
CALIBRATED COLOUR MAPPING BETWEEN LCD AND CRT
DISPLAYS: A CASE STUDY

William S. Cressman
BS Mechanical Engineering, Rice University, 1989

MBA, University of California, Irvine, 2000

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of

Computing Science

O William S. Cressman 2004

SIMON FRASER UNIVERSITY

January 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author

APPROVAL

Name: William S. Cressman

Degree: Master of Science, Computing Science

Title of Project: Calibrated Colour Mapping Between LCD and CRT
Displays: A Case Study

Examining Committee:

Chair: Dr. Ric
of Computing Science

Dr. ~ri'at/Fun? -

Professor, School of Computing Science

Dr. Mark Drew
Associate Professor, School of Computing Science

Dr. Tim Lee
Adjunct Professor
School of Computing Science
Simon Fraser University

Date Approved: , / /

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project and extended essay (the title of which is shown below) to users of
the Simon Fraser University Library, and to make partial or single copies
only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of
its users. I further agree that permission for multiple copying of this work
for scholarly purposes may be granted by me or the Dean of Graduate
Studies. It is understood that copying or publication of this work for
financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

Calibrated Colour Mapping Between LCD and
CRT Displays: A Case Study

Author:
(signature)

William Cressman

(name)

(date)
23,,

ABSTRACT

The primary goal of a colour characterization model is to establish a mapping

from digital input values di (i=R,G,B) to tristimulus values such as XYZ. A good

characterization model should be fast, use a small amount of data, and allow for

backward mapping from tristimulus to di.

This paper demonstrates implementations of three characterization models

tested on seven different display devices. The characterization models implemented in

this study are a 3D Look Up Table (LUT), a linear model [2],[4], and the masking model

Tamura et al. in 2002 161. The devices include two CRT Monitors, three LCD Monitors,

and two LCD Projectors.

Several characteristics of the display devices are presented with respect to data

collection and characterization modelling. These include the surprisingly long phosphor

stabilization time on CRT monitors, which has implications for data collection; and the

shifting chromaticity of mixed colours on LCD displays which adversely affects the

masking model.

The results of this study indicate that a simple linear model is the most effective

and efficient for all devices used in the study, despite the common belief that it is

sometimes inappropriate for LCD monitors [6]. A simple extension to the linear model is

presented, and it is demonstrated that this extension improves white prediction without

causing significant errors for other colours.

iii

ACKNOWLEDGEMENTS

I would like to thank Brian Funt for his guidance in this project, Florian Curiea for

his invaluable help with Matlab, and Binay Bhattacharya for his help with some tricky

geometric logic critical to the gamut mapping algorithms. Most of all I would like to thank

Behnam Bastani for his constant help in every area of the project, and my wife Zhanar

for her patience throughout this experience.

TABLE OF CONTENTS

.. Approval ii
...

Abstract .. Ill

.. Acknowledgements iv

Table of Contents ... v

... List of Figures vi
...

List of Tables .. VIII

... List of Abbreviations and Acronyms ix

... Introduction 1

Data Collection ... 3

Device characteristics .. 7

Implementation Details ... I 1
.. 3D LUT Model 11

.. Linear Model 12
Masking Model ... 15

Results ... 18

Conclusion .. 23

Contribution Summary .. 25

.. Appendix A: The SpectraCOM Software 26
Getting Started ... 27

.. Installing the SpectraCOM DSN 28
Using the SpectraCOM Interface ... 29

.. The SpectraCOM Interface Window 30
... The SpectraCOM Chart Window 32

The SpectraCOM Gamut Measurement Window .. 32
Scripting with SpectraCOM .. 34

The Database .. 38
Accessing the Data .. 39
Troubleshooting SpectraCOM ... 39

Appendix 6: The Gamut Viewer Tool ... 41

Appendix C: The MS PowerPointB Sample Interface 43

... Appendix D: A Note on Gamut Mapping 44
Diagonal Tranfsorm Scaling .. 45

.. Clipping 45
Scaling and Rotation .. 46
Warping .. 46

Bibliography ... 48

LIST OF FIGURES

Figure 1 :

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Percentage of the steady state luminosity for white on the vertical-
axis vs . the number of seconds since black was displayed on the

... horizontal.axis 4

Measurement Error (Log scale) vs Integration Time in milliseconds
... measured on four grayscale colours on CRT1 5

Channel lnteraction Interaction . The horizontal axis represents
the input value v ranging from 0 to 255 and the vertical axis
represents the value of the Channel lnteraction metric .
ClcoLoR(~.a,b) . The black line shows a=b=255 and dashed lines
show a=0. b=255 and a=255. b=O ... 8

X response shape differences between channels for PR1 9

Chromaticity Shift Diagrams in xy space. with x=X/(X+Y+Z) on the
horizontal axis and y=Y/(X+Y+Z) on the vertical axis 10

X-Channel Response Curves for PR1. with a close-up of the non-
monotonic region and the smoothed results .. 13

Mapping Error vs Training Data Size .. 14

Backward Error distribution for each characterization model on
each device . AE error value is shown on the horizontal axis and
histogram counts are shown on the vertical axis 19

Backward Error vs Chromaticity . The horizontal and vertical axes
are X/(X+Y+Z) and Y/(X+Y+Z) respectively ... 20

.................................... Figure 10: Linearization Failure for the Black Channel on PR1 22

Figure 1 1 : The SpectraCOM Interface .. 26

Figure 12: Updating the ODBC DSN .. 28

Figure 13: SpectraCOM System Tray Right-Click Menu .. 30

Figure 14: The Setup Tab on the SpectraCOM Interface .. 31

Figure 15: The Gamut Measurement Tool and Start Test Window 34

Figure 16: The Database Schema .. 38

Figure 17: The Gamutviewer Interface ... 41

Figure 18: Starting GamutViewer by selecting two files and dropping them on
the executable ... 42

.............. Figure 19: Example of swapping the gray file and showing points as spheres 42

Figure 20: The clmageBuddy object in the project toolbox .. 43

Figure 21 : Sample output from the Gamut Visualization application
developed for this project . (a) two gamuts. with one in gray. (b)
one gamut with points shown as spheres .. 44

Figure 22: Example of a clipping operation that results in another OOG point 46

Figure 23: Example of gray axis curvature after warping without rotation or
scaling ... 47

LIST OF TABLES

Table 1 : Device Summary ... 7

Table 2: Forward Error AE Mean (p). standard deviation (o) and maximum 18

Table 3: Backward Error AE Mean (p). standard deviation (o) and
maximum ... 18

Table 4: Percent Increase in Forward AE Error Due to Monotonicity
Correction .. 21

Table 5: Experimental Running Time and Storage Space as multiples of
linear model Usage ... 22

Table 6: SpectraCOM Object Properties ... 36

.. Table 7: SpectraCOM Object ~e thods 37

viii

LIST OF ABBREVIATIONS AND ACRONYMS

CRT

CMYK

GOG

LCD

LUT

OOG

PCA

RGB

UCR

XYZ

Delta E is a measurement of distance in CIELAB,, space. A value of one
indicates a just noticeable difference in colour.

Cathode Ray Tube, a traditional type of display monitor which works by
scanning a cathode ray from the back of the monitor across phosphors on
the back side of the display screen

Cyan, Magenta, Yellow, Black. In some cases, K is used to represent the
gray axis.

International Commission On Illumination L a* b* colour space. This is a
perceptually uniform colour space, where a unit of distance anywhere in
the space represents the same amount of perceptual difference.

Gain-Offset-Gamma, a term for a linear characterization model that
assumes that the shape of the output curves is exponential, or "gamma"
shaped.

Liquid Crystal Display. A digital flat-panel monitor.

Look Up Table

Out of Gamut. This term refers to a colour that can be produced on one
device, but is outside the gamut of the target device.

Principal Component Analysis

Red, Green and Blue. These are the colours of the phosphors, or
primaries, in both LCD and CRT displays

Under-colour removal. A technique used in printing, in which an
appropriate amount of black ink is used to replace overlapping quantities of
magenta, cyan, and yellow in dark areas.

Used to refer to the CIE XYZ tristimulus space, where X and Z represent
chroma and Y represents luminance.

INTRODUCTION

Accurate colour management across multiple displays is an important problem,

and will become more important in years to come. Users are increasingly relying on

digital displays for creating, viewing and presenting colour media. Users with multi-panel

displays would like to see colour consistency across the displays, while conference

speakers would like an accurate prediction of what their slides will look like before they

enter the auditorium.

The act of predicting colours across multiple display devices requires

implementation of several concepts, including device characterization, gamut mapping,

and perceptual models. This paper is focused on the concept of device characterization

- establishing a mapping from digital input values di (i=R,G,B) to tristimulus values such

as XYZ. A good characterization model should be fast, use a small amount of data, and

allow for backward mapping from tristimulus to 4.

There are a several well-known characterization models that support both

forward and backward mapping, three of which were implemented in this experiment: 3D

Lookup Table (LUT), linear model and masking model. The 3D LUT method uses a pair

of three-dimensional tables to associate a tristimulus triplet with every RGB combination,

and vice versa. This method is simple to understand, but difficult and cumbersome to

implement.

The term linear model refers to the group of models (GOG, S-Curve, and

Polynomial model) that estimate tristimulus response with a linear combination of pure

phosphor output. These models each start by linearizing the digital input response

curves with the specific nonlinear function from which they draw their names. The linear

model has been widely used for CRT monitors, but has been criticized for its assumption

of channel independence, which may not apply on LCD displays.

The third model implemented in this study was the masking model introduced by

Tamura et al. in 2002 [6]. This model applies the concept of Under Colour Removal

(UCR) to mask inputs from 3-dimentional RGB space to 7-dimensional RGBCMYK

space, then linearizes inputs and combines outputs as was done in the linear model.

This paper will discuss the implementation, benefits, and pitfalls of each method

with respect to use on CRT and LCD display devices. In general, prediction errors will

be quantified terms of AE, as measured in 1994 CIE La*b* colour space.

The first section of the paper deals with data collection. The next section reviews

the characteristics of devices used in the study. Section 3 discusses implementation

details and considerations for each of the three characterization models, and section 4

reviews the results of the study.

DATA COLLECTION

All data used in this study was collected using a Photo Research Spectrascan

650 Spectrometer in a dark room with the spectrometer at a fixed distance,

perpendicular to the center of the display surface. Before beginning each test, the

monitor settings were reset to the factory default and the brightness was adjusted using

a gray-scale calibration pattern until all shades of gray were visible.

The data collection was performed automatically in large randomized test suites.

We found that measurement error was one of the largest contributors to characterization

model failure, and as a result took extreme care in data gathering. It is important to test

the repeatability of the spectrometer with respect to each monitor and ensure that the

test plan is sufficient to smooth out any significant measurement errors. Each RGB

sample used in this study was composed of a total of 25 measurements, taken in 5

randomly scheduled bursts of 5 measurements each.

Figure 1 shows the percentage of steady state luminosity for white vs. the

number of seconds since a colour change from black. In this paper, luminosity will be

defined as the L value in CIELAB,, space. Note that the LCD-based devices often reach

steady state within less the first second, while the CRT devices take longer. The amount

of time required for the CRT devices was somewhat surprising - up to 10 seconds in

CRT2. The spike that occurs on CRT2 right after the colour change is unexpected as

well. However, the implication for testing is straightforward - measurement delay after a

colour change must be several seconds longer for CRT devices.

C RTl C R R

Figure 1: Percentage of the steady state luminosity for white on the vertical-axis vs. the number
of seconds since black was displayed on the horizontal-axis.

Another important setting related to data consistency is spectrometer integration

time. In general, CRT monitors require a longer integration time because the display

flashes with each beam scan. Figure 2 shows the result of an integration time test on

CRT1.

Integration Time

Figure 2: Measurement Error (Log scale) vs lntegration Time in milliseconds measured on four
grayscale colours on CRTl

Observe that shorter lower integration times result in more unstable

measurements. The monitor refresh rate used in this experiment is 75 Hz, which

equates to 13.3 ms per scan. Therefore, any integration time twill experience either

~ x ~ . ~ J or rg3:3.31 scans depending on when the measurement window starts. For

example, if the integration time is 1 OOms, then measurements will either experience

seven or eight scans, leading to high variation. Conversely, a time of 400 ms will almost

always lead to 30 scans (400 1 13.33 = 30.00).

The measurements in this study were taken with a default integration time of 400

ms, which was doubled whenever a "low light" error was detected and halved when a

"too much light" error was detected. Although this technique resulted in acceptable error

levels, an improvement would be to use only integration times are exact multiples of

13.3.

Three suites of data were collected for each monitor: a 10x1 0x1 0 grid of evenly

spaced RGB values covering the entire 3D space, a similar 8x8~8 grid used for testing

and verification, and a "1 01 x7" data set made up of 101 evenly spaced measurements

for each primary RGB and secondary CMYK channel with the other inputs set to zero.

DEVICE CHARACTERISTICS

Seven devices were tested -two CRT monitors, three LCD monitors, and two

LCD projectors. A summary of these devices is given in Table 1. !;; Descrip:o;
Samsun S ncmaster 900NF
NEC Accus nc 95F
IBM 9495

LCD2 I NEC 1700V
LCD3 I Samsuna 171 N

Table 1: Device Summary

- - - -
1

A common issue in device characterization is channel interaction [5]. In this

study, channel interaction is calculated as follows, where v represents the input value for

the channel in question, a and b are constant values for the other two channels, and

L(r,g,b) represents the measured luminosity for a given digital input.

PR1
PR2

This equation returns zero when there is no channel interaction. The equations

for CIGREEN and CIBLUE are similar.

Proxima LCD Desktop Projector 9250
Proxima LCD Ultralight LX

It is commonly expected that LCD devices will exhibit channel interaction and

CRT devices will not. However, the two CRT monitors exhibited more significant

interaction problems than three of the five LCD devices, as shown in Figure 3. The

nature of the interaction is surprising as well.

Red Green Blue

Figure 3: Channel lnteraction Interaction. The horizontal axis represents the input value v
ranging from 0 to 255 and the vertical axis represents the value of the Channel lnteraction metric.
ClcoLoR(v,a,b). The black line shows a=b=255 and dashed lines show a=O,b=255 and a=255,b=0

Observe that for CRTI, interactions with one other phosphor tend to increase

luminosity output while interactions with both other phosphors tend to decrease

luminosity output. Interactions on other devices were either consistently additive or

subtractive.

Another potential issue with LCD monitors is chromaticity shift [6]. This study

found that chromaticity shift of pure phosphor colours was insignificant. However,

chromaticity shift of combined colours (CMYK) was notable on all LCD devices as shown

in Figure 5 on page 10. This effect is caused by the dissimilarity of shape between the

strongly s-shaped B response curves and the more gamma-shaped R and G curves. An

example of this shape difference is given in Figure 4.

R, G, or B Input

Figure 4: X response shape differences between channels for PRI

Project or2

Figure 5: Chromaticity Shift Diagrams in xy space, with x=W(X+Y+Z) on the horizontal axis and
y= Y/(X+ Y+Z) on the vertical axis.

10

IMPLEMENTATION DETAILS

All characterization methods start with black level flare correction, in which the

measured XYZ value of black for the device is subtracted from the measured tristimulus

value of each colour. This ensures that all devices have a common black point of (0,0,0)

in XYZ space [2]. The remaining steps for each characterization are described below.

30 LUT Model

The 3D LUT method was implemented with the intention of providing a golden

standard against which to evaluate the other two models, but is expensive both

computationally and storage-wise (1 0 MB for a storage table) and is not well suited for

reverse mapping. To create the forward lookup table, the 10x1 0x10 training data was

interpolated using 3D linear interpolation to fill a 52x52~52 lookup table indexed by RGB

values spaced 5 units apart. At look-up time, 3D spline interpolation is used to look up

intermediate values.

Inverting the lookup to index by XYZ is non trivial - it requires interpolation of a

sparse 3D data set; a task that is a field of research in its own right [I]. The reverse

lookup was performed via tetrahedral interpolation on the original 10x1 0x1 0 data set.

Tetrahedral Interpolation was chosen over a number of other methods primarily for its

speed and ability to handle sparse, irregularly spaced data. However, any values that

fall outside the convex hull of the measured gamut will return errors. This is particularly

problematic for the LCD monitors, which have slightly convex gamut faces. In order to

prevent edge values from returning invalid data, the entire lookup table was expanded

outward by 1 % from the gamut centroid.

Linear Model

The linear model is a two-stage characterization process. In the first step, the

raw inputs di (k l , 2, 3 for R, G, B) are linearized using a fitted function C,(di) for each

channel. Linear regression is then used to determine the slope My between each

linearized input C,(di) and the respective XYZ outputs where b(1, 2, 3) for (X, Y, Z). The

second stage applies matrix M to calculate estimated XYZ values.

The linearization functions in this implementation avoid any shape predisposition

by using a LUT that is calculated as follows. The 10 measured response values for each

input channel iare interpolated to obtain three output vectors X(di), Y(di) and Z(di) in

256-dimensional space. Principal component analysis is then used to find the single

vector Cddi) that best approximates all three output vectors. The following equation

calculates C,{di) where PCAirepresents the weighting vector obtained from principal

component analysis.

In order to allow for backward mapping, two conditions are required: the

linearization function must be monotonic and the matrix M must be invertible. Inversion

is always possible because none of the input channels are linearly dependent. However,

the monotonicity requirement is a real risk with LCD displays, where the response

curves sometimes level out or even decline for high input values (Figure 6). It is

therefore necessary to modify the linearization function to ensure monotonicity. Note

that this modification, although necessary, serves to reduce the accuracy of the

linearization and increases the overall error of the characterization.

Figure 6: X-Channel Response Curves for PR1, with a close-up of the non-monotonic region
and the smoothed results

When creating the lookup table, a decision must be made regarding the size of

the training data set. Figure 7 shows the relationship between training data size and

forward mapping error, measured in AE. In general, a larger training set is better, but the

benefit tapers off after about 10 data points. For the results section of this paper, a

training data set with 101 points was used to ensure minimal error introduced by training

data size.

Figure 7: Mapping Error vs Training Data Size

The primary criticism of the linear model is that it assumes channel

independence. As we have seen above, this is not always a valid assumption - even for

CRT monitors. When there is channel interaction, the predicted output for colours that

use more than one phosphor may not be accurate. This is especially true for white,

which uses the maximum value of all three phosphors. Our observations suggest that

this problem is not very noticeable on natural images where the eye is accustomed to

correcting for scene lighting. However it becomes significant on computer-generated

images such as presentation slides or charts where there are large regions of pure white

with no expected ambient lighting. In this case, the eye is less forgiving.

One solution is to perform a white-point correction to ensure that the predicted

white exactly matches the measured white. A simple approach is to apply a diagonal

transform to the slope matrix M based on the measured and predicted values of pure

white. The following formula shows the conversion, where XMEASURED is the measured X

value for white and XPREDICTED is the predicted X value for white using the original slope

matrix.

This modification to the slope matrix ensures that predicted white is correct, but

slightly shifts all of the other colours in a non-uniform manner, which could potentially

increase the overall error. This model will be referred to as "Linear+" in this paper, and

is useful when displaying computer-generated images where white is a major colour.

Note that a similar correction can be performed using an alternate tristimulus space,

such as LMS. In our study, we found that using either XYZ or LMS intermediate space

returns the same average increase in forward error (k0.05 AE).

Further improvement may be possible using a technique similar to that presented

by Finlayson and Drew in [3], where a modified least-squares procedure is used to

determine the matrix M. By constraining the prediction error for white to zero, a matrix

can be selected that reduces overall error while ensuring an accurate white value. It is

interesting to note that their approach achieved good results even without first linearizing

the inputs.

Masking Model

The masking model [6] attempts to avoid problems related to channel interaction

with a technique similar to UCR in printing. The original digital input di is converted to

masked input mi (i=1,2,3,4,5,6,7 for RGBCMYK), and the masked values are combined

in a manner similar to what was done in the linear model. The masking operation

assigns values to three elements of m - the primary colour (index p), the secondary

colour (index s), and the gray colour (index 7), and sets all of the remaining elements of

m to zero, as follows.

Primary index p such that d, = max(d, , d, , d,)

Gray index k such that d, = rnin(d, , d, , d,) & k ;t p

Secondary color index s = k + 3

Primary color value m, = d,

Secondary color value m, = d6-,-,

Gray (Under) color value m, = d,

Unused color values m, = 0 : q P { p, s,7}

The result of these formulas is to set p to the index of the maximum primary

colour (R, G, or B), and m, to the input value for that colour. It assigns s to the index of

the mixed colour (C, M, or Y) that does not contain the minimum colour, and assigns m,

to the median of the original values. Finally, it sets the gray value m, to the minimum of

the three original inputs. For example, if the original inputs are RGB=(200,100,50), the

primary colour will be red, with a value of 200. The secondary colour will be yellow

(which does not contain blue) with a value of 100, and the gray (under) colour will have a

value of 50. The masked input array becomes m=[200,0,0,100,0,0,50].

Once the inputs have been converted into masked values mi, a linearization

function C,(mi) for each input channel i is determined using the method described above

for the linear model. The slope matrix My for each input channel i and output channel j is

calculated as using PCA and linear regression, also as described for the linear model.

Finally, let the vector Pi represent the column of matrix M that contains the X, Y, and Z

slopes for input channel i. The transformation from masked input to XYZ output can

then be written as follows:

The inverse mapping from XYZ to RGB is less obvious, and requires knowledge

of the primary and secondary colour indices p and s. There is no way to know these

values, so all six possible (p, s) combinations are tested (RM, RY, GC, GY, BC, BM) and

any combination that satisfies the following conditions will yield the correct result.

RESULTS

This study calculated values of forward error AEFW~, round trip error AETR,~, and

backward error AEBWD for 512 colours in an 8x8~8 evenly spaced grid of RGB inputs.

For each colour, we find three vertices in CIE L*a*b* space: the measured value for the

colour VM, the predicted value vp, and a round-trip value vRTfound by mapping backward

and forward again from vp. These points form a triangle with edges representing the

forward, round-trip and backward error vectors. AEWD is the distance from vM to vp,

AETRIP is the distance from vp to VRT, and AEBWD is the distance from VRT back to vM.

Table 2: Forward Error AE Mean (p), standard deviation (a) and maximum

Table 3: Backward Error AE Mean (p), standard deviation (a) and maximum

With respect to forward or backward error, we see that the 3D LUT is the most

accurate, followed by the linear, Linear+ and Masking models (Table 2,Table 3) A

comparison of backward error distributions (Figure 8) shows that the linear model had

18

tightest distribution for each device, while the distribution for 3D LUT tended to have a

number of high-error outliers. The cause of these outliers becomes apparent when the

error values are plotted by chromaticity. Figure 9 shows the chromaticity coordinates for

points that are greater than half the maximum error for each model/device combination.

Observe that the largest errors for the 3D LUT are often on or near the gamut boundary,

which is where the tetrahedral interpolation tends to fall apart.

Linear Model AEBACWARD Masking Model L\EBACIONARD

Figure 8: Backward Error distribution for each characterization model on each device. AE error
value is shown on the horizontal axis and histogram counts are shown on the vertical axis.

P
ro

je
ct

or
1

LC
D

3
LC

D
2

LC
D

1
C

R
T2

C

R
TI

m
e

w
--

N

o
e

r
n

N
G

8
 o

ea
D

G
63

 o
e

w
--

N

o
e

rn
z
;g

o

e
c

o
--

a

o
e

m
-
-
w

N

0
7
O

N

r
n

O

m
m

o

N
c
n
O

P
ro

ie
ct

or
2

P
ro

ie
ct

or
l

LC
03

LC

D
2

LC
D

1
C

R
T2

C

R
Tl

O
P

W
--

N

o
e

m
--

N

o
e

w
--

N

o
e

m
--

N

a
e

w
--

N

o
e

w
--

N

m
e

w
--

N

N
0

7
0

N

r
n

O

N
0

7
0

N

r
n

O

N
C

n
O

N

rn
O

N

C
n
O

P
ro

je
ct

or
2

P
ro

je
ct

or
1

LC
D

3
LC

D
2

LC
D

1
C

R
T2

C

R
TI

N
C

~
O

N

m
O

N

m
O

N

m
O

N

m
O

I Uncorrected I Corrected I % lncrease
CRTI 1 2.4 1 2.4 I 0.0%

- -

I Average (2.2 1 2.2 1 2.3% 1
Table 4: Percent lncrease in Forward AE Error Due to Monotonicity Correction

The results in Table 2 and Table 3 on page 18 show that the average error for

the Linear+ model was nearly the same as that for the standard linear model. Recall

that the goal of Linear+ is to ensure that white is predicted correctly at the possible

expense of other colours. This indicates that "perfect" white can be achieved without

much degradation in other colours. Informal visual comparisons also indicate that this

model is the best one to use for computer-generated media such as presentation slides

and charts.

The Masking Model was expected to out-perform the linear model whenever

there was an issue with channel interaction. The model's best performance relative to

the linear model was on CRT2, where it is only slightly better than that of the linear

model. For all other devices, the Masking Model exhibited higher error than the other

models. The primary pitfall of this model is that it depends on constant chromaticity of

the "combined primaries" (CMYK). It is clear from Figure 5 on page 10 that this

assumption is incorrect for the LCD monitors and projectors.

The chromaticity shift caused by dissimilarity in the shapes of the R, G and B

response curves causes the input the linearization step to fail. Figure 10 shows an

example of an unsuccessful linearization for the black channel for PR1 in the masking

model - note that none of the lines are straight. This explains why the performance of

the masking model was better for CRT monitors than any of the other devices - the

CRTs do not have the shifting chromaticity problem.

0.9 L - X
0.8 - - Y - -

3
z

Q0.7 - -

Linearized M Channel Input

Figure 10: Linearization Failure for the Black Channel on PR 1

With respect to efficiency, the linear model is also the top performer. The linear

model is slightly faster than the masking model and nearly 20 times faster than the 3D

LUT. The linear model also requires less than half the storage space of the masking

model, and less than 11300'~ the storage space required for 3D LUT (Table 5).

Table 5: Experimental Running Time and Storage Space as multiples of linear model Usage

Linear
Masking
3D LUT

Time
1 .O
1.2
17.0

Space
1 .O
2.3
333.4

CONCLUSION

Several display characterization models were implemented in this paper: a 3D

LUT, a linear model, an extension to the linear model, and the Masking Model. These

characterization models were each tested on seven devices: two CRT Monitors, three

LCD monitors and two LCD projectors.

Several general observations were made with respect to collecting

characterization data. We found that the phosphor stabilization time on the CRT

monitors was much longer than expected, and can take up to 10 seconds. In practice, a

delay time of 2500 ms between a colour change and subsequent measurement resulted

in acceptable error levels. With respect to integration time, we showed that longer

integration times lead to more stable measurements, and propose that measurements

on CRT monitors be taken with integration times that are multiples of the display scan

rate. In addition, it was shown that a training set of 10 points data per axis is sufficient for

the linear model (Figure 7).

Although recent papers have indicated that the linear model is not applicable to

LCD monitors [6], it worked well for the LCD devices tested in this experiment.

Furthermore, channel interaction was pronounced on the CRT monitors than on several

of the LCD displays. The primary issue with the LCD displays was the fact that the

response curves for the three input channels were dissimilar, leading to chromaticity shift

of combined colours (CMYK). This problem affected the masking model but not the

linear model.

Despite these issues, all three models yielded mapping errors of less than 15 AE.

The 3D LUT model was slightly more accurate than the other models, but it is too

cumbersome for actual use. The linear model was the most efficient, with accuracy

nearly as good as to the 3D LUT.

The primary drawback of the linear model is that it can be adversely affected by

channel interaction. A slight modification to the linear model is presented in the Linear+

model that uses a simple white-point correction technique to ensure correct prediction of

white. Our results indicate the Linear+ model is able to guarantee white-point accuracy

with minimal degradation for other colours.

CONTRIBUTION SUMMARY

The preceding sections of this paper represent a joint effort involving both myself

and Behnam Bastani, and will be published in a conference paper at CGlV 2004, where I

will be making an oral presentation on the topic. The characterization models were

implemented in Matlab, and were largely a joint effort. Module ownership was roughly

divided such that I primarily developed the 3D LUT and Masking Model engines, while

Mr. Bastani developed the Linear Model and Gamut Mapping engines. With respect to

data analysis and model testing, Mr. Bastani focused on two-device gamut mapping

results while I focused on analysing measurement error and device characterization

errors.

My analysis of measurement error led to some drastic changes in the way we

collect and use data. I found that the level of measurement error was considerably

higher than expected, and developed a number of techniques to improve our results.

These included performing measurements in bursts of 5, averaging multiple bursts for

each sample point, randomly scheduling the colours rather than sequential testing,

adding a measurement delay between colour display and measurement, and using a

self-correcting integration time.

In order to enable this massive data collection effort, I designed, developed and

implemented a software tool called SpectraCOM. This application controls the

spectrometer and was used to run all of our automated testing, and will be useful for

future work beyond this project. Appendix A gives details on the design and use of

SpectraCOM. Other individual contributions include the Gamut Viewer (Appendix B), the

Microsoft PowerPoinB sample interface (Appendix C), and the initial concept and

implementation of the warping technique used for gamut mapping (Appendix D).

APPENDIX A: THE SPECTRACOM S O m A R E

This project would not have been possible without a fast and flexible tool for

collecting spectrometer measurements of screen colours. Towards that end, I

developed SpectraCOM - a highly flexible application that controls the spectrometer and

manages custom test suites. This program can display screen colours, take

measurements, and store results in a database for easy access. It can be used through

a friendly GUI interface, or as a scriptable COM object. An example of the interface is

given in Figure 11

This section of the paper will provide support and usage information for future

users of the SpectraCOM software. All of the files related to this implementation are

stored on the project CD available from Brian Funt.

. , - ,
nbox Mtcr.. Package

Figure 11: The SpectraCOM Interface

Getting Started

In order to get started using SpectraCOM, you just need to install the package. If

you want to use the gamut measurement tool then you also need to define an ODBC

Data Source Name (DSN) called SpectraCOM and point it to a valid copy of the

database. An outline of the installation procedure is as follows:

1. Run the installation package (setup.exe) provided on the SpectraCOM disk. This will

install the software under a default location and add a program group to the Windows

start menu.

2. Connect the Spectrometer with a serial cable

3. From the Windows Start Menu, select SpectraCOM Toolbox as shown in Figure 11. This

will open the toolbox window, and put the icon in the system tray.

4. Once the spectrometer is connected and turned on, click the "Reset Spectrometer" button

in the toolbox window. The spectrometer screen should flash, and then indicate that an

"S" command was sent.

5. Select a measurement type and then click "Measure Now". You should hear the

spectrometer click, and a response should come back within a couple seconds. If the

spectrometer does not work, refer to Troubleshooting SpectraCOM on page 39.

The SpectraCOM application is designed to work closely with a custom Microsoft

Access Database (MDB file) for storing gamut measurements. The connection

information for this database must be defined in an ODBC DSN called "SpectraCOM".

ODBC allows a developer to store information about databases in one place that can be

shared among applications. Each set of connection information is associated with a

simple name (a DSN). Then, if the database information ever changes, we only need to

update the DSN information in ODBC rather than updating all the applications that use it

Jpda

Installing the SpectraCOM DSN

In order to use the database, the computer must have a DSN called SpectraCOM

that points to a valid copy of the SpectraCOM database. Although the installation

package creates a blank copy of the database in the default installation location, all of

the computers in the computational vision lab have DSN's that point to the database on

the Gamut computer. These DSN were created manually, using the following steps (See

Figure 12):

Run the ODBC Administrator (odbcad32.exe)

Select the "System DSN" Tab

Double-click on the SpectraCOM DSN

In the Microsoft Access Driver window, click "Select ..." to choose a new database

Use the browser to locate the shared MDB file

Click OK, OK, OK

This DSN will be used by both the SpectraCOM program and the Matlab

programs that access the gamut measurement data.

Using the SpectraCOM Interface

There are two ways to access the functionality of the SpectraCOM object. The

SpectraCOM Toolbox wrapper application (available from the Start menu) exposes the

functionality through a windows interface and from a persistent toolbar icon in system

tray. Alternatively, the SpectraCOM OCX can be included in your own software project.

The next few sections will review the functionality available through the COM interface,

and the section entitled Scripting with SpectraCOM on page 34 will deal with using the

SpectraCOM OCX in a scripting language.

As mentioned above the SpectraCOM Toolbox can be launched from the

Windows Start menu. Once launched, there are three possible windows that can be

displayed:

1. The SpectraCOM Interface window, which has three tabs and a few menu options.

2. The Spectral Chart Window displays the results of spectral measurements.

3. The Gamut Measurement Tool window helps run test suites for measuring a device

gamut by displaying and measuring colour patches on the screen.

In addition to the interface windows there is a system tray toolbar icon with a

right-click menu (Figure 13). Double-clicking the icon will open the SpectraCOM

lnterface Window. From the right-click menu, the user can open all three of the

windows, reset or disconnect the spectrometer, and close the program.

Figure 13: SpectraCOM System Tray Right-Click Menu

Q TIP: Closing windows that were opened using the toolbox will not stop

the toolbox from running, and may not close the port. I n order to

ensure that the port is free, you must right-click the "SpectraCOM

System Tray icon and choose "Exit"

The SpectraCOM lnterface Window

The Measure Tab allows the user to reset the spectrometer, which re-applies the

settings from the Setup Tab. It also allows the user to take a number of different

measurements. The most notable of these measurements is the Spectral option, which

will open the SpectraCOM Chart Window.

The Setup Tab on the SpectraCOM Interface (Figure 14) allows the user to

control all of the important setup parameters for the Spectrascan 650 Spectrometer.

The Sync Frequency allows the user to specify the expected frequency of the light

source being measured. It can be set to Auto, in which case the spectrometer is

supposed to automatically detect the frequency. This feature was not used in this study,

and did not appear to work on CRT monitors. All measurements in this study were taken

using "DC Mode".

Figure 14: The Setup Tab on the SpectraCOM Interface

Q Working with the Setup tab when the spectrometer is offline will cause

the application to respond very slowly. I f you are experiencing this

problem, hit "escape" to cancel the spectrometer request, then toggle

to the Measure tab and reset the spectrometer. You may need to hit

"escape" again when you change tabs, since the setup is also applied

when the Setup tab is de-selected.

The Integration time option allows the user to specify the shutter speed in

milliseconds. A value of 100 indicates that the shutter should remain open 100

milliseconds for each measurement. I recommend setting the integration time to a

multiple of the screen scan time. For example, if the scan rate is set to 100 Hz, set the

integration time to a multiple of 13.3 ms. It is generally better to err on the side of long

integration time in order to ensure repeatable measurements.

The Samples option allows the user to specify the number of samples that are

taken with each measurement. The average of these samples will be returned from the

spectrometer. The remaining options (units and accessories) are set to the default

values and were not changed in this study. I don't know what they do and I fear them.

The Connection Tab on the SpectraCOM Interface is intended for debugging

connection response problems with the spectrometer. It allows the user to select the

COM port that will be used, open and close the port, update the timeout seconds, and

send custom commands to the device. For this study, the timeout seconds was set to a

large number (90 seconds) to allow for multiple re-test attempts when running in gamut-

test batch mode. Sometimes when testing dark colours such as black, the device needs

to increase the integration time to 800 ms or more, which can take a considerable

amount of time.

The SpectraCOM Chart Window

The SpectraCOM Chart window appears when the user selects Spectral

Measurement from the SpectraCOM Interface, or selects the "Measure Spectrum" option

from one of the menus. The chart will automatically add subsequent measurements until

either the window is closed or the user selects "File+Clear Data". The user may click

on the chart points to see detailed data information.

The Chart also has the ability to export its data to a CSV file from the

File+Export menu option. This will create a CSV file with a column of data for each

series.

The SpectraCOM Gamut Measurement Window

The Gamut Measurement Window helps the user run test suites that measure a

monitor's gamut. The data from the test is stored in the SpectraCOM MDB using the

SpectaCOM DSN. This data can be extracted directly into Matlab, or can be converted

to text files using the Excel spreadsheet provided with this project.

The first section of this window defines the Sample Plan either using an auto-

generated sample plan of equal step size, or by reading a sample plan from a file. The

file should be a simple comma separated variable (CSV) file with an R, G, B setting on

each row. A sample test file is included in the default installation, entitled "samples.csv".

32

The sample plan file should not include repetitions - use the "Test Repetitions" option on

the interface instead.

The checkbox for Record Spectral Data allows the user to specify that the test

will record a full spectral sequence for each sample in the test. This option will make the

test run more slowly, and collects 100 records for each sample.

The Spectrometer Reset Interval option in the Sample Plan area allows the user

to define how many measurements should be attempted before resetting the

spectrometer. This option was added because it was found that the spectrometer

encountered some problems after a few thousand test points. Resetting the

spectrometer before the problem happens is an effective way to prevent it.

The three options on the right side of the window allow you to control

measurement parameters - burst sample size, integration time and measurement delay.

The measurement delay controls the number of milliseconds between the display of a

colour and the start of measurement.

The remaining options on the Gamut Measurement Window are for recording the

test conditions in order to make it easy to pull this data back from the database.

Upon clicking Start, the user will be presented with the "Begin Testing" dialog.

This dialog presents a few reminders to help the user prepare for the test, as well as a

gray-scale pattern for adjusting the monitor brightness. Upon starting a test, the user

should adjust the brightness on the monitor until all of the gray colours are visible, record

the settings in the text boxes provided, and click "OKn to start the test.

Figure 15: The Gamut Measurement Tool and Start Test Window

@ Make sure that you turn off the screen saver and power options before

running the gamut measurement test.

Q Double-check the spectrometer settings before running a test. Make

sure that the comm port timeout is high (like 120 seconds) in case

some measurement takes a long time. You don't want your test to stop

halfway because of a timeout.

Scripting with SpectraCOM

Scripting with the SpectraCOM Object is intended to be an easy alternative to

using the interface, but I'll admit it's tough to beat the interface. The COM object can

also be used as a reference in any object-oriented programming language such as Java,

C++ or Visual Basic. The usage in compiled VB is very similar to the examples shown

here, which are for VBScript.

In order to get started in VBScript, simply create a text document and change the

extension to ".vbsV and double-click the file to run it. A sample file entitled "Test.vbs" is

included in the default installation. The first step in the code is to create an instance of

the SpectraCOM Object. The code for doing this in VBScript is as follows:

set obj=createobject("SpectraCOM.Spectrometer")

The line of code shown above will create a Spectrometer Object and call it obj.

Immediately after creating the object, it is a good idea to call the obj.reset method, which

will verify that the spectrometer is connected, and re-set it's configuration. The following

table the various properties and methods of the SpectraCOM Object.

(D TIP: Microsoft Visual InterDev offers code completion for VBScript but

getting it started is a little tricky. We need to trick InterDev into

thinking that the file is ASP, which uses VBScript. To do this, right-

click the file in the InterDev Project Explorer and choose "Open With",

then select HTML Editor. Finally, put the '<%" symbol at the top of

the file to tell it that the ASP script is starting. Once you have done

that, you will be able to see the correct syntax highlighting and code-

completion. You'll need to comment out or celete the '<%" before

running the program.

Table 6 and Table 7 list some important properties and methods of the

SpectraCOM.Spectrometer object.

I Property Name I Description

~ c c e s s & y l ~ l - 4
(Spectrometer
Setting)
AutoApplySettings

CommPort

CommTimeout

lntegration~ime
(Spectrometer
Setting)
ProductName

Response

SampleSize
(Spectrometer
Setting)
SyncFrequency
(spectrometer-
Setting)
UnitsType
(Spectrometer
Setting)

These four properties control the Accessory ID values that are set
on the spectrometer device. Refer to the spectrometer manual for
details.
When this property is set to true, changes to Spectrometer
Properties will be immediately applied to the spectrometer, and
any errors will be thrown. If this value is set to false, the user must
remember to call the applysetup() method in order to send setting
changes to the spectrometer.
This property is a pointer to the CommPort visual basic object that
is being used for serial communication.
This settinn defines the default time in milliseconds for the
program to wait for responses from the spectrometer.
This variable reads and sets the integration time used by the
spectrometer for taking measurements. Integration time is
essentially the shutter speed in milliseconds.
This value tells the name of the product (i.e. Spectrascan 650)
and is reserved for future use.
This variable holds the most recent response information from the
Spectrometer. In general, a user will use the formatted
information that is returned from the measure() method rather than
parsing the response directly.
This setting tells the spectrometer how many samples to take per
measurement burst.

This variable tells the spectrometer what sync frequency to use for
taking measurements. Valid values can be 0 (DC Mode), 1 (Auto),
or 40 to 240 (hz).
This variable sets the spectrometer Units. See Spectrometer
manual for details.

Table 6: SpectraCOM Object Properties @

Description
Applies the current public configuration variables to the
spectrometer. These variables include AccessorylDl thru 4,
SyncFrequency, IntegrationTime, SampleSize and UnitsType.
This function will throw an error if the spectrometer does not return
a successful response.
This method will tell the object to cancel any pending action. This
is important because the spectrometer may have a long timeout
(90 seconds is not unusual), so it is nice to be able to kill an action

paper as the main SpectraCOM Interface dialog box. The dialog
box is opened with the "Setup" tab selected.

configure()

I connect(port) I Connects to the serial port # indicated by port

without waiting.
Opens the "Configuration and Control Dialog", referred to in this

measure(
Measuremode,
Quality, Units,
a Values,
[bGetOldData])

MeasureAndShowSpe
ctrum([bGetOldData])

measureScreenColor(
MeasureMode, r, g, b,
Quality, Units, a Val)
reset()

sendcommand(
strcommand,
[strEOR], [in tTimeou4)

showControls(Modal)

showGamutTool(
Modal)

test Frequency()

numbers indicated by the arguent qNum.
Disconnects from the serial port
This function tells the spectrometer to take a measurement. The
first argument MeasureMode must be one of the enumerated
MeasureMode values (see above). The Quality, Units, and
aValues arguments are used for return values, where Quality
indicates the quality number that can be decoded using the
decodeQualithNumber(qNum) method. The aValues array will
contain an attay of output values depending on the measurement
type.
This method also returns the integration time used to make the
measurement as a return value.
This method will measure the spectrum and show the spectral
chart window. Setting the optional argument bGetOldData to true
tells the spectrometer to use the values from the last
measurement rather than measure again.
This function is a combination of the Measure and Showcolor
methods described in this section.

Attempts to wake up the spectrometer. It sends a setup
command to verify that the spectrometer is responding. This
function will throw an error if there is a communication error. It
returns true on success, but never returns false (it errors instead).
This function sends the command string indicated bv strcommand
to the spectrometer. Optional argument st re^ tells the
spectrometer the End Of Response identifier, which defaults to
vbCrLf. The intTimeout identifier tells the program how long to
wait in milliseconds before declaring a timeout. If the timeout
value is missing, then it defaults to the spectrometer setting for
ConnTimeout.
If the spectrometer does not issue a successful response in less
than the timeout time, an error is thrown.
This method will show a large colour panel covering the entire
screen, using the input variables r, g, and b. The optional string
strcaption will appear in the upper left corner of the screen. The
"Modal' option allows the user to open the control in modal or non-
modal mode. Note that VBScript does not allow non-modal dialog
boxes.
This function opens the SpectraCOM Interface Dialog Box with
the "Measure" tab selected. The "Modal' option allows the user to
open the control in modal or non-modal mode. Note that VBScri~t
does not allow non-modal dialog boxes.
This method opens the Gamut Measurement Dialogbox. The
"Modal' option allows the user to open the control in modal or non-
modal mode. Note that VBScript does not allow non-modal dialog
boxes.
This function tells the spectrometer to run the frequency test for
the "Auto" frequency sync mode. When using the Auto mode, this
test must be run before taking any measurements. In that case,
this function is called automatically by the measure() method.

This method returns a string for any one of the known quality
-
-

-

-

-

-

-

-

-

-

-

Table 7: SpectraCOM Object Methods '%*

37

A short sample script using these properties and methods is as follows:

set o=createobject("SpectraCOM.Spectrometer")
o. reset
o.syncfrequency=O 'DC Mode
o.integrationtime=200 'Manual, 200 ms
o.samplesize=3 '3 Measurements per request
o .Measure (2, Q, A, aVal, false) 'Measure XYZ
msgbox aVal(1) & " , " & aVal(2) & " , " & aVal(3)

The Database

The database was designed for recording data for large suites on individual

display devices. There are a number of tables in the database, as shown in Figure 16.

Figure 16: The Database Schema

The DisplayType and DisplayClass tables are lookup tables for the display types

(CRT, LCD, Projector) and classes (Monitor, Projector...), and are referenced by the

display table. The records of the Display table are then used by the Gamutsession

table, which contains one record for each test session collected using the Gamut

Measurement Tool. Each measurement of the session is stored in the

GamutMeasurement table. If the "Record Spectral Data" option was checked on the

Gamut Measurement interface, then 100 spectral data records will be stored in the

GamutSpectralData table for each measurement.

In the latest version of the database, two additional tables have been added -

StandardTestName and StandardTestPoint. These tables make it easy to pull out a

data set for a standard test (101 linear, 10 interaction, etc) when the data for multiple

tests is collected in a single gamut session. StandardTestPoint lists the RGB points that

make up a standard test. The "GMAP Query" in the default database gives and example

of how to query data for a standard test using these and other tables.

Accessing the Data

It is possible to query and update the data in the database from any application

that supports ODBC, including Matlab. Several Matlab files that query data directly from

Matlab are stored in the Utilities folder. In order to get started using these files, the

Database Toolbox must installed in Matlab and the SpectraCOM DSN must be installed

on the computer (see Installing the SpectraCOM DSN on page 28). Once that is done,

connecting to a database and running a query can be done in four-lines.

db = database('SpectraCOM', " , ") ;

cur = cursor(db, 'SELECT * FROM Display');
dat = fetch(cur) ;
mat = dat.Data;

The above example will return a matrix containing all of the information in the

Display table in the database. For more details on querying and updating data in the

database, refer to the files in the Utility folder, which contains a number of examples and

comments.

Troubleshooting SpectraCOM

In order to debug spectrometer problems, it is most useful to use the

SpectraCOM Interface Dialog box. The following problem/solution pairs use this dialog

box. First, make sure everything is plugged in and turned on.

Problem: No Response

Solution: If you are getting no response from the spectrometer, first check the

connections - make sure you have the correct COMM port selected in the Connections

panel of the setup screen. There is a toggle switch on the serial cable for the

spectrometer. Try toggling the switch and re-setting the spectrometer again. Ensure

that the Comm Port selection is correct, and reset the spectrometer again using the

"Reset Spectrometer" button.

Problem: The Toolbox does not open

Problem: Createobject Does not work in Scripting

Solution: It is possible that the SpectraCOM object did not get registered when

the software was installed. Locate the SpectraC0M.o~~ file on your hard drive, and

execute the command "regsvr32 [ocx path]".

Problem: Cannot connect to the database

Solution: Run the ODBC Administrator (Start+Run+"odbcad32") and check in

the System DSN tab to ensure that there is a "SpectraCOM DSN. If the DSN is not

there, you can create one using the ODBC Administrator interface. Select "Add", then

choose "Microsoft Access Driver", set the name to SpectraCOM and use the Select

button to locate the database.

If the SpectraCOM DSN is there, you can verify that it points to the correct

location by double-clicking the name and then clicking the "Select" button in the window

that appears.

If the SpectraCOM DSN is present and it points to the correct database file, but

there is still a database problem, then it is possible that the database could be corrupted.

Try pointing to a new, blank database file and see what happens.

40

APPENDIX B: THE GAMUT VIEWER TOOL

Early on in the project we discovered that simply mapping forward on one device

and backward on another will not work very well unless the gamuts of the two devices

are identical. In practice, there are always colours that one device can produce and the

other cannot - out of gamut (OOG) colors. In order to help visualize this situation, I

developed a simple C++ application called GamutViewer that can overlay two gamuts

and allow for real-time rotation and translation of the image. The program takes as input

the names of two gamut map raw data data files (GMAP files). These files must contain

comma separated value (CSV) data with one record per row and columns for

R,G,B,X,Y,Z. An example of the interface is given in Figure 17.

Figure 17: The GamutViewer Interface

In order to use the application, simply place the GamutViewer.exe program in the

same folder where the two gamut files are located, then highlight the two files and drag

them on top of the GamutViewer.exe file, as shown in Figure 18

Figure 18: Starting Gamutviewer by selecting two files and dropping them on the executable

Once the viewer is displayed, the user can show or hide either file, display the

gamuts using either points or spheres, and toggle which gamut is shown in all gray.

Some examples are shown in Figure 19.

Figure 19: Example of swapping the gray file and showing points as spheres.

APPENDIX C: THE MS POWERPOINTO SAMPLE INTERFACE

One of the initial goals of this project was to make a friendly user interface for

predicting the colours on presentations. One of the friendliest ways to do this is to

incorporate the software directly into Microsoft Powerpoint@. This can be done fairly

easily using the Visual Basic for Applications (VBA) components provided with

PowerPoint. However, VBA is not a very powerful language for doing large calculations,

as would be required for colour mapping. Therefore, I proposed a two-part architecture,

where the colour mapping calculations are embedded in a C++ COM object, and the

interface is supplied by VBA. I developed a sample application using this architecture to

serve as a platform for future work.

The ColorPreview.ppa file is available on the project CD under the

PowerPointPreview folder. The application automatically adds a few menu options to

Powerpoint, as shown in Figure 20. The application is incomplete at this point, but

provides a starting point from which to build the project.

Figure 20: The clmageBuddy object in the project toolbox

Also included on the project CD is the code for the clmageBuddy object - an

COM object written in C++ that can be referenced from VBA. Documentation specific to

clmageBuddy can be found in the source folder on the project CD.

APPENDIX D: A NOTE ON GAMUT MAPPING

One of the initial goals of this project was to demonstrate successful prediction of

colours across two devices. Originally it was postulated that the mapping might be

possible if one gamut is completely inside the other, but even if this were the case it

would lead to unsaturated colours on the device with a larger gamut. In practice, we

found that it is not possible to map from one device to another without some form of

gamut mapping.

Figure 21 shows two gamuts that have been aligned by removing monitor flare

(black-point translated to the origin in XYZ space) and performing a diagonal matrix

transform to scale the white-points to [I ,1,1] in XYZ space. Both gamuts are similar in

shape (6-sided), with eight corners corresponding to the primary phosphor colors (RGB),

the secondary mixed colors (CMY), black and white. For the devices used in this

experiment, aligning the gamuts in this manner will always result in almost all corners of

one gamut being outside the other gamut, and vice versa.

Figure 21: Sample output from the Gamut Visualization application developed for this project. (a)
two gamuts, with one in gray, (b) one gamut with points shown as spheres

44

This observation makes it clear that characterization alone will not be sufficient

for mapping between two devices - all of the pure colours will be out of gamut.

Diagonal Tranfsorm Scaling

Our first implementation of colour prediction did not do any special gamut

mapping - it simply translated black to the origin and applied a diagonal matrix that set

white to (1 ,1 ,I). As shown above, this technique will align only the the black and white

corners, but not the other edges. This leaves us with a problem - how do you find a

suitable RGB input value for an XYZ tristimulus value outside the gamut that a monitor

can produce? The task of assigning values for these out of gamut (OOG) points is

referred to as Gamut Mapping.

Clipping

Our first implementation of gamut mapping used a technique referred to as

clipping - any point v that is outside of the gamut is orthogonally projected on to the

gamut surface. In order to find the closest surface patch, we pick any point 91 on the

interior of the convex hull (preferably the centroid), and then compute a point set Q such

that the faces of the gamut convex hull are perpendicular bisectors between each point

and 91. Now the nearest point in {ql ,Q) to v is associated with the nearest edge for

projection. If it's 91 then vis not out of gamut.

The biggest problem with this approach is that points near the corners of the

gamut will still be out of gamut after projection (Figure 22. In this case, we iterate until

the point comes inside gamut.

Figure 22: Example of a clipping operation that results in another OOG point

This technique proved to be very slow and led to some poorly selected colours.

Recall that the shapes of digital display devices are usually similar (cube-shaped) and

that most of the out of gamut points tend to fall in the corners, which is where the

clipping algorithm is the slowest.

Scaling and Rotation

We could easily improve the clipping problem by first using a uniform scaling to

set the length of the gray axis to& (the length of the diagonal through a unit cube).

Using a uniform scaling rather than a diagonal transformation better preserves the

relationship between colours. Two rotations are performed next. First, the gray axis is

rotated to align white to (1,l ,I). Next, the gamut is rotated around the gray axis to

achieve the best alignment of corners.

Once the scaling and rotation have been performed, the clipping operation runs

much more quickly and the resulting colours are better.

Warping

Warping is a novel gamut mapping technique specifically designed for two

similarly shaped gamuts. We define a few anchor points on the source gamut with

known values in the target gamut (i.e. the corners) and divide the space into a Delaunay

tessalation using the anchor points. We then warp the source gamut to the target using

linear interpolation inside the tesselation cells.

My initial implementation of warping was applied to a pair of gamut maps before

scaling and rotation, and the result was a gray axis that was severely curved, as shown

in Figure 23.

Figure 23: Example of gray axis curvature after warping without rotation or scaling

Applying scaling and rotation before warping greatly improves the performance,

but the results are incomplete at this point. Mr. Bastani is currently extending this

research by applying scaling and rotation before warping, and is achieving improved

results.

[I] Amidror I. Scattered data interpolation methods for electronic imaging systems: a
Survey. J Electronic lmaging2002; 1 1.2:157-176.

[2] Fairchild MD, Wyble DR. Colorime. Colorimetric Characterization of the Apple
Studio Display (Flat Panel LCD). Munsell Color Science Laboratory Technical
Report, 1998, http://www.cis.rit.edu/mcsl/research/PDFs/LCD.pdf. Accessed:
1211 512003

[3] Finlayson GD and Drew MS, White-point preserving color correction. Proc.
IS&T/SID 5th Color lmaging Conference 1997; pp. 258-261.

[4] Gibson JE, Fairchild MD. Colorimetric Characterization of Three Computer
Displays (LCD and CRT), Munsell Color Science Laboratory Technical Report,
2000, http://www.cis.rit.edu/mcsl/research/PDFs/GibsonFairchiId.pdf. Accessed:
1211 512003

[5] Kwak Y, MacDonald LW. Accurate Prediction of Colors on Liquid Crystal Displays.
Proc. IS&T/SID 91h Color lmaging Conference 2001 ; 355-359.

[6] Tamura N, Tsumura N, Miyake Y. Masking Model for Accurate Colorimetric
Characterization of LCD. Proc. IS&T/SID loth Color lmaging Conference 2002;
31 2-31 6.

[7] Yasuhiro Yoshida and Yoichi Yamamoto, Color Calibration of LCDs. Proc.
IS&T/SID 1 oth Color lmaging Conference 2002; 305-31 1.

