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ABSTRACT

American dippers (Cinclus mexicanus) appear to concentrate at low elevation
streams in fall and winter, implying some degree of migratory behavior in this species.
Knowledge about the composition, origin and movement patterns of dipper populations
are necessary to use this species as an effective biomonitor of trace contaminants in
watersheds. During 1999- 2002, I color banded 522 dippers and radio-tagged 14 in the
Chilliwack River watershed, British Columbia, to follow their movements during the
breeding and non-breeding seasons. During the annual cycle, most individuals (84-89 %)
moved from the main river to higher elevation tributaries to breed, while small numbers
(11-16%) remained resident on the main river year round. Resident birds on the river
initiated nests earlier, had greater proportions of second broods, and benefited from
marginally higher rates of nest success and annual productivity than migrants on creeks.
Later initiation of breeding by altitudinal migrants reduced productivity by increasing
predation or flooding risk and prevented opportunities for initiating second clutches.

Residue analysis of dipper eggs and prey items (benthic invertebrates and salmon
fry) revealed DDE, hexachlorobenzene, trans-nonachlor and PCBs as the most prevalent
organic contaminants detected. PCB and organochlorine patterns were highly consistent
across sites in the Georgia Basin and between dipper eggs and prey, indicating common
atmospheric sources to the region that were biomagnified in lotic food chains.
Organochlorines, PCBs and mercury were all significantly higher in eggs from river
residents compared to creek migrants. Feathers of residents also had higher

concentrations of mercury, cadmium, and copper relative to migrants. However, levels of
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organic and metal contaminants in invertebrates differed minimally between the river and
creeks.

Observed differences in contaminant concentrations were primarily related to the
proportion of salmon fry in dipper diets. Stable isotope analysis revealed that residents
consumed significantly more fish than migrants. Blood §"°N values were positively
correlated with total organochlorines and total DDT in eggs suggesting that fish were the
primary source of organic contamination. However, daily exposure to metals that
exceeded tolerable daily intake levels (selenium, aluminum and zinc) was of greater

concern to migrants consuming primarily invertebrate diets.
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CHAPTER 1:

GENERAL INTRODUCTION



Rationale for the study

Lotic habitats are biologically rich and complex, supporting a variety of flora and
fauna that are unique to these systems. They also supply an important freshwater resource
for industrial, domestic and agricultural processes. World-wide, rivers and streams drain
an area of land approximately 150 million km?, containing a volume of water in excess of
2000 km? (Giller and Malmgqvist 2000). Although this seems like a large amount; it
represents less than 0.01 % of the world’s freshwater supplies, proving lotic
environments are an important habitat requiring protection.

Protection of running water habitat is not limited to the area between the stream
banks since hydrological processes link streams to the soils, vegetation, rocks and
atmosphere surrounding them. Human activity frequently disturbs the dynamic links
between the aquatic, terrestrial and atmospheric environments within watersheds.

Human influence has taken a variety of forms including eutrophication, acidification,
destruction of riparian areas, changes in stream flow, as well as pollution from local and
long range sources (Giller and Malmgqvist 2000, Maybeck 2001). While many of these
changes are temporary, others exhibit long-term effects on water chemistry and biota
occupying these habitats (Maybeck 2001, Arnason and Fletcher 2003, Stewart and
Skousen 2003).

Because the aquatic, terrestrial and atmospheric environments are linked within
watersheds, an extremely broad range of pollutants, both organic and inorganic, can enter
streams from a number of sources. This makes quantifying and measuring the effects of
pollutants on numerous riparian species an extremely complex and challenging process.

Many pollution abatement programs seek to employ a suitable indicator or biological



monitor that is representative of the health of the whole ecosystem. Ecological
parameters such as survival, reproduction, behavior and other population characteristics
can then be measured on this single species or group to assess the effects of local and
long-range pollution to whole populations or communities.

It has long been recognized that birds are highly sensitive to pollution and
deleterious changes to their habitat serving as early warnings of environmental
degradation (Hickey 1969, Peakall et al. 1973, Mineau et al. 1984). They represent a
position at the top of food chains and have relatively long life spans, thus reflecting
pollutant levels in whole ecosystems (Burger 1993, Furness 1993). As a result, they have
proven very useful in studying the effects of pollutants in a variety of ecosystems and
their changes over time. A primary objective in ecotoxicology is to link the impacts of
pollution on individual organisms to the impacts on populations and communities.
However, the greatest challenge in using birds as biomonitors of pollutants is being able
to disentangle interactions of pollutants and other population density stressors. This
requires intimate knowledge of the ecology of the species involved.

Although many species of birds occupy river systems and may be used as suitable
biomonitors of watersheds, relatively few avian species are exclusively aquatic and
occupy running waters year round. Truly lotic birds are limited to the dippers (Cinclidae)
and a few waterfowl species. Other river birds including kingfishers, sandpipers and
swallows may only use the margins of streams, may be found in other habitats or only
use lotic habitats seasonally. The dipper’s year round residency in mountain streams and
exclusively aquatic diet makes them well suited to studying the effects of pollution to

watersheds as a whole.



In Europe, dippers (Cinclus cinclus) have been successfully used as
environmental monitors of changes in water quality through acidification (Buckton et al.
1988, Ormerod et al. 1991, Vickery 1992, Logie 1995). In North America, there is also a
considerable growing interest in using the American dipper (Cinclus mexicanus) as a
biological indicator of water quality (Osborn 1999, Strom 2001, Feck 2002). However,
within the Georgia Basin as with many other regions in western North America,
populations of dippers appear much more mobile and are less well studied compared to
the European dipper. For example, in the south coastal region of British Columbia, rivers
and streams appear to host high densities of dippers in the fall and winter months with
numbers seeming to far exceed resident, breeding populations (W. Campbell pers.
comm.). The majority of present literature suggests that American dippers are resident
(non-migratory), possibly making some seasonal altitudinal movements. However,
others suggested that the large numbers of dippers that winter within this region of B.C.
are from more northern latitudes subject to freezing. Lack of research in this area has
eluded our understanding of the population dynamics of the American dipper in B.C. thus
preventing future examination of the influence of contaminants on populations.

If the American dipper is to be successfully used as an indicator of changes in
water quality through exposure to contaminants, questions related to understanding the
fundamental population ecology of these birds need to be addressed. These include
aspects of the population structure, seasonal distribution within the habitat, changes in
abundance, patterns of movement, diet, and fecundity. Across its range, American
dippers have shown an overall decline in numbers, particularly in northern regions (Sauer

et al. 2003). However, lack of knowledge about dipper ecology prohibits making a



causal link between population declines and habitat destruction. For example, seasonal
shifts in the distribution of populations may potentially influence local population
densities, or differences in diet may contribute to large variation in the observed levels of
contaminants. Thus, there is a general need to address the questions surrounding
American dipper population structure and migratory patterns in order to link this

knowledge to identify effects on reproduction, diet and exposure to contaminants.

Dispersal patterns in population studies

Dispersal or migration is a central concept in demographic studies concerned with
regulation of populations and conservation management (Gadgil 1971, Greenwood and
Harvey 1982). Several factors such as food availability, competition, predation pressure,
temperature and other environmental variables are known to influence animal movements
between habitats. In addition, the characteristics of a population’s structure (e.g. spatial,
age and sex) can also be important in determining dispersal patterns (Clobert and
Lebreton 1991). These regular migratory movements have selective value in enhancing
individual survival and reproductive potential between seasons (Dobson and Jones 1985,
Krebs 1994).

Most studies examining bird populations generally consider natal dispersal and
long-distance migration between the breeding and wintering sites as important forms of
movement (Greenwood and Harvey 1982, Berthold 1996). However, other seasonal
movements in and out of a study area to access better feeding areas or to avoid ice or
snow cover can also strongly influence the dynamics of local populations. Altitudinal or
vertical migration is a common form of periodic seasonal movement in many

mountainous species that often move short distances to lowlands in winter, but routinely



migrate to higher elevations to breed (Berthold 1996). Periodic movements can cause
rapid or pronounced changes in local density that can surpass those caused by
fluctuations in fecundity or survival (Newton 1991). Therefore, studying movement
patterns and its relationship to spatial variation in demography can have significant
importance in many population studies. As such, I consider the importance of dispersal
and differential movement patterns as a key aspect of American dipper population
ecology, which may further influence this species’ productivity, diet and exposure to

contaminants.

Selection of study site

The Chilliwack watershed was selected as a study site for studying the American
dipper’s population structure, movement patterns, and exposure to contaminants for
several key reasons. First, the Chilliwack River valley is located within the Georgia
Basin, British Columbia, an area that is under pressure from rapid urban, industrial and
agricultural development throughout the region. Second, Chilliwack is located in the
heart of the Fraser Valley, where inorganic and organic air pollution from local and long-
range sources was hypothesized as a potential source of contamination to the watershed.
Third, surveys conducted by the author in 1998 in this watershed along with several other
sites in the region, revealed a particularly large dipper population existed on the
Chilliwack River that would support an intensive field study and was consistent with
observations of having high winter densities of dippers with no knowledge about their
breeding origins. Finally, the watershed was easily accessible by a paved road, which

follows most of the length of the main river and a network of logging roads along several



tributaries. Therefore, good accessibility prevented several logistical constraints

associated with a large-scale study of this kind.

Research Objectives

The main objectives of this research were to use a population of American dippers to:
1) identify the population’s structure and seasonal migratory patterns,
2) link migratory strategy with effects on breeding performance,
3) link migratory strategy to relative composition of the diet,

4) determine sources and exposure to organic and inorganic contaminants based on
new knowledge of migratory patterns and diet,

5) assess toxicological risk and potential effects associated with observed
contaminant exposure.

Outline of Thesis

The thesis has been structured into five main body chapters that combine data on
the American dipper’s population ecology and exposure to contaminants from 4 years of
field studies and laboratory analyses. In the second chapter, data is summarized from a
large mark-resighting effort where over 500 dippers were individually color banded and
followed in both the breeding and non-breeding seasons. The banding study was used in
combination with a small-scale radio telemetry study and three years of routine river
surveys to reveal the general structure of the dipper population and their seasonal
migratory movements. In addition, I demonstrate how the high winter densities can be
advantageously used to estimate dipper population size in this watershed and as a model

for other watersheds. My overall objective was to show how different migratory



strategies could influence assessments of habitat quality using indicator species such as
the dipper.

The third chapter deals with the effects of different migratory strategies (resident
and altitudinal migrant) on dipper breeding performance. After following almost 100
breeding pairs over a 3-year period, I was able to assess the effects of migration, altitude,
habitat and nesting substrates on overall reproductive timing and productivity. The goal
was to better understand the effect of different migratory strategies on the dipper’s
breeding biology.

In the fourth chapter, I identify the major sources and patterns of persistent
ubiquitous contaminants such as organochlorines and PCBs to dippers in the study
watershed and compare these with three other sites in the Georgia Basin. Through
analysis of eggs and prey items of the American dipper, [ was able to determine patterns
of atmospheric deposition to the watershed. In addition, biomagnification factors (BMF)
were calculated to assess the ability of long range transported contaminants to accumulate
in indicator species such as the dipper from its aquatic diet.

Chapter 5 presents the effects of different migratory strategies on diet
composition and exposure to contaminants. A comparison of resident and migrant egg
contaminant levels reveals the influence of both diet and breeding location on exposure to
organochlorines, PCBs and mercury. Stable isotope techniques were further used to
identify the major contributions of fish and invertebrate prey to the diets of residents and
migrants and link these to observed contaminant concentrations in dipper eggs.

In Chapter 6, I quantify the degree of metal contamination to resident and migrant

American dippers in the Chilliwack watershed using their diet, feathers and feces. 1



present mass balance exposure models incorporating metal levels from the prey items to
determine daily exposure to nine different trace metals based on differences in diet and
breeding location. These models were used to interpret observed metal levels in feathers
and assess toxicological risks for the Chilliwack dipper population. They also serve as an
example for how to assess risk to other birds in metal contaminated systems.

The final chapter is a summary of the major findings and a synergistic
interpretation of the results. I include general and specific conclusions about dipper
migration and its overall influence on the ecological and toxicological parameters
measured in this study. In applying my research to conservation objectives, I present a
number of management recommendations for protection of watersheds and regional
dipper populations. In addition, I make suggestions for future research from key

questions that arose out of the present study.

Authorship

This research is a compilation of 4% years of work primarily conducted by the
author. Each main chapter is written in a manuscript style for submission to selected
journals in the field. My supervisors Dr. L. Bendell-Young and Dr. J. Elliott coauthored
chapters 2, 4, 5, and 6. However, the primary author (CAM) designed the study,
conducted all the field research, sample collection and preparation, data analysis, and
writing of the thesis. My supervisors played a role in providing research funding, advice
on study design, mentoring the interpretation the results and scientific content, and
reviewing drafts of the manuscripts written by the primary author. Several individuals

also played important roles in assisting with data collection, laboratory analyses, advice



on study design or data analysis, and reviewing manuscript drafts. These individuals are

subsequently acknowledged at the end of each chapter.
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Abstract.

American Dippers concentrate on low elevation streams during fall and winter
months in many parts of its range. The large influx in numbers implies some degree of
migratory behavior for this species; however the breeding origin relative to the wintering
location of these birds is poorly understood. Our objectives were to identify the seasonal
changes in the density and distribution of American Dippers in a coastal watershed; to
classify the composition of the local population; and to determine the origin and
movement patterns of winter migratory birds. During 1999-2002, we color banded 522
dippers and radio-tagged 14 in the Chilliwack River watershed in southwestern British
Columbia, Canada. Peak densities on the main river occurred in early November (mean
= 9.8 birds/km), which was nearly 5 times higher than in early July (mean = 2.1
birds’km). The study revealed that the majority (84 % - 89 %) of the dipper population
seasonally migrated, primarily moving from the low elevation river in fall and winter to
the higher elevation creeks in spring. The remaining dipper population (11 % - 16 %)
remained resident on the river year-round. Winter migrants showed a high degree of
winter site fidelity with 67 % returning to the same site on the river for 2 or more years.
Given the population of dippers in the watershed was concentrated in winter, we
estimated the size of the Chilliwack watershed population from November survey data to
be 429 + 64 birds in 1999, 682 + 79 birds in 2000, 697 + 123 birds in 2001 and 550 = 72
birds in 2002. This study has implications for applying American Dipper populations for
use as indicators of water and habitat quality in mountainous watersheds given the

population’s defined structure and predictable patterns of movement between seasons.
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INTRODUCTION

Monitoring programs involving birds as indicators of habitat quality are now
widely used on both a local and national scale as an effective way to measure spatial and
temporal trends in degradation of key ecosystems (Furness 1993). In general, knowledge
about the ecological impacts on study populations used in monitoring studies may serve
as an early warning of habitat degradation. However, a solid understanding of the basic
ecology of an indicator species is necessary to effectively interpret population level
effects and monitor key ecosystems.

Numerous European studies have successfully used the dipper (Cinclus cinclus),
an aquatic songbird, as an environmental monitor of riparian habitat, including changes in
water quality (Ormerod et al. 1991, Tyler and Ormerod 1992, Logie et al. 1996, Buckton
et al. 1998, Sorace et al 2002). In North America, there are also recent studies supporting
the use of the American Dipper (Cinclus mexicanus) as a biological indicator of stream
condition (Feck 2002, Strom et al. 2002). The use of an indicator or sentinel species
typically assumes that it is relatively sedentary or its ecology should be well understood
(Moriarty 1999). However, relatively little is known about the ecology of the North
American species, compared to the well-studied Eurasian Dippers (Tyler and Ormerod
1994). In particular, American Dippers throughout their range appear much more mobile
than many European populations. If the American Dipper is to be successfully used as an
indicator of changes in environmental quality, questions related to understanding the
population’s structure and movement patterns need to be addressed.

Several studies on the Eurasian Dipper and American Dipper have alluded to the

fact that Cinclus is a partial migrant, but most accounts have been primarily descriptive
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or speculative in nature (Bent 1948, Bakus 1959a, b, Balat 1962, Jost 1969, Whitney and
Whitney 1972, Tyler and Ormerod 1994). Furthermore, the extent of the migration and
the location of the wintering and breeding sites of individual birds have never been
examined in the North American species. In Canada, few records exist on the American
Dipper’s abundance and no comprehensive ecological studies have been done on this
species in British Columbia, despite the fact that the majority of the Canadian population
exists here (Campbell et al. 1997). However, observational data have indicated high
densities of dippers occur in fall and winter months on rivers and streams of the
southwestern region of the province which is consistent with reports from elsewhere in its
range (King et al. 1973, Campbell et al. 1997, Kingery 1996). Speculations as to the
origin of these wintering birds include a possible migration from more northern latitudes
where seasonal freezing is common (Campbell et al. 1997) or an altitudinal migration
from the remote mountain streams (Kingery 1996). Lack of research in this area has
precluded our understanding of the population dynamics and movement patterns of the
American Dipper. However, the use of marked individuals can allow us to relate
wintering populations to specific breeding origins.

This research represents an important case study to address several questions
about the migratory movements of dippers and the temporal trends in population density,
distribution and size. Our objectives were to document the seasonal changes in density
and distribution of dippers within a watershed of southwestern British Columbia; to
identify the composition and size of the local population; and to determine the origin and
movement patterns of winter migratory birds through extensive banding and radio

telemetry methods.
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METHODS

STUDY AREA

The study area was located within the Chilliwack River watershed (49°0°N,
121°4°W), a tributary of the large Fraser River system, located approximately 100 km
east of Vancouver in the Cascade Mountain Range of southwestern British Columbia,
Canada (Fig. 1). The Chilliwack River is 43.5 km in length fed by a large glacial lake at
its upper end and merges into the Vedder River downstream. The watershed has an
elevation range from 20 to 2500 m and drains an area over 1200 km®. The watershed
tributaries are first through third order streams, and the river is dominantly a fourth or
fifth order stream. This watershed served as a suitable study site because it met the
criteria of having high winter densities of American Dippers as observed in many
watersheds throughout the region, as well as good road accessibility. The Chilliwack
River and its tributaries are characterized by highly suitable dipper habitat composed of
fast moving water, a variety of riffles and pools, large boulders and cliffs, and a mixture
of cobble and sand substrate.
CAPTURE AND MARKING

From 1999 to 2002, we captured and marked 522 American Dippers in our study
area in accordance with federal scientific, banding and animal care permits. We
established eight sites along the river that were approximately 4 km apart for trapping and
surveying (Fig. 1). The majority of dippers were caught from January to March
wintering on the Chilliwack River at these eight sites. Additional breeding birds were
caught throughout the breeding season until late July in all areas of the watershed

including the tributaries. We trapped adult and newly fledged dippers primarily by
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flushing them into 6 m passerine mist nets set up over moving water in narrow channels
or on edges of the river and creeks. A hand-net was used to trap a few additional birds
while on the nest during incubation (females) or during nest building (males). Capture
and handling of breeding birds was never observed to cause nest abandonment or
hatching failure. In 1999, 2000 and 2001, nestling dippers were banded when they were
12-14 days old. Nestling ages were known since we followed breeding birds and
recorded laying and hatching dates. All dippers were weighed, measured and banded
with a numbered USFWS aluminum band and three colored celluloid bands. Adult
dippers are sexually dimorphic in size and can be sexed by wing chord measurement
(Kingery 1996) or by behavior during the breeding season.
SURVEYS

Beginning in November 1999 and then every two months (except September)
until November 2002, we conducted a survey of the eight river banding sites. Surveys
were routinely done within the first two weeks of the month by 2 experienced observers
including the author, C. Morrissey. The distance at each of the eight sites was
approximately 2 km but precise measurements were determined using rangefinders
(Bushnell Yardage Pro 400, Richmond Hill, Ontario) to accurately calculate bird density.
Both observers walked along the riverbank searching all channels and the lower reaches
of creeks where they met the river. The same search areas were used for all subsequent
surveys. Each survey took three consecutive days to complete, moving upstream for each
of the eight sites such that we completed three sites each on day one and two and the last
two sites were completed on day three. Although it is possible that birds could have

moved between sites during subsequent days of the counts, we never encountered any
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double observations of banded birds between sites during any of the surveys. Surveys
were not done in early September because the majority of birds would be molting and
therefore not visible for counting.

We searched for all dippers and recorded all banded and unbanded birds. In
addition, if we sighted a bird but were unable to identify whether it was banded or not
(usually because it was flying out of range) it was recorded as unknown but included in
the total count. The unique band combinations were visible with 8x binoculars or a 10 -
40x spotting scope when the birds stood on rocks, even at distances of 100 m or more.
Throughout the four-year study, and particularly during the field seasons from January to
July, we searched for dippers throughout the watershed and recorded any observations of
banded individuals. When we sighted a dipper, every effort was made to identify
whether it was banded. We kept a history for each banded bird, which included the date
and location of all sightings as well as any relevant breeding information.
RADIO-TELEMETRY

In late February and early March of 2000, we radio tagged 14 adult dippers
wintering along the main river channel. Six birds had been captured and color banded in
1999 and were known to move off the river in spring, while 8 were not previously
marked. Transmitters with a whip antenna (Holohil Systems Ltd.) had unique
frequencies and weighed approximately 1.65 g, which was approximately 2.5 % - 3.5 %
of the bird’s weight. They were glued to the subsurface feathers with a waterproof epoxy
(Titan Corp.) approximately 1 cm anterior of the uropygial gland, allowing the radio to
fall off over time, or when the birds molted. We observed birds feeding and preening

normally for several days following transmitter attachment, and resighted 4 individuals
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the subsequent winter without their radios. Transmitter batteries had an expected lifespan
of 12 weeks. Detection from the air was excellent but transmitters had limited range of
1-2 km on the ground due to the mountainous terrain.

We tracked dippers on the river for a few days to a few weeks until we could no
longer detect a signal from the radio-tagged birds on the ground. During two flights
(April 17 and May 7, 2000), we flew all sections of the watershed to the snow line to try
to locate the birds with radio transmitters. The second flight confirmed bird locations and
detected any further movement during the 3-week period.

MOVEMENT AND POPULATION SIZE ANALYSIS

Movement patterns were analyzed using the multi-strata model in Program Mark
(White and Burnham 1999). We structured the analysis to identify probability of
movement between strata for the breeding and non-breeding seasons with 95 %
confidence intervals. We designated the river and creeks as independent strata and report
only the most parsimonious model with the lowest Akaike Information Criteria (AIC)
values.

To estimate the size of the Chilliwack River dipper population, we employed two
different methods. We first used a ratio estimator (Jolly 1969, Krebs 1999) to calculate
population size from the bimonthly survey data. This method did not require any band
resighting information but simply used population density and an estimate of the size of
the wintering area (expansion factor) to calculate total population size. Program Mark
was then used to estimate the population size with the Jolly-Seber model. We used
Monte Carlo simulations of analytical estimates of lambda and the covariance matrix to

calculate 95 % confidence intervals for population size (N). These confidence intervals
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were then compared with those estimates obtained from the survey counts to confirm
their validity. Our main assumption was that the parameter uncertainty was normally

distributed for the simulations.

RESULTS

DIPPER DENSITIES

Over the 3-year survey period, large fluctuations in total dipper numbers occurred
seasonally on the main river channel. We observed a consistent pattern of peaking
numbers in November and January followed by a decline (Fig. 2). One exception was in
winter of 2002, January temperatures reached highs of 17°C and heavy rains followed by
rising water levels likely drove birds off the river prematurely. Two months later, in
March, temperatures plummeted well below 0°C for several days with heavy snow
causing many birds to return to their wintering sites on the river. This resulted in an
atypical pattern for that year with respect to survey counts. Overall, winter 1999/2000
had the lowest total numbers of birds compared to later winters.

It was clear that the Chilliwack dipper population was mobile and that high
densities occurred during the non-breeding season. Dipper movements produced large
changes in density (number of birds/km stream) between survey counts from November
1999 to November 2002 (Fig. 3). Some birds began leaving for their breeding sites in
January, but the majority of birds left the river during March causing densities to decline
until July. Peak concentrations of birds along the main river occurred in early November
(mean = 9.8 birds/km), which was nearly five times higher than in early July (mean = 2.1

birds/km). The survey means were consistent between years and represented high
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precision, with coefficients of variation for each survey month ranging from 6.9 % to
14.7 %.
COMPOSITION OF THE WINTER POPULATION

Of the 522 individual dippers that were captured and banded during the four-year
study, 250 were adults and 272 were nestlings or fledglings (Table 1). Most adults were
caught during winter on the main stem of the river, but whenever possible, breeding birds
throughout the watershed were also captured to facilitate future identification. Since
most of the breeding birds on the river were color banded, we were able to distinguish the
birds that remained resident on or near their breeding territories year-round from the
migrants and dispersing juveniles (Fig. 2). A small proportion of the wintering birds (11
% - 16 %) remained resident on the river to breed. The remainder of the large winter
population (84 % - 89 %) was considerably more mobile and routinely moved off the
river in early spring (presumably to breed) and returned in the fall. The migratory group
consisted of returning banded adults, banded juveniles and a large number of unbanded
birds. The number of residents remained relatively constant year-round, except in March
when there was an increase in the number of resident birds occupying territories on the
river (peak breeding density = 2.41 - 2.98 birds’km). This influx of resident breeders was
not sustained throughout the season as many nests failed early and those birds were
usually not relocated during that season. Ultimately, we attributed the largest fluctuation
in total numbers of dippers to the arrival of non-residents in the fall and winter months
(Fig. 2).

The large influx of dipper numbers in fall did not result from the production of

juveniles flooding the population prior to spring dispersal. Our data demonstrate that
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juveniles from the watershed did not make up the majority of the winter population.
After 3 years of marking 260 nestlings and 12 fledglings (in juvenile plumage)
throughout the watershed from 165 nests, banded juveniles of the year only represented
1.6 % to 5.2 % of the winter survey sightings, whereas banded adults made up 18.8 % to
25.3 %. Overall, 48 of 272 nestlings (17.6%) were resighted in their first winter or later.
DIPPER MOVEMENT PATTERNS

Of individuals marked in the first 3 years of the study (1999- 2001), 102 of 280
adults (36.4 %) were resighted for 2 or more winters. Winter migrants showed a high
degree of winter site fidelity with 67 % (60 of 89) returning to the river for 2 or more
years. All but two birds were resighted within 1 km of their original winter capture site.
The two that were not sighted at the same location were initially captured in March and
likely had already started their spring migration.

All dipper resightings throughout the watershed were categorized into 8 time
periods by season (breeding or non-breeding) and year (1999-2002). Movement patterns
were assessed from 668 observations of 298 banded adults during those eight time
periods. Both sexes had similar patterns of movement between seasons and were lumped
together in the model and reported as a single probability. Analysis of movement
between river and creek strata using Program Mark (White and Burnham 1999) revealed
that migrant birds moved in spring (from the non-breeding to breeding season) primarily
from the river to the creeks. In contrast, the movement in the fall (from breeding to non-
breeding season) was primarily from the creeks to the main river (Table 2). Residents
generally remained on the river between seasons with little or no movement. Surviving

juveniles that were resighted post-molt moved from their natal site in the breeding season
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to a wintering location on the river or a tributary. Both male and female juveniles were
found wintering primarily on the main river in a similar pattern to other adult birds.
However, juvenile males had a higher probability of moving onto a creek in fall than
females (Table 2). All juveniles subsequently dispersed in the spring as adults.

Of the 14 birds with radio transmitters, we successfully tracked 10 birds for the
duration of the battery life. Two birds were known to have lost their radios and two birds
were never relocated in subsequent searches indicating radio loss, radio malfunction,
death or migration outside the study area. Beginning soon after the radios were mounted
in late February and early March, several dippers were recorded off the winter site for
periods of several hours usually in the morming and then returned later the same day. Of
the 10 birds that retained their radio transmitters and were successfully tracked to the
breeding site, the majority moved from their wintering site on the river, upstream onto a
nearby creek while remaining within the watershed. The distance moved was highly
variable from < 1.0 km -16.5 km (mean = 5.36 km). One dipper was even located at the
snowline over the Canada — USA border. The movement of most birds was accompanied
by an increase in elevation (mean = +236 m, range = 0 to 750 m). Evidence from the two
aerial searches indicated that the birds did not move significantly during the 3-week
interval between flights. The majority of movement occurred throughout March. By
mid-April, the birds had settled on their breeding sites and did not return to the wintering
area until the fall.

ESTIMATING THE POPULATION SIZE
Since the majority of the dipper population concentrated at low elevations on the

main river and at the mouths of creeks in winter, a ratio estimator for density (Jolly 1969,
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Krebs 1999) demonstrated significant potential as an estimate for dipper population size
in the Chilliwack River watershed. There was a positive linear relationship between
dipper numbers in November and survey distances at each survey site, demonstrating
dipper numbers were generally correlated with stream length (r =0.42, p <0.04). We
estimated the distance of potential dipper wintering areas including the length along the
river, the lower reaches of the creeks where they met the river, and all suitable side
channels of the river to be approximately 60 km. Minimum estimates of the total
population size (£ SE) for the Chilliwack watershed were as follows: 429 + 64 birds in
November 1999, 682 + 79 birds in November 2000, 697 + 123 birds in November 2001,
and 550 + 72 birds in November 2002. Coefficients of variation ranged from 11.6 % to
17.6 %. Improved accuracy would require more than eight sites be surveyed.

The Jolly-Seber (J-S) model for an open population of marked individuals was
used to estimate population size for comparison with the above ratio estimator technique.
Simulated 95 % confidence intervals for the population size model estimates overlapped
the ratio estimates in each of 1999, 2000 and 2001 for which there was sufficient data
(Table 3). However, the actual J-S estimates are not directly comparable with the ratio
estimates given that the J-S model estimated population size over the entire non-breeding

season and the ratio estimator uses only the 3-day survey in November.

DISCUSSION

MOVEMENT PATTERNS
American Dippers in our study watershed were primarily altitudinal migrants,
moving upstream in the spring and downstream in the fall. Thus, the mobility of the

Chilliwack dipper population produced large changes in density during the annual cycle.
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Our accounts of peak densities (7.2 — 11.6 birds/ km) occurring during the early
November surveys on the river are probably the highest on record for this species. In
Boulder, Colorado, the highest densities in October varied from 1.9 — 4.7 birds/km (Price
and Bock 1983). Other British Columbia streams also appear to host high winter
densities but lack formal counts of this species (Christmas Bird Count data: Okanagan
River, Squamish River). This pattern of migratory behavior accounts for the large
changes in seasonal abundance observed in many watersheds of southwestern British
Columbia.

Although most of the population seasonally migrated, 11% to 16% of the winter
population remained on the river to breed with only few short absences in late summer or
winter. These birds, defined here as residents, clearly did not follow the same pattern of
movement as the migrants. During winter, the presence of year-round residents as well as
altitudinal migrants along the main river channel indicates there are two distinct groups
of birds occupying the watershed. The presence of resident and migratory American and
Eurasian Dippers within a single study area has only rarely been documented elsewhere,
but likely exists wherever suitable stable habitat is present (Balat 1962, Price and Bock
1983).

Altitudinal migration has been documented for several alpine tolerant bird species
including dark-eyed juncos (Junco hyemalis) (Rabenold and Rabenold 1985), spotted
owls (Strix occidentalis) (Laymon 1989), mountain bluebirds (Sialia currucoides) and
white-tailed ptarmigan (Lagopus leucurus) (Martin 2001). However, direct evidence in
the literature of seasonal altitudinal migration of American Dippers is limited. A few

descriptive accounts of this species regard them as year round residents that possibly
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make some short-distance movements (Kingery 1996). Price and Bock (1983) gave the
only detailed record of dipper movements from a large banded population in Colorado.
They found similar increases in seasonal density of dippers in fall moving through their
study areas on Boulder Creek and South Boulder Creek and showed the direction of
movement was primarily downstream in fall and upstream in spring. However, they were
unable to determine the specific location of the wintering site for most banded birds.
Several other researchers have noted similar shifts in the abundance of American Dippers
during the non-breeding season (Bent 1948, Jewett et al. 1953, Bakus 1959a, b, Whitney
and Whitney 1972, King et al. 1973) indicating that altitudinal migration is likely
common particularly in the northern part of its range.

In central and western Europe including Britain and Ireland, most populations of
dippers (Cinclus c. gularis, hibernicus and aquaticus) are largely sedentary. However,
regular altitudinal movements in spring and autumn are reported for some local
populations breeding at high elevations across Europe (Tyler and Ormerod 1994). In
Germany, Jost (1969) reported that mainly juvenile and a few adult dippers (Cinclus
cincus aquaticus) in his study area regularly moved between watersheds by flying over
ridges. The dippers of Fenno-Scandia and northwest USSR (Cinclus cincus cinclus) and
some birds from the Ural Mountains (Cinclus cincus uralensis) have been found to
migrate up to 1000 km between the breeding and wintering areas (Andersson and Wester
1976). Sedentary and migratory strategies in the Eurasian Dipper appear to differ on a
local scale and have likely contributed to the large number of subspecies found across

Europe.
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It is possible that at least a portion of the wintering population in our study area
could have been from more northern latitudes or at least other watersheds. However, we
have no confirmed records of our banded dippers being sighted outside the Chilliwack
watershed. Two of the radio-tagged birds that were not previously known to us,
remained on the river and moved very little; however, two other radio-tagged birds could
not be relocated soon after transmitter attachment and were excluded from the results.
These two birds may have lost their tags prematurely, the radios failed, or they died.
However, another possibility is they moved much greater distances, possibly breeding
outside the watershed. Large-scale movements by American Dippers are not commonly
reported, but indeed American Dippers have been sighted outside the breeding range.
Bent (1948) recorded one dipper on the Canadian Plains some 80 km from the mountains.
Another dipper sighting on the northwest shore of Lake Superior in Minnesota was
estimated to be 1400 km from the nearest breeding habitat in the Black Hills of South
Dakota (Green 1970, Muelhausen 1970). Price and Bock (1983) reported the longest
movement of a banded nestling was 75 km (straight line distance) from its natal site.
Since only 14 birds were radio-tagged in total, those four individuals may have biased
our results towards movement of shorter distances. Furthermore, there is only 1
subspecies (Cinclus mexicanus unicolour) of the American Dipper occupying the entire
Canadian and United States range, suggesting watershed populations are probably not
isolated and regular migration and juvenile dispersal likely contribute to genetic mixing.
INITIATION OF MIGRATION

Speculation as to what initiates partial migration in American Dippers has been

limited. Price and Bock (1983) determined that ice at higher elevations was the ultimate
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cause of downstream migration in his Colorado population. Most creeks in our study
area remained open year round except at the very highest elevations yet birds moved
regardless of the ice conditions. Additionally, the initiation of downstream migration
from the breeding site to the wintering site occurred well before poor weather and
freezing would force birds to move. One possible explanation for this behavior is the
anticipation for reduction in cold stress during the winter period since ambient
temperatures decrease significantly with increasing elevation (Martin 2001). Variation in
climate and habitat within a few vertical kilometers can be comparable to those
encountered over thousands of kilometers of latitudinal travel (Rabenold and Rabenold
1985). It would therefore be advantageous to move to lower elevations in autumn to
reduce energy expenditure for thermal regulation, ultimately influencing survival.
Although this may be true for some high altitude breeders, many banded dippers in our
study consistently wintered on the river even though their breeding site was only a few
hundred meters upstream on the creeks and not significantly higher in elevation.

An alternative explanation for the dipper’s altitudinal migration is the potential
increase in food supply on the main river in fall and winter, which drives the downstream
migration. The Chilliwack River is a large salmon-bearing stream with a productive fish
hatchery. Relatively large salmon and steelhead runs occur in the fall and winter along
the main stem of the Chilliwack River with escapement records of over 500 000 salmon
in 1999 (British Columbia Fisheries data). We routinely observed dippers throughout the
winter, feeding on salmon eggs in addition to invertebrates. Large salmon-bearing rivers
throughout the south coastal region of the province have also been observed with high

winter densities of American Dippers (C. Morrissey pers. observ.). Although migration
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can be energetically costly, this strategy may be advantageous to maximize access to both
food and nest sites in each season.
IMPLICATIONS FOR USING DIPPERS AS BIOLOGICAL INDICATORS

Differences in migratory strategies between the residents and migrants may be
ecologically relevant because residents remain stable on the breeding site whereas
migrants must move and establish new territories between seasons. The presence of two
distinct migratory groups within a single population has implications for using dippers as
indicators of habitat quality or stream condition, since exposure to environmental
stressors such as aquatic contaminants may differ between migrants and residents.
Migrants are potentially using a much larger area during the course of a year whereas
residents inhabit a relatively small territory. In watersheds with a source of pollution
affecting a single tributary or larger downstream area, differences in habitat use during
the annual cycle can result in significant variation in observed contaminant levels
(Morrissey et al. submitted). In addition, resident dippers that remain on their territories
year-round have the advantage of being familiar with good feeding and roosting sites in
winter, possibly with improved fitness consequences. Resident dippers have also been
found to initiate breeding earlier than migrants, which has an effect on their seasonal
productivity (Morrissey submitted). If reproduction or survival are used as measures of
environmental quality, knowledge about the differences in migratory patterns are
necessary for correctly assessing the effects of habitat degradation.

Similar to many wintering waterfowl species, the majority of the dipper
population within the watershed appeared to concentrate during the fall and winter

months. The ratio method for estimating population size should be a useful technique for
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studies on dippers since it does not require banding and can effectively count a large
number of birds in a short period of time. However, if abundance is used as a measure of
stream quality, one must be cognoscente of the timing of censuses to report changes in
density as a result of site quality rather than those caused by annual migratory
movements. Furthermore, it is important to take into account whether the survey area
consists of breeding or wintering habitat, as this will also strongly influence census
numbers. Therefore, future studies of American Dippers should consider the potential
fluctuations in density and distribution in a watershed during the annual cycle, as these

may be critical for assessing exposure and effects from environmental stressors.
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FIGURE LEGENDS

FIGURE 2.1. Map of the Chilliwack watershed located in southwestern British
Columbia, Canada. Symbols ( A) on the watershed map indicate the eight locations for
winter banding and bimonthly surveys along the main stem of the Chilliwack River. Line

across watershed map shows the Canada-USA border.

FIGURE 2.2. Mean density (+ SD) of American Dippers (number of birds per kilometer
of river) on the Chilliwack River, B.C. over 3 years 1999 to 2002. Data were collected

during routine bimonthly surveys at eight sites on the main stem of the river.

FIGURE 2.3. Summary of bimonthly surveys on the Chilliwack River, B.C. from
November 1999 to November 2002. Line graph indicates survey totals including all
banded, unbanded and unidentified American Dippers on the main stem of the river. Bar
graph shows relative number of resident (breeding and wintering on the river) and non-

resident dippers (birds that leave the river in the breeding season).
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FIGURE 2.2
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TABLE 2.1. Summary of American Dipper banding effort for each age category (adult,
juvenile and nestling) and year 1999-2002.

Year Banded Banded Banded TOTAL
Adults Juveniles Nestlings

1999 81 7 67 155

2000 112 1 142 255

2001 39 4 51 94

2002 18 0 0 18

All Years 250 12 260 522




TABLE 2.2. Probability of movement between river and creek strata of adult and
juvenile American Dippers using the multi-strata model in Program Mark (White and
Burnham 1999). Data is shown for movement in the spring (from non-breeding to
breeding seasons) and in the fall (from breeding to non-breeding seasons) for all years
combined 1999-2002. Data on juvenile birds is not applicable (NA) in the spring since
there are no juvenile birds in this period.

Movement Parameter

Probability of Movement (95% CI)

Spring (1999-2002)

Fall (1999-2002)

Adult (all sexes):
From River to Creek

Adult (all sexes):
From Creek to River

Juvenile males:
From natal site to River

Juvenile males:
From natal site to Creek

Juvenile females:
From natal site to River

Juvenile females:
From natal site to Creek

0.21 (0.09-0.43)

0.15 (0.01-0.75)

NA

NA

NA

NA

0.02 (0.00-0.47)

0.53 (0.25-0.79)

0.60

0.40

0.88

0.12
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Abstract.

Distinct changes in the distribution of American dipper (Cinclus mexicanus) populations
within a watershed occur during the breeding season where small numbers of dippers
remain resident on the main river while the majority of birds make short altitudinal
movements upstream. Therefore, dippers breed over large elevation gradients within a
watershed using both the main river and its associated creeks. I hypothesized that
altitudinal migration would affect the timing of breeding and ultimately productivity.
Additionally, since the river and its tributaries differ in habitat, elevation and nesting
substrates, I hypothesized that these variables would also influence dipper breeding
performance. From 1999 - 2001, I investigated American dipper reproductive success in
relation to short distance migration within a watershed of British Columbia, Canada. 1
followed 23 dipper pairs in 1999, 40 in 2000, and 36 in 2001 of which approximately 65
% were resident pairs and 35 % were migrants. Resident pairs on the lower elevation
river initiated nests earlier and had a greater proportion of second broods, contributing to
slightly higher nest success and annual productivity than migrant birds on creeks or
tributaries. Reduced productivity was primarily associated with later onset of breeding
which increased the likelihood nests are lost to predation or flooding and reduced the
probability of initiating a second clutch. Timing of breeding was affected by migratory

status and year, but elevation and habitat did not directly influence breeding performance.
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Introduction

Population declines in many migratory bird species has led to considerable
interest in the energetic and survival costs associated with long distance migration
(Klassen 1996, Sillett and Holmes 2002). Relatively few studies have examined the
implications of short distance altitudinal migration in birds. This strategy may be
common for many resident birds across North America, particularly alpine tolerant
species (e.g. juncos, spotted owls, bluebirds, and ptarmigan) (Rabenold and Rabenold
1985, Laymon 1989, Martin 2001). Although migration is time consuming and
energetically costly; this strategy may be advantageous if it allows birds to exploit areas
with greater food abundance or superior nest sites in each season.

Timing of breeding can positively influence reproductive success in birds (Best
and Stauffer 1980, Hartley and Shepard 1994, Kokko 1999). For some species, starting
earlier increases individual productivity and offspring survival (Perrins 1965, Hochachka
1990, Verhulst and Tinbergen 1991). For birds that have multiple broods, earlier start
dates may also provide an opportunity for renesting after a failed attempt or initiating a
second clutch within the season (Verboven and Verhulst 1996). Several studies on
passerines demonstrate that nest location within different habitats can also affect
variation in breeding parameters (Klomp 1970, Krebs 1971, van Balen 1973, Martin
1988, Sanz 1998). In addition, habitat features including nest site selection are known to
strongly affect breeding performance (Martin and Roper 1988, Hoover and Brittingham
1998, Regehr et al. 1998). Individuals that occupy different habitats during the breeding
season are likely to have access to different resources including food and nest sites that

can potentially influence their reproductive success. Therefore, the requirement of good
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nesting sites and sufficient food abundance may conceivably drive some populations to
migrate to higher elevations to gain access to additional breeding habitat. However,
migration to those breeding sites may ultimately affect timing of breeding and overall
reproductive success.

In early spring, large numbers of American dippers (Cinclus mexicanus) are
observed moving from low elevation wintering areas on rivers to migrate upstream onto
the higher elevation creeks (Price and Bock 1983, Campbell et al. 1997). This seasonal
altitudinal migration is marked by a distinct change in the distribution of the population
within a watershed during the breeding season where small numbers of dippers remain
resident on the main river while the majority of birds make short altitudinal movements
upstream (Morrissey et al. submitted). The effect of this migration is a dispersal of
dippers to different elevations on both the main stem of the river and the associated
creeks producing segregation between habitats.

Differences in breeding performance between resident and migrant dippers may
reflect delays in breeding that are associated with the migration period or changes in
habitat associated with altitude. Reproductive success is also potentially influenced by
the location of nest sites within a watershed because habitat and nesting substrates differ
between the river and its tributaries. Rivers are typically wider, have lower gradient with
fewer cliffs and boulders than the associated creeks. In addition, the river contains
habitat that is available year round without ice because of its lower elevation and higher
flow. I hypothesized that the breeding performance of residents on the main river and
migrants on higher elevation creeks may differ as a result of 1) migratory strategy, 2)

elevation, and 3) habitat and nesting substrates. Therefore, the specific objective of this
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study was to determine the influence of altitudinal migration on reproductive success of
American dippers within a watershed. In this study, I used timing of breeding, clutch
size, brood size, number of broods and annual female productivity as measures of
breeding performance to evaluate differential reproductive success for river residents and

creek migrants.

Materials and Methods

Study Area

The study was conducted in the Chilliwack River watershed (49°0°N, 121°4’W),
located approximately 100 km east of Vancouver in the Cascade Mountain Range of
southwestern British Columbia, Canada. The Chilliwack River watershed contains first
through fourth order streams and drains an area of approximately 1200 km®. The river is
fed by a lake at its upper end and is 43.5 km in length to the Vedder Crossing where it
becomes the Vedder River. The watershed has an elevation range from 20 to 2500 m
with dipper nests located at 28 to 800 m. Other nests likely occurred at higher elevations
but were not monitored for logistical reasons.
Data Collection

I monitored the breeding biology of American dippers within the Chilliwack
watershed from early March through July 1999 to 2001 including all first, second and
replacement clutches. Over the 3-year period, 99 breeding pairs including 64 resident
and 35 migrant pairs were monitored at least once a week throughout the breeding
season. Every attempt was made to capture and individually color band the breeding
adults when the pair was identified to aid in future identification, therefore, all the pairs

used in the analysis had a least one banded individual. Nests were located throughout the
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watershed by searching for pairs along continuous sections of river or creeks by foot, or
by following birds with nest material. All dipper nests from both the river and the creeks
had an equal chance for detection using this method since these areas were searched
regularly throughout the season. Not all the nests were directly accessible for the entire
breeding season because of high water levels and were subsequently removed from
analysis on clutch or brood size where appropriate but were monitored for timing of
initiation, overall success in fledging young, and number of breeding attempts in the
season. Residents and migrants were classified based on their migratory behavior and
breeding location within the watershed. Migrants were generally found nesting on creeks
or tributaries but wintered elsewhere either on the main river or outside the watershed,
whereas residents typically nested along the main river in the same location as they were
wintering (Morrissey et al. submitted). Migrant nests were monitored on seven different
tributaries that were second or third order streams characterized by higher elevations with
steeper gradients, fast water, a narrow path (range 3 — 20 m wide), coarse substrate and
an abundance of cliffs, boulders, and debris. Resident nests were generally on a single
fourth order river characterized by lower elevations, shallow gradients, slow moving
reaches, a wide and channelized path (range 26 - 62 m wide), and fewer areas with cliffs
or boulders. The nest sites were categorized as one of six types: cliff ledges, rock
boulders, undercut stream banks with exposed tree roots, bridges or other artificial
structures, fallen logs or other woody debris, and other sites (on ground under
rock/concrete and one tree nest).

Dates of clutch initiation, incubation and hatching were typically known to within

1-day, or were calculated assuming one egg laid per day and a 16-day incubation period
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which is consistent for this species across its range (Price and Bock 1983, Kingery 1996).
Clutch size was determined after laying was complete i.e. when no new eggs were added
after 2 days. Brood size was recorded during routine banding when the nestlings were
12-14 days old (halfway through the nestling stage). Nest fate was considered successful
if at least one chick fledged. If no fledglings were sighted and no evidence of nest failure
was apparent, the fate of the nest was recorded as unknown. I assumed the total number
of fledglings from successful nests to be equal to the brood size at banding, since newly
fledged dippers are difficult to locate and often leave the nest asynchronously. This
assumption is supported by data on a subset of nests where detailed observations at the
time of fledging show that brood size at 12-14 days typically represents the number of
fledged young.

Nest failure resulted from predation, flooding, nest collapse, egg failure or nest
abandonment and from unknown causes. Starvation of nestlings was never observed in
this study as a cause of nest failure. I identified failure as predation when eggs or young
were broken, missing, or partially eaten and the nest was damaged. Flooded nests were
identified when water levels rose above the level of the nest. Nest collapse was recorded
when the domed nest structure caved in but eggs were still present. Nests were generally
classified as egg failure or nest abandonment if the eggs did not hatch because of
infertility, insufficient incubation, or the nest was abandoned for any reason including
death of an adult. If the nest was empty prior to fledging date and there was no evidence

of what caused the failure, it was recorded as unknown.
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Statistical Analyses

Data on clutch size, brood size, elevation and date of starting incubation were
continuous scale data and normally distributed, so either an independent two-sample t-
test or a one-way analysis of variance (ANOVA) with a Tukey multiple comparison test
were used for comparison of means among migratory groups (river residents/ creek
migrants) and years. To correct for year effects in comparing breeding start date and
annual productivity for residents and migrants, we used a two-way ANOVA to include
migratory status and year and report least square (LS) means. Data on nest success,
multiple clutches (second and replacement), and nest site types were nominal scale data
and were subsequently analyzed using chi-square contingency tables with results reported
as percentages.

A stepwise regression model was used to determine which variables (year,
migratory status, elevation, start date of incubating first clutches and interaction terms)
were important in explaining annual productivity (number of young/ female/ season). A
multiple linear regression model was then used to determine which factors affected
timing of breeding. The variables that influenced predation and flooding failures were
analyzed using a logistic regression model with sequential elimination of non-significant
terms. The initial predation and flooding models included start date of breeding,
migratory status, elevation, year and type of nest site but were reduced using stepwise
procedures. Whole model results are presented where applicable in addition to the effect
tests. Where comparisons were being made among migratory groups or for predictors in
the regression models, data on a single pair were used only once each year by focusing on

the female’s first nest attempt. Data from each year were treated as independent as the
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majority of pairs were only sampled in one year. Measures are presented as means + SE
unless otherwise stated. The significance level was set at 0.05 for all analyses. Statistical

analyses were performed using the software JIMP IN® 4.0 (SAS Institute Inc.).

Results

General Breeding Biology

The mean Julian date (1 January = day 1) for starting incubation of first clutches
was 95.6 *+ 1.5 days (5 April) but was significantly different among study years (F, 93 =
7.52, P <0.001). The harsher winter of 1999 that had record snowfall that lasted well
into March, produced a later start date of incubation (104.0 £ 2.7 days = 14 April)
compared to the relatively warm and dry winters of 2000 and 2001 that had earlier
initiation (2000: 90.1 * 2.3 days = 31 March, 2001: 94.6 + 2.3 days = 5 April).

There was no effect of year on mean clutch size (F, ;;; = 1.99, P = 0.14) and mean
brood size (F2,125 = 1.89, P = 0.16) (Table 1). The proportion of second clutches and
replacement clutches was also not different among years (y%= 1.9, P = 0.8). Clutch size
and brood size were not significantly different for second and replacement clutches
compared to first clutches although repeat clutches tended to be smaller (F,,1;; =1.12, P =
0.3; F212s=1.55, P=0.2).

A total of 158 nest attempts including first, second and replacement clutches were
followed over the three-year period. For all years combined, 99 nests (63 %) were first
clutches, 38 (24 %) were second clutches, and 21 (13 %) were replacement of failed
clutches. Overall, 59 % (n = 93) of the nesting attempts successfully fledged young, 37

% (n = 59) failed and 4 % (n = 6) were unknown (Table 1). There were no differences
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among years in overall nest success (x24 =3.7, P =0.5). Over the course of the breeding
season, 73.2 % of pairs successfully fledged at least one young. All pairs combined
produced an average of 3.4 + 0.3 young per season (range 0-10) which was not
significantly different among study years (F, 4= 2.18, P =0.12) (Table 1).

Effect of Migratory Behavior

Data for comparison of breeding performance of resident and migrant pairs are
summarized in Table 2. Timing of starting incubation of first clutches for creek migrants
was significantly later than residents on the river for every year of the study (F;gs = 8.76,
P<0.0001) (Fig.1). Clutch size was not significantly different for creek migrants
compared to river residents (t74 = -0.93, P = 0.4). The number of nestlings (brood size)
was also not significantly different for migrants compared to residents (tg3 = -1.6, P = 0.1)
(Table 2). In addition, nestling mass did not differ by location when corrected for age at
weighing and for the size of the brood (LS mean river: 46.9 + 0.5 g, LS mean creek: 46.9
+0.7 g) (F, = 0.008, P = 0.9) (Table 2).

The individual nest success of migrant first clutches (53.1 %) appeared lower than
the residents (67.2 %), although not statistically significant (x*1=1.8,P=0.18).
Residents and migrants had the same proportion of first clutches (residents 62.5 %,
migrants 62.9 %); however, the proportion of second and replacement clutches between
groups was different (x*2=17.56, P <0.0002). Resident pairs had a higher proportion of
second broods following successful attempts (49.2%) compared to migrants (17.6%). In
addition, migrants had a greater proportion of replacement clutches following failed
attempts (41.2%) compared to the residents (10.8%) (Table 2). On average, resident

pairs produced 3.7 + 0.4 young per season compared to migrants that produced 2.8 £ 0.5
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young per season, after correcting for any year effects this difference was marginally
insignificant (F3 93=2.25, P = 0.09) (Table 2).

A stepwise regression was used to determine which variables were important in
explaining the annual productivity or number of young produced per female during the
breeding season. The start date of breeding had a strong negative effect on annual
productivity (F3g7;=19.5, P <0.0001) (Fig.2). Annual productivity also varied by the
year of the study (F3 g7=4.3, P =0.04). Migratory status, elevation and other interaction
terms had no effect. Further regression analysis of the factors that affected the start date
of breeding demonstrated that both migratory status (F = 36.2, P <0.0001) and year (F =
6.56, P = 0.002) were significant predictors of when dippers started breeding. Migrants
initiated breeding later than residents (migrant LS mean = 106 + 3 days, resident LS
mean = 92 + 2 days) and in 1999, breeding was initiated later than 2000 or 2001.
Breeding location and elevation had no additional effect in determining annual
productivity. Therefore, dippers that start incubating first clutches later either because of
migration to the breeding sites or because of year effects resulted in lower annual
productivity.

Nest Site Characteristics and Causes of Failure

The relative use of nest site types differed significantly between the migrants and
residents (x25 =49.3, P <0.0001) (Table 3). Specifically, migrant dippers on creeks used
predominantly cliff sites (52 %) followed by logs/woody debris (22 %) and boulders (19
%) and rarely used artificial sites (2 %) or stream banks (6 %). Resident dippers on the

main river used a wider variety of nest sites including artificial structures (30 %), cliffs
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(26 %), stream banks (24 %), and boulders (13 %) but with no clear prevalence of use at
any particular site.

The most common causes of nest failure were predation (40.7 %) and flooding
(23.7 %). The cause of failure for all nest sites was not significantly different between
residents and migrants (%%, = 6.5, P = 0.17); however, flooding was notably higher for the
creek migrants (33%) over the river residents (17 %). There was a general trend towards
increasing risk to both predation and flooding of first breeding attempts with later
breeding start dates. Early nesting birds (prior to day 88-89) avoided both predation and
flooding. However, after that date, proportions of failures from these two sources
increased (Fig. 3). A logistic regression model was used to determine the variables that
predicted predation and flooding of first clutches. Both whole models were significant
(predation model: y%s = 14.66, P = 0.04, flooding model: v%=17.6, P =0.02). For the
predation model, only start of breeding had a significant effect (P = 0.01), while nest site
type and year also contributed to the overall model. Flooding was best predicted by start
date of breeding, year, elevation and nest site, however only the start date of breeding
was again a significant individual effect (P = 0.05). Nest site type greatly contributed to
the overall strength of the flooding model. In fact, the sites that most commonly flooded
were boulders (43 %), cliffs (43 %) and logs/woody debris (14 %), which corresponds to

the sites primarily occupied by the later breeding creek migrants (Table 3).

Discussion

American dippers in this study area appear to have two migratory strategies:
altitudinal migration to higher elevation tributaries or year round residency on the low

elevation river. No previous studies of American dippers have identified differential
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reproductive success at different locations within a watershed. In this study, I
demonstrate that altitudinal migrants breeding on tributaries initiated breeding later, had a
higher frequency of replacement clutches and fewer second broods compared to resident
pairs on the main river. Timing of initiation of breeding was the most significant effect
on annual productivity. However, | found no additional effect of resident or migrant
status over the timing of breeding in predicting productivity. Instead, migratory status
was an important predictor for timing of initiation of breeding. Since migrant nests had
the same number of eggs and nestlings as those of residents, and nestling mass was
identical for both locations, observed differences in productivity were not likely caused
by variation in food supply. Instead, the differences are more likely caused by extrinsic
factors such as flooding and predation, which resulted in a larger number of total nest
failures.

Nest success of first clutches did not differ significantly between the residents and
migrants, but evidence of higher nest failures for the creek migrants was observed given
the larger proportion of replacement broods initiated by migrants. Resident dippers that
start breeding earlier may be able to produce more young per season by initiating more
second broods and having fewer replacement broods. Limitations of sample size in the
migrant group (n = 35 pairs) may have decreased statistical power for the comparisons of
brood size, annual productivity and success of nest attempts between residents and
migrants. However, residents produced on average 3.7 nestlings versus migrants, which
only produced 2.8 nestlings per year. This difference is likely biologically relevant but
not detected using the present sample. Timing of breeding, however, was clearly

different between the migratory groups and had a strong influence on productivity. In
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fact, dippers breeding even slightly later in the season were at a greater risk for nest
failures from flooding or predation. Flooding was the second most common cause of nest
failure, and was found to be almost two times higher for the later breeding migrants.
Furthermore, it is now widely recognized in many breeding passerines that the earliest
broods generally have higher survival and higher recruitment rate (Perrins 1965,
Hochachka 1990). Ormerod and Tyler (1993) determined that post fledging survival of
European Dippers varied significantly during the breeding season with most survivors
coming from attempts in the peak period of hatching and declined later in the season.
Therefore, dippers that can begin nesting early will have the opportunity to avoid
predation and flooding, produce more double broods and may also increase their
individual brood’s chance for survival.

Other dipper researchers have found positive relationships between elevation and
timing of breeding (Bakus 1959a, Goodge 1959, Sullivan 1973, Ealey 1977, Tyler and
Ormerod 1994). Nesting in dippers likely begins soon after the females have sufficient
food for egg production (Perrins 1970, Drent and Daan 1980). Therefore, it is reasonable
that high elevation territories will have delayed access to food resources due to ice cover
and colder temperatures. However, my study found no direct effect of elevation on
productivity or timing of breeding after controlling for migratory strategy. In fact, river
residents occupied territories in a wide range of elevations, which overlapped those of
altitudinal migrants. Therefore, delays in breeding were a result of the migration period
from lower elevation wintering sites on the river to higher elevation tributaries. Elevation
was not a cause of delayed breeding per se, but is a consequence of altitudinal migration.

Many dippers that migrate onto creeks during the breeding season will establish
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territories and find mates later than birds breeding and wintering in the same location on
the river, which may be at a cost to their reproductive success.

Resident and migrant dippers that occupy river or creek habitats during the
breeding season may have access to different resources including food and nest sites that
can potentially influence their reproductive success. However, migration during the
breeding season did not appear to be related to food supply or improved habitat quality.
Migrants and residents had no difference in clutch or brood size and although food
abundance was not measured directly, nestling mass was identical for both locations.
Instead, it has been suggested that competition for limited nest sites may force the
majority of the population to disperse over a wider area during the breeding season (Price
and Bock 1983, Tyler and Ormerod 1994). Densities of breeding pairs along the
Chilliwack River were relatively high (approx. 2.41 - 2.98 birds km™") (Morrissey unpubl.
data) compared to reports in the literature of <1.0 - 1.7 birds km™' (Price and Bock 1983)
and 1.16 - 1.22 birds km™' (Ealey 1977). Given the relatively high densities, many
dippers may seasonally migrate onto the tributaries where nest sites such as cliffs and
boulders are more abundant. This ultimately results in a segregation of birds between
river and creek habitats but without any significant gain in habitat quality. Experimental
increases in the number of nest sites available along the main river through addition of
nest boxes would reveal whether nest site limitation is a significant cause of seasonal
altitudinal migration.

Migratory status not only influenced timing of breeding, but also the distribution
of nest sites used by residents and migrants. River and creek locations differ in the type

of substrates available for nesting sites probably because of the differences in habitat.
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The creeks had more natural cliffs and boulders and tended to be narrower with steeper
gradients. Consistent with the habitat, migrant birds did use cliffs, boulders and fallen
logs or woody debris with greater frequency than the resident birds. Those specific sites
were also found to be more susceptible to flooding during high water events. In general,
nest site type was an important variable in predicting flooding and predation events.
Most other studies of dippers report a similar distribution of nest sites and common
causes of nest failure, mainly due to predation and flooding (Ealey 1977, Price and Bock
1983, Osborn 1999). For many species of passerines, nest predation remains the
principal source of nest losses across a broad diversity of habitats and locations, which
accounts for an average of 80% of nest losses (Ricklefs 1969, Martin 1993). But for
birds nesting near water, loss due to flooding is also a significant cause of nest failure
(Burger 1985). Therefore, quantifying nest site availability for resident and migrant
dippers occupying different habitats may be important for predicting nest losses due to
flooding and predation events.

Migrant dippers nesting on creeks used artificial sites at a very low frequency (2
%) compared to river residents (30 %) despite their presence in creek habitats. Most
artificial sites including bridges had a moderate success rate and were free from flooding
but typically had higher predation and nest abandonment. Ealey (1977) noted no use of
artificial structures despite their presence in his study area. In other studies including
those on the Eurasian Dipper (Cinclus cinclus), bridges and other artificial sites were
occupied at a higher frequency but did not show differential reproductive success (Tyler
and Ormerod 1994, Smiddy et al. 1995, Osborn 1999). Shaw (1978) and Osborn (1999)

found that nest success of dippers was similar at natural and artificial sites. Artificial
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sites have the benefit of being protected from flood events but at a trade-off with
increased predation and disturbance. It is probable that this species uses artificial sites
opportunistically only when other natural nest sites are unavailable.

Overall nesting success, clutch size, brood size, and seasonal fecundity were very
similar to values reported for American dippers elsewhere in the species range. Nest
success of dippers in this study (58.9%) is high for passerines, but is typical for this
species, which uses domed-shape nests that are well camouflaged and often inaccessible
to predators. Overall breeding success for dippers in other studies, defined as percentage
of nests producing at least one fledgling, ranges from 57.1 % to 80.0 % (Bakus 1959a,
Sullivan 1973, Ealey 1977, Price and Bock 1983, Osborn 1999). These studies do not
consider effects of migration or habitat. Therefore, future studies that assess breeding
success in American dippers would benefit from accounting for potential differences due
to migratory strategy.

In conclusion, altitudinal migration had a negative effect on reproductive timing
and overall productivity of American dippers. Resident birds were able to gain access to
mates and breeding sites significantly earlier than those that migrate onto the creeks.
Thus, resident dippers had greater opportunity for avoiding predators and flood events
and initiating second clutches. Although reproductive success was not directly related to
migratory strategy, residents may benefit from improved survival, higher lifetime
reproductive output or greater survival of their offspring. Future research on survival
costs of being a permanent resident or altitudinal migrant and investigations into the
factors that influence individual migration strategies, may shed greater light on our

current understanding of altitudinal migration.
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Figure Legends

Figure 3.1. Comparison of mean Julian start date (1 January = day 1) of
incubation for first clutches (= SE) of residents and migrants in the Chilliwack watershed
1999, 2000 and 2001. Residents and migrants were significantly different in breeding

start dates for every year (P < 0.001).

Figure 3.2. Annual productivity of American dippers in the Chilliwack watershed
1999- 2001 as measured by number of young produced per female during a breeding

season in relation to the Julian start date of incubation for first clutches.

Figure 3.3. Percentage of American dipper nests that failed due to predation (n =
16) or flooding (n = 9) for each Julian day interval of breeding start dates. Start dates of
breeding are in 10-day intervals from day 70 (earliest start date recorded) to day 137
(latest start date recorded) for initiating incubation of first clutches. Numbers above bars

indicate number of nests failed in each time interval by predation or flooding.
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Figure 3.2
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Figure 3.3
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Abstract

Research on food chain contamination in remote arctic and lake ecosystems has
revealed significant concentrations of persistent organic pollutants in fish and wildlife
from long-range atmospheric sources. Biota occupying mountain streams are similarly
exposed to organic contaminants from atmospheric deposition through runoff of
contaminated snow pack and glaciers. Therefore, we assessed the extent to which
atmospheric pollutants were contributing to food chain contamination in mountain
streams of southwestern British Columbia, Canada, particularly the Chilliwack River
watershed. Through analysis of American dipper (Cinclus mexicanus) eggs, benthic
invertebrates and salmon fry prey; we found that polychlorinated biphenyls (PCBs),
DDE, hexachlorobenzene (HCB) and trans-nonachlor were the most commonly detected
organic contaminants in dipper eggs and prey. PCB and organochlorine patterns were
highly consistent across sites within the Georgia Basin and between prey and dipper eggs,
suggesting common sources of atmospheric deposition to the region. Concentrations of
total organochlorines and PCBs in dipper eggs were positively related to drainage area
and collection year, but not to elevation. Total PCBs in dipper eggs and prey were
dominated by congeners 153, 138 and 180. There were no differences in egg congener
patterns between Chilliwack egg samples and other Georgia Basin samples. However,
principle component analysis revealed significant spatial differences among dipper eggs
collected from the main stem of the Chilliwack River and those from smaller tributaries,
primarily due to variation in the lower chlorinated PCBs 66 and 105. Biomagnification
of contaminants occurred between trophic levels for DDE, HCB, trans-nonachlor, and

total PCBs with the highest biomagnification factors calculated for PCBs and DDE. This
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study provides a benchmark for using a unique aquatic passerine, the American dipper,
for biomonitoring persistent organic pollutants in mountain streams of western North

America.

Key words: atmospheric deposition, American dipper, organochlorines, PCBs, cold
condensation, biomonitor, biomagnification, salmon fry, benthic invertebrates, lotic

waters
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Introduction

Persistent and toxic substances from agricultural, urban and industrial processes
are major sources of pollutants to remote regions world-wide. Semi-volatile compounds,
such as organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) have
frequently been detected in remote northern latitudes, often exceeding levels found in
more industrialized regions (Dewailly et al. 1989). Deposition of pollutants in distant
regions is largely a result of atmospheric transport, precipitation and cold condensation- a
process of volatilization in warmer low latitude regions and subsequent condensation in
colder high latitudes (Wania and Mackay 1993). High elevation mountain ranges are
similar to northern arctic environments in their low average temperatures and high
precipitation, thus promoting atmospheric deposition from cold condensation (Blais et al.
1998). In fact, Davidson et al. (2003) demonstrated that terrestrial vegetation in alpine
ecosystems could accumulate OCs and PCBs to the same degree as observed in polar
regions.

Atmospherically deposited organic pollutants have contaminated freshwater
aquatic ecosystems across North America (Swackhamer and Hites 1988, Johnson et al.
1988, Donald 1993, Datta 1998). In western Canada, rivers and lakes receiving annual
snowmelt and glacial melt from surrounding mountains have been found to contain
significant levels of persistent organic pollutants from atmospheric sources (Donald
1993, Blais et al. 2001). Therefore, watersheds can act as sinks for pesticides and PCBs
from local and long-range sources. Because of their persistence and bioaccumulation
potential, many organic compounds are rapidly assimilated in biological tissues and

biomagnified in food chains to levels sometimes approaching or in excess of human
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consumption guidelines (Kidd et al. 1995). In Canada and Europe, OC concentrations in
fish increased with lake elevation indicating sources were primarily atmospheric in origin
(Donald et al. 1998, Grimalt et al. 2001). While many previous studies have identified
atmospheric deposition as a major contributor to food chain contamination in both arctic
environments (Norstrom and Muir 1994, Bard 1999, Wilson et al. 1995) and remote lake
ecosystems (Johnson et al 1988, Swackhamer and Hites 1988, Macdonald and Metcalfe
1991), the phenomenon has rarely been studied in mountainous lotic systems where
deposition would be expected.

The effectiveness of birds as pollution monitors in a variety of ecosystems is
widely established (Furness 1993, Burger 1993). However, few species of birds occupy
mountain streams year-round or feed exclusively in lotic environments, thus reducing
their value in identifying the specific sources of contaminants to watersheds. The
American dipper (Cinclus mexicanus) demonstrates significant potential as an indicator
of watershed pollution because of its year round residency in mountain streams and its
exclusively aquatic diet of benthic invertebrates and small fish. Dippers are territorial
and typically make only short altitudinal movements within a watershed (Morrissey et al.
submitted- a). Although dippers in Europe (Cinclus cinclus) have been extensively used
as monitors of organochlorines, PCBs and mercury pollution (Ormerod and Tyler 1990,
1992, O’Halloran et al. 1992, 2003, Ormerod et al. 2000), the North American species
has not been studied for this purpose until recently.

The Fraser River Valley cuts through the Coast Mountains of southwestern
British Columbia, Canada. Prevailing oceanic westerly winds carry pollutants originating

from the large urban area of the city of Vancouver up the valley causing the Fraser Valley
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to receive a combination of urban, suburban, marine, and agricultural emissions of
pollutants. Thus, the Chilliwack River watershed, located in the central Fraser Valley
was hypothesized to receive inputs of persistent organic pollutants through wet and dry
deposition processes. Therefore, our main objective was to characterize the degree of
contaminant contributions to this watershed’s food chain from local and long-range
atmospheric deposition. Given the relative lack of knowledge about the use of passerines
for biomonitoring atmospherically deposited organic contaminants in aquatic
environments, we attempted to estimate the degree to which those pollutants were able to
biomagnify in lotic food chains using a unique aquatic songbird species and its diet. As
such, this study is the first in North America to identify the patterns of organochlorine
and PCB deposition to mountain streams using the eggs and prey of an obligate aquatic

songbird, the American dipper.

Methods

Study area

The study area was located within the Chilliwack River watershed (49°1°N,
121°4’W) in the Georgia Basin, British Columbia, Canada (Fig. 1). The Chilliwack
watershed is a tributary of the large Fraser River system, located approximately 100 km
east of Vancouver in the Cascade Mountain Range and drains an area of 1274 km?.
Elevation ranges from near sea level on the Chilliwack-Vedder River to over 2000 m at
several mountain peaks. The watershed tributaries are typically first through third order
streams. The river is dominantly a fourth or fifth order stream, fed by a large glacial lake

at its upper end and is 43.5 km in length where it merges into the Vedder River. Annual
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precipitation to the Chilliwack area averages 1850.5 mm with mean daily temperatures of
10.4°C (Data from 1879-1990).

The Chilliwack River supports populations of Pacific chum, coho, pink, and
chinook salmon (Oncorhynchus keta, O. kisutch, O. gorbuscha, O. tshawytscha) as well
as cutthroat trout (O.clarki), steelhead trout (O. mykiss), and Dolly Varden (Salvelinus
malma) (B.C. Fisheries data). Annual breeding runs of anadromous salmon and
steelhead spawn from late summer through winter within the watershed, but peak runs
occur along the main stem of the river and at the hatchery in autumn. Juvenile salmon
are most abundant in spring and summer feeding on a variety of benthic aquatic
invertebrate larvae present throughout the watershed.

Collection of aquatic invertebrates and fish

Composite samples of benthic invertebrates were collected at eight different sites
along the main stem of the river and from seven different tributaries in the watershed in
April 2002 prior to the spring freshet. Aquatic larval invertebrates (~ 4 g wet weight)
were collected either by kick sampling in the stream (disturbing the rocks directly
upstream of a Surber sampler) or by turning over rocks by hand. The sample represented
a mixture of insect taxa that dippers would naturally prey upon including approximately
equal proportions of Ephemeropteran, Plecopteran and Tricopteran larvae in addition to a
much smaller fraction by mass of Coleopteran and Dipteran larvae. During invertebrate
collections, eight additional composite samples consisting of ten individual salmon fry
(Oncorhynchus spp.) (age-0) that each weighed 100-200 mg fresh weight, were captured
live from the same eight sites along the main river using a dip net. Each collection

represented a pooled sample of predominantly coho and chum salmon fry (~80%) but
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pink and chinook salmon (~20%) were also included at some sites. All samples were
subsequently washed three times with distilled deionized water to remove any surface
contamination or stream water and stored frozen in acetone: hexane washed glass vials

until preparation for contaminant residue analysis.

Egg collection and contaminant residue analysis

We collected a single egg from a clutch of four or five eggs at 32 dipper nests
throughout the Chilliwack watershed during spring 1999, 2000 and 2001. In addition, a
single dipper egg was collected at random from 3 other nests on rivers in the Georgia
Basin of B.C. in 2000: the Coquitlam River, Seymour River and Cheakamus River (Fig.
1). Both fresh and failed eggs were used for the contaminant analysis. Fresh eggs were
selected from the clutch at random during incubation while failed eggs caused by
infertility, abandonment or embryo mortality were collected during routine banding of
nestlings. There were no differences in contaminant burdens between fresh (viable) and
failed eggs (total PCBs: t3o =-0.13, p = 0.9; total OCs: t3o = -1.6, p = 0.1) permitting the
sample to be pooled for statistical analyses. Similarly, no differences in moisture or lipid
content existed between fresh and failed eggs (p > 0.05); however, arithmetic corrections
were applied to wet weight residues of any desiccated samples that deviated by more than
5 % from the mean moisture content (79 %) of freshly collected, undeveloped eggs.
Whole eggs were stored refrigerated for up to four weeks. Egg contents were then
transferred into an acetone: hexane rinsed glass jar to be frozen at —25°C until analysis.

Chemical analyses of all egg samples were carried out at the National Wildlife
Research Centre (NWRC) in Hull, Quebec. Organochlorine analyses included

determination of chlorobenzenes (tetrachlorobenzene, pentachlorobenzene,
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hexachlorobenzes), hexachlorocyclohexanes (a-,3-,y-HCH), chlordane related
compounds (oxychlordane, trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor
and heptachlor epoxide), DDT and metabolites (p,p’-DDE and p,p’-DDD), mirex and
photomirex, and dieldrin. Total PCBs were calculated by summing the peaks of 62
individual congeners identified. Samples were quantitatively analyzed by capillary gas
chromatography coupled with a mass selective detector operated in selected ion
monitoring mode according to CWS Method No. MET-CHEM-0OC-04B (Won et al.
2000). Briefly, samples underwent neutral extraction with 1:1 DCM/Hexane after
dehydration with anhydrous sodium sulfate, removal of lipids and biogenic materials by
Gel Permeation Chromatography, and further cleanup by Florisil column
chromatography. All samples to be analyzed were spiked with internally labeled '>C
standards prior to extraction. Each sample extract was injected twice, once for
determination of organochlorines and once for PCBs. As part of the quality control,
blanks and CWS reference material (1989 Lake Ontario Herring Gull QA) were run
concurrently with the samples. The nominal detection limit for all compounds was
0.0001 pg/g wet weight. Internal standard recoveries were typically between 80 % and
110 %. Residues were not corrected for internal standard recoveries and all egg values
are reported on a wet weight basis (Peakall and Gilman 1979).
Data analysis

Direct measurements of elevation (= 1 m) for each nest site in the watershed were
taken using a calibrated digital altimeter (Suunto Escape 203, Finland). Environment
Canada and U.S. Geological Survey hydrological databases provided digital watershed

maps to calculate the drainage area for each breeding territory where eggs were collected.
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Chemical residue data was log normally distributed (KSL test) and subsequently log;o
transformed prior to statistical analyses. We report geometric mean values and data
ranges. Where levels were below the detection limit for organochlorine compounds, a
value equal to the minimum detection limit (0.0001 pg/g wet weight) was applied.

The process of atmospheric deposition to watersheds was hypothesized to affect
differences in levels of contaminants between invertebrate prey from the river and
invertebrates from the tributaries. Therefore, a one-way ANOVA was used to compare
contaminant concentrations among prey types (river invertebrates, creek invertebrates
and salmon fry). A two-sample t-test was used to compare egg concentrations between
dipper egg sampling locations (Chilliwack vs. other Georgia Basin sites). We
hypothesized that drainage area and elevation would be significant predictors of
contaminant levels in dipper eggs if atmospheric deposition was occurring. Therefore,
multiple regression models for predicting concentrations of total OCs and total PCBs
included elevation, basin area, year of collection and significant interaction terms.
Selected PCB congeners that contributed greater than 1 % to the total PCBs were used to
identify trends in dipper eggs and prey. PCB congener patterns in dipper eggs were
identified by principal component analysis (PCA). Eggs were grouped by breeding
location (Georgia Basin, Chilliwack river and Chilliwack creeks) to determine if any
differences in congener contributions were occurring. All statistical analyses were
performed using JMP IN v. 4.0.

Biomagnification factors (BMFs) were calculated on a wet weight basis for only
the most commonly detected compounds (DDE, HCB, trans-nonachlor, total PCBs). We

divided the geometric mean concentration in dipper eggs by the geometric mean
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concentration in the diet; assuming average dipper diet was comprised of 67%

invertebrates and 33 % fish (Morrissey et al. submitted-b).

Results

DDE, hexachlorobenzene (HCB) and trans-nonachlor were the only
organochlorine compounds routinely detected in benthic invertebrates and salmon fry
collected from the Chilliwack River watershed (Table 1). PCBs were not detected in any
of the invertebrate samples (n = 15) and only half of the salmon fry samples (n = 8).
Higher concentrations of DDE occurred in salmon fry relative to invertebrates collected
from both the main river and the tributaries (F2 20 = 9.02, p < 0.002). Trans-nonachlor
was also higher in fish and river invertebrates compared to creek invertebrates (F 0=
7.88, p = 0.003), however, no significant differences in HCB levels existed among prey
types.

Eggs from Chilliwack dippers showed very similar patterns to their prey with
respect to detection of common contaminants (Table 2). DDE, PCBs and HCB were
detected in 100% of the egg samples and at the highest concentrations, while trans-
nonachlor was detected in 75% of the samples and represented a significant proportion of
total organochlorines. All other OCs were detected at a much lower frequency and in
very low concentrations (other chlorobenzenes and chlordanes, hexachlorocyclohexanes,
DDT and DDD). Dieldrin, mirex and photomirex were not detected in any egg samples.
Dipper eggs from other sites in the Georgia Basin region showed a similar composition of
organochlorine compounds as the Chilliwack samples (Table 2). Mean concentrations of
common contaminants including total PCBs, DDE and trans-nonachlor did not differ

between Chilliwack and the other 3 Georgia Basin eggs combined. However, levels of
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HCB were significantly lower at other Georgia Basin sites compared to Chilliwack
primarily because of the low concentration in the Coquitlam River egg sample (t33 = 2.6,
p=0.01).

Concentrations of total OCs and total PCBs found in American dipper eggs were
significantly related to the size of the drainage area where the egg was collected and the
year of collection (total OCs: Fs ,6=8.82, p <0.0001, total PCBs: Fs,6=5.46,p =
0.002). There was a positive trend towards increasing contaminant concentrations with
increasing drainage area, which was stronger for total OCs than total PCBs (Fig. 2a and
2b). Although elevation and drainage area were negatively correlated (r = - 0.59, p =
0.0003), only drainage area was a significant predictor of total OCs (p = 0.002) and total
PCBs (p = 0.03). For both the total OC and total PCB regression models, contaminant
levels were significantly higher in 1999 than in the 2 subsequent collection years, 2000
and 2001 (total OCs: p = 0.002, total PCBs: p = 0.004).

Concentrations of total PCBs, DDE, HCB and trans-nonachlor increased with
each trophic level (Fig. 3). Similar lipid contents were found between prey types: benthic
invertebrates (3.1 %) and salmon fry (2.4 %). Total PCBs and DDE contributed to the
largest increases between trophic levels. As a result, BMFs calculated from the dipper’s
diet (assuming diet of 67 % invertebrates and 33 % fish) to eggs was highest for total
PCBs and DDE (Table 1). Since salmon fry were the only diet items found with
detectable levels of PCBs, they were likely the main source of PCBs to dippers.
Therefore, we calculated an alternate BMF of 87 from salmon fry to dipper eggs. HCB
and trans-nonachlor were also observed to biomagnify from dipper prey to eggs since

BMF values were greater than 1. BMFs for other OC compounds were not reported
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because of the low frequency of detection in prey or egg samples that prevented reliable
estimates.

The percent contribution of individual PCB congeners was determined for
Chilliwack dipper eggs, other Georgia Basin dipper eggs, and salmon fry from the
Chilliwack River (Fig. 4). Congeners 153, 138, 180 and 118 dominated the PCB
signature in Chilliwack dipper eggs, which together contributed 53 % to the total PCBs
measured. Patterns were very similar for other Georgia Basin dipper eggs, which were
dominated by congeners 153, 138, 180 and 170/190. Furthermore, PCB congeners
detected in juvenile salmon closely modeled those in the eggs of its dipper predator, with
major PCB congeners 153, 138, 180 and 187 making up 51 % of the total.

PCA analysis on 18 congeners that contributed > 1 % to total PCBs, revealed two
significant principle components that explained 82 % of the variation in Chilliwack
dipper eggs. The first component (PC1) explained 71 % of the variation while the second
component (PC2) explained 11 %. Congener patterns were not significantly different for
Chilliwack eggs and other Georgia Basin sites indicating common atmospheric sources
(Fig. 5). However, dippers occupying the main stem of the Chilliwack River had a
different congener pattern than dippers breeding on tributaries. Grouping of creek
dippers separate from river birds was primarily attributed to variation on PC2 in the lower
chlorinated PCB 66 and PCB 105 (Table 3). Creek eggs had significantly higher scores
on that component than river eggs (t,; = 3.5, p = 0.002). Increasing hexa and hepta-
chlorinated biphenyls (PCB 180, 146 and 183) on PCI1 produced higher scores for river
eggs on this component, thus further contributing to observed differences in congener

patterns (t,; =-2.5, p = 0.02).
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Discussion

In general, levels of many persistent organic pollutants in American dipper eggs
and prey were very low, often at or below levels of detection. However, the consistent
presence and uniformity of 3 major organochlorines (DDE, HCB and trans-nonachlor)
and common PCB congeners in prey samples and dipper eggs collected from all four sites
suggests that sources of organochlorines to the Georgia Basin region appear to be largely
atmospheric in origin. This is consistent with the study by Elliott et al. (1989a) who
suggested that OC contaminants in seabird eggs were primarily from atmospheric sources
that dominated a wide area of the British Columbia coast. Elliott et al. (1996) also
detected similar OC and PCB profiles in Bald eagle (Haliaeetus leucocephalus) eggs
from the Georgia Basin region, with dominant compounds PCBs, DDE and trans-
nonachlor present in the highest concentrations. These common organic compounds
were either generally released in this area or were transported from distant sources and
dispersed widely throughout the region.

The Fraser Valley is an intensively farmed region of British Columbia where
organochlorine pesticides were widely applied to crops prior to the mid-1970s.
Volatilization of persistent residues from soils in the Fraser Valley remains an important
contributor of organochlorine pesticides to the atmosphere decades after their ban (Szeto
and Price 1991, Falconer et al. 1997). Consistent with Chilliwack’s location in the
central Fraser Valley, DDE levels appeared higher in the Chilliwack dipper eggs
compared to other sites, which is likely due to extensive historic use of the parent
compound DDT (Finizio et al. 1998). HCB had greater variability among sampling sites

with higher concentrations in eggs from the Cheakamus River and Chilliwack River. A
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minimum detectable concentration of HCB found in the Coquitlam sample caused the
Chilliwack mean to appear higher than other Georgia Basin sites. Since this compound
has several origins as a fungicide and an industrial waste product from production of
chlorinated solvents and pesticides (Courtney 1979), its points of release may be patchy,
causing similar trends in deposition. In general, differences in residue concentrations
among sampling sites in the Georgia Basin were likely a product of variability in
atmospheric deposition and the low sample size outside the Chilliwack watershed.

We hypothesized that concentrations of persistent organic pollutants would be
related to elevation or drainage area if atmospheric deposition were occurring. Snow
pack samples and fish collected from alpine lakes have shown that higher elevation
samples have greater concentrations of OCs and PCBs particularly the more volatile
compounds (Donald 1993, Blais et al. 1998, Grimalt 2001). Furthermore, larger
drainage areas should have cumulatively more input sources, resulting in higher
contaminant loads. We found few differences in the concentrations of contaminants in
invertebrates collected from the lower elevation, larger drainage area river sites compared
to the higher elevation, smaller drainage area tributaries. DDE appeared higher in river
invertebrate samples compared to creek samples, but only trans-nonachlor was
significantly higher. Increasing elevation did not have an additional influence on
contaminant levels in dipper eggs after correcting for drainage area effects. Instead,
drainage area and year were the only significant variables that explained variation in
contaminant levels of dipper eggs. It is possible that our range of elevations where eggs
were collected was not great enough to detect a difference (32 - 600 m). Alternatively,

for lotic environments, elevation may not be a significant factor because the main site of
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deposition is in high elevation snow pack and precipitation, which exposes birds and prey
regardless of elevation as contaminated waters progress downstream. Inputs from several
smaller tributaries merge at downstream locations causing increases in residue levels
from cumulative sources, as were revealed by analysis of eggs but only marginally in the
invertebrate prey. The year of collection was clearly an important factor in explaining
variation in contaminant burdens to eggs. In particular, 1999 had higher concentrations
of OCs and PCBs than the two subsequent years combined. Large increases in snowpack
loadings of less volatile compounds have been attributed to higher precipitation and snow
depth (Blais 1998). Since the winter of 1998-1999 had record snowfall levels throughout
the region, this likely increased the concentrations of contaminants in runoff for that year.
Similar compositions of organic contaminants were found in both invertebrates
and fish but residues in salmon fry tended to exceed those of benthic invertebrates.
Dippers are therefore, likely to receive the majority of their OC and PCB burdens from
ingestion of salmon fry. PCBs were detected in fish samples but not in any of the
composite invertebrate samples from the Chilliwack watershed, while DDE and trans-
nonachlor were also significantly higher in fish over invertebrates. The occurrence of
elevated residue levels of various xenobiotics in aquatic biota with increasing trophic
levels has been attributed to food chain biomagnification (Oliver and Niimi 1988, Kidd et
al. 1995). However, LeBlanc (1995) found that trophic level differences are largely due
to increased bioconcentration because of higher lipid content of upper trophic level
organisms. Our results demonstrate that biomagnification was the major underlying
process affecting differences in contaminant residues between fish and invertebrates,

since lipid contents were similar or higher in the lower trophic level invertebrates.
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Information on the biomagnification potential of low-level atmospherically
deposited contaminants to lotic ecosystems has not been previously reported. BMFs
offer the potential to estimate avian egg concentrations just from analyzing diet items,
assuming these items are the predominant food eaten and differences in metabolism
between avian species are not too large (Hoffman et al. 1996). Since reproductive
dysfunction is generally the most critical and sensitive endpoint for population studies,
knowledge of egg residues is an important predictor of potential reproductive effects
(Hoffman et al. 1996). In this study, BMFs from American dipper prey to eggs were
highest for total PCBs and DDE. Harris et al. (2000) recorded DDE bioaccumulation
factors of 14 to 61 (earthworms to American robin (Turdus migratorius) eggs) in orchard
food chains, which encompassed our value for dippers (31). Braune and Norstrom
(1989) also provided data on BMFs in the Great Lakes food chain from fish prey to
Herring gull (Larus argentatus) eggs. Although their published BMF value for DDE of
34 closely matches our value of 31, total PCBs biomagnified 32x from alewife to Herring
gull eggs, which was considerably lower than our estimate of 175 from dipper prey to
eggs. Henny et al. (2003) also reported a much lower BMF value for total PCBs (11) in
fish to Osprey (Pandion haliaetus) eggs. This discrepancy may be attributed to dippers
accumulating greater concentrations of PCBs from their prey, greater excretion of PCBs
into eggs which reduces the female body burden, differences in lipid content of eggs, or
large variability in prey and egg values by watershed location. Alternatively, our method
for calculating BMFs from the diet apportioning may have been biased, since PCBs were
only detected in salmon fry. When only salmon fry are used in the calculation, the BMF

value is reduced to 87. The method of estimating BMFs is designed to predict
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contaminant burdens to wildlife consumers and estimate the potential risk of exposure
prior to analyzing eggs. Therefore, we need to improve our knowledge of BMF estimates
from a wide range of species with different diets that are accurately identified to ensure
reliable predictions of egg residues.

PCB congeners detected in this study are frequent and widespread components of
common commercial PCB mixtures. PCB 153, 138 and 180 dominated the contribution
to total PCBs in dipper eggs and salmon fry. Elevated levels of PCBs 153, 138 and 180
have been associated with the presence of Aroclor 1260, a common constituent in
transformer and capacitor oils, because of their high proportions in this mixture (Jones
1988). Other avian species occupying different ecosystems throughout this region are
reported to have those congeners in higher concentrations within their eggs (Elliott et al.
1989b, Elliott et al. 1996), indicating widespread use of the mixture and persistence of
those specific congeners surviving atmospheric transport processes.

Although we found no differences in PCB congener patterns among Chilliwack
dipper eggs and other Georgia Basin dipper eggs, PCA analysis revealed that congener
composition in eggs collected from the main river and the tributaries of the Chilliwack
watershed were significantly separated. Much of the distinction between river and creek
dippers was attributed to variation in the lower chlorinated PCBs 66 and 105. Creek
birds had higher scores on PC2 representing greater contributions of those congeners,
whereas river birds had higher scores on PC1 for the more highly chlorinated and stable
PCB congeners. Blais et al. (1998) found that the more volatile, less chlorinated PCBs
were prevalent in higher elevation snow pack. Creek eggs were collected from territories

at higher average elevations (creek: 328 + 43 vs. river: 208 + 25) with smaller drainage
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areas (creek: 96 + 12 vs. river: 615 + 40) than river birds, possibly explaining the greater
presence of lower chlorinated congeners in eggs. Longitudinal patterns have been shown
to exist in watersheds with respect to conventional changes that occur in stream flow,
water chemistry, nutrient levels, and contaminant loads from headwaters to downstream
river sites (Giller and Malmgqvist 2000). Therefore, PCB congener patterns may also
follow a similar trend in biota. Alternatively, data by Morrissey et al. (submitted- b)
showed that river resident dippers ingest larger proportions of salmon fry than creek
migrants, so that differences in congener patterns may be attributed to differences in the
diet.

Atmospheric deposition in precipitation appeared to be the major source of
chlorinated hydrocarbons to the Chilliwack watershed; however, other non-point sources
may have amplified the residue levels found in lotic biota. For example, biotransport of
organic pollutants by anadromous fish can represent a significant source of contamination
to streams and rivers (Merna 1986, Giesy et al 1994, Ewald et al. 1998, Krummel et al.
2003). Large annual salmon and steelhead runs on the Chilliwack River contribute
substantial organic matter to the lotic food chain via salmon roe and decaying carcasses
(Kline 1993). Decaying salmon may have increased the organic contaminant loads in
peak spawning areas, particularly along the main river channel. However, contributions
from salmon are probably minor since we found few differences in contaminant
concentrations in benthic invertebrates collected from the main river where salmon
densities are high, and the tributaries, where salmon densities are lower (B.C. Fisheries
data). Other sources of OCs and PCBs may have come from commercial salmon feed

released from the local hatchery (Easton et al. 2002). Salmon feed is incorporated into

92



the lotic food chain through ingestion by hatchery juvenile salmon or benthic
invertebrates in and around the hatchery waterways, which are routinely preyed upon by
dippers. Future research investigating contaminant burdens in dippers occupying streams
with and without anadromous fish and hatchery inputs would be valuable to compare
levels of OCs and PCBs in lotic food chains.

Levels of OCs and PCBs measured in this study generally fell within or below the
range of previously reported concentrations in other passerine eggs from British
Columbia and in dipper eggs from Europe (Cinclus cinclus) (Table 4). Egg residues of
dippers exposed through atmospheric deposition in the Chilliwack River watershed, were
similar to those of other species in orchard and non-orchard terrestrial habitats in British
Columbia (Elliott et al. 1994). None of those species, including American robins that
were more heavily contaminated by DDE, showed any measurable adverse effects on
reproductive performance. Studies on dippers in Europe also found no strong evidence of
reproductive effects or reduced post-fledging survival with OC and PCB concentrations
equal to or in excess of those detected in this study (Ormerod and Tyler 1992, Ormerod et
al. 2000) (Table 4). Dipper eggs in this study had mean total PCB and DDE
concentrations less than 0.1 ppm, and all individual eggs were below 1 ppm wet weight.
The lowest observable effect level for total PCBs in chickens, the most sensitive avian
species, is 1 to S ppm in eggs (Hoffman et al. 1996). For DDE, the Brown pelican
(Pelecanus occidentalis) is the most sensitive species, demonstrating eggshell thinning
and decreased productivity at 3 ppm in eggs (Blus 1996). Subtle sublethal effects,
including physiological changes, can occur as a result of in ovo exposure to

concentrations lower than those associated with overt reproductive effects (Hoffman et al.
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1996). However, we have no evidence from published literature to suggest that the
current levels of atmospheric deposition and biomagnification of organic pollutants in

Georgia Basin watersheds are putting dipper populations at risk.
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Figure Legends

Figure 4.1. Map of the Georgia Basin region in southwestern British Columbia, Canada.
Chilliwack River is shown relative to the city of Vancouver in addition to other American

dipper egg collection sites: the Cheakamus, Seymour and Coquitlam Rivers.

Figure 4.2. Relationship between the size of the drainage area and a) total organochlorine
or b) total PCB concentrations in American dipper eggs collected from sites within the
Chilliwack River watershed, B.C. for 1999 and 2000/2001. Regression lines represent

best fit for all data combined.

Figure 4.3. Relative concentrations (geometric means) of commonly detected organic
contaminants in benthic invertebrates, juvenile salmon and American dipper eggs from

the Chilliwack River watershed, B.C.

Figure 4.4. Percentage contributions by different congeners to the total PCB burden of
American dipper eggs (n = 32) and salmon fry prey (n = 8) collected during 1999-2002
from the Chilliwack River watershed. Dipper eggs (n = 3) from 3 other sites in the

Georgia Basin of British Columbia are included for comparison.

Figure 4.5. Principle component analysis of 18 selected PCB congeners that contributed
greater than 1% to the total burden in American dipper eggs. Analysis shows principle
component scores (PC1 and PC 2) for eggs grouped by collection site on the Chilliwack

river, Chilliwack creeks and 3 other rivers in the Georgia Basin, B.C., 1999-2001.
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TABLE 4.2. Concentrations of organic contaminants (ug/g wet weight) detected in
American dipper egg samples from the Chilliwack River watershed (geometric means)

and from 3 other rivers (single samples) in the Georgia Basin, British Columbia.

Chilliwack Coquitlam  Cheakamus  Seymour

River River River River

(n=32) n=1 (n=1) (n=1)
% Moisture (+ SD) 76.2+6.9 NC? 80.4 86.2
% Lipid (x SD) 6414 4.2 8.1 7.3

Total PCBs 0.0524 0.0990 0.0550 0.0670

p.p’ DDE 0.0585 0.0450 0.0250 0.0210

pp’ DDT 0.0002 0.0010 0.0001 0.0001

p.p’ DDD 0.0002 0.0001 0.0001 0.0001

Hexachlorobenzene 0.0031 0.0001 0.0050 0.0020
a- HCH 0.0004 ND" ND ND
p- HCH 0.0001 ND ND ND
Heptachlor epoxide 0.0001 0.0001 ND ND
Oxychlordane 0.0001 0.0020 0.0020 ND

Trans-nonachlor 0.0009 0.0020 0.0030 0.0010

Cis-nonachlor 0.0002 0.0001 0.0001 0.0001
Mirex ND ND ND ND
Dieldrin ND ND ND ND

*NC = not calculated, egg sample was too developed.
°ND = not detected, sample detection limit for all compounds is 0.0001 pg/g wet weight.
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TABLE 4.3. Principle component analysis of 18 selected PCB congeners that contributed
>1% to total PCBs detected in American dipper eggs collected during 1999-2001 from
the Chilliwack River and other Georgia Basin rivers. Values shown are factor loadings
for each variable (PCB congener) and the variance explained by each component is given
in parentheses. See Figure 5 for principle component scores for each dipper egg.

Variable Eigenvectors
PC1 (70.6 %) PC2 (11.1%)
PCB 66 0.165 0.555
PCB 74 0.246 0.173
PCB 85 0.256 -0.009
PCB 99 0.259 -0.153
PCB 101/90 0.247 -0.106
PCB 105 0.184 0.522
PCB 118 0.241 0.234
PCB 128 0.253 -0.226
PCB 138 0.254 -0.249
PCB 146 0.263 -0.210
PCB 153 0.254 -0.259
PCB 170/190 0.257 -0.043
PCB 180 0.268 -0.021
PCB 183 0.260 -0.109
PCB 187 0.215 -0.010
PCB 194 0.243 0.231
PCB 196/203 0.225 0.042
PCB 206 0.054 0.080
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Summary

1. We investigated the influence of diet and breeding location on individual bird
contaminant profiles using a color marked population of American dippers
(Cinclus mexicanus). The population was comprised of two distinct groups:
resident dippers breeding on the main river and migrant dippers breeding on the
tributaries.

2. Residue analysis of egg contents revealed a spatial trend in contaminant profiles
among resident and migrant American dippers in a watershed receiving deposition
of atmospheric contaminants. Total organochlorines (OC), polychlorinated
biphenyls (PCB), and mercury (Hg) were all significantly higher (p < 0.0001, p <
0.001, p <0.0001 respectively) in eggs from river residents compared to the creek
migrants. The three most prevalent organochlorine compounds in dipper eggs,
DDE, hexachlorobenzene, and trans-nonachlor, were all significantly higher in
eggs from the river compared to those from the creeks.

3. We hypothesized that the observed differences in contaminant concentrations
were related in part to the proportion of salmon fry (Oncorhyncus spp.) in the diet
relative to aquatic invertebrates. Stable isotope analyses using 8'3C and 8N
were conducted on blood and feathers of dippers and other reference species in
addition to invertebrate and salmon fry prey. Linear mixing models using the BN
isotope in the dippers’ diet and blood revealed considerable variability in the

proportion of fish in the diet of American dippers (0 to 71 %). Resident birds on
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the main river had significantly higher proportions of fish in the diet (42 %)
compared to the migrants on the tributaries (22 %) (p = 0.01).

4. The difference in diet within a single watershed explained some of the observed
variation in egg contaminant profiles since blood 8'°N values were positively
correlated with total organochlorines (p = 0.002) in dipper eggs indicating fish
may be the primary source of contamination.

5. Dipper eggs represented local conditions on the breeding site making them useful
tools for biomonitoring aquatic contaminants in watersheds. However, given the
distinct difference in contaminant profiles between residents and migrant dippers
and the link to diet, our results emphasize the importance of understanding the
ecology of the study species for assessing toxicological effects at the population

level.

Key words: biomonitor, stable isotopes, '*Nitrogen, salmon fry, rivers, organochlorines,

PCBs, mercury, selenium
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Introduction

Aquatic ecosystems and human civilization both rely on clean sources of running
water to maintain biodiversity and to supply a range of consumer processes for industrial,
domestic and agricultural systems. Suitable biomonitors are therefore required for
accurate assessment of impacts from local and long-range sources of pollution to streams
and rivers that supply running water. The aquatic songbird, the American dipper
(Cinclus mexicanus) occupies mountainous watersheds year-round and has proven useful
as a biomonitor of metal pollution (Strom et al. 2002). The European dipper (Cinclus
cinclus) has also been shown to be a suitable indicator of organochlorine, PCB and
mercury pollution in upland catchments (Ormerod and Tyler 1990, 1992, O’Halloran et
al. 1993, 2003, Ormerod et al. 2000). Previous studies have suggested that American
dippers have distinct altitudinal patterns of migration, which includes seasonal movement
upstream and downstream within a watershed (Bakus 1959a,b, Price and Bock 1983).
Our earlier research further revealed that resident and altitudinal migrant dippers shared
common wintering grounds on the river, but most migrants moved upstream onto creeks
in the spring while residents remained on the river to breed (Morrissey et al. submitted).
One consequence of even small-scale migratory patterns is its influence on contaminant
exposure, producing large variation in observed contaminant concentrations between
individuals (Hebert 1998). Furthermore, dietary composition may vary within a breeding
range of individual species due to spatial segregation, which further contributes to large
variability in contaminant levels (Hebert et al. 1997, Bustnes et al. 2000, Bearhop et al.

2000).
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American dippers feed on benthic invertebrates and small fish during the breeding
season, however, the availability of salmon fry to migrants on smaller tributaries is lower
compared to that of residents along the main stem of rivers because of differences in
distribution of spawning salmon (Crisp 2000). This difference in diet may be important
in understanding American dipper exposure to persistent compounds given that fish tend
to bioaccumulate and biomagnify persistent organic contaminants to higher
concentrations than lower trophic level invertebrates (Suedel et al. 1994, Kiriluk et al.
1995, Kidd et al. 1995).

Recent use of stable isotopes in environmental and ecological studies has been a
powerful means for distinguishing and tracing dietary sources. Existing applications
have focused on determining trophic levels in ecosystems, separating terrestrial and
marine food webs as well as looking at local differences in diets and movements of
individuals (reviews by Peterson and Fry 1987, Lajtha and Michener 1994, Hobson 1999,
Kelly 2000). The use of stable carbon and nitrogen isotopes can provide a means of
determining diet and feeding locations and can provide valuable insight in contaminant
studies (Kidd et al. 1995, Jarman et al. 1996, Hebert et al. 1997, Bearhop et al. 2000.
Braune et al. 2002).

Stable isotope ratios of stream biota are well documented. Freshwater food chain
studies indicate that animals feeding on fish in addition to invertebrates should have an
enriched isotopic signature compared to those animals feeding almost exclusively on
invertebrates (Rounick and Hicks 1985, Fry 1991, Cabana and Rasmussen 1994).
Isotopic analysis of avian whole blood provides information on short-term dietary

sources of assimilated foods (half life time is typically 10-16 days for 1>C and 9-15 days
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for '°N), while analysis of avian feathers give a record of past dietary information at a
time when the feathers are grown (Hobson and Clark 1992, Bearhop et al. 2002, Evans
Ogden 2002). By using 8"°N and 8'°C values in blood and feathers, we can infer the
relative diet composition of the American dipper and further assess trophic level
differences in individuals breeding at different locations within a watershed.

In this study, we used a population of individually color marked birds to
determine the degree of exposure to contaminants by analyzing egg samples from known
residents and migrants separately. Our first objective was to test whether the
population’s migratory patterns had an effect on levels of persistent compounds
(organochlorines, polychlorinated biphenyls, mercury and selenium) in American dipper
eggs. Additionally, since resident dippers on the river were observed eating more fish
than the migrants on the creeks, we further investigated whether the diet differed between
residents and migrants using stable isotope techniques. We hypothesized that each group
would have a distinct isotopic signature of 8*C and §'°N isotopes in the blood and
feathers. This would not only identify the relative contribution of fish and invertebrate
sources to the diet, but could also aid in interpreting any observed differences in

contaminant profiles.

Methods
STUDY AREA

The study area is located within the Chilliwack River watershed (49°1°N,
121°4°W) in the Fraser Valley, which is approximately 100 km east of Vancouver in the

Cascade Mountain Range of southwestern British Columbia, Canada. Because of its

unique geographic features, prevailing winds, and the large population found in the lower

119



reaches of the valley, the upper valley experiences interactions of urban, suburban,
marine, and agricultural emissions of pollutants and their subsequent transformation into
ambient air. Thus, the Chilliwack watershed receives atmospheric inputs of organic and
inorganic pollutants through wet and dry deposition processes (Morrissey 2003). Annual
precipitation averages 1850.5 mm with mean daily temperatures of 10.4°C (Data from
1879-1990). The watershed tributaries are first through third order streams. The river is
dominantly a fourth order stream, fed by a large glacial lake at its upper end and is 43.5
km in length where it merges to become the Vedder River. The Chilliwack River
supports populations of Pacific chum, coho, pink, and chinook salmon (Oncorhynchus
keta, O. kisutch, O. gorbuscha, O. tshawytscha) as well as cutthroat trout (O.clarki),
steelhead trout (O. mykiss), and Dolly Varden (Salvelinus malma) (B.C. Fisheries data).
Annual breeding runs of anadromous salmon and steelhead spawn from late summer
through winter within the watershed, but peak runs occur along the main stem of the river
and at the hatchery in autumn. Salmon fry are therefore most abundant in early spring,
which coincides with the breeding period of the American dipper.
SAMPLING PREY

Fifteen composite samples of benthic invertebrates were collected at eight
different sites along the main stem of the river and from seven different tributaries in the
watershed in April 2001. Aquatic larval invertebrates (~ 1 g dry weight) were collected
either by kick sampling in the stream (disturbing the rocks directly upstream of a Surber
sampler) or by turning over rocks by hand. Each sample represented a mixture of macro-
invertebrates primarily comprised of Ephemeropteran, Plecopteran and Tricopteran

larvae that dippers are known to naturally prey upon (Mitchell 1968, Ealey 1977).
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During invertebrate collections, eight additional samples comprised of approximately ten
salmon fry (Oncorhynchus spp.) (age-0), were collected live using a dip net from the
same eight sites along the main river. This represented a composite sample of
predominantly coho and chum salmon fry (~80 %) but pink and chinook salmon (~20 %)
were also included. Higher water flows and lower densities of salmon fry on tributaries
prevented us from capturing fish on creeks to include in the analysis. Both the
invertebrates and fish were held alive in stream water in polyethylene bags for several
hours to allow the stomach contents to purge to obtain accurate isotopic values of the
tissues. All samples were subsequently washed three times with distilled deionized water
to remove any surface contamination or stream water and stored frozen in glass vials until
preparation for stable isotope ratio analysis.
SAMPLING AMERICAN DIPPERS AND REFERENCE SPECIES

Adult American dippers were caught throughout the breeding season from late
March until July in all areas of the watershed both on the main river and on the associated
tributaries. Dippers were captured using 6m passerine mist nets set up over moving
water in narrow channels or on edges of the river and creeks. A hand-net was used to
trap a few additional birds while on the nest during incubation (females) or during nest
building (males). All dippers were weighed, measured and banded with a numbered
USFWS aluminum band and three colored celluloid bands to represent a unique
combination that was readily identifiable when the birds were resighted. We drew
approximately 0.7 - 0.8 ml of blood from the jugular vein using a syringe and needle for
most individuals (Kerlin 1964, Hoysak and Weatherhead 1991) or 0.1 - 0.2 ml in a few

individuals by puncturing the metatarsal vein and collecting blood in capillary tubes. In
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addition, 10 - 15 breast feathers were removed and stored in polyethylene bags prior to
the bird’s release. We randomly selected 31 individual blood samples (16 from the river,
15 from the creeks) and 20 individual feather samples (10 from the river, 10 from the
creeks) for analysis of stable isotope ratios. Blood and feather samples used for the stable
isotope analysis were not always from the same individuals because we did not obtain
blood samples from all birds and used many feather samples for other analyses unrelated
to the present study.

In addition to the American dippers, we collected blood and feathers from two
reference groups in the Chilliwack River watershed. Common mergansers (Mergus
merganser) were considered a model for an obligate piscivore and swallows (3 species:
Tachycineta thalassina, Tachycineta bicolor, Stelgidopteryx serripennis) were considered
a model for an obligate insectivore. Common mergansers (n = 12) were captured using
waterfowl mist-nets set up across sections of the river and swallows (n = 9) were
captured in the nest cavity using a hand-net over the opening. During mist netting for
mergansers, we opportunistically captured a single Belted Kingfisher (Ceryle alcyon), an
obligate piscivore, from which we also sampled blood and feathers to be added to the
merganser samples. All individuals were banded with a USFWS metal band, which
prevented duplicate sampling of the same individual. We collected 1.0 ml of blood from
the brachial vein of mergansers with a syringe and needle and 0.1 ml of blood from the
brachial vein of the swallows and kingfisher by puncturing the vein and drawing off
blood with capillary tubes. In addition, several breast feathers were taken from each
individual and stored in sealed polyethylene bags. All sample collections were done in

accordance with Animal Care committee approval and with a valid Environment Canada
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scientific permit. We observed no negative effects from blood or feather sampling of
individuals. Furthermore, egg collections and handling of breeding birds was never
observed to cause nest abandonment or hatching failure.

EGG COLLECTION AND CONTAMINANT RESIDUE ANALYSIS

A single egg from a clutch of four or five eggs was collected from dipper nests
throughout the watershed in 1999, 2000 and 2001. Viable and non-viable eggs were
selected at random from each of 33 different clutches from resident dippers on the main
river (n= 17) and from migrants on the tributaries (n = 16). Considerable variation in
contaminant levels has been observed within and between clutches allowing for equal
treatment of eggs regardless of their position in the clutch or in repeat clutches
(Morrissey unpubl. data). Whole eggs were stored refrigerated for up to four weeks. Egg
contents were then transferred into an acetone: hexane rinsed glass jar to be frozen at —
25°C until analysis.

Chemical analyses of all egg samples were carried out at the National Wildlife
Research Centre (NWRC) Hull, Quebec. Organochlorine analyses included
determination of chlorobenzenes (tetrachlorobenzene, pentachlorobenzene,
hexachlorobenzes), hexachlorocyclohexanes (a-,3-,y-HCH), chlordane related
compounds (oxychlordane, trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor
and heptachlor epoxide), DDT and metabolites (p,p’-DDE and p,p’-DDD), mirex and
photomirex, and dieldrin. Total PCBs were calculated by summing the peaks of 62
individual congeners identified. Samples were quantitatively analyzed by capillary gas
chromatography coupled with a mass selective detector operated in selected ion

monitoring mode according to CWS Method No. MET-CHEM-OC-04B (Won et al.
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2000). Briefly, samples underwent neutral extraction with 1:1 DCM/Hexane after
dehydration with anhydrous sodium sulfate, removal of lipids and biogenic materials by
Gel Permeation Chromatography, and further cleanup by Florisil column
chromatography. All samples to be analyzed were spiked with internally labeled *C
standards prior to extraction. Each sample extract was injected twice, once for
determination of organochlorines and once for PCBs. As part of the quality control,
blanks and CWS reference material (1989 Lake Ontario Herring Gull QA) were run
concurrently with the samples. The nominal detection limit for all compounds was
0.0001 pg/g wet weight. Internal standard recoveries were typically between 80 % and
110 % and residues were not recovery corrected. Egg concentrations are reported on a
wet weight basis (Peakall and Gilman 1979) with arithmetic corrections of desiccated
samples that deviated by more than 5 % from the mean moisture content (78.6 %) of
freshly collected, undeveloped eggs.

Total mercury (Hg) and selenium (Se) were analyzed according to CWS Method
No. MET-CHEM-AA-02E (Neugebauer et al. 2000). The sample homogenates were
freeze-dried to determine moisture content and analyzed for mercury without prior acid
digestion on the AMA-254, which employs direct combustion of sample in an oxygen
rich atmosphere. Samples for which there was sufficient material remaining were
digested in nitric acid according to standard techniques for selenium analysis. Selenium
was analyzed by graphite furnace atomic absorption spectrometry (GFAAS) using a
Perkin Elmer 3030b equipped with a Deuterium background corrector and HGA-300
Graphite furnace. Accuracy of analysis was determined using certified reference

materials Dolt-2 and Dorm-2 (National Research Council of Canada) and blank samples.
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Recoveries of reference materials were within certified range (95 % to 121 %).
Additionally, random egg samples were analyzed in duplicate to check precision. All
values for mercury and selenium are reported on a dry weight basis and detection limits
for under these conditions were 0.18 pg/g dry weight for mercury and 0.10 pg/g dry
weight for selenium.

STABLE ISOTOPE ANALYSIS

Invertebrate and fish samples were stored frozen and then freeze-dried for 24 to
48 hours until completely dry and then ground up to a fine powder. Three separate sub-
samples of each of the composites of invertebrates and fish were analyzed to ensure
homogeneity of the mixture, particularly the invertebrate taxa. Whole blood samples
were also stored frozen until preparation for determination of stable isotope ratios.
Samples were then freeze-dried for 24 hours and homogenized. Feather samples were
washed with a 2:1 chloroform and methane solution and thoroughly rinsed with distilled
deionized water to remove any surface lipids or external contamination. They were
subsequently oven dried and cut-up into tiny pieces. A sub-sample of each tissue (~1
mg) was weighed into miniature tin capsules (5 x 9 mm, Costech Analytical) for
combustion at over 1000°C using an online elemental analyzer.

Stable isotope ratios of carbon and nitrogen were analyzed at the Stable Isotope
Facility, University of Davis, California using a Europa 20/20 continuous flow isotope
ratio mass spectrometer (CFIRMS). Sample isotope ratios were compared to the standard
gases Pee Dee Belemnite for °C, and atmospheric nitrogen (AIR) for '°N that were

injected directly into the CFIRMS before and after the sample peaks. Values for C and
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>N were calculated and reported using the standard delta (3) notation in parts per
thousand (%) as follows:
8 X = [(Rample/Retandars) — 1] x 1000,
where X is >N or 1*C and R is the corresponding ratio "N/"*N or *C/"*C. Replicate
laboratory standards (ammonium sulfate >N = 1.33 %o and sucrose *C = -23.83) were
analyzed before and after every 12 samples to determine the accuracy of '>C and °N
values. Measurement errors averaged + 0.1 %o for nitrogen, and ® 0.04 %o for carbon.
DATA ANALYSIS

A two-sample t-test was used to compare mean total organochlorines (3 OCs),
total polychlorinated biphenyls (3’ PCBs), mercury (Hg), and selenium (Se) residues in
resident and migrant American dipper eggs. Organochlorine and total PCB residues were
not normally distributed (Shapiro-Wilk W test); therefore values were log transformed to
obtain normal distributions prior to performing parametric statistical tests. Values are
reported as arithmetic means @ SE and geometric means for OCs and PCBs. Where
levels were below the detection limit for organochlorine compounds in eggs, a value
equal to the minimum detection limit (0.0001 ug/g wet weight) was applied. For
mercury, we used a value of one half the detection limit (0.09 ug/g) to permit statistical
analyses. Sample size for OC/PCB analysis was 32 eggs, 33 for mercury and 27 for
selenium based on available sample mass for each analysis.

We determined differences in stable isotopic signatures (5'°N and 8'*C) among
prey types (creek invertebrates, river invertebrates and salmon fry), using a K- nearest
neighbor randomization test (Rosing et al. 1998), which treats the isotopic signatures of

8'*C and 8'°N as spatial data. The same analysis was then used to determine differences
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in blood and feather isotope values among resident and migrant dippers and between
reference species (mergansers and swallows). Where appropriate, an ANOVA was used
to detect differences in mean 8"°N values among groups followed by a multiple
comparison Tukey HSD test. Statistical analyses were performed using JMP v.4.0 (SAS
Institute).

A relative index of the invertebrate and fish component of the diet was calculated
for each dipper as well as a mean for each group using only the 8'°N values in a two
source, linear mixing model (Phillips and Gregg 2001). Since larger changes in 8'°N
occur with trophic level this isotope is more sensitive to diet effects. River birds were
analyzed separately from the creek birds because invertebrate 8'°N signatures were
significantly higher on the river likely as a result of enriched marine derived nutrients
from high densities of spawning salmon on the main river (Bilby et al. 1996, Johnston et
al.1997). Isotope ratios of salmon fry collected from the river were assumed to be
representative of both river and creek locations since we were unable to capture fish on
tributaries due to their lower frequency and high water flows. We used fractionation
values of 2.9 %o for 8'°N in invertebrate samples and 1%o for §'°N in fish samples that
were calculated from the two reference species (swallows and mergansers/kingfisher).
These were comparable to values obtained in captive feeding experiments of birds on
high protein diets (Evans Ogden 2002, Bearhop et al. 2002). Proportions of fish in the
diet were transformed using an arcsine transformation to permit parametric statistical
comparisons. Male and female 3'°N values and relative proportions of fish in the diet

were compared using a two-sample t-test to determine if sex biases existed in diet
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composition. Combined sex isotope data were then used to represent overall diet

composition for comparison to contaminant profiles in dipper eggs.

Results

CONTAMINANT RESIDUES IN AMERICAN DIPPER EGGS

Mean concentrations of total organochlorines (t;o = -4.9, p < 0.0001) and total
polychlorinated biphenyls (ts= -3.6, p = 0.001) were higher in eggs from river residents
compared to the creek migrants (Fig. 1). Of the organochlorine compounds, residues of
DDT metabolites, chlordane compounds, and chlorobenzenes were all significantly
higher in resident eggs compared to migrants (Table 1). Detection of
hexachlorocyclohexane (HCHs) was low and therefore, differences between residents and
migrants were marginally insignificant. Mirex, photomirex, and dieldrin were not
detected in any of the egg samples. Mercury concentrations were also found to be
significantly higher in eggs of river residents compared to the creek migrants (t3;=-4.7, p
< 0.0001) (Table 2). However, there was no difference in selenium concentrations
between the migratory groups (tzs =-1.15, p = 0.26).
STABLE ISOTOPE ANALYSIS

Analyses of prey samples from the main river channel and the tributaries
indicated significant differences in isotopic signatures between river invertebrates, creek
invertebrates and fish (K nearest neighbour randomization test, p < 0.0003) (Table 3).
The 8"°N values in creek invertebrates were significantly different from river
invertebrates (F = 239.2, p<0.0001), therefore, we proceeded to test for trophic level
differences separately for resident dippers on the main stem of the river and for migrant

dippers on the tributaries.
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Differences in isotopic signatures were detected in whole blood samples collected
from the reference species (swallows and mergansers) and American dippers (river
resident and creek migrant dippers) (Figure 2). The K nearest neighbor randomization
test indicated all four groups were significantly spatially separated (p < 0.0001). §"°N
values were also isotopically different among groups (F3 45 = 79.8, p < 0.0001) with no
overlap of confidence intervals. River resident dippers had a §"*C and §'"°N signature that
was intermediate between the two reference species; while creek dippers could not be
compared because of a lack of suitable references (i.e. swallows breeding on creeks).
Furthermore, river and creek dippers had significantly different blood isotopic signatures
with river residents being more enriched in §'°N and §'*C (K nearest neighbor
randomization test, p< 0.0001) (Fig. 3).

Contributions of fish and aquatic invertebrates to the diets of the American dipper
during the breeding season were analyzed using a two source linear mixing model with a
single isotope °’N. Since larger changes in 8'°N occur with trophic level, this isotope is
more sensitive to diet effects than 8'°C. Additionally, we found considerably less
variability among prey samples for 8'°N allowing for increased precision in estimating
diet composition. The model provided an index of the proportional consumption and
assimilation of the diet sources. The amount of fish in the diets of American dippers
ranged widely from 0 % to 71 % (Fig.4). Male and female dippers showed no significant
differences in 8'°N values (t29=0.20, p = 0.8), and thus no differences in diet
composition (tz9 = 0.96, p = 0.4) (Table 4). However, resident dippers on the river had a
higher mean percentage of fish in the diets (42 % + 7 %) compared to migrants on the

tributaries (22 % @ 6 %) (tzo=-2.7, p = 0.01).
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Patterns of isotopic signatures in feather samples from the reference species and
the dippers were not consistent with blood samples. There was a lack of observable
patterns in feather isotopic signatures among species with respect to diet. Feathers of the
mergansers and swallows were significantly spatially separated (K nearest neighbor
randomization test, p = 0.003) but with considerable variation among individuals. Spatial
separation of isotopic signatures between resident and migrant dipper feathers was
marginally insignificant (K nearest neighbor randomization test, p = 0.06) (Fig.5). Given
the lack of any clear distinction between resident and migrant dippers, or suitable end
points from the reference species, we could not assess the relative contributions of fish
and aquatic invertebrates to the diets of dippers during the period of feather growth in the
previous year. Therefore, we could not definitively infer molting location by feather
isotope signatures.

Although we did not set out to collect blood and eggs from the same individuals
within a territory to compare isotope ratios with contaminant residues, we had a small
sample (n = 8) for which we had data on both egg contaminants and blood stable isotope
ratios collected from a bird in the same territory in the same season (4 river residents and
4 creek migrants). Residues of log wet weight total organochlorines in dipper egg
samples were positively correlated with §'°N values in blood from birds sampled from
the same territory (r = 0.91, p = 0.002). Given that DDT and metabolites made up over
90 % of the organochlorines pesticide residues in dipper eggs, the log sum of DDT
metabolites was also significantly correlated with 3'°N values in blood (r=0.91, p <
0.002) (Fig. 6a). Correlation between total PCBs and 6'°N values in dipper blood was

marginally insignificant (r = 0.68, p = 0.06) (Fig. 6b). Levels of total organochlorines
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were not intercorrelated with total PCBs (p = 0.3). There was no relationship between
egg mercury levels and 8N values in blood, primarily because many samples from

creeks were below detection limits for mercury.

Discussion

SOURCES AND SIGNIFICANCE OF CONTAMINANT RESIDUES

Relatively few studies have noted the importance of small-scale migratory
movements on the interpretation of contaminant concentrations in focal species. Studies
that do report such movements have shown they are a significant factor in explaining
individual variability in contaminant concentrations. Hebert (1998) noted that winter
weather influenced migratory movements of Herring gulls in the Great Lakes, which
ultimately had an effect on the birds’ exposure to local organochlorine contamination.
Our data on the American dipper further demonstrate the importance of considering
spatial trends in species that are classified as non-migratory.

Variability in contaminant concentrations in American dipper eggs was largely
explained by the bird’s status as a resident on the main river or an altitudinal migrant on
one of the watershed tributaries. Each group had significantly different levels of
organochlorines, PCBs and mercury in their eggs, with resident eggs showing higher
concentrations of all contaminants measured, except selenium. This trend was apparent
despite the fact that the system is a single continuous watershed where distances
separating the groups are relatively minor (<1 to 15 km). In other studies, we found that
the residents and migrants wintered on the main river together, but the migrants moved
upstream onto the tributaries to breed (Morrissey et al. submitted). Our data implies that

the degree of contamination in eggs is largely determined by exposure on the breeding
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site, and that nutrients are deposited in the eggs primarily from recent dietary uptake.
This finding is consistent with those by Ormerod et al. (2000), who suggested that eggs
of the European dipper also reflected local sources of contamination. Most nutrients
required for egg formation in passerines are not stored prior to laying but are gathered on
a daily basis during the laying period (Perrins 1996). This is not unexpected given that
egg formation in passerines is costly in terms of energy and nutrient requirements where
the combined mass of the eggs in the clutch can often equal or outweigh the female’s
own body weight (Perrins 1996). Therefore, recent dietary intake in dippers will largely
influence contaminant levels found in eggs making them a useful biomonitor of local
contamination.

Given that persistent lipophilic organic compounds are known to bioaccumulate
and biomagnify with increasing trophic levels (Connel 1990), dippers with a larger
proportion of fish in their diet were expected to have higher exposure to chlorinated
hydrocarbons as compared to those primarily on an invertebrate diet. The results from the
stable isotope data support this hypothesis, demonstrating that river residents were
consuming a larger proportion of fish during the breeding season. In addition, the §'°N
signature in blood of banded birds was significantly correlated with the log of Y DDT and
the log of total organochlorines in eggs despite the limitations of sample size. These
results were consistent with other studies where an increased "N signature was
associated with a higher trophic level and subsequently higher contaminant burdens
(Broman et al. 1992, Kidd et al. 1995, Jarman et al. 1996, Bearhop et al. 2000).

Differences in location between river residents and creek migrants within the

watershed may have further contributed to the observed contaminant trends. Patterns

132



have been shown to exist in watersheds with respect to stream ecosystem structure and
function (e.g. the River Continuum Concept) that suggest a predictable transition from
the headwaters to higher order reaches of rivers (Vannote et al. 1980). Conventional
changes occur in stream flow, chemistry, nutrient levels, species richness and biomass
along with increasing contaminant loads through atmospheric deposition from upstream
to downstream (Giller and Malmgqvist 2000). This effect can explain some of the
variability in contaminant profiles between resident and migrant dippers since residents
breed on the higher order river and migrants breed on low order tributaries. However, we
have found that levels of some contaminants such as mercury and DDE did not differ
significantly in benthic invertebrate prey collected from river and creek locations
(Morrissey 2003). Instead, mercury and DDE were detected at a higher frequency and at
higher concentrations in fish tissues compared to invertebrates. Additionally, PCBs were
not detected in any invertebrate samples regardless of location, but were detected in
salmon fry samples indicating fish are the primary source of exposure (Morrissey 2003).
Therefore, the influence of diet may be more significant than breeding location for
several contaminants of concern.

With the exception of selenium which was at or near a threshold level of 3 pg/g
dry weight for reproductive toxicity (Lemly 1993), the levels of organochlorines, PCBs
and mercury in dipper eggs were all relatively low and generally below levels known to
cause toxicity (Beyer et al. 1996). Despite the low concentrations, many contaminants
were detectable with a highly significant trend existing among residents and migrants.
This indicates that American dipper eggs are useful tools for monitoring organic

pollutants in watersheds. American dipper blood samples have also been successfully

133



used to indicate lead pollution in a mine-impacted stream (Strom et al. 2002). Future
studies using dippers as monitors of water quality in impacted watersheds are expected to
emerge as anthropogenic developments threaten streams in western North America.
However, consideration as to the differences in location and ecology of residents and
migrants will be an important factor in interpreting the source of contaminant burdens in
dippers.

BLOOD AND FEATHER ISOTOPE ANALYSIS

Based on controlled laboratory studies of captive birds, whole blood has been
shown to be a useful tissue for stable isotope analysis since it incorporates both ingested
and assimilated diet items over a window of 20 to 30 days (Hobson and Clark 1992,
Bearhop et al. 2002). In passerines, this information can be directly used to identify the
diet and nutrient sources at the time of egg formation but will depend on the timing of
blood sampling and the consistency of diet during that time window.

The difference in blood isotopic signature between residents and migrants was
related to the proportion of fish in the diet but also to the relative isotopic signature from
the aquatic invertebrates. Since marine derived nutrients are enriched in "N, spawning
salmon contribute their marine signature to the stream benthos through carcass decay
(Bilby et al. 1996, 1998, Johnston et al.1997). Salmon abundance is considerably higher
on the Chilliwack River relative to the tributaries (B.C. Fisheries Data 1985-2000).

Many salmon spawn in high densities along rivers but fewer fish migrate upstream onto
the tributaries because of steep gradients, higher flows and the presence of barriers (Crisp
2000). Therefore, "N signatures in benthic invertebrates on the creeks were considerably

lower than river invertebrates. We assumed isotope ratios of salmon fry collected from
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the river were representative of both river and creek locations since we were unable to
capture fish on tributaries due to their lower frequency and high water flows. If salmon
fry are significantly depleted in "N on the tributaries as a result of lower spawning
densities, we may have underestimated the proportion of fish in the diet of creek birds.
However, differences in stable isotope values of salmon fry caused by lower salmon
densities on the creeks are likely less than 10-20 % for 8'°N and only 2 % for §'*C
(Johnston et al.1997, Bilby et al. 1998). This equates to a relative increase of 3-6 % in
the mean proportion of fish in creek bird’s diet (max. 28 % fish instead of 22 %). Linear
mixing models have considerably greater error associated with them than this (Ben-David
and Schell 2001); therefore our estimates for diet proportions should be taken as an index
rather than an absolute value of diet proportions. Ultimately, isotopic signatures were
generally higher in river dippers compared to creek birds because of the higher
consumption of salmon fry by river residents during the breeding season, and the higher
densities of spawning salmon, which contribute marine derived nitrogen to the river
biota.

The isotopic signature in feathers reflects the diet during the period of regrowth
and isotopic compositions are essentially locked into the feather structure post-molt
(Hobson and Clark 1992, Mizutani et al. 1992). It was apparent that the reference species
did not have an isotopic signature in the feathers that resembled that of their blood
samples. We have no information on where the mergansers and swallows grew the
feathers; therefore, we could not use them to determine isotopic values for obligate fish

and insect feeders to compare with American dippers.
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Since dippers tend to molt when the breeding season is complete (usually from
July to September) (Kingery 1996), stable isotope analysis can give information on the
previous year’s breeding and molting location based on known isotopic signatures of
residents and migrants. This would allow us to use feathers as simple tools to identify the
breeding location of a bird even in winter when birds are more easily caught. Although
resident and migrant dippers showed some similarities between feathers and blood with
respect to diet, clearly not all the birds had the same pattern. Mizutani et al. (1992)
showed that both '*C and '°N were enriched in feathers relative to the diet of nine species
of aquatic birds. Therefore, we would expect that if resident and migrant dippers were
molting in the same location as they bred in the preceding year, their feather isotopic
signatures should show a similar pattern as the blood values. Notably, at least two
individual residents and two migrants had an alternate isotopic signature that did not
reflect that of the majority. Since these birds were color banded and we knew their
previous year’s breeding location, these results were not expected. A change in diet
during the period of feather growth may have caused this result or a movement away
from the breeding site for molting. We assumed at the outset of the study that dippers
were breeding and molting in the same location given that individuals we have sighted
during the molt had not changed locations. However, some dippers were not seen on
their territories for days or weeks following breeding. Price and Bock (1983) similarly
reported that American dippers in his study area of Colorado were frequently off their
territories while molting or were not visible during that period. Dippers are highly
secretive and often flightless during the molt cycle; therefore, some individuals may seek

out refuge in new locations or change their diet, ultimately altering their isotopic
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signature. Therefore, further research is needed to determine if feather isotope analysis is
a useful technique for identifying breeding and molting locations in this species.
SYNTHESIS AND APPLICATIONS

Given that the degree of contamination in dipper eggs is largely determined by
exposure on the breeding site, and that nutrients are deposited in the eggs primarily from
recent dietary uptake, dipper eggs can be used as an effective tool for monitoring local
contaminant conditions. Although there appeared to be no additional effect of migration
on egg contaminant profiles, spatial segregation as a result of differential migration
strategies, proved an important factor in exposure to organic contaminants. As such,
contaminant levels in dipper eggs reflected prey selection of the individual. Therefore, if
we are to correctly assess trends in contaminant concentrations inferred by indicator
species such as the dipper, we must first have a sound understanding of the population’s
structure, migration strategy and diet. We recommend that results of future contaminant
studies on this species and other indicator species be interpreted with a more integrative
approach, which accounts for the spatial variation in breeding sites and relative prey

availability.
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Figure Legends

Figure 5.1. Arithmetic mean concentrations (+ SE) of total organochlorines (OCs) and
total polychlorinated biphenyls (PCBs) in pg/g wet weight detected in American dipper
eggs from river and creek nests within the Chilliwack River watershed, British Columbia.

Statistical tests were performed on log-transformed values (geometric means).

Figure 5.2. Stable isotope signatures (3'°N and 3'°C) in blood samples of American
dippers and two reference species: mergansers and swallows with 95 % CI on both axes.

Samples collected from the Chilliwack River watershed, British Columbia.

Figure 5.3. Stable isotope signatures (3'°N and 3"°C) of river resident and creek migrant
American dippers in the Chilliwack River watershed relative to the mean isotopic

signature (£ SE) of benthic invertebrate and salmon fry diet sources.
Figure 5.4. Relative contributions of salmon fry to the diets of river resident and creek
migrant dippers as determined by a two source linear mixing model (Phillips and Gregg

2001) using the "°N isotope.

Figure 5.5. Stable isotope signatures (8'°N and 8'°C) in breast feather samples of resident

and migrant American dippers in the Chilliwack River watershed, British Columbia.
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Figure 5.6a and 5.6b. Correlation between 5'°N values in American dipper blood and
contaminant concentrations (log Y DDT) and (log Y’ PCB) in egg samples. Blood and

eggs are from individuals from the same territory in the same year (2001).
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Figure 5.2
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Figure 5.3
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Figure 5.4
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Figure 5.5
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Figure 5.6a
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TABLE 5.2. Mean concentrations (£ SE) of mercury and selenium residues in resident
and migrant American dipper eggs collected in the Chilliwack River watershed.

Group % Total Mercury Selenium
Moisture  (ug/g dry weight)® (ug/g dry weight)

River Resident 75.7£1.9 0.19£0.01 2.96 £0.16
Creek Migrant 76.8+ 1.6 0.09 £ 0.02 2.67+0.19
Significance NS <0.0001 NS

# For samples below detection, a value of one-half the detection limit was used.
Hg detection limit = 0.18 pg/g
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TABLE 5.3. Summary of mean isotopic values (£ SE) for prey samples collected at eight
sites on the main stem of the Chilliwack River and seven different tributaries.

Prey Type n "N (%) 8"°C (%) |
Salmon fry 8 13.6 £ 0.5 -20.1+£0.6
River Invertebrates 8 54+£03 254+ 1.1

Creek Invertebrates 7 0.1+04 -27.7+0.9
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TABLE 5.4. Summary of mean blood isotopic values (£ SE) and relative diet
composition (% fish obtained from linear mixing model for 3"°N isotope) of male
and female American dippers in the Chilliwack watershed, British Columbia.

Males (n =20) Females (n=11) Significance (p)

8N (%o) 8.23+0.75 8.48 +1.01 0.8 (NS)
8'>C (%o) 2335+ 0.47 -22.48 £ 0.64 0.3 (NS)
% Fish in diet 30.0£4.9 % 37.4+6.5% 0.4 (NS)
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ABSTRACT

Trace metal deposition and mobilization from natural and anthropogenic sources
threatens mountain streams across western North America by negatively affecting water
quality. In the interest of developing a suitable biomonitor of metal pollution in
watersheds, we examined trends in exposure to nine trace elements in the diet, feathers
and feces of a partial migrant passerine, the American dipper (Cinclus mexicanus). We
hypothesized that key differences may exist in exposure to metals for resident dippers on
ariver and altitudinal migrants on tributaries based on differences in prey metal levels
between locations or possible differences in diet. Feathers of resident dippers on the
main river had significantly higher concentrations of mercury, cadmium and copper
relative to migrants on the tributaries. We used a mass balance approach to model metal
contributions from different diets and breeding locations within the watershed on daily
metal exposure to dippers while correcting for body mass. Considerable variability
existed in the daily exposure to residents and migrants primarily due to differences in
proportions of fish and invertebrates in the diet. In comparing actual metal exposure
values to tolerable daily intake values for protection of wildlife consuming aquatic biota,
we found most metals were below or within the range of tolerable daily intakes, except
selenium, aluminum and zinc. Other metals such as cadmium, copper, and arsenic were
only of concern for dippers feeding on primarily insect diets while mercury was of
concern for dippers consuming mainly fish diets. These models were useful tools to
demonstrate how shifts in diet and breeding location within a single watershed can result

in changes in exposure that may be of toxicological significance.
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INTRODUCTION

Trace metals are present in aquatic systems world-wide largely from underlying
substrates, natural erosion, volcanism and hydrological cycles. However, mining
processes, urban and agricultural runoff, industrial emissions, and deforestation can also
cause increased metal loads to watersheds (Nimmo et al. 1998, Scott et al. 2001, Arnason
and Fletcher 2003, Miller et al. 2003). While mountain streams appear remote from
industrialization and urbanization, many still contain significant concentrations of heavy
metals from natural and anthropogenic sources (Gélinas and Schmit 1998, Lawson and
Mason 2001). With concerns over environmental impacts of metals to freshwater
ecosystems, it is important to be able to monitor the degree of metal exposure to
organisms occupying mountain streams.

The American dipper (Cinclus mexicanus) is a potentially useful biomonitor of
stream pollution because it is a year round resident of freshwater streams and has an
exclusively aquatic diet comprised of benthic macroinvertebrates, small fish (salmon fry)
and fish eggs. Many invertebrate taxa have the ability to bioaccumulate metals to high
concentrations without inherent toxicity to the host species (Nehring 1976, Burrows and
Whitton 1983). Freshwater fish are also known to bioaccumulate organometallic
compounds particularly methylmercury (MeHg) due to the high assimilation efficiency
and the slow elimination rates of this compound (Wiener and Spry 1996). Therefore,
predators feeding on metal contaminated biota including the dipper are at risk for
elevated exposure from its diet. Strom et al. (2002) determined adult and nestling
American dippers were significantly exposed to lead through their invertebrate diet in a

mine-impacted river system. Therefore, dippers may be an effective model for
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monitoring metal pollution in mountain streams because they integrate contaminant
sources from their aquatic diet over time and space.

Previous studies have indicated that the dipper has distinct altitudinal patterns of
migration, which includes seasonal movement upstream and downstream within a
watershed (Morrissey et al. submitted-a). Resident and altitudinal migrant dippers shared
common wintering grounds on the river, but most migrants moved upstream onto creeks
in the spring while residents remained on the river to breed. Previous work in a coastal
watershed of British Columbia, Canada, indicated that river residents had elevated levels
of mercury and chlorinated hydrocarbons in eggs relative to creek migrants as a result of
atmospheric deposition and differences in the proportion of fish and invertebrates in the
diet. (Morrissey et al. submitted-b). Proportions of fish in the diet varied from 0 % to 71
% with river residents consuming significantly more fish (42 %) compared to creek
migrants (22 %). Therefore, we hypothesized that trace metal concentrations in the
feathers and feces of resident and migrant dippers may also reflect the bird’s migratory
status or its specific diet.

Measuring metal levels in excretory tissues such as feathers and feces is now a
common tool to examine environmental pollution that is non-injurious and non-invasive
to birds. Metal excretion is generally through feces or by deposition in the uropygial
gland, salt gland, and into feathers during molt (Goede and de Bruin 1984, Burger 1993,
Burger and Gochfeld 1985, Dauwe et al. 2000). For females, egg laying can also be a
route of excretion for several metals (Burger and Gochfeld 1993, Burger 1994, Dauwe et

al. 1999). While many studies are able to determine food chain contamination by
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sampling excretory tissues such as feathers, feces and eggs; few studies verify how levels
in these excretory tissues relates to exposure from the diet.

Our main objective in this study was to determine if any differences exist in metal
exposure for resident dippers occupying the main river and migrant dippers breeding on
watershed tributaries using feathers and feces as bioindicators. Furthermore, we aimed to
determine the major sources of metal contamination to resident and migrant dippers via
the fish and invertebrate diet in order to quantify the degree of exposure and relate this to
levels observed in feathers. Although some elements are biologically essential, all are
toxic at high enough concentrations; with some having a very narrow window of
essentiality and toxicity (Ash and Stone 2003). Therefore, in the interest of using the
dipper as a biomonitor, we modeled the potential toxicological risks of metal exposure to

dipper populations with different migratory strategies and with different diets.

METHODS

Collection of samples

Aquatic larval invertebrates (~ 1 g dry weight) were collected either by kick
sampling in the stream (disturbing the rocks directly upstream of a Surber sampler) or by
turning over rocks by hand. The sample represented a mixture of insect taxa that dippers
would naturally prey upon including approximately equal proportions of
Ephemeropteran, Plecopteran and Tricopteran larvae in addition to a much smaller
fraction by mass of Coleopteran and Dipteran larvae. Up to ten individual salmon fry
(Oncorhynchus spp.) (age-0) that each weighed 100-200 mg fresh weight, were captured
live from the river using a dip net and represented a composite sample of predominantly

coho and chum salmon fry (~80%) but pink and chinook salmon (~20%) were also

164



included. Composite samples of benthic invertebrates and salmon fry were collected at
eight different sites along the main stem of the river. An additional seven composite
samples of invertebrates were also collected from seven different tributaries in the
watershed. All samples were collected during a one-week period in late April 2000 and
2001 prior to the spring freshet. Samples were subsequently washed three times with
distilled deionized water to remove any surface contamination or stream water and stored
frozen in acid rinsed glass vials until preparation for trace metal analysis.

Several breast feathers were plucked from individual adult birds at the time of
capture and banding for metal analysis. The sex of each bird was obtained at the time of
capture using wing chord measurements (Kingery 1996). Through the use of color
banding, only birds of known migratory status (river resident or creek migrant) were used
for the metal analysis. Each individual sample of 7-10 feathers was stored in
polyethylene bags and refrigerated until analyses. We used 105 feather samples for Hg
analysis and 80 of these were also analyzed for additional multiple elements. Fecal
samples (n =14) were collected from nestlings (n = 5) opportunistically during banding of
chicks at 12-14 days of age or by following adults (n =9) and collecting fresh feces off of
rocks, with care taken to avoid contamination from the substrate. Fecal samples were
stored frozen in acid washed plastic containers until analysis.

Sample preparation and metal analysis

Methods for sample preparation and digestion were adapted and modified from
Canadian Wildlife Service method MET-CHEM-AA-02 (Neugebauer 2000) and U.S.
Environmental Protection Agency method 200.3 (McDaniel 1991). Feathers were

washed with pure acetone, 1% Triton-X solution alternated with several rinses of distilled
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deionized water to remove any external surface contamination. Samples were then air
dried for 48 hours and finally oven dried for 12 hours. Invertebrate, fish and fecal
samples were freeze-dried for 24- 48 hours until constant weight was achieved. Samples
were then accurately weighed into acid washed glass flasks to the nearest 1 mg. The
digestion procedure involved adding 5 mL of 70% ultrapure nitric acid (HNOs3), slow
heating to reduce volume, adding an additional 2 mL HNOs while heating and finally 1
mL of 30 % ultrapure hydrogen peroxide (H,O,). All samples were reduced by heat to <
1 mL and diluted to 10 mL with distilled deionized water, then stored in 15 mL
polypropylene vials refrigerated until metal analysis. A minimum of two certified
reference materials (Dolt-2 and Tort-2) (National Research Council Canada) and two
procedural blanks were digested simultaneously with every batch of samples and
analyzed for quality assurance. In addition, a standard calibration curve, analytical
blanks and spiked samples were run with each analysis.

Metal analysis was performed using an inductively coupled plasma mass
spectophotometer (ICP-MS) (Levelton Engineering, Richmond, B.C.) for feathers and
fecal samples or an inductively coupled plasma atomic emission spectrophotometer (ICP-
AES) (Cavendish Analytical Laboratories, Vancouver, B.C.) for invertebrates and fish.
Over 25 different elements were obtained from these analyses but we report only the data
for mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se), manganese (Mn), copper
(Cu), zinc (Zn), aluminum (Al), and arsenic (As) herein after referred to as metals. All
metal concentrations are expressed in pg/g dry weight (ppm). Recoveries of reference
materials were within 10 % of the certified values or were recovery corrected if outside

this range (invertebrates and fish from 2000 only).
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Data analysis

Both arithmetic and geometric mean concentrations of metals in the diet, feathers
and feces were calculated and reported + SE to facilitate comparison with other studies.
In addition, we report the proportion of samples detected for each metal as a measure of
prevalence. Metal concentrations generally exhibited a non-normal distribution (Shapiro-
Wilk W test) and were therefore log transformed to improve normality prior to
performing statistical comparisons. We used a two-way ANOVA followed by a Tukey
multiple comparison procedure to compare the metal concentrations among river
invertebrates, creek invertebrates and fish by year. A three-way ANOVA (generalized
linear model) was used to analyze feathers for effects of migratory group: resident (n =
40) and migrant (n = 40), collection year (1999, 2000, 2001) and sex (male or female) as
well as interaction terms. Given the limited number of fecal samples (n =14), the power
for statistical comparisons was weak and is therefore only reported as means of all
samples. Pearson product moment correlation coefficients were used to test for
correlations among metal concentrations in both feathers and feces. Statistical tests were
performed using JMP IN v. 4.0 (SAS Institute) and the significance level was set at o =
0.05.
Exposure models

A mass balance approach was used to calculate daily metal exposure to American
dippers depending on the breeding location within the watershed (river or creek) and the
relative contributions of fish and invertebrates to the diet. Models incorporated
geometric mean metal concentrations detected in invertebrates and fish collected from the

main river and tributaries of the Chilliwack watershed in addition to estimated daily
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intake of each prey item using published dipper energy requirements. Given the
importance of body mass in comparing daily exposure among species (Sample et al.
1996), we further corrected the daily ingestion value for average dipper body mass. We
assumed that the primary route of exposure would be through oral ingestion of the diet
items. However, some metals may be taken up through the water directly by drinking but
this was not accounted for. Therefore, our model is considered a conservative estimate of
exposure to metals. The exposure model for American dippers in the Chilliwack River
watershed was therefore calculated as follows:

(fo Cf)+ (Wix Ci)
BW

Emetal =

where E,...i = exposure to metal x (pg/g body weight per day), #; = weight of fish eaten
per day (g/day), C;= geometric mean concentration of metal in fish (png/g), W; = weight
of invertebrates eaten per day (g/day), C;= geometric mean concentration of metal in
invertebrates (pg/g), BW = body weight of dipper (mean =55 g). Weight of fish (W) and
invertebrates (W;) eaten on a daily basis were calculated using the following equations:

Wi = ((Pr x DEE)x AE)x EDy

W: = ((P:x DEE)x AE)x ED:
where P = proportion of fish or invertebrates in the diet, DEE = average daily energy
required by dippers (estimated ~ 48.04 kcal/day) (Bryant and Tatner 1988), AE =
assimilation efficiency correction factor for fish diet (85% or 1.15) or invertebrate diet
(70% or 1.3), ED = energy density of juvenile salmon (5.7 kcal/g dry weight) (Higgs et
al. 1995) or aquatic invertebrates (4.8 kcal/g dry weight) (Cummins and Wuychuk 1971).
These estimates for amount of food eaten per day closely matched the allometric equation

of daily food ingestion rate for passerines FI = 0.398 (BW"®) given by Nagy (1987).
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The allometric equation estimates daily food ingestion of a 55 g dipper to be 12.0 g/day
dry weight while our estimates using daily energy requirements averaged 11.8 g/day dry
weight.

Each metal exposure model was compared to a tolerable daily intake (TDI)
calculated using the Canadian Tissue Residue Guidelines for the Protection of Wildlife
Consumers of Aquatic Biota protocol (CCME 1998). The TDI is calculated from the
results of avian chronic toxicity tests in which the substance was administered orally and
sensitive endpoints were measured (Appendix 1). TDI is calculated using the geometric
mean of the NOAEL and the LOAEL and dividing by an uncertainty factor to account for
differences between species (usually 10):

TDI = (LOAEL x NOAEL)®® + UF
where:

TDI = tolerable daily intake

LOAEL = lowest-observed-adverse-effect-level

NOAEL = no-observed-adverse-effect-level

UF = uncertainty factor

The NOAEL and LOAEL for suitable avian toxicity tests were taken from the literature
and summarized by Sample et al. (1996). The TDI value is in units of pg/g body
weight/day for direct comparison with the values in the exposure model for American

dippers.
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RESULTS

Metals in diet items: invertebrates and fish

Invertebrate samples from the river and the tributaries generally did not differ
significantly in metal concentrations (Table 1). Copper was the only metal found to be
significantly higher in the river invertebrates relative to the creeks (tys=-2.45, p = 0.02),
although Cd, Pb, Mn and Zn also showed similar patterns to Cu. Significant differences
existed in metal concentrations between invertebrate and fish samples. In all cases except
for Hg and Pb, fish had lower concentrations of metals than both the river and creek
invertebrate samples (p < 0.0001) (Table 1). For Hg, fish concentrations were almost 4
times higher and were detected more frequently (47 %) than invertebrates (20 %). For
Pb, there was no difference in residue levels between fish and invertebrate samples but
lead was detected at a higher frequency (100%) in fish relative to invertebrates (70%).
There was no effect of collection year for the majority of metals in invertebrates and fish.
Only Se, Zn and As were significantly lower (p < 0.0001) for invertebrates collected in
2000 relative to 2001.
Metals in feathers and feces

Metals most commonly detected in dipper feather samples in decreasing order
were Zn> Cu> Hg> Se> Pb> Mn> Cd> Al> As. Migratory status (river resident or creek
migrant) was significant in predicting Hg, Cd and Cu feather concentrations with river
residents having higher levels of these metals than the creek migrants (Table 2).
Aluminum (n = 13) and As (n = 1) were not frequently detected in dipper feathers.
Feathers collected from adult dippers were further analyzed using a 3-way ANOV A with

interaction terms to determine the effects of migratory group, sex and year on metal
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concentrations. No interaction terms were significant and were therefore removed from
the analysis. There was an effect of sex on Mn (p = 0.002) and Zn (p = 0.03)
concentrations with Cu being marginally insignificant (p = 0.06). In all cases, females
tended to have higher feather metal concentrations relative to males. The year of
collection was important for predicting Hg levels (p<0.0001) and Mn levels (p = 0.03).
In general, levels were higher in 1999 for Hg and higher in 2001 for Mn. Migratory
status was only an important effect in predicting higher Hg and Cd feather concentrations
in resident feathers when corrected for the other variables.

Mean metal concentrations for adult and nestling fecal samples were not
significantly different and were therefore pooled and reported as a single value (Table 3).
There was no difference in metal concentrations by sex or migratory status; however, due
to small sample sizes, statistical power was extremely limited. Metals were detected in
100% of the fecal samples analyzed, with the exception of one low weight sample in
which mercury was not detected. For all metals except for Se, the fecal concentrations
(geometric means) exceeded those in the invertebrate and fish prey items.

Few metals (log)o) in dipper feathers showed significant positive correlations;
however, all were weak (r < 0.35) and bordered significance. Stronger correlations were
found between several metals in the feces, including Mn with Al (r = 0.80, p = 0.0007) as
well as for Hg and Se (r = 0.73. p = 0.005). Other correlations in fecal samples included
As and Al (r =0.70, p = 0.006), Hg and Zn (r = 0.66, p =0.01), Mn and As (r =0.66, p =
0.01), and Se with Cd (r = 0.56, p = 0.04). Only Hg and Zn were significantly correlated

in both the feathers and feces.
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Exposure assessment

In modeling the degree of daily metal exposure to dippers in the Chilliwack
watershed, two general trends emerged. First, for birds breeding on the river (residents),
the predicted exposure for Cd, Cu, Pb and Zn was generally higher than for those birds
breeding on tributaries (migrants) (Fig.1 a-d). For Se, Al, As, Mn and Hg, there was very
little or no differences between river and creek locations, or creek values were slightly
higher (Fig. 2 a-e). The second major trend in the exposure models was the effect of diet
on metal concentrations, which generally exceeded the effect of watershed breeding
location (migratory status). Specifically, increasing proportions of fish relative to
invertebrates in the diet resulted in a decrease in metal concentrations. Therefore, for all
metals except Hg, there was a negative relationship between proportion of fish in the diet
and calculated metal exposure (Figs. 1 and 2). Therefore, peak daily exposure of most
metals occurred for restricted invertebrate feeders. In the case of Hg, the relationship was
reversed; demonstrating an increase of fish in the dipper’s diet produced an increase in
Hg exposure (Fig. 2e).

Each exposure model for the metals of interest was compared to a tolerable daily
intake (TDI) level estimated to protect wildlife consumers of aquatic biota (CCME 1998)
(Appendix 1). Calculated daily metal exposures exceeded TDIs for selenium, Al and Zn.
Both Pb and Mn were well below TDI levels. Of further interest were those metals that
partly exceeded the TDI depending on the individual’s diet or location or both. These
metals included Cd, Cu, As and Hg. Cadmium, Cu and As exposure only exceeded the
TDIs for dippers feeding mainly on invertebrates. Mercury exposure was generally

greater for birds feeding on fish assuming Hg in the diet was primarily MeHg.
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DISCUSSION

Significance of feather and fecal metal levels with respect to diet

Through analysis of prey items, feathers and feces, we found American dippers in
the Chilliwack River watershed were exposed to a suite of trace metals including
selenium, copper, zinc, aluminum, mercury and cadmium. Although this watershed is
not impacted by mining or other discharge point sources, several elements may be
mobilized as a result of natural hydrological processes, soil erosion from deforestation or
long-range transport and atmospheric deposition. Therefore, the American dipper
appears to be an excellent model for monitoring metal pollution in mountain streams.

Several studies have determined that Hg, Pb and Cd among other metals are
significantly deposited in the feather during the period of feather growth, producing metal
profiles that remain inert and stable (Myack et al. 1981, Applequist 1984, Burger 1993,
Dauwe 2002). Concentrations of metals in the feathers reflect levels in blood at the time
of feather growth, either from current dietary sources or from mobilization of metals in
internal organs (Burger 1993). Feathers are therefore a useful means of non-lethal
sampling to evaluate metal burdens in aquatic and terrestrial birds. We anticipated that
breeding location as a result of migratory status would influence metal levels in feathers.
For Hg, Cd and Cu, migratory status was significant in predicting feather profiles with
river residents having higher concentrations than creek migrants. This could be attributed
to either differences in metal concentrations between the river and creek breeding
locations or differences in the diet between residents and migrants (proportion of fish and

invertebrates).
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From the exposure models, we anticipated that migrants would have higher
exposure to most metals (except Hg) primarily because of the larger proportion of
invertebrates in their diet. However, residents were found to have significantly higher
concentrations of Cu and Cd in their feathers. Copper was found to be significantly
higher in river invertebrates compared to creek samples, but Cd also followed similar
trends. Therefore, resident birds occupying the main river year round may be exposed to
higher concentrations of Cu and Cd from their invertebrate prey, thus influencing metal
profiles in feathers. For Hg, no differences were detected in invertebrate samples
between locations, implying it may be caused by diet differences. In contrast to other
metals, Hg is of greater importance to aquatic birds on primarily fish diets due to the
prevalence of the more toxic MeHg in fish tissue (Wiener and Spry 1996). Fish were
found to have almost 4x higher Hg concentrations and a higher frequency of detection
than invertebrates. In our previous work, Hg levels in the eggs of river residents were
also found to be higher than migrants (Morrissey et al. submitted-b). Furthermore, the
highest Hg levels detected in dipper feathers (2.74 pg/g and 2.09 pg/g) were from a
resident pair at the fish hatchery. Since resident dippers are known to consume greater
proportions of fish than migrants (Morrissey et al. submitted-b), diet was likely more
important in predicting higher Hg exposure and consequently higher feather Hg levels.

In modeling the effects of food chain differences on daily metal exposure, we
found that the influence of diet generally exceeded that of breeding location. Species that
eat prey from different levels in the food chain have contaminant levels that are strongly

influenced by diet (Hebert et al. 1997, Bustnes et al. 2000, Bearhop et al. 2000). Food

chain differences among marine birds were important in explaining variation in metal
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concentrations in eggs (Burger 2002) and tissues (Elliott et al. 1992). With the exception
of Hg, invertebrates from the Chilliwack watershed had higher concentrations of all
metals, placing insectivorous wildlife at greater risk to increased metal uptake. Mercury
exposure, in contrast, is greater for piscivorous wildlife. Therefore, resident American
dippers consuming more fish are generally at greater risk for exposure to Hg, while
migrants feeding on mainly insects were predicted to have greater exposure to other
metals.

Sex had little effect on feather levels although females were found to excrete
greater amounts of Mn and Zn in the feathers. Few studies have reported gender
differences in feather profiles; however, Burger and Gochfeld (1992) found Pb and Cd
levels were also higher in female Black skimmer (Rynchops niger) feathers despite the
fact that males are larger and may eat larger and more contaminated prey. We have no
evidence to suggest why female dippers had higher feather Mn and Zn since males and
females do not have different diets (Morrissey et al. submitted-b).

Feathers have been used since the 1960s for indicating metal exposure in birds;
however, recent studies show excretement can also be a sensitive indicator of metal
contamination in birds (Fitzner et al.1995, Spahn and Sherry 1999, Dauwe et al 2000).
Metals were detectable in almost all fecal samples collected at concentrations exceeding
those of the prey items. Spahn and Sherry (1999) also found that Little Blue heron
(Egretta caerulea) fecal samples contained higher concentrations of metals than their
prey and suggested this was because feces largely represent the unabsorbed remnants of
multiple food items. In this study, sample size limitations restricted inferences from the

data, but nevertheless they provide a baseline for future studies on this species and other
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river birds. Since metals found in feces are readily detected, often at higher
concentrations than the diet items, they can provide a non-destructive and quantifiable
means of monitoring food chain contamination from trace metals.

Correlations among metal levels for the feathers and feces showed only a small
number of significant relationships and only Hg was significantly correlated with Zn in
both feathers and feces, indicating no clear patterns with respect to metal excretion
mechanisms. However, key correlations among metals in fecal samples may be
important for understanding the kinetics and toxicity of metals in dippers. Aluminum and
Mn were positively correlated suggesting similar metal availability or metabolism. Both
elements are earth metals that are typically derived from natural mineral deposits. They
were excreted in high concentrations in feces, indicating they are either abundant in this
system or not readily bioavailable to the birds. Mercury was also significantly correlated
with Se in fecal samples. It is known that inorganic Hg is often bound to Se in liver and
other tissues, and that Hg and Se interact to counter the toxicity of each other (Cuvin-
Aralar and Furness 1991). Given the high levels of Se detected in invertebrate and dipper
samples and the correlation in feces, Se and Hg may be interacting to produce
ameliorative effects to dippers.

Tolerable daily intakes and toxicity concerns

Many bird populations may be subject to the effects of chronic exposure to low-
level toxicants resulting in reproductive dysfunction, increased susceptibility to disease or
other stresses, and changes in normal behavior (Scheuhammer 1987). Although many
bird populations are chronically exposed to low levels of metals through the diet, it is

difficult to determine critical threshold levels relevant to all species. In particular, there
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are relatively few controlled laboratory studies examining the effects of toxic metals on
passerines. In addition, since dippers belong to the unique family Cinclidae, the world’s
only truly aquatic passerines, direct comparisons of toxicity tests from other species may
be inappropriate. For this reason, we selected the approach of determining a tolerable
daily intake value, which included a marginal uncertainty factor. The TDI represents a
recommended safe daily intake level for this species (based on body weight and daily
dose) that should not cause any sublethal effects to populations. The only metals to
which dippers on any diet clearly exceeded the TDI guidelines were Se, Al, and Zn.
Those elements are either homeostatically controlled or are essential elements where the
range of essentiality and toxicity is not well understood. However, mortality and
reproductive effects from Se exposure, particularly to aquatic birds in areas receiving
agricultural drainage, have been documented (Olendorf et al. 1988, Olendorf et al. 1989).
Aluminum has also been reported to influence reproduction of insectivorous passerines
breeding in acid sensitive environments (Nyholm 1981, Miles et al. 1993). For Zn,
evidence of toxicity to wild birds is limited primarily because Zn is internally regulated
even when birds are exposed to high levels of contamination (Burger 1993, Janssens et al.
2002). Both Pb and Mn were well below TDI values and were not elevated in feather
samples. Lead and Mn, which are found in environmental samples primarily from
combustion of gasoline additives (Cooper 1984), were not significantly elevated in prey
from this watershed and were not at levels known to cause toxicity in birds (Laskey and
Edens 1984, Eisler 1988).

Excess Se exposure through the diet particularly in the form of selenomethionine

is known to cause reproductive failure and mortality in birds (Heinz 1996). Food chain
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organisms such as benthic invertebrates and fish can accumulate high concentrations of
Se without toxicity to the host; however, a dietary toxicity threshold for fish and wildlife
is recommended at 3 pg/g dry weight (Lemly 1996). Since all the invertebrate prey
samples and many fish samples collected from the Chilliwack watershed exceeded this
guideline, there may be cause for concern. Heinz et al. (1989) showed that mallard (4nas
platyrhynchos) reproduction was impaired when dietary concentrations of
selenomethionine were between 4 and 9 ppm. Although we do not have any information
about the concentrations of the more toxic organic form of Se (selenomethionine) in
dipper prey, daily Se exposure was 6x higher than the TDI levels for birds on exclusively
invertebrate diets. Feather concentrations were not different among migratory groups,
but Se levels were higher in invertebrate samples compared to fish indicating migrant
dippers on mainly invertebrate diets may be at a higher risk to toxic effects from Se.
Several orders of aquatic invertebrates including chironomids, caddisflies,
stoneflies and mayflies have been shown to exhibit high Al concentrations of 0.1- 0.3 %
body weight (dry weight) (Sadler and Lynam 1985, Ormerod et al. 1988). Insectivorous
birds feeding on contaminated invertebrates may be exposed to sufficiently high levels of
Al to cause reproductive effects seen in other species, particularly if calcium (Ca) and
phosphorus (P) are limiting (Nyholm and Myhrberg 1977, Nyholm 1981, Sparling 1990).
Invertebrates sampled in 2001 from the Chilliwack watershed had elevated Al levels in
the range of 0.05 — 0.43 % (mean = 0.12 % dry weight). Aluminum is of particular
concern in acid sensitive regions, especially in ecosystems with exposed granite or other
calcium poor substrates, which are most severely affected by acidification (Schindler et

al. 1989). The Chilliwack watershed, in addition to many similar river basins in the
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region, is largely composed of granitic bedrock, making this system vulnerable to
solubilization of metals that are more readily bioavailable to aquatic biota. Swain (1987)
listed the Chilliwack Lake, a source at the headwaters of the Chilliwack River, as one of
20 % of British Columbia lakes with high sensitivity to acid inputs using measures of pH,
calcium and alkalinity. Acidified environments generally expose wildlife to increased
dietary Al, Cd, Pb and Hg (Scheuhammer 1991). Although Al was not readily detected
in all dipper feather samples and was excreted in high concentrations in the feces, future
studies to determine whether acid deposition is contributing to observed Al levels are
warranted.

Other metals including Cd, Cu, and Hg were found to exceed tolerable daily
intakes depending on individual diet or location or both. Cadmium and Cu exposure in
particular was greater for birds on the river eating mainly invertebrates. There is concern
because those elements are known to accumulate in target organs (kidneys) in excess of
the levels in the food supply (Hunter and Johnson 1982, Scheuhammer 1987, Larison et
al. 2000). For example, with continued low-level dietary Cd exposure, there is a
persistent increase in renal Cd with very little excretion. Long-term exposure can
eventually result in high kidney Cd levels that could reach a critical concentration of 100-
200 pg/g causing renal tubular necrosis (Scheuhammer 1987). Other sublethal effects on
immature and adult birds may be apparent at lower concentrations. Therefore,
monitoring exposure to bioaccumulative elements such as Cd in insectivorous birds
remains important for many watersheds.

In general, Hg levels detected in this study were below reported toxic thresholds

for birds. However, predicted daily exposure was considerably greater for birds
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consuming high fish diets, thus exceeding the TDI. Consistent with the model, resident
dippers had higher feather Hg concentrations, but within the range of 1-5 ppm,
considered as background exposure (Scheuhammer 1987). It is unclear whether dippers
are unique in their sensitivity to Hg. Heinz (1979) found that dietary levels of 0.5 pg/g
dry weight MeHg were significant to cause female mallards to lay fewer eggs and
produce fewer ducklings in addition to behavioral changes in ducklings. Barr (1986)
found reductions in egg laying and nest site and territory fidelity in Common loons
(Gavia immer) on diets containing 0.2 to 0.3 pg/g wet weight. Mercury concentrations
detected in dipper prey were below those values, but dippers consuming primarily fish
diets exceeded TDI levels, which account for interspecies differences in body mass and
total daily exposure. Furthermore, TDI values used in this study were set to maintain
protection to the most sensitive species consuming diets of MeHg. Given that nearly 95
to 99 % of mercury in fish is MeHg (Bloom 1992) and this is the most important source
to dippers, we believe that TDI values for Hg used in this study should be considered
more appropriate than direct comparison of diet concentrations.
Summary

Modeling the effects of diet and location to estimate daily metal exposure is an
effective way to initially assess exposure risks to wildlife that have a varying diet or
migratory strategy. Exposure models can then be compared to tolerable daily intakes,
which is arguably a more useful method for determining exposure risks than simply
comparing metal concentrations in the diet items to known toxic concentrations. Several
studies have shown the effects of body size on physiological functions including

metabolic rate and responses to toxic chemicals (Sample et al. 1996). Therefore, we
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recommend using specific exposure models to directly assess which contaminants are of
concern by location and species given they more accurately account for daily exposure
from all diet items while controlling for the effects of body mass. Future work should
involve additional modeling to attempt to predict tissue residues from dietary exposure
and to estimate assimilation efficiency of trace metals from daily ingestion and fecal

deposition.
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FIGURE LEGENDS

Figure 6.1 a-d. Calculated daily exposure of a) cadmium b) copper c¢) lead and d) zinc
(ng/g body weight per day) to American dippers breeding on the main river or on the
tributaries in the Chilliwack watershed with diets of increasing proportions of fish
relative to invertebrates (i.e. 25 % fish = 75 % invertebrates). Data from invertebrates
and fish are pooled for 2000 and 2001. Tolerable daily intake (TDI) levels (ug/g body
weight per day) are shown for assessment of exposure risks except Pb, which was well

below TDI.

Figure 6.2 a-e. Calculated daily exposure of a) selenium b) aluminum c) arsenic d)
manganese and e¢) mercury (ug/g body weight per day) to American dippers breeding on
the main river or on the tributaries in the Chilliwack watershed with diets of increasing
proportions of fish relative to invertebrates (i.e. 25 % fish = 75 % invertebrates). Data
from invertebrates and fish are pooled for 2000 and 2001. Tolerable daily intake (TDI)
levels (pug/g body weight per day) are shown for assessment of exposure risks except Mn,

which was well below TDI.
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Figure 6.1c
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Figure 6.2a
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Figure 6.2¢
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Figure 6.2¢
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TABLE 6.1 Summary of trace metal concentrations and frequency of detection for

aquatic invertebrates and salmon fry (fish) from the Chilliwack River watershed, British
Columbia. Given are arithmetic means (ug/g dry weight) + SE with geometric means in
parentheses below. Data for 2000 and 2001 are combined.

Metal River Creek Fish *Significance Invertebrate Fish
Invertebrates  Invertebrates P) % Detected % Detected

Hg 0.005+0.005  0.018+0.004  0.04+0.01 0.002 20 47
(0.005)* (0.011)° 0.02)°

Cd 4.58 +0.40 3.66 + 0.40 137+0.19 <0.0001 100 100
(4.31)° (3.35)° (1.27)°

Pb 0.67+0.12 0.55+0.15 0.42+0.10 NS 70 100
(0.58)° 0.41)° (0.33)°

Se 5.83+0.74 6.08 £ 0.79 2.68+0.27 0.006 100 100
(5.55)* (5.14)° (2.58)°

Cu 33.29+1.96 2643+2.10  9.05+1.23 <0.0001 100 100
(32.48)° (25.17)° (8.39)°

Mn 120.47+29.65 107.90+174  8.56+2.13 <0.0001 100 100
(99.77) (96.08) (7.07)°

Zn 228.60+17.10 20331+1891 87.76+7.84 <0.0001 100 100

(217.63)° (190.47)* (84.89)°

Al 1296.44 + 1585.99 + 165.53 + <0.0001 100 100

215.98 303.72 49.38
(1040.32)* (1275.76)* (119.91)°

As 3.73+0.50 3.77 + 0.65 0.63+0.10 <0.0001 100 100

(3.09)° (3.01)° (0.56)°

*Geometric means with the same letter are not significantly different using one-way ANOVA and Tukey
multiple comparison procedure (a = 0.05).
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TABLE 6.2. Summary of trace metal concentrations and frequency of detection in
feathers of adult resident and migrant American dippers from the Chilliwack River
watershed, British Columbia, 1999-2001. Given are arithmetic means (ug/g dry weight)
+ SE with geometric means in parentheses below.

Metal N River River Creek Creek Significance
Resident Resident Migrant Migrant (p)
Mean @ SE % Detected Mean @ SE % Detected

Hg 105 0.79 £ 0.06 96.4 0.58 £ 0.06 98.0 0.04
(0.65) (0.50)

Cd 39 0.25+0.04 45.0 0.13 £0.04 52.5 0.01
(0.19) (0.12)

Pb 72 1.06 £ 0.21 92.5 0.89 +£0.21 87.5 ns®
(0.59) 0.57)

Se 73 6.01+£0.32 97.5 5.82+£0.36 85.0 ns
(5.51) (5.75)

Cu 79 14.32 £ 2.08 100.0 9.65+2.14 97.5 0.05
(10.65) (7.29)

Mn 73 1.4 £0.21 87.5 0.78 £0.21 92.5 ns
0.71) (0.63)

Zn 80 129.73 +3.45 100.0 131.87 +3.54 100.0 ns

(127.59) (130.57)

Al 13 48.32 +£34.1 12.5 59.03 + 26.96 20.0 ns
(20.08) (23.94)

As 1 12.28 2.5 ND® ND ns

“ns = Not significant (p > 0.05). °ND = non detectable in sample.
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TABLE 6.3. Summary of arithmetic (geometric) mean concentrations (ug/g dry weight)

+ SE and frequency of detection in adult and nestling fecal samples collected from the
Chilliwack River watershed, British Columbia in 2001.

Metal Feces Mean £+ SE % Detected (n=14)
Hg 0.036 £ 0.005 93
(0.031)
Cd 597+1.04 100
(4.89)
Pb 3.65+1.03 100
(2.50)
Se 4.83+0.43 100
(4.55)
Cu 53.28+4.54 100
(50.58)
Mn 311.53+47.28 100
(259.42)
Zn 396.10 + 42.09 100
(370.68)
Al 2780.5 + 388.30 100
(2312.07)
As 5.05+1.03 100
4.11)
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APPENDICES

Appendix 1. Summary of toxicity data used to calculate Tolerable Daily Intake (TDI) for
American dippers. Selected toxicity tests on suitable avian species to obtain a NOAEL

and LOAEL are adapted from Sample et al. 1996. Means of two or more suitable toxicity
tests are used where applicable. For calculating TDI for Hg, a toxicity test for MeHg was

used. See Sample et al. (1996) for full description of methods and references.

Appendix 2. Concentrations (mg/kg) of trace metals analyzed by ICP-AES in benthic
invertebrates from the Chilliwack River watershed, British Columbia. Samples were

collected from eight sites on the main river and seven different tributaries in 2001.

Appendix 3. Concentrations (mg/kg) of trace metals analyzed by ICP-MS in American
Dipper fecal samples collected from adults and nestlings in the Chilliwack River

watershed, 2001.

Appendix 4. Concentrations (mg/kg) of trace metals analyzed by ICP-MS in feather
samples collected from resident and migrant adult American Dippers in the Chilliwack
River watershed, 1999-2001. Feathers collected from adults and juveniles in 1999 were

analyzed for Hg only and are shown in the last table.
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CHAPTER 7:

SYNTHESIS AND CONCLUSIONS
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Migratory patterns and its implications

It was clear that the majority of our dipper population was highly mobile,
producing large fluctuations in densities during the annual cycle. In addition, two distinct
groups existed within the population that had different migratory strategies. Resident
dippers occupied territories year-round along the main river channel with little or no
movement between seasons. Migrants, however, made up the majority of the population
and these individuals typically concentrated on the low elevation river during winter then
made short altitudinal movements upstream onto the tributaries in the breeding season.
This is the first study to confirm the presence and follow the movements of resident and
altitudinal migrant American dippers within a single population. Since these two groups
occupy adjacent habitats that potentially differ in available resources (food and nest sites)
and in sources of contaminants, it is essential to understand how populations use these
habitats during an annual cycle.

Many ecologists recognize that individuals and populations of animals occupying
neighboring habitats or patches are frequently related. For example, seminal work by
Krebs (1971) on great tits in southern England, demonstrated that tits occupying the
mixed deciduous woodland had higher reproductive success in this habitat but excluded
other birds into “sub-optimal” adjacent hedgerows. Hedgerows, however, provided a
buffer against fluctuations in woodland density by replacing individuals in the optimal
habitat whenever opportunities arose. Just as the woodlands seemed to be better breeding
habitat for great tits, resident dippers on the river similarly appeared to benefit from
earlier breeding, greater numbers of second broods and higher productivity than migrants

on crecks. However, differences in elevation, habitat and nesting substrates between the
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river and creeks had no direct influence on overall breeding performance. Instead, the
effect was primarily due to timing of breeding, which in creek birds was delayed by the
migration period. Surplus birds wintering on the low elevation river are forced to move
in spring onto the tributaries to gain access to limited breeding sites. Therefore, as in the
case of great tits in hedges and woodlands, knowledge of how and why populations
distribute themselves amongst patches or locations is critical to the interpretation of
habitat quality.

The observed difference in migratory strategies among resident and migrant
dippers in the study watershed not only had implications for habitat use and reproductive
performance, but was also found to influence diet and contaminant exposure. Stable
isotope analysis revealed salmon fry prey made up a significantly larger portion of the
river residents’ diet compared to creek migrants, likely as a result of differences in prey
availability between the river and creeks. Other studies have similarly shown that even
small-scale differences in breeding locations can result in differences in diet and
consequently contaminant burdens (Hebert et al. 1997, Bustnes et al. 2000, Bearhop et al.
2000). Therefore, future ecotoxicology studies should evaluate the potential effects of

small-scale periodic movements on contaminant exposure.

Whe stays, who goes?

Throughout the study, I have frequently asked the question: who stays and who
goes? In other words, which birds remain resident and which birds become migrants?
There is considerable evidence that breeding densities in birds are limited partly by nest
site availability or by spacing behavior (Lack 1954, Klomp 1972, Newton 1976).

Evidence of surplus breeding adults has been shown through removal experiments and
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addition of nest-boxes (van Balen et al. 1982, Village 1983, Brawn and Balda 1988,
Pedersen 1988). The presence of large numbers of dippers on low elevation rivers in
winter and their absence in spring suggests the non-breeding population exceeds the
breeding carrying capacity of the river, thus initiating the spring migration (Campbell et
al. 1997). Many studies assume that the surplus breeders are young birds that are
inexperienced in establishing territories. However, only through intensive mark-
recapture studies is the structure of the population identified.

Hundreds of observations of banded dippers in my study area in addition to
formal population models did not identify a specific subset of the population as the
source of divergence in migratory strategies. First year birds recruited into the breeding
population equally as residents or migrants, regardless of sex. Since juveniles born on
the river or a creek established breeding territories in their first year regardless of natal
origins, genetics or natal site also did not predict where individuals would recruit into the
population as adults. Therefore, the process that determines migratory strategy in dippers
is still unknown. However, the technique of marking individuals proved essential in
excluding the hypotheses of age, sex, and natal site biases existing among resident and

migrant breeders.

Residents versus migrants: who’s doing better?

Preliminary investigation of data on the reproductive success of resident and
migrant dippers suggested that residents were at an advantage to migrants in terms of
productivity. Furthermore, river residents had a greater availability of fish prey to
supplement their diet. However, I found no evidence that residents had greater ecological

fitness since residents and migrants reproduced equally well when the influence of timing
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of breeding was removed. Insufficient data on adult or juvenile survival of residents and
migrants prevented the determination of whether any long-term fitness effects exist from
differential migration strategies.

The toxicological results presented conflicting profiles of residents and migrants
depending on whether organic or metal exposure was assessed. For organochlorines,
PCBs, and mercury, resident dippers had greater exposure to these contaminants largely
through their higher fish diet. While metal exposure was more significant for migrant
birds consuming mainly insect diets. In spite of these differences, reproductive
performance was similar between residents and migrants and the contaminant levels
observed in this study were generally below toxicity thresholds. Therefore, we have no
evidence that contaminants were contributing to overt effects on resident and migrant

dippers in this watershed.

Implications for using the American dipper as a biomonitor

Avian ecologists now recognize that contaminants are an important factor in
population declines (Newton 1998, Fox 2000). The effects of contaminants may be
indirect, delayed or widespread in nature, which can confound the difficulty in
interpreting their impact considering other environmental factors that influence
populations. Therefore, there is a general need to improve the design of field studies to
incorporate toxicological, demographic and ecological data to accurately assess risks to
populations. Furthermore, non-destructive sampling of blood, feathers or eggs can be
used as effective biomarkers, which can permit us to gain additional information on
individuals through marking and telemetry methods. Finally, long-term studies are

equally essential in understanding the impacts of pollutants on individuals and
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ecosystems since they incorporate natural fluctuations that can mask contaminant effects
in the short term. This research can therefore be used as a model for incorporating
toxicological and demographic data over multiple years, to attempt to improve the quality
of interpretation of toxicological effects on a species.

Altitudinal migration to the breeding site caused a considerable redistribution of
the population during the annual cycle. This has implications for using dippers as
biomonitors of habitat quality or stream condition. Given the large fluctuations in
numbers and predictable patterns of movement, censuses must be carefully timed to
assess population size and relative changes in density among sites and years. In addition,
migratory status can further influence timing of breeding and observed productivity.

Local conditions were not found to be homogeneous within the watershed with
residents and migrants experiencing different contaminant levels as a result of breeding
location and diet effects. However, dipper eggs reflected recent dietary uptake and local
contaminant sources proving they were useful tools for biomonitoring trace organic
contaminants. Nestlings should similarly be representative of the territory but may not
accumulate significant concentrations during the nestling period to warrant their use in
some toxicology studies. Non-destructive sampling of feathers is also a valuable tool to
detect trends in metal profiles; however, we could not accurately determine whether
molting location differed from the breeding site. Therefore, caution in interpreting
feather concentrations of altitudinal migrants and residents are necessary.

Collections of prey items including benthic invertebrates and salmon fry can be
useful in determining exposure risk to aquatic consumers, particularly for trace metals. [

recommend using models that incorporate the effects of body mass and average daily
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intake to improve our assessments of risk to wildlife consumers. Prey samples often
represent local conditions, and have the advantage of being easier to collect than bird
samples. However, lower trophic level invertebrates often do not accumulate organic
contaminants to sufficient levels to permit analytical detection, nor do they represent an
average exposure to higher organisms that are longer-lived and more mobile. Therefore,
use of prey samples may be beneficial for initial assessments, but should be followed by

intensive monitoring programs using wildlife consumers.

Relevance to conservation

Conservation efforts often can protect only small areas due to limited resources,
despite the fact that animals can move routinely between habitats. While many areas of
watersheds may appear unsuitable for dippers, this research highlights the fact that dipper
habitat requirements can change during the annual cycle. For example, good wintering
areas on low elevation, low flow streams may not be suitable to sustain significant
breeding populations due to lack of suitable nest sites, while breeding sites on high
elevation tributaries may not be suitable for wintering due to ice cover or extreme
temperature fluctuations. Addition of platforms under bridges or nest boxes in critical
wintering areas may augment nest site availability to increase the number of breeders on
low elevation rivers. However, watersheds are inherently continuous, such that
alterations in water quality in headwater streams ultimately affect downstream sites.
Contaminants originating from long-range atmospheric sources were found to
bioaccumulate and biomagnify in lotic food chains primarily affecting the downstream,

larger drainage area sites. Therefore, evidence from this study suggests it is essential to
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consider dipper habitat protection on a watershed scale to effectively conserve stable

populations.

Future research

Future research to determine what variables, including nest site availability or
intraspecific competition, are important in influencing individual migration strategies in
dippers would improve our current understanding of the natural history of this species.
These hypotheses could be tested with the addition of nest boxes in high-density
wintering areas to determine whether the breeding population increases in response to the
augmented nest site availability and reduced competition. Other research that addresses
key questions about survival and reproductive costs for permanent residents or altitudinal
migrants may also shed light on our current understanding of altitudinal migration.

Using the methods described in chapter 2, I recommend additional censuses of
American dippers to determine population size and long-term trends in population
density for impacted and non-impacted watersheds throughout the province. Since we
have few estimates from current survey methods in this province and across the species
range, this will allow for more accurate assessments of the population’s stability over its
entire geographic range. Further investigations into the relationships between dipper
populations and other riverine species would also allow us to identify key differences in

habitat use that may be important for monitoring habitat or stream condition.
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