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Abstract

This thesis is concerned with two classes of polynomials whose height (meaning
the largest absolute value of a coefficient) is 1: Littlewood polynomials, whose
coeflicients are +1 or —1, and zero-one polynomials, whose coefficients are 0 or 1.
We are interested in the behaviour of these polynomials on the unit circle in the
complex plane. Roughly speaking, there is a tendency for a polynomial to be ‘flat’ on
the unit circle if its autocorrelations are ‘near zero’, where the ‘autocorrelations’ can
be regarded as dot products that measure the ‘periodicity’ of the coefficient sequence
of the polynomial.

In Chapter 1, we provide some illustrative conjectures as well as establishing some
probabilistic language that is useful for studying the flatness or autocorrelations of
‘typical’ Littlewood polynomials or zero-one polynomials.

In Chapter 2, we use properties of cosine sums to prove results about roots on
the unit circle of Littlewood polynomials possessing certain kinds of symmetries. In
particular, we prove that a type of Littlewood polynomial called a skewsymmetric
Littlewood polynomial cannot have any roots on the unit circle.

In Chapter 3, we show how one can compute all moments (meaning average values
of powers) of autocorrelations of Littlewood polynomials, and we give an improved
upper bound on the function that measures the minimum maximum autocorrelation
(in absolute value) of a Littlewood polynomial.

In Chapter 4, we give explicit formulae for the average fourth power of the four-
norm of a zero-one polynomial, and show that this yields a surprising new proof of a

known result about Sidon sets.
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Chapter 1
Introduction

All the people we used to know

They're an illusion to me now

Some are mathematicians

Some are carpenters’ wives

Don’t know how it all got started

I don’t know what they do with their lives
—‘Tangled Up In Blue’, Bob Dylan (by permission)

1.1 The ‘spaces’ £, and A,

We begin by defining the main objects of study of this thesis, or in other words, by

specifying the underlying ‘spaces’ we consider.
Definition 1.1 We let L,, denote the set of all 2™ polynomials of the form
a(z)=ag+a1z+ -+ an_12"""  where a; € {—1,+1} for all j,
and we let A, denote the set of all 2™ polynomials of the form
a(z) =ag+aiz+- -+ a,_12"""  where a; € {0,1} for all 5.

We call the elements of L, Littlewood polynomials, and we call the elements of A,

zero-one polynomials.
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We will sometimes refer to the elements of £, as the Littlewood polynomials of
length n, which is consistent with the common convention of defining the ‘length’ of
a polynomial to be the sum of the absolute values of its coefficients. Both £, and A4,
are examples of sets of height one polynomials, where (as is common elsewhere) the
‘height’ of a polynomial means the largest absolute value of the coeflicients. We now
single out two more examples of collections of height one polynomials as being worthy

of special labels.

Definition 1.2 We let A, ,, denote the set

{a(z) =ap+ -+ an_12"71 € Ay s a(1) = m}

={ap+ -+ an_12""' € A, : a; =1 for precisely m values of j}
and we let B, denote Api1\ Anp.

Thus A, has (;) elements, and the 2" elements of B, are simply the zero-one
polynomials of degree exactly n.

There is a rich literature on the theme of making a polynomial ‘flat’ on a compact
set, subject to some restriction on its coefficients (such as the restrictions defining £,
A,, or A, .,). For instance, one could ask for the minimum supnorm of a polynomial
on an interval [a, b] C R subject to the restriction that its coefficients be integers; this
is the ‘integer Chebyshev problem’ (see Chapter 10 of [3]), which we do not discuss
further in this thesis. Rather than considering an interval in R, we are interested
in the behaviour of height one polynomials on another ‘canonical’ one-dimensional

compact set.

Definition 1.3 We let S denote the set
{ze€ C:|z] = 1};
that is, S denotes the unit circle in the complex plane.

Intuitively, S, unlike an interval in R, is ‘homogeneous’ in the sense that all of its points
are the ‘same’. Much study has been made of features of the modulus of Littlewood

polynomials on S, such as the usual L, norms (see Chapters 4 and 15 of [3] for a
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good starting point). This is discussed in more detail in Section 1.3, but to give a
taste of things to come, we now state two illustrative open conjectures. The first is
credited to Littlewood and appears in problem collections compiled by Erd6s [12] and
Littlewood [30]. The second is credited to Erdés and appears in [8] and [13].

Conjecture 1.4 (Two-sided conjecture, strong version) For all n, there exists
a € L, satisfying
Kivn <l|a(z)| < Kyv/n forallz €8,

where K, and K5 are positive constants (i.e., they are independent of n).
Conjecture 1.5 For alln > 1 and all o € L, we have

la(2)] > (1 + K)v/n  for some z € S,
where K 1is a positive constant.

Informally, Conjecture 1.5 says that the constant in the upper bound in the two-sided
conjecture is bounded away from 1.

Given a positive integer 7 and a polynomial
a(z) =ag+ a1z 4+ an,_12" € R[z],
we define the coefficient sequence of a to be the n-tuple

(a07a17 s 7a’n—1)-

Thus there is a natural bijection between £,, and the collection of n-tuples with entries
in {—1, +1}, and also between A, and the collection of n-tuples with entries in {0, 1}.

If we define [n] := {0,1,...,n — 1} (we use this notation throughout the rest of
this thesis), then there is also a natural bijection ¢ from A, to the collection of all
subsets of [n], defined by

a0+ @z + -+ a1 = {j € [n) 1 q; = 1),

We refer to () as the subset of [n] that corresponds to a.
If a is a Littlewood polynomial or zero-one polynomial, then there is a relationship
between the ‘flatness’ of a on S and certain combinatorial properties of the coefficient

sequence of a. This is explained more precisely in the rest of Chapter 1.



CHAPTER 1. INTRODUCTION 4

1.2 Autocorrelation

If o is any polynomial in R[z], say

alz) =ay+a1z+ -+ ap_12""!  where a; € R,
then for z € S, we have
2 _ - + . n—1 + 1 +ot L
la(2)|” = a(z)a(z) = (ag+a124+ -+ ap_12 ao + a1 U1
1
=Cn_l—_l+"'+C1—+Co+C12+"'+Cn_1zn_l (11)
zn z

where the ¢, are the so-called (acyclic or aperiodic) autocorrelations of a.

Definition 1.6 If a(z) = ap + a1z + - - + a,_12""! € R[z], the autocorrelations
of a are defined for 0 <k <n-—1 by

n—k—1

Cp ‘= E G;Q54 = E QA5 4k-

3=0 j€[n—k|
If A denotes the coefficient sequence of «, then we can regard the autocorrelation ¢
as the dot product of a vector consisting of the first n — k entries of A and a vector

consisting of the last n — k entries of A.

ap . Aj—1 ax .. Gn—1

ap | * - Qn—k-1 | AQn~k | " Qn—1

Ck = Qo0+ + Op—k—10n—1

In particular, co is just a2+ ---+a2_;, so g = n for all @ € £, and ¢ = m for
all « € A, . We find it convenient to group together ci, ..., c,—; as the ‘nontrivial’

or ‘off-peak’ autocorrelations.

Definition 1.7 Given n > 1 and a polynomial
a=ag+az+--+a,_12" P €R[Z],
we define the autocorrelation vector of a to be the (n — 1)-tuple

C:=(c1,¢2,-..,Cnc1)-
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Suppose for the moment that o € £,,. Then ¢, is a sum of n — k terms that are

each +1, implying the following.
Proposition 1.8 Ifa € L,, then
ck =n—k (mod 2).

For a € L,, each j € [n — k] satisfying a; = a;+«x makes a contribution of +1 to ¢,
whereas each j € [n — k| satisfying a; # a4« makes a contribution of —1 to ¢.
Hence, if ¢y is ‘near zero’ for some a € L,, it means that the coefficient sequence A is
‘uncorrelated’ with a version of itself that has been acyclically shifted by & positions,
in the sense that a; and a;,, agree about as often as they disagree.

In signal processing [15] and statistical physics [33], one sometimes seeks n-tuples
of +1’s and —1’s whose autocorrelations are as ‘near zero’ as possible. In view of
Proposition 1.8, the following condition represents the ‘closest to zero’ that we could

ask the autocorrelations of a Littlewood polynomial to be.

Definition 1.9 We call a polynomial
a=ay+az+- - -+a,12" e L,

a Barker polynomial (and call its coefficient sequence a Barker sequence) if
lek] <1 for all k # 0 (i.e. if all entries of C lie in {~1,0,+1}).

There exist Barker sequences of lengths 2, 3, 4, 5, 7, 11, 13, of no odd lengths greater
than 13, and of no lengths between 14 and 4-10'%. See [48] and [44]. Proving there are
no Barker polynomials of length greater than 13 is considered to be a difficult open
problem, but one can still ask: How close to zero can we make the autocorrelations

of a Littlewood polynomial?

Definition 1.10 (Turyn, 1968) Ifn > 1 is a positive integer, we define

)= g e e

which we can think of as the ‘minimum mazimum autocorrelation’ among polynomials

n L.
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The asymptotic growth rate of b(n) is unknown, but exact values of b(n) can be found
for modest values of n by exhaustive search. Computations in [9] and [10] reveal that
we have b(n) < 2 for all n < 21, b(n) < 3 for all n < 48, and b(n) < 4 for all n < 69.

The best currently known upper bound on b(n) appears to be the following result.

Proposition 1.11 (Moon & Moser, 1968) For every € > 0, there exists N € Z*
such that

b(n) < (2+¢)y/nlogn | (1.2)
forn> N.
In Section 3.2, we improve (1.2) to b(n) < (V2 + ¢)y/nlogn by refining Moon and
Moser’s technique.
We now shift our attention from Littlewood polynomials to zero-one polynomials.
In general, if

alz) =ag+az+ - +a,_12" ! € Ay,

we will define
m := a(1) = the number of coefficients of a(z) that are 1,
so that a(z) € A, m, and we also write
oalz) =P 424 4 P

where 8) < B2 < -+ < Bp. That is, {81,...,8x} is the subset of [n] corresponding
to a(z).

For o € A,, we can still regard ¢, as a dot product, but it is no longer true that
each ‘agreement’ contributes +1 and each ‘disagreement’ contributes —1. Instead, we
have

¢cx = the number of j such that a; and a; are both 1

= the number of times k appears as a difference 3; — 5;.

Since there are (7;) pairs {0;, B;}, we get

ca+- -+ = <rg> for all a € A, -
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So, whether considering Littlewood polynomials or zero-one polynomials, we could
ask for the autocorrelations to be ‘close to zero’. For L,, we have the restriction
that Proposition 1.8 must hold, and for A,, we have the restriction that the ¢ are
nonnegative integers whose sum is (’;) In either case, discussing the ‘closeness to
zero’ of the autocorrelations motivates the introduction of the usual £, norms of the

autocorrelation vector.
Definition 1.12 Let (¢, ¢co,...,¢n 1) € R*1. Forp € R, p > 1, we define

1
Cl, = (leaf + leaff + - + lenca )7,

p

which we call the £, norm of C. We also define

ICI?O = Tax o,
which we call the supnorm or £, norm of C.
We recall the following without proof.
Proposition 1.13 (Monotonicity of £, norms) For C € R™!, we have
lim [Cl, = C]...
Furthermore, if p < q, we have |C|, > |C],.

In order to say a bit more about the tendency for autocorrelations ‘near zero’ to yield

a ‘flat’ polynomial, we introduce the usual L, norms of a polynomial on S.

Definition 1.14 Let o : S — C be continuous. For p € R, p > 1, we define
1 [ P o\ 1P
all ={— afe d¢9) ,
foll = (55 [ late”)
which we call the L, norm of . We also define
ol = max|a(2)!.

which we call the supnorm or L., norm of a.
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We recall the following without proof. Note that the monotonicity inequality for the

L, norms ‘points the other way’ as the one for the £, norms.

Proposition 1.15 (Monotonicity of L, norms) If o : S — C is continuous, we

have
Jlim ffefl, = flafl,-
Furthermore, if p < g, we have ||a|, < [lal|,.

We now use (1.1), together with the general fact that

1 27

1 1 |
— (b_,.—+~-+b_1—+b0+b1z+--~+brz’)d0= bo (z=¢")
2r J, 2" z

to observe that any polynomial o = ag + « - - + a,_12""! € R[z] satisfies

1 27 1 1 .
||CY||§= g/ (Cn—l———+~-~+01-z-+00+clz+---+cn_1z"’1)d6 (z =¢")
0

zn—l

and also satisfies
1 [ 1 1 2 _
“aHi= %/0 (Cn-lz_n:T‘f"""f"Cl;+CO+612+"'+Cn_12n—1) dg (z:e’e)
= 4+ttt E+ o+ = +2|CE.

Hence |||, has the same value for all & € £,, and similarly for A,,,. Notice also
that for either of the sets £, or An m, minimizing |||, and minimizing |C|, are the

same problem.

1.3 Flat Littlewood polynomials

We have observed that every o € L, satisfies

lefl, =+/n  and
lelly = (n® +21C15)Y%.
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Notice that ||afl, > ||c]],, as is consistent with Proposition 1.15. We could ask for
||, to be ‘only slightly larger’ than |||, which would mean we would want |C|2 to

be as small as possible.

Definition 1.16 For o € L,,, we define
1
Cli=ct+-+ oy = 5(lallf = llall)
to be the energy of o.

The use of the term ‘energy’ comes from statistical physics [33]. Proposition 1.8
implies that the smallest conceivable energy of a Littlewood polynomial is |C |§ =

[(n — 1)/2], which occurs if and only if « is a Barker polynomial.

Definition 1.17 For any integer n > 1, we define

Emin(n) = éreliﬂn 'Cl§7
T

which is hence the minimum energy of a polynomial in L,,.

As with Turyn’s b function (Definition 1.10), the asymptotic growth rate of Eyin(n)
is unknown. It has been shown through ‘branch and bound’ search (see [33] and [34])

that we have
1
? < Emin(n) < ﬁn2 whenever 30 < n < 60,

—n
18 =
and the following conjecture is credited to Golay [19].
Conjecture 1.18 (‘Merit factor’ conjecture) For alln > 1, we have
Emin(n) Z Kn27

where K 15 a positive constant.

Conjecture 1.18 says that for all n > 1 and all o € £,, we have [C’[; > Kn2. It would
follow that
ol > llall; = (n* +21CI)Y* > (1 + 2K)Y*V/n;

that is, Conjecture 1.18 implies Conjecture 1.5.
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Conjecture 1.18 also implies that there are only finitely many Barker sequences,
since an infinite family of Barker polynomials would have energy growing like n/2.
In the same article that introduced his b function [47], Turyn made the following

conjecture in passing.

Conjecture 1.19 (Turyn, 1968) We have
b(n) ~ Klogn

for some positiéze constant K.

Conjecture 1.19 may seem plausible when one observes that the modest list of known
exact values of b(n) appears to be ‘growing slowly’. However, any result of the form
b(n) = o(y/n) would violate Conjecture 1.18. If b(n) = o(y/n), then for every n > 1,

there exists o € £, satisfying

The following weaker version of Conjecture 1.19 is also unproved, but some known

results (including some of the results of this thesis) are tantalizingly close to it.

Conjecture 1.20 We have

b(n) < K

for some positive constant K (perhaps K < 1).
Littlewood’s ‘two-sided’” conjecture (Conjecture 1.4) has a ‘weak’ version.

Conjecture 1.21 (Two-sided conjecture, weak version) For infinitely manyn,

there exists a € L, satisfying
Kivn <|a(2)| < Koy/n forall z €S, (1.3)

where K1 and K, are positive constants.
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Although (as previously mentioned) it is strongly suspected that no infinite family of
Barker polynomials exists, it has been observed [43] that such a family of polynomials
would satisfy Conjecture 1.21.

An infinite family of Littlewood polynomials satisfying just the upper bound
in (1.3) is given by the Rudin-Shapiro polynomials (see, e.g., Chapter 4 of [3]), which
exist for all lengths n that are a power of 2. The Rudin-Shapiro polynomials satisfy
la(z)] < v/2-+/n on'S. Furthermore, Spencer [46] used probabilistic methods to
show that for sufficiently large fixed K, the number of polynomials o € £,, satisfying
la(z)| < K+/n (for z € S) is eventually bounded below by an exponential function of n
(so there are ‘many’ Littlewood polynomials whose modulus on S is at most K+/n).

Nobody has shown the existence of an infinite family of Littlewood polynomials
satisfying just the lower bound in (1.3). That is, the following conjecture, which

appears in [8] where it is credited to Erdds, remains open.

Conjecture 1.22 (High minimum modulus conjecture) For all n € Z*, there

exists a € L, satisfying
la(z)| > Ky/n forallz €S, (1.4)
where K is a positive constant. (Perhaps K = 1/2 suffices.)

Analogously to the two-sided conjecture, Conjecture 1.22 has a weak version as well
as a strong version.

Computations in [41] reveal that for all n in {11,12,...,25} U {27,29,...,65},
there exists a € L, satisfying |a(z)| > 0.56\/n for all z € S. It would be interesting
to extend this to an infinite family of Littlewood polynomials, but the known infinite
family that comes closest to satisfying (1.4) is a family of polynomials that exist for
lengths of the form n = 13" and have modulus bounded below by n%43% on S. This
family is constructed from the Barker sequence of length 13 (sée [7], or Problem C1
in Chapter 4 of [3]).

It has been observed that Littlewood polynomials with particularly high minimum
modulus on S often tend to be ‘skewsymmetric’ (this term is defined in Section 2.1).
In Section 2.3, we establish a kind of ‘converse’ of this tendency by proving that

skewsymmetric Littlewood polynomials have no zeros on S.
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1.4 Sidon sets

Let n be a positive integer and let o € A,,. As mentioned in Section 1.2, we have

a € A, ,, where m := a(1), and we can write
a(z)=zﬁl+zﬁz+-~~+zﬁ’" (51<52<"‘<5m)

where {01, B2, ..., Om} is the subset of [n} that corresponds to a.

Just as we did with & € L,, we can enquire whether there exists a € A,
satisfying |C|,, < 1; that is, satisfying |ck| < 1 whenever 1 < k < n — 1. Recalling
from Section 1.2 that c; is the number of times k appears as a difference 83; — 5;, we
see that the condition that a € A, satisfies |C|_ < 1 is equivalent to the condition
that {81,..., Bm} satisfies the following.

Definition 1.23 Let A ={51,02,...,Bm} C[n] with By < Bo < -+ < Bp. We call A
a Sidon set if the (’;’) positive differences

B;— B (1<)
are all distinct.

The condition that {8i,...,8m} is a Sidon set is equivalent to the implication
(Bi—Bi=0c—PB) = (i=jandk="{)or (i=kand j=1¢)
which may also be written in the form
(,Bi+,8[=,8k+,8j) = ((z’=j and k =/) or (izkandjzf)).
This gives the following.
Proposition 1.24 The set {51, 0. ..., B} is Sidon if and only if the (m;fl) sums
Bi+8; (1<)

are all distinct.
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Sidon sets are also called B;[1] sets, or more briefly, B, sets. (Some authors use the
term ‘By[g] set’ to refer to a set A of nonnegative integers with the property that
each n € Z can be expressed in at most g ways as a sum of & (not necessarily distihct)
elements of A.) For a good introduction to the topic of Sidon sets or B, sets, see
Problem C9 in [21] or Section II.3 of [23].

One can ask for necessary or sufficient conditions on m and n for the existence
of a Sidon set of size m in [n]. Lindstrom [29] showed the following by elementary

methods, which improved an earlier result of Erdés and Turén [14].
Proposition 1.25 The condition

m < nt? 4 nlt 41
is necessary for the existence of a Sidon set of size m in [n].

There is also the following result, which appears in Problem C9 of [21], and follows
from a result of Singer [45] (on so-called ‘planar difference sets’ obtained from finite

projective planes) and from classical results on the distribution of primes.

Proposition 1.26 Let € be a positive real number less than 1. Then there exists N €
Z such that for alln > N, the condition

m < (1 —¢)nt/?
is sufficient to guarantee the ezistence of a Sidon set of size m in [n].

So roughly speaking, a value of m just below /n is small enough to guarantee that
there is a Sidon set of size m in [n], whereas a value of m much bigger than /n is
large enough to make it impossible to have a Sidon set of size m in [n]. One might
then suspect that a smaller value of m would make Sidon sets more ‘numerous’. In
Section 4.2, as a consequence of finding the average L, norm of polynomials in A, ,
we give a new proof of the following known result [18, 37]: If m = o(n'/*) and B(n, m)
denotes the number of Sidon sets of size m in [n], then ‘almost all’ subsets of [n] of
size m are Sidon, in the sense that

lim B(n,m)

=y

= 1.
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1.5 Some probabilistic language

If Q denotes one of the four spaces L., An, Anm, or B, defined in Section 1.1,
then we can turn 2 into a probability space by endowing it with a probability mass
function. Then 2 is a finite set, which means that technically, we can heed the
following remarks of Bollobds [2]: ‘It should be noted that we never use more than
the convenient language of probability theory, since all the probabilistic arguments
we need can be replaced by counting the number of objects in various sets.’
However, although it may be true that all our probabilistic-sounding statements
can be proved by counting arguments, it is perhaps fair to say that many of the
counting arguments we use would not have been discovered had they not been phrased
in probabilistic language. In any case, we devote the rest of Chapter 1 to some known
results and techniques from discrete probability that have been assembled here for

ease of exposition.

Definition 1.27 A finite probability space s a pair (2, p) where Q) is a finite set,
called the sample space, and p is a function from Q to [0, 1] that satisfies

> pla)=1.

aeR
The elements of §) are called sample points or atoms, and p is called a probability

mass function.
Generally, we will write our sample space as
Q={ay,0...,an}.

By an event, we mean any subset of . Thus there are precisely 2" different events.
The complement of an event A, which we denote by A, is the set 2\ A. An event of
the form {¢;} is called an atomic event; any event can therefore be written uniquely

as a (possibly empty) finite union of atomic events.

Definition 1.28 The probability of an event A C Q) is defined by

Pr[4] := Zp(a);

acA
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that is, the probability of A is just the sum of the masses associated with the sample

points in A.

We thus have Pr[2] = 1 and Pr[f}] = 0. We call our probability space nondegenerate
if the only event having zero probability is the empty event, or equivalently, if all
atomic events have nonzero probability.

One technical notion we need to define is that of mutual independence of a
collection of events. This is a stronger condition than pairwise independence (see, for
instance, Example 2.23 in [16]) and is harder to define than it would seem at first
glance. Our treatment of independence may appear nonstandard, but our definitions

will be equivalent to the standard ones (such as those appearing in [16] and [35]).

Definition 1.29 If A and B are events, we define the conditional probability
Pr[A|B], called the ‘probability of A given B’, by

Pr{AB] - { Pr[An B)/Pr[B] if Pr|B] #0,
Pr[A] if Pr[B] = 0.
We say A is independent of B if Pr[A|B] = Pr[A].
The following is an easy exercise.
Proposition 1.30 Let A, B,C be any events.
1. Event A is independent of event B if and only if Pr[A N B] = Pr[A]Pr[B].

2. Suppose A is independent of B, A is independent of C, and B and C are disjoint.
Then A is independent of B U C.

In view of fact 1 above, we can simply refer to two events as being independent. In
order to extend the notion of independence to collections of more than two events, we

introduce some auxiliary definitions.

Definition 1.31 Let (A}, ..., Ax) be a list of events. The subworlds determined by
(A1, ..., Ax) are the 2 events of the form

EiNE;N---NE
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where for each i € {1,...,k}, the event E; s either A; or A;. (Note that some of the
subworlds may be empty.) A Boolean combination of (A4i, ..., Ax) is any event of
the form

E.NEyNn---NE;

where for each 1 € {1,...,k}, the event E; is either A, A;, or Q.

Intuitively, the difference between subworlds and Boolean combinations is as follows.
Specifying a subworld means that for each ¢ € {1,...,k}, we specify whether or
not event A; happens. Specifying a Boolean combination means that for some of
the ¢ € {1,..., k}, we specify whether or not event A; happens.

The next proposition follows easily from Definition 1.31.
Proposition 1.32 Let Ay,..., Ax be any events.

1. The 2% subworlds determined by (Ai, ..., Ax) are disjoint.

2. Any Boolean combination of (Ai, ..., Ax) can be written as a union of some of
the subworlds determined by (A, ..., Ax).

We are now in a position to define mutual independence of a collection of more than

two events.

Definition 1.33 Let (A,,..., Ax) be a list of events. We say that A;,..., A, are
independent if every event A; is independent of each of the subworlds determined
by (Ala EERE Ai—17 A‘H-b SRR Ak)

The following is an easy consequence of Definition 1.33, Proposition 1.32, and part 2

of Proposition 1.30.

Proposition 1.34 Let Ay, ..., A; be any events. Then A,,..., Ax are independent
if and only if for each i € {1,...,k}, the event A; is independent of any Boolean
combination of (A1, ..., Ai_1, Ait1, -, Ak)-

Informally, when we say that a collection of events is mutually independent, we mean
that any partial information about whether or not some of the events occur does not
affect the probability that one of the remaining events occurs.

The next result has an easy proof by induction.
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Proposition 1.35 If Ay, ..., Ax are independent events, then
PrjA; N A, N---N Ag] = Pr[A;]Pr[Ay] - - - Pr[Ay].

The above is sometimes taken as the definition of mutual independence of events. By

contrast, our definition of ‘random variable’ agrees with the standard one.

Definition 1.36 If (2, p) is a finite probability space, then a (real) random variable
on (,p) is any function X from Q2 to R. The range of X is the set

Range(X) :={X(a): a € Q} ={X(1),..., X (an)}
where {a, ..., an} is an enumeration of Q.

Any random variable on a finite probability space is a finite random variable, which
simply means that its range is a finite set. We can always express the range of such

a random variable as
Range(X) = {z;,22,..., 2, }

where z; < 2 < ... <z, and 7 < N. The function f : Range(X) — [0, 1] defined by
f(iEl) = PI'[X = Ii]
is called the probability distribution function of X.

Definition 1.37 The expected value of a finite random variable X is

N

E(X):= in fl@) =) X(o) - plew)

i=1

where f and z,,...,x, are as defined above.

Note that any function of a finite random variable is itself a finite random variable,
so notations such as E(g(X)) make sense.
The next proposition is easy, and does not require mutual independence of the

random variables involved (a concept which will be defined shortly).
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Proposition 1.38 (Linearity of expectation) Suppose (Xi,...,Xx) is a lst of
(finite) random variables defined on a finite probability space. We then have

The following result also has an easy short proof, which we include. It turns out to

be convenient to have two slightly different versions of Markov’s inequality.

Proposition 1.39 (Markov’s inequality) Let X be a random variable defined on
a finite probability space. Suppose X is nonnegative (which just means each value in
the range of X is nonnegative). Then for each nonnegative real number a, we have
Pr[X > o] < E(X)/a and Pr[X > o] < E(X)/a.

Proof. As before, let Range(X) = {z),...,2,} where z; < ... < z,, and let f be the
probability distribution of X. We have

E(X) =Y i fla) 2 Y o f(z:)

T;>a

>Za-f(x,-)=aZf(xi)=a-Pr[X>a]

z;>a r;>a
and also

E(X) = Zl"i'f(xi) > @i f(=)

z;>a

>N a-fm)=ad flz:)=a-Pr[X >ad].N

ri>a zi>a

In order to define the notion of mutual independence of random variables, we now
introduce some auxiliary definitions similar to the ones we needed to define mutual

independence of events.

Definition 1.40 Suppose X, ..., X are (finite) random variables defined on a finite
probability space. For each i € {1,...,k}, define r; := |Range(X;)|. The basic

subworlds determined by (X1,...,Xx) are the riry---ry events of the form

Xi=z,and Xo=1z9 and ... and Xy = i
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where for each i € {1,...,k}, z; is one of the r; values in Range(X;). The complex

subworlds determined by (X1, ..., Xx) are the events of the form
X,€A, and X5 € Ay and ... and X € A

where for each i € {1,...,k}, the set A; is either all of Range(X;) or a subset
of Range(X;) of size 1.

Clearly, the basic subworlds determined by (Xj, ..., X}) are disjoint sets whose union
is 2, and each complex subworld is a union of some of the basic subworlds. Intuitively,
the basic subworlds are events that specify the value of each of the variables Xj;,
whereas the complex subworlds are events that specify the values of some of the
variables X;.

We can now define mutual independence of a collection of random variables.

Definition 1.41 Let (X,...,Xx) be a list of (finite) random variables defined on a
finite probability space. We say X1,..., Xy areindependent if for eachi € {1,...,k}
and for each x € Range(X;), the event X; = z is independent of each of the basic
subworlds determined by (X1, ..., Xi—1, Xit1, .-, Xk)-

The next result can be proved in a similar way to Proposition 1.34 by using part 2 of

Proposition 1.30.

Proposition 1.42 Let (Xy,...,Xk) be a list 6f (finite) random variables defined on
a finite probability space. Then X, ..., X are independent if and only if for each i €
{1,...,k} and for each xz € Range(X;), the event X; = z is independent of each of
the complex subworlds determined by (X, ..., Xi—1, Xiz1, -, X&)

It follows that we can prove mutual independence of a collection of random variables
by the ‘almost intuitive’ method of showing, roughly speaking, that the probability
distribution of one of the variables is not affected by specifying the values of some of
the remaining variables.

Mutually independent random variables satisfy the following condition, whose

proof we omit.
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Proposition 1.43 Suppose X1, ..., Xy are independent random vartables (on a finite

probability space). Then
E(X1Xs- - Xi) = B(X1)E(X2) - - E(X,).

The last technical term we define in this section is the moment-generating

function of a random variable.

Definition 1.44 Suppose X is a (finite) random variable on a finite probability space.
The moment-generating function, or MGF, of X s defined by

Mx(t) := E(e¥)
where t is a formal variable.

Note that if z),...,z, and f are as defined previously, then Mx(t) is just the finite
weighted sum
fz) - et + fzg) - €™ + - + flz,) - €™

of exponential functions of ¢. The following result is straightforward.

Proposition 1.45 Suppose X is a (finite) random variable on a finite probability

space. Then for each nonnegative integer m, we have

dm
— Mx(t =E(X™).
dtm X( ) 10 ( )
Equivalently, we have
t o 12
Mx(t) =1+ BX) 5 +E(X )5+

We close this section with the following result that follows easily from Proposition 1.43.

Proposition 1.46 Suppose Xi,..., X} are independent random variables (defined on
a finite probability space), and let Y be the random vartable Xy + - - - + X. Then

My (t) = Mx, () Mx,(t) - - - M, (¢).



Chapter 2
Special Littlewood Polynomials

I concentrate on

the concentric rings

produced by my pen

in the ink.

The thing that distinguishes

thoughts from things

is that thoughts are harder

to think.

—Piet Hein, ‘Thoughts And Things’, Grooks 3, 1970

2.1 Self-reciprocals and skewsymmetrics

If we are interested in the behaviour of Littlewood polynomials on the unit circle, it
turns out to be useful to single out two classes of Littlewood polynomials as deserving

of special names.

Definition 2.1 Suppose a(z) = ag + a1z + -+ + an_12" ! € L,. We call a self-
reciprocal if a(z) = 2" 'a(1l/z) (informally, if the coefficient sequence of « is
palindromic). If n is odd, say n = 2m + 1, then we call & skewsymmetric if

am+j = (=1)ap—; for 1 < j < m (equivalently, for 0 < j < m).

21
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Littlewood [30] describes skewsymmetric polynomials as having ‘a central term and
two stretches of n/2 terms on either side, the end one having the coefficients of the
front one written backwards, but affected with signs alternately — and +’ (however,
note that his n is our n — 1).

It was shown some time ago that a skewsymmetric Littlewood polynomial has
the ‘flatness’ property that ‘half’ of its autocorrelations are zero (so it satisfies ‘half’
the conditions of being a Barker polynomial). More precisely, we have the following

straightforward result.

2m is a polynomial that

Proposition 2.2 Suppose that a(z) = ag + a12 + -+ + agm2z
satisfies amy; = (—1)am—j for 0 < j < m. Then the autocorrelations ¢ of o (defined

as in Definition 1.6) have the property that ¢, = 0 whenever k is odd.

Since proofs of this fact are difficult to find in the literature, we supply two proofs
below. The first is more elementary, but uses notation that is somewhat unwieldy.
First proof of Proposition 2.2. The autocorrelation ¢ is

2m—k

Cr = E AiQj+k
7=0

which is a sum of 2m — k + 1 terms. We have ¢, = R+ S + T, where

m—k

R:= Z a;Qj+k, (2.1)
=0

m—1

S = Z Q5Q54+k, (22)
j=m—k+1
2m—k

T:= Z A;0jtk- (23)
j=m ;

Observe that R, S, and T are sums of m—k+1 terms, k—1 terms, and m—k+1 terms
respectively. (Note that k¥ — 1 could be 0.)
In the sum S, we have j +k > m + 1, so j + k is of the form m + j' for some

j' > 1, and we can use the relation ap4+; = (—1)jlam_j/. That is, in S, we have

(_1)j+k—m

Qjtrk = Omt(j+k-m) = Um—(jk—m) = (— 1) Magm_;_4. (2.4)
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Similarly, in the sum T, both j and j + k are of the form m + 5’ for some j' > 0, so

. .! . .
we can again use am4; = (—1)7 am—;,. This means that in T, we have

aj = Ay (j—m) = (—1)j_mam_(j_m) = (—1)j_ma2m_j, (2.5)

j+k—ma2m—j—k- (2.6)

j+k—m

Aj+k = Om4(j+k—m) = (_1) Am—(j+k-m) = (_1)

If we now combine (2.3), (2.5), and (2.6), we get

2m—k 2m~k
Tr= Z (=1 M agmj (= 1) M agm_; k= (1) Z Q2m—jA2m—j—k
j=m j=m

which, when & is odd, is equal to

2m—k

- Z Aom—j02m—j—k- (27)
j=m

The sum (2.7), upon defining j' := 2m — k — 7, becomes

m—k

T=- E Qjr @y

=0

which, with (2.1), implies that R+ T = 0.
It now remains to show that S = 0 if k£ is an odd integer greater than 1. Let
k = 2¢ + 1 where £ > 1, and observe that substituting (2.4) into (2.2) gives us

m—1 m-—1
_ j+20—m+1 - j—m+1
S = E (—1) a;02m—j—20-1 = _S_ (=1) a;0om—j-2¢-1
j=m-2¢ j=m-—2¢

which is a sum of 2¢ terms. We have S = S; + S, where

m—~_£~1

S = Z (=1 "™ @09, 501, (2.8)
j=m—2¢
m-—1 .

52 = Z (—1)]_m+1ajagm_j_zg_1, (29)

j=m—{
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so each of S; and S; is a sum of £ terms. The sum (2.9), upon defining j' := 2m —
2¢ — 1 — 7, becomes

m—_{—1

—20—j"
Sy = E (=)™ agm—j 20105

F=m-2f

m—~_£—1

_ m—j'
= Z (=1)™ 7 agm_jr_2—105
j'=m-2¢

m—£-—1

= Z (=1)™ 7 agm—j-20-10;. (2.10)

j=m-—-2¢

Adding (2.8) and (2.10) gives 0 as required, because
(—1)77 4 (—1) = 0

since 7 —m + 1 and m — j are integers of opposite parity. il

A shorter proof can be obtained by noticing that the skewsymmetry condition
implies something about the function a(z)/z™.

Second proof of Proposition 2.2. Let n := 2m+ 1. Recall that from (1.1), we know
that for z € S, we have

2 1 1 n—1
e (2)] =Cn—1;n—_—1+"'+01;+Co+012+"'+cn—12 :

We wish to show this is an even function of z, implying that the coefficients of the
odd powers of z are zero. That is, we wish to show |a(2)]® = |a(—2)|.
We define

Am—
f(Z)I= = — 4 ... 4 ";1+am+am+12+"'+a2m2m7

implying that

1 1 Qm a
f(—)-:zma(—)=aozm+---+am_1z+am+ 'H_f_..._f_ﬂ
z z zm
and also
a(—2z) ag Q1 .
f(—=2)= o - o ot =t an + ami1(—2) + - - + agm(—2)™.
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We then observe that the fact that « is skewsymmetric implies that f(1/z) = f(-z),

or equivalently, that

m 1 _ a(—z)
z a(;) = o (2.11)
which (substituting —z for z) implies that we also have
m 1y _ a(2)
(—2) a( z> = (2.12)

We then conclude that

(LHS of (2.11)) x (RHS of (2.12)) = (RHS of (2.11)) x (LHS of (2.12))

or equivalently, that a(z)a(1/z) = a(—z)a(—1/z), which for z € S is equivalent to
the desired conclusion that |a(z)|* = |a(-2)>. B

So skewsymmetric Littlewood polynomials are ‘halfway’ to being Barker. As a sort
of ‘converse’, all known odd length Barker polynomials are skewsymmetric. In fact,
one can show (although we omit the proof) that any odd length Barker polynomial
must be skewsymmetric; this is essentially contained in [48] where they prove the
stronger result that there are no odd length Barker polynomials of length greater
than 13.

Skewsymmetric Littlewood polynomials enjoy another ‘flatness’ property: as we
mentioned at the end of Section 1.3, they tend to have particularly high minimum
modulus on S. Exhaustive searches of £, by Robinson [41] reveal that for each
n € {11,13,...,25}, the polynomial with highest minimum modulus on S among
all 2™ polynomials in £,, turns out to be skewsymmetric. It is not known if this
pattern continues for larger values of n, but searches over just the skewsymmetric
polynomials in £, have yielded further examples of polynomials with high minimum
modulus. In Section 2.3, we prove the author’s result [31] that all skewsymmetric
Littlewood polynomials satisfy the further ‘flatness’ condition of never attaining a
modulus of zero on S.

Self-reciprocal Littlewood polynomials, by contrast, are ‘far’ from having high
minimum modulus on §, in the sense that they always have at least one zero on the
unit circle. This is already known [11], but we prove it in a new way by deriving it as

a corollary of Theorem 2.6 of the next section.
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To prove our results about the behaviour of special Littlewood polynomials on §,

we find it useful to assemble some facts about cosine sums and Chebyshev polynomials.

2.2 Relevant facts about cosine sums

Let 6 be a real variable and let ¢ := cosf. For nonnegative integers n, each of the

expressions
T, := cos(nf),
i 1)6
Un = s ((n+ ) )
sind

is a polynomial in ¢ of degree n, called the Chebyshev polynomials of the first and

second kind respectively. It is easy to check that

TO = 17 UO = 17
Tl = ¢, Ul = 2C,

and one can use well-known trigonometric identities to show that for n > 1, we have

Tn+l = 2C:rn - Tn—l:
Uniy = 2¢U, — Un_y.

This makes it a routine matter to list the first few Chebyshev polynomials of both

kinds, which we do below for illustrative purposes.

To=1, Uy =1,
T, =c, U, = 2c,

Ty =2¢% -1, Uy =4c® -1,

T = 4¢® — 3c, Us = 8¢® — 4,

Ty = 8" — 82 +1, Uy = 16¢* — 12¢% + 1.

Some facts about Chebyshev polynomials are easy to prove by induction. For instance:
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e Both T, and U, are odd when n is odd, and even when n is even. (An ‘odd
polynomial’ is one containing only odd powers of the variable; ‘even polynomial’

is defined analogously.)

e For n > 1, the leading term of T, is 2"~ 1c*. For n > 0, the leading term of U,

is 2™c™.

Since T,, has degree n, any polynomial in ¢ of degree n can be written uniquely as a
linear combination of Ty, T1,...,T,. In particular, it is natural to ask how to write
U, as a linear combination of Ty, T1,...,T,. This is answered by the following result,
which has a straightforward inductive proof and which can be found, for example, as
part of Problem 16 in Part VI of [40].

Proposition 2.3 Let T,, and U, be as previously defined. We then have

Upn =To+ > _ 2T, (2.13)
k=1
Usms1 = ZQTQk—H (2.14)
k=0

for allm > 0.

We now define the new variable = := 2¢. Then trivially, T,, and U, can be regarded as
polynomials in z rather than polynomials in c. It is easy to show by induction that

U, and 27T, have integer coefficients when regarded as polynomials in z, since we have

2T =41, - 2T, 1 =z - 2T, — 2T, 4,
Un+1 = 2djn - Un—l = xUn - Un—l-

Therefore Ty, 211,275, . . . and Uy, Uy, Us, . . . belong to Z[z], where as usual, Z[z] means

the ring of polynomials in z with integer coefficients. For illustration, we now give
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the first few polynomials in each of those lists.

To =1, Uy =1,
2T =z, U=z,

2Ty = 22 — 2, Uy=2°—1,

2T5 = 2° — 3z, Us =23 — 2z,

oT, = z* — 422 + 2, U=z -3z + 1.

It is easy to see that when U, is regarded as a polynomial in Z[z], its leading term
is . The same is true of 2T, if n > 1. From now on, we will write U, and 27T}, as U,
and 2T, respectively, if regarding them as polynomials in z, in order to avoid possible
ambiguity.

To prove that skewsymmetric Littlewood polynomials have no roots on S, the
crucial ingredient turns out to be the following observation. Roughly speaking, two
polynomials in Z[z] that have the same pattern of odd and even coefficients as U,
and m cannot have any common roots.

We define Z, := Z/(2Z) (the integers mod 2). Let ¢ be the natural homomorphism
from Z to Z,, and let ¢ be the homomorphism from Z[z] to Z[z] defined by

D(ag + a1z + - - - + a,2") = p(ag) + pla1)z + - - - + p(ap)z”
(that is, @ simply reduces all coefficients mod 2). We then have the following.

Lemma 2.4 Let n be a nonnegative integer, and let A(x), B(x) be two polynomials

in Z[z] satisfying
o 0(A@x)) = 8(Tnrr),
o ®(B(z)) =2(Uh),
o one of A(z), B(z) is odd and the other is even.

Then no complex number is a root of both A(z) and B(zx).
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Proof. If n = 0, the hypotheses of the lemma say B(z) is an odd nonzero constant and
hence has no roots whatsoever. Assume the result is true for n, and let A(z), B(z) €
Z[x] satisfy

L] (D(A(:L')) = (D(U-,-H.Q’,
o ®(B(z)) = (Un+1),
e one of A(z), B(z) is odd and the other is even.

We wish to show A(z) and B(z) have no common roots. The hypotheses imply that
the leading term of A(z) is az™? where a is odd, and that the leading term of B(z)
is bz™*! where b is odd. Define r := lcm(a,bd), s := r/a, and t := r/b, so 1,s,t are
odd integers. Then C(z) := sA(z) — tzB(z) is a linear combination of A(z) and B(z)
where the z"*2 term has been ‘killed’. Notice that C(z) is odd if A(z) is odd, and
is even if A(z) is even. Thus deg C(z) < n. Furthermore, any common root of A(z)
and B(z) is also a root of C(x). We now observe that

(C(z))

B (sA(z) - tzB(z))

(5)2(A(z)) + ®(—tz)®(B(q))
(1)2(Uns2) + &(=2)@(Unsa)
(
(-

fI
'9*'6"6"6‘

Un+2 - ﬂUUn+1)

U,) = @(Uy).

This means that B(z) and C(z) satisfy the induction hypothesis, so B(z) and C(z)

have no common roots. This implies A(z) and B(z) have no common roots, as

required. il
In order to state and prove some more results about trigonometric sums, we now

make the following definition, following [17].

Definition 2.5 A zero-mean cosine polynomial is any function of the form

F(8) = ay cos (nf) + an—y cos ((n—1)6) + - -+ + ay cos (6),
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and ¢ monic zero-mean cosine polynomial is any function of the form
f(6) = cos (nf) + an—1cos ((n—1)8) + - -+ + as cos (6).
Here, a, through a, are real numbers.

Note that any monic zero-mean cosine polynomial f can of course be rewritten as
f :Tn+an—1Tn—1 +"'+G/1T1. (215)

If ¢ := cosf as before, then (2.15) is a polynomial in ¢ of degree n whose leading
coefficient is the same as that of T,,. If we then recall the well-known fact (see, e.g.,
Exercise E2 in Chapter 7 of [3], or Section 8.3 of [6]) that Chebyshev polynomials
of the first kind have minimum supnorm on [—1, 1] among polynomials of prescribed
degree and prescribed leading coefficient, we can conclude

fred = > = —_
_grns%yfl fax |f| = max [f| 2 max [Tn] = max |cos(nf)| =1,

so we have either f > +1 somewhere or f < —1 somewhere. By continuity and the
fact that the average value of (2.15) is 0, we conclude that either f() = +1 for some
6 € [0,7] or f(6) = —1 for some § € [0,7]. The following result shows that we can
make the stronger statement that both of these possibilities must occur. This does
not seem to follow immediately from basic properties of Chebyshev polynomials, but
it does have a short proof using complex analysis which is essentially due to the referee
of the first submitted version of [31].

Theorem 2.6 If f is a monic zero-mean cosine polynomial, then f(8) = +1 for some
6 € [0,7], and f(8) = —1 for some 8 € [0, 7].

Before proving the theorem, we digress to recall some facts from complex analysis
that we will need. These facts may be found, for example, in Sections 4.4 and 5.1
of [28].

If p: C — C is any continuous function, we can think of p as a ‘transformation’
from one copy of the complex plane (the z-plane) to another copy of the complex

plane (the w-plane). The image under p of the unit circle S in the 2-plane is a closed
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curve, which we call T, in the w-plane. That is, T is the closed curve formed by p(e®)
as 8 increases from 0 to 27.

If € is a point in the w-plane, and £ ¢ T, then we define the winding number
of T around £ (also called the ‘index’ of I with respect to &), which is an integer
denoted Indr(§). Geometrically, Indr(€) can be regarded as the number of times the
curve I' goes counterclockwise around § as 8 increases from 0 to 27. It also has the

integral formulation

1 1

We are interested only in the case £ = 0.

Suppose now that p is analytic on all of C. (In fact, we care only about the case
when p is a polynomial.) Then p has no poles. Suppose further that p has no zeros
on S. Then the curve I', being the image of S under p, does not go through the
point 0 in the w-plane, so Indr(0) is defined. It is a theorem, which we will call the
argument principle, that under these conditions, the sum of the orders of all zeros

of p inside S is equal to
1 [7p(z)
21 Js p(z)
Using the substitution w = p(z), we see that the integrals in (2.16) and (2.17) are

dz. (2.17)

equal. Thus, the argument principle may be rephrased as: Under the conditions
described above, the sum of the orders of all zeros of p inside S is equal to the number
of times the image curve I' goes around the origin.

Proof of Theorem 2.6. Note that f(0) £ 1 = Re(p(e*)), where

p(z2)=2"+an 12"+ Faz 1

Since the product of all roots of p is £1, we conclude p has at least one root inside
or on the unit circle. Let I' denote the closed curve formed by- p(e') for § € [0, 27].
If p has a root on the unit circle, then certainly I' passes through the origin and thus
intersects the line Rez = 0. If p has no roots on the unit circle, then p has at least
one root inside the unit circle. By the Argument Principle, we then conclude I' goes
around the origin at least once and thus intersects the line Rez = 0. In either case,
f(8) £ 1 = Re(p(e)) must have at least one real zero. N
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The author’s original submitted version of [31] contained an alternate proof of
Theorem 2.6 that, although longer, provided a new way of deriving some results of [17]
as corollaries. We therefore now give this longer alternate proof of Theorem 2.6.

Alternate proof of Theorem 2.6. We define

9(0) = an_y cos ((n—1)8) + - - + a; cos (6), (2.18)

so we have f(6) = cos(nd) + g(6). Observe that since f has average value 0 on [0, 7],
it suffices to show that f(6) > +1 for some 6 and that f(6) < —1 for some §. We now
consider two cases.

Case 1. Suppose n is even; say n = 2m. Then cos(nf) = +1 at each of the m + 1

points
9=0,-2I,4—7r,...,7r
n’'n
and cos(nf) = —1 at each of the m points
g=" 3 5w (n—1)m
n'n’'n n

‘We show that the m + 1 values

9(0),9(@)79(41), o, g(m)

n n

cannot all be negative by showing they cannot all have the same sign, and we show

()0 ()0 () a("5)

cannot all be positive by showing they cannot all have the same sign. This will follow

that the m values

if we can prove that the identities

g(0) + 2g(2%> + 2g(4%> +- 4+ 2g((n—n2)7r> + ;q(7r) =0 (2.19)
and
oG ro() o)+ rs(®HE) =0 em

are true independently of the values of ay,...,a,_1.
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To verify that (2.19) holds, we note that the left-hand side of (2.19) is

._.

m~1 . m—1n—

2 27k
g(0)+g(ﬂ)+229(%) ZakcosO+Zakcoskﬂ+2 ax CoS 5T
=1 k=1 j=1 k=1

b
Il

n—1 .

27k

= k(cosO+cosk7r+2 g cos J 7T>.
k=1 Jj=1 n

Thus it suffices to show that for fixed k satisfying 1 < kK < n—1, we have

m—1

27k
cos 0 + coskm + 2 E cos 1L — 0. (2.21)
; n
j=1
i2rk/n

For such k, the complex number ( :=e is an nth root of unity other than 1, so

n—1 2m—1

ZCJ—O = O—ZRe ¢ = Zcos2jk7T Z cosQJk7T

J=

2m-—1
27k
= cos0 + Z cos T 4 coskm + Z cos L7 (2.22)
j=m+1
The rightmost sum in (2.22) is (using the transformation j' := n—j = 2m—j)
T 2k R 202m 2kT\ = 2 kn
Z coS J —Z ————]—-— Zcos(ler— J ) Zcos J
j=m+1 j'=

This proves (2.21) and hence completes the verification of (2.19).
To verify that (2.20) holds, we note that the left-hand side of (2.20) is

ig(@j;l)w> _ z’”:”“ 0 o (2j—n1)k7r

Thus it suffices to show that for fixed k satisfying 1 < k < n—1, we have

i cos (QJ—_n}-)k—T =0. (2.23)
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But this is precisely Lemma 2(i) of [17] (and also follows immediately from Problem 16

in Part VI of [40]). This proves (2.23) and hence completes the verification of (2.20).

Thus we are finished with Case 1. |
Case 2. Suppose n is odd; say n = 2m — 1. Then cos(nf) = +1 at each of the m

points
9=07—2_z7 iTE? ,(n_l)ﬂ
n’'n n
and cos(nf) = —1 at each of the m points
9=Z,i7£,5—7r,...,7r.
n'n’'n

Analogously to Case 1, we show that the m values

001 0(25) o(25)...o(5)

n n n

cannot all be negative by showing they cannot all have the same sign, and we show

o(2) ()05, ot

cannot all be positive by showing they cannot all have the same sign. This will follow

that the m values

if we can prove that the identities

g(0)+29(2%> +2g(4—;—> +---+2g((n_nl)7r> =0 (2.24)
and og(T 3 (n—2)m
9(7) +20(5) + o+ 20(F75) am =0 (2:25)
are true independently of the values of a;,...,ap_1.

To verify that (2.24) holds, we note that the left-hand side of (2.24) is

m—1n-1

m—1
+22 (2]7r> ZakcosO+222akcos

7=1 k=1

m—1 2]{?
—Zak(cosO-f-QZ J W)
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Thus it suffices to show that for fixed & satisfying 1 < &k < n—1, we have

m—1 .
27k
cos0 + 2 E Ccos ]nﬂ = 0. (2.26)

For such k, the complex number ( := e>™*/" is an nth root of unity other than 1, so

n—1 2m—2

Zgﬂ—o — O—ZReCJ Z cos 2]:”= 3" cos

25km

: n
3=0
Ukr o 25k
=cos0 + Z cos + Z cos = —. (2.27)
j=1 j=m

The rightmost sum in (2.27) is (using the transformation j' := n—j = (2m—1)—7)

2m—2

m—1 / m—1 .
Z Ccos 2]k7T Z COoS 2(71—7;7—— Z Ccos (2]67'(— 2] kﬂ) Z COS kﬂ

7'=1 j'=1

This proves (2.26) and hence completes the verification of (2.24).
To verify that (2.25) holds, we note that the left-hand side of (2.25) is

m—1 m—1n—1

(27—-1)m (25—-1D)k
+22 ( I ) Zakcoskw+222akcos
7=1 k=1
m-—1
2j—1)kn

= Zak<cosk7r+ ZZcos—n——>
j=1

Thus it suffices to show that for fixed & satisfying 1 < k < n—1, we have

m—1 .
(2j—-1)km
km+2 — =0. 2.2
cos km + Z cos —— (2.28)

j=1
But this is precisely Lemma 2(ii) of [17]. (It can also be pro;/ed by a very similar
argument to our proofs of (2.21) and (2.26).) This proves (2.28) and hence completes
the verification of (2.25). Thus we are finished with Case 2, and the alternate proof
of Theorem 2.6 is complete. B

Note that the following is a consequence of the alternate proof of Theorem 2.6, as

opposed to a corollary of the statement of Theorem 2.6.
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Proposition 2.7 Suppose g is of the form (2.18) (where n may be even or odd).
Then g cannot maintain the same sign throughout the interval [0, (n — 1)w/n], and g

cannot maintain the same sign throughout the interval |7 /n,7|.

Proposition 2.7 constitutes the nonexistence portion of Corollaries 1 and 3 of [17]. It

is further shown in [17] that the intervals in Proposition 2.7 are best possible.

2.3 Unimodular roots of special Littlewoods

The following theorem is the main original result of Chapter 2. The crucial ingredient

in the proof is Lemma 2.4 of the previous section.

Theorem 2.8 A skewsymmetric Littlewood polynomial has no zeros on the unit circle

(in other words, no roots of unit modulus, or ‘unimodular roots’).

Proof. Let a(z) be a skewsymmetric Littlewood polynomial. Hence a(z) has even
degree, so say
a(z) =ap+ a1z + -+ agmz®™ (a; = £1)

where ami; = (—1)7an—; for j € {1,2,...,m}. We then have

a(z)

ZTTL

1
=aoz—m+---+am_1;+am+am+12+-~-+azmzm

m
. 1
= Qam + E (am+sz + Am—j ';]-)
i=1

=a,+ z:n:amﬂ-(zj + (—1)j§;) =: f(2).
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Showing a(z) has no zeros on S is equivalent to showing f(z) has no zeros on S, which

in turn is equivalent to showing f(iz) has no zeros on S. Observe that

fliz) = am + i_n:amﬂ'((iz)j +(=1) : )

(iz)7
m .

L =1V
= a,, + ]E:l Qmtj (Z]Z] + (—Z—> z—]>
“ 1

— E i O T

m
=a, + Zam+jij -2cos(j8)  (where z = ).
=1

To show f(iz) is never 0 on S, it suffices to show that Ref(iz) and Imf(iz) cannot
both be 0. Recalling that each a; is 1, and defining r := |m/2], we see that

Ref(iz) = £1 £+ 2cos(260) £ 2cos(46) £+ - - - + 2 cos(2r8),
Imf(iz) = +£2cos () £ 2cos (30) £ 2cos (50) £ - - - £ 2cos ((2r£1)6).

which, using the notation defined in Section 2.2, can be rewritten as

Ref(iz) = £1 £ 2T, £ 2Ty & - - - £ 2T,
Imf(zz) = :t2T1 + 2T3 + 2T5 +..-x 2T2r:|:1-

Now let A := Ref(iz) and let B := Imf(iz). Both A and B can be regarded as
polynomials in z with integer coefficients, where as before, z := 2¢ := 2cosf. Notice
that one of A, B is odd and the other is even, and that deg A and deg B differ by 1.

We now observe that

P(A)=0(x1+2TL +2T4 + - +£2T5,)
=®(x1)+®(+2T) +®(22Ty) +-- + ®( 2T,
— ®(1) + ©(25) + ST +- -+ 0 (Ti)
=01+ 25 + 2T, + -+ 2T,)
=®(U3) by (2.13)
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and similarly,

®(B) =®( 2T +2T5 + - - &+ 2T3r11)
+£2T1) + (£ 2T3) + -+ + (= 2Topa1)

(
(
(21) + @(2T3) + -+ + @(2Tors1)
(
(

2N + 2T+ + 2T2r:t1)
Uxrs1) by (2.14).

o
=0
o
o

Thus A and B, in some order, satisfy the hypotheses of Lemma 2.4, and the theorem
is proved. B

We now shift our attention to self-reciprocal polynomials. There are two known
results about self-reciprocal polynomials that have new proofs as immediate corollaries

of Theorem 2.6. The first appears as Corollary 2 in [27].

Corollary 2.9 Suppose a(z) is a self-reciprocal polynomial of even degree, say
a(z) =ag+---+ am_lzm_l + amzm + am_lzm'*'l 4+ e+ aozgm

where ag, . .., am are Teal. Suppose |am| < 2|ag| (informally, the middle coefficient is
no more than twice as big as the end coefficients). Then a(z) has at least one root on

the unit circle.

Proof. For a(z) as above and z = €¥ € S, we have

a(z) _ m
—27—aoz—m-i-----i—am_l;+am+am_1z+~~+aoz

=, + 2<am_1Rez 4+ 4+ aoRezm>

= Qm + 2<am_1 cos(f) + -+ aq cos(m@)). - (2.29)

By Theorem 2.6, the expression (2.29) attains both of the values a,, +2a¢ and a,, —2ag
on the interval [0, 7]. Suppose ag > 0 (the other case is similar). Then the condition
lam| < 2lag| gives us

—2a¢ < am < +2ay0,
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which implies that the interval [am,—2aq, am+2a0] contains 0. By continuity, and the
fact that (2.29) is real-valued, we conclude that a(z)/2™ and hence also a(z) is equal

to 0 for some z € S. B
Corollary 2.9, restricted to the Littlewood case, gives a new proof of the following

(which also appears as Theorem 2.8 in [11]).

Corollary 2.10 A self-reciprocal polynomial whose coefficients are 1 has at least

one zero on S.

Proof. Let a be a self-reciprocal polynomial whose coefficients are +1. If the degree
of ¢ is odd, it is straightforward to show that —1 is a root of a. If the degree of &
is even, then the condition |a,,| € 2]ag| in Corollary 2.9 is satisfied, so a has a root
onS. I



Chapter 3
Autocorrelation in £,

When I was a kid, I used to pray every night for a new bicycle. Then I
realized that the Lord, in his wisdom, doesn’t work that way. So I just
stole one and asked him to forgive me.

—Emo Philips (by permission)

3.1 Average of ¢ over £,

As mentioned in Section 1.5, we turn £, into a finite probability space by defining a
probability mass function p that assigns a weight to each of the 2" polynomials in £,,.
We give each polynomial equal weight by defining p(a) = 1/2" for all @ € £,,. It is
easy to see that this means the n coefficients ag, a;, . . ., a,_1 are independent random
variables.

Suppose now that n and k are fixed positive integers with k£ < n, and define Y :=
Cn—k, SO Yy is the autocorrelation which is a sum of £ terms. (Here we are reverting
to the common convention of using capital letters to denote random variables.) We

also define X; := a;a;4n—x for 0 < j <k —1, so we have

Yi = ao@nk + G1@n_pq1 + -+ + Gk_10n1
= X0 4+ X + -+ X

The following is the crucial observation that allows us to prove the results of Chapter 3.

40
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Proposition 3.1 The X; are mutually independent.

Proposition 3.1 is not difficult and has undoubtedly been discovered previously (the
referee of the first submitted version of [32] claimed it was known to the French
harmonic analysts of the 1960s) but since proofs are surprisingly hard to find in the
literature given the relative simplicity of the proposition, we include a short proof
below.

Proof of Proposition 3.1. By Proposition 1.42, we just need to show that if the
values of some of the X are specified, then any one of the remaining X is equally likely
to be +1 or —1. So suppose 0 < i) < ip < -+ <ip <k—1andj¢& {i1,%2,...,%m}

and suppose we are given that
Xi, =8¢ for1<{<m, (3.1)

where each s; is either +1 or —1. We must show that among the polynomials in £,
that satisfy (3.1), half of them satisfy X; = +1 and half satisfy X; = —1.

Consider a graph G whose vertices are the a; and whose edges are precisely the
pairs of the form (a;,@;4n—k), so the edges correspond to the X;. Note that the
components of G are paths. Let G’ be the graph obtained from G by deleting all
edges except X;,,...,X;,, . Using the fact that the components of G’ are paths, it is
straightforward to see that the number of polynomials in £, satisfying (3.1) is equal
to 2* where ) is the number of components of G’. Observing that the endvertices of
edge X; lie in different components of G’, we see that the ‘conditional distribution’
of X; is as claimed. B

The mutual independence of the X; has several immediate consequences. First, it
is obvious by symmetry that E(Y]) = 0 if r is odd. We also see that for general r,

E(YT) is given by the non-closed-form expression

B
P(k):=>_ o (k= 29)" (3.2)

Jj=0

It is not immediately apparent that for fixed even r, the sum P(k) is a polynomial in
k of degree r/2.
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One way to see that P(k) is a polynomial in k, if one fixes a specific (even) value
of 7, is to apply Zeilberger’s ‘creative telescoping’ algorithm, which can be found in
Chapter 6 of [39]. This algorithm, when given the summand in (3.2) as input, outputs
a recurrence satisfied by the function P(k). That recurrence turns out to be of the

form
a(k)P(k+1)+b(k)P(k) =0, (3.3)

where a(k) and b(k) are polynomials that happen to satisfy b(k) = —a(k + 1), in
which case the recurrence (3.3) clearly has P(k) = a(k) as a solution. So in summary,
if one fixes an even value of 7, then Zeilberger’s algorithm can tell us that E(Y]) is a
polynomial in k.

It is also worth mentioning that an immediate consequence of Proposition 3.1 is

that Y% is a linearly transformed binomial random variable. More specifically, we have
5
Yi=2(U - 2) =2(U - BQ)) (3.4)

where U is binomial with parameters k and 1/2. Thus, evaluating E(Y,") reduces
to evaluating the central moments of a binomial random variable, but as there is no
simple closed-form expression for those central moments, this does not seem to make
the evaluation of E(Y[) trivial.

A 1923 recurrence due to Romanovsky [42], which also appears in Chapter 3 of [26],
shows that if U is binomial with parameters k and p, then the rth central moment
of U, considered as a polynomial in k, has degree at most |r/2]. Romanovsky’s
recurrence, however, involves differentiation with respect to p, and if we care only
about the special case p = 1/2, then a variant of Romanovsky’s technique yields a
more efficient way to generate the expected values of Y,]. This is the content of the

following result.

Theorem 3.2 As described previously, let L, be regarded as a finite probability space
by weighting each polynomial equally. If the autocorrelations ¢, and the autocorrelation
vector C are as defined in Section 1.2, then for k < n, E(c™) is a polynomial in k

of degree m, implying that E({C]g’rz) 18 a polynomial in n of degree m+ 1. If we define

Pr(k) = E(Y;™) == E(c;T),
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then we can generate the polynomials P, recursively via
Pr1(k) = k* Py (k) — k(k — 1) Pn(k — 2).

Because of (3.4), this recurrence can also be viewed as generating the central moments
of a binomial random variable that satisfies p = 1/2. More precisely, if U is binomial

with parameters k£ and 1/2, then the (2m)th central moment of U is
27ME(Y2™) = 272 P, (k).

Proof of Theorem 3.2. By Proposition 3.1, we know that Y} is a sum of k mutually
independent random variables that are each equally likely to be +1 or —1. Then by
Proposition 1.46, we know that the moment-generating function of Yj is

4

4|

e+t + e—t

k
: )—coshkt—1+E(Y2) +E(YHE

M(t) = (

(note that this function contains only even powers of t).

We now observe that

iM(t) _ 4 (kcosh*~! ¢sinht)
dt? dt
= k(k — 1) cosh* % tsinh®¢ + kcosh* t

= k(k — 1) cosh* % ¢(cosh®¢ — 1) + k cosh* ¢

= k*cosh®t — k(k — 1) cosh*%¢, (3.5)
but also
d? d? ) t4
—M(t) = — (1 + E(Y; ) A+ B+ )
t4
= E(Y?) + E(Yk) i+ E(Yk) e (3.6)

If we now equate the coefficient of t*™/(2m)! in (3.6) and the coefficient of 2™ /(2m)!
in (3.5), we get

B(Y2™) = EE(Y2") - k(k - DE(Y27).
or equivalently,

Pm+1(k) = kQPm(k) - k(k - l)Pm(k - 2)’
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establishing the theorem. il

For illustration, we now give the first few polynomials in the list (P, Ps, P3,...):

k) = E(Y]®) = 105k* — 420k> + 588k* — 272k,
= E(Y})%) = 945k° — 6300k* + 16380k> — 18960k? + 7936k.

n—1 n—1
(ICl3) ZE(Y;E) = > Pk
k=1 k=1
_ 1, 1
— " Tt
n—1 n—1
(el =S BrH =Y Ru(k)
k=1 k=1
=n’— gnz + §n,
n—1 n—1
E(CI9) = > E(YS) = Z Py(k)
k=1
B 85, 107,
=7 n 5 n’ + — 1 13n,
n—1 n—1
E(ICl3) =Y E(¥¥) = Za(k)
k=1 k=1
315 461

=2In’ — == 5 Z=n* + 441n® - 53502 + —n,

2
E((Clyo) = ZE (V) = Z%(k

315 3465 555 69857
= Tne — —2—n5 + —%gi—n‘l ~ 16610n° + ——Z—ng — 6918n. (3.7)

By using Proposition 1.13, together with the trivial fact that a random variable cannot

always exceed its expected value, we can obtain upper bounds on Turyn’s b function
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(Definition 1.10) that, loosely speaking, are ‘slightly greater’ than y/n. For instance,
a computation reveals that (3.7) is less than (315/2)n® for all n > 1. It follows that

for n > 1, there is always at least one Littlewood polynomial in £, that satisfies

315 4\ /10
Cle £ 1Clo < (5onf) " ~ 16580/,
We thus get an upper bound on b(n) that is worse than Proposition 1.11 in a big O
sense, but better than Proposition 1.11 in the sense that it holds for all n.
Looking at the polynomials P, (k) that we have listed so far, one might guess that

in general, we have
P.(k) = (2m — DIVE™ + O(k™ 1),

where the notation (2m — 1)!! means (2m — 1){(2m — 3)---3 - 1. This fact does not
seem to follow immediately from the recurrence in Theorem 3.2, but it can be proved

by a separate counting argument which we now digress to include.

Theorem 3.3 As before, suppose our probability space is L, and let Yy, and P, (k)
be as previously defined. We then have

Po(k) = E(Y™) = (2m — DIE™ + O(K™1).

Proof. We have
Y=Y X;
€lk]
where the X; are as defined at the beginning of this chapter. We remember from

Proposition 3.1 that the X; are mutually independent +1 random variables. Now

EY)= Y  EX;-X;) (3.8)
(F1yendr)ElR] -

by linearity of expectation (Proposition 1.38). Here, we are using the convention

that [k]” means the set of all r-tuples with entries from [k]. Let us now adopt some

terminology that will assist us in our exposition. We will refer to any of the k"

elements of [k]” as a word consisting of r spaces, where each space is filled with one

of the k symbols 0 through £ — 1.
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Now since each X, is 1, each expression of the form
leXj2 T Xjr

can be rewritten as
XPXg o X(y (3.9)

where each e; is 0 or 1. Specifically, e; is either 0 or 1 depending on whether the
symbol 7 appears an even or an odd number of times in the word (j1, j2, - .-, jr). Now
it follows easily from the mutual independence of the X; that an expression of the
form (3.9) has expected value 0, unless each e; is 0, in which case its expected value
is 1. It then follows from (3.8) that E(Y)) is equal to the number of words in [k]
with the property that each symbol in the word appears an even number of times
(possibly 0 times). For brevity, we will refer to such a word as a pairful word.

Certainly there are no pairful words in [k]” if r is odd, so suppose r = 2m. If we
define ¥(m, j) to be the number of ways of partitioning [2m] into j disjoint nonempty
parts each containing an even number of elements, then the number of pairful words
in [k]*™ is

wim, m)k™ + p(m,m — Dk 4. 4 y(m, 1)k (3.10)

where we are using the notation kY := k(k—1)---(k—j +1). (The same notation is
used in Chapter 4.) To obtain (3.10), note that we can count the number of pairful
words in [k]?™ by first partitioning the 2m spaces into precisely j nonempty even-sized
parts, where 1 < 7 < m, such that spaces belonging to the same part are filled with
the same symbol. We can then choose one of k symbols for the spaces in the first
part, one of k — 1 symbols for the spaces in the second part, and so on.

To the best of the author’s knowledge, detailed study of the function % has not
been done. However, to complete the proof of the theorem, we need only to observe
that ¥(m,m) = (2m — 1)!! since counting partitions of [2m] into m nonempty even-
sized parts (necessarily parts of size 2) is equivalent to counting perfect matchings in
the complete graph on 2m vertices. il

Suppose now that we care only about an upper bound for E(Y?™), as opposed to

exact or asymptotic expressions for the polynomials P, (k). It was pointed out by the
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referee of the first submitted version of [32] that we can prove
E(Y?™) < (2m — )L™ (3.11)

using some known results from probability. Specifically, we rely upon the following

version of the Khinchin inequalities, due to Haagerup [22].

Proposition 3.4 Let Xy,...,Xx_1 be independent random variables, each equally
likely to be +1 or —1, and let ro, ..., 1 be real constants. For positive real p, we
have

5

-1

W) (S <n(Zh)" e

]:

.
Il
o

where A, and B, are constants depending only on p. If p > 2, we can take A, =1

and

(EEL)\ 1/
Bp=21/2(———(\/2—)) ’
™

where ' denotes the usual gamma function of Fuler.

If we apply Proposition 3.4 to the case where p = 2m for some m € Z* and r; =1

for all 7, then the rightmost inequality in (3.12) gives

) < Béz(il)m = BITk™,

E(Y?) =E (

and we then observe that

- 1-\(2m2+1) _gm (2";;1)”\/7_.‘.
VT VT

which establishes that (3.11) holds as claimed.

Bim = = (2m — 1!

3.2 Bounds on Turyn’s b function

We pointed out in the previous section that one upper bound for Turyn’s b function,

valid for alln > 1, is
1/10
o)< (3)"
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Somewhat messy computations using the polynomials P, (k) for m > 5 can of course
yield similar results with smaller exponents than 6/10, but any such result fails to
improve upon Proposition 1.11 in an asymptotic or big O sense. |

In this section, as mentioned in Section 1.2, we use some known techniques to
provide a refinement of Proposition 1.11. To the best of the author’s knowledge, this
refinement constitutes the best asymptotic upper bound on b(n) appearing in the
available literature.

We begin by pointing out that Proposition 3.1 allows us to use Chernoff-type
bounds for ‘tails’ of sums of independent +1 random variables. One such bound is

given by the following result.

Proposition 3.5 IfY, = Xo+ X1+ -+Xk-1, where the X; are independent random
variables equally likely to be +1 or —1, then for any A > 0, we have

Pr[|Yi| > A] < 2exp(—A?/2k).

Proposition 3.5 appears as Theorem A.1.1 in Appendix A of [1], where it is credited
to Chernoff. Despite its age, we include a proof, as it involves a particularly clever
use of generating functions and Markov’s inequality.

Proof of Proposition 3.5. Assume the hypotheses of the proposition, and observe
that by symmetry, we have

Pr[|Yi| > Al =2-Pr[Y; > Al (3.13)

Then note that for any positive number ¢, the event Y, > A is equivalent to tY; > ¢,

A

which in turn is equivalent to e¥* > e*. Now since e¥* is a nonnegative random

variable, Markov’s inequality (Proposition 1.39) gives

E (etYk )
ext

Prle™ > e <

That is, we have shown that for all ¢ > 0, we have

My (1)
o

Pr[Y; > A] < (3.14)
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where My (t) is the moment-generating function of Y} as defined in Definition 1.44.
As observed in the proof of Theorem 3.2, we have

My (t) = (cosh t)*.
We now observe that since

t2 t 6
ht=1 .
cos t{3t1 234 1234506

and also

21 /t3\2 1 /t%\3
=g () e 5(5) s
exp(t’/2) 1+2+2! 5 +3! 5 +

t? t t6
=14+ —

s Y51tz

we have cosht < exp(t?/2) for all ¢ > 0, implying (cosht)¥ < exp(kt?/2). Together
with (3.14), this gives us

kt?/2 kt?
e t
e’\t = €Xp (-—2—' - )\t) (315)
for all positive t. We now notice, using elementary calculus, that the positive ¢ that

minimizes the right side of (3.15) is ¢ = A/k. Substituting this value of ¢ into (3.15)
gives us

PriY, > )\ <

2k

_)2
Pr[Y; > )] < exp ( )
which, together with (3.13), completes the proof of the proposition. R

It is now a simple matter to establish the following refinement of Proposition 1.11.

Theorem 3.6 For all € > 0, there exists N € Z* such that if n > N, then there
ezists a Littlewood polynomial in L, that satisfies

lcx] < (V2 +¢)y/nlogn (3.16)
forallk e {1,2,...,n—1}.

Proof. Suppose € > 0, and define

A= (V2+¢)y/nlogn.
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A crude overestimate for the probability that |cx| > A for some k € {1,2,...,n— 1}

is given by
n—-1 n—1
Y Prflcas > A = > Pr[|Yi| > )]
k=1 k=1

which, by Proposition 3.5, is bounded above by

n—1

Z 2 exp(—\?2/2k)
k=1
n—1

< 2 2 exp(—A?/2n)

< 2nexp(—\?/2n)

=2nexp ( — (2+¢')(nlogn)/2n)
=2nexp (- (1+¢")logn)
=2/n

which is certainly less than 1 for n large enough. It follows that there exists N € Z*
such that for all n > N, at least one Littlewood polynomial in £, satisfies (3.16) for
all k € {1,2,...,n — 1}, completing the proof of the theorem. B

We thus have more than one result giving upper bounds on Turyn’s b function
that, roughly speaking, are ‘slightly greater’ than 1/n. We close this section with some
elaborations on the idea that we are ‘close’ to proving Conjecture 1.20 that b(n) =
O(y/n), and some informal reasons for the author’s belief that someone will prove
b(n) = O(y/n) in the near future by using more subtle or sophisticated probabilistic
techniques.

We observed that for all positive integers n, there exists a polynomial in £,, whose
nontrivial autocorrelations are all bounded (in absolute value) by a multiple of n®/1
(and remarked that similar bounds are possible with smaller exponents). Note that
we showed the existence of such a polynomial by showing, essentially, that it suffices
to choose any Littlewood polynomial such that the £p norm of the autocorrelation
vector is merely ‘better than average’. This suggests such polynomials are not ‘rare’

and that more sophisticated methods should be able to find ones that are ‘even better’.
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Notice also that in the proof of Theorem 3.6, we used the trivial fact that the
probability of a union of events is bounded above by the sum of the probabilities of
the events. This is typically a gross overestimate, unless the events in question are
disjoint. In the case under consideration, the events are of the form |c;| > A, which
are not disjoint. In fact, some authors such as Golay [20] have pointed out that one
expects the autocorrelations ¢, to enjoy some sort of ‘near-independence’ property.
Turning this observation into precise mathematics may lead to further insight into
the true growth rate of the functions b(n) or Eyin(n).



Chapter 4
Autocorrelation in A,

The mathematician Simon Sidon was famed for his reclusive nature. One
afternoon, Paul Erdés and another mathematician named Turdn showed
up on Sidon’s doorstep unannounced. Sidon opened the door a crack
and greeted his visitors with these words: ‘Please visit another time—and
especially another person.’

http://www.anecdotage.com (original source unknown)

4.1 Average of ¢ over A,, B,, and A,

In this chapter, we are interested in norms of ‘typical’ zero-one polynomials. More
precisely, we consider the average, or expected value, of the fourth power of the

Ly norm on S of a polynomial in A,, B,, or A, .. Because of the relationship
4 2
HaH4 = C%+2|C’|2 (4.1)

indicated at the end of Section 1.2, this is more or less the same problem as finding
the average or expected value of |C y§ over the sets A,, B,, and A, .

As one might expect, we turn each of the three sets A,, B,, and A, , into (finite)
probability spaces in much the same way as we did with £, in Chapter 3: by using a

probability mass function that assigns the same weight to each polynomial in the set.

52
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That is, throughout this chapter our probability space will be (€2, p), where either

1
Q=A, and p(a) = o for all a € Q,

1
Q =B, and p(a) = o for all o € Q, or

Q= A, and pla) = —(—,1;)— for all o € Q.
m
When considering the expected value of some random variable defined on one of these
three spaces, we will sometimes use the notation E4,, Eg,, or E4, . as appropriate,
in order to make explicit which of the three sets of polynomials we are averaging over.

Recalling that A4, consists of all 2" polynomials of the form
a(z)=ap+a1z+4 - +a,12"", a;€{0,1}for0<j<n-—1, (4.2)

one can see that assigning equal weight to each such polynomial implies that the
coefficients ay, . . ., a,—1 form a collection of (mutually) independent random variables,
as was the case with £, in Chapter 3. This time, of course, the n coefficients are
independent random variables equally likely to be 0 or 1. Similarly, we see that since

B, consists of the 2" polynomials of the form
a(z) =apt+az+ - +a,12" M +2", ag;€{0,1} for0<j<n—1,

it follows that aq through a,.; are independent random variables in that space as
well. By contrast, since A, ,, consists of those polynomials of the form (4.2) such that
precisely m of the a; are 1, it follows that the a; are not mutually independent in
that probability space. (Informally, knowing one of the coefficients is 1 decreases the
probability that any other coefficient is 1.)

Another subtlety worth mentioning at this point is that the autocorrelation ¢y has
the same value m for all polynomials in A, », but has different values for different
polynomials in A, or B,.

The main result of this section, which also appears in the joint publication [5], is
that one can find explicit expressions for Eq(||a||;) if Q is any of the three spaces Ay,

B,, or A, equipped with the probability mass functions described above. To be
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specific, if m < n, we have

4n3 +42n% — 4n + 3 - 3(-1)"

E) 4 = )
An(llexlly) 96
4n3 + 66n? + 188n + 87 + 9(—1)"
Es, ([lal}) = C ana
96
2m4 mBl(n —m)(2n? —dn+1— (-1))
4N 2__

E4,.(lally) =2m® —m + 3(n — 3) + onld] ’

where the notation z¥l is shorthand for z(z — 1)---(z — k + 1). This complements
results of Newman and Byrnes [38], who found the average of ||a||; over £,, and
Borwein and Choi [4], who found (among other things) the average of [|a||$ and o}
over L,, as well as the average of ||a||§, lall;, and lla||2 over the 3" polynomials of

the form
alz)=ay+a1z+-+0a,.12"Y, a; €{+1,0,-1} for0<j<n—1.

Because we have E,  (lall;) = Ea, .. (G +2|C|2) = m®+2E,4, . (IC|3), and because
the autocorrelations of a polynomial in A, ,, have a combinatorial interpretation as
mentioned in Section 1.2, it turns out that our expression for E An’m(l[a”i) leads to
a surprising new proof of a known result about Sidon sets. This is explained in
Section 4.2.

To obtain the results of this section, we begin by observing some facts about the

squared autocorrelations of a polynomial a = Y a;27 € A,. We have

n—k-—1

2
2
G = ( E ajaj+k)
7=0
n—k-—1 n—k—1
= E QiGitk - _;_ A;Q5+k
n—k—-1 n—k-1
= _S_ Q050+ kQj+k
i=0  j=0
n—k—1 n—k-1
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Noting that f(4,7) := a;a;a;4ka;4k satisfies f(¢,7) = f(4,1), we then have
G= > £(i,5)

fa+2 Y fG9)

i=0 0<i<j<n—k—1

= a?a,,i_k + 2 Z aiajai+kaj+k. (43)

i=0 0<i<j<n—k—1
Now define m := «a(1). Then o € A, ,,, and we can write o = 25 + - - - + 2= where
1 < -+ < B Recalling from Section 1.2 that the ¢, are nonnegative integers whose

sum is (), we conclude that

m(m —1
C%+"'+C,21_1 201+"'+Cn_1 =L2——)
with equality if and only if ¢, € {0,1} for 1 < k < n — 1. Recalling that ¢ is the

number of times k appears as a difference 8; — 3;, we conclude that

s (M m(m — 1)
o - () =+ -+ iy - MO
is a nonnegative integer, and is zero if and only if {f, ..., B} is a Sidon set.
Now, suppose 71, Jo, J3, J4 are distinct integers. Our next step is to calculate some
averages of products of aj, that we will need later. First, if our probability space

is A,, we have

1
E4,(aja5,) = E(number of & € A, such that a;, = aj, = 1)

2 ]
- = . 4.4
=1 (4.4)
and then by similar reasoning, we have
E4, (ajlajzaja) = 1/87 } (4'5)
E4,(aj,a5,05,a5,) = 1/16.
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On the other hand, if our probability space is A, n,, we have

E 4, .(aj,05,) = %(number of & € A, ,, such that aj, = aj, = 1)
e '

m

and then by similar reasoning, we have

Ea,..(aj,a5,05;) = mPl/nl, (4.7)
EAn,m (ajlajzajsaj4) = mf‘l]/n[‘l].
Now, whether 2 is A, or A, n, we have a]z = q; for all 7, so (4.3) implies
n—k—1
cz = Z QiQiyp + 2 z ;04 kA5Gt k- (4.8)
i=0 ' 0<i<j<n—k—1
We define A := n — k and also define
A-1
S = Zaiai+k, (4.9)
i=0
T:= Z ;004 kA 4k (4.10)
0<i<j<A-1
which of course implies
ct=5+2T. (4.11)

If k = 0, then ¢ = m? So if @ = A, m, we have simply E(c3) = m?, whereas if
Q= A,, we have

—~ ()

E() =) . (4.12)
m=0 -

It is a short exercise to see that the right side of (4.12) evaluates to (n® + n)/4.

Alternatively, we may observe that cy has a binomial distribution with parameters n

and 1/2, which implies

E(Cg) = Var(cg) + E(co)2 =n. + (n 1)2 = n’ + n. (4.13)
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Having found E(c2) for Q = A, ,, and for = A,, we now shift our attention to E(c?)
for k £ 0.
Assume k # 0, and observe that equations (4.8) through (4.11) (and linearity of

expectation) give us
A-1

E(c}) = E(S) +2E(T) = ZE(aiai+k) +2 Z E(a;a;ai1kaj1k)- (4.14)
i=0 0<i<j<A-1
Since k # 0, each of the A terms in the sum E(S) is of the form E(a;,a;,) where j; # jo.
We thus have
A4 i Q= A,
E(S) = 4.15
(%) { A/ Q= Ay (415)

by (4.4) and (4.6).

As for the (;) terms in the sum E(T), each term is of the form E(a;a;a:4x0;+x)-
Since k # 0 and 7 < j, the four subscripts 4, j, 2+k, 7+k constitute either three distinct
integers (if j = i+ k) or four distinct integers (if j # i+k). If {4, ,i+k, j+k} consists

of three distinct integers j1, 7o, j3 where j3 is the one that is ‘repeated’, then, since
2
J3
of course if {7, j,%+ k,j + k} consists of four distinct integers, then E(a;a;a:+xa;+x) 1s

a; € {0,1} for all j, we have E(a;a;ai1xa;+x) = E(aj,a5,05) = E(aj,a5,a;,), whereas
of the form E(a;,a;,a;,a;,). Therefore, we now ask the question: For which of the (’2\)
terms in the sum E(T) does the set {4,7,7 + k,j + k} consist of only three distinct
integers?

For some i € {0,1,...,\ — 1}, there is exactly one j satisfying bothi < j < A -1
and j = 7 + k, and for other values of i, there is no such j. We will say that i is of
‘type I if the former criterion holds, and is of ‘type II’ if the latter criterion holds.
An integer i is of type I if and only if i+ k& < A, or equivalently, i < A—k =n—2k. If
n—2k <0 (i.e. if k > [n/2]), then ¢ < n — 2k never happens, i.e. no i is of type I and
so all of the (}) terms in the sum E(T) are of the form E(ajlaj;ajsaj‘l). On the other
hand, if n — 2k > 0 (i.e. if k < [n/2]), then i < n — 2k = A — k sometimes happens;
namely, it happens if and only if 7 is one of the A — k integers 0,1,..., A — k — 1.
In that case, each of those A — k values of 7 is of type I. This implies that precisely
X —k of the (}) terms in the sum E(T) are of the form E(a;,a;,a;,) and the remaining

terms are of the form E(a;, a5,a5,a;,).
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It follows that we have

E(T) = (5)E(aj,a5,05,a5,) if k> [n/2],
(5)E(aj,a5,05,05,) + (A—k)[E(aj,a505,) —E(as,a505,a5,)] if k< [n/2].
Thus, for 2 = A,, we have

(16 £k 2 /2],

(0)/16+ (A —k)/16  if k < [n/2],

and hence, using (4.14) and (4.15), we get
A4+ A(A—-1)/16 if k > [n/2],

E4,(ct) = ‘
AA+MA=1)/16 +2(A—-k)/16  ifk < [n/2].
On the other hand, for €2 = A, ,, we have

()it i itk > /2],
()mt /nl + (X = &) [P/l — m@/nll]if k < [n/2],

E4,(T) = {

Efm(T) = {
and hence, using (4.14) and (4.15), we get

- Az (- 1)z if k > [n/2],
IR A - DR 20— K) |29 - 2] ik < [n/2]

As for the average of |C|5 = ¢ +--- + c2_, over A, or Ay, we then have

n—1 n—1 fn/2]—-1
A A —=1) 2(A—k)
2 —_— f— —————eeeee.
EA(Cp) =3 (3)+2 (55 + X (F5) @)
k=1 k=1 k=1
and
n—1 2) n—1 [4] [n/2]-1 (3] 4]
2y — m- e o
Eann(Cl2) = ; (M) + 2 (po-nig)+ ; (o-0 35 - T )
. (4.17)
Recalling that A is simply shorthand for n — &, it is straightforward to verify that
= ) = n(n—-1)
= T
k=1
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and that

[n/2]-1
oy n(n—2)/2  neven,
; 28—k = { (n—1)%/2 n odd.

This means that from (4.16), we get E 4, (|C/2)

. n(n—l) + n(n—1)(n—2) + i . n(n—-2)

i B 3 5 n even,
i . n(n2—1) + % . n('n.—l)(n 2) + L . (71—21)2 n odd,
_ (2n% + 9n? — 14n) /96 n even,
(203 + 92 — 14n 4+ 3)/96 1 odd,
which, using (4.1) and (4.13), implies
B " n2‘-1+-n + 2n3+9:8 —ldn _ 2n3+2418n2—2n n even,
'A"(”a“‘l) - n Z—n + 2n3+9n48—14n+3 — 2n3+21282—2n+3 n Odd,

ivalentl
or equivalently, ) and3 +492n?2 —4dn+ 3 — 3(=1)"
Ea.(llally) = 96 '

On the other hand, from (4.17), we get EAn,m(|C|g)

(4.18)

B %[%]_ n( —1) + m[4] n(n—l)(n 2) + (%[133]]_ _ %7,[[24]]_) . n(n2—2) n even,
ml2 -1 [41 -1 2 (3] [4] —1)2
m'"(" Lt [41'_—"(" Jo- o (T - ) - B3 nodd,

(3 +ml/(3(n = 3)) + mPl(n — m)(n? — 2n)/(2n4]) n even,
a () + m4/(3(n — 3)) + mBl(n —m)(n®? —2n+1)/(2n4)  n odd,

(4.19)
which, using (4.1), implies
Ea,..(lols) { o 3??[4;) + [3}(71_"[121(”2_2”) n even,
Anm\[|Allg) = (4] Bl (n—m)(n2-2 1)
or equivalently,
2mM4 Bl(n —m)(2n? —4n +1— (—1)"
EAn,m(“a”j) =2m2 —m+ m + m(n —m)(2n n (-1) ) (4.20)

3(72 - 3) 4

Note that if we fix m and let n approach infinity, E 4, ,.( ||a||j) approaches 2m? — m,
or equivalently, E4,  (|C |§) approaches m(m — 1)/2. Informally paraphrased, this



CHAPTER 4. AUTOCORRELATION IN Ax 60

says that for fixed m and large n, we ‘expect’ a random a € A, ,, to correspond to a
Sidon set, as is consistent with intuition.
If Q = B, then since B, := A,;; \ A,, we get

Bs, (lalf) = 5 3 ol

a€By,

=2E.,...(la]!) = B4, (leld)
_ 4n® 4 66n? + 188n + 87+ 9(— 1)
= 96

by (4.18). This completes the proof of the following.

Theorem 4.1 For m < n, we have

4n3 +42n? —4n + 3 — 3(-1)"

4 —
Ea, (llelly) = % ’
4n® + 66n2 + 188n + 87+ 9(—1)"
EB‘n(”aﬂi) = 96 = , and
2mld mi(n —m)(2n? —4n+1- (-1)7)
4y _ 2
EAn,m(”a“4) 2m” —m+ 3(n—3) + 2nl4l ’

4.2 Ubiquity of Sidon sets

In the last section of this thesis, we show that our expression for E An_’m(l|alli), or
equivalently, our expression for Ey4, . (|C |§), yields a surprising new proof of a result
that appears in articles by Godbole et al. [18] and Nathanson [37].

Suppose that 2 = A, ,, and as before, denote a typical element of A4, ,, by

ofz) =P+ 2P P

Recall from the previous section that

m(m — 1)

X (T) =t e, m

is a nonnegative integer-valued random variable on €2, and attains the value 0 if and
only if {8,...,Bn} is a Sidon set.
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We have, using (4.19),

B0 () = B, (08 - (7 )

B 3(7;‘[_4]3) 4 (n—2r:[)4(1n2—2n) if n is even,
3(77':[1]3) m[sl("_rgi([ZJLz"H) if n is odd.

< mi4 N mBl(n — m)(n - 1)2

~ 3(n-3) 2nl4

_ m(m —1)(m — 2)(2mn — 3n — m)

B 6n(n — 2)

< m(m — 1)(m — 2)(2mn — 3m — m)

- 6n(n — 2)

_ m(m—1)(m—2)2m(n - 2)

B 6n(n — 2)

<™

— 3n

if m < n. Then, using Markov’s inequality (Proposition 1.39), we have

Pr[XZl]sE—(lX—)s :

3

b

n

w

which implies that
4

m

Pr[{ﬂl, e ,ﬂm} is SldOIl] >1-— '?E
If m is a function of n growing ‘faster’ than n'/4, then this has the uninteresting
consequence that a probability is bounded below by a negative number. However,

if m = o(n/*), we get the following.

Corollary 4.2 If m = o(n!/?), then as n approaches infinity, the probability that a

randomly chosen m-subset of [n] is Sidon approaches 1.

Here we are using the common convention that ‘m-subset’ just means ‘subset of
size m’.

Recall from Section 1.4 that a By [g] set is a set A of nonnegative integers such that
each n € Z can be expressed in at most g ways as a sum of h (not necessarily distinct)

elements of A, and hence a Sidon set is the same thing as a B,[1] set. Nathanson [37]
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showed that if m = o(n?/(%+2)) then the probability that a randomly chosen m-
subset of [n] is a Bs[g] set approaches 1 as n approaches infinity. (The present author
got the idea to use the term ‘ubiquity’ from Nathanson’s paper.) Godbole et al. [18]
showed that if m = o(n!/?*), then the probability that a randomly chosen m-subset
of [n] is a By[1] set approaches 1 as n approaches infinity. They further showed that
m = o(n/?") is a ‘sharp threshold’ in the sense that if m > n!/?*  then the probability
that a randomly chosen m-subset of [n] is a By[1] set approaches 0 as n approaches
infinity.

Thus Corollary 4.2 is known, but it is perhaps surprising that we get to deduce
it for ‘free’ as a consequence of finding the ‘typical’ Ly norm on S of a zero-one

polynomial.
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