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Abstract 

Interference is a common problem for animals, and can be characterized as a competition 

for different types of resources such as food, mates or territory. In the case of multi-robot 

systems, similar problems arise. Many species have evolved aggressive displays as a more 

efficient alternative to physical combat to solve conflicts over resources. 

This thesis considers a transportation task in which a team of robots with no central- 

ized control frequently interfere with each other. This thesis describes two new, principled 

approaches to selecting an aggression level, based on a robot's investment in a task. The 

methods are economically rational. 

Simulation experiments in an office-type environment and a smaller-scale real world 

implementation show that under some special circumstances, the methods are able to sig- 

nificantly improve system performance compared to a similar competition with a random 

outcome. 



Reader's Summary 

Interference is a common problem for animals; it can be characterized as a competition 

for different types of resources such as food, mates or territory. In the case of multi-robot 

systems, similar problems arise; robots may compete for a charging station or use of a shared 

tool or sensor. 

A solution often seen in nature, when conflicts over resources arise, is fighting. But 

physical combat is potentially costly for the individual agents involved and to the overall 

system as robots may become damaged. Similar costs apply in nature, and many species 

have evolved aggressive displays as a more efficient alternative of physical combat to solve 

interference problems. 

Spatial interference can reduce the effectiveness of teams of mobile robots. A team 

of robots with no centralized control performing a transportation task, in which robots 

frequently interfere with each other, is examined. The robots must work in the same space, 

so territorial methods are not appropriate. In [57] it was shown that a stylized competition 

inspired by aggressive displays in various animal species can reduce interference and improve 

overall system performance. However, none of the methods previously devised for selecting 

a robot's 'aggression level' performed better than selecting aggression at random. 

In our methods, when robots come into competition for floor space, each selects an 

aggression level and the competition is resolved in favour of the more aggressive. This 

thesis describes two new, principled approaches to selecting an aggression level, based on a 

robot's investment in a task. 

Simulation experiments with teams of six robots in an office-type environment show that 

under some special circumstances, a global investment method that takes into account the 

effort the agent has put into finishing a task, is able to significantly improve system perfor- 

mance compared to a random competition. A second method based on the concept of local 



investment improves upon the first, by making the aggression level of a robot proportional 

to the time it has spent inside an area where spatial interference is likely. 

The local investment method is evaluated and shown to be effective in a real-world robot 

implementation. 

Finally, benefits and limitations of the methods proposed as well as future directions of 

research are discussed. 



Pam mi  gordis, 

. . y eran una sombra larga . . . " 



"I've seen things you people wouldn ' t  believe. 

Attack ships on fire o f f  the shoulder of  Orion. 

I watched C-beams glitter in the dark near Tannhauser gate. 

All those moments will be lost in time, like tears in rain. 

Time to die.. . " 

- Blade Runner, RIDLEY SCOTT, 1982 
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Chapter 1 

Introduction 

1.1 The Autonomy Lab 

The Autonomy Lab is part of the Computing Science department at  Simon Fraser University. 

Its goal is the increase of the autonomy (i.e. self-direction and self-maintenance) of robots 

and other machines. 

An overview of the principles and mission of the lab can be found at http: //autonomy. 

cs . sf u. ca/ and is included in this thesis as a frame of reference: 

"There are two main reasons to study autonomous machines: 

1. Scientific: an autonomous machine is a concrete test of hypotheses about 

mechanisms of intelligent behaviour. We come at this from two directions: 

a bottom-up approach examining the necessary and sufficient conditions for 

rational behaviour; and a topdown approach realizing and testing models 

of human and animal intelligence. 

2. Economic: by definition, autonomous machines can do more work than 

those which require human supervision. Autonomous robots could make 

society more efficient by enabling new kinds of industry, science and explo- 

ration. 

The acquisition and management of resources such as energy and space is a fun- 

damental, unavoidable task for all living things. From an ecological perspective, 
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intelligent behaviour can be seen as rational manipulation of resources. This 

observation underlies our approach to building autonomous systems" (331. 

1.2 The RAGE Project 

RAGE (Robot AGgression Experiments) is a project of the Autonomy Lab (h t tp :  //autonomy. 

c s  . s f u .  ca/projects/rage/) .  Its goal is to develop scalable techniques to reduce destruc- 

tive interference in groups of robots. 

RAGE makes use of aspects of animal behaviour that can be incorporated into multiple- 

robot experiments. Aggression displays are used by animals to signal and help in their 

conflict resolution over different resources like food, mates, or territory. In general aggression 

displays are evolved behaviours that enable animals to resolve conflicts while avoiding the 

costs of physical combat [40, 321. 

Previously [57] showed that a simple stylized competition can reduce interference in a 

multiple-robot transportation task. The resource for which the robots compete is work 

space, i.e. the right of way in a narrow corridor where only one robot can pass. The RAGE 

project extends this work to investigate economically rational strategies for deciding an 

individual's level of aggression such that the system-wide performance is increased [47]. 

1.3 Goal 

Animals, even the simplest ones, are examples of successful autonomous agents. Nowadays 

it is a principle accepted by the robotics community that the replication of animal behaviour 

can be a powerful tool for the development of adaptive, robust and autonomous robots. 

[57] showed that, through the use of a stylized competition inspired in animal fighting 

displays, a team of autonomous robots could reduce robot-terobot interference and thus 

achieve more work in a resource transportation task. It was found however, that none of 

the techniques used to select the level of aggression of a robot performed better than using 

randomly assigned aggression. 

Consider a person controlling a team of robots with a global picture of the environment 

and exact location of the robots. She would be able to decide which robot should win the 

fight when two of them encounter each other going in opposite directions inside an area in 

which conflict is likely. The person would choose to let one of the robots win the fight either 
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(i) because there was an advantage for the system reflected in time, work or energy or (ii) 

because the outcome of the fight looked irrelevant to the overall system performance. We 

can say that the decisions made by the person in control are rational because by measuring 

aspects of the environment-robot system, conflicts for space are handled so the performance 

is increased. Additionally, it is likely that in similar situations, the same decisions are taken. 

Humans, however, have better or at least different sensing capabilities than any robot. 

A non-rational method, like a random approach, could successfully handle conflicts in 

which there is no advantage for the system in one robot winning over the other. However, it 

would be incapable of dealing with the opposite situation and even more, of distinguishing 

between the two. We would like to have a team of robots that in a rational way can set their 

aggression using their sensing, without the need for communication or human assistance and 

that performs better than non-rational approaches. 

In summary the goals of this thesis are: 

Find a rational aggression mechanism that is decentralized, independent of a naviga- 

tion strategy, makes use only of existing sensors (sonar and laser), works in heteroge- 

neous robots systems and is simple to compute. 

Show that a rational aggression mechanism outperforms a random scheme in a team 

of robots. 

Show that the robots using the aggression mechanism are autonomous and do not 

require human intervention. 

Demonstrate that a stereotypical competition, inspired by animal behaviour, can be 

implemented in the real world. 

Show that the results obtained in simulation are carried to the real world. 

Show that a rational aggression mechanism is robust and performs well in different 

world configurations. 

1.4 Organization 

The use of aggression as a mechanism to solve spatial interference problems was first pro- 

posed and demonstrated by Vaughan et al. in [57]. It has been extended by Vaughan 



CHAPTER 1. INTRODUCTION 4 

and students at  the School of Computing Science at Simon Fraser University. The Project 

comprised three MSc students: Mauricio Zuluaga, Sara Brown, and Carl Zhang. 

The team worked together in [14] which is used in Section 3 of this thesis. Subsequently 

each student approached different extensions of the project that complemented each other 

and did not overlap. The central goal of the project was the demonstration of rational 

aggression mechanisms to increase the amount of work done by a team of robots working 

in the same space. This thesis describes the development of those ideas. 

1.5 Thesis outline 

Chapter 2: Biologically Inspired Robotics 

An historical introduction into the area of autonomous robots and the influence that biology 

has had in the design and construction of such robots is presented. Different robotics 

architectures are explained and related to the ideas of Maturana and Varela in the theory 

of autopoiesis. 

Finally the utility of aggression is discussed and evidence is given to show its benefits in 

the development of agents and autonomous robots. 

Chapter 3: Rational AGgression Experiments RAGE 

In [57] it was shown that a competition inspired by aggressive displays in various animal 

species can reduce interference and improve the performance of a system. When robots 

come into competition for space, each selects an 'aggression level' and the fight is solved in 

favour of the more aggressive robot. 

This chapter presents a novel concept of 'global investment' as a way of rationally se- 

lecting the level of aggression of a robot in a resource transportation task. 

Experiments done in simulation with teams of 6 robots in two different environments 

show the utility of the method. Robots using the global investment approach were able to 

complete more work than robots using random aggression. 

Advantages and problems of the proposed method are discussed. 
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Chapter 4: Local RAGE 

This chapter extends and improves upon the work presented in Chapter 3 on the use of 

stereotypical aggressive display behaviour to reduce interference in robot teams, thus im- 

proving their overall efficiency. 

A new method, 'local investment', for selecting the robot's aggression level is presented. 

The method performs better than any previous method and relies only on local sensor data. 

Experiments in simulation and in the real world confirm the advantages of the local 

investment method over other methods. The experiments also show the first real world 

implementation of a stereotypical aggressive display behaviour to reduce spatial interference. 

Adavantages and problems of the local investment method are discussed at  the end of 

the chapter. 

Chapter 5: Discussion and Future Work 

Several observations concerning the work in this thesis as well as directions of future research 

are presented. The following is a list of the most important ideas discused: 

0 The environment. 

0 The use of communication. 

Fights between different types of robots. 

0 A theory of mind (anticipation). 

Other forms of fight. 

0 A global fight. 

Territorial subdivision plus rational aggression. 

0 Evolution and the Theory of Games. 

Chapter 6: Conclusion 

The conclusion compares the goals to the results. It  is suggested that the hypotheses stated 

in Chapters 3 and 4 were supported by the results. Further, it is argued that aggression 

methods as a way to deal with interference problems can be used in the real world. 
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This thesis provides: 

1. An introduction into the area of biologically inspired robotics. 

2. Two different rational approaches to selecting the robot's aggression that 

make a team of robots complete more work in an environment where they 

have to share the working space. 

3. The best method found so far for setting the aggression of a robot. 

4. The first real world implementation of an aggressive display behaviour used 

in a resource transportation task. 

Suggestions of possible extensions to the work in this thesis are also presented. 



Chapter 2 

Biologically Inspired Robotics 

The first approach to artificial intelligence (hereafter AI),  in what is now called classical AI, 

is in general based on representations of the world through symbols that are nianipulated 

in some variant of logic or t8he predicate calculus. The use of classical A1 in robotics could 

be sum~narized into buildilig a model of the world and then using the model to prove or 

disprove some theories that later on are used to execute action con~mands. Sensory input 

is quickly forgott,en inside the A1 layers. For example, an image of an object in a caniera 

would be replaced by a symbol representing it. 

Shakey the robot [44] (Figure 2.1) is perhaps the most farnous robot built with a. classical 

A1 architecture. Shakey has been highly influential in the robotics community and nlany of 

the tools and theories created in the project are st'ill used in differelit areas of computing 

science, for example, the popular STRIPS planner [48]. 

- -=-FT?=- 
Figure 2.1: Shakey the robot [26]. Printed by permission of SRI Internat,ional @. 
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The world where Shakey lived was, however, extremely simple. It was made of simple 

polyhedra; the colours of the walls and objects as well as the illumination of the rooms were 

carefully chosen and controlled to enable cameras to process and detect them. Even with all 

these simplifications Shakey was not able to work in real time. The time elapsed between 

receiving an order, planning and execution was too long, in some cases 15 to 30 minutes. 

Shakey was therefore not robust for real world situations. It also suffered from the 

'Frame Problem' [18]: all the objects in Shakey's world had names, and planning was done 

in a model of the world which used those names. This way of proceeding proved to be 

not scalable at  all. There are just too many objects and situations in the real world to be 

named; in the case of Shakey, if acting in the real world, it would not know whether the 

climate in Bogota should be taken into consideration when deciding to move through an 

office door in a building in Vancouver, unless specifically told. 

The failure of classical A1 to provide robust and autonomous systems called for new 

research directions. These new ways would later be known as the new AI. The following 

sections present an introduction and description of these new ideas. 

2.1 Behaviour based Robotics 

The importance of the environment in the creation of autonomous robots is translated to a 

bottom-up approach in which, from the very beginning, robots are built and tested in the 

real world. In [17] Dennett asks "why not the whole iguana?", later on Brooks [13] starts 

talking about 'creatures'. 

Creatures will provide ways of dealing with the implications of the real world and, 

ultimately, provide a method of knowing more about ourselves. This is the starting point 

of 'New AI' [ll, 12, 131. Creatures have the following properties: (i) They exhibit different 

behaviours from simple to complex. (ii) They have a body and live in the real world. (iii) 

They have to cope in an appropriate and timely manner within the environment. (iv) They 

have multiple goals (search for food, mark territory). (v) They have a purpose (reproduction 

etc). (vi) They are also robust to the environment (small changes in the world should not 

lead to the collapse of the creature) [13]. 
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Figure 2.2: Classical Model (top) and The Subsumption Architecture (bottom) [ll]. Printed 
by permission of Rodney Brooks @. 
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Figure 2.3: Subsumption Module [ll]. Printed by permission of Rodney Brooks @. 
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2.2 Subsumption Architecture (SA) 

Brooks introduced the Subsumption Architecture in 1986 [ll], as an alternative to the 

classical A1 approach [44]. In classical A1 a robot controller consisted of vertical layers 

of functional units. The subsumption architecture is a bottom-up approach in which the 

controller is made of layers of task-achieving behaviours (Figure 2.2). One crucial difference 

of the architecture compared to classical A1 is that sensing and action were always available 

to any of the layers. Brooks proposed that one should start with the development and 

extensive testing of simple behaviours in the real world, and then start adding more complex 

ones. For example, a robot could have the following layers and behaviours: the first layer 

is obstacle avoidance, the second is wandering, the third is explore, the fourth is left wall 

following etc. 

Each of the task achieving behaviours is made out of subsumption modules (Figure 2.3). 

These modules are connected and can inhibit outputs or suppress inputs. For example, a 

wandering module would inhibit the outputs of an obstacle avoidance module in order to 

make the robot wander and not only stay still. 

Situatedness and embodiment are two of the characteristics stressed by the subsumption 

architecture. An agent is situated in the world and has a body. Intelligence is something 

that emerges from the robot's interactions with the environment. 

In particular, in 'Elephants Don't Play Chess' [12], Brooks asserts that intelligence 

is based on physical grounding, and mainly it is an emergent phenomena caused by the 

interaction and coexistence of more simple behaviours. Classical A1 has been searching for 

the language of thought. In general, this language of thought has been represented by some 

variant of the predicate calculus but one can only wonder what would be the language of 

thought in simple creatures like dogs and elephants or even bacteria. After all, many of 

their behaviours can be perceived as intelligent. 

Brooks robots, built with the subsumption architecture, were able to execute simple 

tasks in real time in the real world, without human assistance; something that the 'classical 

AI' school had not been able to achieve up to that point. Robots like 'Herbert' (121 showed 

that through the interaction of simple behaviours more complex ones could be obtained. 

Herbert stole empty soda cans from an office environment. Still, after almost two decades, 

SA has not been as extensible as promised and the emergence of intelligence is still something 

not seen. In particular, behaviours that require anticipation have not been dealt with by 
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Environment 

Figure 2.4: Coupling between Agent and Environment in DST [4]. Printed by permission 
of Randall Beer @. 

SA. Many researchers think that anticipatory or more complex behaviours require the use 

of representation and, therefore, the mix of classical A1 and new A1 approaches. They also 

say that SA is mainly good in the domain of reactive behaviours [30, 8, 22, 151. 

2.3 Dynamical Systems Theory (DST) 

Dynamical systems theory has its background in physics. Van Gelder presented a non- 

representational and non-computational account of cognition through the use of DST. He 

proposed that relations between agent and environment could be described as two coupled 

dynamical systems, described by a system of differential equations. In general, a dynamical 

system is described by a set of initial state variables and a dynamical law that says how 

those variables change through time [4]. 

Different robust and autonomous robots have been built using DST [7]. In DST, organ- 

isms and environment are the two parts of a dynamically coupled system (Figure 2.4). For 

example, when an insect lifts one of its legs, the other legs touching the ground feel more 

weight. Similarly to SA, embodiment and situatedness are of vital importance. 

Modeling of complex dynamical systems is extremely difficult with DST in the same 

way that it is in SA. Behaviour is supposed to arise out of the coupling of the dynamical 

systems, but complex behaviours have not been successfully demonstrated; in general, there 

is a tendency to include representational elements together with DST for the generation of 

more complex behaviours [30, 8, 22, 151. 
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In the next section there is a presentation of a biological theory where the ideas exposed 

by Brooks in the subsumption architecture and by Van Gelder with the dynamic coupling 

of systems can live; these ideas are valid even though biology was not the main concern in 

the development of both architectures. 

2.4 A Biological Theory of Living Organizations 

The term autopoiesis (self-production) was invented by Maturana and Varela [38, 39, 541. It 

came from an analysis of what is common to all living systems. Autopoiesis takes place when 

there is a circular organized network of interactions which maintains itself over extended 

periods, and which has a well defined border or membrane limiting the organization in space, 

and this border is also maintained by the organization. An autopoietic system is a network 

of component-producing processes in which the interaction of the processes generate the 

network itself, and also constitute the system as a differentiable entity in the space in which 

it exists. 

In [34] Maturana et al. showed how the retina of the frog's eye did not send a complete 

copy of the image to the brain. Instead, what was sent was only some specific features like 

moving dots (the frog's prey) and large shaded edges (predators). Behaviour and cognition 

are consequently aspects of the living organization. 

A fundamental property of an autopoietic system is operational closure, that defines the 

system as an entity that has no inputs or outputs. This property does not make the system 

independent of its environment, however, external events act only as perturbations that 

may trigger internal processes. The size of the internal changes caused by the perturbations 

depends only on the internal dynamics of the system. In [6], Beer presents a typical example 

of an autopoietic system, the cell: 

The paradigmatic example of autopoiesis is a cell, in which the components are 

molecules, the interactions are chemical reactions, and the cell membrane serves 

as a physical boundary that spatially localizes these reactions into an entity (or 

unity) distinguishable from its environment. 

Cognition in the autopoiesis theory is a biological phenomenon. It is an ability that 

results from a stmctural coupling (the history of interactions) of the organism and its envi- 

ronment. Cognition is also embodied in the organism and therefore cannot be transferred 
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from one to another. Cognitive domain is the actions that an agent can perform with- 

out ceasing to exist. For Maturana and Varela nervous systems are not a requirement for 

cognition. Any system capable of selectively interacting with its environment possesses a 

rudimentary cognitive domain, i.e. plants or cells. However, as discussed in [6), nervous 

systems enrich the cognitive domains of the animals that possess them by increasing the 

internal state that can be maintained, and thus the structural changes that can be handled. 

As a result, nervous systems expand the cognitive domain of an organism [30]. 

The autopoiesis theory does not forget about the environment in which an agent lives. 

The point is that the nervous system of the organism operates independently of the envi- 

ronment even when it is involved in a constant interaction with it. When the organism is 

perturbed by an environmental feature to which it is structurally congruent, the organism 

changes its dynamics in such a way that the perturbation is handled. To illustrate the 

difference between perturbations and inputs, the process of putting pressure in the throttle 

of a car does not set the car in motion. The foot's pressure perturbs the car in a way which 

causes it to move [30]. 

In summary, in autopoiesis theory, behaviour results from the interaction between an 

embodied system and the specific structure of the environment. The agent together with its 

environment become a single behavioural system. Behaviour, as such, will only be perceived 

by an external observer, and is invisible to the behaving system. 

2.5 Autonomous Agents Research: animats 

In the previous sections two different robot architectures, SA and DST, have been presented. 

The autopoiesis theory has been shown to be a possible biological ground where both archi- 

tectures could live. Next is a small introduction into Autonomous Agents Research, which 

can be considered as an extension of the previous architectures. The goal of autonomous 

agents research is the modeling and creation of animats. An animat is a complete animal-like 

system, modeled and created by artificial means. 

In [46] a summary of design principles for the development of animats is presented. The 

hypothetical creatures to be built are 'fungus eaters' whose mission is on a distant planet 

where no human intervention can be provided (Figure 2.5). They have to perform their 

tasks autonomously and maintain their energy supply. The animat approach is synthetic; 

"understanding by building". 
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Figure 2.5: A "Fungus Eater" ingesting fungus on a distant planet. It  has to perform its 
task autonomously while maintaining its energy supply[46]. Printed by permission of Rolf 
Pfeifer and the MIT Press (Book Title: "From Animals to Animats 4") 0. 

Principles for the design of animats, adapted from [46]: 

1. The "Complete System" principle: The agents are autonomous, self-sufficient, embod- 

ied and situated. 

2. The "Ecological Niche" principle: The designer should know in advance the task that 

the creature has to accomplish and the place where those tasks have to be done. An 

underwater garbage picking robot will be different from a terrestrial one. 

3. The "Parallel, loosely coupled Processes" principle: The agent's intelligence emerges 

from a large number of loosely coupled processes (for example as seen in the Subsump 

tion Architecture). There is no central unit deciding on what to do next. 

4. The "Value" principle: An autonomous and situated agent should have a way of 

evaluating what is good and bad for itself (the interpretation of value is only in the 

eyes of the designer, for the agent it is only about reflexes). 

5. The "Sensorimotor coordination" principle: Interaction with the environment is through 

sensorimotor coordination. Memory, classification and perception should be seen as 

coordination rather than individual modules. There is evidence that recognizing an 

object implies re-enacting a sensorimotor coordination [43]. 
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6. The "Ecological Balance" principle: There should be a match between sensors, actu- 

ators and the environment. Perception and Action mechanisms are tied and related 

to each other. 

7. Principle of "Cheap Design" : Cheap means having to capitalize on the system-environment 

interaction. (Compare a robot sheepdog that makes ducks sleep, then picks them up 

and moves them to a goal location vs. a sheepdog that manipulates ducks' behaviour 

to accomplish its goals [55]). 

These design principles are only propositions and not statements written in stone. Still 

they capture very important ideas about the way artificial creatures should be created. 

There are several objections to the principles that I would like to make: (i) Other 

architectures different than the subsumption architecture have proved to be equally powerful 

in the development of autonomous robots, for example, coupled dynamical systems [7]. (ii) 

Self-supervision and self-organization should not be strictly required in an agent; one could 

think of robots in which the goals are specific and everything is prewired so that learning 

is not necessary [57]. (iii) The sensorimotor coordination principle may not hold against 

social behaviours and emotions. 

2.6 The Study and Use of Animal Behaviour Pays Off 

The design of autonomous agents has proved to be quite hard to achieve. However, nature 

has a great variety ranging from bacteria to insects, to birds and humans. 

Biologists have studied animal behaviour for thousands of years. There is reason to 

believe that though nature's solution to most problems that animals have to face during 

their life time may not be the best way, it is nevertheless robust and adaptive [7]. Nature 

itself has not created wheels or propellers, which seem to be very useful devices, yet it has 

created many other powerful mechanisms that we are still trying to understand. 

Animals can interact with an incredible amount of different situations without collapsing 

or dying. In autopoietic terms, animals are able to handle a vast range of perturbations in 

an appropriate way, which means their cognitive domain is extensive. 

Simple beings like cockroaches outperform state-of-the-art robots at  navigation tasks, 

but recent robots built using animals as models have been successful at  dealing in robust 
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Figure 2.6: Lobster robot at  the Marine Science Center Northeastern Universit,y [37]. 
Printed by permission of the Office of Naval Research ONR @. 

ways with real problems. Some use 'bee' vision to navigate down corridors avoiding obst;t- 

cles. Other cricket-like robots can track down male crickets by their songs [58, 353. A robot. 

lobster can follow an underwater chemical gradient to its source [37] (Figure 2.6). 'Rover' 

the robot sheepdog is able to make a flock of ducks move to a desired location [%I. 
Studies of animals have also helped in the creation of computational models that. rrlay 

inherit the robustness and adaptability of their natural cousins. In [2], a computational 

model is created that miniics recent findings about head-direction neurons in t,he brains of 

rodents. These so-called 'place-neurons' are only active when the subject was located at  

certain specific places in the world. 

Vaughan [55] proved that it is possible t>o use computer sinlulations of animal behaviour 

(a  flock of ducks) and build robust robot, controllers that perform properly in t,he real world 

(sheepdog). More importantly he proved that animal behaviour can be rnanipulat,ed by a 

robot to achieve some goals (Figure 2.7). In simulation, only one behaviour of the ducks 

was present, the flocking behaviour. Vaughan called the simulated creatures ducklets to 

stress the difference between them and the real ducks. Ducklets did riot need t,o exhibit, all 

t,he complex behaviours that clucks have. Vaughan's approach had advantages in time, cost 

and animal welfare. The robot sheepdog project was also the confirmation of a model of 

flocking behaviour in animals and therefore of potential interest to biologists. In [28. 291 

Jakobi showed that it is possible to use simulation in the development of robust robot 

controllers. Though not in the same way as in [55], it still proves that simulation should 

not be discarded as a tool for the development of robust autonomous robots. This goes 

against some of the radical ideas stressed bay architectures like SA or DST related to the 

situatedness and embodinlent principles. 

Holland and Melhuish [25] showed one of the first real-world examples of enlergent 
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Figure 2.7: Sheepdog robot controlling and moving a flock of ducks to a goal location [ % I .  
Printed by pcrmissio~i of Richard Vaughan @. 
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Figure 2.8: Emergent sorting of disks by termite-like robots [25]. Printed by permissiorl of 
Owen Holland @. 

behaviour in a team of robots. They followed a biology inspired approach related t.o obser- 

vations on terniite building behaviour. The experiments showed how sorting appeared as 

an einergent behaviour of a group of termite-like robots (Figure 2.8). 

111 [7], Beer showed a biologically inspired approach to robot legged motion: a neural 

lietwork inodeling distributed gait control. Insects like ants can adopt new walking patterns 

when they loose one of their limbs. Beer's legged robots were able to deal with this tvpe of 

problems plus others found in rough terrain. Note that Beer's legged robots (Figure 2.9) are 

quite similar to the MIT legged robots (Figure 2.10) but they were built following different 

architectures. While the MIT robots used the subsumption architecture, Beer's robots fol- 

lowed a dynamical systems approach. The behaviours, robustness and adaptability of the 

robots was very similar. 

One recent concern in the robotics cornunity is social awareness. We do not only want, 

servants that do some of our boring daily t,asks, we also want company and the possibilit,y 

of social engagement. Our face is the most important organ of social conlmunicat,ion. Some 

muscle-skeletal models have beeu incorporated from human anatonly and artificial agents 

that can mimic the gestures we make have already been built. However, that is only half 

of the problem, we also need rob0t.s t.hat can react autonomously to our emotions and 

expressions. In [lo, 91 a robot that, conveys intentionally, 'Kismet', was developed using 

the subsumption architecture. Kismet exhibits infant-like responses through a motivation 

system consisting of drives and einot,ions (Figure 2.11). 
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Figure 2.9: Beer's insect like robots, and Neural Network that cont,rolls then1 171. Printed 
bv peri~iissiori of Randall Beer 0. 

Figl~re 2.10: Att,ila and Genghis, two of t8he insect-like robots a.t MIT [50. 511. Printed by 
permission of Rodney Brooks @. 
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Figure 2.11: Kismet and its emotional space [9]. Printed by permission of Cynthia L. 
Breazeal and the MIT Press (Book Title: "Designing Sociable Robots") @. 

All the examples presented here demonstrated biology as a source of knowledge for the 

design and development of adaptable and robust robots. It also works the other way around 

for biologists as a method for understanding how animals behave and interact. After all, 

robots provide a way to test ideas and to check if they result in the generation of behaviour 

[58, 55, 301. 

But why is it that the dream of affordable robots helping us in daily tasks like mail 

delivery or the delicate art of chopping vegtables are not here yet? Autonomous agents 

have proved to be hard to build. There are man.y reasons why this is the case. Below, I will 

enumerate the most important: 

The world has many constraints. 

0 Real life requires real time. A1 programs are often computationally intensive and 

therefore run slow on the current available hardware. 

Compared to even simple creatures like insects, current sensing devices are extremely 

poor. The vision system of a bee, or the sense of smell of a dog are capabilities as yet 

not replicated. We may have sophisticated machines that outperform a dog in finding 

some type of odour, but making them small, and able to recognize the incredible 

variety of odours that dogs can, has yet to be achieved. 

0 It is hard to create complex behaviours, especially emergent and anticipatory be- 

haviours. In the real world there are not many examples of robots that exhibit them. 
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The promises of complex and sophisticated behaviours arising from the interaction of 

very simple ones have not been fulfilled. 

The cost of sophisticated devices is prohibitive for mass production. 

Humans see the world through human sensors and not robot sensors. Because of this 

we are likely to incur design mistakes or just be incapable of understanding what is 

really going on. 

Nevertheless we are in fact starting to see robots helping in some simple tasks (Figure 

2.12). The best is yet to come. 

2.7 The Utility of Aggression 

The information presented in the previous sections shows that the use of animal behaviour 

as a model for the development of robust and autonomous systems is a good path to follow. 

As Beer says "it almost always pays off. While nature's way may not be the only way, or 

even necessarily the best way, time and again we have found unexpected benefits to paying 

close attention to the design of biological systems" [7]. 

In nature, many species have evolved aggressive behaviours useful for the resolution of 

conflicts over different resources (food, territory, mates, etc). Though physical fighting is one 

of the aggressive behaviours present in animals, its extremely high cost makes it a strategy 

of last resort. It is not worth fighting to the death for a sip of water, especially when it 

is almost guaranteed that water can be found somewhere else or at  the same location but 

a t  a different time. Fighting not only wastes a lot of energy but may be the last thing 

that an animal does. Because of this, many animals have evolved aggressive displays that 

allow them to solve conflicts in a safer way (Figure 2.13). A display allows an animal to 

signal information about its own state (health, strength, etc.) and to perceive the same 

information from an opponent. In this way, two animals in a conflict can measure some 

properties of the opponent and decide if it is worth fighting for the resource. The threat of 

escalation to a genuine fight is usually implied, if the display is not enough to resolve the 

conflict [40, 32, 31. 

The use of aggression in robotics has not been well studied. It has usually been used as a 

control parameter in evolution experiments. In [52] an evolution experiment with thousands 

of agents showed that the most successful ones were the most aggressive. In [20] it was found 
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Figure 2.13: Aggressive display showed by different species of aninlals [60]. Pictures by Ken 
Bondy and Bo Holmberg @. 

that the aggression of an agent had a direct impact on the way the agent evolved. While 

prey (non-aggressive) evolved noisy controllers that moved a t  random, predators (aggressive 

agents) evolved directional controllers to improve pursuit behaviour. 

In 1571, animal-inspired aggressive behaviour is proposed as a way of handling t,he real 

life problem of 'spatial interference'. In the experiments a t,eam of robots has t,o share a 

work area and complete a transportation task. An aggressive display mecha,nisnl in which 

the robots were able to signal their level of aggression to the other robots helped t,hem 

achieve nlorc work as a team. 

The use of aggression presented in 152, 201 is different from the one in [57]. While in the 

first case the experiments presented seem to be designed t80 understand the way nature and 

evolution work, in the second the wa,v nature works is already known and put to use for t'he 

benefit of a group of robots doing a resource transportation task. 

The use of economical models has also made an impact on the study of animal behaviour 

for a good number of years. In [59], a cost-benefit study into the economics of fleeing from 

predators is presented. The results support the theory that prey does not immediately flee 

from predators when detected, but that there are &her variables that affect the fleeing 

behaviour. Some of these include food availability, distance to a refuge, group size, sex. etc. 

In a similar study [19], it is shown how a worm can adjust hiding times in response tfo the 

avaiIability of food. When the worm is not hiding it can feed but its \dnerability increases. 
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In the experiments it was shown that the hiding times of the worms changed with food 

availability and that worms can track short-term changes in it. 

Conflict resolution, and consequently the use of aggression and fighting displays in ani- 

mals, has also been extensively studied. Maynard-Smith was one of the pioneers of the use 

of game theory in. the study of animal behaviour, especially fighting behaviours (401. One 

of his proposed models is called war of attrition. It is a model in which conflicts are settled 

without escalation with the winner being the agent willing to pay the most (via display) for 

the resource. In general there are three ways of settling a contest over a resource without 

the need of fighting [31]: 

1. By cooperation: Split the encounters. This may be used only when the contestants 

recognize each other and can keep track of their previous contests so that new ones 

can be split in a fair way. Unfortunately, this is not something that most animals 

can do, and even if possible, what if finding the same opponent again in the world is 

something unlikely? 

2. By asymmetry: In this case an asymmetry, normally detectable in the fighting display 

will determine who wins and who losses. If the display is not honest, i.e. either of the 

agents are not displaying their 'real' state, it is possible that one agent may call the 

other's bluff. It  is suggested that in this type of contest there has to be escalation, 

which, in the case of animals, means physical fight. 

3. Waiting game or war of attrition: In this case the conflicts are settled by immediate 

withdrawal or by non-escalated display contests (Doves strategy in [40]). In a waiting 

game, the agent willing to wait the longest wins. One example of war of attrition 

found in nature is the case of territorial contests in damselflies (Calopteryx maculata) 

1361. 

The capabilities of a robot plus the type of task or mission commissioned to it will 

define the conflict model to use. In conflicts solved by cooperation or waiting games the 

agents never fight, this is attractive because it guarantees the physical safety of the robots. 

Conflicts with asymmetries could be used but only if there are other means of escalation 

safe for the robots. Cooperative conflicts require the robots to be able to recognize other 

robots and to communicate with them. This is not scalable for groups of many robots. 

On the other hand, waiting games are very attractive from the scalability, safety and cost 
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points of view, as robots would not require ID'S, special sensors, or the need of physical 

combat. Waiting games may be inefficient if the waiting time is long. However, in nature 

one important characteristic of the randomness of the times animals wait before withdrawing 

from a contest is that it follows an exponential distribution. This causes the majority of 

conflicts to be solved quickly, while a small amount of them take longer, reducing the costs 

associated to the display behaviour. 

In [57], the robots are clones that solve their conflicts by display and never escalate to 

physical fight. The contest model used by Vaughan et al. is an example of a waiting game. 

The work presented in this thesis is intended to extend on the use of aggression as presented 

in [57]. 



Chapter 3 

Rational AGgression Experiments 

RAGE 

The work presented in this chapter is based on work done in collaboration with Sarah 

Brown, Carl Zhang and Richard Vaughan 1141, accepted to the International Conference on 

Advanced Robotics ICAR2005, Seattle, Washington, July 18th-20th, 2005; and [60], Last- 

Minute-Results Poster at  the International Conference on Simulation of Adaptive Behaviour 

(SAB'04), Santa Monica, California, 23-17 July 2004. 

3.1 Introduction 

Spatial interference is a frequently encountered problem in multi-robot systems, especially 

those without centralized control, that can seriously degrade their performance. 

Interference can be characterized as competition for resources. In animals these may be 

food, mates or territory; in robots these may be access to a charging station or use of a 

shared tool or sensor. Most commonly, robots simply block each other's way during normal 

navigation in the environment. 

An example of the problem is getting two Pioneer robots (0.5m in diameter) through a 

doorway (0.8m wide) from opposite directions; a symmetry-breaking mechanism is required 

to decide who goes first. This is a real-world problem for robot applications such as mail 

delivery, factory and warehouse AGVs (autonomous guided vehicles), and assisted-operator 

wheelchairs. An example scenario is shown in Figure 3.1, where two robots are driving in 
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Figure 3.1: Spatial interference: two robots block each others' way in a narrow corridur. 

opposite directions down a narrow corridor, blocking each other's progress. 

In [57], the authors proposed the use of animal behaviour as a way to handle a real 

life problem 'spatial int(erference'. Because the robots had to work in the same space, 

territorial methods [21? 11 were not appropriate. A11 important advantage of the system was 

that comnlunication of the 'aggression level' was perfornled using only existing sensors and 

actuat,ors? t.here were no special-purpose sensors, no wireless communication and no need for 

unique identifiers for each robot. Thus, the method was found to be perfectly scalable and 

useful in heterogeneous syst,ems, and even in human-robot interaction; humans can easily 

understand and manipulate the behaviour of the aggressive robots. 

The s,yn~nlet,ry-breaking provided by the aggressive competition was shown to produce 

better overall system performance, in terms of the nunher of tran~port~at~ion trips c~mplet~ed. 

conipared to an otherwise identica,l system that lacked the aggression mechanism. Changing 

the behaviour of the robots in this way did not e1iminat.e interference. In a typical one-on- 

one conlpetition, the 'winning' robot certainly interferes with t,he immediate progress of t-he 

losing robot. Yet, as the overall system performance is increased, it can be said that the 

overdl negative interference is reduced. 

Several strategies for determining a robot's aggression level during a 'fight' were oval- 

uated: random aggression; a linear dominance hierarchy; and a 'personal-space' method. 

where aggression was dctcrnliilecl by the amount of free space visible to the robot. All nittth- 

ods were shown to have statistically similar performance. Neither the dominance hierarchy 
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Figure 3.2: The siniulated world containing six robots used in Experiment 1 and in[14]. It, 
closely resembles the environment used in [57]. 

nor the personal space method offered any improvement over a random outcome. 

This chapter describes a new, principled approach to selecting an aggression level, based 

on robot's investment in a task. The term 'investment' towards achieving a goal is funda- 

mental in models of autonomy in animals [41, 59, 191. Simulation experiments with teains 

of six robots in an office-type environment show that, under certain conditions, this niethod 

can significantly improve system perforniance compared to a ralidoni competition and a 

non-competitive control experiment. 

3.2 Rational Aggression 

To improve performance compared to a random outcome, the outcome of an aggressive 

interaction must reflect some relevant state of the world. As argued in [57], a hierarchy of 

robots with fixed aggression levels can not encode any information relevant to  the outcon~e 

of a particular competition; when two robots incet at a doorway. their status in the hierarchy 

does not matter, so long as one of them gives way. Adding memory of past robot/robot 

interactions does not help; similar arguments apply to dynamic hierarchies. 

In general, to control some parameter of a system, it must be measured or estimated 
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E l l  1.0 

Figure 3.3: Motivation for the global effort strategy. The robot that has invested the inost 
work in a task should win. 

from its corre1at.e~ and the environment.. To maximize the amount of work done by the 

robot system, an estimate of how much work a robot is doing is needed as all input to t,he 

control system. This principle leads to the following economic approach to this problein. 

Consider a system of two robots, Black and Wl~it~e, working in a narrow corridor as 

shown in Figure 3.3. They have the same task; transporting widgets from A t80 B at either 

end of the corridor. Assume that it, is not practical for robots to transfer widgets bet.ween 

theniselves. Black starts at 4, White at B, At some moment; shown in the top row of the 

figure, Black and White block each other's progress. Assunle the robots have an i~it~ernal 

aggression level, and can perform a stereotypical behaviour sequence called a figh,t, in which 

each robot displays its aggression to the other. If a robot perceives that its rival has a higher 

level of aggression. it goes into retreat mode and allows the other robot t,o move forward. By 

performing a fight, Black and White can resolve their conflict; the more aggressive robot will 

push the other backwards and out of the way. From the point of view of syst,em eficiencs 

which robot should be more aggressive? 

3.2.1 Investment Aggression 

In Figure 3.3, the arrows beneath the robots indicate how far the robots have travelled 

towards their goals. This travel inevitably has real cost in terms of time, energy and 

computation. These are sunk costs; they can not be recovered. In the left column, Black 

wins the fight a i d  pushes White along the corridor until Black reaches its goal (middle row). 

Then Black switches to goal A, and proceeds down the corridor followed by W11it.e. At some 

point (bottom row). White is now back where it started to fight, after travelling the distance 

indicated by the arrow. The cost of the fight is the sum of White's sunk cost plus the cost. 

to get back to its start position. The right column shows t,he outcome if White wins the 
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fight. The steps are the same, but the total cost of Black losing the fight (total length of 

arrows) is much smaller. In this thought experiment, the robot with the higher sunk costs 

should be more aggressive as it has more to lose. With this scheme, the system will achieve 

more trips from A to B in unit time than with randomly chosen aggression. The method is 

economically rational; it makes decisions based on the expectation of a favourable outcome. 

This method will be called the 'investment' method from now on. 

The investment method can be implemented very simply by adding a minimal memory 

to the robot: a counter. The counter is incremented each control loop cycle. On reaching a 

goal the counter is reset to zero. The value in the counter reflects the amount of time the 

robot has spent on reaching its current goal. The aggression level is set proportional to this 

value. 

3.3 Hypotheses 

The experiments presented in this chapter were designed to test the following hypotheses: 

1. The results obtained in [57] can be replicated 

2. Investment-based aggression will allow a team of robots achieve more work than when 

a random aggression function is used. 

3. The implementation of the investment based aggression mechanism is decentralized, 

independent of a navigation strategy, makes use only of existing sensors (sonar and 

laser), works in heterogeneous robots systems and is trivial to compute. 

3.4 Experimental Design 

This section describes the experiments carried out to evaluate the advantage of investment 

based aggression over other non rational aggression methods. 

3.4.1 Task 

Robots have the task of transporting resources back and forth between two goal locations 

(shaded areas in the rooms, Figure 3.2). When a trial is executed all robots go to the same 

starting position, then they proceed to the first goal area (bottom room). Once the goal is 
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No Robot 
Fight 

Timeout 
Panic 

Figure 3.4: Control architecture [57]. Printed by permission of Richard Vaughan and the 
MIT Press (Book Title: "From Animals to Animats 6") 0. 

reached they proceed to the second goal area (top room). Each time a robot reaches a goal 

area it drops one unit of resource and increases the amount of work done by one unit as 

well. 

The world in Figure 3.2 closely resembles the world used in [57] therefore the results 

presented in this document can be compared with those described in that paper. 

3.4.2 Control Architecture 

Each robot runs the same control program, shown schematically in Figure 3.4. Each mode 

is described below. 

Navigate 

Navigate is the default behaviour for a robot and the only way that robots achieve work. 

A robot will navigate until it finds an obstacle in its path. The navigate mode used here 

is an adaptation of the one presented in [57], however, instead of using a crumb trail, the 

robot uses a two dimensional map of the environment which provides a heading direction 

for any possible location of the robot, as shown in Figure 3.5. The direction vectors change 

depending which goal area the robot is seeking. 

Robots perform left wall-following and obstacle-avoidance using a modified version of 

the robust 'sliding box' algorithm [57]. The 'sliding box' algorithm works in the following 

way: A virtual box slightly larger than the robot is moved from the robot's left to the 

robot's right until no obstacles from the laser scan are detected within it as shown in Figure 
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Figure 3.5: 
1'00111. 

Figure 3.6: 

A trail map with general directions to go from the bottom room to the top 

Obstacle - - m- 
Robot negotiating an obstacle inside a corridor and using the sliding box algo- 

I 
I 

rithm to find a desired heading. 

I 
Virtual Box I 

I (moved left to right) I 
I I 
L - - - - - - - - - - - -  
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Robot aims to 
the center of this box 

Figure 3.7: In the left figure the robot does not find an empty virtual box. In the right 
figure the robot finds an empty box and aims to the center of it. 

I I - - - - - - - - - - - - -  Obstacle not Detected I - - - - - - - - - - - - - - -  ' obstacle Detected 

Figure 3.8: In the left figure the robot is blind to a near obstacle in its path. In the right 
figure, the robot always sees the obstacle. 
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Figure 3.9: The top figure shows two robots in simulation. The bottom figures show the 
laser scan of the robot trying to get into the room before and after the other robot is removed 
froni it. 

3.6. Once an empty box is found, the robot aims to the center of the box. This has the 

overall effect of producing smooth obstacle avoidance. 

A11 extension of this technique is presented in this document. It  is called 'variable 

length sliding box' and provides the following additional advantages over the 'sliding box' 

algorithm. (i) Instead of a fixed length virtual box, a 'variable length' box is used. This 

slight modification allows the robots to handle situations when they are not parallel to the 

wall (See Figure 3.7). ( i i )  The virtual box always intersects the robot and in that way verv 

close obstacles are alwavs detected (Figure 3.8). 

Given that the world is populated by several robots, other robots need to not bc treated 

as obstacles. To achieve this, robots are erased from the laser scan and the gaps fillecl by 

interpolation froni the rest of the scan (Figure 3.9). The filtered laser scan is only used 

by the navigation mode, all other modes (i.e. emergency stop, panic) use the original laser 

scan. 

In the simulated world most of the corridors are big enough for two pioneer robots to 
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pass comfortably. When turning corners, however, robots that swing too wide, or not wide 

enough, can interfere with each other. To solve this problem, robots which are turning 

left make very sharp left turns and robots turning right use the far right corner of the 

wall, as detected in the laser scan, to make the widest turn possible. If a robot turns too 

sharply (or not sharply enough) to make a turn correctly, this may trigger an emergency 

stop which would normally lead to the robot entering the panic mode. This is inefficient so 

a small corrective turn was added to the navigate behaviour for this situation. Robots in the 

navigate behaviour will first attempt to make a very small rotation towards the direction in 

which the most space is perceived from the laser scan then resume navigation. If this fails, 

navigate will exit abnormally and the panic mode will become active. 

Panic 

When a robot finds itself in a situation in which it has an obstacle it cannot negotiate or it 

has been fighting with a robot for a period of time without any resolution in the fight, the 

robot switches its behaviour to panic. Panic will, in general, take a robot and make it move 

to a random location for certain amount of time. Once the way is clear, the robot goes back 

to the navigation mode. 

The panic behaviour can be summarized in the following steps: 

1. Sleep for a random period of time and check if way is free, if not go to next step. 

2. Check if surrounded by obstacles, if not, go to next step. 

3. Turn for a random amount of time, if not able to rotate, move slightly to the place 

with more empty space and try to rotate again. 

4. Navigate for a random period of time, if successful, get out of panic and switch to 

navigation. If not successful go back to step 2. 

The panic behaviour was made very robust, by use of randomness. This guarantees that 

deadlock situations are never encountered. Nobody wants two robots on a distant planet in 

a deadlock loop. However, this design creates some disadvantages for the robot, because the 

behaviour is not goal oriented, all the energy spent during panic is normally wasted energy; 

a robot while panicking does not know if it is getting closer or farther from the goal. Also as 

shown in the trials run in the experiment a robot panicking takes a considerable amount of 
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time before switching back to navigation. This is a characteristic that can seriously degrade 

the performance of a team of robots. To reduce the amount of panic in the system and to 

obtain better statistics in shorter periods of time, the navigation and fighting behaviours 

were design to be adaptable to many different situations so that the panic behaviour was 

used as little as possible. 

Fight 

The fight behaviour is triggered when a robot detects another one in front at  a certain 

distance, usually because the other robot is blocking the way. The fight model used in the 

experiments in this chapter is the same as in [57], and is called the inverse chicken game. 

When entering the fight mode, the robot calculates its fear threshold, which is the minimum 

distance at which it will tolerate another robot. Robots start fighting by moving backwards; 

they continuously back away as long as the other robot is within its fear threshold. If the 

rival is outside its fear threshold, the robot switches back to the navigate behaviour. If 

the robot is too close to an obstacle while it is moving backwards, the emergency stop 

mechanism is invoked. In this case the robot stops and switches to panic. During a fight the 

robot with the smaller fear threshold will be the first to start driving forward again - this 

robot is the winner. Consequently, it will push its rival (the chicken/loser) backwards until 

there is enough room to pass. Once the winner moves outside the loser's fear threshold, the 

loser starts moving forward again and the fight is over. 

3.4.3 Aggression Function 

The fear threshold is determined by a robot's aggression a, where 0 < a < a,,, and a E R, 

selected at the start of the fight procedure. Fight is designed so that the more aggressive 

robot is likely to be the winner. 

The fear threshold is the minimum distance one robot can tolerate another robot and is 

inversely proportional to a robot's aggression, plus some offset distance. 

Constants K1 and Kz were chosen to give a fear threshold between 450mm and 2450mm 

in the experiments. A tiebreaker mechanism is employed in order to reliably resolve the 



CHAPTER 3. RATIONAL AGGRESSION EXPERIMENTS RAGE 37 

fight between two robots with very similar fear thresholds. It adds a small random distance 

to a robot's fear threshold, ensuring that two robots with the same aggression have different 

fear threshold values. It breaks the symmetry between two robots by preventing them from 

switching from fight to navigate at the same time. 

Next is an explanation of each of the aggression functions used in the experiments. 

None 

In this case there is no fighting behaviour. When a robot detects another one blocking its 

path, it panics. This non-aggression technique is used as a control test. 

Random 

Aggression a is chosen at random in the range 0 < a < am,,, a E R. 

Investment 

Aggression value is proportional to the time a robot has spent approaching the goal in each 

trip. A robot's aggression increases with the time it has spent on the navigate behaviour 

within the current trip. Specifically, the aggression a is calculated using the formula: 

where T is the time spent approaching the current goal, TnormaZ is a normalization 

constant reflecting the expected time to reach the goal, and Kg scales the aggression to the 

desired range. amax sets the upper bound of a,  so that 0 < a < amax. 

3.4.4 Procedure 

There are n robots living in a simulated world W. The world has rooms and corridors where 

the robots can move. The doors and some sections of the corridor are narrow and only allow 

one robot to pass by. All other sections of the corridors are wide enough to allow two robots 

to pass through when going in opposite directions. 

For each aggression function of 'none', 'random' and 'investment', where 'none' means 

that fighting is disabled, a total of ntrial, trials that last for a number of seconds trialLength 

are run. Every time a new trial is started, the location of the robots is reset to the same 
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initial position. All trials have the same starting conditions, but the experimental system 

has non-deterministic features, so that each trial is different. 

These parameters allow for control of the degree of spatial interference between the 

robots in the world, in a way that the performance of each of the different aggression 

functions can be meassured. In the following sections, two experiments in two different 

worlds W 1  and W 2  are presented. Setting the number of robots n = 6 produced a good 

degree of robot interference without saturating the world, which means that the robots can 

still achieve their goals. 

3.4.5 Performance Metric 

As soon as a trial starts, all robots begin to log information regarding the type of aggression 

function used, the trial number, the robot number, the number of trips completed, and the 

total time spent in navigate, fight and panic behaviours. 

To measure the success of a trial the sum of all the trips Tteam performed by the team 

of robots is calculated (Equation 3.3). 

where n is the number of robots in the team and Ti is the number of trips performed by 

robot i. This value is easy to obtain and represents an objective measurement of the perfor- 

mance of the system as a whole. In the resource transportation task, each trip completed 

by a robot is equivalent to one unit of resource transported. It is not the goal to improve 

the number of trips that a single robot does but rather the number of trips that the entire 

team of robots completes. 

Using the values of Tteam in a different number of trials, the performance of each aggres- 

sion function can be compared with one another. 

Another useful comparison for Tteam is against a hypothetical maximum number of trips, 

Tmaz, that is the total number of trips that a team of robots could execute given that none 

of them interfere with each other. To compute this value the following is done: 

1. Find Tone, the average of the total number of trips that a single robot does during a 

trialLength for nt,ial, trials. In this experiment, the robot uses the same controller 
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of the multirobot experiments. Also, given that it is the only robot in the world, it 

never fights or panics. 

2. Multiply Tone times the number of robots ( n ) and obtain the upper-bound on the 

number of trips a team of robots could do Tmax (See Equation 3 .4 ) .  In reality, this 

would only be possible if none of the robots would interfere with each other during 

the trial. Note that (Tmax) is also the upper-bound on the number of resources which 

could be transported in the system. 

0 I Z e a m  I Tmax (3 .5 )  

For a given trial duration, there is a relation between the number of trips performed in a 

trial and the total time spent in navigation, fighting and panic. The greater the number of 

trips, the greater the navigation time and the lower the fighting and panic times. Because 

the goal is to reduce interference between robots as much as possible, most of the time spent 

by a robot during a trial should be navigation time. Fight and panic times are wasted time; 

they do not directly contribute towards achieving a goal. Therefore, a good interference 

reduction method should increase navigation time and reduce one or both of the panic and 

fight times. 

3.4.6 Statistical Tests 

A value of 1.5 times the interquartile range (IQR) has been used to set up fences to remove 

trials that are outliers. In most cases, the outlier trials are caused by the robot controller 

not being robust enough, or because of the amount of panicking in the trial. 

On the filtered data, two-tailed t-tests have been run to show the difference between 

the aggression functions. A significance level, a < 0.05, has been used in order to mark 

two distributions to be statistically different. This method is a standard technique used 

by biologists when the number of samples is small and the distributions are known to be 

Gaussians. 

A table of the distribution of values o f t  is found in Appendix C. 
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3.5 Experiment 1 

In this experiment the following parameters are used: 

n = 6, the total number of robots. 

W like Figure 3.2, the world where the robots live. 

trialLength = 1800, the length of each of the trials in seconds. 

nt,a, = 24, the total number of trials executed for each aggression function. 

Tripsone = 21, the average number of trips performed by a single robot in the world 

W. 

Tripsmax = n x Tripsone = 6 x 21 = 126, the upper bound on the number of trips for 

a team of robots. 

cumax = 10, the maximum aggression level of a robot. 

The aggression function is set such that 0 < cu < cumax, with the aggression reaching 

80% of maximum in the normal time taken to reach a goal. This time was determined 

empirically by measuring the mean time taken by a single robot to drive between goals, in 

the absence of interference, and was found to be 84 seconds. Substituting these parameters, 

the aggression function of T becomes: 

3.5.1 Results 

From Table 3.1 and the histograms presented in Figure 3.10 it can be seen that a team of 

robots with an aggressive display behaviour, investment or random, performs better than 

a team of robots with no fighting behaviour. The performance of random and investment 

though similar is actually a small amount better for random. The t-tests showed that the 

random and investment trials belong to two different distributions. Also in Figure 3.11 it 

can be seen that the distribution of fighting, panicking and navigation time is quite similar 
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Figure 3.10: Expl results: Histograms showing distribution of performance scores for three 
different controllers: no fight (top), random aggression (middle), investment aggression (bot- 
tom). The graph shows the number of trials (Frequency) in which an amount of resources 
(Total Resources) was transported. For example, in the Random graph it is shown that in 
10 of the 24 trials run in the experiment, the team of robots was able to transport between 
80 and 89 units of resource. 
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Table 3.1: Expl results: Summary of performance scores from three different controllers. 

Percentage of time on each avtivity 

TrialType 
NoFight 
Random 

Investment 

Panic 

Mean Resources 
28.0 
87.3 
79.5 

a 
11.4 
11.2 
8.6 

Navigation 

No Fight 

N 
24 
20 
23 

Panic Panie 

Random lnveshnent 

Outliers 
0 
4 
1 

Figure 3.11: Expl results: Proportion of time spent in each activity. 

t - test,,,d,, 
-17.25 

0.0 
-2.53 
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for the random and investment methods, while the navigation time in the 'no fight' trials is 

small as expected. 

Though it was expected that the investment method was going to show a performance 

increase in the team of robots when compared to the random method, there are several 

observations that give clues about why this was not the case in the experiment: 

(i) When robots interfere in the doorways, if they have enough space to safely manoeuvre 

when getting in or out of a room, there is no real advantage for one robot winning the 

fight over the other (Figure 3.12). In a different situation, one of the robots has other 

robots behind, going in the same direction and with the same goal. This type of spatial 

configuration is called a worm of robots. Because the robots do not have any communication 

mechanism other than their perception (laser and sonar) a robot does not have a way of 

detecting that they are members of a worm. As a result robots cannot use that property to 

modify their aggression (Figure 3.13). The long term effect of this lack of communication is 

that sometimes a worm will win a fight, and sometimes it will lose it. In the long term both 

effects on the system performance cancel out and are equivalent to a random outcome. 

(ii) The narrow corridor in the world (Figure 3.2) is about halfway between the goals 

and as a result robots with similar aggressions compete for the right of way. The robot 

controller is implemented in a way that guarantees to resolve fights even between robots 

in this situation, however the fights take longer to resolve than when two robots with very 

different aggressions compete. A random approach usually generates different aggression 

values for the robots and consequently has an advantage over the investment method when 

robots meet in the narrow corridor. I believe this to be the main reason why the performance 

of the investment method is slightly worse compared to a random outcome. 

(iii) The narrow corridor is very short in length, and as a result, in order to obtain a 

significant statistical difference the trials would require to be run for a very long time (this 

would require a more robust controller) or the number of robots would need to be increased 

so as to have more fights (but experiments run with more than 6 robots showed that the 

world would become saturated). 

All the points presented above have one thing in common, they show how important 

the role of the environment is when trying to evaluate one aggression function over another. 

This insight into the role of the environment may help to explain the results in [57], where 

a 'personal space' strategy was also shown to be equivalent to random. 

At this moment in time, no previous work, [57] and this thesis, has found if there even 
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Figure 3.12: Robots fighting for the right to pass across a door. There is no advantage in 
one robot winning the fight over the other. 

Figure 3.13: Robots fighting (one against a worm of other robots) for the right to pass across 
a door. If robots were able to communicate it would be possible to make the worm win and 
improve the performance of the system. However, without communication any door fight 
can be either of the situations presented in the figures, and the controller would not be able 
to know how to properly modify the aggression of a robot. 
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exists an environment in which a rational method can outperform a random scheme. I believe 

that it is certainly possible to create a simple environment with some special characteristics 

that would cause one aggression scheme to succeed or fail. However, we do not want 'any' 

environment, we would like environments that are still realistic, that is: (i) environments 

that can be found in the real world, and at the same time, (ii) environments in which the 

task given to the team of robots makes 'sense'. For example, putting 20 robots into a small 

room where a task has to be executed, does not make sense, as the environment is clearly 

over-crowded. 

Next, a second experiment is presented that takes into account the arguments presented 

above. 

3.6 Experiment 2 

It is one of the goals presented in this thesis to find whether a rational method of setting 

the aggression of a robot can outperform a random approach. At the end of experiment 

1 there are several hypotheses that explain why a rational approach based on investment 

did not perform better than the random scheme. It was hypothesized that the environment 

plays a very important role in the performance of any given aggression scheme. Following 

this idea a second environment (Figure 3.14) was designed to show the features, if any, of 

the investment method. This new simulated world has longer narrow corridors that increase 

the penalty for the 'wrong' robot losing a fight. Also the narrow parts of the corridors are 

not located at  the halfway point between the goals, this causes the fights to be solved more 

quickly as the difference in aggression between the robots is increased. The new environment 

still shares many similarities with the previous one. 

The new world was designed to be approximately twice the size of the old world. Also 

the average time for a robot to go from source to goal is about twice the time. For this 

reason, the length of the trials was doubled. 

The following is a list of the parameters used in this experiment: 

n = 6. the total number of robots. 

W like Figure 3.14, the world where the robots live. 

a trialLength = 3600, the length of each of the trials in seconds. 
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Figure 3.14: The world used in the second set of experiments. 

ntTial, = 24, the total number of trials executed for each aggression function. 

Trips,, = 22, the average number of trips performed by a single robot in the world 

W .  

Trips,,, = n x Trips,, = 6 x 22 = 132, the upper bound on the number of trips for 

a team of robots. 

a,,, = 10, the maximum aggression level of a robot. 

The Investment aggression function was set similarly to experiment 1, except that 

TnOTma1 was larger due to the larger environment. 

The configuration of this experiment allows some comparison between both experiments 

as the total number of trips possible for a robot is also approximately the same. 
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3.6.1 Results 

The t-tests run on the experiment show that the investment based trials belong to a different 

distribution than the random based trials. The investment aggression outperforms the 

random and no fight schemes. This means that the team of robots in the investment 

aggression trials achieve more work on average. Table 3.2 and the histogram presented 

in Figure 3.15 give a summary of the performance of the three aggression schemes. The 

proportion of time spent in each behaviour is shown in Figure 3.16. As stated before, 

the investment scheme is the one which enables the robots to spend the longest time in 

navigation. 

3.7 Conclusion 

Some of the results obtained in [57] have been validated. It was confirmed that in the slightly 

different environment used in this chapter (Figure 3.2) none of the different aggression 

methods performed better than random aggression. In the first experiment it was found 

that an aggression function based on the concept of investment in a task did not perform 

better than a random aggression approach. Hypotheses about features of the environment 

and length of the trials were presented, and a second experiment was designed as a result. 

In the second experiment a new environment was built (Figure 3.14). This environment 

is similar to the old one but has longer narrow corridors where the robots interfere. The idea 

was to increase the penalty for the wrong robot winning a fight. The new world was still 

a realistic office space. Tests run in this environment showed that the rational investment 

aggression scheme performed statistically better than random aggression. The robots using 

investment aggression were able to complete more work (second of the hypotheses). It also 

suggests that other rational techniques previously used in [57], like 'personal space', could 

have performed better than random if used in a different environment. 

The experiments in this chapter also showed that the investment method could be easily 

implemented by the use of a simple counter that was increased while going from a source 

position to a goal position. The robot controller and the investment method required the use 

of only existing sensors (sonar and laser), any extra computations were trivial to do. Though 

no experiments were done in any other robot platform there is no reason to believe that the 

investment approach could not be used in other robots with similar sensing capabilities. 

In summary, a novel interference reduction technique using aggression display has been 
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Figure 3.15: Exp2 results: Histograms showing distribution of performance scores for three 
different controllers: no fight (top), random aggression (middle), investment aggression (bot- 
tom). The graph shows the number of trials (Frequency) in which an amount of resources 
(Total Resources) was transported. For example, in the Random graph it is shown that in 
7 of the 21 trials run in the experiment, the team of robots was able to transport between 
60 and 69 units of resource. 
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Table 3.2: Exp2 results: Summary of performance scores from three different controllers. 
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Figure 3.16: Exp2 results: Proportion of time spent in each activity. 
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presented. The aggression function is based on the idea of investment in a task. A simple 

implementation was described, and the method was shown to increase the performance 

of a simulated robot team at  a classical transportation task. Unfortunately the method 

requires some special characteristics about the world that may result in the technique not 

being sufficiently robust for real world situations. To verify or falsify the previous statement, 

many more experiments in different worlds would need to be performed. Still, the investment 

method should be applicable as an interference reduction technique in mobile robot teams. 



Chapter 4 

Local RAGE 

The work presented in this chapter is based on work done in collaboration with Richard 

Vaughan [61], accepted to the IEEEIRSJ International Conference on Intelligent Robots 

and Systems IROS2005, Edmonton, Alberta, August 2-6, 2005. 

4.1 Introduction 

In section 3.1, an approach to selecting an aggression level based on a robot's investment in 

a task was introduced. The concept of 'investment' of work done towards achieving a goal is 

fundamental in models of autonomy in animals [41]. Simulation experiments with teams of 

six robots in an office-type environment showed that, under certain conditions, the method 

was able to significantly improve system performance compared to a random competition 

and a non-competitive control experiment. 

In this chapter, a new approach to selecting the aggression level based on the concept of 

'local investment' is presented. In this method, the aggression level is proportional to the 

effort that a robot has put recently into crossing areas where there is a high probability of 

interference. This method was designed to overcome limitations of the previous investment 

approach (hereafter 'global investment' approach). 

For the first time a 'real world' implementation of a stylized fight is presented in a 

multi-robot resource transportation task. 

Experiments presented in this chapter confirm that the local investment method is the 

best performer in different simulated and real environments. They also show that the 

method can be easily implemented in real world situations. 
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Figure 4.1: Motivation for the local investment strategy. The robot that has inveskd t'he 
most work passing the narrow part of the corridor should win. 

4.2 Local Investment Aggression 

In a simi1a.r way to the global investment approach, the local investment method is econom- 

ically rational. To understand the concept of locaI investment, we need to first define an 

a.rea qf interference as an area of the environment where spatial interference bet,ween robots 

is likely, for example a narrow corridor or a door. The local investment, method accounts 

for the effort. put into passing a,n area of interference while the global investment method 

accounts for the effort put. into conlpleting a task. 

Now consider the system of robots presented in Figure 4.1. The task is the same as in 

the global approach explained previously, the Black robot transports resources from A to B 

and the White robot from B to A. About two thirds of the path are wide enough for two 

robots to pass without interfering with each other. There is however a narrow part, of the 

corridor (about one third of the total length) where only one robot can pass. 

Figure 4.1 presents the two possible outcomes of a conflict happening in the left, part of 

the narrow corridor. Either the White robot retreats and allows the Black robot to pass or 

the Black robot retreats and the White robot moves forward. Once bot.11 robots are in the 

wide pa.rt of the corridor they can resume navigation without any interference. 

It  is seen in the figure that the sunk costs are higher for the White robot losing the 

fight, collsequently it would be better to solve the fight in favour of the White robot. 111 the 

situation presented in this figure, a globd ilivestinent approxh would choose in favour of 

the Black robot, because it has put more work into getting to its current locatioli coinpared 

to the White robot (left colunin of the figure). On the other hand the local investnient 
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Figure 4.2: Sequence of a Fight in which the cost is mini~nized, (sequence order is left, to 
sight. top to bottom). 
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Figure 4.3: Sequence of a Fight in which the cost is very high. one of the robots was close 
to finish passing through an area of int,erference and yet had to retreat. (sequence order is 
left, to right, top to bottom). 
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approach would allow the White robot to win, as it has spent more time inside the narrow 

part of the corridor (right column of the figure). Therefore, in this situation the local 

investment approach handles the conflict in an optimal way. 

The cost of a fight is something that can only be measured after the fight is over. As we 

cannot measure the future cost directly, the best we can do is to predict the cost of fighting. 

The better the prediction, the higher the likelihood of making the right decision in a conflict 

situation. The experiments described in Chapter 3 showed that global investment was not 

very good at predicting the cost of fights, we believe that the better performance of local 

investment is due to it being a better predictor of the future cost of losing a fight. 

Figures 4.2 and 4.3 show two examples of real-world fights implemented on Pioneer 3-DX 

robots. The top row shows the sequence (left-to-right) of a fight with a favourable outcome, 

in which the interference is minimized because the robots back up as little as possible. The 

bottom row shows an unfavourable fight, in which one of the robots has to back up a long 

way before resuming its normal path. 

4.3 Hypotheses 

The experiments presented in this chapter were designed to test the following hypotheses: 

1. Local investment aggression outperforms the previously studied random and global 

investment aggression when looking at the amount of work done by a team of robots 

in a realistic office environment. 

0 The team of robots using the aggression mechanism can be autonomous for the 

length of the trials. 

0 The Local Investment aggression mechanism is decentralized, independent of a 

navigation strategy, makes use only of existing sensors (sonar and laser), works 

in heterogeneous robots systems and is trivial to compute. 

2. Local investment does not require special features in the environment as global invest- 

ment does. 

3. A stylized competition mechanism can be successfully implemented in the real world 

to reduce interference in a resource transportation task. 

4. The results found in simulation are carried to the real world. 
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Figure 4.4: The Stage world containing six robots used in Experiment 1 and in [14]. It 
closely resembles the environment used in [57]. 

4.4 Experiment 1: Local Investment us. Global Investment 

and Random Aggression in a Simulated Environment 

This section describes the experiments carried out to compare the performance of the three 

methods when used in a team of robots. The experimental design, robot controller and 

environment used and described in section 3.4 are also used in the experiments presented 

in this section. The world is shown in Figure 4.4. 

4.4.1 Aggression Function 

The Random and Global Investment aggression functions are described in section 3.4. Next 

is the description of the new proposed method. 

Local Investment 

The local investment method is based on three different aggression functions that are used 

depending on the robot perceptions and the environment. Formally, the following equations 

are used: 
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I 

Direction of Movement c I 
Figure 4.5: Local Investment Agg-ession 

Aggression a. is equal to ai,(t) if inside an area of int.erference, equal to cr,,,l(t) if just. 

comming out of an area of interferelice and equal to arnd(t )  if c ~ , , ~ ( t )  is below Gin, In the 

experiments Ci, = 0.6 , Co,,f = 1.0 , mi, = 0.008 , m,t = 0.03 and m r , d  = 0.03. The final 

value of aggression was also thresholded between O and 1. 

Figure 4.5 shows a graph of a robot's aggression while moving left to  right in the envi- 

ronment. Thc aggression is initially random because the robot is not in an interference area. 

Then, as soon as the robot starts to move inside the narrow corridor, its aggression st,arts 

to increase linearly until reaching the nmxinlum (cu = 1.0) around the end of the narrow 

part of the corridor. Once the robot is out of the corridor, its aggression decreases quickly 

a i d  when below some threshold it reverts to random aggression. Note that the random 

aggression is always smaller than the minimum aggression inside the corridor. Therefore a 

robot inside the corridor fighting with a robot outside the corridor is more likely t,o win the 

fight.. 

In sunimary, local investment aggression is a srnall random number or a fast decreasing 

linear quantity when outside an area of interference, and proportional to t,he time spent 



CHAPTER 4. LOCAL RAGE 

inside an area of interference if inside an area of interference. 

Next is a list of the parameters used in the experiment: 

0 n = 6. the total number of robots. 

0 W like Figure 4.4, the world where the robots live. 

0 trialLength = 1800, the length of each of the trials in seconds. 

0 ntrials = 24, the total number of trials executed for each aggression function. 

Trips,,, = 21, the average number of trips performed by a single robot in the world 

W .  

Trips,,, = n x Trips,,, = 6 x 21 = 126, the upper bound on the number of trips for 

a team of robots. 

4.4.2 Results 

The results presented in Table 4.1 show that the local investment method is significantly 

different and better than the global investment and random based aggression schemes. This 

can also be seen in the shape of the distributions presented in Figure 4.6. While random 

and global investment have similar distributions, the local investment distribution is shifted 

to the right which means that the team of robots was normally able to complete more trips 

during the length of the trials. In Figure 4.7 it can be seen that the local investment strategy 

reduces the amount of time spent fighting and panicking while increasing the amount spent 

in navigation. 

In the work presented in [57] and [14] the authors spent a long time trying to come up 

with an aggression function that outperformed the random approach without any success. 

In fact, many aggression functions not documented in the papers were also tested (inverse 

personal space, inverse global investment, etc). An important aspect of the world used in 

these experiments is that it corresponds to a real office building somewhere in California, 

and therefore its constraints are real. The success of the local investment method is therefore 

worthy of further study and suggests that the method may be robust enough for many other 

real world situations. 

Note that the standard deviation of the local investment distribution seems large com- 

pared to the random and global trials. This is because some trials are marked as outliers for 
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Figure 4.6: Exp. 1 results: Histograms showing distribution of performance scores for three 
different controllers: random aggression, global investment and local investment aggression. 
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Table 4.1: Expl results: Summary of performance scores from three different aggression 
functions. 
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random and global investment, and in this way their standard deviations become smaller. 

The removal of the outliers did not greatly affect the significance of the t-tests in any case. 

The good results obtained by the local investment approach are caused by two properties: 

(i) As intended by the method, fights occurring in the narrow part of the corridor are won 

by the robot who has the most to lose. This small advantage accumulated over time and 

multiple fights makes a significant difference in the performance of the team. (ii) There is an 

emergent property of the system that is generated by the local investment approach: robots 

quickly form "chains" or "worms" going in the same direction. Once a worm is created, the 

frequency of interference is reduced. 

A careful reader may notice that the data in the average-number-of-resources column in 

Table 4.1 is different from the one found in Table 3.1. The reason is that the machine used 

for the experiments in this Chapter had a different operating system and architecture than 

the one where the first experiment was run. This is like having a different robot because 

the real time characteristics of the simulated robot and its controller change. Consequently, 

it is not right to compare the absolute values but the relations between the results. In 

both experiments the correlation between the results is the same. That is: (i) random, 

global investment and local investment perform better than no-fight, (ii) random and global 

investment perform similarly, and (iii) local investment performs better than the others. 

Another experiment, in simulation, was carried out using the local investment method 

in the second environment (Figure 4.8) described in section 3.4. Note that the world has 

longer areas of interference and bigger rooms. The results obtained with the local investment 

approach were statistically similar to those obtained by the global investment approach 

and better than the ones using the random aggression mechanism. These results can be 

explained by observing that, in a world with very large areas of interference, the local 

investment method closely approximates the global investment method. Table 4.2, Figure 

4.10 and Figure 4.9 show a summary of the results. 

Similarly to experiment 1, the absolute values presented in Table 4.2 are different from 

the ones in Table 3.2. However, the correlation is maintained. That is: (i) random, global 

investment and local investment perform better than no-fight, (ii) local investment and 

global investment perform similarly and better than random. 
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Figure 4.8: A simulated world with longer corridors and more areas of interference. 
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Table 4.2: Expl(big world) results: Summary of performance scores from three different 
aggression functions. 
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Figure 4.9: Expl(big world) results: Histograms showing distribution of performance scores 
for three different controllers: random aggression, global investment and local investment 
aggression. 
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4.5 Experiment 2: Local Investment vs. Random Aggression 
in a Real World Environment 

A second experiment was performed in order to (i) verify that a stylized competition can 

be implemented in the real world with real robots, and (ii) to demonstrate the effectiveness 

of the local investment strategy in a real world implementation. 

This experiment was done in two parts: a simulation to test the experimental procedure 

and obtain benchmark results, followed by the real world trials. The experiment was smaller- 

scale than the simulations presented before because only two Pioneer robots were available. 

4.5.1 Task 

The robots must perform laps in an '0' shaped world, shown in Figure 4.11. The dimensions 

of the world are 2.85 by 8.5 meters. The narrow corridors are 1 meter wide and the inner 

block dimensions are 0.85 by 3.5 meters. The dimensions are the same for both the simulated 

and real world environments. The robots complete loops of the world, returning to their 

start position on each loop. They advance in opposite directions following their left wall 

and therefore interfere with each other frequently. Given the shape of the world, the robot 

going in the clockwise direction makes big loops while the robot going counter clockwise 

makes small ones. It takes 45 seconds for one robot to complete the small loop, while it 

takes 66 seconds for the other to complete the big loop. 

The '0 world' was designed with the following properties in mind: (i) It is a world 

that increases the penalty of the wrong robot losing a fight, as the areas of interference 

constitute the majority of the world (long corridors). (ii) It naturally leads to many fights 

in a short period of time. (iii) Only two robots were available. In practice, it was found 

that in 20 minute trials with two robots an average of 30 fights were obtained. All of these 

characteristics were chosen to demonstrate a difference in performance when using each of 

the different aggression functions. 

The starting condition for each of the trials is always the same, as shown in the simulated 

world in Figure 4.11 (left). 

Figure 4.12 shows a graph of a robot's aggression while completing a loop in the 0 world 

environment. The aggression is initially random because the robot is not in an interference 

area. Then, as soon as the robot starts to move inside the narrow corridor, its aggression 

starts to increase linearly until reaching the maximum around the end of the narrow part 
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Figure 4.10: Expl(big world) results: Proportion of time spent in each activity. 

Figure 4.11: Simulated (left) and real-world (right) environments. Only one robot at. a time 
can pass across the narrow corridors on the left and the right. 
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Figure 4.12: Local Investment Aggression through one loop in the 0 world. 

of the corridor. Once the robot is out of the corridor its aggression decreases quickly and 

when below some threshold it reverts to random aggression. The two non-random sections 

of the graph correspond to the two narrow corridors present in the world. 

4.5.2 Control Architecture 

The details of the controller used in the '0 world' experiments are different from the one 

used in the simulation experiments presented in Chapter 3 and Experiment 1 in this chapter. 

However, the same general control architecture is used (Figure 3.4). The more simple 

structure of the '0 World' permitted a simplified controller, which proved to be robust; the 

robots were completely autonomous for the length of the trials. The simulated and real 

world experiments presented in this experiment made use of the same robot controller. 

A simplified robot controller does not mean easier to implement. Certainly the 0 world 

is a simplified environment, however, it is a real world with real constraints that cannot 

be ignored. The main goal of the work presented in this chapter is to show how a local 

investment aggression function allows a team of robots to achieve more work compared to 

any previous aggression method. Another goal is to present for the first time an imple- 

mentation of an aggression mechanism in a real world experiment. In general, it is always 

easier to develop controllers in simulation because many of the complications of the real 

world quickly disappear. This is also the reason why normally a controller that works in 

simulation does not work in the real world. On the other hand, a robust robot controller 

that works in the real world usually works in a simulated environment. 

The idea of the world as its own best model has made quite an impact on the robotics 
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community. Brooks presented this idea as well as the introduction of the subsumption 

architecture in the 80's [ll]. The subsumption architecture emphasizes the situatedness of 

the robots and therefore has to cope with the real world problems from the very moment a 

robot and its behaviours are designed. 

In the development of the robot controller used in the 0 world experiments presented in 

this chapter, several 'real world' problems had to be properly handled. These complications 

significantly increased the development time of the robot controller. Next is an explanation 

of the main difficulties encountered and the way they were solved. 

Localization 

While in simulation experiments perfect localization is always available, in the real world 

accurate localization is hard to obtain. Nevertheless, in many cases a robot will need to 

know where it is in order to decide where to go next. 

In real robots, localization based on odometry is quite poor; a method commonly used to 

get better localization is Monte Carlo localization. The problem with this technique is that 

it requires significant processing power, and does not perform well in symmetrical worlds 

with long narrow corridors. Another technique commonly used in real world experiments 

is based on the detection of beacons. This technique is effective but not scalable. It also 

requires the preinstallation of beacons which may not always be possible, for example, in 

interplanetary exploration, or missions where human access is difficult. 

In the 0 shaped world used in the experiments in this section of the thesis, I tried with 

moderate success to use the two techniques previously mentioned. Monte Carlo localization 

had problems with the long narrow corridors in the 0 world. Additionally, because of its 

computation requirements it could not be run in the processors on the robots and had to 

be executed in an external workstation accessible to the robots via a wireless network. This 

created a new problem that made the robots too slow in their response time to the dynamics 

of the environment. 

A second technique was through the detection of features in the world. This is similar 

to using beacons but does not require special sensors. The features in the world that the 

robots were able to detect were the corners of the inner block, and the walls. The corners 

allowed the fixing of the position and heading of the robots, while the walls allowed only 

the fixing of the heading of the robots. Though the method worked well in simulation, in 

the real world it did not. When panicking, a robot could move and turn unexpectedly and 
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the localization system would lose track of the corner it was detecting (this is because of the 

symmetry of the world). For example the robot was in the south-east corner, then the robot 

panicked for some time, went back to navigation and though close to a different corner, the 

robot would still think that it was at  the south-east corner. Similar problems occurred when 

fixing the heading. This method could have been made more robust through the use of the 

history of the previous positions, but even that was not fault-proof. 

In the end, as a result of all the problems encountered, it was decided to use another 

interesting feature of the world: given the simplicity of the 0 world, all that a robot needs 

to do is to follow the left-hand wall. As a result, localization is not required for navigation, 

it is only needed for the automatic count of loops completed by each of the robots. This is 

something that can be done in simulation, where many trials are run, and ignored in the real 

world, where only a few trials are executed. The counting of trips completed by the robots 

in the real world experiments was not automated; they were counted by the experimenter. 

Sensors 

While in the real world sensors, especially sonars, are quite noisy, in simulation sensors 

always return perfect values unless models of noise are added ' . The sonar readings especially 

depend heavily on the materials of the walls in the world and the angles at  which they are 

hit by the sound beam. A common technique to obtain more credible readings is to use the 

values of previous readings and in some way detect the ones outside the normal distribution. 

This has the inconvenient effect of slowing the response time of the robot as decisions based 

on the readings could be taken only after having received a number of them (effectively a 

low-pass filter that limits frequency response). The laser on the robots is a less noisy sensor, 

and, because of this, is the one I tried to use the most. Still, sometimes when two robots 

face each other, their lasers interfere with one another, and in addition the geometry and 

location of sensors in the robot did not allow the use of only laser information. The reason 

is that the laser is located in front of the robot and gives distance readings only in a 180 

degree range. The sonar gives information in a 360 degree range but it also has empty areas 

between the sound beams2. Though moving forward is the preferred way of navigation for 

'Stage, the simulation environment used in the experiments in this thesis, does not have models of noise 
yet. 

2A close obstacle may not be detected by the sonar because it is located in an angle not covered by the 
beams of two sonar rangers. 
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the robots in the experiment, the fighting behaviour requires robots to navigate backwards 

as well. Given that the world is designed to cause many fights, a robot spends a good part 

of the length of each trial doing backward navigation, and as a result, the unreliable sonar 

sensors have to be used. 

Robot Detection 

Robot detection is a central part of the aggression techniques. When two robots face each 

other they fight, but using only lasers and sonars how does a robot detect another robot in 

front?. In simulation experiments it is quite simple: the values returned by a laser scan are 

not only the distance to the obstacles but the intensity of the reflected beams. In simulation 

it is possible to define a robot to be made of reflective material. Detecting a robot in the 

laser visual field becomes only a matter of checking a value in an intensity array. In the real 

world, the reflective material has to be in a specific angle range to the laser beam in order to 

be detected (almost perpendicular), but lasers in the robots are located at the same height 

so reflective tape cannot be put in the laser as it would block the laser beams (Figure 4.13). 

Laser reflective tape is also quite expensive and hard to get. 

Using the geometry of the lasers it is possible to detect other robots. In this thesis a 

Player driver was developed3. By using an original laser scan, it provides a new scan in 

which objects of certain width (i.e. 30 cm for a SICK laser) and at certain distance of other 

objects (i.e. walls) are removed. With both the original and the new filtered scan, it is 

possible to detect the angle and location of the objects removed (Figure 4.14). This enables 

a robot not only to detect and fight other robots but also to interact with humans (it would 

treat the 2 legs of a person as robots in its path). 

The geometrical robot detection technique described here was also used in the simulation 

experiments. In practice, the robot detection technique was very reliable. 

In the next sections there is a description of the different modules of the robot controller. 

Navigate 

Given the shape of the 0 world, a left wall follower is all that is needed to navigate through 

the environment. Robots do not use a map or any localization information if in the real 

3 ~ h e  driver can be used by the Player/Stage server [23]. 
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Laser 

Sonar? 

Figure 4.13: Locatic )n of the sonar and laser devices in Roy and Priss (the SFU autonc 
lab robots). Printed by permission of Richard Vaughan @. 

Figure 4.14: Laser scans of a robot with another robot in its laser field. The left scan is the 
original scan, the right scan is the one in which the robot is removed. By comparing both 
of them it is possible to know the location of another robot in the robot laser field of view. 
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Heading 
Direction r 

Figure 4.15: Forward Heading Correction. Robot corrects its heading to the right because 
the front laser distance to the heading axis is shorter than the other one (black double- 
headed arrows). 

world. In the case of the simulations, navigation uses localization information only to correct 

situations in which the robot would go against its intended rotational direction. Note that 

if a robot is 180 degrees misaligned, what was before the left wall becomes the right wall. 

These situations are rare but if present they are generally caused by the panicking behaviour. 

The left wall follower is a robust left wall follower; i.e. it knows when to turn left or 

right at the end of a wall, and also knows how to do it moving forward or backward. 

Given that the sensor data, particularly sonar, is noisy, and that the robots would 

spend a lot of time forward and backward navigating, it was decided to make the forward 

navigation and the backward navigation quite similar. In Chapter 3 the robust 'variable 

length sliding box algorithm' was presented. It works extremely well when one has a laser 

device to guide the location of empty boxes. However, the same cannot be done with a 

sonar sensor. The algorithm use in this experiment is new and simple. It works in a similar 

way as a person moving inside a dark room or a maze. The person keeps their hands in 

constant contact with the wall; this way it knows when to turn or keep going in the same 

direction. In the case of robots, instead of hands they use the laser data and compare the 

distances at different angles. Then, the robot can decide if it needs to correct its heading to 

the left or the right, or if it is time to turn. Figure 4.15 presents a case in which the robot 

has to correct its heading to the right. 
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Sonar Beam 

Heading 
Direction 

Figure 4.16: Backward Heading Correction. Robot corrects its heading to the right because 
the front laser distance to the heading axis is shorter than the other one (black double- 
headed arrows). 

There are other parameters that affect the left wall follower: the minimum and the 

maximum distance to the left wall. If the robot distance to the wall is between the minimum 

and the maximum distance then the heading corrector presented in the previous paragraph 

is used. If the robot's distance to the wall is smaller than the minimum distance, the heading 

is corrected to get away from the wall; the opposite is done if the robot's distance to the 

wall is greater than the maximum distance. All of this has the overall effect of maintaining 

the robot at  a safe distance from the wall while providing smooth navigation. 

When the robot has to navigate backwards, the sonar is used to detect the back proximity 

to obstacles, and the laser is used to correct the back heading in the same way as the forward 

case (Figure 4.16). Backward navigation is more difficult for the robot because of the use 

of the sonar device, especially when deciding to turn left or right. 

Panic 

The panic behaviour is also simplified to two sub-behaviours: a 'corrective panic' which 

corrects the heading of a robot when, for example, the robot does a turn and gets too close 

to the wall. The response is then just to move in the opposite direction and turn a little. If 

this is not enough to solve the problem, a second sub-behaviour 'force panic' is used. In this 

case, the sonar readings are used as an array of forces acting on the robot and proportional 
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to the distance. The robot moves in the direction of the resultant force. 

Fight 

This behaviour is responsible for deciding how to solve interference problems between robots. 

The fighting behaviour used in the simulation experiments presented in Section 3.1 did 

not work well in the real world because it required too much free space behind the robots in 

order to decide which robot won a conflict. This is because the aggression level of a robot 

was used to generate a tolerance distance. But two different aggression levels needed to be 

perceived as two different tolerance distances. For example, if 10 aggression levels are used 

and 0.4 meters are necessary to differentiate between each one, then at  least 0.4 x 10 = 4 

meters plus some safety distance would be required in order to allow the robots to detect 

who won a fight safely (these are the actual values used in the simulation experiments in 

Chapter 3). Reducing this distance causes the robots to get into oscillations. That is, two 

robots with similar aggressions start to move back and forth because they both think they 

won or lost a fight. Another problem of the method is that it wastes energy because the 

robots have to back up a long distance. The '0 World' was too small for this technique to 

be used. 

To solve the problem an alternative scheme has been developed. In the 'staring contest' 

scheme the aggression level is converted to a waiting time. The method is simple: when 

two robots going in opposite directions find the other robot too close they both stop. They 

then use their aggression level to calculate how much time they are willing to wait before 

retreating (losing the fight). While waiting, they are constantly checking the distance to 

the other robot. If they perceive that the robot is backing up then they know they won the 

fight and move forward. This method has several benefits over the previous back-up fight: 

(i) it is more energy efficient; (ii) it requires less space to manoeuvre; and (iii) robots do 

not have to back up too much and as such the navigation is less prone to get in situations 

that require the use of the panic behaviour. 

4.5.3 Performance Metric 

In the previous experiment the work done by the team of robots was directly proportional 

to the number of trips they completed. In this case however, there is a difference in time or 

energy spent between big and small loops. Small loops were chosen to be equivalent to the 
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Trial 
Type 

Random 

Table 4.3: Exp2(0 world) results: Summary of performance scores from three different 
aggression functions. 

Global Inv. 
Local Inv. 

completion of one unit of work; using the difference in time taken to complete the big and 

the small loops, a conversion factor was obtained and used to calculate the total work done 

by the team of robots (Equations 4.5). With this method, the results of different trials and 

different aggression functions can be compared. 

work = Tripssman + Tripsbig x workcf 

Work 

34.2 
41.7 

4.5.4 Simulation Results 

Total 
34.4 

In the simulation test a total of 20 trials of 20 minutes were run for the random, global and 

local investment aggression functions. 

The simulation results in Table 4.3 show that while the random and global investment 

approaches perform similarly, the local investment approach is better. Even the number 

of trips completed by the robots using local investment aggression is greater than when 

using random or global investment. The histograms presented in Figures 4.18, 4.19 and 

4.17 present information about the trips completed by each of the robots plus the team 

performance. It can be seen that the local investment approach enables the robot doing big 

loops to complete more loops than when using a random or global investment approach, 

and this only slightly reduces the number of trips executed by the robot doing the smaller 

loops. This emergent property in the system increases the amount of work performed by 

the team, since the completion of big loops is related to the achievement of more work. 

Figure 4.20 provides two interesting observations: (i) there is virtually no time spent in 

panicking, which suggests that the navigation and fighting behaviours are quite robust, and 

Trips 
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a 
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30 
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Figure 4.17: Exp2(0 world) results: Histograms showing distribution of performance scores 
for three different controllers: random aggression, global investment and local investment 
aggression. 
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Random 

Figure 4.18: Exp2(0 world) results: Histograms showing distribution of performance scores 
for three different controllers for Robot 1 (big loops). 
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Random 
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Figure 4.19: Exp2(0 world) results: Histograms showing distribution of performance scores 
for three different controllers for Robot 2 (small loops). 
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Table 4.4: Experiment in the real world results: Summary of performance scores for random 
and local aggression. 

(ii) for the three aggression functions evaluated there is almost no difference in the time 

spent in fighting and navigation; they are quite similar in fact. In the case of the 0 world 

where there is a difference between the tasks that each of the robots achieve, big loops and 

small loops, the navigation time seems to not be directly related to the amount of work 

that the system does. This goes against the hypothesis presented in Chapter 3, however, in 

the work in that chapter all robots had to complete the same task (there were no different 

loops). 

Having shown that the performance of global investment is indistinguishable from ran- 

dom in this environment, only local investment and random are compared in the real robot 

trials. 

4.5.5 Real World Results 

In this experiment a total of 3 trials of 20 minutes for the random, and local investment 

aggression functions were run. 

Table 4.4 presents the results obtained in the real world. Due to the small sample size, 

no standard deviations or histograms are given for these tests. However, it can be observed 

that the results are similar to those obtained in simulation, and that aggression based on 

local investment always produces more trips and work done than random aggression. 
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4.6 Conclusion 

In experiments done in the environment shown in Figure 3.2 different strategies for choosing 

the level of aggression of a robot were explored. However, none of the rational methods 

(Hierarchy, Personal Space, Inverse of Personal space) were shown to be statistically different 

than random. In [14] another rational method based on the concept of 'global investment' 

or effort put into a task was presented. This method, however, also failed to show any 

improvement over a random approach. In the case of global investment a new world had 

to be created in order to show that the method could perform better than random. In the 

work presented in this chapter a new method based on 'local investment' has been presented. 

The method was shown to improve the performance of a team of robots in the environment 

where all the other methods had failed and as such it is one of the main contributions of 

the work presented in this thesis. 

In all the environments tested the local investment method performed better than or 

as well as all other methods. This suggests that the method is robust in a number of 

types of environments and, therefore, does not require special assumptions about them. 

Nevertheless, it is certainly possible to design a world in which the local investment method 

would fail compared to random or other rational methods. A hypothesis not investigated in 

this thesis is that worlds in which the local investment would fail may not be very realistic. 

The local investment mechanism is decentralized and independent of a navigation strat- 

egy as can be seen in the experiments done in the 0 shaped world where a different robot 

controller was used and still the advantages of the local investment method were shown. 

Only existing sensors (sonar and laser) have been used, the robots do not require id's or any 

network device. Though not tested in other robot platforms, the local investment method 

should be usable by any robot with similar sensing capabilities to the Pioneers-3DX used in 

the experiments here. 

Experiments done in the 0 shaped real world show that the local investment scheme can 

be successfully implemented and that the computation of aggression is trivial to do (only a 

counter that is incremented when in narrow sections of the world). 

Simulation has been used extensively in the development and testing of the robot con- 

trollers that were used in the real Pioneer-3DX robots. In the end, the robot controller used 

for both, the simulation and the real world experiments, was the same. It only differed in 

some tuning parameters (distances to obstacles and other robots, etc). The results obtained 
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in simulation were carried to the real world experiments. Though the numbers were not 

an exact match, they were similar, and, most importantly, the relations between who did 

better and worse were the same. 

For the length of the trials the robots in simulation and the real world experiments were 

completely autonomous; they did not require human assistance at all. This is part of a long- 

term goal of having robots in the world doing real tasks in an autonomous way. 

The main limitation of the local investment approach is that is not anticipatory and 

does not hold a global picture of the situation in the world, and so the method is short- 

sighted. It does not encode any information about past interactions or the probability of 

other robots in other places in the world. Because of this, the method may not achieve the 

highest performance for a team of robots doing a task. However, a requirement to include 

anticipatory behaviour and global pictures of the world would definitely have an impact on 

the complexity and scalability of any aggression approach. In defence of the local investment 

approach, it is simple to compute and very scalable. 

In summary, a novel aggression function based on the idea of local investment has been 

presented. An implementation was described, and the method was shown to increase the 

performance of a simulated robot team at  a classical transportation task and, in a simplified 

form, in real life with a team of two robots. Though this method has some limitations, it 

should be widely applicable as an interference reduction technique in mobile robot teams. 
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Chapter 5 

Discussion and Future Work 

5.1 The Environment 

Robots are not only embodied but situated agents. They live in a world full of constraints 

that will impose its own limits to what can be achieved or not. 

The local investment method proved to be better than other approaches in most of the 

worlds tested. Still, it may be possible to design an environment in which the scheme would 

not work properly. 

In general, if robots are going to share space with humans it makes sense that their goals 

should be equally obtainable by humans. An architect will not design a building in which 

one thousand people have to compete to get in or out the building through a door where 

only one person can fit; on the contrary it is almost always the case that the environments 

where we live or work have been designed in a way that interference is reduced. Robots 

working in this type of environment would benefit from the design principles we have created 

for ourselves. 

It may be the case that a local approach is good enough when dealing with human 

environments. For this to be confirmed many experiments should be performed in realistic 

human environments. 

5.2 The Use of Communication in Worm Fights 

In the experiments presented in this thesis it was found that one of the emergent properties 

of the rational schemes used was the formation of worms of robots. These worms of robots 
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Halfway Point 

Figure 5.1: The left-most robot is travelling to the right while a worm of white robot,s is 
travelling to t,he left, it is more economically rational to allow the worm of robots to win the 
fight. however the local investment and global investment methods would make the black 
robot win the fight. 

would usually last for some time and then break apart, mainly because of the shape of 

the environment and fights with robots going in opposite directions. The robots, however: 

were blind t,o the fact of being part of a worm or not. and therefore incapable of using such 

property to set their aggression. 

[24] and [45] support the idea that in some pack aninlals like lions and baboons: the 

size of the pack affects the level of aggression of the individuals. This ability requires tJwo 

characteristics to happen: ( i )  they need to recognize members of the pack, and ( i i )  they 

need a way to read and conln~unicate t,heir intentions to other members of the pack. 

[52] presents some interesting t>heories into the roles of 'own' (the hyenas' pack) and 

'others' (other predators like lions, etc). Their evolution experiment showed that the most) 

successful agent's were not only the most aggressive but also the ones capable of differeiiti- 

ating between own and others. 

Following nature's suggestions, a worm of robots could have an aggression equal to a 

function of the aggressions of its individuals; this would give a real advantage in lights 

against individual robots (Figure 5.1). To enable this type of behaviour the robot,~, similar 

to hyenas. would need to recognize the members of their worm and their aggression levels. 

This could be implen~ented in the real world by means of fiducial id's and comn~ur~ication 

capabilities like a network or some more stylized sensing capability (after all, hyenas do not. 

have any wireless network to con~nlunicate, they do it through their sensorial inputs. sniell, 

vision, hearing etc.). 

The hypothesis is that a conlmunication scheme in which robots in a worm can add up 

their aggression t~nd make the first robot in the morn1 as aggressive as the pack would have 

a direct impact in the perforlnance of a team of robots, either because the system saves 

energy or because more resources are transported in a unit of time. 
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5.3 Different Types of Robots 

The aggression scheme proposed in this thesis has been tested in real robots. However, 

the robots were the same (Pioneer-3DX). One of the hypotheses presented in the methods 

used in this thesis, as well as in [57], is that the scheme could be used by robots with 

similar sensory-motor capabilities. This is a test that has not been done yet but should 

work correctly. 

Another more interesting option would be to mix different types of robots as part of 

the same team. Previously, the utility of aggression in real animals has been discussed but 

animals do have one more characteristic that the experiments with the Pioneers did not 

have; in nature the aggression level of an animal usually is indicative of its condition and 

possible performance (in gathering food, or securing an area, etc). The leader of a pack of 

wolves is the strongest of them. In the case of the experiments presented here there is no 

difference in the capabilities of the robots they all are clones and as long as they have new 

batteries, they all perform the same way. 

If robots with different configurations (speed, energy consumption, etc), have to work in 

a team then the complexity of defining how to set an aggression function is increased. This 

is probably a more realistic case in the future where different types of robots will have to 

coexist and work together. It also opens up the space to include humans or animals as part 

of the cooperative force. 

5.4 A Theory of Mind 

In a multi-robot experiment, it is not a requirement that all robots set their aggression in 

the same way even if they are physically similar (i.e. all of the robots are Pioneer-3DX). How 

would it be possible to have a team of different robots in which their aggression functions 

are unknown for the other robots, and yet achieve the maximum amount of work possible? 

Such system would need to have learning capabilities. Robots could learn the way others 

fight through their interactions and slowly increase the performance of the team. A small 

extension to such method could enable robots to anticipate the outcome of a fight and give 

the right of way without ever fighting, if knowing that with a high probability the battle was 

going to be lost. The prediction capability would improve the performance of a system from 

a conservation of energy perspective, and perhaps even in the amount of work done by the 
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team. Animals do possess this type of anticipatory behaviour when fighting, an example 

being the case of cheetahs abandoning hunted prey to hyenas without even bothering to 

defend it. 

The hypothesis is that a robot that can anticipate the way another robot is going to 

fight, will be more successful than one that does not have such ability. 

5.5 Other forms of fight 

In this thesis, two different implementations of fights were shown, the first one inherited 

from the work in [57] where it was named 'inverse chicken game'. This type of fight was 

used in all the simulation experiments except the ones in the 0 world, because the fight 

had some problems with small environments (See section 4.5.2). A second type of fight was 

created based on the concept of a 'staring contest'. Experiments in the real world proved 

the feasibility of fighting and the possibility of using either of the fighting techniques in real 

situations. 

Another aggression communication technique explored but not used was through the 

use of sound. This is interesting because it also seems to be used in nature (i.e. roaring 

contests in red deer [16]). The loudest or highest frequency could mean the strongest in a 

confrontation. 

It is nevertheless the case that many other abstractions of a fight could be implemented 

in real life. This is an open area for research that should be explored. 

5.6 A global fight 

Despite its success, the local investment scheme has the main limitation of being local and 

therefore blind to what is going on in the whole world. Other rational methods presented in 

this thesis and in [57] have the same problem. If robots had a map of the world and knew 

the location of themselves and all the other robots, more efficient ways of solving fights could 

be obtained. In defence of the local approach, it has the benefit of being almost infinitely 

scalable because there are no requirements for communication, id's or special sensors. A 

global method, on the other hand, would require communication and id's for the robots and 

therefore would not be feasible for large teams of robots. 

Still, in situations where the number of robots is known to be small, approaches to 
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fighting that involve global planning should perform better than any local method. 

5.7 Territorial Subdivision 

In [21] a territorial multi-robot task division was presented. The work in this thesis as well 

as in [57], assumed that robots were not able to pass resources from one to another. But 

what if that were not the case? What if robots could indeed pass resources from one to the 

other? 

Given an environment and a number of robots working in it, it may be that to maximize 

the work done by a team of robots, a combination of territorial division and the fighting 

schema presented in this thesis is required. This is an area not yet explored and at a first 

glance looks like a complex problem to solve. 

5.8 Evolution and the Theory of Games 

In Maynard-Smith [40], a study into game theory and its relation to animal behaviour is 

presented. Most of the applications of evolutionary game theory in the book are directed to- 

wards animal contests and therefore are quite related to the problem of multi-robot systems 

working in the same space, as is presented in this thesis. 

In the different methods for selecting the robot's aggression presented in this thesis, 

their goodness is supported by the execution of different experiments that measure the 

performance of each technique. Questions arise such as: What if one of the robots decides 

to cheat and always displays as a very aggressive agent? What is the best way of setting an 

aggression when different robots may follow different strategies? What if robots know their 

aggressions beforehand?, etc. It may be that these scenarios can be modeled as games, if 

this is the case, game theory could provide answers to these questions. In [53] game theory 

is used to prevent parasitic behaviour in an ad-hoc network; a nodelagent will do equally 

well if cheating than if not cheating, therefore there is no advantage in cheating. The use 

of game theory is not explored in this thesis and considered out of scope. Nevertheless, it 

should be approached in future research. 

Also in [40], it is shown that in a conflict of "Doves against Doves", a Dove will with- 

draw from a contest against another Dove at a random time causing each Dove to win half 

of its battles. However one important characteristic of the randomness of the times that 
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each Dove waits before withdrawing from the contest is that it follows an exponential dis- 

tribution. This causes the majority of conflicts to be solved quickly, while a small amount 

of them take longer, reducing the costs associated to the display behaviour. In the work 

here and in [57], the level of aggression is set randomly between a minimum and maximum 

values, but the distribution is linear. This suggests a new hypothesis; that the use of an 

exponential distribution will improve the performance of a multi-robot system that uses 

random aggression. 

Another important characteristic of the experiments in this thesis is that the number of 

robots in the system is quite small; other authors have considered types of games in which 

the populations are finite and small [49]. 

In the case of the local investment method, it could be approached from a theoretical 

game perspective as a contest with 'variable rewards'. In this type of contest each robot 

inside an area of interference knows the cost of the resource. For example, if a robot has 

spent 10 seconds passing a narrow corridor, the cost of the resource would be the time of 

backing up plus the time of coming back to the location where it originally was. This can be 

approximated to twice the time it has already spent (20 seconds). If another robot coming 

in an opposite direction has only spent 5 seconds, the cost for that robots would be 10. 

Another possibility for the type of problem shown in this thesis is to view every fight 

as a competition between an agent and the rest of the population. This type of conflict 

is called 'playing the field', the rules of these conflicts are different to those for one-to-one 

conflicts. 

5.9 Standard Deviation in the Results 

In some of the experiments presented in this thesis large standard deviations were obtained. 

Next is a list of the reasons why this is the case: 

1. The robot controller used in the simulation experiments in Chapter 3 is not extremely 

robust. In defence, one could say that it is easy to have a single robot moving in an 

environment. It is quite a lot more complicated to have a large number of robots in 

an environment in which the designer intentionally wants the robots to interfere a lot 

with each other. This is a special case of the experiments in this thesis and generally 

not the case for most other robot experiments. 
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2. One of the goals of the work presented in this thesis was to show that a rational 

aggression mechanism allows a group of robots to achieve more work. It is not the 

goal (at least in the first part of the experiments) to develop the most robust navigation 

controller. This is clearly something quite complicated on its own and not the purpose 

of this thesis. 

3. Though the starting condition of the experiments was always the same, the simulator 

worked in an asynchronous way. This made the results vary from trial to trial. 

4. Through the execution of more and longer trials it would have been possible to reduce 

the standard deviation. Because of time issues this was not feasible. 

Even with some large standard deviations the results presented in this thesis are statis- 

tically significant. 



Chapter 6 

Conclusion 

Next is a list of original goals of this thesis followed by a section comparing the goals vs. 

the results obtained in the different experiments. 

Goals: 

1. Find a rational aggression mechanism that is decentralized, independent of a naviga- 

tion strategy, makes use only of existing sensors (sonar and laser), works in heteroge- 

neous robots systems, and is simple to compute. 

2. Show that a rational aggression mechanism outperforms a random scheme in a team 

of robots. 

3. Show that the robots using the aggression mechanism are autonomous and do not 

require human intervention. 

4. Demonstrate that a stereotypical competition, inspired by animal behaviour, can be 

implemented in the real world. 

5. Show that the results obtained in simulation are carried to the real world. 

6. Show that a rational aggression mechanism is robust and performs well in different 

world configurations. 

The rational aggression methods proposed in this thesis are both decentralized and in- 

dependent of a navigation strategy as can be seen in the experiments done in the 0 shaped 
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world where a different robot controller was used. Only existing sensors (sonar and laser) 

have been used, the robots did not require the use of id's or any network device. Though 

not tested in other robot platforms, the investment methods should be usable by any robot 

with similar sensing capabilities to the Pioneers-3DX. [Goal 11 

The only additional requirement for the implementation of the investment based meth- 

ods, when compared to the previous best approach (random aggression), is the use of a 

counter that, in the case of global investment, is increased until a goal is reached, and in the 

case of local investment, is increased while in a narrow space. In both cases the methods 

are easy to compute and the overhead on the robots is minimal. [Goal 11 

In this thesis the best method found for deciding the aggression of a robot, 'local invest- 

ment', has been shown to perform better than any other previous method including global 

investment and non-rational methods. The global investment method also performed better 

than random but several modifications to the world were required. This suggests that the 

global investment method may not be robust to real world situations. On the contrary, the 

local investment method proved to be good in three different environments. It is believed 

that the local investment method is more robust and could be used in many real situations. 

As discussed previously, experiments in many other environments should be done in order 

to be more certain about the robustness of the local investment approach. [Goals 2 and 61 

For the length of the trials, the robots in simulation and in the real world experiments 

were completely autonomous; they did not require assistance at all. This is part of a long- 

term goal of having robots in the world doing real things in an autonomous way. Also, for 

the first time a stylized competition inspired by animal behaviour has been implemented 

in real robots. The first type of fight, based on the concept of 'inverse chicken game', had 

spatial disavantages that required the use of a different type of fight. The 'staring contest' 

fight was able to cope with the limited space in the 0 shaped world and proved to be robust 

for the total length of the experiments. [Goals 3 and 41 

Simulation was used extensively in the development and testing of the robot controllers 

used in the real Pioneer-3DX robots. In the end, the robot controller used for both the 
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simulation and the real world experiments was the same, it only differed in some tuning pa- 

rameters (distances to obstacles and other robots, etc). The results obtained in simulation 

were carried to the real world experiments. Though the numbers were not an exact match, 

they were similar and, most importantly, the relations between who did better or worse in 

simulation were the same. [Goal 51 

In summary, the best rational aggression method found so far, based on the idea of 

local investment, has been presented in this thesis. The method was shown to increase the 

performance of a simulated robot team at  a classical transportation task and, in a simplified 

form, in real life with a team of two robots. The local investment method worked well in 

three different environments. Also in this thesis, the first real implementation of a stylized 

competition to solve spatial interference problems has been presented. Though the methods 

and techniques presented here have some limitations, they should be widely applicable. 



Appendix A 

Brown's thesis 

Brown is a co-author of [14] which is highly referenced in this thesis, especially in Chapter 3. Her 

thesis is complementary to my work and is being produced simultaneously as part of the Rage project 

[47]. Her thesis abstract is reproduced here as an indication of the scope and goals of her work. 

Using Emotion and Mood in Robots to  Cope with Dynamic 
Environments 

Abstract of MSc thesis Simon Fraser University, 2005 

Sarah Brown 

Emotions in humans are responses to the environment and are often very useful. For example, 

the fight or flight response to something frightening prepares people to defend themselves or run for 

self-preservation. While emotions have a direct cause, mood is more diffuse and can be thought of 

as a more generalized feeling which relates to how well things have been going for a person. Mood 

tends to affect a person's emotional response to their environment. Typically, though not always, 

negative moods foster negative emotions, and vice versa. 

This thesis describes a controller, built upon the research in [57], which incorporates the need 

for energy into the transportation task. Unlike this previous work, the environment in which the 

robot must operate changes over time as robots and obstacles are added into and removed from the 

environment. In order to cope with the changing environment, the controller incorporates the notion 

of emotion and mood. 

Emotions are triggered by specified events in the system, such as transporting an item or en- 

countering another robot at the recharging station. These emotions are then used to not only select 

the most appropriate response to the event, such as the level of aggression in a fight, but contribute 

to  the mood of the robot. 



APPENDIX A. BROWN'S THESIS 

The purpose of mood is to provide a long term notion of how difficult the environment has been 

for the robot. Mood is used to then affect how emotions are triggered and to what degree, much like 

in people. Mood is also used to regulate transitioning between the transportation task and the need 

for energy. A bad mood indicates that the environment has been more challenging than normal and 

so the robot should recharge more often to prevent the batteries from running out due to difficulties 

in reaching a charging station. 

A standard controller with a static threshold for recharging is compared against the same con- 

troller, but with emotion and mood elements in a simulated environment and evaluated with respect 

to how many items are transported. 



Appendix B 

Z hang's thesis 

Zhang is a co-author of [14] which is highly referenced in this thesis, especially in Chapter 3. His 

thesis is complementary to  my work and is being produced simultaneously as part of the Rage project 

[47]. His thesis abstract is reproduced here as an indication of the scope and goals of his work. 

A reinforcement learning method for choosing the best aggression 
Abs t rac t  of M S c  thesis Simon Fkaser University, 2005 

Carl Zhang 

A team of decentralized robots performing a transportation task in a shared space may suffer 

from spatial interference, which can severely reduce the effectiveness of the team performance. In 

[57], a stereotyped competition was applied to  break the deadlock when two robots had a face-to- 

face confrontation in a narrow space that allows only one robot to  pass. However, regarding the 

improvement of overall team performance, none of the methods demonstrated in [57] for selecting 

a robots aggression level performed better than selecting aggression at  random. In my research, I 

am trying to  find out the correlation between the aggression of a robot and the current state of its 

external environment, modeled by the robots sensor readings and total time it has invested in the 

transportation task. A recurrent network is used. The network takes a robots sensor readings as 

inputs and outputs the robots aggression. Feedback connections of the recurrent network make it 

possible for the robot to have a short-term memory of its previous states. Weights of the edges that  

connect input nodes to output node can be adjusted when the state of the external environment 

changes. Reinforcement learning is applied, and it allows a robot to  learn to  choose the best aggres- 

sion selection strategy during transportation task via trial-and-error. Also, an  environment that is 

more realistic and complex than the one in (571 is used. 



Appendix C 

Distribution of t 

Table C.l: Distribution of t (two tailed) 
Probability I 



Appendix D 

All the experiments performed in this thesis are done using the PlayerIStage robot development and 

simulation system [23]. 

Player is a commonly-used server and abstraction protocol [56] that connects a user-defined 

control program to the sensors and the actuators on a mobile robot. Stage is a robot simulator that 

provides multiple virtual robot devices to Player. 

The Stage models approximate ActiveMedia Pioneer-3DX robots. Their dimensions are 44cm 

long and 33cm wide, and they are equipped with front and rear sonar rings, and a SICK laser range 

finder. 

Player and Stage are freely available under the GPL from: 

http://playerstage.sourceforge.net. 
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