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Abstract

This thesis studies implications of different learning mechanisms in various monetary envi­

ronments.

In Chapter 2, adaptive step-size algorithm (Kushner, Yin 2003) is used to model time­

varying learning and is studied in the environment of Marcet, Nicolini (2003). The resulting

model gives qualitatively similar results to MN and performs quantitatively somewhat better

based on the criterion of mean squared error. This model generates increasing gain during

hyperinflations that matches findings in Cagan (1956), Khan (1977). An agent behaves

cautiously when faced with sudden changes in policy, and is able to recognize a change in

regime after acquiring sufficient information.

Chapter 3 analyzes the effects of social learning in New Keynesian model described in

Woodford (2003). The question is whether the economy will converge to a rational ex­

pectations equilibrium under this more realistic learning dynamics. A key result from the

literature in this version of the model is that the Taylor Principle governs both the unique­

ness and the expectational stability of the rational expectations equilibrium when all agents

learn homogeneously using recursive algorithms. The finding is that the Taylor Principle is

not necessary for convergence in a social learning context. This paper also contributes to

the use of genetic algorithm learning in stochastic environments.

Chapter 4 studies cheap talk announcement in an agent-based dynamic extension of

Kydland-Prescott model. The government choose inflation announcement and actual infla­

tion and updates its decisions using a model of individual, evolutionary learning (Arifovic,

Ledyard 2004). Private agents use nave and more sophisticated inflation forecasts and switch
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between them based on their payoffs. Agents and government can coordinate on Pareto­

superior outcomes with positive fraction of naive agents. However, the economy does not

stay there. It exhibits recurrent fluctuations in announced and actual inflation as govern­

ment repeatedly builds up and exploits the proportion of believers. Outcomes with higher

fraction of naive forecasters have higher average welfare of agents and government. When

cost of sophisticated forecast goes up, the proportion of naive believers goes up. When

nonbelievers update slower, naive believers are more likely to disappear. Therefore, quick

and accurate sophisticated forecasters ensure positive number of naive agents.

Keywords: time-varying gain, adaptive expectations, hyperinflation, learning in macroe­

conomics, New Keynesian macroeconomics, genetic algorithm learning

Subject terms: learning, macroeconomics, adaptive expectations
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Chapter 1

Introduction.

This thesis studies models where the assumption of rational expectations is relaxed, and

agents are assumed to be boundedly rational (learning). Learning is used to provide an

explanation of how agents arrive/converge to a rational expectations equilibrium. Learning

can serve as a selection tool if a model with rational expectations has multiple equilibria

(Arifovic 1995, 1996 , Marcet and Sargent 1989a, 1989b). Models with bounded rationality

are used to explain the puzzles that rational expectations models have difficulty to explain.

The examples of this research include the following. Evans, Chakraborty (2007) address

forward premium puzzle. Arifovic (1996), Lux and Marchesi (2000), Lux and Schornstein

(2002) build model with evolutionary learning agents to explain facts about foreign exchange

rates - unit roots, fat tails and volatility clustering. Timmermann (1993) explains excess

volatility and predictability of excess returns for stocks; Orphanides and Williams (2004)

introduce learning to address the persistence of inflation; Marcet and Nicolini (2005) study

the short-run correlation between money supply and inflation; Sargent (1999) explains the

change in post World War II US inflation.

The use of bounded rationality in macroeconomics is motivated by many reasons. Ra­

tional expectations impose high computational, information and cognitive requirements. It

is not likely that people maximize all the time: there can be inertia due to transaction

costs to change decisions, people can use rules of thumb in their decision making. In econo­

metrics, often the number of variables and lags is limited, these misspecified models are

hardly rational. McCallum (2005) points out that the implication of rational expectations

is that agents do not know about regime change ex ante, and it is completely credible ex

1



CHAPTER 1. INTRODUCTION. 2

post. Linear approximations are used for solving nonlinear macro models. Hommes and

Sorger (1998) define consistent expectations equilibrium (CEE) in which agents using linear

model cannot discover their misspecification of nonlinear environment. Other equilibrium

concepts involving bounded rationality are self-confirming equilibrium (SCE) by Sargent

(1999), restricted perception equilibrium (RPE) and misspecification equilibrium (ME) by

Branch and Evans(2006 a,b, 2007), Branch (2004b).

Many empirical studies reject the rational expectations hypothesis in survey data on

inflationary expectations (surveyed by Branch 2004a). Several studies find that certain

models of learning provide good fit for survey data and address the persistent heterogene­

ity of expectations in the survey data. Branch and Evans (2004) find that constant gain

learning provides the best fit for data on inflation expectation in the Survey of Professional

Forecasters. Carrol (2003) finds evidence in favor of the epidemiological model of expecta­

tion formation. Branch (2004a) builds a model with rationally heterogenous expectations

and fits it to the data of Michigan Survey of Households.

It is important to take into account learning behavior. Gaspar, Smets and Vestin (2006)

show that when the private sector is adaptive with backward looking inflation expectations,

if the central bank acts as if the private sector had rational expectations, this leads to higher

volatility of inflation and output. Akerlof, Yellen (1985) show that small deviations from

rationality can have first order effects on the equilibrium outcome in microeconomic models.

One frequently used type of learning describes agents as econometricians. Agents es­

timate model's parameters recursively as new data arrives and make decisions based on

the estimated model. The important parameter in recursive estimation is the gain. Gain

determines how much weight is placed on the recent data relative to the past data. In

least squares, gain is decreasing so that all data observations receive equal weight. De­

creasing gain is used when the environment is stationary. Work with least squares learning

includes Evans and Honkapohja (2001), Marcet and Sargent (1989a, 1989b), Bullard and

Mitra (2002). In general, least squares learning can converge to a rational expectations equi­

librium under certain conditions (Evans and Honkapohja (2001), Bullard and Mitra (2002),

Bullard (1991), (2006)). Agents can also use constant gain that means that they place more

weight on the recent observations and discard past data. This is useful in nonstationary
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environments for tracking changes. The examples of research using constant gain learning

are Evans and Honkapohja (1993, 2001), Sargent (1999), Orphanides and Williams (2005),

Chakraborty and Evans (2006), Branch and Evans (2006 a,b, 2007), Kasa (2001), Cho and

Kasa (forthcoming). In a changing environment, constant gain learning does not converge

to a rational expectations equilibrium but to an ergodic distribution around it (Sargent

(1999), Evans and Honkapohja (2001)).

The important decision in using constant gain is the choice of value of gain. The opti­

mal value depends on how the parameters to be estimated, the probability distribution of

data vary relative to the observation noise. If parameters to be estimated and probability

distribution of data vary more relatively to noise, then higher value of gain is optimal. If

noise varies more, then lower gain is optimal. Sargent, Williams, Zha (2006), Milani (2005

a,b), Orphanides, Williams (2004), Branch, Evans (2006a) estimate the value of gain from

the data and Survey of Professional Forecasters. Another important aspect in choosing

gain is that agents can update at different rates depending on the economic environment.

Cagan (1956), Khan (1977), Silveira (1973) present empirical evidence that if agents use

adaptive expectations, their gain (coefficient of expectation) increases during hyperinflation.

In Chapter 2, " Application of adaptive step-size algorithm in a model of hyperinflation" ,

I introduce an algorithm that allows to model time varying speed of update. It is an adap­

tive step-size algorithm described in Benveniste et al. (1990), Kushner and Yang (1995),

Kushner and Yin (2003). It allows agents to estimate the parameters of the model and

gain at the same time based on their experience in the economy. The advantages of using

this algorithm are that it is adaptive to the environment, and agents' performance does not

depend on the choice of one value of gain at the beginning of estimation. For an application

of this algorithm, I use the Marcet and Nicolini (2003) model that introduces learning into

Sargent, Wallace (1987). Using bounded rationality in the model of hyperinflations can be

justified as: most agents are not likely to understand what happens during hyperinflation

as the prices increase tremendously in short period of time. Using an adaptive step-size

algorithm provides a unified specification of how gain behaves and avoids arbitrary/ad hoc

mechanism of Marcet and Nicolini (2003) combining constant and decreasing gains.
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The results are qualitatively the same as in Marcet and Nicolini (2003) (MN) and quanti­

tatively adaptive step-size algorithm performs better based on the criterion of Mean Forecast

Squared Error. The model economy addresses the same stylized facts about hyperinflations

as MN: recurrent hyperinflations, low correlation of seignorage and inflation in hyperinfla­

tionary countries, high correlation between average seignorage and inflation across countries,

Exchange rate rules stop hyperinflation temporarily, and hyperinflations can be eliminated

by permanently lower average seignorage. In addition, the introduction of an adaptive

step-size algorithm produces increasing gain during hyperinflation that addresses findings

in Cagan (1956), Khan (1977), Silveira (1973).

The behavior of gain is similar to MN during low inflation, but it is different from MN

during and after the end of hyperinflations. When inflation is low and stable, the speed

of update is low as agents do not make big forecast errors and so do not need to update

quickly. During hyperinflations the speed of update is increasing as agents repeatedly un­

derpredict inflation and need to put increasingly more weight on the recent observations to

catch up with inflationary process. In comparison, the agents in MN use high but constant

speed of update during hyperinflations. After hyperinflations end with fixed Exchange Rate

Rule, Marcet and Nicolini's agents keep updating at high speed. Agents using my algorithm

reduce the speed of update. I interpret this behavior such that agents are cautious and do

not rush to revise their expectations down as they do not trust that government's new low

inflation policy will prevail successfully. This is similar to the learning specification in Cho

and Sargent: agents do not believe that government can use good economic policy. During

hyperinflation agents repeatedly underpredict inflation, and when hyperinflations end, they

do not hurry to reduce their inflation forecasts as they do not trust government.

I also estimate the model using a simulated method of moments approach. I compare

the learning mechanism based on an adaptive step-size algorithm to Bayesian learning. I

find that based on the criterion of Mean Squared Error, the loss of forecasting accuracy

is not big when using an adaptive step-size algorithm in comparison to Bayesian learning.

This is evidence in favour of an adaptive step-size algorithm because it can be used by an

agent with little knowledge about the data generating process whereas a Bayesian agent

knows much more about DGP.
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In two other chapters, I use a different learning mechanism - evolutionary learning based

on genetic algorithm. Genetic algorithm is a numerical optimization technique first intro­

duced by Holland (1975) and described in Goldberg (1987), Michalewicz (1996), Back et. al.

(2000). Among the advantages of using genetic algorithm for optimization are that it starts

with a set of random solutions and so does not rely on the starting point, and that it is

applicable for discontinuous, nondifferentiable, noisy, multimodal and other unconventional

surfaces (Schwefel 2000). For example, Bullard and Duffy (2004) use simulated method of

moments with a genetic algorithm to estimate growth model with structural breaks. Evo­

lutionary learning is convenient to study economies with heterogeneous agents, it does not

impose high information and computational requirements on agents and is able to explain

actual and experimental data better than models with rational expectations. Evolutionary

learning has been used in different economic environments. Arifovic (1994, 1995, 1996),

LeBaron (2000), Arifovic, Bullard and Duffy (1997, 1998 a,b,c), Dawid (2006), Lux and

Marchesi (2000), Lux and Schornstein (2002) are some examples of research using evolu­

tionary learning agents.

Chapter 3, "Social Learning and Monetary Policy", analyzes the effects of social learning

in a widely-studied monetary policy context - New Keynesian model described in Woodford

(2003). Social learning might be viewed as more descriptive of actual learning behavior in

complex market economies. Ideas about how best to forecast the economy's state vector

are initially heterogeneous. Agents can copy better forecasting techniques and discard those

techniques which are less successful. The question is whether the economy will converge to

a rational expectations equilibrium under this more realistic learning dynamic. A key result

from the literature in the version of the model we study is that the Taylor Principle governs

both the uniqueness and the expectational stability of the rational expectations equilibrium

when all agents learn homogeneously using recursive algorithms. The finding is that the

Taylor Principle is not necessary for convergence in a social learning context. This paper

also contributes to the use of genetic algorithm learning in stochastic environments.

Chapter 4, "Learning Benevolent Leadership in a Heterogeneous Agents Economy",

studies cheap talk announcement in an agent-based dynamic extension of Kydland-Prescott

model. The government decides on inflation announcement and actual inflation and up­

dates its decisions using a model of individual, evolutionary learning (Arifovic, Ledyard
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2004). Private agents use naive and more sophisticated inflation forecasts and switch be­

tween forecast mechanisms based on their payoffs. Agents and government can coordinate

on Pareto superior outcomes with a positive fraction of naive agents. The economy exhibits

recurrent fluctuations in the inflation announcement and actual inflation as a result of the

government's actions. The fluctuations happen as the government builds up and exploits

the population of believers. In a typical sequence of events, the government first builds up a

positive proportion of believers by keeping the difference between announced and actual in­

flation relatively small. Having achieved this, the government starts exploiting the existing

believers by increasing the discrepancy between actual inflation and inflation announcement

in a short-sighted attempt to lower unemployment and increase its payoff. This has a nega­

tive impact on the believers' payoffs and their proportion decreases. Recurrent fluctuations

in the proportion of believers represent changes in the level of trust to the government. Our

model generates endogenous credibility that changes over time as a result of the government

actions and its impact on private sector's payoffs. When it is costlier for nonbelievers to

make their own forecast, the proportion of believers goes up. When the speed of update

of nonbelievers is lower, the proportion of believers fluctuates faster and naive believers are

more likely to disappear. Therefore, quick and accurate sophisticated forecasters ensure

positive number of naive agents.
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Chapter 2

Application of an Adaptive

Step-Size Algorithm in Models of

Hyperinflation.

2.1 Introduction

Models departing from rational expectations are used to explain how agents converge to a

rational expectations equilibrium, to select among multiple equilibria, and to explain puzzles

that cannot readily be explained by models with rational expectations. The explanations of

hyperinflations using rational expectations rely on bubble equilibria (Sargent and Wallace

(1987)), and recurrence of hyperinflations is explained by sunspots (Funke et al. (1994)).

Other explanations employ departures from rational expectations and introduce learning

(Marcet and Nicolini (2003), Sargent, Williams and Zha (2006), Adam et al. (2006)). The

latter use learning mechanisms that differ in the specification of the speed of adjustment to

new information.

Two common assumptions about the gain used in the literature are least squares learn­

ing and constant gain (perpetual) learning. In least squares learning, the gain decreases

with time and gives equal weight to all past observations. If an agent knows that he is in

a stationary environment, he will use a decreasing gain. Examples of research using least

squares learning include Evans and Honkapohja (2001), and Marcet and Sargent (1989a,

12
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1989b). In general, least squares learning can converge to a rational expectations equilib­

rium under certain conditions (Evans and Honkapohja (2001), Bullard and Mitra (2002),

Bullard (1991), (2006)).

In contrast, a constant gain algorithm discounts past data and gives more weight to

recent observations. A constant gain is thus better at tracking structural changes. If an

agent believes that the environment is not stationary, and that regime changes are possible,

constant gain learning is used. Constant gain learning is normally interpreted as agents

do not trust the government and are alert to possible changes in the government's policy.

Once change happens, the agent using constant gain is ready to view it as a regime switch

and updates his estimates accordingly. Evans and Honkapohja (1993, 2001), Sargent (1999),

Orphanides and Williams (2005), Chakraborty and Evans (2006), and Cho and Kasa (forth­

coming) are several examples of research using constant gain learning. Sargent (1999) finds

that least squares learning converges to a Nash equilibrium in the Kydland-Prescott model

(Kydland and Prescott (1977)). Sargent (1999) suggests using constant gain learning - it

can allow a government using a misspecified model to achieve a superior Ramsey outcome

and escape from Nash inflation. In a changing environment, constant gain learning does

not converge to a rational expectations equilibrium, but to an ergodic distribution around

it (Sargent 1999, Evans and Honkapohja (2001).

Several questions about constant gain learning remain be addressed. First is the choice

of the gain parameter. In most of the literature, this parameter is chosen in an ad hoc

manner to produce desired properties in the model at hand. The value of the gain is gen­

erally quite important for the results. Recent literature either estimates the constant gain

from the data or from surveys of professional forecasters (Sargent, Williams and Zha (2006),

Milani (2005 a,b), Orphanides and Williams (2004), Branch and Evans (2005)).

A second question is whether constant gain beliefs can be self-confirming. The stated

motivation for using a constant gain algorithm is a nonstationary environment, but constant

gain learning is often used in models that are stationary. In these models, if agents were to

use decreasing gain, their expectations would be validated just as well as they are validated

when they use constant gain expectations (Chakraborty and Evans (2007)).
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A third issue is that one would expect agents to learn at different speeds depending on

the economic environment. Cagan (1956) uses adaptive expectations to study hyperinflation

and points out the limitations of this scheme: adaptive mechanisms with constant gain 1

constrain agents to adjust their forecasts by a constant proportion of their forecast error.

Cagan (1956) estimates gains during hyperinflation and finds that agents update slower in

the earlier periods of hyperinflation, and quicker in the later periods of hyperinflation. Khan

(1977) finds support for a variable gain in data as well - the update speed increases with the

variability of inflation. Khan (1977) specifies the gain as a function of the absolute level of

inflation (using Cagan's finding that the gain increases as hyperinflation unfolds) and the

variability of inflation measured by the absolute change of inflation. A similar specification

for a variable gain is derived in a model with rational expectations by Mussa (1981). Sil­

veira (1973) finds support for an increasing gain in hyperinflation data from Brazil. These

papers explain that agents need to revise their expectations quicker and so use a higher gain

because slow adjustment to forecast errors can be costly in hyperinflationary environments.

There are more recent examples using time-varying gain parameters. Marcet and Nicol­

ini (2003) introduce a learning mechanism that combines a constant gain and a decreasing

gain to model recurrent hyperinflation in Latin America. Their agent switches from a de­

creasing gain to a constant gain when forecast errors rise above a critical level, and then

returns to a decreasing gain when forecast errors fall below the critical level. The value of the

constant gain is chosen so that the learning algorithm satisfies lower bound on rationality.

Timmermann (1993) models learning in an environment with infrequent structural changes,

where the timing of the regime shifts are known to the agent. The agent uses a decreasing

gain when the structure is unchanged and a constant gain when a structural break occurs.

Milani (2005a) allows for a structural break that changes the value of constant gain. Evans

and Ramey (2005) derive Nash equilibrium gain and show that agents using Recursive Pre­

diction Error (RPE) algorithm (Ljung and Soderstrom 1983) are able to adjust their gain

to an equilibrium value that varies with policy changes.

In this paper, I introduce a new time-varying gain algorithm. I use an adaptive step

size algorithm as described in Benveniste et al. (1990), Kushner and Yang (1995), Kushner

lLiterature discussed in this paragraph uses term 'coefficient of expectations' for gain/speed of update.
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and Yin (2003) [pp.69-73]. The successful use of a constant gain algorithm depends on the

choice of the gain. The optimal choice of the gain depends on how fast the time-varying

parameters to be estimated, the probability distributions of data and the observation noise

vary relative to each other. If the probability distributions of data and parameters vary a

lot, then a higher gain is optimal. However, if observation noise is high, then a smaller gain

is better. The adaptive step-size algorithm allows the gain to evolve in response to changes

in the environment. Estimation consists of two parts: (i) estimation of the model parame­

ters, and (ii) estimation of the gain (the details are provided in the section "Specification of

expectations"). This algorithm is commonly used in engineering applications, and should

be useful in economic learning models. Its economic interpretation is that agents adjust the

speed of their learning depending on their recent experience. This procedure thus avoids

the problems of committing to a single value for the gain and specifying an ad hoc learning

mechanism.

I apply the adaptive step size algorithm to the environment from Marcet, Nicolini (2003),

in which an agent learns about forming inflation expectations. He does not know whether

the model has regime changes or not, and adapts his forecasts and learning speed based on

his observations using the adaptive step-size algorithm.

2.1.1 Main findings

The adaptive step size algorithm specifies a learning scheme endogenous to the model and

changes in policy. This addresses the criticism that boundedly rational mechanisms are ex­

ogenous to the model. This algorithm provides a universal approach to how gain parameters

change in response to changes in the model environment, and avoids the arbitrariness of

gain parameter specifications in previous literature.

Interestingly, the simulations show that the model in this paper produces qualitatively

similar behavior of inflation and inflation expectations as in Marcet and Nicolini's (2003)

model (MN below). Mean Squared Errors of the learning specification in this paper are

similar to or smaller than those of MN, which implies that an adaptive step-size algorithm

performs somewhat better.
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The value of gain increases as hyperinflation develops. The increasing gain during hy­

perinflations matches the empirical findings in Cagan (1956), Khan (1977) and Silveira

(1973). The adaptive step-size learning specification matches findings of increasing speed

of update during hyperinflation better than the mechanism in MN. In the MN model, the

agent switches from a decreasing gain to a constant gain at the beginning of hyperinflations

and continues to use a constant gain during hyperinflations. In my model, the agent revises

his update speed optimally based on the adaptive step-size algorithm.

In my model, the gain behaves differently than in MN after a hyperinflation ends with

the implementation of an exchange rate rule (ERR). In MN, the agent continues to update

using constant gain. In my model, the agent switches to lower gain right after an ERR is

implemented. The decrease in gain has the following behavioral interpretation. The agent

does not believe that a regime change has happened and inflation will be low, and/or he does

not believe that new policy regime is credible. The agent has repeatedly underpredicted

inflation during hyperinflation. When inflation drops, the agent does not discard his past

experience quickly, and does not rush to revise down his inflation forecasts because he does

not believe that a new regime has started or will prevail successfully.

This behavior of the gain (increases during hyperinflation, decreases after implementa­

tion of the exchange rate rule) is similar to the mechanism modeled in Cho and Sargent

(1997). They specify a learning algorithm in which the agents are skeptical that the govern­

ment can stick to good economic policy [p.lO]. When applied to hyperinflationary environ­

ments, this mechanism implies the following. During a hyperinflation, agents update their

beliefs by putting more weight on recent data because they understand that the government

does not use good economic policy. When agents observe a sudden drop in inflation, they

update by placing less weight on recent data because they do not expect the government to

maintain good policy.

I estimate the model for Argentina, Bolivia, Brazil and Peru using simulated method of

moments with a genetic algorithm. Simulations for the estimated parameters exhibit hyper­

inflations for all countries except Brazil. This suggests that a more sophisticated estimation

(for example, based on transition probabilities for inflation) may be needed.
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Sargent and Wallace (1987) show that a high inflation steady state (with perverse compar­

ative statics) is stable under perfect foresight and explain hyperinflations as rational bubble

equilibria. Marcet and Sargent (1989) study the model in Sargent and Wallace (1987) with

least squares learning and find that low inflation steady state is stable under least squares

learning, whereas high inflation steady state is not. Adam et al. (2006) show that hyperin­

flationary paths near the high inflation steady state are stable if agents use contemporaneous

data.

Marcet and Nicolini (2003) study the Sargent and Wallace (1987) model (with stochastic

iid seignorage) by introducing an endogenous learning scheme that combines least squares

learning and constant gain learning. One of the mechanisms is used depending on the size

of forecast error. Marcet and Nicolini (2003) are able to address stylized facts of recurrent

hyperinflations in Latin American countries.

Sargent, Williams and Zha (2006) estimate the same model with constant gain learning

and some modifications (e.g. specification of seignorage as a Markov switching process)

for Latin American countries that experienced hyperinflation. They conclude that change

in inflation can be attributed to the learning dynamics (switches of perceived inflation be­

tween low and high Self Confirming Equilibria) and/or to change in fundamentals (change

in seignorage).

2.1.3 Organization

I describe the environment and expectation formation mechanism in section 2. The results

of the simulations and analysis are presented in section 3, and the model is estimated in

section 4. Section 5 compares the adaptive step size algorithm to Bayesian learning. Section

6 compares related models and is followed by the conclusion.
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I study a model that consists of a money demand equation, a government budget constraint,

an exogenous process for seignorage, and a specification of expectation formation that is

different from rational expectations. Marcet and Nicolini (2003) and Sargent, Williams and

Zha (2006) use the same model with different expectation mechanisms.

The demand for money is given by a Cagan style specification:

M ~e

_t = cP - ,cP~ (2.1)
Pt Pt

where cP, , > 0 are parameters, M t is nominal balances as a percent of output at time t, Pt

is the price level at time t, Pt~l is the expected price level for time t + 1.

The government supplies money to finance seignorage. If inflation is above a certain

critical level, the government implements an exchange rate rule (ERR). If there is no need

for the ERR, then the government budget constraint is:

(2.2)

(2.3)

where dt is seignorage, it is an iid stochastic process. I will follow the assumption in Marcet

and Nicolini (2003) that seignorage is normally distributed, N(E(d) , a~), ad = 0.01, and

truncated to have positive values. The equilibrium values of nominal balances and prices

{Mt , Pd~o are determined from (2.1), (2.2) and an expectation formation equation. I

denote the inflation rate as 7rt = pPt . Under rational expectations, there are 2 deterministic
t-l

steady state inflation rates for d = E(dt ):

1+, - ~ ± )(1 +, - ~)2 - 4,
7r12 =, 2,

The government buys or sells foreign reserves Rt at exchange rate et to peg the exchange

rate satisfying:

pi -.!:!:- = 1f (2.4)
Pt - 1 et-l

where 1f is the targeted inflation rate, and p! is the foreign price level. The targeted inflation

rate is assumed to be equal to the low steady state inflation from (2.3). Perfect goods

mobility and purchasing power parity imply that the targeted inflation rate is achieved:

Pt _
- = 7r (2.5)
Pt - 1
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Under the ERR, the equilibrium price level is determined from (2.5). Money demand is

solved from (2.1) together with the expectation formation specification. If the money de­

mand determined from (2.1) is not equal to the money supply from (2.2), then the govern­

ment adjusts international reserves such that the money supply is determined by:

(2.6)

(2.7)

The exchange rate rule (ERR) is imposed when inflation is above the critical level 7r
u :

Pt U
-->7r
Pt - I

or when there is no positive price level that clears the market if Rt = Rt - I . The implicit

assumption is that the ERR can always be enforced, i.e. there are always enough interna­

tional reserves to peg the exchange rate.

2.2.1 Expectation formation

Agents form their expectations of inflation, 13t+1 = P*l, adaptively as:

(2.8)

for some initial value 130. Thus inflation forecasts are revised by the last forecast error

weighted by the gain at.

In this paper, the gain at evolves based on the adaptive step-size algorithm suggested in

Benveniste, Metivier and Priouret(1990), proved in Kushner and Yang (1995) and described

in Kushner and Yin (2003) [p.71]. This algorithm specifies endogenous behavior of the gain

in response to developments in the economy. The algorithm can therefore be thought of

as providing a unified specification of how gains evolve over time, and so avoids an ad hoc

mechanism of discrete changes in gain in response to big forecast errors as in Marcet and

Nicolini (2003). In my model, the gain follows:

IT [at-I + J.L * (7rt-1 -l3t-l) * Vi-I]
[a_,a+l

Vi-I - at-I * Vi-I + (7rt-1 -l3t-I), Vo = 0

(2.9)

(2.10)
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In (2.9), /-l is the step size in the stochastic approximation of the at process (loosely speak­

ing, /-l is 'gain on the gain'). TI[a_,a+] is a projection operator that sets the gain at equal

to a_ when it falls below this value, and sets the gain equal a+ when it rises above this

value. Kushner and Yin (2003) show that the performance of a nonadaptive algorithm (with

constant gain) is much more sensitive to the choice of constant gain a than the adaptive

step size algorithm is to the choice of the step size /-l. While it is necessary that 0 < /-l « a_

for the proofs, the lower bound a_ is not so important in applications. However, the upper

bound a+ is very important for the performance, and is often chosen close to the point

where the algorithm becomes unstable.

In (2.10), vt denotes the "derivative" of the estimated parameter (f3 in this case) with

respect to the gain a for the stationary process. The process f3t is not a classical function of

a, but its distribution depends on a. Kushner and Yang (1995) interpret vt as the desired

derivative (also see Kushner and Yin 2003).

The intuition behind this learning mechanism is as follows. The change in gain (2.9) is

driven by the discounted past errors, V, and the last period forecast error, 7rt - f3t. When

the last period forecast error is in the same direction as the discounted past errors, the agent

increases the gain. This means that if the agent keeps making the same error, he wants to

increase his response to the last period forecast error when updating forecasts. If the last

period's forecast error is in a different direction from the discounted past errors, the agent

decreases the gain. This means that when the agent encounters something contradictory to

his past experience, the agent reduces his response to forecast errors until he learns more.

The value of V (2.10) depends on the size of the last period forecast error (7rt-1 - f3t-d
relative to the size of the past discounted errors (vt-l - at-l * vt-d. For example, if the

latest forecast error is small relative to the past discounted errors, then V changes slowly.

2.3 Simulation results

I simulate the economy for the same parameter values as in Marcet and Nicolini (2003). 2

The parameters in the money demand equation are I = 0.4, ¢ = 0.37, and mean seignorage

2Model in Sargent, Williams and Zha (2006) is estimated with seignorage as a Markov switching process,
and so their values of the model parameters are different from Marcet and Nicolini (2003).
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is E(d) = 0.049. The model has 2 steady states that become closer for higher values of av­

erage seignorage. For the above money demand parameters, the maximum value of average

seignorage for which rational expectations equilibrium exists is E(d) = 0.05. When mean

seignorage is closer to its maximum value, it is easier for the system to move above the high

inflation steady state and to explode into a hyperinflation.

The parameters of the step size algorithm are It = 0.001, a_ = 0.01, a+ = 0.6. The

initial value of the gain is 0.2.3 It is important to note that this upper boundary for the

gain is not binding as in the simulations gain rarely reached values equal or above it. I

choose the initial expectation as f30 = 71"0 = 7I"low equal to the initial inflation started at the

low inflation steady state.

I will compare the simulations based on Marcet and Nicolini (2003) and the simulations

based on the gain specification in (2.9). Figure 2.1 presents the replication of Marcet and

Nicolini's (2003) model. Figures 2.2 and 4.3 present the results of the simulations with my

adaptive step-size algorithm.

Figures 2.1 and 2.2 are based on the same seed, the only difference is the specification

of the gain. These two figures look very similar in terms of the behavior of actual inflation

(thick blue line) and inflation expectations (thin black line). For example, the timing and

magnitudes of inflation are similar. Expectations of inflation adapt slowly after the end of

hyperinflation in both models. The key difference between the two models is in how agents

revise their inflation expectations, i.e. the behavior of the gain is different.

As hyperinflation develops, the agent using an adaptive step-size algorithm increases his

gain. The agent using an adaptive step-size algorithm can adjust his gain flexibly as the

economic environment changes. As hyperinflation unfolds, the agent's inflation forecasts

are repeatedly below actual inflation. Therefore, the agent begins to increase gain so that

his inflation expectations catch up to actual inflation. A higher gain means that the agent

updates his inflation expectations with higher responses to forecast errors. If the forecast

errors are positive (as is the case during hyperinflation), increasing the gain means that the

3This is value of constant gain Marcet, Nicolini (2003) use.
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agent increases his inflation expectation by a higher proportion of forecast error.
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Cagan (1956) estimates a model with adaptive expectations for subperiods of hyperinfla­

tion and finds that gain increases as hyperinflation evolves. Khan (1977) specifies the gain

as a function of inflation and inflation variability and finds that the gain is positively related

to inflation variance. Khan's specification is related to Mussa (1981) who finds that update

speed is a function of inflation variance in a model with rational agents. In this paper, the

agent revises his speed of update optimally based on the adaptive step-size algorithm (2.9),

and the resulting behavior of the gain matches the above empirical findings of increasing

gain.

The adaptive step-size algorithm captures an increasing speed of update during hyper­

inflation better than the mechanism in MN. In the MN model, as hyperinflation progresses

the agent makes forecast errors that are higher than the critical level, and therefore, the

agent switches from a decreasing gain to the constant gain of 0.2. The gain then stays con­

stant during hyperinflation and after hyperinflation is terminated by the ERR. Behavioral

interpretation is that the agent realizes that he makes large forecast errors and interprets

that as a change in regime, not as an exceptionally large shock in a stationary environment.

The agent wants to learn about this new regime as quickly as possible in order not to make

large forecast errors, and so he switches to high constant gain. As soon as forecast errors

are below the critical level, the agent resumes the use of a decreasing gain.

To summarize, the model in this paper produces hyperinflation as in Marcet and Nicolini

(2003) and, in addition, matches the empirical finding that gains increase during hyperin­

flation.

Another difference in the behavior of the gain occurs after hyperinflations end. The

second panel of Figure 1 illustrates behavior in the MN model, and the second panel of

Figure 2 illustrates behavior of adaptive step-size gain on the left y-axis, and the derivative

V on the right y-axis. The agent in this paper decreases his gain whereas the MN agent

continues to update at a high constant gain after hyperinflation is ended. The MN agent

uses constant gain because he makes forecast errors above the critical level during hyper­

inflation and after it. The behavior of the agent using the adaptive step-size algorithm
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can be described as follows. During hyperinflation, the agent increases his gain to speed

up his learning as explained above. By the time hyperinflation reaches its peak, the agent

has experienced a long history of underpredicting actual inflation. When hyperinflation is

terminated by imposing ERR, the agent makes negative forecast error (1rt - 13t < 0), i.e. he

overpredicts actual inflation. When the forecast error is negative in (3.10), the agent will

reduce his inflation forecast. Decrease in gain means that the forecast will be reduced by a

smaller fraction of the last forecast error and achieves smaller revision of expectations. This

can be interpreted as the agent not wanting to rush to lower his forecast.

There can be several reasons for an agent's unwillingness to update quickly. If the ERR

is unknown to the agent, or is perhaps not credible, then the agent will be cautious, and not

revise his inflation forecasts too quickly. Therefore, he reduces gain to decrease response

to the negative forecast error. The agent needs to confirm that low inflation is not due

to a temporary shock; and if low inflation is a new government's policy, the agent needs

to observe that government is successful in implementing it. After the agent observes low

inflation for some time, he will believe it is caused by a change in regime, and thus he

increases his gain to learn it more quickly. Figure 4.3 shows that this behavior is typical

after the end of hyperinflations.

I would like to provide a technical explanation of why the gain decreases after hyper­

inflation is stopped. Technical interpretation of the 'long history of underpredicting the

inflation' is a high and positive value of V in (2.9, 2.10). V stores discounted past forecast

errors. By the peak of hyperinflation, V is high and positive. When hyperinflation ends,

negative forecast errors 1rt - 13t < a lower V according to (2.10), but not by much and so

V remains positive. From (2.9), the gain decreases. The key aspect of this behavior is the

long history of past mistakes (high positive V) relative to negative forecast error. For the

gain to increase, it is necessary to repeatedly experience negative forecast errors such that

V decreases and becomes negative. When V and 1rt - 13t are both negative, the gain can

increase. This means the agent's response to the latest forecast error increases, i.e. he starts

to revise down his inflation expectations by larger increments.

This adaptive step-size algorithm produces behavior of the gain that is directly related

to the learning mechanism specified in Cho and Sargent (1997). Their specification is set
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up so that the agent is suspicious about the government's implementation of good policy.

When applied to a hyperinflationary environment, Cho and Sargent (1997) implies the fol­

lowing behavior. During hyperinflation the agent realizes that the government's policy is

bad, and so he updates his beliefs with a high gain so as to be alert to possible repercus­

sions. When hyperinflation is ended with the exchange rate rule, the agent no longer trusts

the government's intentions, or possibly does not believe the new government's ability to

implement the new policy successfully, and so the agent slows down the update of his beliefs.

Next, I evaluate the performance of the forecasting mechanism based on the adaptive

step-size algorithm and the mechanism in MN by comparing mean squared errors (MSE) in

the simulations. I run 100 simulations of each type, compute MSE for each run, and then

average over 100 simulations. The values of model parameters are as described above. I

compute MSE for the simulations of different lengths. The results are summarized in Table

2.1. For a simulation length of 100 periods, the values of MSE are comparable for the two

mechanisms. The adaptive step-size gain performs better for simulation lengths greater or

equal 200. This means that it takes some time for this specification to be put to its best use.

2.4 Estimation of the model parameters

This model is stylized, and the data on inflation is nonstationary. These factors can make

econometric estimation of the model problematic. The estimation approach in this paper

is based on indirect inference (Gourieroux et al. (1993) ). The indirect inference method

is useful for complex models with intractable likelihood function, and the only requirement

for estimation is that the model can be simulated. The procedure can be summarized as

follows. First, I compute the auxiliary parameter from the real data on inflation. I use

skewness as an auxiliary parameter. This may be a quick fix but may be a useful start.

Second, I simulate the model for different sets of model parameters, collect data from these

simulations and compute the skewness of simulated inflation. The objective is to find the set

of model parameters for which the distance between the auxiliary parameter from the real

and simulated data is the closest. In other words, I aim to match the moment (skewness)

in real data and in simulated data.
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To match the moments in the data and the model, I use a genetic algorithm - a numer­

ical optimization technique first introduced by Holland (1975) and described in Goldberg

(1987), Michalewicz (1996), and Back et. al. (2000). Among the advantages of using a

genetic algorithm are that it starts with a set of random solutions and so does not rely on

the starting point, and that it is applicable for discontinuous, nondifferentiable, noisy, mul­

timodal and other unconventional surfaces. (Schwefel 2000). Bullard and Duffy (2004) use

a simulated method of moments with a genetic algorithm to estimate a growth model with

structural breaks. The optimization problem here is to minimize the distance between the

auxiliary parameters computed from real data and the auxiliary parameters from simulated

data with respect to the values of model parameters. The nature of landscape is not known

in advance, and so the application of a genetic algorithm is appropriate.

The parameters to be estimated are money demand parameters, 1 and 1>, mean E(d)

and standard deviation ad of seignorage, and the initial value of the gain al. Parameter

JL = 0.001 is fixed because the performance of the adaptive step-size algorithm is not sensi­

tive to this parameter (as shown in Kushner and Yin (2003)).

2.4.1 Description of the genetic algorithm

The algorithm starts with N rules. Each rule consists of the model parameters to be esti­

mated: I, 1>, E(d), ad), (al)'

The initial pool of rules is generated randomly from uniform distributions with supports

that are different for each parameter and are given in Table 2.2 along with the standard

deviations for mutation. Other genetic algorithm parameters are given in Table 2.3. The

ranges for the parameters are chosen taking into consideration the values of the correspond­

ing parameters in the related literature (Sargent, Wallace (1987), Marcet, Sargent (1989 b),

Sargent, Williams, Zha (2006)). Attention must be paid to the value of mean seignorage

because it has the maximum value for which a rational expectation equilibrium exists, and

this maximum value is determined by the values of the money demand parameters. The

value of mean seignorage is restricted to be close to the maximum value because hyperin­

£lations can arise when mean seignorage is sufficiently close to its maximum value. I deal

with these aspects by initializing and performing mutation on the mean seignorage after
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initialization and mutation of the parameters of the money demand in the following way.

For each rule's values of money demand parameters "I, ¢, I compute the maximum value of

mean seignorage as:

max(d) = (1 + "I - 2v0)¢

Then I restrict the range for mean seignorage [mind, maxd] within some distance from the

maximum value max(d) as mind = 0.9max(d), maxd = 0.99max(d).

To evaluate the performance of each rule, the simulation is run for the parameter val­

ues of this rule, simulated inflation data is collected, and skewness of simulated inflation is

computed. The length of the simulation is equal to the number of observations in the data

on inflation plus 20 periods. The initial 20 periods of simulated data are discarded to avoid

dependence on the initial values.

Fitness criterion is very important for the performance of the algorithm. Mean squared

error is often used as a performance measure. In this estimation, fitness is the squared

distance between skewness in the real data and skewness in the simulated data computed

and added for 100 realizations.

Once fitness IS computed, the pool of rules is updated by replication, crossover, and

mutation.

Replication is done by tournament selection. Two rules are randomly selected with re­

placement from an old pool of rules. The fitness measures of these two rules are compared,

and the rule with higher fitness is chosen into the new pool of rules. This procedure is re­

peated N times to form a new pool of rules. Replication provides all the selection pressure

in this genetic algorithm.

Crossover is done with probability pcross = 0.5 for a pair of randomly selected (without

replacement) rules. Once a pair ofrules is chosen for crossover, the values of each parameter

are exchanged between the rules with probability 0.5. The role of the crossover can be very

important for the performance of the algorithm when searching for multiple parameters. 4

4See Arifovic, Bullard, Kostyshyna (2007)
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Mutation is done for each parameter in the rule with probability pmut = 0.1. The new

value of the parameter is computed as:

new rule = old rule + randn * std

where randn is the random number from the standard normal distribution (N(O,l)), std is

the standard deviation for a specific parameter. The values of std for each parameter are

presented in Table 2.2. If the value of a new rule is below (above) the low (high) boundary

value, the new rule is set equal to low (high) boundary value.

The genetic algorithm is repeated for T iterations. The purpose is for the parameters to

converge to their globally optimal values by the end of the genetic algorithm simulation.

2.4.2 Results of the computations

I now present the estimated parameters from the genetic algorithm optimization with skew­

ness as an auxiliary parameter. For each parameter, I report the average and standard

deviation (in parenthesis) of 30 rules after 40,000 iterations of the genetic algorithm.

The estimated parameter values for Argentina, Bolivia, Brazil and Peru are presented

in Table 2.4. The data used for these countries are monthly inflation rates for the samples

indicated in Table 2.4 and computed from International Financial Statistics Consumer Price

Indexes. This data is plotted in Figure 2.4. The skewness in data for each country is given

in column 2 in parenthesis. The skewness for simulated data for the estimated parameters

is given in column 2.

Using these estimated parameter values, I simulate the model to obtain the path of the

time-varying gain and present the simulations in Figure 2.6 for Argentina, in Figure 2.7 for

Bolivia, in Figure 2.8 for Brazil, and in Figure 2.9 for Peru. For all countries except Brazil,

the model with estimated parameters exhibits hyperinflation. The figures for the simulated

data show that the model captures the general features in the actual data when compared

to the figures with the actual data shown in Figures 2.5 and 2.4. Matching model skewness

with skewness in the data can be viewed as a first step, which in the case of Brazil, does not
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produce the desired outcome. Therefore, a more sophisticated approach may be warranted,

for example, matching transition probabilities in inflation data and simulated inflation for

an autoregressive Markov-switching model.

2.5 Comparison of learning mechanisms

In this section, I compare Bayesian learning and learning based on the adaptive step-size

algorithm to evaluate the loss of statistical efficiency from using the latter mechanism. I

evaluate these learning mechanisms based on the criterion of Mean Squared Error in a sim­

ple case where agents need to make forecasts and learn about a Markow Switching inflation

process.

I consider a process with first order 2-state Markov Switching constant and variance:

Pr[St=jjSt-l=i]=Pji, i,j=1,2

2

I>ji = 1
i=l

where Smt = 1 if St = m, Smt = 0, otherwise, m = 1,2

I use the following parameter values: Cl = 0.9, C2 = 0.1, 0"[ = 0.1, O"~ = 0.01, Pll = 0.9,

P22 = 0.8.

These parameters are used to simulate time paths, and allow agents to forecast inflation

using two approaches - (i) Bayesian learning, and (ii) adaptive step-size algorithm. Bayesian

agents have the following information about the data generating process - transition prob­

abilities, means and variance in each state. Bayesian agents update probabilities of being

in each state using Bayesian updating and form forecasts using this information. I compute
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an implicit gain from the forecasts of Bayesian agents as follows:

(2.11)

(2.12)

and gain at the

where {3t is the forecast in period t, 7rt is actual data in period t. The implicit gain for

Bayesian updating is:
. {3t - {3t-I

gaznt = {3
7rt - t-I

Agents using the adaptive step-size algorithm update their forecasts

same time. Their model is follows:

{3t {3t-I + at(7rt - {3t-d

II [at-I + J.l * (7rt-I - (3t-I) * lit-I]
[a_,a+l

lit-I - at-I * lit-I + (7rt-I - (3t-I), Va = 0

(2.13)

(2.14)

(2.15)

where {3I = YI, aI = 0.2, J.l = 0.001, VI = O. I choose the same values of aI and J.l as in

Section 3.

A typical realization of the simulation is illustrated on Figure 2.10. This figure shows

that each learning algorithm forecasts better or worse than the other during certain periods

of time. For the simulation illustrated on Figure 2.10, forecasting based on Bayesian learn­

ing performs somewhat better than forecasting based on the adaptive step-size mechanism

as measured by Mean Squared Error.

I perform 100 simulations and report Mean Squared Errors averaged over 100 simula­

tions. These results are reported in Table 2.5. Based on the data in this Table, the Bayesian

forecasting model performs somewhat better than the adaptive step size algorithm, but the

mean squared forecast error from using the adaptive step size algorithm is not much bigger.

The order of magnitudes of MSE are similar for the two mechanisms, and so the loss of

forecasting accuracy is not high. This finding actually favors the adaptive algorithm, as it

can perform almost the same without the substantial information requirements of Bayesian

learning.
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2.6 Comparison of related models
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In Sargent, Williams and Zha (2006), hyperinflations occur when a sequence of seignor­

age shocks push inflation expectations above the high unstable self-confirming equilibrium

(SCE), which means that inflation dynamics escape the domain of attraction of the low

SCE. (SCE are good approximations of Rational Expectations Equilibria for very persistent

average deficit states). In this escape region, actual inflation is higher than expected infla­

tion, and so both actual and perceived inflation increase, and thus hyperinflations occur.

The end of hyperinflations is explained by learning dynamics or changes in fundamentals.

A similar mechanism is in place in Marcet and Nicolini (2003). If inflation starts be­

low the high inflation steady state, actual inflation is on average closer to the low inflation

steady state than perceived inflation, and so learning moves perceived inflation towards the

low inflation steady state. If perceived inflation is above the high inflation steady state,

then actual inflation is on average higher than perceived inflation, and so perceived inflation

increases. There is also an additional amplifying impact of the increased gain during the

periods leading to hyperinflation and during hyperinflation: as the agent makes large fore­

cast errors, the gain increases, and so the agent updates perceived inflation quicker which

feeds back into the actual inflation and further increases it. When inflation reaches the criti­

cal level, the ERR is implemented and actual inflation is set to the low inflation steady state.

The hyperinflations happen in the adaptive step size algorithm application in this paper

and in the model of Marcet and Nicolini (2003) in the same way. The difference between

Marcet and Nicolini (2003) and the specification in this paper is the behavior of gain during

hyperinflations and right after hyperinflation is ended with implementation of the ERR. In

MN, the agent updates his forecasts using high gain (0.2) during and after hyperinflations

until his forecast error is lower than the critical level. In my model, the agent increases

speed of update as hyperinflation develops. Agent meets the ERR reform with suspicion,

and lowers the speed of update after he observes a sudden large drop of inflation. After a

sufficiently long period of low inflation, the agent is convinced that the reform works and

proceeds to update his forecasts quickly to learn the new regime.
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2.7 Conclusion
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An adaptive step-size algorithm is introduced to model time-varying learning in the envi­

ronment of Marcet and Nicolini (2003). This model behaves qualitatively similar to Marcet

and Nicolini (2003). The model in this paper performs quantitatively somewhat better

based on the criterion of mean squared error. Agent increases the speed of update during

hyperinftations that matches empirical findings in Cagan (1956), Khan (1977), and Sil­

veira (1973). The agent using this model shows caution when faced with sudden changes

in policy, and is able to recognize the change in regime after acquiring sufficient information.

Model parameters are estimated using simulated method of moments with a genetic

algorithm to minimize the distance between skewness in the real and the simulated data.

The simulations for the estimated parameters exhibit hyperinftations for all countries except

Brazil.

The loss of statistical efficiency of using adaptive step-size algorithm is not large in com­

parison to Bayesian learning based on the criterion of mean squared error.
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CHAPTER 2. Application of an Adaptive Step-Size Algorithm

2.9 Appendix

Replication of Marcel. NicOlini (2003), E(d)=O.049 MSE= 2.4889
1.4

1.2 --p

0.8

0.6

0.4

0.2 c:J>-
0

0 10 20 30 40 SO 60 70 80 90 100

0.8

06

0.4

0.2

00'-----',0--....20--3"'--0--4'-0---'50--6-'--0--7'---0---'80--9-'-0----"00

Figure 2.1: The replication of the model by Marcet and Nicolini (2003)
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Figure 2.2: Typical simulation with the adaptive step-size algorithm. The first panel shows
actual inflation (pai) and expectations of inflation (beta). The second panel shows adaptive
step-size gain on the left y-a;xis (thick line), and the derivative V on the right y-axis (thin
line).
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Fip;ure 2.3: Typical simulation with the adaptive step size algorithm. The first panel shows
actual inflation (pai) and expectations of inflation (beta). The second panel shows adaptive
step-size gain on the left y-axis (thick line), and the derivative V on the right y-axis (thin
line) .
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Figure 2.5: Monthly inAation rates (in logs) during periods of hyperinAation, closer look at
the data from Figure 2.5.
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Figure 2.6: Typical simulation with estimated parameters based on skewness for Argentina.
The first panel shows actual inflation (pai) and expectations of inflation (beta). The second
panel shows adaptive step-size gain on the left y-axis (thick line), and the derivative V on
the right y-axis (thin line).
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Figure 2.7: Typical simulation with estimated parameters based on skewness for Bolivia.
The first panel shows actual inflation (pai) and expectations of inflation (beta). The second
panel shows adaptive step-size gain on the left y-axis (thick line), and the derivative V on
the right y-axis (thin line).
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Figure 2.8: Typical simulation for estima.ted para.meters based on skewness for Brazil. The
first panel shows actual inflation (pai) and expectations of inflation (beta). The second
panel shows adaptive step-size gain on the left y-a.,'Cis (thick line), and the deriva.tive V on
the right y-axis (thin line).
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Figure 2.9: Typical simulation for estimated parameters based on skewness for Peru. The
first panel shows actual inflation (pai) and expectations of inflation (beta). The second
panel shows adaptive step-size gain on the left y-axis (thick line), and the derivative V on
the right y-axis (thin line).
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Figure 2,10: Typical simulation with Bayesian learning and adaptive step-size algorithm
learning about Markow Switching process. The second panel shows adaptive step-size gain
on the left y-axis (thick line), and the implicit Bayesian gain on the right y-a..-xis (thin line)
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TABLE 1.

Periods I Marcet, Nicolini (2003) I model with adaptive step size I

100 7.00860 (8.4092) 7.30467 (8.68631)

200 9.21476 (5.46953 ) 8.71826 (5.48384)

300 11.21859 (5.52852 ) 8.00149 (4.22205)

400 11.57840 (4.62655 ) 7.35961 (3.07069)

500 11.74324 (4.29320 ) 7.10317 (2.80545)
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Table 2.1: Mean squared errors in two models for simulations with different number of
periods. Standard deviations are given in the parenthesis.

TABLE 2.

I Param~ Ranges I Standard deviations (std), [0.3,0.9] 0.1
¢ [0.3, 1.9] 0.1

E(d) range depends on r, ¢ 0.05
ad [0.01,0.2] 0.05
al [0.01,0.4] 0.05

Table 2.2: Ranges and standard deviations for mutation for different parameters.

TABLE 3.

I Parameters I Values

N 30
T 500

pcross 0.5
pmut 0.1

Table 2.3: Genetic algorithm parameters.
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TABLE 4.

Country Skewness I ¢ E(d) O"d aj

Sample [data]

Argentina 6.2538 0.35 1.17 0.194 0.18 0.05
1984:01-2000:04 [5.6072] (0.11 ) (0.11) (0.06) (0.01 ) (0.045)

Bolivia 6.2021 0.38 0.71 0.099 0.16 0.05
1982:02-2001 :09 [5.2451.] (0.10) (0.13) (0.03) (0.02) (0.038)

Brazil 1.1931 0.34 1.82 0.068 0.10 0.04
1984:01-2004:09 [1.9263] (0.11) (0.31) (0.13) (0.04) (0.10)

Peru 8.2743 0.77 1.62 0.019 0.17 0.07
1988:04-2004:09 [10.5472] (0.09) (0.23) (0.002) (0.02) (0.07)
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Table 2.4: Estimated values of the model parameters. The standard deviations of the
estimated parameters are given in the parenthesis. The first row of column 2 gives skewness
of the simulated data based on the estimated parameters, the second row of column 2 gives
skewness in the data.

TABLE 5.

I Number of periods I Bayesian learning I Adaptive step-size I

100 0.1497 0.1862
200 0.1514 0.1862
300 0.1508 0.1857
400 0.1512 0.1856
500 0.1519 0.1859

Table 2.5: Mean Squared Errors averaged over 100 simulations.



Chapter 3

Social Learning and Monetary

Policy Rules 1

3.1 Introduction

3.1.1 Overview

Recent research has emphasized how policy choices may influence the stability properties

of rational expectations equilibrium. In a typical analysis, a policymaker may commit to a

particular policy rule, stating how adjustments to a control variable will be made in response

to disturbances to the economy. The policy rule, together with optimizing private sector

behavior, may imply that there is a unique rational expectations equilibrium associated

with the policy rule, and that the equilibrium has desirable welfare properties. However, the

equilibrium mayor may not be robust to small expectational errors. If the expectations of

the players in the economy are initially not rational, but deviate from rational expectations

by a small amount, behavior of the players in the economy will be changed. This will

then have effects on the price and quantity outcomes in the economy, feeding back into the

learning process. Such a dynamic mayor may not converge to the rational expectations

equilibrium which is the policymaker's target. When the process does converge, it is called

an expectationally stable, or learnable equilibrium.

We study learnability in a standard context, the model of monetary policy of Woodford

IThis chapter is based on a work cowritten with Jasmina Arifovic and James Bullard.

48
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(2003). A standard result, discussed in Woodford (2003) and Bullard and Mitra (2002), is

that in a simple version of the model, the rational expectations equilibrium will be learnable

provided the policymaker follows the Taylor Principle. 2 This means that the policymaker

must react sufficiently aggressively to economic developments, such as deviations of inflation

from target or the deviation of output from the flexible price, or potential, level of output.

Failure to do so will create a rational expectations equilibrium which is unstable in the

recursive learning dynamic. Such an equilibrium is unlikely to be successfully implemented

in actual policymaking. Even small expectational errors would drive the economy away

from the intended equilibrium.

The standard results are derived under the assumption of homogeneous expectations

which are updated via recursive algorithms. This is the approach discussed extensively in

Evans and Honkapohja (2001). By assuming homogeneous expectations and recursive algo­

rithms, analytical results can be obtained concerning the expectational stability properties

of equilibria across a wide variety of models. In this paper we study an alternative approach

to learning, one that can be viewed as more realistic in terms of actual learning in compli­

cated market economies. In it, agents are initially heterogeneous with respect to the models

they use to forecast the future. Forecast rules are updated via genetic operators, meant to

simulate the process of learning from neighbors and others in the economy. Results are not

analytic but are based on computational experiments. We will call this alternative approach

social learning.

Social learning has been studied in a wide variety of contexts in economics, but not in

the standard New Keynesian model where many of the other findings concerning learnability

have been presented. One reason is that the New Keynesian model is inherently stochas­

tic, and the genetic algorithm applications which are drawn from the artificial intelligence

literature are deterministic.3 The genetic algorithm is meant to find "good" solutions to

complicated problems with no known best solution. One purpose of this paper is to un­

derstand how insights from the genetic algorithm learning literature may be applied in a

stochastic context.

2For a discussion of the Taylor Principle, see Woodford (2001).

3That is, the set of problems which have been considered are deterministic, although the algorithm itself
is necessarily stochastic.
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3.1.2 Main findings

50

We conduct a series of computational experiments with social learning in the setting studied

by Bullard and Mitra (2002). Our main finding is that the Taylor Principle does not have

to be met in order for agents to coordinate on a rational expectations equilibrium of the

model via the social learning dynamic. This stands in marked contrast to the findings in

the recent learning literature.

3.1.3 Recent related literature

Woodford (2003) contains the definitive statement of the nature of the New Keynesian model

of monetary policy. Bullard (2006) surveys some of the literature on monetary policy and

expectational stability, along with related issues. Genetic algorithm learning in economic

contexts has been surveyed by Arifovic (2000).

Our paper is related to the recent literature on heterogenous learning. For example,

Giannitsarou (2003) as well as Honkapohja and Mitra (2005, 2006) distinguish the following

forms of heterogeneity in learning: different initial perceptions, different learning rules, and

different degrees of inertia in updating in the same learning rule. Giannitsarou (2003) finds

that when agents use least squares learning, E-stability implies learnability in the case of

different initial perceptions. But for the other types of heterogeneity, the stability under

homogenous learning does not necessarily imply stability under heterogenous learning. Our

social learning approach encompasses a greater degree of heterogeneity than previous studies

in this area, as a finite number of agents each have a different model within a given class of

models.

Honkapohja and Mitra (2006) add structural heterogeneity to their analysis (agents

respond differently to their forecasts), and study how transient and persistent heterogeneity

in learning affects the learnability of the fundamental (MSV) solution. They find that

transient heterogeneity in learning does not change the convergence conditions even in the

presence of structural heterogeneity. But in case of persistent heterogeneity in learning,

E-stability conditions do not in general imply learnability in structurally homogeneous and

heterogeneous economies. Honkapohja and Mitra (2005) study the performance of interest

rate rules in the presence of heterogeneous forecasts by the private sector and the central

bank in New Keynesian model. They find that E-stability conditions are necessary but not

sufficient for learnability with heterogeneity in learning.
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Negroni (2003) studies heterogeneity in adaptive expectations. He considers two sources:

heterogeneity of expectations (different gains) and heterogeneity of fundamentals. He finds

that in the presence of heterogeneity, the conditions for convergence of heterogeneous adap­

tive beliefs to the stationary REE are not the same as for homogeneous beliefs.

Our agents have the same form of the learning rule but different initial beliefs about

the values of the coefficients in the perceived law of motion. They update their beliefs at

the same rate, so the economy is structurally homogeneous. Our agents are able to learn

from the other agents (social learning), whereas in all the models with heterogenous learning

mentioned above agents proceed to update their beliefs without knowing what and how well

the rest of the agents are doing. The social aspect of the learning seems to be important

for learning of the rational expectations equilibrium.

Branch and Evans (2004) show that heterogeneity can arise under certain conditions

as an endogenous outcome when agents choose between misspecified models. In our study,

agents have the correct specification of the REE model, although they start with different

beliefs about the coefficients in the correct specification. Our question is whether agents are

able to learn the fundamental (MSV) values of the coefficients.

3.1.4 Organization

In the next section we discuss the New Keynesian model that we wish to study in this paper.

Much has been written about this model, but here we only provide the reader with a minimal

outline of the key equations, as the model itself is not the focus of this analysis. We then

turn to a discussion of the social learning dynamic as we have implemented it in the New

Keynesian model. Our main findings are the results of computational experiments, which

we compare to standard results from the literature. The concluding section summarizes our

findings and suggests a few directions for future research.

3.2 Environment

3.2.1 Overview

We study the simple version of the New Keynesian model employed by Bullard and Mitra

(2002) and Woodford (2003). The economy is populated by a continuum of infinitely-lived

household-firms that maximize utility and profits. Household-firms consume all goods but
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produce only one good on the continuum. Firms are monopolistically competitive and face

a Calvo-style sticky price friction when determining their price. The model consists of three

equations along with an exogenously specified stochastic process. The first equation is the

linearized version of the first order condition for household utility maximization. The second

equation is the linearized version of the first order condition for firm maximization of profits.

The third equation is a Taylor-type interest rate feedback rule that describes the behavior

of the monetary authority.4 The system is given by

Zt
e -1 [ e 1 -1 n

Zt+1 - a rt - 1ft+l + a r t

K,Zt + /hf+l

(3.1)

(3.2)

where Zt is the output gap, 1ft is the deviation of the inflation rate from a prespecified target,

rt is the deviation of the short-term nominal interest rate from the value that would hold in a

steady state with the level of inflation at target and output at the level consistent with fully

flexible prices. A superscript e denotes a subjective expectation that can initially be different

from a rational expectation. All variables are expressed in percentage point terms and the

steady state is represented by the point (Zt, 1ft, rd = (0,0,0) . The parameter (3 E (0,1) is the

discount factor of the representative household, a > 0 controls the intertemporal elasticity

of substitution of the household, and K, > 0 relates to the degree of price stickiness in the

economy. A standard calibration suggested by Woodford (2003) and widely used in the

literature sets ((3, a, K,) = (0.99,0.157,0.024) . The natural rate of interest, rr, is a stochastic

term which follows the process

(3.3)

where ft is i. i.d. noise with variance a;, and 0 :'S p < 1 is a serial correlation parameter.

The interest rate feedback rule of the monetary authority is given by

(3.4)

where !{J1r and !{Jz are policy parameters taken to be strictly positive. The policymaker is

committed to this rule and does not deviate from it. Substituting (3.4) into (3.1), we obtain

(3.5)

40ptimal policy and learnability can also be studied~seeEvans and Honkapohja (2003).
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3.2.2 Determinacy and learnability

Equations (3.2),(3.3), and (3.5) can be written as:

Yt = 0: + Byf+1 + xrf

where 0: = 0, Yt = [Zt, 7rt]' ,
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(3.6)

B = -a-+-cp-
z
1_+_",_cp-. [ : (3.7)

and

X=_l_[~].
a + cpz + "'CPIT ..

(3.8)

In order to analyze the effects of homogeneous recursive learning in this environment,

Bullard and Mitra (2002) proceeded as follows. Assume that all agents have the following

perceived law of motion (PLM)5

Yt = a + crf, (3.9)

which describes their belief concerning the equilibrium law of motion of the economy. With

this perceived law of motion, they form expectations as

n [Zf+l]E t Yt+ I = a + cprt = e .
7rt+1

The actual law of motion (ALM) is then found by substituting (3.10) into (3.6)

Yt = Ba + (Bcp + x)rf.

The minimal state variable (MSV) solution is

Yt = ii + erf

(3.10)

(3.11)

(3.12)

where ii = 0 and c = [I - pB]-IX. At (ii, c), the actual law of motion coincides with

the perceived law of motion and rational expectations equilibrium has been attained. If

the actual law of motion has dynamics which tend to this fixed point, we say that the

equilibrium is learnable.

5The assignment of the PLM is not arbitrary but corresponds to the equilibrium law of motion of the
economy.
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Bullard and Mitra (2002) determine the necessary and sufficient condition for a rational

expectations equilibrium to be determinate in the sense of Blanchard and Kahn (1980) as

K,(cp1r - 1) + (1 - (3)cpz > 0 (3.13)

Bullard and Mitra (2002) also show that this same condition is necessary and sufficient

for the expectational stability of rational expectations equilibrium. Inequality (3.13) is a

statement of the Taylor Principle. In particular, consider the simplified condition cpz = 0, so

that the central bank does not respond to deviations of output from potential when setting

its nominal interest rate target. Since K, > 0, the condition requires CP1r > 1, which is to

say that the nominal interest rate must be adjusted more than one-for-one in response to

deviations of inflation from target.

Bullard and Mitra (2002) concluded that condition (3.13) governs both uniqueness of

rational expectations equilibrium as well as expectational stability of that equilibrium in

this simple model. 6 Expectational stability is a notional time concept, but Evans and

Honkapohja (2001) show that it governs the stability of the real time system formed when

agents estimate the coefficients in (3.9) using recursive algorithms such as least squares. We

now turn to examine the robustness of this finding when homogenous recursive learning is

replaced with social learning.

3.3 Social learning

3.3.1 Overview

We study the behavior of evolutionary learning agents. Agents are initially heterogeneous

with respect to their perceived law of motion (3.9), in the sense that each agent has a

separate and possibly different set of coefficients. Thus each agent initially has a different

forecasting model. The coefficients are updated using social evolutionary learning instead

of least squares learning. Our objective is to see whether MSV solutions are learnable by

evolutionary learning agents.

6The relationship between determinacy and learnability is less clear in more complicated settings.
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3.3.2 Initialization
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We follow the artificial intelligence literature and take equations (3.1) and (3.2) as fixed and

immutable in the analysis under evolutionary learning. In this interpretation, we are viewing

the formal model with homogeneous expectations the only way it can be viewed, namely,

as an approximation to a more realistic model with heterogeneous expectations. The core

model results of the previous section can only be useful to the economics community if

they are intended to be reasonably robust to the introduction of some heterogeneity among

agents, especially with respect to agent expectations. We now introduce that heterogeneity.

There are N agents in the private sector. Each agent, i = 1, ooN has a perceived law of

motion (PLM)

Zt al,i,t + Cl,i,trf

a2,i,t +C2,i,t r f

(3.14)

(3.15 )

We stress that rn is a stochastic term, and that finding equilibrium values of a and C will

depend on evaluating how well each forecast rule works even though there is noise in the

system. This is not a typical feature of evolutionary learning environments. It is true that

the genetic operators we discuss below are inherently stochastic, but the fitness calculation

does not normally have to contend with exogenous stochastic terms.

The initial values for the coefficients are each randomly generated from a normal distri­

bution with mean equal to the respective MSV value. The standard deviation for coefficients

Cl and C2 is equal the largest of the absolute values of the MSV values of these coefficients.

We used a smaller initial standard deviation for the coefficients al and a2. The MSV values

for these coefficients are a and are smaller than MSV values for the coefficients Cl and C2.

Therefore, we used initial standard deviation for coefficients a half as large as for the coef­

ficients c. When setting the values of initial standard deviations we have pursued several

objectives - starting with diverse population of rules, injecting diverse new rules through

mutation and keeping the diversity of new rules commensurate with the MSV values.
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3.3.3 Expectations and the actual law of motion
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Agents form their expectations of the output gap and deviation of inflation from target

using (3.3), (3.14), (3.15) as

zi,t+l
e

71"i,t+l

al,i,t + Cl,i,tPT~, (3.16)

(3.17)

The average expectations of the output gap and the deviation of inflation from target are

computed as

1 N
zf+l N Z=Zi,t+l' (3.18)

i=l

1 N
71"f+l N Z=71"i,t+l' (3.19)

i=l

The actual values of the output gap and deviation of inflation from target are obtained

from:

3.3.4 Forecast rule performance

+ XT~. (3.20)

Agents assess the performance, or fitness, of their forecasting model using mean squared

forecast error as a criterion. Agents compute the mean squared forecast error for the output

gap and the deviation of inflation over all periods following an initial history. We stress that

it is important not to base the performance on only the most recent forecast error because

the environment is stochastic.7

The fitness is computed as

t t1z= f 2 1z= f 2Fi t = -- (Zk - z· ) - w- (71"k - 71". ), t .,k t .,k
k=l k=l

(3.21 )

where z£ is the forecast value of zfor period k, and 71"£ is the forecast value of 71" for period k,

and w is the relative weight on the MSE for inflation. An agent is characterized by a set of

7Branch and Evans (2004, p. 3) assume that "... agents to make their on unconditional mean payoffs rather
than on the most recent period's realized payoff. This is more appropriate in our stochastic environment
since otherwise agents would frequently be misled by single period anomalies."
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coefficients (al,i,to a2,i,t , CI,i,t, C2,i,t) at each date t. The terms z£ and 7["£ are the forecasts of

the output gap and the deviation of inflation from target that agent i could have computed

in period k, if he had used the current, date t, set of coefficients (al,i,t, a2,i,t, CI,i,t, C2,i,t).

The forecasts z£, 7["£ are computed by agent i as

al,i,t + CI,i,tPrk_1 (3.22)

(3.23)

The weight w is used to give equal importance to the prediction error for the output gap

and the deviation of inflation from target as the values of the MSE for these two variables

can differ in order of magnitude. Without reasonable weighting, the fitness measure puts

insufficient emphasis on the first or the second term in (3.21), leading to drift in coefficients

away from MSV values.

First, we considered simulations with weight w = 1, implying output forecast error

volatility and inflation forecast error volatility have the same weight in the assessment of

forecast rules. 8 From these simulations, we collected the data on fitness and its composition:

the first and the second summation terms in (3.21). This data indicated that the MSE for z

was several orders of magnitude larger than the MSE for 7[", and therefore, agents effectively

did not care very much about the accuracy of their prediction for 7[" when assessing their

forecast rule. As a result, the coefficients diverged away from MSV values (see quantitative

details in section (3.5.3)).

The difference in magnitudes of MSE for output gap and MSE for inflation deviation

can be explained by the difference in values of output gap and inflation deviations. From

time series of z and 7[", we observed that output gap assumes larger values than inflation

deviations. This comes from the values of coefficients in equation (3.20) for the computation

of the actual output gap, z, and inflation deviation, 7[". At the standard calibration we use,

the coefficients for the computation of z are several times larger than the coefficients for

the computation of 7[". This makes values of z larger than values of 7[", and so the squared

prediction error for z larger than for 7[". In turn, this implies that in the fitness calculation,

the first summation term in (3.21) is considerably larger than the second summation term

(most frequently by a factor of 100). We used the weight w to adjust for this asymmetry.

In particular, we set w such that the first and second summation terms in (3.21) are of

8The genetic operators used in these simulations are described below. Here, we simply wanted to discuss
the fitness criterion.
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the same order of magnitude. We use weight equal 100 for the simulations reported in this

paper.

The criterion (3.21) with z{ set to zero is a version of the objective function for the

central bank that is often employed in models of optimal monetary policy. In studies of this

type, w would represent the central bank's relative preference for inflation versus output

volatility. This objective is also often rationalized as an approximation to the utility of

the representative household in this economy, as suggested by Woodford (2003). In the

optimal policy literature, w takes on a relatively large value. There the weight on inflation

stabilization is typically set to one, and the weight on output stabilization is close to zero,

so that the relative weight on inflation stabilization is quite large. In the present paper,

the agents are concerned with the forecasting performance of their forecasting model, and

so forecast performance matters and z£ as well as n£ are non-zero. However, the relatively

large value of w that delivers the best performance of the learning model is similar.

3.3.5 Genetic operators

A hallmark of the evolutionary learning literature is that agents update their current state

using genetic operators. These operators are meant to simulate the exchange of informa­

tion in a large, complex economy, and are based on the principles of population genetics.

Agents can meet other agents, exchange information concerning their current forecast rule,

and possibly copy the partner's forecast rule, either in whole or in part. This process is

implemented as described below.

We follow the literature in this area and use three genetic operators, namely crossover,

mutation, and tournament selection. Our genetic system is real-valued. Crossover is imple­

mented first. Two agents in the set of N agents are randomly matched without replacement.

With probability of crossover mcross, their sets of coefficients can be subjected to crossover:

If a random draw from a uniform distribution is less than or equal mcross, the agents ex­

change each type of coefficient with probability 0.5.

Mutation is implemented following crossover. An agent changes each coefficient with

probability of mutation mprob in the following way

new = old + random * mutdeviation, (3.24)

where random is a random number drawn from a standard normal distribution, old is

the current value of the coefficient, and mutdeviation is the standard deviation used for
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mutation. We set mutdeviation to be decreasing over time according to

mutdeviation = deviation * (1 - decrease * tiT)

59

(3.25)

where deviation is the standard deviation used to generate initial set of rules, t is current

date, T is the total number of periods in the simulation, and decrease is a coefficient. We

set decrease equal 0.95, it is intended to allow non-zero mutation standard deviation even

in the last period of the simulation. Mutation can be very destructive late in a simulation

when the N forecast rules may be very close to optimal, REE forecast rules, because a

random choice of a new coefficient will cause a new round of genetic variation. The term

(3.25) is meant to control this effect.

After mutation, agents compute the fitness of their coefficients according to (3.21).

The final genetic operator is tournament selection. Agents are randomly selected in pairs

with replacement N times. For each pair of agents, the fitness values of the forecast rules

are compared. The agent with the higher fitness value is copied into the next generation

of agents. This creates a new generation of N agents. After this update is finished, agents

go to the next period of the simulation. Tournament selection will provide most of the

selection pressure in this evolutionary learning environment, as weaker forecasting rules are

systematically discarded during this process.

3.4 Computational experiments

3.4.1 Overview

We conduct a set of computational experiments in order to understand the behavior of the

economy under social learning. We begin our simulations by generating an initial history

for the system at the rational expectations equilibrium, that is, using the MSV values for

the coefficients a and c. We then conduct simulations that last for 3000 periods, and we set

the length of the initial history to 100 periods. We use the parameter values from Woodford

(2003), namely, a = 0.157, /'i, = 0.024, (3 = 0.99, and p = 0.35. The standard deviation of rn

is 3.72. We consider a range of values for the parameters in the Taylor-type monetary policy

rule. Generally, these were for values of the coefficient on the output gap, cpz E [0.2,1.1].

For the coefficient on inflation, we considered CP1r E [0.5,2]. At these parameter values,

condition (3.13) is met for some policy parameter pairs but not for others, and is governed

primarily by the value of CP1r'
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We use the following parameter values in the genetic algorithm. The probability of

mutation is 0.1 and the probability of crossover is 0.5. The number of agents is 30. The

value of w in the fitness criterion is 100.

3.4.2 Main findings

We found that agents are able to learn MSV values of coefficients for most of the policy

parameter pairs (i.pz,i.p7l")' both in determinate and E-stable region as well as in the indeter­

minate and E-unstable region. A series of four figures shows our main results.

A typical simulation result for the policy rule characterized by i.p7l" = 2.0 and i.pz = 0.2 is

given in Figure 1, and for the policy rule i.p7l" = 1.5 and i.pz = 0.5 in Figure 2. These policy

rules are associated with a determinate rational expectations equilibrium and E-stability.

The figures show the time series of the deviation of each of the four coefficients from their

MSV values averaged across all agents. The figure also shows ±1 standard deviation for each

coefficient's deviation from MSV values, showing the extent of the dispersion in coefficients in

use at date t in the population of agents. Figures 1 and 2, along with other simulations using

policy rules consistent with determinacy and learnability, suggest that long-run predictions

from analyses using recursive learning and analyses using evolutionary learning are similar.

In particular, both approaches predict convergence to the rational expectations equilibrium.

This result breaks down when we consider other policy rules, however.

Figures 3 and 4 show typical simulation results for i.p7l" = 0.5 and i.pz = 0.5 or i.pz = 0.3,

respectively. These policy rules are associated with indeterminacy and expectational insta­

bility. The figures again show the time series of the deviation of each of the four coefficients

from their MSV values averaged across all agents, and ±1 standard deviation. Here, the

evolutionary learning dynamic converges to the MSV solution once again, even though the

prediction from an analysis based on least squares learning would predict instability in the

learning dynamics. These findings suggest that, provided one is willing to take an evolu­

tionary learning perspective, the less aggressive policy rules are not as disturbing as they

may have appeared to be.

In order to provide more details concerning these results, we performed 1000 simulations

for different policy rules (i.p7l"' i.pz) and collected data for the deviations of coefficients from

their MSV values for each simulation. During each simulation, for each coefficient, we

computed the average value of deviation from the MSV value for each period. Then we
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computed average value of the average deviations during the last 100 periods of simulation.9

We also compute average of absolute values of deviations from MSV values during last

100 periods. In addition we collected data on percentage deviations from MSV values for

coefficients cl and c2 and computed average of (absolute) percentage deviations during last

100 periods of the simulations. (We cannot compute percentage deviations for coefficients

al and a2 as their MSV values are zero). For each policy rule ('Pn, 'Pz), we perform 1000

simulations, collect the above described statistics for each simulation, and report means and

standard deviations for each statistic over 1000 simulations.

Table 3.1 reports means and standard deviations for average deviations from MSV val­

ues for a variety of fixed policy rules. The policy rules presented in this table include some

that induce a determinate and E-stable rational expectations equilibrium, as well as others

that induce indeterminacy and expectational instability. The policy rules that induce de­

terminacy and learnability according to condition (3.13) will have larger values of 'PIT and

'Pz, which tend to be located toward the northeast part of the table. Relatively small values

for 'PIT and 'Pz are associated with indeterminacy and expectational instability, and tend to

be located in the southwest portion of the table.

We can make the following observations from Table 3.1. Perhaps most importantly, for

the policy rules considered, regardless of whether they are consistent with determinacy and

learnability or not, the population coefficients are quite close to their MSV values. The

genetic algorithm we have implemented allows mutation up to date T in the simulation

and so does not attempt to eliminate variation entirely, yet the table indicates that the

population is quite close to the one that would use MSV values exclusively (all values in

the table are very close to zero). To the extent there are differences from MSV values, the

deviations for the constant coefficients al and a2 can be somewhat higher than those for the

slope coefficients Cl and C2. Standard deviations indicate that there is some variety in the

population even during the last 100 periods of the simulation, but the extent of the variety

is not very large.

Table 3.2 presents means and standard deviations for absolute values of the deviations

from the MSV values. This table also presents the percentage absolute deviation for the

slope coefficients Cl and C2. These percentages for the absolute deviations range from about

3.0 to 11.0, and do not seem to vary systematically with the policy rule.

9The results are not qualitatively different for data computed for last lOO-period, last lO-period and last
I-period; therefore, we only report results for last lOO-period data.
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The previous tables illustrate convergence of each individual coefficient. We would also

like to present a measure of convergence for a complete set of coefficients - how close all

coefficients are to MSV values at the same time. Table 3.3 reports the number of simulations

out of 1000 that satisfy specific convergence criteria based on averages of absolute deviations

over last 100 periods of simulation. As different coefficients deviate from MSV values by

different values, we present results of application of two criteria for convergence. Criterion 1

requires that absolute deviations from MSV values for all coefficients are less than or equal

0.2. Criterion 2 requires that the absolute deviation from the MSV value for a1 is less than

or equal 0.5, and that the absolute deviations from the MSV values for a2, el, and c2 are

less than or equal to 0.3. 10

Table 3.3 perhaps indicates a result more in conformity with previous findings in the

learning literature: The number of simulations out of 1,000 satisfying either convergence

criterion clearly tends to decline as one moves toward the southwest in Table 3.3, that is, as

one moves toward the region of the parameter space that is associated with indeterminacy

and expectational instability. This is perhaps clearest when comparing the most northeast­

erly cell in the table with the cell in the southwest corner. The former is associated with

determinacy and expectational stability, while the latter is not. In the northeast corner we

observe values of 963 and 995, respectively, for the two convergence criteria, while in the

southwest corner we observe values of 145 and 403. This would seem to be a clear indication

that it is somehow "more difficult" for the social learning system to converge upon the MSV

solution when expectational stability and determinacy conditions fail. However, we do not

wish to press this point too hard. The cell associated with 'P1r = 1.0 and 'Pz = 0.2 has

values of 208 and 578 for the two convergence criteria, respectively, not very different from

the results for the cell in the southwest corner. Yet these parameter values satisfy condition

(3.13); rational expectations equilibrium here is unique and expectationally stable. One

other point is that Tables 3.1 and 3.2 indicated that whatever failure to converge may exist,

actual values are not very different from MSV values, and would probably not be meaningful

in economic terms.

In some simulations, we can observe deviations of average values of coefficients al and

a2 from their MSV counterparts, even though agents are always able to learn MSV values of

lOThe number of simulations satisfying criterion 2 is very close to the number of simulations satisfying a
criterion which requires that the absolute value of the deviation of coefficient c2 from its MSV value is less
than 0.03, and the rest of the coefficients satisfy criterion 2.
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Cl and C2 quite closely. Again considering Table 2, to the extent that agents are inaccurate

in learning MSV values, it is due to the coefficients al and a2, as the deviation of these

coefficients from MSV is the largest among all coefficients. In the least squares learning

model of Bullard and Mitra (2002), as pointed by Woodford (2003, pp. 271-272), "... it is

in fact the possible instability of the dynamics of estimates of the constant terms r o in the

forecasting model that is the relevant threat; and whether this occurs or not is determined

by whether or not the Taylor principle is adhered to ...." In our notation, r o corresponds

to the coefficients al and a2. Similarly, Honkapohja and Mitra (2004) point out that "In

Bullard and Mitra (2002, p.1757), the constant term was the key to E-stability of the MSV

solution .... " However, our simulations show that the system under evolutionary learning

behaves somewhat differently. While the values of al and a2 may not be as close to their

MSV values as the values of Cl and C2, this effect occurs whether or not the Taylor principle

holds.

3.5 Modifications and robustness

We performed several modifications of the simulations described above. These included

using different fitness criterion and not using crossover. We now turn to a description of

these modifications and their effects on the results.

3.5.1 Different performance evaluation

As we stressed earlier, the weighting of the two dimensions in the fitness criterion is essential

to convergence of the social learning systems we study. Without reasonable weighting, the

fitness measure puts insufficient emphasis on one dimension or the other, leading to drift

in coefficients away from MSV values. The modification considered in this section has each

agent compute the mean squared error for forecasting deviation of inflation from target and

the output gap separately, and simply consider them separately without combining them

into one fitness measure. In particular, agent i computes mean squared errors for the output
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gap and inflation as

64

(3.26)

(3.27)

where zfk , 7/k are computed as in (3.22) and (3.23).
t, 'l.,

The change in performance criterion also has affects on the tournament selection oper-

ator. We modified the operator as follows. Again, N pairs of agents are randomly selected

from the current generation with replacement, and fitness is compared for each pair. A new

member of the next generation adopts the coefficients for forecasting output gap from the

agent with higher Fi~t (lower mean squared error for forecasting the output gap) and the

coefficients for forecasting the deviation of inflation from the target from the agent with

higher Fi~t (lower mean squared error for forecasting inflation). In this way the next gen­

eration of agents is created, and more fit forecasting rules are systematically selected while

weaker rules are systematically discarded. ll

The results of these simulations are reported in Table 3.4. This table reports the same

data as Table 3.2 for the baseline simulations. The results are qualitatively the same as

for the baseline simulations. Table 3.5 reports the number of simulations that satisfy con­

vergence criteria. We find similar effects when moving from northeast to southwest in this

table as we did in Table 3.3.

3.5.2 Simulations without crossover

Crossover is considered a powerful operator in the genetic algorithm literature. One is taking

"building blocks of good solutions" and combining them to create new possible solutions.

This is thought to be a much faster way to find a good solution to a difficult problem

than to merely rely on a mutation process. Especially for our real-valued, multidimensional

problem, it can take a long time for mutation alone to find the best solution. In this

subsection, we show that crossover is essential to our findings. To do this, we consider

systems in which crossover has been discarded completely from the genetic algorithm. These

simulations are done in the same way as the baseline simulations described above, with

II One of the principles of the GA literature is to accomplish this task without losing genetic diversity too
rapidly.
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the only modification of no crossover. Table 3.6 reports the some of the same data for

simulations without crossover as Table 3.2 for the baseline simulations. The simulations

without crossover have the following results. The constant coefficients, a1 and a2, approach

the MSV values of zero. However, the slope coefficients, C1 and C2, deviate from the MSV

values by 96 - 99 percent. We conclude that crossover is an important GA operator for

learning the MSV solution in this model.

3.5.3 Weight equal 1.

For completeness, we also report results of the simulations in which the weight w was simply

set equal to one. As we have indicated, the convergence properties are not as good for this

parameterization. The results are shown in Table 3.7 where the coefficients tend to be farther

from MSV values at the end of the simulation as compared to the baseline simulation. Table

3.8 shows that the convergence criteria are met less often as well.

3.6 Conclusion

A key finding in the literature on learning in New Keynesian models of monetary policy

is that nominal interest rate feedback policies which are too close to an interest rate peg

tend to be associated with indeterminacy and instability in the recursive learning dynamics.

The policymaker must react sufficiently aggressively to economic developments in order to

assure determinacy of rational expectations equilibrium and expectational stability of that

equilibrium. This has been promoted as an important reason to discard policy rules which

are insufficiently aggressive,12 and this idea has gained widespread acceptance in monetary

policy discussions.

We have investigated whether this result is robust to the substitution of an evolutionary

learning dynamic for the recursive learning dynamic. Our main finding is that the evolu­

tionary learning dynamic does not put a premium on policy rules which obey the Taylor

Principle. Instead, evolutionary learning converges to a small neighborhood of the MSV

solution whether or not the policymaker obeys that principle.

When the Taylor Principle is violated, equilibrium is indeterminate. It is well-known

that sunspot equilibria exist in a neighborhood of an indeterminate rational expectations

12See, for instance, Woodford (2003).
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equilibrium. This is another important reason why insufficiently aggressive policy rules may

be considered poor policy. In the recursive learning literature, it has generally been diffi­

cult to obtain expectational stability of sunspot equilibria. 13 An interesting extension of

our analysis would be to analyze the stability of sunspot equilibria under the evolutionary

learning dynamic.

13See, for instance, Honkapohja and Mitra (2004).
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Figure l. Simulation for determinate and E-stable region: cP7f = 2, cPz = 0.2.
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Figure 2. Simulation for determinate and E-stable region: cP7f 1.5, cPz = 0.5.
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TABLE 3.

Parameter 'P1f 0.5 1.0 1.5 2.0
'Pz Criterion
1.1 1 950 960 964 963

2 990 992 994 995
1.0 1 933 947 955 957

2 982 990 989 991
0.9 1 901 931 945 935

2 973 981 989 991
0.8 1 866 911 921 902

2 967 972 979 987
0.7 1 810 863 880 860

2 952 962 971 974
0.6 1 725 801 822 807

2 932 945 961 966
0.5 1 604 694 739 717

2 901 925 944 938
0.4 1 453 554 607 619

2 830 888 919 889
0.3 1 280 379 467 490

2 668 800 847 815
0.2 1 145 208 275 306

2 403 578 677 690

Table 3.3: The number of simulations for which each of the criteria is satisfied, the total
number of simulations is 1000. Criterion 1 means that absolute deviations from MSV values
for all coefficients are less than or equal 0.2. Criterion 2 means that absolute deviations
from MSV value for al is less than or equal 0.5 and that absolute deviations from MSV
values for a2, el, and c2 are less than or equal to 0.3.
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CHAPTER 3. Social Learning and Monetary Policy Rules

TABLE 5.
Parameter cp" 0.5 1.0 1.5 2.0

cpz Criterion

1.1 1 921 941 952 949
2 975 980 984 987

0.8 1 828 874 893 869
2 946 959 968 974

0.5 1 553 669 710 682
2 861 898 924 920

0.2 1 127 193 267 275
2 371 549 620 619

77

Table 3.5: The number of simulations for which each of the criteria is satisfied for simulations
with separate fitness, the total number of simulations is 1000. Criterion 1 means that
absolute deviations from MSV values for all coefficients are less than or equal 0.2. Criterion
2 means that absolute deviations from MSV value for al is less than or equal 0.5 and that
absolute deviations from MSV values for a2, el, and c2 are less than or equal to 0.3.
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TABLE 8.

Parameter 'Prr 0.5 1.0 1.5 2.0
'Pz Criterion
1.1 1 850 881 881 850

2 934 953 953 955
1.0 1 819 858 861 845

2 921 941 940 946
0.9 1 781 826 840 802

2 908 921 929 936
0.8 1 741 793 802 739

2 878 907 915 928
0.7 1 662 734 749 682

2 853 874 889 905
0.6 1 569 676 674 596

2 806 847 867 876
0.5 1 447 556 579 514

2 759 805 838 822
0.4 1 299 418 422 399

2 663 751 791 733
0.3 1 201 261 308 269

2 507 633 677 608
0.2 1 78 137 157 163

2 276 418 484 452

Table 3.8: The number of simulations for which each of the criteria is satisfied, the total
number of simulations is 1000, weight=1. Criterion 1 means that absolute deviations from
MSV values for all coefficients are less than or equal 0.2. Criterion 2 means that absolute
deviations from MSV value for a1 is less than or equal 0.5 and that absolute deviations from
MSV values for a2, el, and c2 are less than or equal to 0.3.



Chapter 4

Learning Benevolent Leadership in

a Heterogenous Agel1.ts Economy 1

4.1 Introduction

The problems of time consistency, credibility and commitment have been studied since Kyd­

land and Prescott (1977). Literature offers many extensions and solutions to the inflation

bias problem, for example, models with reputation and trigger strategies (Barro and Gordon

(1983), Stokey (1989)).

We build a model with cheap talk inflation announcement to study the following ques­

tion. Can non-binding policy announcements be a useful instrument to improve outcomes

in situations where time consistency of policy is a problem and where private agents are

boundedly rational? The answer to this question depends on the dynamics of the response

of private agents to the changes of government's policy.

We study a dynamic agent-based extension of the Kydland-Prescott model with cheap

talk announcement. The government makes inflation announcements and decides on the

actual level of inflation. There are two types of private agents who form inflation forecasts,

believers and nonbelievers. Government's payoff depends on the weighted average of un­

employment of both types of agents and on the level of inflation. Private agents' payoffs

IThis chapter is based on a work cowritten with Jasmina Arifovic, Herbert Dawid and
Christophe Deissenberg.
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depend on their forecast errors and the level of inflation.

83

The first type of private agents, the believers, naively set their forecast equal to the

government's inflation announcement. The second type, the nonbelievers, do not believe

that actual inflation will be equal to the announcement. They pay a small calculation cost

for forming their own inflation forecast. Nonbelievers know what the best response would

be in a static environment when government is rational. However, they are also aware that

they live in a dynamic environment and that government is learning. Thus, they use an

error correction mechanism to correct for their forecasting mistakes.

We study two variants of the error correction mechanism. In the first one, all nonbe­

lievers share the same error correction term and thus all nonbelievers make homogenous

forecasts. According to the second one, each nonbeliever has her own, individual value of

the error correction term. This results in formation of heterogenous forecasts. These two

cases should capture different scenarios with respect to information flow between individual

agents.

The fraction of believers changes over time through its response to the differences in the

payoffs of the two types of agents. 2 Changes of the fraction of believers can serve as an

indicator of government's evolving credibility.

The government knows the structure of the economy: expectational Phillips curve. Gov­

ernment knows how agents form forecasts and learn, i.e. it knows how the expected change

in the proportion of believers is determined based on the payoff differences of two types of

agents. The government needs to make policy decisions in this rich dynamic environment.

We assume that government does not know optimal response function and needs to learn

about which policy to use. The government adjusts its announcements of inflation and

actual inflation using individual evolutionary learning (Arifovic, Ledyard 2004). 3

2In this respect, the framework is similar to the models of rationally heterogenous expectations Evans
and Ramey, (1992, 1998), Brock and Hommes (1997, 1998), Branch (2004), Branch and Evans (2006).

3There is a number of different models of individual learning discussed in the literature (see Erev and
Haruvi (2008) for a thorough overview). However, most of them have been used in the game-theoretic settings
with small strategy space. Arifovic and Ledyard (2004) have shown that IEL handles environments with
large strategy spaces well, and that its behavior captures, in real time, behavior observed in the experiments
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Individual evolutionary learning is based on updating of the entire collection of decision

rules, in case of our government, rules that consist of the announcement and the actual level

of inflation. The frequency of well performing strategies increases over time and the choice

of a particular decision rule to be used in a given period is probabilistic. The payoffs of

decision rules in any given period is based on calculation of 'foregone' payoffs. Initial set of

decision rules is randomly generated. Occasional experimentation ensures that new decision

rules, not represented in the initial set, enter into the collection.

In a related paper, Dawid and Deissenberg (2005) study a continuous-time version of

the model, with heterogenous agents (naive believers and rational nonbelievers) and with

a government that optimizes over an infinite horizon. Their analytical results indicate the

existence of two stable equilibria, one without believers, and the other with a positive frac­

tion of believers. The second equilibrium Pareto dominates the first.

Our agent based environment allows to concentrate on issues related to heterogeneity

of expectations. Thus, we investigate whether heterogeneity matters in a qualitative way.

Is the dynamics with heterogenous agents equivalent to the one with homogeneous agents

with the same parameter constellation, can it be 'proxied' by homogeneous agent simula­

tions with changed parameter constellation or do phenomena occur that cannot be observed

in any homogeneous simulation? Related to this is the question of whether the coordination

of the expectation formation of non-believers is beneficial for the government and whether

this can have policy implications regarding the information flows.

4.1.1 Main findings

We find that government is able to use appropriate policy announcements to steer the econ­

omy to the Pareto superior outcomes. Government does not commit to set actual inflation

at the announced level, but even so, the appropriate inflation announcement and actual

inflation can result in higher payoffs for both the government and the private sector. Cheap

talk in our environment can affect actual inflation and output. It can be beneficial to act

with human subjects.
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as if believing the announcement under the condition that government uses appropriate

monetary policy values.

This economy exhibits recurrent fluctuations in the inflation announcement and actual

inflation that result from government's actions. These fluctuations happen as government

builds up and exploits the population of believers. In a typical sequence of events, the gov­

ernment first builds up a positive proportion of believers by keeping the difference between

announced and actual inflation relatively small, and by maintaining a relatively small level

of actual inflation. (During this period, payoffs of believers are, on average, higher than the

payoffs of nonbelievers.) Having achieved this, government starts exploiting the existing be­

lievers by increasing the discrepancy between actual inflation and inflation announcement in

a short-sighted attempt to lower unemployment and increase its payoff. This has a negative

impact on the believers' payoffs and their proportion decreases. In response to a shrink­

ing fraction of believers, the government tries to restore economy's trust in its actions by

reverting to the more 'credible' policy with lower difference between actual and announced

inflation as well as low inflation levels. As a result, a proportion of believers increases again.

Recurrent fluctuations in the proportion of believers represent changes in the level of

trust to the government. Our model generates endogenous credibility that changes over

time as a result of government actions and its impact on private sector's payoffs. 4 During

periods of relatively low inflation and small discrepancy between announced and actual in­

flation, the level of credibility is high. This credibility deteriorates as the government starts,

myopically, to exploit the trust. The resulting outcome is higher rates of inflation and loss

of credibility. Both the government and the private agents are better off during times when

government enjoys high credibility than during the times when there is little trust.

We examine the impact of changes in how nonbelievers form their forecasts. First, we

increase the cost associated with computation of one's own forecasts. Second, we lower the

speed of adjustment of the error correction (Ee) term. An increase in cost induces the

government to move towards a policy that primarily aims at low inflation, a decrease in

adjustment speed triggers a shift of attention towards a low unemployment policy. Higher

4The changes in the proportion of believers, and thus the level of trust in government's announcements,
happen gradually in both directions (increasing and decreasing. This is in contrast to Phelan (2005).
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cost results in higher payoffs for everyone, whereas for lower adjustment speed, only dis­

counted government payoff is higher, average government payoff and private agents' payoffs

are lower. Both higher cost and lower speed of update lead to initially higher proportion

of believers that later decreases. Changes happen slower in response to higher cost than in

response to lower speed of update. Increase in cost results in higher proportion of believers

that can be sustained longer than in the case of the lower adjustment speed. For lower ad­

justment speed, the proportion of believers increases faster but also goes down faster than

in the case of higher cost. Eventually believers can disappear. This leads us to a policy

implication - well updated/informed nonbelievers are necessary to sustain high proportion

of believers and hence to maintain higher level of payoffs. Therefore, it is important that

public is able to adjust its forecasts quickly.

The response to introduction of heterogeneous nonbelievers is similar to the response

to the lower speed of adjustment. In heterogeneous case, when believers switch to 'not

believing', they start from scratch. In contrast, in homogeneous case after the switch, new

nonbelievers starts with the population value of beliefs that includes the past experience.

As a result, the speed of update of population of nonbelievers is slowed down in heteroge­

neous case. Therefore, introduction of heterogeneous nonbelievers' expectations is similar

to lowering the speed of update.

Our results show that the response to lower speed of update of error correction term are

qualitatively similar for homogeneous and heterogeneous cases, but they differ in the speed

of adjustment.

4.1.2 Related literature

Cho and Sargent (1997) use stochastic gradient learning in infinitely repeated Kydland­

Prescott model and show that the choice of equilibria narrows down to Nash and Ramsey

outcome. However, in the simulations Nash equilibrium occurs most frequently as the even­

tual outcome. Based on this, they conclude that commitment is important for achieving low

inflation and welfare improvement. In our paper, government does not commit to set actual

inflation at the announced level, but even so, the appropriate inflation announcement and

actual inflation can result in higher payoffs for government and private sector.
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Arifovic and Sargent (2003) provide evidence from experiments in Kydland-Prescott

model. They find that experimental economies stay in Ramsey outcome most of the time,

and slide to Nash equilibrium occasionally. The inflation in our model fluctuates as govern­

ment changes its monetary policy to build up and exploit naive forecasters.

The behavior of inflation in our simulations is similar to that in Sargent (1999): both

setups exhibit recurrent fluctuations in inflation. Two environments have some similarities

and some differences. In Sargent's model, government learns from misspecified Phillips curve

that occasionally approximates the truth, and agents are rational. The dynamics consists

of mean dynamics that pushes the economy towards self-confirming equilibrium (with Nash

inflation) and escape dynamics that sets the economy on the path away from self-confirming

equilibrium toward Ramsey outcome. Thus system escapes from self-confirming equilibrium

toward outcome that is not an equilibrium. This dynamics is characterized analytically in

Cho, Williams, Sargent (2002). The escapes are possible as government discounts past data

in its estimation of Phillips curve by using constant gain recursive least squares.

In contrast, in our setup both government and agents are nonrational. Government

learns about its decisions and economy based on individual evolutionary learning. Our gov­

ernment does not estimate an econometric model, it tries different combinations of inflation

announcement and actual inflation, observes their performance and learns from that. The

reason for recurrent fluctuations in our environment is the myopic attempts of the govern­

ment to reduce unemployment by exploiting the naive agents through increasing the gap

between inflation announcement and actual inflation. If government is quick to realize that

this depletes the proportion of naive believers, it reverses its policy. When government

repeats the sequence of building up the proportion of believers and exploiting them, we

observe recurrent inflation fluctuations. These two models also have a common feature.

In Sargent's model, government sets low inflation when its model approximates the truth

correctly and it stops trying to exploit short run inflation-unemployment tradeoff. In our

setup, government sets low inflation when it stops exploiting the same tradeoff to restore

the positive proportion of believers.

Phelan (2005) builds on the reputation literature (Barro, Gordon (1983)) and studies
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a model in which government's type is hidden information and changes over time accord­

ing to Markow switching process, agents are Bayesian learning. He finds that betrayals

of public trust happen abruptly, and trust is rebuilt gradually. Trust is rebuilt because

there is a positive probability that government is of trustworthy type (Markov switching

assumption). In our paper, private agents do not know whether government is going to

respect its announcements, and the level of trust in government's announcements is shown

by the proportion of believers. In our setup, it can be beneficial to act as if believing the

announcement under the condition that government uses appropriate monetary policy val­

ues. We can observe recurrent fluctuations in government's decisions and consequently in

the proportion of believers as a manifestation of trust. These fluctuations happen gradually

as government builds up and exploits the population of believers.

Stein (1989) studies cheap talk announcements in a version of the Crawford, Sobel's

(1982) environment. As the government has an incentive to manipulate expectations, it

cannot use precise announcement credibly. Stein's results indicate that the government

should thus use imprecise announcements only. In contrast, in our model, government uses

inflation announcements to try to influence agents' expectation, and agents may be willing

to trust the announcement to avoid the costs of making their own forecasts. Inflation an­

nouncement is the policy instrument that can steer the economy towards the payoff superior

outcome.

4.1.3 Organization

In section 2, we present summary of analytical results of the model by Dawid and Deis­

senberg (2005). We describe the learning mechanism in section 3. Section 4 presents the

results of the simulations. And the last section concludes.

4.2 Description of the Model

In this section, we summarize the model from Dawid and Deissenberg (2005) that is the basis

of our agent-based analysis. The economy consists of government G and a large number 5

SIn the analytical model which is the basis for our agent-based analysis we formally have a continuum of
private agents, in the actual agent-based model obviously there is a finite but large number of agents.
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of private agents i. At any point of time t, government and agents play the following game.

1. Government makes an announcement of inflation, ya, that is its anticipation of actual

inflation, y, in period t.

2. Agents form their forecasts of inflation, xi, for period t.

3. Government sets actual inflation in period t.

The agent's unemployment rate ui is given according to an expectation augmented Phillips

curve:

(4.1)

and agent i receives a payoff of:

(4.2)

There are two types of agents in this economy: believers and nonbelievers. They differ by

their attitude to the government's announcement of inflation. Believers trust the announce­

ment of inflation, and they do not observe any other information about the economy. Thus,

they set their forecast of inflation, x B , equal to the announcement of inflation. Nonbelievers

do not trust the government and use all the information available in the economy to set

their forecast of inflation, x N B. The fraction of believers in the economy, denoted by 7r, is

common knowledge.

The government's payoff depends on the weighted average of the squared rate of unem­

ployment of believers and nonbelievers, and on the squared rate of inflation, i.e.:

(4.3)

(4.4)

Static solution. After believers and nonbelievers have chosen their forecasts of inflation,

government sets its actual inflation be minimizing (4.3) with respect to y, and so its reaction

function is given by:

y = RG (xB ,xNB ;7r) = 1: fP(U* + fhx
B + B(l-7r)x

NB
)

The believers minimize (4.2) with respect to xi taking into account that y = ya. And so

the believers' reaction function is:

(4.5)
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The nonbelievers know that there is fraction 7r of believers in the economy who set their

expectations according to (4.5), and that the government's chooses inflation from (4.4).

Nonbelievers substitute reaction functions (4.5, 4.4) into their payoff function (4.2) and

maximize it with respect to xi taking (1 - 7r)xNB as given (the representative non-believer

knows that s/he is too small to influence the average nonbelievers' forecast (1 - 7r)xNB ).

Then using the equilibrium condition xi = x N B we obtain for the non-believers' forecast of

inflation:

(4.6)

Given the reaction functions of believers and nonbelievers (4.5, 4.6), government can solve

for optimal announcement of inflation, ya, and actual inflation, y:

y*

U*

B
B(l - 7r) U*
1 + B27r

(4.7)

(4.8)

Actual inflation, y, and the discrepancy y* - ya* decrease with 7r. The optimal choices of

believers and nonbelievers are xB* = ya*, x NB* = y*, Le. nonbelievers can accurately fore­

cast actual inflation. The difference between forecasts of nonbelievers and believers is equal

the difference between actual inflation and announcement of inflation, and so it decreasing

in 7f.

Government's payoff in the equilibrium is:

(4.9)

Believers' payoff in the equilibrium is:

(4.10)

Nonbelievers' payoff in the equilibrium is:

(4.11)

The average payoff of believers and nonbelievers is:

(4.12)
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For all 7f E (0,1), the payoff of believers is always lower than payoff of nonbelievers. How­

ever, all payoffs decrease in 7f. This means that government and private agents are better

off if all private agents act as believers. For 7f = 0, the announcement of the government

becomes irrelevant and since private agents are atomistic the fact that they build observable

expectations before the government decides on y is of no significance and the equilibrium

outcome is given by the Nash equilibrium of the game where y and x NB are chosen simulta­

neously. For 7f = 1, government solves an optimization problem where the believers reaction

to the announcements are internalized. In this case, government gets the highest possible

payoff of zero while agents still have non-zero, negative, payoffs. The possibility to influence

beliefs by unbinding announcements of inflation increase payoffs as long as the fraction of

believers, 7f is positive. As 7f increases, actual inflation decreases which is beneficial for both

the government and the agents. Nonbelievers' unemployment stays at U*, believers' con­

verges towards the government's preferred unemployment level of O. Government benefits

from decrease of actual inflation and from convergence of believers' unemployment rate to

O.

Dynamic model. In a dynamic version of the model, the fraction of believers changes

over time and government maximizes cumulative discounted payoff over an infinite horizon.

Private agents switch between believing and non-believing based on information about the

relative profitability of the two options. The government is aware of the mechanism through

which the fraction of believers changes over time and takes the resulting intertemporal ef­

fects into account when determining the time path of its two decision variables. Accordingly,

the government faces an intertemporal optimization problem with infinite time horizon.

The main results are that depending on the parameter constellation the model can have

either two stable equilibria separated by an threshold point or a unique stable equilibrium.

In the dynamic model (just as in the static model), the payoff of the government is increas­

ing in 7f, i.e. government is always better off with having more believers in the economy.

However, as long as the government sticks to the action that maximizes its current payoff

- this action would correspond to the government's equilibrium action in the static game

described above - nonbelievers always have a larger payoff than believers and accordingly

the fraction of believers would decrease over time. Accordingly, in the dynamic setting the

government, due to inter-temporal considerations, has incentives to deviate with the actual

value of inflation y from the static equilibrium action and move it towards the announced
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inflation ya. The interplay between the strategic effect captured in the static model and

this inter-temporal effect drives the dynamics of government actions both in the analytical

and the agent-based model we consider here.

4.3 Learning

In our agent-based model, both the government and the private sector learn and adjust their

decisions and forecasts over time. The government learns about its decision variables with

individual evolutionary learning (IEL). The private agents adapt their strategies through

the process of the 'word of mouth' learning. The timing of the decision making in a given

time period is as follows. First, the government makes announcement of inflation. Second,

private agents set their forecasts of inflation. Third, the government sets actual inflation.

At the end of the period both the government and private agents compute their payoffs and

update their rules before making decisions in the next period. We provide the flow chart of

the events that take place during a course of a simulation in Appendix A.

4.3.1 Decisions of the government and private agents

The government has two decision variables - announcement of inflation, ya, and actual

inflation, y. At each time t, the government has a collection of J rules. Each rule j,

j E {I, J} consists of 2 elements which are the two decision variables, ya and y. In each

period, the government chooses one of these rules as its actual decision rule. The choice of

the actual rule is probabilistic. Selection probabilities are based on the rules' hypothetical

(foregone) payoffs. Over time, as a result of accumulated information about the performance

of individual rules, the collection is updated in way that increases frequency of representation

of relatively well performing rules. In addition, rules are subjected to occasional mutation

that brings in diversity.

Initial collection of rules is randomly generated from uniform distribution with support

[-10,15]. In addition, a rule (y'j,Yj) that government uses for its decisions at t = 1, yf and

Yl, is randomly selected.

Once the government makes an announcement of inflation y't at the beginning of period

t, private agents make their forecasts of inflation for that period. Each private agent is
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initialized with probability 7finitial = 0.5 to be a believer and with probability 1-7finitial to be

a nonbeliever. Believers set their inflation forecast equal to the government's announcement

of inflation:
B a

X t = Yt (4.13)

Nonbelievers set their forecast of inflation based on the reaction function from the static

problem (given in 4.6) plus an error correction term d. 6 Thus, in period t, nonbeliever i's

forecast is:
NB,i

X t
(j27f ya + ()u* .

t +&
1 + ()2 7ft t

(4.14)

where d~ is the EC term of nonbeliever i in period t.

The initial value of EC term is zero. At the end of each period, each nonbeliever

updates her error term d~ using an error correction method:

di di + ( NB,i)t+1 = t 'Y Yt - x t (4.15)

where Yt is actual inflation in period t, 'Y = 0.1 is a parameter controlling the speed of update.

In our simulations we will consider the case of heterogeneous beliefs of non-believers as

well as the case where all non-believers share identical expectations. In the first case, each

nonbeliever has her own value of d and proceeds to update it on her own as in (4.15). In

the second case, all nonbelievers can have the same value of d (and hence all nonbelievers

have the same inflation forecast). In this case, the error term is updated as:

where yfB is the (homogeneous) expectation of all nonbelievers. Once agents form their

inflation forecasts, government chooses actual inflation Yt for period t. At the end of the

period, agents and the government compute their payoffs.

6 As noted in the introduction, if the government made rational decision, nonbelievers would set their
forecasts based on reaction function from the rational expectations static solution. However, in our setup,
they know that the government is learning, and thus they add, to their forecast, an error correction term
that they update over time.
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Payoff of believers is computed as:

Jt = -~[(Yt - X~)2 + y2]
2

Payoff of nonbelievers is computed as:

J NB 1 [( i)2 2]t = - - Yt - Xt + Y - c
2

94

(4.16)

(4.17)

where c is the cost of forming own forecast by nonbeliever. This cost can include compu­

tational, informational and other efforts nonbeliever has to apply to form own forecast in

contrast to believing the announced inflation.

Government's payoff is calculated as:

1
JG t = --[7rt(uf)2 + (1 - 7rt)(ufB)2 + y2]

2

where uB,uNB are unemployment of believers and nonbelievers defined as:

(4.18)

U' - B(Yt - xf)

U' - B(Yt - xfB)

(4.19)

where ufB is the average unemployment of nonbelievers computed using average forecast of

nonbelievers xfB = N~B 2:~B xfB,i, NNB is the number of nonbelievers. We use param­

eter values B = 1 and natural rate of unemployment U' = 5.5 that are accepted in macro

literature, e.g. Sargent (1999).

4.3.2 Updating

Agents' updating. In each period, agents learn by 'word of mouth'. A fraction of agents

(3 is chosen randomly without replacement to undergo the following learning process (each

of these 'chosen' agents is called agent i). Agent i meets agent j chosen randomly with

replacement from the population of agents. Agent i can observe agent j's action (believe/

not believe). However, she cannot observe payoff of agent j, Jj, perfectly. Instead, agent i

observes the value of the payoff that is disturbed by a random shock:

Jj = Jj + shock
observed
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where

shock = 2 * tan(pi * (rand - 0.5))/(pi)

where rand is drawn from uniform distribution [0,1], pi = 3.147 .

95

If the observed payoff of agent j is higher than agent i's own payoff, J~bserved > J
i

, agent

i adopts the action of agent j.

As a result of this learning mechanism, the expected change in proportion of believers

can be computed as:

(4.20)

Under our common error correction term scenario (CEC), when an agent switches from

believe to not believe, she observes the common value of the term dt and adopts it in forming

her own forecast. Thus, in this case, the knowledge of EC term is public and shared by

nonbelievers.

Under our individual error correction term scenario (IEC), individual error terms, di's,

are not observable by other agents. When an agent switches from being a believer to being

a nonbeliever, his di is set equal to zero as she cannot observe the value of the other agent's

EC term. Thus, every time agents become nonbelievers, they have to evolve and adapt their

own error correction terms as these values are not shared across the agents.

Government's updating Government updates its collection of rules using experimen­

tation and replication.

Experimentation. Each element of a rule j, j E {I, J}, inflation announcement Y'J and

actual inflation Yj, is changed independently with the probability of experimentation equal

to mprob=0.2.8 The new value after experimentation is computed as:

new value = old value + randn * deviation,

7The distribution of shocks is unimodal with mean zero and qualitatively similar to a Gaussian distri­
bution. We choose this formulation to obtain a simple analytical expression for the expected change in the
fr<U;tion of believers.

8Compared to other studies that use evolutionary learning, this is a fairly large rate of experimentation.
However, this higher rate is necessary to build positive fractions of believers.
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where randn is random number drawn from standard normal distribution, N rv (0,1), de­

viation is the standard deviation of the distribution for the rule that is mutated. We use

standard deviation of 1 for both inflation announcement and actual inflation.

The next step in government's updating is computation of hypothetical payoffs for each

rule (Y'j,Yj), j = 1...100. Hypothetical payoff shows how each pair of rules would have

performed if it had been chosen in the previous period. It is calculated with government re­

alizing that its announcement ya influences forecasts of agents of both types and, therefore,

influences their unemployment rates. And so for each rule (Y'j,Yj), government computes

the hypothetical values of inflation forecasts and hypothetical unemployment rates (ufyp,j

and U~~,j) that would have resulted if this pair had been chosen in the previous period.

The hypothetical payoff also takes into account the impact on the change of the proportion

of believers (.6.7r;XP).

The hypothetical payoff for each pair of rules j is calculated as:

Jy = -~[7rt(ufyp,j)2 + (1 - 7rt)(u~~,j)2 + Y;] + 0 .6.7r;xp (4.21)

This payoff includes expected change in the proportion of believers .6.7r;x
p

weighted by

O. This formulation of payoff is equivalent to the sum of expected future payoffs. Parameter

o evaluates how much government cares about the future: higher 0 means that government

cares more about future. The value of this parameter is important for the results, and the

sensitivity analysis will be presented later. The parameter 0 can be seen as a proxy of

the shadow value of 7r in a dynamic optimization problem solved by the government. The

details of payoff computations are presented in Appendix B.

Replication. Replication reinforces rules that would have been good choices in previous

periods. It allows potentially better paying alternatives to replace those that might pay

less. We implement tournament selection variant of replication. For j = 1 to J, 2 rules are

drawn randomly with replacement from the existing pool of rule. Rule j in the new pool of

rules is set equal to the rule with a higher hypothetical payoff.

Selection of rule. Having updated its pool of rules with experimentation and replication,

government chooses announcement of inflation and actual inflation in the next period based
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on the rules' hypothetical payoffs Jy,j = 1...100. The probability for a pair of rules j to be

selected is higher for a rule with higher payoff and is computed as:

It is worth pointing out that experimentation is not a trembling hand mistake, mutation

that is traditionally discussed in the literature on learning or evolutionary game theory. It

is rather purposeful experimentation intended to improve government's payoff as a choice

generated through experimentation is implemented only if it demonstrates a potential for

bringing a higher payoff. In addition to having a high hypothetical payoff has to have a

high hypothetical payoff, it also has to increase in frequency in order to increase its selection

probability.

Directed experimentation: As pointed out earlier, directed experimentation is not as

random as it may look. While it is true that an alternative is selected at random from the

set the alternative selected must have a reasonably high hypothetical payoff relative to the

last period or future periods to have any chance of ever being used. A newly generated

alternative has to increase in frequency in order to increase its selection probability. This

can happen only if it proves successful over several periods.

4.4 Simulation Results

In the discussion of the simulation results we use the case of error correction learning of

private agents with common EC term as our default case. The standard parameter setting

for our simulations is (3 = 0.05, U' = 5.5, () = 1, C = 0.1, and "( = 0.1. Simulations are run

for 300 periods. All data presented in the tables are averages over 100 runs.

4.4.1 Emergence of policy announcements and evolution of credibility

The first major question is whether in our environment policy announcements emerge as a

useful tool to improve economic performance relative to the Nash equilibrium in which there

are no believers. As discussed above, policy announcements can only emerge as a useful tool

if the government chooses announcements in such a way that, on the one hand, a positive

stock of believers evolves and sustains over time and, on the other hand, announcements
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influence private beliefs such that positive effects on both the government's and agents pay­

offs result.

We illustrate the typical behavior exhibited in one of our runs in Figure 4.1 where we

present the dynamics of the behavior of the stock of believers, government payoffs, actual

inflation, the announced inflation and forecast errors of believers and nonbelievers.

After a rather brief initial time span, a clear pattern arises between periods 50 and 200.

The actual inflation oscillates around zero and announced inflation mirrors these oscillations

with some downward shift. Due to these oscillations nonbelievers are not able to effectively

adjust their learning parameter dt and, therefore, their expectation errors stay relatively

large compared to that of the believers. Accordingly, the stock of believers keeps increas­

ing. Once the government has built up a high proportion of believers, approximately in

period 150, it starts to 'exploit' their trust by increasing the difference between inflation

announcement and actual inflation. Payoffs of nonbelievers rise above payoffs of believers,

and Jrt starts to decrease. As this happens, the payoff of the government increases due

to lower unemployment of believers. But this temporary increase is bought at the price

of a decrease in the proportion of believers and the associated decrease in future payoffs.

Now, the government tries to stop this downward trend by reducing the discrepancy be­

tween inflation announcements and the actual inflation around period 220. The payoffs of

believers increase and as a result Jr goes up reaching the value of 0.7 in period 262. Now,

the government goes back to try to 'exploit' this build-up in the fraction of believers. It

sets inflation announcement at about -5.5 and actual inflation close to 0, as these are the

optimal values for the government in the static game that give it the highest payoff of O.

This leads to the reduction of the proportion of believers. In this simulation, Jr stays at

the values higher than 0.5 until the end of the simulation. During the entire simulation,

the government manages to build-up trust after each of the periods during which the gap

between announced and actual inflation increases, and thus the economy maintains a fairly

large fraction of believers. However, there can be instances that we discuss later in the text,

where the gap might get high enough that it is not possible for the government to reverse

its policy before believers disappear from the economy.

During the fluctuations described here the average payoff of the private agents and the
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payoff of the government are higher during the periods with high 7r. Given our parameter

values, the government payoff in Nash equilibrium is JC. = -30.25. It can be seen that

apart from the first few periods, where due to the random initialization of private agents'

inflation expectations large expectation errors and unemployment rates might occur, the

government is typically able to obtain payoffs that are substantially higher than JC•.

Looking at table 1, row one which provides average values over 100 runs for our baseline

case, we can see that the government's average payoffs are higher (-16) than the Nash equi­

librium ones (-30.25). In the Nash equilibrium, all agents are nonbelievers, their forecasts

are correct, and the payoff is equal to the negative of the squared inflation rate, yN which

is equal to U· = 5.5. Thus, JP = -30.25. The data in row 1, table 1 show that average

payoffs of both types of agents exceed the Nash equilibrium values (believers receive -11.07,

and nonbelievers -4.40).

4.4.2 Tradeoff in government's decision

As mentioned above, the government tries to stop the downward trend in the proportion of

believers sooner or later by reducing the discrepancy between inflation announcements and

the actual inflation. The lower the values of parameter n, the later the government returns

to a 'believers buildup', and the larger is the probability the stock of believers becomes

zero before the government reduces the discrepancy sufficiently. Thus, the parameter n
determines how strongly the government takes into account the effect of its current action

on the stock of believers in the next period. It is very plausible that increasing the value of

the parameter n makes government more biased towards actions that increase the stock of

believers. Figure 4.2 shows the impact of n on the stock of believers. We can see that an

increase of n leads to an increase in the stock of believers. Since the government's objective

function increases with the stock of believers this also implies higher government payoffs for

higher values of n. However, the stronger bias towards actions that increase the stock of

believers also means that lower current payoffs are accepted. Therefore, it is not clear that

increasing n leads to higher accumulated payoffs of the government.

In order to further investigate this issue, we define discounted payoff of the government
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as:

100

T

jG,disc = 2:: pt j?

t=O

where U?}T=l is the time series of government payoffs and p E (0,1) is the discount factor.

We examine the dependence of jG,disc on the value of the parameter n. Figure 4.3 presents

discounted payoffs for different values of n E [800,2000], P = 0.98 9 and T = 300.

We can see that the discounted payoff of the government is maximized at an interior

value of approximately nopt = 1000. To understand this result it is important to realize

that a government with a high value of n is strongly concerned with the stock of believers

and, therefore, with the believers' payoff that depends on the deviation between believers'

inflation expectations and the actual inflation. Thus, the higher n is, the lower iS,ceteris

paribus, the difference between actual inflation and the inflation announcement. This in­

creases current unemployment and has negative effects on short-term government profits. If

the value of n exceeds the optimal value, the short term losses become too large compared

to the long run gains from a high stock of believers, and discounted government payoffs

decrease for increasing n. 1O .

4.4.3 Costlier and slower adaptations of nonbelievers' forecasts

Our discussion so far has reinforced the point that it is desirable for the government if the

success of nonbelievers is relatively small compared to that of believers. Basically, the attrac­

tiveness of building and adapting beliefs that are different from the policy announcements

gIn how far such a value of the discount factor can be considered as plausible depends on the interpretation
of the time unit. If we interpret one unit of time as one month, which seems reasonable given the value
of parameter {3 = 0.05 and the speed of the dynamics of 7rt, this corresponds to a yearly discounting of
about 20%. This rate might look very high but it has to be taken into account that governments act under
uncertainty of how long they will be in the office and therefore one should assume rather high discounting
of future payoffs.

JOlt should be noted that choosing the value of n that maximizes discounted payoffs typically leads to
the elimination of the stock of believers in the long-run. This means that even if a government is interested
in the maximization of a discounted payoff stream with infinite time horizon, the corresponding optimal
policy rule will in the long run eliminate any trust of the private agents in policy announcements and
make them irrelevant. The mechanism that leads to the eventual extinction of believers is closely related
to the phenomenon of persistent fluctuations in the values of the policy, its announcements and the stock
of believers that can be observed in the simulations. We discussed this phenomenon in more detail in the
previous subsection
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may be decreased for two reasons. First, the cost of building such beliefs might increase and,

second, the speed of adjustment of the EC term might decrease. As we will show in this

subsection both of these changes indeed result in an increase in government's payoffs (both

jG and jG,disc) , but otherwise have quite different effects on the key economic variables.

To explore this issue we compare the qualitative effect of increasing costs of nonbelievers

from c = 0.1 to c = 1 with that of decreasing the speed of adjustment of the EC term, d,

from r = 0.1 to r = 0.01. 11

In table 4.1 we show the discounted government payoff (jG,disc) as well as time averages

over periods 21 to 300 of the main variables of interest for the two values of c that we

consider. All reported values are averages of 100 runs. In row 3 of the table we provide the

significance levels of Wilcoxon test that show the observed signs in almost all the differences

of means are statistically significant at a 95% level12

As mentioned above, both parameter changes lead to an increase in the discounted pay­

off of the government. However, the mechanisms leading to this increase are quite different

in two cases. If the costs of forming individual forecasts increase, ceteris paribus, the stock

of believers goes up and the government policy changes such that actual and announced

inflation decreases (the change of policy announcements is less significant). Interestingly

enough, the government does not exploit the increased costs of nonbelievers but rather re­

duces the gap between its announced and actual inflation policy. The level of unemployment

among believers therefore goes up, unemployment of nonbelievers increases 13, but since un­

employment among believers is still smaller than unemployment among nonbelievers this

effect is at least partly offset by the increase in the fraction of believers. In combination

with the decrease in actual inflation this leads to higher government payoffs. Furthermore,

liThe weight parameter is set to weight = 1000 for this comparison, which is the optimal value of this
parameter identified above.

12The data for Wilcoxon test is generated as follows. We generate 2 samples of 100 observations each: one
for cost c = 0.1, the other for cost c = 1. For each sample, parameters (3 = 0.05, U' = 5.5, .\ = 2, () = 1 are
fixed at their baseline values for all observations. We draw randomly values of'Y from uniform distribution
[0.01, 0.1] and values of n from uniform distribution [800,1300] for each of 100 observations, the sets of these
values are the same for samples with c = 0.1 and c = 1. We collect data on averages and discounted payoffs
for each simulation. Then we compute differences between observations for cost c = 0.1 and cost c = 1 for
the same values of 'Y and n. We perform one-tailed Wilcoxon test for these differences.

13Unemployment of nonbelievers becomes closer to the natural rate U' = 5.5 which implies that nonbe­
lievers' forecasts are more accurate.
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due to the stronger alignment between announced and actual policy and to the decrease in

inflation both groups of individual agents are better off after an increase in c and it is easy

to see that also the average payoff in the population increases. This is directly the result of

higher average fraction of believers.

Figure 4.4 illustrates behavior for high cost c = 1. After the initial adjustment, the gov­

ernment implements the policy where it keeps actual inflation very close to the announced

values. In addition the value of Yt fluctuates around zero. The fraction of believers grows

over time, and remains at high levels of around 0.8. However, at period 223, the government

suddenly decreases yf to -4.04, while keeping Yt at first at level close to zero. In subsequent

periods, it maintains low values of yf, but starts increasing the level of Yt. This results in

large decrease in believers' unemployment. Believers' payoffs suffer from huge forecasting

errors they make, and 7r decreases to 0.33 (period 268). The government is able to recover

from this episode and brings the values of yf and Yt closer together. Inflation stays high

thus stabilizing the value of 7r (which at the end of the simulation is remains at its lower

level of 0.33).

Quite a different picture emerges if the speed of adaptation of nonbelievers error correc­

tion term goes down. Table 2 shows the effects of the decrease in ')'14. Here the government

reacts to the parameter change by strongly widening the gap between its announcement and

its actual policy. The announcement is decreased whereas at the same time inflation goes up.

Because of this shift of the government policy a decrease of ')' actually leads to an decrease

in the long run stock of believers. The government is able to quickly reduce unemployment

among believers to zero and, therefore, gains in the short run which results in an increase

of its discounted payoff. Note that the decrease of the learning speed of nonbelievers leads

to a decrease in the payoff of the government in the long run. Also, both believers and

nonbelievers have lower payoffs after a decrease of ')'. 15 Put differently, whereas an increase

in c induces the government to move towards a policy that primarily aims at low inflation,

a decrease in ')' triggers a shift of attention towards a low unemployment policy.

14In this case, for Wilcoxon test we generate 2 samples: one for 'Y = 0.01, the other for 'Y = 0.1. Cost is
drawn randomly from uniform distribution [0.1,1], weight - from uniform distribution [800,1300]' the rest of
the parameters are at the baseline values.

15It should be noted here that the rate of unemployment does not enter the individuals objective function
in this formulation and, therefore, positive employment effects do not influence the individual payoffs.
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Figure 4.5 illustrates the behavior observed in one of the simulations with "( = 0.01. At

the beginning of the simulation the stock of believers gradually grows, from 0.5 (which is a

result of random initialization) to the values close or equal to 1. Around period 50, virtually

everyone in the economy is a believer. But, a few nonbelievers that stay in there continue

updating their dts. In the process, their forecast errors become smaller and their payoffs

higher. At period 55, their payoffs surpass the believers' payoffs and being a non-believer

becomes a lot more attractive. As the figure shows, at this point, the government set of rules

consists mostly of those that prescribe large gaps between actual and announced inflation.

As government continues to use policy with high gap between actual and announced infla­

tion, believers make worse forecasts than nonbelievers. As a result, a fraction of believers

starts declining. Government follows up with policy that restores the fraction of believers

to 0.72 in period 147, but later repeats policy with high gap between announced and actual

inflation starting in period 158. The end result is the total extinction of believers from the

economy.

Overall, while decrease in the speed of adjustment results in worse economic outcomes,

increase in the cost results in greater trust in government policies, which in turn is supported

by moderate gaps between announced and actual inflation, lower inflation rates, and higher

government's and private sector's payoffs. An interesting question is then whether further

increases in the cost c result in further increases in the payoffs? Is there an optimal level

of c that maximizes private agents' and government's payoffs given other parameters of

the model? We present the results of our investigation in Figure 4.6 in which we vary c

between 0 and 4, in the increments of 0.1 and simulate 100 runs for each value of c. It

turns out that, for our set of parameter values, the payoff of believers is the highest for

cost c = 1.3, the payoff of nonbelievers is the highest for cost c = 0.8. The average payoff

(weighted by fractions of believers and nonbelievers) of agents achieves the highest value for

cost c = 0.8. Government's discounted payoff and average payoff increases monotonically

with higher cost.

Ones the cost starts increasing over the 'optimal' value, we observe a shift in the gov­

ernments policy. It reverses its policy of low inflation and starts increasing the gap between

the actual and announced inflation which result in the decrease of believers' unemployment.

This is similar to the policy government uses in the case of lower "(.
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4.5 Heterogeneity of expectations of nonbelievers

104

So far we have assumed that all nonbelievers share the same beliefs. This in particular

requires that any private agent who shifts from believing to non-believing is able to predict

the actual inflation rate as well as other nonbelievers who have already acquired experience

in the past. Formally, this is expressed by the fact that all nonbelievers share the same value

of the EC term dt . Whereas such an assumption is plausible if inflation forecasts are avail­

able at institutions like economic research institutes, we will now assume that individuals

indeed profit from past experience with expectation formation. Nonbelievers differ in the

d-values they are using and privately update these values based on information they obtain.

Note that such heterogeneity of expectations introduces additional costs of switching to

non-believing in a way that is quite different from change in cost and speed of adjustment

we have considered in this subsection.

As described previously, once an agent switches from being a believer to being a non­

believer, she starts with an EC term of the forecast equal to zero. She keeps adjusting it

based on her own experience.

In order to estimate the effect of its policy, government must have an estimate of the non­

believers expectations, which is harder when nonbelievers' expectations are heterogeneous.

We assume that the government knows the average value of the expectation parameters of

all nonbelievers and, based on this, computes the hypothetical value of nonbelievers' forecast

as described in Appendix B.

4.5.1 Comparison of homogeneous and heterogenous baseline cases

Table 4.3 reports data for baseline parameter values 'Y = 0.1 and cost = 0.1 for homoge­

nous and heterogenous nonbelievers' expectations. It also presents the significance levels for

Wilcoxon test that show that the observed signs for most of the differences in the means for
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homogeneous and heterogeneous cases are significant at 95%16.
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We can see from Table 4.3 that the proportion of believers, government's discounted

payoffs, government's average payoffs, actual inflation, announced inflation and unemploy­

ment of believers are lower and unemployment of nonbelievers is higher in heterogeneous

case than in homogeneous case.

The proportion of believers is lower for heterogeneous case. Simulation with hetero­

geneous nonbelievers is illustrated in Figure 4.12 which shows that, compared to the ho­

mogenous case (Figure 4.1), proportion of believers increases somewhat faster and starts

to decrease earlier. This explains lower proportion of believers averaged over the length of

simulation (as shown in Table 4.3). The dynamics can be explained in the following way.

Initially, it is easier for the government to build up the proportion of believers because

the alternative action 'not believe' is less attractive in the heterogeneous case due to the

zero EC term after switching to the action 'not believe'. Once government builds up the

stock of believers, it starts to 'exploit' them by increasing the gap between actual and an­

nounced inflation, and this leads to decreasing proportion of believers. We can see higher

value of this gap and lower unemployment of believers in the heterogeneous case in Table 4.3.

In the heterogeneous case there is a positive variance of nonbelievers' expectations that

makes it more difficult for the government to adapt its actual inflation rate to the distri­

bution of beliefs in the population compared to the homogenous case where only two levels

of expectations exist in the entire population. As a result, we observe that even in the

long run the average expectation of heterogeneous non-believers is above the actual infla­

tion rate. Such a phenomenon has negative implications for both sides as unemployment

of nonbelievers is above the natural rate of U* = 5.5 (see table 4.3). The fact that such a

negative expectation gap exists nevertheless shows the coordination problems arising in a

system with heterogeneous agents.

16Por this test, we generate two samples of data: one - for homogeneous, the other - for the heterogeneous
nonbelievers. Each sample is generated for cost drawn from uniform distribution [0.1,1]' 'Y drawn from
uniform distribution [0.01,0.1], and weight from uniform [800,1300], the other parameters are at the baseline
values described above.
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Further, the differences in discounted and average government's payoffs can be explained

by the changes in actual inflation and unemployment rates. Although unemployment rate of

nonbelievers is higher for heterogeneous case, unemployment of believers and actual inflation

are lower, and so for lower proportion of believers, these changes lead to lower government's

payoffs in heterogeneous case.

Finally, the same differences in the behavior of the homogenous and heterogenous case

are observed for a range of values of the parameter n. These are illustrated in figures 4.7,

4.8, 4.9 and 4.10 in which the behavior of government payoffs, unemployment, proportion of

believers, actual inflation and announced inflation for common and individual nonbelievers'

expectations presented for range of values of n between 800 and 1,300.

4.5.2 Costlier and slower adaptations of nonbelievers' forecasts - het­

erogenous agents

As noted earlier, in case of homogenous nonbelievers, the government responds in qualita­

tively different ways to changes in the parameters (c and ,). An increase in the cost of

forming individual expectations induces a change towards a more inflation oriented policy

of the government, whereas a decrease in the speed of update of nonbelievers leads to an

orientation towards unemployment reduction. Costlier forecasts (up to the point) also make,

on average, both the government and agents better off, while slower speed of adjustment

increases government's discounted payoff, but lowers its average payoff, as well as the aver­

age payoff of both types of agents.

In table 4.4 we show the effect of an increase of cost c on the key variables of the model

where nonbelievers have heterogenous expectations; row 3 provides significance levels of

Wilcoxon test performed analogously to the case of homogeneous nonbelievers' expecta­

tions. Table 4.5 reports the effect of a decrease in the speed of adjustment and significance

levels for Wilcoxon test.

In this environment, an increase in c no longer induces an inflation oriented policy change

of the government, but rather an unemployment oriented one. Inflation goes up, announced

inflation goes down, and the gap between actual and announced inflation widens. This
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induces very low unemployment among believers, and the government is better off. The

proportion of believers goes down for higher cost in the heterogeneous case in contrast to

an increase of the proportion of believers in the homogeneous case. Higher cost, c, results in

higher government's discounted payoff and lower average payoff. The lower average payoff

is due to lower proportion of believers. Agents' average payoff goes down in heterogeneous

case whereas it goes up in homogeneous case.

Thus, with heterogeneity of expectations, higher cost of forecast no longer provides ben­

eficial effects for the entire economy. However, in the homogenous expectations case, there

is a maximum level of cost that results in increased payoffs. Beyond that point, further

increases in cost have negative impact on the payoffs. In the economy with heterogenous

agents, the effect of having to learn the value of dt from scratch, each time there is a switch,

might act as an addition to the total cost of forecasting, pushing it beyond the point where

increases in costs cease to have positive effects. We present the results of our investigation

in Figure 4.11. We varied c between 0 and 0.4, in the increments of 0.01 and simulated 100

runs for each value of c. For our set of parameter values, the payoff of believers is the highest

for cost c = 0.02, the payoff of nonbelievers is the highest for cost c = 0.01. The average

payoff of agents achieves the highest value at cost c = 0.01. Government's discounted payoff

and average payoff keeps increasing with higher cost although average payoff exhibits some

volatility.

When the speed of adjustment, r, goes down in the environment with heterogenous

expectations, actual inflation and announced inflation both decrease, but the gap between

them increases. The higher gap leads to the reduction of the unemployment of believers. The

unemployment of nonbelievers increases as their forecast error is higher due to lower speed

of adjustment. The proportion of believers increases in contrast to the reduction in case

of homogeneous nonbelievers (see Table 4.2). As both actual inflation and unemployment

of believers go down together with an increase of the proportion of believers, government's

payoff JG increases, and so does the discounted payoff. Agents' payoffs go down as in the

case of homogeneous nonbelievers. The unemployment policy is the same and inflation pol­

icy is opposite in homogeneous and heterogeneous cases in response to lower,. Responses

of inflation and unemployment of nonbelievers to changes in cost and r are opposite in the

heterogeneous compared to the homogenous case. Unemployment of believers on the other
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hand moves in the same direction in both cases.
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Different responses to costlier and slower adjustment in case of homogeneous and het­

erogeneous expectations of nonbelievers (Table 4.1 and Table 4.4, Table 4.2 and Table 4.5)

illustrate the importance of explicit consideration of the impact of heterogeneity among

individuals when analyzing policy measures. The only difference between the scenarios

considered in these tables is homogeneity and heterogeneity of nonbelievers' expectations.

Nevertheless two qualitatively very different policy reactions to a change of c or , are ob­

served. These observations reinforce the point that heterogenous agent models are needed

to fully examine the qualitative feature of the problem at hand.

It is in the interest of the government to facilitate the information flow between nonbe­

lievers such that agent that just switched to non-believing can build on the experience of the

other nonbelievers. Making too much data publicly available might however reduces the costs

c of being a non-believer, which, as we have seen above, is not desirable for the government.

So, if the government intends to interfere with the way nonbelievers build their expectations

it faces the non-trivial problem to keep the incentives for taking government announcements

at face value as high as possible, and at the same time to avoid too much heterogeneity and

large expectation errors among those agents who do not believe the announcements.

4.5.3 Understanding the difference in responses to parameter changes in

homogeneous and heterogeneous cases

We have seen that economies with homogeneous and heterogeneous nonbelievers respond

differently in the experiments conducted in the previous subsections. We would like to bet­

ter understand these differences, and so we perform simulations and take 2 snapshots at

different points of time. We report averages over the following periods of time: [21, 100],

[21,300]. Reporting the results at different points of time allows to understand how the

economy evolves over time. We summarize the direction of changes in response to parame­

ter changes in table 4.10. We will analyze the impact of lower, first and then the impact

of higher c.

The results of the simulations for two values of , are reported in Tables 4.6 and 4.7
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for homogeneous and heterogeneous cases. To make comparison easier, we present both

averages over periods [21,100] and averages over periods [21,300], the latter results are also

in tables 4.2 and 4.5. We can summarize these tables as follows. For lower "f, the proportion

of believers increases during the initial 100 periods for homogenous and heterogenous cases

(as expected). During 300 periods, proportion of believers decreases with "f for homogenous

case, but it is higher for lower "f in heterogenous case. For each value of "f, proportion of

believers is lower over 300 periods than over 100 periods that means that proportion of

believers declines over time. Together these facts mean that the proportion of believers

decline slower in heterogeneous case than in homogeneous case.

Now we will compare inflation and unemployment approaches of the government in re­

sponse to lower "f in homogeneous and heterogeneous cases. The level of inflation is lower

in heterogeneous case during both time intervals. In homogeneous case, inflation decreases

for lower "f during the initial 100 periods, and then increases over 300 periods. We can see

that the gap between actual and announced inflation increases as "f decreases both during

the initial 100 periods and during 300 periods for homogeneous and heterogeneous cases.

Increasing gap leads to lower unemployment of believers for lower "f, whereas unemployment

of nonbelievers is higher for lower "f due to higher forecast error. Higher gap between an­

nounced and actual inflation also contributes to the decreasing proportion of believers over

300 periods. The combination of lower proportion of believers and higher unemployment of

nonbelievers cause lower government's payoff J G , whereas government's discounted payoff

increases due to short-term lower inflation, higher proportion of believers and lower unem­

ployment of believers.

Based on the observations in Tables 4.6 and 4.7, we can summanze the dynamics in

the economy. The government is able to build up a high proportion of believers quicker for

lower "f as the option 'not believe' does not give good forecasts due to the slower update

of nonbelievers. Then the government starts to exploit existing believers substantially. As

government continues its exploitative policy, the proportion of believers declines. If the gov­

ernment does not reverse its policy, believers disappear. For lower "f, proportion of believers

starts to decrease earlier. This is illustrated in Figures 4.1 and 4.5 for homogeneous case,

and in Figures 4.12 and 4.13 for heterogeneous case. We can make an important conclusion

from this exercise: to maintain positive proportion of believers, it is necessary that nonbe­

lievers are quick and accurate in their forecasts. This contains government from exploiting
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believers too much to the extent of extinction and protects believers.
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The response of the economy to the introduction of heterogeneous nonbelievers is similar

to the response to the lower speed of adjustment of nonbelievers (see Table 4.10). We can

see that proportion of believers starts to decline earlier in heterogeneous case (Figure 4.12)

than in homogeneous case (4.1). This is similar to the impact of lower adjustment speed:

proportion of believers declines quicker for lower 'Y in Figures 4.5 compared to baseline 'Y

in Figure 4.1 for homogeneous case. Similarly, in Figure 4.13 the proportion of believers

declines quicker for lower 'Y compared to Figure 4.12 in heterogeneous case. When believers

switch to 'not believing', they start from scratch at d = 0 in heterogeneous case. As a result,

the speed of update of population of nonbelievers is slowed down in comparison to homo­

geneous case where, after the switch, new nonbelievers start with the population value of d

that includes the past experience. Therefore, introduction of heterogeneous nonbelievers' is

similar to lowering the speed of update, 'Y.

Now we analyze the effects of higher cost. The results of simulations are reported in

Tables 4.8 and 4.9. We can summarize these tables as follows. The proportion of believers

increases during the initial 100 periods for homogenous and heterogenous cases. During 300

periods, proportion of believers is higher for higher cost for homogeneous case, but it is lower

for heterogeneous case. For the same cost, proportion of believers is lower over 300 periods

than over initial 100 periods in heterogeneous case, but it is higher in homogeneous case.

This means that initially proportion of believers increases in homogeneous and heterogeneous

cases, it keeps increasing within 300 periods in homogeneous case, but starts declining in

heterogeneous case. The initial response to higher cost bears resemblance to the response to

lower T proportion of believers increases as cost of forming own forecasts for nonbelievers is

higher. As proportion of believers is high, government starts exploiting them that decreases

proportion of believers in heterogeneous case. The dynamics for economy with higher cost

is illustrated in Figures 4.4 for homogeneous case and 4.14 for heterogeneous case.

The level of inflation decreases with cost for homogeneous case during both time inter­

vals, whereas inflation goes down initially and then increases in homogeneous case. Gap

between announced and actual inflation goes down for higher cost that brings higher unem­

ployment of nonbelievers in homogeneous case. Gap between announced and actual inflation

goes up causing lower unemployment of believers in heterogeneous case. Unemployment of
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nonbelievers goes up in homogeneous and heterogeneous case: in homogeneous case unem­

ployment of nonbelievers becomes closer to natural rate, whereas in heterogeneous case, it

goes up above natural rate. Both believers and nonbelievers' payoffs are higher for higher

cost in homogeneous case, but they are lower for higher cost in heterogeneous case. Gov­

ernment's discounted payoff goes up for higher cost in both cases. Government's payoff

JG goes up in homogeneous case, and it goes up during initial 100 periods and goes down

during 300 periods in heterogeneous case. We can see that government's response to higher

cost is different in homogeneous and heterogeneous case. In homogeneous case, government

concentrates on lower inflation; in heterogeneous case, government aims at lower unemploy­

ment of believers. This difference of government's response can be explained by our finding

in Figures 4.6 and 4.11 that 'optimal' level of cost is different for homogeneous and hetero­

geneous cases: 0.8 for the former case, 0.01 for the latter case. Thus, cost increases from

0.1 to 1, this means movement closer to the optimal level for homogeneous case, but it is

movement away from the optimal level for heterogeneous case.

The response to higher cost and lower speed of update is qualitatively similar for

homogenous and heterogeneous cases: proportion of believers initially increases due to

costlier/slower update of nonbelievers, and then decreases due to government's exploita­

tion of believers to reduce unemployment. The difference in responses is in the speed of

these adjustments: proportion of believers goes up and stays high longer for higher cost

than for lower /. This explains the differences observed in data averaged over period [21,

300].

4.6 Conclusion

In this paper, we study a dynamic version of Kydland-Prescott model in which the govern­

ment uses announcements to improve the economic outcome. The simulations show that

government is able to learn a Pareto-superior outcome by making inflation announcements

and setting actual inflation that maintain the number of believers at the level necessary for

an increase in government's and average private sector's payoffs. The Pareto improving out­

come is achieved despite the fact that the announcements are not respected. The economy

exhibits recurrent fluctuations in announced and actual inflation as government repeatedly

builds up and exploits the proportion of believers.
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The size of the fraction of believers reflects the level of credibility that the government

enjoys. This credibility evolves endogenously and changes with the changes in the fraction

of believers. By setting their beliefs equal to the announced inflation, the believers might

not necessarily believe that the government is going to set the actual inflation at that level.

Rather they might believe that the government is not going to make the gap between the

announced and actual inflation too large. As long as the gap is small enough to keep their

forecast errors small enough and thus switching to not believing not worthwhile, believers

will 'trust' the government. Thus, credibility in this economy is not about the announced

versus actual inflation but about the size of the gap. Credibility can be sustained only with

a healthy fraction of nonbelievers whose presence keeps the government in check.

Changes in different parameter values lead to different government policy responses.

While the increase in the cost of acquiring individual forecast induces inflation oriented

government policy, a decrease in a speed of adjustment of nonbelievers EC term induces

policy oriented towards reduction of unemployment. Further, increase in the cost results in

the higher average payoffs for both the government and the agents. We also find that there

is, for a given set of other parameter values, an optimal size of the cost that brings about

the highest payoffs. Further increases in the cost beyond that value result in deterioration of

everyone's payoffs. On the other hand, decreases in the speed of adjustment result in lower

average payoffs for the government and both types of agents (the government discounted

payoff goes up though).

In the heterogeneous case there is a positive variance of nonbelievers' expectations that

makes it more difficult for the government to adapt its actual inflation rate to the distribu­

tion of beliefs in the population compared to the homogenous case where only two levels of

expectations exist in the entire population. As a result, we observe that even in the long run

the average expectation of heterogeneous non-believers is above the actual inflation rate.

Such a phenomenon has negative implications for both sides as unemployment of nonbeliev­

ers is above the natural rate of U* = 5.5. The fact that such a negative expectation gap exists

nevertheless shows the coordination problems arising in a system with heterogeneous agents.
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It is in the interest of the government to facilitate the information flow between nonbe­

lievers such that agent that just switched to non-believing can build on the experience of the

other nonbelievers. Making too much data publicly available might however reduce the costs

c of being a non-believer, which, as we have seen above, is not desirable for the government.

So, if the government intends to interfere with the way nonbelievers build their expectations

it faces the non-trivial problem to keep the incentives for taking government announcements

at face value as high as possible, and at the same time to avoid too much heterogeneity and

large expectation errors among those agents who do not believe the announcements.
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4.8 Appendix
APPENDIX A. Computation of hypothetical payoffs.

The hypothetical payoff for each pair of rules j is calculated as:

J G _ 1[ (B )2 (1 ) ( N B)2 2] . h A expj - - 2" 7rt Uhyp,j + - 7rt Uhyp,j + Yj + wezg t U7rj
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(4.22)

The hypothetical values of inflation forecasts for believers are calculated for each pair

j'~ announcement of inflation, Yj, as:

B a
Xhyp,j = Yj (4.23)

When government computes hypothetical forecasts by nonbelievers, it needs to take

into consideration that nonbelievers have an error term d in their forecasts. In the case of

individual values of d, government knows the average value of error terms in the last period

and computes the hypothetical value of nonbelievers' forecast as:

NB e27rtYJa + eu· + datver
x hyp,j = --1-+"-e-'2=-7r-t-

where diver = N~B L-';:~B dL NNB is the number of nonbelievers.

(4.24)

In the case of common value of d for all nonbelievers, the government knows last period

value of dt and computes hypothetical forecast of nonbelievers as:

(4.25)

In the case of individual values of d, the government is assumed to know the average value

of the expectation parameters of all nonbelievers and computes the hypothetical value of

nonbelievers' forecast as:

NB e27rtYJa + eu·
x - + dfver

hyp,j - 1 + e27rt

where diver = N~B L-iEANB d~ and A NB is the set of nonbelievers.

The hypothetical unemployment rates are computed as

uhyp,j = U· - e(Yj - xhyp,j) , i = B, N B

(4.26)

(4.27)
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JNB (NB )
hYP,j Xhyp,j' Yj

Government computes the expected change in the proportion of believers, irjXP, knowing

that it is determined by (4.20). The necessary computations include the following:

1 B 2 2
-2((Yj - Xhyp,j) + Yj)

1(( NB)2 2)
-2 Yj - Xhyp,j + Yj

/.hrt(1- 7ft)arctan(Jf!yp,j - J/:y:'j)

If exp > 1 exp - 1 d A • exp - 1 If exp 0 exp - 0 d th . exp - 07ft +1 , 7ft +1 - ,an so U7fj - - 7ft. 7ft +1 < ,7ft +1 - ,an en 7fj - - 7ft.

This keeps 7f in interval [0,1] .
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APPENDIX B. The algorithm of the simulation.

Initialization
Government's rules (Yi, yf), i = 1, ..30

Agents as believers/nonbelievers
Period t = 1

1
Step 1:

Begin period t
Government chooses (Yt, y~) by roulette wheel

Government makes announcement yf

1
Step 2:

Agents make forecasts of inflation
Believers: xf = yf (4.13)

N b r N B 02 1rty"+OU· d (4 14)on e levers: X t = I+02
1rt

+ t .

1
Step 3:

Government sets actual inflation Yt
End of period t

!
Step 4:
Update

Government: experimentation and replication
All agents: 'word of mouth'

Nonbelievers: dt+ l = dt + ,(Yt - X{"B) (4.15)

1
Continue into period t = t + 1
if t :::; T, repeat from Step 1
if t > T, end of simulation

1
IEnd of simulation I
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(a) Homogeneous nonbelievers: payoffs of agents
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Chapter 5

Conclusion

This thesis studies a variety of monetary models with boundedly rational agents. For future

work, I consider the following extensions of the presented articles. The adaptive step-size

algorithm can be used in other environments to study its implications. In the presented

article, agent evaluates his performance based on forecast squared error. As the money de­

mand function comes from overlapping generations models, an interesting extension would

be to translate agent's inflation forecasts into choices of consumption and evaluate his utility.

Then it would be possible to estimate how much consumption an agent is willing to forego

to pay for better performing forecasting mechanism. Another extension is to evaluate the

performance of adaptive step-size algorithm in different types of data generating processes

to better understand its advantages.

The evaluation of decisions based on the utility can be possible in the New Keynesian

environment of the second article. The agent-based environment has the advantage of study­

ing the heterogeneity of agents, and in this paper agents are able to learn from other agents

through imitation. It could be interesting to see the implications if agents need to trade

their forecasting models and pay for better performing forecasts.

136


