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ABSTRACT 

Mobile ad hoc networks (MANETs) are designed for wireless communication and require 

no fixed infrastructure as the mobile hosts also perform routing tasks. The high dynamics of such 

self-organizing networks require routing strategies substantially different from those employed in 

static communication networks. Because of the high mobility and limited resources in MANETs, 

designing an efficient and reliable routing strategy becomes a very challenging problem and 

received a lot of attention in recent years. 

Although there are various protocols of MANETs, they are all described in a theoretical 

basis. From a software engineering point of view, the theoretical aspects are often very hard to 

understand by a software development team. Also, the cost of implementing such protocols in 

order to compare the performance of various protocols is too high. Therefore, the idea of trying 

to use high-level executable specification languages came into our mind. 

We define a distributed abstract state machine (DASM) model of the network layer 

protocol for mobile ad hoc networks. We represent a DASM model and a high-level SDL 

specification of a layered communication architecture for an efficient geographic routing protocol 

for mobile ad hoc networks (MANETs). Our goal of modelling the protocols with ASMs is to 

support the definition and validation of wireless communication protocols and implementations 

based thereon. Our objective to define high-level specification with SDL for the protocols is to 

sharpen loosely defined system requirements into an architectural specification serving as a 

formal basis for analysing key system properties by analytical means and experimental validation 

using commercial SDL tools. 
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1 INTRODUCTION 

Formal models and methods can be very useful in practical software development. 

They are used to reveal ambiguities, incompleteness, and inconsistencies in system requirements 

specifications. "For a method to be formal, it must have a well-defined mathematical basis, 

typically given by a formal specification language." [9] The group on Foundations of Software 

Engineering at Microsoft Research has developed the high-level executable specification 

language Asml based on the concept of abstract state machine (ASM). Asml supports 

specification and rapid prototyping of object oriented and component oriented software. [6] It is a 

successful practical instrument for systems design. ASMs are also used in a current ITU-T 

standard to formally define the semantics of the Specification and Description Language (SDL), a 

widely used specification language in the telecommunications area. In our project, we define a 

distributed abstract state machine (DASM) of an efficient ad hoc geographic routing protocol for 

mobile ad hoc networks (MANETs) proposed by A. Benczur and T. Lukovszki [l] and present a 

high-level specification of a layered communication architecture for this routing protocol based 

on SDL. Our goal of modelling the network layer protocol with ASML is to support the 

definition and validation of wireless communication protocols and implementations based 

thereon. The resulting behaviour model forms a formal basis for developing executable 

specifications and can serve as a platform for experimental validation of key system attributes and 

exploration of alternative design choice. Our objective in defining high-level protocol 

specifications with SDL is to sharpen loosely defined system requirements into an architectural 

specification serving as a precise basis for analysing key system properties by analytical means 

and experimental validation using commercial SDL tools. 



In Section 2 of our report, we give an overview of routing protocols in MANETs. In 

Section 3, we describe an efficient geographic routing protocol for MANETs which was proposed 

by A. Benczur and T. Lukovszki [I].  In Section 4 and 5, we respectively define a DASM model 

and an SDL model for the geographic routing protocol. In Section 6, we give a discussion and 

some conclusions. 



2 AN OVERVIEW ROUTING PROTOCOL IN MOBILE AD 
HOC NETWORKS 

MANETs are designed for wireless communication and require no fixed infrastructure as 

the mobile hosts also perform routing tasks. Typical applications, for instance, are the 

establishment of connectivity among handheld devices or between vehicles. The high dynamics 

of such self-organizing networks require routing strategies substantially different from those 

employed in static communication networks. Storing and updating large routing tables at mobile 

hosts would congest the network with administration packets very fast. Because of the mobility 

and limited resources such as transmission power and bandwidth in MANETs, designing an 

efficient and reliable routing strategy becomes a very challenging problem. 

Routing protocols in MANETs can be classified into three different groups: table- 

drivedproactive, demand-driverheactive and hybrid. In the proactive protocols, each node 

maintains routing information to every other node in the network. The routing information is 

usually kept in a number of different tables who are periodically updated if the network topology 

changes. It attempts to keep an up-to-date topological map of the entire network. With this map, 

the route is determined immediately when a packet needs to be sent. In reactive protocols, a route 

determination procedure is invoked on demand when a packet needs to be forwarded. These 

routing strategies were designed to reduce the overheads in proactive protocols by maintaining 

information for active routes only. [lo] 

Both proactive and reactive routing has specific advantages and disadvantages. The 

proactive routing maintains information up-to-date, so that the delay before sending a packet is 

minimal. On the contrary, the reactive routing has to determine the route first, which may result 

in considerable delay if the information is not available from caches. It also inefficiently floods 



the entire network with administrative packets for route determination. However, the proactive 

routing uses a large portion of bandwidth to maintain routing information up-to-date. [lo] 

The hybrid routing strategy is designed to increase the scalability by combining the 

advantages of local proactive and global reactive routing. In hybrid routing protocols, nodes with 

close proximity work together to form some sort of a backbone to reduce the route discovery 

overheads. This is mostly achieved by proactively maintaining routes to nearby nodes and 

reactively determining routes to far away nodes. [lo] Even a combination of both strategies still 

needs high communication overhead to maintain routing fabrics in the MANET. This is the 

reason why the topological-based routing protocols, including proactive protocols (DSDV, 

OLSR, FSR and TBRPF), reactive protocols (DSR and AODV), and hybrid protocols (ZRP) have 

not been put into deployment. [7] 

Geographical-based routing protocols eliminate some of the limitations of topology- 

based routing by using additional information, which are the physical positions of the 

participating nodes. With the growing popularity of locating devices (e.g., GPS), it is 

economically and technically feasible for the location device to determine its own position. The 

task of the geographic location service is to determine the position of the destination which needs 

to be included in packet header in addition to its destination address. [7] Then, the packet can be 

efficiently forwarded by means of the location information of intermediate neighbours. 



AN EFFICIENT GEOGRAPHIC ROUTING PROTOCOL 

In our project, we present an efficient geographic routing protocol proposed by A. 

Benczur and T. Lukovszki in [I]. This protocol combines the advantages of proactive and 

reactive routing. In this protocol, the hypercubic location service (HLS) which considers a very 

strong definition of fault-tolerance is used as the location service to find the position of the 

destination. Each mobile node consists of a set of distributed nodes that act as its location 

servers. Based on the assumption that every node can determine its current geographic position 

by using GPS or another type of positioning service, the nodes periodically resend position 

information to the location servers by the same routing mechanism used for normal data 

transmission. To initiate communication, one finds a location server of the destination node and 

obtains its geographic position. A location server can be determined by visiting a well-defined 

sequence of nodes such that each node acts as a location server of the next node in the sequence. 

Building on the purely theoretical model in [I], basic algorithmic aspects of the protocol 

are modelled in the form of an abstract state machine [13]. Since the ASM is the formalism 

underlying the formal definition of SDL [12], we further elaborate on the fairly abstract 

algorithmic model of ASM constructing an architectural design revealing the core functionality of 

this routing protocol for mobile ad hoc networks. It turns out that the SDL paradigm of 

modelling complex protocols is particular appropriate for practical purposes. 

In [I], the network layer is divided into two separate sublayers, one for a distributed 

location service (DLS), and one for aposition based routing (PBR) between known locations, as 

illustrated in Figure 1. These two sublayers cooperatively implement the network layer protocol 

of a mobile ad hoc network, where the location service is based on HLS as part of a highly fault 



tolerant, self-scaling architecture. For resolving interference problems, we assume the existence 

of a Media Access or MAC layer, e.g. IEEE 802.11, a commonly used standard. 

Transport Layer ........ ...... ...... ...... ...... ........... 

Network Layer 
.......... )-'- 

..... .... ..... 
(IEEE 802.1 1) 

I Physical Layer 

Figure 1 Layered communication architecture 

3.1 Distributed Location Service 

Conceptually, the DLS sublayer consists of dynamic hypercubic networks [ I  I ]  with 

random IDS of nodes identifying the mobile devices. Random distribution of node Ids can be 

easily achieved by hashing the node's IP or other physical address into the device. Each node in 

the network maintains location information of its hypercubic neighbours by periodically sending 

its own location to those neighbours. When the location of a node is known, a PBR strategy is 

then used to pass messages to that node as outlined below. 

To send data from a node u to another node v, first u has to detect the location of the 

destination node v as follows. The ID of v can be obtained from the ID of u through performing a 

certain sequence of elementary bit operations. This sequence defines a path in the hypercubic 

network from u to v. On this path node u then sends a location request to v carrying the ID of 

both u and v as well as the location of u. 



Since the hypercubic neighbours are storing up-to-date location information from each 

other, the location request will be sent to the next node on the hypercube path by position based 

routing. When the location request reaches v, then v replies by sending its own location to u 

using position based routing. After u has received the position of v it sends the data to v using 

position based routing as well. 

3.2 Position Based Routing 

Based on the assumption that every node can determine its current geographic position at 

any time - e.g., by using a global positioning system or GPS - nodes periodically exchange 

position information by the same routing mechanism used for normal data transmission. 

Basically, any position based routing can be used in combination with the DLS. In [I], the so- 

called Yao-graph [3] is proposed as network topology 

The Yao-graph Gy(V) = (V,Ey), for a set V of n points in the plane, defines for each p in 

V a fixed number k of sectors si(p), i = 0, ..., k-1, that have their origin in p.  The orientation of 

si(p) is given by the two edges hi(p), h i + l ( p )  E Ey as illustrated in Figure 2. With each sector 

si(p) we associate some nearest neighbour ni(p) E V located within si(p). A nearest neighbour 

ni(p) is determined based on the Euclidean distance from p to ni(p). 

Figure 2 Sector si (p) with nearest neighbor ni(p) 



The Yao-graph neighbours can be determined efficiently in a distributed and power efficient 

manner, which is to find a route whose energy consumption is within a small constant factor of 

the optimal route [15]. This distributed construction assumes that the mobile nodes use directed 

radio and that they can increase the transmission power within the sectors until at least one node 

replies y sending an acknowledge signal containing the geographic position of this node. Here 

we assume for simplicity that each node is within the maximum transmission range of each other 

node. 



4 ABSTRACT NETWORK MODEL WITH DASM 

We consider an asynchronous communication architecture consisting of some finite 

number of mobile hosts interconnected through a wireless communication network. The global 

topology is formed by viewing the mobile hosts as nodes of the network. Each node has the 

ability to act as communication endpoint and as router at the same time. The network is ad hoc 

and as such changes its topology frequently and without prior notice. Nodes interact with each 

other by asynchronously sending and receiving packets of variable length. 

We construct our DASM network model serves as a basis for further development and 

experimental validation. For a rigorous mathematical definition of the underlying computation 

model, we refer to the original literature on the theory of ASMs [16]. Also see a tutorial 

introduction to the DASM paradigm of systems modelling [ 131. 

4.1 Communication Infrastructure 

We define the total number N of nodes as a parameter of the communication network. 

Because of the mobility aspect in MANETs, each node determines its current position through the 

use of locating device, for instance, such as a GPS receiver. In a fixed global space, each node 

has a unique IDfaddress by mapping some physical addresses, e.g. such as Internet host names, IP 

addresses, or MAC addresses to the node idsfaddresses by some hashing function. We can 

mapping from nodes to some abstract domain of position and addresses via the pos and address 

function respectively. We define domains and functions with AsmL as follows [2]: 



Domain NODE = { n1 , ... , I'ZN 1 

Domain POSITION, monitored pos : NODE -> POSITION 

Domain ADDRESS, address : NODE -> ADDRESS 

Behaviours of network protocol entities are represented by an asynchronous computation 

model in the form of the DASM agents. As described in Section 3, the network layer consists 

two sublayers: DLS and PBR. Then, each node has two autonomously operating agents to 

execute these two programs as stated in Section 3 by a unary dynamic function program defined 

on agents. Thus, the domain AGENT includes two sets: DLS and PBR. [2] 

Domain AGENT = DLS u PBR 

node : AGENT -> NODE 

There are three different kinds of operating status of a node in any given state of the 

network: switched on (active), switched off (passive), or undefined (crashed). We introduce 

monitored function status and now to represent the current status and the time as measured by 

some local clock on the node respectively. [2] 

Domain STATUS = {switched-on, switched-off, undefined} 

Domain TIME 

Monitored status : NODE -> STATUS 

now : NODE -> TIME 

4.2 Abstract Communication Model 

Nodes send and receive packets consisting of two basically distinct parts, a packet header 

and the actual payload, as illustrated in Figure 3. The header has a fixed structure consisting of 

components identifying: the final destination node Dest, the next receiver node Rcvr (next hop on 

the way to Dest), the sender node Sndr, and the packet type Type. Each of these node references 



in a packet header specifies a node address and its geographic location. For representing those 

node references, we introduce the abstract data type NREF. [2] "The distinction between node 

references and nodes is crucial since nodes can continuously update their location information, 

whereas node references do not change while a packet is in transmit." [14] 

Domain PACKET 

Domain NREF, 

sndr, rcvr : PACKET - > NREF 

Packet 
,-. .....-...........-................-............-............--.-............--...........--............----..... 

Header 

................... .- .............................................................................................. 

Figure 3 Logical structure of packets for the communication between protocol entities 

"There are three basically different types of packets, namely: (1) detection packets, which 

are meaningful for the position based routing only; (2) discovery packets, which are meaningful 

for the distributed location service only; and (3) data packets. For detection packets, we further 

distinguish between neighbour requests and neighbour replies. Similarly, for discovery packets, 

we distinguish between location requests and location replies." [2] 

Domain DETECTION = {neighborRequest, neighborReply} 

Domain DISCOVERY = {locationRequest, locationReply} 

Domain DATA 

type : PACKET -> PACKETTYPE = DATAPACKET V DETECTION u DISCOVERY 

According to the vertical view of communication, adjoining layers directly interact with 

each other through service access points. The network layer interacts with the MAC layer and the 

transport layer. Similarly, the position based routing, or PBR, interacts with the distributed 

location service, or DLS. Such interactions are restricted to the operations as provided by the 

service primitives of a service access point. We use here two kinds of service primitives: (1) 



forwarding a single packet to the next higwlower layer; (2) receiving a single packet from the 

next higwlower layer. [2] 

4.2.1 Position Based Routing 

As described in Section 3, we associate with every node a fixed number k of sectors. The 

neighbour function is used to identify the nearest neighbour through a dynamic mapping from 

node sectors to corresponding node references. We define Euclidian distances on the plan as the 

DISTANCE domain and introduce a binary operation distance to calculate the distance between 2 

nodes. [2] 

domain SECTOR = { ... k-1) 

neighbour : NODE -> (SECTOR -> NREF) 

Domain DISTANCE 

distance : POSITION x POSITION -> DISTANCE 

4.2.2 Detection of Nearest Neighbours 

The search for the nearest neighbours of a given node splits into k independent search 

operations, one for each of the k node sectors. In order to prevent the interference between 

different sectors, the sector information is encoded into the data part of the detection packets by 

means of sector function. [2] 

sector: PACKET - > SECTOR 

Nodes periodically update the information about their neighbours as the position of the 

nodes change dynamically. The frequency of updates depends on various parameters. We use the 

updateNeighborEvent to trigger the start of the detection cycles. Also, we have to store the 

intermediate new neighbour results until the completion of a detection cycle. [2] 



monitored updateNeighborEvent : AGENT x SECTOR -> BOOL 

newNeighbor : NODE -> (SECTOR -> NREF) 

Each sector of a node has its own timer operating under control of the PBR agent of that 

node. A timer operation is used to specify the expiration time for a detection cycle. The time 

function is used to access the time stamp of the packet. A timer with time value t, now <= t < 

.. , is considered to be active. The actual time form for detection cycles is represented by a 

distinguished element duration from a static domain of finite time intervals. [2] 

time: PACKET -> TIME 

timer : AGENT x SECTOR -> TIME U { co } 

Domain DURATION, 

duration : DURATION 

We can now define the rules for nearest neighbour detection that are executed by PBR 

agents as part of the PositionBasedRouting program. In the below rules, ag refers to a DASM 

agent from PBR. [2] 



nearestNeighborDetection = 

let node = ag.node, position = ag.node.pos, time = ag.node.now 

forall s in SECTOR 

//start new detectioncycle 

if UpdateNeighborEvent(ag,s) then 

IssueNeighborRequest(s, position,time) 

NewNeighbor (node)(s): = undef 

timer(ag,s): = now(node) + duration //set timer 

if now(node) >= timer(ag,s) then //detection cycle timeout 

if newNeigbor (node) (s) E NREF then 

/ /  assign finalresult 

neighbor (node) (s) : = newNeighbor (node) (s) 

timer(ag,s) :=  w //reset timer 

On the position based routing layer, the detection packet including neighbourRequest and 

neighbourReply are handled by two different operations, namely: handeNeighbourRequest and 

handleNeighbourReply. In the handleNeighbourRequest, new neighbour request packet is created 

by PBR containing the relevant information, namely: the node address and geographical position, 

the sector ID, and a time stamp. This packet then is sent to nodes within the specified sector by 

means of the MAC layer. The request and the reply are logically linked by copying information 

from request packet into the reply packet. In the handleNeighbourReply, the selection of 

neighbour is decided by comparing the distance to a new responding neighbour and the distance 

to the nearest neighbour detected so far. [2] 



HandleNeighborRequest(p:PACKET) = 

extend PACKET with q 

extend NREF with r, s 

q.rcvr : = r 

q. sndr : = s 

r.address := p.sndr.address, 

r.position : =  p.sndr.position 

s.address := ag.node.address, s.position := ag.node.pos 

q.type := neighborReply 

q.time : =  p.time //copy time stamp from request packet 

q-sector := p.sector 

//copy sector information from request packet 

Packet-to-MAC(q, p.sndr.position) 
I 

HandleNeighborReply(p: PACKET) = 

let s = p.sector, node = ag.node, pos = ag.node.pos 

if p.time >= ag.node.now - durartion then 

/ /  check distance against intermediately stored nearest neighbour 

let a = pos, b = p.sndr.positon, c = position(newNeigbor(node) (s)) 

if distance (a,b) < distance (a,c) then 

newNeigbor (node) ( s ) : = p . sndr 



4.2.3 Packet Routing 

The packet can be delivered locally by handing it over the distributed location service 

running on the local node or forwarded to the nearest neighbour with sector that matches with the 

position of the final destination node. It is decided by the position based routing by comparing the 

coming packet's receive node address with the local node address. And the respective nearest 

neighbour is computed through the position information of the local node and the destination. [2] 

I c o r n p u t e r N e i g h b o r  : NODE x P O S I T I O N  -> NREF I 
As described, the position based routing performs the actual routing task as well as the 

control of nearest neighbour detection cycles and the handling of detection requests and detection 

replies. Below is the model of the position based routing layer defined through the DASM 

program PositionBasedRouting. In the program, ag refers to a DASM agent from PBR. [2] 



PositionBasedRouting = 

if status(ag.node) = switched-on 

NearestNeighborDetection / /  run detection cycle in parallel 

if Packet-from-MAC (P: PACKET) then 

if p.type = neighborRequest then 

HandleNeighborRequest(p) 

else 

if p.type = neighborReply then 

HandleNeighborReply(p) 

else / /  packets other than detection packets 

if ag.node.address = p.rcvr.address then 

Packet-to-DLS(p) / /  deliver packet locally 

else / /  forward packet to remote destination 

if cornputeNeighbor (ag . node, p. rcvr . position) E NREF ther 

let v = computeNeighbor (ag.node, p.rcvr.position) 
I 

Packet-to-MAC(p, v.position) / /  Perform next hop 

if Packet-from-DLS(p:PACKET) then 

Packet-to-MAC (p, p.sndr.position) 

else / /  node is passive 

Skip 

4.2.4 Distributed Location Service 

As described in Section 3, we associate with each node a set of direct neighbours in the 

dynamic hypercube as the distributed location services. The hypercubic neighbour on the way to 

the final destination is computed by a given node and a given destination address. Two functions 

are defined as following [2]: 



hypercubicNeighbors : NODE -> NREF-Set I 
nextHyercubicNeighbor (u, a) = v NREF: v 'E 
hypercubicNeighbors (u) v. address = computeNextID (u. address, a) 

The function computeNextID performs the actual address calculation on the dynamic hypercube. 

For brevity, we refer to [ l ]  for the definition of this address calculation. 

I computeNextID : ADDRESS x ADDRESS -> ADDRESS 1 
Consider some sequence of consecutive packets received from the transport layer. We 

assume that the first packet can be recognized by the Boolean-values function on packets and 

needs to be stored locally to first determine the position of the destination node before sending it. 

121 

monitored Firstpacket : PACKET -> BOOL 

firstpacket :DLS ->PACKET 

A location reply to the location service always matches a pending location request. Thus, 

the contained position information of the sender is added to a waiting first packet, which then 

eventually can be sent via the position based routing. [2] 

When receiving a location request, the location service checks the address of the final 

destination. This address is encoded into the data part of the discovery packet. We therefore 

introduce a partial dynamic function address defined on packets. [2] 

1 address : PACKET -> ADDRESS I 
If the final destination address does not match with the local node, we calculate the next 

hypercubic neighbor on the way to the final destination and forward the request. 



HandleDiscoveryPacket(p:PACKET) = 

if p.type = 1ocationReply then / /  extract position information 

ag.firstpacket.rcvr.position :=  p.sndr.position 

Packet-to-PBR(ag.firstpacket) 

if p.type = 1ocationRequest then 

if p.address = ag.node.address then / /  generate location reply 

HandleLocationReply(p) 

else / /  compute next hypercubic neighbor and forward packet 

let v = nextHypercubicNeighbor(ag.node, p.address) 

p.rcvr :=  v / /  specify next hop in the hypercube 

Packet-to-PBR(p) 

We can now define the model of the distributed location service through the below 

DASM program DistributedfZocationService. 



Distributedf~ocationService = 

if Packet-from-Transport(p:PACKET) then 

if Firstpacket(p) then / /  discover destination position first 

DiscoverDestinationPosition(p.rcvr.address) 

Ag.firstpacket :=  p / /  intermediately store first packet 

else / /  destination position is already known 

Packet-to-PBR(p), 

p.rcvr.position : =  ag.firstpacket.rcvr.position 

if Packet-from-PBR(P:PACKET) then 

if p . type E DISCOVERY then 

HandleDiscoveryPacket(p) 

else Packet-to-Transport(p) 

let v = nextHpercubicNeighbor (ag.node, a) 

Extend PACKET with q / /  create location request packet 

Extend NREF with r, s 



5 SDL SPECIFICATION OF A LAYERED 
COMMUNICATION ARCHITECTURE 

5.1 Overview of the Specification and Description Language (SDL) 

SDL is a standardized language for the specification and description of systems. It has been 

developed by the ITU-T, the telecommunication standardization body of the International 

Telecommunication Union (formerly known as CCITT). In contrast to a program, a formal 

specification is not intended to be run on a computer. A specification is a basis for driving 

implementations, it abstract from implementation details in order to give overview of a complex 

system. In addition to serving as a basis for driving implementations, it can be used for precise 

and unambiguous communication between human being. Also, the use of a specification 

language makes it possible to analyse and simulate alternative system solutions, which is not 

feasible for programming language due to the cost and the time delay. [8] 

"SDL sees the world as divided into two parts: the system and its environment" [8]. The 

specification defines how the system reacts to events in the environment by signals, see Figure 4. 

Network System 

Signals 

Figure 4 Interaction between system and environment 



5.1.1 System Behaviour 

The behaviour of a system is constituted by the combined behaviour of its parts - as 

represented by a number of processes in the system, see Figure 5. [8] SDL process instances are 

extended finite-state machines that work autonomously and concurrently with each other and 

interact through exchanging signals. 

instance 

Signals 

8 
Figure 5 System behaviour [8] 

5.1.2 System Structure 

SDL provides mechanisms to structure systems to cope with complexity. In basic SDL, a 

system description is structured into block descriptions and process descriptions, see Figure 6. A 

system description contains one or more blocks interconnected with each other and with the 

boundary of the system by channels. A channel is a means of conveying signals, see Figure 7. A 

block contains one or more processes that communicate with each other via signal routes, see 

Figure 8. A procedure description can appear in a process description or in another procedure 

description. 



Block Dkrbibuted Locatiin Senrice L_I__1 

Figure 6 Structuring a system into blocks and processes 

Prazgo DLS 

Figure 7 Structure of SDL system 
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Block Didribubed Location Senrice 

Chennel Channel 

Figure 8 Structuring a block into process types 

5.1.3 Abstract Data 

SDL uses a concept of abstract data type which is quite different from the data types used 

in programming languages. For example an integer defined in SDL corresponds to the 

mathematical concept of integer and is not limited by the computer to 16 or 32 bits. Also, the 

user is able to define new operator which is not possible for most programming languages. For 

example, we define new type node in our project as follows: 

Figure 9 Newtype Node 

5.1.4 Diagram of System, Block, Process, Procedure and Substructure 

A system diagram usually contains system name, signal descriptions, channel 

descriptions, data type descriptions and block descriptions, see Figure 9. A signal description 



contains a signal name and the types of values conveyed by the signal. A channel description 

contains a channel name, a list of signal names for signals that can be transported by the channel. 

Figure 10 System diagram 

Block I 

A block diagram usually contains the block name, signal descriptions, signal rout 

descriptions, channel-to-route connections and process descriptions, see Figure 10. 



Figure 11 Block Diagram 

A process diagram usually contains a process a name, formal parameters, variables 

descriptions, timer descriptions, procedure description and process graph, see figure 1 1. In SDL 

there are 6 basic constructs for the description of a process: start, input, current state, output, next 

state and return as illustrated in Figure 11. 



State 'i 
Return 1 Symbol 

Procedure 
Parameter 

Figure 12 Process diagram 

A procedure description is similar to the process description except for the start and 

return symbol (see Figure 12). 

Figure 13 Procedure diagram 



5.2 SDL Specification of a Layered Communication Architecture 

Intuitively, we deal with two different views of communication, commonly referred 

to as horizontal view and vertical view. Direct communication between peer protocol 

entities (i.e., entities residing within the same layer) at different nodes is called horizontal 

communication. This form of communication is only virtual and effectively realized by 

the lower level network layers, as illustrated in Figure 13. For this purpose, the MAC 

layer renders a corresponding service to the network layer. This service is accessible 

through well-defined interfaces, called service access points. Similarly, the network layer 

renders its service to the next higher layer, the transport layer. Communication between 

different layers of the same node is called vertical communication. This form of the 

communication is restricted to adjoining layers. 

-- 
-i Transport 1 

i : i 
[ MAC I MAC i. . ,  , 

Figure 14 Layered communication model 

In SDL, we model the network protocol through a system Network describing its 

behaviour on several different levels of abstraction in the form of a multi-layer architecture. The 

principles of layering require a strict hierarchical organization. Any interactions between layers 

are restricted to the operations as provided by the service primitives for the service access points 

of a service. To establish the service that a given layer n renders to the next higher layer n+l, the 



underlying protocol employs the functionality encapsulated within the service at the next lower 

layer n-1. As such, the principles of layering resemble those of information hiding [ 5 ] .  

The SDL language supports the hierarchical definition of communication architectures 

through combined block specifications containing a block substructure in addition to process 

specification [8]. Combined block specifications express alternative views when looking at a 

block from different perspectives. Abstractly, a block specification may be viewed as containing 

only processes when dealing with behaviour. A contained block substructure then specifies an 

implementation of this behaviour through a collection of interconnected blocks, which in turn 

may contain block substructures, thus allowing for stepwise refinements. Structurally, both 

views of a combined block specification share the same external interfaces. 

Our Network architecture consists of a single block DistributedLocationSewice that 

interacts with the external environment through the service primitives of the service access points 

as illustrated in Figure 14. The combined block specification of this block provides an abstract 

behaviour specification as well as an implementation of this behaviour in terms of a block 

substructure DLS-Protocol. The latter is defined by the block type DLSunit based on the PBR 

service encapsulated in the block PositionBasedRouting. The specification of the block type 

DLSunit introduces a process DLSunit using two procedures for discovering destination positions 

and handling of location replies respectively. 

We illustrate the further structural decomposition of the block PositionBasedRouting into 

protocol entities whose behaviour is defined by the underlying SDL processes. Again, this calls 

for a combined block specification. The behaviour of this block is abstractly defined in terms of 

two PBR processes interacting by exchanging protocol data units (horizontal communication). 

The block substructure PBR-Protocol specifies an implementation effectively mapping those 

protocol data units to service data units of the underlying MAC service (vertical communication). 

This is illustrated in Figure 15. 
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Figure 15 Networking service architecture 
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5.2.1 Position Based Routing 

The PBR protocol logically splits into two separate parts according to two basically 

different tasks performed by this protocol. Section 5.2.2 specifies the protocol for the detection 

of nearest neighbors. Section 5.2.3 briefly outlines the routing of packets. For brevity, certain 

details of the SDL specification, e.g., signal and variable declarations and type definitions, are 

omitted here. However, this should not affect the conceptual understanding of the system 

architecture. 

5.2.2 Detection of Nearest Neighbors 

Nodes periodically update the information about their neighbours as the position 

of the nodes change dynamically and also because neighbours may become unreachable. 

The frequency of updates depends on various parameters, for instance, such as the 

relative speed of the neighbours and the node itself, and on the probability of node 

crashes. We therefore introduce a timer, called update-timer, that triggers the start of 

detection cycles. Similarly, a node periodically updates its position information as 

specified through signals of type NodePosition generated by some location system the 

node is connected to through an external interface (see Figure 16). 

The detection of neighbours is a time critical operation as node positions may 

change over time and responses from neighbours may be subject to arbitrary delays (e.g., 

caused by retransmissions at lower layers and the fact that a neighbour may not always 

react instantaneously). A timeout event cycle-timer controls the termination of detection 

cycles so that late responses can be ignored. Every neighbour request thus carries a time 

stamp encoded into the data part. 



Intermediate results from processing neighbour replies need to be stored 

temporarily until a detection cycle is fully completed. A local array variable 

new-neighbour is used for storing intermediate nearest neighbours. On completion of a 

detection cycle the result becomes effective by copying the node references of 

new-neighbour to neighbour, which then is used to refer to the neighbours of a node. 

However, it may happen that for some sector all the neighbours are temporarily 

unreachable. In this situation the nearest neighbour then remains undefined until a 

neighbour reply is received in a subsequent detection cycle. 

Process PBRunit 

Timer cycle-timer := 100; 
Timer update-timer := 500; 
d c l  node-address Address; 
dcl nodegosition Position; 
dcl local-node Node; 
d d  p Packet; 
dcl m a c g  MAC-Packet; 
dcl computed-node NREF; 

, - - - - - - - - - - - - - - - - - - - - - - - -  
timer to trigger update 

:neared neighbor operations . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 17 Neighbour detection cycle and packet forwarding 

5.2.3 Packet Routing 

When receiving a packet from the MAC layer, the position based routing decides 

whether the packet can be delivered locally, or it needs to be forwarded to a remote 

destination. Delivering a packet locally means that the packet is handed over to the DLS 



running on the local node. Forwarding a packet means to send it to the nearest neighbour 

within the sector that matches with the position of the final destination node. 

Depending on the position of the packet destination relative to the position of the 

local node, a nearest neighbour for the next hop of this packet is computed by means of a 

function ComputeNeighbour operating on position coordinates. The result yields the node 

to which the packet is then forwarded after updating the receiver information in the 

packet header (see Figure 17). 

Data packets, location requests, and location replies which are received from the 

local DLS will be forwarded to the specified receiver node using the service rendered by 

the MAC layer (see Figure 18). 
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Figure 18 Neighbour detection cycle and packet forwarding (ctd). 
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Figure 19 Neighbour detection cycle and packet forwarding (ctd). 
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5.2.4 Distributed Location Service 

Consider some sequence of consecutive packets that the DLS receives, one by 

one, from the transport layer. The first packet of every such sequence requires special 

treatment. This packet needs to be stored locally at the DLS to first determine the position 

of the destination node by means of a location request. Accordingly, we assume that the 

first packet always can be recognized as such (see Figure 19). 

A location reply to the DLS always matches a pending location request (related to 

a waiting first packet). The position information of the sender of the location reply is 

added to this first packet, which then eventually will be sent via the PBR service (see 

Figure 20). 

Process DLSunit 

local-node!position 
:= nodejosition 

true 
I r I 

destination := p!tinaldeHladdress 

dcl destination Address; 
dcl nodejosition Postim; 
dcl p Packet; 
dcl local-node Node; 
dcl next-hop NREF; 

Figure 20 Distributed location service 



Process DLSunfi Running (3 

I 

false 

next-hop := 
NextHypercubicNeighbor(local-node,p!finaldest!address) Data-DLS(firstpacket) via G5 

p!rcvr := next-hop 

Figure 21 Distributed location service (ctd.) 

When receiving a location request (see Figure 20), the DLS checks the address of 

the final destination, which is encoded in the discovery packet asfinaldest.' If this 

address does not match with the local address, the DLS calculates the next hypercubic 

neighbor by means of a function NextHypercubicNeighbor and then forwards the request 

accordingly. Otherwise, if the local node matches with the final destination, the DLS 

generates a location reply that contains the requested position information (procedure 

HandleLocationReply in Figure 21). 

' Note that thefinal destination may be different from the destination specified in the packet header, since 
the latter always refers to the next hop on the hypercube path. 



1 Procedure HandleLocationReply 1(1) 

fpar p Packet 

dcl local-node Node; 

I 

LocationReply-DLS(q) via G5 

Figure 22 HandleLocationReply procedure 

Not included is the reorganization of the dynamic hypercube as required for the 

elimination and insertion of nodes in order to ensure fault tolerance of the distributed 

location service. Finally, we do not describe here the operations performed when a node 

is switched on or switched off. 



6 DISCUSSION AND CONCLUSION 

A superior alternative to the routing strategy proposed by A. Benczur and T. Lukovski [ l ]  

is the distributed logical topology based location service (LTLS) protocol using the k-dim ALT 

data structure proposed by U. Glasser and Q-P. Gu in [14]. "With the k-dim ALT data structure, 

the LTLS protocol reaches the same fault tolerance property as that of the hypercube location 

service but is more efficient with smaller time delay, routing table, and number of administrative 

packets." [14] 

We present here a DASM model of the network layer protocol for geographic ad hoc 

routing based on the hypercube location service defined in [I]. Conceptually, the network layer 

splits into two separate sublayers, one for the location service and one for the position based 

routing. The DASM model specifies the relevant algorithmic aspects with a degree of detail and 

precision that goes far beyond the informal, pseudocode-like description of fundamental 

operational aspects presented in Section 4. Based on this model, we have developed a multilayer 

communication architecture for geographic routing in mobile ad hoc networks in terms of an SDL 

system. This SDL system serves as a formal requirements specification and as a high-level 

executable model for analysis and experimental validation of the key system properties of HLS 

using commercial SDL tool environments like Cinderella SDL [4]. 

The abstract operational view of SDL allows us to represent a relatively complex 

protocol in a concise and coherent way. Our experiences with SDL are quite promising for 

designing complex communications software. Beyond basic event-handling and interface 

mechanisms, the language effectively supports hierarchical design and layering as required to 

cope with complexity when engineering distributed communication protocols with timing 

constrains. 



Building on the purely theoretical model in [I], basic algorithmic aspects of the protocol 

are modelled in the form of an abstract state machine. The SDL paradigm of modelling complex 

protocols is particular appropriate for practical purposes, and even helped us to identify design 

flaws that remained hidden in the other formalisms. 
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