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Abstract 

Caching is a widely used technique to leverage access time difference between two adjacent 

levels of storage in the computer memory hierarchy, e.g., cells in main  memory  * cells in 

the cpu cache, and blocks o n  disk tt pages in ma in  memory. Especially in a database system, 

buffer management is an important layer to keep hot spot data in main memory so as to 

minimize slow disk I/O and thus improve system performance. In this thesis, we present 

a term-based method to cache lexicon terms in full-text databases, which aims at reducing 

the size of the lexicon that must be kept in memory, while providing good performance for 

finding the requested terms. We empirically show that, under the assumption of Zipfs-like 

term access distribution, given the same amount of main memory, our term-based caching 

method achieves a much higher hit ratio and much faster response time than traditional 

page-based buffering methods used in database systems. 
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Chapter 1 

Introduction 

With the advent of the Internet, the amount of information available to the public has 

become tremendously large, and grows at an exponential rate. Such information exists in 

many forms: text, images, movies, sound, etc. The locations where information is stored 

can be found by their URLs (Uniform Resource Locator) [2]. A question naturally arises, as 

to how to find a particular piece of information on the World Wide Web(WWW) without 

knowing its URL? In a library, a reader may find the book he is interested in by looking up 

index cards if he knows the title or author(s) of the book. A similar mechanism is available 

in WWW in the form of search engines, which serve as 'index cards' for users to find a 

particular URL that may contain the information they are interested in. Actually, search 

engines are becoming an indispensable part of the WWW community. A person surfing 

on the web queries a search engine to find what he/she is interested in but has no idea 

where it is. Without powerful assistance by public search engines, it's hard to imagine how 

difficult it would be to browse in the exponentially-growing WWW. A full-text database is 

the backbone of a search engine. 

1.1 Full-Text Database 

A full-text database, also called a document database, is a text-oriented database system, 

which is not like a traditional database that is record-oriented. These two kinds of databases 

mainly differ in the following aspects: 

1. Data Model 
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0 The basic unit stored in a traditional database, whether of Network model, Hi- 

erarchical Model or Relational Model, is a structured record that contains one or 
more fields that have fixedlvariable lengths of pre-defined data types. 

The basic unit stored in a full-text database is a block of text strings, which can 

be an article, an HTML file on the internet, a sentence in a paragraph, a chapter 

in a book, or even the whole book, depending on the granularity required by 

applications. 

2. Storage Structure 

In a traditional database, storage contains two parts: records and one or more 

indices that are built on record fields to speed up record update/delete/search. 

In a full-text database, storage contains three parts: original documents, a lexi- 

con that contains all distinct terms (keywords)' extracted from the original doc- 

uments, and an inverted index that is a mapping from terms in the lexicon to 

documents. 

3. Database Size 

0 The volume of data stored in a traditional database is normally from hundreds 

of k i b  bytes to hundreds of mega-bytes, with few exceptions of large applications 

that may contain giga-bytes of data. Compared to the size of the original data, 

the indices in a traditional database occupy just a small portion in the whole 

database. 

The volume of data stored in a full-text database is usually measured in gigabytes, 

even terabytes. The inverted index in a full-text database occupies a significant 

portion in the whole database, probably as much as the original documents2. 

'1n this thesis, term and keyword are equivalent and interchangeable, unless distinguished explicitly. 

 or each word occurrence in the text, the inverted index needs to store at least its position in the text, 
which normally takes 4 bytes, and usually more information like whether the word is in the title etc. is also 
stored. So each word occurrence will need more than 5 bytes in the inverted index, while most usually-used 
words are below 8 bytes. Please see Google on page 7 for an example. 
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1.1.1 Operational Model 

As stated above, a full-text database is composed of three parts: documents, an inverted 

index and a lexicon. If depicted as a layered system, their positions, from bottom to top, 

are shown in Figure 1.1. 

Figure 1.1: fill-Text Database Architecture 

Documents are a collection of individual units that are targets of queries. After processing 

a query, the matched documents are returned to the user for further investigation. 

Inverted index contains, for each term in the lexicon, a list of pointers to all occurrences 

of that term in the main text. Each pointer is a document ID in which that term 

appears. After a query is processed on the inverted index, a list of related documents 

is returned. 

Lexicon stores both the terms that can be used to search the collection and the auxiliary 

information needed to allow queries to be processed. The minium information that 

must be stored in the lexicon is the term t, the address It in the inverted index, and 

the term's occurrence frequency ft in the collection. To answer a query, the lexicon is 

first consulted to get each query term's address in the inverted index. 

The following example illustrates the concept introduced above. Table 1.1 shows the 

first and second verses from Genesis, in which each sentence is deemed as a document. 

Suppose that the granularity of the inverted index is a document. The inverted list for 

each term would be in the form of < t ,  f t ;d l ,dz , .  . . ,df t  >, where t is the term, ft is the 
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Document ID 
1 
2 

Table 1.1 : Example Text 

Text 
In the beginning God created the heaven and the earth. 
And the earth was without form, and void; 

3 
4 

term frequency in the text, dl, da, . . . , dft are the document IDS in which the term occurs. 

Table 1.2 (on page 5) shows the inverted index corresponding to the text in Table 1.1. 

The lexicon contains the disk address of each term's inverted list. The data structure of 

each entry in the lexicon would be in the form of < t, ft , Drt >, where t is the term, ft is the 

term frequency in the text, and DIt is the disk address of the term's inverted list. Entries in 

the lexicon are normally sorted in some way (e.g. alphabetical order, hash etc.) to quickly 

find a term. Table 1.3 (on page 6) shows the lexicon for the example text in Table 1.1. 

You may notice that the first two fields (term t and frequency ft) of Table 1.2 and Table 

1.3 are the same. This way, the lexicon may be reconstructed by just scanning the inverted 

index so as to provide some degree of fault-tolerance, and can also provide consistence check. 

and the darkness was upon the face of the deep. 
And the s ~ i r i t  of God moved u ~ o n  the face of the waters. 

1.1.2 Implementation Challenges 

For the purpose of persistence and consistency, these three parts (Documents, index and 

lexicon) must be stored on secondary storage (e.g. hard disk), and only a portion of them 

can be kept in main memory at any moment. A full-text database normally deals with 

millions of documents, containing gigabytes or terabytes of data. It is the size that brings 

up two challenges when managing such huge volumes of data[41]. 

1. Storing the data efficiently 

No matter how much storage space is available, someone always finds something to fill 

it with. It seems that Parkinson's Law[29] applies here3. It has been observed since 

the mid-1980s that the memory usage of evolving systems tends to double roughly 

once every 18 months. Fortunately, the memory space available for constant dollars 

also tends to double about every 18 months. Unfortunately, however, the laws of 

physics guarantee that the latter cannot continue indefinitely. In full-text database 
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Inverted List 

I created I < 1;1> I 
I darkness 1 < 1; 3  > 1 

I heaven 1 <1;1>  I 

earth 
face 
form 
God 

< 2;1,2  > 
< 1;4  > 
< 1 ; 2  > 
< 2; 1 .4  > 

I 

in 
moved 

surface 
the 
upon 
void 

Table 1.2: Example Inverted Index 

< 1 ; 1 >  
< 1 ; 4  > 

< 1 ; 3  > 
< 4; 1 ,2 ,3 ,4  > 
< 2; 3 ,4  > 
< 1;2  > 

waters 
without 

implementation, compression is normally used to store more data in less space. 

< 1 ; 4  > 
< 1;2  > 

2. Providing fast access through keyword search 

When constructing an inverted index over a huge volume of documents, it may take 

several months to complete the construction without good analysis and design, and 

the resulting inverted index would probably occupy a similar amount of storage to the 

documents themselves. As in any database system, disk access time is the primary 

factor that affects performance. If the resulting inverted index is very large, it would 

take much longer to answer a query. In full-text database implementation, memory 

buffer and compression are used to eliminate or decrease necessary disk access time, 

and thus improve performance. 

3~arkinson's Law: Data expands to fill the space available for storage. 
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Table 1.3: Example Lexicon 

1.2 Need of Lexicon Caching in Full-Text Database 

The current interest in full-text database research is in methods to do the following: 

Compress the text to save storage space. 

0 Reduce the time needed to construct the inverted index. 

0 Return the most related documents by improving the inverted index structure and 

query processing algorithm. 

However, there are some methods that don't receive much attention but are actually 

very useful in practice. Caching lexicon terms is one of them. 

In a full-text database, the lexicon is the most frequently accessed component, because 

no matter what operation is performed on the database - be it an update to the inverted 



CHAPTER 1. INTRODUCTION 7 

index or a query on combination of a few terms - they must first go through the lexicon to 

find the appropriate inverted list. Compared to the inverted index and document repository, 

a lexicon is tiny - probably occupying just 0.05% (or less) of the database's total storage 

space. However, when the documents repository becomes very large, the corresponding 

lexicon size will also become large in absolute terms as well and cannot be ignored in most 

cases. For instance, in the prototype of Google[3], 24 million web pages were fetched, and 

the whole database occupied 108.7 G B ~  of storage space, in which there were 14 million 

distinct terms taking up 293 megabytes! Their solution was to assign a computer as the 

lexicon server, whose main memory was totally used to cache the lexicon. This way, most 

access to the lexicon could be processed in main memory to reduce disk access. Another 

approach was a distributed full-text index[25], where an inverted index was distributed over 

a set of computers, each of which maintained a subset of the lexicon and the corresponding 

inverted index. As the lexicon was split into small subsets, it was possible to hold a part of 

the whole lexicon in each computer's main memory without too much memory requirement 

on average. 

Although it may sometimes be possible to accommodate the whole lexicon in the main 

memory, there are always some situations in which the whole lexicon cannot be held in main 

memory. For instanc, the author had a chance to work on a distributed full-text search 

engine, where the lexicon and inverted index reside on Index Server, and the documents on 

Data Server. All the lexicon, inverted index and documents are fully duplicated on every 

node. Each node is a Pentium PI11 550 with 512MB of main memory, and runs under 

Linux with kernel 2.2.4. Since the Index Server needs to maintain the lexicon and inverted 

index in the same physical memory, and the lexicon is relatively large (occupies about 128 

MB), it's not feasible to  hold the whole lexicon in main memory - the inverted index also 

consumes a large amount of memory. A page-based buffer manager was implemented for 

this purpose. I t  was observed though that the lexicon's buffer performance was not as good 

as observed in traditional page-based database buffer management. It's this observation 

that motivated this thesis. Is there any other approach that would improve the lexicon 

buffering performance? The research on this topic resulted in an idea that is different from 

the traditional database buffering method. In the case of lexicon buffer management, term- 

based caching outperforms page-based buffering. To the best of our knowledge, no such 

4 ~ t  contains 53.5 GB of document repository (this is after compression; the original document size was 
147.8 GB), a 55.0 GB inverted index, and a 293 MB lexicon. 
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research has been done in the literature. The remaining chapters of this thesis discuss and 

evaluate the idea thoroughly. 

1.3 Outline of Thesis 

The rest of this thesis is organized as follows: 

Chapter 2 investigates related research works on access path and database buffer man- 

agement. 

Chapter 3 describes the proposed lexicon caching scheme in detail. 

Chapter 4 shows the experimental results and performance analysis. 

Chapter 5 concludes the thesis. 



Chapter 2 

Related Work 

Although few research works related with the full-text database keyword caching can be 

found in the literature, some directly related concepts can be found in the methodologies of 

access path and buffer management in a database system. In this chapter, we look at access 

path and database buffer management in general. 

2.1 Database Storage 

Secondary storage (normally hard disks) is used to store data in a database system due to 

various reasons such as the following: 

0 Most databases typically require a large amount of storage space, usually in the hun- 

dreds of megabytes, gigabytes, or even terabytes. Therefore, it's usually not feasible 

to hold the whole database in main memory. 

0 The durability requirement of transaction ACID properties [34] suggests that durable 

secondary storage is more suitable than volatile main memory to store persistent data. 

0 It provides low storage cost per bit. 

In modern operating systems, secondary storage is commonly managed by a file system, 

which provides a primitive interface to manipulate data on the secondary storage, consisting 

of read, write, delete operations, etc. The basic unit transfered between the secondary 

storage and the file system is called a page, which is a block of continuous area on disk. 
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Secondary storage is some orders of magnitude slower than main memory. Therefore 

readinglwriting data on disk takes longer than readinglwriting data in main memory. If 

too many disk I/O operations are issued, the performance of the database system would 

degrade very fast. Disk I/O can be reduced by two approaches, access path and buffer 

management, where the former tries to reduce disk I/O by providing the shortest path to 

the disk page containing the requested record, while the latter tries to keep as many pages 

as possible in main memory to avoid disk 110. 

2.2 Access Path 

2.2.1 Addressing Problem 

Records in a database are stored sequentially in disk pages of a file. Therefore, the address 

of a record on disk can be represented as a tuple <file-number, page-number, page-offset>, 

where file-number is the file descriptor in which the record resides, page-number is the page 

number inside the file, and page-offset is the in-page offset from where the record starts to 

be stored. A user usually wants to find a record just with the knowledge of some of its 

field values. Thus a mapping mechanism must exist between the record's field value and the 

record's disk address. Access path serves as the mapping mechanism and is implemented as 

an index built onto one or more fields of the records to provide as short a path as possible 

to the page containing the data. 

The field used to build an index is called a key. The primary key consists of the field(s) 

whose value is unique for all records. On the other hand, a secondary key refers to a field 

whose value may not be unique. 

Various index structures are available to implement the access path. We will look at a 

few of them that are relevant to this thesis. 

The B-Tree index structure was first introduced by Bayer and Mcreight[l]. Most research 

works on B-Trees are based on it. Properties of a B-Tree are discussed in Knuth[lG] and 

Comer[4]. Concurrency control on a B-Tree and similar data structures is investigated by 

Lehman and Yao[l9], and Kung and Lehman[l7]. A B-Tree is the most important index 

structure in all kinds of database systems. 
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Structure 

A B-Tree is a balanced multi-level tree structure. Each node in a B-Tree is implemented by 

a disk page. The nodes in a B-Tree can be classified into two types, leaf nodes and non-leaf 

(internal) nodes as follows: 

0 Every leaf has the same depth, i.e., is at the same distance from the root. 

0 NK, the number of keys contained in any node, satisfies 

for some d, that is, every node (except the root) must be at least half-full. 

All the keys in a node are sorted in the non-decreasing order by some criteria. 

Each key K in an internal node has two pointers, Pl on the left and P, on the right, 

where all keys Cp, in the child node pointed to by Pl satisfy Cp, < K ,  and all keys Cpr 

in the child node pointed to by P, satisfy Cpr 2 K .  So Nil the number of pointers in 

an internal node, satisfies 

d + 1 s N i < 2 d + 1  P2) 

0 Each key K in a leaf node has just one pointer pointing to the record whose field value 

equals K .  So Nl, the number of pointers in a leaf node satisfies 

Properties and Implications 

A B-Tree has the following properties: 

For n 2 1, the upper bound on height h of a B-Tree containing n keys with parameter 

d > 2 can be determined by equation h = [logd nl. Note that accessing each node of 

a B-Tree requires one disk I/O operation. 

This suggests that the capacity of nodes in a B-Tree should be increased to contain 

more keys so as to increase nodes' fan-out, thereby keeping the tree short. For instance, 

for a B-Tree containing 1,000,000 keys, and d = 100, we have h = 3, which means only 

four1disk pages need to be accessed to get the requested record. 

'records are normally not stored in B-Tree disk pages, but in other disk pages. 
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If the nodes have a large fan-out, the number of nodes on level n + 1 is much more 

than nodes on level n, so the number of higher-level nodes are relatively small, and 

it's feasible to keep them in main memory to further reduce disk 110. For instance, 

in the example above, the first two levels only contain 202 nodes2, but if these 202 

nodes are kept in main memory, the disk I/O will be reduced by 50%, which is a big 

improvement. 

2.2.3 Hash Index 

Hashing is commonly used in computer systems, from operating systems to  specific appli- 

cations. Compared to a B-Tree, which provides a multi-level access path, a hash index 

provides a single-level access path to required records. Hashing algorithms are discussed 

and analyzed in detail Knuth[l6] and Cormen et a1.[5]. Two kinds of hashing are known 

in the literature: static hashing and dynamic hashing. Dynamic hashing includes extendible 

hashing [lo] and linear hashing [21][18]. We will focus on static hashing, since it's the most 

practical hashing scheme implemented in commercial database systems[l2]. 

Structure 

A hash index contains two components, hash functions and index pages. 

Hash function is a map from keys to index pages. Suppose that the set of all keys is 

K and the set of all index pages is P. Then a hash function h is a mapping from K to 

P, i.e., h(K) c P .  Let the number of elements in set K and the number of elements 

in set P be JKI and IPI respectively. Normally IK/ >> IPI, i.e., IKJ is much larger 

than IPI. Therefore, hash function h maps multiple keys into one index page, which 

is called conflict and is not avoidable. An important task of a hash function is to find 

a good hash algorithm to distribute keys into index pages uniformly. 

Keys are consecutively stored in each index page, either sorted or not. Each key has 

a pointer associated with it, pointing to the disk address of the record indexed by 

the key. Since hash conflict is not avoidable, some index page may be assigned too 

many keys. If the page's storage capacity is exceeded, then another index page needs 

'as stated in equation 2.2,  an internal node may have at most 2d + 1 child nodes, so for d = 100, there 
are at most 202 nodes in the first two levels. 



CHAPTER 2. RELATED WORK 13 

to be chained onto this page to accommodate more keys. This is called an overflow. 

If a hash function does not produce uniform mapping, some pages may have several 

overflow pages, which degrades system performance since more disk 110 would be 

involved during the search for a key. 

Properties and Implications 

Hashing index has the following properties: 

Since the access path in a hashing index is single-level and disk I/O dominates the 

database operation time, the time to search a key can be deemed as constant 0 ( 1 ) ~ .  

A good hashing function is uniform, which makes the keys randomly distributed over 

the index pages. A hashing index can only provide random access to individual records. 

There is no efficient way to access a range of keys, since such an operation needs to 

access each key individually. In contrast, a B-Tree doesn't have this disadvantage. 

2.2.4 Lexicon and Inverted Index 

In a full-text database, access paths are implemented as a lexicon and inverted index. We 

described the concepts of the lexicon and inverted index in Chapter 1. There are many 

implementations of the lexicon and inverted index available in the literature. Although 

these implementations differ in some aspects, they all have the architecture shown in Figure 

1.1. In this section we will review some full-text database implementations, with emphasis 

on lexicon implementation. 

McDonell[24] proposed an implementation in which each keyword is incorporated into 

the keyword's inverted list by hashing, so there is no separate lexicon. This way, access time 

is reduced thanks to fewer layers. The sample database in this paper is quite small though, 

just about 12,000 records and 1,000 keywords. This approach is apparently not suitable for 

giga-byte full-text databases. 

Zobel, Moffat, and Davis[44] proposed an inverted indexing scheme based on compres- 

sion, which ensures that storage requirement is small and dynamic update is straightforward. 

The only assumption they made is that the whole lexicon can be held in main memory, and 

3 ~ h e  access to the overflow list is not considered here, because it's rare when hash function is good 
enough. 
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at most one disk access is needed to answer a query. This paper briefly mentioned that 

if the lexicon cannot be held in main memory, then it can be partitioned and an abridged 
lexicon could be maintained in main memory, and keyword occurrence patterns in texts 

should follow Zipf's ~ a w ~  [43]. But they neither described how such a partial in-memory 

lexicon could be implemented, nor did they say whether the query terms' search pattern 

actually follows Zipf's Law as well. 

In another paper[45] by the same authors of [44], n-gram5 and a sorted lexicon scheme 

are proposed to improve performance for partially specified term searching (e.g., the word 

'lab*r' means any word starting with 'lab' and ending with 'r', such as 'labor', 'laborer', 

and 'labrador' etc.). They assume that the lexicon can be kept in main memory in a static 

full-text database, since no update is needed and the lexicon can be compressed to save 

space. 

The Google[3] web search engine implemented a new ranking scheme that takes web 

pages' references into account, which achieves high quality answers to queries. In their 

implementation, a dedicated computer is used to store the whole lexicon in its main memory, 

which is about 293MB containing 14 million keywords. The lexicon contains two parts: one 

part is a distinct keyword list in which each keyword is terminated with a null character; 

the other part is a hash table of pointers that point to the beginning of each keyword in 

the keyword list. This implies that Google doesn't compress its lexicon and doesn't support 

partially specified keyword search. Also, the lexicon and inverted index are static and 

updated offline. 

Melnik, Raghavan, Yang, and Molinag[25] implemented a distributed inverted index for 

a large collection of web pages. Their main contribution was to introduce pipelining into 

the core index building process, substantially reducing index building time. The lexicon 

is partitioned to be held on each indexer (a computer responsible for building index), and 

a B-Tree structure is adopted to store the lexicon and inverted index. The B-Tree index 

enables their implementation to support hot update - ability to update the lexicon and 

inverted index when query is being processed. 

Nagarajarao, Ganesh, and Saxena[26] implemented an inverted index that supports ef- 

ficient query and incremental index update. The query can be answered in two modes: 

4 ~ l e a s e  see Equation 3.1 on page 25 for details. 

5n-gram is n-character slice of some longer string. For example, the word 'text' contains the following 
2-grams: te, ex, xt. 
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immediate response and batch mode with proper scheduling. Their lexicon uses a variant 

implementation used in [3]. The lexicon contains two parts: a token array into which all 

tokens (null terminated) are concatenated together, and a hash array that stores the offset 

of tokens in the token array. When inserting a token, the token is concatenated to the end 

of the token array, and the token's hash code is computed. Aquadratic probing scheme6 

probes the empty slot in the hash array to store the token and its offset in the token array. 

This lexicon structure makes hot update possible. 

2.3 Traditional Buffer Management 

Buffer management is another important way to improve performance. In this section, we 

will look at buffer management in traditional record-oriented database systems. 

2.3.1 Overview 

Secondary storage is used as the main media to store data, while any available modern 

operating system can only manipulate data in main memory. Therefore, part of the database 

has to be loaded into a main storage area before manipulation and written back to disk after 

modification. A database buffer has to be maintained for the purpose of interfacing between 

main memory and disk[9]. Although modern operating systems allocate some main memory 

as the cache to file systems, and the virtual memory system also uses hard disk to swap 

active data into main memory and dormant data out to disk, most Database Management 

Systems (DBMSs) manage their own buffer pools in the user address space and don't take 

advantage of the file cache and virtual memory management provided by the underlying 

Operating System (0s) for various reasons[37][38][11]. File systems use disk pages as the 

basic unit for management, where a page's size is usually from 4KB to 64 KB, depending 

on the 0 s .  The database buffer manager maintains a segment of main memory, which is 

split into frames whose size is the same as that of disk pages. The major tasks of a database 

buffer manager are as follows: 

Upon disk page request, search the buffer to locate the page in a buffer frame. 

'Quadratic probing uses a hash function of the form h(k) + cl x i + c2 x i2 to calculate the next hash 
value if a conflict occurs, where h is the hash function, k is the key to be hashed, cl and c2 are constants, 
and i is the probe number. 
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0 if the page is not found in the buffer, which is called a page fault, it has to be brought 

into main memory. 

0 if all buffer frames are in use, a victim page must be selected by a replacement strategy, 

and the victim page is written back to disk if it's modified since it was brought into 

the current frame. Then the victim page is discarded, and the requested page is placed 

in that frame. 

0 provide ~ 1 ~ - ~ ~ ~ 1 ~ [ 1 2 ] ~ o ~ e r a t i o n s  on buffer frames so that a frame in use will not 

be kicked out by replacement algorithms. 

Figure 2.1 shows the database system architecture from the perspective of the buffer 

manager. 

record-oriented access 

Buffer Manager 
Memory 

m I page-oriented access 

/ manage pages 
File Manager 

Seconday Storage 

Figure 2.1: Database Buffer Manager 

The performance of a buffer system is evaluated by hit ratio, which is expressed in the 

following: 
number of times data found in buffer 

hit ratio = 
total number of data access 

2.3.2 Reference Locality 

A page request is called a logical reference. If the requested page cannot be found in 

the buffer, a physical disk read needs to be issued to bring the page into buffer, which is 

7Simply speaking, the FIX operation makes a buffer frame not replacable, while the UNFIX operation 
makes a buffer frame previously FIXed be available for replacement. 
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called a physical reference. A sequence of references 7-17-2 . . . r,, from time t l  to t,, is called a 

reference string. Since disk I/O dominates database processing time, given a series of logical 

references, it's crucial to reduce physical references as much as possible. A well-known and 

publicly accepted method to do this is by taking advantage of locality behavior observed in 

both the operating system and the database system. Locality means that the probability of 

reference for the recently referenced pages is higher than the average reference probability. 

There are two models in the literature regarding locality analysis. 

Working Set Model 

Denning[7][8] proposed the working set model to analyze program behavior under virtual 

memory environment. The locality properties in programs are as follows: 

1. Programs use sequential and looping control structures heavily, and they cluster ref- 

erences to given pages in short time intervals. 

2. Programmers tend to concentrate on small parts of large problems for moderately long 

intervals. 

3. Programs may be run efficiently with only a subset of their pages in main memory. 

Briefly speaking, a program's working set W(t, T )  at time t8 is the set of distinct pages 

referenced in the time interval [t - T  + 1, t]. The parameter T  is called the "window size" 

since W(t, T )  can be regarded as the contents of a window looking backward at the reference 

string. The working-set size w(t, T )  is the number of pages in W(t, T ) .  

Effelsberg[S] indicated that a dynamic page allocation algorithm can be implemented 

according to the notion of the working set, and pages in the working set will not be selected 

when making a decision on replacement. 

Hot Set Model 

The hot set model proposed by Sacco and Schkolnick[32] characterizes the buffer require- 

ments of queries in relational databases: relational systems use standard evaluation strate- 

gies, so the required buffer space can be estimated before queries are executed. The key 

idea of the hot set model is that the number of page faults caused by a query is a function 

8 ~ i m e  t refers to the tth page request, so time t is discrete in this context. 
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of available buffer space and can be represented by a curve consisting of a number of stable 

intervals (within each of which the number of page faults is a constant), separated by a small 

number of discontinuities, called unstable intervals. Figure 2.2 shows two stable intervals 

and one discontinuity. 

Buffer Size (Pages) 

Figure 2.2: Fault curve for a join computed by nested scans using sequential scans. 

This model has the following usages in buffer management: 

Allows the system to determine the optimal buffer space to be allocated to a query. 

For instance, to compute a join of two relations, R1 and R2, which have P1 and P 2  

pages respectively, if a nested loop is used to read the pages of these two relations, 

1 + IP21 would be an optimal buffer size for the query, in which IP21 buffer pages 

are used to contain all pages of R2, and one buffer page to contain all pages of R1 

iteratively. 

Can be used by a query optimizer to derive efficient execution plans accounting for 

the available buffer space. Using the example above, if IP21 < JP11, then the nested 

loop should be reversed and allocate 1 + lPll buffer frames for the query. 

Can be used by a query scheduler to prevent thrashing. 

2.3.3 Replacement Strategies 

The working set and the hot set models are suitable for buffer allocation. In this section, we 

will look at another important aspect in buffer management: replacement strategy. When 
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the buffer pool is full, a replacement strategy must be applied to find a victim page to be 

replaced. Although more or less different from each other, replacement algorithms all share 

the common property that the history of page access is used to predict future page access. 

In the following we will review a few of widely used replacement algorithms. 

FIFO 

The First-In-First-Out (FIFO) strategy assumes that the first referenced page will most 

likely not be re-referenced in the near future, so the page with the oldest age will be replaced 

first. A FIFO buffer pool is maintained as a queue: if the requested page is not in the queue, 

the queue head is removed from the buffer, and the new page is appended to the end of 

the queue, so that the former second page in queue becomes the head, and the new page 

becomes the end; if the requested page is in the queue, the queue remains unchanged. 

The advantage of FIFO strategy is that it doesn't need much extra space for book- 

keeping the queue information: two pointers are enough to implement a circular queue; the 

disadvantage of FIFO is that it doesn't take recent references into account, and thus doesn't 

reflect real-time locality changes. 

LFU 

Least Frequently Used(LFU) strategy tries to remember the history of page requests and 

keep the most frequently used pages in a buffer pool. There are two kinds of LFU: Perfect 

LFU and In-Cache LFU. For Perfect LFU, each page contains a counter that maintains a 

number indicating how many times it has been accessed so far. If the requested page is in 

the buffer, its counter is incremented by one; if the page is not in the buffer, the page is 

read from disk and its counter is incremented by one. If the counter is not greater than the 

lowest counter value of the buffered pages, the page is written back to disk and discarded. If 

the counter is greater than the smallest counter value of the buffer pages, the page with the 

smallest counter value is written back to disk and the new page is inserted into its position 

as per its counter value. For In-Cache LFU, when a page is read into the buffer pool, its 

counter value is set to  1, then this value is incremented by one when it's re-referenced. When 

a replacement is needed, the page with the lowest counter value is replaced. LFU reflects 

the temporal locality of reference during a long time period. 

The advantage of LFU is that it takes the whole history into account and can achieve a 
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good overall buffer hit ratio; the disadvantage is that some pages may get a large number 

of references in a short time, and no more later on, but they continue to  occupy buffer pool 

space because of the high counter value. Furthermore, in Perfect LFU, a read operation 

also requires a write operation, because the counter value needs to  be stored persistently, 

and therefore will actually degrade system performance. 

LRU 

Least Recently Used (LRU) is based on the assumption that recently referenced pages will 

be re-referenced in the near future, so LRU reflects the temporal locality of references during 

a short time period. The LRU buffer pool can be thought of as a stack: the stack contains 

all the pages that are accessed between timer interval [t, t + TI ,  the page on the stack top is 

most recently referenced (at time t + T), and the one on bottom is least recently referenced 

(at time t). If the requested page is in the buffer, it is removed from its current position in 

the stack and put on the top. If the requested page is not in the buffer, the page on the 

bottom will be removed from the stack, and the requested page is then read from disk and 

put on top of the stack. 

The advantage of the LRU replacement strategy is that it is good for the hot set chang- 

ing over time and doesn't incur too much bookkeeping overhead; the disadvantage is that 

maintaining LRU chain may become the bottleneck in concurrency control. 

A generalized version of LRU, LRU-K replacement algorithm, can be found in J. O'Neil, 

E. O'Neil and Weikum[28]. 

CLOCK 

The CLOCK algorithm attempts to simulate the LRU behavior by means of a simpler 

implementation. As in FIFO, a selection pointer is circulated in the buffer pool, and a 

use-bit is added to every buffer page, indicating whether or not the page was referenced 

during the recent circulation of the selection pointer. The page to be replaced is determined 

by the stepwise examination of the use-bits. Encountering a 1-bit causes a reset to 0 and 

the move of the selection pointer to the next page. The first page found with a 0-bit is the 

victim for replacement. Another name for the CLOCK algorithm is Second Chance. 

The CLOCK replacement strategy has the same behavior as LRU, but doesn't have 

concurrent access bottle neck problem. 
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A generalized version of CLOCK, the GCLOCK replacement algorithm, can be found 

in Smith[35]. 

2.4 Buffer Management in Full-Text Database 

Compared to proliferating research works on buffer management in traditional databases, 

research on buffer management is not very active in the full-text database research commu- 

nity. The most obvious reason is that, due to the fuzzy nature of queries submitted by users, 

there is no precise definition for what answers are right or wrong, so the main stream of re- 

search focuses on improving answers' relevance to queries. Another reason is that, because 

of the information explosion on the Web, full-text databases such as web search engines 

need to handle databases in size of giga-bytes or tera-bytes. How to efficiently store and 

construct indices and data is more critical than in traditional databases. In the following 

we will investigate some bufferinglcaching schemes in full-text databases. 

Cutting and Peterson[6] proposed an efficient and easy-to-implement buffering method 

that takes advantage of a sort of 'clustered' data access. When updating an inverted index 

implemented with the B-Tree, since the word frequency follows Zipf's law in documents, 

all inverted index entries are sorted by word order before the update, so that the inverted 

index entries residing physically adjacent in the disk pages are updated together. This way 

less disk I/O is required than updating the inverted index without sorting words. 

Jbsson, Franklin and Srivastava[lS] utilize a feature of queries submitted to a web search 

engine that users like to refine their queries and submit it to the search engine again if they 

are not satisfied with the original answers. Two techniques are proposed to improve query 

efficiency: 

1. Buffer-aware query evaluation, which alters the query evaluation process based on the 

current contents of buffers. 

2. Ranking-aware buffer replacement, which incorporates knowledge of the query pro- 

cessing strategy into replacement decisions. 

Markatos[23] studied the trace logs of the ~ x c i t e ~  search engine and have concluded that 

1. There exists a significant amount of locality in the queries submitted to popular web 

search engines. Their experiments suggest that one out of three of the queries sub- 

mitted has been recently submitted by the same or by another user. 
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2. Medium-sized main memory caches may serve a significant percentage of the submitted 

queries. Their experiments suggest that medium-sized caches (IOOMB) can result in 

hit ratios at around 20% (or even higher for warm caches). 

3. Effective cache replacement policies should take into account both recency and the 

frequency of access in their replacement decisions. Their experimental results suggest 

that FBRIO, LRu-211, and SLRU'~ always perform better than simple LRU which 

does not take frequency of access into account. 

Saraiva, Moura and Ziviani[33] implemented a twelevel cache that combines the cache 

for query results and the cache for the inverted list, while reserving the document ranking. 

Their trace log shows that submitted queries follow the Zipf distribution. 

Xie and Hallaron[42] analyzed the trace logs of ~ i v i s i m o ~ ~ a n d  Excite search engines, and 

their results show that queries exhibit significant locality, with the query frequency following 

the Zipf distribution. They argued that for popular queries shared by different users, the 

results should be cached on the server side. Individual users who submit many queries tend 

to use a small set of keywords to  form queries, so with proxy or user side caching, prefetching 

based on user lexicon is promising. 

Lempel and Moran[20] used several cache replacement strategies to examine the log 

of queries containing 7,175,151 keywords submitted to  AltaVista search engine during the 

summer of 2001. They found that prefetching improves the cache hit ratio. They proposed 

a novel cache replacement policy, called probability driven cache(PDC), which is based on 

a probabilistic model of search engine users. They also found that the query frequency 

conforms to  the Zipf distribution. 

Lu and McKinley[22] compared partial collection replication and caching that can be used 

to improve full-text database system performance. Caches are used when queries exactly 

match previous ones. Partial replicas are a form of caching that are used when the query is a 

'Excite is a web search engin and a part of Infospace Inc. Excite search engine can accessed at  
http://www.excite.com 

10~requency-~ased Replacement[30], in which replacement choices are made using combination of reference 
frequency and disk page age. 

''a special case of LRU-K[28], in which replacement choices are made using last K references to disk pages. 

''Segmented LRU[15], a frequency-based variant of LRU, which partitions LRU stack into three segments. 
The most recently referenced pages are placed into the topmost segment, and less frequently referenced pages 
are pushed down to  the bottom segment gradually. 

13vivismo provides a clustering search engine. Visit http://vivisimo.com for more information. 
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similarity match with previous ones. Caches are simpler and faster, but replicas can increase 

locality by detecting similarity between queries that are not exactly the same. They used 

real traces from THO MAS'^ and Excite to measure query locality and similarity. They 

found that, with a very restrictive definition of query similarity, partial replicas improve 

query locality up to 15% over exact-match caches. 

Tomasic and Molina[39] studied different inverted index organizations in distributed full- 

text database systems. Their research is based on IPSEC database on the FOLIO system at 

Stanford University, a database of abstracts of the literature on physics, computer science 

and electrical engineering etc. An inverted index cache is used to speed up processing 

queries. The policy for the cache is LRU. The inverted index size in this system is relatively 

small (308 MB). They found that a cache of about 3.8 MB can improve thoughput by about 

136%. 

As seen from the survey in this Section and in Section 2.2.4, most caching research 

in full-text databases is focused on caching the inverted index, and few of them studied 

how the lexicon could be cached when it is not possible to hold the whole lexicon in main 

memory. Our major contribution in this thesis is that we study and propose a reasonably 

manageable, fast and scalable lexicon caching scheme. 

1 4 ~ H O M A S  is a database which makes US Federal legislative information freely available to the Internet. 
Visit http://thomas.loc.gov for more information. 



Chapter 3 

Lexicon Caching 

In this chapter we present a novel lexicon caching scheme for full-text databases, which 

exploits the skewed data access distribution. Our basic caching units are individual terms, 

in contrast with page caching commonly employed in databases. 

3.1 Caching Granularity 

Caching is widely used in computer systems to bridge the speed gap between different storage 

systems. Depending on the storage system's operational unit, caching granularity varies. 

For instance, most modern CPUs have an on-chip cache whose granularity is a line of main 

memory cells, which is normally a few machine words. In this section we will investigate 

what granularity should be chosen for a lexicon cache. 

3.1.1 Page Caching 

Traditionally, cache granularity in database systems is a page, which corresponds to a con- 

tinuous area on disk and is the basic unit transfered to and from the disk. Page caching is 

suitable for traditional databases, because it reflects patterns of reference locality observed 

in database systems. Results of most queries performed on a database are tuples that are 

physically adjacent, which means caching one or more pages is efficient enough for tuples 

reference to be satisfied in memory buffer pool. 

However, in case of lexicon caching, the situation is different. Most of the time users 
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submit queries that only involve two or three terms. No matter how the lexicon is imple- 

mented, terms are stored in disk pages. But terms in a query usually don't reside in the 

same disk page. Thus to answer a query two or three disk pages have to be examined to 

get the corresponding inverted list address. As a result, page caching doesn't exhibit good 

performance as it does in a traditional database. The behavior of page caching for the 

lexicon is that its cache hit ratio is linearly proportional to the number of pages resident in 

main memory. For example, if 90% of lexicon pages are in memory, the hit ratio is also close 

to 90%. This behavior is not desirable for a lexicon buffer, since it's expected to achieve the 

same hit ratio with comparably a smaller buffer size. 

3.1.2 Hotset in Lexicon 

To get a better caching scheme for a lexicon, we need to identify the hotset model in the 

lexicon access, i.e., what's the basic unit of data that comprises the hotset? 

As described in Section 2.4, both the word occurrence in documents and the queries 

submitted to full-text databases approximately follow the Zipf distribution. 

Zipf's law, found by George Kingsley Zipf, a Harvard linguistics professor, is the obser- 

vation that the frequency of occurrence of some event P is related to its rank1 r as follows: 

the probability that the event of rank r occurs is approximately given by 

with cr close to 1. For example, the population of the largest city is roughly ( l / la) / (1/2") = 

2" times the population of the second largest city. Formula (3.1) is referred to as the Zipf 

distribution. 

Now we should be able to answer the question posed at the beginning of this section. 

The basic units comprising the hotset in lexicon access are individual terms, instead of pages 

that are found suitable for traditional database buffer management. This observation leads 

to a more efficient lexicon cache design that is further described in the sections below. 

3.1.3 Lexicon Caching Architecture 

Based on the discussion in the previous two sections, we propose a term-based lexicon cache 

structure, in which individual terms are the basic caching units. 
- - 

 h he smaller the rank number, the more frequently the event will happen. For instance, rank number 1 
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lexicon access 
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page-based buffer 

Lexicon CI 
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Figure 3.1: Lexicon Cache Architecture. 

As shown in the figure above, the lexicon is stored in disk pages, and the lexicon caching 

structure consists of the following two layers: 

Page-based buffer is maintained to cache lexicon pages. This page-based buffer does not 

need to be big. For instance, if the lexicon is stored in a B-Tree, only non-leaf nodes 

may be kept in this buffer so that a term access needs at  most one physical disk page 

110. 

Term-based cache is built upon the page-based buffer. The cache contains individual 

terms in the current hotset. Therefore most lexicon access can be resolved in the 

cache. 

Although we don't restrict the structure of the lexicon, a B-Tree or similar structure is 

preferred for the following two reasons: 

is the most frequently-happened event. 
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1. By only buffering the non-leaf nodes of the B-Tree, the layer 1 buffer can be kept very 

small while still providing fast physical access to lexicon pages. Only one disk access 

is needed if the requested term cannot be found in either the cache or buffer. 

2. B-Tree structure is more extensible in that compression techniques (e.g., prefix or 

suffix B-Tree) can be easily adopted. It supports not only single key search but also 

range search, etc. So a B-Tree provides more flexibility to system implementors. 

3.2 Memory Management 

Before describing the lexicon cache design proposed in this chapter, let's look at some general 

issues that are normally encountered in designing memory management systems. The design 

of a memory management system will greatly affect the performance and efficiency of the 

cache. Wilson, Johnstone, Neely, and Boles[40] present a very good discussion and survey 

on dynamic memory allocation. The discussion in this section is based mainly on their work. 

3.2.1 Memory Fragmentation 

fragmentation is inherent in all dynamic allocation algorithms. Although there is free space 

available in memory, it can't be allocated to new objects. Traditionally, fragmentation is 

classified into the following two classes: 

1. Internal fragmentation, which arises when a large-enough free block is allocated to 

hold an object, but the size of the object is very small compared to the block. The 

unused portion of the block cannot be reused by other objects even if their sizes fit, 

so this portion is wasted. When there are non-consecutive free blocks in memory, no 

new object can be stored. 

2. External fragmentation, which arises when there are free blocks in memory, but they 

are too small to hold the next object, so that these free blocks become actually unus- 

able. 

Robson[31] makes an observation that the lower bound on the worst case fragmentation 

is M loga n, where M be the amount of live data and n is the ratio between the smallest 

and largest object sizes. 
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To avoid internal fragmentation, splitting is used to split a large free block into small 

blocks so that the rest of the block space can be used to hold other objects. Coalescing is 

used to coalesce (merge) adjacent free blocks to form a larger block. No algorithm is available 

to totally eliminate fragmentation, but some work well in practice, keeping fragmentations 

small enough to be ignored. 

3.2.2 Memory Management Overhead 

Most dynamic memory allocation algorithms use a hidden header field within each allocated 

block to store useful information, e.g., the size of the block, so that the size of the block 

doesn't need to be passed to block release functions, thereby simplifying a programmer's 

work. For instance, programming language C has a memory allocation function malloc, one 

of whose input parameters gives the required block size, but its corresponding block release 

function f r e e  doesn't take allocated block size as an input parameter. This is accomplished 

by storing block size in the block header. To support coalescing, many allocation algorithms 

also maintain a footer field within each allocated block, a t  the opposite end from the header 

within the block. The footer contains the block information like block size, an in-use bit 

indicating whether the block is in use or not. The header contains the same information. 

When a block is freed, the in-use bit inside the footer of the previous block and the header 

of the next block is examined to see if they are free to  be merged. Normally, the size of 

the header and footer are just one word, which, in most systems, is 4 bytes (one byte is 

8-bits). There are two words used in total for an allocated block. The average object size is 

normally small - typically 10 words. The overhead of the header is 10% and that for the 

footer is another 10%. Therefore, the overhead for memory management is quite high. 

Management overhead can be reduced by optimization. Standish[36] gives an optimiza- 

tion algorithm that can avoid the footer overhead. When a block is in use, the size field in 

the footer is actually not needed. The size field is only needed when the block is free, so 

that its header can be located for coalescing. Only the in-use bit needs to be stored in the 

footer. Then the size field in the footer can be used to hold real data, thereby reducing the 

overhead. 
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3.2.3 Spec ia l  R e q u i r e m e n t s  fo r  Lexicon  Cache Management 

When designing a cache for a lexicon, some lexicon properties should be taken into account 

since they lead to special requirements. 

A lexicon normally consists of millions of terms, so a bad design might result in un- 

acceptable overhead. For example, if the overhead is 4 bytes per term, the overall 

overhead for a cache capable of storing 5 million terms is 20 MB, which is not accept- 

able for cache memory. 

The terms contained in a lexicon vary in size, from 1 byte to dozens of bytes. How to 

dynamically manage them in a fixed size of cache memory is a challenging problem. 

A naive implementation would just divide cache memory into fixed size cells that can 

hold the largest terms. But this design would incur excessive internal fragmentation 

and probably not be practical. 

Unlike dynamic memory allocation, in which blocks are acquired and released period- 

ically, only inserts and updates occur in a lexicon, and replacement is done by a delete 

followed by a new insert. After the cache grows to a predefined size (cache is full), it 

never shrinks. Also, only one term can be selected to be the victim for replacement, so 

the selected term must not be smaller than the new term to be inserted. Otherwise, 

the new term cannot be placed into cache. But if the victim term is much larger than 

the new term, internal fragmentation will occur. 

3.3 Lexicon Cache Design 

Our lexicon cache design aims to  achieve the following purposes: 

Fast access to te rms ,  which requires term update/lookup in the cache to be done 

quickly. 

Efficient memory  management ,  which requires cache memory management not to 

incur too much internal/external fragmentation and overhead. 

Fine-grained cache granularity,  which requires individual terms be the basic unit 

for read, write and replacement. 
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In the following we present a design for an efficient lexicon cache that fulfills these 

requirements. The design exploits dynamic hashing to provide fast term lookup, and pages 

dedicated to storing terms of the same size to avoid fragmentation. We call this cache 

structure Dynamic Hashing Chunk Cache(DHCC). Other viable solutions would be possible 

as well, but in this thesis we will only focus on DHCC described below. 

3.3.1 Dynamic Hashing Chunk Cache 

Since a lexicon cache is supposed to store millions of terms of variable size, a good cache 

memory structure should reduce the potential fragmentation, which would make the system 

unusable. The idea of DHCC originated from traditional page buffering. A buffer pool is 

divided into an array of fixed-size frames whose size is the same as a disk page. Since a 

fixed-size page is the basic unit for replacement, there is no fragmentation at all. If we can 

organize terms in such a way that terms of different sizes are managed independently, then 

it's possible to replace the victim term with a new term of the same size. 

Cache Architecture 

lexicon entries 

I 

. . . . . . . . . . . . . .  ~ ~ u n i c  h.sh ubir ror 
kcpmnh of size n 

shaded chunks are 
chunks are free. 

. . . . . . . . . . . .  

NIL u t l t l u  

in use; white 

Figure 3.2: DHCC Memory Layout 
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As shown in Figure 3.2, Dynamic Hashing Chunk Cache is organized in memory in the 

following way: 

1. The cache is a pre-allocated continuous memory space, and divided into fixed size 

chunks. The size of a chunk is user configurable, but should be big enough to hold 

dozens to hundreds of lexicon entries. This way the relative space needed for chunk 

administrative data is as little as possible, thus reducing overall overhead. 

2. Every single chunk may only contain lexicon entries with the same size. 

3. For every term size, there is a dynamic hash table2 that hashes a term into chunks, 

and these chunks are chained together to enable sequential scanning. For example, if 

the cache is designed to store term sizes of up to 32 bytes, then there are 32 dynamic 

hash tables and chunk chains, respectively. 

4. A dynamic hash table is maintained for every term size so that it can grow without 

incurring too much performance overhead. The extendible hash table [lo] is used to 

implement a dynamic hash table. 

Heuristic Chunk Allocation 

Given a certain number of chunks, how should we allocate these chunks to each size of terms 

to store the lexicon entries? For instance, should more chunks be allocated to terms of size 

5 than terms of size 6? 

In the discussion of lexicon structure in Witten et a1.[41], it's shown that in the 538,000- 

term TREC lexicon, the average term size is 7.36 letters, while in the 334,000,000-term 

TREC texts, the average term size is 3.86 letters. The difference in the average lengths 

is due to the fact that most common words are short, and these words are repeated many 

times in the text, but they appear only once in the lexicon. This observation suggests that 

most chunks should be allocated to short terms. 

On the other hand, texts or queries can be considered as an infinite stream of terms, 

[t l , .  . . , t,, .]. If we could know the ratio of words of certain size in the stream, chunks can 

then be allocated to each term size proportionally to its ratio. Consider the first q words 

in this infinite stream, [tl, - - , tq], which is a sub-sequence of the stream. When q is big 

'A dynamic hash table is defined as a a hash table whose size can be increasedldecreased dynamically. 
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enough, the ratios of terms of various size in the sub-sequence would be close to those in 

the infinite stream. 

Based on the discussion above, we devise a simple but effective heuristic chunk allocation 

algorithm as follows: 

1. Initially, allocate an empty chunk for each possible term size. 

2. For each term in the sequence, hash it and then insert it into its corresponding chunk. 

If the chunk becomes full, expand it by allocating a new chunk. Expand the hash 

table also if necessary. 

3. Repeat step 2 until all chunks are allocated. 

The algorithm is heuristic in the sense that it only uses the beginning portion of the 

full stream. One may argue that a dynamic hashing table incurs overhead for the growing 

hash table and chunks, which would degrade system performance. But the growth of the 

hash table and chunks only happens for the first q terms, i.e., before the cache becomes full. 

Once the cache becomes full, the hash table becomes static because it won't grow or shrink 

any more. So the construction time of DHCC can be ignored. 

3.3.2 Internal Structure of Chunk 

Now let's take a look at how a chunk's internal space is organized. 

As shown in Figure 3.3, a chunk is split into two portions: 

1. Chunk Header, which contains 5 fields: 1) a pointer to the next chunk in the chain. 

2) the number of entries currently contained in the chunk. 3) the index number of 

the root entry in the portion of the entry BST. 4) local depth3 used in the extendible 

hash. 5) a clock select pointer used in the CLOCK replacement algorithm. 

2. Entry BST, which organizes lexicon entries in the form of a binary search tree (BST) 

[5]. The reason we choose a BST as the data structure to store entries is that it's easy 

to insert/delete/search nodes in a BST. Furthermore, with a little bit more effort, it's 

310cal depth is used by extendible hashing algorithm to decide when the hash table needs to be extended. 
It basically determines how many bits of a hash value are used to address the hash table. For example, if 
local depth is 3, then the most 3 significant bits of the hash value are used to address the hash table. Please 
see Section 4 of [lo] for details. 
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Entry BST (Binary Search Tree) 

chunk header entry BST starts here 

Figure 3.3: Internal Structure of a Chunk. 

Next Pointer 

also easy to  keep a BST balanced so that O(1og n) running time is guaranteed for the 

above operations, where n is the number of nodes in the tree. We will look at the 

entry BST in detail later in this section. 

In the following we will investigate the chunk internals in detail under the assumption 

that the target system on which the lexicon cache is deployed is a 32-bit system, where a 

byte is 8 bits, a word is 32 bits (= 4 bytes), and the addressable memory space is also 32 

bits. 

#of entries 

Chunk Internal Space Allocation 

3rd entry 

Given a chunk of a fixed number of bytes, how many bytes should be allocated to the header 

and how many to  the entry BST? 

The next pointer field in the chunk header doesn't need to  store the physical address (4 

bytes in 32-bit systems) for the next chunk. Since the chunk pool is allocated in continuous 

memory space, chunks can be considered as a sequence [cl, . . . , c,]. Suppose the beginning 

physical address of chunk pool is A, and the chunk's size is c, then for any chunk ci, 1 5 i 5 n, 
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its physical address A,, can be easily calculated: 

A,, = A, + (i - 1) x c (3.2) 

The next pointer in the chunk header may just store the chunk index number in the chunk 

pool. Normally 2 bytes should be enough since that corresponds to 216 chunks. 

The size of the other three fields of a chunk header is determined by the size of the BST, 

so we will return to this question after we discuss space allocation for the entry BST. 

The rest of the chunk space after the header is allocated to the entry BST. A node in 

a BST contains two pointers, one pointing to its left child node and the other pointing to 

its right child node. Similar to the next pointer in the chunk header, lexicon entries in a 

chunk are of the same size, so the child pointers in an entry node may just store the child 

entry's index number in the entry BST. To minimize space overhead, we allocate one byte 

to each pointer, which can express 2' = 256 lexicon entries. So two bytes are needed to 

maintain each node of the BST. The one byte pointer restricts the maximum number of 

lexicon entries that can be stored in a chunk (256 entries), and the maximum size of a 

chunk. Also, each of the other four fields in the chunk header need just one byte due to this 

restriction, and the chunk header needs 6 bytes in total. To implement a balanced BST and 

replacement algorithm, we need another flag byte for each term to bookkeep the balance 

data. Therefore, the overhead for the cache memory management is three bytes per term 

so far4. The structure of a BST node is shown in Figure 3.4. 

Figure 3.4: BST Node Structure. 

A specific chunk, whose size is c bytes and contains lexicon entries of size e bytes, may 

contain 

entries. If a lexicon entry is in the form of < t,  ft ,  DIt > as described in Chapter 1, where f t  

and DIt normally take 4 bytes respectively, then a lexicon entry takes It1 + 8 bytes, where 

It1 is the term length. For example, if the term length is 4 bytes and the chunk size is 3072 



CHAPTER 3. LEXICON CACHING 

bytes (3KB), the chunk may contain up to 1-1 = 204 lexicon entries. 

To get the maximum size of a chunk in such a structure, let's assume that the terms 

only consist of the literals from an alphabet of 36 characters ([o-9a-zI5). The maximum size 

of a chunk is determined by the maximum number of 2-byte terms that can be contained in 

a chunk. When the term size is two bytes, then a lexicon entry consumes 13 bytes, 10 bytes 

of which are used to store the lexicon entry (2 + 8 bytes long), and 3 bytes of which are used 

to store Jags, left and right pointers. Since the child pointer can express 256 child entries, 

the maximum size of the entry BST size is exactly 256 x 13 = 3328 bytes. Including the 6 

bytes chunk header, the maximum size of a chunk is finally 3334 bytes. Since most 32-bit 

OSs work better when the memory boundary is multiples of 4 bytes, the maximum size of a 

chunk would be rounded to 3336 bytes, which is 264 bytes more than 3 KB (=3072 bytes). 

Entry BST 

The lexicon entries in a chunk will be inserted, searched and replaced frequently, so the data 

structure of lexicon entries must allow these operations to be done quickly. 

Binary search tree (BST) is a data structure consisting of a set of objects that are linked 

together to form a binary tree. A node in a BST contains a key and two pointers, each of 

which points to the node's left and right child respectively. The nodes in a BST are linked 

in a way that satisfies the BST property : let x be a node in the BST, then 

key [le f t (x)] < key [XI < key[right(x)] (3.4) 

where le f t(x) and right(x) point to node x's left and right child, respectively. 

The basic operations in a BST are search, insertion and deletion of a node. Cormen et 

a1.[5] give pseudo-codes for these basic operations, and show that the running time of these 

operations is O(h), where h is the height of the BST. In the worst case, nodes are inserted 

in the sequential order so that the BST degrades to a linked list, and the running time for 

these operations becomes O(n), where n is the number of nodes in the BST. If the nodes are 

inserted into a BST randomly, the height of the BST is O(1og n),  so that the running time 

4The three bytes overhead can be further optimized. Since the information needed to maintain a balanced 
BST and replacement algorithm is just a few bits, so these bits can actually be stored in a separate bit array 
and accessed by the entry index number they represent. This method reduces that one byte to just 2 or 3 
bits, so the overhead per term would be around 2.3 bytes. 

5 ~ h e  characters [A-Z] are normally converted to [a-z] when consulting searchlupdate on the lexicon. 
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for basic operations also takes O(1og n),  which is desirable for performance reason. Some 

variants of BST guarantees that the height of a BST is O(1ogn). For instance, both AVL 

tree[l6] and Red-Black tree[5] keeps the BST balanced so that the tree's height doesn't 

exceed 0 (log n) . 
For a lexicon cache, another important operation is replacement, which replaces a victim 

entry in the cache with the new entry. The procedure BST-Replace(root, victim-entry, 

new-entry) replaces a victim-entry in a BST rooted at root with a new-entry. We give the 

pseud~codes for this procedure as follows: 

BST-Replace(root, victim-entry, new-entry) 

1 BST-Delete(root, victim-entry) 

2 BST-Insert (root, new-entry) 

The replace procedure is very simple: line 1 deletes the victim entry from the BST, then 

line 2 inserts the new entry into it. Since the running time for both BST-Delete and BST- 

Insert is O(h), the running time for BST-Replace is also O(h), where h is the height of 

the BST. If the BST is implemented as a balanced tree, the running time for BST-Replace 

can be guaranteed to be O(1og n) . 

Replacement Strategy 

A lexicon cache is supposed to store millions of terms, so it's important to keep adminis- 

trative data overhead as little as possible. If we choose LRU-like or LFU-like replacement 

strategies, a list has to be maintained to adjust each term's position in the reference history. 

This implies that a pointer has to be maintained for every term in cache to point to the 

next term in the list. The size of the pointer wouldn't be less than 3 bytes. Adding these 

extra 3 bytes to each BST entry, the space overhead would become 6 bytes per term, which 

is obviously too much for the cache memory. However, if the average lexicon entry size is 

dozens of bytes, 6 bytes overhead would not be a big problem. In such cases, LRU-like and 

LFU-like replacement strategies can still be used. 

The CLOCK algorithm can approximate LRU replacement strategy and incurs very little 

space overhead to maintain the reference history. For this reason, we choose the CLOCK 

algorithm as the cache replacement strategy. As shown in Figure3.3, for every chunk chain, 

a clock selection pointer is maintained to scan all terms contained in that chunk. One bit 

of the flag field in a BST entry is used for the use-bit needed by the CLOCK algorithm. 
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When a term needs to  be placed into cache, a victim entry will be chosen by moving the 

selection pointer to successive terms stored in the chunk. 

Scalability 

Our cache design is scalable in that: 

Not like the inverted index size, the lexicon size doesn't grow with the original docu- 

ment size. For instance, as we dicussed in Section 1.2, in Google's prototype imple- 

mentation, the original document size is 53.5 GB, and the inverted index size is 55.0 

GB, while the lexicon size is only 293 MB. This is because, in a certain language, there 

is a constant upper bound on the number of distinct words. 

As the lexicon size won't be too big, and when term access distribution follows Zipf's 

law, the cache size that would achieve high hit ratio can be relatively small (as we 

will see in the emprical studies described in the next chapter), which is desirable and 

affordable for resource-limited systems. 

Since we use hashing to assign the same size terms to different chunks and each chunk 

is orginized in BST form, no matter how big the dynamic hash table is, the average 

time to find a term in the cache is always the same, that is, O(1) + O(logn), where 

O(1) is the time to find the corresponding chunk in the hash table and O(1og n)  is the 

time to find the requested term in the chunk's BST. Here we assume that n is the 

average number of terms contained in fixed-size chunks, then n can be deemed as a 

constant. 



Chapter 4 

Empirical Studies 

In this chapter we examine the proposed lexicon cache scheme by experimenting with large 

volumes of data. Section 4.1 describes the design of the experimental system used to study 

the efficiency and performance of the lexicon cache. Section 4.2 gives the expected cache 

hit ratio with a theoretical analysis of the CLOCK algorithm. Section 4.3 shows the exper- 

imental results, which are t hen compared with the theoretical predictions. 

4.1 Experimental System 

To evaluate the design of our lexicon cache, we implement a system on which the experiments 

are conducted. 

Search Simulator 

B-Tree Lexicon Document Repository 

Figure 4.1: Experimental System Components 
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As shown in the figure above, the experimental system consists of six components: 

Document repository that contains all documents in raw formats. 

Data collector that fetches articles from public newsgroups via protocol NNTP[14], and 

stores the fetched articles in the documents repository residing on hard disk. 

Index builder that parses articles in the document repository to extract individual terms 

and populate these terms into the B-Tree lexicon stored on the hard disk. An experi- 

ment performed by the index builder can observe the cache insertlupdate behavior. 

Search simulator that follows the Zipf distribution to generate a sequence of terms to be 

searched in the lexicon to validate the cache search behavior. 

Term-based cache that caches individual lexicon entries. It accesses the lexicon stored 

on disk through a page-based buffer. 

Page-based buffer that is used to buffer lexicon pages. 

Index Builder and Search Simulator may access the lexicon either through the term-based 

cache, or through the page-based buffer directly. In this way we can compare the per- 

formance between a term-based cache and page-based buffer. The experimental system is 

written in C++ with about 8,000 lines of code. 

The following table summarizes some relevant parameters of the computer system on 

which the experiments run: 

Operating System I Linux, kernel 2.4.7 
CPU I AMD Athlon 800 MHz 

Table 4.1: Parameters of Experimental System 

Physical Main Memory 
Disk Paae Size 

4.2 Theoretical Analysis 

768 MB 
4 KB 

To better understand the experimental results, we study in this section the CLOCK algo- 

rithm from theoretical perspective so that we can then compare our experimental results 

with the theoretical predictions. 
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Nicola, Dan and Dias[27] developed an approximate analytical model for the CLOCK 

replacement algorithm under Independent Reference Model (1RM)l for skewed data access. 

A simple analysis and a refined analysis are carried out in their work, but we will only look 

at the simple analysis, since the refined analysis is computationally intractable when the 

total number of pages in the database is big (in the case of a lexicon, it's the number of 

terms, which is normally millions). 

The model assumes that the database is composed of P partitions, and the size of 

partition p is Sp pages. Access to database pages follows the IRM model and the probability 

of accessing a page of partition p is rp. When a page in partition p is brought into the buffer, 

an initial weight Ip is assigned to it. If a page request cannot be satisfied in buffer, the weight 

of the buffer page pointed to by the selection pointer is examined. If the value is 0, this 

page is replaced by the new page; if the value is not 0, the page's weight is decremented 

by 1 and the selection pointer advances to the next page in the buffer until a page with 0 

weight is found. 

Let np (1 < p 5 P )  be the steady-state average number of pages of partition p in the 

buffer, then the buffer hit ratio hp for this partition is 

The overall buffer hit ratio is 

and the overall buffer miss ratio is 

m = l - h  

If the buffer size is B pages, then the following equation holds: 

The model then uses a Markov chain to represent the state of an arbitrary buffer page at 

the moment of a random page request, and assumes that in a clock cycle, the number of 

'Under IRM, each buffer page access is independent of all previous page references. 
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buffer misses equals the number of buffer pages with 0 weight encountered in that cycle. 

The number of buffer pages with 0 weight is denoted as no, then the following equation can 

The value of 2 can be solved by substituting equation 4.5 into equation 4.4, and the 

resulting equation can be solved with the bisection method3. After getting the value of E, 
the hit ratio for each partition and overall buffer hit ratio can be computed with equations 

4.1 and 4.2. 

In the case of a lexicon cache, each term is deemed as a partition, which means Sp = 1. 

The initial term weight is 1 for all terms (CLOCK algorithm), which means Ip = 1. Then 

equation 4.5 can be simplified as 

which is used to compute the expected hit ratio for a lexicon cache. The probability of 

accessing terms, rp, follows Zipf 's distribution. 

4.3 Experiments 

The performance experiments consist of two parts: the lexicon build and the lexicon search. 

In the experiments of the lexicon construction, we will build the lexicon from the document 

repository by using different sizes of cache and buffer memory, and compare their perfor- 

mance. In the experiments of lexicon search, we will study the cache and buffer performance 

for term lookup by simulating the queries with the Zipf distribution submitted to a full- 

text database. We will also compare the hit ratios obtained in the experiments with the 

theoretical ones. 

' ~ e f e r  to [27] for detailed derivation process. 

3Suppose we have a continuous function f (x) = 0, where x is a real number. There can be one or more 
values for x that satisfy this equation. The bisection method works by assuming that we know of two values 
1 and r such that f (1) < 0 and f (r) > 0, then there must be a t  least one value v that falls between 1 and r 
such that f (v) = 0. 
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4.3.1 Data Statistics 

Before studying the experiment results, let's take a look at the data statistics with regard to 

the document repository, lexicon terms and the lexicon B-Tree. Although most information 

shown below can be observed only after all the documents have been processed (i.e., after 

the lexicon is built), it will help us to better understand the experimental results in the 

subsequent sections. 

size of the document repository 1 1.74 GB of data I 
I total number of newsnroups I 2,135 1 

I max size of a term I 32 bvtes I 

number of newsgroup articles 
number of all the terms in the repository 

number of distinct terms 
min size of a term 

Table 4.2: Document Repository Statistics. 

1,377,044 
89,112,911 

1,373,059 
1 bvte 

Table 4.2 shows that there are 1.74 GB of data obtained from 2,135 newsgroups. Many 

newsgroups deal with just one topic, i.e., most articles posted to a newsgroup focus their 

discussions on a specific field. For example, articles posted to newsgroup 'van.forsale' are 

mainly with regard to buyhel l  second-hand articles in the Greater Vancouver Area. We 

store all articles belonging to one newsgroup into its own file, so there are 2,135 files in the 

respository. The maximum size of a term is pre-determined to restrict the largest term size 

and also to simplify the parsing when building the lexicon. 

The lexicon is built as follows: 

1. Get every single term by parsing the files. 

2. Check if the term's lexicon entry is in the cache. If yes, update the lexicon entry's 

information (increment frequency by one); if not, read the lexicon entry from the disk 

into the cache if it's already in the B-Tree, or add a new lexicon entry into the B-Tree 

and the cache if it's a new term. 

3. For each term access, increment the cache hit count by one if it's found in the cache; 

otherwise, increment the cache miss count by one. 



CHAPTER 4. EMPIRICAL STUDIES 

I size I count I percentage I( size I count I percentage I 

I total count I 1,373,0591 

Table 4.3: Distinct Terms Statistics. 

Table 4.3 shows the statistics for the distinct terms. The size column shows the size of 

a term, and the count column indicates that, among all the distinct terms, how many have 

that size. The percentage column is computed by z$ ::$. Our heuristic chunk allocation 

algorithm should allocate chunks to various size of terms with the ratios close to the ratios 

shown in this table. Table 4.3 also shows that the short terms comprise the majority of 

terms in the lexicon. There are not many terms whose sizes are larger than 16 bytes. 

Table 4.4 shows the statistics for the resulting lexicon B-Tree. We can see that due to 

the large fan-out of a B-Tree node, both the height of the B-Tree and the number of the 

non-leaf disk pages are small. 

In all of our experiments, 3 KB is chosen for the size of a chunk. MD5 is chosen as the 

hash function, the first 4 bytes of whose output are used as the hash value. 

4.3.2 Construction of Lexicon 

Table 4.5 shows the cache hit ratios for various cache size when building the lexicon. The 

cache size column shows the size of the cache measured in KB. The #chunks column shows 
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size of the B-Tree 
height of the B-Tree 

total number of disk pages 

Table 4.4: Lexicon B-Tree Statistics. 

46.21 MB 
3 

11,830 
number of non-leaf disk pages 

number of leaf disk pages 

the total number of chunks contained in the cache. The #terms column shows the total 

66 
11,764 

number of terms contained in the cache. The access to cache column shows the total number 

of cache accesses. Because we limit the maximum term size to 32 bytes and the maximum 

term size in the cache is also 32 bytes, every access to terms goes to the cache first. This 

is why the numbers in this column for various cache sizes are all the same, i.e., 89,112,911, 

which is also the total number of terms in the document repository (see Table4.2). The 

cache hit column shows the total number of terms found in the cache. The hit ratio column 
is calculated by access to cache - #terms 4 

cache hit 

Table 4.5: Cache Hit Ratio (Lexicon Construction). 

From table 4.5, we see that the cache hit ratio is quite high even for a small size cache 

when the lexicon is constructed. This looks too good to be true at  a first glance. For 

example, for a cache size of 510 KB, which is about 1% of the whole lexicon, the hit ratio 

is as high as 94.9%! But if we look at the number of terms in the cache, we can explain 

, 

cache size (KB) 
126 
255 
510 

1,023 
5,115 

15,345 
25,575 
35,805 

-- 

4i.e., the cache misses due to the cache fill-up are not counted, since at the beginning the cache is empty, 
and counting cache misses when the cache is not full doesn't accurately reflect the hit ratio. 

#chunks 
42 
85 

170 
341 

1,705 
5,115 
8,525 

, 11,935 

#terms 
5,682 

13,196 
27,976 
57,332 

294,298 
878,285 

1,285,376 
, 1,371,937 

access to cache 
89,112,911 
89,112,911 
89,112,911 
89,112,911 
89,112,911 
89,112,911 
89,112,911 

, 89,l 12,91 1 

cache hit 
75,403,833 
82,309,910 
84,607,217 
85,804,980 
87,347,084 
87,664,178 
87,726,505 

, 87,739,586 

hit ratio 
0.846 
0.924 
0.950 
0.963 
0.983 
0.993 
0.998 

, 0.999 
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I cache size (#terms) I hit ratio I 

Table 4.6: Theoretical Cache Hit Ratio (Lexicon Construction) 

why. For the 510 KB cache, there are 27,976 terms contained in the cache. Since we already 

know that the term occurrence in documents follows Zipf's law, the theoretical hit ratio 

can be easily computed by using Equation 4.6. Then it's found that the cache hit ratio 

approximates the Zipf distribution with a z 1.27. The theoretical hit ratios are shown in 

Table 4.6 The experimental and theoretical hit ratio are compared in Figure 4.2 on page 46. 

Table 4.7: Buffer Hit Ratio (Lexicon Construction). 

buffer size (KB) 
5,120 

15,360 
25,600 
35,840 
46,080 

Noteworthy is the comparison of the hit ratios for cache scheme and buffer scheme. Table 

4.7 shows the hit ratios for the case that only the buffer is used. The cache and buffer hit 

ratios are then compared in Figure 4.3 on page 47 with the data from Table 4.5 and Table 

4.7. We can see that, with the same amount of memory, the cache hit ratio is much higher 

than the buffer hit ratio. Figure 4.3 also shows that the curve for the buffer hit ratio follows 

some kind of power law function, instead of a linear function as we claimed in Section 3.1.1. 

This is because our lexicon is empty at the beginning. So for a buffer that can hold n terms, 

buffer access 
89,112,911 
89,112,911 
89,112,911 
89,112,911 
89,112,911 

buffer hit 
26,179,751 
57,468,521 
76,490,065 
85,292,872 
89,099,350 

hit ratio 
0.294 
0.645 
0.858 
0.957 
0.999 
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number of terns i n  cache 

Figure 4.2: Experimental Hit Ratio vs. Theoretical Hit Ratio (Lexicon Construction) 

the first new n terms don't result in a buffer miss. Therefore, the buffer hit ratio is actually 

higher than it should be with the real work load. In practice, the lexicon should be stable 

and changes little during a relatively long period, i.e., after running the system for a while, 

all possible terms are collected in the lexicon, so normally there are few new terms to be 

added to it. Therefore, for a buffer that can hold n terms, it's not guaranteed that the first 

n terms can be found in the buffer, since these n terms are distributed to all the nodes, the 

number of which is equal to the number of B-Tree leaves. We will see this phenomenon in 

the experiments of lexicon search. However, this doesn't apply to the cache scheme, since 

the cache's basic storing unit is a term, not a block containing many terms. 

The next thing we want to compare is the response time for the buffer and cache scheme. 

If the response time for the cache scheme is not significantly faster than the buffer scheme, 

using term-based cache doesn't make any difference even if it has much higher hit ratio. 

Table 4.8 on page 48 and table 4.9 on page 48 show the response time for different sizes of 

cache and buffer, respectively. We can see that the cache response time is generally much 
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cachelbuf f er size (KB) 

Figure 4.3: Cache Hit Ratio vs. Buffer Hit Ratio (Lexicon Construction) 

faster than the buffer. For instance, a 126 KB cache is even about 4 times faster than a 5 

MB buffer, and a 5 MB cache is about 15 times faster than a 5 MB buffer! We also notice 

that the response time in these two tables appears not decreasing consistently when the 

cachelbuffer size increases, e.g., the response time of the 35,805 KB cache is slower than 

that of the 25,575 KB cache, and the response time of the 35,840 KB buffer is slower than 

that of the 25,600 KB buffer. Two factors may result in this consequence: 

1. The Linux operating system does its own disk buffering to  speed up the file system 

operatoins. So it's possible that most of B-Tree pages are already buffered in main 

memory, which makes our buffering almost useless. This phenomenon will be actually 

verified when we measure response time in the experiments of lexicon search later in 

the next section. 

2. When constructing the lexicon B-Tree, new keywords need to  be inserted into the 

lexicon, which requires the split of B-Tree nodes in buffer or chunks in cache etc. These 

administrative operations may dominate the response time if most of B-Tree pages are 
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already buffered by the operating system itself. So sometimes smaller cachelbuffer size 

may have faster response time. 

Due to these factors, our measure of response time is not accurate, but it should roughly 

reflect the response time for these two schemes in general. 

Table 4.8: Cache Response Time (Lexicon Construction). 

cache size (KB) 
126 

response time (second) 
15.212 

Table 4.9: Buffer Response Time (Lexicon Construction). 

buffer size (KB) 
5,120 

Now let's take a look at how our heuristic chunk allocation algorithm works with the real 

work load. Table 4.10 on page 53 shows the statistical data for the 1023 KB cache (close 

to 1,024 KB = 1 MB) The column t e rm  size shows the size of a term, the column #chunks 

response time (second) 
60,489 

shows the number of chunks allocated to that size of terms, the column #terms shows the 

number of terms of that size contained in the cache, the column global depth shows the 

dynamic hash table size defined by extendible hash, and the percentage column is calculated 
terms 

by # o:terms in Compare the percentages in each row of this table with that of 

Table 4.3. We can see that they are very close, which means our heuristic algorithm works 

very well for building the lexicon. From this table we can also see that most of #chunks 
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in each row is approximately 2gLoba1 depth, which means our hash function evenly distributes 

terms to chunks and the selected hash function works very well too. 

4.3.3 Lexicon Search 

Because we don't have real work load to evaluate lexicon search performance of the cache, 

a simulation experiment was performed instead. The simulation works as follows: 

1. Randomly assign a unique rank to each term in the lexicon. 

2. Run an iteration of searches to the lexicon. Each search contains a single term. The 

access frequency to a term corresponds to its rank with Zipf's distribution. We choose 

cr = 1.0 for the simulation. 

3. For each term access, the cache hit is incremented by one if the term is found in the 

cache; otherwise, the missed term is brought into the cache. 

Table 4.11 on page 54 shows the simulation results. The meaning of each column is 

the same as that of Table 4.5. In this table, the total number of cache access is 30,000,001 

times for all cache sizes. This number is also the the number of searches in an iteration. 

One thing to notice in this table is that after the cache hit ratio reaches 0.95, it increases 

very little with the increase of the cache size, and the number of terms contained in the 

cache increases very little as well. The reason for the latter is probably that the random 

number generator used in our simulation doesn't work perfectly so that some terms are 

never accessed. The same reason could explain the former because if the random generator 

is not perfect, the generated search sequence doesn't strictly conform to Zipf's distribution. 

The number of chunks in the last row is 10,852, but in this round of the experiment, the 

actual cache capacity is 11,935 chunks, which means that not all chunks were used due to 

the same reason. This is also why it is the last experiment for the lexicon search, because 

increasing the cache size further doesn't make any difference. Another possible factor might 

be that the clock select pointer is only circulated within each chunk, not in the whole cache. 

So our clock replacement implementation is also not strict. How these factors or others may 

affect the hit ratio is beyond the scope of this thesis and may be answered in future work. 

The theoretical hit ratios are shown in Table 4.12 on page 54. The experimental and 

theoretical hit ratio are compared in Figure 4.4. 
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- 
experimental hit ratio -+ - 
theoretical hit ratio + - 

- 
I I I I I 1 

number of terms in cache 

Figure 4.4: Experimental Hit Ratio vs. Theoretical Hit Ratio (Lexicon Search) 

Table 4.13 on page 55 shows the buffer hit ratio (without a cache) for the lexicon search. 

Figure 4.5 compares the cache hit ratio and the buffer hit ratio. Figure 4.5 shows that with 

the same amount of memory, the cache scheme achieves a much higher hit ratio than the 

buffer scheme. As we predicted in Section 4.3.2, we can also see that the buffer hit ratio 

follows a linear function, because when doing the searching experiment, the lexicon is not 

changed and is in a really stable state. The figure shows that the slope of the buffer hit 

ratio changes after the point where the buffer size is 42,496 KB. It may be explained by 

the thrashing phenomenon. Since the terms in the hotset are scattered throughout the disk 

pages of the whole lexicon, if the buffer is not big enough, not all popular terms can be held 

in the buffer. To access some popular terms that are not currently in the buffer, the buffer 

frames that contain other popular terms have to be replaced. If the buffer is big enough, all 

disk pages containing the popular terms can be held in memory so that thrashing doesn't 

occur very often. 



CHAPTER 4. EMPIRICAL STUDIES 

cache/buffer size (KB) 

Figure 4.5: Cache Hit Ratio vs. Buffer Hit Ratio (Lexicon Search) 

Table 4.14 on page 55 and table 4.15 on page 55 show the response time for different 

sizes of cache and buffer. It's obvious that the cache response is much faster than the buffer 

response, e.g., a 5M cache is about 6 times faster than a 5M buffer. We also notice that, 

in table 4.15 the response time doesn't decrease too much when the buffer size increases 

significantly. This verifies the phenomenon observed in the previous section that the disk 

buffering in Linux operating system buffers most of tje B-Tree already, so that our own 

buffering doesn't cause much additional delay. Altough this makes our measuring of the 

response time not accurate, it still roughly reflects the fact that the term-based cache is 

much faster than the page-based buffer. 

We also evaluated the heuristic chunk allocation algorithm by studying the term statistics 

in a cache of a certain size. Table 4.16 on page 56 shows the statistical data for a 1,023 KB 

cache (same as Table 4.10). The meaning of each column is the same as that of Table 4.10. 

By comparing it with Table 4.3, we find that, unlike the statistics shown in Table 4.10, the 

percentages don't exactly match those in Table 4.3. But we can see that the percentages 
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still roughly match the curve representing the percentages in Table 4.3. Also, most values 

for the number of chunks are approximately 2globa1 depth. SO our heuristic chunk allocation 

algorithm also works well for lexicon search. 
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term size I chunk # I term # ( global depth I percentage 
1 I 1 I 36 1 0 1 0.00006 

Table 4.10: Cache Terms Statistics (Lexicon Construction). 

- 
- 
- 
- 

- 

- 
- 

I I 

total term # in cache 
total chunk # in cache 

I 

580,434 
3,410 
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Table 4.11: Cache Hit Ratio (Lexicon Search). 

Table 4.12: Theoretical Cache Hit Ratio (Lexicon Search). 
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I buffer size (KB) I buffer access 1 buffer hit I hit ratio 1 

Table 4.13: Buffer Hit Ratio (Lexicon Search). 

1 cache size IKB) I remonse time (second) 1 

Table 4.14: Cache Response Time (Lexicon Search). 

1 buffer size (KB) I resDonse time (second) I 

Table 4.15: Buffer Response Time (Lexicon Search). 
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term size ( chunk # I term # I global depth [ percentage 
I I 1 I 34 1 0 1 0.00006 

Table 4.16: Cache Terms Statistics (Lexicon Search). 

32 ( 1 I 55 
total term # in cache 

total chunk # in cache 

0 1 0.00010 

577,992 
3,410 



Chapter 5 

Conclusions and Future Work 

In this chapter we summarize the thesis and point out the potential directions for future 

work. 

5.1 Contributions 

In this thesis we proposed and evaluated a new caching scheme for the lexicon in a full-text 

database. Our main contributions include: 

Identified the need for efficiently caching the lexicon in a full-text database, which 

is an overlooked research area in the current literature. We also indicate that the 

traditional page-based buffer scheme is not an adequate method to cache the lexicon 

due to its special characteristics. 

Proposed a term-based lexicon caching method that is totally different from the tra- 

ditional paged-based buffer method in the database systems. The novelty in our ap- 

proach exploits two special characteristics of the lexicon: 1) the basic unit handled by 

the lexicon is individual terms; 2) the terms in the hotset are scattered throughout the 

whole lexicon and don't exhibit the reference locality found in page-based databases. 

Combined efficiently the different and well-developed technologies into a new frame- 

work. The framework doesn't expose any restrictions on what data structures and 

algorithms must be used. The data structures and algorithms adopted in this the- 

sis should not be thought as a guide for how the framework would be implemented. 
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The system developers may choose whatever data structures and algorithms they find 

suitable to their needs. 

Evaluated the new caching scheme thoroughly by conducting extensive theoretical 

and empirical studies and analyses. The results show that, with the same amount of 

memory, the term-based cache scheme apparently outperforms the pagebased buffer 

scheme. Our results can be used as the basis for further research in this area. 

5.2 Future Work 

Our research in this area can be further improved and extended in the following aspects: 

If the trace logs from commercial systems can be used to perform empirical studies, the 

term-based caching scheme can be better evaluated and compared with the pagebased 

buffer scheme, especially in the case of lexicon search. Furthermore, our experimental 

data are still very small compared to  commercial systems, whose document repository 

is normally of hundreds of gig-bytes. It would be interesting to  see how our caching 

scheme works with the workload of commercial systems. 

Other data structures and algorithms may be investigated for the term-based caching 

scheme. The data structures proposed in this thesis are based on the hashing tech- 

nique, which has some inherent limitations, e.g., the range search or wildcard search 

is not supported, etc. I t  is possible to organize chunks in treelike structures such as 

B-Tree, thus providing range or wildcard access to terms in the cache. 

The space overhead per term in our caching scheme is over two bytes, which is still a 

little bit high, especially for the terms of short length. . From empirical studies, we 

can see that the terms with sizes from 4 bytes to 8 bytes contribute to about 70% of 

the lexicon. A term entry in the lexicon contains the other 8 bytes to store the term 

frequency and the disk address of the term's inverted list. So most term entries in a 

lexicon are about 12 bytes to 16 bytes long. If the space overhead per term is three 

bytes, then for most terms in the lexicon, the space overhead is from 25% to 19% 

of the actual data size. It would be a great improvement to the term-based caching 

scheme if the space overhead can be reduced to  less than 2 bytes. 
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0 With the new lexicon caching scheme, it's worth investigating the issue that, given 

a full-text database with the data and the lexicon of certain sizes and the access 

frequency distribution, how to best utilize the available memory resources to obtain 

the best cost-performance. 
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