeSurfer vs. SPM5
LDDMM+FreeSurfer vs. SPM5
LDDMM+ FreeSurfer vs. SPM5
LDDMM+ FreeSurfer vs. SPM5
LDDMM+FreeSurfer vs. SPM5
LDDMM+FreeSurfer vs. SPM5

~ P value

5.7171e - 007
7.2958e - 009
1.9247e - 007

0.0253
0.0018

4.3870e - 008
1.579ge - 049
3.6034e - 046
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Table 2.3: Results of the Wilcoxon rank-sum test against the null-hypothesis that the aver­
age surface-to-surface distance values associated with the SPM5 and LDDMM+FreeSurfer
normalization methods have the same median.

Affine results are omitted from this table and can be directly concluded that the null hy­

pothesis that the average surface-to-surface distance values associated with the Affine and

LDDMM+FreeSurfer normalization methods have the same median can also be rejected at

5% significant level.

2.5 Chapter Summary

We proposed a new pipeline for automatically normalizing anatomical regions among large

number of subjects using the LDDMM normalization method applied to the registered ROls

of the segmentations provided by the FreeSurfer software package. We compared our pro­

posed method with the Affine normalization as well as the widely used small-deformation

normalization technique implemented in the SPM5 software package. We demonstrated the

superiority of our method by conducting bleeding studies together with quantifying surface­

to-surface distance profiles. Although always outperforming the other two methods, it was

shown that the accuracy of the LDDMM+FreeSurfer normalization has an inverse relation­

ship with the shape complexity of the underlying region and has a more robust performance

in various anatomical areas when compared to the SPM5 normalization method. There­

fore, LDDMM+FreeSurfer was presented as a promising substitute for the Affine and SPM5

normalization methods because of its higher robustness and registration accuracy.
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Figure 2.4: Bleedings from inside a region to its surrounding structures computed based on
Eq. 2.6 for all the selected 8 ROIs. As the Affine transformation is computed based on
minimizing the cost function over the whole brain, no region will have a better norrnalization
then the other, and as can be seen, all the regions have almost the same amount of bleeding.
It can be seen that the SPM5 normalization has a better performance in the cortex than
the subcortical regions and also the bleedings associated with the LDDMM+FreeSurfer
normalization have an inverse relationship with the shape complexity of the underlying
region, i.e. simple shaped regions, like hippocampus, have the least bleeding, while more
complex shaped regions, like superior marginal gyrus, have the most bleeding.



CHAPTER 2. METHOD 30

a. Angular gyrus

- LDDMM
- - -SPM5
•.•.•.• Affine

0.5,

--:.::-~......".,.-- .".'" ,.'
~.~.

"t}
I

b. Broca's area
1 [ J - - ::.":"•.": •• '., :.........-

~~ LDDMM

0.5

1

/ - - - SPM5
i Affine

.J

1 ~~:;'~i~:;~;.~!~1 ~:~~:
0.5l / - - -SPM5I .... -Affine

t
J

01------
o 5 mm

I,."" LDDMM
V

- - -SPM5]/ •.•.•.• Affine

10 0 5 mm 10

O'
o 5 mm 10

O'------~-----

o 5 mm 10

d. Medial temporal gyrus
1 ~ ..

,.". - : ......... -
;... : ....

e. Superior marginal gyrus

1

1

r ..., ~.:>-:~.;,~,--:"", :DMM

,,'
0.5 I - - -SPM5

O~i _ _ "·'·-Affioe

o 5 mm 10

~. Superior temporal gyrus
1 , _•.•. ,.~ .'.'.'

~ .........

5

g. Left hippocampus

;; ,.'

0.5

l
·! ...::,>"'" LDDMM

.... ' - - -SPM5
"/' ·······Affine

J

oo 5 mm 10

0.5 . I ~, ,.
/,........,.

",.-

... ./
O----~

o

-LDDMM'

- - - SPM5
•.•.• - Affine

mm 10

Figure 2.5: Cumulative distribution functions of the distance profiles from the triangulated
<I> 0 S'egr to the triangulated S'egfT when using LDDIVIM(the green curve), SPM5(the
red curve) and the Affinl'(the blue curve) transformations. The CDFs were computed for
a-angular gyrus, b-Broca's area, c-inferior frontal gyrus, d-medial temporal, e-superior
marginal, f-superior temporal, g-left hippocampus and h-right hippocampus regions. Be­
sides the fact that the LDDMM+FreeSurfer normalization outperforms the two other meth­
ods, variability of the gap between the LDDMM+FreeSurfer normalization perforrnance and
the two other methods among different regions can be related to the varying complexity of
the underlying regions, i.e. the simpler the anatomic complexity of a region, the larger the
gap between the LDDMM+FreeSwfer performance and the two other methods.



Chapter 3

A Case Study Using Real

Functional Data

3.1 Introduction

The previous chapter formulated our normalization pipeline and demonstrated the superior­

ity of the LDDMM+PreeSurfer normalization method over the Affine and SPM5 methods

through quantifying surface-to-surface distances and conducting a bleeding study using a

synthesized functional data-set. If the increase in normalization accuracy does not trans­

late into an increase in the functional localization, there will be no point in adapting the

new method. Therefore, the effect of our claimed superiority in normalization accuracy has

to be evident in the resulting statistical maps of real functional data-sets, otherwise the

merits of adapting our more complex and more computationally expensive method will be

questionable. We have selected a real BOLD functional data-set from a schizophrenia study

comparing patients and subjects in word and face recognition tasks to qualitatively observe

the benefits of increasing the normalization power in producing more accurate statistical

maps.

Moreover, discussions and the results of Chapter 2 suggested that all the three se­

lected normalization methods (Affine, SPM5 and LDDMM+FreeSurfer) have variable per­

formances in cortical and subcortical regions while LDDMM+PreeSurfer was always out­

performing the other two. It becomes of great interest to select regions from both cortical

and subcortical regions as our regions of interest to compare the statistical maps of this

31
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schizophrenia BOLD functional data-set: hippocampus and inferior frontal gyrus will be

studied in this chapter. Hippocampus was selected not only as a representative of the sub­

cortical structures but also for its known rule in memory and recognition tasks; Inferior

frontal gyrus (IFG) was also not only selected as a representative of the cortical regions but

also for the known rule of the Broca's area in word processing and recognition tasks; Fur­

thermore, processing both left and right hemispheres will enable us to observe the laterality

effects in word and face recognition tasks.

In Section 3.2 we will describe the fMRI design paradigm, image collection methods

and the post-processing steps taken to prepare the data for statistical analysis. Section

3.3 contains the obtained results and the corresponding detailed discussions. Section 3.4

concludes this chapter by presenting a short summary.

3.2 Methods

In this section we describe the underlying functional study, image acquisition parameters,

the post-processing steps applied to the functional images before statistical analysis and

finally we address the multiple measurements problem and the approach adapted in this

thesis.

3.2.1 Image Collection and the Design Paradigm

Functional image data in this study were taken from a previous study ( [79]) where 32 sub­

jects with schizophrenia and 41 healthy comparison subjects were scanned while performing

three tasks, each with both verbal (words) and non-verbal (face) stimuli:

1. "2Back" version of the "NBack"

2. internal encoding

3. recognition

We focused on the recognition task where participants were asked whether a given item had

been presented during 1 or 2. For details of the task design see [79].

All scanning was performed on the 1.5T Siemens VISION system (Erlangen, Germany);

The functional images were acquired using an asymmetric spin-echo, EP sequence sensitive

BOLD contrast (T2*; TR = 2.500ms, TE = 50ms, field of view = 24cm, flip = 900
).
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For each functional run, 102 sets of 16 contiguous axial images, 8 mm thick, were acquired

parallel to the anteriorposterior commissure plane (3.75 x 3.75mm in plane resolution) which

results in the final voxel size of 3.75 x 3.75 x 8mm. Structural images were acquired using

a coronal MP-RAGE 3D T1-weighted sequence (TR = 10 ms, TE = 4 ms, flip = 8°; voxel

size = 1 x 1 x 1.25mm). For details of the image acquisition see [79].

3.2.2 Post-Processing

As the main discussion of this thesis is around spatial normalization and the subsequent sta­

tistical analysis, we will divide the post-processing steps into two parts: a) pre-normalization

b)normalization and statistical analysis.

Pre-normalization

As it was described in Section 1.2.3, after functional image-reconstruction the following

post-processing steps were applied to the fMRI data:

1. slice-time correction using a sync interpolation

2. even-odd slice intensity correction by applying the Debanding process

3. re-alignment of time-series using a 6-parameter transformation

4. intensity adjustment to a whole-brain value of 1000

5. spatial smoothing with an 8mm full-with-at-half-maximum Gaussian kernel

6. co-registration to each subjects' T1-weighted structural image followed by re-sampling

to voxel size of 1 x 1 x 1.25mm

For each subject, the magnitude of task-related activation in each voxel was estimated using

a general linear model and boxcar task function convolved with a Boynton hemodynamic

response function with separate estimates for face and word recognition tasks.

Normalization and statistical analysis

Structural images, and consequently the associated functional images, were normalized to

the template coordinate space using the three methods described in chapters 2.2 and 2.3.

The 12-parameter Affine transformations taking each subject to the template space based
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on the method presented in Section 2.2.2 were computed and the SPM5 transformations

were computed using the parameters presented in Table 2.3.1. As discussed in Section

2.3.1, FreeSurfer segmentations were used to initially register corresponding areas of each

subject to the template then the LDDMM transformation mapping the ROI around each

subjects' registered area to the corresponding ROI of the template were calculated. Finally

the calculated mappings were applied to the functional images of each subject. In order

to observe the effect of increasing the accuracy of the normalization method on the final

statistical maps, following the bleeding phenomena presented in Section 2.3.2, three sets of

functional images were processed:

1. If we mask the functional images of each subject with a specific FreeSurfer segmen­

tation of a region and transform such images from all subjects to the template, the

resulting image represents the functional signals from that specific region transformed

to the template space. This set will give us a measure of how much pure functional

signal of a specific region is present in the corresponding region of the template space.

2. Following the above argument, if we apply the inverse-masks to the magnitude func­

tional images of each subject, the transformed functional images to the template space,

when we consider only that specific segmentation of the template image, will represent

the amount of signal from the surrounding regions present in that region of the tem­

plate space. This set will give us a measure of how much erroneous functional signal

from the surrounding structures of a specific region has bled into that region in the

template space. Note that this inward bleeding is being quantified as a complement of

the previous data-set, otherwise, as it was discussed in Section 2.3.2, we can not draw

any comprehensive conclusions by only considering this set.

3. Finally, if we consider all the signals from an ROI around a specific segmentation, the

observed signals over that specific segmentation of the template image will represent

the above two signal sets together.

If we call the specific segmentation X, the three functional sets were named Only-X,

Everything-But-X and ROI-X respectively. Obviously, the less Everything-But-X activ­

ity and the more Only-X activity the better the transformation.

After normalization, voxel-wise two-tailed simple t-test comparing the activation against

zero over the template space was calculated and finally false discovery rate (FDR) correction

approach was adapted as the solution for the multiple measurements problem.



CHAPTER 3. A CASE STUDY USING REAL FUNCTIONAL DATA

3.3 Results and Discussions
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Subjects were divided into two groups: Controls and Probandsj Where Controls were the

healthy subjects and the Proband subjects were the schizophrenia patients. As IFG and

hippocampus are the selected ROIs for this study, the functional data-set were divided into

six parts:

.IFG:

1. Whole ROI around IFG

2. Only IFG

3. Everything but IFG

• Hippocampus:

1. Whole ROI around hippocampus

2. Only hippocampus

3. Everything but hippocampus

After performing voxel-wise two-tailed t-tests on each functional data-set, the resulting t­

maps were thresholded using the F DR = 0.05 criteria. The values of voxels passing the

F DR = 0.05 threshold were set to their original raw t-values to observe the activation/de­

activation patterns in the thresholded volumes. The colormap was designed to show deac­

tivation as blue and activation as red and as the t-values get larger the Hue of the colors

increases. When no voxel values were present to perform the t-test, that voxel was assigned

the green color. Furthermore, one should note that the FDR threshold of 0.05 adaptively

translates into a corresponding p-value threshold for each individual volume. Fig. 3.1 and

Fig. 3.2 depict the F DR = 0.05 thresholded statistical maps of the left and right hemi­

sphere IFG volumes respectively; Fig. 3.3 and Fig. 3.4 depict the F DR = 0.05 thresholded

statistical maps of the left and right hemisphere hippocampus volumes respectively.

Considering the results of the previous chapter on synthetic functional data, besides the

Whole-ROJ case, the results of the two other functional sets (Only-X, Everything-But-X)

-although not directly visible from the FDR thresholded volumes for all the cases, especially

the left hippocampus case- are as predicted:
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Figure 3.1: FDR = 0.05 thresholded statistical maps of the left hemisphere IFG volumes.
Upper three rows show the face recognition results and lower three ones show the corre­
sponding word recognition results. First three columns depict the results for the Control
group and the next three columns are the results for the Proband group. Corresponding
p-value thresholds (upon existence) are shown on top of each volume.
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Figure 3.2: F DR = 0.05 thresholded statistical maps of the right hemisphere IFG volumes.
Upper three rows show the face recognition results and lower three ones show the corre­
sponding word recognition results. First three columns depict the results for the Control
group and the next three columns are the results for the Proband group. Corresponding
p-value thresholds (upon existence) are shown on top of each volume.
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Figure 3.3: FDR = 0.05 thresholded statistical maps of the left hemisphere hippocampus
volumes. Upper three rows show the face recognition results and lower three ones show the
corresponding word recognition results. First three columns depict the results for the Con­
trol group and the next three columns are the results for the Proband group. Corresponding
p-value thresholds (upon existence) are shown on top of each volume.
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Figure 3.4: FDR = 0.05 thresholded statistical maps of the right hemisphere hippocampus
volumes. Upper three rows show the face recognition results and lower three ones show the
corresponding word recogni tion results. First three columns depict the results for the Con­
trol group and the next three columns are the results for the Proband group. Corresponding
p-value thresholds (upon existence) are shown on top of each volume.
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• Only-X: The LDDMM+FreeSurfer method has resulted in more voxels passing the

FDR threshold compared to the SPM5 method and the SPM5 method itself has

resulted in more voxels compared to the Affine approach. This observation agrees

with the bleeding results from the previous chapter in the sense that if less signal is

bleeding from inside a segmentation into its surrounding regions, we will have a better

localization of functional signal over the template space.

• Everything-But-X: As one can predict, an inverse relationship between the accuracy

of the underlying normalization method and the number of voxels passing the FDR

threshold should hold here, i.e. the better the normalization the less erroneous signal

from the surrounding regions should be present in any segmentation over the template

space.

After the two above important observations, lets discuss how more accurate normalization

has affected the statistical maps of the Whole-ROJ volumes.

3.3.1 Inferior Frontal Gyrus Statistical Maps

The interesting observations can be summed up as follows:

• In the left IFG case for the face-recognition task in the Proband group (Fig. 3.1 first

row, columns 4 ""'" 6), the Affine normalization method results in some activation over

the parsopercularis area where no such pattern is visible in the output of SPM5 and

LDDMM+FreeSurfer methods.

• In the Left IFG case for the word-recognition task in the Control group (Fig. 3.1 forth

row, columns 1 ""'" 3), both Affine and SPM5 methods have resulted in some activation

in the parsorbitalis area which is not preset in the LDDMM+FreeSurfer case. It should

be noted that all the three methods show activation in the Borca's area which is the

combination of parsopercularis and parstriangularis areas. As Broca's area is involved

in speech processing, it was predicted that the Control group will show activation in

this region.

• In the Left IFG case for the word-recognition task in the Proband group (Fig. 3.1

forth row, columns 4 ""'" 6), both Affine and SPM5 methods have resulted in some

activation in the parstriangularis and parsorbitalis areas which is not preset in the
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results of the LDDMM+FreeSurfer method. Judging from the most accurate results,

i.e. LDDMM+FreeSurfer results, schizophrenia patients fail to activate the left hemi­

sphere parsorbitalis area compared to the Control group. It is worthwhile to notice

that no such conclusion could be drawn using the Affine and SPM5 normalization

methods.

No such major difference can be seen in the right hemisphere IFG results and it can be

associated with similar activation patterns of the right hemisphere IFG and its surround­

ing structures in this study where bleedings of the functional signal will not greatly affect

the statistical maps compared to a situation where neighboring structures have different

activation patterns.

3.3.2 Hippocampus Statistical Maps

The major differences between the three normalization method statistical maps can be

pinpointed as follows:

• In the left hippocampus case for the face-recognition task in the Proband group (Fig.

3.3 first row, columns 4 ....,... 6), LDDMM+FreeSurfer method results in de-activation

in the tail area while both Affine and SPM5 methods fail to do so.

• In the right hippocampus case for the face-recognition task in the Control group (Fig.

3.4 first row, columns 1 ....,... 3), Affine method results in activation/de-activation in

the all three parts of the hippocampus where the two more accurate normalization

methods show no such activation/de-activation patterns. It is interesting to also look

at the corresponding Everything-But-Hippocampus results where it's clearly shown

that the observed activity for the Affine transformation in the Whole-ROJ case is

actually the bleeding from the surrounding regions into the hippocampus. Although

the same bleeding pattern exists for the SPM5 method too, the lower signal power of

this bleeding prevents such activation/de-activation patterns to appear in the Whole­

ROJ case.

• In the right hippocampus case for the word-recognition task in the Control group

(Fig. 3.4 forth row, columns 1 ....,... 3), all the three normalization methods show a de­

activation pattern in the head and body areas. In addition, LDDMM+FreeSurfer have

also resulted in a de-activated region in the tail area; Although Affine normalization
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also shows this de-activated region in the tail area, the Everything-But-Hippocampus

results suggest that this de-activated region is the result of the bleedings from its sur­

rounding regions and it seems, by chance, this bleeding has resulted in a de-activated

region which would be present from the hippocampus signal itself if one had used a

more accurate normalization (e.g. LDDMM+FreeSurfer).

Although the F DR = 0.05 thresholded hippocampus volumes didn't clearly show the

improvements gained through using more accurate normalization techniques, such observa­

tions can be made by analyzing the raw t-values. It should be noted that, by analyzing

the raw t-values, although the observed effects will not generally quantify as statistically

significant, but it will provide us with valuable information about how bleeding of functional

signal in the normalization process can potentially affect the resulting statistical analysis.

Fig. 3.5 depicts the raw t-values of the left and right hemisphere hippocampal volumes

for the face recognition task using the three normalization methods. Upper two and lower

two rows show the left and right hippocampus results correspondingly. The most interesting

phenomenon is the large activation region in the head area. This activated area seems to

get smaller as the accuracy of the normalization method increases and it suggests that this

activation might be caused by the bleeding from surrounding regions into the head area of

the hippocampus and as more accurate normalization results in less bleeding, the associated

activated region also gets smaller. As the closest region to the head area of the hippocampus

is amygdala, in order to validate this theory, we have to see how much of the amygdala signal

bleeds into the hippocampus as the result of inaccurate normalization.

For this purpose, we use the amygdala segmentations provided by FreeSurfer to mask the

Whole-ROJ functional volumes of hippocampus and then we apply the previously computed

normalizations to them; The last step will be a two-tailed t-test over the hippocampus in

the template coordinate space. In this way, we can see how much of the amygdala signal

is bleeding into the hippocampus. Second and forth rows in Fig. 3.5 show the results of

this concise bleeding study. As was predicted before, the activation pattern seen in the

hippocampus is indeed the result of the amygdala signal bleeding into the hippocampus.

Results of Chapter 2 suggest that the Affine and the SPM5 methods have almost the same

accuracy in the hippocampus area and it agrees with the results presented in Fig. 3.5 where

the two methods have resulted in nearly the same amount of functional signal bleeding from

amygdala into hippocampus while the LDDMM+FreeSurfer approach greatly outperforms

them.
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Figure 3.5: Raw t-value statistical maps of the right and left hemisphere hippocampal
volumes. Upper two rows show the face recognition results for the left hippocampus and
lower two ones show the corresponding face recognition results for the right hippocampus.
First three columns depict the results for the Control group and the next three columns are
the results for the Proband group. Bleedings from amygdala into hippocampus are shown in
rows two and four. We can see how bleeding from amygdala into hippocampus gets smaller
as the accuracy of the normalization method increases and how inaccurate normalization
can potentially lead to false localization of activation in hippocampus.
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3.4 Chapter Summary
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We applied our RaJ-based normalization method to a schizophrenia study real BOLD

functional data-set and compared the resulting statistical maps with the ones obtained

through using Affine and SPM5 whole-brain-based normalization methods. We observed

how less accurate normalization approaches can lead to inaccurate statistical maps and how

LDDMM+FreeSurfer method can enhance this accuracy and enable group comparisons

which would not be possible with the other two methods. Although statistically significant

activation/de-activation differences are of the main interest in statistical analysis, we also

showed that how inaccurate normalization can potentially affect the functional maps of the

brain by quantifying the bleedings through analyzing the raw t-values.



Chapter 4

Conclusion

The main goal of this thesis was to propose a new fully automated ROI-based functional

MRI normalization pipeline. This pipeline was composed of a high-dimensional non-linear

registration method, LDDMM, and an automatic segmentation method, FreeSurfer. The

superiority of this approach over two other commonly used whole-brain-based normaliza­

tion approaches, Affine and SPM5, was shown through bleeding studies using synthesized

functional volumes and surface-to-surface distance quantifications which demonstrated the

higher structural normalization accuracy of LDDMM+FreeSurfer when compared to the

other two methods. And finally, constructing statistical functional maps of a real BOLD

functional data-set from a schizophrenia study by applying the transformations found from

structural data to the corresponding functional data-set showed that significant improve­

ments of the resulting brain functional maps can be gained through our normalization

pipeline when compared to the other two methods. The above observation were made based

on intra-group statistical analysis and it is predicted that such major differences will be

present in the results of Control-vs-Proband or any other group statistical tests.

Although in Chapter 3 we studied the results of processing a real BOLD functional

data-set, as LDDMM+FreeSurfer is a normalization method independent of the underlying

functional imaging modality, the same improvements would happen if we had processed

any other functional modality data-sets. However, as a result of lower resolution of other

functional imaging modalities, e.g. PET and MEG, the increased accuracy in normalization

of structural images gained through LDDMM+FreeSurfer might not result in the same

amount of increase in localization of functional maps when compared to BOLD functional

images. Nevertheless, LDDMM+FreeSurfer will always outperform the other normalization
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methods thanks to its constructing components: high dimensional mapping and automatic

segmentation of the brain structures.

As we stated before, LDDMM had been previously used to improve the accuracy of

functional brain maps, but it relied on manual segmentations and no methods were present

to study the source of observed functional patterns and whether they had been resulted

from erroneous functional signals from neighboring structures or not. The incorporation of

the PreeSurfer segmenting tool in the normalization pipeline enabled us to automatize the

ROI-based mapping procedure and conduct bleeding studies not only to localize the source

of functional signal maps seen over any regions of the template but also effectively compare

brain normalization methods. Therefore, the LDDMM+PreeSurfer normalization method

was shown to be suitable for accurate and automatic normalization of large functional MRI

data-sets outperforming the Affine and the SPM5 normalization approaches nominating it

as a powerful substitute for them.

One should note that, in the normalization process, although we used the segmentations

provided by PreeSurfer to align the corresponding structures of each subject to the template,

they were not incorporated in computing the final mapping. Moreover, our proposed method

was confined to ROI-based mapping and statistical analysis. Therefore, two potential future

research subjects can be thought of:

• Modifying the LDDMM computation process so that it incorporates the extra informa­

tion deductable from the corresponding structure surfaces which are available through

FreeSurfer, e.g. which structures are neighbors and how the spatial relationship of

their voxels should be preserved in the mapping process.

• Combining the ROI-to-ROI normalizations in order to build a brain-to-brain trans­

formation for constructing the whole-brain functional map.

However, at this stage, the current whole-brain-based mappings such as the Affine and the

SPM5 methods can be used to provide the researchers with an initial (although potentially

inaccurate) estimate of brain functional maps where they can flag the areas of interest which

they would like to construct accurate functional maps through using LDDMM+PreeSurfer.
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