
COMBINING PREFERENCE AND FEASIBILITY IN MULTI

AGENTLOCALSEARCH

Tedi Susanto

B.A.Sc, University of British Columbia, 1996

A T H E S I S SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E D E G R E E O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Tedi Susanto 2004

SIMON FRASER UNIVERSITY

July 2004

AU rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Tedi Susanto

Master of Science

Combining Preference and Feasibility in Multi Agent

Local Search

Examining Committee: Dr. F'unda Ergun

Chair

Date Approved:

Dr. William S. Havens

Associate Professor

School of Computing Science

Senior Supervisor

Dr. Michael Brydon

Assistant Professor

Faculty of Business Administration

Supervisor

Dr. Lou Hafer

Associate Professor

School of Computing Science

SFU Examiner

July 15, 2004

ii

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has

granted to Simon Fraser University the right to lend this thesis, project or

extended essay to users of the Simon Fraser University Library, and to

make partial or single copies only for such users or in response to a

request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this

work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain

shall not be allowed without the author's written permission.

The original Partial Copyright Licence attesting to these terms, and signed

by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

Within a multi agent system, rational agent ;s communicate and negotiate to solve a

common global constraint satisfaction problem. Given that there are many possi-

ble solutions and that each agent has its own preference, such negotiation should

not only lead to just any solution, but one that is fair and mutually beneficial

to the all the participants. The Nash bargaining solution to the bargaining prob-

lem can be applied to a cooperative multi agent environment in order to achieve

pareto optimal solutions, where no party can benefit without causing harm to

others. However, given the complexity of most real-world problems, computing

the so-called bargaining set is NP-hard. Furthermore, while it would be preferred

to use local search algorithms to ensure fairness, as they do not impose ordering

of agents, the presence of non-binary constraints has a detrimental effect. That

is, any attempt to repair a variable in a constraint where the current states of the

other variables already violate the constraint is futile.

We propose a marginalization strategy that approximates the bargaining set

and allows for a more effective local search in the presence of non-binary con-

straints. This technique considers both feasibility and preferences and is able to

better distinguish between infeasible states while searching for solutions. We eval-

uate this method on sport scheduling problem using all-different constraints with

preferences and on random binary CSPs with preferences. Experimental results

show that it has significant advantage over local search using only min-conflict

heuristic.

To my family

Acknowledgments

I would like to thank my senior supervisor Bill Havens for his guidance, motiva-

tions and patience throughout this research. I must thank my supervisor Michael

Brydon for providing me with the business perspective of this research and his

conscientious attention to detail while reviewing this thesis. I am grateful to Lou

Hafer for being in my examining committee, and Michael Horsch for providing me

with the source code of random CSP generation.

Finally, I would like to thank my parents Djoni Susanto and Lindawati for their

support, and my wife Alicia Lin for her love and encouragement.

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Figures viii

1 Introduction 1

1.1 Motivations . 1

1.2 Thesis Outline . 5

2 Background 7

2.1 Constraint Satisfaction Problem . 7

2.1.1 Definition and Representation 7

2.1.2 Algorithms . 9

2.2 Multi Agent Systems and Distributed CSP 12

2.3 Valued CSP . 15

2.4 Bargaining Problem . 20

2.5 Sports League Scheduling . 23

2.6 Random CSP . 27

2.6.1 Generation Models . 28

2.6.2 Problem Hardness . 29

3 Preference and Feasibility Marginalization 31
. 3.1 Multi Agent Model 32

. 3.2 Multi Agent Sport Scheduling 38

. 3.3 Combined Marginalization 43

. 3.4 Valued Conflict Projection 44

. 3.5 Table Based Projection 46

. 3.5.1 General Non-Binary Constraints 46

. 3.5.2 Random Binary CSP 49
. 3.6 Refinement 51

4 Experimental Study 53
. 4.1 Algorithm 53

. 4.2 Results and Discussion 55

. 4.2.1 Multi Agent Sport Scheduling 55

. 4.2.2 Random CSP 60

5 Conclusion 65
. 5.1 Summary 65

. 5.2 Future Work 67

Bibliography 68

vii

List of Figures

. 2.1 4-queens problem 8

. 2.2 Example of a constraint table 8

. 2.3 Example of a constraint matrix 9

. 2.4 Constraint graph for 4-queens problem 9

. 2.5 Weighted CSP example 19

. 2.6 Semiring representation of classes of CSP 20

. 2.7 Pareto efficiency and the Nash bargaining solution 23
. . 2.8 Nash vs utilitarian 23

. 2.9 Example of a round robin schedule 24

. 2.10 DSRR schedule and its one-factorization 26

. 2.11 DSRR schedule with period assigned for six teams 27

Representing an inter-agent constraint as an equality constraint . . 33

. An example of MAS with valued CSP 34

. Agent procedure 34

. Example of algorithm execution 36

. Constraint marginalization example 38

. The set of individual schedules for team 1 for n = 4 39

. MASSP problem representation 40

. Multi agent network for 4 teams 41

Schedule preference from individual games preferences for t l 45

. Table based combined marginalization example 48

. Table based combined marginalization example 48

. Table based combined marginalization example 49

. Random binary CSP marginalization example 50

viii

Preference skewing procedure .
Random binary CSP marginalization after skewing

System agent procedure .
Combined marginalization performance on MASSP with respect to

min-conflict .
Combined marginalization performance on MASSP with respect to

. optimal

Combined marginalization performance on MASSP with respect to

. solution ranking

Solution "fairness" .
Combined marginalization performance on MASSP with non-linear

preferences .
Combined marginalization performance on RCSP by score
RCSP success ratio and total solutions

. Combined marginalization performance on RCSP by rank

Average number of preference skewing

Chapter 1

Introduction

1.1 Motivations

In constraint optimization problems, we are interested in finding reasonably good,

if not the best, solutions based on some evaluation criteria. For example, in sports

league scheduling, there could be many schedules that satisfy the constraints im-

posed, but we may want to find ones that minimize the travel cost of the teams.

When solving such problems, there are two factors that have to be considered: fea-

sibility and preference. These two often do not go hand-in-hand, what is feasible

may not be desired, similarly what is desired may not be feasible. Traditional ap-

proaches such as branch and bound, consider feasibility first and then preference

in its search. That is, branch and bound searches for feasible (pax-tial) solutions

first, then evaluates these to determine their desirability. However, given both of

these criteria, one may benefit by considering both simultaneously, resulting in a

more efficient search for good solutions.

Balancing the two requirements gets even more difficult when many parties are

involved. Each will have its own preferences and the solution that will be accept-

able will be one that is fair and mutually beneficial to all. A negotiation strategy

is necessary in order achieve this and the Nash bargaining solution is a suitable

candidate, given its pareto optirnality and independence of utility scales. Pareto

optimality means that no one party can take action unilaterally without causing

harm to the others and independence of utility scales means that different parties

CHAPTER 1 . INTRODUCTION 2

can use different method of valuation of the agreement and yet the same solu-

tion can be obtained regardless. In order to apply the Nash bargaining solution

to the problem, one must first compute the bargaining set. However, computing

the global bargaining set is equivalent to taking the cross-product of all the con-

straints, and therefore it is NP-hard. Imagine a roomful of team managers trying

to schedule a season of a sport tournament, and they have to consider all possible

configurations of games which are exponential in numbers.

Instead of applying the Nash bargaining solution to the global problem, we can

apply it locally. In terms of sport scheduling, we can think of it as having ev-

ery pair of teams negotiating just for the match between the two of them instead

of having all the teams negotiating for the complete tournament schedule. The

result of the reduction in computational complexity is that all the locally pareto

optimal agreements taken together do not necessarily produce a globally optimal

solution. For problems where the true global optimum is not required, this ap-

proach provides fast sub-optimal solutions that maybe are good enough. Another

difficulty with this approach is, before we could negotiate locally, we would need

to express our complex preference in terms of the current possible bargains. Due

to the interdependence between different negotiations, computing an informative

local bargaining set can be difficult.

Before going further and addressing this problem, a brief discussion relating

preferences, bargaining set, and multi agent constraint optimization is in order.

In constraint optimization, an objective function is used to evaluate the feasible

solutions. This could be minimizing cost, maximizing profit or others. A sin-

gle agent (which can represent a team in sport scheduling, for example), can be

represented by a constraint which lists all the feasible solutions with their asso-

ciated preferences. That is, the objective function or preferences of an agent can

be represented as a constraint with preferences. In a multi agent system (MAS)

environment, there are many of these agents and they are related by shared con-

straints or variables. As each of these agents has their own preferences, solving

a multi agent constraint optimization is equivalent to finding a consistent global

solution such that all the preferences are maximized1. When a variable is shared

'These preferences may be maximized according to some social welfare function, such as utili-
tarian, egalitarian, etc.

CHAPTER 1 . INTRODUCTION 3

between two agents, they can negotiate as to which value that variable should

take. Prior to the negotiation, the bargaining set has to be computed, that is,

for each of the domain values of the variable, a valuation is required from either

agents. Therefore, each agent needs to marginalize its preference (which can be

derived from many variables) and obtain an approximation of what each domain

value of the negotiated variable is worth.

Hence, the problem lies in obtaining an accurate marginalization. One ap-

proach to solve this is to use the traditional constructive search marginalization.

However, such marginalization requires constructive search, where there exists

ordering of agents, and it considers feasibility first, and then preference. Using

the sport scheduling example, we would start with an empty schedule and assign

some sort of order to the teams, so team 1 will first negotiate with team 2 on their

game. Then team 1 will negotiate with team 3 on their game (keeping in mind

the agreement made with team 2), and so on. Thus the resulting schedule may

arbitrarily favor the higher order teams and is hardly fair. The alternative is a

local search approach, where all the teams are equal and all of them start with

their own best schedules. Of course, it is highly unlikely that all the best sched-

ules taken together will give a feasible solution, so the teams have to negotiate

to find a preferred compromise. A team may then have to perform several local

negotiations in order to achieve this compromise. As rounds of negotiations con-

tinue, a team may find that the previously made agreements might no longer look

as good as they were and re-negotiations may be necessary. This is an iterative

repair approach where the negotiation has to be done repeatedly until everyone is

satisfied. We have adopted this approach since it does not assign precedence to

the parties and we have assumed a multi agent environment where all agents are

equal.

Now, how can one perform marginalization in local search? Particularly one

that considers both feasibility and preference simultaneously? In other words,

how can one compute a local bargaining set that reflects both the feasibility and

preference of an agent? We argue that such bargaining set should not only include

feasible bargains but also preferred infeasible bargains. The reason behind this

strategy is that the result of local agreements can be viewed as a tentative (perhaps

CHAPTER 1 . INTRODUCTION 4

infeasible) solution, which may become feasible as we re-negotiate. When nego-

tiating locally, the partles would have to estimate how the agreements that were

made previously are going to affect the current one, due to the interdependence

between the agreements. Therefore, each party has to consider the preferences

of itself and others (as reflected in previous deals), as well a s the feasibility of

the problem, while negotiating for the current deal. It turns out that this is not

an easy task because we typically can only value a complete set of deals. In our

sport scheduling example, if we are interested in minimizing the traveling cost, we

need to know our complete tour in order to calculate the cost. When negotiating

with only one other team at a time, we need to estimate what the expected cost

would be given the previous deals. To further complicate the matter, what if all

the previous deals taken together does not lead to a feasible solution? That is, we

are faced with a problem of not being able to distinguish infeasible solutions (i.e.,

they are all just bad). Further, what if the feasible bargain is very unattractive?

We may want to explore more promising infeasible bargains.

We propose a strategy that maps the complex agent preferences into a valu-

ation used for bargaining. When the preferences are represented a s constraints

with preference, this process is also called constraint projection or constraint

marginalization. We can view marginalization a s a procedure that summarizes or

approximates the preference that depends on many variables into one that de-

pends only on one variable2. However, existing marginalization functions are only

used in constructive search. As such, they are fairly simple and do not distinguish

between infeasible states or considers infeasible states that may lead to preferred

solutions. Instead of presenting specific functions, we identified four properties

that are desirable when solving multi agent constraint optimization problem. The

marginalization function should: be able to distinguish between feasible states,

be able to distinguish between infeasible states, be able to explore promising in-

feasible states even at the cost of feasibility, and contain the elements of both

preference and feasibility. We argue that it is sometimes reasonable to choose

preference over feasibility since we are performing repeated negotiations and other

parties may move to their preferred states and eventually arrive at a good feasible

2 ~ n general, one can marginalize the preference with respect to a subset of the original variables.

CHAPTER 1. INTRODUCTION 5

solution. However, we can also expect that such policy can often force us into

infeasible region and never arrive at a solution. This is caused by the infeasible

states having too high of preference values and the feasible states having too low

of preference values. In order to address this issue, we introduce a preference

skewing mechanism. Here, the preference values are updated such that differ-

ence between high and low values is reduced. This method was successful in

overcoming the over-dominance problem and we were able to find good solutions.

We called the previous approximation strategy combined marginalization. Armed

with this marginalization, each party can locally negotiate and re-negotiate until a

solution is found. Using sport scheduling and random CSP as our test problems,

we compared our technique against simple min-conflict heuristic, where only fea-

sibility is considered during search. We found that our approach outperforms

min-conflict, both in solution quality and fairness. Furthermore, our experiments

showed that the technique is capable of finding close to optimal solutions, pro-

ducing solutions with average maximum of about 90% of the optimal.

1.2 Thesis Outline

This thesis investigates the use of Nash bargaining solution in solving multi agent

constraint optimization problem. However, prior to applying the Nash bargaining

solution, the bargaining set would have to first be computed. When a multi agent

system consists of numerous agents, each with many interdependent variables

and constraints, computing this set is equivalent to computing multiple-items,

multiple-players bargaining set. This is NP-hard and may not be practical. An ap-

proximation using local negotiation and marginalization strategy which combines

both preference and feasibility is proposed and its performance evaluated on two

classes of problems: sports league tournament scheduling and random CSPs.

In Chapter 2, we first describe the concept of constraint satisfaction and multi

agent system. Then we introduce the notion of valued CSP and describe con-

straint combination and projection in terms of semiring-based CSP. We define

a bargaining problem in the context of MAS and valued CSP and outline how

the Nash bargaining solution can be applied to multi agent optimization prob-

lem. This is followed by a review of sports scheduling problem and random CSP.

CHAPTER 1 . INTRODUCTION 6

In Chapter 3, we first formalize our multi agent model and describe the current

constraint marginalization methods. We presented an example to show how it is

inadequate for non-binary constraints. We then outline the requirements for our

combined marginalization and provide specific functions for both sport scheduling

and random CSP. We also describe our preference skewing mechanism in order

to escape from strongly preferred but infeasible regions. Chapter 4 presents the

algorithm used in our experimental study, along with its results and discussions.

We showed that our approach is capable of finding fair and close to optimal so-

lutions, for both the sport scheduling and randomly generated CSPs. Finally, the

conclusion and future work are given in Chapter 5.

Chapter 2

Background

2.1 Constraint Satisfaction Problem

2.1.1 Definition and Representation

A Constraint Satisfaction Problem (CSP) is a general framework for modeling var-

ious problems in Artificial Intelligence (AI). Such problems include scheduling,

resource allocation, and configuration. Formally, a CSP is a triple (V, D, C) where

V = {xl, ..., x,) is a set of variables,

D = {Dl, ..., D,) is a set of domains, such that xi takes value from Di, and

C is a set of constraints, such that a constraint c is a subset of the Cartesian

product Dl x . . . x D, consisting of compatible values or tuples for the involved

variables.

When the number of involved variables in constraint c is one or two, c is called

unary or binary constraint respectively. All other constraints are considered non-

binary. A binary CSP is one that only contains unary and binary constraints.

Solving a CSP is equivalent to finding an assignment to all variables such that all

constraints are satisfied. As CSP is NP-complete, a trial and error search for a

solution is inevitable for solving it.

A classical example of a CSP is the n-queens problem. The objective is to place

n chess queens on an n x n board such that these queens do not threaten each

other. A solution for 4-queens problem is shown in figure 2.1.

CHAPTER 2. BACKGROUND

Figure 2.1: 4-queens problem

c12
2 1 1 2 2 1 allowed
1 I 1 l no (same column)

Figure 2.2: Example of a constraint table

1

2
2
2
2

To formulate the 4-queens problem, we can assign each row a variable, that is

V = { x l , x 2 , x 3 , x 4) . Each of this four variables can take one of the four columns

as its value, i.e., D l = D 2 = D 3 = D 4 = {1 ,2 ,3 ,4) . The constraints can represented

as inequalities: V i , j, xi # x j which prohibits the queens to be in the same column,

and V i , j , if xi = a , x j = b, then li - jl # la - bl which disallows queens to be in

the same diagonal. Equivalently, we can represent the constraints as a table

that allows compatible tuples. Another alternative is to represent it as a boolean

conjZict matrix, where allowed tuples are given the value of 1's and tuples that are

forbidden are given the value of 0's. An example of constraint table and constraint

matrix for constraints between x1 and x2 is given in figures 2.2 and 2.3.

2
1 3
1 4

1
2
3
4

no (same diagonal)
Yes
Yes

no (same diagonal)
no (same column)
no (same diagonal]

yes

CHAPTER 2. BACKGROUND

Figure 2.3: Example of a constraint matrix

Figure 2.4: Constraint graph for 4-queens problem

A CSP can also be represented as constraint graphs where each vertex repre-

sents a variable in V and each edge represents a constraint in C. The constraint

graph for the above 4-queens problem is shown in figure 2.4.

2.1.2 Algorithms

There are two main classes of algorithms within CSP research: consistency and

search. Consistency or filtering algorithms take the constraints of the problem

and use them to remove any domain values that cannot be part of any solution.

Such algorithms are very powerful since they can greatly reduce the search space

and minimize futile search. One family of such algorithms is Arc-Consistency or

CHAPTER 2. BACKGROUND 10

ACx (where x represents a number, e.g., AC 1, AC3) [16]. An arc (x i , x j) , which cor-

responds to a binary constraint cij in a constraint graph of a CSP, is arc-consistent

if and only if for every value of v i in the domain of x i , there exists a value in the

domain of v j that is compatible with xi = v i . AC 1 achieves an arc-consistent CSP

by revising the domain of variables by removing incompatible values for each con-

straints. Note that the arc consistency algorithm only checks for local consistency

and therefore it does not guarantee to find solutions.

Typically, consistency alone cannot solve the CSP thus a search is required.

Search algorithms can be divided into two groups: constructive and local. Con-

structive search or backtrack search solves the problem by extending a partial

assignment ensuring that this assignment or instantiation never violates any con-

straints. In chronological backtrack search, if the partial assignment cannot be

extended any further, the algorithm undoes its last decision and select the next

feasible value. Using the n-queens example, constructive search will start with an

empty board, place the queens one at a time (in a systematic order) ensuring that

the current placement does not conflict with previously placed queens. Construc-

tive search systematically explores the search space and is complete. That is, the

search can find all the solutions if required or can determine if in fact there is no

solution. It can also take advantage of consistency algorithms by applying them

after each assignment is made. This has the effect of pruning the search space

further thus reducing the search effort.

Local search or iterative improvement, on the other hand, starts with a full

instantiation that may not be feasible, and iteratively repairs or reassigns values

to the variables to improve the current instantiation according to some objective

function. Usually, there is a heuristic that guides the improvement; a popular

heuristic is to minimize the number of conflicts, or min-conflict [18]. The min-

conflict procedure is to select a variable that is in conflict, and assigning it a value

that minimizes the number of conflicts (breaking ties randomly). Minton et al [18]

have shown that an iterative improvement algorithm using rnin-conflict heuristic

as its repair method, performed more efficiently compared to traditional construc-

tive backtracking algorithms for certain large-scale problems. Similar results were

also obtained by Selman et al[30] with their GSAT algorithm, an iterative improve-

ment method for solving hard satisfiability problems. Such algorithms, however,

CHAPTER 2. BACKGROUND

can get stuck at locally optimal points that are not solutions. These are points

where no more change in any variable assignments can improve the current in-

stantiation and yet the current instantiation is still infeasible. Techniques for

escaping from these points include random restarts [30] and Morris [19] break-

out algorithm where weights are assigned to violated constraints. The breakout

method dynamically updates the weights during the algorithm execution and it

allows the search to violate more constraints with lesser weights at the cost of

satisfying constraints with heavier weights.

There are also rneta-heuristics, or master strategies that guide and mod@ the

search heuristics, commonly associated with local search for optimization prob-

lems. Two well-known meta-heuristics are Tabu Search (TS) and Simulated An-

nealing (SA). In TS [8], the search evaluates neighboring states according to some

criteria and moves to the better state, similar to min-conflict local search. How-

ever, TS allows for moving to states that is worse than the current state. Repeating

this idea creates the possibility of endless cycle, and to prevent this, TS uses a

tabu list to maintain a list of forbidden moves. That is, if we made a move x -t x'.

the reverse move x' -+ x is forbidden for the next s moves (s is the size of the

first-in-first-out list). There is also an aspiration criterion which allows forbidden

moves if certain conditions are met, for example, when a tabu solution is better

than any previously seen solutions. TS has been shown to perform well in many

applications [8], including sport scheduling [9]. SA is motivated by the physi-

cal annealing process, where material is heated and slowly cooled into a uniform

structure. SA mimics this process and is used for local search optimization [14].

As with TS. SA allows for moving to worse states. However, the proposed next

state is chosen at random. If the next state is better, it is always accepted. If it is

worse, the probability that it is accepted depends on the change in the cost func-

tion and the current "temperature" of the system. That is, worse move is accepted

with probability p = enlT, where A is the change in the objective function and T

is a control parameter called the temperature. As the temperature decreases, the

probability of accepting worse moves decreases. SA algorithm requires a cooling

schedule whereby the temperature is slowly decreased, and at each temperature

a certain number of iteration (random moves) is performed. The argument is that

with slow enough cooling schedule, a global optimum can be found. SA has also

CNAPTER 2. BACKGROUND 12

been used extensively in many applications, including solving VLSI layout prob-

lems and factory scheduling.

Local search is non-systematic, therefore it can be very efficient on some large

problems, but it is also incomplete. Going back to our n-queens problem, a local

search will start with some initial placement (typically random) of all the queens

on the board, choose a queen that is being threatened, and move it to a new

position so as to minimize the number of attacks. It repeatedly performs such

moves until a solution is found. If it discovers that no more such moves can be

made and the current placement is not a solution, it has hit a local optimum. The

search then can simply restart with a new random placement of all queens and

start all over again.

The two search methods have their advantages and disadvantages. Their effec-

tiveness is also dependent on the problems to be solved. There are also hybrid ap-

proaches that combine the advantages of either algorithms, such as that proposed

by Jussien and Lhornrne [13]. Their technique performs a local search over partial

assignments instead of complete assignments, and uses filtering techniques and

conflict-based techniques to efficiently guide the search.

Two areas in which the CSP formalism has been extended are Multi Agent

Systems (MAS) [36] and Valued CSP (VCSP) [2]. MAS attempts to address the fact

that problems can be distributed and a centralized approach may not be practical

or feasible, while VCSP deals with problems that may have non-crisp constraints-

that is some constraints are more important than others or there are varying

degree of constraint satisfaction or violation. These are discussed in sections 2.2

and 2.3.

2.2 Multi Agent Systems and Distributed CSP

A distributed CSP (DCSP) is a CSP in which the variables and constraints are dis-

tributed among multiple autonomous agents [36]. An agent is an entity, such as

a software process, that can sense its environment and act to change it. A multi

agent system (MAS) consists of many such agents in a shared environment. Of-

ten, these agents are designed to be rational, that is, their behavior is consistent

with maximizing their own preferences over the states of the environment. When

CHAPTER 2. BACKGROUND

a common global solution is desired, they can also interact and coordinate their

actions in order to reach this goal. There are two kinds of constraints in a DCSP.

Inter-agent constraints are the ones between agents and intra-agent constraints

are the ones within one agent. Intra-agent constraints can be solved with tra-

ditional CSP methods, but it is the solving of inter-agent constraints that is the

main research goal of DCSP. Thus the objective is to find a value assignment to

variables that satisfies these inter-agent constraints, which can be viewed as to

achieve coherence or consistency among agents [36].

It must be noted that MAS is different from distributed/parallel processing.

The latter is primarily concerned with efficiency and is typically deployed by a

single designer. MAS is concerned with solving distributed CSP, where the knowl-

edge of the problem (i.e., variables and constraints) is distributed among auto-

mated agents. Each of these agents may be designed and owned by different

organization thus a centralized algorithm necessitates significant communication

cost for gathering all the parts of the problem, and translation cost for converting

these parts to an exchangeable format. Furthermore, there can be organizational

security or privacy issues which makes such full disclosure undesirable.

The key problem of MAS is therefore one of coordination. How does one ensure

that the agents act coherently in making their decisions and avoid harmful inter-

actions? The agents in a MAS' can be in cooperation or competition. Cooperation

implies a shared goal amongst the agents whereas competition implies that one

agent can gain only at the expense of another [17]. Cooperative agents will there-

fore "behave themselves" by acting for the common good, and ensuring that they

coordinate their interactions to achieve the global objective. Competitive agents

typically have their own preference for how things should be and are interested

in maximizing these preference. Often, these individual preferences are in con-

flict with one another, and in order to achieve a stable equilibrium, coordination

through negotiation, bargaining or mediated consensus is required.

'A finer distinction can be made on DCSP or DAl (distributed artificial intelligence) systems. DPS
or distributed problem solving assumes a single system architect, with an overall global goal, and
agents that are responsible for solving particular subgoals. On the other hand. MAS are made up
of heterogenous, autonomous agents of distinct origin, that share the same environment. However.
we have followed the current practice of using the term "multi agent systems" to describe all of the
DAl systems.

CHAPTER 2. BACKGROUND

There are two approaches in solving this coordination problem. One is to de-

sign the individual agent such that it reasons about its local actions and the antic-

ipated actions of others and ensure that the community acts in a coherent manner

[121. Here, the designer's job is to define a protocol (i.e., agent communication lan-

guage, negotiation process, etc) for the agent interaction. Rosenschein and Zlotkin

(251 investigated the process whereby agents iteratively negotiate in order to arrive

at mutually beneficial agreement. They defined a protocol and negotiation strat-

egy based on the Nash bargaining problem [20], that results in agents reaching

consensus at a single point within the negotiation set. The second approach is to

design the rules of public interactions such that the system as a whole produces

a desirable behavior regardless of the private behaviors of the individual agents

1251. An environment must be developed to govern the allowable interactions be-

tween the agent and environment. In this case, coordination results from indirect

agent interactions with simulated markets or ecosystems. An example of this is

WALRAS 1351, a system for defining MAS as computational economies, a concept

which the author called market-oriented programming. A computational economy

is created by populating the system with consumer agents that consumed a set

of goods produced by producer agents. These goods are exchanged (bought and

sold through auctions) such that the consumers maximize their utilities and the

producers maximize their profits. Equilibrium is achieved when the total amount

consumed equals the amount produced, plus the initial endowment. This con-

cept was also applied to solving propositional satisfiability in MarketSAT (341. Al-

though the performance of MarketSAT is poor compared to the centralized GSAT

algorithm, it shows that highly decentralized market-based technique is capable

of solving combinatorial problems.

Both constructive and local search techniques can be extended to solving

DCSP. Among the algorithms presented by Yokoo 1361, are the asynchronous

backtracking (ABT) and distributed breakout. ABT allows agents to make deci-

sions asynchronously by taking advantage of the multiple processors available

in a distributed environment. This is an improvement over synchronous back-

tracking, which is a simple extension of centralized backtracking. In contrast to

synchronous backtracking, where only one agent at a time can assign a value

to its variable, ABT allows multiple agents to assign values to their variables in

CHAPTER 2. BACKGROUND 15

parallel. However, there exists ordering of agents, and when two agents are con-

nected by a constraint the lower agent has to accommodate the higher agent. Of

course, if two agents are not connected, they both can run concurrently. The

distributed breakout algorithm extends Morris [19] centralized breakout concept

to distributed agents. In this algorithm, neighboring agents exchange values of

possible improvements, and only the agent that can maximally improve the eval-

uation value can change its value. Here, all agents are equal and non-neighbor

agents can simultaneously change their values.

Many real-world problems can be modeled into DCSP. One application problem

that used DCSP techniques is concert venue equalization problem [22]. Typically,

due to the spatial arrangement of the speakers, shape and size of the room, the

sound quality produced is different in different parts of the room. The objective

is then to provide an even sound quality by using a set of equalizers. In this

problem, the agents corresponds to microphones scattered throughout the room,

and they coordinate their actions by controlling the equalizers. Another problem

is the nurse time-tabling task [32]. This problem involves assigning nurses to

shifts in each department of a hospital and planning for their transportation from

their homes to the hospital. As the departments are essentially independent, the

time-tabling can be handled by different agents. However, there exists inter-agent

constraints involving their transportation in order to minimize the transportation

cost.

2.3 Valued CSP

Many real world problems often cannot be naturally expressed using traditional/classical

CSP framework in which the constraints are either satisfied or not satisfied. For

example, some problems may be over-constrained and no solution exists, but a

close approximation may still be desirable. Perhaps there are degrees of impor-

tance between constraints and it is acceptable to violate some but not others (i.e.,

soft and hard constraints). There may be cases where knowledge of the problem

is incomplete therefore constraints may or may not exists in the actual problem.

Weighted CSP, probabilistic CSP, and fuzzy CSP are among the many frameworks

CHAPTER 2. BACKGROUND 16

that deals with such issues. For example, in weighted CSP. each constraint is as-

signed an associated weight. The more important the constraint is the higher its

weight. The objective is to find solutions that maximize the sum of all constraint

weights. In such cases, we can afford to violate less important constraints in or-

der to satisfy the more important ones. A finer approach is to assign weight or

preference to each tuple in the constraint relations. For example, in our n-queens

problem, we can assign some numeric values to each tuple in the constraint ta-

ble (see figure 2.2 on page 8). Rather than simply indicating whether the tuple

is allowed or not, we can express our preference and search for solutions that

maximize this preference. One of the well-studied instances of weighted CSP is

the MAX-CSP (or maximal CSP), where objective to satisfy maximal number of

constraints [5].

There are also problems where many solutions exist and it is desirable to find

the best one with respect to some evaluation criteria. These are constraint op-

timization problems or COPS, where objective function exists and the quality of

a solution can be measured. Optimization problems are often solved by the so

called branch and bound algorithm. This algorithm requires a heuristic function

that can estimate the quality of each partial assignments. Branch and bound

search behaves like a constructive search except that as soon as a value is as-

signed to the variable, the value of the heuristic function for the assignment is

computed. If this value is less than the bound (usually the current best value

of the objective function), the sub-tree under the current partial assignment is

pruned to avoid its useless exploration.

All these frameworks contain the notion of preference and can be seen as in-

stances of valued CSP [2]. A valued CSP is simply a CSP with constraints or con-

straint tuples having some associated values. Algorithms for solving valued CSPs

usually define two additional operators: constraint combination and constraint

projection (or marginalization). In the following, we present brief formal definitions

of these operators in terms of semiring-based CSP, and interested readers should

see [2] for further details. On the other hand, we note that the semiring-based

CSP formalism is used here for completeness and due to its convenient descrip-

tions. Therefore, readers may also skip forward to the example shown in figure

2.5 and get an understanding of constraint projection and combination by simply

CHAPTER 2. BACKGROUND 17

following the example.

Definition (structure) A semiring is a tuple (A, +, x , 0 , l) such that A is

a semiring set; 0 , l E A; + is commutative, associative and 0 is its unit

element (i.e., a + 0 = a = 0 + a); x is associative, distributes over +, 1 is

its unit element and 0 is its absorbing element (i.e., a x 0 = 0 = 0 x a). A

c-semiring (constraint-based semiring) is a semiring (A, +, x , 0 , l) such

that + is idempotent (i.e., Va E A : a + a = a) with 1 as its absorbing

element and x is commutative.

Definition A constraint system is a tuple C S = (S , D , V) where S is a

c-semiring, D is a finite set (the domain of the variables) and V is an

ordered set of variables.

Definition (constraint) Given a semiring S = (A, +, x , 0 , l) and a con-

straint system C S = (S , D , V) , a constraint is a pair (def,con) where

con V and def : +A.

Therefore, a constraint specifies a set of variables (the ones in con), and assigns

to each tuple of values over these variables an element of the semiring.

Definition (tuple projection) Given two sets of variables X = {v', , ..., v i)

and Y = { v l , ..., v l) such that X C Y C V holds, and any I-tuple (d l , ..., dl)

of values for variables from Y, the tuple projection of (d l , . . . , dl) from Y to

X written (d l , ..., dl) J s , is defined as the tuple (d',, ..., d i) with di = dj if

v; = vj .

Example Consider the tuple (1 ,2 ,3 ,4) corresponding to variables (a, b, c, d) ,

then (1,2,3,4) J i z ; : ~ ~ ~) = (3 , l) .

Definition (combination) Given cl = (de f 1 , conl) and c2 = (de f 2 , conz),

their combination cl @ c2 is the constraint (de f , con) defined by con =

con1 Ucon2 and d e f (t) = def l (t Jz,).
Hence, combining two constraints results in a new constraint that involves all

the variables of the original ones, associating to each value tuple over such vari-

ables a certain semiring element. This semiring element is obtained by multiplying

the elements associated by the original constraints to the appropriate sub-tuples.

CHAPTER 2. BACKGROUND 18

Definition (projection) Given constraint c = (de f , con) and a subset I

of V, the projection of c over I, written c 4JI is the constraint (de f ' , con')

where con' = con n I and de f t (t t) = CtltlF"n",,,,t,de f (t) .

In other words, projecting eliminates some variables, and associates each tuple

over the remaining variables a semiring element which is the sum of the elements

associated with the original constraint.

The combination and projection operations has also been used for inferring

knowledge in belief networks and probability models [1 5] . If we think of con-

straint as representing certain knowledge, constraint projection or marginaliza-

tion corresponds to coarsening of the knowledge, and combination corresponds to

aggregation of knowledge. In order to illustrate these operations, let us consider

the weighted CSP example shown in figure 2.5.

Example Weighted CSP is represented by the semiring S = (A, +, x , 0 , l) =

(N U {+ca} , min, +, +ca, 0). Here we assume that the weights represent

cost or penalties associated with the tuples and the objective is to mini-

mize this quantity. Given the constraint tuples weights as shown in the

figure and assuming that we are currently deciding on the value of 2 2 ,

we obtain the following:

Projection of cl2 wrt 2 2 = 1 : cl2 4Jzz (1) = min(9 ,5) = 5

Projection of C23 wrt x2 = 1 : C23 4Jzz (1) = min(8 ,7 ,6) = 6

Combination of cl2 and ~ 2 3 when x2 = 1 : cl2 8 c23(1) = 5 + 6 = 11

Similarly, combination of clz and C23 when x2 = 2 : c12 8 c23(2) = 3 + 3 = 6

Thus, the algorithm for solving weighted CSP will prefer the value 2

(since we are minimizing the weights) for the variable 2 2 .

Given a valued CSP or constraint with preferences, a typical algorithm uses

the constraint projection and combination to utilize the preference information in

order to guide the search for solutions. As shown in the example, these opera-

tions can be used as a heuristic for selecting which value is the most promising

for a particular variable. There are, however, different projection and cornbina-
tion operations depending on types of CSP to be solved. Since the semiring-based

CHAPTER 2. BACKGROUND

con,=(x,,xJ ... def, con,'=(%) ... def,' con,=(x& ... def, con,'=(%) ... def,'

+
projection ... 3 J

projection

combination \ d'
con'=(%) ... def'

1 ... 5 + 6 = l l
2 ... 3 + 3 = 6

Figure 2.5: Weighted CSP example

CHAPTER 2. BACKGROUND 20

framework provides a convenient description of different classes of CSP with pref-

erences, figure 2.6 lists the different operations used in terms of the serniring

structure.

Framework A + x 0 1
CSP lo, 11 V A 0 1

Weighted CSP N U {A) min + +m 0
Probabilistic CSP @, I) max x 0 1

Fuzzy CSP (0, l) max min 0 1

Figure 2.6: Semiring representation of classes of CSP

2.4 Bargaining Problem

Imagine that there are two agents sharing a variable. Each agent has its own

valued CSP that it is trying to solve or optimize and both have different preferences

as to which value the variable should have. This scenario of solving valued CSP

within a MAS can be seen a s a bargaining problem, which can be stated as follows

1261:

"Two individuals have before them several possible contractual agree-

ments. Both have interests in reaching agreement but their interests

are not entirely identical. What will be the agreed contract, assuming

that both parties behave rationally?"

The bargaining problem has been studied extensively in the field of Game

Theory2 171. Traditionally, game theory can be divided into two branches: non-

cooperative and cooperative. Non-cooperative game theory is concerned with spe-

cific games with well defined rules and strategies, and with finding rational out-

come using the notion of equilibrium strategies. Examples of such strategies are

"dominant" strategy, where the outcome is optimal regardless of the strategies of

'came theory Is the study of how people interact and make decisions. It applies mathematical
models to analyze problems that feature "strategic interaction" between individuals or "players."

CHAPTER 2. BACKGROUND

other players, and "Nash" equilibrium3, where no players can benefit by unilater-

ally changing its strategy.

Cooperative game theory, on the other hand, abstracts away from specific rules

of a game, and is concerned with finding a solution given a set of possible out-

comes. For bargaining problem, the solution is typically given in terms of utilities.

In case of two-player games, the problem becomes finding the outcome given the

set of all possible utility pairs or bargaining set. There are many "solution con-

cepts," or functions that map a bargaining problem to a single outcome, and they

are usually valid only for a certain subset of all possible bargaining problems.

The Nash bargaining solution [20], for instance, only applies to convex and com-

pact bargaining sets. Other solution concepts include utilitarian or maximizing

the sum of utilities, and egalitarian or maximizing the minimum utility. Note

that utilitarian policy corresponds to finding solutions that maximize the sum of

weights in weighted CSPs.

Depending on the underlying structure of the MAS (i.e., non-cooperative or co-

operative), one may apply the results from either branch of game theory. Game

theoretic tools have been seen as a particularly suitable match for MAS since com-

puter agents make idealized rational players (whereas humans do not). Besides

bargaining and negotiating, rational game theoretic agents in a MAS can also be

designed to have the ability to vote, to be involved in auctions, to form coalitions,

etc [29]. The primary focus of this thesis is in cooperative MAS and it investi-

gates the use of a negotiation strategy inspired by the Nash bargaining solution

for solving multi agent constraint optimization problem. This is similar to Rosen-

schein and Zlotkin [25] Product Maximizing Mechanism, where the strategy is in

equilibrium with itself and it is efficient, that is, the deal is the best possible.

Nash Bargaining Solution

In solving the bargaining problem, Nash [20] used an axiomatic approach to obtain

a unique solution. Given a Nash bargaining problem (i.e., a compact and convex

bargaining set4), he proposed four properties, now known as the "Nash axioms"

3 ~ o h n F. Nash, Jr. was among the recipients of 1994 Nobel Prize in Economic Sciences for this
very contribution.

'?his assumption is required otherwise the method will not yield a unique solution.

CHAPTER 2. BACKGROUND 22

1. Independence of linear utility transformation, that is the final outcome should

not depend on how the player's utility scale is calibrated. So when a function

models a player's preference, any strictly increasing affine transformation5

of that function represents the same preference and therefore will yield the

same outcome.

2. The agreement is pareto efficient, that is no player can gain without caus-

ing a loss to the other. Figure 2.7 illustrates this concept. The first part

shows the utility values of two players given some agreement points, and the

second shows their utility imputation (the plotting of utility vs. utility) for

agreements 5 to 20. The northeast side represents the pareto frontier and

any agreement on this frontier is pareto efficient.

3. Independence of irrelevant alternatives. Given that c(S) represents the solu-

tion point for the bargaining set S, if the set T contains the set S and c(T) is

in S, then c(T) = c(S).

4. In symmetric situations, both players will get the same payoff. In other

words, if the bargaining set S is symmetric (the graph becomes symmetrical

with respect to the line u1 = u2), then c(S) is point of the form (a, a).

Nash proved that the only solution that satisfies these four properties is char-

acterized by c = (xl, x2) which maximizes the so-called Nash product (XI - dl)(x2 -

d2), where dl and d2 represent the disagreement payoffs or the players' utility out-

comes when no agreement is reached. Figure 2.7 also illustrates the construction

of the Nash bargaining solution for a symmetric two-player bargaining problem.

The Nash bargaining solution has several attractive properties that are desir-

able when solving a multi agent COP. It yields the same solution regardless of the

agent's preference scale, which can be different as it may designed and owned by

different organization. Utilitarian and egalitarian, in contrast, will require a com-

parable preference scale. It is pareto efficient, thus the solution does not waste

5 ~ r o m utility theory, U (W) and a + bU(W) with b > 0 describe the same preference.

CHAPTER 2. BACKGROUND

player 1 '=I

0 5 10 15 20 25 30
agreement

\ Nash bargaining
solution

+\
& - - - - - - - - - -

* r 3
0 50 1W 150 200

player 1 utility

Figure 2.7: Pareto efficiency and the Nash bargaining solution

Case 2: Incomparable utilities

Case 1: Comparable utilities
agreement (pl utility I p2 utility I Nash I utilitarian

A 1 2

-- - -

Figure 2.8: Nash vs. utilitarian

9 1 18 1 11

agreement I pl utility 1 p2 utility I Nash I utilitarian

any utility. Furthermore, it constitutes a "fair bargain," unlike utilitarian, for ex-

ample, where an agent has to agree with smaller payoff because it will benefit

the other agent a lot more, that is it should sacrifice for the greater good. Figure

2.8 shows an example that illustrates the advantages of Nash bargaining solution

when compared to utilitarian solution. Shown in bold is the accepted agreement

and it is assumed that the disagreement payoff is zero.

A

2.5 Sports League Scheduling

2 1 90 1 180 1

Sports league scheduling has been extensively studied within the CSP research

[101 [2 11 [23] [91. There are many variations of this problem and many researchers

CNAPTER 2. BACKGROUND

Figure 2.9: Example of a round robin schedule

have tackled these with different approaches. One of the most common variations

is minimizing the number of breaks in a round robin schedule. Figure 2.9 illus-

trates a typical round robin schedule for 4 teams. A break is defined as a consec-

utive home-home or away-away games in a particular schedule. Hem [lo] used a

constraint programming approach, Nemhauser and Trick [2 11 used combination

of both integer and constraint programming approach, and Regin [23] developed

filtering algorithms to efficiently prune or reduce the search space. While Hem

used constructive search method, Hamiez and Kao [9] used local search with Tabu

list. Other common objectives include minimizing the total distance traveled [4]

and minimizing the carry-over eflects [27]. Carry-over effects occur when a match

between two teams has an impact on their performances in the next round. An

ideal schedule would then only contain a single occurrence of any sequence of

two teams, leading to a balanced schedule with respect to carry-over effects. For

example, a team may first play against team a then team b. If there are many

of such a,b sequence and if team a is a very strong team, team b may receive an

unfair advantage because of the resulting low morale.

Typical sports league tournament consists of n teams playing each other in a

round robin fashion. When a team plays only once against every other teams,

and all the matches has to be played in n - 1 rounds (assuming that there are n/2

matches in each round), it is called dense single round robin (DSRR) tournament

[l 11. A dense double round robin (DDRR) is one where each team plays the others

twice, usually once at home and once away, within 2(n - 1) rounds6. Further

additional constraints can be imposed such as disallowing a certain match on a

 he solution for DDRR can also be obtained by simply repeating a DSRR schedule and swapping
the home-away teams.

CHAPTER 2. BACKGROUND 25

certain round, considering the availability of stadiums, and so on. Note that we

can assume that n is even without loss of generality. When there are odd numbers

of teams, we can introduce an additional dummy team. A game played against

this dummy team is then considered as a bye.

The search for a good schedule typically entails three steps 1211. The first

is to find a home-away pattern set. This is a set of n strings of length n - 1

(corresponding to the number of rounds in the schedule) which represents the

home-away sequence for the teams. For instance, for a four-team round robin

with teams { a , b, c , d) , one feasible pattern set is:

The next step is to assign games consistent with the pattern set (so if i plays

j in a round, then either i is home and j is away, or the reverse). For the above.

one possible timetable ("+" denotes at home and "-" denotes away) is:

The third step is to assign teams to the pattern set or timetable, based on,

say, their preferences for being home at certain rounds. For example, the teams

{ a , b, c , d) is assigned to 3,1,2,4 respectively, resulting in the following schedule:

Alternative approaches to sports scheduling differ in the order in which these

subproblems are solved and the method employed to solve each of the subprob-

lems. Russel and Leung [28] used combinatorial design theory to obtain the

CHAPTER 2. BACKGROUND 26

timetables and assign teams in step 3 using enumeration. Nemhauser and Trick

[21] solved the subproblems in the above order and used integer programming

for steps 1 and 2, and complete enumeration for step 3. Hem [lo] improved on

this using constraint programming for all three steps, and achieved a significant

performance advantage on the last step.

Round robin tournaments can be viewed as a graph theory problem [33]. We

first present some basic terminologies. Let G = (V, E) be an undirected graph

with vertex set V and edge set E. A complete graph is one where there exists an

edge from any vertex to any other. A matching on a graph is a set of edges such

that no two of them share a vertex in common. The largest possible matching on a

graph with n vertices consists of n/2 edges, and such a matching is called a perfect

matching. Given a complete graph K, (n even), a one-factor is a perfect matching

of K,. A one-fiorization is a set of one-factors which are pairwise edge-disjoint

and whose union is the set of all edges of the graph. The round robin tournament

can then be modeled as follows. Each team is represented as a vertex and the

match between two teams as an edge of the graph. Therefore each one-factor

corresponds to matches in one round and finding a schedule for unconstrained

DSRR (without any side constraints) for n teams is equivalent to finding a one-

factorization of K,. Figure 2.10 shows the previous typical schedule for 4 teams

and its corresponding one-factorization.

1-2

3-4 3 'I 1: :x:
round 1 round 2 round 3

Figure 2.10: DSRR schedule and its one-factorization

CHAPTER 2. BACKGROUND 27

Two most important constraints for round robin scheduling are the all-dterent

and one-factor constraints. The all-different expresses that a row in the schedule

contains every team only once and the one-factor groups the teams in a column

into matches. Hence a solution that satisfy these constraints is a valid schedule

for unconstrained DSRR. Using a graph theoretic approach, Regin developed arc-

consistency propagation algorithms for both constraints [23][24]. By combining

a constructive search method with Regin's consistency algorithms, Hem showed

that a significant speedup, up to one order of magnitude, can be achieved when

compared to simply encoding the problem with equality/non-equality constraints

[l 11. In their approach, Harniez and Kao [9] added another constraint to DSRR to

only allow a maximum of two matches in a same period for each team. That is,

for each round there are n/2 periods and each match is assigned to a particular

period. They used a different formulation of the sport scheduling problem and

did not consider home or away games. An example of their formulation is shown

in figure 2.1 1. Using Tabu search, they were able to solve instances of up to 40

teams, where constructive approaches were typically limited to 24 teams. How-

ever, they also found that the computing times required were much greater than

those obtained using the most efficient algorithms.

Figure 2.1 1: DSRR schedule with period assigned for six teams

period1
period 2
period 3

2.6 Random CSP

A class of problem that is often used to evaluate CSP algorithms is the randomly

generated binary CSP. A set of parameters characterize a random CSP:

1.2
4.6
3,5

n the number of variables,

m the domain size of the variables (typically all variables will have the same

2.6
1.3
4,5

3.4
2.5
1,6

5.6
1,4
2.3

1,5
3,6
2.4 '

CHAPTER 2. BACKGROUND 28

domain values and domain size),

pl or d the density of the constraint graph which is the probability or propor-

tion that a constraint exist between any two variables (value of 0 means that

no constraint exist in the problem, value of 1 means the constraint graph is

a complete graph), and

p2 or t the tightness of a constraint which is the probability or proportion

that a tuple in the m x m relation is disallowed (e.g., value of 0.33 means

that about one-third of the possible combination of values is disallowed, and

two-third is allowed).

2.6.1 Generation Models

Most experimental and theoretical studies use one of four simple models of ran-

dom problems. In each of these models, a constraint graph G is generated, and

then for each edge in this graph, pairs of incompatible values are chosen. The

models differ in how the graph is generated and how the incompatible values are

chosen. The four models are [6]:

Model A: We independently select each one of the n(n - 1)/2 possible

edges in G with probability p l , and for each selected edge we pick each

one of the m2 possible pairs of values, independently with probability

pa, as being incompatible.

Model B: We randomly select exactly pln(n - 1)/2 edges for G , and for

each selected edge we randomly pick exactly p2m2 pairs of values as

incompatible.

Model C: We select each one of the n(n - 1)/2 possible edges in G inde-

pendently with probability pl, and for each selected edge we randomly

pick exactly p2m2 pairs of values as incompatible.

Model D: We randomly select exactly pln(n - 1)/2 edges for G , and for

each selected edge we pick each one of the m2 possible pairs of values,

independently with probability p2, as being incompatible.

CHAPTER 2. BACKGROUND 29

Achlioptas et al. [l] identified a deficiency with all four random models. They

proved that if p2 2 l / m then, as n + oo, there almost surely exists a Jawed

variable. A flawed variable is one where each value in its domain isjlawed, that is

there exists an adjacent variable in the constraint graph that cannot be assigned

a value without violating the constraint between the two variables. Thus problem

with a flawed variable cannot have a solution. They argue that therefore these

model are asymptotically uninteresting except, perhaps, for a small space of their

parameter space (i.e., when p2 < l lm) . They proposed an alternative model which

has better asymptotic properties. This model does not separate the generation of

the constraint graph from the selection of nogoods.

Model E: We select uniformly, independently and with repetitions, pm2n(n-

1) / 2 nogoods out of the m2n(n - 1) / 2 possible.

However, this model is not without its shortcoming. In particular, it cannot

control the resulting constraint graph and for small values of p, it generates a

complete constraint graph. Therefore, it is a much less flexible model compared

to models A to D. Gent et al[6] proposed a new way of generating conflict matrices

which areJawkss, since the resulting problems are guaranteed not to be trivially

insoluble. They showed how their method can be adapted to the standard models

and proved its desirable asymptotic properties. For models B and C, given a pair of

variables between which a constraint is to be constructed, a random permutation

T of 1 , 2 , ..., m is chosen. The set of goods based on this permutation is simply

((1 , ~ (l)) , (2 , ~ (2)) , ..., (m, ~ (m))) , and a conflict matrix that contains these goods

cannot give a flawed value. These goods are removed from the set of all possible

conflicts and p2m2 elements are randomly chosen from the remainder. For models

A and D the process is similar, except that having removed the set of goods, pa is

increased to mp2/(m - 1) before selecting conflicts.

2.6.2 Problem Hardness

As noted by Cheeseman, Kanefsky and Taylor [3], the hardest instances of many

NP-complete problems often occur around the phase transition area. This is the

region where the problem changes from being under-constrained to being over-

constrained. Typically, low p2 values will produce under-constrained problems

CHAPTER 2. BACKGROUND 30

and high pa values will produce over-constrained problems. Both of these are

easy to solve because the former will have many solutions and the latter will have

no solution that can be easily proven using propagation or pruning techniques.

Thus, it is the value in between that will generate hard problems and is of most

interest for evaluating CSP algorithms. For random CSP, Smith [3 11 identified this

as the mushy region where the expected number of solution is 1. Equation 2 . 1

gives the critical value for pa.

Similar results were obtained by Gent et al [6] using K values which represent

the constrainedness of combinatorial problems. K = 1 corresponds to random

problems where the expected number of solution is

puting K is given in equation 2.2.

In this thesis, we have used randomly generated

1, and the formula for com-

(2 e 2)

CSP as one of the problems

to evaluate the performance of our approach. For our experiment, we generated

flawless random CSP according to model B, and selected the parameters such that

K is close to 1. This ensures that experimental results obtained are valid and our

technique is both scalable to large problems and applicable to hard problems.

Chapter 3

Preference and Feasibility

Marginalization

Typically, a constraint optimization problem is solved using a branch-and-bound

algorithm. Such algorithm behaves like a backtracking search and explores the

complete solution space. While this approach guarantees the optimality of the

solution found, it may require exponential time which can be impractical for large

problems. Within a multi agent setting, an approximate solution can be found

using a local negotiation strategy between agents. This thesis investigates how

good the approximation is when these local negotiations utilize marginalization

that considers both preference and feasibility.

We first present the multi agent model with its corresponding valued CSP.

We then describe the negotiation protocol for solving this distributed constraint

optimization problem. We will show how the current marginalization methods

are inadequate and outline the properties that a marginalization function should

have. In order to better illustrate our approach, we define a multi agent sport

scheduling problem and use it as an example application. Instead of working

with just agents, variables and constraints, we can also think in terms of teams,

games and schedules. Further, show how our technique can be applied to solving

random binary CSPs.

CHAPTER 3. PREFERENCE AND FEASIBILITY lMARGINALIZATION

3.1 Multi Agent Model

Agents in a distributed CSP share constraints and variables. Each agent can be

as simple as representing a single variable or it can represent a complex local CSP

with many local variables and constraints. A shared constraint is the inter-agent

constraint that the agent must satisfy while trying to determine the values of its

local variables. A shared variable between several agents can be viewed as if each

agent has a different variable, and there exist constraints that these variables

must have the same value. As in Yokoo's multi agent systems [36], we assumed

the following model.

Agents communicate by sending messages.

The communication network is reliable, i.e., message sent is guaranteed to

reach its destination.

For the transmission between any pair of agents, messages are received in

the order in which they were sent.

Each agent knows all the constraints (local and shared) relevant to its vari-

ables.

Each agent maintains an agentbiew which consists of the current states of

other agents that are involved with its shared constraints. This ensures an

agent is aware whether its shared constraints are currently satisfied or not.

We also assumed that inter-agent constraints are equality constraints, that is,

agents only share variables. The reason for this is because we intend to model

the problem as a bargaining problem in which agents negotiate to agree on the

value of the shared variable. In most cases, we can equivalently represent any

inter-agent constraint as an equality constraint with a new intra-agent constraint

added to one of the agents. In other words, moving the inter-agent constraint

into either agent's local CSP and creating an equality constraint that connects the

variables. Figure 3.1 shows an example of such a transformation. Furthermore,

we have assumed the following in our MAS model.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

Figure 3.1 : Representing an inter -agent constraint as an equality constraint

0 Each constraint tuple in the local problem has some associated preferences,

hence we are solving an optimization problem.

0 All agents are equal in terms of rank, therefore local search is more appropri-

ate since a constructive approach requires ordering of agents and may lead

to solutions that favor higher ordered agents.

0 An agent can only be involved in one negotiation at a time even if it has many

shared variables. This ensures that it is making an up-to-date valuation of

the bargaining set and avoids oscillation.

The objective is therefore to find a solution which maximizes the agents pref-

erences and one that is fair to all the agents. A typical MAS with its valued CSP

is given in figure 3.2 and the local search agent procedure is presented in figure

3.3.

A local search approach starts with some initial (random) assignment to all of

the variables and then proceeds to improve the assignment. Note that as shown

in line 03, the termination condition of the agent procedure is when all the local

constraints are satisfied. We assume that the agent is repairing the assignment

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

CSP Figure 3.2: An example of MAS with valued

01 proc agentmn0
02 initialize 0
03 while (local constraints not satisfied)
04 select a variable x to be repaired
05 if (x is a local variable)
06 repair(x)
07 else
08 if (set-upnegotiation(x) = success)
09 marginalize(x)
10 negotiate(x)
11 end if
12 end if
13 if (in local maxima) { randoml-estart0)
14 end while
15 return

Figure 3.3: Agent procedure

CHAPTER 3. PREFERENCE AND FEASIBILITY lMARGINALIZATION 35

according to its preference and through negotiations with other agents, and there-

fore the first feasible solution obtained is not only considered to have maximized

its preference, but also the preferences of others. First, a candidate variable to

be repaired is chosen as shown in line 04. If the variable is internal to an agent,

that agent can freely repair it according to its preference. However, if the variable

is shared among several agents, a negotiation is required to ensure that all the

involved parties are satisfied. We check for this condition in line 05. If it is a

shared variable, a negotiation session has to be set up. This involves exchanging

messages with other agents, and it is possible that some other agents are already

involved in another negotiation session1. If the session is successfully set up, the

agent marginalizes its preferences and negotiates for the value of the selected vari-

able (lines 09- 10). This process of negotiation and re-negotiation is repeated until

all agents are satisfied. As with any local search algorithm, our search can be

trapped in local maxima. While there are numerous ways to escape such points

(such as using a nogood cache or tabu list), the algorithm simply restarts with a

new random assignment, as shown in line 13. Figure 3.4 shows an example of

the algorithm execution. Here, both agents Al and A3 choose a shared variable to

be repaired. They both attempt to set up a negotiation session with A2. As A2 can

only negotiate for one shared variable at a time, it accepts Al and rejects AS. Both

Al and A2 marginalize their preference to the shared variable and then exchange

their valuations. The shared variable is then repaired to the agreed value.

This procedure is similar to a typical local search algorithm, except that we

need to further define the marginalization and negotiation functions. Note that

within the semiring-based CSP, these functions correspond to projection and com-

bination operations respectively. It should be re-emphasized that constraint pro-

jection or marginalization is only an approximation of the actual preferences. Re-

call that from the above example, agent Al only has the exact preference of the

constraint C23 (i.e., preference values for the tuples x2,x3). The marginalization

essentially summarizes this information into a single valuation vector in terms

of the domain of 23. The agents subsequently negotiate and reach an agreement

based on their approximated preferences of the shared variable. Therefore, the

'1n our experiment, we have simplified this process by using a system agent that determines
which negotiation session is to be performed.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION 36

agreement x r

Figure 3.4: Example of algorithm execution

CHAPTER 3. PREFERENCE AND FEASIBILITY lMARGINAL1ZATION 37

performance of this algorithm will depend on these two functions.

We know that using N a s h bargaining solution as the negotiation strategy will

result in a fair and efficient outcome. It also allows for incomparable agent utility

values. Hence, the Nash bargaining solution can be fruitfully applied to our prob-

lem. The challenge then is to define a marginalization function that will lead such

negotiations to not only any solution, but good solutions. As mentioned previ-

ously, there are two issues involved in solving a constraint optimization problem:

feasibility and preference. A marginalization that emphasizes on feasibility of the

problem will not be able to explore infeasible regions which may lead to a better

solution. On the other hand, a marginalization that emphasizes on preference

may never find a solution. We argue that therefore a marginalization function

must consider both feasibility and preference simultaneously in order to reach

good solutions. Unfortunately, existing marginalization functions only consider

the feasible tuples of the constraint when producing the valuation. Therefore,

they are inadequate for this purpose since they can only provide preference val-

ues for feasible domain elements. Furthermore, in local search methods, all the

variables are assigned some values and the marginalization will simply return the

preference value of this fully specified tuple. That is, no real marginalization is

performed (unlike one described in figure 2.5 on page 19). The reason for this

behavior is because marginalization has only been used in constructive search,

where at least some variables are unbound2. Figure 3.5 illustrates this behavior

by showing the result of applying different common marginalization functions to

a constraint. We used the previous example, assuming that agent A1 is marginal-

izing the constraint ~ 2 3 with respect to x3 (i.e., ~ 2 3 &,,). The first part shows the

result for constructive search assuming x2 is unbound (not assigned any value),

and the second part shows the result for local search assuming the current value

of x2 is 2. An infeasible tuple is denoted with a dash.

2 ~ t should be noted that we are not interested in static marginalization, where the marginalization
does not consider the current states of other variables. Such marginalization may provide static
indication of preferences for each domain elements, but since it ignores the current states of other
variables, it cannot actively guide the search.

CHAPTER 3. PREFERENCE AND FEASIBILI7Y MARGINALIZATION

x., is unbound

D,, I f = min 1 f = m a x I f = avg
1 I min(8,5) = 5 1 max(8,5) = 8 1 avg(8,5) = 6.5

1 1 D,. 1 f = min 1 = max 1 f = avg 1 + 3 7 - 1 I min(5) = 5 I max(5) = 5 I avg(5) = 5

1 2 1 3 1 - 1

Figure 3.5: Constraint marginalization example

Therefore, the traditional (constructive search) marginalization when applied

to local search can only distinguish between feasible states and the valuation pro-

vided is the tuple preference. In addition, if a non-binary constraint exists in the

problem and the current states of some variables already violate the constraint,

these marginalization are helpless. We will describe and illustrate this short-

coming using a sport scheduling example prior to proposing a solution. In the

following section, we first define the multi agent sport scheduling problem which

we will use throughout this thesis.

3.2 Multi Agent Sport Scheduling

Previous work on solving sport scheduling problems has focused on centralized

approach with global objective function. In transforming the problem into a dis-

tributed CSP with preferences, we have adopted a slightly different formulation.

The following characterizes our multi agent sport scheduling problem (MASSP):

The tournament is a dense single round robin.

Each team is represented by an agent.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

vs t2 I vs t3 I vs t4 I score
r d 1 I r d 2 1 r d 3 1 8

Figure 3.6: The set of individual schedules for team 1 for n = 4

Every agent/team possesses a set of individual schedules I. An individual

schedule consists of rounds in which the games with other teams are to be

played and an associated user-assigned preference. Figure 3.6 shows an

example of a set of individual schedules.

The objective is to find a compatible global schedule that maximizes the com-

bination of individual preferences with respect to the Nash bargaining solu-

tion.

For example, the preferences can be the travelling cost and we want to mini-
mize the total cost. However, the preferences can be much more complex and are

not necessarily the same for each team. One team may want to schedule games

to accommodate its fans, others may want to play easier opponents earlier and

tougher ones later, and so on. In MASSP, we assumed that a user will assign a

more preferred schedule with a larger preference value, and will assign infeasible

schedules with values of zeros.

It is important to realize that the team set of individual schedules is different

from the global playable schedule. The set of individual schedules lists the differ-

ent possible schedules for one particular team and their corresponding values to

the team. The global playable schedule consists of a compatible individual sched-

ule from each involved team. In order to model the tournament as a multi agent

problem, we have used a representation that is different from that used in a cen-

tralized approach. This representation facilitates the negotiation model between

teams, that is, it allows for agents to negotiate the round (or week) in which their

games should be played. Figure 3.7 presents an example of our representation

and contrasts it with the equivalent centraked representation.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

team2 individual scheds
vs 11 vs t3 vs 14 score

3

teamt individual scheds
vs t2 vs 13 vs t4 score

I global playable schedule centralized approach

I representation

team4 individual scheds
vs t l vs t2 vs t3 score

2

Figure 3.7: MASSP problem representation

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

Figure 3.8: Multi agent network for 4 teams

We can now represent the MASSP in terms of our multi agent model. Figure

3.8 illustrates the multi agent network for 4 teams. Shown in dashed lines are

the communication lines between agents which also denote the shared variables.

The variable xij represents the games between team i and team j , and its domain

is the playable rounds. Hence the set of individual schedules is simply a non-

binary constraint (in this case an all-different constraint) with preferences and

each agent can be seen as one valued constraint3. Each row or individual sched-

ule is just a tuple of this constraint. We can view the set of individual schedules

as an enumeration of the solutions to the all-different constraint with some asso-

ciated preferences.

In considering the MASSP as a bargaining problem, an ideal solution would

be to compute the bargaining set for the n teams involved and find the maximum

Nash product. Since the preference or utility value is dependent on the complete

individual schedule (a row in the table is one agreement), we have a multi-item

bargaining involving all the teams. We will need to find or enumerate the compat-

ible schedules for all teams in order for them to evaluate their payoffs. In other

3 ~ n terms of the equivalent centralized problem, for n teams, there will be variables, each
with domain size n - 1, resulting in search space of 0 (nn2) . For 8 teams it is 7" or 4.6 x loz3.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION 42

words, we need to first list all feasible solutions and then take the Nash product

to decide which solution is the best. This is equivalent to taking the cross-product

of n individual schedules first, which is in the order of 1IIn, exponential in size.

This is NP-hard so an alternative bargaining model is required.

An obvious approach to approximating the bargaining process is to restrict it

to a single item. Therefore the teams bargain for which round a particular game

should be played. Since a game only involves two teams, each bargain will have

only two participants, and there will be many of such negotiation. But, as alluded

to previously, a team typically can only evaluate the utility of a complete schedule,

not individual games. For example, it is easy to calculate the travelling cost given

the entire tour, but the same is not true if all we know is that the game against

team 2 is in round 3. Therefore the alternative is to marginalize the preferences of

the complete schedule before the negotiation can take place. However, as we shall

see, obtaining a reasonably accurate marginalization is not straightforward4. Let

us consider an example of MASSP for 4 teams. Consider that we have the following

constraint table (or individual schedules) for t l :

score

Using this table, say tl wants to negotiate the game between t2 and itself (i.e..

212) and currently XIS = 2 and xl4 = 3, then the projection5 of t l to x12 is the

following table6:

4We can also think of the marginalization of a non-binary constraint as putting a value on an
item in a bundle. Even if we know the value of a bundle, it may not be easy to assign values to the
individual items (e.g.. computing the individual item prices for combinatorial auctions problem).

5 ~ e c a l l that with local search, the traditional marginalization or projection simply returns the
tuple preference, regardless of the operator.

'value of zero means the domain element is not feasible.

CHAPTER 3. PREFERENCE AND FEASIBILW MARGINALIZATION

Hence 2 1 2 would prefer to have value of 1. However, say that currently x13 = 2

and 2 1 4 = 2, then the projection of t l to x 1 2 is the following table:

Which value should x12 take? This behavior is the result of marginalizing a

non-binary constraint where the values of the other variables (variables that are

not currently considered to be repaired) taken together always are infeasible. That

is, we cannot repair 2 1 2 and get to a feasible state. We are faced with the problem

that we are unable to distinguish between infeasible states. Intuitively, since we

are working with the all-different constraint, x12 should be either 1 or 3, but not

2.

In the bargaining context, the projection represents the utility values for dif-

ferent agreements. In both cases, we have scores of zeros which means that those

domain values will not be in the bargaining set. The reason for this is that exist-

ing projection operators only consider feasible agreements. In addition, projection

operations are usually employed in constructive algorithms where feasibility is al-

ways maintained. If both teams only consider feasible agreements, the bargaining

set will often be an empty set, and there will be nothing to negotiate. Thus we

need an alternative to this projection, one that is able assign preference to all

domain values and is more suitable for local search.

3.3 Combined Marginalization

In developing our marginalization strategy, we have identified four desirable prop-

erties that such technique should satisfy:

1. Ability to distinguish between feasible states.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION 44

2. Ability to distinguish between infeasible states.

3. Ability to choose state with higher preference at the cost of more conflict.

4. Contains the element of both preference and feasibility.

Property 1 is an obvious requirement and property 2 is to handle cases illus-

trated in the previous example. The reason for property 3 is that since we are per-

forming repeated negotiation, we can insist on what we really prefer and hope that

other agents may move to their preferred states and eventually arrive at a good

feasible solution. It is somewhat a greedy approach to the optimization problem.

This is similar to both Tabu Search and Simulated Annealing and therefore allows

for exploration of possibly better solution space. Property 3 also borrows from the

breakout concept [19], where the state with more conflicts is chosen, but instead

of trying to escape from local maxima, we are trying to get to highly preferred

solutions, Property 4 represents a novel method in solving constraint optimiza-

tion problems. Instead of the typical approach of first finding feasible solutions

and then improving it (e.g., branch and bound search), we want to explore the

search space while considering both elements of preference and feasibility simul-

taneously. We called this strategy combined marginalization7. Note that, while the

following sections describe specific functions that possess the above properties.

one can employ alternate functions having the same characteristics.

3.4 Valued Conflict Projection

We first present a simplified version of MASSP. Here each agent has one all-

different constraint representing its set of individual schedules and we assume

7 ~ e can think of this technique as combining the solution quality landscape with the feasibility
landscape. The solution quality landscape will have many large flat areas with scattered peaks of
differing heights. The higher the peak the better the solution. However, it is difficult to navigate
through this space since the solution quality may not be available unless the current state is fea-
sible. On the other hand, the feasibility landscape will be more contoured and with equal height
highest peaks. These peaks represent the feasible states. It is easier to navigate the feasibility
landscape but the quality of solution achieved may not be great. Hence combining the two land-
scapes produces a new landscape that is more easily navigated and has contours that lead to good
solutions.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

vs t2 I vs t3 I vs t4 1 score

Figure 3.9: Schedule preference from individual games preferences for t l

that the preference of the individual schedules is simply a function of the individ-

ual games, as shown in equation 3.1.

U (X I = al, ..., xn = an) = C ux,(ai) (3.1)
i=l..n

In other words, the user is assigning preference to individual games, instead of

to complete schedules, and the utility value of the complete schedule is a function

of these preferences. While this is in contrast to what we have emphasized pre-

viously, where a team is actually able to accurately evaluate individual games, it

provides a convenient starting point for our marginalization. We will remove this

restriction in the next section. An example is given in figure 3.9.

Given such individual games preferences, we can extend the min-conflict heuris-

tic to marginalize the all-different constraint using the following:

f x , (a) = U X , (a) + C uXj (b j)
xjEC,j#i,xj#a

Equation 3.2 is simply summing up the individual game preferences when val-

ues between the target variable xi and the other variables x j are pairwise different

(bj is the current value of x j) . This function essentially penalizes the domain val-

ues that will lead to more conflicts, or more accurately. values that will lead to

higher degree of violation of the all-different constraint. This function satisfies

all 4 desirable properties mentioned above, except the first one since it does not

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION 46

apply to all-different constraint. That is, there can be no more than one feasible

state if we only consider the value of one variable. An example using values from

figure 3.9 is given to illustrate this marginalization.

Example Let x13 = 1 and x14 = 1. The marginalization for x12 is

Hence the value of 1 will be preferred even at the cost of more con-

flicts. Furthermore, while all three states are infeasible, we are able to

differentiate them.

Equation 3.2 can be seen as an apprordmation to any possible states, feasible

or infeasible. It serves as a greedy indication to the direction of the search and the

computational cost of this operation is linear in the number of involved variables.

Note that if we have no preferences between individual games (e.g., all u,, = I),

the marginalization simply represents the degree of satisfaction of the all-different

constraint. That is, a value that is most pairwise different from the other variables'

current values is preferred (i.e., min-conflict behavior).

3.5 Table Based Projection

In this section we generalize our method further. First, we remove the assumption

that the individual game preference is available. Second, we use our method on

random binary CSPs.

3.5.1 General Non-Binary Constraints

Here we consider the MASSP where each agent possesses complete individual

schedules8 with preferences, such as the one listed in figure 3.10. Although for

the MASSP case the constraint is all-different, the following method is applicable

 he number of possible individual schedules is the permutation without repeated elements, i.e..
(n - I)! for each agent.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION 47

to problems where the constraint is expressed as a table with associated prefer-

ences. We propose the following marginalization function:

Equation 3.3 considers each of the non-target variables separately. u(xi =

a, xj = bj) returns the preference value from the table where xi = a and xj = bj

ignoring the rest of the other variables. The inner summationg gives the indication

of support for the current pair, while the outer summation iterates through each

involved variables. This equation also satisfies the desirable properties mentioned

previously. Intuitively, this marginalization function transforms the single k-ary

constraintlo into k - 1 binary constraints. Each binary constraint involves the

target variable and one other variable, and simply takes the valuation of the k-ary

tuple as its own. The result of the marginalization is the sum of these binary

valuations. Figure 3.10 presents an example of this marginalization for 2 1 2 when

213 = 2 and ~ 1 4 = 2. Note that this is the same example given in the beginning of

the chapter, in section 3.2. Recall that when using traditional marginalization, we

were not able to distinguish between infeasible states. In this example, the value

1 will be preferred although it is infeasible.

From this example, we observe that the marginalization function is not overly

greedy. It will only consider values that will not require changing every other

existing agreements. In the example, the value x12 = 2, will not be part of the

bargaining set, since in order to achieve a solution with such assignment, both

~ 1 3 and ~ 1 4 have to be changed. While such exclusion will occur less frequently

with larger arity constraint, it nevertheless prevents the exploration of certain

search space. Figure 3.11 presents another example of the marginalization for

2 1 2 , but with 213 = 2 and ~ 1 4 = 1. In this case, the infeasible value 1 is preferred,

instead of the feasible value 3, since it is deemed more promising.

Note that in both examples, there is only one occurrence for each pair (e.g.,

(x12 = 1,213 = 2)) because of the size of the teams. For larger sized teams, the inner

 his summation is the marginalization operator in the traditional sense, which can also be
replaced with max.

''A non-binary constraint involving k variables.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

vs t2(x12) 1 vs t3(x13) 1 vs t4(x14) I score
1 2 3

Figure 3.10: Table based combined marginalization example

x13 = 2 and x14 = 1

Figure 3.1 1 : Table based combined marginalization example

Dx12
1
2
3

summation will provide support indication. For example, consider the schedule

for five teams" as shown in figure 3.12. The inner summation of the first term

will result in u (l , 2 , 3 , 4) + u (1 , 2 , 4 , 3) for domain element 1. That is, when we only

value
~ (~ 1 2 = 1 , ~ ~ ~ = 2) + ~ (2 ~ ~ = 1 , 2 ~ 4 = 1) = 8 + 0 = 8
~ (~ i : ! = 2 , ~ 1 ~ = 2) + ~ (~ ~ ~ = 2 , ~ 1 4 = 1) = 0 + 5 = 5
~ (2 1 2 = 3, x13 = 2) + ~ (2 1 2 = 3, x14 = 1) = 3 + 3 = 6

consider 213 = 2 , we see that there are 2 rows that support the domain value 1,

and only 1 row that supports the domain value 3. The cost of this marginalization

operation is dependent on the size of constraint table and the number of variables

involved in the constraint12. However, as long as the preferences do not change,

the marginalization need only to be calculated once and can be cached.

"For simplicity, we have excluded the dummy team required to make the number of teams even.
I2For an all-different constraint considering all possible permutation, the cost would be O(n!) .

where n is the number of teams.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

score
8
7
6
5

9
0

Figure 3.12: Table based combined marginalization example

3.5.2 Random Binary CSP

In this thesis we used flawless random binary CSP constructed using the method

recommended by Gent et al [6]13. However, it is necessary to transform the CSP

into an optimization problem. We augmented each resulting constraint with a

valuation structure, that is when a tuple is allowed, a preference score is assigned.

This is similar to the individual schedule discussed in section 3.2, and serves to

differentiate which tuples in the constraint are preferred. Evaluation on random

CSPs provides an additional validation of the results and further illustrates the

generalization of our method.

Here, we are given a table representing allowed and disallowed tuples for each

constraint, and for each allowed tuple, there is a preference value assigned to it. If

we simply use equation 3.3 for the marginalization, the possible agreement points

will be the feasible states differentiated by their preferences. In other words, we

are considering feasibility first and then break any ties using the preferences. Note

l 3 ~ h e author would like to thank Michael Horsch for providing the code for the generation of
random CSPs.

CHAPTER 3. PREFERENCE AND FEASIBILR'Y MARGINALIZATION 50

that this behavior is due to the fact that we are now dealing with binary constraint

instead of non-binary one. Equation 3.3 degrades to the problematic traditional

marginalization when applied to binary constraint, since the inner summation

represents traditional marginalization and there is only one term for the outer

summation. Thus this function will not allow us to explore infeasible states, no

matter how attractive they are. We propose the following function to address this

issue:

f x , (a) = ~ U X (U (X ~ = a)) + u (x i = a , x j = b j) (3.4)

The first term of equation 3.4 is simply a static value preference and allows for

consideration of infeasible states. The second term is the same with equation 3.3,

but without the summations since we are considering a binary constraint, and

there will be only one tuple with the values (x i = a , x j = b j) . This function therefore

provides the ability to prefer states with higher preference at the cost of more

conflict. Figure 3.13 illustrates the binary constraint marginalization example of

x l using both equations 3.3 and 3.4. In this example, we let D,, = D,, = { 1 , 2 , 3) ,

x2 = 1 and we have omitted the disallowed tuples from the constraint table. As we

can see, equation 3.4 results in preferring X I = 3 even if that value is infeasible,

due to the high preference value.

Figure 3.13: Random binary CSP marginalization example

D,,
1
2
3

value(eqn 3.3)
~ (x l = 1 , x 2 = 1) = 1
~ (x l = 2 , x 2 = 1) = 2
~ (x l = 3 , x 2 = 1) = 0

value(eqn 3.4)
m a x (u (x l = 1)) + u (x l = 1 , x 2 = 1) = 2 + 1 = 3
m a x (u (x l = 2)) + u (x l = 2 , x 2 = 1) = 2 + 2 = 4
m a x (u (x l = 3)) + u (x l = 3 , x 2 = 1) = 5 + 0 = 5

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

3.6 Refinement

The same desirable properties that can guide the search to good solutions can

also doom the search altogether. There will be cases where the preferences are

so strong that the marginalization will always choose these high values for some

variables even at the cost of more conflicts, and hence never arrive at a solution.
In order to avoid such pitfall, we incorporated a preference skewing mechanism.

If after a certain number of restarts and no solution is found, the preference

values are skewed such that the high preference values do not overwhelm the low

preference values. We propose the skewing procedure given in figure 3.14.

01 procedure skew-preferences(constraint c, m a p r e f m a s , increment inc)
02 for each allowed tuple t E c
03 if u(t) # m a x then u(t) = u(t) + inc

Figure 3.14: Preference skewing procedure

This procedure increases all the preference values that are not the maximum

possible by the specified increment value. This has the effect of reducing the

gap between the preference values and lessens the domination of high values to

low values14. Figure 3.15 continues the previous example given in figure 3.13,

showing the constraint preference values and the marginalization of xl after one

skewing procedure.

In this example, the infeasible state is no longer preferred because its prefer-

ence value is not a s attractive anymore. The skewing process attempts to find a

balance point between preference and feasibility, allowing the marginalization to

be as greedy as possible and still be able to find solutions.

Another advantage of the skewing is the ability to allow the marginalization

to degrade gracefully. For very hard problems, repeated skewing will eventually

141n our experiment, we have used the integer values from 1 to 10 for the preference values.
Incrementing the low values allows us to express the smallest possible value as 9 and the largest
as 10. This translates to the highest preference being about 10% better than the lowest one. If
decrementing the high values is performed instead, we will have values 1 and 2, which translates
to 100% better. Thus decrementing allows for a finer control of the difference between preference
values.

CHAPTER 3. PREFERENCE AND FEASIBILITY MARGINALIZATION

Figure 3.15: Random binary CSP marginalization after skewing

lead to all the allowed tuples having the same preference values and hence the

marginalization operation will simply degrade to min-conflict.

Chapter 4

Experimental Study

4.1 Algorithm

We evaluated the combined marginallzation technique for approximating the bar-

gaining set used in local negotiations and compared the solution found with one

found by simply using min-conflict local search. In both cases, we terminate the

search after finding the first feasible solution. Whenever possible, the optimal

solution is also obtained for comparison. The actual optimal solution is found

using an exhaustive backtrack search method. The solution quality is obtained

by taking the product of the scores of each team individual schedule in case of

MASSP or the preference value of the solution tuples in each constraint in case of

random CSP.

We have simulated the multi agent system in a single machine using a system

agent. The system agent is responsible for selecting which shared variable should

be negotiated1, detecting local maxima or solution, and maintaining a counter

between preference skewing. In our experiment, the system agent instantiates

a "broker" agent that actually performs the bargaining process. Depending on

which game/variable is currently being considered, the broker agent obtains the

preferences from either teams/constraints, calculates the Nash product and re-

turns the maximum to the respective sides. Ties are broken randomly by this

'1n our experiment, it is simply performed in lexicographic order.

53

CHAPTER 4. EXPERIMENTAL STUDY

broker agent. Figure 4.1 presents the algorithm2 for the system agent.

0 1 proc system-agentrun0
02 while (skewing-counter < max-skewing)
03
04
05
06
07
08
09
10
11

12
13
14

15
16 end
17 return 0

restart-canter = 0
while (restart-counter < max-restart)

while (not in local maxima)
for all games gij { game-agent.negotiate(ti,tj))
global-score = 1
for all teams ti { global-score = global-score * ti.scoreO)
if (global-score <> 0) { return global-score)

end
for all teams ti { ti.reinitializeO)
restart-counter + +

end
for all teams ti { ti.skew-preferences0)
skewing-canter + +

Figure 4.1 : System agent procedure

There are three nested loops which control the algorithm execution. The in-

nermost loop (lines 05 to 10) performs the local search process by negotiating for

each games. Line 09 checks whether a solution is found, and if so the search is

terminated. Otherwise, the rounds of negotiation is repeated until a local maxi-

mum is detected. The middle loop performs the random restart procedure until a

maximum number is reached. If we still did not find any solution, the outermost

loop initiates the preference skewing as shown in line 14. Finally, if after a max-

imum number of skewing is reached and no solution is found, the system agent

exits.

In the experiment, the preference values are between 1 and 10, and m s k e w i n g
is set to 10 (after 9 skewing, the resulting preference will all be 10). Maxres tar t

 he algorithm described is for the MASSP. For random CSP, we simply replace the teams with
constraints and the games with variables. Note that while each game is connected to exactly two
teams, a variable in random CSP can be connected to many constraints. However, the single item
n-player Nash product can be computed accordingly.

CHAPTER 4. EXPERIMENTAL STUDY 55

is set to 500, so if no solution is found after 500 random restarts, we assume

that the preference values are too strong and they constantly lead the search to

infeasible states thus skewing is necessary.

In evaluating the solution, the global score is obtained using the actual prefer-

ences before any skewing is performed. The reason is because the skewing is done

as part of our search method and the resulting skewed preferences do not reflect

the true valuation of the individual schedule. Furthermore, the true valuation is

necessary in order to compare the solution found with ones found by other search

methods.

4.2 Results and Discussion

4.2.1 Multi Agent Sport Scheduling

Figure 4.2 shows the performance of our combined marginalization compared to

min-conflict average on MASSP. Both the valued conflict projection (comb-vc-*)

using equation 3.2 and table based projection (comb-tb-*) using equation 3.3 are

evaluated. The table based projection was limited to ten teams due to the almost

exponential size (i.e., n!) of the individual schedules. In creating the tables or

individual schedules for table based projection, we simply enumerate all possi-

ble schedules and use the individual game preferences to obtain the individual

schedule preferences just as shown in figure 3.9 on page 45. The individual game

preferences are assigned values between 1 and 10 leading to schedule preferences

values between n - 1 to 10(n - 1). Furthermore, any skewing on the MASSP is ac-

tually performed on the game preferences. The schedule preferences are then

re-computed to reflect the new values.

For each team size, 25 different sets of preference values3 are used, and for

each set of preference values, 25 runs are executed. Hence each point in figure

4.2 displays the average of 625 runs. For each set of preferences, we record both

the maximum and average scores obtained. The averages of these are represented

with *-max and *-ave respectively.

From the figure, our marginalization outperforms min-conflict exponentially

3 ~ a l u e s are randomly generated using Java Random Object in JDK 1.4.

C m E R 4. EXPERIMENTAL STUDY

4 6 8 10 16 32

teams

Figure 4.2: Combined marginalization performance on MASSP with respect to
rnin-conflict

CHAPTER 4. EXPERIMENTAL STUDY 57

as the number of teams increases. We believe this is due to exponential increase

in the number of solutions4. Min-conflict on average will find average quality

solution while our marginalization will find solution close to the optimal. As the

number of solutions increases the range between optimal and average solutions

also increases, thus resulting in significantly better performance of our technique.

In comparing the results found by valued conflict projection and table based

projection, we observed that former performed slightly better. This can be at-

tributed to the fact that valued conflict projection has a better approximation to

the actual preference simply because it has access to the preference function (see

equation 3.1). That is, valued conflict projection is using the game preferences

for its marginalization, while table based projection can only use the individual

schedules preferences that are derived from these game preferences. In general,

problems may not have such explicit function, and the valuation has to be es-

timated from the user-given preferences of the complete tuples. This is exactly

what table based projection is performing, and results show that its approxlma-

tion is quite good. However, it is also possible that the good performance obtained

by the table based projection is due to the underlying linearity of the schedule

preferences. We investigated this effect at the end of this section.

Due to the hyper exponential size of search space for MASSP, we are only

able to find the optimal solutions for six teams within a reasonable amount of

time. The performance with respect to the optimal is shown in figure 4.3. This

figure further supports our argument with regards to the significant advantage of

our marginalization. Here we see that our technique is able to achieve solutions

within 80-90% of the optimal.

Since the quality of the solution is measured by taking the product of team

scores, the absolute difference in score between one global schedule to the next

better one can vary greatly. It is possible that the assigned preferences are such

that all the global solutions scores do not have a normal distribution. For ex-

ample, say that a problem has 10 solutions, where 1 is scored 100 and the rest

4 ~ h e number of one-factorizations for a complete graph gives an indication as to the num-
ber of solutions. Results from graph theory shows that there are 6240 one-factorizations of Kg,
1,255,566.720 of Klo, and over 2 x lo1? of K11 1331.

CHAPTER 4. EXPERIMENTAL STUDY

4 6

teams

Figure 4.3: Combined marginalization performance on MASSP with respect to
optimal

are scored between 10 and 20. Unless we found the optimum, any solutions ob-

tained will be at best 20% of optimal in terms of score. Of course, the reverse

scenario is also possible. In such cases, the measure of percentage with respect

to optimal score may be misleading. Another measure that we use is the solution

ranking. We exhaustively search for all global solutions and rank them according

to their scores. The rank of any solution found using our marginalization can

then be determined by comparing the solution score to this complete list of solu-

tions. Figure 4.4 plots the number of solutions achieving certain top percentile by

rank. From the figure, for 6 teams, about 95% of the 625 solutions found using

our marginalization are within the top 10th percentile5 with respect to solution

ranking. Therefore, the combined marginalization is able to find close to optimal

solutions.

Among the benefits of Nash bargaining solution is that the agreement is fair to

all the involved parties. We evaluated the "fairness" of the solution by calculating

5 ~ i v e n the complete feasible enumeration for the all-different constraint, for 6 teams, there are
720 global solutions, and for 8 teams, there are 31,449,600 global solutions.

CHAPTER 4. EXPERIMENTAL STUDY

4 learn. (625 data pointa) 6 learns (625 d m poinb)

0% I
1% 33% 50%

Top percentile by rank

100%

BOX
2
$ 60%

B

i 40%
i

20%

0%

1% 10% 25%

Top parantila by rank

Figure 4.4: Combined marginalization performance on MASSP with respect to
solution ranking

the percentage of highest scored team and lowest scored team with respect to the

geometric average. That is, once the global solution is found, all the individual

teams scores (the individual schedules preferences that make up the global so-

lution) are compared6 against each other. The best and worst scores are then

normalized with respect to the geometric average of the global solution. We used

geometric average since the solution quality is measured by taking the product

of teams preferences. The closer the scores of these teams are to the geometric

average, the fairer the bargain. The result is plotted in figure 4.5. As expected,

the solution found by valued conflict projection exhibits a narrower range of high

and low scores when compared to min-conflict, leading to a fair solution.

Non-Linear Schedule References

We further evaluated the performance of the table based projection on a prob-

lem where schedule preferences are not derived from game preferences. Instead,

the schedule preferences are assigned random values between 1 and 100. We

compared the solution quality found against both min-conflict and optimal for 6

teams. Figure 4.6 shows the results with respect to score and rank. In terms of

'~lthough the Nash bargaining solution allows for incomparable agents utilities, in the experi-
ment, we have used the same preference scales for all agents.

CHAPTER 4. EXPERTMENTAL STUDY

4 6 8 10 16 32

teams

Figure 4.5: Solution "fairness"

solution score, there is a substantial decrease in performance compared to lin-

ear preferences (45% vs 80% of optimal). However, we believe that a significant

amount of the decrease is due to the higher degree of abnormality in the distribu-

tion of solution scores. This is because we see a similar decrease in min-conflict

(5% vs 25%), which does not take into account any preferences. This is further

supported with the performance in terms of rank. There is only a slight decrease

of the number of solutions (80% vs 95%) that are within the top 10th percentile.

Also, the solution rankings obtained by min-conflict are identical for both linear

and non-linear preferences, which is as expected. These results show that the

table based projection can find good solutions regardless of the linearity of the

preferences.

4.2.2 Random CSP

In case of random CSP (RCSP), we have used the following parameters: n = 10, m =

20, d = 0.4, and t = 0.40 - 0.49. The t value close to 0.49 has been identified as the

hard region or mushy region where the expected number of solution is 1 [31].

CHAPTER 4. EXPERIMENTAL STUDY

0.0
6 (linear) 6 ("on-linear)

learn

6 teame (625 data points)

1% 10% 25%

Top parcantila by rank

Figure 4.6: Combined marginalization performance on MASSP with non-linear
preferences

These parameters lead to p2crit = 0.454 and K = 1.11 (see section 2.6). Since we are

interested in optimization problems, we did not go further than t = 0.49. Values

higher than this will generate problems with almost zero solutions. Furthermore,

we only tested on problem instances having solutions. The binary constraint

preference values are between 1 and 10 the for allowed tuples and 0 for disallowed

tuples. Figure 4.7 plots the quality of the first solution found by our technique

using the equation 3.4 (comb-*) and by simple rnin-conflict (mc-*) with respect

to the optimal solution. As a further comparison, we also plot the result using

marginalization where feasibility is considered first and then any ties are broken

using the preferences (i.e., actual marginalized preference) as shown in equation

4.1. The first term constant of the equation is to guarantee that the valuation is

non-zero since we are taking the Nash product of the valuations.

fz,(a) = 1 + u(xi = a, xj = bj) (4.1)

In our experiment, for each t value, 50 random seeds7 are used, and for each

seed, 50 runs are repeated. Again, from these 50 runs, both the maximum and

average are computed. The average of these values are plotted as *-max and *-
ave respectively. In addition, we also plotted the average optimal score labelled

7 ~ h e seeds are used by Java Random Object to generate both the CSP and preference values.

CHAPTER 4. EXPERIMENTAL STUDY

&act-max

-+- mc-max

+ comb-ave

--c-act-ave

m c - a v e

Figure 4.7: Combined marginalization performance on RCSP by score

opt-ave.

From the graph, our method (comb-*) clearly outperforms simple rnin-conflict.

In addition, while the average solution score (comb-ave) is around 20-70% of the

optimal, the average maximum (comb-max) is between 70-90%. This shows that

our technique is capable of finding close to optimal solutions (note that average

maximum of rnin-conflict (mc-max) is only at 10-60%, and the average score found

by rnin-conflict (mc-ave) follows the actual average of the problem). However, the

advantage of our method over actual marginalization (act-*) is minimal. In fact,

for a few t values, actual marginalization performs better than our method. This

shows that the first term of equation 3.4, has little effect on the solution quality.

We plotted the success rate of the different marginalization since a local search

is not guaranteed to fmd a solution. Figure 4.8 shows the average success rate

CHAPTER 4. EXPERIMENTAL STUDY

Figure 4.8: RCSP success ratio and total solutions

for both combined marginalization and min-conflict. It is interesting to note that

min-conflict has a lower success ratio compared to others, since it does not have

the breakout [19] behavior that the other methods exhibit due to the preference

or weighting of tuples. This result shows that hill-climbing through the combined

preference and feasibility landscape has a higher chance of finding solution. Fig-

ure 4.8 also shows the average number of total solutions for each t value.

We also rank the solution found to give some indication a s to the distribution of

the solution scores. This is plotted in figure 4.9 and it shows that on average the

solution found is within 70-90% of the optimal in terms of ranking. The average

maximum is a t 90-100%. Note that this figure shows that while the average

solution obtained by our technique is relatively poor in terms of absolute score,

it is actually quite good in terms of solution rank. This is due to the RCSP not

having a normal distribution of solution scores.

Finally, for both MASSP and RCSP, we calculated the average number of pref-

erence skewing performed in order to find a solution. This is given in figure 4.10.

In general, the harder the problem, the more likely strong preferences to mislead

the search, thus more skewing is required to lessen its effect. While the skew-

ing allows for degradation to min-conflict in the worst case, we see that even for

harder problems (32 teams and t = 0.48), our technique is still able to u t ike the

heavily skewed preferences and perform better than min-conflict.

CHAPTER 4. EXPERIMENTAL STUDY

Figure 4.9: Combined marginalization performance on RCSP by rank

problem skews I problem skews
teams = 4 - 6 0.00 (t = 0.40 6.08

Figure 4.10: Average number of preference skewing

teams = 8 0.06
teams = 10 1.72
teams = 16 4.54
teams = 32 7.42

t = 0.42 6.67
t = 0.44 7.22
t = 0.46 7.46
t = 0.48 7.72

Chapter 5

Conclusion

5.1 Summary

When solving a multi agent optimization problem, one is faced with the challenge

of balancing feasibility and preference. Considering the two factors simultane-

ously may be more effective in guiding the search to find good solutions compared

to only considering one factor at a time (e.g., branch-and-bound search). More-

over, within a multi agent setting, the preferences of every participants should

be taken into account. When all agents are equal, good solutions also means

ones that is fair and mutually beneficial to all. In such situations, local search

techniques are preferred since they do not impose ordering of agents, and Nash

bargaining solution can be employed because of its pareto optirnality and inde-

pendence of utility transformation. Hence, it is able to produce a fair agreement

regardless of agents utility scales.

However, global Nash bargaining solution requires the computation of the

global bargaining set. This is equivalent to taking the cross-product of all the

constraints with preferences which is NP-hard. Instead, local negotiations can be

used as an approximation. Although the true optimum is sacrificed, we found

that repeated local negotiations can quickly find sub-optimal solutions.

Unfortunately, local search also suffers from not being able to distinguish be-

tween infeasible states when using traditional marginalization methods. Prior to

CHAPTER 5. CONCLUSION 66

negotiating for an agreement, an agent must first evaluate the values of all possi-

ble agreements. This is achieved by marginalizing the constraint with preferences.

The result of this marginalization is simply the preference values of the constraint

tuples (i.e., no real marginalization is performed) since all the variables are as-

signed in local search. If the tuple is infeasible, the domain element will not be

included as a possible agreement. Thus, only feasible states can be considered

in the bargaining. Therefore, existing marginalization methods are inadequate

since they are typically only employed in constructive search, where feasibility is

always maintained. In case of local search, where the current state is often infea-

sible, especially if there exists non-binary constraints, these marginalization are

helpless.

We presented a marginalization technique which combines both feasibility and

preference, and that is more suitable for local search. This approximation uses

functions that can differentiate between feasible states, between infeasible states,

and can prefer promising infeasible states over less attractive feasible states. It

also allows for a more effective local search at the presence of non-binary con-

straints since it is able to distinguish between infeasible states. However, such

functions could and did mislead the search to dead ends due to false promise

of attractive infeasible states. In order to mitigate this, we introduced a prefer-

ence skewing mechanism, where the preferences were updated so as to minimize

the difference between high and low values. We combined local search with this

policy and found that such repeated negotiations did lead to good solutions. Ex-

perimental results on sport scheduling and random CSP optimization problems

showed that it performed better than rnin-conflict and did achieve close to opti-

mal solution. On the above problems, the average maximums of solution quality

obtained was about 90% of the optimal. The solutions found were also fair to all

participants which showed that the Nash bargaining solution, combined with our

marginalization technique, is a viable negotiation strategy for multi agent opti-

mization.

CHAPTER 5. CONCLUSION 67

5.2 Future Work

There are several areas in which this work can be further extended. These could

include further evaluation of the performance on other optimization problems,

e.g., travelling tournament problem [4], giving an indication of how our approach

compared to the state-of-the-art. Instead of a simulated multi agent system, a true

multi agent environment can be implemented. This will also entail a more detailed

development of its coordination protocol, which could enable parallel processing

and lead to a more efficient system. We have only given basic functions for the

marginalization, and investigation of alternative functions could lead to better

performance. Finally, instead of a random restart, the algorithm could incorporate

a more sophisticated digression mechanism, such as a nogood cache, for escaping

local maxima.

Bibliography

[11 Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos Kranakis, Danny
Krizanc, Michael S. 0. Molloy, and Yannis C. Stamatiou. Random constraint
satisfaction: A more accurate picture. In G. Smolka, editor, Proceedings of
Third International Conference on Principles and Practice of Constraint Pro-
gramming (CP971, pages 107-120, 1997.

121 S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and Valued CSPs: Basic Properties and Comparison.
In M. Jampel. E. Freuder, and M. Maher, editors, Over-Constrained Systems
(Selected papers from the Workshop on Over-Constrained Systems at CP'95,
reprints and background papers), volume 1 106, pages 1 1 1-150. 1996.

[3] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really
Hard Problems Are. In Proceedings of the Twelfh International Joint Con-
ference on Artrficial Intelligence, IJCAX-91, Sidney, Australia, pages 33 1-337,
199 1.

[41 Kelly Easton, George Nernhauser, and Michael Trick. The traveling tour-
nament problem description and benchmarks. Lecture Notes in Computer
Science, 2239:580-589, 200 1.

[5] Eugene C. Freuder. Partial Constraint Satisfaction. In Proceedings of the
Eleventh International Joint Conference on Artrficial Intelligence, IJCAX-89, De-
troit, Michigan, USA, pages 278-283, 1989.

[6] I. Gent, E. MacIntyre, P. Prosser, B. Smith, and T. Walsh. Random constraint
satisfaction: Flaws and structure. Technical Report APES-08-1998, APES
Research Group, 1998.

[7] Enrico H. Gerding, David D. B. van Bragt, and J. A. La Poutre. Scientific
approaches and techniques for negotiation. A game theoretic and d c i a l
intelligence perspective. Technical Report SEN-R0005, 29, 2000.

[8] Fred Glover and M. Laguna. Tabu Search Blackwell Scientific Publishing,
Oxford, England, 1993.

BIBLIOGRAPHY 69

[9] Jean-Philippe Harniez and Jin-Kao Hao. Solving the sports league scheduling
problem with tabu search. Lecture Notes in Computer Science, 2 148:24-36,
200 1.

[lo] Martin Henz. Constraint-based round robin tournament planning. In Inter-
national Conference on Logic Programming, pages 545557, 1999.

[1 11 Martin Henz, Tobias Mller, Sven Thiel, and Marleen van Brandenburg. Global
constraints for round robin tournament scheduling. European Journal for
Operational Research, 153(1):92- 10 1. 2000.

[12] N. R. Jennings. Coordination techniques for distributed artificial intelligence.
In G. M. P. O'Hare and N. R. Jennings, editors, Foundations of Distributed
Arhfkial Intelligence, pages 187-2 10. John Wiley & Sons, 1996.

[13] Narendra Jussien and Olivier Lhornme. Local search with constraint propa-
gation and conflict-based heuristics. In AAAI/IAAI, pages 169- 174, 2000.

[14] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220, 4598:67 1-680, 1983.

[15] S. Lauritzen and P. Shenoy. Computing marginals using local computation.
Working Paper No 267, School of Business, University of Kansas, Lawrence,
KS, 1996.

[161 Alan K. Mackworth. Consistency in network of relations. Arhfkial Intelligence,
8(1):99-118, 1977.

[17] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coor-
dination. ACM Computing Surveys, 26(1):87-119, 1994.

[18] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Min-
imizing conflicts: A heuristic repair method for constraint satisfaction and
scheduling problems. Arhfkial Intelligence, 58(1-3): 16 1-205, 1992.

(191 P. Morris. The breakout method for escaping from local minima. In Proceed-
ings of the Eleventh National Conference onArhfkia1 Intelligence, pages 4045,
1993.

[20] J.F. Nash. The bargaining problem. Econornetrica, 18: 155162, 1950.

[21] G. L. Nernhauser and M. A. Trick. Scheduling a major college basketball
conference. Operations Research, 46: 1-8, 1998.

[22] Russell Ovans. A Multiagent Solution to the Venue Equalization Problem PhD
thesis, Simon Fraser University, 2002.

BIBLIOGRAPHY 70

[23] Jean-Charles Regin. A filtering algorithm for constraints of difference in
CSPs. In Proceedings of The Twelfth National Conference on Articial Intelli-
gence, pages 362-367, 1994.

[24] Jean-Charles Regin. The symmetric alldiff constraint. In Proceedings of the
International Joint Conference on Articial Intelligence, volume 1, pages 420-
425, 1999.

[251 J.S. Rosenschein and G. Zlotkin. Rules of Encounter Designing Conventions
for Automated Negotiation among Computers. MIT Press, 1994.

[26] Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econometrics,
50(1):97-109, 1982.

[27] K.G. Russell. Balancing cany-over effects in round robin tournaments.
Biometrika, 67(l): 127-13 1, 1980.

[28] Robert A. Russell and Janny M. Y. Leung. Devising a cost effective schedule
for a baseball league. Operations Research, 42(4):6 14-625, 1994.

[29] Tuomas W. Sandholm. Distributed rational decision making. In Gerhard
Weiss, editor, Multiagent Systems: A Modern Approach to Distributed A&ficial
Intelligence, pages 201-258. The MIT Press, Cambridge, MA, USA, 1999.

[30] Bart Selman, Hector J. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In Paul Rosenbloom and Peter Szolovits, editors,
Proceedings of the Tenth National Conference on A&ficial Intelligence, pages
440-446, Menlo Park, California, 1992. AAAI Press.

[3 11 B. Smith. Phase transition and the mushy region in constraint satisfaction.
In Proceedings of the 1 1 th ECAI, pages 100- 104, 1994.

[32] Gadi Solotorevs@ and Ehud Gudes. Solving a real-life nurses time tabling
and transportation problem using distributed csp techniques. In Proceedings
of CP '96 Workshop on Constraint Programming Applications, pages 123-131,
1996.

[33] W.D. Wallis. One-Factorizations. Kluwer Academic Publishers, 1997.

[34] William E. Walsh and Michael P. Wellman. Marketsat: An extremely de-
centralized (but really slow) algorithm for propositional satisfiability. In
AAAI/IAAI, pages 303-309, 2000.

[35] Michael P. Wellman. A market-oriented programming environment and its
application to distributed multicornrnodity flow problems. Journal of Ahficial
Intelligence Research, 1 : 1-23, 1993.

BIBLIOGRAPHY 7 1

1361 Makoto Yokoo. Distribution Constraint Satisfaction: Foundations of Coopera-
tion in Multi-agent Systems. Springer-Verlag: Berlin, Hiedelberg, New York,
200 1.

