
HIGH LEVEL SPECIFICATION OF A GEOGRAPHIC
ROUTING PROTOCOL FOR MOBILE AD HOC

NETWORKS

Xianghua Jiang
B.Sc., University of New Brunswick, 2002

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of

Computing Science

O Xianghua Jiang 2004

SIMON FRASER UNIVERSITY

Fall 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name:

Degree:

Title of Project:

Xianghua Jiang

Master of Science

High Level Specification of a Geographic Routing
Protocol for Mobile Ad Hoc Networks

Examining Committee:

Chair: Petra Berenbrink
Assistant Professor, Department of Computer Science

Uwe Gleasser
Senior Supervisor
Associate Professor, Department of Computer Science

Martin Ester
Supervisor
Associate Professor, Department of Computer Science

Qianping Gu
Internal Examiner
Associate Professor omepartment of Computer Science

Date DefendedIApproved: September 13", 2004

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work,
has granted to Simon Fraser University the right to lend this thesis,
project or extended essay to users of the Simon Fraser University Library,
and to make partial or single copies only for such users or in response to
a request from the library of any other university, or other educational
institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to
keep or make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of
this work for scholarly purposes may be granted by either the author or
the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain
shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private
scholarly use, of any multimedia materials forming part of this work,
may have been granted by the author. This information may be found on
the separately catalogued multimedia material and in the signed Partial
Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and
signed by this author, may be found in the original bound copy of this
work, retained in the Simon Fraser University Archive.

W. A. C. Bennett Library
Simon Fraser University

Burnaby, BC, Canada

ABSTRACT

Mobile ad hoc networks (MANETs) are designed for wireless communication and require

no fixed infrastructure as the mobile hosts also perform routing tasks. The high dynamics of such

self-organizing networks require routing strategies substantially different from those employed in

static communication networks. Because of the high mobility and limited resources in MANETs,

designing an efficient and reliable routing strategy becomes a very challenging problem and

received a lot of attention in recent years.

Although there are various protocols of MANETs, they are all described in a theoretical

basis. From a software engineering point of view, the theoretical aspects are often very hard to

understand by a software development team. Also, the cost of implementing such protocols in

order to compare the performance of various protocols is too high. Therefore, the idea of trying

to use high-level executable specification languages came into our mind.

We define a distributed abstract state machine (DASM) model of the network layer

protocol for mobile ad hoc networks. We represent a DASM model and a high-level SDL

specification of a layered communication architecture for an efficient geographic routing protocol

for mobile ad hoc networks (MANETs). Our goal of modelling the protocols with ASMs is to

support the definition and validation of wireless communication protocols and implementations

based thereon. Our objective to define high-level specification with SDL for the protocols is to

sharpen loosely defined system requirements into an architectural specification serving as a

formal basis for analysing key system properties by analytical means and experimental validation

using commercial SDL tools.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Uwe Glasser, for his supervision and guidance in

the preparation of this project. Also, thank committee members, Dr. Petra Berenbrink, Dr. Martin

Ester and Dr. Qian-Ping Gu's advice for me to finish this project report.

I would like to thank my parents and my sister for their support and encouragement.

TABLE OF CONTENTS

Approval .. ii
... Abstract ... ill

.. Acknowledgements iv

Table of Contents ... v

List of Figures ... vi

1 Introduction .. 1

2 An Overview Routing Protocol in Mobile Ad Hoc Networks 3

3 An Efficient Geographic Routing Protocol .. 5
... 3.1 Distributed Location Service 6

3.2 Position Based Routing ... 7

4 Abstract Network Model With Dasm ... 9
4.1 Communication Infrastructure ... 9
4.2 Abstract Communication Model ... 10

... 4.2.1 Position Based Routing 12
... 4.2.2 Detection of Nearest Neighbours 12

.. 4.2.3 Packet Routing -16
... 4.2.4 Distributed Location Service 17

............................... 5 SDL Specification of a Layered Communication Architecture 21

5.1 Overview of the Specification and Description Language (SDL) 21
.. 5.1.1 System Behaviour 22

.. 5.1.2 System Structure 22
5.1.3 Abstract Data ... 24

............ 5.1.4 Diagram of System. Block, Process. Procedure and Substructure 24
5.2 SDL Specification of a Layered Communication Architecture 28

... 5.2.1 Position Based Routing 32
... 5.2.2 Detection of Nearest Neighbors 32

5.2.3 Packet Routing ... 33
... 5.2.4 Distributed Location Service 36

6 Discussion and Conclusion .. 39

... Reference List 41

LIST OF FIGURES

... Figure 1 Layered communication architecture 6

Figure 2 Sector si (p) with nearest neighbor ni(p) .. 7

Figure 3 Logical structure of packets for the communication between protocol
entities ... 11

.. Figure 4 Interaction between system and environment 21

Figure 5 System behaviour [8] .. 22
Figure 6 Structuring a system into blocks and processes ... 23

Figure 7 Structure of SDL system .. 23
Figure 8 Structuring a block into process types .. 24

.. Figure 9 Newtype Node 24
... Figure 10 System diagram 25

Figure 11 Block Diagram ... 26
... Figure 12 Process diagram 27

... Figure 13 Procedure diagram 27
... Figure 14 Layered communication model 28

Figure 15 Networking service architecture .. 30
... Figure 16 Position based routing 31

.. Figure 17 Neighbour detection cycle and packet forwarding 33

................................... Figure 18 Neighbour detection cycle and packet forwarding (ctd) 35

Figure 19 Neighbour detection cycle and packet forwarding (ctd) 35
... Figure 20 Distributed location service 36

Figure 21 Distributed location service (ctd.) .. 37

Figure 22 HandleLocationReply procedure ... 38

1 INTRODUCTION

Formal models and methods can be very useful in practical software development.

They are used to reveal ambiguities, incompleteness, and inconsistencies in system requirements

specifications. "For a method to be formal, it must have a well-defined mathematical basis,

typically given by a formal specification language." [9] The group on Foundations of Software

Engineering at Microsoft Research has developed the high-level executable specification

language Asml based on the concept of abstract state machine (ASM). Asml supports

specification and rapid prototyping of object oriented and component oriented software. [6] It is a

successful practical instrument for systems design. ASMs are also used in a current ITU-T

standard to formally define the semantics of the Specification and Description Language (SDL), a

widely used specification language in the telecommunications area. In our project, we define a

distributed abstract state machine (DASM) of an efficient ad hoc geographic routing protocol for

mobile ad hoc networks (MANETs) proposed by A. Benczur and T. Lukovszki [l] and present a

high-level specification of a layered communication architecture for this routing protocol based

on SDL. Our goal of modelling the network layer protocol with ASML is to support the

definition and validation of wireless communication protocols and implementations based

thereon. The resulting behaviour model forms a formal basis for developing executable

specifications and can serve as a platform for experimental validation of key system attributes and

exploration of alternative design choice. Our objective in defining high-level protocol

specifications with SDL is to sharpen loosely defined system requirements into an architectural

specification serving as a precise basis for analysing key system properties by analytical means

and experimental validation using commercial SDL tools.

In Section 2 of our report, we give an overview of routing protocols in MANETs. In

Section 3, we describe an efficient geographic routing protocol for MANETs which was proposed

by A. Benczur and T. Lukovszki [I]. In Section 4 and 5, we respectively define a DASM model

and an SDL model for the geographic routing protocol. In Section 6, we give a discussion and

some conclusions.

2 AN OVERVIEW ROUTING PROTOCOL IN MOBILE AD
HOC NETWORKS

MANETs are designed for wireless communication and require no fixed infrastructure as

the mobile hosts also perform routing tasks. Typical applications, for instance, are the

establishment of connectivity among handheld devices or between vehicles. The high dynamics

of such self-organizing networks require routing strategies substantially different from those

employed in static communication networks. Storing and updating large routing tables at mobile

hosts would congest the network with administration packets very fast. Because of the mobility

and limited resources such as transmission power and bandwidth in MANETs, designing an

efficient and reliable routing strategy becomes a very challenging problem.

Routing protocols in MANETs can be classified into three different groups: table-

drivedproactive, demand-driverheactive and hybrid. In the proactive protocols, each node

maintains routing information to every other node in the network. The routing information is

usually kept in a number of different tables who are periodically updated if the network topology

changes. It attempts to keep an up-to-date topological map of the entire network. With this map,

the route is determined immediately when a packet needs to be sent. In reactive protocols, a route

determination procedure is invoked on demand when a packet needs to be forwarded. These

routing strategies were designed to reduce the overheads in proactive protocols by maintaining

information for active routes only. [lo]

Both proactive and reactive routing has specific advantages and disadvantages. The

proactive routing maintains information up-to-date, so that the delay before sending a packet is

minimal. On the contrary, the reactive routing has to determine the route first, which may result

in considerable delay if the information is not available from caches. It also inefficiently floods

the entire network with administrative packets for route determination. However, the proactive

routing uses a large portion of bandwidth to maintain routing information up-to-date. [lo]

The hybrid routing strategy is designed to increase the scalability by combining the

advantages of local proactive and global reactive routing. In hybrid routing protocols, nodes with

close proximity work together to form some sort of a backbone to reduce the route discovery

overheads. This is mostly achieved by proactively maintaining routes to nearby nodes and

reactively determining routes to far away nodes. [lo] Even a combination of both strategies still

needs high communication overhead to maintain routing fabrics in the MANET. This is the

reason why the topological-based routing protocols, including proactive protocols (DSDV,

OLSR, FSR and TBRPF), reactive protocols (DSR and AODV), and hybrid protocols (ZRP) have

not been put into deployment. [7]

Geographical-based routing protocols eliminate some of the limitations of topology-

based routing by using additional information, which are the physical positions of the

participating nodes. With the growing popularity of locating devices (e.g., GPS), it is

economically and technically feasible for the location device to determine its own position. The

task of the geographic location service is to determine the position of the destination which needs

to be included in packet header in addition to its destination address. [7] Then, the packet can be

efficiently forwarded by means of the location information of intermediate neighbours.

AN EFFICIENT GEOGRAPHIC ROUTING PROTOCOL

In our project, we present an efficient geographic routing protocol proposed by A.

Benczur and T. Lukovszki in [I]. This protocol combines the advantages of proactive and

reactive routing. In this protocol, the hypercubic location service (HLS) which considers a very

strong definition of fault-tolerance is used as the location service to find the position of the

destination. Each mobile node consists of a set of distributed nodes that act as its location

servers. Based on the assumption that every node can determine its current geographic position

by using GPS or another type of positioning service, the nodes periodically resend position

information to the location servers by the same routing mechanism used for normal data

transmission. To initiate communication, one finds a location server of the destination node and

obtains its geographic position. A location server can be determined by visiting a well-defined

sequence of nodes such that each node acts as a location server of the next node in the sequence.

Building on the purely theoretical model in [I], basic algorithmic aspects of the protocol

are modelled in the form of an abstract state machine [13]. Since the ASM is the formalism

underlying the formal definition of SDL [12], we further elaborate on the fairly abstract

algorithmic model of ASM constructing an architectural design revealing the core functionality of

this routing protocol for mobile ad hoc networks. It turns out that the SDL paradigm of

modelling complex protocols is particular appropriate for practical purposes.

In [I], the network layer is divided into two separate sublayers, one for a distributed

location service (DLS), and one for aposition based routing (PBR) between known locations, as

illustrated in Figure 1. These two sublayers cooperatively implement the network layer protocol

of a mobile ad hoc network, where the location service is based on HLS as part of a highly fault

tolerant, self-scaling architecture. For resolving interference problems, we assume the existence

of a Media Access or MAC layer, e.g. IEEE 802.11, a commonly used standard.

Transport Layer

Network Layer
..........)-'-

.....
(IEEE 802.1 1)

I Physical Layer

Figure 1 Layered communication architecture

3.1 Distributed Location Service

Conceptually, the DLS sublayer consists of dynamic hypercubic networks [I I] with

random IDS of nodes identifying the mobile devices. Random distribution of node Ids can be

easily achieved by hashing the node's IP or other physical address into the device. Each node in

the network maintains location information of its hypercubic neighbours by periodically sending

its own location to those neighbours. When the location of a node is known, a PBR strategy is

then used to pass messages to that node as outlined below.

To send data from a node u to another node v, first u has to detect the location of the

destination node v as follows. The ID of v can be obtained from the ID of u through performing a

certain sequence of elementary bit operations. This sequence defines a path in the hypercubic

network from u to v. On this path node u then sends a location request to v carrying the ID of

both u and v as well as the location of u.

Since the hypercubic neighbours are storing up-to-date location information from each

other, the location request will be sent to the next node on the hypercube path by position based

routing. When the location request reaches v, then v replies by sending its own location to u

using position based routing. After u has received the position of v it sends the data to v using

position based routing as well.

3.2 Position Based Routing

Based on the assumption that every node can determine its current geographic position at

any time - e.g., by using a global positioning system or GPS - nodes periodically exchange

position information by the same routing mechanism used for normal data transmission.

Basically, any position based routing can be used in combination with the DLS. In [I], the so-

called Yao-graph [3] is proposed as network topology

The Yao-graph Gy(V) = (V,Ey), for a set V of n points in the plane, defines for each p in

V a fixed number k of sectors si(p), i = 0, ..., k-1, that have their origin in p. The orientation of

si(p) is given by the two edges hi(p), h i + l (p) E Ey as illustrated in Figure 2. With each sector

si(p) we associate some nearest neighbour ni(p) E V located within si(p). A nearest neighbour

ni(p) is determined based on the Euclidean distance from p to ni(p).

Figure 2 Sector si (p) with nearest neighbor ni(p)

The Yao-graph neighbours can be determined efficiently in a distributed and power efficient

manner, which is to find a route whose energy consumption is within a small constant factor of

the optimal route [15]. This distributed construction assumes that the mobile nodes use directed

radio and that they can increase the transmission power within the sectors until at least one node

replies y sending an acknowledge signal containing the geographic position of this node. Here

we assume for simplicity that each node is within the maximum transmission range of each other

node.

4 ABSTRACT NETWORK MODEL WITH DASM

We consider an asynchronous communication architecture consisting of some finite

number of mobile hosts interconnected through a wireless communication network. The global

topology is formed by viewing the mobile hosts as nodes of the network. Each node has the

ability to act as communication endpoint and as router at the same time. The network is ad hoc

and as such changes its topology frequently and without prior notice. Nodes interact with each

other by asynchronously sending and receiving packets of variable length.

We construct our DASM network model serves as a basis for further development and

experimental validation. For a rigorous mathematical definition of the underlying computation

model, we refer to the original literature on the theory of ASMs [16]. Also see a tutorial

introduction to the DASM paradigm of systems modelling [131.

4.1 Communication Infrastructure

We define the total number N of nodes as a parameter of the communication network.

Because of the mobility aspect in MANETs, each node determines its current position through the

use of locating device, for instance, such as a GPS receiver. In a fixed global space, each node

has a unique IDfaddress by mapping some physical addresses, e.g. such as Internet host names, IP

addresses, or MAC addresses to the node idsfaddresses by some hashing function. We can

mapping from nodes to some abstract domain of position and addresses via the pos and address

function respectively. We define domains and functions with AsmL as follows [2]:

Domain NODE = { n1 , ... , I'ZN 1

Domain POSITION, monitored pos : NODE -> POSITION

Domain ADDRESS, address : NODE -> ADDRESS

Behaviours of network protocol entities are represented by an asynchronous computation

model in the form of the DASM agents. As described in Section 3, the network layer consists

two sublayers: DLS and PBR. Then, each node has two autonomously operating agents to

execute these two programs as stated in Section 3 by a unary dynamic function program defined

on agents. Thus, the domain AGENT includes two sets: DLS and PBR. [2]

Domain AGENT = DLS u PBR

node : AGENT -> NODE

There are three different kinds of operating status of a node in any given state of the

network: switched on (active), switched off (passive), or undefined (crashed). We introduce

monitored function status and now to represent the current status and the time as measured by

some local clock on the node respectively. [2]

Domain STATUS = {switched-on, switched-off, undefined}

Domain TIME

Monitored status : NODE -> STATUS

now : NODE -> TIME

4.2 Abstract Communication Model

Nodes send and receive packets consisting of two basically distinct parts, a packet header

and the actual payload, as illustrated in Figure 3. The header has a fixed structure consisting of

components identifying: the final destination node Dest, the next receiver node Rcvr (next hop on

the way to Dest), the sender node Sndr, and the packet type Type. Each of these node references

in a packet header specifies a node address and its geographic location. For representing those

node references, we introduce the abstract data type NREF. [2] "The distinction between node

references and nodes is crucial since nodes can continuously update their location information,

whereas node references do not change while a packet is in transmit." [14]

Domain PACKET

Domain NREF,

sndr, rcvr : PACKET - > NREF

Packet
,-.-...........-................-............-............--.-............--...........--............----.....

Header

................... .- ..

Figure 3 Logical structure of packets for the communication between protocol entities

"There are three basically different types of packets, namely: (1) detection packets, which

are meaningful for the position based routing only; (2) discovery packets, which are meaningful

for the distributed location service only; and (3) data packets. For detection packets, we further

distinguish between neighbour requests and neighbour replies. Similarly, for discovery packets,

we distinguish between location requests and location replies." [2]

Domain DETECTION = {neighborRequest, neighborReply}

Domain DISCOVERY = {locationRequest, locationReply}

Domain DATA

type : PACKET -> PACKETTYPE = DATAPACKET V DETECTION u DISCOVERY

According to the vertical view of communication, adjoining layers directly interact with

each other through service access points. The network layer interacts with the MAC layer and the

transport layer. Similarly, the position based routing, or PBR, interacts with the distributed

location service, or DLS. Such interactions are restricted to the operations as provided by the

service primitives of a service access point. We use here two kinds of service primitives: (1)

forwarding a single packet to the next higwlower layer; (2) receiving a single packet from the

next higwlower layer. [2]

4.2.1 Position Based Routing

As described in Section 3, we associate with every node a fixed number k of sectors. The

neighbour function is used to identify the nearest neighbour through a dynamic mapping from

node sectors to corresponding node references. We define Euclidian distances on the plan as the

DISTANCE domain and introduce a binary operation distance to calculate the distance between 2

nodes. [2]

domain SECTOR = { ... k-1)

neighbour : NODE -> (SECTOR -> NREF)

Domain DISTANCE

distance : POSITION x POSITION -> DISTANCE

4.2.2 Detection of Nearest Neighbours

The search for the nearest neighbours of a given node splits into k independent search

operations, one for each of the k node sectors. In order to prevent the interference between

different sectors, the sector information is encoded into the data part of the detection packets by

means of sector function. [2]

sector: PACKET - > SECTOR

Nodes periodically update the information about their neighbours as the position of the

nodes change dynamically. The frequency of updates depends on various parameters. We use the

updateNeighborEvent to trigger the start of the detection cycles. Also, we have to store the

intermediate new neighbour results until the completion of a detection cycle. [2]

monitored updateNeighborEvent : AGENT x SECTOR -> BOOL

newNeighbor : NODE -> (SECTOR -> NREF)

Each sector of a node has its own timer operating under control of the PBR agent of that

node. A timer operation is used to specify the expiration time for a detection cycle. The time

function is used to access the time stamp of the packet. A timer with time value t, now <= t <

.. , is considered to be active. The actual time form for detection cycles is represented by a

distinguished element duration from a static domain of finite time intervals. [2]

time: PACKET -> TIME

timer : AGENT x SECTOR -> TIME U { co }

Domain DURATION,

duration : DURATION

We can now define the rules for nearest neighbour detection that are executed by PBR

agents as part of the PositionBasedRouting program. In the below rules, ag refers to a DASM

agent from PBR. [2]

nearestNeighborDetection =

let node = ag.node, position = ag.node.pos, time = ag.node.now

forall s in SECTOR

//start new detectioncycle

if UpdateNeighborEvent(ag,s) then

IssueNeighborRequest(s, position,time)

NewNeighbor (node)(s): = undef

timer(ag,s): = now(node) + duration //set timer

if now(node) >= timer(ag,s) then //detection cycle timeout

if newNeigbor (node) (s) E NREF then

/ / assign finalresult

neighbor (node) (s) : = newNeighbor (node) (s)

timer(ag,s) := w //reset timer

On the position based routing layer, the detection packet including neighbourRequest and

neighbourReply are handled by two different operations, namely: handeNeighbourRequest and

handleNeighbourReply. In the handleNeighbourRequest, new neighbour request packet is created

by PBR containing the relevant information, namely: the node address and geographical position,

the sector ID, and a time stamp. This packet then is sent to nodes within the specified sector by

means of the MAC layer. The request and the reply are logically linked by copying information

from request packet into the reply packet. In the handleNeighbourReply, the selection of

neighbour is decided by comparing the distance to a new responding neighbour and the distance

to the nearest neighbour detected so far. [2]

HandleNeighborRequest(p:PACKET) =

extend PACKET with q

extend NREF with r, s

q.rcvr : = r

q. sndr : = s

r.address := p.sndr.address,

r.position : = p.sndr.position

s.address := ag.node.address, s.position := ag.node.pos

q.type := neighborReply

q.time : = p.time //copy time stamp from request packet

q-sector := p.sector

//copy sector information from request packet

Packet-to-MAC(q, p.sndr.position)
I

HandleNeighborReply(p: PACKET) =

let s = p.sector, node = ag.node, pos = ag.node.pos

if p.time >= ag.node.now - durartion then

/ / check distance against intermediately stored nearest neighbour

let a = pos, b = p.sndr.positon, c = position(newNeigbor(node) (s))

if distance (a,b) < distance (a,c) then

newNeigbor (node) (s) : = p . sndr

4.2.3 Packet Routing

The packet can be delivered locally by handing it over the distributed location service

running on the local node or forwarded to the nearest neighbour with sector that matches with the

position of the final destination node. It is decided by the position based routing by comparing the

coming packet's receive node address with the local node address. And the respective nearest

neighbour is computed through the position information of the local node and the destination. [2]

I c o r n p u t e r N e i g h b o r : NODE x P O S I T I O N -> NREF I
As described, the position based routing performs the actual routing task as well as the

control of nearest neighbour detection cycles and the handling of detection requests and detection

replies. Below is the model of the position based routing layer defined through the DASM

program PositionBasedRouting. In the program, ag refers to a DASM agent from PBR. [2]

PositionBasedRouting =

if status(ag.node) = switched-on

NearestNeighborDetection / / run detection cycle in parallel

if Packet-from-MAC (P: PACKET) then

if p.type = neighborRequest then

HandleNeighborRequest(p)

else

if p.type = neighborReply then

HandleNeighborReply(p)

else / / packets other than detection packets

if ag.node.address = p.rcvr.address then

Packet-to-DLS(p) / / deliver packet locally

else / / forward packet to remote destination

if cornputeNeighbor (ag . node, p. rcvr . position) E NREF ther

let v = computeNeighbor (ag.node, p.rcvr.position)
I

Packet-to-MAC(p, v.position) / / Perform next hop

if Packet-from-DLS(p:PACKET) then

Packet-to-MAC (p, p.sndr.position)

else / / node is passive

Skip

4.2.4 Distributed Location Service

As described in Section 3, we associate with each node a set of direct neighbours in the

dynamic hypercube as the distributed location services. The hypercubic neighbour on the way to

the final destination is computed by a given node and a given destination address. Two functions

are defined as following [2]:

hypercubicNeighbors : NODE -> NREF-Set I
nextHyercubicNeighbor (u, a) = v NREF: v 'E
hypercubicNeighbors (u) v. address = computeNextID (u. address, a)

The function computeNextID performs the actual address calculation on the dynamic hypercube.

For brevity, we refer to [l] for the definition of this address calculation.

I computeNextID : ADDRESS x ADDRESS -> ADDRESS 1
Consider some sequence of consecutive packets received from the transport layer. We

assume that the first packet can be recognized by the Boolean-values function on packets and

needs to be stored locally to first determine the position of the destination node before sending it.

121

monitored Firstpacket : PACKET -> BOOL

firstpacket :DLS ->PACKET

A location reply to the location service always matches a pending location request. Thus,

the contained position information of the sender is added to a waiting first packet, which then

eventually can be sent via the position based routing. [2]

When receiving a location request, the location service checks the address of the final

destination. This address is encoded into the data part of the discovery packet. We therefore

introduce a partial dynamic function address defined on packets. [2]

1 address : PACKET -> ADDRESS I
If the final destination address does not match with the local node, we calculate the next

hypercubic neighbor on the way to the final destination and forward the request.

HandleDiscoveryPacket(p:PACKET) =

if p.type = 1ocationReply then / / extract position information

ag.firstpacket.rcvr.position := p.sndr.position

Packet-to-PBR(ag.firstpacket)

if p.type = 1ocationRequest then

if p.address = ag.node.address then / / generate location reply

HandleLocationReply(p)

else / / compute next hypercubic neighbor and forward packet

let v = nextHypercubicNeighbor(ag.node, p.address)

p.rcvr := v / / specify next hop in the hypercube

Packet-to-PBR(p)

We can now define the model of the distributed location service through the below

DASM program DistributedfZocationService.

Distributedf~ocationService =

if Packet-from-Transport(p:PACKET) then

if Firstpacket(p) then / / discover destination position first

DiscoverDestinationPosition(p.rcvr.address)

Ag.firstpacket := p / / intermediately store first packet

else / / destination position is already known

Packet-to-PBR(p),

p.rcvr.position : = ag.firstpacket.rcvr.position

if Packet-from-PBR(P:PACKET) then

if p . type E DISCOVERY then

HandleDiscoveryPacket(p)

else Packet-to-Transport(p)

let v = nextHpercubicNeighbor (ag.node, a)

Extend PACKET with q / / create location request packet

Extend NREF with r, s

5 SDL SPECIFICATION OF A LAYERED
COMMUNICATION ARCHITECTURE

5.1 Overview of the Specification and Description Language (SDL)

SDL is a standardized language for the specification and description of systems. It has been

developed by the ITU-T, the telecommunication standardization body of the International

Telecommunication Union (formerly known as CCITT). In contrast to a program, a formal

specification is not intended to be run on a computer. A specification is a basis for driving

implementations, it abstract from implementation details in order to give overview of a complex

system. In addition to serving as a basis for driving implementations, it can be used for precise

and unambiguous communication between human being. Also, the use of a specification

language makes it possible to analyse and simulate alternative system solutions, which is not

feasible for programming language due to the cost and the time delay. [8]

"SDL sees the world as divided into two parts: the system and its environment" [8]. The

specification defines how the system reacts to events in the environment by signals, see Figure 4.

Network System

Signals

Figure 4 Interaction between system and environment

5.1.1 System Behaviour

The behaviour of a system is constituted by the combined behaviour of its parts - as

represented by a number of processes in the system, see Figure 5. [8] SDL process instances are

extended finite-state machines that work autonomously and concurrently with each other and

interact through exchanging signals.

instance

Signals

8
Figure 5 System behaviour [8]

5.1.2 System Structure

SDL provides mechanisms to structure systems to cope with complexity. In basic SDL, a

system description is structured into block descriptions and process descriptions, see Figure 6. A

system description contains one or more blocks interconnected with each other and with the

boundary of the system by channels. A channel is a means of conveying signals, see Figure 7. A

block contains one or more processes that communicate with each other via signal routes, see

Figure 8. A procedure description can appear in a process description or in another procedure

description.

Block Dkrbibuted Locatiin Senrice L_I__1

Figure 6 Structuring a system into blocks and processes

Prazgo DLS

Figure 7 Structure of SDL system

Procesg DLS Prmer~s DLS

Block Didribubed Location Senrice

Chennel Channel

Figure 8 Structuring a block into process types

5.1.3 Abstract Data

SDL uses a concept of abstract data type which is quite different from the data types used

in programming languages. For example an integer defined in SDL corresponds to the

mathematical concept of integer and is not limited by the computer to 16 or 32 bits. Also, the

user is able to define new operator which is not possible for most programming languages. For

example, we define new type node in our project as follows:

Figure 9 Newtype Node

5.1.4 Diagram of System, Block, Process, Procedure and Substructure

A system diagram usually contains system name, signal descriptions, channel

descriptions, data type descriptions and block descriptions, see Figure 9. A signal description

contains a signal name and the types of values conveyed by the signal. A channel description

contains a channel name, a list of signal names for signals that can be transported by the channel.

Figure 10 System diagram

Block I

A block diagram usually contains the block name, signal descriptions, signal rout

descriptions, channel-to-route connections and process descriptions, see Figure 10.

Figure 11 Block Diagram

A process diagram usually contains a process a name, formal parameters, variables

descriptions, timer descriptions, procedure description and process graph, see figure 1 1. In SDL

there are 6 basic constructs for the description of a process: start, input, current state, output, next

state and return as illustrated in Figure 11.

State 'i
Return 1 Symbol

Procedure
Parameter

Figure 12 Process diagram

A procedure description is similar to the process description except for the start and

return symbol (see Figure 12).

Figure 13 Procedure diagram

5.2 SDL Specification of a Layered Communication Architecture

Intuitively, we deal with two different views of communication, commonly referred

to as horizontal view and vertical view. Direct communication between peer protocol

entities (i.e., entities residing within the same layer) at different nodes is called horizontal

communication. This form of communication is only virtual and effectively realized by

the lower level network layers, as illustrated in Figure 13. For this purpose, the MAC

layer renders a corresponding service to the network layer. This service is accessible

through well-defined interfaces, called service access points. Similarly, the network layer

renders its service to the next higher layer, the transport layer. Communication between

different layers of the same node is called vertical communication. This form of the

communication is restricted to adjoining layers.

--
-i Transport 1

i : i
[MAC I MAC i. . , ,

Figure 14 Layered communication model

In SDL, we model the network protocol through a system Network describing its

behaviour on several different levels of abstraction in the form of a multi-layer architecture. The

principles of layering require a strict hierarchical organization. Any interactions between layers

are restricted to the operations as provided by the service primitives for the service access points

of a service. To establish the service that a given layer n renders to the next higher layer n+l, the

underlying protocol employs the functionality encapsulated within the service at the next lower

layer n-1. As such, the principles of layering resemble those of information hiding [5] .

The SDL language supports the hierarchical definition of communication architectures

through combined block specifications containing a block substructure in addition to process

specification [8]. Combined block specifications express alternative views when looking at a

block from different perspectives. Abstractly, a block specification may be viewed as containing

only processes when dealing with behaviour. A contained block substructure then specifies an

implementation of this behaviour through a collection of interconnected blocks, which in turn

may contain block substructures, thus allowing for stepwise refinements. Structurally, both

views of a combined block specification share the same external interfaces.

Our Network architecture consists of a single block DistributedLocationSewice that

interacts with the external environment through the service primitives of the service access points

as illustrated in Figure 14. The combined block specification of this block provides an abstract

behaviour specification as well as an implementation of this behaviour in terms of a block

substructure DLS-Protocol. The latter is defined by the block type DLSunit based on the PBR

service encapsulated in the block PositionBasedRouting. The specification of the block type

DLSunit introduces a process DLSunit using two procedures for discovering destination positions

and handling of location replies respectively.

We illustrate the further structural decomposition of the block PositionBasedRouting into

protocol entities whose behaviour is defined by the underlying SDL processes. Again, this calls

for a combined block specification. The behaviour of this block is abstractly defined in terms of

two PBR processes interacting by exchanging protocol data units (horizontal communication).

The block substructure PBR-Protocol specifies an implementation effectively mapping those

protocol data units to service data units of the underlying MAC service (vertical communication).

This is illustrated in Figure 15.

W r n Network A [Datalnd] ' [~atalnd] 2(21
DLSJransportl DLS-Transport2

[~ a t a ~ e q] [~ a t a ~ e q]
address Address;

w w
postion Position; DistributedLocationService 1

I I operators
nref: Node -r NREF;

endnewtype Node; ... I I [NodePosition 1 [~ode~osition]

Block

r Datalnd 1 [DatInci] f
DLSsap2-Route

DLSI-ternal
DLS2 : DLS

DLS-Transport1 DLS-Transport2

Substructure DLS-Pr
gatalnd] [~atalnd] l (1)

[(P~~~ata lnd)] T [(~B~~ata lnd)]

PBRsapl PBRsap2

[(PBRDataReq)] [(PBRDetaReq)]

[(PBRDataReq)

Block Type DLSunit [~a ta lnd] [(PBRDataReq) 1

~ $ r [N o d e ~ ~ d i o n 1

Figure 15 Networking service architecture

PBRsapl PBRsap2

Block Position asedRouting PBR-Protocol 1 ~pBRDatalnd)] 1 7 [(~~~Da ta l nd)]

PBRsapl -Route PBRsap2-Route

[(PBRDataReq)] L7 (m) [(p6RDT]i7
PBRlnternel

PBRl : PBR PBR2 ' PBR
G8 G8 [(PBRlnternalData)] [(PBRlnternalData)]

PBRsapl PBRsap2

Substructure PBR-Protoco [(~~~Da ta l nd)] 1(1)

PBRsapl -Channel PBRPsap2-Channel , [(P B R D ~ ~ ~ W] , \: (pBRDataR,ecO]

A [(~ 'd~~ata lnd)] A [[MACDataReq)]
G9 ,, r [PBRDataReq) 1 GI 0 ,, [[MACDatalnd) 1

Block Type PBRunit
I'

[[M A c D ~ ~ ~ R ~ ~) 1 (I)
MACsap-Route

[(PBRDataReq)] [(MACDataReq)]

PBRunitl :PBRunil

GI 0

PBR

PBRunit2:PBRuni

G I 0

Figure 16 Position based routing

C

[(MACDatalnd)] ' b

A [(MACDatalnd)]
M ACsapl

[(MACDataReq)]
MACsap2

[(MACDataReq)]
w w

MACService

5.2.1 Position Based Routing

The PBR protocol logically splits into two separate parts according to two basically

different tasks performed by this protocol. Section 5.2.2 specifies the protocol for the detection

of nearest neighbors. Section 5.2.3 briefly outlines the routing of packets. For brevity, certain

details of the SDL specification, e.g., signal and variable declarations and type definitions, are

omitted here. However, this should not affect the conceptual understanding of the system

architecture.

5.2.2 Detection of Nearest Neighbors

Nodes periodically update the information about their neighbours as the position

of the nodes change dynamically and also because neighbours may become unreachable.

The frequency of updates depends on various parameters, for instance, such as the

relative speed of the neighbours and the node itself, and on the probability of node

crashes. We therefore introduce a timer, called update-timer, that triggers the start of

detection cycles. Similarly, a node periodically updates its position information as

specified through signals of type NodePosition generated by some location system the

node is connected to through an external interface (see Figure 16).

The detection of neighbours is a time critical operation as node positions may

change over time and responses from neighbours may be subject to arbitrary delays (e.g.,

caused by retransmissions at lower layers and the fact that a neighbour may not always

react instantaneously). A timeout event cycle-timer controls the termination of detection

cycles so that late responses can be ignored. Every neighbour request thus carries a time

stamp encoded into the data part.

Intermediate results from processing neighbour replies need to be stored

temporarily until a detection cycle is fully completed. A local array variable

new-neighbour is used for storing intermediate nearest neighbours. On completion of a

detection cycle the result becomes effective by copying the node references of

new-neighbour to neighbour, which then is used to refer to the neighbours of a node.

However, it may happen that for some sector all the neighbours are temporarily

unreachable. In this situation the nearest neighbour then remains undefined until a

neighbour reply is received in a subsequent detection cycle.

Process PBRunit

Timer cycle-timer := 100;
Timer update-timer := 500;
d c l node-address Address;
dcl nodegosition Position;
dcl local-node Node;
d d p Packet;
dcl m a c g MAC-Packet;
dcl computed-node NREF;

, -
timer to trigger update

:neared neighbor operations .

Figure 17 Neighbour detection cycle and packet forwarding

5.2.3 Packet Routing

When receiving a packet from the MAC layer, the position based routing decides

whether the packet can be delivered locally, or it needs to be forwarded to a remote

destination. Delivering a packet locally means that the packet is handed over to the DLS

running on the local node. Forwarding a packet means to send it to the nearest neighbour

within the sector that matches with the position of the final destination node.

Depending on the position of the packet destination relative to the position of the

local node, a nearest neighbour for the next hop of this packet is computed by means of a

function ComputeNeighbour operating on position coordinates. The result yields the node

to which the packet is then forwarded after updating the receiver information in the

packet header (see Figure 17).

Data packets, location requests, and location replies which are received from the

local DLS will be forwarded to the specified receiver node using the service rendered by

the MAC layer (see Figure 18).

Process PBRunil 2(3)

(Running)

NeighborRequest
Neighbor Repl y

false true

Figure 18 Neighbour detection cycle and packet forwarding (ctd).

Process PBRunR Running (3

Figure 19 Neighbour detection cycle and packet forwarding (ctd).

I I I

Data-DLS(p)

I I I

Mac-Packetln(macg, Sector(local-node!position, p!rcvr!position), p!rcvr!address
via GI 0

ocationRequest-DLS(p) LocationReply-DLS(p)

5.2.4 Distributed Location Service

Consider some sequence of consecutive packets that the DLS receives, one by

one, from the transport layer. The first packet of every such sequence requires special

treatment. This packet needs to be stored locally at the DLS to first determine the position

of the destination node by means of a location request. Accordingly, we assume that the

first packet always can be recognized as such (see Figure 19).

A location reply to the DLS always matches a pending location request (related to

a waiting first packet). The position information of the sender of the location reply is

added to this first packet, which then eventually will be sent via the PBR service (see

Figure 20).

Process DLSunit

local-node!position
:= nodejosition

true
I r I

destination := p!tinaldeHladdress

dcl destination Address;
dcl nodejosition Postim;
dcl p Packet;
dcl local-node Node;
dcl next-hop NREF;

Figure 20 Distributed location service

Process DLSunfi Running (3

I

false

next-hop :=
NextHypercubicNeighbor(local-node,p!finaldest!address) Data-DLS(firstpacket) via G5

p!rcvr := next-hop

Figure 21 Distributed location service (ctd.)

When receiving a location request (see Figure 20), the DLS checks the address of

the final destination, which is encoded in the discovery packet asfinaldest.' If this

address does not match with the local address, the DLS calculates the next hypercubic

neighbor by means of a function NextHypercubicNeighbor and then forwards the request

accordingly. Otherwise, if the local node matches with the final destination, the DLS

generates a location reply that contains the requested position information (procedure

HandleLocationReply in Figure 21).

' Note that thefinal destination may be different from the destination specified in the packet header, since
the latter always refers to the next hop on the hypercube path.

1 Procedure HandleLocationReply 1(1)

fpar p Packet

dcl local-node Node;

I

LocationReply-DLS(q) via G5

Figure 22 HandleLocationReply procedure

Not included is the reorganization of the dynamic hypercube as required for the

elimination and insertion of nodes in order to ensure fault tolerance of the distributed

location service. Finally, we do not describe here the operations performed when a node

is switched on or switched off.

6 DISCUSSION AND CONCLUSION

A superior alternative to the routing strategy proposed by A. Benczur and T. Lukovski [l]

is the distributed logical topology based location service (LTLS) protocol using the k-dim ALT

data structure proposed by U. Glasser and Q-P. Gu in [14]. "With the k-dim ALT data structure,

the LTLS protocol reaches the same fault tolerance property as that of the hypercube location

service but is more efficient with smaller time delay, routing table, and number of administrative

packets." [14]

We present here a DASM model of the network layer protocol for geographic ad hoc

routing based on the hypercube location service defined in [I]. Conceptually, the network layer

splits into two separate sublayers, one for the location service and one for the position based

routing. The DASM model specifies the relevant algorithmic aspects with a degree of detail and

precision that goes far beyond the informal, pseudocode-like description of fundamental

operational aspects presented in Section 4. Based on this model, we have developed a multilayer

communication architecture for geographic routing in mobile ad hoc networks in terms of an SDL

system. This SDL system serves as a formal requirements specification and as a high-level

executable model for analysis and experimental validation of the key system properties of HLS

using commercial SDL tool environments like Cinderella SDL [4].

The abstract operational view of SDL allows us to represent a relatively complex

protocol in a concise and coherent way. Our experiences with SDL are quite promising for

designing complex communications software. Beyond basic event-handling and interface

mechanisms, the language effectively supports hierarchical design and layering as required to

cope with complexity when engineering distributed communication protocols with timing

constrains.

Building on the purely theoretical model in [I], basic algorithmic aspects of the protocol

are modelled in the form of an abstract state machine. The SDL paradigm of modelling complex

protocols is particular appropriate for practical purposes, and even helped us to identify design

flaws that remained hidden in the other formalisms.

REFERENCE LIST

A. BenczGr and T. Lukovszki. A Degree O(1og log n) Fault Tolerant Distributed
Location Service for Geographic Ad-Hoc Routing. Technical Report, TR-RI-02-
23 1, Heinz Nixdorf Institute, Paderborn, Germany, June 2002

A. Benczur, U. Glasser and T. Lukovszki. Formal Description of a Distributed
Location Service for Ad Hoc Mobile Networks. In E. Borger, A. Gargantini, E.
Riccobene (Eds.): Abstract State Machines - Advances in Theory and
Applications, vol. 2589 of LNCS, Springer Verlag, 2003

A.C. Yao. On Constructing Minimum Spanning Trees in k-Dimensional Spaces
and Related Problems. SIAM Journal on Comp., 1 l(4): 721-736, 1982

Cinderella home page: www.cinderella.dk

D. E. Comer. Internetworkmg with TCPIIP, Principles, Protocols, and
Architectures. Prentice Hall, 2000

Foundations of Software Engineering Group at Microsoft, the website,
http://research.microsoft. codfse

H. Zhou, A Survey on Routing Protocols in MANETs, Department of Computer
Science and Engineering, Michigan State University, Technical Report: MSU-
CSE-03-08.

J. Ellsberger, D. Hogrefe and A, Sarma. SDL - Formal Object-oriented Language
for Communicating Systems. Prentice Hall Europe, 1997

Jeannette M. Wing, A Specifier's Introduction to Formal Methods. Carnegie
Mellon University

M. Abolhasan, T. Wysocki, E. Dutkiewicz. A Review of Routing Protocols for
Mobile Ad Hoc Networks.

T. Leighton. Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann, 1992.

U. Glasser, R. Gotzhein, and A. Prinz. The Formal Semantics of SDL-2000:
Status and Perspectives. Computer Networks, to appear.

U. Glasser, Y.Gurevich and M. Veanes. An Abstract Communication Model.
Foundations of Software Engineering, Microsoft Research, Microsoft
Corporation, Technical Report, MSR-TR-2002-55, May 2002.

U. Glasser, Qian-Ping Gu. Formal Description and Analysis of a Distributed
Location Service for Mobile Ad Hoc Networks. SFU-CMPT-TR 2003-12

[15] X.-Y. Li and P.-J. Wan and Y. Wang. Power Efficient and Sparse Spanner for
Wireless Ad Hoc Networks. IEEE International Conference on Computer
Communications and Networks (ICCCN'O 1), 200 1.

[16] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger (Ed.),
Specification and Validation Methods, Oxford University Press, 1995,9-36

