
COMBINING PREFERENCE AND FEASIBILITY IN MULTI 

AGENTLOCALSEARCH 

Tedi Susanto 

B.A.Sc, University of British Columbia, 1996 

A T H E S I S  SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  D E G R E E  O F  

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Tedi Susanto 2004 

SIMON FRASER UNIVERSITY 

July 2004 

AU rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Tedi Susanto 

Master of Science 

Combining Preference and Feasibility in Multi Agent 

Local Search 

Examining Committee: Dr. F'unda Ergun 

Chair 

Date Approved: 

Dr. William S. Havens 

Associate Professor 

School of Computing Science 

Senior Supervisor 

Dr. Michael Brydon 

Assistant Professor 

Faculty of Business Administration 

Supervisor 

Dr. Lou Hafer 

Associate Professor 

School of Computing Science 

SFU Examiner 

July 15, 2004 

ii 



Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has 

granted to Simon Fraser University the right to lend this thesis, project or 

extended essay to users of the Simon Fraser University Library, and to 

make partial or single copies only for such users or in response to a 

request from the library of any other university, or other educational 

institution, on its own behalf or for one of its users. 

The author has further agreed that permission for multiple copying of this 

work for scholarly purposes may be granted by either the author or the 

Dean of Graduate Studies. 

It is understood that copying or publication of this work for financial gain 

shall not be allowed without the author's written permission. 

The original Partial Copyright Licence attesting to these terms, and signed 

by this author, may be found in the original bound copy of this work, 

retained in the Simon Fraser University Archive. 

Bennett Library 
Simon Fraser University 

Burnaby, BC, Canada 



Abstract 

Within a multi agent system, rational agent ;s communicate and negotiate to solve a 

common global constraint satisfaction problem. Given that there are many possi- 

ble solutions and that each agent has its own preference, such negotiation should 

not only lead to just any solution, but one that is fair and mutually beneficial 

to the all the participants. The Nash bargaining solution to the bargaining prob- 

lem can be applied to a cooperative multi agent environment in order to achieve 

pareto optimal solutions, where no party can benefit without causing harm to 

others. However, given the complexity of most real-world problems, computing 

the so-called bargaining set is NP-hard. Furthermore, while it would be preferred 

to use local search algorithms to ensure fairness, as they do not impose ordering 

of agents, the presence of non-binary constraints has a detrimental effect. That 

is, any attempt to repair a variable in a constraint where the current states of the 

other variables already violate the constraint is futile. 

We propose a marginalization strategy that approximates the bargaining set 

and allows for a more effective local search in the presence of non-binary con- 

straints. This technique considers both feasibility and preferences and is able to 

better distinguish between infeasible states while searching for solutions. We eval- 

uate this method on sport scheduling problem using all-different constraints with 

preferences and on random binary CSPs with preferences. Experimental results 

show that it has significant advantage over local search using only min-conflict 

heuristic. 
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Chapter 1 

Introduction 

1.1 Motivations 

In constraint optimization problems, we are interested in finding reasonably good, 

if not the best, solutions based on some evaluation criteria. For example, in sports 

league scheduling, there could be many schedules that satisfy the constraints im- 

posed, but we may want to find ones that minimize the travel cost of the teams. 

When solving such problems, there are two factors that have to be considered: fea- 

sibility and preference. These two often do not go hand-in-hand, what is feasible 

may not be desired, similarly what is desired may not be feasible. Traditional ap- 

proaches such as  branch and bound, consider feasibility first and then preference 

in its search. That is, branch and bound searches for feasible (pax-tial) solutions 

first, then evaluates these to determine their desirability. However, given both of 

these criteria, one may benefit by considering both simultaneously, resulting in a 

more efficient search for good solutions. 

Balancing the two requirements gets even more difficult when many parties are 

involved. Each will have its own preferences and the solution that will be accept- 

able will be one that is fair and mutually beneficial to all. A negotiation strategy 

is necessary in order achieve this and the Nash bargaining solution is a suitable 

candidate, given its pareto optirnality and independence of utility scales. Pareto 

optimality means that no one party can take action unilaterally without causing 

harm to the others and independence of utility scales means that different parties 
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can use different method of valuation of the agreement and yet the same solu- 

tion can be obtained regardless. In order to apply the Nash bargaining solution 

to the problem, one must first compute the bargaining set. However, computing 

the global bargaining set is equivalent to taking the cross-product of all the con- 

straints, and therefore it is NP-hard. Imagine a roomful of team managers trying 

to schedule a season of a sport tournament, and they have to consider all possible 

configurations of games which are exponential in numbers. 

Instead of applying the Nash bargaining solution to the global problem, we can 

apply it locally. In terms of sport scheduling, we can think of it as having ev- 

ery pair of teams negotiating just for the match between the two of them instead 

of having all the teams negotiating for the complete tournament schedule. The 

result of the reduction in computational complexity is that all the locally pareto 

optimal agreements taken together do not necessarily produce a globally optimal 

solution. For problems where the true global optimum is not required, this ap- 

proach provides fast sub-optimal solutions that maybe are good enough. Another 

difficulty with this approach is, before we could negotiate locally, we would need 

to express our complex preference in terms of the current possible bargains. Due 

to the interdependence between different negotiations, computing an informative 

local bargaining set can be difficult. 

Before going further and addressing this problem, a brief discussion relating 

preferences, bargaining set, and multi agent constraint optimization is in order. 

In constraint optimization, an objective function is used to evaluate the feasible 

solutions. This could be minimizing cost, maximizing profit or others. A sin- 

gle agent (which can represent a team in sport scheduling, for example), can be 

represented by a constraint which lists all the feasible solutions with their asso- 

ciated preferences. That is, the objective function or preferences of an agent can 

be represented as a constraint with preferences. In a multi agent system (MAS) 

environment, there are many of these agents and they are related by shared con- 

straints or variables. As each of these agents has their own preferences, solving 

a multi agent constraint optimization is equivalent to finding a consistent global 

solution such that all the preferences are maximized1. When a variable is shared 

'These preferences may be maximized according to some social welfare function, such as utili- 
tarian, egalitarian, etc. 
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between two agents, they can negotiate as to which value that variable should 

take. Prior to the negotiation, the bargaining set has to be computed, that is, 

for each of the domain values of the variable, a valuation is required from either 

agents. Therefore, each agent needs to marginalize its preference (which can be 

derived from many variables) and obtain an approximation of what each domain 

value of the negotiated variable is worth. 

Hence, the problem lies in obtaining an accurate marginalization. One ap- 

proach to solve this is to use the traditional constructive search marginalization. 

However, such marginalization requires constructive search, where there exists 

ordering of agents, and it considers feasibility first, and then preference. Using 

the sport scheduling example, we would start with an empty schedule and assign 

some sort of order to the teams, so team 1 will first negotiate with team 2 on their 

game. Then team 1 will negotiate with team 3 on their game (keeping in mind 

the agreement made with team 2), and so on. Thus the resulting schedule may 

arbitrarily favor the higher order teams and is hardly fair. The alternative is a 

local search approach, where all the teams are equal and all of them start with 

their own best schedules. Of course, it is highly unlikely that all the best sched- 

ules taken together will give a feasible solution, so the teams have to negotiate 

to find a preferred compromise. A team may then have to perform several local 

negotiations in order to achieve this compromise. As rounds of negotiations con- 

tinue, a team may find that the previously made agreements might no longer look 

as  good as  they were and re-negotiations may be necessary. This is an iterative 

repair approach where the negotiation has to be done repeatedly until everyone is 

satisfied. We have adopted this approach since it does not assign precedence to 

the parties and we have assumed a multi agent environment where all agents are 

equal. 

Now, how can one perform marginalization in local search? Particularly one 

that considers both feasibility and preference simultaneously? In other words, 

how can one compute a local bargaining set that reflects both the feasibility and 

preference of an agent? We argue that such bargaining set should not only include 

feasible bargains but also preferred infeasible bargains. The reason behind this 

strategy is that the result of local agreements can be viewed as a tentative (perhaps 
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infeasible) solution, which may become feasible as  we re-negotiate. When nego- 

tiating locally, the partles would have to estimate how the agreements that were 

made previously are going to affect the current one, due to the interdependence 

between the agreements. Therefore, each party has to consider the preferences 

of itself and others (as reflected in previous deals), as well a s  the feasibility of 

the problem, while negotiating for the current deal. It turns out that this is not 

an easy task because we typically can only value a complete set of deals. In our 

sport scheduling example, if we are interested in minimizing the traveling cost, we 

need to know our complete tour in order to calculate the cost. When negotiating 

with only one other team at a time, we need to estimate what the expected cost 

would be given the previous deals. To further complicate the matter, what if all 

the previous deals taken together does not lead to a feasible solution? That is, we 

are faced with a problem of not being able to distinguish infeasible solutions (i.e., 

they are all just bad). Further, what if the feasible bargain is very unattractive? 

We may want to explore more promising infeasible bargains. 

We propose a strategy that maps the complex agent preferences into a valu- 

ation used for bargaining. When the preferences are represented a s  constraints 

with preference, this process is also called constraint projection or constraint 

marginalization. We can view marginalization a s  a procedure that summarizes or 

approximates the preference that depends on many variables into one that de- 

pends only on one variable2. However, existing marginalization functions are only 

used in constructive search. As such, they are fairly simple and do not distinguish 

between infeasible states or considers infeasible states that may lead to preferred 

solutions. Instead of presenting specific functions, we identified four properties 

that are desirable when solving multi agent constraint optimization problem. The 

marginalization function should: be able to distinguish between feasible states, 

be able to distinguish between infeasible states, be able to explore promising in- 

feasible states even at the cost of feasibility, and contain the elements of both 

preference and feasibility. We argue that it is sometimes reasonable to choose 

preference over feasibility since we are performing repeated negotiations and other 

parties may move to their preferred states and eventually arrive at a good feasible 

2 ~ n  general, one can marginalize the preference with respect to a subset of the original variables. 
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solution. However, we can also expect that such policy can often force us into 

infeasible region and never arrive at a solution. This is caused by the infeasible 

states having too high of preference values and the feasible states having too low 

of preference values. In order to address this issue, we introduce a preference 

skewing mechanism. Here, the preference values are updated such that differ- 

ence between high and low values is reduced. This method was successful in 

overcoming the over-dominance problem and we were able to find good solutions. 

We called the previous approximation strategy combined marginalization. Armed 

with this marginalization, each party can locally negotiate and re-negotiate until a 

solution is found. Using sport scheduling and random CSP as our test problems, 

we compared our technique against simple min-conflict heuristic, where only fea- 

sibility is considered during search. We found that our approach outperforms 

min-conflict, both in solution quality and fairness. Furthermore, our experiments 

showed that the technique is capable of finding close to optimal solutions, pro- 

ducing solutions with average maximum of about 90% of the optimal. 

1.2 Thesis Outline 

This thesis investigates the use of Nash bargaining solution in solving multi agent 

constraint optimization problem. However, prior to applying the Nash bargaining 

solution, the bargaining set would have to first be computed. When a multi agent 

system consists of numerous agents, each with many interdependent variables 

and constraints, computing this set is equivalent to computing multiple-items, 

multiple-players bargaining set. This is NP-hard and may not be practical. An ap- 

proximation using local negotiation and marginalization strategy which combines 

both preference and feasibility is proposed and its performance evaluated on two 

classes of problems: sports league tournament scheduling and random CSPs. 

In Chapter 2, we first describe the concept of constraint satisfaction and multi 

agent system. Then we introduce the notion of valued CSP and describe con- 

straint combination and projection in terms of semiring-based CSP. We define 

a bargaining problem in the context of MAS and valued CSP and outline how 

the Nash bargaining solution can be applied to multi agent optimization prob- 

lem. This is followed by a review of sports scheduling problem and random CSP. 
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In Chapter 3, we first formalize our multi agent model and describe the current 

constraint marginalization methods. We presented an example to show how it is 

inadequate for non-binary constraints. We then outline the requirements for our 

combined marginalization and provide specific functions for both sport scheduling 

and random CSP. We also describe our preference skewing mechanism in order 

to escape from strongly preferred but infeasible regions. Chapter 4 presents the 

algorithm used in our experimental study, along with its results and discussions. 

We showed that our approach is capable of finding fair and close to optimal so- 

lutions, for both the sport scheduling and randomly generated CSPs. Finally, the 

conclusion and future work are given in Chapter 5. 



Chapter 2 

Background 

2.1 Constraint Satisfaction Problem 

2.1.1 Definition and Representation 

A Constraint Satisfaction Problem (CSP) is a general framework for modeling var- 

ious problems in Artificial Intelligence (AI). Such problems include scheduling, 

resource allocation, and configuration. Formally, a CSP is a triple (V, D, C) where 

V = {xl, ..., x,) is a set of variables, 

D = {Dl, ..., D,) is a set of domains, such that xi takes value from Di, and 

C is a set of constraints, such that a constraint c is a subset of the Cartesian 

product Dl x . . . x D, consisting of compatible values or tuples for the involved 

variables. 

When the number of involved variables in constraint c is one or two, c is called 

unary or binary constraint respectively. All other constraints are considered non- 

binary. A binary CSP is one that only contains unary and binary constraints. 

Solving a CSP is equivalent to finding an assignment to all variables such that all 

constraints are satisfied. As CSP is NP-complete, a trial and error search for a 

solution is inevitable for solving it. 

A classical example of a CSP is the n-queens problem. The objective is to place 

n chess queens on an n x n board such that these queens do not threaten each 

other. A solution for 4-queens problem is shown in figure 2.1. 
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Figure 2.1: 4-queens problem 

c12 
2 1  1 2 2  1 allowed 
1  I 1  l no (same column) 

Figure 2.2: Example of a constraint table 

1  

2 
2 
2 
2 

To formulate the 4-queens problem, we can assign each row a variable, that is 

V = { x l  , x 2 , x 3 ,  x 4 ) .  Each of this four variables can take one of the four columns 

as  its value, i.e., D l  = D 2  = D 3  = D 4  = {1 ,2 ,3 ,4) .  The constraints can represented 

as  inequalities: V i ,  j, xi # x j  which prohibits the queens to be in the same column, 

and V i ,  j ,  if xi = a ,  x j  = b,  then li - jl # la - bl which disallows queens to be in 

the same diagonal. Equivalently, we can represent the constraints as  a table 

that allows compatible tuples. Another alternative is to represent it as  a boolean 

conjZict matrix, where allowed tuples are given the value of 1's and tuples that are 

forbidden are given the value of 0's. An example of constraint table and constraint 

matrix for constraints between x1 and x2 is given in figures 2.2 and 2.3. 

2 
1 3  
1 4  

1  
2 
3 
4 

no (same diagonal) 
Yes 
Yes 

no (same diagonal) 
no (same column) 
no (same diagonal] 

yes 
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Figure 2.3: Example of a constraint matrix 

Figure 2.4: Constraint graph for 4-queens problem 

A CSP can also be represented as constraint graphs where each vertex repre- 

sents a variable in V and each edge represents a constraint in C. The constraint 

graph for the above 4-queens problem is shown in figure 2.4. 

2.1.2 Algorithms 

There are two main classes of algorithms within CSP research: consistency and 

search. Consistency or filtering algorithms take the constraints of the problem 

and use them to remove any domain values that cannot be part of any solution. 

Such algorithms are very powerful since they can greatly reduce the search space 

and minimize futile search. One family of such algorithms is Arc-Consistency or 
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ACx (where x represents a number, e.g., AC 1,  AC3) [16]. An arc ( x i ,  x j ) ,  which cor- 

responds to a binary constraint cij  in a constraint graph of a CSP, is arc-consistent 

if and only if for every value of v i  in the domain of x i ,  there exists a value in the 

domain of v j  that is compatible with xi = v i .  AC 1 achieves an arc-consistent CSP 

by revising the domain of variables by removing incompatible values for each con- 

straints. Note that the arc consistency algorithm only checks for local consistency 

and therefore it does not guarantee to find solutions. 

Typically, consistency alone cannot solve the CSP thus a search is required. 

Search algorithms can be divided into two groups: constructive and local. Con- 

structive search or backtrack search solves the problem by extending a partial 

assignment ensuring that this assignment or instantiation never violates any con- 

straints. In chronological backtrack search, if the partial assignment cannot be 

extended any further, the algorithm undoes its last decision and select the next 

feasible value. Using the n-queens example, constructive search will start with an 

empty board, place the queens one at a time (in a systematic order) ensuring that 

the current placement does not conflict with previously placed queens. Construc- 

tive search systematically explores the search space and is complete. That is, the 

search can find all the solutions if required or can determine if in fact there is no 

solution. It can also take advantage of consistency algorithms by applying them 

after each assignment is made. This has the effect of pruning the search space 

further thus reducing the search effort. 

Local search or iterative improvement, on the other hand, starts with a full 

instantiation that may not be feasible, and iteratively repairs or reassigns values 

to the variables to improve the current instantiation according to some objective 

function. Usually, there is a heuristic that guides the improvement; a popular 

heuristic is to minimize the number of conflicts, or min-conflict [18]. The min- 

conflict procedure is to select a variable that is in conflict, and assigning it a value 

that minimizes the number of conflicts (breaking ties randomly). Minton et al [18] 

have shown that an iterative improvement algorithm using rnin-conflict heuristic 

as  its repair method, performed more efficiently compared to traditional construc- 

tive backtracking algorithms for certain large-scale problems. Similar results were 

also obtained by Selman et al[30] with their GSAT algorithm, an iterative improve- 

ment method for solving hard satisfiability problems. Such algorithms, however, 
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can get stuck at locally optimal points that are not solutions. These are points 

where no more change in any variable assignments can improve the current in- 

stantiation and yet the current instantiation is still infeasible. Techniques for 

escaping from these points include random restarts [30] and Morris [19] break- 

out algorithm where weights are assigned to violated constraints. The breakout 

method dynamically updates the weights during the algorithm execution and it 

allows the search to violate more constraints with lesser weights at the cost of 

satisfying constraints with heavier weights. 

There are also rneta-heuristics, or master strategies that guide and mod@ the 

search heuristics, commonly associated with local search for optimization prob- 

lems. Two well-known meta-heuristics are Tabu Search (TS) and Simulated An- 

nealing (SA). In TS [8], the search evaluates neighboring states according to some 

criteria and moves to the better state, similar to min-conflict local search. How- 

ever, TS allows for moving to states that is worse than the current state. Repeating 

this idea creates the possibility of endless cycle, and to prevent this, TS uses a 

tabu list to maintain a list of forbidden moves. That is, if we made a move x -t x'. 

the reverse move x' -+ x is forbidden for the next s moves (s is the size of the 

first-in-first-out list). There is also an aspiration criterion which allows forbidden 

moves if certain conditions are met, for example, when a tabu solution is better 

than any previously seen solutions. TS has been shown to perform well in many 

applications [8], including sport scheduling [9]. SA is motivated by the physi- 

cal annealing process, where material is heated and slowly cooled into a uniform 

structure. SA mimics this process and is used for local search optimization [14]. 

As with TS. SA allows for moving to worse states. However, the proposed next 

state is chosen at random. If the next state is better, it is always accepted. If it is 

worse, the probability that it is accepted depends on the change in the cost func- 

tion and the current "temperature" of the system. That is, worse move is accepted 

with probability p = enlT, where A is the change in the objective function and T 

is a control parameter called the temperature. As the temperature decreases, the 

probability of accepting worse moves decreases. SA algorithm requires a cooling 

schedule whereby the temperature is slowly decreased, and at each temperature 

a certain number of iteration (random moves) is performed. The argument is that 

with slow enough cooling schedule, a global optimum can be found. SA has also 
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been used extensively in many applications, including solving VLSI layout prob- 

lems and factory scheduling. 

Local search is non-systematic, therefore it can be very efficient on some large 

problems, but it is also incomplete. Going back to our n-queens problem, a local 

search will start with some initial placement (typically random) of all the queens 

on the board, choose a queen that is being threatened, and move it to a new 

position so as  to minimize the number of attacks. It repeatedly performs such 

moves until a solution is found. If it discovers that no more such moves can be 

made and the current placement is not a solution, it has hit a local optimum. The 

search then can simply restart with a new random placement of all queens and 

start all over again. 

The two search methods have their advantages and disadvantages. Their effec- 

tiveness is also dependent on the problems to be solved. There are also hybrid ap- 

proaches that combine the advantages of either algorithms, such as that proposed 

by Jussien and Lhornrne [13]. Their technique performs a local search over partial 

assignments instead of complete assignments, and uses filtering techniques and 

conflict-based techniques to efficiently guide the search. 

Two areas in which the CSP formalism has been extended are Multi Agent 

Systems (MAS) [36] and Valued CSP (VCSP) [2]. MAS attempts to address the fact 

that problems can be distributed and a centralized approach may not be practical 

or feasible, while VCSP deals with problems that may have non-crisp constraints- 

that is some constraints are more important than others or there are varying 

degree of constraint satisfaction or violation. These are discussed in sections 2.2 

and 2.3. 

2.2 Multi Agent Systems and Distributed CSP 

A distributed CSP (DCSP) is a CSP in which the variables and constraints are dis- 

tributed among multiple autonomous agents [36]. An agent is an entity, such as 

a software process, that can sense its environment and act to change it. A multi 

agent system (MAS) consists of many such agents in a shared environment. Of- 

ten, these agents are designed to be rational, that is, their behavior is consistent 

with maximizing their own preferences over the states of the environment. When 
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a common global solution is desired, they can also interact and coordinate their 

actions in order to reach this goal. There are two kinds of constraints in a DCSP. 

Inter-agent constraints are the ones between agents and intra-agent constraints 

are the ones within one agent. Intra-agent constraints can be solved with tra- 

ditional CSP methods, but it is the solving of inter-agent constraints that is the 

main research goal of DCSP. Thus the objective is to find a value assignment to 

variables that satisfies these inter-agent constraints, which can be viewed as to 

achieve coherence or consistency among agents [36]. 

It must be noted that MAS is different from distributed/parallel processing. 

The latter is primarily concerned with efficiency and is typically deployed by a 

single designer. MAS is concerned with solving distributed CSP, where the knowl- 

edge of the problem (i.e., variables and constraints) is distributed among auto- 

mated agents. Each of these agents may be designed and owned by different 

organization thus a centralized algorithm necessitates significant communication 

cost for gathering all the parts of the problem, and translation cost for converting 

these parts to an exchangeable format. Furthermore, there can be organizational 

security or privacy issues which makes such full disclosure undesirable. 

The key problem of MAS is therefore one of coordination. How does one ensure 

that the agents act coherently in making their decisions and avoid harmful inter- 

actions? The agents in a MAS' can be in cooperation or competition. Cooperation 

implies a shared goal amongst the agents whereas competition implies that one 

agent can gain only at  the expense of another [17]. Cooperative agents will there- 

fore "behave themselves" by acting for the common good, and ensuring that they 

coordinate their interactions to achieve the global objective. Competitive agents 

typically have their own preference for how things should be and are interested 

in maximizing these preference. Often, these individual preferences are in con- 

flict with one another, and in order to achieve a stable equilibrium, coordination 

through negotiation, bargaining or mediated consensus is required. 

'A finer distinction can be made on DCSP or DAl (distributed artificial intelligence) systems. DPS 
or distributed problem solving assumes a single system architect, with an overall global goal, and 
agents that are responsible for solving particular subgoals. On the other hand. MAS are made up 
of heterogenous, autonomous agents of distinct origin, that share the same environment. However. 
we have followed the current practice of using the term "multi agent systems" to describe all of the 
DAl systems. 
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There are two approaches in solving this coordination problem. One is to de- 

sign the individual agent such that it reasons about its local actions and the antic- 

ipated actions of others and ensure that the community acts in a coherent manner 

[ 121. Here, the designer's job is to define a protocol (i.e., agent communication lan- 

guage, negotiation process, etc) for the agent interaction. Rosenschein and Zlotkin 

(251 investigated the process whereby agents iteratively negotiate in order to arrive 

at  mutually beneficial agreement. They defined a protocol and negotiation strat- 

egy based on the Nash bargaining problem [20], that results in agents reaching 

consensus at  a single point within the negotiation set. The second approach is to 

design the rules of public interactions such that the system as a whole produces 

a desirable behavior regardless of the private behaviors of the individual agents 

1251. An environment must be developed to govern the allowable interactions be- 

tween the agent and environment. In this case, coordination results from indirect 

agent interactions with simulated markets or ecosystems. An example of this is 

WALRAS 1351, a system for defining MAS as computational economies, a concept 

which the author called market-oriented programming. A computational economy 

is created by populating the system with consumer agents that consumed a set 

of goods produced by producer agents. These goods are exchanged (bought and 

sold through auctions) such that the consumers maximize their utilities and the 

producers maximize their profits. Equilibrium is achieved when the total amount 

consumed equals the amount produced, plus the initial endowment. This con- 

cept was also applied to solving propositional satisfiability in MarketSAT (341. Al- 

though the performance of MarketSAT is poor compared to the centralized GSAT 

algorithm, it shows that highly decentralized market-based technique is capable 

of solving combinatorial problems. 

Both constructive and local search techniques can be extended to solving 

DCSP. Among the algorithms presented by Yokoo 1361, are the asynchronous 

backtracking (ABT) and distributed breakout. ABT allows agents to make deci- 

sions asynchronously by taking advantage of the multiple processors available 

in a distributed environment. This is an improvement over synchronous back- 

tracking, which is a simple extension of centralized backtracking. In contrast to 

synchronous backtracking, where only one agent at a time can assign a value 

to its variable, ABT allows multiple agents to assign values to their variables in 
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parallel. However, there exists ordering of agents, and when two agents are con- 

nected by a constraint the lower agent has to accommodate the higher agent. Of 

course, if two agents are not connected, they both can run concurrently. The 

distributed breakout algorithm extends Morris [19] centralized breakout concept 

to distributed agents. In this algorithm, neighboring agents exchange values of 

possible improvements, and only the agent that can maximally improve the eval- 

uation value can change its value. Here, all agents are equal and non-neighbor 

agents can simultaneously change their values. 

Many real-world problems can be modeled into DCSP. One application problem 

that used DCSP techniques is concert venue equalization problem [22]. Typically, 

due to the spatial arrangement of the speakers, shape and size of the room, the 

sound quality produced is different in different parts of the room. The objective 

is then to provide an even sound quality by using a set of equalizers. In this 

problem, the agents corresponds to microphones scattered throughout the room, 

and they coordinate their actions by controlling the equalizers. Another problem 

is the nurse time-tabling task [32]. This problem involves assigning nurses to 

shifts in each department of a hospital and planning for their transportation from 

their homes to the hospital. As the departments are essentially independent, the 

time-tabling can be handled by different agents. However, there exists inter-agent 

constraints involving their transportation in order to minimize the transportation 

cost. 

2.3 Valued CSP 

Many real world problems often cannot be naturally expressed using traditional/classical 

CSP framework in which the constraints are either satisfied or not satisfied. For 

example, some problems may be over-constrained and no solution exists, but a 

close approximation may still be desirable. Perhaps there are degrees of impor- 

tance between constraints and it is acceptable to violate some but not others (i.e., 

soft and hard constraints). There may be cases where knowledge of the problem 

is incomplete therefore constraints may or may not exists in the actual problem. 

Weighted CSP, probabilistic CSP, and fuzzy CSP are among the many frameworks 
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that deals with such issues. For example, in weighted CSP. each constraint is as- 

signed an associated weight. The more important the constraint is the higher its 

weight. The objective is to find solutions that maximize the sum of all constraint 

weights. In such cases, we can afford to violate less important constraints in or- 

der to satisfy the more important ones. A finer approach is to assign weight or 

preference to each tuple in the constraint relations. For example, in our n-queens 

problem, we can assign some numeric values to each tuple in the constraint ta- 

ble (see figure 2.2 on page 8). Rather than simply indicating whether the tuple 

is allowed or not, we can express our preference and search for solutions that 

maximize this preference. One of the well-studied instances of weighted CSP is 

the MAX-CSP (or maximal CSP), where objective to satisfy maximal number of 

constraints [5]. 

There are also problems where many solutions exist and it is desirable to find 

the best one with respect to some evaluation criteria. These are constraint op- 

timization problems or COPS, where objective function exists and the quality of 

a solution can be measured. Optimization problems are often solved by the so 

called branch and bound algorithm. This algorithm requires a heuristic function 

that can estimate the quality of each partial assignments. Branch and bound 

search behaves like a constructive search except that as soon as a value is as- 

signed to the variable, the value of the heuristic function for the assignment is 

computed. If this value is less than the bound (usually the current best value 

of the objective function), the sub-tree under the current partial assignment is 

pruned to avoid its useless exploration. 

All these frameworks contain the notion of preference and can be seen as in- 

stances of valued CSP [2]. A valued CSP is simply a CSP with constraints or con- 

straint tuples having some associated values. Algorithms for solving valued CSPs 

usually define two additional operators: constraint combination and constraint 

projection (or marginalization). In the following, we present brief formal definitions 

of these operators in terms of semiring-based CSP, and interested readers should 

see [2] for further details. On the other hand, we note that the semiring-based 

CSP formalism is used here for completeness and due to its convenient descrip- 

tions. Therefore, readers may also skip forward to the example shown in figure 

2.5 and get an understanding of constraint projection and combination by simply 



CHAPTER 2. BACKGROUND 17 

following the example. 

Definition (structure) A semiring is a tuple (A, +, x  , 0 , l )  such that A is 

a semiring set; 0 , l  E A; + is commutative, associative and 0  is its unit 

element (i.e., a + 0  = a = 0  + a); x  is associative, distributes over +, 1  is 

its unit element and 0  is its absorbing element (i.e., a x  0  = 0  = 0  x  a). A 

c-semiring (constraint-based semiring) is a semiring (A,  +, x  , 0 , l )  such 

that + is idempotent (i.e., Va E A : a + a = a) with 1  as  its absorbing 

element and x  is commutative. 

Definition A constraint system is a tuple C S  = ( S ,  D ,  V )  where S  is a 

c-semiring, D is a finite set (the domain of the variables) and V is an  

ordered set of variables. 

Definition (constraint) Given a semiring S  = (A, +, x ,  0 , l )  and a con- 

straint system C S  = ( S ,  D ,  V ) ,  a constraint is a pair (def,con) where 

con V  and def : +A. 

Therefore, a constraint specifies a set of variables (the ones in con), and assigns 

to each tuple of values over these variables an  element of the semiring. 

Definition (tuple projection) Given two sets of variables X = {v', , ..., v i )  

and Y = { v l ,  ..., v l )  such that X C Y C V holds, and any I-tuple ( d l ,  ..., dl) 

of values for variables from Y, the tuple projection of (d l ,  . . . , dl)  from Y to 

X written (d l ,  ..., dl)  J s ,  is defined as the tuple (d',, ..., d i )  with di = dj if 

v; = vj .  

Example Consider the tuple (1 ,2 ,3 ,4)  corresponding to variables (a, b, c, d) , 

then (1,2,3,4) J i z ; : ~ ~ ~ ) =  ( 3 , l ) .  

Definition (combination) Given cl = (de f 1 ,  conl) and c2 = (de f 2 ,  conz), 

their combination cl @ c2 is the constraint (de f ,  con) defined by con = 

con1 Ucon2 and d e f ( t )  = def l ( t  Jz,). 
Hence, combining two constraints results in a new constraint that involves all 

the variables of the original ones, associating to each value tuple over such vari- 

ables a certain semiring element. This semiring element is obtained by multiplying 

the elements associated by the original constraints to the appropriate sub-tuples. 
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Definition (projection) Given constraint c = (de f ,  con) and a subset I 

of V, the projection of c over I, written c 4JI is the constraint (de f ' ,  con') 

where con' = con n I and de f t ( t t )  = CtltlF"n",,,,t,de f ( t ) .  

In other words, projecting eliminates some variables, and associates each tuple 

over the remaining variables a semiring element which is the sum of the elements 

associated with the original constraint. 

The combination and projection operations has also been used for inferring 

knowledge in belief networks and probability models [ 1 5 ] .  If we think of con- 

straint as representing certain knowledge, constraint projection or marginaliza- 

tion corresponds to coarsening of the knowledge, and combination corresponds to 

aggregation of knowledge. In order to illustrate these operations, let us consider 

the weighted CSP example shown in figure 2.5. 

Example Weighted CSP is represented by the semiring S = (A, +, x , 0 , l )  = 

( N  U {+ca} ,  min, +, +ca, 0). Here we assume that the weights represent 

cost or penalties associated with the tuples and the objective is to mini- 

mize this quantity. Given the constraint tuples weights as shown in the 

figure and assuming that we are currently deciding on the value of 2 2 ,  

we obtain the following: 

Projection of cl2 wrt 2 2  = 1 : cl2 4Jzz (1)  = min(9 ,5)  = 5 

Projection of C23 wrt x2 = 1 : C23 4Jzz (1 )  = min(8 ,7 ,6 )  = 6 

Combination of cl2 and ~ 2 3  when x2 = 1 : cl2 8 c23(1) = 5 + 6 = 11 

Similarly, combination of clz and C23 when x2 = 2 : c12 8 c23(2) = 3 + 3 = 6 

Thus, the algorithm for solving weighted CSP will prefer the value 2 

(since we are minimizing the weights) for the variable 2 2 .  

Given a valued CSP or constraint with preferences, a typical algorithm uses 

the constraint projection and combination to utilize the preference information in 

order to guide the search for solutions. As shown in the example, these opera- 

tions can be used as a heuristic for selecting which value is the most promising 

for a particular variable. There are, however, different projection and cornbina- 
tion operations depending on types of CSP to be solved. Since the semiring-based 
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con,=(x,,xJ ... def, con,'=(%) ... def,' con,=(x& ... def, con,'=(%) ... def,' 

+ 
projection ... 3 J 

projection 

combination \ d' 
con'=(%) ... def' 

1 ... 5 + 6 = l l  
2 ... 3 + 3 = 6  

Figure 2.5: Weighted CSP example 
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framework provides a convenient description of different classes of CSP with pref- 

erences, figure 2.6 lists the different operations used in terms of the serniring 

structure. 

Framework A + x 0 1  
CSP lo, 11 V A 0 1  

Weighted CSP N U  {A) min + +m 0 
Probabilistic CSP @, I )  max x 0  1  

Fuzzy CSP (0, l )  max min 0 1  

Figure 2.6: Semiring representation of classes of CSP 

2.4 Bargaining Problem 

Imagine that there are two agents sharing a variable. Each agent has its own 

valued CSP that it is trying to solve or optimize and both have different preferences 

as  to which value the variable should have. This scenario of solving valued CSP 

within a MAS can be seen a s  a bargaining problem, which can be stated as  follows 

1261: 

"Two individuals have before them several possible contractual agree- 

ments. Both have interests in reaching agreement but their interests 

are not entirely identical. What will be the agreed contract, assuming 

that both parties behave rationally?" 

The bargaining problem has been studied extensively in the field of Game 

Theory2 171. Traditionally, game theory can be divided into two branches: non- 

cooperative and cooperative. Non-cooperative game theory is concerned with spe- 

cific games with well defined rules and strategies, and with finding rational out- 

come using the notion of equilibrium strategies. Examples of such strategies are 

"dominant" strategy, where the outcome is optimal regardless of the strategies of 

'came theory Is the study of how people interact and make decisions. It applies mathematical 
models to analyze problems that feature "strategic interaction" between individuals or "players." 
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other players, and "Nash" equilibrium3, where no players can benefit by unilater- 

ally changing its strategy. 

Cooperative game theory, on the other hand, abstracts away from specific rules 

of a game, and is concerned with finding a solution given a set of possible out- 

comes. For bargaining problem, the solution is typically given in terms of utilities. 

In case of two-player games, the problem becomes finding the outcome given the 

set of all possible utility pairs or bargaining set. There are many "solution con- 

cepts," or functions that map a bargaining problem to a single outcome, and they 

are usually valid only for a certain subset of all possible bargaining problems. 

The Nash bargaining solution [20], for instance, only applies to convex and com- 

pact bargaining sets. Other solution concepts include utilitarian or maximizing 

the sum of utilities, and egalitarian or maximizing the minimum utility. Note 

that utilitarian policy corresponds to finding solutions that maximize the sum of 

weights in weighted CSPs. 

Depending on the underlying structure of the MAS (i.e., non-cooperative or co- 

operative), one may apply the results from either branch of game theory. Game 

theoretic tools have been seen as a particularly suitable match for MAS since com- 

puter agents make idealized rational players (whereas humans do not). Besides 

bargaining and negotiating, rational game theoretic agents in a MAS can also be 

designed to have the ability to vote, to be involved in auctions, to form coalitions, 

etc [29]. The primary focus of this thesis is in cooperative MAS and it investi- 

gates the use of a negotiation strategy inspired by the Nash bargaining solution 

for solving multi agent constraint optimization problem. This is similar to Rosen- 

schein and Zlotkin [25] Product Maximizing Mechanism, where the strategy is in 

equilibrium with itself and it is efficient, that is, the deal is the best possible. 

Nash Bargaining Solution 

In solving the bargaining problem, Nash [20] used an axiomatic approach to obtain 

a unique solution. Given a Nash bargaining problem (i.e., a compact and convex 

bargaining set4), he proposed four properties, now known as the "Nash axioms" 

3 ~ o h n  F. Nash, Jr. was among the recipients of 1994 Nobel Prize in Economic Sciences for this 
very contribution. 

'?his assumption is required otherwise the method will not yield a unique solution. 
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1. Independence of linear utility transformation, that is the final outcome should 

not depend on how the player's utility scale is calibrated. So when a function 

models a player's preference, any strictly increasing affine transformation5 

of that function represents the same preference and therefore will yield the 

same outcome. 

2. The agreement is pareto efficient, that is no player can gain without caus- 

ing a loss to the other. Figure 2.7 illustrates this concept. The first part 

shows the utility values of two players given some agreement points, and the 

second shows their utility imputation (the plotting of utility vs. utility) for 

agreements 5 to 20. The northeast side represents the pareto frontier and 

any agreement on this frontier is pareto efficient. 

3. Independence of irrelevant alternatives. Given that c(S) represents the solu- 

tion point for the bargaining set S, if the set T contains the set S and c(T) is 

in S, then c(T) = c(S). 

4. In symmetric situations, both players will get the same payoff. In other 

words, if the bargaining set S is symmetric (the graph becomes symmetrical 

with respect to the line u1 = u2), then c(S) is point of the form (a, a). 

Nash proved that the only solution that satisfies these four properties is char- 

acterized by c = (xl, x2) which maximizes the so-called Nash product (XI - dl)(x2 - 

d2), where dl and d2 represent the disagreement payoffs or the players' utility out- 

comes when no agreement is reached. Figure 2.7 also illustrates the construction 

of the Nash bargaining solution for a symmetric two-player bargaining problem. 

The Nash bargaining solution has several attractive properties that are desir- 

able when solving a multi agent COP. It yields the same solution regardless of the 

agent's preference scale, which can be different as it may designed and owned by 

different organization. Utilitarian and egalitarian, in contrast, will require a com- 

parable preference scale. It is pareto efficient, thus the solution does not waste 

5 ~ r o m  utility theory, U ( W )  and a + bU(W) with b > 0 describe the same preference. 
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Figure 2.7: Pareto efficiency and the Nash bargaining solution 

Case 2: Incomparable utilities 

Case 1: Comparable utilities 
agreement ( pl  utility I p2 utility I Nash I utilitarian 

A 1 2 

-- - - 

Figure 2.8: Nash vs. utilitarian 

9 1 18 1 11 

agreement I pl utility 1 p2 utility I Nash I utilitarian 

any utility. Furthermore, it constitutes a "fair bargain," unlike utilitarian, for ex- 

ample, where an agent has to agree with smaller payoff because it will benefit 

the other agent a lot more, that is it should sacrifice for the greater good. Figure 

2.8 shows an example that illustrates the advantages of Nash bargaining solution 

when compared to utilitarian solution. Shown in bold is the accepted agreement 

and it is assumed that the disagreement payoff is zero. 

A 

2.5 Sports League Scheduling 

2 1 90 1 180 1 

Sports league scheduling has been extensively studied within the CSP research 

[ 101 [2 11 [23] [91. There are many variations of this problem and many researchers 
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Figure 2.9: Example of a round robin schedule 

have tackled these with different approaches. One of the most common variations 

is minimizing the number of breaks in a round robin schedule. Figure 2.9 illus- 

trates a typical round robin schedule for 4 teams. A break is defined as a consec- 

utive home-home or away-away games in a particular schedule. Hem [lo] used a 

constraint programming approach, Nemhauser and Trick [2 11 used combination 

of both integer and constraint programming approach, and Regin [23] developed 

filtering algorithms to efficiently prune or reduce the search space. While Hem 

used constructive search method, Hamiez and Kao [9] used local search with Tabu 

list. Other common objectives include minimizing the total distance traveled [4] 

and minimizing the carry-over eflects [27]. Carry-over effects occur when a match 

between two teams has an impact on their performances in the next round. An 

ideal schedule would then only contain a single occurrence of any sequence of 

two teams, leading to a balanced schedule with respect to carry-over effects. For 

example, a team may first play against team a then team b. If there are many 

of such a,b sequence and if team a is a very strong team, team b may receive an 

unfair advantage because of the resulting low morale. 

Typical sports league tournament consists of n teams playing each other in a 

round robin fashion. When a team plays only once against every other teams, 

and all the matches has to be played in n - 1 rounds (assuming that there are n/2 

matches in each round), it is called dense single round robin (DSRR) tournament 

[l 11. A dense double round robin (DDRR) is one where each team plays the others 

twice, usually once at home and once away, within 2(n - 1) rounds6. Further 

additional constraints can be imposed such as disallowing a certain match on a 

 he solution for DDRR can also be obtained by simply repeating a DSRR schedule and swapping 
the home-away teams. 
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certain round, considering the availability of stadiums, and so on. Note that we 

can assume that n is even without loss of generality. When there are odd numbers 

of teams, we can introduce an additional dummy team. A game played against 

this dummy team is then considered as a bye. 

The search for a good schedule typically entails three steps 1211. The first 

is to find a home-away pattern set. This is a set of n strings of length n - 1 

(corresponding to the number of rounds in the schedule) which represents the 

home-away sequence for the teams. For instance, for a four-team round robin 

with teams { a ,  b, c ,  d ) ,  one feasible pattern set is: 

The next step is to assign games consistent with the pattern set (so if i plays 

j in a round, then either i is home and j is away, or the reverse). For the above. 

one possible timetable ("+" denotes at home and "-" denotes away) is: 

The third step is to assign teams to the pattern set or timetable, based on, 

say, their preferences for being home at certain rounds. For example, the teams 

{ a ,  b, c ,  d )  is assigned to 3,1,2,4 respectively, resulting in the following schedule: 

Alternative approaches to sports scheduling differ in the order in which these 

subproblems are solved and the method employed to solve each of the subprob- 

lems. Russel and Leung [28] used combinatorial design theory to obtain the 
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timetables and assign teams in step 3 using enumeration. Nemhauser and Trick 

[21] solved the subproblems in the above order and used integer programming 

for steps 1 and 2, and complete enumeration for step 3. Hem [lo] improved on 

this using constraint programming for all three steps, and achieved a significant 

performance advantage on the last step. 

Round robin tournaments can be viewed as  a graph theory problem [33]. We 

first present some basic terminologies. Let G = (V, E) be an undirected graph 

with vertex set V and edge set E. A complete graph is one where there exists an 

edge from any vertex to any other. A matching on a graph is a set of edges such 

that no two of them share a vertex in common. The largest possible matching on a 

graph with n vertices consists of n/2 edges, and such a matching is called a perfect 

matching. Given a complete graph K, (n even), a one-factor is a perfect matching 

of K,. A one-fiorization is a set of one-factors which are pairwise edge-disjoint 

and whose union is the set of all edges of the graph. The round robin tournament 

can then be modeled as follows. Each team is represented as a vertex and the 

match between two teams as an edge of the graph. Therefore each one-factor 

corresponds to matches in one round and finding a schedule for unconstrained 

DSRR (without any side constraints) for n teams is equivalent to finding a one- 

factorization of K,. Figure 2.10 shows the previous typical schedule for 4 teams 

and its corresponding one-factorization. 

1-2 

3-4 3 'I 1: :x: 
round 1 round 2 round 3 

Figure 2.10: DSRR schedule and its one-factorization 
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Two most important constraints for round robin scheduling are the all-dterent 

and one-factor constraints. The all-different expresses that a row in the schedule 

contains every team only once and the one-factor groups the teams in a column 

into matches. Hence a solution that satisfy these constraints is a valid schedule 

for unconstrained DSRR. Using a graph theoretic approach, Regin developed arc- 

consistency propagation algorithms for both constraints [23][24]. By combining 

a constructive search method with Regin's consistency algorithms, Hem showed 

that a significant speedup, up to one order of magnitude, can be achieved when 

compared to simply encoding the problem with equality/non-equality constraints 

[l 11. In their approach, Harniez and Kao [9] added another constraint to DSRR to 

only allow a maximum of two matches in a same period for each team. That is, 

for each round there are n/2 periods and each match is assigned to a particular 

period. They used a different formulation of the sport scheduling problem and 

did not consider home or away games. An example of their formulation is shown 

in figure 2.1 1. Using Tabu search, they were able to solve instances of up  to 40 

teams, where constructive approaches were typically limited to 24 teams. How- 

ever, they also found that the computing times required were much greater than 

those obtained using the most efficient algorithms. 

Figure 2.1 1: DSRR schedule with period assigned for six teams 

period1 
period 2 
period 3 

2.6 Random CSP 

A class of problem that is often used to evaluate CSP algorithms is the randomly 

generated binary CSP. A set of parameters characterize a random CSP: 

1.2 
4.6 
3,5 

n the number of variables, 

m the domain size of the variables (typically all variables will have the same 

2.6 
1.3 
4,5 

3.4 
2.5 
1,6 

5.6 
1,4 
2.3 

1,5 
3,6 
2.4 ' 
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domain values and domain size), 

pl or d the density of the constraint graph which is the probability or propor- 

tion that a constraint exist between any two variables (value of 0 means that 

no constraint exist in the problem, value of 1 means the constraint graph is 

a complete graph), and 

p2 or t the tightness of a constraint which is the probability or proportion 

that a tuple in the m x m relation is disallowed (e.g., value of 0.33 means 

that about one-third of the possible combination of values is disallowed, and 

two-third is allowed). 

2.6.1 Generation Models 

Most experimental and theoretical studies use one of four simple models of ran- 

dom problems. In each of these models, a constraint graph G is generated, and 

then for each edge in this graph, pairs of incompatible values are chosen. The 

models differ in how the graph is generated and how the incompatible values are 

chosen. The four models are [6]: 

Model A: We independently select each one of the n(n - 1)/2 possible 

edges in G with probability p l ,  and for each selected edge we pick each 

one of the m2 possible pairs of values, independently with probability 

pa, as  being incompatible. 

Model B: We randomly select exactly pln(n - 1)/2 edges for G ,  and for 

each selected edge we randomly pick exactly p2m2 pairs of values as  

incompatible. 

Model C: We select each one of the n(n - 1)/2 possible edges in G inde- 

pendently with probability pl, and for each selected edge we randomly 

pick exactly p2m2 pairs of values as incompatible. 

Model D: We randomly select exactly pln(n - 1)/2 edges for G ,  and for 

each selected edge we pick each one of the m2 possible pairs of values, 

independently with probability p2, as being incompatible. 



CHAPTER 2. BACKGROUND 29 

Achlioptas et al. [l] identified a deficiency with all four random models. They 

proved that if p2 2 l / m  then, as n  + oo, there almost surely exists a Jawed 

variable. A flawed variable is one where each value in its domain isjlawed, that is 

there exists an adjacent variable in the constraint graph that cannot be assigned 

a value without violating the constraint between the two variables. Thus problem 

with a flawed variable cannot have a solution. They argue that therefore these 

model are asymptotically uninteresting except, perhaps, for a small space of their 

parameter space (i.e., when p2 < l lm) .  They proposed an  alternative model which 

has better asymptotic properties. This model does not separate the generation of 

the constraint graph from the selection of nogoods. 

Model E: We select uniformly, independently and with repetitions, pm2n(n- 

1 ) / 2  nogoods out of the m2n(n - 1 ) / 2  possible. 

However, this model is not without its shortcoming. In particular, it cannot 

control the resulting constraint graph and for small values of p, it generates a 

complete constraint graph. Therefore, it is a much less flexible model compared 

to models A to D. Gent et al[6] proposed a new way of generating conflict matrices 

which areJawkss, since the resulting problems are guaranteed not to be trivially 

insoluble. They showed how their method can be adapted to the standard models 

and proved its desirable asymptotic properties. For models B and C, given a pair of 

variables between which a constraint is to be constructed, a random permutation 

T of 1 , 2 ,  ..., m  is chosen. The set of goods based on this permutation is simply 

( ( 1 ,  ~ ( l ) ) ,  ( 2 , ~ ( 2 ) ) ,  ..., (m,  ~ ( m ) ) ) ,  and a conflict matrix that contains these goods 

cannot give a flawed value. These goods are removed from the set of all possible 

conflicts and p2m2 elements are randomly chosen from the remainder. For models 

A and D the process is similar, except that having removed the set of goods, pa is 

increased to mp2/(m - 1 )  before selecting conflicts. 

2.6.2 Problem Hardness 

As noted by Cheeseman, Kanefsky and Taylor [3], the hardest instances of many 

NP-complete problems often occur around the phase transition area. This is the 

region where the problem changes from being under-constrained to being over- 

constrained. Typically, low p2 values will produce under-constrained problems 
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and high pa values will produce over-constrained problems. Both of these are 

easy to solve because the former will have many solutions and the latter will have 

no solution that can be easily proven using propagation or pruning techniques. 

Thus, it is the value in between that will generate hard problems and is of most 

interest for evaluating CSP algorithms. For random CSP, Smith [3 11 identified this 

as the mushy region where the expected number of solution is 1.  Equation 2 . 1  

gives the critical value for pa. 

Similar results were obtained by Gent et al [6] using K values which represent 

the constrainedness of combinatorial problems. K = 1 corresponds to random 

problems where the expected number of solution is 

puting K is given in equation 2.2. 

In this thesis, we have used randomly generated 

1,  and the formula for com- 

( 2  e 2) 

CSP as one of the problems 

to evaluate the performance of our approach. For our experiment, we generated 

flawless random CSP according to model B, and selected the parameters such that 

K is close to 1.  This ensures that experimental results obtained are valid and our 

technique is both scalable to large problems and applicable to hard problems. 



Chapter 3 

Preference and Feasibility 

Marginalization 

Typically, a constraint optimization problem is solved using a branch-and-bound 

algorithm. Such algorithm behaves like a backtracking search and explores the 

complete solution space. While this approach guarantees the optimality of the 

solution found, it may require exponential time which can be impractical for large 

problems. Within a multi agent setting, an approximate solution can be found 

using a local negotiation strategy between agents. This thesis investigates how 

good the approximation is when these local negotiations utilize marginalization 

that considers both preference and feasibility. 

We first present the multi agent model with its corresponding valued CSP. 

We then describe the negotiation protocol for solving this distributed constraint 

optimization problem. We will show how the current marginalization methods 

are inadequate and outline the properties that a marginalization function should 

have. In order to better illustrate our approach, we define a multi agent sport 

scheduling problem and use it as  an example application. Instead of working 

with just agents, variables and constraints, we can also think in terms of teams, 

games and schedules. Further, show how our technique can be applied to solving 

random binary CSPs. 
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3.1 Multi Agent  Model 

Agents in a distributed CSP share constraints and variables. Each agent can be 

as simple as representing a single variable or it can represent a complex local CSP 

with many local variables and constraints. A shared constraint is the inter-agent 

constraint that the agent must satisfy while trying to determine the values of its 

local variables. A shared variable between several agents can be viewed as if each 

agent has a different variable, and there exist constraints that these variables 

must have the same value. As in Yokoo's multi agent systems [36], we assumed 

the following model. 

Agents communicate by sending messages. 

The communication network is reliable, i.e., message sent is guaranteed to 

reach its destination. 

For the transmission between any pair of agents, messages are received in 

the order in which they were sent. 

Each agent knows all the constraints (local and shared) relevant to its vari- 

ables. 

Each agent maintains an agentbiew which consists of the current states of 

other agents that are involved with its shared constraints. This ensures an 

agent is aware whether its shared constraints are currently satisfied or not. 

We also assumed that inter-agent constraints are equality constraints, that is, 

agents only share variables. The reason for this is because we intend to model 

the problem as a bargaining problem in which agents negotiate to agree on the 

value of the shared variable. In most cases, we can equivalently represent any 

inter-agent constraint as an equality constraint with a new intra-agent constraint 

added to one of the agents. In other words, moving the inter-agent constraint 

into either agent's local CSP and creating an equality constraint that connects the 

variables. Figure 3.1 shows an example of such a transformation. Furthermore, 

we have assumed the following in our MAS model. 
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Figure 3.1 : Representing an inter -agent constraint as an equality constraint 

0 Each constraint tuple in the local problem has some associated preferences, 

hence we are solving an optimization problem. 

0 All agents are equal in terms of rank, therefore local search is more appropri- 

ate since a constructive approach requires ordering of agents and may lead 

to solutions that favor higher ordered agents. 

0 An agent can only be involved in one negotiation at a time even if it has many 

shared variables. This ensures that it is making an up-to-date valuation of 

the bargaining set and avoids oscillation. 

The objective is therefore to find a solution which maximizes the agents pref- 

erences and one that is fair to all the agents. A typical MAS with its valued CSP 

is given in figure 3.2 and the local search agent procedure is presented in figure 

3.3. 

A local search approach starts with some initial (random) assignment to all of 

the variables and then proceeds to improve the assignment. Note that as shown 

in line 03, the termination condition of the agent procedure is when all the local 

constraints are satisfied. We assume that the agent is repairing the assignment 
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CSP Figure 3.2: An example of MAS with valued 

01 proc agentmn0 
02 initialize 0 
03 while (local constraints not satisfied) 
04 select a variable x to be repaired 
05 if (x is a local variable) 
06 repair(x) 
07 else 
08 if (set-upnegotiation(x) = success) 
09 marginalize(x) 
10 negotiate(x) 
11 end if 
12 end if 
13 if (in local maxima) { randoml-estart0 ) 
14 end while 
15 return 

Figure 3.3: Agent procedure 
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according to its preference and through negotiations with other agents, and there- 

fore the first feasible solution obtained is not only considered to have maximized 

its preference, but also the preferences of others. First, a candidate variable to 

be repaired is chosen as shown in line 04. If the variable is internal to an agent, 

that agent can freely repair it according to its preference. However, if the variable 

is shared among several agents, a negotiation is required to ensure that all the 

involved parties are satisfied. We check for this condition in line 05. If it is a 

shared variable, a negotiation session has to be set up. This involves exchanging 

messages with other agents, and it is possible that some other agents are already 

involved in another negotiation session1. If the session is successfully set up, the 

agent marginalizes its preferences and negotiates for the value of the selected vari- 

able (lines 09- 10). This process of negotiation and re-negotiation is repeated until 

all agents are satisfied. As with any local search algorithm, our search can be 

trapped in local maxima. While there are numerous ways to escape such points 

(such as using a nogood cache or tabu list), the algorithm simply restarts with a 

new random assignment, as shown in line 13. Figure 3.4 shows an example of 

the algorithm execution. Here, both agents Al and A3 choose a shared variable to 

be repaired. They both attempt to set up a negotiation session with A2. As A2 can 

only negotiate for one shared variable at a time, it accepts Al and rejects AS. Both 

Al and A2 marginalize their preference to the shared variable and then exchange 

their valuations. The shared variable is then repaired to the agreed value. 

This procedure is similar to a typical local search algorithm, except that we 

need to further define the marginalization and negotiation functions. Note that 

within the semiring-based CSP, these functions correspond to projection and com- 

bination operations respectively. It should be re-emphasized that constraint pro- 

jection or marginalization is only an approximation of the actual preferences. Re- 

call that from the above example, agent Al only has the exact preference of the 

constraint C23 (i.e., preference values for the tuples x2,x3). The marginalization 

essentially summarizes this information into a single valuation vector in terms 

of the domain of 23. The agents subsequently negotiate and reach an agreement 

based on their approximated preferences of the shared variable. Therefore, the 

'1n our experiment, we have simplified this process by using a system agent that determines 
which negotiation session is to be performed. 
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agreement x r  

Figure 3.4: Example of algorithm execution 
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performance of this algorithm will depend on these two functions. 

We know that using N a s h  bargaining solution as the negotiation strategy will 

result in a fair and efficient outcome. It also allows for incomparable agent utility 

values. Hence, the Nash bargaining solution can be fruitfully applied to our prob- 

lem. The challenge then is to define a marginalization function that will lead such 

negotiations to not only any solution, but good solutions. As mentioned previ- 

ously, there are two issues involved in solving a constraint optimization problem: 

feasibility and preference. A marginalization that emphasizes on feasibility of the 

problem will not be able to explore infeasible regions which may lead to a better 

solution. On the other hand, a marginalization that emphasizes on preference 

may never find a solution. We argue that therefore a marginalization function 

must consider both feasibility and preference simultaneously in order to reach 

good solutions. Unfortunately, existing marginalization functions only consider 

the feasible tuples of the constraint when producing the valuation. Therefore, 

they are inadequate for this purpose since they can only provide preference val- 

ues for feasible domain elements. Furthermore, in local search methods, all the 

variables are assigned some values and the marginalization will simply return the 

preference value of this fully specified tuple. That is, no real marginalization is 

performed (unlike one described in figure 2.5 on page 19). The reason for this 

behavior is because marginalization has only been used in constructive search, 

where at least some variables are unbound2. Figure 3.5 illustrates this behavior 

by showing the result of applying different common marginalization functions to 

a constraint. We used the previous example, assuming that agent A1 is marginal- 

izing the constraint ~ 2 3  with respect to x3 (i.e., ~ 2 3  &,,). The first part shows the 

result for constructive search assuming x2 is unbound (not assigned any value), 

and the second part shows the result for local search assuming the current value 

of x2 is 2. An infeasible tuple is denoted with a dash. 

2 ~ t  should be noted that we are not interested in static marginalization, where the marginalization 
does not consider the current states of other variables. Such marginalization may provide static 
indication of preferences for each domain elements, but since it ignores the current states of other 
variables, it cannot actively guide the search. 
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x., is unbound 

D,, I f = min 1 f = m a x  I f = avg 
1 I min(8,5)  = 5 1 max(8,5)  = 8 1 avg(8,5) = 6.5 

1 1 D,. 1 f = min 1 = max  1 f = avg 1 + 3 7 -  1 I min(5)  = 5 I max(5)  = 5 I avg(5) = 5 

1 2 1 3 1 - 1  

Figure 3.5: Constraint marginalization example 

Therefore, the traditional (constructive search) marginalization when applied 

to local search can only distinguish between feasible states and the valuation pro- 

vided is the tuple preference. In addition, if a non-binary constraint exists in the 

problem and the current states of some variables already violate the constraint, 

these marginalization are helpless. We will describe and illustrate this short- 

coming using a sport scheduling example prior to proposing a solution. In the 

following section, we first define the multi agent sport scheduling problem which 

we will use throughout this thesis. 

3.2 Multi Agent Sport Scheduling 

Previous work on solving sport scheduling problems has focused on centralized 

approach with global objective function. In transforming the problem into a dis- 

tributed CSP with preferences, we have adopted a slightly different formulation. 

The following characterizes our multi agent sport scheduling problem (MASSP): 

The tournament is a dense single round robin. 

Each team is represented by an agent. 
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vs t2 I vs t3 I vs t4 I score 
r d 1  I r d 2  1 r d 3  1 8 

Figure 3.6: The set of individual schedules for team 1 for n = 4 

Every agent/team possesses a set of individual schedules I. An individual 

schedule consists of rounds in which the games with other teams are to be 

played and an associated user-assigned preference. Figure 3.6 shows an 

example of a set of individual schedules. 

The objective is to find a compatible global schedule that maximizes the com- 

bination of individual preferences with respect to the Nash bargaining solu- 

tion. 

For example, the preferences can be the travelling cost and we want to mini- 
mize the total cost. However, the preferences can be much more complex and are 

not necessarily the same for each team. One team may want to schedule games 

to accommodate its fans, others may want to play easier opponents earlier and 

tougher ones later, and so on. In MASSP, we assumed that a user will assign a 

more preferred schedule with a larger preference value, and will assign infeasible 

schedules with values of zeros. 

It is important to realize that the team set of individual schedules is different 

from the global playable schedule. The set of individual schedules lists the differ- 

ent possible schedules for one particular team and their corresponding values to 

the team. The global playable schedule consists of a compatible individual sched- 

ule from each involved team. In order to model the tournament as a multi agent 

problem, we have used a representation that is different from that used in a cen- 

tralized approach. This representation facilitates the negotiation model between 

teams, that is, it allows for agents to negotiate the round (or week) in which their 

games should be played. Figure 3.7 presents an example of our representation 

and contrasts it with the equivalent centraked representation. 
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team2 individual scheds 
vs 11 vs t3 vs 14 score 

3 

teamt individual scheds 
vs t2 vs 13 vs t4 score 

I global playable schedule centralized approach 

I representation 

team4 individual scheds 
vs t l  vs t2 vs t3 score 

2 

Figure 3.7: MASSP problem representation 
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Figure 3.8: Multi agent network for 4 teams 

We can now represent the MASSP in terms of our multi agent model. Figure 

3.8 illustrates the multi agent network for 4 teams. Shown in dashed lines are 

the communication lines between agents which also denote the shared variables. 

The variable xij represents the games between team i and team j ,  and its domain 

is the playable rounds. Hence the set of individual schedules is simply a non- 

binary constraint (in this case an  all-different constraint) with preferences and 

each agent can be seen as one valued constraint3. Each row or individual sched- 

ule is just a tuple of this constraint. We can view the set of individual schedules 

as an  enumeration of the solutions to the all-different constraint with some asso- 

ciated preferences. 

In considering the MASSP as a bargaining problem, an ideal solution would 

be to compute the bargaining set for the n teams involved and find the maximum 

Nash product. Since the preference or utility value is dependent on the complete 

individual schedule (a row in the table is one agreement), we have a multi-item 

bargaining involving all the teams. We will need to find or enumerate the compat- 

ible schedules for all teams in order for them to evaluate their payoffs. In other 

3 ~ n  terms of the equivalent centralized problem, for n teams, there will be variables, each 
with domain size n - 1, resulting in search space of 0 (nn2) .  For 8 teams it is 7" or 4.6 x loz3. 
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words, we need to first list all feasible solutions and then take the Nash product 

to decide which solution is the best. This is equivalent to taking the cross-product 

of n individual schedules first, which is in the order of 1IIn, exponential in size. 

This is NP-hard so an alternative bargaining model is required. 

An obvious approach to approximating the bargaining process is to restrict it 

to a single item. Therefore the teams bargain for which round a particular game 

should be played. Since a game only involves two teams, each bargain will have 

only two participants, and there will be many of such negotiation. But, as alluded 

to previously, a team typically can only evaluate the utility of a complete schedule, 

not individual games. For example, it is easy to calculate the travelling cost given 

the entire tour, but the same is not true if all we know is that the game against 

team 2 is in round 3. Therefore the alternative is to marginalize the preferences of 

the complete schedule before the negotiation can take place. However, as  we shall 

see, obtaining a reasonably accurate marginalization is not straightforward4. Let 

us  consider an example of MASSP for 4 teams. Consider that we have the following 

constraint table (or individual schedules) for t l :  

score 

Using this table, say tl  wants to negotiate the game between t2 and itself (i.e.. 

212)  and currently XIS = 2 and xl4 = 3, then the projection5 of t l  to x12 is the 

following table6: 

4We can also think of the marginalization of a non-binary constraint as  putting a value on an 
item in a bundle. Even if we know the value of a bundle, it may not be easy to assign values to the 
individual items (e.g.. computing the individual item prices for combinatorial auctions problem). 

5 ~ e c a l l  that with local search, the traditional marginalization or projection simply returns the 
tuple preference, regardless of the operator. 

'value of zero means the domain element is not feasible. 
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Hence 2 1 2  would prefer to have value of 1. However, say that currently x13 = 2 

and 2 1 4  = 2, then the projection of t l  to x 1 2  is the following table: 

Which value should x12 take? This behavior is the result of marginalizing a 

non-binary constraint where the values of the other variables (variables that are 

not currently considered to be repaired) taken together always are infeasible. That 

is, we cannot repair 2 1 2  and get to a feasible state. We are faced with the problem 

that we are unable to distinguish between infeasible states. Intuitively, since we 

are working with the all-different constraint, x12 should be either 1 or 3, but not 

2. 

In the bargaining context, the projection represents the utility values for dif- 

ferent agreements. In both cases, we have scores of zeros which means that those 

domain values will not be in the bargaining set. The reason for this is that exist- 

ing projection operators only consider feasible agreements. In addition, projection 

operations are usually employed in constructive algorithms where feasibility is al- 

ways maintained. If both teams only consider feasible agreements, the bargaining 

set will often be an empty set, and there will be nothing to negotiate. Thus we 

need an alternative to this projection, one that is able assign preference to all 

domain values and is more suitable for local search. 

3.3 Combined Marginalization 

In developing our marginalization strategy, we have identified four desirable prop- 

erties that such technique should satisfy: 

1. Ability to distinguish between feasible states. 
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2. Ability to distinguish between infeasible states. 

3. Ability to choose state with higher preference at the cost of more conflict. 

4. Contains the element of both preference and feasibility. 

Property 1 is an obvious requirement and property 2 is to handle cases illus- 

trated in the previous example. The reason for property 3 is that since we are per- 

forming repeated negotiation, we can insist on what we really prefer and hope that 

other agents may move to their preferred states and eventually arrive at a good 

feasible solution. It is somewhat a greedy approach to the optimization problem. 

This is similar to both Tabu Search and Simulated Annealing and therefore allows 

for exploration of possibly better solution space. Property 3 also borrows from the 

breakout concept [19], where the state with more conflicts is chosen, but instead 

of trying to escape from local maxima, we are trying to get to highly preferred 

solutions, Property 4 represents a novel method in solving constraint optimiza- 

tion problems. Instead of the typical approach of first finding feasible solutions 

and then improving it (e.g., branch and bound search), we want to explore the 

search space while considering both elements of preference and feasibility simul- 

taneously. We called this strategy combined marginalization7. Note that, while the 

following sections describe specific functions that possess the above properties. 

one can employ alternate functions having the same characteristics. 

3.4 Valued Conflict Projection 

We first present a simplified version of MASSP. Here each agent has one all- 

different constraint representing its set of individual schedules and we assume 

7 ~ e  can think of this technique as combining the solution quality landscape with the feasibility 
landscape. The solution quality landscape will have many large flat areas with scattered peaks of 
differing heights. The higher the peak the better the solution. However, it is difficult to navigate 
through this space since the solution quality may not be available unless the current state is fea- 
sible. On the other hand, the feasibility landscape will be more contoured and with equal height 
highest peaks. These peaks represent the feasible states. It is easier to navigate the feasibility 
landscape but the quality of solution achieved may not be great. Hence combining the two land- 
scapes produces a new landscape that is more easily navigated and has contours that lead to good 
solutions. 
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vs t2 I vs t3 I vs t4 1 score 

Figure 3.9: Schedule preference from individual games preferences for t l  

that the preference of the individual schedules is simply a function of the individ- 

ual games, as shown in equation 3.1. 

U ( X I  = al, ..., xn = an) = C ux,(ai) (3.1) 
i=l..n 

In other words, the user is assigning preference to individual games, instead of 

to complete schedules, and the utility value of the complete schedule is a function 

of these preferences. While this is in contrast to what we have emphasized pre- 

viously, where a team is actually able to accurately evaluate individual games, it 

provides a convenient starting point for our marginalization. We will remove this 

restriction in the next section. An example is given in figure 3.9. 

Given such individual games preferences, we can extend the min-conflict heuris- 

tic to marginalize the all-different constraint using the following: 

f x ,  (a)  = U X ,  (a) + C uXj ( b j )  
xjEC,j#i,xj#a 

Equation 3.2 is simply summing up the individual game preferences when val- 

ues between the target variable xi and the other variables x j  are pairwise different 

(bj is the current value of x j ) .  This function essentially penalizes the domain val- 

ues that will lead to more conflicts, or more accurately. values that will lead to 

higher degree of violation of the all-different constraint. This function satisfies 

all 4 desirable properties mentioned above, except the first one since it does not 
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apply to all-different constraint. That is, there can be no more than one feasible 

state if we only consider the value of one variable. An example using values from 

figure 3.9 is given to illustrate this marginalization. 

Example Let x13 = 1 and x14 = 1. The marginalization for x12 is 

Hence the value of 1 will be preferred even at the cost of more con- 

flicts. Furthermore, while all three states are infeasible, we are able to 

differentiate them. 

Equation 3.2 can be seen as an apprordmation to any possible states, feasible 

or infeasible. It serves as a greedy indication to the direction of the search and the 

computational cost of this operation is linear in the number of involved variables. 

Note that if we have no preferences between individual games (e.g., all u,, = I), 

the marginalization simply represents the degree of satisfaction of the all-different 

constraint. That is, a value that is most pairwise different from the other variables' 

current values is preferred (i.e., min-conflict behavior). 

3.5 Table Based Projection 

In this section we generalize our method further. First, we remove the assumption 

that the individual game preference is available. Second, we use our method on 

random binary CSPs. 

3.5.1 General Non-Binary Constraints 

Here we consider the MASSP where each agent possesses complete individual 

schedules8 with preferences, such as the one listed in figure 3.10. Although for 

the MASSP case the constraint is all-different, the following method is applicable 

 he number of possible individual schedules is the permutation without repeated elements, i.e.. 
(n - I)! for each agent. 
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to problems where the constraint is expressed as a table with associated prefer- 

ences. We propose the following marginalization function: 

Equation 3.3 considers each of the non-target variables separately. u(xi = 

a, xj = bj) returns the preference value from the table where xi = a and xj = bj 

ignoring the rest of the other variables. The inner summationg gives the indication 

of support for the current pair, while the outer summation iterates through each 

involved variables. This equation also satisfies the desirable properties mentioned 

previously. Intuitively, this marginalization function transforms the single k-ary 

constraintlo into k - 1 binary constraints. Each binary constraint involves the 

target variable and one other variable, and simply takes the valuation of the k-ary 

tuple as its own. The result of the marginalization is the sum of these binary 

valuations. Figure 3.10 presents an example of this marginalization for 2 1 2  when 

213 = 2 and ~ 1 4  = 2. Note that this is the same example given in the beginning of 

the chapter, in section 3.2. Recall that when using traditional marginalization, we 

were not able to distinguish between infeasible states. In this example, the value 

1 will be preferred although it is infeasible. 

From this example, we observe that the marginalization function is not overly 

greedy. It will only consider values that will not require changing every other 

existing agreements. In the example, the value x12 = 2, will not be part of the 

bargaining set, since in order to achieve a solution with such assignment, both 

~ 1 3  and ~ 1 4  have to be changed. While such exclusion will occur less frequently 

with larger arity constraint, it nevertheless prevents the exploration of certain 

search space. Figure 3.11 presents another example of the marginalization for 

2 1 2 ,  but with 213 = 2 and ~ 1 4  = 1. In this case, the infeasible value 1 is preferred, 

instead of the feasible value 3, since it is deemed more promising. 

Note that in both examples, there is only one occurrence for each pair (e.g., 

(x12 = 1,213 = 2)) because of the size of the teams. For larger sized teams, the inner 

 his summation is the marginalization operator in the traditional sense, which can also be 
replaced with max. 

''A non-binary constraint involving k variables. 
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vs t2(x12) 1 vs t3(x13) 1 vs t4(x14) I score 
1 2 3 

Figure 3.10: Table based combined marginalization example 

x13 = 2 and x14 = 1 

Figure 3.1 1 : Table based combined marginalization example 

Dx12 
1 
2 
3 

summation will provide support indication. For example, consider the schedule 

for five teams" as shown in figure 3.12. The inner summation of the first term 

will result in u ( l , 2 , 3 ,  4 )  + u ( 1 , 2 , 4 , 3 )  for domain element 1.  That is, when we only 

value 
~ ( ~ 1 2 = 1 , ~ ~ ~ = 2 ) + ~ ( 2 ~ ~ = 1 , 2 ~ 4 = 1 ) = 8 + 0 = 8  
~ ( ~ i : ! = 2 , ~ 1 ~ = 2 ) + ~ ( ~ ~ ~ = 2 , ~ 1 4 = 1 ) = 0 + 5 = 5  
~ ( 2 1 2  = 3, x13 = 2) + ~ ( 2 1 2  = 3, x14 = 1) = 3 + 3 = 6 

consider 213 = 2 ,  we see that there are 2 rows that support the domain value 1,  

and only 1 row that supports the domain value 3. The cost of this marginalization 

operation is dependent on the size of constraint table and the number of variables 

involved in the constraint12. However, as long as the preferences do not change, 

the marginalization need only to be calculated once and can be cached. 

"For simplicity, we have excluded the dummy team required to make the number of teams even. 
I2For an all-different constraint considering all possible permutation, the cost would be O(n!) .  

where n is the number of teams. 
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Figure 3.12: Table based combined marginalization example 

3.5.2 Random Binary CSP 

In this thesis we used flawless random binary CSP constructed using the method 

recommended by Gent et al [6]13. However, it is necessary to transform the CSP 

into an optimization problem. We augmented each resulting constraint with a 

valuation structure, that is when a tuple is allowed, a preference score is assigned. 

This is similar to the individual schedule discussed in section 3.2, and serves to 

differentiate which tuples in the constraint are preferred. Evaluation on random 

CSPs provides an additional validation of the results and further illustrates the 

generalization of our method. 

Here, we are given a table representing allowed and disallowed tuples for each 

constraint, and for each allowed tuple, there is a preference value assigned to it. If 

we simply use equation 3.3 for the marginalization, the possible agreement points 

will be the feasible states differentiated by their preferences. In other words, we 

are considering feasibility first and then break any ties using the preferences. Note 

l 3 ~ h e  author would like to thank Michael Horsch for providing the code for the generation of 
random CSPs. 



CHAPTER 3. PREFERENCE AND FEASIBILR'Y MARGINALIZATION 50 

that this behavior is due to the fact that we are now dealing with binary constraint 

instead of non-binary one. Equation 3.3 degrades to the problematic traditional 

marginalization when applied to binary constraint, since the inner summation 

represents traditional marginalization and there is only one term for the outer 

summation. Thus this function will not allow us to explore infeasible states, no 

matter how attractive they are. We propose the following function to address this 

issue: 

f x , ( a )  = ~ U X ( U ( X ~  = a ) )  + u ( x i  = a ,  x j  = b j )  (3.4) 

The first term of equation 3.4 is simply a static value preference and allows for 

consideration of infeasible states. The second term is the same with equation 3.3, 

but without the summations since we are considering a binary constraint, and 

there will be only one tuple with the values ( x i  = a ,  x j  = b j ) .  This function therefore 

provides the ability to prefer states with higher preference at the cost of more 

conflict. Figure 3.13 illustrates the binary constraint marginalization example of 

x l  using both equations 3.3 and 3.4. In this example, we let D,, = D,, = { 1 , 2 , 3 ) ,  

x2 = 1  and we have omitted the disallowed tuples from the constraint table. As we 

can see, equation 3.4 results in preferring X I  = 3 even if that value is infeasible, 

due to the high preference value. 

Figure 3.13: Random binary CSP marginalization example 

D,, 
1  
2 
3 

value(eqn 3.3) 
~ ( x l  = 1 , x 2  = 1)  = 1  
~ ( x l  = 2 , x 2  = 1)  = 2  
~ ( x l  = 3 , x 2  = 1 )  = 0 

value(eqn 3.4) 
m a x ( u ( x l  = 1 ) )  + u ( x l  = 1 , x 2  = 1 )  = 2  + 1  = 3 
m a x ( u ( x l  = 2 ) )  + u ( x l  = 2 , x 2  = 1 )  = 2  + 2  = 4 
m a x ( u ( x l  = 3 ) )  + u ( x l  = 3 , x 2  = 1)  = 5 + 0 = 5 
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3.6 Refinement 

The same desirable properties that can guide the search to good solutions can 

also doom the search altogether. There will be cases where the preferences are 

so strong that the marginalization will always choose these high values for some 

variables even at  the cost of more conflicts, and hence never arrive at  a solution. 
In order to avoid such pitfall, we incorporated a preference skewing mechanism. 

If after a certain number of restarts and no solution is found, the preference 

values are skewed such that the high preference values do not overwhelm the low 

preference values. We propose the skewing procedure given in figure 3.14. 

01 procedure skew-preferences(constraint c, m a p r e f  m a s ,  increment inc) 
02 for each allowed tuple t E c 
03 if u(t)  # m a x  then u( t )  = u(t)  + inc 

Figure 3.14: Preference skewing procedure 

This procedure increases all the preference values that are not the maximum 

possible by the specified increment value. This has the effect of reducing the 

gap between the preference values and lessens the domination of high values to 

low values14. Figure 3.15 continues the previous example given in figure 3.13, 

showing the constraint preference values and the marginalization of xl after one 

skewing procedure. 

In this example, the infeasible state is no longer preferred because its prefer- 

ence value is not a s  attractive anymore. The skewing process attempts to find a 

balance point between preference and feasibility, allowing the marginalization to 

be as greedy as possible and still be able to find solutions. 

Another advantage of the skewing is the ability to allow the marginalization 

to degrade gracefully. For very hard problems, repeated skewing will eventually 

141n our experiment, we have used the integer values from 1 to 10 for the preference values. 
Incrementing the low values allows us to express the smallest possible value as  9 and the largest 
as  10. This translates to the highest preference being about 10% better than the lowest one. If 
decrementing the high values is performed instead, we will have values 1 and 2, which translates 
to 100% better. Thus decrementing allows for a finer control of the difference between preference 
values. 
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Figure 3.15: Random binary CSP marginalization after skewing 

lead to all the allowed tuples having the same preference values and hence the 

marginalization operation will simply degrade to min-conflict. 



Chapter 4 

Experimental Study 

4.1 Algorithm 

We evaluated the combined marginallzation technique for approximating the bar- 

gaining set used in local negotiations and compared the solution found with one 

found by simply using min-conflict local search. In both cases, we terminate the 

search after finding the first feasible solution. Whenever possible, the optimal 

solution is also obtained for comparison. The actual optimal solution is found 

using an exhaustive backtrack search method. The solution quality is obtained 

by taking the product of the scores of each team individual schedule in case of 

MASSP or the preference value of the solution tuples in each constraint in case of 

random CSP. 

We have simulated the multi agent system in a single machine using a system 

agent. The system agent is responsible for selecting which shared variable should 

be negotiated1, detecting local maxima or solution, and maintaining a counter 

between preference skewing. In our experiment, the system agent instantiates 

a "broker" agent that actually performs the bargaining process. Depending on 

which game/variable is currently being considered, the broker agent obtains the 

preferences from either teams/constraints, calculates the Nash product and re- 

turns the maximum to the respective sides. Ties are broken randomly by this 

'1n our experiment, it is simply performed in lexicographic order. 

53 
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broker agent. Figure 4.1 presents the algorithm2 for the system agent. 

0 1 proc system-agentrun0 
02 while (skewing-counter < max-skewing) 
03 
04 
05 
06 
07 
08 
09 
10 
11 

12 
13 
14 

15 
16 end 
17 return 0 

restart-canter = 0 
while (restart-counter < max-restart) 

while (not in local maxima) 
for all games gij { game-agent.negotiate(ti,tj) ) 
global-score = 1 
for all teams ti { global-score = global-score * ti.scoreO ) 
if (global-score <> 0) { return global-score ) 

end 
for all teams ti { ti.reinitializeO ) 
restart-counter + + 

end 
for all teams ti { ti.skew-preferences0 ) 
skewing-canter + + 

Figure 4.1 : System agent procedure 

There are three nested loops which control the algorithm execution. The in- 

nermost loop (lines 05 to 10) performs the local search process by negotiating for 

each games. Line 09 checks whether a solution is found, and if so the search is 

terminated. Otherwise, the rounds of negotiation is repeated until a local maxi- 

mum is detected. The middle loop performs the random restart procedure until a 

maximum number is reached. If we still did not find any solution, the outermost 

loop initiates the preference skewing as shown in line 14. Finally, if after a max- 

imum number of skewing is reached and no solution is found, the system agent 

exits. 

In the experiment, the preference values are between 1 and 10, and m s k e w i n g  
is set to 10 (after 9 skewing, the resulting preference will all be 10). Maxres tar t  

 he algorithm described is for the MASSP. For random CSP, we simply replace the teams with 
constraints and the games with variables. Note that while each game is connected to exactly two 
teams, a variable in random CSP can be connected to many constraints. However, the single item 
n-player Nash product can be computed accordingly. 
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is set to 500, so if no solution is found after 500 random restarts, we assume 

that the preference values are too strong and they constantly lead the search to 

infeasible states thus skewing is necessary. 

In evaluating the solution, the global score is obtained using the actual prefer- 

ences before any skewing is performed. The reason is because the skewing is done 

as part of our search method and the resulting skewed preferences do not reflect 

the true valuation of the individual schedule. Furthermore, the true valuation is 

necessary in order to compare the solution found with ones found by other search 

methods. 

4.2 Results and Discussion 

4.2.1 Multi Agent Sport Scheduling 

Figure 4.2 shows the performance of our combined marginalization compared to 

min-conflict average on MASSP. Both the valued conflict projection (comb-vc-*) 

using equation 3.2 and table based projection (comb-tb-*) using equation 3.3 are 

evaluated. The table based projection was limited to ten teams due to the almost 

exponential size (i.e., n!) of the individual schedules. In creating the tables or 

individual schedules for table based projection, we simply enumerate all possi- 

ble schedules and use the individual game preferences to obtain the individual 

schedule preferences just as shown in figure 3.9 on page 45. The individual game 

preferences are assigned values between 1 and 10 leading to schedule preferences 

values between n - 1 to 10(n - 1). Furthermore, any skewing on the MASSP is ac- 

tually performed on the game preferences. The schedule preferences are then 

re-computed to reflect the new values. 

For each team size, 25 different sets of preference values3 are used, and for 

each set of preference values, 25 runs are executed. Hence each point in figure 

4.2 displays the average of 625 runs. For each set of preferences, we record both 

the maximum and average scores obtained. The averages of these are represented 

with *-max and *-ave respectively. 

From the figure, our marginalization outperforms min-conflict exponentially 

3 ~ a l u e s  are randomly generated using Java Random Object in JDK 1.4. 
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4 6 8 10 16 32 

teams 

Figure 4.2: Combined marginalization performance on MASSP with respect to 
rnin-conflict 
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as the number of teams increases. We believe this is due to exponential increase 

in the number of solutions4. Min-conflict on average will find average quality 

solution while our marginalization will find solution close to the optimal. As the 

number of solutions increases the range between optimal and average solutions 

also increases, thus resulting in significantly better performance of our technique. 

In comparing the results found by valued conflict projection and table based 

projection, we observed that former performed slightly better. This can be at- 

tributed to the fact that valued conflict projection has a better approximation to 

the actual preference simply because it has access to the preference function (see 

equation 3.1). That is, valued conflict projection is using the game preferences 

for its marginalization, while table based projection can only use the individual 

schedules preferences that are derived from these game preferences. In general, 

problems may not have such explicit function, and the valuation has to be es- 

timated from the user-given preferences of the complete tuples. This is exactly 

what table based projection is performing, and results show that its approxlma- 

tion is quite good. However, it is also possible that the good performance obtained 

by the table based projection is due to the underlying linearity of the schedule 

preferences. We investigated this effect at the end of this section. 

Due to the hyper exponential size of search space for MASSP, we are only 

able to find the optimal solutions for six teams within a reasonable amount of 

time. The performance with respect to the optimal is shown in figure 4.3. This 

figure further supports our argument with regards to the significant advantage of 

our marginalization. Here we see that our technique is able to achieve solutions 

within 80-90% of the optimal. 

Since the quality of the solution is measured by taking the product of team 

scores, the absolute difference in score between one global schedule to the next 

better one can vary greatly. It is possible that the assigned preferences are such 

that all the global solutions scores do not have a normal distribution. For ex- 

ample, say that a problem has 10 solutions, where 1 is scored 100 and the rest 

4 ~ h e  number of one-factorizations for a complete graph gives an indication as to the num- 
ber of solutions. Results from graph theory shows that there are 6240 one-factorizations of Kg, 
1,255,566.720 of Klo, and over 2 x lo1? of K11 1331. 
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4 6 
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Figure 4.3: Combined marginalization performance on MASSP with respect to 
optimal 

are scored between 10 and 20. Unless we found the optimum, any solutions ob- 

tained will be at best 20% of optimal in terms of score. Of course, the reverse 

scenario is also possible. In such cases, the measure of percentage with respect 

to optimal score may be misleading. Another measure that we use is the solution 

ranking. We exhaustively search for all global solutions and rank them according 

to their scores. The rank of any solution found using our marginalization can 

then be determined by comparing the solution score to this complete list of solu- 

tions. Figure 4.4 plots the number of solutions achieving certain top percentile by 

rank. From the figure, for 6 teams, about 95% of the 625 solutions found using 

our marginalization are within the top 10th percentile5 with respect to solution 

ranking. Therefore, the combined marginalization is able to find close to optimal 

solutions. 

Among the benefits of Nash bargaining solution is that the agreement is fair to 

all the involved parties. We evaluated the "fairness" of the solution by calculating 

5 ~ i v e n  the complete feasible enumeration for the all-different constraint, for 6 teams, there are 
720 global solutions, and for 8 teams, there are 31,449,600 global solutions. 
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Figure 4.4: Combined marginalization performance on MASSP with respect to 
solution ranking 

the percentage of highest scored team and lowest scored team with respect to the 

geometric average. That is, once the global solution is found, all the individual 

teams scores (the individual schedules preferences that make up the global so- 

lution) are compared6 against each other. The best and worst scores are then 

normalized with respect to the geometric average of the global solution. We used 

geometric average since the solution quality is measured by taking the product 

of teams preferences. The closer the scores of these teams are to the geometric 

average, the fairer the bargain. The result is plotted in figure 4.5. As expected, 

the solution found by valued conflict projection exhibits a narrower range of high 

and low scores when compared to min-conflict, leading to a fair solution. 

Non-Linear Schedule References 

We further evaluated the performance of the table based projection on a prob- 

lem where schedule preferences are not derived from game preferences. Instead, 

the schedule preferences are assigned random values between 1 and 100. We 

compared the solution quality found against both min-conflict and optimal for 6 

teams. Figure 4.6 shows the results with respect to score and rank. In terms of 

'~lthough the Nash bargaining solution allows for incomparable agents utilities, in the experi- 
ment, we have used the same preference scales for all agents. 
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Figure 4.5: Solution "fairness" 

solution score, there is a substantial decrease in performance compared to lin- 

ear preferences (45% vs 80% of optimal). However, we believe that a significant 

amount of the decrease is due to the higher degree of abnormality in the distribu- 

tion of solution scores. This is because we see a similar decrease in min-conflict 

(5% vs 25%), which does not take into account any preferences. This is further 

supported with the performance in terms of rank. There is only a slight decrease 

of the number of solutions (80% vs 95%) that are within the top 10th percentile. 

Also, the solution rankings obtained by min-conflict are identical for both linear 

and non-linear preferences, which is as expected. These results show that the 

table based projection can find good solutions regardless of the linearity of the 

preferences. 

4.2.2 Random CSP 

In case of random CSP (RCSP), we have used the following parameters: n = 10, m = 

20, d = 0.4, and t = 0.40 - 0.49. The t value close to 0.49 has been identified as the 

hard region or mushy region where the expected number of solution is 1 [31]. 
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Figure 4.6: Combined marginalization performance on MASSP with non-linear 
preferences 

These parameters lead to p2crit = 0.454 and K = 1.11 (see section 2.6). Since we are 

interested in optimization problems, we did not go further than t = 0.49. Values 

higher than this will generate problems with almost zero solutions. Furthermore, 

we only tested on problem instances having solutions. The binary constraint 

preference values are between 1 and 10 the for allowed tuples and 0 for disallowed 

tuples. Figure 4.7 plots the quality of the first solution found by our technique 

using the equation 3.4 (comb-*) and by simple rnin-conflict (mc-*) with respect 

to the optimal solution. As a further comparison, we also plot the result using 

marginalization where feasibility is considered first and then any ties are broken 

using the preferences (i.e., actual marginalized preference) as shown in equation 

4.1. The first term constant of the equation is to guarantee that the valuation is 

non-zero since we are taking the Nash product of the valuations. 

fz,(a) = 1 + u(xi = a, xj = bj) (4.1) 

In our experiment, for each t value, 50 random seeds7 are used, and for each 

seed, 50 runs are repeated. Again, from these 50 runs, both the maximum and 

average are computed. The average of these values are plotted as *-max and *- 
ave respectively. In addition, we also plotted the average optimal score labelled 

7 ~ h e  seeds are used by Java Random Object to generate both the CSP and preference values. 
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Figure 4.7: Combined marginalization performance on RCSP by score 

opt-ave. 

From the graph, our method (comb-*) clearly outperforms simple rnin-conflict. 

In addition, while the average solution score (comb-ave) is around 20-70% of the 

optimal, the average maximum (comb-max) is between 70-90%. This shows that 

our technique is capable of finding close to optimal solutions (note that average 

maximum of rnin-conflict (mc-max) is only at  10-60%, and the average score found 

by rnin-conflict (mc-ave) follows the actual average of the problem). However, the 

advantage of our method over actual marginalization (act-*) is minimal. In fact, 

for a few t values, actual marginalization performs better than our method. This 

shows that the first term of equation 3.4, has little effect on the solution quality. 

We plotted the success rate of the different marginalization since a local search 

is not guaranteed to fmd a solution. Figure 4.8 shows the average success rate 
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Figure 4.8: RCSP success ratio and total solutions 

for both combined marginalization and min-conflict. It is interesting to note that 

min-conflict has a lower success ratio compared to others, since it does not have 

the breakout [19] behavior that the other methods exhibit due to the preference 

or weighting of tuples. This result shows that hill-climbing through the combined 

preference and feasibility landscape has a higher chance of finding solution. Fig- 

ure 4.8 also shows the average number of total solutions for each t value. 

We also rank the solution found to give some indication a s  to the distribution of 

the solution scores. This is plotted in figure 4.9 and it shows that on average the 

solution found is within 70-90% of the optimal in terms of ranking. The average 

maximum is a t  90-100%. Note that this figure shows that while the average 

solution obtained by our technique is relatively poor in terms of absolute score, 

it is actually quite good in terms of solution rank. This is due to the RCSP not 

having a normal distribution of solution scores. 

Finally, for both MASSP and RCSP, we calculated the average number of pref- 

erence skewing performed in order to find a solution. This is given in figure 4.10. 

In general, the harder the problem, the more likely strong preferences to mislead 

the search, thus more skewing is required to lessen its effect. While the skew- 

ing allows for degradation to min-conflict in the worst case, we see that even for 

harder problems (32 teams and t = 0.48), our technique is still able to u t ike  the 

heavily skewed preferences and perform better than min-conflict. 
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Figure 4.9: Combined marginalization performance on RCSP by rank 

problem skews I problem skews 
teams = 4 - 6 0.00 ( t = 0.40 6.08 

Figure 4.10: Average number of preference skewing 

teams = 8 0.06 
teams = 10 1.72 
teams = 16 4.54 
teams = 32 7.42 

t = 0.42 6.67 
t = 0.44 7.22 
t = 0.46 7.46 
t = 0.48 7.72 



Chapter 5 

Conclusion 

5.1 Summary 

When solving a multi agent optimization problem, one is faced with the challenge 

of balancing feasibility and preference. Considering the two factors simultane- 

ously may be more effective in guiding the search to find good solutions compared 

to only considering one factor at a time (e.g., branch-and-bound search). More- 

over, within a multi agent setting, the preferences of every participants should 

be taken into account. When all agents are equal, good solutions also means 

ones that is fair and mutually beneficial to all. In such situations, local search 

techniques are preferred since they do not impose ordering of agents, and Nash 

bargaining solution can be employed because of its pareto optirnality and inde- 

pendence of utility transformation. Hence, it is able to produce a fair agreement 

regardless of agents utility scales. 

However, global Nash bargaining solution requires the computation of the 

global bargaining set. This is equivalent to taking the cross-product of all the 

constraints with preferences which is NP-hard. Instead, local negotiations can be 

used as  an approximation. Although the true optimum is sacrificed, we found 

that repeated local negotiations can quickly find sub-optimal solutions. 

Unfortunately, local search also suffers from not being able to distinguish be- 

tween infeasible states when using traditional marginalization methods. Prior to 
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negotiating for an agreement, an agent must first evaluate the values of all possi- 

ble agreements. This is achieved by marginalizing the constraint with preferences. 

The result of this marginalization is simply the preference values of the constraint 

tuples (i.e., no real marginalization is performed) since all the variables are as- 

signed in local search. If the tuple is infeasible, the domain element will not be 

included as  a possible agreement. Thus, only feasible states can be considered 

in the bargaining. Therefore, existing marginalization methods are inadequate 

since they are typically only employed in constructive search, where feasibility is 

always maintained. In case of local search, where the current state is often infea- 

sible, especially if there exists non-binary constraints, these marginalization are 

helpless. 

We presented a marginalization technique which combines both feasibility and 

preference, and that is more suitable for local search. This approximation uses 

functions that can differentiate between feasible states, between infeasible states, 

and can prefer promising infeasible states over less attractive feasible states. It 

also allows for a more effective local search at the presence of non-binary con- 

straints since it is able to distinguish between infeasible states. However, such 

functions could and did mislead the search to dead ends due to false promise 

of attractive infeasible states. In order to mitigate this, we introduced a prefer- 

ence skewing mechanism, where the preferences were updated so as to minimize 

the difference between high and low values. We combined local search with this 

policy and found that such repeated negotiations did lead to good solutions. Ex- 

perimental results on sport scheduling and random CSP optimization problems 

showed that it performed better than rnin-conflict and did achieve close to opti- 

mal solution. On the above problems, the average maximums of solution quality 

obtained was about 90% of the optimal. The solutions found were also fair to all 

participants which showed that the Nash bargaining solution, combined with our 

marginalization technique, is a viable negotiation strategy for multi agent opti- 

mization. 
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5.2 Future Work 

There are several areas in which this work can be further extended. These could 

include further evaluation of the performance on other optimization problems, 

e.g., travelling tournament problem [4], giving an indication of how our approach 

compared to the state-of-the-art. Instead of a simulated multi agent system, a true 

multi agent environment can be implemented. This will also entail a more detailed 

development of its coordination protocol, which could enable parallel processing 

and lead to a more efficient system. We have only given basic functions for the 

marginalization, and investigation of alternative functions could lead to better 

performance. Finally, instead of a random restart, the algorithm could incorporate 

a more sophisticated digression mechanism, such as a nogood cache, for escaping 

local maxima. 
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