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Abstract 

Over the years, many methods have been developed for clustering protein sequences 

based on their similarity. However, most of the methods are based on all-against-all sequence 

comparison that requires at least quadratic computation on the number of sequences. 

Furthermore, many methods do not address the issues and challenges associated with protein 

clustering explicitly such as finding distant relatives and detecting multi-domain proteins. Here, we 

develop a novel clustering technique based on representatives with successfully avoiding the 

pair-wise sequence comparison. We address the protein clustering issues in details and give a 

solution for finding distant relatives and multi-domain proteins. We also develop a new similarity 

measure that captures the significant similarity information embedded in a sequence such as 

frequent pattern and sequence length. 
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Chapter 1: Introduction 

The Human Genome Project and similar work on other species are producing biological 

sequence databases at an accelerating rate. The number of unique entries in all protein sequence 

databases together now exceeds more than a million. With this overwhelming growth of 

biological sequence databases and continuing addition of fully sequenced genomes, handling of 

these amounts of data has increasingly become a problem. This enormous information has created 

many challenges in developing novel and scalable computational techniques for searching, 

comparing and analyzing these databases. Large scale protein sequence analysis is now becoming 

an effective way to extract useful biological information from the genome sequences for better 

understanding the structure and function of proteins. The knowledge of biological function of a 

protein is important for the understanding of fundamental biochemical process for drug design 

and genetic engineering. The 3D structure of a protein gives the most information of its biological 

function. However, it is difficult and not always feasible to determine the 3D structure of protein 

sequences. At present, there exist only few thousands of protein structures, which is significantly 

low, compare to the enormous sequence databases. Therefore, sequence analysis remains the 

main source of information for most new proteins. As a result, a considerable effort has been 

made to predict functional role based only on sequences and the biochemical properties of 

proteins. 

The key notion of sequence analysis is based on the fact that sequences which share 

similar primary structure are more likely to have common or similar functions. The most effective 

and efficient way of analyzing protein sequences is to partition them into biologically meaningful 



groups based on their sequence similarity. Such groups contain sequences that are evolutionary 

related and share common functions. This is because biological evolution lets proteins fall into 

groups, thus imposing a natural partitioning. In order to achieve such grouping of protein 

sequences, the most preferable solution is to use clustering techniques. 

1.1 What is Clustering? 

Clustering is the process of grouping a large set of unlabeled data into classes or clusters, 

based on the extent of shared object identity where objects within a cluster are highly similar to 

each other, but are very dissimilar to objects in other clusters. Dissimilarity measures are 

basically based on the attribute values describing the objects. 

Clustering is not a new concept, it has been widely recognized as a powerful technique in 

the areas of statistics and computer science for long time, and has been studied extensively during 

the recent years. The clustering result can potentially reveal unknown relation between objects 

that may lead to a better understanding of the nature. 

Clustering is a reliable and effective mechanism for reducing redundancy in the dataset, 

and save database search time and analysis effort. It also offers several advantages as opposed to 

dealing with a single object. A frequent problem in the biological domain is the identification of 

newly discovered sequences. This task can be performed very quickly and effectively when 

comparisons are made with the clusters rather than comparing every sequence in the large 

databases. Another important application lies in the possibility of analyzing evolutionary 

relationships among the sequences in a cluster. Additionally, a clustered protein database can be 

used for selecting candidate proteins for structural analysis. 



The problem of clustering protein sequence has a long history and has been studied since 

early 70's. Recently, the studies of protein clustering have been exercised extensively by the 

researchers from various disciplines including molecular biology, biochemistry, computer 

science, mathematics and statistics due to the excessive rate of publicly available genome 

sequences and the challenges associated with it. Though it is an active research field for a long 

time, there is no such single method existed at this time which can accurately and efficiently 

partition the proteins into its desired clusters. Because of the complex nature of this problem 

researchers are still trying to search for The Solution. In this project, our goal is to develop a 

clustering method that can efficiently partition a database of protein sequence into biologically 

meaningful clusters such that similarity among the sequences within a cluster are maximal and 

dissimilarity between the clusters are minimal according to a given set of comparison measures. 

1.2 Challenges and issues in Protein Clustering 

It is generally accepted that when two sequences are highly similar they are said to be 

homologous. But the homologous sequence doesn't necessarily share high sequence similarity. 

So, sequence similarity cannot be used as transitive to detect the homology. This makes the 

homology detection more challenging for the methods based on sequence analysis. It is generally 

claimed that proteins which share 30% sequence identity are very likely to have similar functions 

and thus homologous. When similarity falls below 25%, it becomes very hard to detect the 

homologous sequences using the alignment methods and at this level chances for false positives 

starts to grow. There are many homologous sequences in the region of 10-25% similarity which is 

known as the twilight zone [16]. These occur during the course of evolution when amino acids 

substitution, addition or deletion takes place. 



Another potential problem which results from the existence of multi-domain proteins in 

the database can distort the clustering result significantly. These problematic proteins cause the 

unnecessary links in the database. The Figure 1.1 depicts the problem of multiple domain proteins 

in the pictorial form. When search is being done using protein A as a seed sequence, the result 

will return both protein B and C as high similarity scores. Later, when these scores are used for 

the clustering it may distort the result significantly. In the graph based approach, this causes the 

unnecessary linking which is sometimes very hard to detect. 

Protein A 

Domain 1 

Figure 1.1 : Multiple domain protein problem 

Domain 2 

Domain I 

The final challenge is the efficient clustering of the large protein databases. The 

scalability is one of the big issues as the protein databases are growing at a high rate. At present, 

most of the existing methods suffer from this issue as their prerequisite of clustering is based on 

all-against-all comparison of sequences using an alignment method. So, these methods and 

methods those require manual investigations become more inefficient as the database size is 

getting bigger. Therefore, it is highly desirable to design an algorithm that can efficiently handle 

the clustering problem without sacrificing much quality. 

Domain 2 

1.3 Existing Methods for Protein Clustering 

Protein B Protein C 

The most commonly used method for detecting similarity between proteins for the 

purpose of clustering is to use the single sequence similarity search algorithms such as BLAST 

[13], FASTA [27] and Smith-Waterman [28] algorithm. These algorithms can detect homologous 
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groups of proteins by performing pair-wise similarity search in the database. This type of all- 

against-all analysis forms the basis for many existing clustering algorithms such as [14, 15, 16, 

17, 18, 29, 30, 3 1, 321. The problem for finding distant homologue is solved by using the above 

similarity search algorithms. But, the issues associated with detecting multi-domain protein are 

explicitly addressed only in [18,29, 311 and indirectly addressed in [14,15]. 

However, the pair-wise similarity based methods suffer from the following aspects, (1) 

their computation is very high e.g. to compute the pair-wise similarity of each sequence the 

complexity is at least 0 ( n 2  x 1 ' )  where n is number of sequences and 1 is the average sequence 

length in the database, (2) the incremental clustering would be very inefficient as well, because it 

will require pair-wise similarity between clustered and unclustered sequences and (3) search 

results can greatly vary depending on which distance functions or similarity methods are used and 

often it is hard to find an optimal parameter settings for better results. Besides that, search results 

are questionable in detecting distant pairs when the sequence similarity is absent or very low. 

Efficiency is also a key problem for these methods. The run-time reported in [33] for a pair-wise 

similarity computation of 56,563 sequences using Smith-Waterman algorithm took 70 CPU days. 

Lot of other methods such as [2,5,7,9,21,22,23,24] uses multiple alignment procedures to 

determine the similarity relationship between proteins. These methods can often produce 

excellent information for the clustering basis but tend to be more CPU intensive than the single 

sequence based search procedures. The problem of finding distance homologue is addressed in 

[2,5,7,9,21,22] and multi-domain detection is explicitly used in [7,9,21,22]. However, it is not an 

easy task to build the multiple alignment of many sequences. The existing methods apply 

heuristic algorithms, which are not guaranteed to find the optimal alignment. Furthermore, the 

optimal alignment itself is not guaranteed to be biologically accurate. 



In contrast to the previous studies, which are based on alignment methods, there are some 

other methods [10,34,35] which use feature selection or short-word filtering as the basis for the 

clustering method. Feature selection method basically treats frequent patterns as features and uses 

k-means portioning algorithm for clustering. For the Short-word filtering algorithm, the words are 

collected usually length 2-6 from a large set of non-redundant alignments. However, these 

methods don't consider the problem of multiple domains explicitly and also, don't take any extra 

care for detecting the distant homologue proteins. 

1.4 Clustering Algorithms 

The most well-known and commonly used clustering methods are k-means, k-medoids 

and their variants. We give a brief introduction to these clustering methods in the following 

sections. 

The k-means [40] algorithm takes the input parameter k and partitions a set of n objects 

into k clusters such that objects of the same clusters are highly similar and objects between the 

clusters are dissimilar. Cluster similarity is measured with respect to the mean value of the objects 

in a cluster, which can be viewed as the cluster's center of gravity. 

The k-means algorithm works in the following way. First, it randomly selects k of objects 

where each object initially represents a cluster center or mean. For each of the remaining objects, 

an object is assigned to the cluster based on the similarity between the object and the cluster 

mean. Typically, the similarity is defined as a distance function of the two objects. It then 

computes the new mean for each cluster. This process continues until the criterion function 

converges. The most commonly used criterion function is squared-error criterion. The run time of 



this algorithm is O(nkt) where, n is the number of objects, k is the number of clusters and t is the 

number of iterations. 

The drawbacks of this method are (1) users need to specify the number of clusters k in 

advance and (2) sensitive to noise and outliers since an object with extremely large value can 

substantially influence the mean value and distort the distribution of the data. 

The k-medoids [37, 401 is a variant of the k-means method that tries to improve the 

sensitivity issue discussed previously. The basic idea of k-medoids clustering is to find k clusters 

in n objects by first randomly selecting a representative object (the medoid) for each cluster. Each 

remaining object is clustered with the medoid to which it is most similar. The strategy then 

iteratively replaces one of the medoid by one of the non-medoids as long as the quality of the 

resulting clustering is improved. This quality is estimated using a cost function that measures the 

average dissimilarity between an object and the medoid of its cluster. Typical k-medoids methods 

are PAM [37] and CLARA [37]. The run time for these methods are higher than k-means 

however, all these methods require users to specify k, the number of clusters. 

The protein clustering problem is such that, it is not possible to determine the number of 

groupings (i.e. clusters) in advance without investigating the data [16]. The huge amount of 

protein databases also makes it impossible to manually investigate the data. Furthermore, it 

requires lot of expertise for this investigation. Therefore, we need automatic detection of the 

number of clusters that naturally partitions the protein into distinct clusters. In addition, 

identifying the multi-domain proteins and distant relatives are not straightforward from these 

methods. So, we need new methodology to solve the protein clustering problem. 



1.5 Our Clustering Approach 

Unlike the previously discussed methods, our approach is based on the careful selection 

of representatives from the database. We devise a representative selection procedure that 

carefully selects each representative in order to make our initial clustering as good as possible 

close to the final clustering. Another reason for choosing the representative set is to avoid the all- 

against-all sequence comparison, which is unrealistic and highly inefficient due to the presence of 

huge protein databases. The clustering quality highly depends on the similarity measure that is 

being used for comparing the sequences. We define a new similarity measure based on the 

frequent patterns and sequence properties such as length. This new similarity measure also helps 

identifying the multi-domain proteins that are problematic for the clustering. 

Our clustering method works in the following way. First, we carefully select a set of 

representative from the database. Then, we compare each sequence with the representatives and 

assign them to the one, which is most similar. During this process, we also apply the multi- 

domain detection procedure to identify the multi-domain proteins. This forms the basis of initial 

clustering. We further optimize the quality of initial clustering by improving the appearance of 

frequent patterns for each cluster. Then, we apply the homology detection procedure to find the 

distantly related proteins. There are sequences that are distantly related i.e. similarity is not 

significantly reflected in the sequences, we use transitivity to infer these homologies. Therefore, 

our method helps identifying a range of distantly related sequences from high similarity to very 

weak similarity. The resulting final clustering is flat and overlapping. 

The runtime of our clustering method is O(n.r.t) where n is the number of sequences in 

the database, t is the number of iterations and r is the number of representatives. Our method is as 

efficient as K-means and also, it doesn't require specifying the number of clusters in advance. We 



achieve the following goals in our proposed protein clustering method: (1) no pair-wise sequence 

comparison hence, highly scalable for large databases, and (2) detection of distantly related 

proteins and finally, (3) handling the issues of multi-domain protein problem. 

The rest of the document is organized as follows. Chapter 2 gives the details of 

background studies of existing clustering methods followed by the discussion of basics of protein 

sequences in chapter 3. The details description of our clustering methods is presented in chapter 

4. The dataset and experimental results are presented in chapter 5 .  Finally, we conclude by giving 

some possible future studies and directions. 



Chapter 2: Related Studies - An Overview 

Studying protein sequence data is an active research field since early 70's and now, has 

become one of the popular research areas due to the availability of huge protein data. As 

clustering is a powerful tool for the meaningful portioning of dataset, lot of work has already 

been done in identifying the clusters for protein sequence databases. These studies are basically 

focused on three different categories: motif, pattern and domain based analysis, pair-wise 

sequence comparison and hidden markov modeling. Before we go into the details of these studies 

we discuss the source databases for protein sequence that are publicly available. 

Clustering methods based on external sequence comparison tool such as BLAST, FASTA 

or Smith-Watennan algorithm can identify the distant relative sequences as we mentioned in the 

earlier section. However, not all of these clustering methods explicitly addressed the problem of 

identifying multi domain proteins. 

2.1 Protein Databases 

2.1.1 SWISS-PROT 

SWISS-PROT [3] is a curated protein sequence database established in 1986 that strives 

to provide a high level of annotation, a minimal level of redundancy and high level of integration 

with other databases. The annotation includes the description of protein function, domain 

structure, post-translational modifications, variants, etc. It is a collaborative effort of the Swiss 

Institute for Bioinformatics (SIB) and the European Bioinformatics Institute (EBI). The current 



release is version 42.1 as of 24-Oct-2003, and contains 135,356 entries, comprising 50,223,175 

amino acids. 

2.1.2 TrEMBL 

TrEMBL (Translated EMBL) [3] is a computer-annotated supplement to SWISS-PROT. 

The TrEMBL database contains the translations of all coding sequences (CDS) present in the 

EMBL Nucleotide Sequence Database that are not yet integrated into SWISS-PROT. TrEMBL 

has two main sections: (1) SP-TrEMBL (SWISS-PROT TrEMBL) contains entries that will 

eventually be incorporated into SWISS-PROT, but that have not yet been manually annotated; (2) 

REM-TrEMBL contains sequences that are not destined to be integrated in SWISS-PROT. The 

current release is version 25.1 (SP-TrEMBL) as of 24-Oct-2003, and contains 1,016,356 entries 

comprising of 3 15,5 10,213 amino acids. 

2.2 Motif, Pattern and Domain Based Analysis 

2.2.1 PROSITE 

The PROSITE [1,2] is a database of protein families and domains. It is based on the fact 

that some regions of a protein sequence are better conserved than others during evolution. These 

regions referred to as motifs, are generally important for the function of a protein and/or for the 

maintenance of a 3-dimensional structure. Within PROSITE, motifs are encoded as regular 

expressions, often simply referred to as patterns. The process for deriving the patterns involves 

the construction of multiple alignments and manual inspections to identify the conserved regions. 

The patterns are then used to search the sequence database (SWISS-PROT) for finding the 

homologue proteins. Manual investigation of the results gives the finer tune patterns. For some 

families no motif or pattern can be defined since the sequences have significantly diverged. These 

families are described by means of aproj le  derived from a multiple alignment of related proteins. 



The current release 17.38, as of 23-Feb-2003 contains 1170 documentation entries that describe 

1605 different patterns, rules and profiles/matrices. This manually defined highly reliable pattern 

database has served as a reference classification for lot of other studies in this field. The 

PROSITE database is linked and cross-referenced to the entries in the SWISS-PROT database. 

2.2.2 PRINTS 

From the experience of sequence alignments, it is clear that most protein families are 

characterized by several conserved motifs. Therefore, the group of motifs makes it more flexible 

and more powerful than single-motif approaches. This observation motivates the construction of 

PRINTS [4] database. The PRINTS is a manually defined protein fingerprint database. A 

fingerprint is a group of conserved motifs that used to characterize a protein family. 

Fingerprinting is an iterative process that starts with manual sequence alignment and extracting 

the conserved motifs. The motifs are then used to search the source databases (SWISS-PROT and 

TrEMBL) iteratively for constructing the fingerprints. The purpose of the PRINTS database 

construction is not to compete with PROSITE rather than complement the PROSITE 

patterdprofile resources and facilitate sequence analysis. To date, PRINTS database have 

developed and manually annotated 1750 fingerprints, encoding 10,626 individual motifs. 

2.2.3 BLOCKS 

The BLOCKS [5] database is a collection of blocks where each block represents a 

conserved region of a protein family. The blocks are automatic generation of ungapped multiple 

alignment corresponding to the most conserved regions of a protein family. The database is 

constructed from the documented families of related proteins in PROSITE, PRINTS, Pfam [19] 

and Domo [9]. The block construction method is a two-step process: (1) first, candidate blocks 

are detected from a set of related proteins by identifying short motifs and then, extending these 

motifs in both directions until the similarity score drops below a threshold. The resulting blocks 



are at most 60 amino acids long. (2) The final step creates an ordered set of non-overlapping 

blocks calledpath that satisfies the min support threshold. Each individual block is given a score 

based on its length, the level of similarity and the number of occurrences. The score of a path is 

the sum of all block scores weighted by the number of sequences that contain the path. Finally, 

the best score of all the paths is selected to represent the corresponding group of related proteins. 

The Blocks+ [6] is a new version of the original Blocks database that adds another 

documented protein family database called ProDom [7]. The direct derivation of BLOCKS 

database from the mentioned documented databases gives it more power for searching related 

proteins. For example, 50% of families encoded in PRINTS are not represented in PROSITE, so 

searches of BLOCKS database will be more comprehensive than searches of either database 

alone. To date, Blocks Database consists of 8656 blocks representing 2101 groups documented in 

InterPro 3.1 [25] keyed to SWISS-PROT 39.17 and TrEMBL. 

2.2.4 ProDom 

The ProDom [7] is a protein domain database consists of an automatic generation of 

homologous domains from the SWISS-PROT and TrEMBL sequence databases. The database is 

built in three steps: (1) identify all high scoring segment pairs (HSPs) using BLAST [13] all 

versus all sequence comparisons, (2) construct a set of homologous segment by transitive closure 

of HSPs if the common segments overlap above a minimum overlap threshold, and (3) detect 

domain boundaries and generate multiple alignments and a consensus sequence for each domain 

family. The current version of ProDom [8] is based on iterative PSI-BLAST searches. 

2.2.5 DOMO 

The DOMO [9] is a fully automated classification of the SWISS-PROT and PIR 

sequence databases that apply compositional and local similarity searches followed by multiple 



sequence alignments. The procedure starts by detecting global similarities from the painvise 

comparison of amino acid and dipeptide composition of each protein, and grouping the most 

closely related sequences into clusters. Each cluster is represented by one sequence and 

representatives are stored in a suffix tree. This tree is self-compared to detect local sequence 

similarities. The local similarities are clustered and multiply aligned to detect domain boundaries 

and the sequences are spiit into domains accordingly. Finally, multiple alignment is generated for 

each set of proteins that share similar segments. 

2.2.6 InterPro 

It has been estimated that, the total number of protein families might be in the range 1000 

to 10,000, so there is still a long way to go before any single database can be considered as 

complete. Thus, in building a search strategy it is a good practice to include all the resources that 

are available to make the search as comprehensive as possible. This motivates the integration of 

all documented resources for protein families, domains and sites, which is called as InterPro. It 

is an international collaborative project to integrate the database PROSITE, Pfam, PRINTS, 

ProDom and SMART within a unified protein family annotation resource. It aims to reduce the 

duplication of effort for the laborious annotating process and to facilitate communication between 

disparate resources. Each combined InterPro entry includes functional descriptions and literature 

references, and links are made back to the relevant member databases. InterPro provides a 

convenient means for the analysis of newly determined sequences. To date, it contains 6725 

entries representing 1453 domains, 5 12 1 families, I36 repeats, and 15 post-translational 

modification sites. 

2.2.7 The Study by V. Guralink and G. Karypis 

The study by [10,11] describes a scalable algorithm for clustering protein sequences. The 

key idea of this approach is to find a set of features that capture the sequential nature of the 



various proteins. Then, project each protein into a new space whose dimensions are these features 

and use a traditional vector-space k-means based clustering algorithm to find the protein clusters. 

The features are the amino acid subsequences that satisfy a given minimum support constraint. 

These frequent amino acid subsequences are often called motifs. 

To evaluate the performance, three different datasets were chosen from 20 different 

protein families from the SWISS-PROT database. The clustering quality is measured by entropy 

and in comparison with k-mediod based clustering this algorithm performs better. Although, this 

algorithm outperforms k-mediod, it shows high degree of overlap i.e. some clusters containing 

sequences from different families. The limitation of this approach is the features/motifs that were 

used for clustering the sequences. Because, there are some sequences which do not share any 

pattern at all. As a result, they are reported as outliers in the database. The limitation can be 

overcome by using substitution matrix or similarity matrix to define equivalent classes of motifs. 

This method does not consider the issues associated with multi-domain and distant proteins. 

2.3 Sequence Comparison Approach 

2.3.1 SYSTERS 

The SYSTERS [12] database, an iterative method for database searching to cluster 

proteins in the SWISS-PROT and PIR databases. The clustering procedure is fully automatic and 

does not require pair-wise comparisons between sequences. The procedure starts with a seed 

sequence and using the BLASTP [13] program, it finds and retains all the sequences that are 

highly significant to the seed. The lowest scoring sequence is used as a query for the next 

database search to explore the sequence space below the significant level for sequences possibly 

related to the seed. The process repeats until no new sequences above the significant level are 

found or the search has no sequence in common with the set of accepted hits in the first search. 



The resulting clusters correspond to groups of sequences that do not share domains with other 

families. If a group of proteins share a domain with other families then each family is mapped to 

a different cluster. 

The clustering quality is evaluated by an internal consistency test. The underlying idea is 

that, if a set of sequences indeed forms a cluster, the same cluster should be identified 

independently for any cluster member that is used as a seed for the search. The result shows the 

large degree internal consistent in a sense that the resulting clusters in most cases show little 

dependence on the specific query. The runtime for clustering 59,021 sequences took roughly 5 

days on a workstation cluster consisting of eight SUN Ultra workstations. BLASTP runs 

performed for the SYSTERS searches dominate the runtime. This method indirectly addressed 

the distant relative problems. 

2.3.2 ProtoMap 

ProtoMap [14,15,16] offers a classification of the protein sequences into groups of 

related proteins. Several common measures of similarity between protein sequences such as 

Smith-Waterman algorithm, FASTA and BLAST are combined with two different scoring 

matrices (BLOSUMSO and BLOSUM62) to create an exhaustive list of neighboring sequences 

for each sequence in the database. A weighted directed graph is created using the lists of 

neighboring sequences whose nodes are the sequences. The weight of an edge represents the 

degree of similarity between two connected sequences. Thus, clusters of related proteins 

correspond to strongly connected components of the graph. 

The analysis starts from a very conservative classification, based on highly significant 

similarities and later, classes are merged to account for less significant similarities. The procedure 

is repeated at varying confidence levels and for each step the algorithm is applied on the classes 



of previous classification in order to obtain the next one. Finally, a hierarchical organization of all 

proteins is obtained. The runtime for the whole procedure is not reported, but as it requires all 

versus all comparisons of the sequences in the database using three above methods, it will be very 

expensive. The issue associated with multi domain problem is addressed indirectly in the method. 

2.3.3 Structure Prediction by Transitive Homology 

The study by [18] offers a clustering of protein sequences by using transitive relation of 

homology. The procedure starts with computing pair-wise sequence similarity using Smith- 

Waterman alignment method. A weighted directed graph is built using the raw scores in which 

every edge indicates the percentage of similarity between two nodes. Finally, finding the strongly 

connected component of this graph does the clustering. The correctness of the clusters is reported 

by comparing with SCOP database that offers manually curated highly reliable classification of 

protein sequences. Three different datasets are selected from SCOP database with varying 

sequence similarity. The results demonstrate that carefully designed methods are able to find 

sequences in the twilight zone than pairwise sequence comparison methods. Therefore, transitive 

relation of homology can help identifying the sequences in the twilight zone. However, the total 

runtime reported in the study for 70,454 sequences are 600 CPU days. The workload was 

distributed among 40 computers with 55 CPUs. This method provides a procedure for the 

detection of multi-domain proteins. 

The CluSTr [17] database offers an automatic classification of SWISS-PROT and 

TrEMBL protein into groups of related proteins. The clustering approach is based on two steps: 

(1) a similarity matrix of all versus all comparisons of the protein sequences is built using the 

Smith-Watennan algorithm and statistical significance of similarity between potentially related 

proteins is estimated using a Monte-Carlo simulation; (2) clusters are built using a single linkage 



algorithm for different levels of protein similarity. Only clusters with more than one sequence are 

reported in the database. This method does not provide procedure for the detection of multi 

domain proteins. 

2.4 Hidden Markov Modeling (HMM) 

Clustering using HMM was first mentioned in [20] for speech recognition problems. 

Today, the HMM models have been used extensively to model protein families [21, 22, 23, 241. 

The basis of these studies is to build a statistical model of the known protein family and then 

comparing the model to each sequence in the database. These statistical models have a strong 

theoretical basis in probability and are supported by efficient algorithms for training, database 

searching and multiple sequence alignment. One drawback of modeling proteins using HMM is 

that, it contains lot of free parameters and therefore, require a large amount of training sample. 

2.4.1 Pfam 

Pfam [19] is a manually curated database of Hidden Markov Models for protein families. 

The Pfam families are important tool for understanding protein structure and function, form the 

basis for techniques such as secondary structure prediction, fold recognition, phylogenetic 

analysis and mutation design. For each family, the process starts from a seed alignment of a non- 

redundant representative set of known members. The seed alignments are taken either from a 

published multiple alignment or an alignment from other existing databases such as PROSITE 

[1,2] or ProDom [7]. The alignments are checked manually by experts for further verification that 

the conserved features are aligned correctly and the alignment has enough information content to 

distinguish chance similarities from true relationships. After the manual confirmation, the HMM 

models are built from the seed alignments. The HMM models are then used to scan SWISS- 

PROT for all other members of the families. If a true member is missed, it is added to the family 



manually and the process is repeated. Finally, a full alignment is constructed for the family by 

aligning all the members to the HMM. This alignment is checked again manually, and for any 

incorrect alignment, the method is modified or the whole process starts with a new improved 

seed. To date, Pfam release 8 contains 5193 families that have matches 73% of proteins in 

SWISS-PROT release 40.44 and TrEMBL release 22. 



Chapter 3: Preliminaries of Protein Sequence 

3.1 Basics of Protein Sequence and Structure 

Proteins are complex molecules that form much of the functional and structural 

machinery of each cell in every living organism. They are made from small building blocks called 

amino acids. There are 20 different amino acids with diverse physical and chemical properties 

that allow proteins to exhibit a great variety of structures and functions. DNA, the cell's 

repository of genetic information, contains the code for protein sequence. The DNA sequence is 

represented by long chain of 4 different small molecules called nucleic acids. A segment of DNA 

that contains the code for a specific protein called gene, in which every block of 3 nucleic acids 

corresponds to an individual amino acid. 

A well-defined linear chain of amino acids represents the primary structure of a protein 

sequence. The average length of a protein sequence is 350 amino acids, but it can be short as 50 

amino acids and also can be long as 5000 or longer. Each amino acid is represented by one letter 

and thus, protein can be viewed as a long word over an alphabet of 20 letters. Secondary 

structures are local sequence elements (3-40 amino acids long) that have a well-determined 

regular shape, such as a a-helix or a p-strand. Other local sequence elements that are neither 

helices nor strands are usually called loops or coils and they may adopt a large variety of shapes. 

The tertiary structure of a protein sequence is the full 3-dimensional folded structure of the 

whole sequence. The shape of a 3-dimensional structure is called the fold. Each protein has a 

unique 3-dimensional structure, but several proteins may adopt the same fold i.e. similar 3- 



dimensional structure. The quaternary structure or protein complex can also be formed if two 

or more proteins join together. 

The term domain is very common when describing protein structure or function. It is the 

fundamental unit of structure. It combines several secondary structure elements such as a-helices 

and P-strands in order to pack together to form a compact globular structure. A domain can fold 

independently into a stable 3-dimensional structure and can have a specific function. A protein 

may be comprised of a single domain or several different domains or several copies of the same 

domain depending on its size. 

3.2 Homology and Protein Family 

When sequences share a significant similarity they are usually assumed to have a 

common evolutionary ancestry and are called homologous proteins. Several different levels of 

sequence similarity are defined. A protein family is a group of homologous proteins, and 

proteins that belong to the same family have the same or similar biological function. A group of 

protein families that are distantly related through evolution make up a protein superfamily. 

Proteins that belong to the same superfamily have close or related biological functions, but 

sequence similarity is not always detectable. A few protein families may adapt the same fold. 

Proteins that belong to the same fold may have related biological functions. However, this is not 

necessarily due to the sequence similarity or evolution relationship, and therefore, this kind of 

similarity is not always detectable by the standard methods for sequence comparison. 

3.3 The Protein Folding Problem 

According to the central dogma of protein folding, the protein sequence almost always 

folds into a characteristic, 3-dimensional structure. It is the specific 3-dimensional structure that 

2 1 



enables the protein to function in its particular biological role. This folding prescribes the 

function of the protein and the way it interacts with other molecules. In other words, a protein can 

only be active and functional after settling into its final shape. This process is complete almost 

immediately after proteins are made. Most proteins fold in less than a second, although the largest 

and most complex protein may take several seconds to fold. There are some exceptions when 

some proteins remain partially unfolded and complete shape occurs at later time. 

As protein sequence always folds into 3-dimensional structure, scientists reason that the 

instruction for folding a protein sequence must be encoded within the sequence. But, for 50 years 

scientists have tried and failed to find the special piece of code that governs the folding process of 

a protein sequence. Scientists call this the "protein folding problem" and it remains one of the 

great challenges in the structural biology. Although researchers can predict the protein's shape by 

using some general rules and sometimes, manual investigations, they cannot accurately and 

reliably predict the final structure from an amino acid sequence. Therefore, determining the 3- 

dimensional structure of a protein sequence is difficult and not always feasible. 

The 3-dimensional structure of a protein sequence gives the most information about its 

biological function. But, the lack of full understanding of protein folding process cannot advance 

the structure prediction methods and had only moderate success. 

3.4 Protein Sequence Analysis 

As the rules of protein folding process have not been fully understood and structure 

prediction is still not possible, sequence analysis remains the main source of information for most 

new proteins. Therefore, a significant effort has been made only on the studies of primary 

structure of protein sequences, their biochemical properties and functional roles in living 



organisms. Shared evolutionary ancestry has become the basis of such studies. Sequences that 

share common ancestor are said to be homologous. The homologous sequences are believed to 

have similar or related functions. In most cases, sequence similarity entails the similar or related 

functions. Therefore, sequence similarity has become a powerful and common tool for detecting 

homologous sequences. Today, there are a number of generally accepted methods such as 

BLAST, FASTA, Smith-Waterman algorithm for comparing sequences and assessing their 

similarity or distance. These are quite successful in detecting similarity and have become a 

standard tool for biologists. 

However, sequence similarity is not always easily detectable. Homologous proteins may 

have similar structure without sharing significant or even detectable sequence similarity. 

Therefore, the inference of homology can be based on sequence similarity, but the converse is not 

true. This is due to the changes of sequences that have occurred during evolution by insertions, 

deletions and mutations. But, they share a common ancestor and thus, homologous. Sequences 

that share similarity greater than 30% can be deduced safely as homologous. This is known as 

"safe zone" where homology inference can be made without using any further knowledge. When 

similarity falls between 18-25%, which is called the "twilight zone" where homology cannot be 

inferred directly. So, the search methods that just use sequence comparison for homology 

detection fail to identify these homologous proteins. 

By definition, homology is a transitive relation, i.e. if A is homologous to B, and B is 

homologous to C, then A is homologous to C. This simple observation can help identifying 

homologous protein that does not share significant sequence similarity. However, this relation 

should be used with great caution, otherwise it will lead to many pitfalls. Similarity is not 

transitive and it does not necessarily imply homology [26]. Similarity may be quantified and 

homology is a relation that either holds or does not hold. Significant similarities can be used to 



infer homology with a level of confidence that depends on the statistical significance [26]. 

Therefore, similarity should be used carefully in order to infer homology. 

Deduction of homology can be even more difficult when proteins are comprised of 

multiple domains. When protein 1 contains domain A and B, protein 2 contains domain B and C, 

protein 3 contains domain C and D, should we conclude that protein 1 and 3 are homologous. 



Chapter 4: Clustering Method 

The basic idea of our clustering method is based on simple observation that sequences 

under the same cluster should share a set of frequent patterns and sequence properties such that 

intra-cluster sequences are highly homologous and inter-cluster sequences are non-homologous. 

The homologous includes all closely related and distantly related proteins in the database that 

share similar behavior or functionalities. Therefore, our goal is to optimize the homogeneity 

within the clusters and increase the dissimilarity between the clusters. 

Here, we propose an iterative flat clustering method that will solve our protein clustering 

problem efficiently and accurately. The method has two phases. In first phase, we carefully select 

a set of sequence to represent the initial clustering. This set of sequence is known as cluster 

representative. The selection process is based on frequent patterns and sequence property such as 

length. Then, we compare the remaining set of sequences with each cluster representative and 

assign them to clusters to which it is the most similar. The sequence comparison is based on a 

similarity scoring function that uses frequent patterns to detect the level of sequence similarity in 

the presence of highly conserved regions. We also define a procedure for the detection of multi- 

domain proteins. The multi-domain procedure is used during the initial clustering process in order 

to avoid the affect of these proteins in the later part of the clustering. 

In second phase, we select a set of new representative for each cluster and search for the 

similar sequences. The newly discovered similar sequences are basically distantly related proteins 

to the old representatives. The process iterates until no more sequences can be added to the 



clusters or a threshold limit is achieved. At the end, we merge the similar clusters if there exists 

any. The final clustering is flat and overlapping. In order to make our clustering algorithm more 

robust and accurate we introduce another algorithm that differs only in the second phase. In the 

second phase, this algorithm creates a consensus sequence for each cluster instead of selecting a 

set of representative sequence. 

We name our first clustering method as CRS i.e. Clustering based on Representative 

Sequence and second clustering algorithm as CRCS i.e. Clustering based on Representative 

Consensus Sequence. Before we go into the details of clustering method let us identify some 

definitions and procedures that are needed for the method. 

4.1 Problem Definition 

A protein sequence is an ordered list of amino acids represented by the alphabet set A = 

JA,C,D,E,F,G,H,I,K,L,M,NP,Q,R,S,T,V,W,Y). Let S =JSI,S2 ...... S,,) be a database of protein 

sequences and P = Jpl,p2, ... . . . .p,) be a set of frequent patterns or frequent subsequences 

occurring in the sequences of S that satisfy the user defined minimum threshold. Each sequence S, 

is represented by a set of frequent patterns occurring in Si such that Si c P. 

Let f = 6, f2 ... ...fm) be a set of frequency for all frequent patterns in P, and w = jw,,, ... 

w , ~ ,  . . . . . . w,,,) be a set of frequency weight for all P in database S, where, w,,  is the frequency 

- 
weight for pattern Pi in sequence S;, Let G = JG, ... ... w,,} be a set of means for all frequency 

weight of frequent pattern set P. So, iGj can be defined as: E,. = w L  / n  . Let 1 = { I ,  ... ... ln) 
I<i<n 

be a set of length for all sequence in Sand 7 be the mean length such that: i = 1; / n  . 
IG<n 



Let min similarity threshold t be a real number such that, 1 E % .  The value of t 

determines the min similarity that must satisfy in order for two sequences to be considered similar 

(homologous). Let min distance threshold d be an integer number such that, d E 3. The value of 

d determines the min number of intermediate sequences required to infer the homology between 

sequences. 

Let C = {C,,C,, ...... Ck) be a clustering where each Ci is any subset of the set of all 

subsets of the database S such that each sequence of S is contained in at least one of the sets 

(clusters). The clusters of clustering may or may not overlap. 

4.2 Finding Frequent Pattern 

Find all the patterns that satisfy a user define threshold from sequence database S using 

well known apriori 138,391 algorithm. These patterns are known as frequent patterns. Inspiring 

from document clustering methods, we convert all pattern frequency by the weighted frequency 

i.e. term frequency-inverse document frequent-y (TF-IDF). The idea is to discriminate all the 

patterns that appear too many times in the sequence database. The frequency weight W;,; is 

defined as: 

w;,,= f ; , ; " ( l o g , n - l o g , ~ t l )  (4.1) 

where, n is the number of sequences in the sequence database S,& is the occurrence of frequent 

pattern Pi in sequence Si. 

Example 1: The Table 4.1 describes a sequence database S of 5 sequences and the mean 

length of these sequences are 10. Table 4.1 also presents the frequent patterns of different sizes 



for each sequence. The min threshold for finding the frequent patterns is set to 2. The Table 4.2 

displays the occurrence of each frequent pattern in the database S. 

Table 4.1 : Sequence Database and Frequent Pattern 

I Frequent pattern I f, I Frequent pattern I f, I Frequent pattern 1 f, I 

Sequence database S 

ACDZYMNACD 

LCDEFIKCDEM 

PQACDILYMIQM 

MNDIKLAC 

EZFIKCMCD 

fp' size =2 

AC, CD, YM, MN 

CD, FI, IK, KC 

AC, CD, Dl, YM 

AC, Dl, IK, MN 

FI, IK, KC, CD 

Length 

10 

11 

12 

8 

9 

Table 4.2: Frequency of Frequent Pattern 

AC 
CD 
YM 
FI 

The frequency weight w;,, of all frequent patterns for each sequence is presented in the 

fp size =3 

ACD 

FIK, IKC 

ACD 

FIK, IKC 

following table. 

Fp size =4 

Fl KC 

Fl KC 

3 
4 
2 
2 

Table 4.3: Frequency Weight wi,, 

I K 
KC 
Dl 

MN 

I j?eqzimt ptrltern Ifp) a ~ l d  pattern size = 2 

Frequency Weight 
-- 

FIKC=2.32 

. -- 

FIKC=2.32 

Frequency Weight (wid 
-- 

AC=3.47,CD=2.64, YM =2.32, MN=2.32 

CD =2.64, FI =2.32, IK = I  .73, KC=2.32 

AC=1.73, CD=1.32, Dl=2.32, YM=2.32 

AC=1.73, Dl=2.32, IK=1.73, MN=2.32 

~ l=2.32,  IK=1.73, KC=2.32, CD=1.32 

3 
2 
2 
2 

Frequency weight ' 

ACD=4.64 

FIK=2.32, IKC=2.32 

ACD=2.32 

FIK=2.32, IKC=2.32 

ACD 
FIK 
I KC 

FlKC 

2 
2 
2 
2 



4.3 Selection of Cluster Representative 

The goal is to select a set of sequence from database S such that each sequence can 

represent a group in the database and serve the basis of our clustering method. This set of 

sequence represents the clusters known as cluster representative sequence. In order to be an ideal 

sequence for clustering basis, a sequence must show some better quality than other sequences in 

the database. An ideal sequence would be a sequence that has average length and frequent 

patterns with high weighted frequencies. So, frequent pattern and sequence property such as 

length are used as selection criteria for choosing cluster representatives. 

Frequent pattern plays an important role for measuring sequence similarity in our 

clustering method. Therefore, selection of cluster representative with high scoring frequent 

patterns will result in better initial clustering. Also, sequence length is important for determining 

the cluster representatives, because protein sequence can be as large as few thousands of amino 

acid to as short as few hundreds. Large sequences are more likely to contain many patterns and 

therefore, it is not a good choice to select them as base sequence for initial clustering. For 

example, a large protein sequence may contain multiple domains and thus, it will cover lot 

sequences from different domains and as a result, it may distort the quality of initial clustering. 

So, an average sized sequence is a better candidate for cluster representative. Therefore, the 

function for selecting a cluster representative (Rep-Score) is defined as: 

I P , ~  1 C WL, 1% -- 

Rep-Score (SJ = + log 11,-'I+' 

I Si I 

where, /Pi[ represents the length of frequent pattern Pi and ISil represents the number of fiequent 

patterns in sequence S;. 



The motivation behind this function is to measure the goodness of a sequence by using its 

sequence property and frequent patterns. The first term of this function is adding up the weighted 

frequencies of all frequent patterns multiplied by the corresponding pattern length. We multiply 

frequencies by pattern length in order to reflect the importance of pattern size in the score. The 

longer pattern gets higher score and vice versa. Then, we normalize the score to avoid the affect 

of varying number of frequent patterns. When measuring this term we do not consider any subset 

frequent pattern with lower or equal weighted frequency than its super pattern. For example: AC 

cannot participate in the calculation because it is a subset and it has lower weighted frequency 

than ACD. The second term of this function measures the deviation of sequence length from the 

mean length. When sequence length is equal to mean length score of this term is 0 otherwise, 

score is negative. Therefore, higher score of this function represents the better candidate for 

cluster representative. 

Example 2: We use the sequence database in Table 4.1 and calculate the Rep-Score for 

sequence S,. Frequent pattern AC and AD are not used in the calculation because their weighted 

frequency is less than ACD. The calculation is given below and Table 4.4 contains the Rep-Score 

for all sequences in S. 

2.32 x 1 + 2.32 x 1 + 4.64 x 1.58 
Rep-Score (S,) = + ~ o g ~ / ( ~ o - ~ o ) + ~  = 3.99 

3 

Table 4.4: Rep-Score for Sequence Database 

30 

' -Seguencebatabase  

ACDZYMNACD 

LCDEFIKCDEM 

PQACDILYMIQM 

MNDIKLAC 

EZFIKCMCD 

-- ~ e ( - _ ]  

3.34 

2.29 
-- 

1.55 

2.68 



Now, the question is how to select the representative set using the Rep-Score function. 

One easy way to select the representative set is by choosing all the sequences that have score 

greater than some min threshold. The potential problem in this case is, there may be sequences in 

the representative set which are highly similar to each other. As a result, it may cause lot of 

overlaps in the initial clustering. In order to avoid this problem and furthermore, to achieve the 

goal of our representative set we define the following selection algorithm. 

Rep-Selection Algorithm 

Input: sequence set S, k, coverage; 

Output: Representative set 

1. Sort the sequence set by Rep-Score 

2. Repeat 

a. count = 0 

b. select the highest Rep-Score sequence Shigh-score 

c. for each sequence s E S do 

i. if Shigh-score n s min pattern threshold // # of matching pattern 

1. count++ 

ii. if count > rnin representative threshold 

1. add Shigh-score to Representative set 

2. remove Shigh.score and all s covered by Shigh-score from S 

3. Until (Representative set) > k or rnin database coverage is reached 

Algorithm 4.1 : Representative selection Algorithm 

The basic idea behind this algorithm is to select a set of representative sequence that 

possibly represent a particular group of sequences in the database and minimize the chances of 

selecting similar sequences. First, we sort all the sequences by their Rep-Score. Then, we select 

the highest Rep-Score sequence Sh;gh-score and compare each sequence with this to find the number 

of matching pattern. If the number of matching pattern exceeds the min pattern threshold we 

increment the counter. The number of matching pattern represents the % of similar patterns 

between the two comparing sequence. Finally, if counter is greater than min representative 



threshold we add Shigh.h-score to the representative set. Min representative threshold is identified as 

the minimum number of sequence that a representative sequence must have in order to represent a 

group of potential similar sequence. The algorithm terminates when there is k number of 

representative sequence in the set. The stop condition can also be the database coverage that is 

minimum number of sequence that a representative set must cover. 

The selection scoring function discussed above has captured three important concepts 

such as sequence length, pattern length and significance of pattern frequencies with respect to 

their appearance in the sequence. Furthermore, the selection algorithm tries to select the 

representatives from the database such that each represents a potential group of similar sequences. 

4.4 Sequence Comparison Method 

The initial clustering is based on the cluster representatives. Every sequence in the 

database is compared against all the cluster representatives. The comparison between two 

sequences is based on sequence similarity. The sequence similarity is measured in terms of 

frequent patterns and its weighted frequencies. The most commonly used similarity measure in 

document classification is the cosine measure and defined as follows. Let vl and v2 be two 

sequence vectors represented by the frequency of frequent patterns. Therefore, their cosine 

similarity is defined as: 

Similarity (v,, v2) = 
v, .v, 

Iv1 I l%  I 

In equation 4.3. inner dot product v,.v, is the standard vector dot product defined as 

~ : = , v , ~ . v , ~  , and the norm 1 v, I in the denominator is defined as ( v, I = f i  . However, this 

measure cannot distinguish the similarity between v,, v2 and VZ, VI which is important in the case 



of measuring similarity between two proteins. Therefore, we define a similarity measure as the 

ratio of matched versus unmatched frequent patterns calculated in terms of their weighted 

frequencies. The similarity function (Sim-Score) of sequence a, b is defined as: 

C w ,  x log 2 
I P , I  

Sim-Score (a -. b) = V P  (4.4) 
2 w ,  x log 2 ' F ~ 1  

" P  

Here, p = a n b is the set of all matched frequent patterns in sequence a and b, w, is the 

weighted frequency of common patterns in a and 1 pi I is the pattern length. In the denominator, 

3 = a - ( a  n b) is the set of all unmatched frequent patterns in sequence a,  wi is the weighted 

frequency of unmatched pattern in a, and ( pi  I is the pattern length. This function represents the 

ratio of similarity over dissimilarity of sequence a against sequence b. The similarity of sequence 

a against b is not significant when the ratio is less than min threshold i.e. number of patterns 

matched is not significant in sequence a with respect to the min threshold. When ratio is 1 that 

means sequence a is approximately 50% similar to sequence b and maximum similarity occurs 

when denominator is 1 i.e. all the patterns in sequence a is matched with sequence b. The higher 

score represents higher similarity of sequence a against b. Similarly, we find Sim-Score (b -, a) 

i.e. similarity of sequence b against a. Finally, we use the geometric mean of above scores and so, 

the Sim-Score (a c-t b) is defined as: 

Sim-Score (a t, b) = [SimScore (a -. b) * SimScore (b - a)] " (4.5) 

The motivation behind the use of geometric mean is that, two sequences are considered to 

be highly similar only if both values of SimScore (a -, b) and SimScore (b -, a) are high. 



Example 4: Let us calculate the similarity score for sequence S,  and S3 given in Tablel. 

S,  and S3 have two common frequent patterns i.e. ACD and YM, and one uncommon pattern in 

both sequences i.e. MN and DI respectively. So, the score is: 

2 
4.64 x log2' + 2.32 x log, 

Sim-Score (S, -. S3) = 
2 

= 4.16 
2.32 x log, 

2.32 x logZ3 + 2.32 x log, 2 
Sim-Score (S3 -, Sl) = 

2 
= 2.58 

2.32 x log2 

Sim-Score (S, - S3) = J 4 . 1 6 ~  2.58 = 3.28 

Sim-Score (a - b) 1 Score 1 Sim-Score (a - b) 1 Score 1 
Sim-Score (S, c* S3) /T sim-score (s, - s3) 7 
sim-score ( ~ ~ ~ ~ 1 . 5 8  1 Sim-Score (Sp - S4) 1 0.42 

Sim-Score (S1 - S,) 1 0.40 ~ 2 ~ - 8 1 ~  

Table 4.5: Sim-Score for all sequences against cluster representatives 

Table 4.5 contains the Sim-Score for all sequences against the cluster representatives. The 

following scores show that S3, S4 are highly similar to cluster representative S, and S5 is highly 

similar to cluster representative S2. 

4.5 Detection of Multi-Domain Protein 

One of our protein clustering challenges is to detect the multi-domain protein efficiently 

and effectively. We use the similarity scoring function (Sirn-Score) to detect these proteins. The 

similarity function is based on the ratio of common over uncommon frequent pattern scores. The 

multi-domain protein is generally larger than the single domain proteins and contains groups of 

highly conserved regions in different domains of that protein. If we follow Figure 4.1 we find that 



Protein A 

Figure 4.1 : Multiple domain protein 

Protein B 

protein B is highly similar to protein A but, A is not significantly similar to B because of large 

non-matching regions. Therefore, we can detect this difference by using the ratio of similarity 

scores in the following way: 

Domain 1 

Domain 1 

Sirn - Score(b + a )  
Multi-Domain-Score = 

Sirn - Score(a + b )  

Domam 2 

If sequence a is a multi-domain protein then Sim-Score (b -, a) will be very high and 

Sim-Score (a -, b) will be very low. When the ratio is greater 2, it is highly probable that 

sequence a is a multi-domain protein. But, this may occur by chance. Therefore, in order to 

conclude that sequence a is a multi-domain protein, we select a set of representative such that 

their comparison scores are higher than the min threshold. Now, for this significant representative 

set we calculate the Multi-Domain-Score and if most of the scores (say at least 75%) are greater 

than 2, then only we can conclude that sequence a is a multi-domain protein. The ratio between 2 

to 3 indicates that sequence a may contain two domains. Thus, higher ratio follows the higher 

number of domains. 

There are some multi-domain proteins which are not significantly larger than other 

proteins i.e. similar length. During the representative selection process our selection method 

discriminates the sequences by their length and frequent patterns. Therefore, there is a little 

chance that we may choose a multi-domain protein as one of the cluster representatives because 



of having average length. In order to detect this in later clustering phase, we check if the Multi- 

Domain-Score is greater than 2 and the comparison score is significant for a given sequence then, 

we mark the representative sequence and wait until we have enough sequences to judge this. 

Finally, if the representative sequence is a multi-domain protein we split the cluster. 

Therefore, we have two levels of screening for detecting the multi-domain proteins. First, 

we filter the multi-domain proteins during the representative selection stage and finally, we detect 

them during the building stage of initial clustering. 

4.6 Optimize the intra-cluster similarity 

We can refine the intra-cluster similarity by improving the appearance of patterns in the 

cluster. So, the pattern appearance of cluster C; can be defined as: 

PatternAppearance (CL) = cluster-frequen- patterns /cluster-nonfrequent-patterns (4.7) 

where, cluster frequent pattern represents the number of patterns that are frequent within the 

cluster and vice versa. The higher score of Pattern-Appearance represents higher occurrences of 

patterns in the cluster which means sequences within the cluster are sharing larger number of 

patterns i.e. higher similarity among the sequences and vice versa. So, maximizing the score of 

Pattern-Appearance means increasing the appearance of patterns and thus, increasing the 

similarity among sequences in the cluster. The algorithm for measuring intra-cluster similarity 

Intra-Sim for a given cluster Ci is given below: 

Intra-Sim Algorithm 

Input: Cluster Ci, Output: Refined Cluster 

1. Calculate Pattern-Appearance 

2. Rank the sequence by Sim-Score 



3. Repeat 

a. Select the lowest scoring sequence S,,,,,t 

b. Recalculate Pattern-Appearance,,, 

c. Calculate Pattern-Appearance-Ratio (equation 4.8) 

d. If Pattern-Appearance-Ratio > min-ratio-threshold then 

i. Replace the old scores 

ii. Remove the sequence from the cluster 

4. Until min optimization threshold is reached 

Algorithm 4.2: Algorithm for measuring intra-cluster similarity 

In Algorithm 4.2, first we calculate the Pattern-Appearance for that cluster and then, rank 

the sequences according to Sim-Score. After ranking, we choose the lowest scoring sequence and 

recalculate the Pattern-Appearance. If the score is significantly improved therefore, we can 

conclude that the selected sequence does not belong to the cluster at this level of cluster quality 

specified by Pattern-Appearance. Hence, we remove this sequence from the cluster. We define 

the significant scores as a ratio of new and old pattern appearance in the following way: 

PatternAppearan~e,~~ 
Pattern-Appearance-Ratio = 

PatternAppearan~e,,~ 

Therefore, we consider the new score as significant when the ratio is greater than min 

ratio threshold which is at least 1. We continue the above procedure until specified optimization 

threshold is achieved or there is no sequence for which the quality measure can be improved 

further. 

4.7 Clustering Method 

Our Clustering method takes the following inputs fi-om user such as sequence set S, 

similarity threshold t and distance threshold d. Our clustering method completes in two phases. In 



phase one, a set of sequence is selected in order to represent the initial clustering i.e. each initial 

cluster is represented by a sequence known as cluster representative. The selection process is 

solely based on the Rep-Score (Representative selection score) function and Rep-Selection 

algorithm defined in earlier section. The initial clustering is constructed using the cluster 

representatives. Every sequence in database S is compared using the Sim-Score sequence 

comparison function against all cluster representatives. First, we check whether the comparing 

sequence is a multi-domain protein using the multi-domain detection procedure defined in earlier 

section. If we find the sequence is a multi-domain protein, we mark and assign it to the 

corresponding significant clusters for which Multi-Domain-Score > 2. If the sequence is not a 

multi-domain protein we assign it to the best cluster provided the similarity score is above the min 

similarity threshold t. In this case, we are assigning sequence to a single best scoring cluster only. 

This completes phase one and the construction of initial clustering. 

In the second phase, first, we refine the initial clusters in order to improve the closeness 

among the sequences within a cluster and remove any chance similarities. Then, a set of new 

representative is selected for each cluster using the Rep-Scores except the multi-domain 

sequences that are marked in the earlier phase. Then, we search for additional sequences that may 

be distantly related using the new representatives. Here, we are choosing more than one 

representative per cluster in order to avoid the chance similarities of distant proteins. Therefore, 

we select only those sequences where search hit is more than one i.e. sequences which are found 

similar to more than one representative. We apply the same sequence comparison function for 

comparing sequences against the new representatives. This completes the first iteration for 

finding the distant relatives and the distance is two. The distance here means the number of 

intermediate sequences required to find the distant relatives. Then, we continue to the next 

iteration. This process continues until no more sequences can be found or min distance threshold 

d is achieved. 



Clustering Algorithm CRS 

Input: sequence set S, min similarity threshold t, distance threshold d 

Output: Clustering of S 

Phase I 

1. Compute Rep-Score function for all sequence in S 

2. Select a set of sequence R c  S using Rep-Selection algorithm. Set R is known as the 

representative set for initial clustering. 

3. For each sequence Sk in set S-R 

a. compare against set R using Sim-Score function 

b. if Sk is a multi-domain protein (using multi-domain detecting procedure) 

i. add Sk to set R for which Multi-Domain-Score > 2 

c. else, assign Sk to best representative R, provided Sim-Score > t 

4. For each Ri in set R 

a. if Ri is a multi-domain protein (using multi-domain detecting procedure) 

i. split the corresponding cluster represented by Ri 

Phase 2 

5. Refine the initial clustering using Pattern-Appearance (section 4.6) 

6. round = 0 

7. Repeat 

a. Select a new representative set R,! for each cluster Cj 

b. for each cluster Ci and each sequence S, in set S- Ci 

i. compare against set R,! using Sim-Score function 

ii. if Sk is similar to more than one representative in R,' 

1. assign Sk to Cj 

c. round++ 

8. Until round > d for all clusters or no more sequence can be added 

9. Merge clusters if necessary (section 4.8) 

10. Return the final clustering 

Algorithm 4.3: Clustering Algorithm CRS 

The setting of distance threshold is a crucial problem and unfortunately, there is no 

definite answer to solve this problem. However, the study in [33] discussed the issue in great 

detail and gave some experimental evaluation. It shows that, a substantial proportion of true 



homologues have distance two or larger, with a significant drop off at distance five. Therefore, 

one up to four intermediate sequences are needed to cover about 50% of the super-family pairs. 

However, still a sizable proportion has larger distance up to a maximum of 13. Hence, the 

distance threshold can be set as low as 2 to maximum of 13. However, we have to be careful in 

setting the threshold because the larger distance increases the chances of selecting false 

homologue. 

The complexity of our clustering algorithm is n x r x t , where n is the number of 

sequences in the database, t is the number of iterations and r is the number of representatives. The 

efficiency of our algorithm greatly depends on the number of representatives that are needed to 

compare with the database sequences. The worst case scenario is when r is equal to n then it is 

equivalent to all against all comparisons. 

One of our clustering goals is efficiency that we want to avoid all against all sequence 

comparisons. Though the above clustering method requires much less than the all against all 

comparisons, we can improve it by introducing the concept of consensus or imaginary sequence. 

Instead of selecting a set of representative sequence at each iteration for each cluster we use a 

consensus sequence and search for the distant relatives. The new clustering method CRCS differs 

only in the second phase. The algorithm is as follows: 

Clustering Algorithm CRCS 

Phase 2 

1 .  Refine the initial clustering using Pattern-Appearance (section 4.6) 

2. Repeat 

a. Build or Update an consensus sequence li for each cluster Ci using the cluster 

frequent patterns 

b. for each 1; and for each sequence Sk in S- Ci 

i Use li to search for distance relative 



ii If Sk and li satisfies the min similarity threshold 

1. Assign Sk to Ci 

3. Until no more sequences OR no changes in consensus sequence for all clusters 

4. Merge clusters if necessary (section 4.8) 

5. Return the final clustering 

Algorithm 4.4: Clustering Algorithm CRCS 

In CRCS, first we refine or improve the clusters by increasing the average pattern 

appearance for each cluster. The reason for refining the clusters is to improve the closeness of the 

sequences within a cluster and to define a better consensus sequence. Now, we define a consensus 

sequence for each cluster by using all the cluster frequent patterns. Cluster frequent patterns are 

those that appear more than a specified threshold within a cluster. These cluster frequent patterns 

can be easily computed during the initial cluster building process. 

After defining the consensus sequence, we search for distant relative in the database. We 

compare the database sequences against the set of consensus sequence and assign them to the 

corresponding clusters if their similarity holds true. Then, update the consensus sequences and 

continue with the same procedure until no more sequence can be added to the clusters or no 

change in the consensus sequences for all clusters. 

4.8 Merging Clusters 

After completing second phase of the clustering, there may be some clusters which are 

similar and need to be grouped together for better clustering result. In order to merge the similar 

clusters we need to find a way to compare the clusters and measure the similarity. One way to 

measure the similarity of two clusters is measuring the pair-wise similarity of the sequences 

between the clusters. However, this is all against all comparison of the sequences and 

computationally expensive. In order to compute the similarity between clusters efficiently we use 

4 1 



consensus sequence for the comparison. So, we define a consensus sequence for each cluster if it 

is not done already. 

Now, we use the consensus sequence to compare the similarity between clusters. For 

each cluster we use the pair-wise comparison of all consensus sequences and select all pairs that 

have scores more than some min threshold. We use the same comparison function Sim-Score 

(equation 4.5) to compute the similarity. Then, for all chosen pairs we calculate the Pattem- 

Appearance and select one pair that has the best quality measure score i.e. higher pattern 

appearance. Then, we merge the corresponding clusters. The procedure continues until it finishes 

comparing all the clusters. 

We use the quality measure for determining the merging pair so that the selection process 

is not solely based on the consensus sequences. Now, there may be a question, why we are not 

using the quality measure only for selecting the cluster pairs. We cannot use the quality measure 

directly to deduce the similarity between clusters because the scores are not comparable as a 

similarity measure. 

We can use the above merging procedure to further organize the protein sequences into 

hierarchy. We can use a range of cluster merging threshold to detect the different classes of 

hierarchy. For lower class identification we can set very high threshold and low threshold for the 

higher classes. 

4.9 Splitting Clusters 

There may be situations where cluster splitting is necessary when multi-domain protein is 

mistakenly selected as representative sequence. In our clustering method, this threat is eliminated 



by checking for multi-domain proteins during the initial cluster building process. For splitting a 

cluster, we apply the representative selection procedure on the corresponding cluster and select a 

set of representatives. Then, assign the remaining sequences to the representatives based on the 

scoring function. In this case, the number of representative reflects the possible number of 

domains present in the corresponding multi-domain representative sequence that causes the 

cluster to split. 



Chapter 5: Experimental Evaluation 

This section provides the details of experiments and evaluation using our clustering 

method. The dataset, evaluation method and running time are also discussed. For the experiments, 

evaluations and comparisons we consider only CRS and CRCS. We distinguish CRC using multi- 

domain procedure as CRCmulti.domain and without using multi-domain procedure as CRC,,,inal. 

Similarly, we define the CRCSn,,lti-dOn,in and CRCSo,gina~. 

5.1 Dataset 

We choose three experimental dataset from the prosite database. The prosite database is 

highly hand-crafted and reliable as we mentioned earlier. It provides flat clustering with overlaps. 

We randomly choose ten clusters for dataset DS 1. The details of DS 1 are given in Table 5.1. 

Prosite AC # of Sequence 

PSOOOl 1 57 

PS50089 320 

PS00221 117 

PSOOI 71 121 

PS50198 36 

Table 5.1 : Dataset 1 
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Each row in the Table 5.1 represents a prosite cluster identified by the accession number 

(AC) and number of sequences in that cluster. The second dataset DS2 contains first dataset and 

10 more randomly chosen clusters identified as: PS00226, PS00795, PS00411, PS00930, 

PSOO414, PS00242, PS00704, PS00 162, PS50059 and PS00194. Total number of sequences in 

DS2 is 2151. We consider third dataset DS3 with 50 clusters and total number of sequences 

1 1400. 

Further details of these clusters can be found in the prosite website: 

http://au.expasy.org/prosite/. The sequences in these clusters are accessed from the Swiss-prot 

database and their web site is: http://au.expasy .org/sprot/. 

5.2 Evaluation method 

In order to evaluate the clustering quality we use a commonly used measurement called 

F-measure first introduced in [36]. It is an oft-used method in the information retrieval and 

natural language processing communities. It is also standard method for evaluating both flat and 

hierarchical clustering. As we defined earlier C = {C,, C2, ... ... C,j be some clustering, i.e. a set of 

clusters and K = {K,, K2, . . . . .. Kkj be the natural classes of a database. Let niLi be the number of 

members of natural class Ki in cluster C,. The recall R(Ki, CJ ,  precision P(K, Ci) of natural class 

K; and cluster C, can be calculated as: 

Therefore, F-measure F(Ki, C;) can be defined as: 



F(K;, Ci) represents the quality of cluster C; for natural class Ki. The overall F-measure 

F(C) is the weighted sum of the maximum F(& Ci) of all the classes defined as follows: 

where, S denote the total number of sequences in the database. The value of F(C) lies in 

[O, I] and larger value indicates the higher quality of the clustering. 

5.3 Experimental results 

We compare the experimental results between CRS and CRCS with the presence and 

absence of multi-domain procedure. The results are presented below: 

Table 5.2: Experimental Results for the use of Multi-Domain Procedure 

DS1 
DS2 

DS3 

The results clearly show the importance of using multi-domain detection procedure in 

clustering protein sequences in both algorithms. Using multi-domain procedure substantially 

improves the quality of the results. The results also show the consistency over the number of 

sequences and number of classes. As the number of sequence and classes are Increased from DS I 

to DS3, the quality of the results does not change significantly. 

In order to show that, our careful representative selection procedure results in better 

Overall F-measure F(C) 

clustering result compare to the randomly selection procedure, we perform several experiments 

using CRS and CRCS with and without using our Rep-Selection-Algorithm. Here, CRSr,,,d,,,, and 

CRCSmulti-domain 
0.69 
0.71 

0.695 

C RSorigina~ 
0.42 
0.43 

0.43 

CRCSorigina~ 
0.47 
0.46 

0.48 

CRSmu~ti-domain 
0.66 
0.645 

0.65 



CRCSmnd0, represent the algorithms using random selection procedure and consequently, CRSRep- 

Selection and CRCSRep-seledion represent the algorithms using Rep-Selection procedure. The results 

are presented in the following table 5.3. 

- - - - - - - - 

Table 5.3: Experimental Results for the use of Rep-Selection Procedure 

DS1 

For both methods, the results show that, use of Rep-Selection Algorithm gives much 

better results than the use of random selection procedure. In the case of random selection 

procedure, the representatives are selected such that there may be sequences which are extremely 

short or extremely large or do not contain good patterns as we discussed in the earlier chapter. As 

a result, it distorts the clustering quality. 

The results further show that consensus based representative CRCS performs better than 

Overall F-measure F(C) 

the CRS where set of sequence is used as representative. Therefore, consensus based 

representation of the clusters are better than representing by a single sequence or a set of 

CRSrandom 
0.54 

sequence. In the following table, we show the quality of clusters by using set size as a parameter. 

CRSRep-selection 
0.66 

C RCSrandom 
0.58 

Overall F-measure F(C) 
Dataset 1 Set size 1 CRCmulti-domain 

CRCSRep-selection 
0.69 

DSl  
I 

2-3 0.66 1 

Table 5.4: Experiment results for set size as a parameter 
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The results indicate that the quality of the clusters degrades as the number of sequence 

increases in the set. Therefore, the best set size we achieved is 2 or 3. The similar results are also 

found for the DS2 and DS3. 

We also perform experiments in order to show the cut-off points for the distance 

threshold d. The results show that clustering quality improves until d is 3 and after that quality 

degrades dramatically. Therefore, increasing the number of intermediate sequences increases the 

chances for false positives to be included in the clusters. Hence, we can conclude that, the cut-off 

point for the distance threshold is 3. The results are shown in the following Table 5.5. 

Table 5.5: Experiment results for distance threshold as a parameter 

Overall F-measure F(C) 
Distance Threshold d I CRCm,,lti.domain 

5.4 Efficiency and Scalability 

1 

The algorithm is highly scalable and efficient. We measure the efficiency of the 

algorithm in terms of sequence numbers. The following chart shows the run time for CRS,~,;,lal 

and CRSmulti.domail, It indicates that run time does not increase exponentially with the increase of 

sequence numbers. The runtime for CRS is slightly higher than CRCS. This is due to extra 

computation associated with choosing a group of sequence as the representative set and 

comparing with other sequences. 

0.62 



# of sequence ~ 
Figure 5.1 : Runtime for CRS 

Similarly consistent run time holds for the CRCS,",in,l and CRCSn,,lti-d,n,,,,. The graph is 

as follows: 

L 0 -- 
1000 2000 3000 5000 20000 

#o f  sequence 

+ CRCS or~g~nal 

- 

Figure 5.2: Runtime for CRCS 



Chapter 6: Discussions and Future Studies 

6.1 Solving Protein Clustering Problem 

In this project, we have tried to solve the problem of clustering protein sequences by 

exploiting the sequence similarity in an efficient manner. It is one of the most important and 

challenging problems in genome studies. We have addressed three major challenges in clustering 

related proteins. The three main challenges are (1) homology detection problem, (2) multi-domain 

detection problem and (3) scalability. 

We use transitivity to detect the homology and furthermore, we develop two methods one 

using group of sequence and another using consensus sequence to improve the quality of the 

homology detection. We successfully exploit the similarity measure to find the multi-domain 

proteins without introducing extra level of complexity. Multi-domain detection substantially 

helps to improve the quality of the clustering. Our algorithm is highly scalable compare to other 

existing methods as it can avoid computing pair-wise sequence comparison. This is evident from 

the run time of our algorithm. 

We also develop a novel sequence comparison technique. Our similarity function 

captures the significant similarity information embedded in the sequence such as frequent patterns 

and sequence length. We compute similarity in both ways in order to ensure the quality of the 

comparison by exploiting geometric mean in the calculation. This also helps later finding the 

multi-domain proteins. This approach can be used in text mining to find documents containing 

multiple topics or in other sequence mining to identify different set of events. 



In conclusion, we have developed a simple, efficient and effective representative based 

clustering technique for protein sequences. This method can be easily applied to other areas of the 

sequence and text mining. Our method is different fiom other representative based clustering 

methods such as k-medoids [37] and its variants PAM [37] and CLARA [37]. Unlike these 

methods, our algorithm does not require pre knowledge of cluster numbers. The main difference 

is initial selection of the representatives. Instead of randomly choosing a representative and then 

optimizing it, we carefully choose a set of meaningful representative by analyzing the sequence. 

Then, we apply one step optimization in order to remove some outliers and further we optimize 

the representative by selecting a group of sequence or constructing a consensus sequence for each 

cluster. 

6.2 Possible Future Studies 

The quality of our clustering results is encouraging and consistent. The results show that 

we achieve a good quality clustering for all the datasets. It will be really interesting to see how 

the other methods perform using the same dataset and compare with them. 

The clustering quality can further be improved if we employ profile based sequence 

searching instead of using consensus sequence. The idea is to construct a profile for each cluster 

by using the local alignment on the sequences within the cluster. Thus, profile captures more 

information in describing the cluster. Finally, use these profiles in representing the clusters. 

A typical protein contains domain and motifs (patterns). In our method, we intend to use 

domain information in clustering proteins at the higher level. The domain also captures 

significant information about the proteins. Further studying domains in details can give us crucial 



information about the functionalities of proteins. However, studying domain in depth requires 

some expertise in the field. 

One important future study would be considering the properties of the amino acids in 

calculating the sequence similarity and finding the distant relatives. The properties capture 

significant physico-chemical information of the sequences. Further exploring these properties in 

an effective manner can dramatically change the resulting quality of the clusters. In the appendix 

A, we give a detail description of how to use the properties for further improving the clustering 

quality by capturing more sequence information into the similarity function. 
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n operties of protei 

In addit~orl to sequence similarity, we want to urc physico-cl~cm~cal p-opertles ol'arnl~io 

a c ~ d s  to coniparc .sequences. 'The ral~onale is amino a c ~ d s  arc the b a w  componr:r~ts of 

constructing pr~n~ai-q stn~cturc of il protein seclueuce. Each a m n o  acid has several different 

properties and collcctlon of these propertleb deter1111ne the clas.ses a i d  f~~nctroris of proteir~s. Thc 

of ammo actds we cannot guarantee a beltel compal  son of sequences. I-Iei~ce. the propel t ~ e s  are 

incorporated in our sequence coiiqmrison hii~ctron 1 hc deta~l propcit) table for all a n m o  acids is 

given below: 

-- - -- I 

HRK D E QPGYCVIWLMFATSN 

- - -- --_L -___ 
I KEQDNKSl G PAYHC 1 IWLMVF -- - 1 

Yes I No I 
- -- - 

Y  ti^^ - -  - -  ACDEGIKLMNPQRSTV d I 



There are total 7 physico-chemical properties of amino acids that we are discussing here 

such as size, charge, polarity, hydrophobicity, aliphaticity, aromatic and confirmation. Each 

property is further classified into several groups, for example the charge property has three 

groups i.e. basic, acidic and neutral. Now, our goal is to compare sequence using the distribution 

of property groups in the sequence e.g. how much similarity of basic, acidic and neutral are 

present in the sequence. 

Let g = (g, ... ...g,l be the frequency of amino acids in database S. Amino acid has several 

different physico-chemical properties and each property is further classified into several groups. 

Each amino acid supports many different groups. Let z = ( z ,  ... ... z,) be a set of property group 

for all amino acids and I z, I is the number of amino acids supporting k-th property group. Let Z = 

( 2 ,  . . . . . . Z,} be a set of frequency for property groups i.e. occurrence of each property group in 

database S and Zk is defined as: 

Let Z = (g . . . . . . K) be a set of mean frequency for each property group in the 

database and so, 2, is defined as: 

where, n is the total number of sequences in the database. The property table is discussed 

more in the later section. 

We use z-Score or standard score function to find the score for each property group. The 

z-score of 2, property group is defined as: 



where, Zk represents the frequency of a sequence of k-th property group, 2, represents 

the mean frequency of k-th property group, and sk is the standard deviation. We measure the 

similarity of physico-chemical properties by taking the absolute difference of z-Scores of each 

property group in the comparing sequences. The higher difference of z-Scores represents less 

similarity and vice versa. We define the similarity of property groups of sequence a and b as a 

penalty function in the following way: 

Prop-Penalty (a, b): xd I = I  I zScorein -  score^,^ I 

The penalty is calculated by adding the differences of z-Scores of all property groups for 

a given comparing sequences. The zero penalties means the distribution of property groups 

appeared equally in the sequences i.e. similarity is maximal in terms of physico-chemical 

properties. 

Thus, final comparison function can be combined with equation 4.5 i.e. using both Sim- 

Score and Prop-Penalty scoring function. Therefore, the Final-Score function is defined as: 

Final-Score (a, b): Sim-Score (a - b) - log (Prop-Penalty + 1) 

The second term of this function is 0 when Prop-Penalty is 0 i.e. no penalty. When Prop- 

Penalty is greater than 0, the term penalizes the Siln-Score accordingly. Therefore, higher penalty 

will result in lower final score and thus lower similarity. The motivation behind the use of penalty 

is further discriminating the Sim-Score because sometimes the score may not well reflect the 

sequence similarity. When two sequences are highly similar in terms of Sim-Score, it is more 
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likely that penalty for those sequences will also be lower. If penalty is not low that means the 

Sim-Score is overly calculated and thus, minimizing by the penalty function. We can further 

explain using the same example used in the chapter 4 as follows: 

Example 7.1: The following table contains mean %and standard deviation s of charge 

property for the database given in Table 4.1. We calculate the z-Scores for sequence S,, S2 and 

&.in the table. For simplicity we are giving example for one property only. 

I I I 
charge Basic 1 0.7 

Table 7.1 : Mean, Std. Dev. and z-Score for charge Property 

L- 

We calculate the Final-Score for S1, S4 and SZ, S4 given in table 4.1. The scores are given 

in the following table. From the table, we can conclude that sequence SITS4 are highly similar 

Acidic 

Neutral 

compare to S,, S4 with respect to their physico-chemical similarity. 

1 Prop-Penalty (a, b) 1 Score I Final-Score (a, b) 1 score I 

2 

7 

-- I ~ r o o  1.24 Final-Score (S,, S4) pp~l 
Prop-Penalty (S,, S4) 

I 1 I 1 2.46 1 Final-Score (S, , S4) I -0.14 

1.22 

2.34 

Table 7.2: Prop-Penalty and Final-Score for S1, S4 and S2, S4 

0 

0 

1.6 

-0.38 
-0.821 

-0.42 




