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Abstract

In this work, we propose and compare several methods for the visualization and exploration

of time-varying volumetric medical images based on the temporal characteristics of the data.

The principle idea is to consider a time-varying data set as a 3D volume where each voxel

contains a time-activity curve (TAC). We define and appraise three different TAC similarity

measures. Based on these measures we introduce three methods to analyze and visualize

time-varying data. The first method relates the whole data set to one template TAC and

creates a ID histogram. The second method extends the ID histogram into a 2D histogram

by taking the Euclidean distance between voxels into account. The third method does not

rely on a template TAC but rather creates a 2D scatter plot of all TAC data points via

multi-dimensional scaling. These methods allow the user to specify transfer functions on

the ID and 2D histograms and on the scatter plot, respectively. We validate these methods

on synthetic dynamic Single Photon Emission Computed Tomography and Positron Emis­

sion Tomography data sets and a dynamic planar Gamma camera image of a patient. We

use a similar idea to visualize diffusion tensor imaging. We will illustrate this visualization

approach on a real patient data set. These techniques are designed to offer researchers

and health care professionals a new tool to study time-varying and diffusion tensor medical

imaging data sets.

Keywords: medical imaging; time-varying data; diffusion tensor MRI data; multi-dimensional

scaling; volume rendering; transfer function

Subject Terms: medical visualization system; medical image processing; visualization

data processing; computer graphics
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Chapter 1

Introduction

1.1 Overview of Research

Computers have been widely used in health care during the past decade, from medical data

storage to telematics, from data processing to treatment. Using computers in health care

can improve the quality and effectiveness of care and reduce its cost.

While 3D medical imaging has become the standard in recent years for capturing struc­

tural information about anatomy, functional imaging studies, which additionally include

temporal dynamics, are still on the forefront of medical imaging research. For example,

dynamic Single Photon Emission Computed Tomography (SPECT), Positron Emission To­

mography (PET), functional Magnetic Resonance Imaging (fMRI) and other modalities

make it possible to trace changing distributions of radio labelled substances or examine

magnetic phenomena associated with spatio-temporal brain activation. Physicians may use

temporal in addition to 3-dimensional spatial information to diagnose pathological tissue

based on its altered perfusion dynamics. They may track disease progress or its response to

therapy over a short time or over several months or years. Further, they may examine corre­

lations between diseases and drugs, and organ function. However, exploring and visualizing

this multi-dimensional data remain challenging tasks.

For the purposes of this thesis, we consider time-varying 2D or 3D medical image data

(TVMID). Using data from dynamic imaging alone, there is an inherent ambiguity in decid­

ing whether the change in spatial location of activation is due to patient motion or due to a

change in function of a stationary subject. Therefore, in any imaging acquisition, patients

1
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are typically instructed to remain still or even hold their breath, whenever possible, dur­

ing scanning. Alternatively data from other modalities (e.g. tracking devices or structural

imaging) can be acquired and used to compensate for subject motion. There are alternative

approaches and a huge body of literature dealing with motion correction and image regis­

tration. In this work, we make the assumption that volumes at different times are already

spatially registered to each other and do not attend to this issue any further.

One way of understanding our time-varying image data is that each voxel, with coor­

dinates (x, y) in 2D and (x, y, z) in 3D, does not contain a single scalar value any longer,

as is common for the majority of 3D image data, but rather a temporal function, which

is typically referred to as the Time-Activity Curve (TAC). This temporal behaviour is at­

tributed to the interaction of tissue with a radioactive tracer (in SPECT and PET imaging)

or the functional behaviour for fMRI. The source of this temporal behaviour varies with the

particular modality. For example, in blood oxygen level-dependent fMRI, the captured data

reflect the metabolic processes in the brain. Specifically, in active brain regions, blood oxy­

genation is higher than in resting regions. Since deoxygenated haemoglobin has a stronger

reaction to the magnetic field than oxygenated haemoglobin, the temporal signals in fMRI

at each voxel are indicative of brain activity. In dynamic SPECT, on the other hand, the

recorded TACs are based on the detection of electromagnetic radiation, whose source is

the injected radioactive pharmaceutical. Using a dedicated Gamma camera, photons are

detected from different angles around the patient. The 2D information about their spatial

distribution and the times they were detected is recorded. In a subsequent step, a series

of 3D images corresponding to different times are reconstructed yielding a time-varying 3D

image. Planar Gamma images from a single angle also provide useful functional information,

even without subsequent 3D reconstruction. PET is somewhat similar to SPECT. However,

instead of injecting the subject with gamma-emitting drugs, positron-emitting pharmaceu­

ticals are used. Upon annihilation with electrons, these positrons emit two 51lkeV photons

simultaneously in two opposite directions and a camera (with several rings of detectors) is

used to record these signals arriving in coincidence from all directions.

Different regions of the body may exhibit different radio tracer uptake and washout,

resulting in different temporal behaviour and related TACs. It is usually expected that

all voxels corresponding to tissues with the same physiology, performing similar function,

and/or belonging to the same healthy organ will display similar TACs. Nevertheless, there

can exist voxels that are spatially close to each other but with very different TACs (e.g. at
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boundaries of different organs). Vice versa, distant voxels can have very similar TACs (e.g.

in the left and right lungs). As we will explain later, our proposed techniques allow the

investigation and visual exploration of these scenarios.

More importantly, the altered physiology within an organ caused by disease may result in

temporal behavior different from that of a healthy tissue. Recognizing abnormal behavior is

important for the purpose of patient diagnosis [65]. However, it is not easy to discover such

temporal changes and abnormalities in a TVMID by using conventional static segmentation

or visualization tools designed for scalar fields. The basic motivation of this thesis is that

detecting and quantifying the difference in the TACs allows the segmentation, quantification,

and visualization of different organs or regions of interest.

Another part of this thesis work is related to the visualization of Diffusion Tensor Imag­

ing (DTI) data. Diffusion is the movement by which molecules are transported from an

area of high concentration to an area of low concentration. The diffusion-driven water

molecules interact, bouncing or crossing, with many tissue components, which also probe

tissue structure. DTI is a magnetic resonance imaging (MRI) technique used to measure the

diffusion-driven displacements of water molecules at a microscopic scale. DTI is becoming

increasingly valuable for assessing the effects of disease progression and treatment evaluation

on fiber connectivity [63, 52, 77]. It is a challenge to visualize diffusion tensor data because

of its multivariate nature. There is no single well established method to display a tensor

field. One way to visualize DTI data is to contract each tensor to an appropriate scalar

value or vector for a particular application by applying a carefully designed scalar metric in

order to highlight useful information, for example the apparent diffusion coefficient (ADC),

relative anisotropy (RA) and fractional anisotropy (FA), and then use available visualization

software implementing standard algorithms, including volume rendering and iso-surface ren­

dering. Another way to visualize DTI data is to use glyphs to represent each tensor. Both

an ellipsoidal representation and an extended superquadrics approach [33] was proposed.

Tractography, such as stream tubes [84], is another popular choice to visualize DTI. It is

able to represent neural pathways by curves, which is hard to represent with discrete glyphs.

Similar to our TVMID visualization methods, we measure the similarity between tensors

associated with voxels by a distance metric proposed by Wang and Vemuri et. al. [73].

Then, we use the direct volume rendering technique to visualize it. Our proposed work

can therefore be regarded as a general framework for the visualization and analysis of 2D

and 3D images with scalar, vector or tensor pixels, given an appropriate similarity metric
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between the pixel values.

The primary objective of this work is to investigate new methods to visualize TVMID

and to build an application which allows the user to easily explore these TAC-based data.

One primary purpose of functional imaging is to distinguish diseased tissue from healthy

tissue. Hence, in contrast to conventional time-varying visualization, where each time step

is visualized separately, we consider all time steps at once and offer a comprehensive (non­

animated) visualization of the time-behaviour. Visualizing each time-step separately does

not provide comprehensive information about the dynamic profiles of different tissues and

thus impairs the ability of researchers and health care professionals to perform an accurate

and clear diagnosis.

1.2 Contributions

The main contributions of this thesis are:

• The interactive query of a particular dynamical tissue behaviour;

• The assessment of different distance metrics for the discrimination of tissue behavior;

• The assessment of the influence of the physical relationship of the TAC for the deter­

mination of different tissue behavior;

• Development of a framework and software system for the visualization of temporal

behaviour of medical data; and

• Development of a visualization method for a DTMRI data set.

These visualization methods can be applied to most time-varying medical image data

sets: dynamic PET, dynamic SPECT, planar dynamic single photon studies and fMRI.

We show the effectiveness of our visualization methods on dynamic SPECT and PET data

sets created by using physical or computational phantoms as well as on a dynamic planar

Gamma camera image of a patient. We believe that visualizing the TVMID by our new

methods is intuitive, provides new insight into these types of data sets and, consequently,

helps improve diagnosis and treatment evaluation.
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1.3 Thesis Organization

5

Chapter 2 introduces the different time-varying medical signal acquisition methods. Chapter

3 surveys time-varying volumetric data visualization, time-varying medical data segmenta­

tion and multidimensional scaling. Chapter 4 describes our time-varying medical data sets

visualization methods. Chapter 5 describes our visualization system and results. Chapter 6

describes our attempt to extend the time-varying medical data visualization work to diffu­

sion tensor magnetic resonance images. Chapter 7 discusses the research and contribution

of our work. Chapter 8 proposes some future work.



Chapter 2

Time-Varying Biological Signals

and Medical Images

Throughout the lifetime of all living things, organisms generate various signals, which reveal

the properties of tissue, organ or cell systems. These signals can be electrical or non-electrical

signals. Modern technologies allow us to measure, record and analyze these biological sig­

nals. Medical imaging techniques can generate images of the human body. These images

will help doctors to make clinical decisions or researchers to study anatomical structure or

functionality. Some techniques, such as electrocardiographs and electroencephalograms and

others, do not generate images but maps of a body's potential information instead. These

techniques could be included as certain forms of medical imaging.

Image reconstruction techniques could produce 3D images of patients. For example, in

Computer Tomography (CT), a narrow X-ray beam passes through the patient's body. The

combination of an X-ray tube and a detector is used to measure the attenuation of a beam

through the patient's body. Attenuated beams result in pixels on the two-dimensional

images and indicate how strongly the incident beam passing through that position was

attenuated by the patient's tissue. Since a single pixel was due to an attenuation medium

that was present over the whole beam path, we cannot determine where along the path the

attenuation occurred. Therefore, the same procedure is repeated from different angles, which

results in many images of the same area. If enough images are acquired, it is possible to

compute the accurate attenuation property per voxel in the area. The attenuation coefficient

is characteristic for the chemical composition of the tissue. The technique explained above

6
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is called 3D reconstruction and can be achieved via the filtered back projection algorithm,

which is the most frequently used technique in CT to obtain the attenuation. SPECT can

also use the back-projection technique at the reconstruction stage.

Recently, techniques have been developed to enable scanning software to produce both

three-dimensional spatial anatomical structure and corresponding temporal functional in­

formation for the physician. Temporal information provides insight into disease and plays

an important role in health care. The changes in a patient's disease may occur over many

years. The evolution and treatment of disease is also a process over time. In the follow­

ing sections, we will introduce different modalities which can be used to acquire temporal

related bio-signal and medical images.

2.1 One Dimensional Spatial and Temporal Bio-signals

Electrocardiography is widely used to record the electric activity of the heart over time. The

cardiac muscle generates an electric field on the body surface. The electric potential maxima

and minima increase and decrease during each cardiac cycle. The recording of this electric

potential as a function of time is an electrocardiogram (EGG). During the measurement, up

to 12 self-adhesive electrodes are attached to select locations on the skin of the arms, legs

and chest. The information obtained from an ECG is important for diagnostic purposes

such as discovering different types of heart disease. It is useful for evaluating how well the

patient is responding to a certain drug or to devices used to regulate the heart.

An electroencephalogram (EEG) is a test that measures and records the electrical activity

of the brain by using electrodes attached to the scalp and connected by wires to a computer.

The computer records the brain's electrical activity on the screen or on paper as wavy

lines. These lines represent the electrical signal from a large number of neurons. EEGs are

routinely recorded and interpreted in neurology and neurophysiology because the process is

non-invasive to the research subject. It is one of few high temporal resolution techniques

that is capable of detecting changes in electrical activity in the brain on a millisecond-level.

Frequency analysis is typically applied to EEGs before clinical usage. A series of band­

pass filters or Fourier analysis, for instance, is often applied in order to reveal interesting

parameters of an EEG. EEG is often used to help diagnose and evaluate certain clinical

situations, such as sleep disorders, head injury and coma.
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An electromyogram (EMG) is a test that is used to record the electrical activity of mus­

cles. An electromyograph detects the electrical potential generated by muscle cells when

these cells contract and relax. EMGs can be used to detect abnormal muscle electrical ac­

tivity that can occur during many diseases and conditions, for instance, muscular dystrophy

(inflammation of muscles).

An electrooculograph is a technique for measuring the difference in electrical charge

between the front and back of the eye that is correlated with eyeball movement (as in REM

sleep). The resulting signal is called the electrooculogram (EGG). It is obtained by electrodes

placed on the skin near the eye.

Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic

fields produced by electrical activity in the brain via extremely sensitive devices. MEG is

a completely non-invasive technology for functional brain mapping and provides excellent

temporal resolution. These measurements are commonly used in both research and clin­

ical settings. There are many uses for MEG, including assisting surgeons in localizing a

pathology, assisting researchers in determining the function of various parts of the brain,

neuro-feedback, and others.

ECG, EEG, EMG, EOG and MEG are one-dimensional temporal signals (or multiple

one-dimensional signals measured at different locations), as opposed to other modalities,

e.g. ultrasound, which generate two- and three-dimensional temporal images, as well as

PET which results in three-dimensional temporal images, as explained in the following

section.

2.2 Two and Three Dimensional Spatial and Temporal Bio­

signals

Medical imaging techniques are widely used as tools to non-invasively examine the human

body. From the insight provided by medical images, doctors and researchers can improve

their understanding of the patient's body, examine disease and make better diagnostic de­

cisions. Since Rontgen discovered the X-ray in 1895, different medical imaging modalities

have been invented for various medical purposes. The pipeline of information extraction

from medical images usually consists of six stages (See Figure 2.1.) :

1. The physical properties of a patient are acquired by different medical imaging devices,
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~tie3)----'llmage Aquisition I--..J Preprocessing 1----.1ReconstructionI

I •I
IInterpretation I"-~Sic~"-I Visualization 1..- I Analysis

Figure 2.1: The six stages of information extraction from medical images.

such as CT, MRI or ultrasound at the data acquisition stage.

2. Some techniques, such as de-noising and contrast enhancement, are applied in order

to enhance the acquired raw data during the preprocessing stage.

3. The preprocessed data are reconstructed to physically meaningful images or volumes.

4. Reconstructed images or volumes are typically processed and analyzed in order to high­

light the important information. For example, image segmentation and registration

can be used.

5. The information from the previous stage is rendered on the two-dimensional plane

of a graphic monitor at the visualization stage. Analysis and visualization may be

interchanged since the result of visualization may be useful in providing better analysis,

especially in user-guided image analysis.

6. Combining data with professional knowledge, the physician can make certain inter­

pretations and decisions.

The image that results directly from the data acquisition stage shows degradation caused

by various processes. It is important to reverse some degradation in the image at the

preprocessing stage for further processing or visual inspection. The a priori knowledge is

important during this inverse process. For example, knowledge about the nature of the

degradation and the properties of the data acquisition device and the nature of noise will

help correct some degradation. The techniques used at the preprocessing stage are applied,

with various goals. They may operate globally or locally, in the frequency or spatial domain.

The resulting images from the previous step are two-dimensional projections, which

utilize the measurement of radiation in the patient's body from a large number of angles.
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In order to get the three-dimensional distribution of activity, a reconstruction algorithm

should be applied. The filtered back projection algorithm and its variants are often used

because of its efficiency.

In some applications, the reconstructed images or volumes are to be analyzed or pro­

cessed; for example, they can be segmented into different components or registered together

at the same possible region. Image segmentation is a process that decomposes an image into

several constituent components. Then, different measurement can be performed on interest­

ing components. Several approaches are used to segment intensity images or volumes. One

approach is based on the analysis of the histogram of intensity values. Another approach

uses region based methods. Several initial points are placed in the regions to be detected.

A neighbouring pixel is assigned in the initial region if it has a similar intensity level. This

process is continued until all pixels in the image have been assigned. Image registration is

the process of finding the one to one correspondence between two images of the same scene.

When two or more images are acquired at different times, in order to detect possible changes

of the same scene, they need to be aligned. Medical image registration can also be used to

register the patient's data to an anatomical atlas.

With the introduction of medical image modalities (CT, MRI, PET and fMRI) , enabling

three-dimensional anatomical information or even four-dimensional functional information

to be acquired, many visualization methods have been developed to help improve our un­

derstanding of these modalities. Traditionally, a doctor needs to form a mental image of

a patient's structures by looking at the acquired images slice by slice. This is a difficult

and time consuming process. The accuracy of the acquisition device improves dramatically,

resulting in more and more image slices, making it take longer to make diagnostic decisions

in a traditional way. Medical visualization can help overcome this problem by presenting

the reconstructed data sets from a set of image slices. Regions of interest can be highlighted.

Different medical image modalities are discussed in the following sections.

2.2.1 SPECT and Dynamic SPECT

Single photon emission computed tomography (SPECT) is an emission tomography tech­

nique which measures the physiological functions in tissues. Before imaging, a patient is

administered radiopharmaceuticals labeled with a single-photon emitter, which emits one

gamma-ray photon with each radioactive decay event [76]. A gamma camera rotates around

the patient to acquire several 2D images from different angles. The 2D images show the
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radioactive tracer distribution from different angles. A reconstruction algorithm, e.g. fil­

tered back projection, can be applied to reconstruct the three-dimensional 'Volume of the

radioactive tracer distribution within the patient. Several gamma cameras may be used si­

multaneously in order to accelerate the acquisition. During the scanning, the patient should

remain still. Movement will degrade the quality of the reconstructed images. Some recon­

struction techniques can help compensate for movement. When using SPECT to scan the

heart, which moves repetitively, an ECG machine can be used to record the different stages

of its contraction cycle simultaneously. This technique is called gated SPECT imaging.

Dynamic single photon emission computed tomography (dSPECT) is an emission tomog­

raphy technique which could provide functional dynamic information of the body. Compared

with SPECT, which can only acquire the spatial location of tracer molecules, dSPECT can

acquire both temporal and 3-dimensional spatial information of activity distribution in the

patient. Some research groups, such as the Medical Imaging Research Group (MIRG) at

University of British Columbia (UBC) , are investigating the possibility of acquiring dSPECT

data by using conventional clinical equipment and data acquisition protocols [25].

In SPECT, it is commonly assumed that the properties of the patient's internal organs do

not change during the time of measurement. It is a conventional diagnostic tool to measure

the stationary activity distribution. The relatively long acquisition times and short half life

of the radioactive tracers make it difficult to acquire clear static SPECT images [7]. dSPECT

is designed to provide both temporal and spatial information. The temporal information,

which provides the changes in activity distribution in the body, could potentially enhance

diagnosis and research. The filtered back projection method cannot be applied to the

reconstruction of dSPECT data, because it may cause artifacts or even wrong results.

Reconstruction methods are discussed in [7], which consider the measurement system as

a linear system. The result of dSPECT reconstruction is a time-series of 3-dimensional

SPECT images, which represent the tracer distribution at each particular time step.

2.2.2 PET

Positron emission tomography (PET) is a nuclear medicine imaging technique used to

provide functional information. It is a non-invasive imaging technique, but patients are

exposed to a small dose of radiation.

The main difference between PET and SPECT is that PET uses radiopharmaceuticals

labeled with a positron-emitting isotope and SPECT uses single-photon emitters. The decay
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of each nucleus of the positron-emitting isotope emits a positron. The positron quickly

annihilates with an electron and then produces two gamma photons, which move in nearly

opposite directions from one another. Each gamma photon has 51lkeV energy.

The patient is surrounded by rings of gamma-ray detectors in the PET scanner. The

detectors are connected to sensors in order to record the time of the gamma-ray detection

[76]. If two gamma rays are detected almost at the same time, it is most likely that they

are generated from the same decay event. The position where the decay event happened is

then calculated.

The PET scanner can only provide metabolic information about the body. It is more

useful to combine anatomic information with metabolic information. Modern PET scanners

are usually integrated with CT scanners in order to provide anatomical imaging. After

sequential scans by PET and CT, the two sets of images are fused together precisely by

registration [66]. The anatomic structure and undergoing biochemical activity are presented

simultaneously.

2.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive technique for providing an image

of the tissue distribution in the body. Because electromagnetic (EM) waves and a strong

magnetic field are used (instead of ionizing radiation or x-ray) in producing an MRI image,

there is no known radiation risk to the patient at low magnetic field strength (e.g. 1 or 3

Teslas).

Hydrogen nuclei (protons) have spin and behave like small magnets. Under normal

circumstances, the protons within a human body randomly point in all directions and the

magnetization of the body is canceled out. When a strong magnetic field is applied to

the body, protons align either parallel or anti-parallel to the magnetic field. Pulses of

electromagnetic radiation are then applied to stimulate the magnetic protons. When the

electromagnetic radiation is perpendicular to the external magnetic field and has a certain

frequency, called the Larmor frequency, the protons precess around the direction of the

external field. The Larmor resonance frequency of the hydrogen nucleus is different at

different locations of the body. It is proportional to the external magnetic field. By applying

different frequencies of electromagnetic radiation, MRI can produce a density image of the

hydrogen nuclei in the body.

Compared to CT, which provides a good image of dense tissue such as bone, MRI is able
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to generate clearer pictures of soft tissue. Therefore, MRI is widely used to diagnose joint

injuries and examine organs of the chest and abdomen. This type of imaging, including Tl'

T2 and P D MRI, produces scalar 3D images.

Functional magnetic resonance imaging (fMRI) is a neuro-imaging technique for map­

ping changes of the brain activity caused by different types of stimuli, such as sound and

pictures. It is a non-invasive scan and uses a MRI scanner with parameters sensitive to

changes in magnetic susceptibility. The change in magnetic susceptibility is caused by a

change of the level of oxygenation of venous blood or a change in the rate of in-flowing

arterial blood. The activated brain regions are where the level of oxygenation and the rate

of blood flow is greater than in resting regions. The magnetic resonance signal of the blood

is therefore slightly different depending on the level of oxygenation.

During the fMRI scanning procedure, the subject is presented with a particular form

of stimulation. Then, MRI images of the patient's brain are taken and are used to provide

high resolution anatomical information after reconstruction. Next, a series of images related

to the temporal response of the blood supply is taken over time. These images provide

low resolution temporal information. Some research groups are trying to combine fMRI

with EEG and MEG in order to provide high resolution temporal information. The image

data produced with fMRI contains both 3-dimensional spatial anatomical information and

temporal information. It is then analyzed to produce statistical maps (scalar images) that

convey the confidence region activation that correlates with the stimulus. fMRI makes it

possible to examine magnetic phenomena associated with spatio-temporal brain activation.

Physicians may use temporal in addition to 3-dimensional spatial information to diagnose

pathological tissue based on their altered perfusion dynamics.

Perfusion magnetic resonance imaging (perfusion MRI) is a non-invasive technique to

detect flow within vessels and is sensitive to microscopic levels of blood flow. Perfusion is

a process in which the blood flows through the blood vessels. Compared with PET and

SPECT, which can also measure the perfusion, MRI provides higher spatial and temporal

resolution.

Tagged magnetic resonance imaging (tagged MRI) is an imaging technique to estimate

the displacement field for all points within a certain organ. Tagging is the magnetic reso­

nance process of using special pulse sequences to impose temporary spatial variations in the

longitudinal magnetization of protons inside the body. The temporary spatial variations are

called tags. Tags move with underlying tissue in subsequent images, which aids in tracking
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motion of objects using a series of magnetic resonance images. The tagged MRI has been

used to track normal and abnormal myocardial motion and to understand the effects of

treatment after myocardial infarction [31].

Diffusion tensor magnetic resonance imaging (DTMRI) is an extension of diffusion MRI,

which applies diffusion gradients in at least six non-collinear directions. DTMRI measures

the preferentially oriented diffusion or anisotropic diffusion. Anisotropic diffusion has been

used to measure the structural integrity of brain white matter at different ages and in

several diseases [34]. The direction of greatest diffusion has been used as the direction of

white matter nerve fiber tracts.

MRI is a noninvasive and versatile medical imaging technique. In addition to acquiring

a scalar image, TVMID, such as perfusion MRI and tagged MRI can also be obtained.

DTMRI can also generate tensor fields.

2.2.4 Time-Varying Ultrasound

Medical ultrasound imaging, also called ultrasonography, is a technique that uses high fre­

quency sound waves to generate images of the patient's body. It is a non-invasive and

radiation-free technique, which is often used to scan pregnant women in order to evaluate

the fetus. In an ultrasound scanner, pulsed sound waves are first generated with frequencies

much higher than audible sound. The sound waves are absorbed, scattered or reflected by

the patient's body. Most of the energy is reflected and causes strong echos. The energies

and arrival times of the echos are measured. The distance between ultrasound source and

reflectors is then calculated by the time intervals between the emission of the sound wave

pulse and the arrival times of the reflected echos. The recorded waves can generate two­

dimensional gray-scale images of the human body. The energy of the reflected ultrasound

wave can be displayed as a one-dimensional plot (energy v.s. time). When the speed of

sound in the tissue is known the time axes can be replaced with the distance. When the

ultrasound is moved or there is an array of transducers, many such curves can be generated

for physically adjacent paths in space. These multiple curves can be represented as rows

or columns of a 2D image, with brightness proportional to energy. In 2D time-varying ul­

trasound, the whole process is repeated with time. Traditional 2D ultrasound images are

grainy-looking and require the interpretation of a skillful technician.

Three-dimensional ultrasound is acquired by an ultrasound scanner. The acquired data

is the distribution of ultrasonic echo information in 3D space, stored in memory as a 3D
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array. Different from regular MRI or CT reconstructed 3D volumes, one can imagine the 3D

ultrasound volume as a cone. 3D time-varying ultrasound is acquired in both three spatial

dimensions and in the temporal dimension. 3D time-varying ultrasound takes a series of 3D

ultrasound images and produces a live video.



Chapter 3

Related Work

In this section, we review techniques for visualizing time-varying volumetric datasets, pre­

vious work on segmenting time-varying medical data and multidimensional scaling, and

describe how our work differs from other studies of time-varying medical image data set

visualization.

3.1 Time-Varying Volumetric Data Visualization

The rendering community thus far has mostly focused on the technical aspects (accuracy

and speed) of rendering very large data sets. This problem has been elevated by time­

varying data, since many data structures cannot easily be updated from one time frame to

the next in real-time. It requires reading large files continuously during the visualization

process, which prevents visualization at interactive rates.

Generally, previous research on time-varying data visualization methods can be divided

into three categories:

• Encoding/Compression,

• Feature extraction, and

• Rendering.

There are two types of time-varying volume dataset compression methods: value-based

encoding and physically based feature extraction methods. Value-based encoding methods

16
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transform (and potentially compress) data by exploiting coherence. The value-based encod­

ing/compression [27, 42, 41, 59] methods could reduce the size of the datasets and therefore

make storage more manageable. Exploiting coherence is the key to value-based encoding

methods. Data features [61, 57, 54], such as vortices or shocks, can also be represented in a

compact fashion. The data can be represented as a set of features instead of just a collection

of voxels, which provides a higher level view of the data. Woodring et al. [81] proposed an

approach which computes projections from a 4D to a 3D hyperplane by considering time­

varying volumetric data as a four-dimensional data field. The 3D hyperplane projections

are visualized by volume rendering.

Depending on the discrepancy between time steps, one can also classify the time-varying

visualization as

• Homogeneous, or

• Inhomogeneous.

In other words, one can treat time-varying data sets either as 4D data [81, 41] or separate

the temporal dimension from the spatial dimensions [59].

Several data structures or encoding methods have been proposed to accelerate the ren­

dering time, such as T-BON [64], time-space partition trees [59], differential time-histogram

tables [83] and others.

The temporal branch-on-need tree (T-BON) is an isosurface extraction data structure

for time-varying data sets. It is an extension of three-dimensional branch-on-need octree

(BONO) [78] to time-varying data sets. Instead of reading the entire tree and data from

disk at each time step, T-BON improves the I/O performance by only reading the portion

of the data necessary to construct the isosurface of the current time step. The geometry­

based tree structure can also help to explore spatial coherence and therefore increase the

performance.

The time-space partition (TSP) tree is a time-supplemented octree, which treats spatial

and temporal dimensions equally. This is a data structure proposed to accelerate the volume

rendering of time-varying data sets. The user is able to control the trade off between image­

quality and rendering-speed by providing different error tolerances [59].

The differential time-histogram table (DTHT) is a data structure which encodes the

temporal coherence and histogram distribution of time-varying data sets. DTHT is used to
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reduce the data loaded from disk between adjacent time steps by a given error tolerance.

Further, spatial distribution is also used to accelerate rendering [83].

Ma et al. [44] give a survey of different time-varying data visualization techniques. The

survey focuses on how time-varying volume data can be efficiently rendered to achieve

interactive frame rates by employing data encoding, hardware acceleration, and parallel

pipelined rendering. The motivation for most of this research is rooted in massive data

volumes, which are common in engineering problems. (See, for example, the Richtmeyer­

Meshkov data [48].) Many time-varying data sets are typically produced by simulations

of some complex physical phenokena. The ability to understand complex phenomena is

important to solve many engineering problems. Most time-varying datasets are directly

rendered as an animation sequence which shows how the underlying structures change over

time.

However, the goal of medical diagnosis is not to observe a time-behaviour as much as

to differentiate healthy from malicious tissue. Hence, it is not so important to provide an

interactive selection of arbitrary time-slices, but rather a comprehensive evaluation of the

time-behaviour of each tissue sample and its classification into different tissue types and

tissue behaviours. Therefore, novel transfer function designs that take the whole data set

into account are needed.

Recently, several approaches have been proposed to extend the aspect of transfer function

design to time-varying data in a comprehensive way [3, 21]. A time histogram is given by

concatenating a series of conventionallD histograms together for each step. Hiroshi et al. [3]

present a visualization method based on the time histogram, which allows simultaneous

classification of the entire time series. In their system, the user can specify transfer functions

either directly or indirectly using the time histogram and achieve interactive feedback.

Jankun-Kelly and Ma [30] study transfer function generation for time-varying volumetric

data sets. They assign a single or a small set of transfer functions to an entire time series in

order to capture dynamic behavior. The criteria are discussed when more than one transfer

function is used. The transfer function for the entire time series is based on given transfer

functions for each time step.

Tzeng and Ma [71] present a new time-varying data visualization system by employing

machine learning. Machine learning algorithms are used to "learn" to extract and track

features in time-varying flow field data sets. A transfer function for the entire time series is

given by transfer functions from a few key time steps.



CHAPTER 3. RELATED WORK 19

The approach taken in this thesis is to treat each voxel as a time-activity curve (TAC),

as opposed to reducing it to a scalar. We then simply try to cluster these functions in groups

with similar behaviour, creating a 1D or 2D transfer function. We then specify the regions

of interest using an interface similar to that described by Doleisch et al. [22]. However, in

our case the 2D space in which we specify the regions of interest is obtained by using a

clustered representation provided via multidimensional scaling (MDS) [79].

Tory et al. [67] discuss several methods to visualize specifically time-varying medical

data. They explore visualization methods, which include isosurfaces, direct volume ren­

dering and vector visualization using glyphs, to produce an animation of consecutive time

steps that illustrate how the intensity and gradient changes along the time. They argue that

these visualization techniques could provide new insight into the information contained in

the TVMID and therefore help improve diagnosis or treatment. However, their system is

not capable of classifying data into different tissue types.

3.2 Segmentation of time-varying medical data

Our proposed framework allows for identification and visualization of regions with particular

dynamic behaviour. Several techniques have been proposed in the past for the segmentation

of time-varying medical image data. What is characteristic about these techniques is that

once the 3D+time image data, along with some initial parameters, are set, the user has

no influence over the segmentation outcome. Our framework, on the other hand, provides

the user with the means to intervene, by leveraging their domain specific expertise. This

is accomplished via an intuitive graphical interface while providing immediate visual feed­

back of alternative segmentation results. This keeps the clinical expert in the loop, which

guarantees producing accurate and meaningful results.

A majority of previous "black-box"-type segmentation techniques is based on cluster­

ing [1]. In [80], a k-means like algorithm is used to cluster PET images, whereas in [2] fuzzy

c-means (FCM) clustering is used to segment SPECT images. Velamuru et al. [72] used

hierarchical clustering as well as inter- and intra-cluster measures to assess tissue activity.

In [26], pre-clustering and hierarchical clustering are used with extracted kinetic parameters

to label PET data.

Our approach is based on reducing the dimensionality of the data by embedding the
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TACs of all the voxels in a two dimensional space. The separation between the TAC obser­

vations in 2D is proportional to the measure of TAC dissimilarity. Effectively this iteratively

groups the TAC observations while continuously producing an update of the 2D view. Toen­

nies et al [65] discuss a dynamic SPECT segmentation scheme for aggregating voxels with

similar TACs by using principal component analysis (PCA). The similarity of voxels is mea­

sured on the most significant components of the transformation of TACs in eigenspace, in

order to bring the signal-to-noise ratio to a level which would improve the diagnostic po­

tential. In [36], FCM is compared to other techniques based on expectation-maximization

(EM) and independent component analysis (ICA). The use of ICA is somewhat related to

our approach as both perform dimensionality reduction. Other previous work incorporated

spatial information in clustering PET data through Markov Random Fields (MRF) [20,39].

In our framework, the geometric distance between TACs can be taken into account during

the dimensionality reduction and clustering and the user can visualize, on the fly, the re­

sults of interactively changing the degree of influence of spatial TAC proximity on the final

segmentation.

Other approaches for segmenting time-varying medical images are based on energy min­

imization of a 3D+time explicit, parametric deformable model and are typically applied to

dynamic cardiac data [46, 49], and tagged cardiac Mill data [47]. Implicit, level-set based

deformable models have also been proposed more recently to segment time varying medical

image data [35]. Deformable registration-based segmentation has also been proposed to

address 3D+time segmentation. Here, a labelled initial 3D volume is provided and then

non-rigidly deformed to subsequent time frames in order to transfer the labels throughout

all volumes [18]. In a more recent work, Song et al. [62], combine segmentation and registra­

tion for dynamic renal MR images. These deformable shape model based techniques have

been generally designed for modalities that exhibit a non rigidly varying shape over time,

rather than stationary anatomy that exhibits dynamic activity, which is the main focus of

our work. Analyzing functional MRI data provides a somewhat unique perspective. The

data is typically reduced to scalar statistical parametric maps based on confidence values of

activation and then simple thresholding is applied to highlight regions of interest [24].
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3.3 Dimensionality Reduction
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Dimension reduction is the process of reducing the number of dimensions under considera­

tion, which allows us to visualize, categorize, interpret or simplify large datasets. It can be

divided into

• Feature selection, and

• Feature extraction.

Feature selection approaches try to choose a subset of the original dataset and some data

analysis which conducted in the reduced dataset will be more accurate than in the original

one. Feature extraction is a mapping procedure from original multidimensional space into

a space with fewer dimensions. In either approaches, the goal is to find a lower dimensional

representation of the data that preserves most of the information or structure in the data.

The mapping procedure of feature extraction can be done either linearly or nonlinearly.

Within the realm of linear feature extraction, two techniques are commonly used: principal

components analysis (PCA) [8] and Fisher's linear discriminant (LDA) [40]. PCA performs

a linear mapping of the data to a lower dimensional space such that the variance of the

data in the lower dimensional space is maximized. LDA performs dimensionality reduction

while preserving as much of the class discriminatory information as possible. Nonlinear

dimensionality reduction performs nonlinear mapping from the high dimensional space to

the low dimensional non-linear manifold. Kernel PCA methods employ PCA in a nonlinear

way by means of a kernel trick. The isomap method estimates the distance between two

points on a manifold by following a chain of points with shorter distances between them

in order to retain global properties of the data. Other nonlinear methods, such as locally

linear embeddings (LLE), only represents the distance between local points. A completely

different approach to nonlinear dimensionality reduction is through the use of autoencoders,

such as MDS and Sammon mappings [55]. Our approach applies the MDS method to reduce

the dimensionality of the data by embedding the TACs of all the voxels in a two dimensional

space. We will discuss the detail of the MDS method in the following paragraphs.

MDS is a dimensionality reduction technique, which maps high dimensional data points

down to a lower dimensional embedding. During the dimensionality reduction process,

the low-dimensional layout tries to best preserve the inter-point distances in the higher

dimensional data. Classical MDS starts with a distance matrix of item-item similarities
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[13]. The eigenvectors of the distance matrix are then computed and all items are projected

onto a low-dimensional basis vector which preserves the highest amount of variance. The

cost of solving the distance matrix for eigenvectors is O(n3 ). Later, Chalmers [17] proposed

a physically based model which computes the distance between two small sets of items and

gradually adjusts the position of items after each iteration. Each iteration produces good

layout by applying stochastically-based algorithm with linear complexity. Depending on the

size of the dataset, the overall cost of this approach is O(n2 ).

MDS is well suited to the task and well studied in database applications and visualization

[6, 50, 51]. However the size of our data is unprecedented for such algorithms. (Our data

may have more than one million data points.) A fast and interactive MDS system would

help the user easily explore the data sets interactively. Hence, we employ the MDSteer [79]

system, a steerable mass-spring model MDS system.

MDSteer is both a steerable MDS computation engine and a visualization tool, which

progressively lays out points in the dataset. The algorithm iteratively alternates between

the layout stage and the binning stage. During the layout stage, the algorithm iterates on

the activated points, a sub-set of points in the dataset, in order to calculate the position

on the projected plane. During the binning stage, the rectangular screen-space region is

hierarchically decomposed into sub-regions. Each sub-region is called a bin, which is drawn

as a wireframe box on the screen. The user can select some bins in order to reallocate

available computational resources to focus on the "filling in" of those bins.
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Methods

In order to understand, analyze, and render the TAC volume, we need to define operations

on these TACs that will enable us to use standard volume rendering tools common for 3D

scalar data. Additionally, in order to be able to assign colour and opacity to a particular

TAC, we need to adapt classical scalar field based transfer functions to time-varying data.

One of the key ideas of transfer function design is to select a particular feature (i.e. iso-value

for scalar volumes) and assign it a particular colour and opacity. Then, typically, voxels

with similar feature values are assigned a slightly smaller opacity. (See Levoy [38].) The

same principle can be applied to arbitrary data, including TAC-based data, as long as the

notion of similarity is well defined. Hence, the key is the definition of a distance metric

among TACs.

The general approach of our work is to define a distance metric for the space of TACs.

(See Section 4.1.) Given a particular distance metric there are two principle ways to explore

the TVMID. The user can either select a voxel (and hence its TAC) interactively or can

input an arbitrary TAC into the system. Our system will then render all TACs that are

within a particular distance of the desired TAC. (See Section 4.2 and Section 4.3.) As an

alternative, the distances from each TAC to all other TACs in the volume can be computed.

We then apply multi-dimensional scaling (MDS) to layout this high-dimensional graph

of all TACs on a 2D palette that is the basis of interactive exploration of the underlying

TVMID. (See Section 4.4.)

23
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4.1 Similarity measures for TACs
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For traditional 3D (static) data our volume Vs is a scalar volume, Le. Vs : lR3
---t R

However, in this paper we deal with a dynamic volume Vd defined as Vd : lR3
---t CO(lR).

Here CO(lR) is the space of all continuous functions. (This differs from the traditional

approach Vi : lR4
---t R) This representation is not unreasonable, since the change of

activity concentration observed in the tissue will be gradual. The possibility for distance

measures on the spaces lR as well as CO(lR) include the L p metric, of which we will use the

L 1 as well as L 2 metrics:

d1(Vi,Vj) = 1: IVi(t) - Vj(t)ldt

d2(Vi,Vj) = 1:(Vi(t) - Vj(t))2dt

(4.1)

(4.2)

where Vi, Vj E CO(lR), Le. they are image TACs, which are functions over time.

Assuming we have N time samples, the discretized version of L 1 and L 2 (denoted by h
and l2) are given by

(4.3)

(4.4)

Further, we consider the cross-correlation between two signals, which is given by:

(4.5)

For the purposes of defining a similarity measure, we can consider the maximum cross­

correlation, Le.

Again, in its discretized version we have:

1 N
SC(Vi,Vj) = mF(NLvdtn]Vj[tn+k])

n=l

where k E Z and v[k] = 0 for k t:J. [0, N].

(4.6)

(4.7)
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Last, but not least, the Euclidean distance between voxels will also play an important

role in the classification of the tissue. Hence, in a slight abuse of our notation, we will also

define the Euclidean metric as

(4.8)

where (Xi,Yi,Zi) and (Xj,Yj,Zj) are the spatial locations of Vi and Vj respectively.

4.2 Distance to Template TAC One-Dimensional Histogram

As in scalar volume visualization, where features are typically specified as a particular iso­

surface value, we can similarly determine a particular template TAC. Such a template TAC

can be determined by interactively probing the underlying data (by specifying an arbitrary

voxel via its spatial location (Xk' Yk, Zk)) or by simply sketching a template TAC. Often the

clinician knows or expects a particular temporal behaviour from a particular tissue. Hence

the a priori specification of a template TAC is a valuable feature of our system.
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Figure 4.1: The time activity curve visualization and design interface. (a) Volume rendering
of distance volume using the d 1 distance between each TAC with the template TAC. The
template TAC used was a TAC from the heart (green). (b) Representative time activity
curves corresponding to the volume view for lungs (blue), heart (green), and liver (red).
The position of corresponding voxel is shown at the bottom.

Figure 4.1 shows the widget we created for the inspection and modification of TACs.

While Figure 4.1a shows the volume rendered result of some classification of a phantom data
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set, Figure 4.1b displays three different TACs associated with different tissues: lungs (blue),

heart (green) and liver (red). Here we have been using the d1 distance. More information

about this data set will be given in chapter 5.

After a particular template TAC is specified, we can compute the distance of the TACs

at all other voxels to this template TAC which results in a scalar volume. This volume can

now be rendered using classical (scalar) volume rendering algorithms. Our system currently

can render a byte scalar volume at high frame rates. For example, Figure 4.2 shows the

histogram and template TAC determined for a synthetic data set. Using standard transfer

functions, we can now render the underlying data set.

4.3 TAC and Euclidean Distance Two-Dimensional Histogram

While discriminating simply on the TAC distance can be quite effective, we also wish to

distinguish between body parts, that have similar TACs, but are separated from each other

(e.g. the right and the left lung). In order to do so, we also include the Euclidean distance

(dE) and create a 2D histogram. Here, the x-axis provides the Euclidean distance and the

y-axis the TAC distance (d1 , d2 or sc). Hence, we can specify colour and opacity using a

2D histogram (as pictured in Figure 4.3). The user simply draws a rectangular region over

the data of interest. A color and opacity value can then be assigned to this region, which

will be inherited by all data points included in this region.

As one can see in Figure 4.4, we are not able to separate right from left lung. This is due

to the fact that the orthogonal separation of the Euclidean distance and TAC distance is not

sufficient. Since both Euclidean and TAC distance are computed from the template TAC

and corresponding voxel location, a carefully chosen template TAC is very crucial. Along

the axis which provides the Euclidean distance, the 2D histogram only shows the distance

to the location of template voxel. Voxels with the same Euclidean distance to the template

voxel will lay on a sphere with the template voxel at its center, which is not intuitive and

sufficient for users to assign a transfer function in order to highlight the areas of interest.

Hence, we need an alternative way to visualize the data.
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In scalar volume rendering one often uses the histogram (or modified histograms, see [9, 53])

as an aid to determine features in the data set. This approach is not straightforward for TAC­

based volumes. In order to use a histogram, both the carefully designed distance metric and

template TAC are required. The process of choosing or designing an appropriate template

TAC requires the knowledge about the dataset. Otherwise, the resulting histogram cannot

be interpreted intuitively. Assuming no template TAC is available, we simply compute a

distance from each TAC in the volume to all of the other TACs. This gives an nxn distance

matrix (assuming n to be the number of voxels in the data set). This distance matrix is the

input to a standard multi-dimensional scaling (MDS) algorithm that embeds the space of all

TACs into 2D, such that the distance distortions are minimized. Given this 2D embedding

we can now use it in order to specify a 2D colour and opacity transfer function. Here we

use the same transfer function specification method as for the 2D histograms in Section 4.3.

Figure 4.5 illustrates the transfer function assignment and corresponding volume rendering.

While we also could have chosen an embedding into 1D or 3D space, we felt that a 1D

embedding would sacrifice the separability of the clusters too much and that the specification

of a transfer function in 3D would be too difficult. Specifying the transfer function in 2D is

still manageable and can be provided through an intuitive interface.

Again, in order to differentiate body parts that are separated in space, but have similar

tracer behaviour, we assign a weighted TAC distance that balances Euclidean and TAC

distances:

(4.9)

where PEl, 2 and 0:' E [0,1]. One drawback of the similarity measure Sc is that it cannot

really be applied in such a setting, since there is no obvious calibration with the Euclidean

distance. While the distance between two equal TACs will always be zero for d1 and d2 , it

can assume an arbitrary value for sc.

Here we use 0:' in order to weight between Euclidean distance and TAC distance. The

TAC distance and Euclidean distance are normalized between zero and one. Figure 4.6 shows

the influence of the Euclidean distance on the layout of a phantom data set by assigning

different weights. The phantom data set models a myocardial perfusion SPECT study and

the detail description of the data sets will be given in Chapter 5.
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In order to assess the impact of this weighting, we colour coded the layout according

to a pre-classified synthetic data set, as shown in Figure 4.6a. However, normally the

assignment of colour and opacity happens after the initial 2D embedding using MDS, which

is illustrated by Figure 4.5. Figure 4.7 shows the similar colour coded result to the layout

of another phantom data set. The phantom data set is used to model different dynamic

behaviour of activity in the oblique slice of the heart and corresponds to a series of 64 x 64 x 1

slices spanning over 40 time frames.
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Figure 4.2: Transfer function assignment and volume rendering of the distance volume to the
template TAC. (a) The template TAC. The position of the corresponding voxel is shown at
the bottom. (b) The histogram of the distance volume (using distance dl) and an associated
transfer function. (c) Volume rendering of the distance volume.
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Figure 4.3: A Euclidean and TAC distance 2D histogram of the distance 3D volume. In the
2D histogram, one axis shows the TAC distance to the template TAC. Another axis shows
the Euclidean distance to the corresponding voxel of the template TAC. A transfer function
can be assigned directly to the 2D histogram in order to highlight the region of interest.
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Figure 4.4: Transfer function assignment (left) on TAC and Euclidean distance 2D histogram
will not be able to segment the left and right lungs (right).

(a) (b)

(c)

Figure 4.5: The MDS layout using a similarity distance of 67%d1 + 33%dE and a transfer
function assignment on the right with the corresponding volume rendering on the left. (a)
the left lung segmentation (b) the right lung segmentation (c) a complete segmentation of
the dynamic MCAT data set.
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Figure 4.6: (a) The phantom data set used for modelling a myocardial perfusion SPECT
study. (b) The result of the MDS layout using different weights (from left to right): (top row)
Id l +OdE, O.9d l +O.ldE, O.8d l +O.2dE; (middle row) O.7d l +O.3dE, O.6d l +OAdE, O.5d l +O.5dE;
(bottom row) OAd l + O.6dE, O.3d l + O.7dE,O.2d l + O.8dE;
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Figure 4.7: (a) Another phantom data set used to model different dynamic behaviour of
activity in the oblique slice of the heart. (b) The result of the MDS layout using different
weights (from left to right): (top row) ldl + OdE, O.9dl + O.ldE, O.8dl + O.2dE; (middle row)
O.7dl +O.3dE, O.6dl +OAdE, O.5dl +O.5dE; (bottom row) OAd l +O.6dE, O.3dl +O.7dE, O.2dl +
O.8dE;



Chapter 5

Results

5.1 System environment

In order to implement our ideas we use the vuVolume framework 1. This framework has

been developed in our Graphics, Usability and Visualization lab (GrUVi), Simon Fraser

University, and is available on sourceforge for download. Since vuVolume focuses on volume

rendering of scalar data, we extended its capabilities to deal with time-varying data.

The basic environment can be seen in Figure 5.1. First we load the data using the widget

(1). Then the user determines a template TAC by specifying its (x, y, z) location (see (2)).

A yellow marker appears in the volume in order to guide the user's selection (see the render

window (3)). Further, the TAC will be displayed in the TAC widget (4). Next, the user can

pick one of the three distance metrics (d1.d2, or so) (see (5)). After the distance volume

is computed, the histogram is being displayed in the histogram widget (6). Now the user

can interact with the scalar volume, like in any traditional volume rendering environment.

Instead of using the traditional 1D histogram-based transfer functions, the user can switch

to a 2D histogram, spanned by the Euclidean distance and the chosen TAC distances by

picking the proper tab at (7). The alternate GUI elements have been explained in Figure 4.3

and the screen capture is displayed in Figure 5.2.

Alternatively, when no template TAC is chosen, the user still has to pick a similarity

measure before being able to switch to the MDS view using the widget (7). The screen

capture is displayed in Figure 5.3.

1http://sourceforge.net/projects/vuvolume/

34
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Figure 5.1: Screen-capture of the 3D+time visualization and exploration application. The
GUI includes panes for volume rendering, viewing TACs, 1D histograms and specifying
a 1D transfer function, 2D histograms and a 2D transfer function, MDS, choice of TAC
dissimilarity metric and more. The left half part is volume rendering and the right half is
where the user can choose one of the different methods in order to analyze the data sets.
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Figure 5.2: Screen-capture of the 3D+time visualization and exploration application. The
left half part is volume rendering and the right half displays the 2D histograms where the
user can assign a 2D transfer function directly.
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Figure 5.3: Screen-capture of the 3D+time visualization and exploration application. The
left half part is volume rendering and the right half displays the MDS layout where the user
can assign a 2D transfer function directly.

5.2 Assessment of the different TAC metrics

In the following experiment we assess the strengths and weaknesses of different TAC sim­

ilarity measures with noise interference. In order to do so, we generate a template TAC

v(t) with log-normal distribution. (See Figure 5.4(a).) We add uniform noise n(t) to this

synthetic template TAC v(t) in order to judge the robustness of the similarity measure.

Hence, we are producing a signal

vn(t) = v(t) + 0'/100 *n(t) (5.1 )

where we are assuming that n(t) E [-1,1]. In Figure 5.4(b), we plot the similarity measure

d(v(t),vn(t)) as a is changing between 0 and 100 (where d stands for d1 ,d2, or sa). While

both, d1 and d2 will start at point (0,0), the maximum correlation Sa naturally is not

zero. Since we don't care about the particular value of the maximum correlation of v(t),

we normalize this curve by sc(v(O), vn(O)). Further, to make the trend more clear, we do

a least-squares fit of all three curves, and compute their slopes. The result of this test is

displayed in Figure 5.4(c). As uniform noise increases, d1 increases fastest and Sa increases

the least among the three methods. It clearly shows that d1 is most sensitive and Sa is least
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Figure 5.4: (a) Template TAC (b) dl, d2 and Sc distance between noise TACs and template
TAC. (c) The slope of dl, d2 and Sc distance between noise TACs and the template TAC.

Under noise interference, the measure Sc is clearly preferable over dl and d2. Further,

d1 is more sensitive to uniform noise compared to d2. However, Sc and d2 may also smooth

out some important features, but d1 will be able to keep these features. Therefore, d1 will

be preferable for non-noise and some low-noise datasets.
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Our visualizations and studies presented in the earlier images of this paper are all based on a

dynamic version of the MCAT phantom [70]. The adaptation of the static MCAT phantom

to a dynamic setting was done by the Medical Imaging Research Group (MIRG) at the

Vancouver General Hospital. The spatial data set corresponds to a series of 64 x 64 x 64

matrices spanning 32 time frames. This phantom models a myocardial perfusion SPECT

study. It reproduces a distribution of the dynamic radiotracer teboroxime in the heart and

all other organs of the thorax.

The challenge in SPECT heart studies is to differentiate photons that originate from liver

from these originating from the heart, as scattered liver photons often appear as if they are

emitted from the heart and may hide myocardial perfusion defects. Since the dynamic

behaviours of the tracer in the liver and in the heart are different, their respective TACs

can be used to differentiate between the two groups of photons and to correctly segment

and visualize the two organs. Figure 5.5 shows the best separation of liver and heart for the

three similarity measures d1 , d2, and sc. The corresponding distance volume histogram and

transfer function are also shown with rendered images. The initial template TAC was chosen

to be a simple flat zero TAC created from a voxel outside any region of interest. While this

resulted in an easy distinction between heart and liver for the d1 and d2 distances, such a

template TAC is not usable for the Sc distance. Since the correlation of any TAC to a zero

TAC will result in a "zero" value, we have to select another template TAC. Hence, we used

a TAC from the heart region. After a considerable amount of data exploration, the best

separation that we could achieve was found and is presented in Figure 5.5c.

Number of Voxels

Methods

original
d1 distance
d2 distance
Sc distance

Heart

1947 (voxels)
100%
100%

96.8%

Liver

7148 (voxels)
100%
100%
100%

Lung

17544 (voxels)
100%
100%

98.8%

Table 5.1: Comparing the performance of segmentation of the dynamic MCAT data with
different similarity measures. The table depicts the percentage of correctly labeled voxels.

Since this is a synthetic data set we know exactly which voxels are part of the liver tissue

and which are part of the heart tissue. Table 5.1 presents the accuracy of our segmentation
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using our three different similarity measures. Since this is a noise free synthetic data set,

we can see that the d1 and d2 similarity measures perform best and the noise robustness of

the Be is not being exploited.

The second type of data we have worked with was a simulation of a dynamic PET

brain study. It was created using PET-SORTEO [56]. The data set that we used has

128 x 128 x 63 spatial voxels and 27 time frames. In clinical practice the striatum and

cerebellum are typically regions of interest which one would want to analyze and visualize

[36]. Hence, we select a template TAC corresponding to a voxel which belongs to this part

of the brain. (See the yellow glyph in Figure 5.6f.) We calculate the d1 distance between the

template TAC and all other TACs; the resulting volume is visualized by volume rendering.

(See Figure 5.6e.) The striatum shows a different d1 distance and is highlighted (green)

inside the brain (red) in Figure 5.6e. A TAC (green) from the striatum is extracted and

displayed in Figure 5.6e in order to compare it with a TAC (red) from the brain. Figure 5.6a

and b show the MDS layout of TACs with a combined similarity measure of 100%d1 and

50%d1 + 50%dE respectively. The points are color coded to match the color of the volume

rendering. The points in green are associated with TACs in the striatum area; points in red

are associated with TACs in the brain area; points in yellow are associated with TACs in

the skin, while background TACs are white.

The third type of data we have worked with was a dynamic series of planar images

corresponding to a renal patient study. The planar image has 128 x 128 x 1 spatial voxels

and 102 time frames. Physicians use these dynamic planar images to evaluate the kidney

function. In this case a zero template TAC was used. We first calculate the dl distance

between the template TAC and all other TACs, which is then displayed in the histogram at

the bottom of Figure 5.7a. We display the resulting 2D image in Figure 5.7c. This image

was created with a transfer function presented at the bottom of Figure 5.7a. Figure 5.7b

shows the MDS layout of TACs by using a similarity distance proportional to 1dl + OdE.

Figure 5.7c clearly shows that one of this patient's kidneys (red) is healthy as it has a

normal TAC. The other kidney (green) displays abnormal temporal behaviour (as can be

seen in Figure 5.7a and b) which is related to the fact that its function is altered by some

disease. The green halo around the red kidney shows that this part has low active temporal

behaviour. This example shows how our method can potentially help in clinical diagnosis by

identifying organs or areas which are characterized by TACs different from that of a normal

tissue.
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Figure 5.5: Volume rendering, histogram and transfer function for the dynamic MCAT
phantom using different similarity measures and template TACs. (a) d1 distance and a zero
TAC as template. (b) d2 distance and a zero TAC as template. (c) Se distance and a heart
TAC as template.



CHAPTER 5. RESULTS 41

(a)

(c)

(b)

(d)

(e) (f)

Figure 5.6: Simulated dynamic PET data set (based on PET-SORTEO): (a) The MDS
layout using a similarity distance proportional to 100%d1 (b) The MDS layout using a
similarity distance proportional to 50%d1 + 50%dE . (c) The TAC of a voxel in the striatum
area (green) and the template TAC in the brain area (red). (d) The transfer function used
to render the image in (e). (e) Volume Rendering based on the transfer function in (d)
using a template TAC in the brain and the d1 distance. (f) The position (yellow dot) of the
template TAC.
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(a) (b)

(c)

Figure 5.7: Data set of a dynamic nuclear medicine (single photon) study: (a-top) The TAe
of a voxel in the healthy kidney area (red) and the abnormal area (green). (a-bottom) The
transfer function used to render the image in (c). (b) The MDS layout using a similarity
distance proportional to Id1 + OdE- (c) Display of the slice (not rendered) with the colour
assignment set in part (a-bottom).



Chapter 6

DTMRI Visualization

Diffusion tensor magnetic resonance imaging (DTMRI) has become an important tool to

measure biological tissues at the microscopic level. It has attracted attention in the field

of medical image processing and visualization. Because each voxel in a three-dimensional

diffusion tensor MRI scan is a symmetric and positive semi-definite 3 x 3 matrix, the data

cannot be segmented and interpreted simply by inspecting grayscale images of scans. It is

also a challenge to visualize the many interrelated components between tensors by traditional

methods.

This chapter will start with an introduction to DTMRI and its underlying meaning.

Then, previous work on diffusion tensor imaging (DTI) visualization methods will be given.

An affine invariant tensor dissimilarity measurement will be discussed. A new DTI visual­

ization method will be examined at the end of the chapter.

6.1 Introduction

The term "tensor" was originally introduced to describe tension forces in solid bodies with

an array of three-dimensional vectors from physics and engineering. In the field of diffusion

tensor magnetic resonance imaging (DTMRI), a tensor quantity that expresses the differ­

ential permeability of organs to water in varying directions is used to produce scans of the

brain.

In 1827, the botanist Robert Brown observed the movement of pollen particles floating

in water under the microscope. Later, the phenomenon of water diffusion became known

as Brownian motion. Thorvald N. Thiele was the first person to describe the mathematics

43
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behind Brownian motion. Albert Einstein conducted research on the problem and drew the

attention of physicists.

Diffusion is the transport of one material through another by the random microscopic

motion of molecules. Molecular motion is affected by the properties of the medium in

which it occurs. Molecular motion or diffusion within biological tissues reflects both tissue

structure and architecture at the microscopic level. There are two types of diffusion:

• Isotropic diffusion, and

• Anisotropic diffusion.

In pure water, the medium does not restrict molecular motion and diffusion is the same in

all directions. This is an isotropic diffusion. However, the coherent organization ofaxons,

for example, in white matter permits water to diffuse faster along the axon path than across

it. The molecular motion in white matter is anisotropic. DTMRI is an indirect indicator of

the microscopic physical organization of tissue.

Diffusion weighted imaging (DWI) is a modification of regular MRI techniques. It pro­

duces magnetic resonance images of biological tissues weighted by water diffusion. In DWI,

MRI produces contrast images of either water molecules in a sample excited by the impo­

sition of a strong magnetic field (T1-weighted images) or measuring the loss of coherence

or synchrony between the water protons (T2-weighted images) [29]. DWI only measures

the local characteristics of water diffusion and can produce images directly from scanning.

However, DTI data requires post-processing, since several MRI scans of image data includ­

ing a T2-weighted image and at least six DWI data, are required to calculate 6 independent

parameters for each 3 x 3 tensor matrix. With the introduction of DTI, anisotropic diffusion

effects in diffusion MRI data could be fully characterized and exploited.

In order to provide an initial feel for what diffusion tensor data looks like, Figure 6.1

shows one midsagittal slice through a DTMRI scan. It is visualized with a matrix of images

each of which displays a single component of the matrix representation of the diffusion

tensor. With this type of visualization, the tensor information is visualized by a scalar and

the overall three-dimensional structure is not shown.

Our methods first apply the distance measurement methods proposed by Vemuri et. al.

[73] between a template tensor and every other tensor. This reduces the tensor to a scalar,

which represents the similarity of anisotropic diffusion orientation between tensors and the

template. We then visualize the resulting scalar volume by direct volume rendering.
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Figure 6.1: Visualization of diffusion tensor components

The remainder of this chapter starts with a review of different diffusion tensor image

analysis and visualization methods. The data format will also be given in the following

section. Several scalar indices for diffusion tensors will be discussed. The chapter ends with

our proposed DTI visualization method.

6.2 Diffusion Tensor Imaging Analysis and Visualization

During the image acquisition stage, the data from the MR scanner is noisy and contains

various artifacts. The noise and artifacts will cause errors when reconstructing the DTI. For

example, errors can cause the constructed fibres to point in the wrong direction and thus

lead to a wrong visualization. Many techniques have been applied to denoise the medical

images in the scalar fields. Recently, several methods have been proposed to reduce noise
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in DTI, such as median filtering and morphological operations [43, 14].

There is much work on scalar and vector image segmentation achieved by applying a

geometric active contour model [45, 68, 16]. Zhukov et al. [87], propose a pipeline to segment

DT-MRI datasets. The pipeline starts with the computation of an invariant anisotropy

measure from raw diffusion tensor data. The geometric models of the brain structures are

then constructed. The level set method is also applied to remove noise from the data and

to produce a smooth, geometric model. Feddern et al. [23] extend several level set methods

to tensor-valued data.

In tensor image segmentation, one important issue is to define the proper tensor distance

that measures the similarity and dissimilarity between tensors. Any kind of matrix norm

could generally be used to measure the tensor distance. One simple way is to apply a tensor

Euclidean distance in tensor field restoration [19, 74]. Alexander et al. [5] discuss and

compare a number of similarity measures applied to the task of registration of 3D images

of the human brain. Tsuda et. al. [69] introduce the information geometry of positive

definite matrices and then use it in an "EM" algorithm to approximate an incomplete

kernel. Recently, Wang and Vemuri [73] proposed an affine invariant tensor dissimilarity

measure method. The affine invariant is an important property for the DTI segmentation.

We will adopt the distance measurement method for our visualization.

In order to segment and visualize DTMRI, the tensor field must spatially be aligned

with other imaging modalities, such as T1- and T2-weighted MRI. To allow the comparisons

between individuals, algorithms for establishing pointwise correspondences between DTMRI

are required. Image registration is used to establish the pointwise correspondence. Several

DTMRI registration algorithms [4, 58] have been proposed recently.

The visualization of DTI is a challenge. Currently, there is no well established method

to display the matrix values which tensor data represents. Meaningful DTI visualization

methods depend on the specific application domain. Also, the trade off between complexity

and legibility should also be considered when one designs a visualization method.

The widely accepted tensors to describe diffusion can be visualized as ellipsoids. It is a

natural choice of glyph to visualize DTI data [15]. The directions of the main axes represent

the eigenvectors and their lengths the eigenvalues of the tensor. The longest main axis

denotes the value and direction of maximum diffusion, whereas the shortest axis represents

the value and direction of minimum diffusion. Since the diffusion process is much faster along

the direction of the fibers in white matter, the longest main axis of the diffusion ellipsoid
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denotes the direction of the fibers and is much larger than the other two in white matter [60].

If the diffusion is isotropic, the diffusion tensor can be visualized as a sphere. Laidlaw et al.

[37] proposed two approaches to visualize DTI. The first approach could display ellipsoids

simultaneously in context by normalizing them to approximately the same size. Laidlaw

et al. also applied a concept from oil painting to represent the tensor data with multiple

layers of varying brush strokes in the second proposed DTI visualization approach. Westin

et al. [77] combined and color coded linear, planar and spherical components with the

ellipsoids to visualize the tensor data. Kindlmann [33] presented a new tunable continuum

of glyphs based on superquadric surfaces to avoid asymmetry and visual ambiguity by using

an ellipsoidal glyph.

However, it is hard to represent continuous diffusion phenomena by discrete glyphs.

Tractography, a term first used by Basser et al. [11], was proposed to address this problem.

The basic idea is to use streamlines instead of glyphs to represent the tensor data. Xue et

al. [82] present a fiber path by a curve after fiber projection reconstruction. Zhang et al.

[84] used streamtubes and streamsurfaces to visualize DTI. One problem of tractography is

its sensitivity to noise. Some work [12, 75, 86] has been done to address this problem.

Direct volume rendering is widely used to visualize scalar data. Transfer functions are

applied to map the scalar value to optical properties, such as colour and opacity. Kindlmann

et al. [32] extend volume rendering to visualize DTI by applying various types of diffusion

tensor transfer functions. Zhang et al. [85] gave a thorough survey of different tensor

visualization methods.

6.3 Data and Data Format

We use two DTI data sets to test our new visualization methods. One is the DTI data

of a brain scan and the other is the DTI data of a cardiac scan. The eigenvalues and

corresponding eigenvectors are stored in two separate files for each of the data sets. The file

is in the Matlab data file format with the file extension .mat. The eigenvalues for the DTI

brain data set are stored in a 96 x 96 x 3 x 66 four-dimensional matrix and the corresponding

eigenvectors are stored in a 96 x 96 x 3 x 3 x 66 matrix. Similarly, the eigenvalues for the DTI

cardiac data are stored in a 21 x 32 x 3 x 21 four-dimensional matrix and the corresponding

eigenvectors are stored in a 21 x 32 x 3 x 3 x 21 matrix. Here, we should point out that

most of the work presented in this thesis uses the DTI data of the brain scan.
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In order to load the data sets into our system, the matlab data have to be converted to

a NLM Insight Toolkit (ITK) [28] readable format. In our application, we chose to convert

to the MetaImage data format. MetaImage is a simple but powerful text-based tagged file

format for medical images. A MetaImage file contains a text header to describe the meta

information of the data and binary data to store the actual data. MetaImage header files

usually require either ".mha" or ".mhd" extensions. If the data is stored in multiple files,

the header file should indicate where to find these files. The following is a simple example

of a MetaImage header file.

NDims = 3

DimSize = 512 512 100

ElementType = MET_USHORT

ElementSize = 1 1 3

ElementSpacing = 1 1 1

ElementByteOrderMSB = False

ElementDataFile = LIST

filenameOfDataFilel

filenameOfDataFile2

filename OfDataFile3

filename OfDataFile4

• NDims indicates the dimensionality of the data. The example above is a 3D data set.

• DimSize describes the size of the volume in terms of voxels along each direction.

• ElementType indicates the primitive type used for each voxel. For the above example,

the "unsigned short" data type is used.

• ElementSize describes the physical size of each voxel along each direction.

• ElementSpacing indicates the distance between the neighbouring voxels along each

direction.

• ElementByteOrderMSB describes whether the data is encoded in little or big endian

order.
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(6.1 )

• ElementDataFile indicates whether the data is stored in several files or not. In the

example above, "LIST" means the data is stored in several files. The name of each

data file is listed after this line.

6.4 Scalar Metrics of Diffusion Tensors

Several scalar indices have been introduced to describe the diffusion tensor field. Rotational

invariance or affine invariance are desirable properties for a scalar distance metric of a

tensor. These properties allow the measurement between tensors to be independent on

the coordinate system. Otherwise, knowledge of the coordinate system must be combined

with the metric in order to give a proper interpretation. The diffusion tensor D is a 3 x 3

symmetric positive semi-definite matrix:

(

Dxx Dxy DXZ)
D = Dyx Dyy Dyz

Dzx Dzy Dzz

Several indices commonly used are the trace of the diffusion tensor, apparent diffusion

coefficient, fractional anisotropy and relative anisotropy, all of which are rotationally invari­

ant. The trace of the diffusion tensor D

(6.2)

measures the mean diffusivity of D.

The Apparent Diffusion Coefficient of a diffusion tensor D is simply the average of its

diagonal elements

ADC = Tr(D)
3

(6.3)

Basser et. al. [10] proposed rotationally invariant anisotropy metrics: fractional an­

siotropy and relative anisotropy. Fractional anisotropy is defined as
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which is a measure of the magnitude of the tensor that can be ascribed to the anisotropic

diffusion, where AI, A2 and A3 are the eigenvalues of the diffusion tensor D and

Relative anisotropy is defined as

RA = )(A1- < A >)2 + (A2- < A »2 + (A3- < A >)2
V3<A>

(6.5)

(6.6)

which is a normalized standard deviation representing the ratio of the anisotropic part of

the tensor to its isotropic part.

Figure 6.2 shows the Apparent Diffusion Coefficient, Fractional Anisotropy and Relative

Anisotropy of a sliced brain DTI dataset.

6.5 Tensor Distance and Visualization

To measure the distance between two tensors, Vemuri et. al. [73] proposed an affine invariant

way to measure the "distance". In [69], Tsuda et. al. introduced the information theoretic

"distance" measure by Kullback-Leibler (KL) divergence between two probability density

functions p and q.

KL(pllq) = Jp(X)lOg~i:~dX (6.7)

where p(x) and q(x) are the probability density functions. In order to symmetrize the KL

divergence, a J-divergence is calculated as

1
J(p,q) = 2(KL(pllq) + KL(qllp)) (6.8)

Vemuri et. al. proposed a tensor distance for the symmetric positive definite tensors as

the square root of the J-divergence in [73]

(6.9)

where p(rlt, D) is defined as

(6.10)
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where tensor D has displacement r of water molecules at each lattice in the image at time

t and n is the dimension of the tensor.

The equation 6.9 can be simplified as

d(T1 , T2) = ~Jtr(TI-IT2 + T2-
1TI) - 2n (6.11)

where tr(·) is the matrix trace operator, n is the size of the tensor T1 and T2. d(T1 ,T2) has

the affine invariant property, which is given in [73]. We choose the tensor at (40,60,33),

a tensor located in the corpus callosum, as a template and calculate the distance between

the template tensor and every other tensor. Direct volume rendering is then applied to

the distance volume. To get a feeling of the Vemuri distance in the brain volume dataset,

Figure 6.3(a) shows the distance by using volume rendering. Figure 6.3(b) shows the corre­

sponding histogram of the volume and the transfer function to generate image (a). During

the transfer function assignment process, a user can choose either the logarithmic or reg­

ular histogram from a drop-down menu to be shown at the background of the widget in

Figure 6.3(b). Based on the choosen histogram, a user can specify the opacity value, which

is defined by the curve on top of the histogram, and the RGB value, which is defined at the

bottom of the widget in Figure 6.3(b). The corpus callosum and medulla, both of which

have similar fibres, are clearly highlighted by a red color in Figure 6.3(a). The correspond­

ing transfer function clearly shows that tensors in both corpus callosum and medulla have

relatively large but small range of distance to the template tensor. The small distance range

also indicates that fibres in the corpus callosum and medulla have a very similar diffusion

orientation.
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Figure 6.2: (a) Apparent diffusion coefficient, (b) Fractional anisotropy and (c) Relative
anisotropy of a brain slice data. All of them use the matlab default gray color map, which
is a 64 x 3 matrix with values [0,1].



CHAPTER 6. DTMRI VISUALIZATION 53

Corpus Callosum

Medulla
(a)

Backdrop: ( Histogram (log) B Opacity

o:R
0.6
0.4

0.2

0 Data value 255

~ I ~
(b)

Figure 6.3: In order to highlight both corpus callosum and medulla, which are two important
areas of research, a tensor in corpus callosum is chosen as the template tensor. (a) Volume
rendering of Vemuri's distance to the template tensor at (40, 60, 33), a tensor located in
the corpus callosum. (b) Corresponding transfer function assignment.



Chapter 7

Conclusions

We propose several new analysis and visualization methods that are designed to help the

user effectively explore time-varying medical image data sets. All our methods are based

on an analysis of temporal information (TAC) associated with the dynamic data. This

is different from previous visualization methods [67]. We apply three similarity measures

between different TACs and base our visualizations on them. We find that the maximum

correlation is robust under noise, which is important for nuclear medical imaging data which

often have high noise and thus low statistics. However, this similarity metric is not well

suited for taking into account the Euclidian distance. We find the Euclidian distance to be

an important instrument to differentiate between tissues with the same temporal behaviour

but belonging to different, spatially separated organs.

We propose three principle approaches for the exploration of time-varying data: using

a ID TAC distance histogram; a 2D geometric vs. a TAC distance histogram; and the

2D layout of spring mass based clustering. The first two methods are fast and intuitive.

However, they require the user to have some previous knowledge about the underlying data

in order to choose the proper template TAC. The third method does not require such a

template TAC and provides an overview of the complete data set. It takes, however, much

longer to create such a layout. We use multi-dimensional scaling to layout the whole data

set as a backdrop for specifying a 2D transfer function. Our interface provides flexibility to

the user and can be a powerful tool for gaining understanding of time-varying data. To the

best of our knowledge, no similar work has been proposed before.

Another part of our work is DT-MRI visualization. The user first chooses a tensor as

a template. We then apply the distance metric, proposed by Vemuri et. al. [73], between

54
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the template tensor and all other tensors in the DT-MRI. Direct volume rendering is used

to visualize the resulting scaler volume, which represents the similarity between template

tensor and all other tensors. This visualization method could clearly show the region similar

or dissimilar to our template tensor.



Chapter 8

Future Work

The purpose of the tool we have developed is not clinical use. Typically in the daily clinical

routine there is no time to specify transfer functions etc. Therefore, our tool is more

intended for use by a researcher, a medical physicist, for example, who is involved in the

development of new dynamic reconstruction and analysis algorithms or investigation of new

tracers. While the ideas presented in this thesis work have been developed and tested in

collaboration with such a physicist, at this point we have only applied them to simulated

data created for research purposes and to one dynamic planar image.

• At the next stage, we plan to extend these tests to several different types of clinical

data and to involve our medical collaborators in the assessment and optimization of

the method.

• Further, it presently takes too long to compute the MDS layout (several hours for

a 643 dataset). We are actively collaborating with the creators of MDSteer [79] to

incorporate into our program the next version of their system, called Glimmer, which

is implemented on a modern graphics processing unit (GPU) and is faster by several

orders of magnitudes than the current version.

• Currently, the distance metrics between TACs are limited to several pre-defined choices.

We believe that different distance metrics should apply to different medical imaging

modalities. The clinical parameters will be explored in order to capture the important

features of different modalities. We will collaborate with experts of different medical

modalities to explore meaningful metrics.

56
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• The "distance" measurement between the template tensor is used to generate the

distance volume. In the next stage, we will extend the MDSteer layout framework for

visualizing time-varying medical data sets to DTI visualization.
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