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Abstract 

Most state-of-the art document clustering methods are modifications of traditional 

clustering algorithms that were originally designed for data tuples in relational or 

transactional database. However, they become impractical in real-world document 

clustering which requires special handling for high dimensionality, high volume, and 

ease of browsing. Furthermore, incorrect estimation of the number of clusters often 

yields poor clustering accuracy. In this thesis, we propose to use the notion of frequent 

itemsets, which comes from association rule mining, for document clustering. The 

intuition of our clustering criterion is that there exist some common words, called 

frequent itemsets, for each cluster. We use such words to cluster documents and 

a hierarchical topic tree is then constructed from the clusters. Since we are using 

frequent itemsets as a preliminary step, the dimension of each document is therefore, 

drastically reduced, which in turn increases efficiency and scalability. 
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Chapter 1 

Introduction 

Everyday a vast amount of documents, reports, e-mails, and web pages are generated 

from different sources, such as enterprises, governments, organizations, and individu- 

als. This kind of unstructured data is usually not stored on relational or transaction 

database systems, but on web servers, file servers, or even personal workstations. 

Large enterprises often spend lots of manpower on organizing these documents into a 

logical structure for later use. They pursue a systematic and automatic approach in 

organizing these documents without human intervention or preparation work. This 

thesis takes on the challenge of developing an accurate, efficient, and scalable method 

for clustering documents into a hierarchical structure that facilitates browsing. 

Cluster analysis is one of the major topics in data mining. We start this chapter 

by describing data mining in brief. 

1.1 Data Mining and Association Mining 

The nature of database technology and automated data collection tools leads to 

tremendous amounts of data stored in databases, data warehouses, and other in- 

formation repositories. These large amounts of data are worthless unless they become 

knowledge - not to mention analyzing them is a trivial task either. This problem is 

called data explosion meaning rich in data, but starved in knowledge. 
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Data mining, also known as Knowledge Discovery in Databases (KDD), is a so- 

lution of data explosion. Simply stated, data mining is a method of extracting in- 

teresting knowledge, such as rules, patterns, regularities, or constraints, from data in 

large databases. The extracted knowledge should be non-trivial, previously unknown, 

implicit, and potentially useful in that it may serve as an important input for making 

decisions. 

The key functionalities of data mining are association mining, classification and 

prediction, and cluster analysis. We often apply these techniques to different types 

of data to  solve different problems. Some applications of data mining are target mar- 

keting, customer relation management, market basket analysis, cross selling, market 

segmentation, forecasting, quality control, fraud detection, and intelligent query an- 

swering. 

A major breakthrough of this thesis is that we utilize an important notion, fre- 

quent itemset, in association mining to cluster text documents. Thus, let us briefly 

explain association mining. 

Association mining [6, 71 searches for interesting frequent patterns, associations, 

correlations, or causal relationships among sets of items or objects in transactional 

databases, relational databases, and other information repositories. Market basket 

analysis is a typical example of association mining on transaction data. It analyzes 

customer buying habits by finding associations among the different items that are 

purchased together. The manager of a supermarket may make use of this knowledge 

to increase the sales of the associated items. The output of association mining is 

usually a rule form, i.e., A + B. For example, 

Laptop + Modem [support = 5%, confidence = 80%] 

Support and confidence are two measures of rule interestingness. The above asso- 

ciation rule means that 5% of all transactions under analysis show that laptop and 
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I Transaction ID I Items Bought I 

Table 1.1: Transaction database T 

Table 1.2: Frequent itemsets of T 
(minimum support = 50%) 

modem are purchased together, and 80% of the customers who purchase a laptop also 

buy a modem. Association rule mining has two steps: 

1. Compute all frequent itemsets, where frequent itemsets are a set of items that 

occur together at  least as frequently as a pre-determined minimum support 

count, i.e., a minimum fraction of transactions contains these itemsets. We will 

use Example l a  to  illustrate this concept. 

2. Generate strong association rules from the frequent itemsets, where these rules 

are association rules that satisfy minimum support and minimum confidence. 

This step is easy to compute, but it is only useful for association rule mining 

and is not applicable to this thesis. 

Before presenting an example to explain the notion of frequent itemset, we first 

give some formal definitions. A set of items is referred to as an itemset. An itemset 

containing Ic items is called k-itemset. The support of an itemset refers to the per- 

centage of transactions containing the itemset. If an itemset satisfies a user-specified 

minimum support, then it is a frequent itemset. 
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Example la: Table 1.1 shows a small transaction database T of a supermarket 

that contains only four transactions with the corresponding items bought. Suppose 

the minimum support is set to 50%; that is, an itemset i is frequent only if at  least 

two out of the four transactions contain itemset i. Table 1.2 presents all the frequent 

itemsets of T. For example, the 1-itemset {A) is frequent because it appears in three 

transactions and its support is 75%. Similarly, both itemsets {B) and {C) have sup- 

port 50%, so they are frequent 1-itemsets. {A, C) is a frequent 2-itemset because both 

items A and C appear together in two transactions, so it has support 50%. However, 

{A, B) is not a frequent itemset because both items A and B appear together in only 

one transaction. 

Many algorithms [25] were proposed for computing frequent itemsets, and the 

most well-known methods are the Apriorz [5, 61 and the FP-growth [24] algorithms. 

More details of both algorithms are presented in sections 2.3.1 and 2.3.2 respectively. 

1.2 Cluster Analysis 

Cluster analysis is an important human activity and it often forms the basis of learning 

and knowledge. An example can be found from a child who learns how to distinguish 

between animals and plants, or between birds and fishes, by continuously improving 

subconscious clustering schemes. Basically, the scheme is learnt by observing the 

properties or characteristics (e.g., the presence of wings) of objects. This type of 

binary property is easy to measure, but some properties may be more difficult to 

measure. An example would be ones that are expressed in a numerical value, e.g., the 

height of a person. 

Example lb:  This example demonstrates the clustering of balls of the same mark. 

Figure 1.1 shows a total of ten balls which are of three different marks. We are inter- 

ested in grouping the balls into three clusters by their marks as shown in figure 1.2. 

Clustering is applicable to  a wide variety of research problems. In the field of 
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Figure 1.1: Balls with marks in random order 

Figure 1.2: Balls in groups 

business, clustering can help marketers discover distinct groups in their customer 

bases and characterize customer groups based on purchasing patterns. In the field 

of medicine, clustering diseases, symptoms of diseases, and cures for diseases often 

leads to useful taxonomies. In the field of biology, it can be used to categorize genes 

with similar functionality and derive plant and animal taxonomies. In the field of 

psychiatry, successful therapy always depends on the correct diagnosis of clusters of 

symptoms such as paranoia, schizophrenia, etc. In archeology, researchers often apply 

cluster analytic techniques to establish taxonomies of stone tools, funeral objects, etc. 

In general, cluster analysis often provides a feasible solution whenever one needs to 

classify a large amount of information into manageable meaningful structures. 

Clustering is a process of partitioning a set of data objects into a set of meaningful 

subclasses, called clusters. Formally, given a collection of n objects each of which is 

described by a set of p attributes, clustering aims to derive a useful division of the 

n objects into a number of clusters. A cluster is a collection of data objects that 

are similar to  one another based on their attribute values, and thus can be treated 

collectively as one group. Clustering is useful in getting insight into the distribution 

of a data set. 
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A clustering algorithm attempts to find natural groups of data  based on similar- 

ity of attributes. The following are some typical requirements of clustering in data 

mining [23]. 

Scalability. Many clustering algorithms work fine on small data  sets; however, 

some of them fail to  handle large data set containing over ten thousands of data 

objects. An immediate solution to  this problem is to perform clustering on a 

subset (or sample) of a given large data set, but it may lead to  biased results. 

High dimensionality. A database can contain several dimensions or attributes. 

Most of the clustering algorithms work well on low-dimensional data,  but may 

fail to  cluster data  objects in high-dimensional space, especially when the data 

objects are very sparse and highly skewed. In high dimensional data  sets, nat- 

ural clusters usually do not exist in the full dimensional space, but only in the 

subspace formed by a set of correlated dimensions. Locating clusters in the 

subspace can be challenging. One typical example is document clustering which 

is also the focus of this thesis. Many clustering algorithms simply construct a 

new dimension for each distinct word in the document set. Due to  the large 

corpus in English, the space usually contains over ten thousands of dimensions, 

which greatly reduces the performance of the algorithm. This problem is also 

closely related to  the issues of scalability and efficiency. 

Arbitrary shape of clusters. Many algorithms perform clustering based on Eu- 

clidean or Manhattan distance measure. Algorithms using this kind of distance 

measurement always tend to  find spherical clusters with similar density and size. 

This limitation often degrades the accuracy. 

Insensitivity t o  the order of input  data. Some clustering algorithms are very 

sensitive to the order of input data. The clustering solutions produced from 

the same set of data objects may be completely different depending on different 

orderings of input data. In other words, the quality of clustering solutions may 

vary substantially and become unpredictable. 
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Noisy data handling. Outliers or erroneous data is a common problem in 

database. A robust clustering algorithm should minimize the impact of this 

noise; otherwise, it may lead to poor clustering accuracy. 

Prior domain knowledge. Many clustering algorithms require the user to specify 

some input parameters. To determine reasonable values of these input param- 

eters, some prior domain knowledge is often needed. However, they are hard 

to estimate in some cases, especially for data sets containing high-dimensional 

objects. Clustering accuracy may degrade drastically if a clustering algorithm 

is too sensitive to these input parameters. This not only burdens users, but also 

makes the quality of clustering difficult to control. 

We will use these requirements to evaluate our clustering method in the conclusion 

of this thesis. The major categories of clustering algorithms are discussed in Chapter 2. 

1.3 What is hierarchical document clustering? 

Document clustering is the automatic organization of documents into clusters or 

groups so that documents within a cluster have high similarity in comparison to one 

another, but are very dissimilar to documents in other clusters. In other words, the 

grouping is based on the principle of maximizing intra-cluster similarity and minimiz- 

ing inter-cluster similarity. The major challenge of clustering is to  efficiently identify 

meaningful groups that are concisely annotated. 

Document clustering differs from other techniques, such as classification [I,  10, 481 

or taxonomy building, in that it is fully automated: there is no human intervention 

a t  any point in the whole process and no labeled documents are provided. Thus, clus- 

tering is also called unsupervised learning because we learn by "observation" rather 

than by "examples". 

The accuracy of the clustering solution is measured by an external evaluation 

method F-measure together with a set of manually pre-classified documents which is 
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also known as the set of natural classes. F-measure first identifies the cluster that can 

best represent a given natural class in the document set, then it measures the accuracy 

of the best cluster against the natural class. Finally, it calculates the weighted aver- 

age on the accuracy of each natural class. Section 5.2 will explain F-measure in details. 

Instead of producing a flat list of clusters, hierarchical document clustering orga- 

nizes clusters into a hierarchy or a tree that facilitates browsing. The parent-child 

relationship among the nodes in the tree can be viewed as topics and subtopics in a 

subject hierarchy. 

1.4 Motivation 

Document clustering has been studied intensively because of its wide applicability in 

areas such as web mining [30, 221, information retrieval [45], and topological analy- 

sis. Another catalyst for developing an effective document clustering algorithm is the 

huge amount of unstructured data on the Internet. The majority of this information 

is in text format, for example, emails, news, web pages, reports, etc. Organizing them 

into a logical structure is a challenging task. More recently, clustering is employed 

for browsing a collection of documents [14] or organizing the query results returned 

by a search engine [51]. It may also serve as a preprocessing step for other data min- 

ing algorithms such as document classification [19]. An ambitious goal of document 

clustering is to  automatically generate hierarchical clusters of documents [29] that is 

similar to  the Yahoo! subject hierarchy. 

Although standard clustering techniques such as k-means [16, 281 can be applied 

to document clustering, they usually do not satisfy the special requirements for clus- 

tering documents: high dimensionality, high volume of data,  ease for browsing, and 

meaningful cluster labels. In addition, many existing document clustering algorithms 

require the user to  specify the number of clusters as an input parameter. Incorrect 

estimation of the value always leads to  poor clustering accuracy. Furthermore, many 

clustering algorithms are not robust enough to  handle different types of document 
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sets in a real-world environment. In some document sets, cluster sizes may vary from 

few to thousands of documents. This variation tremendously reduces the resulting 

clustering accuracy for some of the state-of-the art algorithms. 

The concept of hierarchical clustering and the weaknesses of the standard cluster- 

ing methods formulate the goal of this research: Provide an accurate, efficient, and 

scalable clustering method that addresses the special challenges of document cluster- 

ing. The resulting hierarchy of clusters should facilitate browsing and be suitable for 

further processing by other data mining algorithms. 

1.5 Frequent Itemset-based Hierarchical Cluster- 

ing 

In this thesis, we propose a novel approach, Frequent Itemset-based Hierarchical Clus- 

tering (FIHC), for document clustering based on the idea of frequent itemsets, which 

comes from association rule mining. The intuition of our clustering criterion is that 

there exists some frequent itemsets (sets of common words) for each cluster (topic) in 

the document set. In other words, some minimum fraction of documents in the cluster 

contains these itemsets. Since each cluster has different frequent itemsets, they can 

be used to cluster documents. The major features of our approach are as follows: 

Reduced dimensionality.  As we are using only frequent itemsets, the dimension 

of a document vector, which keeps track of the frequency of the words appearing 

in a document, is drastically reduced. This is a key factor for the efficiency and 

scalability of FIHC. 

0 Consis tent ly  high clustering accuracy. Experimental results show that FIHC 

outperforms the well-known clustering algorithms in terms of accuracy. It is 

robust and consistent even when it is applied to large and complicated document 

sets. 
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Number of clusters as a n  optional input  parameter. Many existing clustering 

algorithms require the user to specify the desired number of clusters as an input 

parameter. FIHC treats it only as an optional input parameter. Close to optimal 

clustering quality can be achieved even when this value is unknown. 

A sensible pruning strategy. Building the hierarchical topic tree from frequent 

itemsets provides a concrete foundation for pruning in case there are too many 

clusters. Pruning does not only remove overly specific clusters, but also increases 

the clustering accuracy by merging similar clusters together. 

Easy to  browse with meaningful cluster labels. Another feature of the topic tree 

is its logical structure for browsing. Each cluster in the tree has a corresponding 

frequent itemset as its cluster label which a user may utilize for browsing. 

Ef i c i en t  and scalable. It  is very common that a real world document set may 

contain a few hundred thousand of documents. Clustering on this high volume 

of data is a challenging task. Our method can complete the clustering process 

within two minutes while some of the traditional clustering algorithms cannot 

even produce a clustering solution after hours of operation. Experiments show 

that our method is significantly more efficient and scalable than all of the tested 

competitors. 

Thesis Organization 

The outline of this thesis is as follows. Chapter 2 briefly discusses few essential topics 

in document clustering and some well-known clustering algorithms. Chapters 3 and 4 

present our algorithm in two stages, cluster construction and tree building, with a 

running example. Chapter 5 shows the experimental results and the comparison with 

other algorithms. We conclude the paper and outline future directions of research in 

Chapter 6. 
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Related Work 

We first briefly review a few essential topics to provide some background knowledge 

in document clustering. Some topics originate in the field of information retrieval 

[45, 311. 

Most document clustering algorithms employ several preprocessing steps including 

removing stop words and stemming on the document set. Stop words are the most 

common words (e.g., "and", "or", "in") in a language, but they do not convey any 

significant information so they are stripped from the document set. Word stemming 

is language-specific algorithm that aims to reduce a word to  its canonical form. For 

example, "computation" might be stemmed to "comput". For clustering purposes, it 

usually does not make any difference whether the stems generated are genuine words 

or not. Stemming does not only conflate different variants of a term to a single repre- 

sentative form, but also reduces the number of distinct terms needed for representing 

a set of documents. A smaller number of distinct terms results in a saving of memory 

space and processing time. 

Each document is represented by a vector of frequencies of remaining items within 

the document. These document  vectors form the vector model  on which all of the 

operations for clustering are performed. There are typically several thousands to ten 

thousands of remaining items after stop words removal and stemming. In other words, 



CHAPTER 2. RELATED WORK 

the vector space still has a very high dimensionality [39] 

As an extra preprocessing step, many document clustering algorithms would re- 

place the actual term frequency of an item by the weighted frequency, i.e., t e r n  

frequency - inverse document frequency (TF-IDF), in the document vector. The idea 

is that if an item is too common across different documents, then it would have little 

discriminating power, and vice versa [45]. Experiments show that TF-IDF increases 

the clustering accuracy in all tested algorithms. The weighted frequency of term k in 

document i is defined as follows: 

where N is the number of documents, dk is the number of documents containing term 

k, fik is the absolute frequency of term k in document i ,  and Wik is the weighted 

frequency of term k in document i. 

Similar to  other document clustering algorithms, our method also employs stop 

words removal, stemming, vector model, and TF-IDF. The effect of TF-IDF on our 

algorithm is explained in Chapter 3. 

To cluster similar documents together, most of the traditional clustering algo- 

rithms require a similarity measure between two documents dl and d2. Many possible 

measures are proposed in the literature, but the most common one is the cosine mea- 

sure [42] and it is defined below: 

similarit y(dl, d2) = cosine(dl, d2) = 
(dl d2) 

II dl ll . II d2 II 
where represents the vector dot product and ( 1  1 1  represents the length of a vector. 

In sections 2.1 and 2.2, we provide an overview of two major categories of document 

clustering, hierarchical and partitioning methods. These traditional methods do not 

address the special problem of high dimensionality in document clustering, but some 

recently proposed frequent itemsets-based clustering methods do. We briefly explain 
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them in section 2.3 and examine the difference between these algorithms and ours. 

Some other clustering methods that are not commonly used for clustering documents 

are presented in section 2.4 for completeness. 

Hierarchical Met hods 

A hierarchical method works by grouping data  objects (documents) into a tree of 

clusters. A hierarchical method can be further classified into agglomerative or divisive 

approach [16, 281. 

2.1.1 Agglomerative and Divisive Hierarchical Clustering 

The agglomerative approach builds the hierarchy from bottom-up. It starts with 

the data objects as individual clusters and successively merges the most similar pair 

of clusters until all the clusters are merged into one cluster which is the topmost 

level of the hierarchy. Algorithms in this family follow a similar template as shown 

in figure 2.1. Note that the similarity between two objects or two clusters can be 

measured using different methods such as the cosine measure in equation 2.2. 

The inter-cluster similarity in step 3 of the algorithm can be computed in different 

ways [28]. In single-link clustering, we consider the similarity between one cluster and 

another cluster to  be equal to  the greatest similarity from any member of one clus- 

ter to  any member of the other cluster. In complete-link clustering, we consider the 

similarity between one cluster and another cluster to  be equal t o  the least similarity 

from any member of one cluster to  any member of the other cluster. In average- 

link clustering, we consider the similarity between one cluster and another cluster to  

be equal t o  the average similarity from any member of one cluster to  any member 

of the other cluster. Different agglomerative algorithms employ different similarity 

measuring schemes. A recent comparison [42] shows that the average-link clustering, 

UPGMA [16, 281, is the most accurate one in its category. 
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1. Compute the similarity between all pairs of clusters and store the result in a 
similarity matrix whose i j t h  entry denotes the similarity between the ith and 
the jth clusters. 

2. Select the most similar pair of clusters and merge them into a single cluster, 
i.e., the total number of clusters is reduced by 1. 

3. Compute similarities between the new cluster and each of the old clusters 

4.  Repeat steps 2 and 3 until a single cluster remains 

Figure 2.1: Agglomerative hierarchical clustering algorithm 

The divisive approach builds the hierarchy from top-down. It starts with all the 

data objects in the same cluster and iteratively split a cluster into smaller pieces, until 

only singleton clusters of individual data objects remain or the distance between the 

two closest clusters is above a certain threshold. 

2.1.2 Evaluation of Hierarchical Methods 

A traditional hierarchical clustering method constructs the hierarchy by subdividing 

a parent cluster or merging similar children clusters. It usually suffers from its inabil- 

ity to perform adjustment once a merge or split decision has been performed. This 

inflexibility may lower the clustering accuracy. Furthermore, due to the fact that a 

parent cluster in the hierarchy always contains all objects of its descendants, this kind 

of hierarchy is not suitable for browsing. The user may have difficulty to locate her 

target object in such a large cluster. 

Our hierarchical clustering method is completely different. We first form all the 

clusters by assigning documents to the most similar cluster and then construct the 

hierarchy based on their inter-cluster similarities. The clusters in the resulting hier- 

archy are non-overlapping. The parent cluster contains only the general documents 
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1. Randomly select k data objects as the initial centroids. 

2. Assign all data objects to  the closest (the most similar) centroid. 

3. Recompute the centroid of each cluster. 

4. Repeat steps 2 and 3 until the centroids do not change. 

Figure 2.2: Basic k-means algorithm 

of the topic. If a document belongs to a more specific topic, then it is assigned to a 

descendant cluster of the parent. This hierarchy is similar to the human-generated 

Yahoo! subject hierarchy and is more suitable for browsing. 

2.2 Part it ioning Met hods 

To construct k clusters, a partitioning method creates all k clusters at  once and 

then iteratively improves the partitioning by moving data objects from one group to 

another. K-means and its variants [14, 28, 331 are the most well-known partitioning 

methods. 

2.2.1 The k-means algorithm and its variants 

The basic k-means algorithm partitions a set of data objects into k clusters so that the 

inter-cluster similarity is low but the intra-cluster similarity is high. The algorithm 

is shown in figure 2.2. 

There are many variants of the k-means method. They may be different in the 

selection of the initial k centroids, the calculation of dissimilarity, and the methods for 

calculating cluster means. In document clustering, [42] demonstrates that one of the 
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1. Select a cluster to split. There are several ways to  pick which cluster to split, but 
experiment shows that there is no significant difference in terms of clustering 
accuracy. Usually, either the largest cluster or the one with the least overall 
similarity is chosen at this step. 

2. Employ the basic k-means algorithm to subdivide the chosen cluster 

3. Repeat step 2 for a constant number of times. Then perform the split that 
produces the clustering with the highest overall similarity. 

4. Repeat the above three steps until the desired number of clusters is reached. 

Figure 2.3: Bisecting k-means algorithm 

variants, bisecting k-means, outperforms the basic k-means as well as the agglomer- 

ative approach in terms of accuracy and efficiency. The bisecting k-means algorithm 

is illustrated in figure 2.3. Strictly speaking, the bisecting k-means algorithm is a 

divisive hierarchical clustering method. 

2.2.2 Evaluation of Partitioning Methods 

Both the basic and bisecting k-means algorithms are relatively efficient and scalable. 

The complexity of both algorithms is linear in the number of documents. In addition, 

they are so easy to implement that they are widely used in different clustering appli- 

cations. 

A major disadvantage of k-means is that it requires the user to  specify k, the 

number of clusters, in advance which may be impossible to estimate in some cases. 

Incorrect estimation of Ic may lead to poor clustering accuracy. Also, it is not suitable 

for discovering clusters of very different size which is very common in document clus- 

tering. Moreover, the k-means algorithm is sensitive to noise and outlier data objects 

as they may substantially influence the mean value, which in turn lower the clustering 
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accuracy. The k-medoids algorithm [28] is proposed to resolve this problem. Instead 

of using the mean value as a reference point for clustering, the medoid, which is the 

most centrally located object in a cluster, can be used. The k-medoids algorithm is 

more robust than k-means, but it is less efficient than k-means. 

A partitioning method aims for flat clustering, but the repeated application of 

the same method can also provide a hierarchical clustering. Similarly, a hierarchical 

method can be used to generate a flat partition of k clusters. 

2.3 Frequent Itemset-based Methods 

Both hierarchical and partitioning methods do not really address the problem of high 

dimensionality in document clustering. Frequent itemset-based clustering method is 

shown to be a promising approach for high dimensionality clustering in recent liter- 

ature [9]. It reduces the dimension of a vector space by using only frequent itemsets 

for clustering. 

Frequent itemset extraction is a preliminary step for the clustering methods, in- 

cluding ours, in this category. Therefore, we first briefly mention two well-known 

methods, Apriori [5, 61 and FP-growth [24], for this purpose. Details of the algo- 

rithms can be found in the referenced papers. 

2.3.1 The Apriori Algorithm 

The Aprori algorithm [5, 61 is a well-known method for computing frequent itemsets 

in a transaction database. Corresponding with the concept of transaction data, we 

treat documents as transactions, and words in documents as items in transactions. 

The Apriori algorithm uses a level-wise search, where k-itemsets are used to explore 

(k + 1)-itemsets, to mine frequent itemsets from the database. The generate-and-test 

approach of the algorithm works well in terms of reducing the candidate set. How- 

ever, a huge number of candidate itemsets may be generated. Suppose there are m 
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frequent 1-itemsets. Then candidate 2-itemsets are generated. In addition, 

the algorithm requires multiple scans of the entire database to check for frequent 

itemsets. More specifically, it requires (n  + 1) scans, where n is the size of the largest 

frequent Ic-itemset. These bottlenecks may greatly affect the overall efficiency of fre- 

quent itemset-based clustering methods. Many variations of the Apriori and frequent 

itemset extraction algorithm have been proposed [25, 23, 2, 31 to address these weak- 

nesses. Some examples are hash-based technique, transaction reduction, partitioning, 

sampling, and dynamic itemset counting. 

2.3.2 The Frequent Pattern-growth Algorithm 

To avoid generating a huge set of candidate itemsets as in the Apriori algorithm, [24] 

presents an efficient frequent itemset extraction algorithm, Frequent-pattern growth 

(FP-growth). This algorithm adopts a divide-and-conquer approach to minimize the 

candidate generation process to only those most likely to be frequent, and employs a 

compact prefix-tree data structure, frequent-pattern tree (FP-tree), to  avoid repetitive 

scanning of the database. 

The FP-growth algorithm performs exactly two scans of the transaction database 

and mines on the compact data structure, FP-tree, to find all frequent itemsets with- 

out generating all possible candidate sets. [24] shows that FP-growth is about an 

order of magnitude faster than Apriori in large databases. This gap grows wider 

when the minimum support threshold reduces. Although the FP-growth algorithm is 

efficient, sometimes, it is infeasible to construct a main memory-based FP-tree when 

the database is large, which is very common for the case of document clustering. To 

create a scalable version of FP-growth, we can first partition the database into a set 

of projected databases, and then construct an FP-tree and mine it in each projected 

database [23]. 
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2.3.3 Transaction Clustering 

[47] introduces a new criterion for clustering transactions using frequent itemsets. The 

intuition of the criterion is that there should be many frequent items within a cluster 

and little overlapping of such items across clusters. 

In principle, this method can also be applied to document clustering by treating 

a document as a transaction; however, the method does not create a hierarchy for 

browsing. The repeated application of the same clustering method on each level of 

clusters can provide a hierarchy, but the resulting hierarchy, similar to  the traditional 

hierarchical methods, suffers from the problem that the parent cluster contains too 

many documents. As a result, it is not suitable for browsing. 

2.3.4 Hierarchical Frequent Term-based Clustering 

The recently developed algorithm Hierarchical Frequent Tern-based Clustering (HFTC) 

[9] attempts to address the special requirements in document clustering using the no- 

tion of frequent itemsets. HFTC suggests that this frequent term-based approach is 

efficient and the resulting hierarchy is natural for browsing. Although both HFTC 

and our algorithm are frequent itemsets-based hierarchical clustering algorithms, they 

are completely different in terms of their clustering criterion, their strategy for iden- 

tifying clusters, and their hierarchical structure results. HFTC greedily picks up the 

next frequent itemset (representing the next cluster) to minimize the overlap of the 

documents that contain both the itemset and some remaining itemsets. The clus- 

tering result very much depends on the order of picking up itemsets, which in turn 

depends on the greedy heuristic used. The resulting clusters are further partitioned 

applying the same method to build a lattice of overlapping clusters. In our algorithm, 

we do not follow a sequential order of selecting clusters. Rather, we assign documents 

to  the best clusters with all clusters available. Experiments show that our algorithm 

produces better clusters and is more scalable. 
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2.4 Other Clustering Methods 

The clustering methods presented in this section are not commonly used or in some 

cases, are not even suitable for clustering documents; however, they play important 

roles in cluster analysis in data mining. We introduce the spirit behind these methods 

which may initiate some ideas on document clustering for future research. 

2.4.1 Density-based Met hods 

Density-based clustering methods are based on a simple concept: clusters are dense 

regions in the data space that are separated by regions of lower object density. Their 

general idea is to  continue growing the given cluster as long as the density in the 

neighborhood exceeds some threshold. In other words, for each data point within a 

given cluster, the neighborhood of a given radius has to contain a t  least a minimum 

number of data points. Methods in this category are good a t  filtering out outliers and 

discovering clusters of arbitrary shapes. The well-known algorithms in this category 

are DBSCAN [18] and OPTICS [8]. 

2.4.2 Grid-based Methods 

Grid-based clustering methods quantize the space into a finite number of cells that 

form a grid structure. Then all of the clustering operations are performed on this 

grid structure. The computational complexity of all of the previously mentioned 

clustering methods is a t  least linearly proportional to the number of objects. The 

unique property of grid-based clustering approach is that its computational complexity 

is independent of the number of data objects, but dependent only on the number of 

cells in each dimension in the quantized space. 

STING (STatistical INformation Grid) [49] is a typical grid-based clustering method 

which divides the spatial area into rectangular cells. The algorithm constructs several 

levels of such rectangular cells, and these cells form a hierarchical structure; that is, 

each cell is partitioned to form a number of cells a t  the next lower level. Figure 2.4 
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(I-1)th layer 

ith layer 

(i1)th layer (bottom) 

Figure 2.4: A hierarchical structure for STING clustering 

illustrates the idea. Statistical information, such as means, maximum, and minimum 

values, of each grid cell are precomputed and stored for later query processing. The 

clustering quality of STING highly depends on the the granularity of the lowest level 

of the grid structure. If the granularity is too coarse, then the accuracy of clustering 

solution will degrade. However, if the granularity is too fine, the processing time will 

increase drastically. Another limitation of STING is that it can only represent clusters 

in either horizontal or vertical rectangular shape. Although this method is efficient, 

its limitations substantially lower the accuracy of the clustering result. 

CLIQUE (CLustering In QUEst) [4] is a hybrid clustering method that combines 

the idea of both grid-based and density-based approaches. Its goal is to perform clus- 

tering on high dimensional data in large databases efficiently. CLIQUE first partitions 

the n-dimensional data space into non-overlapping rectangular units. It attempts to 

discover the overall distribution patterns of the data set by identifying the sparse and 

dense units in the space. A unit is dense if the fraction of total data points contained 

in it exceeds an input model parameter. It explores the space based on a simple 
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property of the candidate search space: If a k-dimensional unit is dense, then its pro- 

jections in ( I c  - 1)-dimensional space are also dense. This heuristic greatly reduces the 

search space and is the key factor of efficiency of CLIQUE; however, the simplicity of 

the algorithm often degrades the accuracy of the clustering result. 
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Constructing Clusters 

The agglomerative or partitioning methods are "document-centered" in that the pair- 

wise similarity between documents plays a central role in constructing a cluster. Our 

method is "cluster-centered" in that we measure the "cohesiveness" of a cluster di- 

rectly, using frequent itemsets. In this chapter, we first introduce some definitions 

and then present the cluster construction method. 

A global frequent itemset refers to a set of items (words) that appear together in 

more than a user-specified fraction of the document set. A global frequent i t em  refers 

to an item that belongs to some global frequent itemset. The global support of an 

itemset is the percentage of documents containing the itemset. A global frequent 

itemset containing k items is called a global frequent k-itemset. 

The main idea of the clustering stage is based on a simple observation: the doc- 

uments under the same topic should share a set of common words. Some minimum 

fraction of documents in the document set must contain these common words, and 

they correspond to  the notion of global frequent itemsets which form the basis of the 

initial clusters. An essential property of frequent itemset is its representation of words 

that commonly occur together in documents. To illustrate that this property is im- 

portant for clustering, we consider two global frequent items, "apple" and "window". 

The documents that contain the word "apple" may discuss about fruits or farming. 
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The documents that contain the word "window" may discuss about renovation. How- 

ever, if both words occur together in many documents, then we may identify another 

topic that discusses about operating systems or computers. By precisely identifying 

these hidden topics as the first step and then clustering documents based on them, 

we can improve the accuracy of the clustering solution. 

To generate all global frequent itemsets from a document set, we apply the Apriori 

or the FP-growth algorithm on the document vectors with a user-specified minimum 

global support. While mining the global frequent itemsets, we treat documents as 

transactions, and words in documents as items in transactions. Then for each docu- 

ment, we store the weighted frequencies only for global frequent items. We call these 

frequencies the feature vector for the document. This low-dimensional feature vector 

is used in place of the original high-dimensional document vector. In other words, our 

vector model is formed by the feature vectors rather than by the document vectors. 

The reduced dimension is equal to the number of global frequent items. As a result, 

it significantly improves the efficiency and scalability of all subsequent clustering op- 

erations. 

Example 3a: Consider the twelve documents in table 3.1. They are selected from the 

Classic [13] document set and their document names indicate their natural classes. 

After applying the Apriori algorithm to the document vectors, we compute the global 

frequent items: "flow", "form", "layer", "patient", "result", and "treatment". Thus, 

each document is represented by a feature vector which is supposed to be a vector of 

inverse document frequencies (IDF), as discussed in Chapter 2. For the purpose of 

better understandability, however, we use simply the frequency of an item, i.e., the 

number of occurrences of a word in a document, without applying TF-IDF in the 

running example in this thesis. For example, the feature vector of document med.6 is 

(0, 0, 0, 9, 1, 1) which represents the frequencies of the global frequent items "flow", 

"form", "layer", "patient", "result", and "treatment" in document med.6 respectively. 

The twelve feature vectors in table 3.1 form the vector model for our subsequent clus- 

tering operations. 
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Table 3.1: Document set 

Table 3.2: Global frequent itemsets 
(minimum global support = 35%) 

Global frequent itemset 

{flow) 
{form) 

{layer) 
{patient} 
{result) 

{treatment) 
{flow, layer) 

{patient, treatment) 

Global support 
42% 
42% 
42% 
50% 
42% 
42% 
42% 
42% 
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Table 3.2 specifies all the global frequent k-itemsets with their global supports. 

For example, the global support of the global frequent item {patient) is 50% because 

half of the documents in the set contain the item "patient". In this example, an 

itemset is frequent only if its global support is larger than or equal to 35%. 

The cluster construction has two steps: constructing initial clusters and making 

clusters disjoint. 

3.1 Constructing Initial Clusters 

An initial cluster is constructed for each global frequent itemset. All the documents 

containing this itemset are included in the same cluster. Since a document usually 

contains more than one global frequent itemset, the same document may appear in 

multiple initial clusters, i.e., initial clusters are overlapping. The purpose of initial 

clusters is to ensure the property that all the documents in a cluster contain all the 

items in the global frequent itemset that defines the cluster. These items can be con- 

sidered as the mandatory items for every document in the cluster. We use this global 

frequent itemset as the cluster label to identify the cluster. The cluster label has two 

other purposes. First, it establishes the hierarchical structure in the tree construction 

stage. Second, it is presented to the user to facilitate browsing. We remove the over- 

lapping of clusters in section 3.2. 

Example 3b: For each global frequent itemset in table 3.2, we construct a cluster 

where its cluster label is formed by the items in the corresponding global frequent item- 

set. For example, the cluster label of C(pntient, treatment) is {patient, treatment). 

Let us use document med.6 to illustrate how to construct the initial clusters. Doc- 

ument med.6 appears in clusters C(patient, treatment), C(patient) , C(resu1t) , and 

C(treatment) because it contains all the global frequent itemsets of these clusters, 

i.e., it contains all the cluster labels of these clusters. The initial clusters are shown 

in table 3.3. The third column is explained in the next example. 
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Table 3.3: Initial clusters 
(minimum cluster support = 70%) 

3.2 Making Clusters Disjoint 

Cluster frequent items 
& their cluster supports (CS) 
{flow, CS=100%), 
{layer, CS=100%) 
{form, CS=100%) 

{layer, CS=100%), 
{flow, CS=100%) 
{patient, CS=100%), 
{treatment, CS=83%} 
{result, CS=100%), 
{patient, CS=80%), 
{treatment, CS=80%) 
{treatment,CS=lOO%), 
{patient, CS=100%), 
{result, CS=80%) 
{flow, CS= loo%), 
{layer, CS=100%) 
{patient, CS=100%), 
{treatment, CS=100%), 
(result, CS=80%) 

Cluster 

C (flow) 

C (form) 

C (layer) 

C (patient) 

C (result) 

C(treatment) 

C(flow, layer) 

C(patient, treatment) 

Each document belongs to one or more initial clusters (all documents that do not be- 

long to any initial cluster are assigned to a "null" cluster). Therefore, initial clusters 

overlap. In this step, we assign a document to the "best" initial cluster so that each 

document belongs to exactly one cluster. This step also guarantees that every docu- 

ment in the cluster still contains the mandatory items (i.e., the items in the cluster 

label). 

Documents in cluster 

cran. 1, cran.2, cran.3, 
cran.4, cran.5 
cisi.1, cran.1, cran.3, 
med.2, med.5 
cran.1, cran.2, cran.3, 
cran.4, cran.5 
med.1, med.2, med.3, 
med.4, med.5, med.6 
cran.3, med. 1, med.2, 
med.4, med.6 

med.l,med.2,med.3, 
med.4, med.6 

cran. 1, cran.2, cran.3, 
cran.4, cran.5 
med.1, med.2, med.3, 

Intuitively, an initial cluster Ci is good for a document docj if there are many 

I med.4, med.6 
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global frequent items in docj that appear in many documents in Ci. Thus, we can 

consider the set of frequent items of each cluster as a reference point for the cluster, 

and then use these cluster frequent items for clustering similar documents. Formally, 

we say that an item x is cluster frequent in a cluster Ci if x is contained in some min- 

imum fraction of documents in Ci. The cluster support of x in Ci is the percentage of 

the documents in Ci that contain x. Example 3c illustrates how to compute cluster 

frequent items from initial clusters. 

Example 3c: The third column in table 3.3 shows the cluster frequent items and 

their cluster supports for each initial cluster. For example, the cluster frequent items 

of cluster C(patient, treatment) are "patient", "treatment", and "result". Both "pa- 

tient" and "treatment" have cluster supports 100% because all the documents in the 

cluster contain these items. The cluster support of "result" is 80% because four out 

of the five documents contain this item. 

Equation 3.1 measures the goodness of an initial cluster Ci for a document docj. 

To make clusters non-overlapping, we assign each docj to the initial cluster Ci of the 

highest scorei. After this assignment, each document belongs to exactly one cluster. 

where x represents a global frequent item in docj and the item is also cluster frequent 

in Ci, x' represents a global frequent item in docj that is not cluster frequent in Ci, 

n(x) is the weighted frequency of x in the feature vector of docj, and n(x1) is the 

weighted frequency of x' in the feature vector of docj. 

The weighted frequencies n(x) and n(x1) are defined by the standard inverse doc- 

ument frequency (TF-IDF) of items x and x' respectively, as discussed in Chapter 2. 

Let us explain the rationale behind the score function. The first term of the function 
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rewards cluster Ci if a global frequent item x in docj is cluster frequent in Ci. In order 

to  capture the importance (weight) of item x in different clusters, we multiply the 

frequency of x in docj by its cluster support in Ci. The second term of the function 

penalizes cluster Ci if a global frequent item x' in docj is not cluster frequent in Ci. 

The frequency of x' is multiplied by its global support which can be viewed as the 

importance of x' in the entire document set or as the weight of the penalty on this 

item. This part encapsulates the concept of dissimilarity into the score. 

A unique property of our score function is that the local frequency, i.e., the number 

of occurrences of an item in a document, is taken into account as part of the cluster- 

ing criterion. This is different from other frequent itemset-based document clustering 

methods [9, 471 where only the presence or the absence of an item in a document is 

considered, but the local frequency, which is an important piece of information, is not 

utilized. To understand why the local frequency is crucial, consider a global frequent 

item "tennis" that appears twenty times in document dock and a global frequent item 

"soccer" that appears only once in dock. Suppose there are two clusters: one is about 

tennis, and another one is about soccer. If the frequency of an item in dock is ignored, 

then both global frequent items are considered to be equally important. Nevertheless, 

it is more sensible to classify dock into the "tennis" cluster, rather than the "soccer" 

cluster. This important insight is encapsulated in our score function. 

Example 3d: Consider table 3.3 again. To find the most suitable cluster for doc- 

ument nzed.6, for example, we need to calculate its scores against each of its initial 

cluster: 

Score(C(patient) t med.6) = 9 * 1 + 1 * 0.83 - 1 * 0.42 = 9.41 

Score(C(resu1t) t med.6) = 10.6 

Score(C(treatment) t med.6) = 10.8 

Score(C(patient , treatment) t med.6) = 10.8 
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Cluster 

C(flow) 

C (form) 
C (layer) 

C(patient) 

Table 3.4: Disjoint clusters 

C(resu1t) 
C (treatment) 

C(flow, layer) 
C(patient, treatment) 

We use Score(C(patient) t med.6) to explain the calculation. The global fre- 

quent items in med.6 are "patient", "result", and "treatment". Their frequencies in 

the feature vector are 9, 1, and 1 respectively. "Patient" and "treatment" are cluster 

frequent in cluster C(patient); hence these two items appear in the rewarding part of 

the function and their frequencies are multiplied by their corresponding cluster sup- 

ports 1 and 0.83 respectively. "Result" is not cluster frequent in cluster C(patient); 

therefore, it appears in the penalty part and its frequency is multiplied by its global 

support 0.42. 

Documents in cluster 

cran. 1, cran.2, cran.3, 
cran.4, cran.5 
cisi. 1 

med.5 

After computing the scores against each of its initial cluster, both clusters C(treatment) 

and C(patient, treatment) get the same highest score. Document med.6 is assigned 

to C(patient, treatment), which has a larger number of items in its cluster label, i.e., 

a cluster with a more specific topic. After assigning each document to a cluster, ta- 

Cluster frequent items 
& their cluster supports (CS) 
{flow, CS= loo%), 
{layer, CS=100%) 
{form, CS=100%) 
none 
{patient, CS= loo%), 
{treatment, CS=83%') 

med. 1, med.2, med.3, 
med.4, med.6 

ble 3.4 shows the disjoint clusters. Ignore the third column at this moment. 

none 
{treatment, CS=100%), 
{patient, CS=100%), 
{result, CS=80%) 
none 
{patient, CS=100%), 
{treatment, CS=100%), 
{result, CS=80%) 
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There is an important difference between the cluster label and the set of cluster 

frequent items associated with a cluster. A cluster label is a set of mandatory items 

in the cluster because every document in the cluster must contain all the items in 

the label. On the other hand, a cluster frequent item is required to appear in some 

fraction of documents in the cluster. We shall use the cluster label as the identity of 

a cluster and the set of cluster frequent items as the topic description of a cluster. 

After assigning all documents to their best initial clusters, we need to recompute 

the cluster frequent items for each cluster in order to reflect the updated clustering. 

While re-computing the cluster frequent items of cluster Ci, we also include the doc- 

uments in all of its potential descendants, whose cluster labels are the superset of 

Ci's label. The intuition is that potential descendants are likely to be subtopics of a 

parent; therefore, it is sensible to include them. 

Example 3e: The third column in table 3.4 reflects the updated cluster frequent 

items in the non-overlapping clusters. The potential descendant of cluster C(patient) 

is cluster C(patient, treatment). While recomputing the cluster frequent items of 

C(patient), we would consider all the documents in both C(patient, treatment) and 

C(patient). The cluster support of the item "treatment" in cluster C(patient) is 83% 

because five out of the six documents contain this item. 
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Building the Cluster Tree 

The set of clusters produced by the previous stage can be viewed as a set of topics and 

subtopics in the document set. In this section, a cluster (topic) tree is constructed 

based on the similarity among clusters. In case a tree contains too many clusters, 

two pruning methods are applied to efficiently shorten and narrow a tree by merging 

similar clusters together. 

4.1 Tree Construction 

In this section, we explain how to construct a non-overlapping hierarchical cluster 

tree. The resulting cluster tree has two objectives: to form a foundation for pruning 

and to provide a logical structure for browsing. Each cluster has exactly one parent. 

The topic of a parent cluster is more general than the topic of a child cluster and they 

must be similar to a certain degree. 

Recall that each cluster uses one global frequent k-itemset as its cluster label. Such 

clusters are called k-clusters in the following. In the cluster tree, the root node, which 

collects the unclustered documents and has cluster label "null", constitutes level 0. 

The 1-clusters appear in level 1 of the tree, and so forth for every level. The depth of 

the tree is equal to the size of the largest global frequent k-itemsets. 
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3ort all clusters by the number of items in their cluster labels in descending order; 
For each cluster Ci in the list { 

/ /  remove empty leaf node 
If Ci contains no document and it has no children clusters then { 

Skip this empty cluster Ci, and try cluster Ci+l; 

} 

// identify all potential parents 
k = the number of items in Ci's cluster label; 
PotentialParents = Find all clusters containing cluster 
the cluster label is a subset of Ci's cluster label; 

label with k - 1 items and 

// choose the most similar parent 
doc(Ci) = Merge all documents in the subtree Ci into a single combined document; 
Compute the scores of doc(Ci) against each PotentialParents; 
Set the potential parent cluster that has the highest score to be the parent of Ci; 

} 

Figure 4.1: Tree construction algorithm 

Figure 4.1 illustrates the tree construction algorithm. As k-clusters always appear 

in a higher level than (k - 1)-clusters in a tree, we can build a tree bottom-up by 

choosing a parent for each cluster starting from the highest level. Given that a cluster 

label represents the mandatory items in a cluster, we can construct a natural hierar- 

chy based on these labels as follows. For each k-cluster Ci, we identify all potential 

parents which are ( k  - 1)-clusters and have the cluster label being a subset of Ci's 

cluster label. The next step is to  choose the "best" parent among these potential par- 

ents. The criterion for selecting the best parent is similar to choosing the best cluster 

for a document in section 3.2. We first merge all the documents in the subtree of Ci 

into a single conceptual document doc(Ci), and then compute the score of doc(Ci) 

against each potential parent. The one which has the highest score would become 

the parent of Ci. In actual implementation, the operation of merging documents into 

doc(Ci) can be accomplished efficiently by adding up all the feature vectors in the 

clusters. Note that all empty leaf nodes are removed during the tree construction. 
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Figure 4.2: Cluster tree built from table 3.4 

It is possible that a small fraction of non-leaf nodes in the tree are empty clusters. 

Experiments show that these empty non-leaf nodes often have many children clusters 

containing many documents. This situation occurs when documents under a topic 

are well categorized into subtopics. An empty node may serve as a good intermediate 

node for organizing subtopics under the same category, which in turn ease browsing. 

Thus, these empty non-leaf nodes should be kept. In the next pruning step, some of 

them will be pruned or become non-empty. 

Example 4a: Consider the clusters in table 3.4. We start to build the tree from 

2-clusters (i.e., clusters with 2-itemsets as the cluster label). Cluster C(flow, layer) is 

removed since it is an empty leaf node. Next, we select a parent for C(patient, treatment). 

The potential parents are C(patient) and C(treatment). C(patient) gets a higher 

score and becomes the parent of C(patient, treatment). Figure 4.2 depicts the result- 

ing cluster tree. 
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4.2 Tree Pruning 

A cluster tree can be broad and deep, especially when a low minimum global support 

is used. Therefore, it is likely that documents of the same topic are distributed over 

several small clusters, which would lead to poor clustering accuracy. The aim of tree 

pruning is to merge similar clusters in order to produce a natural topic hierarchy 

for browsing and to increase the clustering accuracy. Before introducing the pruning 

methods, we will first define the inter-cluster similarity, which is a key notion for 

merging clusters. 

To measure the inter-cluster similarity between two clusters Ca and Cb, we mea- 

sure the similarity of Cb to Ca, and the similarity of Ca to Cb. The idea is to treat one 

cluster as a document (by combining all the documents in the cluster) and measure 

its score against another cluster using our score function defined in equation 3.1. The 

only difference is that the score has to be normalized to avoid the effect of varying 

document sizes. Formally, the similarity of Cj to Ci is defined as: 

where Ci and Cj are two clusters; doc(Cj) stands for combining all the documents 

in the subtree of Cj into a single document; x represents a global frequent item in 

doc(Cj) that is also cluster frequent in Ci; x' represents a global frequent item in 

doc(Cj) that is not cluster frequent in Ci; n(x) is the weighted frequency of x in the 

feature vector of doc(Cj); n(xl) is the weighted frequency of x' in the feature vector 

of doc(Cj). 

To explain the normalization by ex n(x) + ex, n(xl), notice that the global sup- 

port and cluster support in the score function are always between 0 and 1. Thus, 

the maximum value of the score is ex n(x) and the minimum value of the score is 

- Ex, n(xl). We can normalize the score by dividing it by ex n(x) + ex, n(xl), and 

the normalized score is within the range of [-1,1]. To avoid negative similarity values, 
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Scan the tree from bottom-up; 
For each non-leaf node Ci in the tree { 

Calculate the Inter-Sim of Ci with each of its children including their 
descendants; 
Prune the child cluster if the Inter-Sim is above 1; 

} 

Figure 4.3: Child pruning algorithm 

we add the term + 1. As a result, the range of the Sim function is [0,2]. We define the 

inter-cluster similarity between Ca and Cb as the geometric mean of two normalized 

scores Sim(Ca t Cb) and Sim(Cb t C,): 

where Ca and Cb are two clusters including their descendants; Sim(Ca t Cb) is the 

similarity of Cb against Ca; Sim(Cb t C,) is the similarity of Ca against Cb. 

The advantage of the geometric mean is that two clusters are considered to be 

similar only if both values of Sim(C, t Cb) and Sim(Cb t C,) are high. Given 

that the range of Sim function is [0,2], the range of Inter-Sim function is also [0,2]. 

Higher values imply higher similarity between two clusters. An Inter-Sim value be- 

low 1 implies the weight of dissimilar items has exceeded the weight of similar items. 

Hence, the Inter-Sim value of 1 serves as a good threshold in distinguishing whether 

two clusters are similar. 

We now present two pruning methods. 

4.2.1 Child Pruning 

The objective of child pruning is to efficiently shorten a tree by replacing child clusters 

by their parent. The pruning criterion is based on the inter-cluster similarity between 
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Figure 4.4: Cluster tree after child pruning 

a parent and its child. A child is pruned only if it is similar to its parent; therefore, 

child pruning does not degrade the purity of the parent. The rationale behind this 

method is that when a subtopic (e.g. tennis ball) is very similar to its parent topic 

(e.g. tennis), then the subtopic is probably too specific and can be removed. 

The procedure is presented in figure 4.3. It scans a tree from bottom-up. For each 

non-leaf node, we calculate the Inter-Sim with each of its children together with 

their descendants and prune the child cluster if the Inter-Sim is above 1. When a 

cluster is pruned, its children become the children of their grandparent. Note that 

child pruning is only applicable from level 2 down to the bottom of a tree since it 

is illogical to compare clusters at level 1 with the root, which collects unclustered 

documents. 

Example 4b: Consider figure 4.2. To determine whether cluster C(patient, treatment) 

should be pruned, the inter-cluster similarity between C(patient) and C(patient, treatment) 

is calculated as follows: 
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Sim(C(patient) +- C(patient, treatment)) 

= (30 * 1 + 9 * 0.83 - 1 * 0.42 - 8 * 0.42) / 48 + 1 = 1.70 

Sim(C(patient, treatment) t C(patient)) 

= (34 * 1 + 8 * 0.8 + 9 * 1 - 2 * 0.42) / 53 + 1 = 1.92 

Inter-Sim(C(patient) + C(patient, treatment)) 

= (1.70 * 1.92); = 1.81 

To calculate Sim.(C(patient) t C(patient, treatment)), we combine all the doc- 

uments in cluster C(patient, treatment) by adding up their feature vectors. The 

summed feature vector is (0, 1, 0, 30, 8, 9). Then we calculate the score of this com- 

bined document against C(patient) and normalize the score by the sum of the frequen- 

cies which is 48. Sim(C(patient, treatment) t C(patient)) is computed using the 

same method. Since the inter-cluster similarity is above 1, cluster C(parent, treatment) 

is pruned. See figure 4.4. 

4.2.2 Sibling Merging 

Sibling merging narrows a tree by merging similar subtrees at level 1. It resolves the 

problem that a natural class may split into different subtrees. It is a key factor for 

yielding high clustering accuracy. 

Figure 4.5 shows the sibling merging algorithm. The procedure is to calculate the 

Inter-Sim for each pair of clusters at level 1 of a tree. We then keep merging the clus- 

ter pair that has the highest Inter-Sim until the user-specified number of clusters is 

reached. In case a user has not specified the desired number of clusters, the algorithm 

would terminate when all cluster pairs have Inter-Sim below or equal to 1. The pair- 

wise comparison ensures that only similar clusters are merged. This often becomes 

a scalability bottleneck in agglomerative algorithms. However, in our algorithm, the 

number of non-empty clusters at level 1 is always limited by the number of global 

frequent items. Thus, it does not affect the scalability of our method. Applying this 
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For each pair of clusters at level 1 of the tree { 
Calculate the Inter-Sim together with their descendants; 
Store the result in a matrix; 

Repeat { 
Select the cluster pair that has the highest Inter-Sim; 
Merge the smaller cluster into the larger cluster with their descendants; 
Update the inter-cluster similarity matrix; 

) Until the user specified number of clusters are left; 

Figure 4.5: Sibling merging algorithm 

method to every level in the tree is too computationally expensive. The child pruning 

method, however, can efficiently achieve the same goal by pruning similar children to 

their parent. 

Figure 4.6 demonstrates how the merge should be performed. Suppose we would 

like to merge cluster C(b) into cluster C(a). All the documents of C(b) are moved 

into C(a) and all children clusters of C(b) are moved under C(a). 

Example 4c: Consider the tree in figure 4.4. Sibling merging computes the Inter-Sim 

for each pair of clusters at the level 1 as in table 4.1. If the user has not specified 

the desired number of clusters, then FIHC would terminate and return the tree as in 

figure 4.4. Suppose the user has specified the number of clusters to 2. Then the algo- 

rithm would prune one cluster at level 1 based on the inter-cluster similarity among 

clusters C( f low), C( f orm), and C(patient). Since C( f low) and C( f orm) is the pair 

with the highest Inter-Sim, the smaller cluster C( form) would merge with the larger 

cluster C(f1ow). Figure 4.7 depicts the resulting tree. 
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Figure 4.6: Sibling merged tree 
Note: a,  b, c, d l  el and f are global frequent items. They form the cluster labels. 

Table 4.1: Inter-cluster similarity calculation 

Figure 4.7: Cluster tree after child pruning and sibling merging 
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Experimental Evaluation 

This section presents the experimental evaluation of our method (FIHC) and com- 

pares its result with several popular document clustering algorithms, agglomerative 

UPGMA 116, 281, bisecting k-means [16, 28, 421, and HFTC [9]. We make use of the 

CLUTO-2.0 Clustering Toolkit [27] to generate the results of UPGMA and bisecting 

k-means. For HFTC, we obtained the original Java program from the author and then 

compiled the program into Windows native code to avoid the overhead of the Java 

Virtual Machine. All algorithms, except HFTC, employ IDF as a preprocessing step. 

HFTC applies its own preprocessing technique, term frequency variance selection. We 

use the Apriori algorithm to extract global frequent itemsets in both HFTC and our 

method. The produced results are then fetched into the same evaluation program to 

ensure fair comparison across all algorithms. 

Data Sets 

Five data sets which have been widely used in document clustering research [42,9] were 

used for our evaluation. They are heterogeneous in terms of document size, cluster 

size, number of classes, and document distribution. Their general characteristics are 

summarized in table 5.1. The smallest of these data sets contained 1,504 documents 

and the largest contained 8,649 documents. To ensure diversity in the data sets, we 

obtained them from different sources. For all data sets, we applied a stop-list to 
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Table 5.1: Summary descriptions of data sets 

Data Set 

Classic4 
Hztech 
Re0 

Reuters 
Wau 

remove common words, and the words were stemmed using Porters suffix-stripping 

algorithm [37]. Each document is pre-classified into a single topic, i.e., a natural class. 

The class information is utilized in the evaluation method for measuring the accuracy 

of the clustering result. During the cluster construction, the class information is 

hidden from all clustering algorithms. 

The Classic4 data set is combined from the four classes CACM, CISI, CRAN, 

and MED abstracts [13]. It was widely used to evaluate various information retrieval 

systems in the past. The Hztech data set was derived from the San Jose Mercury 

newspaper articles that are distributed as part of the TREC collection [43]. It contains 

documents about computers, electronics, health, medical, research, and technology. 

The Wap data set was originally from the WebAce project [22]. Each document 

corresponds to a web page listed in the Yahoo! subject hierarchy [50]. A recent 

research [35] uses this Wap data set to represent the characteristics of web pages in a 

comprehensive comparison of document clustering algorithms. Data sets Reuters and 

Re0 were extracted from newspaper articles [34]. For both data sets, we only use the 

articles that are uniquely assigned to exactly one topic for evaluation purpose. All of 

these data sets, except Reuters, can also be obtained from [27]. 

Number of 
Documents 

7094 
2301 
1504 
8649 
1560 

Number of 
Classes 

4 
6 
13 
65 
20 

Class Size 

1033 - 3203 
116 - 603 
11 - 608 
1 - 3725 
5 - 341 

Average 
Class Size 

1774 
384 
116 
131 
78 

Number of 
Terms 
12009 
13170 
2886 
1664 1 
8460 
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5.2 Evaluation Method: F-measure 

A commonly used external measurement, the F-measure [33, 421, is employed to eval- 

uate the accuracy of the produced clustering solutions. It is a standard evaluation 

method for both flat and hierarchical clustering structures. It produces a balanced 

measure of precision and recall. We treat each cluster as if it were the result of a 

query and each class as if it were the relevant set of documents for a query. The 

recall, precision, and F-measure for natural class Ki and cluster Cj are calculated as 

follows: 

where nij is the number of members of class Ki in cluster Cj 

2 * Recall (Ki, Cj)  * Precision(Ki, Cj)  
F(Ki ,  Cj) = 

Recall(Ki, Cj)  + Precision(Ki, Cj)  

F (Ki, Cj)  represents the quality of cluster Cj in describing class Ki. While com- 

puting F(Ki,  Cj)  in a hierarchical structure, all the documents in the subtree of Cj 

are considered as the documents in Cj. The overall F-measure, F(C), is the weighted 

sum of the maximum F-measure of all the classes as defined below: 

where K denotes the set of natural classes; C denotes all clusters at all levels; lKil 

denotes the number of documents in class Ki; and ID1 denotes the total number of 

documents in the data set. 
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Taking the maximum of F(Ki ,  Cj) can be viewed as selecting the cluster that can 

best describe a given class, and F(C) is the weighted sum of the F-measure of these 

best clusters. The range of F (C)  is [0,1]. A larger F(C) value indicates a higher 

accuracy of clustering. 

Experiment a1 Results 

We evaluated our algorithm, FIHC, and its competitors in terms of accuracy, sen- 

sitivity to parameters, efficiency and scalability. Recent research in [42] shows that 

UPGMA and bisecting k-means are the most accurate clustering algorithms in their 

categories. We also compared FIHC with another frequent itemset-based algorithm, 

HFTC [9]. 

5.3.1 Accuracy 

Table 5.2 shows the F-measure values for all four algorithms with different user- 

specified numbers of clusters. Since HFTC does not take the number of clusters as an 

input parameter, we use the same minimum support, from 3% to 6%, for both HFTC 

and our algorithm in each data set to ensure fair comparison. 

Our algorithm, FIHC, apparently outperforms all other algorithms in terms of ac- 

curacy. Although UPGMA and bisecting k-means perform slightly better than FIHC 

in several cases, we argue that the exact number of clusters in a document set is usu- 

ally unknown in real world clustering problem, and FIHC is robust enough to produce 

consistently high quality clusters for a wide range number of clusters. This fact is 

reflected by taking the average of the F-measure values over the different numbers 

of clusters. Due to the pairwise similarity comparison in agglomerative algorithms, 

UPGMA is not scalable for large data sets. It fails to provide a clustering solution 

even after it has consumed all of the main memory. Hence, some experiment results 

could not be generated for UPGMA. 
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Table 5.2: F-measure comparison 
x = not scalable to run * = best competitor 
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Frequent  i t ems  i n  CRANFIELD [13] 
FIHC cluster  

- 

Natu ra l  class 
aerodynamic, aircraft, 
angle,  bounda ry ,  
effect, flow, ft, 
height, layer,  maximum, 
measurement, number ,  
present ,  pressure, 
shape, speed, system, 
stream, theo ry ,  value 

angle,  approximate, body, 
bounda ry ,  calculate, condition, 
distribution, effect, equation, 
experiment, flow, investigation, 
layer,  machine, method, 
number ,  p resent ,  pressure, 
speed, surface, t heo ry ,  
velocity 

Table 5.3: Comparison on class/cluster frequent items 

To demonstrate that the cluster labels determined by FIHC are indeed meaning- 

ful, we further extend the F-measure evaluation method by using the idea of cluster 

frequent items. A set of cluster frequent items is similar to a set of keywords within a 

topic. We first compute a set of frequent items from a natural class, and then compute 

a set of cluster frequent items from the corresponding cluster that has the highest F- 

measure value. Then we compare these two sets of frequent items and calculate the 

percentage of overlapped items. 

We use the CRANFIELD class from the Classic [13] document set to illustrate 

the idea. CRANFIELD documents are abstracts from aeronautical system papers. 

Table 5.3 shows two sets of frequent items. The items in the left column are extracted 

from the labeled natural class. The items in the right column are extracted from the 

corresponding cluster. We observe that many items (in bold font) overlap which im- 

plies the cluster can truly reflect the natural class. Another interesting observation is 

that the cluster frequent items also capture some keywords that are not shown in the 

natural class but are definitely reasonable to appear under this topic. For example, 

the items "body", "machine", "surface", and "velocity" are related to aeronautical 

system. However, the algorithm also misses some important items, such as, "aerody- 

namic" and "aircraft". To qualify this, 50% of the frequent items in the CRANFIELD 
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ass io4 fl 

Figure 5.1: Sensitivity to MinSup without pre-specifying # of clusters 

class are captured by the corresponding cluster. We obtain similar capturing rates for 

other three classes in Classic, as well as in other document sets. 

5.3.2 Sensitivity to Parameters 

Our algorithm, FIHC, allows for two input parameters: MinSup is the minimum sup- 

port for global frequent itemset generation and is a mandatory input; KClusters is the 

number of clusters at  level 1 of the tree and is an optional input. Table 5.2 does not 

only demonstrate the accuracy of the produced solutions, but also shows the sensitiv- 

ity of the accuracy to KClusters. Both UPGMA and our algorithm are insensitive to 

KClusters, but bisecting k-means is not. For example, in the Reuters document set, 

the range of F-measure values of our algorithm is 0.58 to 0.61 for different number of 

KClusters while the range of F-measure values of bisecting k-means is 0.30 to 0.48. In 

other words, the accuracy of bisecting k-means highly depends on the input parame- 

ter, KClusters. This is a very common weakness for traditional clustering methods. 
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Figure 5.1 depicts the F-measure values of FIHC with respect to MinSup without 

pre-specifying a value for KClusters. We observe that high clustering accuracy is fairly 

consistent while MinSup is set between 3% and 9%. As KClusters is unspecified in 

this case, the sibling merging algorithm has to decide the most appropriate number of 

output clusters, but this number may vary for different MinSup. This explains why 

the accuracy fluctuates within a small range of F-measure values for different MinSup. 

A general guidance drawn from numerous experiments is: If a data set contains 

less than 5000 documents, then MinSup should be set between 5% and 9%; otherwise, 

MinSup should be set between 3% and 5%. However, we would like to emphasize that 

MinSup should not be treated as a parameter for finding optimal accuracy. Instead, 

it allows user to adjust the shape of the cluster tree. If the value of MinSup is small, 

then the tree is broad and deep, and vice versa. 

Another threshold is the minimum cluster support, which distinguishes whether 

an item is cluster frequent. Experiments show that setting it to around 25% always 

yields good result in different document sets, provided that there are at least several 

hundreds of documents. 

5.3.3 Efficiency and Scalability 

The largest data set, Reuters, is chosen to exam the efficiency and scalability of our 

algorithm on a Pentium I11 667 MHz PC. Figure 5.2 compares the runtime of our al- 

gorithm only with bisecting k-means and HFTC. UPGMA is excluded again because 

it is not scalable. The MinSup of HFTC and our algorithm is set to 10% to ensure 

that the accuracy of all produced clustering solutions is approximately the same. The 

efficiency of HFTC is comparable with other algorithms in the first 5000 documents, 

but its runtime grows rapidly while there are 6000 or more documents. Our algorithm 

FIHC runs twice faster than the best competitor, bisecting k-means. We conclude 

that FIHC is significantly more efficient than other algorithms. 
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KC'usters =60 $ Documents (in thousands) 
MinSup = 10% 

Figure 5.2: Comparison on efficiency 

Many experiments were conducted to analyze the scalability of our algorithm. To 

create a larger data set for examining the scalability, we duplicated the files in Reuters 

until we get 100000 documents. Figure 5.3 once again illustrates that our algorithm 

runs approximately twice faster than bisecting k-means in this scaled up document set. 

Figure 5.4 depicts the runtimes with respect to the number of documents for different 

stages of our algorithm. The whole process was completed within two minutes while 

UPGMA and HFTC could not even produce a clustering solution. It demonstrates 

that FIHC is a very scalable method. The figure also shows that the Apriori and 

the clustering are the most time-consuming stages in FIHC, while the runtimes of 

tree building and pruning are comparatively short. The efficiency of the Apriori is 

very sensitive to the input parameter MinSup. Consequently, the runtime of FIHC is 

inversely related to MinSup. In other words, runtime increases as MinSup decreases. 

Nevertheless, many scalable and efficient frequent itemset generation algorithms have 

been proposed [24, 251. For example, the FP-growth algorithm that we have discussed 
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Figure 5.3: Comparison on efficiency with scale-up document set 

in Chapter 2 may be employed to further improve the efficiency of our method. In 

the clustering stage, most of the time is spent on constructing initial clusters and its 

runtime is linear with respect to the number of documents. 
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Figure 5.4: Scalability of FIHC 



Chapter 6 

Discussions and Conclusions 

6.1 Browsing 

To illustrate that our method provides meaningful cluster labels for browsing, fig- 

ure 6.1 depicts part of the cluster tree. The parent topic discusses about "finance" 

and its cluster label is "dollar". It is further broken down into forty subtopics where 

most of them are either directly or indirectly related to the topic of finance. For 

example, the documents under the subtopics of "bank, growth" and "rate, yen" dis- 

cuss about the future growth of banking sector and the interest rate of Japanese yen 

respectively. 

Most of the existing agglomerative and divisive hierarchical clustering methods, 

e.g., bisecting k-means, generate relatively deep hierarchies. However, deep hierarchy 

may not be suitable for browsing. Suppose a user makes an incorrect selection while 

navigating the hierarchy. She may not notice her mistake until she browses into the 

deeper portion of the hierarchy. Due to fact that the depth of the tree is controlled 

by the number of clusters, this problem is unavoidable in many hierarchical methods. 

Our hierarchy is relatively flat as shown in figure 6.1. Flat hierarchies reduce the 

number of navigation steps which in turn decreases the chance of making mistakes. 

Nevertheless, if the hierarchy is too flat, then a parent topic may contain too many 
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subtopics and it would increase the time and difficulty for the user to locate her tar- 

get. Thus, a balance between the depth and the width of the tree is essential for 

browsing. Given a reasonable MinSup from 3% to 9%, our cluster tree usually has 

two to four levels in our experimental results. This number of levels is very close to  

those of human generated subject hierarchies, e.g., Yahoo!. 

Another frequent itemset-based method, HFTC, also provides a relatively flat 

hierarchy and its lattice structure is suitable for browsing. Nevertheless, the resulting 

hierarchy usually contains many clusters a t  the first level. As a result, documents 

in the same natural class are likely to be distributed into different branches of the 

hierarchy which decreases the overall clustering accuracy. Our sibling merging method 

resolves this problem by joining similar clusters a t  the first level of the tree. 

6.2 Complexity Analysis 

Our method involves four phases: finding global frequent itemsets, initial cluster- 

ing, tree construction, and pruning. The problem of finding frequent itemsets has 

been studied intensively in the data mining literature. In the initial clustering phase, 

the document feature vectors are scanned twice, once for constructing initial clus- 

ters and once for making clusters disjoint. Since an initial cluster labeled by a 

global frequent itemset f contains global-support(f) documents, this step makes 

CfEF global-support(f) document-tecluster assignments and score calculations. This 

amount of work is no more than the support counting in mining global frequent item- 

sets. In the tree construction, all empty clusters with a maximal cluster label are 

first removed. The remaining number of clusters is no more than, often much smaller 

than, the number of documents. The tree construction is essentially linear in the 

number of remaining clusters because finding a parent for a k-cluster only requires to 

examine k of k - 1-clusters where k is usually small. Child pruning makes only one 

scan of clusters, and sibling merging is performed only a t  the first level of the tree. 

To summarize, the steps involved in initial clustering, tree construction and pruning 

are no more expensive than mining global frequent itemsets. 
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6.3 Contributions 

Most traditional clustering methods do not satisfy the special requirements for docu- 

ment clustering, such as high dimensionality, high volume, and ease of browsing with 

meaningful cluster labels. This thesis has provided an innovative approach by using 

frequent itemsets as the basis for different stages. Our main contributions include: 

Reduced dimensionality. We use the low-dimensional feature vector, which is 

composed of global frequent items, in place of the original high-dimensional 

document vector. This replacement drastically reduces the dimension of the 

document vector space. Consequently, it greatly enhances the efficiency and 

scalability of our method. 

Ef i c i en t  and scalable. Our method requires only two scans of the document 

set to cluster all the documents: one scan for constructing initial clusters and 

one scan for making clusters disjoint. Our experiments on different types of 

data sets suggest that our method is an extremely efficient and scalable. Its 

processing time is also predictable. 

Accurate. Our method consistently outperforms the well-known clustering algo- 

rithms in terms of accuracy on various types of document sets, even when the 

number of clusters is unknown. This result suggests that our score function for- 

mulates a sound clustering criterion and our pruning methods further improve 

its accuracy. 

Robust t o  outliers. Outliers in document clustering usually refers to  the docu- 

ments that are very different from the rest of the documents in the data set. 

Due to the fact that our algorithm only uses frequent items for clustering, out- 

liers are basically ignored in the clustering process. Still, our score function is 

capable of assigning these documents to their most suitable clusters. In case 

none of the clusters is suitable for these outliers, they are assigned to the "null" 

cluster and remain intact for the rest of the algorithm. Thus, the presence of 

outliers does not degrade the overall accuracy of our clustering solution. 
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Easy for browsing. The resulting clustering solution is a cluster (topic) tree 

where the nodes can be treated as topics and subtopics. User may easily navigate 

different topics in the document set through the tree. Each topic has a label 

which concisely summarizes the members in the cluster. Our method does 

not require additional processing to generate these cluster labels. Unlike other 

hierarchical methods where the parent cluster contains all the documents of 

its descendants, the parent cluster in our method contains only the general 

documents on the topic. Thus, our hierarchy is definitely more suitable for 

browsing. 

Easy for data exchange. Given that the resulting hierarchy is a tree structure, 

our output is an XML file which is the standard method of exchanging data 

in nowadays software development. Other text mining tools, e.g. document 

classification program, may easily utilize the tree for further processing. 

Minimal requirements for domain knowledge. Our method treats the number of 

desired clusters as an optional input parameter. Although we require another 

input parameter MinSup, we provide a clear guideline for on to choose a suitable 

value for this parameter depending on the size of the document set. Close to 

optimal accuracy can usually be obtained by following such guideline. 

Arbitrary cluster shape. Our clustering method can represent clusters in any 

shape because our clustering criterion is based on our innovative score function, 

instead of the traditional Euclidean or Manhattan distance measures. In other 

words, the shape of the natural clusters do not affect the accuracy of our method. 

Independent on the order of input data. The order of the data does not affect 

the clustering result at all. Our method always produces the same result given 

the same document set. 
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6.4 Future Work 

Future study on document clustering using frequent itemsets has the following possible 

avenues: 

0 In the current implementation of FIHC, all feature vectors are stored in the 

main memory. Although the dimension of feature vectors is comparatively low, 

scalability may become a problem in cases where the data set is extremely large. 

A possible direction for future research is the development of a disk resident 

version of FIHC, and its application to very large data sets, for example, the 

Yahoo! subject hierarchy with millions of documents. 

0 We may want to incrementally update [12] the cluster tree when some new docu- 

ments arrive, for example, a new research paper is submitted to the database or 

a new web page is found by a web crawler. In the current implementation, this 

task can be accomplished by assigning the new document to the most similar 

cluster, but the clustering accuracy may degrade over time because the global 

frequent itemsets may not necessary reflect the current state of the document 

set. Thus, an incremental updating version of FIHC is necessary for this situ- 

ation. Incremental clustering is related to some of the recent research in data 

mining on stream data [20, 15, 261. 

0 Most of the current document clustering algorithms, including FIHC, consider a 

document as a bag of words. While the semantic relationships among the words 

may be crucial for clustering, they are not utilized. FIHC may incorporate the 

Universal Networking Language [44], a recently proposed semantic representa- 

tion for sentences, for feature vector generation and score computation. 

Another possible research direction is to apply FIHC in a cross-language en- 

vironment using the EuroWordNet multilingual database (Gonzalo et al., In 

press) [46] with wordnets for several European languages such as Dutch, Italian, 

Spanish, German, French, Czech and Estonian. The wordnets are structured in 

the same way as the American wordnet for English [36] in terms of synsets (sets 
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of synonymous words) with basic semantic relations between them.' Suppose 

we need to cluster documents that are written in different European languages. 

The basic approach is to first map the words in the document set into the Amer- 

ican wordnet via the EuroWordNet InterLingual Index. A vector model is then 

constructed from this mapped monolingual document set. 

In conclusion, the importance of document clustering will continue to grow along 

with the massive volumes of unstructured data generated. We believe exploiting an 

effective and efficient method in document clustering would be an essential direction 

for research in text mining. 
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Figure 6.1: Cluster labels 



Bibliography 

[I] C. Aggarwal, S. Gates, and P. Yu. On the merits of building categorization 
systems by supervised clustering. In Proceedings of (KDD) 99, 5th (ACM) Inter- 
national Conference on Knowledge Discovery and Data Mining, pages 352-356, 
San Diego, US, 1999. ACM Press, New York, US. 

[2] R. Agrawal, C. Aggarwal, and V. V. V. Prasad. Depth-first generation of large 
itemsets for association rules. Technical Report RC21538, IBM Technical Report, 
October 1999. 

[3] R. Agrawal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for 
generation of frequent item sets. Journal of Parallel and Distributed Computing, 
61(3):350-371, 2001. 

[4] R. Agrawal, J .  Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace 
clustering of high dimensional data for data mining applications. In Proceedings of 
ACM SIGMOD International Conference on Management of Data (SIGMOD98), 
pages 94-105, 1998. 

[5] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between 
sets of items in large databases. In Proceedings of ACM SIGMOD International 
Conference on Management of Data (SIGMOD93), pages 207-216, Washington, 
D.C., May 1993. 

[6] R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In J. B. 
Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data 
Bases, VLDB, pages 487-499. Morgan Kaufmann, 12-15 1994. 

[7] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf. 
Data Engineering, pages 3-14, Taipei, Taiwan, March 1995. 

[8] M. Ankerst, M. Breunig, H. Kriegel, and J .  Sander. Optics: Ordering points to 
identify the clustering structure. In 1999 ACM-SIGMOD Int. Conf. Management 
of Data (SIGMOD'gg), pages 49-60, Philadelphia, PA, June 1999. 



BIBLIOGRAPHY 60 

[9] F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In Proc. 8th 
Int. Conf. on Knowledge Discovery and Data Mining (KDD)'2002, Edmonton, 
Alberta, Canada, 2002. http://www.cs.sfu.ca/- ester/publications.html. 

[lo] H. Borko and M. Bernick. Automatic document classication. Journal of the 
ACM, 10:151-162, 1963. 

[Ill  S. Chakrabarti. Data mining for hypertext: A tutorial survey. SIGKDD Explo- 
rations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery 
& Data Mining, ACM, 1: 1-1 1, 2000. 

[12] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and 
dynamic information retrieval. In Proceedings of the 29th Symposium on Theory 
Of Computing STOC 1997, pages 626-635, 1997. 

[13] Classic. ftp://ftp.cs.cornell.edu/pub/smart/. 

[14] D. R. Cutting, D. R. Karger, J. 0 .  Pedersen, and J.  W. Tukey. Scatterlgather: 
A cluster-based approach to browsing large document collections. In Proceedings 
of the Fifleenth Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, pages 318-329, 1992. 

[15] P. Domingos and G. Hulten. Mining high-speed data streams. In Knowledge 
Discovery and Data Mining, pages 71-80, 2000. 

[16] R. C. Dubes and A. K. Jain. Algorithms for Clustering Data. Prentice Hall 
College Div, Englewood Cliffs, NJ, March 1998. 

[17] A. El-Hamdouchi and P. Willet. Comparison of hierarchic agglomerative cluster- 
ing methods for document retrieval. The Computer Journal, 32(3), 1989. 

[18] M. Ester, H.-P. Kriegel, J.  Sander, and X. Xu. A density-based algorithm for 
discovering clusters in large spatial databases with noise. In Proceedings of the 
2nd int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages 226- 
231, Portland, Oregon, August 1996. AAAI Press. 

[19] A. Griffiths, L. A. Robinson, and P. Willett. Hierarchical agglomerative cluster- 
ing methods for automatic document classification. Journal of Documentation, 
4O(3): 175-205, September 1984. 

[20] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams. 
In IEEE Symposium on Foundations of Computer Science, pages 359-366, 2000. 



BIBLIOGRAPHY 61 

[21] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for 
categorical attributes. In Proceedings of the 15th International Conference on 
Data Engineering, 1999. 

[22] E. H. Han, B. Boley, M. Gini, R. Gross, K. Hastings, G. Karypis, V. Kumar, 
B. Mobasher, and J .  Moore. Webace: a web agent for document categoriza- 
tion and exploration. In Proceedings of the second international conference o n  
Autonomous agents, pages 408-415. ACM Press, 1998. 

[23] J.  Han and M. Kimber. Data Mining: Concepts and Techniques. Morgan- 
Kaufmann, August 2000. 

[24] J .  Han, J .  Pei, and Y. Yin. Mining frequent patterns without candidate gener- 
ation. In Proceedings of the 2000 A C M  SIGMOD International Conference on  
Management of Data (SIGMOD'OO), Dallas, Texas, USA, May 2000. 

[25] J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for association rule 
mining - a general survey and comparison. SIGKDD Explorations, 2(1):58-64, 
July 2000. 

[26] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In 
Proceedings of the Seventh A C M  SIGKDD International Conference o n  Knowl- 
edge Discovery and Data Mining, pages 97-106, San Francisco, CA, 2001. ACM 
Press. 

[27] G. Karypis. Cluto 2.0 clustering toolkit, April 2002. http://www- 
users.cs.umn.edu/~ karypis/cluto/. 

[28] L. Kaufman and P. J.  Rousseeuw. Finding Groups in Data: A n  Introduction to 
Cluster Analysis. John Wiley and Sons, March 1990. 

[29] D. Koller and M. Sahami. Hierarchically classifying documents using very few 
words. In D. Fisher, editor, Proceedings of ( ICML) 97, 14th International Con- 
ference on  Machine Learning, pages 170-178, Nashville, US, 1997. Morgan Kauf- 
mann Publishers, San Francisco, US. 

[30] Kosala and Blockeel. Web mining research: A survey. SIGKDD Explorations: 
Newsletter of the Special Interest Group S I G  o n  Knowledge Discovery & Data 
Mining, 2, 2000. 

[31] G. Kowalski and M. Maybury. Information Storage and Retrieval Systems: The- 
ory and Implementation. Kluwer Academic Publishers, 2 edition, July 2000. 



BIBLIOGRAPHY 62 

[32] J .  Lam. Multi-dimensional constrained gradient mining. Master's thesis, Simon 
Fraser University, August 2001. 

[33] B. Larsen and C. Aone. Fast and effective text mining using linear-time document 
clustering. KDD'99, 1999. 

[34] D. D. Lewis. Reuters. http://www.research.att.com/~ lewis/. 

[35] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. 
In Knowledge Discovery and Data Mining (KDD) 98, pages 80-86, 1998. 

[36] Miller. Princeton wordnet, 1990. 

[37] M. F.  Porter. An algorithm for suffix stripping. Program, l4(3): 130-137, July 
1980. 

[38] J .  R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993. 

[39] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In M. Jarke, 
M. Carey, K. Dittrich, F. Lochovsky, P. Loucopoulos, and M. Jeusfeld, edi- 
tors, Proceedings of 23rd International Conference on Very Large Data Bases 
(VLDB97), pages 116-125, Athens, Greece, August 1997. Morgan Kaufmann. 

[40] H. Schutze and H. Silverstein. Projections for efficient document clustering. In 
Proceedings of SIGIR'97, pages 74-81, Philadelphia, PA, July 1997. 

[41] C. E. Shannon. A mathematical theory of communication. Bell Systems Technical 
Journal, 27:379-423 and 623-656, July and October 1948. 

[42] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering 
techniques. KDD Workshop on Text Mzning'OO, 2000. 

[43] Text REtrival Conference TIPSTER, 1999. http://trec.nist.gov/ 

[44] H. Uchida, M. Zhu, and T. Della Senta. Unl: A gift for a millennium. The United 
Nations University, 2000. 

[45] C. J. van Rijsbergen. Information Retrieval. Dept. of Computer Science, Uni- 
versity of Glasgow, Butterworth, London, 2 edition, 1979. 

[46] P. Vossen. Eurowordnet, Summer 1999. 

[47] K. Wang, C. Xu, and B. Liu. Clustering transactions using large items. In 
CIKM'99, pages 483-490, 1999. 



BIBLIOGRAPHY 63 

[48] K. Wang, S. Zhou, and Y He. Hierarchical classification of real life documents. 
In Proceedings of the 1st (SIAM) International Conference on Data Mining, 
Chicago, US, 2001. 

[49] W. Wang, J.  .Yang, and R. R. Muntz. Sting: A statistical information grid 
approach to spatial data mining. In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. 
Lochovsky, P. Loucopoulos, and M. A. Jeusfeld, editors, VLDB797, Proceedings of 
23rd International Conference on Very Large Data Bases, pages 186-195, Athens, 
Greece, August 25-29 1997. Morgan Kaufmann. 

[50] Yahoo! http://www. yahoo.com/ 

[51] 0. Zamir, 0. Etzioni, 0. Madani, and R. M. Karp. Fast and intuitive clustering 
of web documents. In KDD797, pages 287-290, 1997. 




