
HEURISTICS FOR GENERATING ADDITIVE 

SPANNERS 

Michael J. Letourneau 

B. Sc. (Honours), Brock University, 2002 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

O F  THE REQUIREMENTS FOR THE DEGREE O F  

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Michael J. Letourneau 2004 

SIMON FRASER UNIVERSITY 

August 2004 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Michael J. Letourneau 

Master of Science 

Heuristics for Generating Additive Spanners 

Examining Committee: Dr. Lou Hafer 

Chair 

Date Approved: 

Dr. Arthur Liestman, Senior Supervisor 

Dr. Thomas Shermer, Supervisor 

Dr. Hovhannes Harutyunyan, External Examiner 

Associate Professor of Computer Science, 

Concordia University, Montreal, QC 



Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has 

granted to Simon Fraser University the right to lend this thesis, project or 

extended essay to users of the Simon Fraser University Library, and to 

make partial or single copies only for such users or in response to a 

request fiom the library of any other university, or other educational 

institution, on its own behalf or for one of its users. 

The author has further agreed that permission for multiple copying of this 

work for scholarly purposes may be granted by either the author or the 

Dean of Graduate Studies. 

It is understood that copying or publication of this work for financial gain 

shall not be allowed without the author's written permission. 

The original Partial Copyright Licence attesting to these terms, and signed 

by this author, may be found in the original bound copy of this work, 

retained in the Simon Fraser University Archive. 

Bennett Library 
Simon Fraser University 

Bumaby, BC, Canada 



Abstract 

Given an undirected and unweighted graph G, the subgraph S is an additive spanner 

of G with delay d if the distance between any two vertices in S is no more than d 

greater than their distance in G. It is known that the problem of finding additive 

spanners of arbitrary graphs for any fixed value of d with a minimum number of edges 

is NP-hard. Additive spanners are used as substructures for communication networks 

which are subject to  design constraints such as minimizing the number of connections 

in the network, or permitting only a maximum number of connections at any one 

node. 

In this thesis, we consider the problem of constructing good additive spanners. We 

say that a spanner is "good" if it contains few edges, but not necessarily a minimum 

number of them. We present several algorithms which, given a graph G and a delay 

parameter d as input, produce a graph S which is an additive spanner of G with delay 

d. 

We evaluate each of these algorithms experimentally over a large set of input 

graphs, and for a series of delay values. We compare the spanners produced by each 

algorithm against each other, as well as against spanners produced by the best-known 

constructions for those graph classes with known additive spanner constructions. We 

highlight several algorithms which consistently produce spanners which are good with 

respect to  the spanners produced by the other algorithms, and which are nearly as 

good as or, in some cases, better than the spanners produced by the constructions. 

Finally, we conclude with a discussion of future algorithmic approaches to  the con- 

struction of additive spanners, as well as a list of possible applications for additive 

spanners beyond the realm of communication networks. 



To Stanley "Uncle Willie" Wilson, 

who knows a thing or two about experimentation. 



spanner 

2a. A hand- tool, usually consisting 

of a small bar of steel, having 

an opening, grip, or jaw a t  the 

end which fits over or clasps the 

nut of a screw, a bolt, coupling, 

etc., and turns it or holds it in 

position; a wrench. 

2b. Colloq. phr. to  throw a span- 

ner in the works and varr.: 

to cause disruption, to inter- 

fere with the smooth running of 

something. 
The Oxford English Dictionary 

Second Edition, 1989 



Acknowledgments 

First and foremost, I would like to  thank my Senior Supervisor, Dr. Art Liestman, for 

all his assistance, encouragement, and direction throughout my whole thesis process, 

as well as for all that pie. Can't forget the pie. 

I would like to  thank my Supervisor, Dr. Tom Shermer, for his guidance and 

numerous insights, and my Examiner, Dr. Hovhannes Harutyunyan of Concordia 

University, for agreeing to examine my thesis. I would also like to  thank Pritam 

Ranjan and especially Matt Pratola of the Department of Statistics at  SFU for their 

help with the statistical portions of this thesis. 

I would like to  thank Dr. Brian Ross, Dr. Tom Jenkyns, and especially Dr. 

Sheridan Houghten, all of Brock University, for their efforts in my undergraduate 

education. Without them, I would not have been inspired to  undertake graduate 

studies. 

I would like to  thank the Natural Sciences and Engineering Research Council of 

Canada (NSERC) for the generous financial support they have provided in the form 

of a Postgraduate Scholarship. 

I would like to thank my wonderful friends for being so wonderful and for making 

so much of this experience fun. I only hope I have made their various experiences as 

much fun as they have made mine. 

Last, but certainly not least, I would like to  thank my parents for all the love, 

care, and encouragement they have provided me, and continue to  provide me. 



Contents 

Approval 

Abstract 

Dedication 

Quotation 

Acknowledgments 

Contents 

List of Tables 

List of Figures 

List of Algorithms 

1 Introduction 

2 Foundat ions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Definitions 

. . . . . . . . . . . . . . . . .  2.2 Known Additive Spanner Constructions 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Terminology 

. . 
11 

iii 

vi 

vii 

xiii 



3 Experimental Design 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Experiments 11 

. . . . . . . . . . . . . . . . . . . . . . .  3.1.1 Primary Experiment 12 

. . . . . . . . . . . . . . . . . . . . . .  3.1.2 Secondary Experiments 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 Graphs 14 

. . . . . . . . . . . . . . . . . . . . . . . .  3.2.1 Structured Graphs 14 

. . . . . . . . . . . . . . . . . . . . . . . . .  3.2.2 Random Graphs 14 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.3 Further Graphs 15 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Baseline 16 

4 Algorithms 17 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.1 On "Greedy" Algorithms 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1.1 On Analysis 18 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Algorithm Terminology 19 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 1-Stage Algorithms 20 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.3.1 Far Edge Deletion 20 

4.3.2 Tainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

. . . . . . . . . . . . . . . . . . . . .  4.3.3 Neighbourhood Tainting 29 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3.4 Popular Edges 32 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.3.5 Low Degree Pairs 37 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 2-Stage Algorithms 40 

. . . . . . . . . . . . . . . . . . . .  4.4.1 Spanning Tree Algorithms 42 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4.2 Patching 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4.3 Analysis 57 

. . . . . . . . . . . . . . . . . . . . . . . .  4.5 Decomposition Algorithms 57 

. . . . . . . . . . . . . . . . . . . . . .  4.5.1 Algorithmic Argument 57 

. . . . . . . . . . . . . . . . . . . . . . .  4.5.2 Structural Argument 58 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.6 Baseline Algorithm 59 

5 Experimental Analysis 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Experiments 

... 
Vll l  



. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1.1 Test Graphs 61 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1.2 Algorithms 63 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1.3 Shuffling 63 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Implementation 65 

. . . . . . . . . . . . . . . . . . . . . . . .  5.2.1 Evaluation System 65 

5.2.2 Implementation Choices and Limitations . . . . . . . . . . . .  66 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Primary Criterion 67 

. . . . . . . . . . . . . . . . . . . . . .  5.3.1 Competitive Rankings 68 

. . . . . . . . . . . . . . . . . . . . . . . .  5.3.2 Edge ratio rankings 76 

. . . . . . . . . . .  5.3.3 Comparisons against known constructions 76 

. . . . . . . . . . . . . . . . . . . . . .  5.3.4 List of good heuristics 89 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.4 Secondary Criteria 90 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.4.1 Average Delay 90 

5.4.2 Maximum Degree . . . . . . . . . . . . . . . . . . . . . . . . .  99 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.4.3 Running Time 99 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 Summary 101 

6 Conclusions and Future Work 106 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 Conclusions 106 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Future Work 107 

Bibliography 110 

Appendix -- Experimental Data 113 



List of Tables 

5.1 Graphs used for experiments . . . . . . . . . . . . . . . . . . . . . . .  63 

5.2 Table of algorithms and their labels . . . . . . . . . . . . . . . . . . .  64 

5.3 "Top 10" fractions for all algorithms over all grids . . . . . . . . . . .  69 

5.4 "Top 10" fractions for all algorithms over all hypercubes . . . . . . .  70 

5.5 "Top 10" fractions for all algorithms over all X-trees . . . . . . . . . .  71 

5.6 "Top 10" fractions for all algorithms over all pyramids . . . . . . . .  72 

5.7 "Top 10" fractions for all algorithms over all random graphs . . . . .  73 

5.8 "Top 10" fractions for all algorithms over all graphs . . . . . . . . . .  75 

5.9 Edge ratios for all algorithms over all grids . . . . . . . . . . . . . . .  77 

5.10 Edge ratios for all algorithms over all hypercubes . . . . . . . . . . . .  78 

5.11 Edge ratios for all algorithms over all X-trees . . . . . . . . . . . . . .  79 

5.12 Edge ratios for all algorithms over all pyramids . . . . . . . . . . . . .  80 

5.13 Edge ratios for all algorithms over all random graphs . . . . . . . . . .  81 

. . . . . . . . . . . . . .  5.14 Edge ratios for all algorithms over all graphs 82 

5.15 "Good" heuristics according to the primary criterion . . . . . . . . .  89 

5.16 Average delay for the good algorithms over all hypercubes . . . . . .  90 

5.17 Average delay for the good algorithms over all grids . . . . . . . . . .  92 

5.18 Average delay for the good algorithms over all X-trees . . . . . . . . .  92 

5.19 Average delay for the good algorithms over all pyramids . . . . . . .  92 

5.20 Average delay for the good algorithms over all random graphs . . . .  93 



List of Figures 

2.1 Basic spanner types . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

2.2 Highways in a supergrid . . . . . . . . . . . . . . . . . . . . . . . . .  8 

2.3 Spanning an infinite grid with highways and tiles . . . . . . . . . . .  8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Edge Distance 20 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Far Edge Deletion 22 

. . . . . . . . . . . . . . . . . . . .  4.3 Tainting when ds(w, u) = ds(w. v) 26 

. . . . . . . . . . . . . . . . .  4.4 TaintingwhenIds(w.u)-ds(w.v)l=l  26 

4.5 T a i n t i n g w h e n l < I d s ( w , u ) = d s ( w . v ) l ~ R  . . . . . . . . . . . . . .  27 

4.6 Neighbourhood Tainting . . . . . . . . . . . . . . . . . . . . . . . . .  30 

4.7 Low Degree Pair Selection . . . . . . . . . . . . . . . . . . . . . . . .  39 

. . . . . . . . . . . . . . . . . . . . . . . .  4.8 2-Stage Algorithm Process 41 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.9 Patching 48 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.10 Repairing 51 

4.11 Distinct-tree patching . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

Experiment implementation structure . . . . . . . . . . . . . . . . . .  67 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Key to the plots 83 

Spanner edges vs . delay (parameter), for XTg . . . . . . . . . . . . . .  84 

. . . . . . . . . . . . . . .  Spanner edges vs . delay (parameter), for P5 85 

. . . . . . . . . . . . . . .  Spanner edges vs . delay (parameter), for Qg 86 

Spanner edges vs . delay (parameter). for . . . . . . . . . . . . .  87 

Average delay vs . parameter delay for Qg . . . . . . . . . . . . . . . .  91 

Average delay vs . parameter delay for XT7 . . . . . . . . . . . . . . .  94 



5.9 Average delay vs . parameter delay for XTg . . . . . . . . . . . . . . .  95 

5.10 Average delay vs . parameter delay for R200(0.10) . . . . . . . . . . .  96 

5.11 Average delay vs . parameter delay for R200(0.30) . . . . . . . . . . .  97 

5.12 Average delay vs . parameter delay for R200(0.50) . . . . . . . . . . .  98 

5.13 Maximum degree vs . parameter delay for Rzoo(0.15) . . . . . . . . . .  100 

5.14 Running Time vs . parameter delay for Q8 . . . . . . . . . . . . . . .  102 

5.15 Running Time vs . parameter delay for Qg . . . . . . . . . . . . . . .  103 

5.16 Average Running Time vs . Instance Size (IVI) for the Hypercubes . . 104 

xii 



List of Algorithms 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Far Edge Deletion 23 

. . . . . . . . . . . . . . . . . . . . . . .  Edge Removal with Tainting 29 

. . . . . . . . . . . . . . . . . . . . .  Simple Neighbourhood Tainting 31 
. . . . . . . . . . . . . . . . . . . . . . . .  Ic-Neighbourhood Deletion 33 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Popular Edge Selection 34 
. . . . . . . . . . . . . . . . . . . . . .  Partial Popularity Assignment 35 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Low Degree Pairs 38 

. . . . . . . . . . . . . . . . . . .  Breadth-First Search Spanning Tree 43 
. . . . . . . . . . . . . . . . . . . .  Depth-First Search Spanning Tree 44 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  Simple Spanning Tree 45 

. . . . . . . . . . . . . . . . . . . . . .  Popular Edges Spanning Tree 46 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Simple Patching 47 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Farthest Pair Patching 49 

. . . . . . . . . . . . . . .  Farthest Edge Patching with Tie-Breaking 50 

. . . . . . . . . . . . . .  Simple Repairing (recursive component only) 52 

. . . . . . . . . . . . . . . . . . . . . . . .  Distinct Tree Construction 56 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Random Edges 59 

xiii 



Chapter 1 

Introduction 

The journey of a thousand miles 

begins with a cash advance. 
(colloquial) 

In this thesis, we will consider the problem of generating good additive graph 

spanners. We will defer their formal definition until Chapter 2 and instead simply 

describe an additive spanner as a graph which models a more complicated graph in 

such a way that the distances between pairs vertices in the spanner and the distances 

between the same pairs in the original graph differ by a t  most a set amount. A 

spanner generally has fewer edges than the graph it models, but it still retains the 

general character of that graph. 

Additive spanners were originally motivated by problems in the field of computer 

and communication networks. They are used in situations where a network having 

certain properties is desired, but where construction costs or hardware limitations pre- 

vent this network from being feasibly constructed. By constructing a network based 

on a spanner which resembles the desired network, instead of the desired network 

itself, one can mitigate the factors preventing the construction of the desired network 

at  a known cost. 

In this thesis, we take an experimental approach to  evaluating algorithms for gener- 

ating good spanners of arbitrary graphs. We will present an experimental framework 

which can be used to evaluate such algorithms. This framework includes a set of 



CHAPTER 1. INTRODUCTION 2 

criteria for determining if a spanner is "good", along with a set of graphs for which 

prospective algorithms can be used to  generate additive spanners. We will also present 

a series of algorithms for generating good spanners and evaluate them extensively 

within this framework. Using this information, we find several algorithms which per- 

form well in all tested cases, and which will likely produce good spanners in all cases. 

Finally, we conclude the thesis with a discussion of possible new spanner algorithms 

as well as possible uses for additive spanners, both in the realm of communication 

networks as well as beyond it. 



Chapter 2 

Foundat ions 

Would the two of you stop being 

amazed by the mathematics?! 
C. J. Cregg, The West Wing 

"The Leadership Breakfast" 

Season 2, Episode 11 

This chapter will cover the material which underlies the main work of this thesis. 

Previous work on spanners will be discussed, and some terminology will be defined. 

All graphs in this thesis will be undirected, unweighted, simple graphs, and all 

graph-theoretic terminology will follow the style of West [25]. The naming convention 

G, = (V,, Ex) will be used to denote that V, is the vertex set of the graph G,, and 

E, is the edge set of G,. The notation S, will be used to denote a graph that is a 

spanner of G,, and the subscripts will be omitted when the meaning of the symbols 

is clear from the context. The notation d,(u, v) denotes the distance between u and 

v in graph x. More terminology will be defined in Section 2.3. 

Given a graph G, S is a spanner of G if S is a spanning subgraph of G and 

the distance between any pair of vertices in S is bounded by some function of their 

distance in G. More formally, as defined by Liestman and Shermer [15], we say that 

a graph G = (V, E )  contains an f (x)-spanner S = (V, E') if S is a spanning subgraph 

of G and Vu, v E V, ds(u, v) 5 f (dc(u, v)). 



CHAPTER 2. FOUNDATIONS 

Definitions 

Under the original definition of spanners (due to Peleg and Schaffer [19]) the distance 

bound was of the form f (x) 5 tx. In particular, every edge (u, v) in G corresponded to 

a path from u to  v in S of length at most t. Thus, the distance in the spanner between 

any two vertices u and v was no more than t times longer than the path in the original 

graph. Spanners of this form would come to be known as multiplicative spanners, or 

tx-spanners, where t is called the stretch of the spanner. Their multiplicative nature, 

however, implies that the distances between distant vertices in G can grow to  be 

extremely large in the spanner. This is not desirable when such a spanner is used to 

model many types of communications/interconnection networks. 

After proposing the more general definition of f (x)-spanners, Liestman and Sher- 

mer devised additive spanners which ensured that the distances between any pair of 

vertices in S would never be much greater than their distance in G. Additive spanners 

are spanners with a distance bound of the form f (x) = d + x; we call such a spanner a 

(d + x)-spanner, or simply an additive d-spanner. In the case of additive d-spanners, d 

is also called the delay of the spanner. Thus, the distance between any pair of vertices 

u, v in an additive d-spanner is no more than d greater than their distance in the orig- 

inal graph, regardless of whether or not there is an edge (u, v) E EG. While additive 

spanners do not suffer from the same "explosion" of distances found in multiplica- 

tive spanners, they are conceptually more complicated, since the delays between all 

vertex pairs must be bounded, not just the delays between pairs connected by edges 

in the original graph. Figure 2.1 illustrates the difference between multiplicative and 

additive spanners; dashed lines indicate edges present in the graph but not in the 

spanners. 

Other special cases of f (x)-spanners have been studied, such as (a, P)-spanners [7], 

where the distance bound is of the form f (x) = a x  + P, and tree spanners, where each 

spanner is also a spanning tree. The spanning tree condition imposes an additional 

constraint on the spanners which we do not consider here; the interested reader is 

invited to consult Kratsch et al. [12] for more details. In this thesis, we shall focus 

strictly on additive spanners. 



CHAPTER 2. FOUNDATIONS 

(a) A graph G 

1 1 - 1 - 1 1  1 1 - 1 - 1 1  - - - - - 1  1  

VVV' (b) A 2s-spanner of G (multiplicative) 

(c) A (2 + x)-spanner of G (additive) 

Figure 2.1: Basic spanner types 



C H A P T E R  2. FOUNDATIONS 

2.2 Known Additive Spanner Constructions 

The original concept of spanners (2. e. multiplicative spanners) is due to  Peleg and U11- 

man [20], and was formalized by Peleg and Schaffer [19]. Multiplicative spanners have 

been studied by Liestman and Shermer[l4, 161, Heydemann et a1 [9], and Richards and 

Liestman [22], as well as many others. Additive spanners have also been extensively 

studied by Liestman and Shermer [13, 15, 171 as well by Kratsch et a1 [12], Dor et a1 [6], 

Elkin and Peleg [7], BollobAs et a1 [I], and others. Liestman and Shermer presented 

additive spanner constructions for several popular topologies for networks and parallel 

computers: hypercubes, X-trees, pyramids, and grids. Kratsch et a1 [12] presented 

several classes of graphs which support additive tree-spanners (2.e. spanners which 

are trees,) namely distance- hereditary graphs, interval graphs, and asteroidal-triple 

free graphs. The work described here was restricted to  considering graphs which have 

parameterized constructions. 

A small amount of work has been done in constructing algorithms to  build span- 

ners. Farley et a1 [8] used a simple heuristic to generate tx-spanners of weighted 

graphs for use as multicast trees. They used their algorithm to create spanners of 

graphs which modeled the structure of internet domains, and then analyzed the mul- 

ticast properties of those spanners. Although this work originally motivated this 

thesis, our experimental work differs significantly, since we are interested in compar- 

ing several spanner generating algorithms and since we are interested in generating 

(d + 2)-spanners. 

The constructions for hypercubes, X-trees, and pyramids are parameterized in such 

a way as to provide tradeoffs between vertex degree and spanner delay. Liestman and 

Shermer give two constructions for hypercubes. Each construction labels each vertex 

in the hypercube with a standard binary label where each vertex is connected to  all 

other vertices that differ in exactly one dimension in their labels. In the spanner, 

certain edges are retained, depending on the labels of the vertices they join. By 

retaining only the edges occurring every j dimensions, one construction is able to  

attain a maximum delay of 2.7. The other construction uses the product of spanners 

from the first construction to  form spanners of larger cubes with maximum delay 



C H A P T E R  2. FOUNDATIONS 7 

23' + 2, but which uses roughly 112 the edges used by the 2j construction as applied 

to  that larger cube. 

The constructions for X-trees and pyramids work in a similar fashion to those for 

the hypercube. They break the graph down into a hierarchy and then periodically 

retain edges at  certain points in the hierarchy. The length of this period is variable, 

and longer periods result in fewer edges and higher delays in the spanners. 

Liestman and Shermer's construction for grids differs somewhat from the other 

constructions, as it describes what they call highway spanners. In order to  provide an 

example of their constructions, we will describe their construction for grids. Highway 

spanners consist of regularly-spaced rows and columns of vertices within which all grid 

edges are present; these rows and columns are called highways. These highways form 

what might be called a "super-grid" embedded in the actual grid. The rectangular 

regions between the highways are then filled-in with a single repeated pattern of edge 

connections, called a tile. Figure 2.2 illustrates the path between two vertices in a 

highway spanner. 

The maximum delay of a highway spanner is defined by the increase in the distance 

between each pair of vertices in the spanner and their distance in the original graph. 

The distance between each vertex pair in the spanner depends on their relative posi- 

tions within the super-grid; Liestman and Shermer showed that the maximum delay 

of a highway spanner of a grid is defined by the distances between the vertices in a tile 

and the vertices in the nine tiles centered on that tile. For example, if for an infinite 

grid G and its highway spanner S, for vertices u, v, w such that: 

0 v and w are in the same relative position in S with respect to their tiles, and 

0 the relative position of the tiles containing v and w with respect to  the tile 

containing u are the same (e.g. v and w are "to the right" of u), 

then the increase in distance between u and w in the spanner will be no greater than 

the increase in distance between u and v. Thus, by determining the spanner properties 

of the tile used to create a highway spanner of the infinite grid and considering only 



CHAPTER 2. FOUNDATIONS 

Figure 2.2: Highways in a supergrid 

the relationships between any vertex in an arbitrary tile T and any vertex in the nine 

tiles centered on T, the maximum delay of the spanner can be determined. A spanner 

with that same maximum delay for an m x n finite grid can then be obtained by 

taking an m x n subgrid of the infinite grid's highway spanner and possibly adding 

some edges near the borders. Figure 2.3 illustrates a portion of such a spanner of an 

infinite grid; note that in Liestman and Shermer's terminology, a prototile is a tile 

that is repeated throughout the spanner 

Figure 2.3: Spanning an infinite grid with highways and tiles 



CHAPTER 2. FOUNDATIONS 

2.3 Terminology 

Here we present definitions of terms which will be used throughout this thesis. First, 

we review some definitions from the preamble of this chapter, and then we add other 

definitions. 

All graphs in this thesis will be undirected, unweighted, simple graphs. The nam- 

ing convention G, = (V,, Ex) will be used to  denote that V, is the vertex set of the 

graph G,, and Ex is the edge set of G,. The notation S, will be used to denote a 

graph that is a spanner of G,, and the subscripts will be omitted when the meaning 

of the symbols is clear from the context. The notation dG(u, v) denotes the distance 

between u and v in graph G, and the notation dc(v) indicates the degree of vertex v 

in graph G. PG (u, v) denotes a shortest path of vertices in G starting at  u and ending 

at  v. 

Given a graph G, S is an f (x)-spanner of G if S is a spanning subgraph of G and 

if for all u, v E V where x = dG(u, v), ds(u, v) 5 f (x). A tx-spanner is a spanner 

where f (x) = tx, where t E Z+; it is also called a multiplicative spanner with stretch 

t. A (d + x)-spanner is a spanner where f (x) = x + d, where d E 2'; it is also called 

an additive spanner with delay d, or an additive d-spanner. 

The delay between any two vertices u and v is defined as dS(u, v) - dG(u, v). The 

delay for a vertex u is defined as maxVEv[ds(u, v) - dG(u, v)]; it is the largest delay 

to any other vertex from u. The (maximum) delay for a spanner S of a graph G is 

defined as max,,vEv [ds(u, v) - dG(u, v)], which is to say that it is the largest increase 

in distance between any pair of vertices in S over their distance in G. 

In the descriptions of our algorithms for constructing spanners, we refer to the 

spanner S as it undergoes construction. Each algorithm is given an input graph G 

and a maximum delay parameter d and is expected to produce a graph S which is a 

spanner of G with delay 5 d. At times during the construction of the spanner there 

will be many vertex pairs with delay > d; we say that any such pair is overdelayed, 

and the algorithm must ensure that no pairs are overdelayed in the final spanner that 

it returns. The overdelay of any two vertices u, v is max{ds(u, v) - dG(u, v) - d, 0). 

An overdelay of zero indicates that u and v are not overdelayed. 



CHAPTER 2. FOUNDATIONS 10 

Some algorithms presented here will deal with lists of vertices or edges. We extend 

our set notation to express this list concept; A[i] indicates the i th element for the set 

A under some list ordering. The nature of that ordering will be given for each such 

reference. 

Finally, we note that we use the terms dense and sparse to  refer to  the average 

degree of or number of edges in a graph. We do not use these terms in any particular 

technical sense, except to  indicate that a graph with high average degree or more 

edges is dense, and one with low average degree or less edges is sparse. 



Chapter 3 

Experiment a1 Design 

All models are wrong. Some models 

are useful. 
George Box 

In order to  determine which of the proposed heuristics are most suitable for gen- 

erating good additive spanners of arbitrary graphs, a series of experiments were de- 

signed. Each experiment evaluates the spanners produced by the heuristics on the 

basis of some measurable feature of their structure. Some of these features relate to  

the performance of the algorithms themselves, while the rest of them relate to  the 

qualities of the spanners produced as models of networks. 

In this chapter, the experiments will be discussed, along with the graphs on which 

the algorithms were tested. A baseline for determining if an algorithm is worthy of 

future consideration will also be presented. 

3.1 Experiments 

We present several experiments here. Each experiment measures some feature of the 

spanner produced by a given algorithm on a given graph. In order to make the exper- 

imental analysis as significant as possible, we present one experiment which will be 

used as the primary criterion for determining "good" spanners. All other experiments 



CHAPTER 3. EXPERIMENTAL DESIGN 12 

presented will be considered secondary and will be used to differentiate only among 

those spanners which are equally "good" according to the primary criterion. 

3.1.1 Primary Experiment 

Since, for an arbitrary graph and any integer delay d > 0, the problem of finding a 

(d + x)-spanner with a minimum number of edges is NP-hard [15], we feel that the 

number of edges in the spanner would be most appropriate measure for determining if 

the spanner is "good". Any heuristic consistently producing spanners with relatively 

few edges, as compared to  the other heuristics and, where possible, to the previously 

known constructions, is considered to be "good". The primary goal of each heuristic 

presented here will be the production of a spanner with a minimum number of edges. 

We do note that the primary motivation of Liestman and Shermer [15] in their 

additive spanner constructions was not to  minimize the number of edges, but rather to  

first minimize the maximum degree, then to  minimize the average degree and number 

of edges. We have chosen to  use the number of edges as our primary criterion since 

it is the variable being optimized in the problem known to  be NP-hard. 

3.1.2 Secondary Experiments 

Although we have chosen number of edges as our primary "goodness" criterion, it is 

not the only criterion which could be used to  evaluate the spanners produced by our 

algorithms. If we use spanners to model "real-world" networks, then we may wish to 

evaluate qualities of the spanners which relate to  issues of network performance. We 

may also wish to evaluate the performance of the algorithms themselves. 

Since the primary goal of the heuristics given in this thesis is not to optimize these 

parameters, the heuristics will have their optimization as, at  most, secondary goals. 

Average Delay 

Every non-trivial spanner induces a delay between some vertex pairs in the graph. 

The delay of an additive spanner is the maximum delay over all pairs of vertices in the 



CHAPTER 3. EXPERIMENTAL DESIGN 13 

graph. That definition, however, does not speak to  the average delay over all pairs of 

vertices. We define the average delay of a spanner S of a graph G as: 

For spanners modeling networks, the average delay will give some indication of the 

overall effectiveness of a spanner-generating heuristic. For example, suppose that two 

different heuristics H1 and H2, given the same input graph G and the same maximum 

delay dl produce, respectively, two different spanners S1 and S2 where ds, > dsz and 

where I Es, 1 = 1 Esz 1 .  Spanners produced by Hz may be more desirable since they use 

roughly the same number of edges as those produced by H1 but do a better job of 

preserving distances between vertices on average. 

Maximum Degree 

In real-world networks, equipment is subject to certain physical, design, and/or cost 

constraints. If one could disregard these real-world constraints, then all networks could 

directly connect all nodes to  all other nodes, and thus be modeled as complete graphs. 

Under these constraints, hardware may only permit a certain maximum number of 

connections per node, and thus maximum degree over all vertices in a spanner will 

be an interesting parameter to  observe1. In this case, a heuristic producing spanners 

with lower maximum degree will be preferable. 

Running Time 

Since efficient algorithms are preferable over inefficient ones, we will measure the 

running time of our algorithm over input graphs of various sizes, and for different 

delay parameter values. Using this information, we can attempt to extrapolate the 

algorithm's running time over larger input instances. Naturally, we consider lower 

running times to  be preferable. 

'We note that, in some cases (ie. networks with high-connectivity hubs), it may be preferable 
to  have a few vertices with high degree, and the rest with low degree. 



CHAPTER 3. EXPERIMENTAL DESIGN 

Graphs 

In order to  determine the performance of the heuristics on graphs in general, we use 

them to  produce spanners of several types of graphs. We consider two major groups 

of graphs in this thesis which represent what we feel are the two "opposite ends of 

the spectrum" of graph types. 

3.2.1 Structured Graphs 

Our structured graphs represent four classes of graphs for which we have parameter- 

ized constructions for producing additive spanners2: hypercubes, X-trees, pyramids, 

and multidimensional grids. The spanner constructions for these classes, due to  Li- 

estman and Shermer [13, 151, are believed to  be "good" constructions, according 

to both our primary measure of goodness, the number of edges in the spanner, as 

well as according to  our secondary measures of average delay and maximum degree. 

Comparisons between the spanners produced by these constructions and the spanners 

produced by the heuristics will determine if the heuristics are capable of producing 

spanners equivalent to  (or better than) those produced by a mathematically good 

construction. 

3.2.2 Random Graphs 

These graphs represent the other extreme in the definition of graphs. While the struc- 

tured graphs discussed previously are very well defined and represent networks with 

a highly regular topology, random graphs describe networks with a highly irregular 

topology. 

There are many different random graph models for describing networks; a sampling 

of them can be found in Zegura et a1 [26] and Rajaraman [21]. It is beyond the scope 

of this thesis to  consider heuristics on any significant fraction of the available models. 

2We wish to note that we are considering only those classes of graphs with explicit constructions 
for additive spanners. Other constructs may exist which, incidentally, are also additive spanners, 
but we do not consider those constructs here. 



CHAPTER 3. EXPERIMENTAL DESIGN 15 

This thesis will focus on a single class of random graphs, where there is a uniform 

probability p of an edge existing between any two vertices. 

3.2.3 Further Graphs 

There are many more types of structured graphs used to model networks (eg. rings, 

deBruijn graphs, Kautz (di)graphs, trees of rings, cube-connected-cycles, . . . ) than 

are considered in this thesis. Likewise, there are many more random graph models 

of real-world networks (eg. internet graphs [26] and small world graphs [24].) There 

are two reasons why the choices of graphs in this thesis are limited to  the graphs 

described above. 

First, we are more interested in the algorithmic aspects of developing additive 

spanners for general graphs than in developing algorithms for generating spanners for 

any particular class of graphs. The structured graphs we intend to use are those graphs 

for which there are known, parameterized constructions for additive spanners. Com- 

paring the heuristically-generated spanners against the constructed spanners allows 

the heuristics to  "compete", not only against each other, but also against mathemat- 

ically verified constructions. The random graph model chosen for this thesis is the 

most random model available and is, possibly, the model most diametrically opposed 

to  the given structured graphs. 

Second, since we are concerned with experimental results, some consideration must 

be given to the quantity of experimental data to  be managed. As the number of graph 

models increases, not only must more computation time be devoted to producing the 

results, but there is also the problem of having more experimental results to  analyse. 

While experimental data on other graph models may be of interest for understand- 

ing the properties of those graphs, that data will not provide significant insight into 

the algorithmic structure of the general problem of generating additive graph span- 

ners. Considering other structured classes would not provide a comparison against 

spanners produced by known constructions; we consider the spanners produced by 

classes with known constructions to  be good, and we already consider those classes 

with known parameterized constructions. Likewise, additional random graph classes 



CHAPTER 3. EXPERIMENTAL DESIGN 16 

will have more structure in their graph models, and this structure will not be present 

in all graphs. Without including a whole set of random graph classes which, in total, 

provides a representative model of general graphs, additional experimental data would 

not give a complete picture of the performance of the heuristics on general graphs. 

Including such a set would produce a volume of data whose analysis is beyond the 

scope of this thesis. 

3.3 Baseline 

The experiments proposed above describe the characteristics which will determine if 

a generated spanner is good. If an algorithm produces consistently good spanners 

of the graphs in our set of "test" graphs, then it will be considered to  be a likely 

candidate for producing good spanners on general graphs. In order to determine 

what may make an algorithm unworthy of future consideration, we propose that the 

spanners produced by each algorithm be compared against the spanners produced by 

a relatively unintelligent algorithm. Any heuristic which produces spanners which are 

no better than the spanners produced by this baseline algorithm should be rejected 

as not being suitable for producing good spanners of general graphs. 



Chapter 4 

Algorithms 

The "Richard Feynman 
Problem-Solving Algorithm" : 

1.) Write down the problem. 

2.) Think very hard. 

3.) Write down the answer. 
Murray Gell-mann 

This chapter describes each of the algorithms studied in this thesis. Each of these 

algorithms is a form of "greedy" algorithm. First, a description of why the work was 

restricted to  greedy algorithms will be presented, followed by the actual algorithms. 

Each of the algorithms will be classified according to  its rough structure. A worst-case 

running-time analysis will be presented for each algorithm. 

4.1 On "Greedy" Algorithms 

One purpose of this thesis was to determine what basic techniques, if any, would be 

suitable for constructing good additive spanners of general graphs. Since most of the 

work to-date on developing additive spanners has focused on developing spanners for 

specific classes of graphs, there is very little information already available on such 

techniques. We feel that "greedy" algorithms-those which work by the repeated 

application of a rule which makes locally optimal choices in the hope that a globally 



CHAPTER 4. ALGORITHMS 18 

optimal solution will arise from those choices-would be a suitable class of relatively 

simple algorithms to  consider. The operation of "greedy algorithms" is typically more 

straightforward than more complicated forms of algorithms, and they tend to be more 

amenable to analysis. 

We by no means desire to imply that "greedy" algorithms are the best class of 

algorithms for constructing additive spanners of general graphs. There are many other 

algorithmic approaches to the problem which deserve study, and a small summary of 

them will be presented in Section 6.2. 

4.1.1 On Analysis 

Each algorithm will be presented along with a worst-case analysis of its running time. 

Since these algorithms are intended to be implemented, they will have average-case 

running times that will usually be significantly better than their worst-case times, 

however, average-case analyses will not be presented here. The reasons for this are 

twofold: 

Since these algorithms are intended for use on general graphs, their average case 

analysis will necessarily be quite complex. The analysis would make this thesis 

much more complicated without necessarily providing much more insight into 

the problem of additive spanners of general graphs. 

Since extensive experimental results will be presented in this thesis, a practical 

examination of the running time of these algorithms will provide what we expect 

will be a useful examination of their average-case running times. 

We note that,  in general, to  determine if a graph S is a (d + x)-spanner of G, it is 

necessary to  compare the distance between each vertex pair in S to the corresponding 

distance between their counterparts in G. One reasonably efficient way to do this 

is to  run an APSP (All-Pairs Shortest Paths) algorithm on both S and G and to  

compare the lengths of the paths determined by those algorithms. The best known 

on-line, dynamic APSP algorithm requires R(I VI2 log I VI) time for an update [ 5 ] ,  and 

the distance comparisons obviously require O(I VI2) time. We consider any algorithm 



CHAPTER 4. ALGORITHMS 19 

which, for any single edge deletion, makes a decision in < O(I VI2 log I VI) time to be 

reasonably efficient. 

Throughout our algorithms, we use an APSP algorithm to perform various com- 

putations of overdelayed vertex pairs. For our analyses, we assume an efficient data 

structure. In our implementations, we use the well-known Floyd-Warshall algorithm, 

which returns a IVI x IVI matrix of distances between vertices. When determining 

overdelayed vertex pairs, we use the information in the distances matrix to  produce 

a list containing the overdelayed pairs. This list is constructed by traversing the dis- 

tance matrix in a standard row-major traversal, and thus this traversal ordering will 

influence the order of the pairs in the list. 

4.2 Algorithm Terminology 

Each of the algorithms to be presented has been classified in one of two general classes: 

0 1-stage algorithm 

0 2-stage algorithm 

Each class is a rough categorization, and is intended only to  improve the presentation 

of the algorithms. The definitions for these classes are not precise, and they are 

intended only to provide an indication of general similarities between the algorithms 

in them. 

A third class of algorithms, which we call decomposition algorithms, was also con- 

sidered. We will present observations on why such algorithms are not appropriate for 

evaluation in this thesis. 

Finally, before we present the algorithms, we note that all of the algorithms take 

as input a graph G and a delay parameter d. They return a graph S which is a 

(d + x)-spanner of G. S is not guaranteed to be an optimal d + x-spanner in any sense 

of the word "optimal". 



CHAPTER 4. ALGORITHMS 

Figure 4.1: Edge Distance - the distances of every edge from edge (a ,  b) are listed 
beside that edge. 

4.3 1-Stage Algorithms 

Roughly speaking, a I-stage algorithm creates a spanner through the repeated appli- 

cation of a single rule or process to the graph. These represent the simplest algorithms 

to be considered here. 

4.3.1 Far Edge Deletion 

Let G be a reasonably dense graph. It seems unlikely that two edges that are "distant" 

from each other in G would be on a shortest path between some pair of vertices. In 

other words, the deletion of one of the edges will likely not have any effect on the 

deletability of the other. 

Let e = (ue, ve), f = (u v f )  E E and define the (edge-)distance between e and f 

as follows: 

That is, the distance between two edges is the smaller of the sums of the shortest 

distances between each pair of vertices of the two edges. Figure 4.1 illustrates the 

concept of edge-distance. 



CHAPTER 4. ALGORITHMS 

We also define the concept of the farthest edge from some edge e E E to be: 

FarEdge, (e) = arg max de (el el) 
e'EE 

which is that e' has the greatest edge-distance from e of any edge in E .  

We use this concept in the algorithm to  identify possible edges to delete. After 

deleting some edge e E Es, we take e' = FarEdges(e) and attempt to  delete el. We 

maintain a list of "deletable" edges, and we only delete edges on that list. Edges 

whose deletion cause the spanner to  be overdelayed are restored to the spanner and 

are removed from the list of deletable edges. Figure 4.2 illustrates this process, and 

Algorithm 1 gives an implementation of it. 

The algorithm maintains a set of deletable edges. Initially the spanner contains all 

edges from the original graph, and all edges are deletable. As the spanner is developed, 

certain edges will be identified as being necessary to  maintain the acceptable delays 

within the spanner. Those edges are removed from the set of deletable edges so that 

they will not be deleted later. 

Actual edge deletions occur within the select-delete cycle. Exactly one edge is 

deleted in each iteration of the select-delete cycle. In the first iteration, an arbitrarily- 

chosen edge is selected and deleted from the spanner. In subsequent iterations, the 

edge in the set of deletable edges which is farthest from the most recently deleted 

edge is selected and deleted from the spanner. This process repeats until there are no 

edges left in the set of deletable edges. 

The algorithm has one control parameter: count-max, which is a constant. After 

count-max iterations of the select-delete cycle, a call is made to the APSP algorithm, 

and the delays between all vertices in S are determined. For each overdelayed pair 

~ 1 , 2 1 2 ,  a shortest path in G between vl and v2 is determined, and all of the edges on 

that path which are not in the spanner are: 

0 Returned to  the spanner. 

Removed from the set of deletable edges 

A similar APSP/edge-restoration pass is done at the very end of the algorithm, in 

order to  ensure that the final spanner meets its delay constraint. 



CHAPTER 4. ALGORITHMS 

- - - - - 

(a) Initial edge selected 

(b) Second edge (farthest from initial edge) selected 

( c )  Third edge (farthest from second edge) selected 

(d) Fourth edge (farthest from third edge) selected, third 
edge retained 

Figure 4.2: Far Edge Deletion - dashed line indicates candidate edge 



CHAPTER 4. ALGORITHMS 

Algorithm 1 Far Edge Deletion 

Require: countmax = the number of edges deleted before APSP is run 
S t G  
e Es[Ol 
Es Es \ e 
count + 0 
ER + 0 
loop 

if count = countmax then 
if S is overdelayed then 

while 3vl, v2 E V such that vl, v2 are overdelayed do 
Find a shortest path P from vl to v2 
for all e, E P, e, $! Es do 

E~ E~ {eT) 
ER ER U {e,) 

end for 
end while 

end if 
count t 0 

end if 
if (Es  \ ER) = 0 then 

break 
else 

e + F a r E d g e ~ ~ \ ~ ,  (e)  
Es+Es\e  
count t count + 1 

end if 
end loop 
if S is overdelayed then 

while 3vl, v2 E V such that vl, v2 are overdelayed do 
Find a shortest path P from vl to v2 
for all e, E P, e, $! Es do 

Es + Es u {e,) 
ER + ER U {e,) 

end for 
end while 

end if 



CHAPTER 4. ALGORITHMS 24 

A simple analysis of this algorithm reveals that its running time is dominated by 

the APSP algorithm. In the worst case, since APSP is run every count-max edge 

deletions, and since there are IEl edges, it follows that it requires time x 

O(IVI3) = O(I El lVI3). In practice, this algorithm's running time is similar to  the 

other algorithms' running times when count-max = 25. 

We observe that the process of restoring edges to the spanner to  correct overdelays 

may appear to  require more running time than the APSP algorithm. Specifically, 

if there are O(IVI2) overdelayed vertex pairs, then for each vertex pair, it will be 

necessary to  determine a shortest path in G between the vertices. Normally, finding 

a shortest path requires O((VI2) steps in the worst case, and so it would appear that 

this process requires O(IVI2) x O(IVI2) = O(IVI4) steps. We note, however, that 

since G is invariant, we can precompute all shortest paths in G a t  the start of the 

algorithm with a single APSP call. We can simply perform a O(IV1) step lookup to  

determine this path when it is needed. Thus, this edge restoration phase requires a t  

most O(IVI3) steps. 

4.3.2 Tainting 

We now introduce tainting1 as a process of estimating the "area of effect" of removing 

an edge. More precisely, it involves estimating the differences in the distances between 

all vertex pairs in a graph without an edge e with respect to the same graph with the 

edge e. 

The motivation for tainting comes from the observation that the most efficient 

means known of determining the exact effect of an edge deletion (i.e. the change 

in the distances between all pairs of vertices) in an arbitrary graph requires i2(lV12) 

time, and currently is not easy to implement efficiently [ 5 ] .  The "tainting" process 

is an attempt to  produce an estimate of the delay added to  all vertex pairs by the 

deletion of an edge. We desired that it should be easy to implement, and should run 
- 

'The term "tainting" was taken from the fact that in this algorithm some vertices in the spanner 
may be incorrectly assigned a delay after an edge deletion; we say that such vertices are "tainted" 
by the deletion. 



CHAPTER 4. ALGORITHMS 

in time at most O(IVI2). 

Consider a graph G and an edge e = (u, v) E EG. Let S = (V, E \ {e)), that is, 

S is G without edge e. Within G and S, consider any vertex pair w, x E V for which 

dG(w, x) # dS(w, x). Since e is the only edge in G which is not in S, it follows that the 

shortest path from w to x in G must include el and without loss of generality, we can 

assume that P = w . . . uv . . . x. Further, there must be no other path P' # P from w 

to  x in G which is of length dG(w, x) and does not include e, since if there were, then 

dG(w, x) = dS (w, x). Finally, we note that we use 1 (P) to  denote the length of a path 

P, where the length of the path is the number of edges in it. 

Now, for any vertex w E V, we consider the relationship between ds(w, u) and 

ds(w, v). Note that the path from u to  v that e makes possible in G is replaced in S 

by a path of length ds(u, v). For future reference let R = ds(u, v) - 1 (which is the 

delay which exists between u and v in S without e,) and let the shortest path from u 

to  v in S be ~~~~2 . . . TR-IV, where r l l  rz, . . . E V. 

Suppose that ds(w, u) = ds(w, v). Figure 4.3 illustrates this case. This implies 

that e cannot have been included in any shortest path to/from w in G, otherwise that 

path would contain a subpath of the form w . . . uv or of the form w . . . vu, and that 

subpath could be replaced with an equivalent shorter subpath of the form w . . . v or 

w . . . u, respectively. Thus, in this case, since e is not included in any shortest path 

to/from w, the distance from w to any other vertex will not change due to the deletion 

of e. 

Suppose that Ids(w, u) - ds(w, v) 1 = 1; this implies that any shortest path in 

G to/from w containing e can be replaced by an equivalent shortest path in S not 

containing e. Figure 4.4 illustrates this case. If the path contained a subpath of the 

form w . . . uv, it could be replaced with an equivalent subpath of the form w . . . v, not 

including e, which was the same length as the original subpath containing e. Likewise, 

a similar case holds for paths with subpaths of the form w . . . vu. Thus, in this case, 

since any shortest path to/from w containing e can be replaced with a path of the 

same length not containing e, the distance from w to any other vertex will not change 

due to the deletion of e. 

Suppose that 1 < Ids (w , u) - ds(w , v) I 5 R; this implies that any shortest path in 



CHAPTER 4. ALGORITHMS 

Figure 4.3: Tainting when ds(w, u) = ds(w, v) 

Figure 4.4: Tainting when Ids(w, u) - ds(w , v) 1 = 1 



C H A P T E R  4. ALGORITHMS 

Figure 4.5: Tainting when 1 < Ids(w, u) = ds(w, v) 1 I R 

G to/from w containing e can be replaced by a path from w E S containing exactly 

Ids(w, u) - ds(w, v) 1 - 1 more edges. Figure 4.5 illustrates this case. We assume, 

without loss of generality, that ds(w, u) < ds(w, v). Any such shortest path in G 
would contain a subpath of the form P = w . . . uv, where l(w . . . u) = dG(w, U) = 

ds(w, u), and thus l (P)  = dG(w, U) + 1. Such a subpath in G can be replaced with 

a subpath in S of the form P I  = w . . . v not containing el where 1 (PI) = ds(w, v). 

Comparing the differences in the two subpaths reveals that l(P1) - l (P)  = ds(w, v) - 

(ds(w, u) + 1) = ds(w, v) - ds(w, u) - 1. A similar argument establishes the difference 

in distance for the case where ds (w , u) > ds(w, v). Combining those two cases gives 

the result that any shortest path to/from w E S will be at  most Ids(w, u) -ds(w, v) 1 - 1 

longer than the path it replaces in G. 

Finally, we note that Ids(w, u) - ds(w, v) 1 > R cannot be the case. Since R = 

ds(u, v) - 1, there will always be a subpath of the form w . . . urlrz. . . r ~ - l .  . . v which 



CHAPTER 4.  ALGORITHMS 28 

simply follows the shortest path from u to v in S that replaces the edge (u, v) in G. 

Thus, no vertex pair will experience a delay of more than R for any edge deletion. 

We summarize the above observation by formally defining the taint of a vertex: 

Observation 1 For any graph G = (V, E )  , for any edge e = (u, v) E E ,  in a spanner 

S = (V, E \ {e)), for any w E V, 

Ids(w, u) - ~ s ( w ,  v)( if 1 < Ids(w, 21) - ~ s ( w ,  v)I I ds(u,v) - 1 
taint(w) = 

otherwise 

and where taint(w) 2 m a ~ , , ~ [ d ~ ( w ,  x) - dG(w, x)]. 

Using this observation, we can devise an algorithm which works by estimating the 

delays produced by deleting edges from a spanner. This algorithm works by keeping 

track of the taints for each vertex as each edge is deleted. An accumulated taint count 

is kept for each vertex, and whenever an edge e is deleted, each vertex's accumulated 

taint count will be incremented with the taint caused by deleting e. If the deletion of 

an edge will cause any vertex's accumulated taint count to exceed d, then that edge 

will not be deleted. At a suitable point in the operation of the algorithm, an APSP 

algorithm will be run, and the accumulated taints for each vertex will be set to the 

actual delays for those vertices. 

To compute the actual taints at  any step in the algorithm, we label each vertex w 

in S with both ds(w, u) and ds(w, v); this can be accomplished simply by constructing 

two spanning trees in S by breadth-first search, one each rooted at  u and v. For each 

vertex w, we can then determine taint(w) by subtracting ds(w, v) from ds(w, u). 

In the algorithm itself, the edge list is traversed in the order the list's data structure 

presents it. Initially, all vertices have an accumulated taint of 0. Each edge e will be 

deleted iff there is no vertex whose accumulated taint will exceed d after e is deleted. 

Once the edge list has been completely traversed, the APSP algorithm will be run 

and the taints for each vertex will be set to their respective delays. Traversals of the 

edge list will continue until a complete pass is made where no edges are deleted. If no 

edges are deleted, then the algorithm terminates. Algorithm 2 presents this tainting 

algorithm. 



CHAPTER 4. ALGORITHMS 29 

Algorithm 2 Edge Removal with Tainting 

deleted t true 
Run APSP on G 
while deleted = true do 

deleted t false 
Run APSP on S; For all v E V, set taint for v + m a x , ~ ~  ds(v, u) - dc(v, u) 
for e E Es do 

Determine taints if e is deleted 
if e can be deleted without having any vertex taint exceed d then 

Delete e 
Update taints. 
deleted + true 

end if 
end for 

end while 

A worst-case analysis reveals that the worst case would occur if exactly one edge 

could be deleted in each pass of the outer while-loop. In such a case, the algorithm 

would consider the tainting resulting from the deletion of each edge remaining in the 

list in each pass. Overall, this will require considering the tainting of O(IEI2) edges. 

For each tainting, two spanning trees are built, requiring O(IE1) steps. Multiplying 

the two stages together, we see that the worst-case requires O(I El3) steps. In practice, 

however, the algorithm runs much faster, since many edges can be deleted in each pass 

through the edge-list. 

4.3.3 Neighbourhood Tainting 

For any vertex v, consider N (v), the (open) neighbourhood of v. We can try to produce 

a spanner by deleting any edge between vertices in N(v). Consider the deletion of 

an edge e, = (w, x) E E, where w, x E N (v). In this case, since w, x E N (v), any 

shortest path in G including e, must have a subpath of the form wx, and this subpath 

can be replaced with a subpath of the form wvx, which will increase the length of 

the path by a t  most 1. Further, we can repeat this process for any number of edges 

in N(v), since for any such edge there will always be a length 2 replacement path 



CHAPTER 4. ALGORITHMS 

6 6 
(a) Before (b) After neighbourhood edges 

deleted 

Figure 4.6: Neighbourhood Tainting 

involving v. Figure 4.6 illustrates this idea. 

Simple Approach 

Using this observation, we create a candidate selection process which, along with the 

tainting process described in Sect ion 4.3.2, will form a spanner-construct ion algorithm. 

In this algorithm, we select high degree vertices and attempt to  delete edges within 

their neighbourhoods. Algorithm 3 describes the algorithm in more detail. 

This algorithm maintains the same accumulated taint counts as the previous algo- 

rithm, and only deletes edges if their deletion will not result in any accumulated taint 

count exceeding d. It begins by considering vertices with the maximum degree, and 

proceeds to  consider vertices of consecutively smaller degree, down to  a minimum of 

2. For a given vertex degree value, the algorithm locates all vertices of that degree. 

For each such vertex, the algorithm attempts to delete any edge with both vertices in 

the neighbourhood of that vertex. This deletion-by-tainting process is carried out for 

all vertices of the specified degree. Once all vertices of the specified degree have had 

their neighbourhoods processed in this fashion, the algorithm resets the taints using 

an APSP pass, and then another round of deletions are attempted for vertices with 



CHAPTER 4. ALGORITHMS 

Algorithm 3 Simple Neighbourhood Tainting 

del + 1 
Run APSP on G 
for deg + max,,~ d(v )  to 2 do 

loop 
del + 0 
for v E V, d (v )  = deg do 

T + G[N(v)I  
for e E ET do 

Determine taints if e is deleted from S 
if e can be deleted from S without having any vertex taint exceed d then 

Delete e from S 
Update taints in S 
del + 1 

end if 
end for 

end for 
Run APSP on S ;  Set taint for v + max,,~ (ds(v ,  u)  - dG(v, u) )  
if del = 0 then 

Exit loop 
end if 

end loop 
end for 



CHAPTER 4. ALGORITHMS 3 2 

that degree. (We observe that while the deletion process had considered vertices of 

that degree in the previous pass, the tainting process may have incorrectly marked 

some edges in the neighbourhoods as undeletable.) If no deletions occur for that de- 

gree value, then the degree value is decremented by 1, and the process repeats, unless 

the new degree value is 1, in which case the algorithm terminates. 

In the worst case, this algorithm requires 0(IE121VI) steps. The outermost loop 

requires at  most IVI - 2 iterations, since IVI - 1 is the maximum degree of any vertex 

in the input graph. The middle loop, which repeatedly looks for vertices with the 

specified degree, will be run at  most once per edge, so it requires O(IE1) iterations. 

Finally, each deletion candidate edge requires O(I El) steps to build the spanning trees. 

Thus, the algorithm requires O(IV1 - 2) x O(IE1) x O(IE1) = 0(IE121VI) steps. 

Extended Approach 

We can extend the previous reasoning to other edges if we expand the distance from v 

to  the vertices in its neighbourhood. Let Nk(v) be the Ic-neighbourhood of a vertex v 

and define it as follows: Nk (v) = {v' E V ld(v, v') = k). Consider the construction of a 

spanner S by the deletion of any edge e = (w, x) from a graph G where w, x E Nk(v). 

In this case, any shortest path in G containing e must contain a subpath wx, and 

that subpath may be replaced with a subpath of the form u . . . v . . . x. In this case, 

the length of the path will increase by at  most 2k - 1. Algorithm 4 illustrates an 

extension of Algorithm 3 which considers k-neighbourhoods for Ic = 1 ,2 , .  . . , [d/21. 

The analysis of this algorithm extends easily from the analysis of the simple neigh- 

bourhood tainting algorithm. Since this algorithm "wraps" that algorithm in a loop 

which considers all neighbourhood sizes from 1 to rd/21, it follows that this algorithm 

requires a t  most 0(IE121VI) x O(rd/21) = 0(dlE121VI) steps. 

4.3.4 Popular Edges 

One simple observation which one can make of creating a spanner can be expressed as 

"keep those edges that you need, discard those edges that you don't ." While this may 

be regarded as a truism, we may use it to  inform some of our heuristics. Consider the 



CHAPTER 4. ALGORITHMS 

Algorithm 4 k-Neinhbourhood Deletion 

del + 1 
Run APSP on G 
for k t 1 to  k = [dl21 do 

for deg t max, ,~  d ( v )  to 0 do 
loop 

del t 0 
for v E V, d ( v )  = deg do 

T G[Nk ( v ) ]  
for e  E ET do 

Determine taints if e  is deleted from S 
if e  can be deleted from S without having any vertex taint exceed d  
then 

Delete e  from S 
Update taints in S 
del + 1 

end if 
end for 

end for 
Run APSP on S; Set taint for v  + max,,~ ( d s ( v ,  u )  - d G ( v ,  u ) )  
if del = 0 then 

Exit loop 
end if 

end loop 
end for 

end for 



CHAPTER 4. ALGORITHMS 

following: 

Between each vertex pair u, v E V, there exists a t  least one, but possibly more 

than one, shortest path. If there exist more than one shortest path between u and 

v, then it follows that if all of the edges of some shortest path P are in a spanner S 

then, with respect only to u and v, no edge on any of those other paths need be in S.  

Of course, the argument above fails to  account for the importance of those other 

edges to paths not between u and v, but we can extend it to  encode the "popularity" 

of all edges with respect to all the potential shortest paths in a graph. If, for each 

vertex pair u, v, E V, we select one shortest path between u and v, then we can assign 

a popularity measure to each edge e E E as follows: 

where p(e )  is the number of selected shortest paths in G which include e ,  and P ( e )  is 

the total number of shortest paths in G which include e. 

Once each edge is assigned a popularity, a spanner can be constructed by a simple 

algorithm which adds edges to the spanner in order of decreasing popularity until 

the spanner meets its delay constraint. Algorithm 5 illustrates the overall spanner- 

creation algorithm. 

Algorithm 5 Popular Edge Selection 
Assign popularities to  all e  E EG 
Es + 0 
while S is overdelayed do 

Add (next) most popular edge to Es 
end while 

While the spanner creation algorithm is relatively simple, there are serious draw- 

backs to  the popularity assignment method described above. For example, in a highly 

regular graph such as a hypercube or a grid, there may be numerous shortest paths 

between any two vertices and enumerating the shortest paths in which every edge 

occurs for such a graph would be far too time-consuming. To mitigate this in our 

practical algorithm, we consider only a subset of all of the possible paths on which a 

given edge lies. Algorithm 6 illustrates how these popularity values are assigned. 



CHAPTER 4. ALGORITHMS 

Algorithm 6 Partial Popularity Assignment 

Run APSP on G, storing distances in dist(iYj) 
for i ,  j E V do 

 path^(^,^) +- 0 
t 0 

end for 
for e = (i ,  j )  E EG do 

t 1 
t 1 

end for 
for dist = 0 to  dist = maxi,jEv dist,,, do 

for i ,  j E V, d ~ ( i ,  j )  = dist do 
best t 0 
for k E V, ( k ,  j )  E EG do 

if (chosen(i,k) + cho~en(~,j))/(paths(~,~) + p a t h ~ ( ~ , j ) )  > best then 
best = (chosen(i,k) + cho~en(~,j))/(paths(~,~) + 
l t k  

end if 
for e = (u, v )  E PG(i, k )  do 

paths(u,v) + ~aths(u,v)  + 1 
end for 
paths(k,j) paths(k,j) + 1 

end for 
for e = (u, v )  E PG(i, 1 )  do 

chosen(,,,) +- chosen(,,,) + 1 
end for 

+ + 1 
end for 

end for 



CHAPTER 4. ALGORITHMS 36 

This algorithm assigns popularities to edges by considering paths between all ver- 

tex pairs according to increasing path length. Since paths of length 1 (e.g. edges) will 

always be the shortest path between their vertices, their edges are "seeded" with an 

initial score of 111 = 1 (e.g. one path using that edge / one path potentially using 

that edge.) The scores for longer paths will be built incrementally, starting with these 

scores for the shorter paths. 

In order to  compute the scores for the paths of length 1, we let: 

a c(k, j )  be the number of paths actually using edge (k, j ) ,  

a C(i, k) be the number of paths of length < 1 actually using the chosen path for 

i . . . k ,  

a p(k, j) be the number of paths potentially using edge (k, j ) ,  and, 

a P(i, k) be the number of paths of length < 1 potentially using the chosen path 

for i . .  .k .  

For 1 = 2,3 , .  . ., we consider all i, j E V where dG(i, j )  = 1 and let Xi,j = { k l d ~ ( i ,  k) = 

1 - 1, dG(k, j) = 1). Thus, Xi4 is a set of all vertices next-to-last on the shortest paths 

from i to j. For each k E Xi j, a score is calculated as: 

This score represents the popularity score of the path from i to  k, via the most 

popular path from i to  k, plus the popularity score of the edge from k to  j. The 

highest scoring path over all k will be chosen as the path from i to j. All edges 

on the chosen path will have their "paths using" count incremented, all edges on all 

paths from i to j through each k E Xi,j will have their "potential paths using" count 

incremented, and the sum of both of those counts for the chosen path will be stored 

as the counts for the path from i to  j .  

We consider the worst-case analysis of this algorithm in two parts, since it op- 

erates in two parts: popularity assignment followed by edge selection. Assignment 

of probabilities begins by seeding the counts for the paths corresponding to  edges in 



CHAPTER 4. ALGORITHMS 3 7 

EG, an operation requiring O(I El) steps. For each vertex pair i, j where d,(i, j) > 1, 

IXiYjl I IVI - 2, so at  most IVI - 2 paths from i to j will be considered, and each 

path requires following as many as IV I - 1 edges. There are O(I VI2) i, j pairings, 

and for each of those it may be necessary to consider O(IV1) paths of O(IV1) edges 

each, so at  most O(IVI2 x IVI x IVI) = O(IVI4) steps would be required to  assign the 

probabilities. 

To find a spanner by incrementally taking edges in order of decreasing popularity, 

we can sort the edges based on decreasing popularity and then perform a binary search 

on the edge list. For each value i probed in the binary search, we can construct the 

graph containing edges O,1, . . . , i, run APSP on that graph, and then evaluate the 

results to see if any vertex pair is overdelayed. The binary search will determine the 

smallest value of i such that the graph containing edges O , 1 ,  . . . , i is a (d + 2)-spanner 

of G, and that graph will be returned. This search will require O(1og IEl) probes, each 

probe requiring an APSP requiring O(IVI3) steps, and then O((VI2) steps to evaluate 

the results. Thus, in total, it will require O(IVI3 log [El)  steps. 

Since the O(IVI3 log I El) steps in the search phase is dominated by the O(IVI4) 

steps required to  assign the probabilities, the algorithm will require O(/VI4) steps in 

the worst case. This worst case will require that the probability assignment phase be 

degenerate, and on average, the binary search phase will likely dominate the algorithm. 

Since the binary-search portion of the algorithm will always require O(IVI3 log IEl) 

steps, the overall algorithm will require a t  least that many steps in any case. In prac- 

tice, this algorithm runs in approximately the same time as the algorithms presented 

in Sections 4.4, 4.3.1, and 4.3.2. 

4.3.5 Low Degree Pairs 

The low degree pairs algorithm attempts to  find a spanner with as few edges as possible 

along with a low maximum vertex degree. This algorithm provides a tradeoff between 

the number of edges in the spanner and its maximum degree. In the algorithm, edges 

where the sum of the degrees of its endpoints are low are added to  the spanner until 

it meets its specified delay. 



CHAPTER 4. ALGORITHMS 38 

The algorithm initially has an empty spanner and begins by constructing a list of 

all edges in the graph. The algorithm adds edges to  the graph based on their degree 

sum, which is ds(i) + ds(j) for all edges (i, j) E Ev. Initially, the algorithm sets 

its "current degree sum" to 0. It then traverses the edge list and adds any edge in 

the list with an appropriate degree sum. Vertex degree counts are maintained after 

each edge is added, so any edge's degree sum will be accurate a t  the time that edge 

is considered for addition. Once the edge list has been fully traversed, the "current 

degree sum" is increased by 1, and another traversal is begun. This pattern repeats 

until the spanner meets its maximum delay constraint. Figure 4.7 illustrates some 

steps in this process; Algorithm 7 implements the basics of the algorithm. 

Algorithm 7 Low Degree Pairs 
c t o  
Es t 0 
while S is not a (d + $)-spanner of G do 

for e = (i, j) E Ec, e $ Es do 
if ds(i) + ds(j) = c then 

Es Es U {e) 
end if 
if S is a (d + $)-spanner of G then 

Exit for loop. 
end if 
c t c + l  

end for 
end while 

In order to  efficently implement the algorithm, we can use the same strategy we 

employed in the Popular Edges algorithm described in Section 4.3.4. In that strategy, 

we decompose the algorithm into two parts. The first part assigns an ordering to  the 

edges based upon the order they are added to  the spanner. This ordered list of edges 

can then be tested using binary-search to  determine the smallest contiguous set of 

edges, starting at  the start of the list, which comprise a (d + $)-spanner of G. We will 

use this method to consider the worst-case running time of the algorithm. 

To assign the ordering to the edges, we can start with an edge eo, assign it to 

position 0 in the ordering, and then search the edge list for el, where el is the farthest 



CHAPTER 4. ALGORITHMS 

4 0. a' .'Q 
I 1 ,  

4 

I I 

1 4 .  I 

I .a Q I ,  

' \b4' 
(a) Initially, no edges selected 

(c) Second edge (degree sum = 0) 
selected 

(e) Fourth edge (degree sum = 1) 
selected 

(b) First edge (degree sum = 0) 
selected 

(d) Third edge (degree sum = 0) 
selected 

(f)  Fifth edge (degree sum = 2) 
selected 

Figure 4.7: Low Degree Pair Selection 



CHAPTER 4. ALGORITHMS 40 

edge from 0. We can then assign el to position 1 in the ordering and search for e2. 

(Obviously, we ignore edges already assigned in the ordering). This process can then 

be repeated until all edges are assigned. Since there are IEl edges, and each edge 

(except the last) requires a traversal of the edge list to find the farthest, we have 

(El x O(I El) = O(I El2) steps to assign the ordering to the edge list. 

As in the analysis of the Popular Edges algorithm, performing a binary search 

on the edge list requires O(IVI3 log [El) steps. In the worst case, I El -- IVI2 and 

so, since O(IEI2) dominates O((VI3 log (El) for [El - IVI2, this algorithm requires at  

most O(IEI2) steps. 

4.4 2-Stage Algorithms 

A 2-stage algorithm is, roughly speaking, an algorithm which attempts to create a 

spanner by: 

1. finding a spanning tree of the graph to serve as the initial spanner graph, then 

2. adding edges to bring the delays between all vertex pairs in the spanner to 

within the given maximum delay. 

Figure 4.8 illustrates this process. 

This structure naturally lends itself to  a form of "modular" construction where 

each algorithm consists of: 

1. a spanning tree algorithm, followed by 

2. an algorithm for choosing the remaining edges, which we call a patching algo- 

rithm. 

We will describe independently our four spanning tree algorithms, followed by 

our six patching algorithms. Each spanning tree algorithm will be paired with each 

patching algorithm to  create a total of twenty-four candidate algorithms. 



CHAPTER 4. ALGORITHMS 

(a) Empty spanner, before spanning tree. 

(b) Partially complete spanner, after 
spanning tree, before patching. 

(c) Complete spanner, after patching. 

Figure 4.8: 2-Stage Algorithm Process 



CHAPTER 4. ALGORITHMS 

4.4.1 Spanning Tree Algorithms 

Since the graphs we are considering are unweighted, minimum spanning tree algo- 

rithms are of little use to us. Conventional literature gives short shrift to  unweighted 

spanning tree algorithms; the most common approach is to choose a root and then 

add edges according to a straightforward breadth-first search. We considered sev- 

eral spanning tree algorithms, including breadth-first search, in order to determine if 

there are any which are clearly preferable or, equally, if there are any which are highly 

unsuitable. 

Breadth-First Search 

The first spanning-tree algorithm we consider is a straightforward breadth-first search. 

Let r be the chosen root vertex of the tree. We add all edges incident on r to  the tree 

and then recursively repeat this addition procedure for every vertex just added to  the 

tree. Algorithm 8 implements our breadth-first search spanning tree algorithm. 

In our implementation of this algorithm, the root is chosen to be a vertex with 

maximum degree. When attempting to find a spanner with a minimum number of 

edges, this is likely going to be a good choice, since the high-degree vertex will provide 

a length 2 path between any vertices adjacent to  it. This path will provide connections 

with a delay of at most 1; a delay of 1 will satisfy the maximum delay constraint for 

any spanner with non-zero delay. Additionally, these short paths will frequently be 

suitable for providing low delay paths between vertices deeper in the tree. 

Since breadth-first search exploits high-degree vertices, it is not well suited, in 

general, to  producing spanners with low maximum degree. Since our primary criterion 

for "good" algorithms is number of edges, and whereas low maximum degree is only 

a secondary criterion, we feel that this algorithm is still a good choice for evaluation, 

regardless of its behaviour with respect to maximum degree of the spanner. 

Breadth first search is known to  run in O(IE1) steps in the worst case. 



CHAPTER 4. ALGORITHMS 43 

Algorithm 8 Breadth-First Search Spanning Tree 

Es + 0 
VT + r 
for v E N(r )  do 

e + ( r ,v)  
Es+Esue 
VT +- VT U {v) 
Enqueue v 

end for 
while VT # V do 

Dequeue v 
for v' E N(v), v' 6 VT do 

e + (v, v') 
Es+EsUe 
VT + VT U {v') 
Enqueue v' 

end for 
end while 

Depth-First Search 

The second spanning-tree algorithm we consider is a straightforward depth-first search. 

Presented with a vertex v, it will attempt to find an edge from v to a vertex v' not 

in the tree, add that edge to  the tree, and then recursively consider v'. If, after the 

recursion to  v' is complete and the tree has not been built, the algorithm will attempt 

to  locate another vertex adjacent to  v which is not in the tree. Each recursion at  a 

vertex will consider all edges incident on that vertex and will exit when either a tree 

is built or it has no more edges to  consider. Algorithm 9 implements our depth-first 

search spanning tree algorithm. 

Depth-first search is known to  require O(IE1) steps in the worst case. 

Simple Tree 

This algorithm builds a tree by taking a list of edges in the graph and traversing that 

list in some order, adding edges to  the tree as it goes. It is designed to  exploit the fact 

that our algorithms are being implemented using a data structure which efficiently 



C H A P T E R  4. ALGORITHMS 

Algorithm 9 Depth-First Search Spanning Tree 

Require: r to be the specified root vertex for the tree 
Es + 0 
VT + root 
for e  = (root, v )  E N (root) do 

if v @ VT then 
VT VT U { v }  
ET + ET U { e l  
Recursively consider v 

end if 
end for 

Recursive component 
Require: v to be the specified vertex to search from 

for e  = ( v ,  v') E N ( v )  do 
if v' @ VT then 

VT VT U { v }  
ET ET U { e }  
Recursively consider v' 

end if 
end for 



CHAPTER 4. ALGORITHMS 4 5 

supports such a traversal. The algorithm initially adds the first edge, along with its 

two vertices, to  the tree. It then proceeds to  repeatedly traverse the edge list, adding 

any edge to the tree which will add a vertex to  the tree, until all vertices are in the 

tree. Algorithm 10 illustrates this algorithm. 

There are certain, highly degenerate, cases where up to  IVI -2 passes over the edges 

may be required to complete the tree. Such cases would occur when only one vertex is 

added to the tree per list pass. These cases are not likely to  occur in practice, and can 

be avoided by using an intelligent ordering of the edge list for each traversal. In such 

a highly degenerate case, the algorithm would require O(IE1) x IVI - 1 = O(IEIIVI) 

steps altogether. 

Algorithm 10 Simple Spanning Tree 

Es + 0 
VT + {VPI) 
while VT # V do 

for i = 1 to IVI do 
e = (u, v) = EG[i] 
if u E VT,v $VT or u $VT,V E VT then 

VT VT U {u, 21) 

ET + ET U {e) 
end if 

end for 
end while 

Popular Edges Tree 

This spanning tree algorithm takes advantage of the same reasoning used for the 

Popular Edges algorithm (see Section 4.3.4.) Each edge is first given a "popularity" 

value in the manner described in Algorithm 11, and then a tree is built by selecting 

the IV( - 1 most popular edges from E such that no edge creates a cycle in S. 
Since this algorithm uses the popularity assignment algorithm described in Sec- 

tion 4.3.4, we know that this algorithm requires O(IvI3) steps to assign the popularity 

values. After that, the choice of the tree edges can be made using a single pass through 



CHAPTER 4. ALGORITHMS 46 

Algorithm 11 Popular Edges Spanning Dee 

Assign popularities to edges 
Sort edge list in order of decreasing popularity 
for each e = (u, v) in the edge list do 

if adding e to  ET would not create a cycle then 
VT VT u {u, 21) 

ET ET U {e) 
end if 

end for 

the edge list, which will require IEJ steps, so the algorithm requires O(IVI3) steps in 

the worst case. 

4.4.2 Patching 

We consider here six different patching algorithms. Since these algorithms are used 

to finish the generation of the spanner after the spanning tree is constructed, they all 

begin by calling an APSP algorithm in order to  determine which pairs are overdelayed. 

This list of overdelayed pairs is then used by each algorithm to  determine which edges 

to  restore to  the graph. Section 4.1.1 describes the construction and ordering of this 

list in mode detail. 

Simple Patching 

Simple Patching works by considering each overdelayed pair of vertices in the order in 

which they are presented in the list of overdelayed pairs. For each overdelayed vertex 

pair (i, j), the distance between i and j is first determined to  see if the pairs remain 

too far from each other - although this information is initially available from the list 

of overdelayed pairs, edges added to  the graph to  satisfy other vertex pairs may also 

serve to  bring i and j closer together. If the pair is no longer overdelayed, then no 

action is taken. If the pair is still overdelayed, then all of the edges in EG of a shortest 

path between i and j are added to Es. Clearly, adding these edges between i and j 

will ensure that (i, j) is no longer overdelayed. 



CHAPTER 4. ALGORITHMS 47 

Figure 4.9 illustrates patching in general, and Algorithm 12 implements Simple 

Patching. 

Algorithm 12 Simple Patching 

Determine overdelayed pairs; store in O D  
for I c =  1 to lODl do 

(i, j) = OD[lc] 
if ds(i , j )  > (dG(i, j) + d) then 

for e E PG(i, j) do 
Es+ E s U e  

end for 
end if 

end for 

In the worst case, at  the start of Simple Patching, it may be that many of the 

vertex pairs are overdelayed, so we assume that O(IVI2) pairs are overdelayed. We 

also assume that,  for the worst case, each repair will bring less than IVI vertex pairs 

together. Since, for each vertex pair to  be brought together by patching, we verify that 

the two vertices are overdelayed before adding the patch edges, we require O(1 El) steps 

for each pair to  determine that distance. Since, for any vertex pair, it takes only O(IV1) 

steps to  follow the shortest path between them in G and to  add those path edges to  S ,  

we can observe that Simple Patching will require O(I El) x O(I El x IVI2) = O(I El lVI2) 

steps in the worst case. 

Farthest Pair Patching 

Farthest Pair Patching is similar to  Simple Patching, except that instead of consid- 

ering the overdelayed vertex pairs in the order in which they occur in their data 

structure, they are considered in order of their overdelay (recall that the overdelay 

between two vertices i, j is (ds(i, j) - dG(i, j) - d) .) Note that we use farthest to  

mean "most overdelayed" , rather than the more intuitive meaning of "highly distant." 

By considering vertices which are most overdelayed first, adding a shortest-possible 

2We apologize for the choice of the word "farthest." It  was used as a "placeholder" name and 
not reconsidered until changing it had become impractical. 



CHAPTER 4. ALGORITHMS 

(a) Path from u to v, before patching. 

(b) Path from u to v, after patching. 

Figure 4.9: Patching - dashed lines indicate graph edges not present in the spanner 



CHAPTER 4. ALGORITHMS 49 

path between them will serve as a shortest path for those vertices on that path as 

well as an almost-shortest-possible path for vertex pairs i', j', where i' is near i and j' 

is near j. Algorithm 13 implements Farthest Pair Patching. 

Al~orit hm 13 Farthest Pair Patching 

Determine overdelayed pairs; store in O D  
for i = 1 to i = [OD/  do 

(2, j) = arg max(i,j)Eo~(ds(i, j) - d ~ ( i ,  j) - d) 
if ds(i, j) > (dG(i, j) + d) then 

for e E PG(i, j) do 
Es+ E s U e  

end for 
end if 

end for 

In an efficient implementation, we would sort the overdelayed pairs list in order 

of decreasing delay, and then choose overdelayed pairs in-order from the sorted list. 

This would require 0 (IV l 2  log(1 V 12)) = 0 (2 1 VI2 log I V I )  steps. If each vertex pair in 

the list required patching, it would require O(IE1) steps to patch each of the O((VI2) 

pairs, resulting in a total of O(I El IVI2) steps, just as Simple Patching requires. Despite 

having the extra sorting overhead, Farthest Pair Patching runs much faster in practice 

than does Simple Patching. 

Farthest Pair Patching with Tie-Breaking 

Farthest Pair Patching with Tie-Breaking is simply Farthest Pair Patching, except 

that if there exist more than one most overdelayed vertex pair, the pair with the 

lowest vertex degree sum will be chosen. This algorithm is expected to perform 

equivalently to  Farthest Pair Patching, except that spanners produced by it may have 

a lesser maximum degree. Algorithm 14 implements Farthest Pair Patching with 

Tie-Breaking. 

It is easy to see that Farthest Pair Patching with Tie-Breaking is almost identical 

to  Farthest Pair Patching, and that it requires O(IE1 lVI2) steps in the worst case. In 

practice, its running time is similar to the regular Farthest Pair Patching algorithm. 



CHAPTER 4. ALGORITHMS 50 

Algorithm 14 Farthest Edge Patching with Tie-Breaking 

Determine overdelayed pairs; store in O D  
for i =  1 t o i  = [OD[ do 

OD' = ( ( ~ 1  21) 1 (ul v) = arg m a ~ ( u , v ) E ~ ~ ( d S ( u ,  v) - d ~ ( u ,  V)  - d, 
(2,  j) = arg min( i , j )~O~l  ds(i) + d4.d 
if ds(i , j )  > (dG(i , j)  + d) then 

for e E PG(i, j) do 
Es t EsUe  

end for 
end if 

end for 

Simple Repairing 

Repairing is a refinement of the basic patching procedure. Whereas patching ensures 

that the overdelayed pair is brought as close together as possible by adding all of the 

edges on the shortest path between the vertices in G, repairing selectively adds those 

edges along that path whose vertices are the most overdelayed. By adding such edges 

we bring together pairs of normally adjacent vertices that are separated by a large 

distance. By bringing together those previously distant vertices, we hope to reduce 

the delay between the vertices in our original overdelayed pair. Figure 4.10 illustrates 

repairing; note that to  repair the vertex pair in the depicted graph to  d = 4 requires 

only one edge, whereas the patching illustrated in Figure 4.9 requires four edges for 

the same graph and vertex pair, regardless of the value of d. 

Simple Repairing selects vertex pairs in the same order as Simple Patching: by 

the order of the overdelayed pairs list. The distance between the chosen vertex pair 

(u, v) is verified to  determine if it is still overdelayed, and the pair is ignored if it 

is no longer overdelayed. If the pair is still overdelayed, then the delays between all 

adjacent vertices in PG(u, v) are calculated and the edge between the vertex pair with 

the highest delay is added to S ;  let that edge be ( i , j ) .  This edge then partitions 

PG(u, V)  into two subpaths (u, i )  and ( j ,v) ;  without loss of generality, we assume 

dG(u, i) < dG(u, j) and ds(u, i )  > ds(j, v). If adding (i, j) to  S is sufficient to make u 

and v no longer overdelayed, then the patching from u to  v is complete. Otherwise, 

ds(u, i) and ds(j, v) are determined, and the longer of the two paths (being, under 



CHAPTER 4. ALGORITHMS 

(a) Path from u to v, before repairing. 

v 

(b) Path from u to v, after repairing. 

Figure 4.10: Repairing - dashed lines indicate graph edges not present in the spanner. 



CHAPTER 4. ALGORITHMS 52 

our assumptions, the one from u to i) will be recursively repaired to  a delay of d,,i = 

Ldu,,/2J where d,,, is the maximum delay permitted for repairing u and v. If repairing 

the longer of the two subpaths still does not bring u and v close enough, then the 

shorter of the two subpaths will also be recursively repaired to  a delay of dj,, = 

ldu,u/2J. 
This recursive repairing approach ensures that a path between u and v will always 

be repaired to  a delay of at most d, where d is the delay parameter provided to  the 

algorithm. This delay can be guaranteed by considering the nature of the subpaths 

repaired to delay Ld/2J: if the overdelays from u to  i and from j to  v are at most 

Ld/2J, then since (2 ,  j )  is present in the graph and since u, i, j, and v all lie on a 

shortest path in S from u to v, then the total delay along the repaired path is at most 

2Ld/2J 5 d. Algorithm 15 implements Simple Repairing. 

Algorithm 15 Simple Repairing (recursive component only) 

Require: u ,v  to  be the vertices to  be repaired between, d,,, to be the maximum 
delay between u and v 
for e = (i,j) E PG(u,v) do 

P D e  + ds( i , j )  - &(i , j )  
end for 
emax = maxe~~c(u,v) De 

ES + ES U emaz 

(2, j )  = emax 

if dS(u, V) > dG(u, v) + d,,, then 
Repair more overdelayed of (u, i),  ( j ,  v) to delay Ldu,,/2J 
if ds(u, v) > dG(u, V)  + dU,, then 

Repair the other one to  delay Ldu,,/2J 
end if 

end if 

In the worst case, Simple Repairing will need to make O(IVI2) repairs. Each vertex 

pair being repaired requires O(IE() steps to compute the distances between each of 

the O(IV1) vertices on the shortest path between the pair being repaired. Taken in 

total, Simple Repairing requires O(IVI2) x O(IE1) x O(IV1) = 0(IE11V/3). Like the 

previous patching algorithms, Simple Repairing runs much faster in practice. 



CHAPTER 4. ALGORITHMS 

Farthest Pair Repairing 

The difference between Farthest Pair Repairing and Simple Repairing is the same as 

the difference between Farthest Pair Patching and Simple Patching: Farthest Pair 

Repairing is identical to Simple Repairing except that it selects vertex pairs which 

are most overdelayed and then repairs the paths between them. 

Similarly, Farthest Pair Repairing requires the same number of steps as Simple 

Repairing for each vertex pair being repaired, plus the overhead of sorting the overde- 

layed pairs list. It requires 0(IEllV13) steps in the worst case. 

Distinct Tree Construction 

Distinct Tree Construction takes a substantially different approach to  patching a 

spanner. Instead of patching or repairing single paths within S, it attempts to cre- 

ate additional spanning trees which are nearly edge-disjoint from the edges already 

present in S. The motivation for this algorithm comes from our initial experimen- 

tal observations which showed that spanning trees, especially those produced by a 

breadth-first search, created a good basis for additive spanners. In such a tree, ver- 

tex pairs near the root will generally have no or low overdelay, whereas vertex pairs 

located at or near the leaves will generally have high overdelay. If a second spanning 

tree is created which is rooted at  a leaf of the first spanning tree, then this second tree 

should bring together many vertices which are distant in the first tree. If necessary, 

further such trees can be built to bring together other vertices until, ultimately, the 

spanner meets its delay constraint. 

If the trees created in each step of this algorithm contained many of the same edges 

as the trees created in the previous stages, then the algorithm would quickly become 

inefficient, adding only a few new edges per tree at  the expense of reconsidering a large 

number of edges. To prevent this from occuring, we require that the trees constructed 

in the algorithm be distinct. We define distinct to  mean that edges are only added to  

a tree iff: 

1. any edge from the root of the new tree does not occur in the previous tree built, 

and 



CHAPTER 4. ALGORITHMS 

2. no other edge in the new tree exists in any previous tree. 

The first condition attempts to  ensure that the edge structure of the new tree differs 

from the previous tree built, in order to  prevent it from building a tree which is 

substantially similar to  the previous tree, and thus having only a minimal impact on 

the overall overdelays. The second condition ensures that the majority of the tree 

will be edge-disjoint from S as it exists when the tree is built. Since the second 

condition imposes strict edge-disjointness on most of the tree, there is a possibility 

that a complete spanning tree cannot be constructed. Such a situation would arise if 

there is a set of edges in S which form a cut in G and if the root of the new tree is 

not one of the vertices on a cut edge. In that case, it would not be possible to  build a 

complete tree, since there would not be a path of edges not in S from the root to the 

other side of the cut. In such cases, the algorithm will accept such a "tree" as far as it 

can be built, and so the trees in this algorithm could be considered to  be "best-effort 

trees". Figure 4.11 illustrates the creation of a distinct tree for patching; note that 

the tree cannot span the entire graph due to the edges used by the initial spanning 

tree. 

We wish to note that a strict disjointness condition was initially considered for this 

algorithm but, after the initial experimental analysis was performed, it was found to 

be too restrictive. The distinctness condition given here was used since it appeared 

to  be the next least restrictive; it gives much more satisfactory experimental results. 

The algorithm itself simply locates the most numerously overdelayed vertex in S, 

and then creates a distinct tree rooted a t  that vertex. After the tree is built, the 

algorithm calls APSP and determines if the spanner is still overdelayed. If it is, the 

algorithm repeats. Otherwise, it terminates. Algorithm 16 gives the implementation 

of Distinct Tree Construction. 

In the worst case, after the construction of the original spanning tree, it may be 

the case that a spanning tree must be created from each of the O(IV1) vertices in 

S. Since each tree in the patching phase is constructed by breadth-first search, each 

tree requires O(IE1) steps to create it. In order to determine the most numerously 

overdelayed vertex in S, it would not be necessary to do more than perform an APSP, 

which requires O(IVI3) > O(I El) operations. Since it is necessary to determine the 



CHAPTER 4. ALGORITHMS 

(a) Spanner - Initial spanning tree 

(b) Spanner - After distinct-tree patching 

Figure 4.11: Distinct-tree patching 



C H A P T E R  4. ALGORITHMS 

Algorithm 16 Distinct Tree Construction 

Require: L to  be the set of leaves from the first-phase spanning tree. 
Let v be the most numerously overdelayed vertex in L. 
while S is overdelayed do 

for e = (v,i) E EG, i E L do 
Es Es u {e) 
Kree Kree U {i) 
Enqueue i 

end for 
while Vertex queue not empty do 

Dequeue i 
for e = (z , j )  E EG, e $! Es, j $! KTee do 
Es Es u {e) 
Kree + Kree U {j) 
Enqueue j 

end for 
end while 
Let v be the most numerously overdelayed vertex in S. 
Let L be the leaves of the tree just constructed. 

end while 



CHAPTER 4. ALGORITHMS 5 7 

most numerously overdelayed vertex in S after each additional tree is created, there 

may be a t  most O(IV1) x O(IVI3) = O(IVI4) operations required. 

4.4.3 Analysis 

For all of the 2-stage algorithms constructible from the components given above, the 

worst-case running times of these algorithms are dominated by the running times of 

their patching phases. Given that, the worst-case running time of any such algorithm 

is equivalent to  the worst-case running time of the patching algorithm it uses. 

4.5 Decomposition Algorithms 

One further class of algorithms which was considered for evaluation in this thesis was 

what we refer to as decomposition algorithms. The primary idea for these algorithms 

is that a (d + 2)-spanner of an input graph G could be constructed by the following 

process: 

1. Break G down into two components, G1 and G2, by taking a (most likely mini- 

mum) cut C. 

2. Produce spanners of G1 and G2, being S1 and S 2 ,  respectively. 

3. Merge S1, S2, and C to produce S.  

Recursive application of this procedure would permit a large graph to  be decomposed 

into many smaller graphs where each of which could be much more quickly spanned. 

We have two arguments that support a contention that these algorithms are not 

suitable for creating good spanners as defined by our criteria. 

4.5.1 Algorithmic Argument 

This thesis presents algorithms for creating spanners of graphs where all vertex pairs in 

the spanner are connected by a path of length at  most d greater than the corresponding 

paths in the spanner. Creating (d+x)-spanners of both GI and G2 is not feasible, since 



CHAPTER 4. ALGORITHMS 5 8 

it would be possible for the shortest path in S between some vertex in S1 and another 

vertex in Sz to have delay 2d. Thus, it must be that any path which crosses the cut 

must have a total delay of no more than d across both S1 and Sz. In general, there 

are two simple methods which could be used to ensure those delays are maintained: 

1. Create spanners of G1 and G2 where, for any vertex pair where one vertex is 

part of an edge in C, the delay between that pair is d/2; for all other pairs the 

delay is d. 

2. Create spanners of G1 and G2 with delay d/2. 

(Note: For odd d, d/2 may be substituted with [dl21 and Id121 for the smaller and 

larger of G1 and G2, respectively.) 

If the first approach is taken, then the delays used to  create the spanners of G1 

and G2 are no longer uniform for all vertex pairs in the two components. Solving this 

problem would require constructing algorithms which deal with a non-constant delay 

for all vertex pairs; such algorithms lie outside the scope of this thesis. 

If the second approach is taken, then the delays in each component would decrease 

uniformly within each component. This is, in general, not desirable, since it could 

result in many edges being retained in the resultant spanner which are not actually 

necessary for a (d + x)-spanner but which are necessary for the d/2 + x-spanners of 

the two components. 

4.5.2 Structural Argument 

There are certain structural issues regarding decomposed spanners that make them 

unsuitable for consideration in this thesis. We note the following: If we wish to create a 

(d+x)-spanner of a graph G by decomposition, then we must create (d/2+x)-spanners 

of its components G1 and G2. If we apply the decomposition approach recursively to  

G1 and G2, then we will need to construct (dl4 + x)-spanners of their decomposed 

components. Further decompositions will reduce the delay of the component spanners 

even further. 



CHAPTER 4. ALGORITHMS 59 

For generating a (d + 2)-spanner of any graph, a t  most [logz dJ levels of decom- 

position are possible; any decomposition beyond that will result in a delay of 0 in the 

spanners of the decomposed components, and any spanner with delay 0 must be iden- 

tical to the original graph. Since the largest delay being considered experimentally 

in this thesis is 9, this would permit at  most 3 levels of decomposition, a value which 

would not be very suitable for trying to  create spanners of large and relatively sparse 

graphs. 

Further, decomposition of dense graphs will not be very efficient, since a dense 

graph will likely require a relatively large number of edges to  create a cut. Since 

the graph is dense, it is likely that many of those cut edges will be very near other 

cut edges, and thus many of those edges could be removed from the spanner with 

an acceptable increase in delay. A simple decomposition algorithm would not be well 

suited to  exploit the nature of such a dense cut, and algorithms which do so are 

beyond the scope of this thesis. 

Baseline Algorithm 

As described in Section 3.3, a baseline algorithm was desired in order to compare the 

performance of the heuristics against a relatively "dumb" algorithm. We present such 

a relatively dumb algorithm here. 

This algorithm, which we call random edges, produces a spanner by randomly 

selecting edges from G until the maximum delay constraint is met. 

Algorithm 17 Random Edges 

Es +- 0 
while S is not a (d + 2)-spanner do 

Select an edge e E EG \ Es with uniform probability. 
Es Es u {e} 

end while 



Chapter 5 

Experiment a1 Analysis 

All life is an experiment. The more 

experiments you make the better. 
Ralph Waldo Emerson 

(attributed) 

A series of experiments were conducted on each of the algorithms described in 

Chapter 4 in order to  evaluate the spanners they produce. Each spanner was eval- 

uated according to  the criteria described in Chapter 3. In this chapter, we discuss 

the particulars of the experiments and the implementation of the algorithms. We 

also describe the results of the experiments, ranking the algorithms first against the 

primary criterion in order to  determine a set of algorithms whose performance was 

generally good. We then rank those good algorithms against the secondary criteria. 

Finally, we summarize these results, highlighting algorithms which do well according 

to  many of our criteria. 

5.1 Experiments 

In order to  evaluate the algorithms proposed in Chapter 4, it was necessary to  use 

each of them to  produce spanners of the graphs described in Chapter 3. Since the 

graph classes discussed in that chapter are infinite, it was necessary to  consider only 



CHAPTER 5. EXPERIMENTAL ANALYSIS 61 

a finite subset of the graphs in those classes. It was also necessary to limit the range 

of delay parameter values considered, in order to keep the computation manageable. 

For the experiments which were conducted, spanners were created: 

by each of the 30 algorithms defined in Chapter 4, 

for each of 20 shuffles (see Section 5.1.3) of each the graphs listed in Table 5.1, 

for each of the fixed maximum delay parameter values d = 1 . . .9 .  

For each such spanner, a series of features of the spanner, as well as of the algorithm 

run that produced it, were measured and recorded. Those features included: 

Quantity of edges in the spanner 

Maximum degree of the spanner 

0 Maximum delay of the spanner (which may be 5 d) 

Average delay of the spanner 

Running time of the algorithm which created the spanner 

The results for each algorithm/graph/delay triple were then averaged over the 20 

shuffles, and that average value was used for further analysis. 

5.1.1 Test Graphs 

In the experiment runs, the input graphs from the four classes of structured graphs 

given in Section 3.2.1 were restricted to  having a t  most 512 vertices, except for the 

grids, which were restricted to  256 vertices. Table 5.1 lists the graphs in the test set. 

The 512 vertex restriction came from an implementation restriction on the size of the 

graphs which could be tested; see Section 5.2 for more information. The 256 vertex 

restriction for grids was put in place to  try to keep the number of instances of grids 

manageable. The grids were also restricted to being "square" (ie. of the form G,,..,,, 
for the necessary number of dimensions), again to  attempt to keep the number of 

input graphs manageable. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 62 

For the random graph model given in Section 3.2.2, three sizes of graphs were 

considered: those having 50, 100, and 200 vertices, respectively. Additionally, for 

each of those three sizes, a variety of edge-probabilities were considered; see Table 5.1 

for a complete listing of the probabilities. For each combination of size and edge- 

probability, 5 different graphs were generated randomly; the results from these 5 

graphs were averaged into one set of results in the final analysis. 

Finally, we note that we required all graphs used in our experiments to be con- 

nected. While this is clearly the case for graphs in the four structured classes, this 

may not always be the case for the random graphs. The choice to  require the graphs to  

be connected was motivated by the fact that the definition of additive graph spanners 

due to Liestman and Shermer [15] is unclear on the nature of spanners of discon- 

nected graphs. One reasonable interpretation of the definition would indicate that 

a (d + x)-spanner of some disconnected graph G could be produced by producing 

(d + x)-spanners of each of the components of G. In this case, the problem of comput- 

ing a good spanner of G can be likewise decomposed into several smaller, independent 

problems. Thus, the restriction to connected graphs ensures that the algorithms will 

be tested in the worst-case. Since each of the algorithms work on connected graphs, 

they may be easily modified to  compute spanners of disconnected graphs. 

In Table 5.1, we use the standard shorthand notations for denoting grids and 

hypercubes. We use the notation XTn to  denote the X-tree of n levels, and use Pn 

to denote the pyramid of n levels; we refer the interested reader to  consult Liestman 

and Shermer [15] for the definitions of X-trees and pyramids. We use the notation 

&(p) = (V, ER) to  refer to  a subgraph of Kn = (V, EK) where each each edge from 

EK is included in ER with probability p. Thus, the notation &(p) refers to  a graph 

on n vertices where, for any pair of distinct vertices u and v, there is an edge from u 

to  v with probability p. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Table 5.1: Graphs used for experiments 

Graph Class 

Grids 

Hypercubes 
X-trees 
Pyramids 
Random 

5.1.2 Algorithms 

The algorithms which were used in the experiments were the algorithms described in 

Chapter 4. Table 5.2 summarizes the names of the algorithms and gives the short- 

form labels which will be used to indicate them on the plots. Figure 5.2 (see page 83) 

gives the key to the plots which will be used through the remainder of this thesis. 

In the case of a 2-stage algorithm, its name is a combination of its spanning tree 

algorithm and its patching algorithm. The table and figure also lists the short-form 

label for when values from known constructions will be used in the plots. 

Subclass 

2-dimensional 
3-dimensional 
4-dimensional 

p = 0.05 
p = 0.10 
p = 0.15 
p = 0.20 
p = 0.25 
p = 0.30 
p = 0.40 
p = 0.50 

5.1.3 Shuffling 

Graphs Used in Experiments 

G(4,4), G(5,5), . . . ,  G(16,16) 
G(3,3,3), G(4,4,4), . . . ,  G(6,6,6) 
G(2,2,2,2), G(3,3,3,3),  G(4,4,4,4) 
Q31 Q4, . . . ,  Q9 

XT2, XT3, . . . , XT9 
p 2 ,  p31 p41 p 5  

5 x &o(P), 5 Rloo(P>, 5 R200(P) 
5 x R50(~), 5 R100(~)1 5 R 2 0 0 ( ~ )  

5 x R~o(P) ,  5 Rloo(P), 5 R200(~) 
5 x R50(~) 5 R100(~) 1 5 R200(~) 
5 x R~o(P) ,  5 X Rioo (P) 5 X R200 (P) 
5 x R50 (P) 5 Rloo (P) , R200 (P) 
5 x R5o(p) , 5 x Rloo(P) 5 Rzoo(P) 
5 x R5o(p), 5 X R100(~), 5 R200(P) 

In order to conduct the experiments, it was necessary to implement the algorithms. 

Implementing the algorithms requires certain decisions to be made regarding the or- 

der in which the graph data will be handled. These decisions may have an unintended 

effect on the operation of the algorithm. Although steps were taken to try to reduce 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Far Edge Deletion 
Tainting 
Neighbourhood Tainting 
Popular Edges 
Low Degree Pairs 
Random Edges (baseline algorithm) 

BFS Tree / Simple Patching 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Simple Repairing 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Distinct Tree Construction 

DFS Tree / Simple Patching 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
DFS Tree / Simple Repairing 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Distinct Tree Construction 

Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Simple Repairing 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Distinct Tree Construction 

Popular Edges Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking PETB 
Popular Edges Tree / Simple Repairing PESR 
Popular Edges Tree / Farthest Pair Repairing PEFR 
Popular Edges Tree / Distinct Tree Construction PEDT 

FED 
ST 
NT 
PE 
LDP 
RE 

BFSP 
BFFP 
BFTB 
BFSR 
BFFR 
BFDT 

DFSP 
DFFP 
DFTB 
DFSR 
DFFR 
DFDT 

STSP 
STFP 
STTB 
STSR 
STFR 
STDT 

PESP 
PEFP 

(values from known constructions) C 

Table 5.2: Table of algorithms and their labels 



CHAPTER 5. EXPERIMENTAL ANALYSIS 65 

such effects during implementation (see Section 5.2), we felt it was necessary to fur- 

ther mitigate these effects by "shuffling" each input graph several times, running the 

algorithm on each shuffle, and then averaging the results over all the shuffles. 

Within our experimentation structure, each graph was represented as an adjacency 

matrix. For a graph G, each shuffle of G was produced by: 

1. Numbering the vertices of the graph as 1 ,2 , .  . . , lVGl according to  the order they 

were presented in the adjacency matrix. 

2. Producing a pseduorandom permutation of 1 ,2 , .  . . , lVGl as pl,p2,. . . p1vGl. 

3. Producing a new shuffled adjacency matrix representing the graph with the 

vertices in the order pl, p2, . . . p1vGl. 

This process results produces a graph identical to the original graph, except that the 

vertices are presented in a different order within the data structure. 

In order to  maintain consistency of the shuffles across the algorithm/graph/delay 

triples, a single set of 20 graph shuffles was generated for each graph G in the set of 

test graphs, and this set of shuffles was used each time an algorithm was tested on 

graph G. 

5.2 Implementation 

To perform the experiments, each algorithm was implemented. In order to  produce 

spanners which can be compared against each other, it was necessary to implement 

the algorithms in a reasonably consistent manner. In this section, we describe our 

implementation of the algorithms and the system used to  evaluate their performance. 

We also describe some of the implementation choices which were made and the limi- 

tations those choices imposed on our overall system. 

5.2.1 Evaluation System 

Each algorithm was written as a function according to a well-defined specification. 

This function takes as input: 



CHAPTER 5. EXPERIMENTAL ANALYSIS 6 6 

The input graph G, including the number of vertices in the graph (as the value 

n) and the graph itself (as an an n x n adjacency matrix), and 

A maximum delay parameter d 

The function is required to  produce a (d + x)-spanner of G and to return it as an 

n x n adjacency matrix. 

Each algorithm was implemented as a function of this form, and was called by a 

"wrapper" program. The wrapper program took care of necessary I/O activity (e.g. 

loading the graph data from disk), much of the memory allocation, as well as instru- 

menting the program for measuring the running time of the algorithm. The wrapper 

program, with an algorithm compiled in, given as input a graph and maximum delay, 

would output the spanner produced by the algorithm on that input, along with data 

from the wrapper program recorded by the instrumented program run. This wrapper 

program, in conjunction with the spanner heuristic function specification, allowed for 

consistent implementation of the algorithms, as well as consistent measurement of 

their runtime properties. 

An additional suite of utility programs were written to perform data analysis on 

and collation of the amassed spanner data. Figure 5.1 illustrates the structure of the 

system we describe here. 

5.2.2 Implement at ion Choices and Limit at ions 

All of the programs were written in C. For each algorithm, an attempt was made to  

implement the algorithm in an efficient manner, but it was necessary to balance that 

efficiency against ensuring the correctness of the implementation. Since the primary 

criterion used to determine if a given algorithm was "good" was the number of edges 

in the spanners it produces and not the running time of the algorithm, implementation 

decisions were always made in favour of correctness. 

The experiments themselves were carried out on a series of Pentium 4 class work- 

stations running Redhat Linux. The distribution of the jobs was handled by the 

program autoson [18]. The machines were identical, except that had two different 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Data 

Utility - programs 

Figure 5.1: Experiment implementation structure. 

processor speeds. In order to normalize the running times for all the experiments, a 

series of identical experiment runs were conducted on both machines and their times 

were compared. These experiment runs were chosen to have significant running times 

(generally > 10 seconds) in order to eliminate any effect caused by the OS on runs 

with small running times. In all cases, the running times of the instances on the slower 

machines were slower by a factor z 1.35. We have multiplied the running times of 

the runs performed on the faster machines by 1.35 in order to make them comparable 

to the running times of the runs performed on the slower machines. 

5.3 Primary Criterion 

In this section, we compare the numbers of edges in the spanners produced by the 

various algorithms for the graphs given in Table 5.1. We will compare them according 

to the various classes of graphs (grids, hypercubes, pyramids, X-trees, random graphs,) 

as well as in total for all the graphs. We will use two different means of ranking them 

and will, from that information, produce a list of heuristics which consistently produce 



CHAPTER 5. EXPERIMENTAL ANALYSIS 68 

spanners which are good by our primary criterion, namely that they contain few edges. 

5.3.1 Competitive Rankings 

Our first method of comparison is by ranking the algorithms based on the number of 

edges in the spanners they created for a particular graphldelay-parameter combina- 

tion. The spanner with the fewest edges will be ranked first, the spanner with the 

next fewest edges will be second, and so on. Since there are a total of 159 graphs and 

9 delay values considered for each, this results in a total of 1431 comparisons. We will 

not present each comparison here. Instead, we will summarize them over the various 

graph classes, as well as over the whole of the test graphs. 

Each summary presents the percentage of times each algorithm was present in the 

"top 10" of the rankings; that is, the percentage of the total rankings for that graph 

class in which the spanner produced by the given algorithm had fewer edges than a t  

least 20 other algorithms. We include the baseline Random Edges algorithm in these 

comparisons. 

Tables 5.3, 5.4, 5.5, 5.6, and 5.7 give the rank summaries for the grid, hypercube, 

X-tree, pyramid, and random graph classes, respectively. The most noticeable result 

in these rankings is that the BFS Tree / Farthest Pair Repairing algorithm always 

appears in the top 10 rankings, and is the only algorithm to  do so. 

BFS Tree / Simple Repairing and BFS Tree / Farthest Pair Patching with Tie- 

Breaking each appear consistently in the top 10 rankings of four of the five graph 

classes. In their remaining classes, being respectively random graphs and grids, they 

appear in 98% and 82% of top 10 rankings. 

Other algorithms to appear consistently in the top 10 rankings for some graph 

class(es) are: 

BFS Tree / Simple Patching, for the pyramid and X-tree classes. 

BFS Tree / Farthest Pair Patching, for the class of random graphs. 

Simple Tree / Simple Repairing, for the class of hypercubes. 

Simple Tree / Farthest Pair Repairing, also for the class of hypercubes. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm 
BFS Tree / Distinct Tree Construction 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Simple Patching 
BFS Tree / Simple Repairing 
Far Edge Deletion 
DFS Tree / Distinct Tree Construction 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Simple Repairing 
Tainting 
Low Degree Pairs 
Simple Tree / Distinct Tree Construction 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Patching 
Simple Tree / Simple Repairing 
Neighbourhood Tainting 
Popular Edges 
Popular Edges Tree / Distinct Tree Construction 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Simple Repairing 
Random Edges (baseline) 

Appears 
in Top 10 

13.333% 
82.222% 
77.222% 

100.000% 
96.667% 

100.000% 
11.111% 
11.111% 
11.111% 
11.111% 
15.556% 
16.667% 
38.889% 
13.333% 
11.111% 
13.333% 
31.111% 
16.667% 
47.222% 
45.556% 
90.000% 
11.111% 
11.111% 
12.222% 
44.444% 
46.667% 
95.556% 
61.111% 
96.667% 
11.111% 

Table 5.3: "Top 10" fractions for all algorithms over all grids 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm 
BFS Tree / Distinct Tree Construction 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Simple Patching 
BFS Tree / Simple Repairing 
Far Edge Deletion 
DFS Tree / Distinct Tree Construction 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Simple Repairing 
Tainting 
Low Degree Pairs 
Simple Tree / Distinct Tree Construction 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Patching 
Simple Tree / Simple Repairing 
Neighbourhood Tainting 
Popular Edges 
Popular Edges Tree / Distinct Tree Construction 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Simple Repairing 
Random Edges (baseline) 

Appears 
in Top 10 

30.159% 

Table 5.4: "Top 10" fractions for all algorithms over all hypercubes 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm 
BFS Tree / Distinct Tree Construction 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Simple Patching 
BFS Tree / Simple Repairing 
Far Edge Deletion 
DFS Tree / Distinct Tree Construction 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Simple Repairing 
Tainting 
Low Degree Pairs 
Simple Tree / Distinct Tree Construction 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Patching 
Simple Tree / Simple Repairing 
Neighbourhood Tainting 
Popular Edges 
Popular Edges Tree / Distinct Tree Construction 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Simple Repairing 
Random Edges (baseline) 

Appears 
in Top 10 

25.000% 
100.000% 
97.222% 

100.000% 
100.000% 
100.000% 
36.111% 
19.444% 
19.444% 
19.444% 
23.611% 
19.444% 
20.833% 
16.667% 
12.500% 
23.611% 
34.722% 
27.778% 
44.444% 
33.333% 
45.833% 

9.722% 
12.500% 
20.833% 
81.944% 
79.167% 
87.500% 
69.444% 
87.500% 
12.500% 

Table 5.5: "Top 10" fractions for all algorithms over all X-trees 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm 
BFS Tree / Distinct Tree Construction 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Simple Patching 
BFS Tree / Simple Repairing 
Far Edge Deletion 
DFS Tree / Distinct Tree Construction 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Simple Repairing 
Tainting 
Low Degree Pairs 
Simple Tree / Distinct Tree Construction 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Patching 
Simple Tree / Simple Repairing 
Neighbourhood Tainting 
Popular Edges 
Popular Edges Tree / Distinct Tree Construction 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Simple Repairing 
Random Edges (baseline) 

Appears 
in Top 10 

30.556% 

Table 5.6: "Top 10" fractions for all algorithms over all pyramids 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Appears 
Algorithm in Top 10 
BFS Tree / Distinct Tree Construction 65.741% 
BFS Tree / Farthest Pair Patching with Tie-Breaking 100.000% 
BFS Tree / Farthest Pair Patching 100.000% 
BFS Tree / Farthest Pair Repairing 100.000% 
BFS Tree / Simple Patching 93.519% 
BFS Tree / Simple Repairing 97.685% 
Far Edge Deletion 39.815% 
DFS Tree / Distinct Tree Construction 0.463% 
DFS Tree / Farthest Pair Patching with Tie-Breaking 1.389% 
DFS Tree / Farthest Pair Patching 1.852% 
DFS Tree / Farthest Pair Repairing 7.870% 
DFS Tree / Simple Patching 0.000% 
DFS Tree / Simple Repairing 3.704% 
Tainting 0.000% 
Low Degree Pairs 0.000% 
Simple Tree / Distinct Tree Construction 5.556% 
Simple Tree / Farthest Pair Patching with Tie-Breaking 41.667% 
Simple Tree / Farthest Pair Patching 26.852% 
Simple Tree / Farthest Pair Repairing 68.981% 
Simple Tree / Simple Patching 71.296% 
Simple Tree / Simple Repairing 85.185% 
Neighbourhood Tainting 0.000% 
Popular Edges 0.000% 
Popular Edges Tree / Distinct Tree Construction 5.093% 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 23.148% 
Popular Edges Tree / Farthest Pair Patching 25.926% 
Popular Edges Tree / Farthest Pair Repairing 36.111% 
Popular Edges Tree / Simple Patching 32.407% 
Popular Edges Tree / Simple Repairing 47.222% 
Random Edges (baseline) 0.000% 

Table 5.7: "Top 10" fractions for all algorithms over all random graphs 



CHAPTER 5. EXPERIMENTAL ANALYSIS 74 

Table 5.8 gives the rank summaries over all the input graphs. We can see that 

the algorithms BFS Tree / Farthest Pair Repairing, BFS Tree / Simple Repairing, 

and BFS Tree / Farthest Pair Patching with Tie-Breaking which appear consistently 

in the rankings for several graph classes also do very well overall. Specifically, they 

appear in loo%, 99%, and 94% of the top 10 rankings, respectively. Of the remaining 

algorithms which appeared consistently in the rankings for some graph class, the 

remaining two BFS Tree algorithms, BFS Tree / Farthest Pair Patching and BFS 

Tree / Simple Patching, appeared in 91% and 95% of the top 10 rankings. The Simple 

Tree / Simple Repairing and Simple Tree / Farthest Pair Repairing algorithms each 

consistently appeared in the rankings for one graph class, and appeared in 81% and 

61% of the top 10 rankings over all graphs 

Two other algorithms, Popular Edges Tree / Simple Repairing and Popular Edges 

Tree / Farthest Pair Repairing did not appear consistently in the top 10 rankings for 

any graph class, but did appear in 73% and 66% of the top 10 rankings overall. 

The table also lists two measures of the the overall performance of the algorithms. 

These results summarize the results given in the tables for each of the individual 

graph classes. The first measure gives the number of graph classes in which the 

given algorithm appeared in 100% of the top ten results for each delaylgraph input 

instance in that class. We say that this 100% measure indicates how exceptional a 

given algorithm is. Clearly, if the algorithm consistently appears in the top ten results 

for a given graph class, it is likely a good algorithm for generating spanners of graphs 

in that class. 

The second measure is similar to  the first. It indicates the number of graph 

classes in which the algorithm appeared in at  least 50% of the top 10 results for each 

delaylgraph input instance. We say that this 50% measure indicates how acceptable 

a given algorithm is. If an algorithm appears less than 50% of the time in the top ten 

results for a given graph class, then the algorithm is likely a bad choice for generating 

spanners of graphs in that class. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 75 

Appears Class Results 
Algorithm in Top 10 100% 50% 
BFS Tree / Distinct Tree Construction 37.743% 
BFS Tree / Farthest Pair Patching 

with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Simple Patching 
BFS Tree / Simple Repairing 
Far Edge Deletion 
DFS Tree / Distinct Tree Construction 
DFS Tree / Farthest Pair Patching 

with Tie-Breaking 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Simple Repairing 
Tainting 
Low Degree Pairs 
Simple Tree / Distinct Tree Construction 
Simple Tree / Farthest Pair Patching 

with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Patching 
Simple Tree / Simple Repairing 
Neighbourhood Tainting 
Popular Edges 
Popular Edges Tree / Distinct Tree Construction 
Popular Edges Tree / Farthest Pair Patching 

with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Simple Repairing 
Random Edges (baseline) 

Table 5.8: "Top 10" fractions for all algorithms over all graphs 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

5.3.2 Edge ratio rankings 

In this section, we rank the algorithms based on the edge ratios of the spanners they 

produce. For a spanner S of a graph G, we say that the edge ratio of S is 

Put simply, the edge ratio of a spanner is the fraction of edges retained from the 

original graph. Since this measure is normalized against the size of the original input 

graph, we can use it to  compare the sizes of spanners produced of graphs with different 

sizes. 

Tables 5.9, 5.10, 5.11, 5.12, and 5.13 give the average edge ratio values over the 

grid, hypercube, X-tree, pyramid, and random graph classes, respectively. In most 

cases, we see that the algorithms which produced the spanners with the lowest edge 

ratio are the same algorithms which appeared in most of the top 10 rankings of number 

of edges. While this is not especially surprising, we do note that,  for each graph class, 

the algorithms with the lowest average edge ratio were not necessarily the same as 

those which most consistently appeared in the top 10 rankings of numbers of edges. 

This indicates that the algorithms with good average edge ratios may perform poorly 

in certain circumstances, and it also implies that placing high on the top 10 rankings 

list indicates that the algorithm may do well in most cases, but may not always be in 

the first position in that ranking. 

Table 5.14 gives the average degree ratio of the spanners produced for all of the 

test graphs. In general the BFS Tree family of 2-stage algorithms dominate the list, 

except for BFS Tree / Disjoint Tree Construction, which appears in 22nd place. We 

also note that Popular Edges Tree / Farthest Pair Repairing, Simple Tree / Simple 

Repairing, and Popular Edges Tree / Farthest Pair Repairing perform well in general. 

5.3.3 Comparisons against known constructions 

In this section, we discuss the relative performance of the algorithms against the 

existing additive spanner constructions of Liestman and Shermer [15, 131. 



C H A P T E R  5. EXPERIMENTAL ANALYSIS 

Algorithm Edge Ratio 
BFS Tree / Simple Repairing 0.6655 
BFS Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Repairing 
BFS Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
DFS Tree / Simple Repairing 
DFS Tree / Farthest Pair Repairing 
Simple Tree / Farthest Pair Patching 
DFS Tree / Simple Patching 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
Far Edge Deletion 
Popular Edges Tree / Distinct Tree Construction 
BFS Tree / Distinct Tree Construction 
Simple Tree / Distinct Tree Construction 
Low Degree Pairs 
Tainting 
Popular Edges 
DFS Tree / Distinct Tree Construction 
Random Edges (baseline) 
Neighbourhood Tainting 

Table 5.9: Edge ratios for all algorithms over all grids. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm Edge Ratio 
BFS Tree / Simple Repairing 0.5195 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Simple Patching 
Simple Tree / Simple Repairing 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Simple Repairing 
Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
DFS Tree / Simple Repairing 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
Far Edge Deletion 
Low Degree Pairs 
BFS Tree / Distinct Tree Construction 
Simple Tree / Distinct Tree Construction 
Popular Edges 
Popular Edges Tree / Distinct Tree Construction 
Random Edges (baseline) 
DFS Tree / Distinct Tree Construction 
Tainting 
Neighbourhood Tainting 

Table 5.10: Edge ratios for all algorithms over all hypercubes. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm Edge Ratio 
BFS Tree / Simple Repairing 0.6052 
BFS Tree / Farthest Pair Repairing 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Repairing 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Simple Patching 
Far Edge Deletion 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 
Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Repairing 
DFS Tree / Farthest Pair Patching 
DFS Tree / Simple Patching 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Distinct Tree Construction 
Tainting 
Popular Edges Tree / Distinct Tree Construction 
Simple Tree / Distinct Tree Construction 
Low Degree Pairs 
DFS Tree / Distinct Tree Construction 
Random Edges (baseline) 
Neighbourhood Tainting 
Popular Edges 

Table 5.11: Edge ratios for all algorithms over all X-trees. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm Edge Ratio 
BFS Tree / Simple Repairing 0.4735 
Popular Edges Tree / Simple Repairing 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Repairing 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Simple Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 
Far Edge Deletion 
Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Repairing 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Patching with Tie- Breaking 
DFS Tree / Simple Patching 
BFS Tree / Distinct Tree Construction 
Popular Edges Tree / Distinct Tree Construction 
Tainting 
Simple Tree / Distinct Tree Construction 
Low Degree Pairs 
DFS Tree / Distinct Tree Construction 
Random Edges (baseline) 
Popular Edges 
Neighbourhood Tainting 

Table 5.12: Edge ratios for all algorithms over all pyramids. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm Edge Ratio 
BFS Tree / Farthest Pair Repairing 0.2202 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Simple Repairing 
BFS Tree / Simple Patching 
Simple Tree / Simple Repairing 
Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Popular Edges Tree / Simple Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Repairing 
Popular Edges Tree / Farthest Pair Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Far Edge Deletion 
DFS Tree / Simple Repairing 
DFS Tree / Simple Patching 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Distinct Tree Construction 
Simple Tree / Distinct Tree Construction 
Popular Edges Tree / Distinct Tree Construction 
DFS Tree / Distinct Tree Construction 
Low Degree Pairs 
Random Edges (baseline) 
Tainting 
Popular Edges 
Neighbourhood Tainting 

Table 5.13: Edge ratios for all algorithms over all random graphs. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Algorithm Edge Ratio 
BFS Tree / Simple Repairing 0.4608 
BFS Tree / Farthest Pair Repairing 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Simple Patching 
BFS Tree / Farthest Pair Patching 
Popular Edges Tree / Simple Repairing 
Simple Tree / Simple Repairing 
Popular Edges Tree / Farthest Pair Repairing 
Simple Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Patching 
Popular Edges Tree / Farthest Pair Patching with Tie-Breaking 
Popular Edges Tree / Farthest Pair Patching 
Simple Tree / Simple Patching 
Simple Tree / Farthest Pair Patching with Tie-Breaking 
Simple Tree / Farthest Pair Patching 
Far Edge Deletion 
DFS Tree / Simple Repairing 
DFS Tree / Farthest Pair Repairing 
DFS Tree / Simple Patching 
DFS Tree / Farthest Pair Patching 
DFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Distinct Tree Construction 
Simple Tree / Distinct Tree Construction 
Popular Edges Tree / Distinct Tree Construction 
Low Degree Pairs 
DFS Tree / Distinct Tree Construction 
Tainting 
Random Edges (baseline) 
Popular Edges 
Neighbourhood Tainting 

Table 5.14: Edge ratios for all algorithms over all graphs. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

[values from constructions] 
BFS Tree I Distinct Tree Construction (BFDT) 

BFS Tree I Farthest Pair Patching with Tie-Breaking (BFTB) 
BFS Tree I Farthest Pair Patchjng (BFFP) 

BFS Tree I Farthest Palr Repamg (BFFR) 
BFS Tree I Simple Patching (BFSP) 

BFS Tree I Simple Repairing (BFSR) 
Far Edae Deletion (FED) 

DFS Tree I Distinct Tree construction (DFDT) 
DFS Tree I Farthest Pair Patching with Tie-Breaking (DFTB) 

DFS Tree I Farthest Pair Patching (DFFP) 
DFS Tree I Farthest Pair Repairing (DFFR) 

DFS Tree I Sim~le Patchina (DFSPI 
DFS Tree I simple ~ e ~ a i r i n g  (DFSR~ 

BFS Tree I Distinct Tree Construction (BFDT) 
Taintina (ST) 

Low Degree Pairs7LDP) 
Sim~le Tree I Distinct Tree Construction (STDTI 

Simple 

I 
r Edges 

Tree I ~ a h e s t  Pair patching with l i e - ~ r e a k i n ~  ~ s T ? B ~  
Simple Tree I Farthest Pair Patching (STFP) 

Simple Tree I Farthest Pair Repairing (STFR) 
Simple Tree I Simple Patching (STSP) 

Simple Tree I Simple Repairlng (STSR) 
Neiahbourhood Taintina (NT) 

- Popular Edges (PE) 
'opular Ed es Tree I Distinct Tree Construction PEDT) 
Tree I ~art fest  Pair Patching with Tie-Breaking {PETB) 

Po~ular Edaes Tree I Farthest Pair Patchina (PEFPl 
popular ~ d $ s ~ r e e  I Farthest Pair ~ e ~ a i r ~ n i  (PEFR~ 

Popular Edges Tree I Simple Patching (PESP 
Popular Edges Tree I Simple Repalring (PESRI 

Random Edges (baseline) (RE) 

Figure 5.2: Key to the plots. 

Figures 5.3, 5.4, 5.5, and 5.6 plot the number of edges in the spanners against the 

delay parameter for which the spanner was constructed for the input graphs XTg, P5, 

Qg, and G16,16 respectively. In each figure, the theoretical constructions are illustrated 

with a heavy line and square data points symbols with a vertical line in them, and the 

rest of the algorithms are illustrated with finer lines, and different data point symbols; 

refer to  Figure 5.2 for a complete key. Since there are two different constructions for 

hypercubes, we illustrate them both in Figure 5.5. Figures 5.5 and 5.6 do not illustrate 

the case where d = 1. This case is omitted for the sake of clarity; since those graphs 

are bipartite, they do not contain any non-trivial spanner with d = 1. 

For X-trees, the best spanners produced by the algorithms are no better than the 

spanners produced by the constructions, with the exception of the case where d = 1; 

the construction for X-trees does not produce spanners where d = 1. The difference 

between the number of edges in the best spanners and the number of edges in the 

constructed spanners does diminish as the delay parameter increases, however this can 

be attributed to fact that as the permissible delay increases, the minimum number of 

edges in the spanner decreases. Once the permissible delay is large enough, a spanning 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

1 OOC 

90C 

80C 

70C 

60C 

50( 

Figure 5.3: Spanner edges vs. delay (parameter), for XT9. 



C H A P T E R  5. EXPERIMENTAL ANALYSIS  85 

0 2 4 6 8 10 

Figure 5.4: Spanner edges vs. delay (parameter), for P5. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

! 

BFDT 

RE 

STDT 

PEDT 

DFDT 

PE 

LDP 

STFP 

FED 

BFFP 

STSP 

PESP 

PEFP 

DFSP RE 

DFFP PE 

DFTB PEDT 

PETB DFDT 

BFSP STDT 

s m  ST 

STFR BFDT 

STSR LDP 

BFTB DFTB 

PESR DFFP 

BFFR DFSP 

PEFR DFFR 

DFSR PETB 

BFSR PEFP 

DFFR DFSR 

FED 

PESP 

PEFR 

STFP 

PESR 

STSP 

STTB 

STFR 

STSR 

BFSP 

BFTB 

BFFP 

BFSR ' BFFR 

0 2 4 6 8 10 

Figure 5.5: Spanner edges vs. delay (parameter), for Q9. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Figure 5.6: Spanner edges vs. delay (parameter), for G16,16. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 88 

tree will serve as a (d + x)-spanner, and since a spanning tree is a smallest possible 

spanning subgraph, no construction will produce a smaller spanner. This works to 

the advantage of the 2-stage algorithms when d is large, since they first construct a 

spanning tree, and this tree will either be a spanner in its own right, or will require 

only a small number of additional edges to  meet its delay requirement. 

In the case of pyramids, we note that the results are somewhat similar to  the results 

for X-trees. Like X-trees, the constructions for pyramids do not produce spanners with 

d = 1. We do note, however, that relative to  the spanner with d = 2 produced by 

the construction, several of our algorithms produce spanners with fewer edges. Those 

well-performing algorithms are part of the Popular Edges family of 2-stage algorithms 

which performed well on the pyramid graphs, as illustrated in Table 5.6. 

In the case of hypercubes, we note that for d 2 4, a significant number of algo- 

rithms produced spanners with fewer edges than either of the constructions. A variety 

of algorithms are in this group of top-performers, although it should be noted that 

they are all 2-stage algorithms. We cannot say to  what delay value this performance 

trend will continue out, but the observation made previously about the convergence 

of spanning trees and optimal spanners as delays increase also holds in this case. 

For grids, the comparison we will make is not as direct as the comparisons for 

the previous graph classes. The difference results from the nature of the spanner 

constructions provided by Liestman and Shermer in [15]. A description of their basic 

construction is given in Section 2.2; we present a capsule review of it here. The con- 

struction subdivides an infinite grid into rectangular areas by periodically designating 

sequences of horizontal and vertical edges as highways and including those highway 

edges in the spanner. The areas between these highways are then populated with 

edges in a fked pattern which they call a tile, where each tile is a (d  + x)-spanner of 

a finite grid of the size of the "spaces" between the highways. These tiles are placed 

repetitively throughout the grid. The resultant graph is a (d  + x)-spanner of the 

infinite grid. It is then possible to take a finite subgraph of this (d + 2)-spanner of 

the infinite grid which is a (d  + x)-spanner of the desired grid. 

Liestman and Shermer present several different types of tiles, and each has its 

particular advantages. We constructed (d  + x)-spanners using their "comb" tiles for 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Overall Rankings 
Heuristic "Top 10" Edge Ratio 
BFS Tree / Simple Patching 3 4 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Simple Repairing 
BFS Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 
Simple Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Repairing 
Popular Edges Tree / Farthest Pair Repairing 

Table 5.15: "Good" heuristics according to the primary criterion 

d = 4,6,8;  their constructions do not provide a tile for d = 2. As is clear from the 

plot, our heuristics do not perform as well as the construction on the grid indicated. 

Although we do not present a comparison of our spanners for grids with more than 

two dimensions here, we believe that the spanners produced by our heuristics for 

such graphs would not do significantly better against the spanners from Liestman 

and Shermer's constructions than our two-dimensional grid spanners did against the 

spanners from their two-dimensional grid constructions. 

5.3.4 List of good heuristics 

Table 5.15 gives the heuristics that are good, according to  the primary criteria. These 

heuristics represent the top nine heuristics from the overall rankings, according to 

both the "top 10" listings for all graphs and the average edge ratio listing for all 

graphs. Additionally, these algorithms, in general, did well on the hypercube graphs, 

which was the only class of graphs where the heuristics did significantly better than 

the constructions. We will analyse these algorithms with the secondary criteria. 

The choice of having nine algorithms in this list was partially arbitrary. These 

algorithms hold the top nine positions on both of the overall rankings, and there 

is a significant difference in the positions of the algorithms following them on each 

list. They also appear in at least 60% of the "top 10" rankings. While the other 

algorithms may have application in certain situations, these algorithms are the most 



CHAPTER 5. EXPERIMENTAL ANALYSIS 90 

Algorithm Average Delay 
Simple Tree / Farthest Pair Repairing 0.9888 
BFS Tree / Simple Patching 0.9900 
Simple Tree / Simple Repairing 0.9911 
BFS Tree / Farthest Pair Patching 1.0032 
BFS Tree / Simple Repairing 1.0108 
BFS Tree / Farthest Pair Repairing 1.0173 
BFS Tree / Farthest Pair Patching with Tie-Breaking 1.0175 
Popular Edges Tree / Simple Repairing 1 .0383 
Popular Edges Tree / Farthest Pair Repairing 1 .0462 

Table 5.16: Average delay for the good algorithms over all hypercubes 

likely to produce good spanners of general graphs, a t  least according to the primary 

criteria (i.e. the number of edges in their spanners.) 

5.4 Secondary Criteria 

In this section, we evaluate the heuristics given in Table 5.15 on the secondary criteria 

given in Section 3.1.2. 

5.4.1 Average Delay 

Overall, there was very little difference in the average delay of the spanners produced 

by the algorithms for the hypercubes; Table 5.16 illustrates this. There was very little 

difference in the performance of the algorithms over different delay parameters, and 

while this table gives the average delay for the spanners as averaged over all input 

delay parameters ( i .  e. for d = 1 . . .9), the results for the individual delay parameters 

are all very similar. Figure 5.7 plots the average delay of the spanners for Q9 versus 

their delay parameter, and is illustrative of the general pattern. The distinction gets 

slightly greater as d increases, but not significantly. 

There was some distinction between the average delays of the grids, X-trees and 

pyramids. Tables 5.17, 5.18 and 5.19 illustrate this distinction; again, there was 

almost no distinction between the algorithms over the different delay parameters. In 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Figure 5.7: Average delay vs. parameter delay for Q9 



CHAPTER 5. EXPERIMENTAL ANALYSIS 92 

Algorithm 
BFS Tree / Simple Patching 
BFS Tree / Farthest Pair Patching 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Simple Repairing 
BFS Tree / Farthest Pair Repairing 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 
Popular Edges Tree / Simple Repairing 
Popular Edges Tree / Farthest Pair Repairing 

Average Delay 
0.6485 
0.6681 
0.6775 
0.7075 
0.7220 
0.7360 
0.7625 
0.7815 
0.8088 

Table 5.17: Average delay for the good algorithms over all grids 

Algorithm Average Delay 
BFS Tree / Simple Patching 0.7740 
BFS Tree /   art he st Pair patching with Tie-Breaking 
BFS Tree / Farthest Pair Patching 
BFS Tree / Simple Repairing 
BFS Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Repairing 
Simple Tree / Farthest Pair Repairing 
Popular Edges Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 

Table 5.18: Average delay for the good algorithms over all X-trees 

Algorithm Average Delay 
BFS Tree / Simple Patching 0.7582 
BFS Tree / Farthest Pair Patching 
BFS Tree / Simple Repairing 
BFS Tree / Farthest Pair Patching with Tie-Breaking 
BFS Tree / Farthest Pair Repairing 
Popular Edges Tree / Simple Repairing 
Popular Edges Tree / Farthest Pair Repairing 
Simple Tree / Farthest Pair Repairing 
Simple Tree / Simple Repairing 

Table 5.19: Average delay for the good algorithms over all pyramids 



CHAPTER 5.  EXPERIMENTAL ANALYSIS 

Algorithm Average Delay 
BFS Tree / Simple Patching 1.1121 
BFS Tree / Farthest Pair Patching 1.1133 
BFS Tree / Farthest Pair Patching with Tie-Breaking 1.1133 
BFS Tree / Farthest Pair Repairing 1.1141 
BFS Tree / Simple Repairing 1.1144 
Simple Tree / Farthest Pair Repairing 1.6151 
Simple Tree / Simple Repairing 1.6180 
Popular Edges Tree / Simple Repairing 1.7012 
Popular Edges Tree / Farthest Pair Repairing 1.7182 

Table 5.20: Average delay for the good algorithms over all random graphs 

general, BFS Tree / Simple Patching had a smaller delay than the others, but three 

other BFS Tree algorithms had almost identical average delays which were not much 

greater. We do wish to note that the overall distinction in average delay at higher 

delay parameter values tends to disappear as the number of edges in the source graphs 

increases. This can be seen by comparing figures 5.8 and 5.9. 

There was a good deal of distinction of average delays within the random graphs. 

In general, the BFS Tree algorithms performed uniformly well as compared to the oth- 

ers. Table 5.20 illustrates the overall difference; again, there was almost no distinction 

between the algorithms over the different delay parameters. Figures 5.10, 5.11, and 

5.12 show that the distinction decreases as the number of edges in the original graph 

increases, but also that the BFS Tree algorithms continue to perform better than the 

others. 

Summarizing the results given above, it appears that the BFS Tree based algo- 

rithms do slightly better overall than the others, with BFS Tree / Simple Patching 

being the best by a slight margin. They are most effective on the random graphs, 

and there is almost no distinction between the effectiveness of the algorithms on hy- 

percubes. We do not have a concrete explanation of why there is little distinction in 

average delay for the hypercubes, but suspect that their highly regular structure may 

result in different algorithms producing similar spanners. 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Figure 5.8: Average delay vs. parameter delay for XT7 



CHAPTER 5. EXPERIMENTAL ANALYSIS 95 

Figure 5.9: Average delay vs. parameter delay for XT9 



CHAPTER 5. EXPERIMENTAL ANALYSIS 96 

Bl-S Tree 1 Farthest Pair Patching with Tie-Breaking (Bt 1'6) -0- 
BFS Tree 1 Farthest Pair Patching (BFFP) -0- 

BFS Tree I Farthest Paw Repa~rmg (BFFR) -8- 
BFS Tree I Simple Patching (BFSP) -0- 

BFS Tree I Simple Repalrjng (BFSR) -0- 
Simple Tree I Farthest Pam Repamng (STFR) ---6.- 

Simple Tree I Simple Repairing (STSR) --.8-. 
Popular Edges Tree I Farthest Pair Repairing (PEFR) --C)- 

Popular Ed~es  Tree 1 Simple Repairing (PESR) -8.. PEFR 

:"- PESR .. ,. 
i .. . .. 

0 2 4 6 8 10 

Figure 5.10: Average delay vs. parameter delay for R2O0(0. 10) 





CHAPTER 5. EXPERIMENTAL ANALYSIS 

BkS Tree 1 Farthest Pair Patching with Tie-Breaking B t  I B -&- 
BFS Tree I Farthest Pair Patch,ing [BFFPI -0- 

I I 

BFS Tree / Farthest Palr Repamng (BFFR) -8- 
BFS Tree I Sim~le Patchino (BFSP) -0- 

~ ~ s - ~ r e e l  ~ i m p k ~ e p a j r i n i  (BFSR~ 4 
Simple Tree 1 Farthest Pair Repa~nng (STFR) .-8-. 

Simple Tree / Simple Repairing (STSR) -..8-. 
Popular Edges Tree 1 Farthest Pair Repairing PEFR -ft 

Popular Edges Tree I Simple Repairing PESR -.-%.- 

PEFR 

STFR 

BFSP 

BFSR 

PESR 

STSR 

BFFR 

BFFP 

BFFP 

Figure 5.12: Average delay vs. parameter delay for R200(0.50) 



CHAPTER 5.  EXPERIMENTAL ANALYSIS 

5.4.2 Maximum Degree 

In general, the results for maximum degree show that the BFS Tree algorithms per- 

form exceptionally poorly on this metric. This is not unexpected, however, since the 

breadth-first search algorithm that we use intentionally chooses a vertex of maximum 

degree as the root of the tree. Even if a root of smaller degree were chosen, it would 

not likely have a significant effect on the maximum degree of the spanner, simply 

because a breadth-first search attempts to  follow all edges from any given candidate 

vertex. 

Of the remaining algorithms, Popular Edges Tree / Farthest Pair Repairing gen- 

erally does the best, followed closely by Popular Edges Tree / Simple Repairing. In 

some cases, most notably the 2-dimensional grids, they produce spanners with the 

same maximum degree as the other good algorithms. In some other cases, they pro- 

duce spanners with much smaller degrees; Figure 5.13 illustrates Rzoo (0. IS), where 

they produce spanners with maximum degree < 112 the maximum degree of the span- 

ners produced by the BFS Tree algorithms. This figure also illustrates the maximum 

degree of the spanners produced by the Low Degree Pairs heuristic; its results are 

included as a point of comparison. Clearly the lowest maximum degree obtained by 

the good algorithms is still higher than that which can be obtained by an algorithm 

which attempts to balance the number of edges in the spanner with the maximum 

degree of the spanner. 

5.4.3 Running Time 

In general, the BFS Tree / Farthest Pair Patching algorithm has the lowest running 

time. The algorithms BFS Tree / Farthest Pair Patching with Tie-Breaking and 

BFS Tree / Farthest Pair Repairing are tied for second lowest running time. This 

pattern holds for nearly all of the input graphs considered. Of the remaining algo- 

rithms, Simple Tree / Farthest Pair Repairing and Popular Edges Tree / Farthest 

Pair Repairing are the next fastest algorithms in a modest majority of the cases. All 

of the remaining algorithms tend to  be much slower than the first two. Figure 5.14 

illustrates the running time for algorithms on QB. The fastest algorithm required 2-3 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

BFS Tree I Simple Patching (BFSP) -8- 
BFS Tree I Simple Repairing (BFSR) -@- 

Simple Tree 1 Farthest Pair Repairing (STFR) ..-8.. 
Simple Tree I Simple Repairing (STSR) ..-8.- 

Popular Edges Tree I Farthest Pair Repairing (PEFR) .-..tf-.- 
Popular Edges Tree I Simple Repairinq (PESR) ..-.0-. 

Low Degree Palrs (LDP) .--El.- 

+ = = = = = = = <E 
BFSP 

BFFR BFFR 
BFFP BFFP 

STSR 4. 

0 2 4 6 8 10 

Figure 5.13: Maximum degree vs. parameter delay for Rzoo (0.15) 



CHAPTER 5. EXPERIMENTAL ANALYSIS 101 

seconds, whereas the slowest algorithm required 35 seconds in one case, and never 

much less than 15 seconds. This situation is amplified in Q9 (as illustrated in Fig- 

ure 5.15,) where the fastest algorithm required never more than 18 seconds, but the 

worst algorithm required almost 800 seconds! 

Figure 5.16 illustrates the trend in running times for the good algorithms over all 

the instances of hypercubes. While the times used in this graph are averaged over 

all delay parameter values, the trend is the same for the specific delay values. The 

running times for the four algorithms with "Simple" second stages grow much faster 

than for the other five "Farthest" based algorithms. This data indicates that judicious 

choice of the vertex pairs to  be patched in the second stage is critical for running time. 

5.5 Summary 

Considering just the primary criteria, the best-performing algorithms are BFS Tree / 
Farthest Pair Repairing and BFS Tree / Simple Repairing, which dominate both the 

"top 10" and the edge ratio rankings. Beyond that,  the other algorithms identified in 

Table 5.15 are also good algorithms. 

Considering the secondary criteria, the BFS Tree algorithms did well with respect 

to  average delay, while they did extremely poorly with respect to  maximum degree. 

The various Farthest Pair Patching and Farthest Pair Repairing algorithms did well 

with respect to  running time, while the other Simple Patching and Simple Repairing 

algorithms did poorly, often extremely so. 

If one wanted to  identify a single algorithm as an overall winner, the best choice 

would likely be BFS Tree / Farthest Pair Repairing. If one wanted an algorithm 

which was good overall, but which also had reasonable maximum delay results, then 

Popular Edges Tree / Farthest Pair Repairing would be a suitable choice. 

In general, these experimental results reveal certain trends. First, the 2-stage 

algorithms proposed here are clearly dominant against the 1-stage algorithms. Since 

all of these algorithms are the results of much careful thought, it would seem likely that 

the overall 2-stage approach, creation of a spanning tree followed by adding additional 

edges as necessary, is a good approach for constructing algorithms for producing good 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Figure 5.14: Running Time vs. parameter delay for Q8 

I I 

PESR 

Bi-S Tree / Farthest Pair Patching with Tie-Breaking Bl- 
BFS Tree / Farthest P+r Patching IBF 

BFS Tree1 Farthest Paw Repamg (BFFR) -8- 
BFS Tree 1 Simple Patchhg (BFSP) -8- 

BFS Tree I Simple Repamng (BFSR -8- 
Simple Tree I Farthest Pair Repairing (STFRj -.f)-. 

Simple Tree I Simple Repalring (STSR) -8- 
BFSR Popular Edges Tree I Farthest Paw Repamng (PEFR) .--Q-- Popular Edges Tree I Simple Re~airina (PESR) .--8-- 
BFSP 

STSR 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

BFS Tree 1 Farthest Pair Patching with Tie-Breaking 
BFS Tree I Farthest Pair Patchjng 

BFS Tree I Farthest Pair Repamng (BFFR) -8- 
BFS Tree I Simple Patching (BFSP) -0- 

BFS Tree I Simple Repamg (BFSR) -63- 
Simple Tree I Farthest Paw Repairing (STFR) ---8.- 

Simple Tree I Simple Repairing (STSR 8.- 
Popular Edges Tree I Farthes! Pair Repairing (PEFRI %- 

Popular Edqes Tree l S~mple Repairing (PESR) --+ 
PESR 

BFSR 

BFSP 

PEFR 

..................... STFR O* 
BFFP BFTB 

I w - - 

Figure 5.15: Running Time vs. parameter delay for Q9 



CHAPTER 5. EXPERIMENTAL ANALYSIS 

Figure 5.16: Average Running Time vs. Instance Size (IVI) for the Hypercubes 



CHAPTER 5. EXPERIMENTAL ANALYSIS 105 

spanners. The second major trend is that the "repairing" approach to  the second stage 

of the 2-stage algorithms is a good choice, as it tends to  produce smaller spanners. 

Finally, careful selection of the vertex pairs in the second stage is very important in 

order to keep the running time low. 



Chapter 6 

Conclusions and Future Work 

Now this is not the end. It is not 

even the beginning of the end. But 

it is, perhaps, the end of the 

beginning. 
Sir Winston Churchill, 

on the Battle of Egypt 

6.1 Conclusions 

In this thesis, we have developed a large number of algorithms for building additive 

spanners. We have also attempted to determine which of these algorithms create good 

spanners, where the quality of a spanner is defined primarily by the number of edges 

that it contains. We presented results of computational experiments which indicate 

that our BFS Tree / Farthest Pair Repairing algorithm performs well by producing 

spanners with few edges and low average delay, and it does so in low overall running 

time. 

We have also identified a general approach, namely the 2-stage approach, that 

works well in most cases. We have determined that,  for the first stage of the 2-stage 

process, spanning trees built by breadth-first search tend to produce good results, 

except that they tend to have high maximum degree, which thus forces the spanner 



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 107 

to have high maximum degree as well. We have also identified a general second stage 

patching technique, repairing, which tends to  produce good results, and observed 

that the choice of patching algorithm is critical to the running time of the overall 

algorithm. 

We would be remiss if we didn't summarize some of the limitations of our work 

here. Since our method of evaluating the algorithms is experimental, as opposed to 

analytical, we cannot make absolute claims as to  their effectiveness. While the al- 

gorithms we have presented here are "good" according to our criteria, they do not 

provide provably optimal spanners, nor do they provably approximate them. Also, the 

spanners produced by our algorithms do not necessarily deal with certain networking 

issues like efficient routing. They differ from the spanners produced by the known 

constructions insofar as the constructions use methods of removing edges which are 

highly regular, and hence they can easily specify alternate routing schemes. The span- 

ners produced by our algorithms may be ill-suited for the kinds of simple, structured 

routing one can use in a regular topology such as a hypercube. 

Future Work 

The most obvious future direction for this work would be to  evaluate more algorithms 

for producing good spanners. It would be interesting to consider other graph classes 

to evaluate the algorithms on, especially those of random graph models which model 

real world networks where spanners may have applications. Extending the range 

of algorithms to  consider stochastic approaches such as genetic algorithms and ant- 

colony optimization may also be informative. We feel that continuing this research 

into such areas as on-line and distributed algorithms for generating spanners may 

eventually lead to  their application as structures for emerging networking problems, 

such as broadcast structures for ad-hoc networks. 

Since the general problem of producing optimal spanners of arbitrary graphs is NP- 
hard, it may be interesting to  determine if polynomial-time approximation algorithms 

exist which can produce spanners with a near-optimal number of edges. We believe 

that the Zstage process may provide a framework for developing such algorithms. 



CHAPTER 6. CONCLUSIONS AND FUTURE W O R K  108 

We also feel that the Tainting process described in Section 4.3.2 (or a modification 

thereof) may provide a useful starting point for such work. 

Spanners were originally motivated by problems in network design, and one of the 

main considerations in the constructions presented by Liestman and Shermer [13, 151 

was not minimizing the number of edges, but instead bounding the maximum degree 

at each node. This concern stems from the nature of real-world hardware being limited 

by the number of connections it can support. The algorithms considered here deal 

with the known NP-hard optimization problem for additive spanners. We suggest 

that the following problem be studied in detail: 

Let dl A 2 1 be integers. For ;t > 0, does there exist a (d + 2)-spanner S of a 

graph G such that the average delay of S w.r.t. G is at most ;i and such that 

the maximum degree of S is 5 A? 

This question considers if there exists a spanner with fixed maximum degree and 

delay which has a given number of edges. We feel that, like the existing decision 

question regarding additive spanners, this question will also prove to be NP-complete. 

It engenders several optimization questions that may be of interest and which may 

be applicable to existing network problems. We also suggest the development of 

algorithms to generate degree-constrained spanners with low average delay. 

In Section 4.5 we presented arguments why a decomposition approach, where 

the input graph is split into two (or more) components by a cut and spanners are 

constructed separately for each component, would not work well for the problem we 

considered here. Recall that one of the issues that prevented us from considering 

this approach was that it would require spanner-generating algorithms which have 

non-constant delays; these non-constant delays were necessary to allow vertex pairs 

separated by the cut to have the same maximum delay as pairs lying solely within 

either of the components. We feel that the decomposition approach has merit, and 

we feel that non-constant delay algorithms should be studied in order to determine 

if the decomposition approach would be a workable approach to the overall additive 

spanner generation problem. 



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 109 

Finally, we feel that additive spanners provide a useful construction for under- 

standing the overall structure of a graph without having to deal with the complete 

graph itself. Since they can give an "idea" of a graph, we feel that additive spanners 

may have useful applications outside of the realm of network communications. They 

may have applications in areas such as Web searching and data mining, where large 

amounts of information need to  be dealt with in a human-comprehensible manner. 

We hope that the algorithms we present here may be useful enough to be applied to 

problems in those areas. 



Bibliography 

[I] B6la BollobAs, Don Coppersmith, and Michael Elkin. Sparse distance preservers 

and additive spanners. In Proccedings of the fourteenth annual ACM-SIAM sym- 

posium on Discrete Algorithms, pages 414-423, 2003. 

[2] Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995. 

[3] Thomas H. Cormen, Charles R. Leiserson, Ronald L. Rivest, and Clifford Stein. 

Introduction to Algorithms. MIT Press, second edition, 2001. 

[4] Camil Demetrescu and Giuseppe F. Italiano. What do we learn from experi- 

mental algorithmics? In Proceedings of the 25th International Symposium on 

Mathematical Foundations of Computer Science, number 1893 in Lecture Notes 

in Computer Science, pages 36-51. Springer-Verlag, 2000. 

[5] Camil Demetrescu and Giuseppe F. Italiano. A new approach to  dynamc all pairs 

shortest paths. In Proceedings of the thirty-fifth ACM symposium on Theory of 

Computing, pages 159-166, June 2003. 

[6] Dorit Dor, Shay Halpern, and Uri Zwick. All-pairs almost shortest paths. SIAM 

Journal of Computing, 29(5) : 1740-1759, 2000. 

[7] Michael Elkin and David Peleg. (I+€,  P)-spanner constructions of general graphs. 

In Proceedings of the thirty-third annual ACM symposium on the Theory of Com- 

puting, pages 173-182, 2001. 



BIBLIOGRAPHY 111 

[8] Arthur M. Farley, Andrzej Proskurowski, Daniel Zappala, and Kurt Windisch. 

Spanners and message distribution in networks. Discrete Applied Mathematics, 

137(2):159-171, March 2004. 

[9] Marie-Claude Heydemann, Joseph G. Peters, and Dominique Sotteau. Spanners 

of hypercube-derived networks. SIAM Journal of Discrete Mathematics, 9(1):37- 

54, 1996. 

[lo] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & 

Sons, 1991. 

[I l l  David S. Johnson. A theoretician's guide to  the experimental analysis of algo- 

rithms. November 2001. 

[12] Dieter Kratsch, Hokng-Oanh Le, Haiko Miiller, Erich Prisner, and Dorothea Wag- 

ner. Additive tree spanners. Technical Report 52, Mathematics and Computer 

Science, University of Konstanz, 1998. 

[13] Arthur L. Liestman and Thomas C. Shermer. Additive spanners for hypercubes. 

Parallel Processing Letters, 1 (1):35-42, 1991. 

[14] Arthur L. Liestman and Thomas C. Shermer. Two-dimensional grid spanners. In 

Proceedings of the 3rd Canadian Conference on Computational Geometry, pages 

211-214, 1991. 

[15] Arthur L. Liestman and Thomas C. Shermer. Additive graph spanners. Networks, 

23:343-363, 1993. 

[16] Arthur L. Liestman and Thomas C. Shermer. Grid spanners. Networks, 23: 123- 

133, 1993. 

[17] Arthur L. Liestman and Thomas C. Shermer. Degree-constrained network span- 

ners with nonconstant delay. SIAM Journal of Discrete Mathematics, 8(2):291- 

321, 1995. 



BIBLIOGRAPHY 112 

[18] Brendan D. McKay. autoson - a distributed batch system for UNIX workstation 

networks (version 1.3). Technical Report TR-CS-96-03, The Australian National 

University, Department of Computer Science, 1996. 

[19] David Peleg and Alejandro A. Schaffer. Graph spanners. Journal of Graph 

Theory, 13(1):99-116, 1989. 

[20] David Peleg and Jeffery D. Ullman. An optimal synchronizer for the hyper- 

cube. In Proceedings of the sixth annual ACM symposium on the Principles of 

Distributed Computing, pages 77-85, 1987. 

[21] Rajmohan Rajaraman. Topology control and routing in ad hoc networks: A 

survey. SIGA C T  News, 33:60-73, 2002. 

[22] Dana Richards and Arthur L. Liestman. Degree-constrained pyramid spanners. 

Journal of Parallel and Distributed Computing, 25:l-6, 1995. 

[23] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics 

Press, second edition, 2001. 

[24] Duncan J .  Watts. Small Worlds. Princeton University Press, 1999. 

[25] Douglas B. West. Introduction to Graph Theory. Prentice-Hall, 1996. 

[26] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model 

an internetwork. In Proceedings of IEEE INFOCOM 1996, pages 594-602, 1996. 



Appendix 

Experimental Data 

The raw data used in producing this thesis is too extensive to  print here. We have 

included the data on a CD-ROM which is attached to  the inside back cover of this 

thesis. 

If the CD-ROM is not there, or if you are reading this thesis in a fashion which 

would not include the CD-ROM, please contact the author by email for the data. 

The README file on the CD-ROM gives a detailed description of the format of the 

data files. 


