
CLUSTERING WITH CLUSTER-LEVEL CONSTRAINTS

by

Rong Ge

B.Sc., Beijing Institute of Technology, 1997

M.Sc., Michigan Technological University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

© Rong Ge 2008

SIMON FRASER UNIVERSITY

2008

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Rong Ge

Degree: Doctor of Philosophy

Title of thesis: Clustering With Cluster-level Constraints

Examining Committee: Dr. Jiangchuan Liu

Chair

Dr. Martin Ester

Associate Professor of Computing Science

Senior Supervisor

Dr. Binay Bhattacharya

Professor of Computing Science

Supervisor

Dr. Ramesh Krishnamurti

Professor of Computing Science

SFU Examiner

Dr. Christian Bohm, University of Munich

Associate Professor of Informatics

External Examiner

Date Approved:

ii

SIMON FRASER UNIVERSITY
LIBRARY

Partial Copyright Ucenc8
I hereby grant to Simon Fraser University Library the right to lend my thesis, project or
extended essay[s] (title[s] below) to users of the Simon Fraser University Library, and to
make partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf or for
one of its users.

I further grant permission to Simon Fraser University Library to keep or make a digital
copy for use in its circulating collection (currently available to the public at the
"Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at:
<http://ir.lib.sfu.ca/handle/1892/112>). I agree that SFU may, without changing the
content, translate if technically possible, my thesis/project or extended essays to any
medium or format for the purpose of preservation of the digital work.

I further agree that permission for mUltiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that copying,
publication or public performance of this work for financial gain shall not be allowed
without my written permission.

While licensing SFU to permit the above uses, I retain full copyright in my thesis, project
or extended essays, including the right to change the work for subsequent purposes,
including editing and publishing the work in whole or in part, and licensing other parties
as I may desire.

Mu~medla Licence:

lSI' Not applicable. A multimedia licence is not applicable to this work.
No separate DVD or CD-ROM material is included in this work.

or

o A DVD or CD-ROM is submitted as part of this work. A multimedia licence is required
for this work, of which:

D Public performance is permitted:
Multimedia materials that form part of this work are hereby licensed to Simon Fraser
University for educational, non-theatrical pUblic performance use only. This licence
permits single copies to be made for libraries as for print material with this same
limitation of use.

D Public performance is not permitted:
Multimedia materials that form part of this work are hereby licensed to Simon Fraser
University for private scholarly purposes only, and may not be used for any form of
public performance. This licence permits single copies to be made for libraries as for
print material With this same limitation of use.

Title of Thesis/Project/Extended Essays:

Clustering With Cluster-level Constraints

Author's name Rong Ge
and signature: _

Date signed: _----LE--I;ec:l.h~,---L1-==2=-.,,1L.....:.•.c.).p::!::·~''i_.;JJL.--------__-_-_-

Abstract

The task of clustering is to group data objects into clusters which exhibit internal cohesion

and external isolation. The generated clusters provide useful knowledge to support decision

making in many applications. However, clustering methods may fail to discover satisfactory

results due to the lack of user involvement, especially in the form of supplying background

knowledge about target domains and application needs. Normally, background knowledge

can be captured by three types of constraints, Le., instance-level constraints, cluster-level

constraints, and model-level constraints. In this thesis, we study how cluster-level con­

straints are used to capture the background knowledge and users' special requirements in

several real life clustering tasks, e.g., catalog segmentation, community identification, and

privacy preservation etc. We design appropriate clustering models that integrate those con­

straints. We analyze the complexity of the proposed models, develop efficient clustering

algorithms, and evaluate the clustering results on synthetic and real data sets.

iii

IV

To Zengjian, Ben, Dad, and Mom

"Science is a wonderful thing if one does not have to earn one's living at it."

- Albert Einstein

v

Acknowledgments

Finally I would like to thank so many people for a variety of reasons. Without them I could

not complete this thesis.

First of all, I wish to express my deep gratitude to my senior supervisor, Dr. Martin

Ester, for his valuable guidance, constant encouragement, and generous financial support.

He had been actively involved in the discussions of my research topics, and so patient to

revise my writeups round after round. From him, I had learned how to conduct research

and present results to the academic community. Besides of being a wonderful supervisor,

Martin has been a good friend to me. I had also learned how to balance work and family

effectively.

I also want to thank my supervisor, Dr. Binay Bhattacharya for his valuable advise on

not only research but also future career path. Sincere appreciation goes to my committee

members, Dr. Ramesh Krishnamurti, Dr. Christian B6hm from University of Munich, and

Dr. Jiangchuan Liu for reading my thesis and giving me valuable suggestions to improve it.

Special thanks also go to Dr. Funda Ergun for serving on my depth exam committee.

I would like to thank my lab mates, Wen Jin, Byron Gao, Qidan Cheng, Flavia Moser,

Richard Frank, Recep Colak, and Yabo Xu for creating a fun and collaborative environment.

In particular, I thank Recep Colak for preparing one of the datasets used in this thesis.

My appreciation also goes to my friends from Computer Science Department: Zhengbing

Bian, Yuanzhu Peter Chen, Lei Duan, Zhe Fang, Baohua Gu, Mayu Ishida, Hao Jiang,

Chiyoko Kawano, Mike Letourneau, Yudong Liu, Cheng Lu, Zhongmin Shi, Qiaosheng Shi,

Yi Sun, Dan Wang, Feng Wang, Yang Wang, Yong Wang, Weihua Xiong, Yinan Zhang, and

Senqiang Zhou. Without them, life would not be as joyful as it was here.

I feel a deep sense of gratitude for my parents, and my brother for their endless support

and encouragement throughout these years of study. I am also grateful for my parents

vi

in-laws for taking care of my son and many tedious house work to allow me to focus on

my study. Last but not least, I would like to thank my husband, Zengjian. He is always

there to discuss with me on my research, to help me improve my writing, and to support

me emotionally. His love has accompanied me to get through the hard times. This thesis

would not have been here without him. This thesis is dedicated to him and our son, Ben,

who has given us great joy.

vii

Contell.ts

Approval

Abstract

Dedication

Quotation

Acknowledgments

Contents

List of Tables

List of Figures

1 Introduction

1.1 Catalog Segmentation

1.2 Community Identification in Social Networks

1.3 Privacy Preservation .

1.4 Contribution and Organization of the Thesis

2 Related Work

2.1 Classification of Clustering Methods

2.2 Data-Driven Methods

2.3 Utility-based Methods

2.4 Constrained Clustering.

viii

ii

iii

iv

v

vi

viii

xi

xii

1

3

4

5

6

8

8

10

11

12

2.4.1

2.4.2

2.4.3

Different Types of Constraints

Semi-Supervised Clustering ..

Clustering with Cluster-level Constraints

12

13

16

3 Customer-Oriented Catalog Segmentation

3.1 Overview .

3.2 Background

3.3 Problem Formulation.

3.4 Algorithms .

3.4.1 Greedy Algorithm for the k-MECWT Problem

3.4.2 Randomized Algorithm

3.5 Experimental Evaluation.

3.6 Summary

4 Joint Cluster Analysis

4.1 Overview .

4.2 Background

4.3 Problem Definition and Complexity Analysis

4.3.1 Preliminaries and problem definition..

4.3.2 Complexity analysis.

4.4 Approximation Algorithms

4.4.1 Inapproximability result for CkC

4.4.2 Approximation results for metric CkC

4.5 Exact algorithm for C kC on Trees

4.5.1 Polynomial exact algorithm for CkC on trees

4.5.2 Dynamic programming algorithm .

4.6 Heuristic Algorithm

4.6.1 Overview of NetScan .

4.6.2 More details on NetScan .

4.6.3 Adaptation of NetScan to the Connected k-Means problem

4.7 Experimental Results. . . .

4.7.1 Experimental design

4.7.2 DBLP dataset I: clustering researchers

4.7.3 DBLP dataset II: clustering papers ..

IX

20

20

22

23

26

26

29

31

34

36

36

39

42

42

43

47

47

48

53

53

54

56

56

58

62

63

63

65

66

4.7.4 Spellman dataset: clustering genes 69

4.7.5 Synthetic datasets. 71

4.8 Summary 72

5 Constraint-Driven Clustering 74

5.1 Overview 74

5.2 Background 76

5.3 Problem Definition and Complexity Analysis 77

5.3.1 The CDC Problem. 78

5.3.2 Complexity Analysis 79

5.4 Algorithm 83

5.4.1 The CD-Tree 84

5.4.2 Solving the CDC problem. 87

5.4.3 Runtime Analysis. 88

5.4.4 Discussion 89

5.5 Experimental Evaluation. 90

5.5.1 Methodology 90

5.5.2 Results 93

5.6 Summary 96

6 Conclusion 97

Bibliography 101

x

List of Tables

1.1 Clustering models introduced in this thesis 6

2.1 Complexity Results of the Feasibility Problems under different Constraints 14

2.2 Complexity Results of the Feasibility Problems under Combinations of Con-

straints 15

3.1 Illustration of Best-Product-Fit .. 28

4.1 Complexity results. 47

4.2 Approximability results. 53

4.3 Node assignment w.r.t. Ro and R I . . 57

4.4 Overview of the real datasets 64

4.5 Comparison of NetScan and Greedy k-Center on dataset DBLP I . 65

4.6 Summaries of dataset DBLP II. 67

4.7 Comparison of NetScan, GraClus and k-Means on dataset DBLP II. 67

4.8 Papers used in Figure 4.11. 68

4.9 Comparison of NetScan, GraClus and k-Means on the Adapted Spellman

dataset. .. 70

5.1 Scalability vs. Number of Data Objects.

5.2 Scalability vs. Different Constraints. . .

xi

95

95

List of Figures

1.1 Classification of Clustering Methods 1

2.1 Demonstration of the nearest representative property 17

3.1 Example Customers DB in Graph Representation. 29

3.2 Customers DB in Graph Representation 30

3.3 Synthetic Dataset Test 1 33

3.4 Synthetic Dataset Test 2 33

3.5 Synthetic Dataset Test 3 34

3.6 Real Data Test 1 34

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Constructed graph G.

Deployment of nodes on the line.

Illustration of Algorithm 4. ...

Lower bound for the gap between GkG and GkG'.

The tree structure.

Node assignment in NetScan.

Radius increment. .

Outlier elimination.

Runtime .

Partial clustering results on dataset DBLP I.

Partial clustering results on dataset DBLP II.

NetScan on synthetic data. (a) runtime vs. average degree. (b) runtime vs. k.

45

45

51

52

55

59

60

62

62

66

69

72

5.1 (a) Rectilinear layout L, (b) Final layout L' 80

xii

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

(a). Points in a triple set are grouped into one cluster. (b). Points in a triple set are

grouped separately with auxiliary points.

Transformed Layout for Theorem 3.2 and Theorem 3.3.

(a) Data Objects. (b) Visualization of the CD-Tree . ..

Results for Dataset DSl (Only significance constraints are specified).

Results for Dataset DSl (Both significance and variance constraints are specified).

Results for Abalone Dataset (Only significance constraints are specified).

Results for Abalone Dataset (Both significance and variance constraints are specified)..

Results for the Letter Dataset (Only significance constraints are specified).

Results for the Letter Data set (Both significance and variance constraints are specified).

xiii

81

83

87

91

91

92

92

94

94

Chapter 1

Introduction

The task of clustering is to group data objects into clusters based on certain criteria so

that the generated clusters provide useful knowledge to support decision making in many

applications. Many clustering methods have been developed to solve problems in real life ap­

plications. For example, clustering is often used as a tool in biological sciences to find groups

of co-expressed genes. In image recognition, pixels are grouped into clusters corresponding

to objects in an image.

Figure 1.1: Classification of Clustering Methods

From different perspectives, clustering methods can be classified into different classes

(see Figure 1.1 for a classification of clustering methods). In a broad sense, clustering

methods can have the number of clusters specified a priori or decided on the fly. Based

1

CHAPTER 1. INTRODUCTION 2

on the properties of the generated clusters, clustering methods can be classified into three

major classes, namely, partitioning-based clustering [86, 73, 72, 91], hierarchical clustering

[75,69,74, 120J and density-based clustering [46, 8]. Generally speaking, partitioning-based

methods tend to find sphere shaped clusters; hierarchical methods can discover a hierarchy

of clusters and then extract clusters at different resolutions; density-based methods are good

for finding arbitrarily shaped clusters.

In this thesis, we study partitioning-based clustering which is often modeled as an op­

timization problem. In partitioning-based clustering, every data object is assigned to one

cluster. The quality of a clustering is measured by an objective function, which typically

measures the compactness of the generated clusters. Depending on the goal, partitioning­

based methods can be either data-driven or need-driven [12]. Data-driven methods aim

at discovering the true structure of the underlying data distribution. Most traditional

partitioning-based methods, such as k-Center and k-Means, can be viewed as data-driven

methods.

Need-driven methods achieve the same goal as that of data-driven methods while com­

plying with application needs or background knowledge. Thus, the clusters generated by

need-driven methods are more useful and actionable to meet certain application require­

ments. There are two typical classes of need-driven methods, the utility-based method [79]

and constrained clustering. To capture simple application needs, people define utility func­

tions as objectives that measure, instead of the compactness of the generated clusters, the

utility of a clustering in decision making. As the utility function is typically defined based

on business needs, the utility-based method can yield more useful and actionable clusters

than the ones generated by data-driven methods. Yet, the utility-based method may fail

to discover desired clusters for applications with complex application needs or background

knowledge, which can be modeled alternatively as constrained clustering problems. For ex­

ample, in market segmentation, relatively balanced customer groups are preferable so that

the knowledge extracted from each group has similar significance and are thus easier to

evaluate [56]. This special requirement can be effectively captured by imposing several bal­

ancing constraints [12, 20, 108, 121]. Recently, clustering with constraints, which integrates

users' background knowledge and application needs to achieve desired clustering results, has

become a significant research topic.

The work on constrained clustering can be classified into three categories [19]: (1) clus­

tering with instance-level constraints (2) clustering with cluster-level constraints and (3)

CHAPTER 1. INTRODUCTION 3

clustering with model-level constraints. Clustering with instance-level constraints is often

referred to as semi-supervised clustering [111, 112, 17,32]. Instance-level constraints, such

as must-link and cannot-link constraints, impose specific requirements on pairs of instances.

Knowledge on groups of data objects can be modeled as cluster-level constraints, such as the

minimum number of objects per group [20, 108]. As an example of a model-level constraint,

users may specify that a clustering should be different enough from a given clustering [57].

In this thesis, we focus on clustering with cluster-level constraints.

Cluster-level constraints, in general, capture users' knowledge on a group of data objects

by specifying some properties of the group, e.g., the minimum number of data objects in

the group or the maximum value on a SQL aggregate of the group [108]. By enforcing such

constraints, we can identify clusters which are cohesive on attributes and at the same time

possess certain desirable properties. Cluster-level constraints have played an important role

in capturing application needs and domain knowledge in many real life applications. Among

them, to name a few, are catalog segmentation, community identification in social networks,

and privacy preservation. In the rest of this chapter, we overview these applications and

the corresponding clustering models respectively.

1.1 Catalog Segmentation

Catalogs, containing a line of products, are one of the primary media in direct marking

[93]. The best strategy in catalog campaigns is to design one catalog for each individual

customer based on his/her personal interests, which can be collected from the customer's

purchasing history. However, this approach is infeasible due to budget restrictions. Instead,

a common approach is to ask an enterprise to design k product catalogs of size r that

maximize the total number of catalog products matching customers' interests [77]. This

application, named Catalog Segmentation, provides an effective way to boost sells under a

limited budget in retail stores. From the point of view of clustering, the task of catalog

segmentation is to find k clusters of customers where each cluster is described by a set

of r products and each customer is assigned to the cluster with the most similar cluster

description.

In this particular setting, we often observe that a customer, once attracted to an enter­

prise, will purchase more products beyond the ones contained in the catalog. In the case of

CHAPTER 1. INTRODUCTION 4

traditional brick-and-mortar retailers, for example, a customer typically would purchase ad­

ditional products if the catalog has attracted him to visit the store. In the case of electronic

commerce companies, there is still a substantial overhead involved in visiting a company's

website, and customers that have done so are likely to purchase other products from the

website that match their interests.

Motivated by the observation above, we propose a variant of the catalog segmentation

problem with a new constraint called the minimum interest constraint. The original defini­

tion of the catalog segmentation problem is thus reformulated so that the overall utility of a

set of catalogs is measured by the number of customers that have at least a specified mini­

mum interest t in the catalog sent to them. We name this new problem Customer-Oriented

Catalog Segmentation.

1.2 Community Identification in Social N etworks

Our second motivating scenario is Community Identification in social networks. A com­

munity is a group of people who share common interests and are bonded with some social

relations. Community identification is an important social network analysis task which in­

volves grouping people into clusters (or communities) [115]. In this application, communities

are formed based on two basic criteria: tight social relations as well as common interests.

The main interest of community identification has been focused on social relationship among

entities. Graph-based clustering methods, performed solely on relationship (network) data,

have been the standard tool for the task [115]. However, the results of the graph-based clus­

tering methods are often not satisfactory since the common interests of community members

are overlooked.

In a social network, every entity is often associated with two types of information,

individual interests and social relations among people, which are normally represented in

the form of attribute data and relationship (network) data respectively. For the task of

identifying communities, it is intuitive that attribute data can impact community formation

significantly [95, 64]. For example, given a scientific collaboration network, scientists can

be separated into different research communities such that community members are not

only connected (e.g., by co-author relations) but also share similar research interests. Such

information on research interests can be automatically extracted from authors' homepages

and used as attribute data.

CHAPTER 1. INTRODUCTION 5

Therefore, a clustering model considering both attribute and relationship data is in high

demand. As a natural assumption, a community should be at least internally connected with

possibly more constraints on the degree of connectivity. To capture the simple requirement

on the connectivity of a community, we introduce an internal connectedness constraint.

Meanwhile, the requirement on common interests can be realized by minimizing the objective

function defined on attribute data. We propose a joint clustering model called Connected

k-Center, which integrates the constraint and the objective function together. The model

aims at discovering clusters which are cohesive with respect to both attribute data and

relationship data.

1.3 Privacy Preservation

Clustering with cluster-level constraints can also be applied to the problem of privacy preser­

vation. Generally speaking, data mining is a process of extracting potentially useful informa­

tion from data. In some applications, data contain sensitive features and cannot be revealed

to the public directly. Imagine that the government wants to release some census data. It is

desirable to reveal data as accurately as possible to support better decision making. Yet on

the other hand, the individual records cannot be released due to privacy concerns. A typical

approach is to release the data altered by random perturbation. However, this approach

could destroy the correlation among records, and thus reduce the accuracy of extracted

knowledge dramatically.

Alternatively, we can group records into small clusters and release the summary of

each cluster to the public. The summary reflects the overall properties of a small group

of records. Subsequent analysis can be applied to summaries of the generated clusters to

extract meaningful knowledge. In this context, the utility of a clustering is evaluated by how

much privacy is preserved in the clustering and how truthfully the summaries represent the

individual records. To protect individual records, the generated clusters have to contain at

least a certain number of individual records. Furthermore, the clusters must have a minimum

variance to prevent these individuals from having similar or even identical attribute values,

so that an adversary cannot accurately estimate the sensitive attribute values with high

confidence from the summaries. In the context of constrained clustering, those requirements

are naturally translated into two types of cluster-level constraints, the minimum significance

constraint and the minimum variance constraint. The goal of generating compact clusters

CHAPTER 1. INTRODUCTION 6

ensures that summaries accurately reflect the properties of individual records. Furthermore,

in this application, it is necessary to have the constraints decide the appropriate number

of clusters instead of specifying this number in advance. Thus, we propose the Constmint­

Driven Clustering model to capture these needs and incorporate the proposed constraints.

We note that the constraint-driven clustering model is general and can be applied to many

applications in addition to privacy preservation.

Model Objective Number of Clusters Purpose of Constraints
Customer-Oriented Utility Function Specified Specify the minimum similarity of

Catalog Segmentation cluster members and representatives
Joint Cluster Compactness Specified Force the generated clusters to be

Analysis internally connected on relationship data
Constraint-Driven Compactness Not Specified Specify the cardinality and

Clustering compactness of the generated clusters

Table 1.1: Clustering models introduced in this thesis

1.4 Contribution and Organization of the Thesis

In this thesis, we introduce three clustering models (see Table 1.1 for their characteristics)

in which cluster-level constraints are incorporated for discovering meaningful clusters. The

rest of this thesis is organized as follows:

1. Related Work. We review the related work in Chapter 2. In particular, we focus on

the most related topic, i.e., clustering with instance-level and cluster-level constraints.

2. Customer-Oriented Catalog Segmentation. In Chapter 3, we discuss the min­

imum interest constraint and formally introduce several variations of the Customer­

Oriented Catalog Segmentation problem incorporating this constraint. We propose

several heuristic algorithms to design good catalogs efficiently.

3. Joint Cluster Analysis. Chapter 4 introduces the novel Connected k-Center (CkC)

problem, a clustering model integrating the internal connectedness constraint. The

model provides a general way for joint cluster analysis of attribute data and relation­

ship data. We analyze the complexity of the CkC problem, prove its NP-hardness and

provide a constant factor approximation algorithm. For the special case of the CkC

CHAPTER 1. INTRODUCTION 7

problem where the underlying graph is a tree, we propose a dynamic programming

method producing an optimal solution in polynomial time. Based on the principles of

the approximation algorithm, we design NetScan, a heuristic algorithm that efficiently

computes a "good" clustering solution for the CkC problem on large datasets.

4. Constraint-Driven Clustering. Chapter 5 studies the Constraint-Driven Cluster­

ing, which finds an a priori unspecified number of compact clusters that satisfy the

minimum significance constraint and the minimum variance constraint. We prove the

NP-hardness of the proposed clustering problem with different constraints and develop

an efficient algorithm based on a novel data structure named CD-Tree.

5. Conclusion. We conclude this thesis in Chapter 6 and discuss some future directions.

Chapter 2

Related Work

In this chapter, we begin with a classification of existing clustering methods. We next review

two types of partitioning-based clustering methods, data-driven methods and need-driven

methods. For need-driven methods, we discuss the utility-based method and constrained

clustering.

2.1 Classification of Clustering Methods

Clustering, one of the most important unsupervised learning approaches, aims at discovering

underlying patterns in data. There are a wide variety of clustering methods which can

be classified in multiple ways. For example, clustering methods can be differentiated by

whether to specify the number of clusters. For example, the k-Means [86], k-Center [73]

and k-Median [72] models all have the number of clusters, k, specified a priori. On the

contrary, DBSCAN [46] is able to identify an arbitrary number of clusters. Depending on

different types of patterns being identified, clustering methods can be classified into three

major categories, namely, partitioning-based methods, hierarchical methods and density­

based methods. Partitioning-based methods, e.g. k-Means and CLARANS [91], search for

a partitioning of data objects where the quality of a clustering is measured by an objective

function typically measuring the compactness of the generated clusters. Consequently, those

methods tend to find sphere shaped clusters.

Different from the partitioning-based methods, hierarchical methods, such as AGNES,

DIANA [75] and BIRCH [120], can discover a hierarchy of clusters. The result of hierar­

chical clustering is often represented by a dendrogram [87]. A cut through the dendrogram

8

CHAPTER 2. RELATED WORK 9

corresponds to a valid partitioning of data objects. Given a dendrogram, clusters can be

extracted at different resolutions by cutting the dendrogram at different levels. Besides,

the hierarchy can be obtained by either a top-down approach or a bottom-up approach.

Top-down approaches, e.g., X-Means [92], initially assign all data objects into one cluster.

Then in each round, a chosen cluster is broken down into two small clusters until each ob­

ject belongs to its own cluster or certain conditions are satisfied. Alternatively, bottom-up

approaches, such as single-link, complete-link and average link [69], start from the state

where each data object belongs to its own cluster. In each round that follows, two similar

clusters are fused into one until only one cluster is left.

Density-based methods, such as DBSCAN [46], are good at finding clusters that satisfy

a predefined density threshold. These methods have two major advantages: First, the

generated clusters can have arbitrary shapes; Second, outliers, the data objects that do not

belong to any clusters, can be identified.

Partitioning-based methods can be further classified into two categories: data-driven

methods and need-driven methods [12]. Data-driven methods aims at discovering the true

structure of the underlying data distribution while the need-driven methods have the same

objective while complying with application needs or background knowledge. Most tradi­

tional partitioning-based clustering methods, such as k-Center and k-Means, can be viewed

as data-driven methods. These methods have been applied to many applications to identify

useful clusters. However, they may fail to discover clusters that satisfy individual appli­

cation needs due to the lack of background knowledge about target domains. Need-driven

methods come into play to overcome such shortcomings.

There are two typical need-driven methods, the utility-based method and constrained

clustering. As an example of the utility-based method, Kleinberg et at. [79] proposed a

general microeconomic framework in which clusterings are evaluated by their utilities in

decision making. Since the utility function is defined based on business needs, the resulting

clusters are more useful and actionable than the ones generated by generic data-driven

approaches.

Nevertheless, many complex application needs or background knowledge cannot be cap­

tured even using sophisticated utility functions. As an example, consider the problem to

group students sharing similar interests into classes. The number of students in each cluster

cannot exceed a given threshold since each classroom has a limited capacity. This type of

background knowledge is naturally captured by constraints and needs to be incorporated

CHAPTER 2. RELATED WORK 10

into a clustering model. Constrained clustering, which aims at forming coherent data groups

that satisfy given constraints, is particularly suitable for these clustering applications with

background knowledge.

2.2 Data-Driven Methods

As mentioned in the previous section, data-driven methods can discover cohesive clusters

by optimizing certain objective functions. Various data-driven clustering models have been

investigated in the literature, to name a few, k-Center [41, 67, 59, 47, 3], k-Median [72, 83,

28, 70], k-Means [85], min-diameter(pairwise clustering) [25], min-sum [16, 62] and min-sum

of diameters (or radii) [38, 29], which optimize the cluster radius, the cluster diameter, the

sum of intra-cluster pairwise distances, the sum of diameters (or radii), and the compactness

(sum of squared distances from data objects to corresponding cluster centers), respectively.

For many of these problems, rigorous complexity studies and polynomial approximation

algorithms are provided.

We overview a well studied data-driven model, the k-Center problem, as follows.

Definition Given a set of data objects P in d-dimensional space, an integer k and a distance

measure dist, find a set of k data objects C as centers such that the maximum distance

from a data object to its nearest center, i.e., maxpEP mincEc dist(p, c), is minimized.

If dist is the Euclidean distance, the above problem is called Euclidean k-Center. It is

well known that both k-Center and Euclidean k-Center are NP-hard for d (dimensionality)

~ 2 and arbitrary k [88]. For any metric space, Hochbaum and Shmoys [67] gave a greedy

algorithm with approximation ratio two. Feder and Greene [47] also gave a 2-approximation

algorithm with a better running time of O(n log k). When d = 1, the Euclidean k-Center

problem is polynomially solvable using dynamic programming techniques [89, 50]. For d ~ 2

and fixed k, the k-Center problem can be solved easily by enumerating all the k centers and

assign each data object to its nearest center.

Many of the above-mentioned clustering models are closely related to the general facility

location problem [107], which has been extensively studied in the operation research liter­

ature. Given a set of facilities and a set of customers, the facility location problem is to

decide which facilities to open and which customers should be served by which facilities so

as to minimize the total cost of serving all the customers. Theoretic results and practical

CHAPTER 2. RELATED WORK 11

algorithms for various facility location problems are beyond the scope of this thesis. A

detailed survey of related work on facility location problems can be found in [40].

2.3 Utility-based Methods

Kleinberg et al. [79] proposed a microeconomic data mining framework which evaluates data

mining results, in particular clustering results, by their utility in decision-making. With this

new objective function, the goal of clustering is shifted from identifying the true structure

of the underlying distribution to discovering useful clusters.

Traditionally, finding patterns is normally considered the major task of data mining.

However, finding patterns itself should not be the ultimate goal of data mining. Instead,

the goal should be "turning the data into information, the information into action, and the

action into value" (stated in [22]). In this regard, the microeconomic data mining framework

provides an approach to evaluate patterns (clusterings) in an enterprise's decision-making

process. The utility of an enterprise's decision is measured by maxxED f(x) where D is the

decision space and f(x) is the utility or value of decision xED.

Kleinberg et ai. consider a linear utility function f (x) = C • x where c is the objective

vector of customers. Normally, each customer has his/her own objective vector Ci. When

the set of customers G is large, it is often infeasible to make a customized decision for each

individual customer. Instead, we partition G into k segments Gl,"" Gk such that all the

customers in the same segment share the same decision, and the total utility is maximized.

We can have different utility functions for different segmentation problems. Catalog seg­

mentation, a special segmentation problem under the microeconomic framework, measures

the utility by the total number of catalog products matching customers' interests. Formally,

the catalog segmentation problem is defined as follows:

Definition Given n vectors G = {Cl,'" ,en},VCi E {O, l}d, and integer k and r, the goal is

to partition G into k disjoint groups Gl , ... , Gk such that the following utility function is

maximized:
k

'"' '"' c· . x·L...J L...J J 0,

i=l cjECi

where vector Xi containing exactly r ones is the representative of group Gi .

Kleinberg et ai. [79] proved that the catalog segmentation problem and its several

CHAPTER 2. RELATED WORK 12

variants are NP-hard even when k = 2. They also showed how sensitivity analysis of

the microeconomic optimization problem distinguishes the interesting changes from the

uninteresting changes of an enterprise's decisions. Furthermore, the authors outlined a

sampling-based approximation algorithm and proved probabilistic bounds for the quality of

the result and runtime. The algorithm first draws a sample from the given instance and

then enumerates all possible partitions of the customers in the sample.

Subsequently, approximation algorithms for the catalog segmentation problem have re­

ceived considerable attention in the algorithms community. Asodi and Safra [9] proved that

a polynomial time (~ + E)-approximation algorithm, for any constant E > 0, would imply

N P = P. Xu et al. [119] developed an approximation algorithm based on semi-definite pro­

gramming that has a performance guarantee of 1/2 for general r and of strictly greater than

1/2 for special instances where r ~ ~. In particular, when k = 2, the catalog segmentation

problem can be approximated by a factor of 0.67 when r = n/2.

2.4 Constrained Clustering

In this section, we review related work on constrained clustering, especially on clustering

with instance-level and cluster-level constraints, which are closely related to the clustering

models presented in this thesis. In the following, we adopt the term constrained clustering

for the class of clustering problems where constraints are integrated. In the literature,

constrained clustering problems are also referred to as constraint-based clustering.

2.4.1 Different Types of Constraints

There are three kinds of background knowledge based on their scopes: knowledge on individ­

ual data objects, knowledge on a group of data objects and knowledge on overall clustering

of underlying data. Accordingly, the corresponding constraints are classified into three cat­

egories, i.e., instance-level constraints, cluster-level constraints and model-level constraints

[35]. We discuss them in detail as follows.

Instance-level Constraints Instance-level constraints, as suggested by the name, specify

relationships between data objects. Originally, such constraints are used to capture infor­

mation in labeled data. For example, two data objects with the same label would suggest

a must-link constraint through them. Similarly, two data objects with a different label can

CHAPTER 2. RELATED WORK 13

be attached with a cannot-link constraint [111]. Labeled data are considered as a form of

partial knowledge in the target domain. Although instance-level constraints mostly come

from labeled data, they can also be used to capture more general knowledge on individual

data objects. For example, in some applications, domain experts know that two data objects

should not be in the same cluster although they are not labeled. As there is only limited

supervision, clustering with instance-level constraints is also referred to as semi-supervised

clustering.

Cluster-level Constraints Cluster-level constraints capture users' knowledge on a group

of data objects, e.g., the minimum number of data objects in the group or constraints on

SQL aggregates of the group [108]. By enforcing the constraints on clusters, we are able to

identify groups of objects which are coherent on attributes and possess certain properties

at the same time. In the next section, we discuss cluster-level constraints in more depth.

Model-level Constraints There are often multiple ways to cluster a dataset as it may

contain multiple aspects. It is natural to assume that for a certain clustering task only one

aspect is relevant. Finding the "right" clustering is to discover coherent groups which agree

with the relevant information and disagree with the irrelevant information. To achieve this

goal, irrelevant information is often quantized and treated as constraints on clustering prob­

lems. Similarly, a previously discovered clustering can be treated as negative information.

Then we can design clustering models to discover discriminative clusterings which have not

been discovered by previous clustering processes [57, 58]. In those approaches, the irrelevant

or negative information is modeled as model-level constraints. Different from both instance­

level and cluster-level constraints, model-level constraints are enforced on a clustering. In

this chapter, we do not discuss model-level constraints in detail since they are not the focus

of this thesis.

2.4.2 Semi-Supervised Clustering

Instance-level constraints are considered in the following four types [111, 32]:

(a) Must-link constraints: For two data objects 0i and OJ (i ¥- j), a must-link constraint

specifies that 0i and OJ have to belong to the same cluster in any feasible clustering.

(b) Cannot-link constraints: For two data objects 0i and OJ (i ¥- j), a cannot-link con­

straint specifies that 0i and OJ cannot belong to the same cluster in any feasible

CHAPTER 2. RELATED WORK

I Feasibility Problem under I Complexity

must-link constraints O(n + m) [31].
cannot-link constraints NP-Complete. By a reduction from

GRAPH K-COLORABILITY [32].
£5-Constraints O(n2

) [32].
f-Constraints O(n:l) [32].

Table 2.1: Complexity Results of the Feasibility Problems under different Constraints

clustering.

14

(c) £5-Constraint (or Minimum Separation Constraint) : 1 For any pair of data ob­

jects 0i and OJ from clusters Cli, respectively Cl j , dist(Oi, OJ) 2 £5 where dist is any

distortion measure.

(d) f-Constraint: For any cluster Cli containing two or more data objects, for any data

object 0i E Cli, there must exist a data object OJ E Cli s.t. dist(Oi, OJ) :::; f.

With those constraints, two natural research questions are: Do instance-level constraints

change the complexity of a clustering problem? How feasible is it to combine two types of

instance-level constraints into a clustering model? Regarding the first question, the following

feasibility problem under instance-level constraints was studied in the literature.

Definition Given a set of data objects D = {o], ... ,on}, a collection of constraints C =
{C], ... ,Cm} where Ci = (Oill Oi2)' Furthermore, two constants Kl and K u where 1 :::; Kl :::;

K u :::; n are given. Note that if C is a £5-constraint or i-constraint, £5 and i are given as well.

Is there a partition of D into K clusters such that Kl :::; K :::; K u and all constraints in C

are satisfied?

The complexity results of these feasibility problems are summarized in Table 2.1. Among

the four types of constraints, only the feasibility problem with cannot-link constraints is NP­

hard. Furthermore, it is natural to study the complexities of the feasibility problems under

combinations of constraints. We list the results from [32] for all other combinations in

Table 2.2.

lThe b-Constraint and the f-Constraint are also considered as cluster-level constraint in several papers.
But in this thesis, we classify them as instance-level constraints since they are defined on pairs of data objects
and can be reduced to instance-level constraints.

CHAPTER 2. RELATED WORK 15

I Must-link constraints I 8-Constraints €-Constraints

Must-link constraints - Solvable in O(n2) NP-Complete
8-Constraints Solvable in O(n:l) - Solvable in O(n:l)
€-Constraints NP-Complete Solvable in O(n:l) -

Table 2.2: Complexity Results of the Feasibility Problems under Combinations of Con­
straints

[33] demonstrates that given a set of n data objects, adding a small number of cannot­

link constraints helps to provide a better clustering. However, when the number of cannot­

link constraints increases, current clustering algorithms experience difficulties to provide

a feasible clustering that satisfy all the constraints. [33] also identifies several sufficient

conditions from graph theory which can be used to identify the easy problem instances in

advance.

Basu et al. [18] proposed a probabilistic framework based on Hidden Markov Random

Fields (HMRF) which incorporates supervision into k-clustering algorithms. This method

solves the clustering problem by minimizing the posterior energy of the HMRF defined

below:

Jobj = L dist(oi,J.Ld+ L Wij<Pdist(oi,oj)lI[li f lj]
~iED (oi,oj)EM

v '----_---....,.------"
(1) (2)

(2.1)L Wij(<PdisLmax - <Pdist(Oi, OJ))lI[li = lj] + log Z
(oi,oj)EC,

+
v

(3)

where 1I is an indicator function satisfying lI[true] = 1 and lI[false] = O.

In the objective function, part (1) is a distortion measure between two observed data

objects. Part (2) is for penalizing the violation of a must-link constraint where <Pdist is a

penalty scaling function. The penalty scaling function is chosen as a monotonically increas­

ing function of the distance between 0i and OJ to reflect the fact that the penalty for violating

a must-link constraint between two distant data objects is higher than that between nearby

data objects. Similarly, part (3) defines the penalty for violating a cannot-link. The exper­

iment in [18] demonstrates that considering instance-level constraints is beneficial and also

shows that the probabilistic framework can achieve good clustering results.

CHAPTER 2. RELATED WORK 16

A recent work [82] shows that the objective function of the HMRF-based semi-supervised

clustering model, as well as that of some graph clustering models, can be expressed as special

cases of weighted kernel k-Means objective. Based on this observation, a unified algorithm

is proposed to perform semi-supervised clustering on data given either as vectors or a graph.

In semi-supervised clustering, instance-level constraints are used to capture users' back­

ground knowledge on individual data objects. Many studies [111,112,18,17] have demon­

strated that by incorporating instance-level constraints one could improve the clustering

performance. For example, the experiments on document clustering in [18] show that a

small number of instance-level constraints can significantly improve the accuracy of cluster­

ing results.

2.4.3 Clustering with Cluster-level Constraints

In many applications, users' background knowledge on a target domain is limited to the

cluster level. For example, in the application of analyzing coexpressed genes[66] , a quality

threshold on each generated cluster helps to achieve better clusterings. Note that in such

applications, constraints are enforced on the generated clusters instead of on the pairs of data

objects. In order to capture these requirements, people introduce cluster-level constraints,

which result in more meaningful clusterings.

The term cluster-level constraint [110] is relatively new despite that clustering models

with some special requirements have been studied for decades. Tung et al. [108] studied this

problem with the name "constraint-based clustering". The proposed constrained clustering

model is essentially a combination of cluster-level constraints and k-clustering.

Definition (Constrained Clustering) Given a data set D with n objects, a distance

function dist : D x D -> n, a positive integer k, and a set of constraints C, find a k­

clustering (CLI, ... ,Clk) such that DISP = (2:::=1 2::oECli dist(o, repi)) is minimized, and

each cluster Cli satisfies the constraints C.

Tung et al. proposed a typical SQL aggregate constraint and a special case named

the existential constraint (defined below), which provides a general form of cluster-level

constraints.

Definition (SQL Aggregate Constraint [108]) Given a database D, each data object

Oi E D is associated with a set of d attributes {A!, ... , Ad}. Consider the aggregation

CHAPTER 2. RELATED WORK 17

functions agg E {maxO,minO,avgO, sumO}· Let () be a comparator function, i.e., () E {~

,~, =j;, =,~, ~}, and c represent a numeric constant. Given a cluster Cl, an SQL aggregate

constraint on Cl is a constraint in one of the following forms: (1) agg(odAjllVoi E Cl)()c

where OdAj] denotes the value of an attribute A j of object 0i; (2) count (Cl)()c.

Definition (Existential Constraints [108])

Given a database D, each data object 0i E D is associated with a set of d attributes

{AI,"" Ad}. Let W ~ D be any subset of data objects. Let m be a positive integer. An

existential constraint on a cluster Cl is a constraint of the form: count ({OdVOi E Cl,Oi E

W}) ~ m.

The existential constraint specifies the minimum number of data objects in a cluster

that belong to a certain set W. Note that in this model W may be the same as D. In such a

case, the existential constraint becomes the minimum significance constraint which requires

every cluster to contain at least a certain number of data objects.

With constraints specified, the clustering problem exhibits some new properties. In the

original k-clustering problem, grouping a data object with the nearest cluster representative

always ends up with an optimal assignment. This property is referred to as Nearest Repre­

sentative Property (NRP). However, as pointed out in [108], in constrained clustering NRP

may not always be satisfied due to possible conflicts between NRP and constraints. In other

words, clustering algorithms sometimes have to sacrifice clustering cost by not assigning

some data objects to its nearest representative in order to satisfy all constraints.

Figure 2.1: Demonstration of the nearest representative property

Constraints introduce new challenges to clustering algorithms, especially to the cluster

assignment procedure. With the NRP property, given k cluster representatives, we can sim­

ply assign each data object to its nearest representative to achieve an optimal clustering with

respect to the given representatives. But when NRP is no longer valid due to constraints,

it is hard to find a valid clustering with the minimal cost. For example, in Figure 2.1 we

are given six data objects in two-dimensional space where a, b, c, d are close to each other

CHAPTER 2. RELATED WORK 18

but far away from e and f. We want to partition the dataset into two clusters with at least

three data objects each. Assume that we have picked a and e as two representatives of

the two clusters. In order to satisfy the existential constraint, exact one of b, c, d has to be

grouped with e, due to which NRP is violated. However, none of these data objects should

be assigned to e if NRP holds. This shows that the process of finding such an optimal

solution for given representatives can be expensive.

Algorithms to Solve the Clustering with Existential Constraints Based on the

research of [108] where the SQL aggregate constraint provides a general form of cluster­

level constraints, the following efforts mainly concentrate on how to solve the constrained

clustering problem efficiently.

An algorithm for finding a valid clustering satisfying existential constraints is proposed

in [108]. The algorithm starts with an initial solution that satisfies user-provided constraints

and then refines the solution by performing confined object movements under constraints.

Thng et al. [108] showed that the problem of moving objects to achieve optimal solution

is NP-hard and suggested several heuristics. Bennett et al. [20] proposed a modified k­

Means algorithm to assign data objects to clusters by solving a minimum cost network flow

problem.

To deal with a special existential constraint, minimum number of data objects constraint,

Banerjee and Ghosh [11] proposed an algorithm which modifies the k-Means algorithm to

satisfy the constraint on each generated cluster. They suggested a three-step scheme to

cluster n data objects into k clusters where each cluster contains at least m data objects

for some given m ~ I in O(knlogn) time. The three steps are sampling, soft-balanced

clustering and populating the clusters while keeping the balance. [Ill also demonstrates that

the three-step process gives a very general methodology for scaling up balanced clustering

algorithms. For the same problem, [102] proposes to convert the clustering problem into a

graph partition problem to achieve a similar goal. However, the complexity of this approach

is higher than the one in [11].

In general, cluster-level constraints are used to capture users' background knowledge

on groups of data objects. They can be used in many applications to discover meaningful

clusters [20, 56]. For example, the existential constraints can help improve the current k­

Means algorithm since the k-Means algorithm often outputs a set of tiny clusters or even

empty clusters when k is large. Bennett et al. [20] suggested to add k existential constraints

CHAPTER 2. RELATED WORK 19

to the underlying clustering optimization problem while each existential constraint specifies

the minimum number of data objects in a cluster. The existential constraint is also utilized

in market segmentation [56] to discover balanced customer groups which are preferable so

that the knowledge extracted from each group has similar significance and are thus easier

to evaluate.

Chapter 3

Customer-Oriented Catalog

Segmentation

Kleinberg et al. [79] proposed a microeconomic framework to evaluate data mining results

by their utilities in decision making. The microeconomic framework for data mining has

in particular been investigated for segmentation (clustering) problems where the enterprise

does not make an optimal decision per individual customer but chooses one optimal deci­

sion per customer segment. In particular, the catalog segmentation problem is to design k

product catalogs of size r that maximize the overall number of catalog products matching

customers' interests. In this framework, the goal of generating useful clusters is achieved by

a sophisticated objective function which is defined based on business needs. In many appli­

cations, the utility function cannot fully capture special requirements which alternatively

can only be captured by constraints. In this chapter, we study a variant of the catalog

segmentation problem where application needs are captured by both the utility function

and constraints. A preliminary version of Chapter 3 was published in [45].

3.1 Overview

The goal of knowledge discovery in databases is to extract knowledge from databases that

is implicit, valid and potentially useful [49]. While the validity of a pattern is relatively

easy to formalize and to check, this turns out to be much harder for the usefulness of a

pattern. The common data mining approach is to automatically find interesting patterns,

20

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 21

Le. patterns that are interesting from a statistical point of view since they are very confident

or unexpected, and to let the user judge the usefulness of the discovered patterns w.r.t.

some given application. This approach, however suffers from two fundamental problems.

First, without a notion of usefulness the search in the space of all patterns cannot be

effectively focused which leads to inefficient data mining algorithms. Second, and even more

importantly, the user will be overwhelmed by a huge number of patterns so that it becomes

very difficult for him to identify the really useful pieces of knowledge. Several researchers

have discussed the necessity of the notion of usefulness and pushing it into the pattern

discovery. So far, however, the only formal framework for mining useful knowledge from

data has been proposed by Kleinberg et al. [79]. In their microeconomic framework for data

mining, they consider an enterprise with a set of possible decisions and a set of customers

that, depending on the decision chosen, contribute different amounts to the overall utility

of a decision from the point of view of the enterprise. It is assumed that the contribution of

a customer is a, possibly complicated, function of the data available on that customer. The

enterprise chooses the decision that maximizes the overall utility over all customers.

The microeconomic framework for data mining has in particular been investigated for

segmentation (clustering) problems where the enterprise does not make an optimal decision

per individual customer but chooses one optimal decision per customer segment. Catalog

Segmentation, a specialized segmentation problem, has received considerable attention [78,

79, 101]: the enterprise wants to design k product catalogs of size r that maximize the

overall customer purchases after having sent the best matching catalog to each customer.

The Catalog Segmentation problem measures the utility of a customer in terms of cata­

log products purchased. But there are many applications where a customer, once attracted

to an enterprise, would purchase more products beyond the ones contained in the catalog.

In the case of traditional brick-and-mortar retailers, for example, a customer typically would

purchase additional products if the catalog has attracted him to visit the store. In the case

of electronic commerce companies, as another example, there is still a substantial overhead

involved in visiting a company's website, and customers that have done so are likely to pur­

chase other products from that website that match their interests. Therefore, we introduce

a minimum interest constraint and investigate an alternative formulation incorporating the

constraint. We measure the overall utility by the number of customers that have at least

a specified minimum interest t in the catalog sent to them. A similar problem has been

mentioned as an open problem in [78]. We call the new problem Customer-Oriented Catalog

CHAPTER 3. CUSTOMER-ORlENTED CATALOG SEGMENTATION 22

Segmentation problem.

The rest of this chapter is organized as follows. Section 3.2 reviews research closely

related to the catalog segmentation problem. In Section 3.3, we formally introduce the

Customer-Oriented Catalog Segmentation problem and analyze its complexity. Section 3.4

presents efficient algorithms for the Customer-Oriented Catalog Segmentation problem. Sec­

tion 3.5 reports the results of our experimental evaluation and comparison. Finally, we

discuss directions for future research on this topic in Section 3.6.

3.2 Background

The microeconomic approach to data mining was introduced by Kleinberg et al. [78J. This

approach formalizes the optimization problem of enterprises based on data and allows the

enterprise to predict the utility of a customer with respect to a chosen decision. As a

model in the microeconomic framework, our customer-oriented catalog segmentation model

is an extension of the catalog segmentation problem utilizing both the utility function and

constraints to capture complex application needs.

In the data mining community, the Catalog Segmentation problem has been treated as

a clustering problem. Steinbach et al. [lOlJ showed that the sampling-based enumeration

algorithm[79] is impractical for realistic problem sizes. Instead, they proposed two alterna­

tive heuristic algorithms and a hybrid algorithm (RCC) combining both of them. The first

algorithm, Indirect Catalog Creation (ICC), groups together similar customers using the

k-Means algorithm and then determines the optimal catalog for each cluster. The second

one, Direct Catalog Creation (DCC), iteratively optimizes k catalogs in a manner similar to

the EM paradigm. Their experimental evaluation demonstrates that DCC and RCC obtain

higher overall profit than ICC.

Another research direction that is inspired by the microeconomic view of data mining

is the extension of association rule mining to take into account the indirect profit of prod­

ucts that are frequently purchased together with some other products. Brijs [24] proposed

PROFSET to model the cross-selling effects by identifying "purchase intentions" in the

transactions. Lin et al. [84] introduced a value added model of association rule mining

where the value could represent the profit, the privacy or other measures of the utility of a

frequent itemset. Wang et al. [114] presented a method for proposing a target item whenever

a customer purchases a non-target item. This method maximizes the total profit of target

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 23

items for future customers. Wang et ai. [113] applied the principle of mutual reinforcement

of hub/authority web pages in order to rank items taking into account their indirect profits.

Addressing a similar problem, Wong et ai. [117] studied the problem of selecting a maxi­

mum profit subset of items based on modeling the cross-selling effects with association rules.

While all these approaches incorporate the notion of utility into the process of association

rule mining, they analyze the relationships between sets of products without considering

which customers have purchased these products. These methods aim at suggesting prod­

ucts to individual customers or selecting subsets of (globally) profitable items, but not at

Catalog Segmentation or clustering customer databases.

3.3 Problem Formulation

In the microeconomic framework for data mining, there is an enterprise with a set of possible

decisions and a set of customers that, depending on the decision chosen, contribute different

amounts to the overall utility of a decision from the point of view of the enterprise. It is

assumed that the contribution of a customer can be determined based on the data available

on that customer. In our case, these data represent the set of products that a customer is

interested in. The customer interest can be obtained either from aggregating the history

of transactions of that customer or from obtaining explicit customer votes on the set of

products. We assume that the (possibly very large) collection of customer data is stored in

a Customers Database (Customers DB).

In order to formally introduce our problem and for the presentation of our algorithms,

we choose to represent the Customers DB as a bipartite graph. We distinguish two sets

of vertices, one for the customers and another one for the products, and an edge denotes

the fact that the corresponding customer is interested in the corresponding product. In the

following, we introduce the graph-based representation and the related notation.

Notation:

• G(P, C, E) denotes a bipartite graph with two vertices sets P, C and the edges set E:

P = { all products },

C = { all customers },

E = { (p, c) Ic is interested in p,p E P, c E C }.

• For \:IP' ~ P, w(P') = {all the vertices in C which have at least an edge connecting

to the vertices in P' }.

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 24

• For VP' s;;; P, t ;::: 1, 'l/J(P', t) = { all the vertices in C which have at least t edges

connecting to the vertices in P' }.

• For VP' s;;; P, C' s;;; C, (}(P', C') = { all the edges in E with one end in P' and the

other in C' }.

• II denotes the cardinality.

The original Catalog Segmentation problem can be defined in a more illustrative graph­

based manner (partition version) as follows [119]: given a bipartite graph G = (P, C, E)

with IFI = m and ICI = n , find a partition of C = C1 U C2 U ... U Ck, and k subsets
k

PI, P2, ... ,Pk of P, such that lFil = rand L /(}(Pi, Ci)/ is maximized. Note that Vi,j,
i=l

i =I j, IPi n Pjl does not have to be empty.

In the following, we formalize our Customer-Oriented Catalog Segmentation model. We

first introduce MEC (Maximum Element Cover), a well known combinatorial problem, whose

goal is to find one catalog such that the maximum number of customers is interested in at

least one of its products.

Definition (Maximum Element Cover)

Given a bipartite graph G = {P, C, E} and a positive integer r, find a subset P' S;;; P with

size r such that Iw(P')1 is maximized.

We generalize the problem for the case of k catalogs and call it k-MEC (k-Maximum

Element Cover) problem.

Definition (k-Maximum Element Cover)

Given a bipartite graph G = {P, C, E} and positive integers r, k, find k subsets P{, ... ,Pk S;;;

P, each with size r, such that Iw(P{) U .,. Uw(PDI is maximized.

Note that in the k-MEC problem, the subset P{, ... 1 Pk do not have to be disjoint.

Finally, we introduce the minimum interest constraint t representing the minimum interest

in a catalog necessary to attract a customer, and extend k-MEC to k-MECWT (k-Maximum

Element Cover With t).

Definition (k-Maximum Element Cover With t)

Given a bipartite graph G = {P, C, E} and positive integers r, k, t, find k subsets P{, ... ,Pk S;;;

P, each with size r, such that I'l/J(P{, t) U ... U 'l/J(Pk, t)1 is maximized.

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 25

The task of the k-MECWT problem is to find k catalogs maximizing the number of

distinct customers who have at least t interesting products in the catalog that is sent to

them.

MEC is a well known NP-Complete problem and can be easily reduced from Set Cover

[51]. In [48], Feige proved that the simple greedy algorithm, iteratively selecting the next

product that covers the largest number of uncovered customers, approximates MEC by a

ratio of at least 1 - lie ~ 0.632. He showed that this ratio cannot be further improved

by any constant number unless P = N P. More generally, by a simple 'lUring reduction

from the Set Cover problem, we can show that the k-MECWT problem is NP-hard for any

k, t 2: 11. Thus, k-MECWT is even harder than the classical Catalog Segmentation problem

which is NP-hard only for k 2: 2. As an example, for k = 1, there is an O(IPI + rlogr)

algorithm solving the Catalog Segmentation problem that simply picks the r products with

the largest number of interested customers2 • But for k-MECWT and k = 1, the simple

algorithm enumerating and testing all combinations of r products has a runtime complexity

of O(lPlr . lei).
From the point of view of clustering, k-MECWT can be understood as follows. The

task of k-MECWT is to find k clusters of customers where each cluster is described by a

set of products and each customer is assigned to the cluster with the most similar cluster

description. There are two constraints for acceptable clusterings: (1) the cardinality of each

cluster description is rand (2) customers can only be assigned to a cluster if they have a

minimum similarity of t to the cluster description. The clustering objective is to maximize

the number of customers assigned to some cluster.

lThe bipartite graph formulation of Set Cover is the following: Given a bipartite graph G = {P, C, E},
an integer r > 0, we want to decide whether there exists a subset R ~ P, with IRI = r, which covers all
elements of C, Le., w(R) = C. The proof idea is that we take an instance I = (G, r) of Set Cover and reduce
it to an instance l' of k-MECWT. To construct the instance I', we first attach t - 1 dummy vertices to P
and link each dummy vertex to every vertex in C, and then copy the new graph by k times to get a graph
G' of 1'. Based on the construction, it is easy to verify that I' is valid if and only if I is a valid instance of
Set Cover. Therefore, k-MECWT is NP-hard.

2Given a graph representation, we need to select r products with the largest degree. This can be done by
a typical Top-r algorithm with running time O(IPI + rlogr).

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION

3.4 Algorithms

26

Since the Customer-Oriented Catalog Segmentation problem is NP-hard, in this section,

we present several efficient heuristic algorithms. All algorithms are based on the graph

representation of the Customers DB. We employ adjacency lists as our major data structure:

for each product, the corresponding adjacency list contains all customers interested in that

product. The list head records the total number of customers in the list. The Customers

DB is read once and transformed into the (main memory) adjacency lists that efficiently

support the manipulation of the graph structure from the point of view of products. For each

customer, we need a counter denoting the number of additional interesting products that

this customer requires to be attracted by the current catalog. This data structure is much

smaller than the adjacency lists, and the overall space complexity of these data structures is

O(IEI + ICI) = O(IEI), i.e. proportional to the number of edges in the graph G. In Section

3.4.1, we explore different greedy, deterministic algorithms. In particular, the Best-Product­

Fit algorithm is a greedy algorithm that constructs one catalog at a time by choosing the

next product for that catalog based on some heuristic quality criteria. The Best-Product-Fit

algorithm is very efficient but, due to its greedy nature, may return a solution which is only

locally optimal. Therefore, we also investigate a randomized algorithm (subsection 3.4.2),

i.e., Random-Product-Fit, that iteratively optimizes the result of a greedy algorithm.

3.4.1 Greedy Algorithm for the k-MECWT Problem

The basic idea of greedy algorithms for the Customer-Oriented Catalog Segmentation prob­

lem is as follows: one catalog is constructed at a time by choosing the "best" next product

for the current catalog. The "goodness" of a product is measured by criteria such as the

number of customers interested and the products already chosen for the catalog.

Since our objective is to maximize the overall number of customers that have enough

interests in at least one of the catalogs, a naive greedy algorithm would always pick the

remaining product with the largest number of interested customers. Customers that are

already interested in at least t products from the current catalog cannot increase the overall

number of customers attracted by that catalog and are not considered by the calculation of

this product goodness.

While the naive greedy algorithm is very efficient, it does not take the threshold t into

account. This decreases the quality of its resulting solutions whenever the product with the

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 27

maximum number of interested customers does not cover (a good number of) customers

that have already been covered by catalog products.

Since the naive greedy algorithm does not take the threshold t into consideration when

choosing the next product, it may choose products interesting for customers whose overall

interests in the catalog may never reach the specified threshold. To avoid this waste of

resources, we need to increase the priorities of products connected to customers which are

already interested in other catalog products. The Best-Product-Fit algorithm (illustrated in

Algorithm 1) assigns a score to each product based on the (remaining) customers interested

in that product and the number of additional interesting products that these customers

need to be attracted to the current catalog. Before stating our algorithm, we define some

notions based on a Customers DB in graph representation G = (P, C, E).

CustomersCovered={customers who have already t interests in one of the catalogs};

C:= C - CustomersCovered.

Counter(c) =the counter associated to customer c. Initially, Counter(c) = t.

We define the score of product p w.r.t the current catalog cat by the following equation:

Score(p) = _2: Coun~er(c) + I{c E C13p' E cat, (p',c) E E, (p,c) E E}I·
cEC,(p,c)EE

The score depends on two terms. The first term represents the weighted sum of all

customers interested in product p, where the weight of the customer is the inverse of its

counter (the weight is the higher, the more interests the customer already has in the current

catalog). The second term focuses only on customers that are already interested in at least

one of the current catalog products and measures how many of these customers are also

interested in p. As an optimization, for the second term, we do not count the customers

who need more than r - Icatl further products to be fully covered. The pseudocode of the

Best-Product-Fit algorithm is illustrated in Algorithm 1.

To show the difference to the naive greedy algorithm, we apply this algorithm to the

example in Figure 3.1. The computation is shown in Table 3.1.

With the Best-Product-Fit algorithm, the first catalog includes customer 1 and 2 which

is actually the best solution we can get for this particular example.

The runtime complexity of the Best-Product-Fit algorithm is O(krlEI) where lEI is the

total number of edges in the graph, i.e. the total number of interests over all customers.

CHAPTER 3. CUSTOMER-ORiENTED CATALOG SEGMENTATION

Algorithm 1 Best-Product-Fit:

28

1: Input: (1)Customers DB G = (P, C, E), (2)number of catalogs k, (3)number of products
in each catalog r, (4)the threshold t

2: Output: k catalogs of customers
3: Initialize Counter(c) = t for all customers.
4: for i = 1 to k do
5: for j = 1 to r do
6: for each pEP do
7: Calculate Score(p)
8: Add p with the largest Score(p) to Catalog i
9: for each c with (p, c) E E do

10: Counter(c) = Counter(c) - 1
11: Remove customers whose counter is 0 and recalculate Score(p) for all products

interesting to those customers.
12: for each c E C do
13: if Counter(c) ~ 0 then
14: Counter(c) = t
15: Return k Catalogs

The algorithm requires only one scan of the database if the memory can hold the neces­

sary data structures. Otherwise, we can adopt the divide-and-conquer approach to scale up

the Best-Product-Fit algorithm. First, we partition the Customers DB into several subsets

DB I , DB2 , •• . ,DBp that each can fit into the memory. Then we apply the Best-Product-Fit

algorithm to each subset DBi to determine k catalogs and combine those k· p catalogs into

k final catalogs. This algorithm still requires only one database scan.

Beer 1 2
Diaper 1 1.5
Pencil 1 1.5
Milk 1 1
TV 1.5 -

Candidate TV Beer

Counter (c)
c step 0 step 1

1 2 1
2 2 1
3 2 1
4 2 2

5 2 2

p
I Score(p) I

step 0 I step 1

Table 3.1: Illustration of Best-Product-Fit

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 29

Products Customers

, Beer~-=--------f--:-.

PencJl

]V

Figure 3.1: Example Customers DB in Graph Representation.

3.4.2 Randomized Algorithm

The greedy algorithm finds a local optimum only. It may include products into its catalogs

that are interesting for many customers that ultimately may not have enough interest (i.e.

t interesting products) in the catalog. This weakness is due to the heuristic nature of the

quality criterion for individual products and to the deterministic nature of the algorithm.

The proposed greedy algorithm has no means of backtracking from some suboptimal choice

of a catalog product. This problem is illustrated by the example in Figure 3.2 with k = 2,

t = 2 and r = 2. The Best-Product-Fit algorithm would pick Diaper first since it has largest

number of interested customers and then select Beer as the second product of Catalogl

because it covers two customers who have already been interested in Diaper. Diaper is still

the product with the largest number of interested customers who have not yet been covered

by the Catalogl and is therefore chosen as the first product of Catalog2. As the second

product, VCR is chosen because it is interesting for customer 7 (that is already interested in

the first catalog product) and for customer 8 and 9. In this solution, only customer 7 meets

the interest threshold, while Catalog2 = {VCR, Coke} covers three customers (7,8,9). Due

to the lack of a look-ahead mechanism, the choice of Diaper as the first product of Catalog2

leads into a local optimum that cannot be escaped by the greedy method.

In order to overcome these limitations, randomized algorithms seem to be promising.

Since the performance of randomized algorithms crucially depends on appropriate initial

solutions, we propose to combine the greedy deterministic algorithm with a randomized

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 30

Customers
1

--:==- 2

e"'(~~=-----=C'=ll 3

Ie ", ;
••..~6

.~~
VCR

Coke

Products

Beer E'
Diaper ,~.

Pencil!

Milk
TV

Bike

Figure 3.2: Customers DB in Graph Representation

algorithm in a two-step approach (Random-Product-Fit):

1. A greedy deterministic algorithm (e.g. Best-Product-Fit) is used to efficiently deter­

mine a good solution of the Customer-Oriented Catalog Segmentation problem.

2. The resulting catalogs and corresponding clusters are iteratively optimized by ran­

domly replacing one catalog product by a non-catalog product (Random-Product­

Switch).

There are different alternatives for the second randomized step with more or less deter­

ministic aspects. A fully randomized algorithm would randomly select one of the catalogs,

one of its products and one non-catalog product for replacement. More deterministic ver­

sions would select the catalog and the product to be replaced in a deterministic way, e.g. in

a round robin fashion. There are two major types of termination conditions for randomized

algorithms. They can terminate either after a user-specified number of iterations or as soon

as the number of customers covered no longer increases. For simplicity, we propose a fully

randomized algorithm with a user-specified number of iterations.

To efficiently support our randomized algorithm, we introduce an additional data struc­

ture for each customer c consisting of a customer id (Id) and one list of products for each

of the catalogs recording the interesting products (Cataloglnterests[kJ). This data structure

enables us to efficiently calculate the gain (6) in the number of customers covered caused

by the replacement of catalog product p by p'. The space requirement of this additional

data structure is 4k . ICI bytes. The pseudocode of the Random-Product-Switch algorithm

is provided in Algorithm 2.

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION

Algorithm 2 Random-Product-Switch:

31

1: Input: (l)k catalogs & k corresponding clusters of customers (2)number r of products
in each catalog, (3)the threshold t and (4)number of iterations s

2: Output: k catalogs & k corresponding clusters of customers
3: Calculate the number Ncustamer of all customers
4: for n = 1 to s do
5: Randomly select a catalog cat
6: Randomly select a product p from cat
7: Randomly select a non catalog product pi from {P - cat}
8: Calculate the gain 6" in Ncustamer by replacing p with pi
9: if 6" ?: 0 then

10: Replace p by pi in cat
11: Ncustamer = Ncustamer + 6"
12: Return k clusters of customers with k catalogs

The runtime complexity of the Random-Product-Switch method is O(skICI) since in

the second step, in each iteration, for each customer we need to access all k elements of

CatalogInterests[k] in order to update the number Ncustomer of all covered customers. As

the two-step Random-Product-Fit approach consists of (1) Best-Product-Fit (2) Random­

Product-Switch methods, the overall runtime complexity of Random-Product-Fit is O(krIEI+

skICI)·

3.5 Experimental Evaluation

In this section, we report the results of our experimental evaluation using synthetic as

well as real datasets. The synthetic datasets were generated using the well-known IBM

data generator [6]. The real dataset records the purchasing transactions of the customers

of a large Canadian retailer over a period of several weeks. Since the Customer-Oriented

Catalog Segmentation problem has not yet been addressed in the literature, we compare

our proposed algorithms with one of the state-of-the-art algorithms [101] for the related

Catalog Segmentation problem. We choose DCC as our comparison partner because of

the following two reasons. First, the experimental evaluation in [101] shows that DCC,

together with HCC, achieves the highest quality results. Second, DCC scales better to large

customers databases than HCC because DCC can, different from HCC, use storage efficient

adjacency lists instead of an adjacency matrix. We report the results of the algorithms w.r.t.

utility(quality).

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 32

We evaluate the quality of the catalogs obtained by our algorithms Best-Product-Fit

and Random-Product-Fit as well as DCC. Since DCC has been developed for a related, but

different problem formulation, we measure the resulting quality w.r.t. both the objective

functions of classical Catalog Segmentation (catalog products purchased) and Customer­

Oriented Catalog Segmentation (customers covered). To demonstrate the extra profit

achievable by Customer-Oriented Catalog Segmentation, we also measure the number of

non-catalog products that are additionally purchased by customers interested in their cor­

responding catalogs.We report results for a dataset with lei = 50,000, IFI = 7,374 and

lEI = 376,713 that seems to be representative for a medium-sized customers database. For

the real dataset, lei = 45,394, IFI = 23, 182 and lEI = 355,908.

We compare the numbers of the customers covered (Le., interested in at least t catalog

products) W.r.t. t, k and r on the synthetic dataset. The impact of different values of t w.r.t.

the numbers of customers covered is depicted in Figure 3.3(a) in the case of r = 80 and k = 3,

both Best-Product-Fit and Random-Product-Fit yield higher coverages of customers than

DCC, while Random-Product-Fit always covers more customers than Best-Product-Fit.

While the effects of different k values on the total number of covered customers in the

case of r = 60 and t = 2 shown in Figure 3.3(b), reflects the fact that more customers will be

covered if more catalogs are created. Random-Product-Fit method always covers the largest

number of customers since it has more chances to check and switch more catalog products

to cover more customers. Best-Product-Fit still covers more customers than DCC. These

results are confirmed by our experiments on the real dataset. The corresponding numbers of

covered customers in Figure 3.6(a) shows the corresponding numbers of covered customers

for r = 30 and t = 2. It also illustrates that the advantage of Random-Product-Fit compared

to Best-Product-Fit grows with increasing k values.

The relationship between the size r of the catalog and the number of covered customers

with k = 3 and t = 2 provided in Figure 3.4(a), has similar results as Figure 3.3(b). For

example, for r = 100, the catalog generated by Random-Product-Fit attracts 2,700 (22%)

more customers than the DCC catalogs.

The profit in terms of the total numbers of catalog products and the numbers of extra

products (beyond the catalogs) W.r.t. t, k and r are also investigated on the synthetic

dataset. When measuring the number of catalog products covered, these experiments favor

DCC due to the different objectives of the comparison partners.

We observe the numbers of products covered w.r.t different values of t in the case of

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 33

C"__ " __
"hltt-Product-Fk" --10-- "Bnl-Produd-Fr-

"RIlnlIom-Pltlduct-Fll" ...• --. ~roduct·Ar ...•..

2000 1'---------,',.•:-----I.~----!:2.~----'-'---:,'=-.• ~---.L-~--,'•.•:-----'
k(r-60,t.2)

12000

..•
.....

,.•
I (r-eo,k_3)

"''''''

",'''''

I
~

-
2000

0
2 2.'

(a) Customers covered vs. t (b) Customers covered vs. k

Figure 3.3: Synthetic Dataset Test 1

··_-_··_···_,··....~'··_···..;..-~·_·_.::.·~~·~~-:.;.~~:-:':--4.~~:'::~:.,~"
..~;.""":..

..

.....--"';!,;~~~."RIJndont.PrDdu-Flt~ .. -If···

"!lCC~o... ,.
"Bnt-Producl-FI xtnIProducta· ~._-.

~roduct-Flt --

2.'

15000 '50000

'40000,_
120000

'2000 ooסס10

i J~ ooסס1 80000

• ~
5000 50000

5000 40000

- 20000

21XlO 0
0 20 .. 50 '00 120 2

r(kIl3,t"2)

(a) Customers covered vs. r (b) Products covered vs. t

Figure 3.4: Synthetic Dataset Test 2

r = 80 and k = 3 in Figure 3.4(b). It is expected that DCC covers more products in the

catalogs than our methods, but both Best-Product-Fit and Random-Product-Fit have higher

extra profits on non-catalog products than DCC. Finally, Random-Product-Fit always covers

more extra products than Best-Product-Fit.

It is clear to see the effects of different k values on the same quality measures for r = 60

and t = 2 in Figure 3.5(a). All three methods have similar performance w.r.t. the profit on

catalog products. However, both of our methods clearly outperform DCC w.r.t. the extra

profit from non-catalog products. For example, for k = 5, Random-Product-Fit achieves an

extra profit of 40,000 products (30%) compared to DCC. We obtain similar results on the

real dataset, e.g. with r = 30 and t = 2 (Figure 3.6(b)). Figure 3.5(b) shows how the

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 34

o,'-------",.':-'__~_--:'/:--,_~,_----c:',.,:----'-~..,:---J

k(r-60,I-2)

_.-----..

.'
l6DOOO

"",>DO

140000

I:: .j"'"

'~L~/
o '" ----"'-------c"'"o------:""'--~'OO:---...,J,'"

r{k-3,ts2)

0'.······· .20000 .,

(a) Products covered vs. k (b) Products covered vs. r

Figure 3.5: Synthetic Dataset Test 3

12000

6DOOO

ooסס7

40000,L.._--',':c.,_---'-_--".':-,__.'-------"•.~,_---'--_~,,:-------'
k(r_30. "'2)

•.......

........... ...--_ --
....:-"---'

ooסס1 r--,-----,-----,-----,-----,-----,-----,"OCC,....,.,..-~---,.

"Be-':-PTodud-FI" ;.--,':
"Random-P~.fIl"....•.

,..-
.........,

....., .
•••••-,r"

.............
..•.. ,.--
T'

..•... ,....

......,..

13000 ,'.':>'"

11000,L.---,,'-:,----'---c,~,--~;--.~:5----':----,'":-,--J

k 1'- 30, "'2)

(a) Customers covered vs. k (b) Products covered vs. k

Figure 3.6: Real Data Test 1

size r of the catalog affects the number of covered catalog products and extra products with

k = 3 and t = 2. The results are comparable to the results in Figure 3.5(a).

3.6 Summary

The microeconomic view of data mining is one of the most promising theoretical frameworks

evaluating data mining results by their utilities in decision making. Since the utility function

is often designed based on business needs, the generated clusters are more useful and action­

able than the ones discovered by generic data-driven methods. This data mining framework

CHAPTER 3. CUSTOMER-ORIENTED CATALOG SEGMENTATION 35

has in particular been investigated for segmentation problems such as the Catalog Segmen­

tation problem. In this chapter, we have investigated an alternative problem formulation

integrating a minimum interest constraint t which allows us to measure the overall utility by

the number of customers who are interested in at least t products in the catalog. We have

formally introduced the Customer-Oriented Catalog Segmentation problem and discussed

its complexity. We have presented efficient, heuristic algorithms adopting the paradigms

of greedy and randomized algorithms. Our experimental evaluation on synthetic and real

data showed that the new algorithms yield catalogs of significantly higher utility compared

to classical Catalog Segmentation algorithms. Our best algorithm, Random-Product-Fit,

achieves an excellent tradeoff between quality and runtime by optimizing a greedily deter­

mined initial solution in a randomized manner.

This research does not only have many promising applications, but also indicates several

interesting directions that deserve further investigation. In order to better judge the relative

utility values obtained by different algorithms, it is necessary to develop methods to estimate

the utility of the optimal solution. The optimum can only be approximated since k-MECWT

is NP-hard even for k = 1, t = 1. To make the k-MECWT model even more realistic, it

could be generalized by replacing the crisp threshold by a probabilistic threshold, Le., a

customer would be attracted to a catalog with some probability. The Customer-Oriented

Catalog Segmentation model could also be studied in the case that the number of catalogs

is not set in advance, but there is a fixed cost for each catalog. Finally, Customer-Oriented

Catalog Segmentation could be combined with association rule mining techniques to find

novel types of customer purchase patterns.

Chapter 4

Joint Cluster Analysis

Attribute data and relationship data are two principal types of data, representing the in­

trinsic and extrinsic properties of entities. While attribute data have been the main source

of data for cluster analysis, relationship data such as social networks or metabolic networks

are becoming increasingly available. It is also common to observe both data types carry

complementary information such as in market segmentation and community identification,

which calls for a joint cluster analysis of both data types so as to achieve better results. In

this chapter, we introduce the novel Connected k-Center problem, a joint clustering model

taking into account both attribute data and relationship data. In the model, an internal

connectedness constraint is defined on relationship data and the objective function measur­

ing the compactness of the generated clusters is defined on attribute data. Integrating the

constraints and the objective function allows us to search for clusters that are both cohesive

(within clusters) and distinctive (between clusters) in both attribute data and relationship

data. A preliminary version this Chapter was published in [44, 52].

4.1 Overview

Entities can be described by two principal types of data: attribute data and relationship

data. Attribute data describe intrinsic characteristics of entities whereas relationship data

represent extrinsic influences among entities. While attribute data have been the standard

and dominant data source in data analysis applications, more and more relationship data

are becoming available. Among them, to name a few, are acquaintance and collaboration

networks as social networks, and ecological, neural and metabolic networks as biological

36

CHAPTER 4. JOINT CLUSTER ANALYSIS 37

networks. Consequently, network analysis [115, 95, 116] has been gaining popularity in the

study of marketing, community identification, epidemiology, molecular biology and so on.

Depending on the application and the chosen data representation, the two types of data,

attribute data and relationship data, can be more or less related. If the dependency between

attribute data and relationship data is high enough such that one can be deduced from or

closely approximated by the other, a separate analysis on either is sufficient. However,

often relationship data contain information that goes beyond the information represented

in the attributes of entities. For example, two persons may have many characteristics in

common but they never got to know each other; on the other hand, even with very different

demographics, they may happen to become good acquaintances. Due to rapid technological

advances, the mobility and communication of humans have tremendously improved. As a

consequence, the formation of social networks is slipping the leash of confining attributes

[115, 95].

The unprecedented availability of relationship data carrying important additional infor­

mation beyond attribute data calls for a joint analysis of both. Cluster analysis, one of the

major tools in exploratory data analysis, has been investigated for decades in multiple dis­

ciplines such as statistics, machine learning, algorithms, and data mining. Varied clustering

problems have been studied driven by numerous applications including pattern recognition,

information retrieval, market segmentation and gene expression profile analysis, and emerg­

ing applications continue to inspire novel clustering models with new algorithmic challenges.

The task of clustering is to group entities into clusters that exhibit internal cohesion and

external isolation. Given both attribute data and relationship data, it is intuitive and nec­

essary to require clusters to be cohesive (within clusters) and distinctive (between clusters)

in both ways, which can only possibly result from a joint cluster analysis.

With profound differences in nature between the two data types, it is difficult to obtain a

single combined objective measure for joint cluster analysis. Instead, we propose to optimize

some objective derived from the continuous attribute data and to constrain the discrete

relationship data. In this chapter, we introduce and study a novel clustering model taking

into account both data types, the Connected k-Center (CkC) problem, which is essentially

the k-Center problem with the constraint of internal connectedness on relationship data. The

internal connectedness constraint requires that any two entities in a cluster are connected by

an internal path, Le., a path via entities only from the same cluster. The k-Center problem,

as a classical clustering problem, has been intensively studied in the algorithms community

CHAPTER 4. JOINT CLUSTER ANALYSIS 38

from a theoretical perspective. The problem is to determine k cluster heads (centers) such

that the maximum distance of any entity to its closest cluster head, the radius of the cluster,

is minimized.

The CkC problem can be motivated by market segmentation, community identifica­

tion, and many other applications such as document clustering, epidemic control, and gene

expression profile analysis. In the following, we further discuss the first two applications.

Market segmentation is the process of dividing a market into distinct customer groups

with homogeneous needs, such that firms can target groups effectively and allocate resources

efficiently, as customers in the same segment are likely to respond similarly to a given

marketing strategy. Traditional segmentation methods are based only on attribute data such

as demographics (age, sex, ethnicity, income, education, religion, etc.) and psychographic

profiles (lifestyle, personality, motives, etc.). Recently, social networks have become more

and more important in marketing [68]. Ideas and behaviors are contagious. The relations in

networks are channels and conduits through which resources flow [68]. Customers can hardly

hear companies but they listen to their friends; customers are skeptical but they trust their

friends [116]. By word-of-mouth propagation, a group of customers with similar attributes

have much more chances to become like-minded. Depending on the nature of the market,

social relations can become vital in forming segments, and purchasing intentions or decisions

may rely on customer-to-customer contacts to diffuse throughout a segment, for example,

for cautious clients of risky cosmetic surgery or parsimonious purchasers of complicated

scientific instruments. The CkC problem naturally models such scenarios: a customer is

assigned to a market segment only if he has similar purchasing preferences (attributes) to the

segment representative (cluster center) and can be reached by propagation from customers

of similar interest in the segment (the internal connectedness constraint).

Community identification is one of the major social network analysis tasks, and graph­

based clustering methods have been the standard tool for the task [115]. In this application,

clustering has generally been performed on relationship (network) data solely. Yet it is intu­

itive that attribute data can impact community formation in a significant manner [95, 64].

For example, given a scientific collaboration network, scientists can be separated into differ­

ent research communities such that community members are not only connected (e.g., by

co-author relations) but also share similar research interests. Such information on research

interests can be automatically extracted from homepages and used as attribute data for

CHAPTER 4. JOINT CLUSTER ANALYSIS 39

the CkC problem. As a natural assumption, a community should be at least internally

connected with possibly more constraints on the degree of connectivity. Note that most

graph-based clustering methods used for community identification in network analysis also

return some connected components.

The rest of the chapter is organized as follows. Related work is reviewed in Section 4.2.

Section 4.3 introduces the CkC clustering problem and analyzes its complexity. In Sec­

tion 4.4, we provide a constant factor approximation algorithm for the CkC problem. Sec­

tion 4.5 studies the CkC problem for the special case of tree-structured relationship data. To

achieve better scalability, in Section 4.6 we present the efficient heuristic algorithm NetScan.

We report experimental results in Section 4.7. Finally, we discuss future directions in Sec­

tion 4.8.

4.2 Background

We survey the related work to our model as follows.

Theory and algorithms: The CkC problem we study is essentially the k-Center problem

with the constraint of internal connectedness on relationship data. It is well known that

both the k-Center and Euclidean k-Center problems are NP-hard for d (dimensionality) ~ 2

and arbitrary k [88]. However, as we will see in Section 4.3, the CkC problem remains

NP-Complete even for k = 2 and d = 1. In this sense, the CkC problem is harder than the

Euclidean k-Center problem.

Some facility location problems, such as the recently studied Connected k-Median prob­

lem [103], are closely related to our CkC problem. As a variant of the facility location

problem, the Connected k-Median problem additionally considers the communication cost

among facilities, whereas our CkC problem requires within-cluster connectedness. While

all of these optimization problems are related to our study in the sense that they also study

clustering from a theoretical perspective, they do not perform joint cluster analysis, and they

do not require clusters to be cohesive with respect to both attribute data and relationship

data.

Data mining: In the data mining community, clustering research emphasizes more on real

life applications and development of efficient and scalable algorithms. While most clus­

tering algorithms, e.g. k-Means, assume data to be represented in a single table, recently

multi-relational clustering algorithms have been explored which can deal with a database

CHAPTER 4. JOINT CLUSTER ANALYSIS 40

consisting of multiple tables related via foreign key references. In particular, Taskar et al.

[106] presented a multi-relational clustering method based on Probabilistic Relational Mod­

els (PRMs). PRMs are a first-order generalization of the well-known Bayesian Networks.

The problem addressed in this chapter, Le. clustering a single table with attributes and

relationships, can be understood as a special case of multi-relational clustering. However,

the approach by Taskar et al. is not applicable in this scenario since PRMs do not allow

cycles which often occur in relationships within a single table.

Social network analysis and graph clustering: Recently, the increasing availability

of relationship data has stimulated research on network analysis [115, 95, 64]. Clustering

methods for network analysis are mostly graph-based, separating sparsely connected dense

subgraphs from each other as in [23]. A good graph clustering should exhibit few between­

cluster edges and many within-cluster edges. More precisely, graph clustering refers to a set

of problems whose goal is to partition nodes of a network into groups so that some objective

function is minimized. Several popular objective functions, e.g. normalized cut [97] and ratio

cut [27], have been well studied. Those graph clustering problems can be effectively solved

by spectral methods that make use of eigenvectors. Recently, Dhillon et al. [37] discovered

the equivalence between a general kernel k-Means objective and a weighted graph clustering

objective. They further utilize the equivalence to develop an effective multilevel algorithm,

called GraClus, that optimizes several graph clustering objectives including the normalized

cut. The experiments in [37] show that GraClus can beat the best spectral method on

several clustering tasks.

Graph clustering methods can be applied to data that are originally network data. The

original network can be weighted where weights normally represent the probability that two

linked nodes belong to the same cluster [97]. In some cases, the probability is estimated by

the distance between linked nodes on attribute data. Moreover, graph clustering methods

can also be applied to similarity graphs representing similarity matrices, which are derived

from attribute data. A similarity graph can be a complete graph as in the agglomerative

hierarchical clustering algorithms, e.g., single-link, complete link, and average link [69], or

incomplete retaining those edges whose corresponding similarity is above a threshold [60, 65].

CHAMELEON [74] generates edges between a vertex and its k nearest neighbors, which can

be considered as relative thresholding.

There are two major differences between graph clustering, in particular the normalized

cut, and CkC. On the one hand, the graph clustering model does not require the generated

CHAPTER 4. JOINT CLUSTER ANALYSIS 41

clusters to be internally connected which makes it somewhat more flexible than CkC. Yet,

for some applications such as market segmentation and community identification, CkC fits

better than the graph clustering model as these applications often require the generated

clusters to be internally connected. On the other hand, in graph clustering, attribute data

is used only indirectly by using distances between nodes as edges weights, which may lose

important information since it reduces the d-dimensional attribute data of two connected

nodes to a single, relative distance value. In CkC, attribute data are used directly, avoiding

information loss.

Constrained clustering and semi-supervised clustering: Joint cluster analysis is also

related to the emerging areas of semi-supervised clustering. The existing semi-supervised

methods are similar to our research in the sense that they also adopt a k-clustering approach

under the framework of constrained clustering. Nevertheless, in semi-supervised clustering,

links represent specific instance-level constraints on attribute data. They are provided by

the user to capture some background knowledge. In our study, links represent relationship

data. They are not constraints themselves, but data on which different constraints can

be enforced, such as being "internally connected". Enforcing the connectedness constraint

should lead to cohesion of clusters with respect to relationship data, so that clusters can be

cohesive in both ways.

Bioinformatics: There have been several research efforts that consider both attribute and

relationship data in the bioinformatics literature. With the goal of identifying functional

modules, Hanisch et ai. [63] proposed a co-clustering method for biological networks and

gene expression data by constructing a distance function that combines the expression dis­

tance and the network distance. However, their method cannot guarantee that the resulting

clusters are connected. Segal et ai. [96] introduced a probabilistic graphical model, combin­

ing a Naive Bayes model for the expression data and a Markov random field for the network

data. While the probabilistic framework has the advantage of representing the uncertainty

of cluster assignments, it cannot ensure the connectedness of the resulting clusters. Ulitsky

and Shamir [109] presented an algorithmic framework for clustering gene data. Given a gene

network and expression similarity values, they seek heavy subgraphs in an edge-weighted

similarity graph. Similar to our model, this model requires the generated clusters to be

connected. Different from the CkC model, their model does not search for a partition of

the whole dataset, i.e. , not every gene needs to be assigned to a cluster.

CHAPTER 4. JOINT CLUSTER ANALYSIS

4.3 Problem Definition and Complexity Analysis

42

In this section, we formally define the Connected k-Center (CkC) problem. We prove the

NP-completeness of the decision version of the CkC problem through a reduction from the

3SAT problem. The key observation in this proof is the existence of so-called "bridge"

nodes, which can be assigned to multiple centers and are crucial to link some other nodes to

their corresponding centers within a certain radius. We construct a polynomial reduction

showing that finding the assignment of these bridge nodes is at least as hard as finding the

satisfying assignment for any instance of 3SAT.

4.3.1 Preliminaries and problem definition.

Attribute data can be represented as an n x m entity-attribute matrix. Based on a chosen

similarity measure, pairwise similarities can be calculated to obtain an n x n entity-entity

similarity matrix. Relationship data are usually modeled by networks comprised of nodes

and links, which we call entity networks. In this chapter, we concentrate on symmetric

binary relations, thereby entity networks can be naturally represented as simple graphs

with edges (links) as dichotomous variables indicating the presence or absence of a relation

of interest such as acquaintance, collaboration, or transmission of information or diseases.

Nodes in an entity network do not have meaningful locations. With attribute data

available, attributes for each entity can be represented as a coordinate vector and assigned

to the corresponding node, resulting in what we call an "informative graph". Informative

graphs, with both attribute data and relationship data embedded, are used as input for our

Connected k-Center problem.

In this chapter, the terms "vertex" and "node" are used interchangeably, so are "edge"

and "link". In the following sections, "graph" will refer to "informative graph" since we

always consider the two data types simultaneously.

The Connected k-Center (CkC) problem performs a joint cluster analysis on attribute

data and relationship data, so that clusters are cohesive in both ways. The problem is to

find a disjoint k-clustering (k-partitioning) of a set of nodes, such that each cluster satisfies

the internal connectedness constraint (defined on the relationship data), and the maximum

radius (defined on the attribute data) is minimized. The radius of a cluster is the maximum

distance of any node in the cluster to the corresponding center node. A formal definition of

the Cke problem is given in the following.

CHAPTER 4. JOINT CLUSTER ANALYSIS 43

Definition (CkC problem) Given an integer k, a graph G = (V, E), a function w : V ----; nd

mapping each node in V to a d-dimensional coordinate vector, and a distance function II· II,
find a k-partitioning {VI, ... ,Vd of V, Le. , Vi U... UVk = V and \7'1 ::; i < j ::; k, Vi n Vj =
¢, such that the partitions satisfy the internal connectedness constraint, Le., the induced

subgraphs G[VI], ... , G[Vk] are connected, and the maximum radius defined on II . II is

minimized.

In this study, we assume the given graph G is connected, which is reasonable for many

application scenarios, e.g., social networks are normally considered to be connected. Even if

the entire graph is not connected, the problem can still be applied to individual connected

components.

4.3.2 Complexity analysis.

Due to the similarity of the CkC problem to the traditional k-Center problem, it is natural

to ask the following question: How much has the traditional k-Center problem been changed

in terms of hardness by adding the constraint of internal connectedness? To answer this

question, we analyze the complexity of the CkC problem. In the following, we define

the decision version of the CkC problem and prove its NP-completeness. Note that in this

subsection of complexity analysis, the names of the problems refer to their decision versions.

Definition (CkC problem, decision version) Given an integer k, a graph G = (V; E), a

function w : V ----; nd mapping each node in V to a d-dimensional coordinate vector, a

distance function II . II, and a radius threshold r E n+, decide whether there exists a k­

partitioning {Vi, .. . ,Vd of V, Le. , VI U ... U Vk = V and \7'1 ::; i < j ::; k, Vi n Vj = ¢,

such that in addition to the internal connectedness constraint, the partitions also satisfy

the radius constraint, Le., \7'1 ::; i ::; k, there exists a center node Ci E Vi, such that \7'v E Vi,
IIw(v) - w(Ci)11 ::; r.

Intuitively, the problem is to check whether the input graph can be divided into k disjoint

connected components, such that each component is a cluster with radius less than or equal

to r, Le. , in each cluster, there exists a center node c and all the remaining nodes are within

distance r to c.

We will prove an NP-completeness result for fixed k. As the formal analysis is rather

technical, we precede it with an intuitive explanation. We say a solution (or partitioning)

CHAPTER 4. JOINT CLUSTER ANALYSIS 44

is legal if all the k partitions (or clusters) are disjoint and the corresponding induced sub­

graphs are connected. Since k is fixed as a constant, a naive algorithm would enumerate

all the combinations of k centers, and for each combination assign the remaining nodes to

the centers such that both the internal connectedness and radius constraints are satisfied.

However, we note that there may exist some "bridge" node v which can connect to multiple

centers within distance r and is critical to connect some other nodes to their corresponding

centers. In a legal partitioning, every bridge node must be assigned to a unique center. If

there are many such bridge nodes, it is difficult to assign each of them to the "right" center

in order to maintain the connection for others. Therefore, the naive algorithm may fail to

determine a legal partitioning. Intuitively, the CkC problem is hard even for a fixed k. In

the following, we prove a hardness result for the CkC problem by a reduction from 3SAT.

For convenience, we state the 3SAT problem as follows:

Definition (3SAT problem) Given a set U = {Ul,' .. ,un} of variables, a boolean formula

I = C1 1\ C2 1\ ... 1\ Cm where each clause Ci = If V qV q contains three literals and each

literall;, x = 1,2,3, is a variable or negated variable, decide whether there exists a truth

assignment of U that satisfies every clause of C.

Theorem 4.3.1 For any k 2 2 and d 2 1, the CkC problem is NP-Complete.

Proof. We only construct a proof for the case of k = 2 and d = 1, the proof can be easily

extended to any larger k and d.

First, we show C2C is in NP. We can nondeterministically guess a partitioning of graph

G and pick a node as center from each partition. For each partition, we can traverse

the corresponding subgraph in polynomial time to verify whether it is a legal partitioning

satisfying the radius constraint.

Next, we perform a reduction from 3SAT to show the NP-hardness of C2C. Let L =

{Ul' tll, ... ,Un, un} be a set of literals. For any 3SAT instance I = Cl 1\ C2 1\ ... 1\ Cm,

we construct a C2C instance f(I) = (G,w,r), where G = (V,E) is the underlying graph,

w : V -t R is the function mapping nodes to coordinate vectors, and r E n+ is the radius

constraint, by the following procedure:

1. Create a set of nodes V = PULuCUAUB. P = {po, pI} where Po and PI are two center

nodes. Land C are the sets of literals and clauses respectively. A = {aI, ... ,an} and

B = {b1 , .•• , bn } are two sets of nodes introduced only for the purpose of the reduction.

CHAPTER 4. JOINT CLUSTER ANALYSIS

0 , }, 3, 4,

• • • • •
b, P. "'J ,N, P, 0/ C,

Po P, b. II~. u. a. c.

Figure 4.1: Constructed graph Figure 4.2: Deployment of nodes on
G. the line.

45

2. Connect the nodes created in step (1). We link each literal l E L to both Po and

Pl. For each literal l ELand clause Ci E C, we link l to Ci if l E Ci . For each

i E {I, 2, ... , n}, we link ai and bi to both Ui and 'iii.

3. Set an arbitrary positive value to r and assign each node v E V a coordinate as follows:

0, if v E B;

r, if v = Po;

w(v) = 2r, if vEL;

3r, if v = PI;

4r, if v E A uC.

Steps (1) and (2) construct the underlying graph G. A visual explanation of the con­

struction method is provided in Figure 4.1. Note that every node in A, B, C can only connect

to the center nodes Po and PI via some nodes in L.

Step (3) assigns each node in V a carefully chosen coordinate, such that each node in

A, B, C is within distance r to one unique center node Po or Pl. Figure 4.2 illustrates the

deployment of nodes on the line.

In order to have a legal partitioning (partitions are disjoint and satisfy the internal con­

nectedness constraint), every node in L must be assigned to an appropriate center (cluster).

For the reduction, we associate a truth value (true or false) to each cluster; accordingly, the

allocations of these nodes can then be transferred back to a truth assignment for the input

3SAT instance I. Besides, we need to guarantee that the truth assignment for I is proper,

i.e., Vi E {I, 2, ... , n}, node Ui and 'iii belong to different clusters. Node sets A and Bare

CHAPTER 4. JOINT CLUSTER ANALYSIS 46

two gadgets introduced for this purpose.

Clearly the above reduction is polynomial. Next, we show I is satisfiable if and only if

f(1) = (G, w, r) has a legal partitioning satisfying the radius constraint. We use "Ifo and Vi

to refer to the clusters centered at Po and Pi respectively.

If f(I) = (G, w, r) has a legal partitioning satisfying the radius constraint, we have the

following simple observations:

1. Both Po and Pi must be selected as centers, otherwise some node cannot be reached

within distance r.

2. For the same reason, each node in A and C must be assigned to cluster Vi and each

node in B must be assigned to Vo.

3. For any i E {1, ... , n}, Ui and Ui cannot be in the same cluster. If Ui and Ui are both

assigned to cluster Vo (or Vl), some node in A (or B) would not be able to connect to

Pl (or Po).

4. For each clause Ci E 0, there must be at least one literal assigned to cluster Vl,

otherwise Ci will be disconnected from Pl.

We construct a satisfying assignment for I as follows: For each variable Ui E U, if Ui

is assigned to VI, set Ui to be true, otherwise false. Note by observation (3), Ui and Ui are

always assigned different values, hence the assignment is proper. Moreover, the assignment

satisfies I since by observation (4), all the clauses are satisfied.

If I is satisfiable, we construct a partitioning {Vo,Vd as follows:

Vo = B u {po} U {li E L Ili = false}

Vl=V\"Ifo

It is easy to verify that the above partitioning is legal. In addition, the radius constraint

is satisfied since every node in V is within distance r from its corresponding center node,

Po or Pl·

Finally, we show that the above proof can be easily extended to any larger k and d.

When k > 2, one can always add k - 2 isolated nodes (hence each of them must be a center)

to graph G and apply the same reduction; when d > 1, one can simply add d -1 coordinates

with identical values to the existing coordinate for each node. D

CHAPTER 4. JOINT CLUSTER ANALYSIS 47

The internal connectedness constraint poses new challenges to the traditional k-Center

problem. Table 4.1 compares the hardness of these two problems in different settings. Note

that the referred problems are decision versions.

Traditional k Center CkC

k is fixed Polynomially Solvable NP-complete
k is arbitrary, d = 1 Polynomially Solvable NP-complete
k is arbitrary, d > 1 NP-complete NP-complete

Table 4.1: Complexity results.

Remarks:

1. Theorem 4.3.1 implies the CkC problem defined in Definition 4.3.1 is NP-hard.

2. Similar to the CkC problem, one can define the connected k-Median and connected

k-Means problems. In fact, the proof of Theorem 4.3.1 can be extended to these

problems to show their NP-Completeness.

4.4 Approximation Algorithms

In this section we study the CkC problem defined in Definition 4.3.1. We prove that the

problem is not approximable within 2 - E for any E > °unless P = N P. When the distance

function is metric, we provide approximation algorithms with ratios of 3 and 6, respectively,

for the cases of fixed and arbitrary k. The idea is to tackle an auxiliary CkC' problem.

Based on the solution of CkC', we show the gap between these two problems is at most 3,

i.e., a feasible solution of CkC' with radius r can always be transferred to a feasible solution

of CkC with radius at most 3r. We also prove a lower bound result indicating that the gap

cannot be closed within 2.64.

4.4.1 Inapproximability result for CkC

In the following, we prove an inapproximability result for the CkC problem, which can be

viewed as a corollary of Theorem 4.3.1.

Theorem 4.4.1 For any k 2: 2, E > 0, the CkC problem is not approximable within 2 - E

unless P = N P.

CHAPTER 4. JOINT CLUSTER ANALYSIS 48

Proof. We only prove the case of k = 2, the proof can be easily extended to any larger k

based on the same argument as in the proof of Theorem 4.3.1.

Let opt denote the optimal radius of the CkC problem. We show if there is a polynomial

algorithm A guaranteed to find a feasible solution within (2 - E)Opt, it can actually be used

to solve the 3SAT problem. The reduction is similar to the proof of Theorem 4.3.1. First,

for a given 3SAT instance I, we construct a C2C instance f(I) = (G, w, r) by the same

procedure as in the proof of Theorem 4.3.1. Then, we invoke Algorithm A on the input

(G, w,r).

Since the coordinates of all the nodes are multiples of r, the optimal radius must also be

a multiple of r. If Algorithm A returns a solution smaller than 2r, the optimal radius must

be r. By the same argument as in the proof of Theorem 4.3.1, I is satisfiable. Otherwise if

Algorithm A returns a solution bigger than or equal to 2r, since Algorithm A is guaranteed

to find a solution within (2 - E)r, the optimal radius is at least 2r and consequently I is not

satisfiable. Hence, unless P = N P, the CkC problem cannot be approximated within 2 - E.

o

4.4.2 Approximation results for metric CkC

In the following, we study approximation algorithms for the CkC problem in the metric

space. Our approximation results rely on the triangle inequality. However, our hardness

results presented in Section 4.3 remains valid even for non-metric spaces.

We provide approximations with ratios 3 and 6 for the cases of fixed and arbitrary k.

For this purpose, we introduce the CkC' problem, which is a relaxed version of the CkC

problem without stipulating the disjointness requirement on the clusters. Then we show

that CkC' can be solved in polynomial time for fixed k and approximated within a factor

of 2 for arbitrary k. We then show the gap between these two problems is at most 3.

Definition (CkC' problem) Given an integer k, a graph G = (V, E), a function w : V -+ nd

mapping each node in V to a d-dimensional coordinate vector, and a distance function II .II,
find k node sets VI, ... , Vk <;;;; V with VI U ... U Vk = V, such that the node sets satisfy the

internal connectedness constraint and the maximum radius defined on II . II is minimized.

CHAPTER 4. JOINT CLUSTER ANALYSIS

Algorithm 3 Polynomial exact algorithm for CkC'.

49

1: Calculate all the pairwise distances for the nodes in V and store them in set R;
2: Sort R in increasing order;
3: low = 0; high = IRI;
4: while low S high do
5: middle = (low + high)j2;
6: r = R[middle];
7: for each set of k centers {C1' ... ,cd ~ V do
8: Perform BFS from each center c; and mark all the nodes that are reachable from

Ci w.r.t. r;
9: if all nodes are marked then

10: if low = high then
11: Return r and the k clusters;
12: else
13: high = middle - 1;
14: else
15: low = middle + 1;

Solving CkC' for fixed k

We propose an exact algorithm to solve the CkC' problem for fixed k in polynomial time.

We define the reachability between any two nodes as follows:

Definition Given a graph G = (V, E), for u, v E V, v is reachable from u w.r.t. r, r E n+,
if there exists a path {u = 80 -4 81 -4 ... -4 81 -4 81+1 = v}, 81, ... ,81 E V, such that

VI SiS l + 1, (8;-1, 8i) E E and Ilw(u) - w(8;)11 Sr.

Intuitively, v is reachable from u w.r.t. r if and only if v can be included in the cluster

with center u and radius r. Clearly it can be decided in polynomial time by performing a

breadth first search (BFS) for node v from node u. This forms the main idea of Algorithm 3,

which returns the optimal solution for CkC' in polynomial time.

Runtime complexity: Algorithm 3 performs O(nk log n) times of BFS since it iterates

over all possible sets of k centers, and a binary search is performed for all possible r E R

where IRI = G). Since every BFS takes O(n2) steps, the total running time of Algorithm 3

is O(nk+2 Iogn).

CHAPTER 4. JOINT CLUSTER ANALYSIS

Approximating C kC' for arbitrary k

50

For the case k is fixed, we show an approach providing a 2 approximation for the CkC'

problem. We define the reaching distance between any two nodes as follows:

Definition Let G, u, v,P be defined as in the above definition. The distance between u and

v w.r.t p is defined as D(u, v)p = maxSi ,8jEp /lW(Si) - w(Sj)/I. The reaching distance between

u and v is defined as D(u, v) = minpEP D(u, v)p, where P is the set of all paths between u

and v.

Note that the reaching distance is symmetric, i.e., '<Iu, v E V, dist(u, v) = dist(v, u). It

also satisfies the triangle inequality, i.e., '<Iu,v,s E V,dist(u,s):$ dist(u,v) + dist(v,s). We

can obtain a IVI x IVI matrix, storing reaching distances for all the nodes in V. Then, we

can apply the 2-approximation algorithm proposed in [67] on V with the reaching distance

matrix replacing the pairwise distance matrix. The maximum radius of the k clusters

resulting from this algorithm is at most twice as big as the optimal solution.

Back to CkC

In Algorithm 4, we present a method transferring a feasible solution of CkC' with radius

r to a feasible solution of CkC with radius at most 3r. Combining the CkC' results and

Algorithm 4 gives approximations for the CkC problem.

Let {V{, ... ,Vn be a clustering returned by Algorithm 3 or the approximation algorithm

specified in Section 4.4.2 where Vi' ~ V and the node sets (clusters) V{, ... , V£ may not be

disjoint. Algorithm 4 determines a clustering {VI, ... , Vk} with disjoint node sets V!, ... , Vk.

Let CI, ... , Ck be the centers of VI, ... , Vk. Since the algorithm retains the cluster centers,

they are also the centers of V{, ... , V{ Algorithm 4 assigns every node in V to a unique

cluster Vi for 1 :$ i :$ k. For each iteration 1 :$ i :$ k, line 3 assigns the nodes in Vi' that

have not been assigned to any previous clusters VI, ... ,Vi-I and are connected to Ci to Vi.
Afterwards, there may still be some unassigned nodes in Vi', and line 5 assigns them to one

of the clusters VI, ... ,Vi-I to which they are connected.

Figure 4.3 provides an illustration for Algorithm 4. The circles with dashed lines rep­

resent the three initial (overlapping) clusters V{, V~ and V; generated by Algorithm 3. Ap­

plying Algorithm 4, we obtain three new disjoint clusters VI, "2 and \13. The center nodes

were not changed.

CHAPTER 4. JOINT CLUSTER ANALYSIS

Algorithm 4 Algorithm converting a solution of CkC' to a solution of CkC.

51

1: for i from 1 to k do
2: l--i = ¢>, c,; f-- c~;

3: Add all the nodes reachable w.r.t. r from c,; in C[Vi' \ u;:i l-i] to l--i (by performing a

BFS from c,; in C[Vi' \ u;:i l-j));

4: for every node v E (u;:i l-j) nVi' do

5: Add all the nodes connected to v in C[Vi'] to the cluster of v (by performing a BFS
from v in C[Vi'));

6: Output clusters VI, ... ,Vk;

v·, 1
,

1/ • '

'2 \,,,
,,,,,

Figure 4.3: Illustration of Algorithm 4.

Lemma 4.4.2 Let r be the maximum radius associated with a feasible solution for the

CkC' problem. Algorithm 4 is guaranteed to find a feasible solution for the CkC problem

with maximum radius at most 3r.

Proof. First we show that Algorithm 4 assigns each node u E V to a unique cluster. There

are two cases. In case 1, u can be reached via a path from center node c,; without having

any node previously assigned to VI, ... , Vi-Ion the path; then, u is assigned to Vi in line 3

of Algorithm 4. In case 2, u is connected to c,; via some node v E u;:i l-j; then, in line 5 of

Algorithm 4, u is assigned to the cluster that v belongs to.

Next, we bound the maximum radius of a node u to the corresponding center node. In

case 1, since u is assigned to Vi, the distance between u and Ci is at most r. In case 2, observe

that the distance between u and v is at most 2r due to the triangle inequality and the fact

CHAPTER 4. JOINT CLUSTER ANALYSIS

Figure 4.4: Lower bound for the gap between CkC and CkC'.

52

that u and v were in the same set VI. Besides, we observe that the distance between v and

its corresponding center node Cj is at most r. Therefore, again by the triangle inequality,

the distance between u and its corresponding center node is at most 3r.

o

Let opt and opt' be the optimal solutions for the CkC and CkC' problems respectively.

Clearly opt' ::; opt since opt is also a feasible solution for CkC'. Based on this observation,

we obtain the following approximation results for CkC:

Theorem 4.4.3 Combining Algorithm 3 and Algorithm 4gives a polynomial 3-approximation

for the CkC problem for fixed k.

Theorem 4.4.4 Combining the approach proposed in 4.4.2 and Algorithm 4 gives a poly­

nomial 6-approximation for the CkC problem for arbitmry k.

Lower bound for the gap between C kC and C kC'

In Lemma 4.4.2, we have proved that the gap between CkC and CkC' is at most 3. In the

following, we show the gap is at least 2.64.

In the graph shown in Figure 4.4, each node is associated with a 2-dimensional coordinate

vector, and the nodes are placed according to their coordinates. The edges between nodes

are also shown. The graph is symmetric and the circles are contingent to one another. The

nodes f, 0, a,p, h are on the same line, so are g, 0, b, q, i. In the CkC' model, nodes can have

CHAPTER 4. JOINT CLUSTER ANALYSIS 53

multiple memberships. Let k = 4, it is easy to construct a feasible clustering for CkC',

represented by the circles, where each cluster has radius r.

Now, we examine the optimal clustering of CkC. By the pigeonhole principle, at least

two of the five nodes, a, b, c, d, e, have to be assigned to the same cluster. Without loss of

generality, we assume a and b belong to the same cluster. Since hand f only connect to

a and 9 and i only connect to b, h, f, g, i, a, b have to be assigned to the same cluster. To

minimize the cluster size, either a or b must be the cluster center. The cluster radius is then

dist(a, i) or dist(b, h), which is V7r ~ 2.64r1. We omit the mathematical details.

To summarize, we list the approximability results of CkC in Table 4.2.

I Approximation Ratio I Upper bound Lower bound

I
k is fixed 1----:3;;----__~2,.....--(__

k is arbitrary 6 2_-_(__

Table 4.2: Approximability results.

4.5 Exact algorithm for CkC on Trees

As shown in Theorem 4.3.1, the CkC problem is NP-hard for general graphs. A natural

question to ask is whether the problem is tractable for certain subclasses of graphs, e.g.,

tree graphs. nee structure is exhibited in common organization charts, which graphically

illustrate how authority and responsibility are distributed within organizations. Although

organization charts generally capture formal relationships only, they can be used to approx­

imate the pattern of social relationships, as informal (social) relationships may develop in

accordance with formal relationships in many circumstances.

In this section, we present a dynamic programming approach giving an optimal solution

for the CkC problem on trees in O(n2 10gn) time.

4.5.1 Polynomial exact algorithm for CkC on trees

Algorithm 5 returns an optimal solution for the CkC problem on trees in O(n2 10g n) time.

The algorithm starts with calculating all IVI(IVI - 1)/2 pairwise distances of the nodes

ISince 0, b, q, i are on the same line and the angle aoi is 60 degree, we can calculate dist(a, i) based on
cosine law.

CHAPTER 4. JOINT CLUSTER ANALYSIS

Algorithm 5 Polynomial exact algorithm for CkC on trees.

54

1: Calculate all the pairwise distances for the nodes in V and store them in set R;
2: Sort R in increasing order;
3: low = 0; high = IRI;
4: while low ~ high do
5: middle = (low + high) /2;
6: r = R[middle];
7: Call the dynamic programming algorithm specified in section 4.5.2 on the decision

version of CkC with r as the radius threshold;
8: if the dynamic programming algorithm returns "yes" then
9: if low = high then

10: Construct the k-partitioning from the dynamic programming table and return r;
11: else
12: high = middle - 1;
13: else
14: low = middle + 1;

in V and sorts them in increasing order. Then we perform a binary search to find the

smallest distance which is feasible. The feasibility can be decided by invoking a dynamic

programming procedure presented as follows.

4.5.2 Dynamic programming algorithm

The dynamic programming algorithm solves the decision version of the CkC problem defined

in Definition 4.3.2 where the underlying graph is a tree. For simplicity, we consider binary

trees. An arbitrary tree can be transformed to a binary one by the approach presented in

[105]. The algorithm returns "yes" if and only if it finds a feasible k-partitioning of nodes

satisfying the internal connectedness and radius constraints. Each partition represents a

cluster.

Let T = (V, E) be a binary tree with IVI = n. For an arbitrary node v, let T(v) be the

subtree rooted at v and C(v) be the set of direct descendants of v. Let P(Vi, Vj) denote the

set of nodes on the path from Vi to Vj. Note that the path between any pair of nodes is

unique for trees. In a feasible (partial) solution, we say node Vj serves node Vi if Vi is assigned

to some cluster centered at Vj' This requires that 'r/Vk E P(Vi, Vj), Ilw(Vk) - w(vj)11 ~ r.

Let f(Vi,Vj) be the minimum number of clusters in a feasible clustering of T(Vi) w.r.t. r

when Vi is served by Vj. Note that Vi can be served by itself and Vj does not have to be an

element of T(Vi)'

CHAPTER 4. JOINT CLUSTER ANALYSIS 55

Initial Step: Initially, we arbitrarily pick a non-leaf node of T as the root. Our dynamic

programming algorithm starts by computing f(VI, Vi) for every leaf node VI and every node

Vi E V. Note that f(VI, Vi) = 00 iElvj E P(VI, Vi), Ilw(Vj)-w(vi)II > r; otherwise, f(VI, Vi) =
1.

Recursive Step: We recursively compute f values for all non-leaf nodes. For any non-leaf

node V, f(v, Vi) = 00 if ::IVj E P(v, Vi), IIW(Vj) - w(vi)11 > r. Note that f(v, Vi) can be

computed whenever the f values of the nodes in C(v) are available.

Figure 4.5: The tree structure.

Fix some arbitrary node V where the f values of all of its descendants have been com­

puted, Figure 4.5 shows a partial binary tree. There are four cases for computing f(v, vd

depending on how V is served by Vi.

if Vi serves V but not Va nor Vb.

if Vi serves V and Vb but not Va,

if Vi serves V, Va and Vb,

if Vi serves V and Va but not Vb,

f(Va, Vi) + f(Vb, Vi) - 1

f(va,Vi) + min f(Vb, Vj)
VjET(Vb)

f(Vb,Vi)+ min f(va,vj)
VjET(v a)

1 + min f(va , Vj)
vjET(va)

+ min f(Vb, Vk)
VkET(Vb)

In the first case, we need to subtract 1 since the cluster was counted twice when f(va , Vi)

and f(Vb,Vi) were computed. In the second case, note that Vi rJ- T(Vb) since otherwise Vi

must serve Vb in order to serve V and Va' Similarly, in the third case Vi rJ- T(va).

Observe that in an optimal solution, there are only four possible cases to assign node v,

Va and Vb. For simplicity, we only elaborate on one of these cases, i.e., Vi serves V and Va

but not Vb. We show that the CkC problem on trees has an optimal-substructure property

for this case. Similar arguments hold for other cases.

In an optimal clustering where Vi serves V and Va but not Vb, f(va,Vi) represents the

minimum number of clusters in T(va) when Vi serves Va' minvjETh) f(Vb, Vj) is the minimum

CHAPTER 4. JOINT CLUSTER ANALYSIS 56

number of clusters in T(Vb) since Vb cannot be served by any node outside ofT(Vb) due to the

internal connectedness constraint. Summing up the two items gives the minimum number

of clusters in this optimal clustering.

Thus, we compute an n x n table with f(Vi,Vj),V1 ~ i,j ~ n. There is a feasible

k-partitioning, and a "yes" is thus returned, if and only if minviEv f(Vroot, Vi) ~ k.

Runtime complexity: To trade space for efficiency, we can use an additional data struc­

ture of size n to store minvjET(va) f(va,Vj) for every node Va' Then every table entry can be

calculated in 0(1) steps. Since there are n2 table entries to be filled in, the runtime of the

dynamic programming algorithm is 0(n2). Since the dynamic programming is executed at

most O(logn) times due to binary search, the overall runtime for Algorithm 5 is 0(n2 Iogn).

4.6 Heuristic Algorithm

The complexity analysis has demonstrated the hardness of the general case of the CkC

problem. Meanwhile, algorithm 4 provides a way to guarantee the performance. Moreover,

Theorem 4.3.1 implies that even the assignment step alone, Le., given k centers finding

an optimal assignment of the remaining nodes to minimize the radius, is NP-hard. While

providing an algorithm with guaranteed approximation performance is important from the

theoretical point of view, the expensive enumeration operation makes the approach infeasible

for real large datasets. In this section, we present NetScan, a heuristic algorithm that

efficiently produces a "good" solution for the CkC problem.

4.6.1 Overview of NetScan

NetScan follows a three-step approach. It starts by picking k centers randomly, then assigns

nodes to the best centers and refines the clusters iteratively.

• Step I: Randomly pick k nodes as initial cluster centers.

• Step II: Assign all the nodes to clusters by traversing the input graph.

• Step III: Recalculate cluster centers.

The algorithm repeats steps II and III until no change of the cluster centers occurs or

a certain number of iterations have been performed. In step III, finding the optimal center

CHAPTER 4. JOINT CLUSTER ANALYSIS 57

Cluster 1 Cluster 2

{e,f}
{e,j,a,b}

Table 4.3: Node assignment w.r.t. Ro and RI.

from a group of n nodes requires O(n2) time. For efficiency, we select the node closest to

the mean of the cluster as the new center. Typically, the mean provides a reasonably good

approximation for the center.

The three-step framework resembles the k-Means algorithm. However, unlike the straight­

forward assignment step in k-Means, given k centers, finding an optimal assignment satisfy­

ing the connectedness constraint requires a search through an exponential space, as shown in

Section 4.3. Thus, the major challenge of NetScan is finding a good membership assignment,

i.e., step II.

From the design principles of the approximation algorithm, we observe that the BFS­

based approach provides an efficient way of generating clusters without violating the internal

connectedness constraint. Inspired by this observation, we start the membership assignment

from the centers, and neighboring nodes (directly connected by some edge of the graph) of

already assigned nodes are gradually absorbed to the clusters. The whole step II may take

multiple rounds to finish until all the nodes are assigned, and each round i is associated

with a radius threshold R;. For the first round, the assignment starts from cluster centers

with the initial radius threshold Ro. Each node is tested and assigned to the first cluster

for which its distance to the cluster center is no larger than Ro. If all the centers have

been processed but not all the nodes have been assigned, the next assignment round tries

to assign them with an incremented radius threshold RI. The process continues until all

the nodes are assigned. A running example is illustrated in Figure 4.6 with the assignment

rounds given in Table 4.3. In the figure, g and e are chosen as the initial cluster centers. In

the first round with Ro as the radius threshold, cluster 1 has no new members while cluster

2 has j added. In the second round with RI as the radius threshold, hand i are assigned

to cluster 1 while a and b are assigned to cluster 2. The pseudocode of step II is given in

Algorithm 6, and more details of NetScan will be discussed shortly.

CHAPTER 4. JOINT CLUSTER ANALYSIS

Algorithm 6 Step II of NetScan.

58

1: I4 = Ro;
2: Empty working queue Q;
3: for every center Cj of cluster Gj do
4: Append all unassigned neighbors of Cj to Q;
5: while Q is not empty do
6: Pop the first element q from Q;
7: if Ilq - cjll ::; I4 then
8: if q is a potential bridge node then
9: Invoke the look-ahead routine to decide the membership for q. If q should be

assigned to Gj , append q's unassigned neighbors to Q; otherwise, only assign
q to the right cluster without appending q's neighbors to Q;

10: else
11: Assign q to Gj and append q's unassigned neighbors to Q;
12: if all the nodes are assigned to some Gj then
13: Stop;
14: else
15: Increment I4 and goto 2;

4.6.2 More details on NetScan

How to choose initial cluster centers

The initialization has a direct impact on the NetScan results as in many similar algorithms.

Instead of using a naive random approach, we weight each node with its degree so that

nodes with higher degrees have higher probabilities to be chosen. Since NetScan relies on

edges to grow clusters in step II, the weighted random approach allows clusters to grow

fast. More importantly, due to the improved edge availability, true cluster contents can be

absorbed during early rounds of membership assignment, reducing the possibility that they

would be assigned to some other clusters inappropriately.

For some datasets in which most nodes have small degrees, the weighted random ap­

proach becomes less effective. We propose a heuristic to achieve better initialization in

such cases. The heuristic requires the user to input the minimum size of the clusters, i.e.,

minSize. The introduction of this parameter is reasonable, since in many applications do­

main experts have the knowledge of the minimum size of the clusters, and tiny clusters are

not interesting to users. Instead of choosing one object to start cluster assignment (step

II), we create initial clusters consisting of at most minSize objects in a round robin fashion

in the initialization step. At the beginning, each cluster contains only one object, i.e., the

CHAPTER 4. JOINT CLUSTER ANALYSIS 59

~
c

: ~ ~:. ·U .

. : Ie'.I . , ,
... Ro .:'. :
............. f.
Cluster I Cluster 2

1~'Ji""""""..c......,/ d;.· b··
: g:, '.

. : : ,: e ':

I ·1{l \.:.: 1. /
Cluster I Cluster 2

(a) W.r.t. Ro (b) W.r.t. R I

Figure 4.6: Node assignment in NetScan.

initial seed. Then, each cluster is asked to absorb an unassigned object whose distance to

its initial seed is the smallest. This step is skipped if no unassigned object is available. We

continue this process for minSize rounds. After the formation of those initial clusters, the

regular cluster assignment step starts. This heuristic allows clusters to have more candidate

objects to choose from in the beginning of the cluster assignment step. Thus, the unassigned

objects would be more likely to be absorbed by the right cluster.

How to choose R i

In step II of NetScan, we assign cluster membership to all the nodes in multiple rounds. The

radius threshold ~ is gradually incremented from round to round. ~ plays an important

role in minimizing the maximum radius of the resulting clusters. Figure 4.7 gives an example

where a larger threshold Rj allows node a to be assigned to cluster 1, resulting in a larger

radius of cluster 1. Instead, by using a smaller threshold Ri, this case is avoided because a

can only be assigned to cluster 2. From the point of view of minimizing the maximum radius,

we want the increment of Ri to be as small as possible. However, a too small increment of

Ri may lead to the case that no additional node can be assigned for many rounds, which

may greatly and unnecessarily increase the runtime.

As a trade-off, we propose the increment to be the average pairwise distance of nodes.

That is, the radius threshold ~+l is chosen as ~ + D where D is the average pairwise

distance of nodes. This choice of increment makes it likely that at least some further nodes

can be assigned in the next round. D can be obtained efficiently by drawing a small set of

samples and calculating the average pairwise distance of the samples.

Algorithm 4 suggests that the nodes located in the overlapping area of two clusters w.r.t.

CHAPTER 4. JOINT CLUSTER ANALYSIS 60

Cluster 1 Cluster 2

,,,
: I
: I

... --- ...
,

I

I '.
I ~

,/ /
~ ..:
..... RJ

-'" .

Figure 4.7: Radius increment.

a given radius threshold are more difficult to assign than the others. Thus, to start with, we

choose R.o to be half of the smallest distance among all pairs of cluster centers. This choice

of R.o does not create overlap that introduces any ambiguity in the node assignment, thus

reducing the problem size.

How to assign nodes

In step II of NetScan, nodes are assigned to clusters generally based on their distances to the

cluster centers. Special attention, however, needs to be paid to those nodes in the overlap

area of two or more clusters w.r.t. [4. Inspired by the concept of bridge nodes introduced in

Section 4.3, we call these nodes potential bridge nodes. We assign potential bridge nodes not

only based on their distances to the different cluster centers, but also on their neighborhood

situations. For example, in Figure 4.6 (b), a is a potential bridge node and its assignment

has an impact on the assignment of its neighbors band c. If node a is assigned to cluster

1, both band c have to be assigned to cluster 1, resulting in a larger radius compared to

assigning all three nodes to cluster 2.

Whether a node is a potential bridge node depends on three factors: (1) the node has

neighbors who have been assigned membership and those neighbors are from more than one

cluster, e.g., Ci and Cj. (2) the node is within [4 distance from both centers of Ci and Cj.

(3) the node has unassigned neighbors.

We propose the following look-ahead approach for the cluster assignment of potential

bridge nodes. For the sake of efficiency, for each potential bridge node, we only check its

unassigned neighbors (if any) which have a degree of 1, the so-called unary neighbors. These

unary neighbors are especially critical since they can be connected to any cluster only via

the node under consideration. The membership assignment decision is made only based on

the unary neighbors. A potential bridge node is assigned to its closest center unless the

CHAPTER 4. JOINT CLUSTER ANALYSIS 61

node has a direct unary neighbor which is closer to some other center. In the case that more

than one unary neighbors exist, the cluster center leading to the smallest radius increase is

chosen. Our algorithm could benefit from looking into indirect neighbors of potential bridge

nodes as well, however, this would significantly increase the runtime without guarantee of

quality improvement.

Postprocessing to eliminate outliers

As in the traditional k-Center problem, the CkC problem faces the same challenge of "out­

liers", which may cause significant increase in radius of the resulting clusters. In many

applications such as market segmentation, it is acceptable and desirable to give up a few

customers to meet most customers' preference. We propose an optional step, which utilizes

a graphical approach to eliminate outliers from the NetScan results. Each node remembers

the radius threshold at which it was assigned, and all the nodes are sorted by these thresh­

olds. We filter out the node (and its following nodes) which causes a sudden increase of the

radius. The "cut-oW' point can be determined by automatic detection as well as manual

inspection from a chart displaying the sorted nodes, as illustrated in Figure 4.8 (b). Part

(a) shows the corresponding input graph. Only f would be removed as an outlier in the

example.

Runtime complexity: In each iteration of step II and III, the NetScan algorithm generates

k clusters one by one. During membership assignment of each cluster, the nodes sharing

edges with the assigned nodes of that cluster are considered. The distances between these

nodes and the cluster center are calculated. Thus, the overall runtime complexity is bounded

by the total number of nodes being visited. For the purpose of minimizing the maximum

radius, NetScan gradually increases the radius threshold ~. Let D represent the amount

of radius increment, the total number of radius increases in one iteration is a constant,

di15ffi, where diam is the longest distance among all pairs of nodes. In the worst case,

every edge is visited k times for each ~, hence the total number of node visits in an

iteration is O(kIEl di
15ffi), where lEI is the total number of edges. We assume the NetScan

algorithm converges after t iterations. Hence, the worst case runtime complexity of NetScan

is O(tkIEldii>ffi).

However, in each iteration, we only need to consider those edges connecting to the nodes

in the frontier, i.e., a set of unassigned nodes that are direct neighbours of the assigned

CHAPTER 4. JOINT CLUSTER ANALYSIS

, -, I' ,, ,,

'- " I

_______1 R
o

La----.J---"OL.a __

k=2 abcdef
(a) (b)

Figure 4.8: Outlier elimination.

C2 ..

~,--'.
~--'-"'-"'-

Figure 4.9: Runtime.

62

nodes. The worst case rarely happens, in which all the edges are connected to the frontier

nodes. For example, the dashed edges in Figure 4.9 do not have to be considered in the next

radius increment round. In the figure, the nodes in the frontier are dashed. In practice,

the number of edges visited in one iteration can be reasonably assumed to be O(IEI) on

average, and the expected runtime of NetScan would be O(tIEI) under this assumption.

4.6.3 Adaptation of NetScan to the Connected k-Means problem

As we have discussed in related work (Section 4.2), various clustering problems can be for­

mulated depending on different objectives. The well-known k-Means problem [85] minimizes

the compactness, i.e., the sum of squared distances from data objects to their corresponding

cluster centers. The corresponding k-Means algorithm [86] is widely used as a practical

and robust clustering method. Also motivated by joint cluster analysis as in CkC, we can

define the Connected k-Means problem, which finds a k-partitioning of nodes minimizing

the compactness under the internal connectedness constraint.

As a straightforward extension, NetScan can be adapted to the Connected k-Means

problem. We can simply use the means of clusters to replace the actual center nodes. Then

in step II of NetScan for node membership assignment, the radius threshold is incremented

from round to round with respect to the means instead of the center nodes. Similarly in

step III, the new cluster means are relocated instead of the center nodes. The algorithm

terminates when there is no change in node membership or a certain number of iterations

have been performed. The adapted NetScan algorithm was used in part of our experiments

to compare to the traditional k-Means algorithm and validate the concept of joint cluster

analysis.

CHAPTER 4. JOINT CLUSTER ANALYSIS

4.7 Experimental Results

63

In this section, we demonstrate the meaningfulness of our joint cluster analysis models on

three real datasets and show the efficiency of the NetScan algorithm using synthetic datasets.

4.7.1 Experimental design

We evaluated the CkC model on two applications, community identification and gene clus­

tering, in which attribute data and relationship data carry complementary information and

clusters are often required to be internally connected. In community identification, commu­

nities are naturally defined as connected sub-networks. In gene clustering, an independent

study [109] shows that connected sub-networks with highly similar expression profiles often

correspond to important gene groups.

Datasets. We derived two datasets from the DBLP data [36] for community identification.

The DBLP I dataset includes 50 researchers from three computer science communities.

The researchers are represented by keywords of their research interests and collaboration

relationships to other researchers. The true label (community) of each researcher was man­

ually determined. Due to the difficulty of determining true labels for a large number of

researchers, we constructed the DBLP II dataset for document clustering which was used

as an analogue to community identification. In this dataset, 1436 papers were collected

from 9 major conferences of three communities. The attributes of each paper were collected

from its abstract representing keyword frequencies and the relationship data were extracted

from the coauthorship network. The true cluster label of each paper was determined by the

community corresponding to the conference in which it appears. The availability of true

cluster labels allowed us to evaluate the CkC model on this much larger dataset. For gene

clustering, we constructed a dataset where each gene is represented by its expression profile

and relationships to other genes. The gene attributes were collected from the Spellman

dataset [98], while the relationship data was extracted from the protein interaction network

of Saccharomyces Cerevisiae, which was downloaded from the BioGRlD database [99]. We

preprocessed the data to get 2149 genes by eliminating the ones with missing expression

data and selecting the largest connected component of the interaction network. An overview

of the three real datasets can be found in Table 4.4.

Comparison partners. Related work, as discussed in Section 4.2, can be categorized

as partitioning vs. overlapping, distance-based vs. probabilistic, and unsupervised vs.

CHAPTER 4. JOINT CLUSTER ANALYSIS 64

Datasets Objects Attributes I Relationships

DBLP I Researchers Research Interests Co-authorship
DBLP II Papers Keywords Co-authorship
Adapted Spellman Genes Expression profiles Protein interaction

Table 4.4: Overview of the real datasets

semi-supervised. Since the CkC model is partitioning, distance-based and unsupervised,

we compare against such methods to ensure a fair comparison. We chose k-Means and

GraClus2 , a state-of-the-art graph clustering algorithm, as representatives of attribute-based

and relationship-based methods, respectively. Note that graph clustering algorithms can

exploit some of the attribute information in the form of edge weights. GraClus outperforms

the best existing spectral algorithms [37] on an important graph clustering problem, the

normalized cut [97], which has been shown to be effective for discovering meaningful clusters

in several real life applications [37].

DBLP dataset I is small and is only used to provide anecdotical evidence that the clusters

of the CkC model are meaningful. We report the results of the k-Center algorithm and the

k-Center version of the NetScan algorithm. DBLP dataset II was constructed for document

clustering. The traditional k-Means algorithm is known to work well for document clustering

[100] utilizing only the attribute data. We applied our adapted NetScan (for the Connected

k-Means problem, see Section 4.6.3) to the dataset and compared the results with k-Means

and GraClus.

For gene clustering, various clustering methods, such as k-Means, have been applied on

gene expression profiles to gain insight of how genes are grouped and to predict the function

of a gene. In addition to the gene expression profiles, large-scale interaction data, such

as protein-protein interactions, often carry important biological knowledge [109]. In order

to fully make use of all the knowledge, joint clustering analysis of both types of data is

necessary. For the Spellman dataset, we compared the adapted NetScan (for Connected

k-Means) with the traditional k-Means algorithm and GraClus.

2Downloaded from http://www.cs.utexas.edu/users/dml/Software/graclus.html

CHAPTER 4. JOINT CLUSTER ANALYSIS

4.7.2 DBLP dataset I: clustering researchers

65

The first real dataset includes 50 researchers from three major computer science commu­

nities: theory, databases and machine learning. The attributes of each researcher were

collected from his/her homepage representing the keyword frequencies of his/her research

interests. The relationship data used a connected subgraph extracted from the DBLP [36]

coauthorship network, an edge was created for pairs of researchers who have coauthored

at least one paper. We applied the NetScan algorithm to identify communities from this

dataset in an unsupervised manner. The relatively small size of the dataset allowed us to

manually determine a researcher's true community (cluster label) from his/her lab affiliation

and professional activities. These true labels were then compared to the labels determined

by our algorithm.

We used the Cosine Distance as the distance measure for the attributes, a standard

measure for text data. We ran NetScan for the Connected k-Center problem and a known

heuristic algorithm (Greedy k-Center) [67] for the traditional k-Center problem, both with

k = 3. Due to the small size of this dataset, we set minSize to 0 for NetScan. Table 4.5

reports the best clustering results over 20 runs for both algorithms, recording the number of

correctly identified researchers for each community together with the overall accuracy. To

calculate the accuracy, we associated each of the three communities with one of the clusters

such that the best overall accuracy was achieved. Compared to Greedy k-Center, NetScan

improved the accuracy from 54% to 72%. Note that we perform unsupervised learning,

which accounts for the relatively low accuracy of both algorithms compared to supervised

classification algorithms.

Communities Size Greedy k-Center I NetScan I
Theory 20 11 14

Databases 20 12 15
Machine Learning 10 4 7

__.,---S_u_m__---J~______=_2..,.,7 -- _-=3:;:;6",..-_
Accuracy c:::=J 54% 72%

Table 4.5: Comparison of NetScan and Greedy k-Center on dataset DBLP I .

The main reason why NetScan outperforms Greedy k-Center is that both relationship

and attribute data make contributions in the clustering process, and considering only one

data type may mislead the clustering algorithm. Figure 4.10 illustrates the differences

CHAPTER 4. JOINT CLUSTER ANALYSIS

P. Raghavan

J. Ullman

• Databases (NetScan)

o Theory (NetScan)

Greedy k-Center Result

J. Han

66

Figure 4.10: Partial clustering results on dataset DBLP 1.

between NetScan and Greedy k-Center on real dataset 1. For example, J. Kleinberg lists

interests in Clustering, Indexing and Data Mining, also Discrete Optimization and Net­

work Algorithms. From this attribute information, it seems reasonable to identify him as a

researcher in databases. Nevertheless, after taking his coauthorship information into consid­

eration, NetScan clustered him into the theory community, which is a better match for his

overall research profile. On the other hand, J. Ullman has broad coauthorship connections,

which alone cannot be used to confidently identify his community membership. However, he

claims research interests mainly in databases, and NetScan clustered him into the database

community as expected.

4.7.3 DBLP dataset II: clustering papers

The second real dataset was constructed for document clustering. As summarized in Table

4.6, the dataset includes 1436 selected papers from DBLP [36] published from 2000 to 2004

in nine major conferences of three communities: theory, database data mining, and machine

learning. The attributes of each paper are vectors representing the keyword frequencies in

the abstract obtained from CiteSeer [30]. After deleting stop words and applying stemming

and word occurrence thresholding, we obtain a dataset whose attribute vector has 603

dimensions. The relationship data are based on the DBLP coauthor-ship network [36]. If

two papers share a common author, an edge is added between them. Note that the papers

were chosen so that the relationship graph is connected. We also removed papers that make

the true clusters unconnected, since otherwise, due to the connectedness constraint, NetScan

will have no chance to achieve 100% accuracy. The true cluster label of a paper is defined

CHAPTER 4. JOINT CLUSTER ANALYSIS 67

Communities Conferences # of Papers I
Theory FOCS, STOC, SODA 519

Databases and Data Mining SIGMOD, VLDB, KDD 434
Machine Learning ICML, NIPS, COLT 483

Table 4.6: Summaries of dataset DBLP II.

by the community corresponding to the conference in which it appears.

We ran NetScan, k-Means and GraClus on the DBLP II dataset with k = 3. To run

NetScan, we set minSize to be 20 assuming that a community with less than 20 people

would not be interesting. To run GraClus, we set the edge weights to be the inverse of the

(attribute) distance between the two corresponding nodes, as suggested by Shi et ai. in [97].

In order to measure the accuracy, a cluster is labeled by a majority vote of its members.

Table 4.7 lists the clustering results of the three comparison partners, recording the number

of correctly identified papers for each community as well as the overall accuracy. For both

k-Means and NetScan, we chose the best results over 20 runs and the accuracy is defined as

the number of correctly clustered papers divided by the total number of papers. Our results

show that NetScan clearly outperforms k-Means and GraClus, improving the accuracy from

60%, and 73% to 85% respectively.

Communities I Size k-Means I GraClus NetScan I
Theory 519 359 387 504

Databases 434 351 405 423
Machine Learning 483 156 260 300

Sum 1436 866 1052 1227
Accuracy 60% 73% 85%

Table 4.7: Comparison of NetScan, GraClus and k-Means on dataset DBLP II.

To illustrate the benefits of joint cluster analysis, we present in Figure 4.11 a small

portion of the DBLP II dataset and the clusterings produced by k-Means and by NetScan.

Table 4.8 lists the details of the chosen papers, which allows readers to verify and com­

pare the clustering results shown in Figure 4.11. As a particular example, the STOC'02

paper (id:602) is about "Query strategies for priced information". Many of the keywords

appearing in its abstract are commonly used in database papers, e.g., "Query", "Search",

"Framework", and "Algorithm". From this attribute information alone, the paper would

CHAPTER 4. JOINT CLUSTER ANALYSIS 68

Paper 10 Title I Authors Conference

50 SECRET; a scalable linear regression A. Dobra KDD'02
tree algorithm J. Gehrke

51 Detecting change in data streams D. Kifer VLDB'04
S. Ben-David
J. Gehrke

13 Query optimization in compressed Z. Chen S1GMOD'OI
database systems J. Gehrke

F.Korn
306 RE-Tree: an efficient index structure C. Chan KDD'03

for regular expressions through a M. Garofalakis
social network R. Rastogi

54 Processing complex aggregate queries A. Dobra S1GMOD'02
over data streams M. Garofalakis

J. Gehrke
R. Rastogi

804 Gossip-based computation of aggregate D. Kempe FOCS'03
information A. Dobra

J. Gehrke
755 Protocols and impossibility results for D. Kempe FOCS'02

gossip-based communication mechanisms J. Kleinberg
763 Building low-diameter P2P networks G. Pandurangan FOCS'OI

P. Raghavan
E. Upfal

885 Can entropy characterize performance of G. Pandurangan SODA'OI
online algorithms? E. Upfal

754 Algorithms for facility location problems M. Charikar SODA'OI
with outliers S. Khuller

D. Mount
G. Narasimhan

761 Stability of load balancing algorithms in E. Anshelevich STOC'02
dynamic adversarial systems D. Kempe

602 Query strategies for priced information M. Charikar STOC'02

I

R. Fagin
V. Guruswami
J. Kleinberg
P. Raghavan
A. Sahai

Table 4.8: Papers used in Figure 4.11.

CHAPTER 4. JOINT CLUSTER ANALYSIS 69

True Cluster Label:

Paper ID < 434 Databases

Paper ID >=434 «956) Theory

• Database (NetScan)

o Theory (NetScan)

_..-.. - k-Means results
.......

Figure 4.11: Partial clustering results on dataset DBLP II.

be clustered as a database paper. However, considering the neighboring papers that share

at least one author with it, NetScan correctly identified the paper as a theory paper. As

another example, the FOCS'03 paper (id:804) has extensive connections with database pa­

pers. However, taking its attributes into consideration, NetScan correctly identified it as a

theory paper.

The GraClus algorithm was shown to be so far the best spectral method for solving

the normalized cut problem [97]. In our above experiment, NetScan clearly outperformed

GraClus on the DBLP II dataset in terms of clustering accuracy. Moreover, since k-Means

and GraClus do not enforce the internal connectedness constraint, each generated cluster

may contain more than one connected component. In fact, the clusters generated by k­

Means and GraClus form 241 and 13 connected components respectively instead of the three

connected components corresponding to the three communities. These results confirmed

that the CkC model is effective in discovering clusters which are cohesive on both types of

data in the DBLP dataset. Given that coauthorship networks are known to be typical social

networks [14], the CkC model is able to handle many real life applications such as community

identification and market segmentation, in which internal connectivity is requested.

4.7.4 Spellman dataset: clustering genes

The third experiment was conducted on the Spellman gene dataset. For this dataset, the at­

tribute data is the expression profile of 6026 yeast genes [98] which were measured at 73 time

points corresponding to different stages of cell cycle. The relationship data was extracted

from the protein interaction network of Saccharomyces Cerevisiae, which was downloaded

CHAPTER 4. JOINT CLUSTER ANALYSIS 70

from the BioGRID database [99]. Edges in the informative graph were created for every

pair of genes for which BioGRID records at least one experiment reporting some type of in­

teraction between the corresponding proteins. Since our model requires complete attribute

data and a connected relationship network, we preprocessed the data to obtain an adapted

dataset with 2149 genes by eliminating the ones with missing expression data and selecting

the largest component. For this dataset, there is no ground truth available to measure

clustering accuracy. Alternatively, we computed the biological significance of the generated

clusters using FuncAssociate [21]. FuncAssociate measures the over-repre~entationof G03

(Gene Ontology) terms within a cluster using negative log P-values, a standard cluster vali­

dation method in the bioinformatics literature [109]. The P-value measures the probability

that a certain over-representation of GO terms appears by chance, Le., the smaller the

P-value (the larger the negative log P-value), the more significant the cluster.

Algorithm Top 5 Enriched GO Terms -logIQ(P-value)

k-Means Nucleolus 33
Ribosome biogenesis and assembly 33
Ribosome biogenesis 31
Transcription from Pol I promoter 26
rRNA processing 26

GraClus Endoplasmic reticulum 40
Mitochondrial ribosome 35

I

Organellar ribosome 35
mRNA splicing 33
Transcription regulator 32

NetScan Ribosome biogenesis and assembly 47
Ribosome biogenesis 38
Transcription from Pol I promoter 35

I

Nucleolus 35
rRNA processing 33

Table 4.9: Comparison of NetScan, GraClus and k-Means on the Adapted Spellman dataset.

We ran k-Means, GraClus and NetScan with k = 15 on the adapted Spellman dataset.

We adopted Euclidean distance as the similarity metric since mean vector calculation is

not meaningful for other popular similarity metrics such as Pearson Coefficient. To run

GraClus, we set the edge weights to be the inverse of the Euclidean distance between

the two corresponding genes. As the GraClus implementation used requires integer edge

3http:j jwww.geneontology.orgj

CHAPTER 4. JOINT CLUSTER ANALYSIS 71

weights, we further multiplied the edge weights by an appropriate constant (i.e., 1000). Due

to the unavailability of the knowledge on the minimum size of clusters, we set minSize to

o for NetScan. For both k-Means and NetScan, we chose the best results over 20 runs.

The enriched GO terms together with the corresponding negative log P-value are listed in

Table 4.9.

From this set of experiments, we observed that the clusters generated by NetScan have

significance at least comparable to the ones generated by GraClus. Meanwhile, both NetScan

and GraClus clearly outperformed the k-Means algorithm. These results confirmed that re­

lationship data provides additional knowledge and joint analysis of both types of data is

helpful to identify significant gene clusters. Moreover, NetScan identifies connected compo­

nents in the interaction network, while the clusters found by GraClus may be unconnected.

As demonstrated by Ulitsky et al., identifying connected subnetworks in the interaction

data helps to ensure that clusters are biologically relevant [109].

4.7.5 Synthetic datasets.

We used synthetic data for the efficiency evaluation. According to the complexity analysis

in Section 4.6, the runtime is directly related to the number of edges instead of the number

of nodes. We thus fix the number of nodes and vary the degree of each node to evaluate

the efficiency of NetScan. We took the UCI PIMA dataset [1]' which was also used in

[32J to evaluate the quality of the k-Means algorithm. Since the PIMA dataset contains

only numerical attributes, we automatically generated the relationship data based on two

random graph models, the Erdos-Renyi model (43] and the Power-Law model (15]. In the

Erdos-Renyi model, every pair of nodes is connected with the same probability. In the

Power-Law model, which is often used to model internet structure, there are many nodes

with few edges and only a few nodes with a large number of neighbors. All the experiments

were conducted on an Intel Celeron 1.6G processor with 512M RAM running the Window

XP operating system.

We studied the effect of the average number of edges on the runtime. Figure 4.12 (a)

shows the results over 50 restarts for both models. The average degree was set starting

from 4 since with a smaller degree the data generator often failed to generate a connected

network. We also evaluated the effect of k on the runtime, as reported in Figure 4.12(b).

Our results show that NetScan scales well with both the average degree and k, confirming

our average runtime complexity analysis.

CHAPTER 4. JOINT CLUSTER ANALYSIS 72

Erdos.Renyi Model -­
power-LOw Model ._-~

Erdos-Renyi Model -----<-­

Power.LowMOd~....

/'~.

/.
~/ .

"08 220

~200
i Hill

C

~ 1M •

§140 ~~~
IX,,.~~_/~

'00,'--~-~-~-~-~-~c--~_-.J

120 .. __ .'

-g ""o

.~ 2~

~ ~

.: ~..
.§ 1110

;:
~ ,..
IX

Average degree (k = 4) k (average degree s 4)

Figure 4.12: NetScan on synthetic data. (a) runtime vs. average degree. (b) runtime vs. k.

4.8 Summary

Existing cluster analysis methods are based on either attribute data or relationship data.

However, in scenarios where these two data types contain complementary information, a

joint cluster analysis of both promises to achieve better results. In this chapter, we have

introduced the novel Connected k-Center (CkC) problem, a clustering model that integrates

an internal connectedness constraint defined on relationship data and an objective function

specified on attribute data. In this model, the constraint provides a way to capture applica­

tion needs in several applications, e.g. market segmentation, and community identification.

We have also relaxed the CkC problem to allow multiple membership which results in the

CkC' problem. The CkC' problem captures the requirements in some applications where

entities can belong to multiple clusters.

We have proved the NP-hardness of both the CkC problem and the CkC' problem

and studied their connections which lead to a constant factor approximation algorithm for

CkC. For the special case of the CkC problem where the underlying graph is a tree, we

have proposed a dynamic programming method giving an optimal solution in polynomial

time. To improve the scalability for large real datasets, we have developed the efficient

heuristic algorithm NetScan. Our experimental evaluation using real datasets for community

identification and gene clustering demonstrated the meaningfulness of the NetScan results.

In addition, experiments on synthetic datasets demonstrated the efficiency and scalability

of the NetScan algorithm.

CHAPTER 4. JOINT CLUSTER ANALYSIS 73

The framework of joint cluster analysis of attribute and relationship data suggests sev­

eral interesting directions for future research. Firstly, to better model practical applications,

the connectivity constraints can be generalized to suit varied requirements. For example,

the internal connectedness constraint can be replaced by specifications on any combina­

tion of properties of graphs such as length of paths, degree of vertices, connectivity, etc.

Secondly, the relationships can be non-binary, and the edges can be weighted to indicate

the degree of relationship. For example, friendship can go from intimate and close to just

nodding acquaintanceship. The relationships can also be non-symmetric such as in citation

or superior-subordinate relations. Clustering models for these types of relationship data

and corresponding algorithms are worth to be explored. Finally, we believe that with the

increasing availability of attribute data and relationship data, data mining in general, not

only cluster analysis, will benefit from the joint consideration of both data types.

Chapter 5

Constraint-Driven Clustering

There have been many clustering models integrating constraints to enable us to find useful

clusters. However, most of them require users to provide the number of clusters, K, which

is often unknown in advance. Furthermore, even if the most appropriate number of clusters

determined from the data distribution is known, it may not suit the application needs [12).

Furthermore, an inappropriate number of clusters may result in generating distorted and

less actionable clusters. We argue that a more natural way to generate actionable clusters is

to let the constraints decide the number of clusters. In this chapter, we propose the so called

Constraint-Driven Clustering, which aims at utilizing user-provided cluster-level constraints

to discover an arbitrary number of compact and balanced clusters. The compactness of a

clustering is measured by the sum of the squared distances of all data objects to their

corresponding cluster representatives. Two general types of cluster-level constraints are

considered, i.e., minimum significance constraints and minimum variance constraints, as

well as combinations of these two types. A preliminary version of Chapter 5 was published

in [53].

5.1 Overview

Various balancing constraints have been designed to restrict the generated clusters in order

to make them actionable. In particular, we are interested in two types of cluster-level

constraints, Le., minimum significance constraints and minimum variance constraints. The

minimum significance constraint specifies the minimum number of objects in a cluster. The

minimum variance constraint poses a lower bound on the variance of a cluster. By imposing a

74

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 75

minimum significance constraint or/and a minimum variance constraint, our model searches

for clusters which are balanced in terms of cardinality or/and variance.

To motivate Constraint-Driven Clustering with minimum significance and variance con­

straints, we use applications in energy aware sensor networks and privacy preservation as

our running examples.

Energy Aware Sensor Networks [55, 61, 12]: Grouping sensors into clusters is an

important problem in sensor networks since it can drastically affect the network's commu­

nication energy consumption [55]. Normally, a master node is chosen from sensors in each

cluster or deployed to the central area of each cluster. Other sensors will communicate with

the outside world through the closest master node. In this context, it is desirable to require

each cluster to contain at least a certain number of sensors in order to balance the work load

of master nodes. To prolong the lifetime of a sensor network, evenly distributing energy con­

sumption among clusters is desired. Since the energy consumption of message transmissions

increases quadratically with the distance between communicating sensors [26], the variance

of a group of sensors corresponds to the amount of energy consumed by those sensors on

average. The minimum variance constraint allows to group sensors into clusters which are

balanced in terms of energy consumption. Moreover, in this application, it is natural to have

the constraints decide the appropriate number of clusters instead of specifying a number in

advance.

Privacy Preservation [94, 104]: In a privacy preservation application, we may want

to release personal records to the public without a privacy breach. To achieve this, we can

group records into small clusters and release the summary of each cluster to the public. In

this context, the usability of a clustering is evaluated by how much privacy is preserved

in the clustering. To preserve individual privacy, the k-anonymity model [104] requires

that each cluster has to contain at least a certain number of individuals. However, these

individuals could have very similar, even identical attribute values, allowing an adversary to

accurately estimate their sensitive attribute values with high confidence from the summary.

We argue, therefore, that the clusters to be published should also have a minimum variance

which translates into the width of the confidence interval of the adversary estimate. In the

context of privacy preservation, again, it is typically unreasonable to specify the number of

groups in advance.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 76

The PPMicroCluster model [71] requires both minimum significance and minimum ra­

dius constraints to preserve privacy. Compared to this model, our Constraint-Driven Clus­

tering model adopts a more practical constraint, Le., minimum variance constraint, which

describes the statistical properties of a cluster better and can be used for a wide range

of applications. Besides, we systematically study the complexity of the Constraint-Driven

Clustering problem and propose a dynamic algorithm which is shown to be more efficient

than the static algorithm for solving the PPMicroCluster problem.

In this chapter, we introduce the Constraint-Driven clustering problem. We prove the

NP-hardness of the proposed clustering problem with different constraints. Inspired by the

NP-hardness proof, we propose a novel data structure, named CD-Tree, which organizes

data objects in leaf nodes such that each leaf node approximately satisfies the significance

and variance constraint and minimizes the sum of squared distances. Based on C D-Trees,

we develop an efficient algorithm to generate constrained clusters with good quality. Fur­

thermore, benefiting from the hierarchical tree structure, the CD-Tree algorithm can easily

adapt to dynamic updates of the data.

The rest of the chapter is organized as follows. Section 5.2 surveys related work. Sec­

tion 5.3 introduces the new cluster model and analyzes its complexity. Section 5.4 presents

the C D-Tree algorithm. We report experimental results in Section 5.5. Section 5.6 summa­

rizes the constraint-driven clustering problem and discusses future directions.

5.2 Background

The Constraint-Driven Clustering problem is related to many topics. In this section, we

review related research on actionable clustering, cluster-level constraints, instance-level con­

straints, cluster methods in sensor networks, and k-anonymity for privacy preservation.

Cluster-level Constraints. Our proposed clustering model belongs to the category of

clustering with cluster-level constraints. Different from all existing models, our model does

not require the number of clusters as an input.

Clustering methods in Sensor networks. Ghiasi et al. proposed to cluster sensor

nodes such that the number of sensors in each cluster (which has a master node) is in

the range of [I - 15, I + 15] and the total distance between sensor nodes and K master

nodes is minimized [55]. The clustering problem presented in [55] is different from the

Constraint-Driven Clustering in that it specifies the number of clusters. More practical

CHAPTER 5. CONSTRAINT-DRlVEN CLUSTERlNG 77

protocols are studied in the sensor network literature to minimize the energy consumption or

message transmissions by grouping sensors to clusters. Bandyopadhyay et ai. [10] proposed

a randomized algorithm to find the optimal number of cluster heads by minimizing the

total energy spent on communicating between sensors and the information-processing center

through the cluster heads. Authors in [80] present a clustering method for self-organizing

sensor networks, for the purpose of grouping sensors into the optimal number of clusters

that minimize the number of message transmissions. Similar approaches on clustering in

sensor networks also include [7, 13, 76] etc. However, these clustering methods focus on

dealing with engineering constraints instead of systematically studying the properties of the

proposed clustering models.

k-Anonymity. The k-Anonymity model [94, 104] was proposed for the purpose of pro­

tecting data privacy. The k-anonymity framework archives the goal by generalizing entries

in a table with minimum cost such that every record becomes textually indistinguishable

from k - 1 other records in the table. [90] and [5] prove that k-Anonymity with Suppression

is NP-hard and study approximation algorithms. The k-Anonymity model is defined on

categorical data, and thus has different properties from our model which assumes a geomet­

ric space with the Euclidean distance. [4] introduces a k-nearest neighbor based algorithm

to solve the k-anonymity problem for numerical data. Domingo-Ferrer et ai. [39] studied

the optimal k-partition problem which can be considered as the k-Anonymity model in the

Euclidean space. And it is a special case of our model where only significance constraints are

allowed. But in [39] the complexity of the proposed problem is not analyzed. [54] considers

privacy preservation as a problem of finding the minimum number of hyperspheres with a

fixed radius to cover a dataset satisfying that each hypersphere covers at least a certain

number of data objects. A similar model, named PPMicroCluster, is studied in [71] which

requires both significance and radius constraints. Compared to the PPMicroCluster model,

our model adopts a more practical constraint, i.e., minimum variance constraint which de­

scribes the statistical properties of a cluster better and can be used for a wide range of

applications. Besides, [71] does not analyze the complexity and proposes a static algorithm.

5.3 Problem Definition and Complexity Analysis

In this section, we introduce the Constraint-Driven Clustering problem and analyze its

complexity under different types of constraints.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING

5.3.1 The CDC Problem

78

First we define the general Constraint-Driven Clustering problem, also referred to as CDC

problem, as follows:

Definition Constraint-Driven Clustering(CDC)

Given a set of data objects P in d-dimensional space, a set of constraints C, the task is to

partition P into disjoint clusters {PI,'" ,Pm}, Vi,j, i #- j, Pi n Pj = 0, P = PI u··· U Pm,

such that: (1) each cluster Pi, 1 :::; i :::; m satisfies all constraints in C and (2) the sum of

squared distances of data objects to their corresponding cluster representatives is minimized.

Note that a cluster representative can be either a real data object or the mean vector

of a cluster. In this thesis, we study the CDC problem under the following two types of

constraints.

Definition For each cluster Pi, 1 :::; i :::; m,

• Minimum Significance Constraint Sig ~ 1: Wi! ~ Sig.

M
. . . . LpEP. dist(p,!J.)2

• mlmum Variance Constramt Var ~ 0: 'Wil
representative of Pi.

~ Var, where J-L is the

Remark. The CDC model is general in that the constraint set C can include one or

more constraint types. Note that when Sig = 1, the significance constraint is trivially

satisfied, similarly the variance constraint when Var = O. For the CDC problem to be

meaningful, at least one of the constraints has to be non-trivial.

In the current definition of CDC, we require the generated clusters to be non-overlapping.

Yet, the CDC problem can also be extended to allow overlapping. For privacy preservation,

for example, possible overlaps among the generated clusters cannot only make the model

more flexible, but also enhance privacy protection. When overlapping is allowed, a data ob­

ject assigned to multiple clusters would contribute to the objective function (sum of squared

distances) multiple times. The complexity analysis in the following section remains valid

when overlapping is permitted since the optimal solution for the instance in the proof can

never contain overlapping clusters.

CHAPTER 5. CONSTRAINT-DRiVEN CLUSTERiNG

5.3.2 Complexity Analysis

79

In this section we show that the CDC problem is NP-hard under the minimum significance

or the minimum variance constraints. We shall focus on the significance constraint, and

show how the same proof can be easily extended for the minimum variance constraint.

In order to study the complexity of the CDC problem, we consider the decision version

of the CDC problem with a significance constraint only (sig-CDC) as follows.

Definition (sig-CDC). Given a set of data objects Pin d dimensional space, a constant

Sig > 1 and a cost threshold W. Decide whether P can be partitioned into disjoint clusters

{PI,'" , Pm}, which satisfies the following conditions:

1. VPi, !Pi 1 2: Sig (the minimum significance constraint).

2. L.f==l L p EP
j
(dist(p,pj))2 :::; W, where Pj is the medoid of cluster Pj and dist(p,pj) is

the Euclidean distance between P and Pj.

In the following we prove that the sig-CDC problem is NP-complete by a reduction

from a known NP-complete problem, PLANAR X3C.

Definition (PLANAR X3C [42])

Given a set Q with IQI = 3q and a set T of triples from Q x Q x Q such that (1) every

element of Q occurs in at most three triples and (2) the induced graph is planar. (The

induced graph G contains a vertex for every element of Q and for every triple in T. There

is an edge connecting a triple to an element if and only if the element is a member of the

triple. Clearly, G is bipartite with vertex bipartition Q and T.) Decide whether there exists

a subset of q triples in T which contains all the elements of Q.

Theorem 5.3.1 sig-CDC is NP-complete fOT Sig 2: 3.

Proof. First, the problem is in NP since it takes polynomial time to verify whether a given

clustering solution is feasible. To prove the NP-hardness, we perform a reduction from

PLANAR X3C. Given an instance I = (Q, T) of PLANAR X3C, we create an instance

I' = (P, Sig, W) of the sig-CDC problem by the following procedure.

1. Construct a planar bipartite graph G(V, E) of the instance I where V = Q U T and

E = {(q, t)lq E Q, t E T, q is a member of t}.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 80

- ----- e---.. Pqi

.- ... -. 2 1 2
_I... ~~ ..~

~ ---- !----- ~ p•

--.-- e---..Pq~

Figure 5.1: (a) Rectilinear layout L, (b) Final layout L'

2. Compute a rectilinear layout of G where each vertex v of G is mapped to a data

object Pv on the integer lattice. We further enlarge the layout by a factor of 1000 to

ensure that every two distinct horizontal (vertical) line segments are far away enough

from each other. Each edge e = (q, t) of G is broken into a sequence of line segments

of length 5 by placing data objects in the rectilinear layout (Figure 5.1(a)). The

resulting layout is denoted as L. [118] proposed a linear time algorithm to compute

such a layout. A similar rectilinear layout is used in [34] to prove the NP-completeness

of the feasibility problem for the Must-Link and E constraints.

3. Replace the corresponding point Pt of a triple t E T by a point set Ut = {pI,pt,pn.

pI, Pt ,pl form an isosceles triangle with two sides of length 2 and one side of length

1. Ut is called triple set in the following. Then, we connect pi, Pt, and pl each with a

different path of Pt leading to the corresponding element points in the original layout.

To adapt to this change, the layout L needs to be adjusted by allowing edge segments

to be inclined. See Figure 5.1 (b) for such a transformation. In the following, we refer

to points whose corresponding vertices are in Q as element points, and refer to points

in the triple sets as triple points.

4. Break each line segment of length 5 into three segments with length 2, 1,2 respectively,

by adding two auxiliary points to the line segment (see Figure 5.1(a)).

5. Let L' denote the final layout. Let P be the set consisting of all the points in L' and

set Sig = 3 and W = 51P1/3.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 81

Let m be the number of edge segments in L. Note that \PI is a multiple of 3 since

IPI = 3m + IQI and IQI is a multiple of 3. For any t E T, let Qt C Q be the set of the

three elements covered by t. We define a path as a collection of line segments from a triple

point p~ E Ut to its corresponding element point Pq where q E Qt without going through any

other triple points. Furthermore, note that the distance between two neighboring points on

a path is 1 or 2, and the distance between two non-neighboring points is greater than 2.

Assume that there is a set of triples YeT which covers all elements of Q exactly once.

We construct a feasible clustering of instance I' with a cost of 51PI/3 as follows. For every

triple set Ut , we first group all the three triple points of Ut into one cluster if t E Y. We

then start from the first unassigned point on each path originating from the points in Ut and

group every three consecutive points together. Figure 5.2 illustrates how points are grouped

along a path. Note that for any element q E Qt that is covered by t E Y, the corresponding

point Pq E P is grouped with its two closest auxiliary points on the path from p~ to pq. Since

q is only covered by one triple in Y, Pq is uniquely assigned to one cluster. Furthermore,

every cluster has a cost of 5 (including those clusters consisting of all the points in a triple

set). Thus, we obtain IPI/3 clusters each with a cost of 5 so that the total cost is 5\P1/3.

pt.··...p?
/~;.-_.-<..';:l.) .-- .
PI (a)

(b)

o Medoid

Figure 5.2: (a). Points in a triple set are grouped into one cluster. (b). Points in a triple set are grouped
separately with auxiliary points.

Now assume that there is a feasible clustering with the total cost smaller than or equal

to 5jPI/3. We demonstrate how to obtain a subset of triples YeT that covers every

element in Q exactly once. First we prove that any feasible clustering consists of \P1/3
disjoint clusters each consist of 3 points. For any i ;::: 3, let Hi denote the number of clusters

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 82

consisting of i points. We have /PI = Li iHi and the total number of clusters is Li Hi. Note

that the minimum cost of a cluster with three points is 5 by grouping three points connected

through two consecutive edges and choosing the middle point as the medoid. Furthermore,

every additional node in a cluster with more than three points contributes at least 4 to the

total cost (check the cluster containing four points in the dashed circle in Figure 5.1 (b).

Thus,

51PI/3 > total clustering cost

> Li 4(i - 3)Hi + 5 Li Hi = 4 Li iHi - 7 Li Hi.

Hence Li Hi ~ /P1/3 since IPI = Li iHi· Besides, since the cost of a cluster is at least

5 and the total cost is at most 5Ipl/3, Li Hi ::; 1P1/3. Thus Li Hi = 1P1/3. Thus we can

conclude that there must be 1P1/3 disjoint clusters, each consists of 3 points and has a cost

of 5.

In a feasible clustering, observe that all the points in a triple set either (a) form a

single cluster, or (b) belong to three different clusters, otherwise at least one cluster would

cost more than 5. We call a triple set Ut is of type (a) if (a) happens. Define G = {t E

T IUt is of type (a)}. It remains to show that G covers every element in Q exactly once.

If Ut is of type (a), each of the three points in Qt must be grouped into different clusters

with the two nearest auxiliary points along the path from Ut (See Figure 5.2(a». If Ut is

of type (b), none of the points in Qt is grouped with points along the paths from Ut (See

Figure 5.2(b». Since every element in Q is uniquely assigned to a cluster, T must consist

of IQI/3 type (a) triples (i.e., IGI = IQI/3). These triples must cover every element in Q

exactly once. 0

Next we demonstrate that the sig-CDC problem remains NP-Complete if using the

mean vector (instead of the medoid) of a cluster as the representative. We refer to this

model as j.L-sig-CDC. Following a similar proof technique, we prove the NP-hardness of the

following problem.

Theorem 5.3.2 The j.L-sig-CDC problem is NP-complete.

Proof. (Sketch.) The proof is by a reduction from PLANAR X3C that is similar to the

one for Theorem 5.3.1. We first construct a rectilinear layout for a PLANAR X3C instance

and replace each triple set by an isosceles triangle with two sides of length V37 and one

side of length 2. See Figure 5.3 for the final layout. Next, we set the significance constraint

CHAPTER 5. CONSTRAINT-DRiVEN CLUSTERiNG

o Mean Vector

(a)

Figure 5.3: Transformed Layout for Theorem 3.2 and Theorem 3.3.

83

Sig = 3 and set the total cost threshold W = 26IPj/3. Similar to the proof of Theorem 5.3.1,

we can show that in a feasible clustering, there must be exactly 1P1/3 disjoint clusters, each

consists of three points and has a cost of 26. Given this, we can show that there is a feasible

clustering if and only if the corresponding instance of PLANAR X3C has a feasible solution.

Hence, the tt-sig-CDC problem is NP-complete. 0

Finally, we apply the previous technique to show that the CDC problem is NP-Complete

if only a minimum variance constraint is specified and mean vectors are used as the cluster

representatives. We refer to this model as tt-var-CDC.

Theorem 5.3.3 The tt-var-CDC problem is NP-complete.

Proof. (Sketch) To prove that the tt-var-CDC problem is NP-Complete, we use the same

construction for proving Theorem 5.3.2. We set the minimum variance constraint Var =
26/3 and set the total cost W = 26IPI/3. Let F{ be an arbitrary cluster and denote by

Cost(F{) the total cost of F{. Note that due to the minimum variance constraint, Cost(Pi) ~

26IPil/3, and by a case analysis we can show that the equality holds only when lPil = 3.

Hence, in order to have a total cost of 26IPI/3, we must have 1P1/3 disjoint clusters each of

which consists of 3 points. The rest of the proof is similar to that of Theorem 5.3.2. 0

5.4 Algorithm

In the last section we have shown that the CDC problem with either a minimum significance

or a minimum variance constraint is NP-hard. In order to efficiently solve the CDC problem,

we design a heuristic algorithm which builds a compact tree structure to generate clusters

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 84

satisfying user specified constraints. The algorithm is general in that it can handle both

constraints separately or together.

We observe that a solution to the CDC problem has the following characteristics. (1)

To minimize the objective function (the sum of squared distances), the generated clusters

in an optimal solution should be balanced in terms of given constraints. For example, when

only a minimum significance constraint is provided, the generated clusters in an optimal

solution should contain similar number of data objects. (2) The membership assignment of

any data object can be decided by considering its close neighbors. Thus, easily retrieving

the local neighborhood of data objects is critical to the design of a universal algorithm that

can handle different constraints. Guided by these observations, we propose an algorithm

based on a novel data structure, called the C D- Tree, which is similar to the other index

structures, e.g., B-Tree, R-Tree and CF-Tree [120]. Yet, the CD-Tree is specially designed

for the CDC problem in that building the tree takes into account the minimization of the

objective function of CDC.

5.4.1 The CD-Tree

The CD-Tree has two input parameters, Le., a significance parameter B, a variance param­

eter V. Normally we set B = Big and V = Var, Le., the parameters of the CDC problem.

If one of the given constraints is trivial, methods for automatically determining appropriate

parameter values are needed which are discussed in Section 5.4.4.

In a CD-Tree, the maximum capacity of leaf nodes is set to 2B - 1 and the variance of

data objects in leaf nodes is upper bounded by 2V. Note that the CDC problem specifies

minimum constraints on the significance and variance of a cluster, while in the CD-Tree we

specify upper bounds for the significance and variance of leaf nodes in order to keep them

compact. Keeping leaf nodes compact matches our goal of minimizing the sum of squared

distances of generated clusters since data objects in leaf nodes will be used to generate

constrained clusters to solve the CDC problem.

It is appropriate to upper-bound the variance, because a too small variance may yield

too many leaf nodes, while a too large variance will make the statistical information of this

leaf node less meaningful when it is used to direct a new data object to its closest leaf node.

We set 2V as the upper bound of the variance since it makes leaf nodes to be reasonably

compact and to likely satisfy the minimum variance constraint Var. The maximum capacity

of leaf nodes is set to 2B - 1 since, as we show in the following lemma, there is always an

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING

optimal solution where the number of data objects in every cluster is smaller than 2Sig.

85

Lemma 5.4.1 In the /-L-sig-CDC problem, there exists an optimal clustering s.t. the num­

ber of data objects in any cluster is less than 2Sig and greater than or equal to Sig. 1

Proof. By contradiction. Assume that in every optimal clustering, there is a cluster Pi

containing l data objects where l 2: 2Sig.

We arbitrarily split Pi into two clusters Pil and Pi2 where IFill = Sig and lFi21 = l- Sig.
----' -->. -->.

Let M be the mean vector of the data objects in l{. Similarly let M 1 and M2 be the mean

vectors of the data objects in Pil and Pi2 respectively. Note that

M= ~ (I: If + I: -q)
PEPil qEPi2

1 -->. -->.

= y[SigM1+ (l- Sig)M2J

Let f(l{) be the objective value of Cluster Pi. We have

(5.1)

f(Pi) = I: (If - M)2 = I: -p2 -lM2,
pEP; PEPi

since LpEP; -p = lM. Similarly, f(PiJ = LpEPil -p2 - SigM and f(Pi2) = L qEPi2 -q2 -
-->.

(l- Sig)M2 2.

Applying Equation 5.1 and straightforward algebra, we get

f(Pi) - (f(Pil) + f(Pi2))
-->. -->.----'

SigM1 2 + (l- Sig)M22 -lM2

= Sig(l ~ Sig) (M2 + Nh.2 _ 2MNh.) 2: 0 (5.2)

Thus, we could obtain a clustering whose objective value is smaller than or equal to the

previous one by splitting Pi into l{1 and l{2' yielding a contradiction. 0

In the CD-Tree, each entry of a leaf node represents an individual data object. The

maximum capacity of a non-leaf node is set to Z which is a constant and can be set arbi­

trarily. Every entry of a non-leaf node corresponds to the subtree rooted at one of its child

I Note that a similar result is presented in [B9}.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 86

nodes. The entry stores a pointer to the child node, as well as the statistical information

(the mean vector, linear sum and squared sum) of all the data objects in the corresponding

subtree. Similar to the CF-Features [120], the statistical information is used to direct a

new data object along a path to the closest leaf node. Besides, all the leaf nodes are linked

together for easy access of their neighborhood.

The construction of a C D-Tree relies on two basic operations: insertion and split. The

C D-Tree algorithm takes one data object at a time and inserts it into an appropriate

leaf node following the path from the root. A tree node is split into two nodes whenever

its capacity is exceeded. The CD-Tree is constructed by repeatedly invoking these two

operations until all data are processed. After the CD-Tree is ready, some post-processing

is needed to generate clusters that satisfy the constraints of the CDC problem.

This approach has three advantages: (1) Building a CD-Tree requires only one scan

of a dataset so that the disk access is minimized. (2) Benefiting from the tree structure,

our approach can easily deal with incremental updates of the dataset. (3) The CD-Tree

algorithm ensures that the data objects in the same leaf node are similar to each other. Thus

it is sufficient to examine only the neighboring leaf nodes whenever there is some change to

the required constraints.

Insertion. Given a new data object p, we first locate the leaf node that p shall be

inserted into. Starting from the root of the CD-Tree, every time we pick the subtree whose

mean vector (which is part of the statistical information) is the closest to p. Repeat this

process until we reach some leaf node. If the variance of a leaf node exceeds the threshold

after inserting p, we need to create a new leaf node to accommodate it.

Split. In the construction of the CD-Tree, a split is invoked whenever the capacity of a

node is exceeded. The proof of Lemma 5.4.1 provides an efficient way to evaluate the drop of

the objective value during a split. Based on Equation 5.2, we design an efficient algorithm

to split a group of 28 data objects g into two clusters Pi} and Pi2 (Algorithm 7). The

algorithm proceeds in a greedy fashion. First we pick the data object that is farthest from

Pi'S mean vector and add it to Pi2 . Then we iteratively add data objects that are closest

to P i2 's mean vector into Pi2 until the objective value stops decreasing. And P il keeps all

remaining data objects in Pi. Splitting non-leaf nodes can be done similarly by considering

the mean vector saved in the entries of the non-leaf nodes.

Finally, after each split, we need to decide how to link the newly created leaf nodes with

the existing nodes. Suppose we just split a leaf node Pi into Pil and Pi2' Let Pprev and

CHAPTER 5. CONSTRAINT-DRiVEN CLUSTERING

Algorithm 7 Splitting a group of 25 data objects.
1: Input: Pi contains 28 data objects
2: Output: Pi, and Pi,
3: Pi, ~i; size = IPi,l;

4: Set M I to the mean vector of data objects in Pi,; -I.

5: Pick the data object p in Pi, th~s farthest from M I ;

6: Remove p from Pi, and update M I ;

7: Pi, = {p}; A:h = P;
8: MaxObjDrop = (size-I) (M;2 + A:h2 - 2M;A:h);

.'nze

9: for i = 2 to 8 do -I.

10: Pick a data object p' from Pi, th~ is nearest to M 2 ;

11: Remove pi from Pi, and u~te M I ;

12: Add pi to Pi, and update M 2 ;

13: ObjDrop = (S~~~~i) (M;2 + A:h2 - 2M;A:h);
14: if ObjDrop ~ MaxObjDrop then
15: Continue;
16: else
17: Remove pi from Pi, and add pi back to Pi,;

87

Pnext be the both neighbors of Pi before split. There are two ways to link Pil and Pi2' Let

/-L(Pi) be the mean vector of Pi. If 1/-L(Pprev) - /-L(Pil)1 :S !/-L(Pprev) - /-L(Pi2)1, we create links

Pprev ----+ Pil ----+ l{2 ----+ Pnext , otherwise Pprev ----+ Pi2 ----+ Pil ----+ Pnext .

S=5

(a)

nl2

~
(};,,:,-::}~·,,:~::.·./J·.::-:::t~·)

(b)

Figure 5.4: (a) Data Objects. (b) Visualization of the CD-Tree.

5.4.2 Solving the CDC problem

After we construct a CD-Tree, the CDC problem can be solved by post-processing the leaf

nodes of the CD-Tree. Similar to many other hierarchical tree structures, a CD-Tree has

the property that data objects located in the same subtree tend to be more similar than the

data objects located in different subtrees. By linking tree nodes appropriately, we are able

to retrieve the neighbors of any data object easily. For example, Figure 5.4 shows a small

dataset and its corresponding CD-Tree. In this figure, dashed circles represent leaf nodes

and solid circles correspond to non-leaf nodes of the CD-Tree. Since every new data object

CHAPTER 5. CONSTRAINT-DRlVEN CLUSTERlNG 88

is inserted into the tree based on its distance to the mean vectors of subtrees, data objects

in l1 are more similar to data objects in l2 than to data objects in h or l4. This allows us

to postprocess the neighboring leaf nodes to obtain constrained clusters.

We propose a sliding window approach for solving the CDC problem. A sliding window

consists of exactly Z leaf nodes with the same parent node. Starting with the first leaf node

in the window, we examine one leaf node at a time. Depending on the given significance

constraint Big and variance constraint Var, we distinguish between two types of a leaf node

L. L is called qualified if L has at least Big data objects and variance at least Var, otherwise

not-qualified. For every qualified leaf node L, we output its "kernel", which is a subset of

data objects of L that just satisfies the given constraints. Kernels can be easily calculated

using a greedy approach (Case a of Algorithm 8). The remaining data objects in L are

treated together with those under-qualified leaf nodes. We repeatedly absorb data objects

from other leaf nodes in the same window to form clusters that satisfy the given constraints

(Case b of Algorithm 8). Note that all the data objects which have been assigned to some

clusters are not considered in case b. After looping through all the leaf nodes, a set of

constrained clusters is generated.

Algorithm 8 Cluster leaf nodes
1: Input: significance constraint Big, variance constraint Var, a leaf node L.
2: Output: a set of constrained clusters
3: Q=0

Case a:
4: if L.size 2: Big and L.var 2: Var then
5: insert the data object closest to L.mean to Q
6: while Q.size < Big or Q.var < Var do
7: Add the data object closest to the Q.mean from L to Q
8: Output Q
9: L = L \ Q, apply Case b to L

Case b:
10: while L.size < Big or L.var < Var /*not-qualified*/ do
11: Absorb similar data objects from other leaf nodes in the same window following the link, shift the

window if all data objects in the current window are absorbed
12: Output L

5.4.3 Runtime Analysis

We assume that both CDC constraints are non-trivial. In order to analyze the runtime

of the CD-Tree algorithm, we first bound the height of a CD-Tree. In the worst case, a

CD-Tree can have O(n) levels if every inserted data object triggers a split and every split

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 89

results in two leaf nodes containing 2Sig - 1 data objects and one data object respectively.

An insertion of a single data object into the CD-Tree involves two operations: locating

the right leaf node to insert the data object and splitting the leaf node if its capacity is

exceeded. The time to locate the right leaf node is O(n) since the height of the CD tree is

O(n). In a split (Algorithm 7), we create a new node starting with the farthest data object

from the mean of the old node (which can be found in O(Sig) steps), and gradually absorb

the closest data object to the mean of the new node (each of the O(Sig) absorptions takes

O(Sig) steps). Hence, the runtime of a split is O(Sig2). For building a CD-Tree with n

data object, the total runtime is O(n2 + Sig2n) in the worst case.

In the phase of postprocessing the CD-Tree to solve the CDC problem, if the variance

constraint Var is not specified, generating a valid cluster consisting of O(Sig) data objects

requires O(Z .Sig2) steps since there are at most O(Z .Sig) data objects in a sliding window

of length Z which is often considered as a constant. Thus, generating a set of O(n/Sig) valid

clusters takes O(n . Sig) steps. If a variance constraint Var is also specified, the number

of data objects in a valid cluster could be O(n) in the worst case (imagine that there is

only one valid cluster containing all data objects). In such a case the runtime of the second

phase is O(n2). Therefore, the overall runtime is O(n2 + Sig2n).

Yet, in practice, Sig is typically small compared to n. If the data distribution is not

highly skewed, the height of the CD-Tree is usually small. In such cases, our algorithm is

very efficient as demonstrated by the experimental evaluation in Section 5.5.

5.4.4 Discussion

How to handle a trivial variance constraint? If a variance constraint is trivial, i.e.,

Var = 0, we need to set the variance parameter V used for the C D-Tree construction auto­

matically. A suitable threshold should allow Sig closest data objects to be grouped together.

Ideally, if we know the average Sig nearest neighbor distance of a dataset, this distance can

be used to approximate the variance parameter. However, the exact computation of the

average Sig nearest neighbor distance is expensive. Therefore, we propose to estimate the

Sig nearest neighbor distance based on the following lemma.

Lemma 5.4.2 Given a dataset of n data objects that are uniformly distributed in a d di­

mensional space with volume Vol. Fix any data object p, let R be the random variable

indicating the radius of the smallest enclosing ball of the Sig nearest neighbors of p. Let

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING

R* = rr- 1/ 2 V'Sig. Volr(d/2 + 1)n-1 where r is the Gamma Function [2j. Then

90

Proof. We first show that Pr[R > 22/ dR*] ~ n-2 . Let H be the hypersphere with radius

22/ dR* centered at p. Let vol(H) be the volume of H. Then, from [2]' we have

vol(H) = rr~ (22/ dR*)d(r(d/2 + 1))-1 = 4Sig· Vol/no

Let Q be a random variable indicating the number of data objects in H. We have E[Q] =
n· vol(H)/Vol = 4Big. Using Chernoff's bound we obtain Pr[Q < Big] ~ Pr[Q < (1 ­

3/4)E[Q]] < eE [Q].{3/4)2/2 ~ e-Sig . Consequently Pr[R > 22/ dR*] ~ Pr[Q < Big] < e-Sig .

Similarly we can show that Pr[R < 2-3/ dR*] < e-Sig so the result follows. 0

Lemma 5.4.2 shows that we can estimate the Big nearest neighbor distance with high

probability if we know the volume Vol of a dataset for uniformly distributed data. In

practice, if the volume is not known, we can draw a small set of samples to obtain a good

estimation.

How to handle a trivial significance constraint? A CD-Thee requires a meaningful

significance constraint to set its leaf node capacity. If the supplied significance constraint is

a and only a variance constraint Var is given, we can estimate the number of data objects

located in a hypersphere of radius vVar for uniformly distributed data and set the number

to be Big. Let vol (H) be the hypersphere with radius vVar and Vol be the volume of a

dataset. The expected number of data objects located in this hypersphere is n· vol(H)/Vol,

n is the total number of data objects in the dataset.

5.5 Experimental Evaluation

In this section, we experimentally demonstrate the efficiency and effectiveness of the CD­

Thee algorithm using real and synthetic datasets.

5.5.1 Methodology

In order to evaluate the CD-Thee algorithm for sensor network applications, we generated

a synthetic dataset (DS1) consisting of 5000 two dimensional data objects which simulates

a sensor network with 5000 sensors uniformly deployed in a two dimensional space. A

CHAPTER 5. CONSTRAINT-DRiVEN CLUSTERiNG 91

similar simulation was used in [61] to evaluate clustering results for sensor networks. In

addition, we evaluated the CD-Tree algorithm on two real datasets. The first one is the

"Abalone" dataset and the second one is the "Letter" dataset. Both datasets are from UCI

machine learning repository [1]. The "Abalone" dataset was also used by [4] for evaluating

the quality of the condensation group approach for privacy preservation applications. The

original abalone dataset contains 4177 data objects and 9 attributes. We preprocessed the

dataset and kept 7 out of total 8 continuous attributes since one of the attributes is the

class label. The Letter dataset includes 20,000 instances and has 16 continuous attributes.

Finally, we generated three large synthetic datasets, containing 0.5 million, 1 million, and 2

million three dimensional data objects, to evaluate the scalability of the CD-Tree algorithm.

OSI OSI

1040 50 60

Significance

.. 3500
E
t:

:::;. 2500
II

E
~ 1500
~

a::
500

70 3040 50 liO

Significance

40E<05 f-------I--=-~-;:::::__,..
o
~ 3.5E+OS I--------j.:!::.!!!~~~

l 3.0E<05 +----------,.,L-­
~~ 2.SE~5+- ~::::::::::::"wL---

V'

~ 20E+OS +---_<-------",,,c...-­
o
E 1SE<05 +---:7'~c::==::=::1~----­
~

CII 1.0E~5 +-_-.-_~--..__--.--"""'

Figure 5.5: Results for Dataset DSI (Only significance constraints are specified).

DBI DSI
3SEoOS

.....CD-Tree

.. 3.OEoOS t- -L--..:...:P~p.::Mic::ro:::cl::us=.11er

~
w 2.SEoOS +-------:;;;..-=-~~-___;

~
~ 20E+0S +--=--------=--~---<
U'
CII
'li 1SEoOS +--------------'
E
.;: 10EoOS+------------,

SOE+()4+--~-~--~-~-__i
3.2 3.4 36 3.6

Varill1c, (Slgnillcanc. '" 50)

4500

;- 3500

g
~ 2500
:w
c
~

a: '500

500

l.....cD-Tree
__PPllIcroClus1er

....

/~
~

\
l

12 H 16 1B
Variance (Significance· 50)

Figure 5.6: Results for Dataset DSI (Both significance and variance constraints are specified).

Two related approaches, the PPMicroCluster algorithm [71] and the condensation group

CHAPTER 5. CONSTRAINT-DRiVEN CLUSTERiNG 92

50 ,... ,

... 45t========~~~;==1g40 I~CD-Tree '

w 35 t====:~2/::::::~__~~Pp;M~itr~OC~lu~ste~r,
~30 ./

~25 +---./"""'7~/'-----__---::::i""""~-=---i
00 20 -I--z"-'----=_-==---------i
'015 -1----';.---=----------------'
; 10 -1---------------'
00 5 +--------------.....;

o

Abalone DatlSet

15 20 25

Significance
30 35

Abalone Dataset

9000 ,--.._----
... 8000 I-CD-Tree rl
E7000 ~

l-rpPMicroCluster .

c: 6000 ·c 5000
E4000 ·

.. 3000
·§ 2000 -II: 1000

0
15 20 25 30 35

Significance

Figure 5.7: Results for Abalone Dataset (Only significance constraints are specified).

Abalone Dataset Abllone Dluset

0070060.050.04

Variance (Significance" 20)

0.03DO' 1f1f5 If.1f6 lfD1'

Variance (Slgnificance=20j

55 ~--- 6000o I--CD.Tree I I-co-Tree
l: 45 +----------I......PPMiCroCluster[Ii' 5000 r-.......: """-::------iI-rPPMitrocluster

~ 35 +--__~:=::==~"""""-"'""' __~ ~ 4000 +-----~......_--===:::j
• -..---- ;- 3000 +---;:::=::a:::="~lIOiiiE"""'I-----'·~~25 t~::=:;::::::;:;:;::F'""",,,""''''''''''---- I
(J) ~ I ~ 2000 t-------............----:"""";:-------
'015 c: --...... ;
E 5 i 1000

~ 0+------,---r-----,---r---;

·5 lfOJ

Figure 5.8: Results for Abalone Dataset (Both significance and variance constraints are specified).

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING 93

approach [4), solve a constrained clustering problem similar to the CDC problem. We chose

the PPMicroCluster algorithm as our comparison partner due to the following reasons.

First, its problem definition is equivalent to the CDC problem except that is specifies a

radius constraint instead of a variance constraint. Different from the variance, the radius

of a cluster is the maximum distance between all data objects in a cluster to the cluster

representative. We have adapted the PPMicroCluster algorithm to handle the variance con­

straint in order to have a meaningful comparison. Second, the PPMicroClustering problem

generalizes the condensation group approach (which has only the significance constraint),

and the significance constraint is handled by the PPMicroCluster algorithm in the same

style as by the condensation group approach. Note that the following experiments were

conducted on the static phase of the PPMicroCluster algorithm since we did not evaluate

the incremental updates of databases and the static phase of the PPMicroCluster algorithm

is more effective due to the availability of the global knowledge for all data objects.

5.5.2 Results

We compared the two algorithms from two aspects, clustering quality and runtime. We set

the same parameters for both algorithms and ran them on the aforementioned datasets. The

clustering quality is measured by the sum of squared distances of data objects to their corre­

sponding cluster representatives. Note that the CD-Tree and the adapted PPMicroCluster

algorithm both satisfy the same constraints, but with possibly different compactness of the

discovered clusters. For the CD-Tree algorithm, we set the capacity of non-leaf nodes to

20 and the runtime is the total time spent on building a tree and generating constrained

clusters from the tree. For the PPMicroCluster algorithm, we assume an index structure

(R-Tree) existing for supporting fast k-nearest-neighbor query. The runtime only records

the time spent on generating valid clusters based on the index structure, excluding the index

construction time. All the experiments were conducted on a server with an Intel Pentium

IV 3.0GHz CPU and 2GB memory running the Window Server 2003.

For dataset DSl, the results are presented in Figure 5.5 and 5.6 for significance con­

straints only and both constraints respectively. For both comparisons, the C D-Tree algo­

rithm outperforms the PPMicroCluster algorithm in terms of clustering quality. Similar

behavior is observed on the abalone dataset, for which the results are depicted in Figure 5.7

and 5.8. Due to the small size of the abalone dataset, both algorithms require comparable

time.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING

Leller Dataset LIlttr Daunt

94

I,CD·Tree I
1 _PPMicroCluster

~ ----- i- ,
I
j
1

900,.·· ,....---...,
.. 800+- --1I co.Tree I
~ 700 I PPMicroclusteri

~ 600+--r---------­
: 500 +--....:---:.....:::::~t::::::::::::::!~:::.._----.
§. 400 +-----------­
~ 300 +-----------­

;J 200+------------....
s:
:J 100+------------­
II: o.j-.........,......o-..,......-F=:L--,

S.OE+OSo15E+05
~ 4OE+OS
'1l3.5E+05
~ 30E+OS
:J 2.5E+05
: 20E+05
'015E+05
E IOE+05
:J 50E+04
VJ O.OE+OO

15 20 25 30 15 20 25 30

Significance Significance

Figure 5.9: Results for the Letter Dataset (Only significance constraints are specified).

50E+05
o45E+05
t: IOE+05
~ 35E+05
• 30E+05..
:J 25E+05
: 20E+05
'0 15E+05
E IOE+05
:J 5.0E+04
lI) OOE+OO

Litter DIUset

I"'CD-T",s
1_PPMicroCluslsfS

I..-

I
I

Letter Datuet

;700 1 ···············\ co.rree

~600 +---------.,I..._P?MicroCluster
~oo _ I

:400+-------------,

:5.300 +---------------1

~200+---------------<
~100+---------------<
~ 0+----'===;==!!!::=:::;==!==;==:L--j

16 38 3.4 36 3.8

Variance (Significance· 20) Variance ISlgnificance • 20)

Figure 5.10: Results for the Letter Data set (Both significance and variance constraints are specified).

CHAPTER 5. CONSTRAINT-DRiVEN CLUSTERiNG 95

For the larger Letter dataset (see Figure 5.9 and 5.10), we observe that the PPMicro­

Cluster algorithm slightly outperforms the C D-Tree algorithm in terms of clustering quality.

This behavior is expected since the PPMicroCluster algorithm relies on an index structure

to maintain an accurate neighborhood relations among data objects, while the tree struc­

ture built by the CD-Tree algorithm only keeps approximate neighborhood relations among

data objects. However, the CD-Tree algorithm runs more than 100 times faster than the

PPMicroCluster algorithm. A small sacrifice of the clustering quality is reasonable for a

dynamic algorithm like the CD-Tree algorithm.

of data objects 0.5 million 1 million 2 million

Runtime (in seconds) 160 295 677

Table 5.1: Scalability vs. Number of Data Objects.

In order to evaluate the scalability of the CD-Tree algorithm to large datasets, we

generated three synthetic datasets with 0.5 million, 1 million, and 2 million three dimensional

data objects. We evaluated only the CD-Tree algorithm on these synthetic datasets since

the PPMicroCluster algorithm cannot handle such large datasets. The runtime results of

the C D-Tree algorithm with the significance constraint Big = 30 are presented in Table 5.l.

In order to evaluate the impact of different values of the constraints, we apply the CD-Tree

algorithm on the dataset with 1 million data objects. Table 5.2 contains the runtime results.

Constraint Combinations Runtime (in seconds)

Big = 20, Var = 0 231
Big = 30, Var = 0 295
Big = 40, Var = 0 402

Big = 30, Var = 0.7 408
Big = 30, Var = 1.1 438
Big = 30, Var = 1.5 471

Table 5.2: Scalability vs. Different Constraints.

CHAPTER 5. CONSTRAINT-DRIVEN CLUSTERING

5.6 Summary

96

Clustering methods can be either data-driven or need-driven. Among need-driven methods,

constrained clustering captures background knowledge or application requirements by spec­

ifying constraints. In this chapter, we have introduced a novel clustering model, Constraint­

Driven Clustering (CDC), which aims at utilizing constraints to drive the cluster forma­

tion. We have focused on two constraint types, i.e., minimum significance constraints and

minimum variance constraints, for discovering actionable clusters for applications such as

energy aware sensor networks and privacy preservation applications. We have proved the

NP-hardness of the proposed CDC problem with difference constraints. We have also pro­

posed a novel dynamic data structure, the CD-Tree, which keeps dataset summaries that

approximately satisfy the given constraints by minimizing the sum of squared distances

during its construction. Based on C D-Trees, an efficient algorithm is developed for the new

clustering problem. Our experimental evaluation on synthetic and real datasets showed that

our algorithm yields good clusters efficiently.

This study suggests several interesting directions for future research. First, some issues

related to our heuristic algorithm, such as how the maximum capacity of a non-leaf node

influences the final partition and how effective is our heuristic algorithm on high dimensional

data, can be further studied. Second, we want to evaluate the CDC model in real life

applications. Third, the application needs may not always suggest exact values for the

significance and variance constraints. Therefore, it is worthwhile to explore variants of

the CDC model that allow the user to specify ranges instead of a fixed minimum value.

Finally, we believe that the CDC framework and the CD-Tree algorithm can be generalized

to include other constraint types, such as minimum separation constraints [32], to produce

actionable clusters in an even broader category of applications.

Chapter 6

Conclusion

In this thesis, we have studied clustering problems arising from several real life applica­

tions, namely, catalog segmentation, community identification in social networks, privacy

preservation and energy aware sensor networks. We have modeled all these problems un­

der the unified framework of clustering with cluster-level constraints. We have shown that

cluster-level constraints can capture complex application needs and domain knowledge in

these applications, and the corresponding clustering models integrating those constraints

yield meaningful results.

Customer-Oriented Catalog Segmentation The microeconomic framework for data

mining assumes that an enterprise chooses a decision maximizing the total utility over all

customers where the contribution of a customer is a function of the data available on that

customer. In Catalog Segmentation, the enterprise wants to design k product catalogs of

size r that maximize the utility defined by the total number of catalog products purchased.

From the point of view of clustering, the task of catalog segmentation is to find k clusters of

customers where each cluster is described by a set of products and each customer is assigned

to the cluster with the most similar cluster description. The utility function specifically

designed for maximizing the total number of catalog products purchased leads to a better

partitioning of customers in terms of the profit of an enterprise.

There are many applications where a customer, once attracted to an enterprise, would

purchase more products beyond the ones contained in the catalog. In this thesis, we have

investigated an alternative problem formulation, named Customer-Oriented Catalog Seg­

mentation, to capture the requirement on maximizing the number of customer visiting the

97

CHAPTER 6. CONCLUSION 98

enterprise. In the new model, the overall utility is measured by the number of customers

that satisfy the minimum interest constraint t, Le., having at least a minimum interest t

in the catalogs. The model utilizes both a utility function and a minimum interest con­

straint to obtain desired clustering results. More specifically, we have formally introduced

the Customer-Oriented Catalog Segmentation problem and discuss its complexity. We have

presented efficient, approximate algorithms adopting the paradigms of greedy and random­

ized algorithms. Our experimental evaluation on synthetic and real data showed that the

new algorithms yield catalogs of significantly higher utility compared to classical Catalog

Segmentation algorithms. Our best algorithm, Random-Product-Fit, achieves an excellent

tradeoff between quality and runtime by optimizing a greedily determined initial solution

randomly.

Joint Cluster Analysis Attribute data and relationship data are two principal types of

data, representing the intrinsic and extrinsic properties of entities. It is also common to

observe both data types carry complementary information such as in market segmentation

and community identification. In this thesis, we have introduced the novel Connected k­

Center (CkC) problem, a clustering model that takes into account both attribute data

and relationship data. The CkC problem integrates an internal connectedness constraint

defined on relationship data and an objective function specified on attribute data in order

to generate clusters which are cohesive (within clusters) and distinctive (between clusters)

in both ways. In this model, the internal connectedness constraint is a novel cluster-level

constraint which provides a way to capture application needs in several applications, e.g.,

market segmentation, and community identification.

We have proved the NP-hardness of the problem and provided a constant factor approx­

imation algorithm. For the special case of the CkC problem where the underlying graph

is a tree, we have proposed a dynamic programming method giving an optimal solution in

polynomial time. To improve the scalability for large real datasets, we have developed the

efficient heuristic algorithm NetScan. Our experimental evaluation using real datasets for

community identification and gene clustering demonstrated the meaningfulness and accu­

rary of the NetScan results. In addition, experiments on synthetic datasets demonstrated

the efficiency and scalability of the NetScan algorithm.

Constraint-Driven Clustering Many existing clustering models with constraints rely

on the user-provided number of clusters. In many applications, the number of clusters is

CHAPTER 6. CONCLUSION 99

unknown a priori. Furthermore, an inappropriate number of clusters may result in gen­

erating distorted and less actionable clusters. In this thesis, we have introduced a novel

clustering model, Constraint-Driven Clustering (CDC), which aims at utilizing cluster-level

constraints to drive the cluster formation.

The SQL aggregate constraint [108] provides a general form of cluster-level constraints,

but it cannot capture the complex requirements in many other applications. For example,

in privacy preservation, the requirement to specify the minimum variance of each generated

cluster cannot be captured by the SQL aggregate constraint. In this thesis, we have proposed

a new type of cluster-level constraints, i.e., minimum variance constraints, to capture such

requirement. The minimum variance constraints together with the well studied minimum

significance constraints are integrated to the CDC model to discover meaningful clusters for

applications such as energy aware sensor networks and privacy preservation applications.

We have proved the NP-hardness of the proposed CDC problem with difference con­

straints. We have also proposed a novel dynamic data structure, the CD-Tree, which keeps

dataset summaries that approximately satisfy the given constraints by minimizing the sum

of squared distances during its construction. Based on CD-Trees, an efficient algorithm is

developed for the new clustering problem. Our experimental evaluation on synthetic and

real datasets showed that our algorithm yields good clusters efficiently.

Future Work For future work, we plan to explore the following directions.

1. Define a general form of cluster-level constraints. Similar to the work in [108], we

can study a general framework of cluster-level constraints. The general framework

should be powerful to capture all existing cluster-level constraints and at the same

time be flexible for future extensions. The SQL aggregate constraint or the existential

constraint aim at describing the properties of a cluster in terms of aggregate functions.

As shown in this thesis, cluster-level constraints can specify more properties than just

aggregates. For example, the internal connectedness constraint in the joint cluster

analysis for identifying communities specifies the property of the objects in a cluster

on the relationship data. The goal of capturing the rich characteristics of clusters

makes the task both interesting and challenging.

2. Combine instance-level constraints and cluster-level constraints. Other than the con­

straints on the generated clusters, instance-level constraints, e.g., a small set of labeled

CHAPTER 6. CONCLU~ON 100

data or domain knowledge on pairs of data objects, are often available in practice

and they are usually helpful for obtaining good clustering results. For example, in

the problem of identifying academic communities, the difficulty of cluster assignment

can be alleviated if the knowledge on pairs of objects allows the "bridge" objects to

be uniquely assigned to one cluster. Yet, how to effectively incorporate both types

of knowledge is a difficult task. Two important issues need to be addressed: How

should we design efficient and effective algorithms which take all these information

into account? How should we cope with the case where the two types of knowledge

contradict?

3. Incremental clustering with cluster-level constraints.

Another interesting direction is incremental clustering with clustering-level constraints.

Clustering, as a learning method, is an iterative process that could take many rounds

to fully comprehend a certain domain. In such a process, little is known about the

target domain initially. Afterwards, more and more knowledge may be collected in

subsequent iterations. Consequently, it is desirable to design clustering methods that

can handle the scenario where the cluster-level constraints are provided incrementally.

A naive method would be to calculate a clustering from scratch whenever the con­

straints change. Unfortunately, as the input data grows quickly, this method becomes

prohibitively expensive. Efficient incremental methods are highly demanded for this

task.

Bibliography

[1] D.J. Newman A. Asuncion. UCI machine learning repository, 2007.

[2] Milton Abramowitz and Irene A. Stegun(Eds.). Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.

[3] Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation al­

gorithms for clustering. Algorithmica, 33(2):201-226, 2002.

[4] Charu C. Aggarwal and Philip S. Yu. A condensation approach to privacy preserv­

ing data mining. In Proceedings of the 9th International Conference on Extending

Database Technology, pages 183 - 199, 2004.

[5] Gagan Aggarwal, Tomas Federand Krishnaram Kenthapadi, Rajeev Motwani, Rina

Panigrahy, Dilys Thomas, and An Zhu. Approximation algorithms for k-anonymity.

Journal of Privacy Technology, 2005.

[6] Rakesh Agrawal. Ibm synthetic data generator, 1994.

[7] Alan D. Amis, Ravi Prakash, Dung Huynh, and Thai Vuong. Max-min d-cluster

formation in wireless ad hoc networks. In Proceedings IEEE INFOCOM 2000, pages

32-41, 2000.

[8] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jorg Sander. Optics:

Ordering points to identify the clustering structure. In Proceedings of the ACM SIG­

MOD International Conference on Management of Data, pages 49-60, 1999.

[9] Vera Asodi and Shmuel Safra. On the complexity of the catalog segmentation problem.

Unpublished manuscript.

101

BIBLIOGRAPHY 102

[10] Seema Bandyopadhyay and Edward J. Coyle. An energy-efficient hierarchical clus­

tering algorithm for wireless sensor networks. In Proceedings IEEE INFOCOM 2003,

2003.

[11] Arindam Banerjee and Joydeep Ghosh. On scaling up balanced clustering algorithms.

In Proceedings of the 2nd SIAM International Conference on Data Mining, 2002.

[12] Arindam Banerjee and Joydeep Ghosh. Scalable clustering algorithms with balancing

constraints. Data Mining Knowledge Discovery, 13(3), 2006.

[13] Suman Banerjee and Samir Khuller. A clustering scheme for hierarchical control in

multi-hop wireless networks. In Proceedings IEEE INFOCOM 2001, 2001.

[14] A.L. Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert, and T. Vicseks. Evolution

of the social network of scientific collaborations. Physica A, 311(3-4):590--614, 2002.

[15] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks.

Science, 286(5439):509-512, 1999.

[16] Yair Bartal, Moses Charikar, and Danny Raz. Approximating min-sum k-clustering

in metric spaces. In Proceedings on the 33rd Annual ACM Symposium on Theory of

Computing, pages 11-20, 2001.

[17] Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision

for pairwise constrained clustering. In Proceedings of the 4th SIAM International

Conference on Data Mining, 2004.

[18] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. A probabilistic framework

for semi-supervised clustering. In Proceedings of the 10th A CM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 59-68, 2004.

[19] Sugato Basu and Ian Davidson. Clustering with constraints: Theory and practice.

KDD'06 Tutorial, 2006.

[20] Kristin P. Bennett, P.S. Bradley, and Ayhan Demiriz. Constrained k-means clustering.

Technical report, MSR-TR-2000-65, Microsoft Research, 2000.

BIBLIOGRAPHY 103

[21] Gabriel F. Berriz, Oliver D. King, Barbara Bryant, Chris Sander, and Frederick P.

Roth. Characterizing gene sets with funcassociate. Bioinformatics, 19(18):2502-2504,

2003.

[22] M. J. Berry and G. Linoff. Data Mining Techniques. John-Wiley, 1997.

[23] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on graph cluster­

ing algorithms. In Proceedings of the 11th Annual European Symposium on Algorithms,

pages 568-579, 2003.

[24] Tom Brijs, Bart Goethals, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. A data

mining framework for optimal product selection in retail supermarket data: The gen­

eralized profset model. In Proceedings of the sixth ACM SIGKDD international con­

ference on Knowledge discovery and data mining, pages 300-304, 2000.

[25] Peter Brucker. On the complexity of clustering problems. In R. Hehn, B. Korte,

and W. Oettli, editors, Optimization and Opemtions Research, pages 45-54. Springer­

Verlag, 1977.

[26] Julien Cartigny, David Simplot, and Ivan Stojmenovic. Localized minimum-energy

broadcasting in ad-hoc networks. In Proceedings of IEEE INFOCOM 2003, 2003.

[27] Pak K. Chan, Martine D. F. Schlag, and Jason Y. Zien. Spectral k-way ratio-cut par­

titioning and clustering. IEEE Transactions on Computer-Aided Design of Integmted

Circuits and Systems, 13(9):1088-1096, 1994.

[28] Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys. A constant factor

approximation algorithm for the k-median problem. In Proceedings of the 31st Annual

ACM Symposium on Theory of Computing, pages 1-10, 1999.

[29] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diam­

eters. Journal of Computer and System Sciences, 68(2):417-441, 2004.

[30] CiteSeer. Scientific literature digital library. http://citeseer.ist.psu.edu/, 2006.

[31] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. MIT Press/McGraw-Hill, 1990.

BIBLIOGRAPHY 104

[32] Ian Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the

k-means algorithm. In Proceedings of the 5th SIAM International Conference on Data

Mining, pages 138-149, 2005.

[33] Ian Davidson and S. S. Ravi. Identifying and generating easy sets of constraints for

clustering. In Proceedings of the 21st National Conference on Artificial Intelligence

and the 18th Innovative Applications of Artificial Intelligence Conference, 2006.

[34] Ian Davidson and S. S. Ravi. The complexity of non-hierarchical clustering with

constraints. Journal of Knowledge Discovery and Data Mining, To Appear.

[35] Ian Davidson and S.S. Ravi. The complexity of non-hierarchical clustering with in­

stance and cluster level constraints. To Appear in the Journal of Knowledge Discovery

and Data Mining, 2006.

[36] DBLP. Computer science bibliography.

trier.de/ .-vley/db/index.html.

http://www.informatik.uni-

[37] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without

eigenvectors: A multilevel approach. IEEE Transactions on Pattern Analysis and

Machine Intelligence, page To appear, 2007.

[38] Srinivas Doddi, Madhav V. Marathe, S. S. Ravi, David S. Taylor, and Peter Wid­

mayer. Approximation algorithms for clustering to minimize the sum of diameters. In

Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, pages 237-250,

2000.

[39] Josep Domingo-Ferrer and Josep M. Mateo-Sanz. Practical data-oriented microaggre­

gation for statistical disclosure control. IEEE Transactions on Knowledge and Data

Engineering, 14(1):189-201,2002.

[40] E. Drezner. Facility Location: A Survey of Applications and Methods. Springer-Verlag,

Heidelberg, 1995.

[41] Martin Dyer and Alan M. Frieze. A simple heuristic for the p-center problem. Oper­

ations Research Letters, 3:285-288, 1985.

[42] Martin E. Dyer and Alan M. Frieze. Planar 3dm is np-complete. J. Algorithms, 7(2),

1986.

BIBLIOGRAPHY 105

[43] Paul Erdos and Alfred Renyi. On the evolution of random graphs. Publ. Math. Inst.

Hungar. Acad. Sci., 5:17-61,1960.

[44] Martin Ester, Rong Ge, Byron J. Gao, Zengjian Hu, and Boaz Ben-mosha. Joint clus­

ter analysis of attribute data and relationship data: the connected k-center problem.

In Proceedings of the 6th SIAM Conference on Data Mining, pages 246-257, 2006.

[45] Martin Ester, Rong Ge, Wen Jin, and Zengjian Hu. A microeconomic data mining

problem: customer-oriented catalog segmentation. In Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004.

[46] Martin Ester, Hans-Peter Kriegel, J6rg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In In Proceed­

ings of the 2nd International Conference on Knowledge Discovery and Data Mining,

pages 226-231, 1996.

[47] Tomas Feder and Daniel H. Greene. Optimal algorithms for approximate clustering.

In Proceedings of the 20th annual A CM symposium on Theory of computing, pages

434-444, 1988.

[48] Uriel Feige. A threshold of In n for approximating set cover. Journal ACM, 45(4):634

- 652, 1998.

[49] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. Knowl­

edge discovery in databases: An overview. In Knowledge Discovery in Databases,

pages 1-30. AAAI/MIT Press, 1991.

[50] G. N. Frederickson and D. B. Johnson. Optimal algorithms for generating quantile

information in x + y and matrices with sorted columns. In Proceedings of the 13th

Annual Conference on Information Science and Systems, pages 47-52, 1979.

[51] Michael R. Garey and David S. Johnson. Computers and Intractability, a guide to the

Theory of NP-completeness. W.H. Freeman and company, 1979.

[52] Rong Ge, Martin Ester, Byron J. Gao, Zengjian Hu, Binay Bhattacharya, and Boaz

Ben-mosha. Joint cluster analysis of attribute data and relationship data: the con­

nected k-center problem, algorithms and applications. ACM Transactions on Knowl­

edge Discovery from Data (TKDD), To appear.

BIBLIOGRAPHY 106

[53] Rong Ge, Martin Ester, Wen Jin, and Ian Davidson. Constraint-driven clustering.

In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2007.

[54] Rong Ge, Martin Ester, Wen Jin, and Zengjian Hu. A disc-based approach to data

summarization and privacy preservation. In Proceedings of the 18th International

Conference on Scientific and Statistical Database Management, pages 321 - 332, 2006.

[55] Soheil Ghiasi, Ankur Srivastava, Xiaojian Yang, and Majid Sarrafzadeh. Optimal

energy aware clustering in sensor network. Sensor, 2(7):258-269, 2002.

[56] Joydeep Ghosh and Alexander Strehl. Clustering and visualization of retail market

baskets. In N. R. Pal and L. Jain, editors, Knowledge Discovery in Advanced Infor­

mation Systems. Springer, 2002.

[57] David Gondek and Thomas Hofmann. Non-redundant data clustering. In Proceedings

of the 4th IEEE International Conference on Data Mining, pages 75 - 82, 2004.

[58] David Gondek, Shivakumar Vaithyanathan, and Ashutosh Garg. Clustering with

model-level constraints. In Proceedings of the 5th SIAM International Conference on

Data Mining, pages 126 - 137, 2005.

[59] Teofilo F. Gonzalez. Clustering to minimize the maximum inter-cluster distance.

Theoretical Computer Science, 38(2-3), 1985.

[60] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: a robust clustering algo­

rithm for categorical attributes. In Proceedings of the 15th International Conference

on Data Engineering, pages 512-521, 1999.

[61] Gaurav Gupta and Mohamed Younis. Load-balanced clustering of wireless sensor net­

works. IEEE International Conference on Communications, pages 1848-1852, 2003.

[62] NiH Guttman-Beck and Refael Hassin. Approximation algorithms for min-sum Jr

clustering. Discrete Applied Mathematics, 89(1-3):125-142, 1998.

[63] Daniel Hanisch, Alexander Zien, Ralf Zimmer, and Thomas Lengauer. Co-clustering

of biological networks and gene expression data. Bioinformatics, 18:S145-S154, 2002.

BIBLIOGRAPHY 107

[64] Robert A. Hanneman and Mark Riddle. Introduction to social network methods.

http://faculty.ucr.edu/rvhanneman/, 2005.

[65] Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity.

Information Processing Letters, 76(4-6):175-181, 2000.

[66] Laurie J. Heyer, Semyon Kruglyak, and Shibu Yooseph. Exploring expression data:

Identification and analysis of coexpressed genes. Genome Research, 9(11):1106 - 1115,

1999.

[67] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center

problem. Mathematics of Operations Research, 10:180-184, 1985.

[68] Dawn Iacobucci. Networks in marketing. Sage Publications, 1996.

[69] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice Hall,

1988.

[70] Kamal Jain and Vijay Vazirani. Approximation algorithms for metric facility loca­

tion and k-median problems using the primal-dual scheme and lagrangian relaxation.

Journal of the ACM, 48(2):274-296, 2001.

[71] Wen Jin, Rong Ge, and Weining Qian. On robust and effective k-anonymity in large

databases. In Proceedings of the 1Dth Pacific-Asia Conference, pages 621-636, 2006.

[72] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems.

Part II: The p-medians. SIAM Journal on Applied Mathematics, 37(3):539--560, 1979.

[73] O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems.

Part I: The p-centers. SIAM J. Applied Mathematics, 37(3):513-528, 1979.

[74] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical cluster­

ing using dynamic modeling. IEEE Computer, 32(8):68-75, 1999.

[75] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction

to Cluster Analysis. John Wiley & Sons, New York, 1990.

[76] Vikas Kawadia and P. R. Kumar. Power control and clustering in ad-hoc networks.

In Proceedings of IEEE INFOCOM, 2003.

BIBLIOGRAPHY 108

[77] Jon Kleinberg. The small-world phenomenon: an algorithmic perspective. In Proceed­

ings of the 32nd Annual ACM Symposium on Theory of Computing (STOC), pages

163-170,2000.

[78] Jon M. Kleinberg, Christos Papadimitriou, and Prabhakar Raghavan. A microe­

conomic view of data mining. Journal of Data Mining and Knowledge Discovery,

2(4):311-324, 1998.

[79] Jon M. Kleinberg, Christos Papadimitriou, and Prabhakar Raghavan. Segmentation

problems. In Proceedings of the 13th Annual ACM Symposium on the Theory of

Computing, pages 473-482, 1998.

[80] Rajesh Krishnan and David Starobinski. Efficient clustering algorithms for self­

organizing wireless sensor networks. Journal of Ad-Hoc Networks, 4(1):36 - 59, 2005.

[81] Joseph Kruskal and Myron Wish. Multidimensional Scaling. Sage Publications, 1978.

[82] Brian Kulis, Sugato Basu, Inderjit S. Dhillon, and Raymond J. Mooney. Semi­

supervised graph clustering: a kernel approach. In Proceedings of the 22nd inter­

national conference on Machine learning, pages 457-464, 2005.

[83] Jyh-Han Lin and Jeffrey Scott Vitter. Approximation algorithms for geometric median

problems. Information Processing Letters, 44(5):245-249, 1992.

[84] Tsau Lin, Y.Y. Yao, and Eric Louie. Value added association rules. In Proceedings of

the 6th Pacific-Asia Conference, pages 328 - 333, 2002.

[85] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa­

tion Theory, 28(2):129-136, 1982.

[86] James Macqueen. Some methods for classification and analysis of multivariate ob­

servations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics

and Probability, pages 281-297, 1967.

[87] Christopher D. Manning and Hinrich Schiitze. Foundations of Statistical Natuml

Language Processing. MIT Press, 1999.

[88] Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geo­

metric location problems. SIAM Journal on Computing, 13(1):182-196, 1984.

BIBLIOGRAPHY 109

[89] Nimrod Megiddo, Arie Tamir, Eitan Zemel, and R. Chandrasekaran. An 0(nlog2 n)

algorithm for the k-th longest path in a tree with applications to location problems.

SIAM Journal on Computing, 10(2):328-337, 1981.

[90] Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity. In

Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 223 - 228, 2004.

[91.] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for spatial

data mining. In Proceedings of the 20th International Conference on Very Large Data

Bases, pages 144-155, 1994.

[92] Dan Pelleg and Andrew Moore. X-means: Extending k-means with efficient estimation

of the number of clusters. In Proceedings of the 17th International Conference on

Machine Learning, 2000.

[93] Mary Lou Roberts and Paul D. Berger. Direct Marketing Management. Prentice Hall,

1999.

[94] Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity

when disclosing information (abstract). In Proceedings of the Seventeenth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, page 188,

1998.

[95] John Scott. Social Network Analysis: A handbook. Sage Publications, 2000.

[96] E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein

interaction and gene expression data. Bioinformatics (Suppl. 1), pages 264-272, 2003.

[97] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.

[98] Paul T. Spellman, Gavin Sherlock, Michael Q. Zhang, Vishwanath R. Iyer, Kirk An­

ders, Michael B. Eisen, Patrick O. Brown, David Botstein, and Bruce Futcher. Com­

prehensive identification of cell cycle-regulated genes of the yeast saccharomyces cere­

visiae by microarray hybridization. Molecular Biology of the Cell, 9(12):3273- 3297,

1998.

BIBLIOGRAPHY 110

[99] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre­

itkreutz, and Mike Tyers. Biogrid: a general repository for interaction datasets.

Nucleic Acids Research, 34:D535-D539, 2006.

[100] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document

clustering techniques. In KDD Workshop on Text Mining, 2000.

[101] Michael Steinbach, George Karypis, and Vipin Kumar. Efficient algorithms for cre­

ating product catalogs. In Proceedings of the WebMining Workshop at the 1st SIAM

international conference on Data Mining, 2001.

[102] Alexander Strehl and Joydeep Ghosh. A scalable approach to balanced, high­

dimensional clustering of market-baskets. In Proceedings of the 7th Conference on

High Performance Computing, pages 525 - 536, 2000.

[103] C. Swamy and A. Kumar. Primal-dual algorithms for connected facility location

problems. Algorithmica, 40(4):245-269, 2004.

[104] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557 - 570, 2002.

[105] Arie Tamir. An 0(pn2) algorithm for the p-median and related problems on tree

graphs. Operations Research Letters, 19:59-64, 1996.

[106] Ben Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering

in relational data. In Proceedings of 17th International Joint Conference on Artificial

Intelligence, pages 870-878, 2001.

[107] Constantine Toregas, Ralph Swan, Charles Revelle, and Lawrence Bergman. The

location of emergency service facilities. Operations Research, 19:1363-1373, 1971.

[108] Anthony K. H. Tung, Raymond T. Ng, Laks V. S. Lakshmanan, and Jiawei Han.

Constraint-based clustering in large databases. In Proceedings of the 8th International

Conference on Database Theory, pages 405-419, 2001.

[109] Igor Ulitsky and Ron Shamir. Identification of functional modules using network

topology and high-throughput data. BMC System Biology, 1(8), 2007.

BIBLIOGRAPHY 111

[110] Kiri Wagstaff. Intelligent Clustering with Instance-Level Constraints. PhD thesis,

Cornell University, 2002.

[111] Kiri Wagstaff and Claire Cardie. Clustering with instance-level constraints. In Pro­

ceedings of the 17th International Conference on Machine Learning, pages 1103-1110,

2000.

[112] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schroedl. Constrained k-means

clustering with background knowledge. In Proceedings of the 18th International Con­

ference on Machine Learning, pages 577-584, 2001.

[113] Ke Wang and Ming-Yen Thomas Suo Item selection by "hub-authority" profit rank­

ing. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 652-657, 2002.

[114] Ke Wang, Senqiang Zhou, and Jiawei Han. Profit mining: From patterns to actions.

In Proceedings of the 8th International Conference on Extending Database Technology,

pages 70 - 87, 2002.

[115] Stanley Wasserman and Katherine Faust. Social Network Analysis: methods and

applications. Cambridge University Press, 1994.

[116] Cynthia M. Webster and Pamela D. Morrison. Network analysis in marketing. Aus­

tralasian Marketing Journal, 12(2):8-18,2004.

[117] Raymond Chi-Wing Wong, Ada Wai-Chee Fu, and Ke Wang. Mpis: Maximal-profit

item selection with cross-selling considerations. In Proceedings of the 3rd IEEE Inter­

national Conference on Data Mining, pages 371-378, 2003.

[118] Donald R. Woods. Drawing planar graphs. Technical report, Report No. STAN-CS­

82-943, Computer Science Department, Stanford University, 1981.

[119] Dachuan Xu, Yinyu Ye, and Jiawei Zhang. Approximate the 2-catalog segmenta­

tion problem using semidefinite programming relaxation. Optimization Methods and

Software, 18(6):705-719, 2003.

[120] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient data clus­

tering method for very large databases. In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, pages 103 - 114, 1996.

BIBLIOGRAPHY 112

[121] Shi Zhong and Joydeep Ghosh. Scalable, balanced model-based clustering. In Pro­

ceedings of the 3rd SIAM International Conference on Data Mining, pages 71 - 82,

2003.

