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Abstract 

Many physical systems are found in non-equilibrium states, and the usual methods 

of statistical mechanics cannot be used to  describe them. In general, this means 

that many more kinds of behaviour are possible, and that the universality seen in 

equilibrium statistical mechanics does not necessarily occur. However, in some models 

a critical point appears, and the properties of systems near this critical point may 

exhibit universal behaviour. In this thesis, we will discuss two kinds of models in 

which this occurs. 

A simple model used to  study physics far from equilibrium is a system of reacting 

and diffusing particles, which may be maintained far from equilibrium by the breaking 

of detailed balance. For many of these simple systems it is possible to  construct 

a field theory, which can then be studied using renormalization group techniques 

to  determine universal properties. Models with pair annihilation of particles and 

branching to produce several new particles are studied here, with the addition of 

anomalous diffusion, in which transport occurs via Lkvy flights. Anomalous diffusion 

is interesting as a model for some physical situations, and also makes it possible to 

vary cont,inuously the expansion parameter in the renormalization group calculation. 

The results of analytic calculations and simulations are compared and show the same 

critical behaviour, with quantities such as the density behaving as power laws close 

to  a critical point. 

Another system with interesting dynamics is a complex fluid, or a sol close to its gel 

transition. The structure of the fluid is modelled by the clusters studied in percolation 

theory: particles are bonded instantaneously with their nearby neighbours, with a 

probability p. The geometric properties of this model are well understood, behaving 



as power laws close to a critical point p,, at  which a cluster which spans the entire 

sample first appears. Adding dynamics then produces a model in which material 

properties rnay be calculated, which may have interesting behaviour near the critical 

point. In particular, the viscosity, which characterizes the non-equilibrium behaviour, 

is shown by molecular dynamics simulation t,o diverge as a power law close to  p,. 
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Chapter 1 

Introduction 

In this thesis we will discuss two different kinds of models for systems which are not in 

equilibrium. Non-equilibrium phenomena are of increasing interest to physicists, as it 

becomes clear that many important systems are found in states far from equilibrium. 

There are many recent reviews of non-equilibrium phenomena. Many of the issues 

discussed in this thesis are mentioned in a recent collection [I]. 

Two different kinds of non-equilibrium models will be discussed here. In the first, 

the system studied is far from equilibrium, but the models studied are very simple, 

and a reasonably complete theoretical treatment may be carried out. The behaviour 

of these models may be calculated using both analytic and simulation methods. The 

examples of this kind of system studied here will involve stochastic systems of moving 

and reacting particles. In the second part of this thesis we will discuss the viscous 

flow of a complex fluid. Here, we are interested in behaviour close to equilibrium, 

and which is often controlled by equilibrium physics. However, the models studied 

here contain more detailed interactions, and have only been studied using ~imulat~ion 

methods. 

1.1 Reaction-Diffusion Systems 

In the first part of this thesis, I will describe the results of some calcula,tions of 

properties of models of the non-equilibrium behaviour of statistical systems. The 
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dynamics of systems not in equilibrium have applications in many areas of physics, as 

well as other fields, and many different methods have been used in their description. 

The systems studied here are far from equilibrium, and their dynamics may differ from 

those close to  an equilibrium critical point 121. The methods used include the effects 

of fluctuations, unlike other, mean-field, approaches. They apply to systems which 

can be represented as a collection of moving and interacting particles. Measurable 

macroscopic properties are time dependent due to reactions between particles, rather 

than due to the imposed external field in driven diffusive systems [3]. The general 

approach involves mapping a microscopic model to a field theory, and then using 

renormalization group techniques to study the field theory. These field theoretic 

techniques are particularly useful for systems in which the number of particles is 

changing with time. 

In physics, obvious examples where this approach could be, and has been, applied 

include exciton annihilation in solid state materials [4], monopole annihilation in the 

early universe [5], and chemical reactions. An early mean-field calculation by Smolu- 

chowski 16, 71 of reacting and diffusing particles was in the context of the aggregation 

of colloidal particles. The dynamics of other models can also be mapped into this 

kind of model. For example, the growth of domains in a kinetic Ising model can be 

treated in this way [8]. The motion of a domain wall corresponds to the motion of a 

particle, and the creation of a new domain of reversed spins to the creation of several 

new particles. This kind of model is also used to model less physical processes, such 

as the spread of disease or population dynamics. 

The most interesting effects in these systems are due to  the breaking of "detailed 

balance." This is a simple condition on the transition rates between configurations 

of the system, and is sufficient to guarantee that time averages of measurable quan- 

tities of the system are governed by equilibrium statistical mechanics. The detailed 

balance condition will be given in section 2.2.1. Very complicated rules governing 

simulations of equilibrium systems can be designed which, as long as they satisfy 

detailed balance (and make it possible to visit all microstates of the system), pro- 

duce equilibrium statistical mechanics results. The time-evolution of a model with a 

particular dynamics may be studied, and can display interesting behaviour, but the 
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details of the dynamics have no effect on equilibrium statistical averages. This lack 

of dependence on dynamics is one reason for the usefulness of simple models in the 

study of statistical systems. It is also the case that,  as long as detailed balance is 

obeyed, even some dynamical properties of systems driven away from equilibrium are 

controlled by equilibrium physics. The Green-Kubo formula used in the second part 

of this thesis to calculate the viscosity is an example of this. 

Once detailed balance is broken, then there would seem to  be many more possi- 

bilities for the behaviour of a system. However, there are some cases in which there 

is universal behaviour, and many details of the system may be ignored. These cases 

may usefully be treated with the field theoretical methods discussed here. 

In some of these systems, there is a quantitative change in the time dependence 

of macroscopic properties as parameters of the model are changed. This is a non- 

equilibrium phase transition, as the change is in either the time-dependence of these 

properties or in their steady-state values. In the cases studied here, the phase on one 

side of the transition is characterized by a non-zero steady-state density of particles, 

called the "active state", while on the other side of the transition, there is a power-law 

decay for all time toward an "absorbing state" with zero particles. 

These phase transitions exhibit universality in a way similar to  equilibrium phase 

transitions. Close to  a critical point, certain properties are insensitive to changes in 

irrelevant parameters of the models studied and are also the same between models 

defined in quite different ways. The number of particles, the distances particles spread, 

and other measurable quantities each exhibit power law behaviour, as a function of 

time, while other quantities, such as the steady-state density, are given by power laws 

in the distance from the critical point. Just as in equilibrium statistical mechanics, 

the renormalization group is a useful tool to study which features of a system are 

important to the behaviour of a system. 

To model these systems, we begin with a microscopic model describing the dy- 

namics of a collection of particles. This model can be defined by a Master equation 

(or M-equation), which describes the time-dependence of the probability of finding 

the system in each possible state. The model thus includes statistics from the out- 

set. This should be thought of as modelling the influence of other degrees of freedom 
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which are not explicitly included, just as in the description of Brownian motion of a 

small particle in water by a random walk, rather than explicitly including the many 

water molecules. For example, in the chemical case, the motion is diffusive, exactly 

as it is in Brownian motion, while whether or not nearby particles react is governed 

by quantum mechanics. The quantum mechanical interaction is represented by an 

effective reaction rate. 

Several of the universality classes of non-equilibrium phase transitions have rep- 

resentations as systems of reacting and diffusing particles. The simplest reaction, 

annihilation of one species of particles in pairs at  a rate A, is denoted by 

This system is always at  its critical point, with various quantities, such as the density 

of particles, depending on time as power laws. A renormalization group calculation 

of the properties of this system with normal diffusion was given by [9]. 

A simple system with a single species of particles which exhibits a phase transi- 

tion has the same annihilation reaction and in addition a branching reaction, which 

produces m offspring a t  a rate p,. This is denoted by 

The possibility of different long-time behaviours can be seen from these reactions. If 

there are no particles, then no particles can be created, and so the system will remain 

in this state. This is why the state is referred to as the absorbing state. Fluctuations 

also cease in this state. On the other hand, if p, is large, then there may be a steady 

state density of particles at long times; in this state, there may be fluctuations around 

an average density. 

The universality class of this system depends on m,  as can be seen in the renor- 

malization group calculation of Cardy and Tauber [lo, 111. If m is odd, then the 

behaviour is that of the directed percolation universality class, named after another 

model falling into this class. The directed percolation problem resembles ordinary 
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percolation, but a special direction is chosen and bonds may only point in this direc- 

tion. For example, on a square lattice, bonds from an occupied site may only point 

up and to the right. If m is even, then a new universality class appears, called the 

parity conserving class. Here, the parity of the number of particles is constant, as 

even numbers of particles are are removed or added in any reaction. This is an im- 

portant change in the dynamics, which results in different long-time behaviour. That 

this apparently small change is important can be seen by considering a single particle 

diffusing in a large region empty of other particles. If m is 1, then this particle may 

create a new particle and then annihilate with it, leaving the whole region empty; 

other processes with odd m produce similar behaviour. In the case where m is even, 

new particles are created in pairs, so that this particle, or one of its offspring, will 

survive until it encounters another particle from outside the empty region. There are 

several other important universality classes, which are discussed in detail in [12]. 

The first part of this thesis describes renormalization group calculations and sim- 

ulations of systems of reacting particles with the addition of long-ranged motion. The 

two reactions discussed above are studied here: the annihilation reaction alone and 

the annihilation reaction along with a branching reaction which creates two additional 

offspring, so that the system is in the parity conserving universality class. Adding 

anomalous diffusion to these systems is of interest for two reasons. First, anomalous 

diffusion is important for many different systems, in physics and in other fields, as will 

be described in chapter 2. Second, the long-ranged motion studied here can act to 

change the critical dimensions associated with each kind of interaction. This means 

that by doing simulations in fixed dimension, it is possible to study the the behaviour 

seen in the normal diffusion model in varying dimension. Since the E-expansion used 

in the renormalization group calculation is an expansion in the number of dimensions 

about the upper critical dimension, this expansion can become an expansion in a 

small parameter, and so the renormalization group results can be easily compared to 

simulation results. In the case of a reaction with both branching and annihilation of 

particles, earlier work on the normal diffusion case by Cardy and Tauber [lo, 111 pre- 

dicted that there is an important quantitative change in the behaviour of the system 
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at a non-integer dimension. In the work reported here, we will see that a similar quan- 

titative change can be explored in one dimension, by varying a parameter controlling 

the nature of the transport of particles. The behaviour in these two cases is similar in 

that the fixed point structure is the same, with an additional fixed point appearing as 

the dimension of the system is varied in the first case and as the transport is varied 

in the second. 

In the next section, we will introduce the exponents describing the behaviour of a 

reaction-diffusion system close to its critical point and present the mean-field solution 

to a simple reaction-diffusion problem. In chapter 2, we will discuss some ideas from 

probability theory which are used in the rest of the thesis, as well as the method used 

to implement anomalous diffusion: particles are allowed to hop from one lattice site 

to another, with the hop length chosen from a Lkvy distribution. Chapter 3 discusses 

the method used to derive a field theory or a Langevin equation. This chapter is a 

review of previous work, although the details of the calculation are somewhat different 

than in previous work. The field theory, with our new feature of anomalous diffusion, 

is analysed using renormalization group methods in chapter 4 to calculate several 

quantities of interest. The results of these renormalization group calculations are 

compared to simulations in chapter 5. The results in chapters 4 and 5 are the new 

results in this section of the thesis. The calculations of the properties of a system 

of particles with both annihilation and branching reactions were done with Martin 

Howard and appear in [13]. The work done on the system with annihilation alone 

appears in [14]. 

1.1.1 Mean-Field Results 

While most of the work in the first part of this thesis focuses on renormalization 

group methods, a number of other methods are used to explore the properties of 

reaction-diffusion systems. In this section we will discuss approximate calculations 

a t  a mean-field level, using a differential equation for the number of particles. As is 

often done, the mean field results will be used to define the exponents governing the 

behaviour near the critical point. 



CHAPTER 1. INTRODUCTION 7 

Much of the work studying the kind of reaction-diffusion systems which are de- 

scribed in this thesis has been done on a mean-field level. One way to describe these 

processes is with a differential equation for the number of particles. This can be con- 

structed by modifying the normal diffusion equation by adding a term describing the 

reaction desired. For normal diffusion, and the simple pair annihilation reaction, the 

time evolution of the number of particles n(x,  t) is given by 

an(x' t, = D V ~ ~ ( X ,  t) - 2 ~ n ( ~ )  (x, t).  
a t  

Here, 2X is the rate at which particles at the same point annihilate. The last term, 

n ( 2 ) ( ~ ,  t): should be the number of pairs of particles at  the same point in space, which 

is not known until the problem is solved. As a first approximation, one could try 

n(2) = n2, to estimate the number of pairs of particles. This then gives a mean-field 

equation, or rate equation, 

As we will see, the results of this equation are correct in high enough dimension, 

but there are significant differences between them and the correct behaviour in low 

dimensions. They are a useful first approximation, and the solution to this kind of 

equation does appear in the renormalization group calculation later in this thesis. 

If the particles move by an anomalous diffusion process, then the normal diffusion 

term is replaced by an anomalous diffusion term, 

W x ,  t )  
a t  = D ~ v O n ( x ,  t) - 2Xn2(x, t ) ,  

as discussed in section 2.3.4. Some of the features of solutions to this equation will 

appear in the full solution in chapter 4. 

If the density is constant, then the term DAVUn(x, t) is zero, and there is only one 

steady-state solution, n = 0. If the initial density is a constant (n(x, t = 0) = no), 

then the density approaches zero as n(x,  t) = At long times, the leading 

behaviour is n(t) - (noXt)-'. This gives a mean-field value for a critical exponent a, 

defined by n(t)  - t-a, so the mean-field value is CYMF = 1. 
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If the particles can branch creating m additional particles, then a new term appears 

in the mean-field equation: 

W x ,  t) 
= DVUn(x, t )  - 2Xn2(x, t) + mpn(x, t). 

a t  

There are now two homogeneous, steady-state (n independent of x 

and 

(1.7) 

and t) solutions, 

(1.8) 

In this mean-field approximation, the second is the stable solution for any p > 0. The 

approach to this steady state from an initial density no is given by 

This reaction-diffusion equation exhibits a phase transition in its time-dependent 

behaviour. For p = 0, we have the pure annihilation process of equation 1.6, in 

which the density goes to zero as a power law in time. For all p > 0, there is a 

non-zero steady-state density at large times. This gives another critical exponent 

p, given by the dependence of the density of particles as t 4 oo on the distance 

A = p - p, from the critical point: n, -- (IAl)" In this approximation, the critical 

point is at  p, = 0; since the steady state density is n = n, -- (p  - 0)l, the mean field 

value of ,B is ,BMF = 1. In this regime, the difference of the density from the steady 

state density at time t decreases exponentially in t ,  as can be seen from (1.10). For 

p < 0, which can effectively occur if single particles may spontaneously annihilate, 

the density approaches zero exponentially fast. 

There are in fact two different exponents conventionally called ,B. The first is 

as described above, giving the dependence of the long-time density on A, and will 

be called Pdens The second, called Pseed, determines the dependence on A of the 

probability that a finite cluster of particles at t = 0 (the seed) survives to t = oo: 

P rn - - ( p  - p,)@seed. In high enough dimension, a random walk or Ldvy flight never 
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Figure 1.1: The decay of the number of particles in the mean-field approximation to 
a system of diffusing particles which annihilate in pairs and can branch to produce 
a single "offspring" particle. The lowest curve shows the power law density decay at  
p,, while the other curves show the increasingly rapid exponential decay to a steady 
state as p increases. 

returns to its original position, so that two particles released from the origin will 

never meet again. (Consider one as stationary and the other as the walker.) This 

then means that the mean field value of bseed is zero; for any p > 0, there is a finite 

probability that the cluster will survive forever. 

Several additional exponents are associated with the structure of clusters grown 

from a seed of a few particles. The first gives the power law decay of the probability 

that at  least one particle survives to time t (the "survival probability"), P ( t )  -- t-6. 

The second gives the mean squared distance the particles spread, R2(t) -- t21z. A 

third gives the average number of particles at time t ,  N( t )  -- to. N is used here rather 

than the density n as this situation is thought of as the growth from a small seed into 
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an infinite lattice, so that the density is zero. The exponent 0 is, in general, different 

from the exponent CY governing the density decay starting from a large uniform density. 

These exponents do not have mean field values, as they are associated with a special, 

very non-uniform, initial condition. 

Two additional exponents are defined by the divergence of the correlation lengths 

in the temporal and spatial directions near the critical point. In general, the correla- 

tions will be different in the temporal direction and in the spatial direction, which is 

perpendicular to the temporal direction in a space-time diagram. These correlation 

lengths are denoted by JII and JI (parallel and perpendicular to the direction of time.) 

The two exponents are Ell - IAl"" and ti - 1 Al". . In the mean-field approximation, 

they are vl = 1 and vl = 1/17 The dynamical exponent z ,  defined by J, - t:", is 

thus ZMF = 17. 

Attempts have been made to improve the mean field equations treated here by 

adding a noise term to produce, for the pair annihilation process with normal diffusion, 

an(x1 t)  
a t  

= v 2 n ( x ,  t )  - 2 ~ n ~ ( x ,  t )  + ((x,  t).  

Here, ((x,  t )  is a random variable. The mean field equation may not correctly describe 

a given physical system, as it neglects possible correlations in the density. The noise 

term is intended to  replace the effects of the correlations lost by replacing the unknown 

two-particle density by the density squared. However, the properties of ( (x ,  t )  are not 

known in advance, and must be derived by some procedure similar to that in chapter 3. 

1.2 Viscosity Near the Gelation Transition 

In the second part of this thesis, I will present results of simulations of a model for 

a complex fluid. The fluid studied is made up of small subunits, representing atoms 

or molecules, which are joined together in a random way. The number of crosslinks 

joining the subunits provides a parameter which can be used to tune the properties 

of the fluid, with macroscopic properties taking on different values as the number 

of crosslinks is varied. The region of particular interest is close to  the transition 

to a disordered solid, or gel state. There are a number of physical systems which 



CHAPTER 1. INTRODUCTION 11 

undergo similar transitions. A number of different kinds of gels, made with different 

materials crosslinked either from a dense fluid or from a suspension of a solute in a 

solvent, have been studied in experiments. These gels are interesting for a number of 

reasons, as examples of an equilibrium disordered solid. The fluid phase, called a sol, 

also displays unusual characteristics in its macroscopic parameters. For example, the 

viscosity diverges as a power law, in a way which may be universal across a number of 

different materials, a t  the transition to the solid gel phase. In the solid phase, the shear 

modulus follows a power law dependence on the distance from the transition. This 

solidification transition is quite different from the first-order transition to a crystalline 

state. 

In addition to the gels themselves, a number of other systems have similar dis- 

ordered microscopic structures. Many plastics are made up of long chain polymers, 

joined by randomly placed crosslinks, as is vulcanized rubber. In the preparation of 

these materials, a nu~nber of polymer chains are mixed together with a crosslinking 

agent, which then selects random pairs of chains to link together. As this crosslink- 

ing progresses, the material changes from a fluid of independent polymers, to a more 

viscous fluid of crosslinked poly~ners, and then to a solid phase, with a subset of the 

polymer chains linked into a single giant molecule which spans the entire sample. 

There is another transition to a disordered solid state, the glass transition, which 

has some similarities to the gel transition. In glassy materials, both simple glasses 

such as silica window glass and in more complex polymer glasses, the viscosity in- 

creases dramatically as the glass transition temperature is approached from the high 

temperature side. Eventually, the viscosity becomes large enough that the material 

will not flow under a small stress on any possible experimental timescale, and so it 

may be treated as a solid. It is possible that some glasses acquire a yield stress, so 

that they will never flow below some fixed stress. 

The differences between a sol-gel transition and a glass transition are a subject of 

current debate. However, there are some features that seem to distinguish the two 

transitions. As the gel transition is approached, a characteristic length scale associated 

with the static structure of the gel diverges. Some of the particles which make up 

the sol, or incipient gel, are bonded to each other, with bonds which are permanent 
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Figure 1.2: A schematic picture of the behaviour of the material properties near a 
sol-gel transition, as a function of the density of crosslinks p. At low crosslink density, 
the viscosity increases as a power law as p is varied, diverging at the critical point. 
At p,, the fluid becomes a solid, with a shear modulus which increases from zero at  
p, as a power law as p increases. 

in some cases, and merely very long lived in other cases. The sets of particles which 

are bonded to each other form clusters, which have a characteristic length scale. This 

length scale diverges at the gel point. Glasses may form with no additional bonds, 

only the interactions which are present in a low-viscosity fluid or a solid of the same 

collection of atoms. At any time, the structure of a glass is similar to that of a fluid 

of the same constituents. There is no length scale associated with the static structure 

which grows as the glass transition is approached. All static correlations remain a few 

particle spacings at  the largest. The dynamics of a glass can exhibit a growing length 

scale: the size of regions in which the motion of particles is correlated may grow [15]. 
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Gels and glasses also differ in that a glass is a non-equilibrium material, while 

a gel may not be. Glasses are formed when liquids are cooled quickly enough that 

they do not crystallize. There is a lower free energy crystalline state, but this ordered 

structure cannot be reached. Even before the glass transition temperature, the glass- 

forming liquid falls out of equilibrium, and the highly viscous fluid observed is in a 

non-equilibrium phase. A gel formed with permanent crosslinks is, in principle, an 

equilibrium system. The structure is the result of a non-equilibrium process, but once 

the structure is formed, the gel may explore all of phase space consistent with this 

initial structure. In experiments, it may be difficult to see that a gel is in equilibrium, 

as the timescales for relaxations become very large as the gel transition is approached. 

However, in a theoretical treatment of a gel, averages may be performed over the entire 

phase space available to  the crosslinked material. To describe a glass, the region of 

phase space associated with the crystal structure must be explicitly excluded. Some 

gels do exhibit a non-equilibrium effect called ageing, in which certain properties are 

time-dependent. However, it is not clear whether this ageing is intrinsic or extrinsic, 

or in other words whether it is directly related to the dynamics of the gel or is due to 

the influence of external forces such as gravity. 

Another system in which a gel transition can be seen is a colloidal suspension in 

which a number of small particles are suspended in a solvent. A colloidal suspension 

in which the interactions between particles is purely repulsive has a glass transition. 

Here, the temperature is not the control parameter; instead, the transition occurs as 

the volume fraction occupied by particles increases. If the suspension is not allowed 

to crystallize, then a glass is formed at a volume fraction 4, (with 4, 0.58 for 

hard spheres) for many different colloidal systems. This is again a non-equilibrium 

structure, with a crystal structure available at the same packing fraction. Colloidal 

glasses exhibit ageing, another sign of their non-equilibrium nature. 

A colloidal suspension in which there are attractive interactions between the col- 

loidal particles may form a gel. If the attractions are strong enough, colloidal particles 

which come close to each other may become bonded, either permanently or for very 

long times. The bonded particles may then form a sample-spanning network at arbi- 

trarily low volume fractions. This network provides the rigidity associated with the 
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gel state. There is currently some debate as to the differences between a colloidal 

glass and gel states (see [16]), due in part to a lack of consensus about the correct 

definition of a gel state. Colloidal gels also seem to exhibit ageing. However, it is 

possible that this ageing is due to the influence of external forces, such as gravity. 

In a colloidal suspension under the influence of gravity, the colloidal particles will 

eventually sediment out to the bottom of the container in which they are placed. It 

is possible that the gel state would be an equilibrium one in the absence of external 

forces. 

There is as yet no complete theory to  describe the macroscopic properties of these 

randomly crosslinked fluids. One approach which can be taken to describe these 

materials is to use the ideas of percolation theory to model the structure of the 

crosslinked fluid. In percolation theory, the geometric properties of a randomly linked 

lattice are studied, and the universal properties of these structures are used to describe 

disordered structures which appear in many different areas of physics. Some of the 

results of percolation theory will be presented in chapter 7. 

However, even with the same model for the structure of a material near a sol- 

gel transition, and very similar assumptions about the dynamics, different theories 

predict quite different mechanical properties. In the work presented in this thesis, the 

structure of a gelling material is modelled by the random lattices of percolation theory 

and the dynamics of these structures studied using molecular dynamics simulations. 

The hope is that a complete molecular dynamics calculation with a particular model 

will make it possible to determine what the important features of the microscopic 

models are. 

Two different techniques have been used to calculate viscoelastic properties of 

complex fluids in simulations. In the first, an equilibrium simulation is done and the 

response of the system to an external force extracted from a Green-Kubo relation. 

These relations are derived from linear response theory and relate fluctuations in an 

equilibrium system to transport coefficients governing non-equilibrium systems. In 

the second, a flowing system is simulated and the viscosity extracted from the force 

required to create the flow. Results from both of these methods will be presented in 

this thesis. 
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The phenomenology of fluid flow and the language used to  describe the viscoelastic 

response of a material to  external forces will be discussed in chapter 6. In chapter 7, 

I will describe the use of percolation theory to model the structure of a material near 

a gel transition and will discuss several experiments done on gels to  determine their 

microscopic structure and their transport coefficients. In chapter 8, 1 will describe 

the molecular dynamics techniques used, and the results of these simulations will be 

presented in chapter 9. These simulations in which a Green-Kubo technique is used 

to calculate the viscosity are from work done with Michael Plischke and Bda  Jobs, 

and are discussed in reference [17]. 



Chapter 2 

Probability and L6vy Distributions 

Probability theory has a long history. It began with practical applications to problems 

which arose in gambling but has become a large branch of mathematics, much of which 

is concerned with problems quite far from the original motivation. Its basic principles 

are described in many books, such as [18, 191. Only a few ideas from probability theory 

are needed in this thesis, and they will be briefly reviewed here. In this chapter we 

will also discuss the properties of Lkvy distributions. Particles with motion controlled 

by Lkvy flights diffuse anomalously, and this will be used later in the thesis. We will 

discuss their form in both real and Fourier space, as well as a few experiments in 

which they occur and the methods used to  generate them in simulations. 

Probability theory has been reduced to a purely axiomatic theory by Kolmogorov. 

A set of possible events, called a "sample space", is chosen. A probability is defined 

on each subset of the sample space, which must obey three axioms. For each subset 

A, the probability P(A)  is non-negative, the probability associated with the whole set 

is P(S) = 1 and if A and B are disjoint sets, then P ( A  + B) = P(A)  + P(B). The 

standard results of probability theory then follow. 

Two different methods are used to  make a connection between this abstract prob- 

ability theory and experiments. In the first, an ensemble picture, an experiment is 

imagined to be done many times, either on the same system many times or on a large 

number of identica,lly prepa,red systems. The proba,bility of a,n outcome is then the 

fraction of systems which produce that outcome. In the second method, a probability 



is taken to represent our state of knowledge of a system, and arguments are then made 

about the plausibility of derived statements. 

The idea of a sample space applies most easily to discrete variables. However, it 

may be extended to a continuous variable in a simple way. If a "probability density 

function" p(x) is defined on the real numbers x,  the probability of finding a value 

between x and x + dx is p(x)dx; in an ensemble picture, this is the fraction of systems 

found in this range. It is traditional in physics to use p to represent many different 

probability distribution functions, with a subscript if necessary to distinguish different 

functions, as in px for the distribution of possible values of the variable x. Once p(x) 

has been defined, expectation values of functions of the random variable x are given 

by integrals over this distribution: (f (x)) = J dx f  (x)p(x). The expectation value of 

a function is the average value obtained after many measurements of this function. 

Often not all of the information contained in the probability distribution function 

is necessary. Instead, only the first few moments are important. The n-th moment of 

a distribution is given by the expectation value of xn. The average is then simply the 

first moment, while the second moment, if it exists, gives a measure of the width of 

the distribution. 

The characteristic function G(k) of a probability distribution is the expectation 

value of exp(ikx), or the Fourier transform of the probability distribution: 

This function is also referred to  as the moment generating function, as the coefficients 

of a Taylor expansion in k are proportional to the moments of the distribution p(x). 

A probability distribution can be defined for multiple random variables as well. 

If the distribution factors so that p(xl,  x2,. . .) = pxl(x1)px2(x2) . . ., then the xi are 

independent random variables. 

Transformation of Variables 

Once the fundamental objects are defined, the rest of probability theory consists 

of transformations of variables. The probability distribution over a sa,mple space is 



assumed known, and probability distributions of functions of the random variable 

are calculated. When changing from x, with distribution p,(x), to a new variable 

z = f (x), the new distribution p,(z) is given by integration of p,(x) over all x ,  

subject to the constraint that f (x) = z: 

The sum occurs as f may not be one-to-one and is over solutions xi to z = f (xi). If 

f is one-to-one, then there is only one term in the sum, and the same result can be 

seen from the identity for a change of variables from x to z(x),  

J dzp, (z) = 1 = dxp, (x) = J dz J 
which then implies p,(z) = I 2 / p, (x(z)).  

4 2 )  

For example, if z(x) = - ln(x), and x is uniformly distributed between 0 and 1 (so 

that p(x) = 1 for 0 < x < I ) ,  then p,(z) = e-', that is, z is a new random number 

with an exponential distribution. 

A simple transformation is the addition of two random variables. Given a joint 

probability distribution for two variables z and y ,  p(x, y) ,  the probability distribution 

of the sum z = x + y is 

P=(x) = / dxdyp(x, y)b(z - (x + y)) = / dxp(x, z - x). 

This is simply the sum all ways in which x and y can add up to z. If x and y are 

independent, then 

This is the convolution of the distributions of the variables being added, and the char- 

acteristic function associated with p, (z) is thus just the product of the two character- 

istic functions associated with p, (x) and p,(y), so that G, (k) = b(k) = G,(k)G,(k) = 

cx(k)py (k),  as long as x and y are independent random variables. 



2.2 Processes 

Once a probability distribution is defined, it can be extended to the idea of a stochastic 

process, discussed at  length in [19]. This is an extension of the idea of a single random 

variable to a random variable which changes with time, representing the evolution of 

a system. The basic idea is simple. The system studied is thought of as making 

transitions from one state to another with some distribution of new states, which may 

depend on the current state and on previous states. The simplest case, in which the 

probability of making a transition to another state depends only on the current state 

of the system and the state to  which the transition is to be made, is called a Markov 

process. All processes discussed in this thesis are Markov processes. The evolution 

may be represented by following a single realization of the system through a series of 

transitions, with new configurations chosen a t  random from the possible configura- 

tions. This is done in a simulation, using a random number generator to choose the 

next configuration. Both the equilibrium, statistical mechanical, properties and the 

non-equilibrium, statistical dynamical, properties may be studied in this way. The 

dynamics may also be studied by following the evolution of the probability distri- 

bution, using the rules for the transformation of variables discussed in the previous 

section. The analytic calculations in chapter 4 use this kind of approach. 

One common way to study the evolution of a system is through a Langevin equa- 

tion. In this approach, a continuum limit is taken in time, and a differential equation 

is written for the time evolution of the probabilities of finding the system in a given 

state, if it starts in a known state. There are two pieces to  a Langevin equation. The 

first piece gives a deterministic evolution and if it appeared alone, could be treated as 

a standard differential equation. The second piece takes account of fluctuations and 

is referred to as a noise term. The form of a Langevin equation is 

where f and g are given functions of the current density, and [ is a noise function. 

The properties of [ are usually specified by its moments, or the correlation function 

between at  different times and spatial positions. The determination of [ for a specific 



physical system is often a difficult problem. Under some circumstances, such as when 

the system is approaching equilibrium, the form of ( is determined by equilibrium 

physics. In the non-equilibrium systems studied here, the properties of ( must be 

derived in some other way from a microscopic model. 

2.2.1 Detailed Balance 

We will be concerned with non-equilibrium systems for much of this thesis. However, 

we will briefly discuss a condition which ensures that the sequence of states generated 

in a simulation does represent an equilibrium system, as the breaking of this condition 

is important so as to generate genuinely non-equilibrium dynamics, even a t  large 

times. This condition is called "detailed balance". It is a condition on the transition 

rates from one microscopic configuration of the system to another. It is described in 

most books which discuss simulations in statistical mechanics, such as 1201. 

We will discuss detailed balance in the context of a system with a finite number 

of possible states. Then the transition probabilities Wji from state i to  state j form 

a matrix and the probabilities of finding the system in state i form a vector. The 

effect of a single timestep is given by applying the transition matrix Wji to  the vector 

giving the current set of probabilities. If there is a steady state probability vector ri, 

it must be an eigenvector of Wji with eigenvalue 1, so that 

The detailed balance condition gives a relation between the transition probabilities 

between a pair of states in terms of the steady state probabilities, as 

The transition probabilities out of state i must be normalized, so that starting in state 

i some state is reached with probability 1: 



Using this normalization condition in (2.8), after rearranging and summing over j ,  we 

find 

This shows that ~i is indeed an eigenvector of Wji and is therefore a steady state 

probability vector. If the system is a standard statistical mechanics model, in which 

the energy of state i is given by Ei, the steady state probability should be ~i = 

ePPEi /Z .  Equation (2.8) then provides limits on how transition rates may be chosen 

to  make this be a steady state solution, with different choices of Wji possible. For 

each of the choices consistent with detailed balance, there will be some dynamics of 

the system as it approaches equilibrium. However, the detailed balance condition 

and the fact that the system is approaching an equilibrium state produce important 

constraints on these dynamics. In particular, if the dynamics are described by a 

Langevin equation with a deterministic part plus a noise term, the form of the noise 

term is fixed by equilibrium physics [21]. 

In the models studied here, the detailed balance condition is broken. This creates 

the possibility of many different kinds of dynamics and removes the constraint on the 

noise term. The formal approach described in chapter 3 must be used to derive the 

form of the noise. 

2.3 LBvy-Stable Distributions 

The Gaussian distribution appears frequently in many areas of physics and mathe- 

matics. One reason for this importance comes from the central limit theorem: given 

any distribution with a finite second moment, the sum of numbers chosen from this 

distribution, after enough numbers are added, has a Gaussian distribution. The Gaus- 

sian is also "stable", which means that if two numbers drawn from a Gaussian are 

added, the distribution of the sum is again a Gaussian with a rescaled second moment. 

The importance of these properties led mathematicians to  look for other distributions 

with the same properties. The set of all possible (symmetric) distributions which 

are stable was given by Paul Lkvy. These distributions have Fourier transforms (or 
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characteristic functions) 

Here a is a parameter which controls the shape of the distribution and DA is a scaling 

parameter. For a = 2, this is a Gaussian distribution. For a > 2, the inverse Fourier 

transform has negative regions and therefore cannot be a probability distribution. For 

all other values, 

form 

in d dimensions. 

0 < a < 2, the real-space distributions have power law tails, of the 

The second moment is thus infinite and so the distribution can avoid 

the central limit theorem. The fact that these distributions are stable can be seen 

from the characteristic function; the product of two functions of the form (2.11) has 

the same form, with a new DA. 

The real space distributions cannot be written in closed form for most L6vy dis- 

tributions. Only for a few special cases, such as a = 1 (the Lorentzian) and a = 2 

(the Gaussian), is this possible. 

2.3.1 Flights and Walks 

There are two distinct ways in which the motion of a particle can follow a L6vy law. 

In the first, a particle moves in a randomly chosen direction for a distance chosen 

from a L6vy distribution, but at  constant velocity. This is called a L6vy walk. In the 

second, the distance moved is again chosen from a L6vy distribution, but the move is 

made in a fixed time, independent of the distance. This is called a Lkvy flight. It is 

the Litvy walk which appears in most physical examples, although some systems do 

exhibit signs of Lkvy flights. Only Litvy flights were studied in this thesis. 

One way to describe a stochastically moving object is with a continuous-time 

random walk. Both the distance travelled and the time taken to make this step are 

chosen from a probability distribution, with the distribution for t depending on the 

value of x chosen. This is written p(x, t) = p(x)p(t lx) . p(x) can be a L6vy distribution 

and with a suitably chosen p(tlx), the second moment, which is the root mean squared 



Figure 2.1: Two Lkvy-stable distributions, for a = 1.5 (solid line) and a = 1.1 (dashed 
line) compared to a Gaussian (grey line). The Lkvy distributions are narrower and 
sharper than the Gaussian, but have much more weight in the tails, as can been seen 
in the inset, where the same distributions are shown on a log-log plot. 

distance travelled a t  time t ,  may be finite if desired. Many different types of anomalous 

diffusion may then be described. The Lkvy walk is given by p(tlx) = S(t - xlv) ,  while 

a Lkvy flight is given by p(tlx) = S(t - 1). This is of course not a continuous-time 

process but is defined only on integer values of t. 

2.3.2 Examples 

These distributions can arise in a number of different physical contexts, both ex- 

perimental and theoretical. Anomalous diffusion is often associated with disordered 



structures, as discussed in detail in [22], but is also seen in systems with complicated 

dynamics, such as turbulent flow. 

An early use of L6vy statistics in physics was in the explanation of conductivity 

in amorphous semiconductors after the creation of electron-hole pairs by exposure to 

an intense pulse of light [23, 241. In this process, holes were assumed to be confined 

to traps for waiting times distributed according to a L6vy distribution. This trap- 

ping then leads to a time-dependent current different from that predicted for normal 

diffusion of holes, as was seen in experiments. 

The motion of a tracer particle in turbulent fluid flow in a rotating tank is governed 

by L6vy statistics [25, 261. In these experiments, an annular tank filled with a glycerol 

solution is rotated a t  1.5 Hz, and a turbulent flow is created by pumping fluid through 

holes in the bottom of the tank. When the flow is chaotic, vorticies are formed at  

various points around the tank. Tkacer particles are then introduced and their motion 

tracked as a function of time. These tracer particles following the flow and perform 

random walks in the azimuthal direction. The motion during each step of the random 

walk is taken at  constant velocity, and the distribution of step lengths is a power law: 

the probability of a step through an angle 8 is P(8) - 8-2.05*0.30. This corresponds 

to  a L6vy walk with an exponent a % 1.05. For many of these steps the tracer moves 

within a single vortex, while the long-ranged steps occur when the tracer moves from 

one vortex to another. 

L6vy flights have also been seen in the diffusion of a tracer particle in a system of 

transient micelles [27]. In this experiment, a fluorescent probe molecule is introduced 

to a system of elongated micelles, which break apart and reform during the course of 

the experiment. The probe molecule is similar to  those that make up the micelles, and 

is incorporated into one of them. As the micelles break into their constituent molecules 

and form new micelles, the tracer particles will be part of micelles of different sizes. 

Micelles of different sizes diffuse at  different rates and carry the probe molecules with 

them. This leads to anomalous diffusion of the probe molecules, with a between 1.55 

and 2.04. This seems to be the only experimental case in which a true L6vy flight has 

been observed. 



2.3.3 Large x Expansion of p(x )  

In real space, a Lkvy distribution is given by the inverse Fourier transform of equa- 

tion (2.11) 

Since e-lkl" is symmetric, this is the same as 

The integrand vanishes on a quarter-circle in the lower right quadrant taken to infinity, 

so the contour of integration can be rotated to the negative imaginary axis: 

Changing the integration variable to v = -ikx, 

After substituting an expansion of the first exponential which is valid for large x ,  

exp(-(iv/x)") = 1 - -$(iv)" + - - & ( i ~ ) ~ ~ ,  the first term is purely real, so the first 

non-zero contribution is 

and i = exp(in-/2), so 

1 1  
p(x) = -- 

n- xu+l 
sin (7) ~ ( o  + 1). 

This is the first term in an asymptotic expansion of p(x). 

2.3.4 An Anomalous Diffusion Equation 

The motion of particles according to a L6vy flight may be described by a variation 

on the diffusion equation. In a time At, the particles take a step chosen from a 

distribution pl (x) ,  where pl is a L6vy distribution. In Fourier space, the probability 



distribution for the position of a particle at  time t + At is then related to that at time 

t by 

P(k, t + At) = p(k,  t)pl(x). (2.19) 

If pl is a L6vy distribution, then the first two terms in an expansion in lc are pl (lc, t)  = 
1 - allcla with a a constant, so that 

Dividing by At, and taking the limit At -+ 0 with a/At = DA constant, 

This can be written in position space as 

t, = DAOap(z, t ) ,  
a t  

where Va represents the real space operator corresponding to the Fourier space oper- 

ator in (2.21). 

Just as a Gaussian is a solution of the normal diffusion equation with delta function 

initial conditions, the Lkvy distribution of equation (2.11) provides a solution of (2.21), 

p(k, t )  = e-D~lkl"t .  This shows that with any distribution of single steps with a lowest 

term in a Fourier expansion proportional to Ilcla the distribution evolves into a Lhvy 

distribution with L6vy index a. 

2.4 Generation of Random Numbers 

Many methods exist for the generation of a sequence of numbers on a computer 

which have the statistical properties characteristic of a "random" physical process. 

The most important feature of a random number generator is that the successive 

numbers produced by the generator are independent or uncorrelated. The most basic 

problem, the generation of numbers chosen from a uniform distribution, has many 

different solutions. The simulations done here use the ranmar algorithm [28]. 



Once a sequence of uniformly distributed numbers is available, a sequence of 

numbers distributed according to other distributions can be constructed. The most 

straightforward method is the transformation method, which is based on the transfor- 

mation properties of random variables. Transforming a given a random number x by 

a given function y(x) produces a new random number with a different distribution, 

as discussed in section 2.1. This is used to generate new distributions from the flat 

distribution generated by the random number generator. 

Two different methods were used to generate random numbers distributed accord- 

ing to  a L6vy law. The first, simpler, method produces a power law tail but does not 

produce the correct small r behaviour. Since the Lkvy distribution is the attractive 

fixed point for a power law distribution with a given exponent, the long-time be- 

haviour of this distribution is the behaviour needed. The second method is somewhat 

more complicated but does produce a better match for the L6vy distribution. 

To produce the power law distribution, a random number x was chosen from 

a uniform distribution on the interval [0, l), and then a new random variable r = 

(1 - x)-'/" was calculated. The numbers r are then distributed according to a power 

law. Using the results of section 2.1, it can be seen that 

Random numbers with a distribution everywhere equal to  the L6vy distribution 

can be produced by a more complicated method described in [29, 301. First, a number 

V is chosen from a uniform distribution between -7r/2 and 7r/2 and a number W is 

chosen from an exponential distribution with mean 1. r is then calculated from 

and has the required distribution. See [29] for a proof that this procedure does in fact 

produce a sequence of numbers with the correct distribution. 



Chapter 3 

Derivation of a Field Theory 

This chapter is a description of an approach which is useful for processes that can 

be represented as stochastically moving and reacting particles, as discussed in the 

introduction. The basic approach was developed by Doi [31, 321 and Peliti [33] and is 

often referred to as the Doi-Peliti method. Their description of this method differs in 

some ways from that presented here, which is similar to that discussed by Cardy [34] 

and Lee [9, 351. By the end of this chapter we will have derived the form of a Langevin 

equation or a field theory which describes the macroscopic properties of a reaction- 

diffusion system. Using the method described here the correlations in the noise term 

in the Langevin equation may be derived, rather than guessed and added to a mean- 

field equation. In the last section we will also discuss the diagrammatic perturbation 

theory used to analyse these theories. 

3.1 From the M-equation to a Continuum Equa- 

tion 

We will begin with an equation describing the time-evolution of the probability of 

finding the system in each microscopic state. This kind of equation is often called a 

master equation; van Kampen [19] suggests calling it an M-equation, to avoid confu- 

sion when it is not the fundamental equation from which all results are derived. The 
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form of the M-equation can be derived from probability considerations [19], but we 

will consider it to define the system studied. Since we begin with an M-equation, we 

cannot hope to reproduce the exact microscopic dynamics. Instead, we will calculate 

average properties of the system. 

The M-equation for the probability of finding the system in the state labelled by 

n is written as a sum over all other states n' of the probability of finding the system 

in state n', times a transition rate Writ,, from state n' to n ,  minus the sum over 

all states of the probability of finding the system in state n times the transition rate 

Wn+n/ from n to n'. 

The general procedure used here will be to  map the M-equation into a field the- 

ory, which can then be used to  calculate observable properties of the model. This 

field theory will be similar to those appearing in equilibrium statistical mechanics, 

in which the partition function is written Z = ePS, where S is an effective action 

describing the system. Once an expression of this form is obtained, methods used in 

equilibrium statistical mechanics, such as the renormalization group, can be applied 

to the problem. The field theory can also sometimes be used to derive a Langevin 

equation. Solving either the field theory or the Langevin equation makes it possible 

to calculate any observable. 

We will begin with reactions at  a single site and generalize to one or more spatial 

dimensions later. The only variable in this case is the number of particles n, and so the 

state of the system can be labelled by n. These single-site reactions are appropriate 

for a process with no spatial dependence, such as radioactive decay. The M-equation 

for this zero-dimensional case is 

This equation is linear in P and is first order in time, so it can be analyzed using 

a formalism similar to second quantization in quantum mechanics. The state of the 

system is given by a vector, written in Dirac notation as a ket. The state with exactly 

n particles can be thought of as an infinite vector with a 1 in the n-th position, 

and the transition rates W as matrices, with non-zero elements where a transition is 

possible from n to n' particles. Creation and annihilation operators at and a can be 



CHAPTER 3. DERIVATION OF A FIELD THEORY 30 

introduced to connect states differing in the number of particles, and used to construct 

the whole set of states starting from a "vacuum state", lo), with no particles, and 

which is annihilated by the annihilation operator, a10) = 0. The state with n particles 

is then given by acting on this vacuum n times with the creation operator at, and 

is written as In) = ( ~ t ) ~ l 0 ) .  The creation and annihilation operators have the usual 

properties, so that at In) = In + 1), aln) = nln - I ) ,  [a, at] = 1, and the scalar product 

is (nlm) = n!6,,. The number operator, n = ata, counts the number of particles in 

a state: film) = mlm). 

The set of probabilities of finding the system with n particles, P(n) ,  can now be 

represented by a vector in the space of all possible states: 

In this expression, the vector In) represents a state with exactly n particles, while a 

vector IP), which is a "superposition" of n-particle states, represents a system with 

probabilities Pn of being found to contain n particles. The M-equation can now be 

written as 

where the time-evolution operator H contains the transition rates on the right side of 

the M-equation (3.1). 

We need to choose some initial condition. It is convenient to choose a Poisson 

distribution with average no 

This distribution is represented by 

which can be seen by expanding the exponential, 



CHAPTER 3. DERIVATION O F  A FIELD THEORY 31 

Comparing this with (3.2) shows that it does indeed give the correct Pn. The vector 

Ino) represents a coherent state, rather than a state with no particles. 

The long-time solution should, in most cases, be independent of the initial condi- 

tion chosen. An example in which this can be seen explicitly is given in section 3.1.2. 

There are, however, problems in which the initial conditions become important. This 

is true in particular of problems in which there is a conservation law, which can have 

an influence on the long-time dynamics. When there are several species of particles, 

the steady-state solution, if one exists, may be constrained by the initial condition. 

In the single species problems considered here, the steady state is unique, up to issues 

connected to parity conservation, which will be discussed later. 

Looking ahead to models with spatial dependence, the initial condition can also 

be important if there are some correlations in the positions of particles at  t = 0. Any 

uncorrelated initial conditions produce similar results in the long-time limit. 

We want to calculate the expectation value of some quantity which depends on 

the number of particles, A(n), a t  some time t .  As usual, the expectation value is 

This is linear in P, as is I P) , so (PIAI P) , as used in quantum mechanics, would not 

produce the correct result. Instead, define the "projection state" 

so that averages are given by (A( t ) )  = (la1 ~ ( t ) ) .  Here, A is given by A(n) with n 

replaced by the number operator fi = 

state is the correct thing to  do because 

ata. The inner product with the projection 
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The expression for an operator A can be simplified by commuting all the creation 

operators to the left, and using (oleant = (Olea, so A can be written using just the 

destruction operator a. Measurable quantities, such as the average number of particles 

or the standard deviation of the number of particles, may now be calculated. The 

average number of particles is given by the average of fi = ata  = a, as at produces 

1 acting on (Olea. The standard deviation is a2 = (n2) - (n)2, where n2 = ataata = 

atataa + ata = a2 + a. 

The formal solution to the M-equation is I P ( t ) )  = epBt [P(o)), so the time evolu- 

tion of the average is 

(A(t)) = ((AepBt lp(0)).  (3.10) 

The time-evolution should conserve probability. The expectation value of 1 is given 

by 

Expand ePt  = 1 + ~t + . . ., and so if (OleaH = 0, then probability will be conserved. 

The creation operator at gives one acting to  the left on the state (Olea, so that (Oleaat = 

1. If the operator H vanishes when all at  are commuted to the left and set to 1, then 

we have probability conservation; all terms beyond the first after the expansion of eBt 

is substituted in (3.11) will vanish. 

3.1.1 Coherent State Representation 

We can now write operators representing measurable quantities in terms of creation 

and annihilation operators and describe the evolution of the system of particles using 

the same operators. The next step in the derivation of a field theory is to replace 

these discrete operators by a continuous variable. This can be done using a coherent 

state representation, as is used for the harmonic oscillator in quantum mechanics [36]. 

These are defined by 
1 14) = e-il+12e+atlo), (3.12) 
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where $ is a complex number. Only two properties of these states are needed. First, 

coherent states are eigenstates of the destruction operator, al$) = $ I $ ) ,  and they 

form an overcomplete set, with a resolution of unity 

where the integration measure is 

The resolution of unity is not an independent result, but rather a consequence of 

properties of the number representation. It follows from the completeness relation for 

the number representation, 
1 

and an integral representation of the delta function, 

The expectation value of an observable may be written as an integral over coherent 

states. Using the identity (called the Trotter formula) 

epAt = lim (1 - 
N 4 0 0  

with At = t /N,  the right hand side of equation (3.10), giving the time evolution of 

(A), can be divided into "slices." Unity, written in terms of a set of coherent states, 

can be inserted between each pair of slices, to give 

The normalization Z can be found from (1) = 1 at the end. Rewrite (3.18) as 
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The inner products in this expression are given by 

Using the Baker-Hausdorff identity eA+B = e A e B e [ ~ ~ ~ ] ,  

so that 

e l @ 2  3 3 -1  . ) = e-@;(@j-@j-l)e-t@j-l12 (3.22) 

This term appears for each time slice. Replace the difference between gi a t  neighbour- 

ing times with a derivative, 4j - = % a t  + 0(At )2 .  Notice that this means that 

the derivative is a forward difference. This will become important in the diagram- 

matic expansion in the next chapter, as it implies that there can be no diagra'ms with 

loops. 

The other factors appearing in (3.19) are given by 

with A($) given by ~ ( a )  with a replaced with gi, and by 

so that 
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In (3. lg) ,  H(a ,  at) appears between states (& 1 and I$j-l). If H is written in normal 

order, with creation operators to the right, then a can be replaced by as I $ j - l )  
is a right eigenstate of a ,  and at by $;, after acting on (&I. We will be dropping 

terms in HAt  proportional to  (At)2, and so the difference between $ j  and 4j-I will 

be dropped. H($, $*) is therefore H(a ,  at) with a and at replaced by $ and $*. 

Using e-Hnt = 1 - H A t  + 0 (At )2 ,  we get 

1 
(A) = lim 

N+w 

The continuum limit, 

with 

N + oo, can now be taken, 

1 
(A) = D$*D$A($)~-s 

and 

It is often useful to make the change of variables 4 = $* - 1 but in some situations this 

can cause problems. This change of variables may obscure a symmetry of the system, 

which may be violated by a later approximation. This is the case in the system in 

which new offspring particles are created in pairs, discussed in this thesis. 

3.1.2 Decay 

A simple example of the above is given by the decay of a collection of independent 

particles, as in radioactive decay. The treatment here follows Mattis and Glasser's 

example [37], where it is used as a demonstration of field theoretic techniques. This 

problem provides a simple example of how to use this method in a case where the 

answer is already known, and also provides an example in which the lack of dependence 

of the long-time solution on the initial condition can be seen. The transition rates are 
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so that particles vanish from the system at a rate w, independent of the number of 

particles; each particle has a probability w per unit time of decaying. The probability 

of finding the system with n particles increases due to systems with n + 1 particles 

losing a particle to decay, while this probability decreases due to systems with n 

particles losing a particle to decay. The M-equation is then 

dP(n ,  t) 
dt 

= w(n + 1)P(n  + 1, t )  - wnP(n, t) .  (3.31) 

The time evolution operator for the system is 

t -H = w(a - a a).  (3.32) 

This form of H produces the correct M-equation, as 

Taking an inner product with any state Im) then gives 

so that 
d P m  

dt 
- = w(m + l)Pm+l - wmPm, 

as desired. Introducing the continuous variable $ by working through the procedure 

described in section 3.1 then produces 

a w l  dt' $*(tl) at_ + w ($*(t1)$(t') - $(t)) - n o f  (0) - $(t) .=it [ 1 (3.36) 

or, after changing variables, 
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Integrating the partial derivative then cancels with @(t) outside the integral, to  give 

The factor ePno can be absorbed into the normalization factor of 2, and so will be 

dropped. 

If we take the expression for the expectation value of the number of particles, 

and do the D$ integral, which is over the imaginary direction, we get a delta functional: 

This means that (n)  may be calculated by integration over all solutions of 

There is only one solution, the usual exponential decay, so this has indeed produced 

the correct answer. 

It is actually easier in this problem to go back to an earlier form, 

(A) = (Olea~(a)ewt("-"'") IP(0)) (3.42) 

to evaluate averages. Using the expressions for the average number of particles and the 

fluctuation in number of particles, it is an exercise in commutation to show (n(t))  = 

noePwt, and a y t )  = noe-wt. With a different initial condition, exactly no particles, 

I P (0 ) )  = ( U + ) * ~ ~ O ) ,  so that (n(t))  = noe-wt, and a2( t )  = noePwt(l - ePwt). Notice 

that the average numbers of particles with these two different initial conditions are 

the same and that at  long times the fluctuations in number become the same. 

3.1.3 Pair Annihilation 

If the particles are taken to annihilate in pairs, so that the reaction is 
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at a rate A ,  then the M-equation is 

dP(n ,  t) 
dt 

= X(n + l ) ( n  + 2)P(n + 2, t) - Xn(n - l ) P ( n ,  t).  

As usual, the first term gives the increase in the probability of finding n particles 

due to annihilation of two particles in n + 2 particle systems, while the second term 

gives the decrease in probability of finding n particles. The annihilation of any pair 

of particles is independent, so the rate at which a pair annihilates in an n particle 

system should be proportional to n(n - 1). Represented as creation and destruction 

operators, this gives a time-evolution operator 

The term appearing in the "action" S is 

* 2  2 s2 = -X((b2 - 4 4 ). 

If the shift 4 = 4* - 1 can be made, then 

-2 2 
s 2  = A(+  4 +24(b2). 

In the simple pair annihilation problem, all terms may be treated exactly, and so this 

shift may be done. In the problem with particle branching as well, some approxima- 

tions must be made, and so the shift should not be done. This will be discussed in 

more detail in chapter 4. 

3.1.4 Branching 

One additional single site reaction will be treated in this thesis, one in which a particle 

branches into several. If a single particle may create m offspring at a rate p ,  then the 

M-equation contains a term 

The term in the action corresponding to this reaction is 
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3.2 One (or More) Spatial Dimension(s) 

All of the above has been for a single site, or zero spatial dimensions. These processes 

can easily be extended to a lattice in one or more spatial dimensions. The state of the 

system is represented by the number of particles at  each lattice site. There must now 

be creation and annihilation operators a! and ai for each lattice site, so the vector 

representing the state of the system with ... , ni-1, ni, ni+l, . . . - ni particles is 

The single site interactions introduced above can occur at  each lattice site, and so 

should be summed over all lattice sites. The fields 4 and $ now become functions of 

position, and the action is integrated over all space, with contributions due to every 

kind of reaction from each lattice site. 

New kinds of behaviour are now possible, as particles can now move from one 

lattice site to another, by diffusion or ballistic transport. Only diffusion will be 

described here. The simplest way to obtain normal diffusion is to have particles hop 

from site to nearest neighbour site. To derive the term appearing in S due to diffusion, 

focus on a single site i. The probability of finding a particle at  this site may change 

due to particles moving into site i from its nearest neighbours, sites i + 1 and i - 1, 

each at  a rate D / ( A t ) 2 ,  or due to particles moving out of site i to either side, which 

occurs at  a rate 2D/ (A t )2 .  The M-equation for this probability is thus 

This will generate a term in S of the form SD = - D $ v ~ ~ .  

With both pair annihilation reactions and diffusion, the "action" is 

a4(t') ~ $ ( t ' )  V 2  $( i t )  + 2 ~ $ ( t ' ) 4 ~  (t') s = / d d x [ g d t '  ( $ ( t t ) ,  - 
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With pair annihilation, branching, and diffusion, the action is 

where +* is rewritten as 4, but the shift 4 -+ 1 + 4 has not been done, for reasons 

which will be discussed in chapter 4. 

3.2.1 Anomalous Diffusion 

If the motion of particles is given by a Levy flight rather than normal diffusion, the 

M-equation for the probability is modified from that in equation (3.51) to  include a 

sum over all lattice sites. The terms on the right hand side are weighted by a factor 

given by the real space Levy distribution in the distance between the beginning and 

final lattice sites, so that they fall off as rFd-" for large r. The effect of this change 

on the action can be seen by considering the anomalous diffusion equation derived in 

section 2.3.4. This differs from the normal diffusion equation simply by substitution 

of DAVu for DV2, and this is also true for the term in the action due to  anomalous 

diffusion. Anomalous diffusion thus adds a term So, = -DA@"+ to  the action. 

This term will not be written in the rest of this chapter, where the Langevin equation 

describing these models is derived, but may easily be restored when necessary. 

3.3 Langevin Equation for the Annihilation Pro- 

cess 

In this section, we will derive the equation giving the average density of particles in the 

systern and the correct form of the noise term to  properly reproduce the microscopic 

dynamics of the system. 

The average of any quantity is given by equation (3.27), with the "action" S for 

the annihilation process given by equation (3.52). The observable A corresponding to 
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the number of particles is, as before, given by A = n = 4, so we have, for this process, 

1 D&') 02g( t ' )  
= - J D ~ D Q $ ( ~ )  exp { - J ddx J dt (d;(tl) dt_ - z 

We can try to integrate over 6, as in section 3.1.2, to find a differential equation 

describing the evolution of the number of particles in the system. However, the 

term X$2$2 in (3.55) is quadratic in 6, and so the integral over 4 cannot be done 

immediately. Instead, we can use the identity, valid for a pure imaginary variable (, 

to rewrite (3.55) as 

with 

P'K1 
O( eJ d z d t ~ ~ / 4 X + ~  

Here, ( is now a random function; the identity (3.56) has been used at each point 

(x, t). The functional P[(] gives the weight of each function (. Making a change of 

variables f i ( turns this into 

with 
,J dxdtc2/4X 

p[CI= 26 . (3.60) 

The probability of finding a value 5 at  a single point (x, t )  is given by 
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The integral in equation (3.56) only converges for ( pure imaginary, so that if 

it is interpreted as a stochastic noise, the noise function takes on a random purely 

imaginary value, at every point in space and time. The fact that the noise term is 

imaginary is why simply adding a real noise to the mean field equation, as one might 

expect, will not produce the correct results. 

The correlation between the noise function at  different points (x, t) and (x', t') can 

be calculated from the probability distribution (3.60). For x # x' or t # t', the noise 

is uncorrelated, as 

This is true as long as either x # x' or t # t'. The noise correlation for x = x' and 

t = t' is given by 

In discretized space, the noise correlation is thus given by 

and with t and x co~~tinuous, 

(<(x, t)<(xt, t')) = -2X6(~ - xt)6(t - t'). (3.65) 

The imaginary nature of the noise function produces the negative sign in front of the 

correlator. It will turn out that only this two-point correlation will be needed in the 

rest of the calculation. 

The integral over 4 can now be done to produce 

1 
( ( t ) )  = 1 D / D ( t )  6 - D V ' ~  + 214' - $( - na6(t')] PI(]. (3.66) 

If the integral over Dq5 is done, then 
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where P[c] is the probability distribution for a noise history (3.60), and $,,l~,(t) solves 

- - D V ~ $  + 2X$2 - $5 - noS(tr) = 0. 
dt' (3.68) 

This all means that to calculate (n(t)),  we need to solve (3.68) for a given noise history 

5(x1, t'), and then average over all possible functions 5, weighted by P[c]. A solution 

to (3.68) can be written down in terms of G(x, t) ,  the Green function for the diffusion 

equation: 

4 = / d x l ~ ( x  - x',t)no 

+ dx1dt'G(x - x', t - t') ( - ~ x $ ~ ( x ' ,  t') + $(xl, t1)C(x', t')) . (3.69) / 
In d spatial dimensions, the Green function is 

Fourier and Laplace transforming this gives the Green function in (k, t) and (k,  w) 

space: 

A series solution can now be developed by iteration: first, neglecting the noise, sub- 

stitute the solution for X = 0 into the interaction term, and then repeat, to produce 

To avoid writing many formulae like this, a diagrammatic notation is used. Each 

Green function is represented as a line, with time going to tJhe left, and so the second 

term in the series (3.73) is represented by 
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t 1 
G(z - d, t - t') -2 

Without the noise, the complete set of diagrams is 

The spatial integrals over the Green functions give 1, so to order X2,  

t t ' 
$(t) = no - 2Xni Jluf dt' + 2 ( 2 ~ ) ~ n :  / dt' / dtl = no(l  - 2Xnot + ( 2 ~ n o t ) ~ ) .  (3.74) 

0 0 

But without noise, (3.68) is just the mean field equation discussed in section 1.1.1, so 

the sum of this set of diagrams is just the solution 

to the noiseless mean field equation. 

The noise term adds some additional diagrams. Any term with just one factor of 

[ will vanish when integrated over [ (as ([) = 0), so the first term with a non-zero 

contribution is 
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which is represented by the diagram 

The full expansion of the series is then (dropping the terms which will give zero when 

integrated over C) 
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When the diagrams in the second line are integrated over <, the delta function in the 

noise-noise correlation function (3.65) forces the noise factors to be at  the same point, 

so that,  for example, the diagram representing (3.76) becomes 

Many of these diagrams with loops contain divergent parts. These must be handled 

using renormalization group techniques. This calculation will be presented in the next 

chapter. 



Chapter 4 

Renormalizat ion Group 

Calculations 

In this chapter we will give the renormalization group calculations done on both 

models studied here. In the case of an annihilation reaction alone both the power 

law decay of the number of particles and the amplitude of this power law may be 

calculated. Our calculation of these quantities is given in some detail. When a 

branching reaction is added, the calculation becomes more difficult. Here, the most 

important result is the identification of a critical Lkvy exponent at  which an absorbing 

phase at  finite branching rate becomes possible. This is calculated in section 4.2. The 

result for the exponent governing the steady-state density is also given in this section. 

4.1 Annihilation Reaction 

In this section we will develop a perturbative solution to the Langevin equation derived 

in the previous chapter and calculate the average density n(t)  of particles remaining 

in the system as a function of time. Both the exponent and the amplitude of the 

power-law decay of the density will be calculated. Some terms which appear in this 

expansion are divergent, and so renormalization group techniques will be used to 

calculate finite physical quantities. The divergent integrals will be regulated using di- 

mensional regularization: divergent integrals in the dimension of interest are replaced 
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by integrals in d dimensions. This makes it possible to isolate the divergent quanti- 

ties in an expansion in E = d, - d, where d, is the dimension at  which the integrals 

considered first become divergent. 

The procedure used here differs from usual renormalization group calculations in 

some details and follows that used by Lee [9] in his study of the annihilation reaction 

with normal diffusion. Since the initial density no is not small, it must be included 

to all orders, as was observed in reference [38]. This can be done using a response 

function formalism described by Janssen [39] and de Dominicis [40]. 

To implement the renormalization group, we will first calculate the flow function P 
for the annihilation rate. This can be done to all orders, due to the simple way in which 

the annihilation rate is renormalized by fluctuations. A dimensionless renormalized 

annihilation rate can then be defined, and its fixed points can be determined from 

p. As usual in a renormalization group calculation, an arbitrary momentum scale 

K is introduced at this point. Any physical result cannot depend on this arbitrary 

scale, and so a renormalization group equation can be written to express the lack of 

dependence of n(t)  on K. The solution to this equation relates the observable density at  

one time t t o  that at another time t'. A perturbative approach is then used to  calculate 

this density, in which the number of loops in the diagrams calculated determines the 

order of the expansion. In this calculation, divergent terms that appear at  each order 

in the number of loops are cancelled by terms coming from the tree diagram calculation 

when the bare annihilation rate is replaced by the renormalized annihilation rate. We 

will be calculating the amplitude of the density decay to  next-to-leading order, so 

only the first two terms need be retained in an expansion. 

Before beginning the calculation, it is useful to examine the dimensions of quan- 

tities appearing in the theory. In terms of a momentum scale K, the engineering 

dimensions can be chosen to  be 

[Dt] = [K-"I, 

Here the notation [.I means "the dimension of the quantity -." There is some choice in 

the definition of these dimensions, as in the field theory the dimensions of the fields 4 
and $ may be changed together. However, this choice is the most natural, in keeping 
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Figure 4.1: The diagrams which contribute to  the renormalized annihilation rate XR. 

with the interpretation of (4) as the density of particles. Since the diffusion constant 

D and the time t never appear alone, but only in the combination Dt ,  the diffusion 

constant will be absorbed into the time and will not appear in this chapter. It may be 

restored in any formula by replacing t with Dt. It will reappear in the next chapter 

in which simulations are discussed, as it is varied for some of the simulations. 

The annihilation rate becomes dimensionless when d = d, = a, so the parameter E 

for an expansion about the critical dimension is 6 = a - d. The dimensionless coupling 

constant (or annihilation rate) is then g = K'X. We will be working in Fourier- 

Laplace transformed coordinates (k,  s), with [s] = [t-']. A renormalization point a t  

a momentum scale rc can then be chosen by evaluating quantities a t  (k, s) = (0, rca). 

4.1.1 Renormalized Annihilation Rate 

The renormalized annihilation rate can be calculated by examining truncated versions 

of the diagrams shown in figure 4.1, and is given by the sum of integrals 

XR(k, t)  = X6(t) - I ( k ,  t )  + 1 dt1I(k, t - t') I ( k ,  t') + ... (4.2) 

The Langevin equation or field theory here is simple enough that this sum represents 

all diagrams with one leg to the left and two to the right. Only diagrams of this form 

may be constructed using the two verticies available. 

Since we have chosen to renormalize at (k, s) = (0, rcu), we can evaluate this 

integral at  k = 0. After integration over k2, making use of the 6-function, the 
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integrand depends only on the magnitude of kl ,  and so the integral can be written as 

27rd/2 Here, Kd is the surface area of a sphere in d dimensions, Kd = m. Performing the 

integral gives 

with 

The Laplace transformed annihilation rate 

is a geometric sum, with the multiplicative factor given by the Laplace transform of 

I :  

~ ( k  = 0, s) = J d t ~ t - ~ / " e - "  = CF - s- ' /~ .  (3 (4.9) 
The Laplace transformation makes it possible to sum all the diagrams to give 

We now need to choose a momentum rc as the renormalization point. The dimen- 

sionless bare annihilation rate is, as discussed above, g = rc-'A, and the dimensionless 

renormalized coupling is g~ = rc-'XR. From the dimensional analysis earlier, we 

should replace s by rc", so the dimensionless renormalized annihilation rate is 

As the scale at  which we renormalize changes, this coupling constant changes. The de- 

pendence of the coupling on the momentum is given by a flow function, conventionally 

called ,f3. The flow function for the renormalized annihilation rate is 
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This has a fixed point a t  g~ = 0, and a non-trivial fixed point a t  

1 
gR = g;1= --- cry)' 

The fixed point at  g;l is the stable one for d < a. 

The renormalized and unrenormalized dimensionless couplings are then related, 

using (4.1 1) , by 

4.1.2 Renormalization Group Equation 

The choice of the point K at  which to renormalize should not affect physical results, 

so density is independent of K 

and dimensional analysis gives 

so that 

This differential equation can be solved using the method of characteristics to  relate 

nR(t)  to that at an earlier time. The total derivative of nR is 

dnR - anR dnR dno  an^ d g ~  
- - - +--+-- (4.19) 
d l n t  d l n t  ano d l n t  dgR d l n t '  

Choose a path through (no, gR) space parametrised by t such that 

dno dno - 
d l n t  a 
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and 

Inserting (4.19), (4.20) and (4.21) into (4.18), 

The solution to the set of equations (4.20)-(4.22) relates n~ a t  two different times 

t and t'. We can choose t' to take any convenient value, and it is useful to choose 

t' = K-". The solution is then given by 

with no(K) and g R ( ~ )  related to no(t) and gR(t) through solutions to equations (4.20) 

and (4.21), which are 

 no(^) = mo (t)tdlU (4.24) 

and 

Note that no(t) N t-dlu, which implies that a large no limit can be taken to take a 

large t limit; higher order terms in no correspond to sub-leading terms in t at  large t. 

Also note that the large-t limit of g~ is simply g;. 

4.1.3 Density 

We must now calculate the right-hand side of (4.23) to determine the density of 

particles as a function of time. This will be done as a perturbation series in the 

number of loops in the diagrams included at  each order. In the calculation of the 

density we will need two "classical" quantities. These are calculated without including 

the effects of fluctuations and so correspond to classical quantities in a field theory. 

They are calculated using only tree diagrams, with no loops. 

The classical density will be represented by a dashed line in diagrams and is given 

by the sum of all tree diagrams with one leg to the left. As can be seen from figure 4.2, 
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Figure 4.2: A graphical demonstration that the classical density, which is the sum 
of all tree diagrams and is represented by a dashed line, is given by the integral 
equation (4.26). 

it is given by the integral equation 

where Go is the bare diffusion Green function. The classical density is thus the same 

as the mean-field solution: 

We need the long time limit of this term, which is 

1 
ncl M -. 

2Xt 

This will be used below to replace density lines in diagrams and is also the first 

term in an expansion in the number of loops, corresponding to the set of all tree 

diagrams with no loops. Each diagram in this sum is renormalized by the vertex cor- 

rections calculated in section 4.1.1. To the required order, the renormalized tree level 

contribution can be found by replacing X by the bare dimensionless annihilation rate 

g, X = ~ ' g ,  and then expanding g in the renormalized coupling as in equation (4.14), 

This is then the tree-level contribution to the right-hand side of (4.23) and so must 

be evaluated at t = KP and multiplied by ~ - ~ t - ~ l "  to give a contribution to nR(t): 
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Figure 4.3: The classical response function, represented by a heavy line, is defined by 
a sum of diagrams with a propagator and increasing numbers of added density lines. 

The classical response function will be represented by a heavy line in diagrams 

and is given by the sum of diagrams with a single propogator with any number of 

attached classical density lines, as shown in figure 4.3. In the field theoretic approach, 

the response function is given by 

where the average is over the action 3.52. The classical version of the response function 

does not include the last term in the weight, which is non-linear in 4. The response 

function will be defined here by diagrammatic expansion and will be useful in writing 

the sum of all diagrams with a fixed number of loops. 

The classical response function is 

Gcl = , -kU(t2- t l )  + I:' dtte-kU(tz -tl) ( - 2 ~ ) n , ~ ( t ' ) e - ~ ~ ( ~ ~ - ~ ~ )  + (4.32) 

(4X)2 f 2  tl dttnCl (t') f 2  t1 dtt'ncl(t") + . . . }. 

The integrals are over the region t l  < t' < t" < . , < t2, but can be extended to the 

full range t l  < t' < t2,  tl  < t" < t2,  . . by dividing by l ! ,  where 1 is the number of 

density lines inserted (the number of times integrated over). This then becomes the 



CHAPTER 4. RENORMALIZATION GROUP CALCULATIONS 55 

expansion of an exponential, 

The diagram in figure 4.4 includes all diagrams with one loop. It represents the 

first correction to the density: 

As discussed in section 4.1.2, the large no limit gives the large t  behaviour, 

The integrals over Ic may be done using dimensional regularization, and give 

with C defined in equation (4.7). Expanding the (possibly divergent) terms in the 

denominator in E gives 

(4.39) 

The fixed point coupling g: may be introduced using an approximation to the gamma 

function 

119: = C ~ ( E / O )  M C(U/E - y),  (4.40) 

with y = 0.5772 Euler7s constant. This then implies a/€ = l/(Cg;) + y, and so 

Just as for n(O), this is a contribution to the right-hand side of (4.23), and must 

be evaluated at  t  = K-" and multiplied by ~ - ~ t - ~ l "  to give a contribution to nR(t).  

However, this procedure does not change the form of this term. The term proportional 

to 119; is divergent as E + 0, and is cancelled by a term coming from the tree level 



CHAPTER 4. RENORMALIZATION GROUP CALCULATIONS 

Figure 4.4: This diagram includes all diagrams with one loop. The heavy lines rep- 
resent the classical response function, and the dashed lines represent the classical 
density. 

contribution n(O) expanded to  second order in g ~ ,  as given by equation (4.30). Adding 

these terms gives the density 
d 

n( t )  = At-; (4.42) 

with 

Since we want the long-time behaviour of the density, g R ( ~ )  may be replaced by its 

large-t value, from (4.25),  of gk = ( C r ( a / ~ ) ) - l .  Using the expansion for the gamma 

function in (4.40) and the value of C from (4 .7) ,  we see 

This is the renormalization group prediction for the amplitude of the density decay 

in time. The next correction to this term is proportional to E .  This prediction for the 

amplitude will be compared to simulation results in chapter 5. The exponent d / a  in 

equation (4.42) is also a prediction of the renormalization group calculation. 

4.2 Branching and Annihilation Reactions 

In this section, we will use the renormalization group methods of the previous sec- 

tion to analyse a system in which particles are allowed to branch, creating two new 

"offspring" particles. The action we will study is derived in chapter 3 and is given by 
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The results of this calculation will be compared to  simulations in chapter 5. The 

simulations are of a model in one dimension, so we will summarize the results of 

the calculation in one dimension here. In one dimension, we will find that for a < 
al, = 312, the branching reaction is relevant at the annihilation fixed point. This 

means that in this regime the critical point is at  zero branching rate p = 0, and 

the dynamics at criticality are described by the model with annihilation alone. For 

a > a,, the branching reaction is irrelevant at the annihilation fixed point, and the 

associated rate p flows to zero under the renormalization transformation. This means 

that there may be range of values of p over which the model is described by the pure 

annihilation model; this range is given by the range over which the branching rate 

flows to zero. The critical point is governed by a different fixed point, and so may be 

described by different exponents. This fixed point is not accessible using the methods 

described in this thesis. 

The approach used to calculate the critical behaviour of a system with both branch- 

ing and annihilating reactions will be slightly different from that used in the previous 

section. The shift from $ to  4 done in section 3.1.3 should not be done here, as it 

obscures a symmetry of the field theory related to parity conservation: except for 

terms which depend explicitly on the initial or final state, the action (4.45) is in- 

variant under the simultaneous change of the sign of both $ and 6. After this shift 

is done, it is usual to drop the higher order terms which appear, which causes the 

symmetry to  be lost. Since this shift should not be done, it is difficult to  derive the 

Langevin equation which would be used to generate a perturbative expansion, in an 

analysis similar to that done in the pure annihilation case. Here, we will study the 

field theory directly. Fortunately, the shift is useful only in the calculation of what are 

called "inclusive" quantities, whose operator representations include operators at all 

lattice sites, such as the total density of particles. "Exclusive" quantities, such as the 

probability that a particular lattice site is occupied exclusive of the state of the rest 

of the system, can be calculated in the unshifted theory. In fact, in the calculation 

below the correlation function being calculated will not be explicitly specified. All 
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results will be derived from an examination of the scaling of couplings appearing in 

the theory. The renormalization group equations derived below do not depend on 

which correlation functions are calculated. 

For the more general problem with branching to  m offspring, the only term in the 

action which changes is the one related to  the branching rate, proportional to p. The 

new term is 

SB, = 1 dx iT dtprn[l-  ~ ~ ( x ,  t ) ] ~ ( x ,  t)4(x7 t). (4.46) 

Notice that for odd m this term is not invariant under the change of sign of and 4. 

This means that the shift $ + $+ 1 may be done. The resulting field theory describes 

the directed percolation universality class and is discussed in [41]. For m even but 

larger than two, the reaction with m = 2 is generated under renormalization, and so 

the theory with m = 2 describes the behaviour of all models with m even. 

Using the field theory directly changes the derivation of the perturbation series 

in some ways. Rather than using the perturbative expansion of the solution to a 

Langevin equation, the diagrammatic expansion is derived by expanding the action 

about the action with no interaction terms, containing only terms linear in qh and 

6. All quantities can be easily calculated in the non-interacting theory, by Gaussian 

integration. Higher order terms are written as expectation values of the nonlinear 

terms, evaluated with respect to the linear action. The propagators and vertices 

appearing in a diagrammatic expansion are then derived to represent the terms in 

this expansion. The results of this derivation can be seen by inspection of the action: 

there are two vertices corresponding to the annihilation rate, from the terms Xqh2 and 

-X$2qh2, and one vertex corresponding to  the annihilation rate, from the term ,441~. 

The fact that the shift is not made changes the diagrammatic expansion slightly, 

as can be seen by examining the action (4.45). The first vertex corresponding to 

the annihilation rate differs from that used in the pure annihilation problem: it no 

longer has a leg to the right, as it corresponds to the term Xqh2 in the action. The 

diagrammatic representations of the annihilation reactions are shown in figure 4.5. 

The engineering dimensions of most quantities appearing in this field theory have 

already been given in section 4.1. Only the branching rate p is new, and is of dimension 
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Figure 4.5: The vertices associated with annihilation (a) and with branching (b) in a 
diagrammatic expansion. 

[p] = [K"], in terms of the same arbitrary momentum scale K. Power counting thus 

predicts that the upper critical dimension is again d, = a, the dimension at  which the 

annihilation rate becomes dimensionless. 

In keeping with the direct use of the field theory, we will use a more field-theoretic 

notation in this section. This will also make a comparison with the calculation of the 

normal diffusion case, done in [I l l ,  more straightforward. A field-theoretic approach 

to the renormalization group can be found in several books on critical phenomena, 

such as [42]. The renormalization of coupling constants, as done in section 4.1 for 

the annihilation rate, can be handled by defining renormalization constants Z relat- 

ing renormalized and un-renormalized couplings. The calculation of renormalization 

group flow functions is similar to the calculation in section 4.1 and will not be given 

here. Only the results will be presented. 

The dimensionless renormalized annihilation coupling is defined by 

with E = d, - d = a - d and 

The one loop renormalization factor ZA is then 

This factor is calculated by performing the integrals which are represented by the 

diagrams in figure 4.6. This result for ZA is simply the result (4.10) for the annihilation 
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Figure 4.6: The diagrams which contribute to  the renormalized annihilation rate X R  
in the field theoretic calculation. Note that time flows from right to left, as in the 
previous chapter. 

rate in the pure annihilation model, with only the first two terms in the sum retained, 

and re-interpreted with the new definition, (4.47), of the dimensionless renormalized 

annihilation rate. The P function is now given by 

with fixed points at  t = 0 and t = t* = E = a - d. In section 4.1, the same result 

was derived for the ,8 function to all orders in the annihilation rate, by summing all 

contributions to the renormalized annihilation rate. The ,8 functions in this section 

and in section 4.1 differ only due to the differing definitions of the renormalized 

annihilation rate; if the same definition were used here as in section 4.1, they would 

have the same form. The result (4.50) is thus exact at  the annihilation fixed point, as 

the result in section 4.1 is the exact ,8 function at  the annihilation fixed point. Just 

as in the pure annihilation problem, the Gaussian fixed point a t  t = 0 is stable for 

d > a, while for d < a the non-trivial O(E) fixed point at  t = t* is stable. 

The one loop renormalization group eigenvalue for the branching process at  the 

annihilation fixed point determines whether the branching process is relevant at  this 

fixed point. Defining the dimensionless renormalized branching rate as 

the one loop renormalization factor, 
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Figure 4.7: The diagrams which 

is computed from the diagrams 

. contribute to the renormalized branching rate p ~ .  

in figure 4.7. The < function, describing the flow of 

the branching rate under renormalization, is therefore 

Thus, the renormalization group eigenvalue for the branching process a t  the annihi- 

lation fixed point is, a t  one loop, 

Cardy and Tauber [ll] performed this calculation for the normal diffusion model, 

where a = 2. In their case, the result (4.54) indicates that for dimensions larger than 

d: = 413, the branching rate is relevant a t  the annihilation fixed point. The branching 

rate flows away from zero, and so the system will be in its active phase, with a steady- 

state density of particles in the long time limit, for almost all values of the couplings. 

Only where the branching rate is exactly zero is the model described by the pure 

annihilation fixed point. In this regime, any non-zero branching rate will grow under 

renormalization, resulting in a steady state density of particles. In dimensions less 

than 413, the branching rate becomes irrelevant at  the annihilation fixed point. In 

this rkgime, for some range of branching rates, the branching rate flows to zero and 

the behaviour is given by the behaviour at  the pure annihilation fixed point. A new 

inactive phase, with a power law decay to zero particles, becomes possible. Using a 

different expansion, a truncated loop expansion in fixed dimension, Cardy and Tauber 

predicted that the critical annihilation rate should be discontinuous at dk, jumping 
from zero to some finite value. 
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With anomalous diffusion, the branching process is relevant at  the annihilation 

fixed point for 

a < aL(d) = 3d/2, (4.55) 

to one loop. In d = 1, this is true for a < aL(d = 1) = 312. As in the mean field case, 

there should be an active phase for all nonzero values of the branching rate p ,  for 

sufficiently small a .  The field theory studied in section 4.1 describes the dynamics at  

this critical point, as it occurs for zero branching rate. As p increases away from zero, 

there will be new behaviour related to the branching reaction, as this is a relevant 

perturbation in this regime. The density decay at  the pure annihilation fixed point, 

calculated in the previous section, is given by n(t)  - tPdl" (for d < a < 2). In [43] it 

is shown that a t  criticality the density should decay as t-Pdenslvll. Here ,Oddens and vll are 

critical exponents which describe the behaviour close to but not exactly a t  the critical 

point, as defined in section 1.1.1. Odens controls the dependence of the steady state 

density on the distance to  the critical point, and vll controls the correlation length in 

the temporal direction. Matching this result to the L6vy annihilation case we have 

Pdens = dvll /a .  

The exponent ,Oddens may be calculated from the renormalization group eigenvalue 

y,. Cardy and Tauber show that in this rkgime is given by Pdens = dly,. This 

is shown by solving the renormalization group equation to show that the density has 

a scaling form and then demanding that at  large times the time-dependence cancels. 

This then fixes the dependence of the asymptotic density on the branching rate. The 

eigenvalue y, is given in equation (4.54) so that Pdens = dl(3d - 2a). 

When a > aL(d), the branching reaction becomes irrelevant a t  the L6vy annihila- 

tion fixed point. For any value of a, this regime may be present only for d lower than 

a critical dimension. The highest possible value of this new critical dimension occurs 

for normal diffusion. From equation (4.55), it is given by d < dL(a = 2) = 413, to one 

loop order. For any dimension lower than d',(a), the critical branching rate p,(a, d) 

should becorne nonzero. For 0 < p < pc(a, d), the branching will be asymptotically 

irrelevant, and this phase will again be governed by the exponents of the pure Lkvy 

annihilation universality class described in section 4.1. The different possibile regions 
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Figure 4.8: Regions of different behaviours in the a, d plane. Mean field exponents 
are observed below the solid line (dark grey region). Below the dashed line the 
branching rate is relevant at  the annihilation fixed point, and so the critical point 
is a t  zero branching rate. Above the dashed line the branching reaction is relevant 
at  the annihilation fixed point, and so there may be an active phase for some finite 
values of p. 

are summarized in figure 4.8. At p = p,(u, d) there should then be a non-trivial tran- 

sition to an active phase. As was the case for the short-ranged model, this transition 

is inaccessible to controlled perturbative expansions and is governed by exponents dif- 

ferent from either the pure annihilation model or the model with branching to an odd 

number of offspring. The expansion in E only applies to the critical point of the model 

which includes branching from the upper critical dimension down to dL(a) = 2013, 

to one loop order. This is due to the fact that the expansion is around the pure 

annihilation fixed point p = 0. Once the critical point moves to a fixed value of p,  

the expansion must be done about this new fixed point. This cannot be done in the 

6-expansion in the number of dimensions, as this must be done about the fixed point 

a t  the upper critical dimension. For d < dL(a), the E expansion describes only the 
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behaviour a t  zero branching rate. The new transition a t  a non-zero branching rate is 

not governed by exponents calculated from this expansion. 

Note that a "precursor" of the critical inactive phase present for a > aL(d) is 

already evident in the a < aL(d) regime. Using the above analysis, we see that 

Pdens = d / y p  = dl(3d - 20) for a < aL(d) (to one loop). Hence, to  this order, as 

a + aL(d) = 3d/2 from below, Pdens diverges. This implies that for a fixed small 

value of the branching, the active phase has a decreasing density as a function of a, as 

a is increased toward aL(d). Finally at a = 3d/2 (to one loop order) an entire critical 

inactive phase opens up. 

All of this analysis has implications for the model with normal diffusion. The 

behaviour of the model with normal diffusion as the dimension is lowered from d = 2 

to  d = 1 is analogous to  the behaviour of the model with L6vy flights in fixed d = 1, 

as the L6vy index a is raised from a = 1 to  a = 2. In particular, to  one loop order, 

the region 1 < a < a;(d = 1) = 312 for the d = 1 model with anomalous diffusion 

contains the direct analogue of the inaccessible universality class present in model 

with normal diffusion for dL = 413 < d < 2. The analogue of the transition predicted 

in the model with normal diffusion a t  d = 413 may be directly studied in a simulation 

of the model with L6vy flights. The results of simulations of this model are presented 

in the next chapter. 



Chapter 5 

Simulations 

Several simulations were done and compared with the renormalization group results 

discussed in previous chapters. The model simulated is very similar to that described 

by the M-equation (3.1). A set of particles are allowed to move on a one-dimensional 

lattice, with appropriate reactions a t  each time step. We will present the results 

of simulations of both systems discussed in the previous chapter and show that the 

predictions of the renormalization group are seen in these simulations. 

In the model with pair annihilation alone the decay of the density of particles in this 

model should be given by the power law decay calculated in using the renormalization 

group in section 4.1.3. We will see that the renormalization group calculation does 

very well at  predicting the exponent and that the E-expansion for the amplitude A is 

good for small E. The small-~ region is explored by taking a slightly larger than 1. 

When a branching reaction is added a phase transition appears as the branching 

probability is varied. The renormalization group calculation in section 4.2 predicts, 

for this one-dimensional simulation, that for a < 312 there will be an  active phase for 

any non-zero branching rate. For a > 312, an inactive phase becomes possible at  finite 

branching rate. This will be seen in the simulations. For a < 312 the renormalization 

group calculations give a numerical estimate of the exponent Pdens, governing the 

dependence of the steady-state density on the distance to the critical point. This 

exponent has been calculated in simulations in this region, and will be compared to 

the renormalization group calculation. The renormalization group techniques used in 
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the previous chapter make no predictions about the exponents near the new critical 

point that emerges for a > 312. Simulations may be done in this region, and the 

results of these simulations are given below. 

The system simulated differs from that studied analytically in that only one par- 

ticle is allowed to occupy a lattice site. If a particle moves to an occupied site, both 

particles are annihilated. There has been some discussion of whether this single- 

occupation condition is an important difference from the model studied using field 

theoretic techniques. In the systems studied here, the difference seems likely not to 

be important for several reasons. First, since the annihilation rate is renormalized and 

flows to a fixed point, the bare annihilation rate does not appear in the final result, 

and so the fact that particles annihilate with probability one should not change the 

results. Second, at and near the critical point, the density is small, so the probability 

that two particles are at the same site is very small in either case. Third, one of the 

important differences in one dimension is that, in models where diffusion proceeds by 

hops only to nearest neighbour sites, particles cannot pass each other, which is not 

the case in the simulations done here. This feature is one reason for the fact that 

some models can be solved exactly in one dimension. It can also create significant 

differences in long-time behaviour. For example, the two-species annihilation reaction 

A+B + 0 has, in general, asymptotic behaviour different from the single-species reac- 

tion. However, if the initial condition is alternating A and B particles, then if particles 

cannot pass each other, the two-species reaction behaves in the same way as does the 

single-species reaction. In the simulations done here, particles may move more than 

one lattice site in a single hop, and so different particles may pass each other. In any 

case, the agreement between the simulation results and the field-theoretic calculation 

indicates that the universal properties of both kinds of models are the same. 

Anomalous Diffusion With Pair Annihilation 

For the pair annihilation problem, all simulations were done on a one-dimensional 

lattice, which, at the beginning of the simulation, contained lo7 sites, each occupied 

by a single particle. Each time that the number of particles fell below 1000, the system 
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Figure 5.1: The density of particles for the pair annihilation process with normal 
diffusion. The two curves differ in the distribution of hop lengths taken at  each 
step; these distributions are shown. Particles may hop only a single site in the lower 
distribution, while they may hop several sites, with the length of the hop chosen from 
a discrete version of a Gaussian, in the upper distribution. 

was doubled by appending an exact copy of the current configuration of particles. 

While this does make the system momentarily periodic, the two halves subsequently 

evolve in different ways. This allowed the simulation to continue to large times without 

large statistical fluctuations in the density. The number of times that it was necessary 

to double the system size varied, depending on a. For a = 1.05, the final system size 

was L = 2' x lo7. 

The locations of the particles were stored in two different ways. Early in each 

simulation run, when there were many particles, the occupation numbers of the entire 
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lattice were stored, with a single bit indicating whether or not each site was occupied. 

In each time step, a random lattice site was chosen and, if the site was occupied, the 

particle there was moved. Late in the simulation, this became inefficient, and so only 

the indices of occupied sites were stored. An occupied site was chosen from this list to 

undergo diffusion. In each time step, each particle would, on average, move once; in 

the later stage of the simulation, when only the indices of occupied sites were stored, 

the time was incremented by one over the number of particles after each move. 

All simulations for the pair annihilation problem were done with the full Lkvy 

distribution, with hop distances generated by equation (2.24). This is unlike the 

method used to generate the long-range hops in the simulations of the branching 

process described below, where a simple power law distribution was used. The full 

Lkvy distribution was used here so that it would be simpler to identify the anomalous 

diffusion constant, and so that the asymptotic form of the distribution of hops was 

reached more quickly. However, due to the fact that the simulations were performed 

on a lattice, it was necessary to rescale slightly the distances generated to produce the 

correct limit of the probability distribution for small k. Since one of the quantities 

calculated analytically is the amplitude of the power law of the decay in time, which 

depends on the anomalous diffusion constant, it was important that this quantity was 

correct. 

The time taken to reach the asymptotic power law depends on the irrelevant scaling 

variables. Figure 5.1 shows the particle density divided by its long-time power-law 

form, for normal diffusion implemented in two different ways. For the lower curve, each 

hop is taken a single lattice spacing either to the left or to the right with probability a, 
while for the upper curve, the distribution of hops more closely resembles a Gaussian. 

Both distributions have the same second moment, and so the coefficient of the k2 

term in the field theory or the Langevin equation is the same in both cases. If 

particles diffused according to these two distributions, with no reactions, the long time 

distributions of the particle positions would be identical. However, the coefficients of 

terms higher order in k ,  which are irrelevant in the renormalization group sense, are 

different. This leads to quite different crossover behaviours. 

In the case of anomalous diffusion, long crossovers made it quite difficult to observe 
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Figure 5.2: The density of particles for the pair annihilation process with anomalous 
diffusion, with a = 1.1. 

the long-time behaviour for some values of a and DA. In this case, since it was simplest 

to perform all simulations for a given a with the same distribution, the crossover 

was reduced by changing the anomalous diffusion constant DA. This will change the 

coefficient of the ku term appearing in the action as well as the coefficients of all higher 

order terms. The density decays for two different anomalous diffusion constants are 

shown in figure 5.2. 

The fact that the value shown for , is constant over seven decades for 

DA = 3.5 shows that the exponent is essentially exact. The amplitude A of the power 

law is easy to extract from this data. A can also be extracted from the data for 
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Figure 5.3: The density of particles for the pair annihilation process with anomalous 
diffusion, for several values of a, and DA = 1. The time taken to cross over to the 
long-time behaviour varies significantly as a is varied. The solid line is a fit to the 
form of equation (5. l), with the parameters extrapolated to t + co. 

DA = 1.0, by fitting to an assumed crossover scaling form 

To obtain the long-time value of the amplitude, the fit was done over many ranges 

with differing starting times and extrapolated to t + co. 

Figure 5.3 shows the density decay for several values of a. The crossover to 

the asymptotic behaviour is clearly strongly dependent on the anomalous diffusion 

constant. It is possible to extract a value for the amplitude A from this data by using 

the crossover form of equation 5.1, and these values are similar to the values extracted 
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Figure 5.4: The amplitude of the power law decay of the density of particles deter- 
mined in simulation (circles), compared with the renormalization group prediction 
of equation (4.44). Also shown is the exact result [44] for the normal diffusion case 
(cross). 

from simulations with different values of DA, chosen to produce much shorter crossover 

regions. 

As can be seen in figure 5.3, the time taken to cross over to the asymptotic density 

decay varies significantly for fixed diffusion constant. This is why the simulations at 

different values of DA shown in figure 5.2 were originally performed; it is difficult to 

see that the density decay at DA = 1 is converging to a power law for values of a 

close to 1. 

The prediction for the amplitude is compared to simulation results in figure 5.4. 

The agreement between the €-expansion for the amplitude and the simulation result 

becomes quite good for small E ,  as expected for this asymptotic power series expansion. 
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An exact result for A is available for the case of nearest-neighbour hops [44], and is 

also shown in the figure. This result is the same as the simulation result for a = 2, 

as it should be. The hop length distribution for a = 2 is a Gaussian, with width 

m. The field theory describing motion according to  this distribution differs from 

that describing motion by single hops in the coefficients of powers of k beyond k2, 

but the renormalization-group calculation indicates that A is a universal quantity, 

independent of the coefficients of higher powers of k. The fact that these amplitudes 

are equal in the long time limit can also be seen in figure 5.1, where the results of 

simulations in which particles hop a single site and in which particles may take longer 

hops chosen from a broader distribution are compared. 

Table 5.1: The amplitude A of the power law decay of the density of particles for the 
pure annihilation reaction. The values for A for DA = 1 and a < 1.2 were determined 
from a fit to  a crossover function (5.1), while the other values could simply be read 
off from the simulation data (see figures 5.2 and 5.3.) 

5.2 Annihilation and Branching Reactions 

Simulations of the process with anomalous diffusion, annihilation, and branching were 

also performed. Here, two different types of simulation were performed, with different 
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initial conditions. In the first set of simulations, the initial state was an almost 

empty lattice, with two particles placed at  the lattice sites at  f 1. In this case, since 

the number of particles is always small, only the position of each particle needs to 

be stored. These positions were stored as integers, so the effective lattice size was 

limited only by the number of integers, 264 M 1.8 x 1019 on the 64-bit computer used. 

This kind of simulation is often referred to as a "dynamical" or "time-dependent" 

simulation. The second set of simulations, like the simulations of the process with 

annihilation alone, were done on a lattice of size lo7, with an initial condition of full 

occupation; every site contained a single particle. These simulations were done for 

a < 1.5 to  determine the steady-state density as a function of the distance from the 

critical point, and thus the exponent Periodic boundary conditions were used 

for both kinds of simulation. 

At each time step, a randomly chosen particle was allowed either to  branch, with 

probability 1 - p, or to move, via a long-range jump, with probability p; p was the 

only parameter in the simulations. The number of particles at each lattice site was 

restricted to zero or one: thus, when a particle moved to an occupied site, both 

particles were annihilated. At each branching step, a particle produced two offspring, 

which occupied the two sites to  the immediate left or right of the original particle, with 

the side chosen randomly. As pointed out in reference [45], this method of choosing 

occupied sites is necessary since if the newly occupied sites are chosen symmetrically 

about the original site, then the short-ranged branching and annihilating random walk 

model is in its inactive state for all p < 1. This is also true of the anomalous diffusion 

problem, with long-ranged transport of particles, as the transition to an active state 

occurs at  a higher p than in the normal diffusion case. 

Each time a particle moved, the distance was chosen from a pure power law distri- 

bution, as described in chapter 2. As mentioned there, this distribution is not a Levy 

stable distribution, but the power law tails do cause its limiting distribution, at  late 

times, to  become one. 
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Figure 5.5: Sample runs at various values of a,  with time evolution running up the 
page. All runs are for 500 time steps. The top two frames show p = 0.9, at a = 1.0 
and a = 1.5, from left to right. The lower left frame shows a = 1.9, p = 0.77, and the 
lower right frame shows the model with normal diffusion (nearest-neighbour hops) at 
p = 0.46. Notice the large change in scale between the first and last frame. 
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5.2.1 D ynamical Simulations 

The simulations performed beginning from a small "seed" of two particles were done 

to examine the critical point, in the region where it is not accessible to the renormal- 

ization group calculation of chapter 4. Examples of single runs at  different values of 

a and with p about 10% away from the critical point, in the active phase, are shown 

in figure 5.5. 

The simulations were averaged over at  least 2  x lo6 runs with the same initial 

condition, but with different sequences of random numbers determining the dynamics, 

and were run for times between 2  x lo4 and 2  x lo5 timesteps. A number of different 

quantities were measured as functions of time in these simulations: the fraction P(t) 

of runs surviving to time t ,  the number N(t)  of particles in the system, averaged over 

all runs, and a mean squared spreading distance R2(t). Since the usual arithmetic 

mean of the positions squared diverges for simulations done with LQvy flights, the 

geometric mean was measured instead. These quantities should all follow power law 

behaviour 

P(t)  - t-6, (5 .2)  

at  the critical point, where the transition from an active to an absorbing state occurs. 

Away from the critical point, there will be deviations from power law behaviour. We 

will be interested in these exponents for a > a:, and so the renormalization group 

met hod discussed in the previous chapter makes no predict ions about their values. 

Simulations were performed at  several values of p for each value of the LQvy pa- 

rameter a .  For each of the measured quantities, a "local exponent" was defined; for 

example, for the survival probability, 

Here b is an arbitrary parameter. The value of b should not affect the results. Once the 

asymptotic power law behaviour is reached, 6 ( t )  is independent of b. In the analysis 
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Figure 5.6: The effective local exponents, as in equation (5.5), for a = 1.6. The 
exponents are plotted against l / t  to extract the t + oo limit. The curves correspond 
to values of p, from top to bottom, of 0.985, 0.988, 0.99, and 0.992. 

done here, b = 5 was used. This local exponent was then plotted as a function of l l t .  

At the critical point, this should yield a straight line for small lit, with the t + oo 

value the estimated asymptotic exponent, while away from p, the fact that these 

quantities do not behave as power laws produces curvature in the plot. Figure 5.6 

shows an example of this analysis, for a = 1.6. 

As can be seen in figure 5.6, there appears to be some curvature in the local values 

of the exponents for any value of the hopping probability p. This made it difficult to 

determine the exponents to any better accuracy than done here. The values shown in 

table 5.2 are the best values, with the error the range to the values that are definitely 
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above and definitely below the transition. 

Table 5.2: The measured critical probabilities and exponents for various values of a. 
The number in parentheses is an estimate of the error in the last figure. The row 
labeled RW gives the results for normal diffusion, with a nearest-neighbour random 
walk. 

The data presented in table 5.2 and shown in figure 5.7 are consistent with a value 

very close to a = aL(d = 1) = 312 for the emergence of the critical Lkvy annihilation 

phase at nonzero branching. This is in good agreement with the one loop result for 

y, in section 4.2, and provides some evidence that this one loop result may in fact be 

exact, as it was for the normal diffusion case. 

The measured exponents changed by rather small amounts over the range of a 

studied. As discussed in chapter 4, the exponents at a = aA(d = I ) ,  p = 1, can be 

calculated for the pure Lhvy annihilation model, and, assuming a;(d = 1) = 312, are 

given by 6 = -0 = 113, z = 312. If the exponents are to change monotonically as 

a is varied, then they are confined to a relatively small range of values between the 

exponents for branching and annihilating particle model with normal diffusion and 

those for pure annihilation with Lkvy flights. 

The numerical evidence is consistent with a smooth movement of the critical value 

pc away from unity as a is increased above 312 (see figure 5.7). Although a discon- 

tinuous jump in p, at around a = 312 cannot be completely ruled out, any such 
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Critical Annihilation Phases 
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Figure 5.7: Phase diagram for the system of branching and annihilating random 
walkers with power-law hopping in d = 1. The inset shows a blowup of the region 
near aL(d = 1). 

jump would have to be smaller than about This finding has consequences 

for the analogous short-ranged model. In that case the analogue of the point at  

a = ar(d = 1) = 312 is the second critical dimension found at  dr = 413. The un- 

controlled truncated loop expansion used to  analyse this point in [ll] predicted a dis- 

continuous jump of the critical point as dimension d is lowered through d',. However, 

the above numerical evidence would indicate that a smooth movement of the critical 

point is more likely. Given the uncontrolled nature of the truncated loop expansion, 

any failure to  accurately capture the behaviour close to d: would not, perhaps, be 

very surprising. Nevertheless, these results provide numerical evidence for one of the 
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main conclusions of reference [ll], the presence of a second critical dimension dk. 

5.2.2 Steady-State Simulations 

Additional simulations were done beginning with a fully occupied lattice of lo7  sites. 

Figure 5.8 shows the time dependence of the density of particles in this kind of sim- 

ulation. This figure shows results for normal diffusion, in which each particle moves 

a single site in each timestep. For p < p,, the density reaches a constant value. For 

p > p,, the density decays with the same power law as it does in a system of particles 

which have only an annihilation reaction, and for p = p,, the decay is a different 

power law. This figure can be compared to the mean-field result shown in figure 1.1. 

The two figures are qualitatively similar, although the mean-field treatment does not 

yield the correct exponent for the decay at  criticality, and does not predict the phase 

corresponding to the pure annihilation fixed point. The renormalization group treat- 

ment of chapter 4 does predict a range of values of the branching rate over which an 

active phase should appear, and also that the density decay in this region should be 

governed by the same exponent as the density decay in a model with only an anni- 

hilation reaction. The renormalization group treatment done here does not predict 

the value of the exponent governing the density decay a t  the critical point, where the 

branching reaction first becomes a relevant perturbation. 

Figure 5.8 clearly shows the behaviour predicted by the analytic calculation. The 

top two curves show the density decaying to its steady-state value, which depends on 

the probability of branching. The third curve shows the density decaying, apparently 

as a power law for the entire length of the simulation. The lowest two curves show the 

density decaying to zero, with the same power law as in the model with annihilation 

alone. 

On the "active" side of the transition, below p,, the number of particles decays to 

a steady-state value. To compare with the renormalization-group results of chapter 4, 

this steady-state density was determined for several values of a close to 1 and for p 

close to 1. The dependence of this steady-state density on the distance to the critical 

point can then be used to determine the exponent Pdens. This exponent should be 
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Figure 5.8: The density of particles as a function of time for branching and annihi- 
lating random walkers, with normal (single-site steps each timestep) diffusion. The 
probability of branching decreases from top to bottom. The dashed line shows simu- 
lation results for the the annihilation reaction only. 

given, to lowest order, by the renormalization-group results for a < 1.5, before the 

point at  which the branching rate becomes irrelevant. The renormalization group 

predection for Pdens is Pdens = 1/(3 = 20. The results of these simulations are shown 

in table 5.3, with calculated values for ,Bdens shown for comparison. 

The values measured in simulations differed from the analytic results by between 

5 and 25%. There are several possible reasons for this discrepancy. First, for small a, 

finite size effects may become more important; the power-law tails of the hop length 

distributions mean that it is possible for the particles to wrap around the system in 

a short time, and so appear in positions that are closer to their original location than 

they should be. Second, as u + u,, ,Bdens becomes large, and so the steady-state 
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1.1 1 (mean field) 
1.3 5/4=1.25 (one loop) 
1.8 5/2=2.5 (one loop) 

0 

0.7 

Table 5.3: The exponent Pdens determined in simulations of the steady-state density 
of a system of size lo7, close to p,. 

Pdens (measured) @dens (theory) 
1.0 1 (mean field) 

density changes rapidly near p,. This then means that to cover a reasonable range 

in p, systems with very small steady-state densities must be studied, which in turn 

means both that long runs must be done to reach these densities, and that there are 

large fluctuations, which must be averaged over. Another possible source of error is 

the use of a power law distribution of step lengths for these simulations, rather than 

the distributions used in the simulations of the pure annihilation model, which more 

closely resemble a L6vy distribution. While the density for the power law distribution 

should become the same as that observed with a L6vy distribution with the same 

power law tail, there may be a long crossover which these simulations could have 

missed. 

Conclusions 

In the previous chapter, renormalization group methods were used to provide a char- 

acterization of the universal behaviour of several different reaction-diffusion systems, 

with anomalous diffusion. In these calculations several strong predictions about the 

behaviour of these systems were made. For the problem with annihilation alone, the 

exact exponent of the density decay and an €-expansion for the amplitude of this 

decay could be calculated. For the problem with both branching and annihilation 

reactions, the renormalization group results predict the existence of a threshold for 

the appearance of an absorbing phase as either the dimensionality or the power law 

tail of the step length distribution are varied. These results also provide an estimate 
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for the value of the exponent governing the steady-state density close to the critical 

point, for some values of a. 

The simulations described in this chapter provide confirmation of these predictions 

for a specific model. The power law decay at  the critical point with annihilation alone 

has the exponent predicted by the renormalization group, and the eexpansion can 

be used as an approximation to the amplitude valid close to 6 = 0. Since the use 

of anomalous diffusion makes it possible to vary the critical dimension, this rkgime 

of small 6 may be explored in a simulation. The renormalization group prediction of 

the appearance of an absorbing phase for non-zero branching rate as a is varied is 

also observed in simulations, at  exactly the value of a predicted. The agreement with 

the prediction for Pdens, the exponent controlling the steady-state density, shown in 

table 5.3 is less impressive; this may be due to important higher order terms, or may 

be due to simulation problems. 

These results show that renormalization group methods are an effective tool to 

classify the behaviour of some systems far from equilibrium. The use of anomalous 

diffusion here makes it possible to examine regions of parameter space which would 

not be otherwise accessible to simulation and to examine the region of small 6 ,  to make 

stringent comparisons between analytic and simulation results. The simulations also 

provide numerical estimates of the values of critical exponents at  the critical point 

which emerges at  large values of a ,  and is not accesible to the renormalization group 

calculation done here. 



Chapter 6 

Rheology 

6.1 Introduction 

Any material will respond to an external force. A viscous fluid will flow a t  a rate 

proportional to the force, while an elastic solid will deform with the extent of de- 

formation proportional to the force. In an elastic solid, all the energy added by an 

external force is stored, and may be recovered when the force is released. In a viscous 

fluid, all the energy added is dissipated as heat. Between these two idealized extremes 

are viscoelastic materials, which exhibit both behaviours, storing some added energy 

and dissipating some. In fact, any material can exhibit both the flow characteristic of 

a fluid and the elastic deformation characteristic of a solid when probed with forces 

a t  different frequencies. It is perhaps better to speak of viscous or elastic behaviour 

of a material in a certain situation, rather than characterizing a material as viscous 

or elastic. 

The study of the mechanical properties of viscoelastic materials under flow is 

called rheology. The goal of a theory of the rheology of a material is a constitutive 

relation between the stress imposed on a sample and its rate and state of deformation, 

or strain. Different relations express either the stress in terms of the strain or the 

strain in terms of the stress; these two approaches are useful in different situations. 

In some cases, it is not enough to specify the current state of either the stress or 

the strain to determine the other; the relation between them may depend on the 
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history of the material studied. There is a general formalism used to describe these 

relations, which will be discussed in this chapter. There are several books which 

discuss rheology; those consulted while writing this chapter include [46], [47] and [48]. 

Some rheological phenomena specific to soft materials are discussed in 1491. 

The external forces on a volume element of a sample are described by the stress 

tensor a. The element a, of the stress tensor gives the force in the i direction on a 

unit area with a normal pointing in the 3 direction. Similarly, the deformation, or 

strain, of a volume element is described by another tensor, y. 

In most of the rest of this chapter, we will be interested in shear deformations 

only, with shear deformation in only one plane. As is often done in the rheological 

literature, we will use a to denote not the entire stress tensor, but the non-zero off- 

diagonal element axy, and similarly y will denote the only non-zero elements of the 

deformation tensor, y G yxy = yyx. 

6.2 Shear Flow 

If a fluid is placed between parallel plates and the plates are pulled in opposite di- 

rections, the fluid will flow in response to this shear stress. The velocity of the fluid 

at  each plate should be equal to that of the plate, as no-slip boundary conditions 

apply to most fluids. There must then be a gradient in the fluid velocity in the y 

direction, normal to the plates. This flow pattern is called planar Couette flow, or 

simple shear flow. If the fluid has a non-zero viscosity, the velocity of each plate will 

be proportional to the applied force, for small enough forces. As particles move in the 

y direction, their velocities in the x direction change to that of the local flow velocity, 

and so there must be forces acting on them to maintain the velocity gradient. The 

energy supplied to the fluid by the external forces causes every velocity component to 

increase, and so is dissipated as heat. In an experiment, the fluid may be maintained 

at  constant temperature by contact with a reservoir at the boundary. 

The forces applied to the fluid are given by the stress tensor a. Here we will 

consider only shear flow, with axy the only non-zero off-diagonal element of a. For 

small flow rates, the relation between the flow rate and the stress is linear. The shear 
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flow rate = 2 is then related to  the shear stress by 

where 77 is the coefficient of shear viscosity of the fluid. 

Linear Viscoelasticity 

For most materials, there is a region of linear response, where the theory of linear 

viscoelasticity describes the behaviour of the material under strain. In the linear 

regime, a superposition principle holds: if a stress can be written as a sum of two 

other stresses, then the response to the total stress is given by the sum of the responses 

to the smaller stresses. 

As a step toward the goal of a general constitutive equation, rheologists determine 

the relationship between stress and strain for several simple situations. In the linear 

regime, this leads to  a number of rheological functions describing a material. Each 

of these functions contains all information about the shear flow properties of the 

material, but different functions are useful in different situations. In the next section, 

we will discuss some of these rheological functions. 

6.3.1 Rheological Functions 

One simple deformation is a single step in the strain, so that the strain is zero before 

t = to and some finite value yo for t > to. In this case, the stress will be related to 

the strain by 

~ ( t )  = G(t - to),Yo, (6.2) 

where G ( t )  is some function characterizing the material studied called the relaxation 

modulus. This form is required by the assumption that the stress and strain are 

linearly related and by the assumption that the material is in equilibrium before the 

deformation occurs. As long as the material is in equilibrium, G cannot depend on to 

alone, only on the time since the deformation occurred. G ( t )  is zero for t < 0, as the 

relation between stress and strain must be causal. 
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If a general time-dependent deformation y(t)  is made, the stress will be given by 

t 
a ( t )  = dtlG(t - tl)y(tl). L (6.3) 

To derive (6.3), the strain history y(t)  may be broken into intervals during which the 

strain is constant, and the stress response to this strain will be given by (6.2). These 

stresses may then be added using the superposition principle, as long as the material 

is studied in the linear regime. 

In some experiments, the strain is an oscillating function at frequency w. As is 

often done, oscillatory functions are represented by complex exponentials, so y(t) = 

yoeiWt. Calculations are carried out in the complex domain, and the real part is taken 

at the end of the calculation. In rheological literature this is not explicitly stated, but 

it is understood that all quantities must be real. The stress is then given by 

In (6.4), G* is a complex shear modulus, given by 

G* (w) = iw irn d t ~ ( t ) e - ' ~ ~ .  (6.5) 

The factor iw appears because y(t)  rather than y(t)  appears in (6.4). Here, G*(w) - 
G'(w) +iGU(w) (with GI, G" real functions of w) is a complex function of the frequency. 

The stress required to produce a specified strain will, in general, have both in-phase 

and out-of-phase components. G'(w) is called the storage modulus, or dynamic rigid- 

ity, and gives the in-phase response, while G"(w) is called the loss modulus. The 

energy dissipated as heat in an oscillatory shear experiment is related to G1I(w). 

There are many other equivalent ways of describing the rheological behaviour of 

a material. For example, one could specify the complex viscosity q*, where the stress 

in oscillatory shear is given by 

so that q* is given by q* = G*/iw. Simply writing y in terms of a gives another 

rheological function, the complex creep compliance, 

y (t) = J*(w)a(t).  
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The creep compliance J ( t )  describes the motion of a sample after a step increase in 

strain; y(t)  = J(t)ao if a( t )  is a step function of height a0 at t  = 0. 
Finally, one could specify part of the complex modulus, typically G1(w), and the 

loss angle 6, defined by 

tanb = -. 
G" 

The loss angle gives the phase shift between the stress and the strain, so that if 

y (t) -- eiwt , then a ( t )  - ei(wt+ '), or, equivalently, G* (w) = f (w)ei6. 

6.3.2 Modelling 

One way to model the possible responses to a stress history is to write a differential 

equation relating the stress and the strain [46, 471, though treatments of linear vis- 

coelasticity quickly move beyond this description. A general form of this relationship 

is 

with n = m or n = m - 1. A Hooke7s law elastic solid is given by the special case 

P o  = G, with all other parameters zero, so that a = Gy, while a Newtonian fluid is 

given by the special case P1 = q, so a = q?. 

A slightly more complicated model is the Maxwell model, with P1 = q and a1 = 7. 

This describes a viscoelastic fluid with a single relaxation time 7. The stress and 

strain are then related by solving 

This is solved by 

The relaxation function for the Maxwell model is then 



CHAPTER 6. RHEOLOGY 

while the complex modulus G*, from 6.5, is 

iwr) G* = 
1 + i w 7  

The real part of G*, 

has a high frequency limit Gt(w + oo) = q l r ,  showing that at high frequencies a 

Maxwell material behaves like an elastic 

real part of the complex viscosity, 

v'(w> = 

has a low frequency limit q'(w + 0) + 

viscous fluid at  low frequencies. 

solid with a shear modulus G = q l ~ .  The 

q, so the Maxwell material behaves like a 

Each of the differential equations describing a rheological model has a mechani- 

cal model equivalent. The mechanical models are equivalent to the rheological ones 

in the sense that the relation between the force applied to and the extension of the 

mechanical model is the same as the relation between the stress and the strain of the 

rheological model. In the case of the Maxwell model, the mechanical equivalent is 

given by a spring and a dashpot (in which the applied force and the rate of exten- 

sion are proportional) attached in series. This can then be generalized by attaching 

springs and dashpots with different spring constants and relaxation times together, 

in a variety of ways. It can be shown that any one of these general models is equiva- 

lent to a generalized Maxwell model, in which pairs of springs and dashpots in series 

are attached in parallel. 

elements: 

With a finite number 

The stress is given by summing the contributions of these 

n (t-t') 

d t ' e - 7  $(it) 
a 

of Maxwell modes, the generalized Maxwell model is often 

used as a fitting form to  represent experimental data. This form may also be gener- 

alized to  a continuous spectrum of relaxation times, so that the stress is given by the 

integral 
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where N( r )d r  is the contribution to the viscosity of the material of the Maxwell 

modes near r .  A relaxation function 4(t) is defined as 

00 N(7) 4(t  - t') = 1 dr- exp(-(t - 
0 7 

so that 

Comparing this with equation 6.3, it can be seen that G(t) = $(t) in the linear regime. 

This does not constrain the possible form for G(t); almost any G(t) may be obtained 

with the correct choice of N(r).  

6.3.3 Useful Limits 

The response of the material to certain external perturbations is given by the relax- 

ation function G(t). This generalizes the usual shear viscosity and shear modulus, 

which give the relations between stress and either strain rate or strain when they are 

independent of time. The relaxation function contains these static material properties 

in certain limits. The shear viscosity is defined in steady shear, when j. is constant. 

In this case, from equation (6.3), o(t)  = j. J4, dt1G(t - t'). The viscosity is given by 

the ratio of the steady state stress to the steady state shear rate, if both are small 

and time-independent, so the shear viscosity is 

o 00 

q I = 1 dtG(t) = lim G*(w)/iw = lim q*(w). 
Y w-+o w+o 

Similarly, the static shear modulus G is defined when the ratio of the shear stress 

to the strain is constant. If there is a steady state value of G, then G(t) as defined in 

equation (6.2) must approach a constant at large t ,  and 

G = lim G(t). 
t+m 

Most fluids have a largest relaxation time r, so that for large t the relaxation 

modulus depends on t as G(t) - e - t l T .  This then implies that at low frequencies 

G' - w2 and G" - wl. This behaviour can be seen in the Maxwell model above. 
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6.4 Non-linear Viscoelasticity 

The linear effects described above were first investigate( cl by Newton, and a fluid 

exhibiting only these effects is known as a Newtonian fluid. If the deformation imposed 

on a sample becomes large enough, the linear theory described above no longer applies, 

and non-Newtonian effects appear. This can occur for oscillatory deformations if the 

amplitude of the oscillations is large, or for steady flow if the flow rate is high. 

For a relatively simple fluid, such as water, the non-Newtonian regime cannot 

be reached at  experimentally accessible rates of continuous flow. Only in computer 

simulations can this regime be seen. For complex fluids, such as colloidal suspen- 

sions, polymer melts, and gelling materials, the non-linear regime can be studied in 

experiments. 

The theory of non-linear viscoelasticity is significantly less well developed than 

the linear theory; most of what is known about non-linear viscoelastic media is phe- 

nomenological. In the non-equilibrium molecular dynamics simulations described in 

chapter 9, only the non-linear regime may be explored, as the flow rate must be 

very high to produce a noticeable signal in the short time of the simulation. We 

will, therefore, briefly discuss some of what is known about the non-linear viscoelastic 

regime. 

6.4.1 Non-linear Flows 

In a fluid driven beyond the linear regime, the shear stress is no longer required to 

be a linear function of the shear rate. This is described by introducing a shear-rate- 

dependent viscosity q ( j ) ,  so the relation between stress and strain in steady shear 

flow is now 

0 = d?)?.  (6.22) 

Calculation of q(?) for a general fluid is difficult. There are several approaches which 

attempt to constrain the possible form of q(-;l) on very general grounds, which are 

discussed in books on rheology [46, 471. These approaches are sufficiently general so 
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as to allow a wide range of possible functions. However, there are several phenomeno- 

logical forms which are often used to fit data. One of the more common is the Cross 

equation 

This form will be used to extrapolate shear-rate-dependent viscosities determined in 

simulations to zero shear rate. 

Another non-linear effect which is observed in complex fluids is the development 

of normal stress differences. In an equilibrium fluid all of the diagonal elements of the 

stress tensor must be equal. To linear order in the shear rate, this must still be true, 

as a change in the sign of the shear rate should not change the sign of the diagonal 

elements of the stress tensor. Normal stress differences must then appear only to 

order j ,2. If the overall pressure is fixed, two normal stress differences may be defined 

in 3 dimensions. These are known as the first and second normal stress differences: 

Since Nl and N2 must be of order q2 or higher, the properties of the material are 

usually characterized by specifying the first and second normal stress coefficients, 

defined by 

N = , N2 = @ 2 y 2 .  (6.25) 

For many materials, these normal stress coefficients are in fact observed to become 

constants a t  low shear rates [50]. At higher shear rates, the normal stress coefficients 

become functions of j / ,  just as 77 does. 



Chapter 7 

Gels 

The phenomenology of the gel transition is reviewed in this chapter. The model used 

to describe the structure of a gel, percolation theory, is discussed in the first two 

sections. In sections 7.3 and 7.4 the formation and viscoelastic properties gels are 

discussed, while the results of other theoretical approaches are given in section 7.5. 

7.1 Percolation 

A common model to  describe the microscopic structure of a disordered material is the 

percolation model. In this model, a perfect lattice is diluted by the random deletion of 

sites or bonds between sites. Removal of sites is called site percolation, while removal 

of bonds is called bond percolation. Most of the important quantities are independent 

of which model is chosen, and in this thesis we will discuss only bond percolation. 

Each bond is taken to be present in the diluted lattice with probability p, which is the 

only control parameter of the model. Each bond is taken to be present or absent as 

an independent random variable, with no correlations between bonds. The behaviour 

of various geometric quantities of the remaining set of bonds resembles in many ways 

the behaviour of physical properties near a phase transition. There is a critical bond 

probability, p,, above which there is always a percolating cluster, meaning that there 

is a cluster of lattice sites connected by bonds which extends from one side of the 

lattice to the other. This transition is only sharp in the thermodynamic limit, where 
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the system size L goes to infinity; for finite L, the transition is rounded off. Below 

the critical point, there exist only finite clusters. These clusters have a characteristic 

size I, which depends on the distance from the critical point, and follows a power 

law, [ -- (p - p,)-'. This correlation length is defined by the probability that a site 

a distance x away from a chosen site belongs to the same connected cluster. The 

similarity between this model and critical phenomena in statistical physics has led to 

intensive study of percolation theory, as an example of an easily understood model. 

The percolation problem can, in fact, be mapped onto a limit of a standard model 

in statistical mechanics, the q = 1 limit of the q-state Potts model [21]. Much more 

about the percolation problem can be found in several books [51] and [52]; a brief 

description of some facts about this problem, including the mapping to the Potts 

model, may be found in [53]. 

In addition to the correlation length [, all other geometric properties of the model 

scale as powers of the distance from the critical point. This gives a set of critical 

exponents which are universal, in the sense that they do not depend on the details 

of the model. The exponents of site and bond percolation are the same, and the 

exponents do not depend on the lattice which has been chosen for dilution. As in 

thermal critical phenomena, there is an upper critical dimension above which all 

exponents take on mean field values. For the percolation problem, the upper critical 

dimension is 6, so the physical dimension, 3, is far from the critical dimension. Mean 

field exponents are also realized on another lattice, the Bethe lattice. A Bethe lattice, 

also known as a Cayley tree, has a tree-like structure. Each vertex is attached to a 

fixed number of branches, but there are no loops formed of bonds connected to each 

other. 

Not all of these exponents describing the geometric structure are independent; 

there exist several scaling relationships between them. These scaling relations should 

apply not only to networks constructed by independently adding bonds between neigh- 

bouring sites but also to other networks of bonded sites. These scaling relations reduce 

the number of independent exponents describing the static structure of percolation 

clusters to  two. Once two exponents have been measured, the universality class of the 

structure is fixed. 
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definition I d = 2 ( d = 3 1 Mean Field 1 

Table 7.1: The values of the exponents governing various structural quantities in the 
percolation problem. N is the total number of clusters, P is the probability that a 
randomly chosen site belongs to the infinite cluster, S is the mean cluster size, J is the 
correlation length, and n, is the number of clusters of s connected sites. a controls 
the cluster size distribution away from p,, with n, - s-' e -CS , and c - Ip-pclll". 
There is thus a cutoff in the cluster size distribution, with a characteristic cluster size 
which scales as Mchar - Ip - pCJ-l/u. 

v 
a 
I- 

7.2 Modelling Materials 

Once a random structure has been constructed, by deleting bonds from a regular 

lattice in a completely uncorrelated way or by some other method, the resulting 

structure may be used as a model for a disordered material. The earliest use of 

percolation theory was to  study randomly packed grains, like coffee in a filter, through 

which a fluid could pass if there was a spanning cluster of open space between grains. 

This picture of fluid flow through randomly connected channels has also been used to 

model the motion of oil through sand. The same diluted lattice has also been used 

as a model for a conductor with random insulating impurities. The bonds are taken 

be conducting, and the dependence of the conductivity of a sample on the number of 

impurities may be calculated from the dependence of the resistance on the number of 

bonds. The percolation model has also been used to  model the structure of a material 

close to its gel point, a t  which it experiences a transition from a liquid to a solid. The 

predictions of this model will be discussed in the rest of this thesis. 

In the percolation picture of a randomly linked fluid, the sites of a lattice are 

taken to be the monomers that will make up the crosslinked material. At low p, a 

,- - . 

J- lp-pcl-Y ' 4'13 
(see caption) 

n ,  - sWT at p, 

0 . 8 8 '  112 
36/91 
187191 

0.45 
2.18 

112 
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few monomers are bonded into dimers and trimers. As p increases, larger and larger 

clusters are formed, forming branched polymers. Eventually a single giant molecule 

spans the entire reaction vessel. At this point, the crosslinked material has formed a 

disordered solid state. Since the bonding process is taken to occur between each pair 

of neighbouring sites completely independently, the scaling of the geometric properties 

of the large molecules in the fluid state and the spanning cluster in the solid state are 

given by the critical exponents of percolation theory. In the next few sections, we will 

discuss the experimental results on the scaling of these geometric properties and how 

well approximated they are by the predictions of percolation theory, as well as results 

of experiments measuring the viscoelastic properties of these crosslinked materials. 

7.3 Gels 

Gels are divided into two classes, chemical gels and physical gels, according to the 

nature of the crosslinks between monomers. Chemical gels are created when the 

monomers form permanent covalent bonds and are stable against changes in ther- 

modynamic parameters. Physical gels are formed when the bonds between the units 

which make up the gel are due to some other physical mechanism. Since the bonds 

are not chemical bonds, they may be destroyed by changes in thermodynamic param- 

eters such as temperature; physical gels are often called "reversible" or "weak" gels. 

For example, in block copolymers one of the blocks may phase segregate and create 

junctions linking different polymer chains. Physical gels can also arise through the 

formation of microcrystalline regions containing parts of several polymer chains, or 

when several polymer chains form a helix, linking several chains at one point. These 

gels are often created in solution with a solvent. 

The materials the structure of which is best described by percolation theory are 

gels made from the polycondensation of short monomers. We will discuss experiments 

on several of these. A large number of experiments have been performed to study 

the structural exponents of gelling materials, almost all on the sol side. See p. 130 

in [54] for a list of experimental exponent values, most consistent with the theoretical 

predictions. It seems that at  least some gels have structures which are described by 
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percolation theory. 

7.3.1 Gel Formation 

The fact that the structure of some gels is well described by percolation is not a priori 

obvious. In some ways, the gelation process is much like percolation: bonds between 

the elements which make up the gel are added randomly, and it seems likely that 

there is very little correlation between the presence or absence of two possible bonds. 

However, during the gelation, these elements are moving, and so the structure of a 

gel might be expected to resemble that created by the aggregation of particles. There 

are several models of aggregation which produce different static structures. However, 

these models do not seem to describe gels. Martin and Adolf [55] describe a theoretical 

model of an aggregation process in which aggregation of clusters is governed by a 

Smoluchowski equation for the time-evolution of the number Nm of clusters of size m, 

The rates for the reactions of clusters of size i and j are given by the kernel Kij.  

Since this Smoluchowski equation contains a set of undetermined rates, many different 

structures may be obtained by varying these rates. If a structure so obtained does 

obey a scaling relation, the static exponents describing the cluster size distribution 

is likely to  differ from those of percolation. The Smoluchowski theory does not make 

strong predictions about the structure of the clusters formed in gelation. 

From the Smoluchowski equation, it is difficult to see why so many gels have 

structures which are described by percolation theory. The Smoluchowski approach 

does have some limitations. It is a mean-field approach, in which fluctuations are 

neglected, and contains no information about the spatial motion of the clusters. An- 

other physical feature which is not included in the Smoluchowski description is the 

fact that close to the gel point, as the viscosity becomes large, the motion of molecules 

and clusters of molecules becomes very slow. This may explain why the percolation 

model, in which crosslinking happens much faster than the motion of particles, de- 

scribes the structure of gels. It is possible that a more complete description of the 
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gelation process may help to explain the usefulness of percolation theory. 

Experiments on Viscoelastic Properties of Gels 

While the static structures of at least some systems close to the sol-gel transition 

seems to be well described by percolation theory, the situation for the exponents 

describing the dynamic properties of these systems is far less clear. Systems with 

similar static properties seem to have quite different dynamics. In most cases, the 

dynamic properties are observed to behave as power laws close to p,, with 77 - (p, - 

p)-S on the fluid side of the transition, the shear modulus p - (p - P , ) ~  on the solid 

side, and the dynamic viscosity G*(w)  scaling as w-" at p,. In this section we will 

briefly discuss the results of experiments to determine these exponents. 

Lusignan et al. [56] studied a series of randomly branched polyesters. These 

branched polymers were prepared from adipic acid and trimethylolpropane. These 

chemicals form permanent bonds and create a chemical gel. The structure of the sam- 

ples were characterized by measuring the weight-averaged molecular mass M,, which 

scales as (p-p,)-7, as well as the largest molecular mass M,,,. The largest mass M,, 

as measured in an experiment should be proportional to the characteristic largest mass 

Mchar of clusters in percolation theory, which scales as Mchar - (P Since it is 

experimentally difficult to determine the distance to the critical point of a given sam- 

ple, measuring several different scaling properties is useful in determining exponents in 

a way which does not require the distance to the critical point to be measured. Using 

a scaling law, the exponent T was determined for these polymers, as T = 2.17 f 0.07, 

consistent with the exponent for percolation. Further evidence that these polymers 

had structural properties given by percolation theory came from measurements of the 

number distribution of polymers of mass M. This was fit to a functional form using 

the percolation values of a and T as well as two free parameters setting the overall 

scale and a characteristic mass, yielding good fits. 

The viscoelastic properties of these polymers were determined by oscillatory strain 

experiments, and by measuring the creep of stressed samples. The exponents were 

determined to be s l y  = 0.760 & 0.038, s a  = 0.620 f 0.076, t l y  = 1.52 5 0.18, 
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ta = 1.23 f 0.25, and u = 0.659. Using the percolation values for a and y, the 

dynamical exponents can be extracted, and are shown in table 7.2. 

Pectin, which is a biopolymer found in plants and used in making fruit jellies, can 

form a gel when divalent cations such as calcium are added. The density of crosslinks 

can be controlled by the concentration of calcium added. This gel is thermoreversible, 

and so should be classified as a physical gel. However, a strained sample on the gel 

side of the transition does not relax for several days, indicating that the bonds remain 

for long times. The fact that the bonds are temporary does mean that it is difficult 

to characterize the structure of the polymers. It is impossible to  dilute the sample, 

either to separate out polymers of different masses and count them or to perform a 

scattering experiment. For this system, the structure of the clusters has not been 

experimentally determined. Axelos and Kolb [57] measured the rheological exponents 

of a pectin gel near its gel point, using both steady state shear flow and oscillatory 

measurements; these exponents are shown in table 7.2. 

A group of experimentalists in France has performed extensive work on poly- 

condensation of diisocyanate and triol, both with and without solvent, to form a 

polyurethane gel. Each triol molecule is a trifunctional polymer, which can form 

bonds with another triol using the difunctional diisocyanate as a bridge. The extent 

of the reaction, giving the number of crosslinks, was controlled by varying the fraction 

of diisocyanate. In [58] the authors used neutron scattering on diluted samples to find 

T = 2 .2f  0.04, and in [59], they used light scattering to find y = l . 7 l f  0.06, consistent 

with percolation theory. In several other papers [60, 61, 621, they present the results 

of various measurements of mechanical and viscoelastic properties of these branched 

polymers. Their results are given in table 7.2. 

The same group has performed experiments on styrene formed by radical copoly- 

merization. They seem not to have determined the exponents governing the struc- 

tural properties of these samples, although in [59] they mention other work on radical 

copolymerized samples which gave results within experimental error of percolation 

values. In [60], they present the results of rheological experiments done on several 

samples of this gel; their results are shown in table 7.2. The results shown in this paper 

do show considerable scatter in estimated exponent values for different gel samples. 
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Another group, Devreux et al. [63], has performed experiments on a silica gel. 

A gel was condensed from a silicon alkoxide, called TEOS, in two different catalysis 

conditions. At low pH, they observed a crossover; the behaviour of the dynamical 

properties far from the gel transition differed significantly from that close to the 

transition. The exponents found close to the gel transition are given in table 7.2. 

This group seems not to have determined the exponents characterizing the static 

structure, and used the gel time as a measure of the distance to the gel point. They 

assume that the gel time is proportional to the extent of reaction; this assumption is 

supported by NMR data. The exponent s, giving the power-law decay of the complex 

viscosity, is independent of this assumption, and requires only that the gel point be 

identified correctly. 

system 

Table 7.2: A summary of experimentally measured exponents governing rheological 
properties of a variety of gelling materials. 

polyester 
pectin 

polycondensate 
copolymer 

silica 

The experimental results shown in table 7.2 vary from one system to another, and 

it is difficult to see what the important factors control the divergences of viscoelastic 

properties close to p,. It is not clear at this point what universality classes should 

describe these viscoelastic properties. This provides a motivation for the simulations 

done in this thesis. In simulations, the microscopic structure of the material is known 

and the macroscopic properties may be calculated extract exponents. With enough 

simulations it should be possible to identify which microscopic features are important 

in the determination of macroscopic properties. 

s I t u I Ref. I 
1.36 f 0.09 
0.82 f 0.05 
0 . 8 f 0 . 1  

0.78 
0.7 f 0.1 

2.71 f 0.3 
1.93 f 0.08 
3 . 2 f 0 . 5  

2.1 
2.0 f 0.1 

0.659 f 0.015 
0.71 f 0.02 
0.70f0.02 

0.73 f 0.02 

[56] 
[57] 

[62,61] 
[601 
[63] 
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7.5 Theoretical Models of Dynamic Properties 

There have been a number of attempts to calculate the dynamic properties of ran- 

domly diluted networks and to relate the exponents governing the viscoelastic prop- 

erties to those describing the static structure. We will describe several of these ap- 

proaches here. 

7.5.1 Dynamic Scaling 

Some very general statements may be made on the basis of a dynamical scaling ar- 

gument given in [54]. This argument should hold for any material for which various 

measurable quantities follow power laws near the critical point. The argument begins 

with the assumptions that the zero frequency viscosity and shear modulus scale like 

q = qO(pc - p)-S and G = Go(p - P,)~,  as discussed above. It further assumes that 

there is a crossover frequency, w*, corresponding to the largest relaxation time. The 

crossover frequency goes to zero near the gel point, as w* = wolp - pclZ. Below this 

frequency, the material behaves like a fluid or a solid, depending on which side of 

the gel transition is being studied. Above this frequency, the material is assumed to  

have a power law decay in the complex modulus, with G* - (iw/wo)", which can be 

rewritten in terms of the loss angle defined in chapter 6, 

with 
un- 

6 = arctan (g) = -. 
2 

It is usually argued that the power law behaviour of the complex modulus is a 

consequence of the fractal nature of the gel state. The diverging time scale corresponds 

to a diverging correlation length, and the structure of the clusters are self-similar below 

the correlation length, and so may be expected to  relax in this way. However, the 

dynamic scaling argument does not depend on this assumption about the structure 

and should hold as long as the scaling laws above hold. 

Using the scaling of w* to replace p - p, in the scaling of the viscosity and shear 

modulus, we get q - (w*)-~/" and G - (w*)~/*. But w* is the crossover frequency, 
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below which liquid-like or solid-like behaviour is seen, so G1(w*) - G - ( w * ) ~ / "  on the 

solid side of the transition, and G1'(w*) w * ~  -- (w*)'-~/ '  o n the liquid side. Above 

w*, both of these quantities scale like w". Matching the scaling behaviour at  w*, it 

must be the case that u = t l z ,  and u = 1 - s lz .  This then leads to two relations 

between the dynamical exponents: 

and 

s + t = z .  

These two relations are often used as a consistency check on experimental and simula- 

tion results. Any calculated exponents must obey these relations, as the experimental 

values in table 7.2 do. The relation in equation (7.3) gives another check, as it im- 

plies that the ratio of the high-frequency limits of G' and G" should be related to the 

critical exponent u. 

7.5.2 Vulcanized Rubber 

An early model for a disordered solid is the Flory-Stockmeyer model for vulcanized 

rubber. This is a mean-field model, so the exponents associated with this model 

should be observed in a high-enough dimensional space and also may be observed far 

from the critical point. It is now recognized to be in the same universality class as 

the percolation problem on a Bethe lattice, where loops of bonded particles cannot 

occur. De Gennes [64] showed that as the polymer chains between crosslinks become 

longer the critical region in which non-mean-field exponents are observed becomes 

smaller. This model should describe the properties of randomly crosslinked long 

chain polymers but not gels and short chain polymers close to the critical point. In 

the model studied in this thesis, there is a single spring connecting possible junction 

points in the network, so the critical region should be large; the classical theory should 

not apply. 
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7.5.3 The Electrical Analogy 

The earliest attempts to  determine the numerical values of the dynamic exponents 

for the materials with structures described by percolation theory were made by de 

Gennes. He argued that the shear modulus should vanish at  p, in the same way as the 

conductivity of a random resistor network [65] and suggested that the viscosity should 

diverge in the same way as does the conductivity of a random mixture of conductors 

and superconductors [66]. In [67], de Gennes presents an argument intended to show 

that the viscosity of a network with harmonic interactions between particles behaves 

in the same way as the polarizability of a random network of superconductors and 

capacitors, and then argues that the conductivity of a mixture of conductors and 

superconductors should behave in the same way. These two ideas, relating the shear 

modulus and the viscosity to properties of electrical networks, are referred to as 

"the electrical analogy" to  viscoelastic media. A proof of the equivalence of resistor 

networks and networks of zero-rest-length springs was given by [68]. This proof fails 

for springs of finite rest length. However, renormalization group arguments indicate 

that finite-rest-length springs are effectively the same as zero-rest-length springs at  

finite temperature. The exponents describing the conductance properties of resistor 

networks have been measured using a number of different techniques, as done in [69]. 

If the electrical analogy is correct, the numerically determined scaling exponents for 

electrical networks can be directly applied to  the viscoelastic media. Their values are 

given in tables 7.3 and 7.4. 

7.5.4 Rouse Dynamics 

The Rouse model is a simple model of a polymer system. The polymer is modelled 

as a set of beads connected by springs. There are no hydrodynamic or excluded 

volume interactions between beads. The effects of all other interactions are modelled 

by neglecting inertia and, instead, using a local drag on each bead. A random force 

is used to  model fluctuations in the force on each particle. If the particles are under 

shear flow, this can be included by imposing an overall position-dependent velocity 
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vex,. The equation of motion for each bead is then 

where H includes only the forces due to springs linking the beads. A harmonic force 

H = & xi,, Fiiri . r, is often used. Here F is the connectivity matrix, with F i j  = 1 

if particles i and j are connected and zero otherwise. The noise term has the usual 

delta-function correlation (tr (t)t;(t1)) = 2 7 b a p b i j b ( t  - t') . Without the noise term, 

the beads relax to a steady state with d H / &  = 0, and the velocity equal to the 

externally applied velocity. 

Since the Rouse model is so simple, it can be solved exactly for linear chains, and 

is popular as a first approximation for polymer systems. Randomly crosslinked perco- 

lation clusters with Rouse dynamics have been used to model a randomly crosslinked 

solid. Both simple scaling arguments and rigorous calculations have been done, yield- 

ing quite different results. Both of these approaches will be discussed below. 

Scaling Arguments  

Attempts to calculate the viscosity of Rouse clusters often begin by relating the vis- 

cosity to the longest relaxation time of the cluster. The scaling of this relaxation time 

is then related to the exponents governing the geometrical properties of clusters. In 

the first paper to relate the viscosity to static exponents [67], de Gennes suggested 

the scaling relation for Rouse dynamics s  = 2u - P. This result has been re-derived 

in other ways [70], and extended to produce scaling relations for other dynamic ex- 

ponents, such as u = du/(du + s ) .  The numerical values of these exponents are given 

in given in tables 7.3 and 7.4. 

It has been suggested [71] that the above scaling arguments fail because the inter- 

nal structure of clusters is governed by another exponent, independent of the usual 

percolation exponents. This then changes the relaxation spectrum [72], and thus the 

viscosity. 
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Exact Calculation 

In a recent series of papers Broderix, Lowe, Miiller, and Zippelius [73, 71, 74, 75, 761 

have calculated the critical exponents of a model in which the dynamics of monomers 

are given by the Rouse model. In this calculation, the divergence of the viscosity 

is related to another exponent describing the behaviour of a resistor network, the 

crossover exponent 4. This exponent governs the scaling of the resistance between 

two points on the incipient spanning cluster a distance r apart, with R - @Iu. Their 

calculation produces the scaling law s = 4 - ,f3. In this work, the calculation of the 

viscosity begins with an exact mapping onto a network of resistors, here seen to be 

valid for Rouse dynamics only. The same group has calculated the divergence of the 

first normal stress coefficient Q1 - (pc  - p) -e .  In [71], they derive a scaling relation, 

P = s e ,  and use numerical data for u to find P E 4.9. In [76], a relation between the 

dynamics of Rouse clusters and diffusion on percolation clusters is used to derive two 

more scaling relations. These results fix the values of all of the dynamical exponents. 

I Electrical analogy 1 0.67 1 2.0 1 
I I I I I 

Table 7.3: Numerical values of theoretical predictions for the scaling exponents in 
three dimensions. The line labelled "scaling Rouse" is the prediction for the Rouse 
model using scaling arguments. 

Scaling Rouse 
Rouse 

- 
Rouse 1 1.2 1 1 0.7 1 3.8 1 5.0 

1.35 
0.71 

Electrical analogy 
Scaling Rouse 

Table 7.4: Numerical values of theoretical predictions for the scaling exponents in two 
dimensions. 
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Chapter 8 

Simulation Techniques 

In this chapter we will describe the standard molecular dynamics techniques which 

we have used in our simulations of a gel. We will briefly describe the derivation of 

a discrete integration scheme from an equation of motion, as well as the equations 

of motion used to  create shear flow a t  constant temperature in a non-equilibrium 

simulation. In section 8.7 we will give the Green-Kubo formula which is used to 

calculate the viscosity from an equilibrium simulation. 

8.1 Molecular Dynamics 

In a molecular dynamics simulation, a collection of particles is tracked as it moves 

through phase space following their equations of motion. Given a set of positions 

and velocities corresponding to a trajectory through phase space, it is then possi- 

ble to measure a number of collective properties of the system of particles. These 

properties are measured as a time average, as is done in an experiment. This differs 

both from most analytical statistical mechanics calculations and from a Monte Carlo 

simulation, in which a time average is replaced by an ensemble average. A molecu- 

lar dynamics technique has an advantage over Monte Carlo in that it is possible to 

calculate properties that depend on the dynamics of the system, such as two-time 

correlation functions. The quantities of most interest here, the viscosity and normal 

stress coefficients of the materials studied, depend on the dynamics of the system. The 
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Green-Kubo expression (given below in section 8.7) for the viscosity in terms of the 

equilibrium fluctuations makes this clear, as it depends on the time-evolution of the 

system. The steady-state method of calculating the viscosity described in section 8.4 

also requires that the physical dynamics be properly simulated. 

The distinction mentioned between a molecular dynamics simulation and a Monte 

Carlo one is not as sharp as suggested here: most molecular dynamics simulations, 

including those done in this thesis, are averaged over a selection of initial conditions, 

and so an ensemble average is performed, while it is possible to extract information 

about dynamics from some kinds of Monte Carlo. In the first part of this thesis, the 

time-dependence of macroscopic properties are calculated in Monte Carlo simulations 

using microscopic dynamics, and the time-dependence of particular models is often of 

interest in Monte Carlo simulations. However, the molecular dynamics technique does 

give a very direct way of determining dynamical properties of a physical system, as 

the physical Newtonian dynamics are explicitly followed. This chapter will describe 

a few aspects of molecular dynamics important to this thesis. Much more detailed 

information is available in the many books on the subject, including [77], [78], and [79]. 

In the simplest kind of molecular dynamics, the configuration of a system of par- 

ticles evolves through time following Newton's laws. The system then explores a 

constant energy surface in phase space; the hope is that the system explores enough 

of this surface so that measurements made are characteristic of the micro-canonical en- 

semble. This will be called "equilibrium molecular dynamics", to distinguish it from 

the non-equilibrium techniques discussed later. The state of the system is evolved 

forward in time by a discrete timestep many times. There are many different dis- 

cretization techniques. A simple one, used in the simulations done in this thesis, is 

sometimes called "velocity Verlet". In this algorithm, the positions and velocities of 

all particles are advanced from time t to  time t + At using 

xi( t+At/2)  = xi(t) +vi(t)At/2 (8.1) 

vi(t + At) = vi(t)  + Fi({x(t + At/2)))At/mi (8.2) 

x i ( t+At)  = xi(t+At/2) +vi(t+At)At/2. (8.3) 

In the notation used here, xi and vi represent the position and velocity of particle i ,  
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while {x) represents the set of the positions of all particles. 

There are several advantages to the Verlet method. First, the force evaluation, 
which is the most expensive step in computer time, is done only once. Second, the 

positions and velocities are evaluated a t  the same time, at  the beginning and end of 

the timestep. This makes it easier to calculate quantities which depend on both sets 

of microscopic variables, such as the stress or the total energy. For an average of 

the stress itself, this is not so important, as the kinetic and potential contributions 

are added and so average separately. For two-time stress-stress correlations, however, 

having the positions and velocities available at  the same time is a useful feature. Third, 

this scheme is time-reversible, as are the underlying dynamical laws. In addition to 

the fact that this better represents the physical dynamics, this makes it possible to 

run the simulation backward, so as to check the that the calculation has been done 

correctly. Fourth, this scheme is symplectic. The symplectic group is a symmetry 

of the Hamiltonian dynamics we wish to simulate, and maintaining this symmetry 

is associated with several desirable features. This will be discussed further below. 

Fifth, it preserves areas in phase space. If an ensemble of systems are started from a 

volume of phase space, say a constant energy surface, then the volume of phase space 

occupied by the ensemble at  a later time will be the same as at  t = 0. These last 

three features are believed to improve energy conservation properties [80]. 

The evolution of the coordinates and momenta in a Hamiltonian may be regarded 

as a linear map. The Jacobi matrices of the map over a single timestep are members 

of a group, called the symplectic group. This fact is related to conservation laws 

restricting the possible evolution of volumes in phase space. Using an integrator 

which respects this conservation should produce more accurate results. 

While any numerical scheme will exhibit energy fluctuations, it is important that 

there be no systematic drift in the energy. If the integration scheme is time-reversible, 

then it seems likely that there will be no drift in energy. If the integrator is not area 

preserving and, therefore, not time-reversible, then the set of systems in a constant 

energy surface in phase space will evolve into a different, usually larger, volume. The 

energy thus cannot be conserved. Time reversibility is also important for overall 

energy conservation in another way: if an integration scheme is time reversible, it 
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cannot exhibit a steady drift of the energy over a period of the Hamiltonian simulated. 

However, the integration time of a typical molecular dynamics simulation is much 

shorter than the Poincark time, the recurrence time of the dynamical system, and so 

a time reversible algorithm could exhibit drift over the course of a simulation. 

The more stringent requirement that the integrator be symplectic does constrain 

the deviation of the energy from a constant, constraining both the noise and the drift 

in energy. This applies only to errors due to discretization; any errors due to round-off 

may cause systematic problems. 

The lack of energy drift in a symplectic time-reversible algorithm is attributed to  

the fact that the equations of motion in a symplectic integration scheme can be derived 

from a Hamiltonian. This Hamiltonian differs from the one which we wish to study by 

terms which depend on the timestep to  some power. Since the symplectic integration 

scheme conserves a Hamiltonian, which differs from the desired one by a constant, the 

energy, given by the Hamiltonian we wish to study, is also (almost) conserved. There 

should be no systematic drift in the energy or other measured quantities, only small 

fluctuations due to truncation error. See Thijssen [80] for a longer discussion of this 

point. 

The equations of motion for non-equilibrium molecular dynamics done here are not 

derived from a Hamiltonian, and so the integration scheme need not be symplectic. 

However, the method described in the next section for the construction of symplectic 

integration schemes can also be used to construct an integration scheme for a non- 

Hamiltonian system. This integration scheme will be time reversible and should be 

stable for large timesteps. 

Liouville Operators 

The fact that the Verlet algorithm is symplectic and therefore stable for large timesteps 

was discovered after it was constructed. There is now a systematic method of con- 

structing symplectic algorithms. In this method, one begins by considering the time 

evolution of a function of the coordinates of the system under the desired dynamics. 

The state of a system of particles is conventionally denoted by r, standing for the set 
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all microscopic variables describing the system. This always includes the positions 

and momenta of all particles, and may also include other variables, such as the strain 

of the simulation cell. Any function f (I?) of the microscopic variables depends on 

time implicitly, through the time dependence of the coordinates, so 

This defines the Liouville operator L. The time derivatives on the right hand side 

are given by the equations of motion of the system to be simulated. For the usual 

Newtonian mechanics, they are 

The formal solution to (8.4) is 

f (r ( t ) )  = eiLt f (r (0)). (8.7) 

In this solution, U ( t )  = eiLt acts as a classical propagator, in that it acts on any 

function f to give the function at a later time. In a simulation, the propagator is used 

to evolve the system forward by a small timestep A t  many times, giving 

for each step from t  to t  + A t .  This formal solution is not useful as written, as solving 

for the action of the propagator would be equivalent to solving for the motion of the 

entire system of particles. If this could be done exactly, then the state of the system 

could be calculated at  any time from the initial condition. However, this can only be 

done for very simple systems. For systems of many particles, a standard technique is 

to replace the exact propagator by a product of operators whose action on the state 

point can be calculated but which differs from the desired propagator by terms which 

are of higher order in A t .  

However, (8.8) is a convenient starting place for an approximate solution. The first 

step in the derivation of an approximation scheme is to split the Liouville operator 
d d dx d into two or more pieces, L = LI + L2. For example, take iL1 = Zz, and iL2 = zz. 
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This then gives an approximate expression for the propagator 

which follows from the Trotter identity given in [77] 

,A+B = ( e ~ / 2 ~ e ~ / ~ e ~ / 2 ~ )  eO(l/N2) (8.10) 

for large N. To determine the result of the action of each term in the approximate 

propagator on f ,  each exponential factor may be Taylor expanded. The exponential 

factor containing L2 becomes 

e i L ~ A t  - 1 d - 1 + iL2At + -(iL2At)2 = 1 + Atx . - + . . . . 
2 dx 

(8.11) 

Acting on f (x, p),  

d 
eaznt f (x, p) f (x, p) + Atx . -f (x, P) + . . . . 

dx 
(8.12) 

But this is just the Taylor expansion of f ( x  + Atx, p),  and so 

The other exponential factor, exp(iLl At) with iL2 = p . 6,  acts similarly, and so 

Since the factor exp(iL2At/2) is furthest to the right and thus acts on f first, the 

forces in p are evaluated at the posit ions of the particles at t + At/2. Finally the last 

factor of exp(iL2At/2) acts on the result of applying the previous two operators. The 

action of these three operators can be represented by the evolution of the coordinates 

of the system as 

xi ( t  + At/2) = xi (t) + pi (t)At/2mi (8.15) 

pi(t + At) = pi(t) + F({x(t + Atl2)))At (8.16) 

xi(t + At) = xi(t + At/2) + pi(t + At)At/2mi. (8.17) 
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This is the "velocity Verlet" algorithm. Splitting the Liouville operator in other 

ways will result in other algorithms, with similar stability properties. All of the 

Verlet-equivalent algorithms may be derived in this way. This method of splitting 

the Liouville operator has also been used to derive new kinds of algorithms. Berne, 

Tuckerman, and Martyna [81] have used this method to derive multiple-timestep 

algorithms in which the effects of a slowly varying force are calculated infrequently, 

while those of a quickly varying force are calculated more often. 

8.3 Constant Temperature 

In an equilibrium simulation, the temperature of the system can be defined by the 

equipartition theorem, as (mv2/2) = dlcBT/2, for each particle in d spatial dimen- 

sions. The average total kinetic energy is thus proportional to the temperature. In a 

non-equilibrium situation the temperature is not defined. Even close to  equilibrium, 

where it may be a reasonable approximation to consider a local effective temperature, 

equipartition no longer holds, and there is no general expression for the temperature. 

However, the kinetic energy can be used as an empirical measure of the temperature. 

In a flowing fluid, the kinetic temperature calculated using the peculiar velocity (the 

velocity measured with respect to the local flow velocity) is the temperature that 

would be measured by a thermometer moving with the local flow velocity. There are 

other methods of defining the temperature of a non-equilibrium system, which require 

more simulational effort. For example, a small equilibrium system may be attached 

to  the system of interest and energy allowed to flow back and forth between the two 

systems. In the simulations done here, the simple kinetic temperature was used. 

There are several techniques used to simulate a system at  constant temperature. 

There are stochastic methods, in which a random force is added to  the equations of 

motion. This then simulates the motion of a particle in a bath of smaller particles, 

which give it random kicks. The size of the random force may be chosen so as to  

produce a constant average temperature. There are also extended system methods, 

in which one or more additional degrees of freedom are simulated. These additional 

degrees of freedom are intended to  describe the dynamics of a heat bath attached to 
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the system. A constant temperature may also be maintained by a Lagrange multiplier, 

constraining the kinetic energy. Both of the last two techniques were used in these 

simulations. 

The NosBHoover thermostat is an extended-system method. Unlike the constraint 

method, a Nos&Hoover thermostat drives the system toward a specified temperature 

but allows fluctuations in the kinetic energy about the desired average temperature. 

It was used in these simulations during the equilibration phase. Since the particles 

were all initially positioned on a lattice, it was necessary to run for a reasonably large 

number of timesteps to reach a more representative configuration. 

The Nos6-Hoover thermostat is based on a Hamiltonian introduced by Nos6 [82], 

in which the many particles simulated are coupled to an additional degree of free- 

dom s. This single degree of freedom is intended to represent an external heat bath 

coupled to the system. Later extensions of this method added additional degrees of 

freedom to better represent the heat bath [77]. This was not done here, as the Nos& 

Hoover thermostat was used only in an early equilibration phase of the simulation, 

and the single degree of freedom method was sufficient to drive the system to the de- 

sired temperature. Hoover [83] rewrote the equations of motion derived from Nosk's 

Hamiltonian as 

Here, c is related to the "momentum" associated with the heat bath and 7 is a 

relaxation time of the heat bath. K ( { p ) )  = Cip:/2m is the instantaneous kinetic 

energy, and KO = dNkBT/2 in d dimensions is the kinetic energy corresponding to 

to the desired temperature T. The evolution of s itself may be ignored, as it does 

not influence the motion of the rest of the system. Since the NosBHoover thermostat 

may be derived from a Hamiltonian, a version of Liouvillels theorem determines the 
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time evolution of the density in phase space, p ( { x ) ,  {p), C). 
Since the initial condition for each simulation run was generated as a state chosen 

by evolving forward in time using the NosBHoover thermostat, these initial conditions 

should then be distributed according to the canonical constant temperature ensemble. 

The kinetic temperature was maintained at a constant value during the measure- 

ment phase of the simulation using a method called a "Gaussian isokinetic thermo- 

stat." The equations of motion for this thermostat are 

Here a, plays a role similar to that of a Lagrange multiplier. It is chosen to be 

to keep the kinetic energy constant. A little algebra shows that, with these definitions, 

the time derivative of the kinetic energy K(p) is zero. 

8.4 Homogeneous Shear Flow 

The properties of a flowing fluid can be studied directly by a modified molecular 

dynamics technique known as non-equilibrium molecular dynamics. There are several 

methods of creating a shear flow gradient in a simulated fluid. The simplest uses the 

boundary condition to create a flow. In this technique, the usual Newtonian equations 

of motion are used, but the boundary condition is modified. The neighbouring cells 

of the simulation cell in the y direction are thought of as moving relative to the cell. 

To create a velocity gradient .;I in a cell of size L, the cell above must move at a 

velocity ubox = .;IL/2, and that below at -ubox. This has two effects. First, the 

calculation of the forces on a particle is modified. The neighbouring particles of any 

particle are given not by the usual minimum image convention, but by those particles 

whose shifted positions are within an interaction distance of the particles. Second, 
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the motion of particles across a boundary must be handled correctly. When a particle 

crosses a boundary parallel to the y direction, it is replaced in the simulation box in a 

position corresponding to its shifted position in the x direction. The x component of 

the particle velocity must also be changed as it crosses a boundary. If a particle crosses 

the boundary in the upward direction, it is replaced in the bottom of the simulation 

cell. It should then be thought of as coming from the cell below the current one and so 

must have the relative velocity of the upper and lower boundaries, 2vb,, subtracted. 

These boundary conditions are known as Lees-Edwards boundary conditions [84]. 

A steady flow may also be generated by another technique, in which a homogeneous 

deformation is applied to the system1. In this method, the equations of motion are 

changed to generate a velocity gradient. The new equations of motion are 

Here y is the tensor giving the strain of a unit cube of material. Only the off-diagonal 

elements yxy and y,, are time dependent. 

By eliminating the velocity from the homogeneous shear flow equations of motion, 

we can see that the second order differential equation governing the evolution of the 

posit ion is 

If the shear rate is a step function, 0 for t < 0 and a constant for t > 0, then integration 

of (8.28) over an infinitesimal interval around t = 0 sets up an initial velocity gradient; 

the usual Newtonian equations of motion are then obeyed for t > 0. This is identical 

to the Lees-Edwards method of generating shear flow, so the evolution of the system 

is the same as it would be with boundary driven flow for steady flow. For non-steady 

flow, the effect of the boundary is much smaller when the homogeneous deformation 

technique is used. Another advantage of the homogeneous deformat ion met hod, in 
- - -- - -- 

'This technique is also known as the SLLOD technique, but this expression is so ugly it will not 
appear elsewhere in this thesis. 
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both steady and non-steady flow, is that it makes it possible to  store the "peculiar 

velocity," the velocity relative to the local average flow rate, which appears in the 

equations of motion. For steady shear flow, if the bottom of the simulation cell is 

thought of as being a t  y = 0 and moving at  zero velocity, the peculiar velocity of a 

particle is given by (u,, u,, u,) = (v, - jy ,  v,, v,). In the simulations done here, the 

peculiar velocity was stored. This had several advantages. First, there was no need 

to  change the velocity as a particle crossed the y boundary of the system. Second, 

all quantities which were measured depended on the peculiar velocity rather than the 

velocity. This included the temperature and the stress tensor. These could then be 

calculated directly from the peculiar velocity as stored. The homogeneous deformation 

method should also be useful for more general time-dependent flow, where j is time- 

dependent. 

The equations of motion (8.25)-(8.27) are not derived from a Hamiltonian. A set of 

equations of motion for homogeneous shear flow which are derived from a Hamiltonian 

does exist. However, these equations do not generate the correct non-linear response, 

while it is believed that equations (8.25)-(8.27) do, as suggested by [85]. In this paper, 

it is assumed that if fluid under shear flow may be described by starting with an initial 

distribution of positions and velocities given by the canonical distribution function for 

t < 0, and then at  t = 0 transforming the x velocity of each particle to  x + x + jy .  It 

is then shown that the same distribution as produced by this method is given by the 

homogeneous deformation technique given here. The non-linear effects differ when 

different algorithms are used, so the Hamiltonian approach must be incorrect. Since 

we are interested in a non-linear effect, the normal stress difference in a complex fluid 

under shear flow, it is important to use a method which does correctly reproduce 

non-linear properties. 

In any of these methods of simulating shear flow, the simulation cell heats up as 

energy added due to the driving force is dissipated. With the aid of a theory for the 

increase in entropy in shear flow, this may be used to calculate the viscosity of the 

fluid. However, it is more straightforward, and less theory-dependent, to remove this 

heat and maintain a constant temperature. In an experiment, the heat is removed a t  

the boundary of the system, where it is in contact with a reservoir, and this may be 
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done in a simulation. The heat is more commonly removed from the entire system, 

using the modified equations of motion described in section 8.3. 

8.5 Shear Flow at Constant Temperature 

Putting together the shear flow equations of motion (8.25)-(8.27) with the Gaussian 

isokinetic constraint (8.22)-(8.23), the equations of motion for a constant kinetic 

energy simulation of shear flow are 

The Gaussian multiplier must also be modified, to 

K({p)) is the same as in (8.24). 

8.6 Integration Scheme for Shear Flow at Constant 

Temperature 

The Liouville operator technique discussed in section 8.2 can be used to derive a 

discrete integration scheme for constant temperature shear flow. The algorithm used 

in the simulations discussed in this thesis was derived in [86]. The set of microscopic 

variables r includes the strain c of the simulation cell as well as the set of positions 

and momenta of all particles. Only the x component of the stra,in need be updated 

for the planar shear flow, and so other components will be suppressed. The Liouville 

operator for the equations of motion (8.29)-(8.31) is then given by 

d d d  
iL = (p + i ? x Y . ~  - i?py - Qnp;+) (x, z, %) . 
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To derive an approximate discrete integration scheme, this Liouville operator is 

split into two parts, 

and 

The same approximate %-otter formula as in section 8.2 can be used with this split 

Liouville operator. The integration scheme associated with this operator is given by 

In (8.38), a, is given by 

Qg = 
Ci[Fi . (pi(At) + ~ i ( o ) ) / 2  - ?(~xi (At )  + ~x i (o ) ) (~y i (A t )  + ~yi(o))l41. (8.41) 

Ci(Pi (At) + Pi(0)) . (Pi (At) + Pi(0))/4 

Agreement between (8.38) and (8.41) is obtained by iteration. The discrete equations 

of motion in (8.36)-(8.40) contain all terms up to order (At)2, and an iterative scheme 

need only be correct to this order. We have already neglected terms of higher order, 

so neglecting them in the iterative solution does not cause any additional error. 

This combination of techniques is somewhat unphysical. The heat generated by 

the shear flow is removed homogeneously, throughout the entire sample. This differs 

from experiments, in which the heat generated is removed a t  the boundary. Some 

simulations [87], using both this method of removing heat and attaching the sample 

to a heat bath at the boundary, seem to indicate that the results are the same, a t  

least for the small shear rates studied here. 
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8.7 Green-Kubo Formula for the Viscosity 

Transport coefficients in the small perturbation regirne can often be calculated from 

the fluctuations in a equilibrium system. This regime is the regime of linear response, 

in which the response of the system is proportional to the external force driving it. 

Beyond this regime, the non-equilibrium methods discussed in the rest of this chapter 

must be used to calculate transport coefficients. 

The viscosity in the linear response regime may be calculated from the equi- 

libriurn stress-stress correlation function, which measures the correlations between 

spontaneous fluctuations in the stress o in an equilibrium system. The Green-Kubo 

expression for the viscosity is 

This relation is derived in many books on simulation and on statistical mechanics; see 

for example [77]. Since the positions and velocities of all particles are calculated in a 

molecular dynamics simulation, the stress may be calculated as 

8.8 Units 

In simulations, it is useful to express all quantities in terms of a system of reduced 

units, so that  most quantities of interest are of order one. The standard set of basic 

units to use is the unit of length, o, the unit of energy, E ,  and a unit of mass, rn. These 

can all be set to one during the simulation, and then any result may be converted 

back to physical units after the simulation. For example, the unit of temperature is 

€/kg The unit of time has a somewhat special role, as it determines the length of 

physical time corresponding to the simulation time. Effects which are only noticeable 

at  larger times will not be seen in the simulation. The unit of time is given by o a .  

If the particles simulated represent single atoms, for example of argon, one unit of 

simulation time corresponds to about 2 x 10-l2 seconds. (Numerical values from [77].) 
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In the case of the steady-state shear simulations presented in chapter 9, the fact 

that the simulation time corresponds to a large physical time is particularly serious 

in terms of its effects on comparison with experiment. For a simple fluid, the shear 

rate must be of order one to produce an observable effect in the simulation, and so 

the shear rate will be of order lo1', much higher than is possible in experiments. The 

non-linear effects seen in simulations cannot be seen experimentally. For polymer 

solutions and melts, the situation is not so serious, and some of the non-linear effects 

have been seen. 

All other quantities are given in terms of these reduced units. For example, 

a dimensionless viscosity 7 is given by multiplying the dimensionful quantity ij by 

*/a2. All quantities plotted in the next chapter have been made dimensionless in 

this way. 



Chapter 9 

Molecular Dynamics Simulation 

Results 

In this chapter we present the results of our simulations of a model viscous fluid. 

After discussing the model simulated, we will show simulation results indicating that 

the shear viscosity and normal stress differences diverge a t  the percolation point in 

both two and three dimensions. We will then conclude with some comments on the 

relation of this work to experiments and to other calculations, and on possible future 

simulations. 

9.1 Model 

The model studied in this thesis includes both randorri bonds and excluded volume 

interactions between particles. To begin the simulation, all particles are placed on a 

lattice. Each particle is crosslinked to its neighbours with a probability p, with each 

bond created independently. The structure of the clusters created is thus described 

by percolation theory, as discussed in chapter 7, and the critical point is given by the 

bond percolation probability for the lattice. The potential joining bonded particles is 

given by a harmonic potential around a finite (non-zero) rest length ro, so that 
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between any pair of bonded particles i and j 

The excluded volume interaction is given by a pair potential between every pair 

of particles, with 

This potential is cut off at rij = 1.50. To avoid a discontinuity in either the potential 

or the force, a smoothing polynomial is used to  take the potential to zero by rij = 1.51. 

This polynomial is in even powers of rij up to r:, and is chosen so that both the 

potential and the force are continuous everywhere and vanish at  rij  = 1.51. The 

length scale o is chosen to be o = 1, which simply sets the length scale of the 

potential. The energy scale is chosen so that E = 1, and the temperature is given by 

kBT/c = 1. With the excluded volume interaction alone this model forms a simple 

liquid at  low enough densities. All simulations discussed here are done at  densities 

low enough so that the uncrosslinked fluid is well inside the fluid phase. 

For p = 0, this model is a simple fluid with interactions close to  a hard core 

fluid. As p increases, clusters of different sizes of bonded particles are produced. 

The structure of these clusters is exactly that studied in percolation theory. The 

measurable properties of this model should thus be given by percolation theory results. 

If there is a universal divergence of the viscosity characteristic of percolation, then 

it should be possible to see this divergence in our simulations. The same divergence 

should appear in experiments if it is indeed a universal feature. 

Results in Two Dimensions 

We will first discuss the results of simulations of two dimensional systems, in which 

the shear viscosity is measured using both the non-equilibrium molecular dynamics 

technique described in the previous chapter and the Green-Kubo integral of the equi- 

librium stress-stress correlation function. These simulations are done beginning with 

particles on the sites of a trianguhr lattice, and bonds are added between nearest 

neighbours. The critical point is thus at the percolation point of two-dimensional 

bond percolation on a triangular lattice, p, = 2 s i n ( ~ / l 8 )  = 0.347296 [51]. The fact 
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Figure 9.1: A sample configuration of the model in two dimensions after bonding and 
simulation for many timesteps. The circles represent the repulsive interaction between 
particles and the lines represent bonds between particles which began as neighbours 
on the lattice. 

that the critical point is known to very high accuracy here makes the analysis much 

simpler than in experiments: since p, is known, there is one less parameter to  be 

determined from the data. The lattice constant of the initial triangular lattice is 1.2, 

and so these simulations are done a t  a number density n = N/V  = (1,2)2:in(60) z 0.8. 

The rest length of the bond between linked particles is ro = 1.2, equal to the distance 

between sites on the triangular lattice. The spring constant of this bond is k = 4 0 e / a 2 .  

All of the simulations of two dimensional systems presented here are done a t  a single 

system size, a box of size L = 32 particles on each side. 

After an initial thermalization period, in which the temperature is set using the 
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Figure 9.2: The stress-stress correlation function for a fluid with no bonds between 
particles (p = 0). The inset shows the result of the Green-Kubo integral of equa- 
tion (8.42), with a cutoff at  time t .  

NosBHoover technique, a constant shear flow is imposed on the system. Although 

the homogeneous shear flow method creates the desired flow profile instantaneously, 

in these simulations some relaxation time is required for measurable quantities to 

become stable. To remove the effects of the initial perturbation, between lo5 and lo6 

timesteps were discarded before beginning to the measurement of the stress. After this 

initial period, the stress was averaged over between lo5 (low p) and lo7 (high p and 

low ?) timesteps. The stress is also averaged over many different bond realizations: 

as few as 10 for low p, and up to 200 for p close to p,. 

Figure 9.2 shows the stress-stress correlation function for a simple fluid with no 

crosslinks between particles. Here, the correlation function decays as an exponential 

in time and the numerical integration produces an estimate of the viscosity quite 

rapidly. 
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Figure 9.3: The stress-stress correlation function for a crosslinked fluid at p = 0.1. 
Here the relaxation is slower than exponential, and so a simple numerical integration 
does not converge before the noise of the stress-stress correlation function becomes 
larger than the signal, as shown in the inset. The straight line on the main figure is 
a power law fit. 

The same stress-stress correlation function for a lightly-crosslinked fluid, with p = 

0.1, is shown in figure 9.3. In this case, the decay of correlations is much slower. The 

slow relaxation of the correlation function means that a simple numerical integration 

does not capture the integral to infinity appearing in the Green-Kubo formula. In 

this case, the correlation function is fit to a power law, and the remaining integral is 

added to that determined directly from the data. 

The results of non-equilibrium molecular dynarnics simulations at p = 0 and a t  

p = 0.1 are shown in figure 9.4. In these simulations a shear flow at a shear rate j/ 

is imposed as described in the previous chapter. The stress required to produce this 

flow is then calculated from the expression giving the stress from the microscopic state 
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Figure 9.4: The shear viscosity determined in non-equilibrium molecular dynamics 
simulations as a function of the shear rate j. The points at  j = 0 (filled symbols) are 
results from equilibrium simulations. The curves are fits to the Cross equation (6.23), 
with values of m = 1.36 for t h e p  = 0 data and m = 1.14 for the p =  0.1 data. 

of the system in equation(8.43). The viscosity at at the imposed shear rate is then 

calculated by dividing the stress by the shear rate. The results of the equilibrium 

simulations are also shown, and agree with the extrapolation of the non-equilibrium 

data to zero shear rate. The difference between the extrapolation of the finite shear 

rate data and the zero shear rate estimate of the viscosity is not significant, as different 

fits to the stress-stress correlation function produce values for that differ by about 

5%. 

The quantity of most interest in these simulations is the zero shear rate viscosity. 

This must be determined from the non-equilibrium simulation results by extrapolation 

to zero shear rate. For the p = 0 and p = 0.1 simulation results shown in figure 9.4, the 

extrapolation is easy, and any extrapolation procedure produces essentially the same 
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result. Shown in the figure is a fit to the phenomenological Cross equation discussed 

in section 6.4.1. Fits to a straight line over the low ji region or to a Lorentzian plus 

a constant produce zero shear rate values of the viscosity that differ by less than one 

percent. Fitting to a Lorentzian is suggested in [88] and has the advantage that the 

fitting function is symmetric in j/ and is analytic near y = 0. 

The extrapolation is not as easy for higher bond probabilities, as shown in fig- 

ure 9.5. Here, the Cross equation does represent the data, but the extrapolation to 

jl = 0 differs significantly from other extrapolations. The Lorentzian and linear fits, 

which do not represent the data over as large a range, do produce similar extrapo- 

lations to j/ = 0. For use in later figures, the Lorentzian fits have been used for the 

extrapolation, and the difference between different extrapolation techniques used to 

estimate the error. 

For p close to p,, the Cross equation fitting function rises significantly beyond the 

range of the data. The form of the Cross equation allows this kind of behaviour as the 

exponent in the denominator may become less than one. There are several possible 

explanations of the failure of the Cross equation to provide both a fit to the data and 

a reasonable extrapolation. The first is simply statistical. If Q at  the lowest y point in 

a data set is in error and is too high, this will cause the fit to trend up for small values, 

so the extrapolation to  j, = 0 will be poor. Another possible explanation is that the 

data are not extended to small enough j,. Evidence supporting this possibility comes 

from fitting data sets at lower p and omitting the smallest y values, which can show 

the same effect. Unfortunately, it is difficult to overcome either of these limitations 

on the data for this particular model without more computational resources. Another 

possibility is that there may be a real effect influencing the data. There may be 

another transition, different from the gel transition we wish to study, in which the 

functional form of 7 as a function of ji changes quantitatively. An effect somewhat like 

this appears near a glass transition, as studied by molecular dynamics simulations, as 

shown in [89]. 

The viscosity as a function of p is shown in figure 9.6. In the single system size 

simulated here, there is very little curvature visible above p = 0, which one might 

expect to differ from the rest of the data. The simple fluid with no bonds should not 
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Shear rate 

Figure 9.5: The shear viscosity determined in non-equilibrium molecular dynamics 
simulations as a function of the shear rate j ,  a t  a bond probability p = 0.3. Fits are 
shown to the Cross equation (6.23) (solid curve) and to  a Lorentzian (dashed line) as 
is a linear fit. A value of m = 0.51 is used in the fit to  the Cross equation. 

know about the behaviour near the percolation transition. 

9.2.1 Normal Stress Difference 

Since the simulations done in two dimensions used a non-equilibrium technique, in 

which the sample is required to flow, a normal stress difference may be measured. In 

two dimensions there is only one normal stress difference. As discussed in section 6.4.1, 

the normal stress difference is expected to depend on the shear rate as Nl = Q l  j2 .  

The normal stress coefficient Q1 is then a material parameter. An estimate of the 

normal stress coefficient at  a shear rate j  can be determined by dividing the measured 

stress difference by j2.  The dependence of the measured coefficient Q1 on the shear 

rate is shown in figure 9.7. Unfortunately, it does not seem possible to continue the 
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Figure 9.6: The viscosity as a function of p for a crosslinked fluid in two dimensions. 
The line shows a power law, with exponent s = 2. 

simulations to low enough -;I for any bond probability to clearly see Q1 cross over to 

an asymptotic value, as seen for the shear viscosity at low p. 

The divergence of Q1 near p, is shown in figure 9.8. The figure shows a power law 

ehaviour of QI over much of the range of p simulated. The point a t  p = 0 (furthest 

the right in the figure) deviates from this power law, as might be expected: the 

mple fluid with no bonds should not show the effects of the critical point a t  p,. The 

vponent governing the divergence of Q1 in two dimensions for this model is Ci z 6. 

'his is an extremely steep divergence, and should be obvious in an experiment. 
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Shear rate 

Figure 9.7: The normal stress coefficient as a function of y for p = 0 and p = 0.1. 

9.3 Results in Three Dimensions 

Additional simulations were done of three-dimensional systems, using the equilibrium 

Green-Kubo technique to calculate the shear viscosity. In these simulations, particles 

begin on a simple cubic lattice and bonds are added between nearest neighbours on 

this lattice. The critical point is thus at the critical point of three-dimensional bond 

percolation on a cubic lattice, so p, = 0.2488. These simulations are done a t  a volume 

fraction @ = rNa3 /6V  = 0.4, or a number density n = N / V  = 0.7639. The rest 

length of the bond between linked particles is ro = 1.1. This rest length is chosen so 

that a t  zero temperature the bonds are unstretched; it is the distance between the 

lattice sites on a cubic lattice a t  the density chosen. The spring constant of this bond 

is k = 5e/02. 

Since equilibrium simulations are done close to the percolation point in three 
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Figure 9.8: The normal stress coefficient Q1 as a function of p, - p as measured in 
simulations in two dimensions. The line is a power law Q1 - (p, - p)-e, with ! = 6 .  

dimensions, the stress relaxation function G(t )  may be measured, and then the com- 

plex viscosity q* may be calculated. Figure 9.9 shows the real and imaginary parts 

of q* = q' + if for several values of p close to p, as functions of the frequency w. 

The behaviour of q* is discussed in sections 6.3.3 and 7.5.1. For small w, the real and 

imaginary parts behave as q' -- const and 7'' - w, as they should for a fluid. For larger 

frequencies, these functions both cross over to  a power law q' -- q" -- wu-'. This is 

more evident for q' than for q" , and the crossover to this power law moves to  lower 

frequencies as p -+ p,. The line on the figure shows a power law with u = 0.75. The 

loss angle, given by tan 6 = ql'/q', gives another estimate for u, as at  high frequencies, 

6 should be given by 6 = u7r/2 close to  p,. The data for p = 0.24 give u = 0.74. 

As is the case for the two-dimensional simulations, the stress-stress correlation 

function decays quite slowly. Here, it has been fit with a stretched exponential (shown 
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'igure 9.9: The real and imaginary parts of the complex viscosity q* close to  p,. The 
lwer curve of each pair is at p = 0.2 and the upper curve is at  p = 0.24. The straight 
Ine shows the power law form for large w ;  both parts of q* should be proportional 
o wU-l. Here, u = 0.77. The inset shows the stress-stress correlation function for 
I = 0.24, and a stretched exponential fit to this data (grey line). The exponent in the 
tretched exponential here is 0.15. 

n the inset of figure 9.9). This form is predicted in some theoretical calculations [74] 

nd is expected in any system with a contirluous distribution of relaxation times [go], 

~hich might be expected to occur here. Clusters of different sizes may have different 

ssociated relaxation times and, as the network becomes highly bonded, stressed 

egions in different clusters may relax with different timescales. 

Figure 9.10 shows the data for the shear modulus as a function of bond probability 

1, for several different system sizes. Far from p,, the results are consistent with a 

lower law, with strong finite size effects visible close to p,. To determine the power 

3w governing the behaviour of an infinite system, a finite size scaling analysis has 

been done. This analysis begins with a form which is assumed to describe the finite 
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Figure 9.10: The raw data for the viscosity in d = 3, as functions of p, - p. The line 
shows a power law, proportional to (p, - p)-0.7. 

size effects on the data. If in the infinite system limit the viscosity scales as 

then in a finite system of linear size L it should be given by 

Here, v is the correlation length exponent and has been determined in simulations to 

be v = 0.876 in three dimensions. This form can be derived using renormalization 

group methods and should be exact in the large system limit [21, 911. The scaling 

function f (z) should behave as f x-~/" for large values of x, so as to be consistent 

with the infinite system size limit. 

The results of this finite size scaling analysis are shown in figure 9.11. The collapse 

onto a single scaling function for all system sizes is quite good. The line shows the 
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Figure 9.11: Finite size scaled data in d = 3. The line shows the expected form of the 
scaling function a t  large (p, - p)"L. 

asymptotic form of the scaling function, and it can be seen that the trend of the data 

is toward this line. 

These two figures show that the viscosity of the system simulated scales as a power 

law, with an exponent s = 0.7. This is consistent with several of the theoretical 

approaches discussed in chapter 7. 

9.4 Conclusions 

The results of section 9.2 show that the Green-Kubo equilibrium method and the di- 

rect simulation of shear flow produce the same estimates for the viscosity of crosslinked 

materials, at least at  the low crosslink densities where these methods are compared in 

figure 9.4. The results of non-equilibrium simulations over a range of p suggest that 

both the viscosity and normal stress coefficient of a gelling system in two dimensions 



CHAPTER 9. MOLECULAR DYNAMICS SIMULATION RESULTS 134 

diverge near the gel points, with exponents s = 2 and l = 6. While extrapolation to 

the jl = 0 value of the viscosity is difficult, many different methods of performing this 

extrapolation produce the same scaling behaviour. 

Section 9.3 shows results demonstrating that the viscosity of a model gel diverges 

near the percolation point p, in three dimensions. The divergence of the viscosity 

has been measured in experiments on several different materials, as discussed in sec- 

tion 7.4. The experimental results seem to fall into two groups: some with exponents 

near s = 1.4, and some with exponents near s = 0.7. The three-dimensional sim- 

ulations discussed here are consistent with the latter set of experiments. The same 

simulations are consistent with two of the calculations discussed in section 7.5: the 

"electrical analogy" suggested by de Gennes, and the calculations done using a Rouse 

model done by the Zippelius group. However, the results of simulations in two dimen- 

sions are consistent with neither calculation. This may indicate that the analytical 

calculations do not apply to the model, or that there are problems peculiar to two 

dimensions. A recent paper [92] suggests that two dimensions is special for randomly 

crosslinked materials. The conclusion of this paper is that the localization length of 

a two-dimensional crosslinked material diverges logarithmically with the system size, 

and so the phase above the percolation transition may not be a normal solid. 

Since both s and u have been measured for the three-dimensional fluid, the dynam- 

ical scaling relation of section 7.5.1 may be used to calculate a value for t,  the exponent 

governing the growth of the shear modulus above p,. Using s = 0.7 and u = 0.75, 

dynamical scaling implies t = 2.1. This gives a consistency check with previous work 

on a similar model [93, 94, 531, though without excluded volume interactions, which 

gave t = 2. 

The results here are somewhat complementary to our results in [93, 94, 531. In 

this earlier work, the exponent governing the increase of the the shear modulus above 

the percolation transition was measured. This exponent is related to the exponents 

measured here, through the dynamical scaling relations, and the exponents measured 

here are consistent with earlier results. The model used there was somewhat simpler, 

without the excluded volume interaction used here. One of the issues of importance in 

this earlier work was the location of the critical point at which this randomly diluted 

'TI 
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material begins to behave as a solid. At zero temperature, the transition to a solid 

happens at  p well above the percolation point, while our earlier results show that at  

finite temperature the percolation point also marks the transition to a solid state. 

The divergence of the viscosity as p, is approached from below lends further support 

to this result. 

The divergence of the normal stress close to p, has not been measured in an 

experiment. As suggested by [74], it would be interesting to see an experimental 

value of this exponent, as Q1 diverges very rapidly near p, in both the two-dimensional 

simulations done here and the calculations of [74, 761. This should make it easy for 

an experimentalist to see a power law. Measuring the divergence of Q1 would also 

give another independent dynamical quantity. By measuring both q and Q1, the ratio 

of the exponents could be determined from a purely dynamical experiment without 

knowing the critical point, by plotting Q1 as a function of q. This would be useful, 

as p, is often difficult to determine accurately in an experiment. The ratio of s to L 

would then provide a dynamical exponent characteristic of the dynamical universality 

class of the material studied. It should be possible to determine both quantities in 

one experiment. 

The only other calculation of L is in [74, 761. The value determined in these 

simulations is again bigger than the calculated value. This may be due to the fact 

that the calculation is for a model with Rouse dynamics, which would indicate a lack 

of universal scaling of Q1. This may also be due to the possible special nature of the 

amorphous state in two dimensions. 

Future Work 

The simulations done here were performed to  try to gain some understanding of which 

microscopic features are important for the macroscopic behaviour of gels and thus to 

which universality class a particular material should belong. There are several issues 

which could be addressed to extend the work done here. 

One difference between experiments and the simulations done here is that the 
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experiments are usually done at  constant pressure, unlike the constant volume sim- 

ulations done here. It is possible that in experiments the density could vary as the 

number of crosslinks is varied, and so the material studied in experiments could ap- 

proach the critical point along another path. It might be useful to  repeat these 

simulations using a constant pressure technique. 

The simulations discussed above provide a characterization of the critical prop- 

erties of a particular microscopic model of a randomly crosslinked material as it a p  

proaches its transition to a gel. An obvious question remains: is it possible to obtain 

different exponents for other microscopic models and, if so, what are the important 

features controlling the exponents? The experiments discussed in section 7.4 showed 

a wide range of exponents, and a better understanding of the features required to 

produce a set of exponents in a model would be useful in determining the important 

experimental features. In the theoretical calculations done by the Zippelius group dis- 

cussed in section 7.5.4, the crossover exponent 4 is related to  dynamical exponents. 

This exponent characterizes the internal structure of clusters and is independent of the 

other exponents of the percolation problem. It may be possible to vary this exponent 

and to  see how the exponents governing dynamical properties. It may also be useful 

to study random clusters generated in other ways, to  explore the dependence of the 

dynamical quantities on the usual static exponents. The gelation process allows other 

possible sets of exponents describing the static structure, though most experiments in 

which exponents are measured show the percolation ones. There has been an attempt 

in this direction [95], but a more systematic approach would be helpful. 

One possible reason for the difficulty in obtaining good results near p, in two 

dimensions is the much larger spring constant (k = 40 rather than k = 5) used in 

these simulations, as compared to  the simulations in three dimensions. This was done 

in an attempt to make the effects of the crosslinking more noticeable but also may 

mean that the simulation takes longer to equilibrate and that relaxation is slower at  a 

fixed p. Repeating the simulations with different bond potentials might make it easier 

to get closer to  p, and also would be a way to test the universality of the exponents 

measured here. 
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The three-dimensional simulations reported above used the equilibrium Green- 

Kubo formula to determine the viscosity, and the normal stress differences could 

not be measured directly, as was done in the two-dimensional simulations. Non- 

equilibrium simulations of the same model in three dimensions are under way, and so 

it will be possible to  determine the divergence of the normal stress coefficient in the 

physically relevant case of three dimensions. If the exponent governing the divergence 

of QI does match the value calculated by the Zippelius group, then this would lend 

support to the idea that the exponents are universal in three dimensions, and that 

two dimensions is in some way special. 
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