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Abstract

Synthetic collateralized debt obligations are popular vehicles for trading portfolios

of credit risks. We present a copula based Monte Carlo simulation procedure for pricing

them. Using the Gaussian copula ofjoint default times, we assess the risks of CDOs and

their sensitivity to model parameters. Joint defaults are rare; many studies suggest

Gaussian copula has limited ability to capture extreme events. We use the t copula to

assess the risks of misspecifying tail dependence. The choice of copula is shown to

significantly affect tranche prices.

Keywords: credit modeling; copulas; risk assessing

Subject Terms: risk management; copulas (mathematical statistics)
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t Introduction

Credit derivatives are financial instruments whose value derives from the

creditworthiness of underlying reference. They allow banks, and other financial

institutions to efficiently manage and transfer credit risks.

There are two main groups of credit derivatives. Single name instruments:

contracts whose payoff depend on the creditworthiness of underlying reference entity.

Most common example of such instruments is credit default swaps, total return swaps.

Many of the single name instruments are liquid. Multi-name instruments: constructs with

payoffs contingent on the creditworthiness of a number of reference entities. Important

examples are k - th to default basket swap and collateralized debt obligations (CDOs).

These instruments are usually less liquid than the single name ones.

Credit default swaps (CDS), as a key component of the credit derivatives market

in terms of volume, have seen substantial growth, with around 42 trillion US notional

outstanding in June 2007 as highlighted by the Bank of international Settlements. At the

same time, other instruments based on the CDS have seen substantial growth as well,

such as basket default swaps, collateralized debt obligations (CDOs). One of the most

important multi-name credit derivatives is the CDO. In cash CDO, the underlying

collateral is usually a portfolio of corporate bonds or bank loans. The cash flow structure

of a CDO passes payments from the collateral pool to a prioritized collection of securities

called tranches. There are also synthetic CDOs, which use a pool of CDSs or other

instruments such as total return swap (TRS).
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Determining the price of each CDO tranche for which the investors is ready to

support the risk associated with that tranche is the key challenge. The payoff is driven by

default dependency of pair wise firms in the reference portfolio. There are two main

traditional approaches to model default: the structural approach and the reduced form

approach. Merton's model (1974) is considered the first structural model. In Merton's

model, the assets value of the firm follows a geometric Brownian motion. The firm

defaults ifits assets are below its outstanding debt. Merton's model has been extended in

many ways; among them are Black and Cox (1976), Schonbucher (1996), and Zhou

(1997). The structural approach is intuitive and has a clear interpretation. However it is

difficult to calibrate the current market data, which are the spreads of the CDSs.

Therefore, its pricing applicability is limited. The reduced form model does not explain

why the firm defaults. Instead, it models the default time using the default intensity,

which can be inferred from market data. This approach was developed by Jarrow and

Turnbull (1995), Duffie and Singleton (1999), Lando (1994, 1998). However, the most

accepted pricing model in the industry is the Gaussian copula as discussed in Li (2000).

This technique is also used as a core instrument in Credit Metrics. The computation of

the Gaussian copula model requires the Monte Carlo simulation work and allows one to

specify a joint default time distribution by combining individual credit spreads in the

portfolio with their pair wise correlation. The modeling ofjoint default times is difficult

because the joint defaults are rare. In Li's model, the marginal default times are assumed

to be exponential, with marginal distributions tied together by the Gaussian copula.

However, as Embrechts (2001) shows, the main pitfall of Gaussian copula is the small

probability of extreme joint events. Based on that, other copula based models have been
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developed such as tcopula (Mashal and Naldi 2001) or Clayton copula (Rogge and

Schonbucher 2003).

The rest part of the paper proceeds as follows: In section 1, we provide

mathematical background on modeling marginal default times and the pricing principle

for single name credit derivatives. In section 2, we focus on using copulas to model

dependence structure. We define common copulas and some related properties. In

section 3, we give some applications of copulas in pricing basket credit derivatives. In

section 4, we assess the risk of CDO tranches with respect to several risk factors under

the Gaussian copula. In section 5, we assess tranche prices and risks under the t copula

and reveal some potential problems of the Gaussian model.
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2 IVlodcling Default TilllC

As mentioned above, two types of models have been developed to characterize the

default time: structural models, developed by Merton (1974), and reduced form models.

In this section, we focus on concepts which are essential to understanding the reduced

form models.

I!

The Poisson distribution is a discrete probability distribution that describes the

probability of the number of events occurring in a fixed period of time. If the expected

number of occurrences on a unit interval is A , the probability of k occurrences in the unit

Ak -A

interval is defined as: f(k,A) =_e_
k!

The Poisson Process is a collection {N(t): t 2 o} of random variables, where N (t) is

the number of event that have occurred up to time t. The number of events between time

interval [a, b] is N (a) - N (b) and has a Poisson distribution.

Now, we consider a Poisson process with constant rate Aper unit time and the

random variable r , which is the time one must wait to see the first event occur. The

following two events are equivalent {r > t} ={N (t) =O}. Hence, P(r > t) =e-AI. The

cumulative distribution of r isF(t) =P(r:s t) = l-e- AI
• Furthermore, the density

function of r can be found by differentiating F respect tot. We obtainf(t) = Ae-AI
•

For t > 0, this is the density function of exponential distribution.
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Another important concept is the hazard rate. Let r be the time of first default.

The hazard rate function is defined as: h(t) =lim P(t < r :::; t +!1t Ir > t). Rewriting the
"'1->0

above expression, we get some important relations among h(t),f(t) and F(t):

h(t) = lim pet < r:::; t + !1t, r > t) = lim f"'l f(u)du = f(t) =_~ log(l- F(t))
"'HO per > t) "'HO f f(u)du 1- F(t) at

And, solving the differential equation, we have

F(t)=I-exp(- !h(u)du)

From this point, we will use exponential distribution to denote the hazard rate.

Assuming constant hazard rate, the exponential distribution can be used to model the

default time. If extending the setting to allow A being a non-negative stochastic process,

then N(t) defines a Cox process with intensity A(t). The survival probability function

under the Cox process is:

Set) =per > t) =1- F(t) =E[exp (-£ A(U)du)]

The Credit default swap is one of the most important instruments in the credit

derivative market. A CDS is a bilateral contract through which two counterparties can

trade the default risk of particular reference entity. Under a CDS contract, the protection

buyer pays a premium until the maturity time, or the reference default time if it happens

before the maturity. When a credit event triggered, the protection seller either takes
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delivery of a bond for the par value or pays the protection buyer the difference between

the par value and the recovery value of the bond.

Given the model in the last section, we can model the default time by specify the

hazard rate function. One of the common methods adopted for estimating A(t) is

inferring it from the market CDS quotes. The basic idea is to derive the implied default

probability from a CDS with one maturity time, and then use this risk neutral probability

estimate to value other derivatives based on same reference. Here, we are not

concentrating on the estimation part; instead, we illustrate the pricing mechanism.

We can define the premium and default leg for a CDS. Assume constant risk-free

interest rate and the premium is paid continuously. When default happens, the protection

seller pays the protection buyer the difference between the par value and the recovery

value of the bond. The recovery rate, which is the residual value of the bond when

default happens, is assumed to be R. Then value of the premium leg is:

[ ( ] [( -1 A
(U)du ]PL = E s.b S(t)B(O,t)dt = E s.b e e-rtdt

where s is the continuous premium that the protection buyer pays until the minimum of

maturity time and the default time. r is the risk-free interest rate. B(O,t) is the discount

factor which discounts value from time t to present, and the expectation is over A paths

under the risk neutral probability distribution. Value of the default leg is:
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Here !(t) is the probability density of default time. The fair price (spread) s' of CDS is

defined as:

s' ~PL(s')-DL(s')=O
[

rT (-£ A(U)dU) ]
E .b (1- R)A(t)e e-rldt

and we obtain: s' = [ ]( -£ A(u)du -rId
E.be e t

From above formula, we can see the spread depends on both the recovery rate

R and the default probability through the A(t). Therefore, assuming some empirical

estimate of the value ofR , it is possible to calibrate the hazard rate function from the

CDS spreads with different maturities.
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3 Dependence and Copula Functions

Specifying a default time distribution for individual credit is often straightforward.

But deciding what dependencies should exist in a portfolio of credits may not be.

Modeling dependence between default events is one of the major components in credit

risk modeling. The most obvious reason is that dependence affects the loss distribution

of the portfolio. Using either empirical data or current market data, we can derive the

marginal distribution of survival time for each individual credit in portfolio. If credits in

the portfolio are independent, we can study the loss distribution without further modeling.

However, realistically, when the economy is booming, the default rates tend to be lower.

When the economy is in a recession, default rates tend to be higher and bonds tend to

default together. It implies that the default events should depend on some common

macroeconomic factors; in other words, there exist some positive relationships among

those default events. Therefore it is reasonable to incorporate positive correlations in our

modeling.

It can be difficult to actually generate random variables with dependence relation

when they have distributions not from a standard multivariate distribution. Further, some

of the standard multivariate distributions can model only very limited types of

dependence. In this paper, we used the copula function approach to model the

dependence relationships among portfolio of bonds.
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i

In the context of credit risk modeling, copula functions are mainly used for creating

families of multivariate distributions with given marginal distributions.

Briefly, a d -dimensional copula is a distribution function on [0,1rwith standard

uniform marginal distributions. The following theorem stated in Galiani (2003)

constitutes the most relevant result in a copula framework.

Sklar's Theorem: Let G be an n -dimensional distribution function with marginal

Distribution functions F;" F2 , •• " Fn • Then there exists an n -dimensional copula C such

that for x E lR n we have

Moreover, if F;,F2 , ••"Fn are continuous, then C is unique.

Sklar's theorem describes how the marginal distributions are tied together in the

joint distribution. In another word, the joint distribution can be decomposed into

marginal and the copula. Given we can estimate the marginal, the dependence structure

can be captured by the copula.

Here, we introduce two common copulas used in the later simulations from the

elliptical family.

Multivariate Gaussian copula

Let L be a symmetric, positive definite matrix with diagonal elements equal to
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one and let ¢Jr. be the standardized multivariate normal distribution function with

correlation matrix L .Then the multivariate Gaussian copula is defined as

where the (p-I(U) denotes the inverse of the normal cumulative distribution

function.

Figure 1 shows the scatter plots of simulated standard uniform random values for

various levels of rho with Gaussian copulas.

Multivariate Student's t copula

Let L be a symmetric, positive definite matrix with diagonal elements equal to

one and let Ty;,v be the standardized multivariate Student's t distribution with

correlation matrix L and v degree of freedom. Then the multivariate Student's t

copula is defined as

where (I (u) denotes the inverse of the Student's cumulative distribution function.

Figure 2 shows the scatter plots of simulated uniform random values with the

Gaussian and t copula functions. Under the same rho value, we can see that the t

copula have more extreme co-movements than the Gaussian copula.

t. n '

The concept of tail dependence measures the amount of dependence in the tail of

joint distribution. It turn out that the tail dependence between two variables is a copula
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property. Then the amount of tail dependence is invariant under strictly increasing

transformations of variables.

From Mashal, R. and M. Naldi (2001), the upper tail dependence coefficient of

X and Y is defined as:

()u = LimP(Y > G-1(Jl) IX > F-I(Jl))
,U--c>1

provided that the limit of ()u E [0,1] exists, where X and Yare random variables with

continuous distributions functions F and G respectively.

If()u E (0,1], then X and Yare said to be asymptotically dependent in the upper

tail; if ()u =0, X and Yare said to be asymptotically independent in the upper tail.

Then From Embrechts (2001), we can write tail dependence for the Gaussian

copula c~a over [0, Itwith correlation LIZ = pas:

()u =2lim(1- <t>(x~l-p / ~1 +P )).
x--c>oo

Thus the Gaussian copula gives asymptotic independence when p < 1. Regardless of how

high a correlation we choose, if we go far enough to the tail, extreme events will occur

independently. However, the t distribution provides an interesting contrast. The tail

dependence for the bivariate tV,L copula with correlation p can be shown to be:

() =2[1- (J;+ihJi
u tV

+
1 ~l + P j

11



Here v is the degrees of freedom. The above formula indicates that for random variables

that linked by a t copula we can expect joint extreme movements to occur with non­

negligible probability even when the correlation is small. For example, given

v =4 and p = 0.5, we have ()u =0.25. Moreover, even ifp = 0 , we still have ()u =0.08.

The strength of this dependence increases as v decreases and the marginal distribution

become heavier-tailed. This is also one of the fundamental differences between the t and

Gaussian dependence structure.
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4 Baskct C"cdit Dcrivativcs

" i
,;,. ~ ..

We will use the following notation in both CDS and CDOs pricing:

• N is the number of reference entities included in the collateral pool.

• Ai is the notional amount of the i - th reference obligation.

• M is the total notional amount, which is the summation of the notional amounts of all

credits in the reference portfolio.

• Ri is the recovery rate of the i - th reference obligation.

• T is the maturity of the contract.

• T(k) is the k - th default time for reference portfolio.

• D(O,t)is the risk-free discount factor.

• S is the fair spread of the basket swap contract, expressed as a percentage of M ,to

be paid by the protection seller until either Tor T(k) < T in case of payout.

• Li is the loss for i - th reference entity, and equal to Ai (1- R) .

The fair market price of the k - th to default basket swaps is calculated by equating

the expected value of the loss leg and the expected value of premium leg under the risk

neutral distribution. Formally, we can define 0k)(t) = P(T(k) :S t) the distribution

function of the k - th default time. With homogenous notional amounts A , the value of

loss leg can be shown to equal:

TL = E* [r A(1- R)~k)(t)D(O,t)dt]

13



Assuming continuous payment until the earlier of k - th default time and maturity date,

the premium leg can be shown to equal:

PL =E* [SMr(1- 0k/t))D(0,t)dt ]

Hence, the fair price of the k - th to default basket swaps is the spread S* such that

the loss leg equal to the premium leg and can be written as:

S* = E* [rA(1- R)J;k) (t)D(O,t)dt ]

E* [ M r(1- 0k)(t))D(0,t)dt ]

,;

The framework for pricing k - th to default basket swaps can be extended to price

the reference pool with more individual credits. Collateralized debt obligations are an

important class of portfolio product. They normally contain more than 100 credits.

Considering a CDO with N obligors, credit i has nominal amounts A; ,recovery

rates R;. The maturity time is T years and interest rate is assumed to be constant. We use

the random variable Q; (t) = l{r;<t} as default indicator at time t for the i -th obligor.

The accumulated loss in the portfolio can be shown to be:

N

L(t) = I L;Q;(t).
i=l

The loss distribution for each tranche depends on the structure of the CDO. Ifwe

use Y and A to denote the lower and upper bound of a given tranche, the equity tranche

14



will have a y=o and the senior tranche will have a A =L::l Ai' The cumulative loss on a

given tranche will be zero if L(t) is less than Y, equal to L(t) - Y ifY:-::::; L(t) :-::::; A, and

A - Y if L(t) 2 A. Then, we can write the general loss function for any given tranches as:

L(t)Y,A =[L(t) - Y]l{Y~L(t)<A} + (A - Y)l{L(t)~A}'

Assuming the default payment is made at the maturity time, the fair price of each

tranche can be defined as the ratio of the expected accumulated default payment for that

tranche to the maximum possible payment, which is the tranche notional amount.

In this paper we use a Monte Carlo procedure to calculate the tranche prices. In

the simulation, the ratios of loss to tranche notional are computed for every scenario

individually, and the price ofCDO tranches is estimated by the average of the present

values. Under a Gaussian copula, the pricing of the CDO tranches with the Monte Carlo

method is accomplished by the following steps:

Step 1: Simulate the mi correlated N(O, 1) random variables, i = 1, ... , N .

Step 2: Transform to uniform variables Vi =<!> (m i ) where <!> is the cumulative normal

distribution function.

Step3: Transform to exponential default times for each credit: 'i =-1:Vi

Step 4: From the simulated default times, compute the loss at maturity time T for each

tranche as: L(T)Y,A = [L(T) - Y]l{Y~L(T)<A} + (A - Y)l{L(T)~A}'

15



Step 5: Repeat steps above until the required number of scenarios m have been simulated.

The estimator of expected loss at maturity can be computed as the average of all

1 m
scenarios: E [ L(T) Y,A ] =- I L(T)[,A.

mbl

Step 6: Discount the tranche notional amounts and expected losses at maturity. The

tranche price per dollar of notional can be computed as the ratio of the present value of

expected tranche loss to tranche notional value.
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5 Numerical Example of a Synthetic CDC)

In financial markets, the collateralized debt obligations are a type of structured

asset-backed products. CDOs have exposure to a portfolio of fixed income assets and

they divide the risk among different tranches: senior, mezzanine, and equity. Losses are

applied in reverse order of seniority. The equity tranche offers a higher return, assuming

no defaults, to compensate for the additional risk.

Cash CDO vehicle actually purchase a reference portfolio of corporate bonds or

loans. In contrast, a synthetic CDO is an instrument where the underlying collateral is a

set of credit default swaps (CDS). Furthermore, synthetic CDOs can be funded or

unfunded, depending on whether the tranche investors are required to fund their credit

exposures at origination. The risk of loss on the reference portfolio is divided into

tranches of increasing seniority. Losses first affect the equity tranche, next the mezzanine

tranche, and finally the senior tranche. CDO investors take credit risk on different

tranches by taking the protection seller position on the reference portfolio via single­

name credit default swaps. The protection buyers from the CDS are essentially the

"sellers" of credit risk to the CDO investors, with the CDO issuer as the intermediary.

To illustrate the risk of the CDO tranches, we consider an example of a hypothetical

$1 billion synthetic CDO with three tranches. The equity tranche bears the first $30

million of losses, the mezzanine tranche bears the next $70 million, and the senior

tranche bears any losses above $100 million. In this example, all the three tranches are

unfunded. There are 100 credits in the reference portfolio. All have the following base

case characteristics:

17



• Individual CDS credit spread: 100 basis points

• Individual notional amount: 50% 5 million and 50% 15 million

• Recovery rate: mean of 40%

• Default time correlation: 20%

• Interest rate: 5% (constant)

Risk of synthetic CDO tranches are subject to mark-to-market movements as well

as the defaults over time. For example, if someone holds a long position on the

mezzanine tranche, an increase in the credit spread of an individual credit may cause a

loss as the expected loss of the portfolio has increased. An increase in the correlation in

the underlying credit may also change the value of mezzanine tranche. Consequently,

understanding of the sensitivities to those risk factors is the key element in the risk

management of CDO tranches.

Figures 3-5 show the price surfaces of the three tranches with different

assumptions on the credit spreads and correlations. In the example, we use the ratio of

expected value of the default payment and the maximum possible payment of each

tranche to describe the 'price' of the CDO tranches. The figures show that there are

different relationships between correlations and the CDO tranche prices. For the equity

tranche, there is a negative relationship between the correlations and tranche prices, while

the opposite relationship can be found in the senior tranche. For the Mezzanine tranche,

the relationship is ambiguous. In the later section, we will examine the dependence of

the mezzanine price on the tranche structure in details. With regard to the credit spread,

all of the three tranche prices increase with the portfolio-wide credit spread.

18



One of the most important factors that drive the risk of synthetic CDO is the credit

quality of the underlying reference portfolio. Given the credit spread reflects the market

perceptions on the creditworthiness of the company; the wider the spread the greater is

the risk of default. However, the risk depends not only on the level of the spread but also

on the sensitivity to changes the credit spread.

To measure the sensitivity of the price to the spread, we use the ratio of the change

of the tranche price per basis point shift in the CDS spread.

Figure 6 presents a measure that shows the impact of increasing one individual

credit spread on the value of tranches. The figure shows that for the different tranches

levels, the sensitivity is higher for the tranche with the lower subordination. This implies

that the equity tranche is much more sensitive to individual spread movements than the

mezzanine and senior tranches.

Furthermore, the sensitivity also depends on the credit quality of the reference

entity. This allows us to identify which credit is riskier than another in the portfolio.

In addition to individual credit risk, we also look at systematic risk. Figure 7

displays the price change of the CDO tranches per basis point increase in spread of all

credits in the reference portfolio. The sensitivity is highest for the equity tranche when

the systematic spread is low. However, the differences in the sensitivity shrink as

systematic spread increases. The mezzanine tranche is more sensitive than the equity

tranche once the systematic spread exceeds 0.25. In the extreme, the senior tranche is the

riskiest since the equity and mezzanine tranches will almost be wiped out. Any further

increase in the spread will not influence the tranche price.
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Although the change of in tranche price with respect to credit spread is a good

measure for the sensitivity ofa CDO tranche, it is inadequate if we want to hedge against

the movements in the CDS spread. We define the tranche delta for a specific underlying

credit as the ratio of the price change of the CDO tranche per one basis point rise in that

credit's CDS spread to the change in the value of the CDS for the same credit and term to

maturity. This tells us the notional amount of single name CDS we would have to

purchase to hedge against fluctuations in that name's spread.

We examine the relations between the tranche delta and the following factors:

• The credit spread of the underlying credit

• Tranche structure

• Time to maturity

As shown above, the equity tranche is the riskiest. This implies we need a higher

notional amount of CDS to hedge the tranche against individual spread movements. We

assume the spread movement is from a CDS with notional amount of fifteen million and

with other assumptions as in the base case.

Changes in subordination level change the tranche loss distributions as well as their

risk profiles. To see the dependency of price on subordination level, we choose the

mezzanine tranche as an example. Figure 9 shows that the mezzanine delta decreases as

subordination increases. This is an intuitive result. A mezzanine tranche with less

subordination is more vulnerable to default as there is less protection. Furthermore,
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Figure 10 shows that the width of the tranche also matters. A wider tranche means a less

sensitivity of the mezzanine tranche value to changes in the underlying credit spread.

: ; ,; r

As maturity time decreases, the tranche deltas also change. Figure 11 shows that

the equity tranche becomes riskier compared to the other tranches as there is less time for

defaults to hit the mezzanine or senior tranches. In the extreme case, when the maturity

time approaches zero, the senior and mezzanine tranche deltas converge to zero because

of the negligible of being hit by defaults.

Tranche deltas are also influenced by the underlying default correlations. As the

correlation increases, the underlying credits tend to default together; risk is shifted from

the equity tranche to higher subordination tranches. So the senior tranche delta increases

and the equity tranche delta decreases. In a later section, this property is illustrated in

with different measurement.

Another factor affecting the tranche prices is the correlation of underlying credits.

A synthetic CDO is a portfolio product, which means that the loss distribution depends

on the correlation of the underlying reference pool. Figure 12 shows how the values of

the three tranches vary with the correlations among the credits in the reference portfolio.

In the figure, we vary the correlation from 0 to 1.
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The effect of correlation on the eno tranches is clear. Assuming no recovery,

correlation one implies that the three tranches will all be wiped out together whenever

anyone of the credits defaults. Thus the senior tranche should have the same 'price' as

the mezzanine and equity tranches under perfect correlation. As correlation decreases,

the price of the senior decreases and vice versa for the equity. The mezzanine tranche is

less sensitive to correlation, but the exact relation depends on the eno structure.
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6 Effect of Copula Choice

As Embrechts (2001) shows, there are many pitfalls to the normality assumption.

The main pitfall that we are concerned with is the small probability of extreme joint

events. Alternative dependence models have been proposed in the literature; the Clayton,

Frank, Gumbel and t are the most notable. Mashal and Zeevi (2003) compares the

different copulas above in the context of modeling joint financial returns behavior. In a

formal statistical test, they find the t copula provides a better fit than others. Dobri6

(2005) finds similar results using a chi-square test. In this section, we generalize the

commonly used Gaussian copula to the t copula. The t dependence structure puts more

probability mass on joint extreme events. This might be manifest in the events of recent

credit market crisis.

In our simulation study, we first examine the portfolio loss distribution by varying

portfolio size, portfolio-wide credit spread and degrees of freedom v of the t copula. At

the same time, the covariance matrix for the copula is kept fixed as ~' changes. There

are three groups of increases in the credit spread, which we label A, Band C. N

represents the portfolio size. All the results are from 100 thousand scenarios.

Table 6.1 Quantile of Portfolio Loss Distribution

N Group QCSE Qc 55

to" = ct.:, , = ~O " = 3 ,'= ~, " = 20 " = 3
10 A :) = 0.01) 27.5846 27.5733 30.8549 45.1517 44.6827 59.8645

10 B ;). = 0,05) 64.9501 64.6886 68.7832 88.1165 88.0458 93.2451

10 C (tl = 0,07) 76.1707 76.1557 78.1776 98.4072 98.4074 99.6238

100 A (I, = 0.01) 16.5336 16.9090 25.2218 26.9236 27.5344 46.9878

100 B :) = 0.05) 50.4477 50.9046 55.9205 64.6973 65.3064 72.4350

100 C :) = 0,07) 60.6667 60.6252 63.6878 74.7410 74.2988 78.1421
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From the simulation, it is not difficult to see that the expected portfolio loss is

very close to the summation of the individual expected loss. However, the more

interesting point here is the high quantiles of the loss distribution, which give a better

indication of the extreme risk in the model. We record the 95 and 99 percent quantiles

of the loss distribution measured as a percentage of the total notional amount. Here, we

can clearly see that :} has a massive influence on these risk measures, especially for

groups with larger portfolio sizes which we can assume to be well diversified. If we only

specify the copula and do not fix the degrees of freedom, the risk measure is subject to

huge model risk.

Table 6.2 Quantile of Tranche Loss Distribution

QCEC QCSE [-lean

i' = 3 i' = 20 r = cr::, i' =3 r =20 r =0-:' i' =3 i' =':0 L' = C(I

AE 15.3534 86.9927 99.2239 100 100 100 42.1217 61.605766.3601
BE 100 100 100 100 100 100 81.6158 91.152892.7123
CE 100 100 100 100 100 100 94.8954 97.527497.8763
AM 0 0 0 100 100 100 22.6364 27.2673 28.3986
BM 83.8126 100 100 100 100 100 58.6995 67.918970.0697
CM 100 100 100 100 100 100 80.9591 86.219887.1742
AS 0 0 0 16.9312 8.9023 7.1712 2.2833 1.2257 0.9773
BS 0 0.8715 1.2534 38.9326 30.9831 29.6014 8.1920 7.1560 6.9213
CS 9.2122 10.1687 10.4434 51.1123 45.7978 44.8665 15.0697 14.6078 14.5244
Note: The table gives both the mean and quantiles for the three tranches; the portfolio
size is 100; A, B, C represent three groups of credit quality in Table 1; AE represent
equity tranche from group A.

Table 6.2 shows the tranche loss distribution under the Gaussian and t copulas.

The results show the significant impact of dependence structure on the loss distributions

across tranches. Given the same credit spreads, the expected losses are clearly

redistributed from the equity tranche to senior tranche as the degree of freedom ~}

decreases. In the case of extreme co-movement, the Gaussian assumption may
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underestimate the fair compensation for senior tranche investors and overestimate the fair

value for the equity tranche holders. Furthermore, the Gaussian copula risk assessments

seem to be more optimistic for the senior tranche. This is one of the criticisms of many

senior tranches being assigned high investment grades, since they have turned out to be

much riskier than similarly rated corporate bonds. Table 6.2 also shows that the risk

measure doubles in some of senior tranches when a t copula is used with low degrees of

freedom compared to the Gaussian.

Figure 13 plots the tranche deltas under the Gaussian and t copulas. It reveals

that we need a higher hedge ratio for the equity tranche and a lower ratio for the

mezzanine tranche under the t copula dependence structure.
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7 Conclusion

To sum up, this paper presents a simulation-based methodology for multi-name

credit derivatives. It is shows how CDOs and the other basket credit derivatives can be

valued in the copula framework. We assess how different factors, such as credit quality,

correlation and tranche structure affect tranche risks. As expected, the equity tranche is

the riskiest under 'normal' conditions. When correlation increases, risk shift from the

equity tranche to the senior tranche. The effect of correlation on the mezzanine tranche is

ambiguous in our study. The risk profiles of the tranches also depend on tranche

structure and the maturity time. To accommodate the heavy tail effect, the t copula is

chosen. Compared with the Gaussian copula, the equity tranche prices are lower and

senior tranche prices are higher. Considering the recent credit market meltdown, we

conclude that risk assessment using the t copula may be more appropriate. Future

research should focus on model testing and calibration using time series and market price

data.
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Appendices

IP'H II II

Figure 1: 500 simulated random variables under Gaussian copula with different rho
values
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Figure 2: 500 simulated random variables under Gaussian and t copula
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Figure 3: Equity CDO tranche price with Gaussian copula
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Figure 4: Mezzanine eno tranche price with Gaussian copula
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Figure 5: Senior CDO tranche price with Gaussian copula
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Figure 7
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Figure 8
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Figure 9
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Figure 11

Delta Dependence on Maturity Time
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Figure 11

Effect of Copula Selection on Tranche Delta
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pp ndi B: PI'o~rammin(J ( oel .

II l) () t) () (), fJ 0 0 0 () () l) () 0 o· I) {J II 0 (I I) t) 0 l) l) n I). 0 II (J II II II U l) l) (I 0 II () () II
() 'j) () f) () {) 0 () (J () l) () (I 0 I) () II {} II I) 0 " [) 0 () tI n () () (1 It l) II " 0 Cl Il II () II () 0 (I

Codc ror tranchc WILTS alll] -.tandard dc\ iatiolls undcr t coplll,1
(I 0 0 " II tl, 4) 0 (J (J II (l I) () () 0 n, " f), II 0 (J () () II () () I) 0 II () 0 () (J 0 II () 0 0 (I II 0 II

II () () tl II '0 (l I) 0 () () () fJ II () () () 0 '(I 0 () II () () II fl 0 0 () () 0 '0 0 0 0 (l II 0 l) (I (J 0 ()

f=50;
s=50;

""crcat ,I \ ector cont,lin the notional ,lmOUllt or the bOlld" ill the cd\)
for m=l:f

notiv(m, 1)=5000000;
end
for n=f+1:f+s

notiv(n, 1)=15000000;
end

N=100000;""Sampk "i/e \\e l1eed to gCl1erate
M=f+s; ",,;\lumber or r,lI1doll1 \,lriabk" \\ e lleed to gl'ller,llL

"" COil !<let 11,1 r,unctcr
r=0.05; () "ri"k ,'rce inlLrco.,t rat
total_notional=f*5OOOOOO+s* 15000000;
tmatcdo=5 ;

"oillitial \ aillc in "lmlliation
tloss=zeros(N, 1);
actpayment_senior=zeros(N, 1);
actpayment_mezzanine=zeros(N, 1);
actpayment_equity=zeros(N, 1);

() IIp,lr;1I11C1Cl's It)1' cdo
percent_equity=O.I;
percent mezzanine=O.3;
percent_senior= I-percent_equity-percent_mezzanine;
deductible_senior=(percent_equity+percent_mezzanine)*total_notional;
deductible_mezzanine=percent_equity*total_notional;
totalnotion_mezzanine=percent_mezzanine*total_notional;
maxpayment_equity=deductible_mezzanine*exp(-r*tmatcdo);
maxpayment_mezzanine=totalnotion_mezzanine*exp(-r*tmatcdo);
maxpayment_senior=(percent_senior*total_notional)*exp(-r*tmatcdo);
disc= 1OO*exp(-r*tmatcdo);
disc_std=(1 OO*exp(-r*tmatcdo))/sqrt(N);

Dof=3;
lamda=O;
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corJho=O;
maxrho=l;
maxlam=.I;
k=12;
y=6;
cor_step=maxrho/(y-l);
lam_step=maxlam/(k-2);

for z=l:y °oll1dc.\ It.)r cnrrclatiol1
cor_rho=(z-I)*cor_step-.OOOOOOOOI ;

for s=l:k °oindc It.))" dclault rate

ifs==k;
lamda=l;

else
lamda=(s-1 )*lam_step+.000000001 ;

end

rho=corJho*ones(M);

for i=I:M
rho(i,i)=I;

end

rho =((Dof-2)/Dof)*rho;
x = mvtrnd(rho, Dof, N/2);
u = tcdf(x,Dof);

Tao 1=-log( l-u)/lamda;
Tao=-log(u)/Iamda; "0 thc dcl:llIll lil1lL'''>
Tao=[Tao;Taol];Oocoll1bil1c thc t\\O tkl;llIlt till1c:-.

for i=l:N
forj=1 :M

if Tao(i,j)<=tmatcdo;
indicator( 1,j)= 1;

else
indicator(l J)=O;

end
end

tloss(i, 1)=indicator*(notiv);
indicator=zeros( I,M);

actpayment_equity(i, 1)=min(deductible_mezzanine,tloss(i, 1));
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if tloss(i, 1»deductible_mezzanine;

actpayment_mezzanine(i, 1)=min(totalnotion_mezzanine,tloss(i, 1)­
deductible_mezzanine);

else
actpayment_mezzanine(i, I )=0;

end

actpayment_senior(i, I)=max(O,tloss(i, 1)-deductible_senior);

end

Premium_equity(s,z)=disc*mean(actpayment_equity)/maxpayment_equity;
Premium_mezzanine(s,z)=disc*mean(actpayment_mezzanine)/maxpayment_mezzanine;
Premium_senior(s,z)=disc*mean(actpayment_senior)/maxpayment_senior;

Premium_equity_std(s,z)=disc_std*std(actpayment_equity)/maxpayment_equity;
Premium_mezzanine_std(S,z)=disc_std*std(actpayment_mezzanine)/maxpayment_mezza
nll1e;
Premium_senior_std(s,z)=disc_std*std(actpayment_senior)/maxpayment_senior;

end
end

11IIOUlpUl

Premium_equity
Premium mezzanine
Premium senior

Premium_equity_std
Premium mezzanine std
Premium senior std
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() II l) 0 f) () (I (I, (I {J 0 0, (l, II 0 () () 0 () () (J 0 {) n t) () () 0 0 II (I II (I, {J 0 (). II U tI {J (j. (I II
Ij () () '(; II '0 () () () Ii t) (I 0 0 () (l (lot) f) n (I 0 (I l) () () (I II (l I) () (l (I () (J l) () (l II II 0 0

Code for tranche delw and indi\'idll~l! credit spre~ld 1llmel1lent
u n (l II 01 j). l) () () (I 0 () I) 0 (1,0 (I l),O 0 II 0 j) () 0 (I () 0 (I, cl 0 () () 0 () () 11 0 0 0 n tl lJ

01 II II (J 0 () (I () '0 'I} 0 '() II II (l 'f) 0 '(I '0 n fl '(J I) 0 0 It II I} f} () '0 II 00 'I) (l II () () II () II (I

f=50;
g=50;

ooueat;\ \ ectm con[;lill the notillll,l! ~1I110LJllt 01' the bond" ill the cdo
for m=l:f

notiv(m, 1)=15000000;
end
for n=f+ 1:f+g

notiv(n, 1)=5000000;
end

N=1000;ooSamplc "I/e \\ e need [0 generalc ror each :;lIb rUIl
M=f+g; 0 "t\'umber or random \ ari;lblcs \\e need to generalc
P=1000; "0\ lU1llber or iteration I'm the. 'b) \ 1 nwtri\
SS=N*P; "oTowi ~alllpk "i/e

00 cnnt,lct para1llelcr
r=0.05; II ori"k rrec Interl'"t r<lte
total_notional=5000000*f+ 15000000*g;
tmatcdo=5;

oop,lr;lI111:ter" 1'01' cdo
percent_equity=.03;
percent_mezzanine=.07;
percent senior=.9;
deductible_senior=(percent_equity+percent_mezzanine)*total_notional;
totalnotion_mezzanine=percent_mezzanine*total_notional;
deductible_mezzanine=percent_equity*total_notional;
maxpayment_equity=deductible_mezzanine*exp(-r*tmatcdo);
maxpayment_mezzanine=percent_mezzanine*total_notional*exp(-r*tmatcdo);
maxpayment_senior=percent_senior*total_notional *exp(-r*tmatcdo);
disc= 1OO*exp(-r*tmatcdo);
disc_std=(1 OO*exp(-r*tmatcdo))/sqrt(SS);

II opar;lI11c1ers ror "il1llllalion Il)OP
k=2;
y=6;
Dof=3;
lamda=O.O 1;
lamda1 =0.005;
corJho=0.2;
maxlam=.1;
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lam_step=maxlam/(y-l);

°oinitial \ ,1IuL'-" ror -';llllulallon rL'-';lIlh
tloss=zeros(N, 1);
actpayment_senior=zeros( ,1);
actpayment_mezzanine=zeros(N, I);
actpayment_equity=zeros(N, 1);

Tactpayment_senior=zeros(N, 1);
Tactpayment_mezzanine=zeros(N, 1);
Tactpayment_equity=zeros(N, 1);

SQTactpayment_senior=zeros(N, 1);
SQTactpayment_mezzanine=zeros(N, 1);
SQTactpayment_equity=zeros(N,1);

Premium_equity=zeros(k,y);
Premium mezzanine=zeros(k,y);
Premium_senior=zeros(k,y);

Premium_equity_std=zeros(k,y);
Premium_mezzanine_std=zeros(k,y);
Premium_senior_std=zeros(k,y);

for z=l:y °olndc'\ I'or correlation

lamdal =(z-I)*lam_step+O.O 1;

lamdal=lamdal+O.005*(s-1); "olTL'l!lt -"pIGltllnl'lL'a"L' h! SO h""I" point...

cdsp(s,z)=O.6*(1-exp(-(r+lamda1)*tmatcdo»*(lamda 1/(r + lamda 1»;

rho=cor rho*ones(M);

for i=l:M
rho(i,i)=1;

end

for iter= 1:P

u = Gaussmd(rho,N/2,M);"o call ~all""lan ruction

Tao 1=-Iog( 1-u)/lamda;
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Tao=-Iog(u)/Iamda; "(I thc (kLllIlt limc:-­
Tao=[Tao;Taol];ll "coll1hille the t\\ 0 del:lLIlt time"
Tao(:, l)=(Tao(:, l)*lamda)/lamda 1;

"nT(\n j" <Ill I Ih\ f\1 lll:llri \ j~ the 1l11ll1ber 01' tr:lils I" the 1l11ll1hl'r 01' Ii rills \\ e "ill1l1l:ttl'

for i=l:N
forj=l :M

if Tao(i,j)<=tmatcdo;
indicator( 1,j)= 1;

else
indicator(1J)=O;

end
end

tloss(i, I)=(indicator.*(0.2+0.8*unifmd(0,1,1 ,M»)*(notiv);

actpayment_equity(i, I)=min(deductible_mezzanine,tloss(i, 1»;

if tloss(i, 1»deductible_mezzanine;

actpayment_mezzanine(i, I)=min(totalnotion_mezzanine,tloss(i, 1)­
deductible_mezzanine);

else
actpayment_mezzanine(i, 1)=0;

end

actpayment_senior(i, 1)=max(O,tloss(i, 1)-deductible_senior);

end

Tactpayment_senior=Tactpayment_senior+actpayment_senior;
Tactpayment_mezzanine=Tactpayment_mezzanine+actpayment_mezzanine;
Tactpayment_equity=Tactpayment_equity+actpayment_equity;

end

Premium_equity(s,z)=disc*mean(Tactpayment_equity)/(maxpayment_equity*P);
Premium_mezzanine(s,z)=disc*mean(Tactpayment_mezzanine)/(maxpayment_mezzanin
e*P);
Premium_senior(s,z)=disc*mean(Tactpayment_senior)/(maxpayment_senior*P);

Tactpayment_senior=zeros(N, 1);
Tactpayment_mezzanine=zeros(N, 1);
Tactpayment_equity=zeros( ,1);

end
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end

o ooutput
for i=l:y
equity(i, 1)=Premium_equity(2,i)-Premium_equity( 1,i);
mezzanine(i,l )=Premium_mezzanine(2,i)-Premium_mezzanine( 1,i);
senior(i, 1)=Premium senior(2,i)-Premium senior(1,i);

- -

cds(i, 1)=(cdsp(2,i)-cdsp(l ,i));
spread(i, l)=(i-l)*lam_step+O.O 1;
end

DT=exp(-r*tmatcdo);
equity_delta=(DTII OO)*equity.lcds;
mezzanine_delta=(DT/l OO)*mezzanine.lcds;
senior_delta=(DT/l OO)*senior./cds;
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