
HIGH LEVEL SPECIFICATION AND VALIDATION OF THE 
BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB 

SERVICES 

Mona Vajihollahi 

B.Sc., Computer Engineering, Sharif University of Technology, 2001 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

In the School 
of 

Computing Science 

0 Mona Vajihollahi 2004 
Simon Fraser University 

April 2004 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without permission of the author 



Approval 

Name: 

Degree: 

Title of Thesis: 

Examining Committee: 

Chair: 

Mona Vajihollahi 

Master of Computing Science. 

High Level Specification and Validation of the 
Business Process Execution Language for Web 
Services 

Dr. Joseph G. Peters 
Professor of Computing Science 

Dr. Uwe Glasser 
Senior Supervisor 
Associate Professor of Computing Science 

Dr. Evgenia Ternovksa 
Supervisor 
Assistant Professor of Computing Science 

Dr. David G. Mitchell 
Examiner 
Assistant Professor 
School of Computing Science 
Simon Fraser University 

Date Approved: 6 .  2 3 0 4  
v -  / 



Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has 

granted to Simon Fraser University the right to lend this thesis, project or 

extended essay to users of the Simon Fraser University Library, and to 

make partial or singe copies only for such users or in response to a 

request fiom the library of any other university, or other educational 

institution, on its own behalf or for one of its users. 

The author has fiu-ther agreed that permission for multiple copying of this 

work for scholarly purposes may be granted by either the author or the 

Dean of Graduate Studies. 

It is understood that copying or publication of this work for financial gain 

shall not be allowed without the author's written permission. 

The original Partial Copyright Licence attesting to these terms, and signed 

by this author, may be found in the original bound copy of this work, 

retained in the Simon Fraser University Archive. 

Bennett Library 
Simon Fraser University 

Burnaby, BC, Canada 



Abstract 

The Business Process Execution Language for Web Services (BPEL) is an XML based 

formal language for the design of networking protocols for automated business processes. 

Originally introduced by leading e-business vendors, including IBM and Microsoft, 

BPEL is now a forthcoming industrial standard as the work on the language continues at 

OASIS' within the technical committee on the Web Services Business Process Execution 

Language (WSBPEL TC). 

We formally define an abstract executable semantics for the language in terms of a 

distributed abstract state machine (DASM). The DASM paradigm has proven to be a 

feasible, yet robust, approach for modeling architectural and programming languages and 

has been used as the basis for industrial standardization before. 

The goal of this work is to support the design and standardization of BPEL by 

eliminating weak points in the language definition and validating key system attributes 

through experimental validation. The necessity of formalisation in the standardization 

process is well recognized by the OASIS WSBPEL TC and is formulated as one of the 

basic issues by the technical committee. "There is a need for formalism. It will allow us 

to not only reason about the current specification and related issues, but also uncover 

issues that would otherwise go unnoticed. Empirical deduction is not suflcient. "2 

We take a hierarchical refinement approach to model the language. Starting from an 

abstract ground model of the core attributes of the language, we perform step-wise 

1 Organization for the Advancement of Structured Information Standards (OASIS), www.oasis-open.org 

Issue #42, WSBPEL Issue List, WSBPEL TC at OASIS 



refinements obtaining a hierarchy of ground models at different levels of abstraction 

which leads to the final executable model. The executable model is then used together 

with a graphical visualization tool to experimentally validate the key attributes of the 

language through simulation of abstract machine runs. 



Dedication 

In loving memory of my grand fathers, 

two outstanding individuals whose spirits always shine on my life. 



Acknowledgements 

I am deeply grateful to my senior supervisor Dr. Uwe Glasser whose knowledge and 

experience as well as inspiring support and encouragement truly guided me to explore 

new dimensions in computing science. 

I would like to thank Roozbeh Farahbod, my colleague, dear friend, and loving husband 

both for his professional contributions in this research and for all his devotion and 

encouraging presence through our journey together. I am also very thankful to my parents 

for their continuous support and unlimited love. 



Table of Contents 

. . Approval ............................................................................................................................ 11 

... Abstract ............................................................................................................................. ill 

Dedication ........................................................................................................................... v 

Acknowledgements .......................................................................................................... vi 

Table of Contents ............................................................................................................ vii 

List of Figures ..................................................................................................................... x 
............................................................................. List of Abbreviations and Acronyms xi 

Chapter 1 . 

Chapter 2 . 

Chapter 3 . 

............................................................................................... Introduction 1 
............................................................................... Motivation and Objective -2 

......................................................................................... Thesis Organization 3 

Business Process Execution Language for Web Services ....................... 4 
Introduction ..................................................................................................... 4 

.......................................................................................... Overview of BPEL 5 
................................................................................................ Initial Example 6 

....................................................................................... Abstract Syntax Tree 7 
...................................................................................................... Correlation -8 

. . .......................................................................................................... Activities 9 
.......................................................................................... Basic Activities 10 

.................................................................................. Structured Activities 12 
................................................................................ e-Book Store Re-visited 14 

...................................................................................................... Partners 15 
e-Book Store Business Process .................................................................. 16 

Long-running Business Processes and Compensation Behaviour ................. 19 

......................................................................... Abstract State Machines 20 
...................................................................... Basic Abstract State Machines 20 

....................................................................................... Non-determinism 22 
................................................................................................. Parallelism 22 

............................................................. Distributed Abstract State Machines 23 
.................................................... Concurrency in Sample DASM models 25 

................................................................................................... Reactivity 28 
................................................................................. Real-Time Behaviour 31 

.................................................................................................... Our DASM 31 

vii 



................................................................................. 3.4. Notational Conventions 32 

...................... Chapter 4 . Formalization of the BPEL Web Services Architecture 34 
4.1. Overall Organization ..................................................................................... 34 
4.2. BPEL Abstract Model: Overview ................................................................. 36 

...................................................................... 4.3. BPEL Abstract Model: Details 41 
.......................................................................................... 4.3.1. Basic Activities 41 

.................................................................................. 4.3.2. Structured Activities 45 

Chapter 5 . Complete Formal Model ......................................................................... 52 
.............................................................................................. 5.1. Inbox Manager S 2  

5.1.1. Assign Message ......................................................................................... 53 
............................................................................. 5.1.2. Pick Activity Clearance 55 

............................................................................................ 5.2. Outbox Manager 56 

............................................................................................ 5.3. Execute Activity 56 

............................................................................................ 5.4. Receive Activity 60 
............................................................................................... 5.5. Reply Activity 61 
.............................................................................................. 5.6. Invoke Activity 62 

. . 
5.7. Terminate Activity ......................................................................................... 62 
5.8. Wait Activity ................................................................................................. 62 

............................................................................................. 5.9. Sequence Agent 64 
................................................................................................. 5.10. Switch Agent 64 

5.1 1 . While Agent ................................................................................................... 66 
..................................................................................................... 5.12. Pick Agent 66 

.................................................................................. 5.12.1. Pick Message Agent 68 
...................................................................................... 5.12.2. Pick Alarm Agent 69 

.................................................................................................... 5.13. Flow Agent 70 
.......................................................................................... 5.13.1. Link Semantics 71 

Chapter 6 . Executable Model ..................................................................................... 73 
6.1. Introduction to AsrnL .................................................................................... 73 

.......................................................................................... 6.2. The AsmL Model 74 
........................................................................................... 6.2.1. Original Model 75 

....................................................................................... 6.2.2. Internal Structure 76 
..................................... 6.2.3. Execution-Specific Additions to the ASM Model 77 

............................................................................. 6.2.4. GUI-Related ex tensions 78 
.............................................................................. 6.2.5. Communication Model 80 

................................................................................ 6.3. Experimental Validation 81 

....................................................................... Chapter 7 . Critical Analysis of BPEL 82 
.................................................................................................. 7.1. Ambiguities A2 

................................................................................................ 7.1.1. Correlations 82 
...................................................................... 7.1.2. Synchronous ReceiveRepl y 83 

................................................................................................... 7.2. Loose Ends -84 
.......................................................................... 7.2.1. Partners Communication 2 5  

................................................................... 7.2.2. Re-Initiating a Correlation Set 85 
............................................................................................... 7.3. Inconsistencies 88 



Chapter 8 . Conclusion and Future Work ................................................................. 90 

Appendices ........................................................................................................................ 92 
Appendix A . BPEL Abstract Syntax Tree ..................................................................... 92 
Appendix B . Abstract Model ......................................................................................... 97 

B . 1 . Initial Definitions ................................................................................................ 97 
B . 2. Programs ........................................................................................................... 100 

Appendix C . Complete Formal Model ......................................................................... 106 
C . 1 . Initial Definitions .............................................................................................. 106 
C.2. Programs ........................................................................................................... 113 

Appendix D . Executable Model ................................................................................... 122 
D . 1 . Original Model .............................................................................................. 1 2 2  
D.2. Execution-Specific Additions to the ASM Model ............................................ 129 
D.3. GUI-Related Additions ..................................................................................... 134 
D.4. Internal Structure .............................................................................................. 14 1 

References ....................................................................................................................... 148 



List of Figures 

Figure 2-1 The structure of a BPEL process definition ....................................................... 5 
Figure 2-2 The e-Book store business process .................................................................... 6 

Figure 2-3 A flow activity with synchronization dependencies ........................................ 14 
Figure 2-4 Partners and port types of the e-Book Store business process ......................... 16 
Figure 3-1 A partial ordered set of moves ......................................................................... 24 
Figure 3-2 All possible runs of the DASM of Example 3.1 .............................................. 26 
Figure 3-3 Some segment of possible runs of Example 3.2 .............................................. 27 

Figure 4-1 The composition of the BPEL service model and the network model ............. 35 

Figure 4-2 A three layer approach: From formal documentation to the executable 
model ................................................................................................................. 36 

Figure 4-3 High-level abstract structure of our BPEL model ............................................ 36 

Figure 4-4 The combination of all potential control structures of DASM activity 
agents at the top-level layer .............................................................................. 39 

Figure 5-1 The structure of an e-book Store business process instance in our 
model ................................................................................................................. 60 

Figure 6-1 Graphical user interface of a sample AsmL model .......................................... 79 



List of Abbreviations and Acronyms 

ASM Abstract State Machine 

BPEL Business Process Execution Language for Web Services 

DASM Distributed Abstract State Machine 

GUI Graphical User Interface 

LRM Language Reference Manual 

OASIS Organization for the Advancement of Structured Information 

Standards 

SOAP Simple Object Access Protocol 

WSBPEL TC Web Services Business Process Execution Language Technical 

Committee 

WSDL Web Services Description Language 

XML extensible Markup Language 



Chapter 1. Introduction 

In this thesis, we formally define an abstract operational semantics for the Business 

Process Execution Language for Web Services - BPELAWS (or BPEL) [lo] - in terms of 

a real-time distributed abstract state machine (DASM) model [23], [20]. Version 1.1 of 

the informal language description [lo], henceforth called the language reference manual 

or LRM, is a forthcoming industrial standard proposed by the OASIS~ Web Services 

Business Process Execution Language Technical Committee (WSBPEL TC) [34]. BPEL 

is an XML based formal language for modeling and design of the Web services 

orchestration and automated business processes. As such, it builds on other existing 

standards for the Internet and World Wide Web and, in particular, is defined on top of the 

service model of the Web Services Description Language (WSDL) [32]. A BPEL process 

and its partners are considered as abstract WSDL services that interact with each other by 

sending and receiving abstract messages as defined by the WSDL model for service 

interaction. 

The abstract state machine (ASM) paradigm has been extensively used for formal 

specification of programming languages (e.g. Java [31], Prolog [4], [ 5 ] )  and system 

modeling languages (e.g. SDL [12], [13], [IS], VHDL [7], [S], SystemC [29]). The ASM 

formalism supports the integration of high-level modeling and analysis in the 

development cycle [9] which enables it to serve as a modeling basis in industrial 

standardization (e.g. ITU-T SDL-2000) [28]. 

Organization for the Advancement of Structured Information Standards (OASIS) 

1 



1 .l. Motivation and Objective 

This work was mainly inspired by the successful experience from applying the 

asynchronous DASM model for semantic modeling to various industrial system design 

languages, including the ITU-T language SDL-2000 [12], [13], [18]. The resulting SDL 

formal semantics was officially approved by the International Telecommunication Union 

(ITU) as part of the SDL language definition [18]. 

The goal of our work is twofold. Formalization of BPEL semantics serves two main 

purposes, namely: (1) to eliminate deficiencies hidden in natural language descriptions, 

for instance, such as ambiguities, loose ends, and inconsistencies; (2) to establish a 

platform for experimental validation of key language attributes by making abstract 

operational specifications executable on real machines. For the development of BPEL, 

the responsible TC at OASIS has listed about one hundred basic issues. Among those, the 

necessity of formalization in the standardization process is well recognized as a powerful 

means for dealing with weak points of the LRM [15]. 

"There is a need for formalism. It will allow us to not only reason about the current 

specification and related issues, but also uncover issues that would otherwise go 

unnoticed. Empirical deduction is not sufficient. "-Issue #42, OASIS WSBPEL TC [34]. 

Formalization of language semantics based on informally specified requirements faces 

the non-trivial problem of 'turning English into mathematics'. Ideally, the formal and the 

informal language definition should complement each other in the endeavor to sharpen 

requirements into specifications. That is, the formal model provides the ultimate 

reference whenever the clarification of subtle language issues that are difficult to 

articulate in plain English requires mathematical precision. The gradual formalization of 

the key language attributes at different levels of abstraction and with a degree of detail 

and precision as needed would be certainly beneficial for practical purposes, such as 

industrial standardization [18]. 



Our definition of the abstract operational semantics presented here forms a service 

abstract machine and is organized into three basic layers reflecting different levels of 

abstraction. The top layer, called abstract model, provides an overview and defines the 

modeling framework comprehensively. The second layer, called intermediate model, 

which is the result of the first refinement step, specifies the relevant technical details and 

provides the complete formal model of the core constructs of the language. Finally, the 

third layer, called executable model, provides an abstract executable semantics of BPEL 

implemented in AsmL [I]. To this end, the service abstract machine model forms a 

hierarchy consisting of three DASM ground models [2], [9] obtained as the result of 

stepwise refinements of the abstract model. The executable model is complemented by a 

graphical user interface (GUI), facilitating experimental validation through simulation 

and animation of abstract machine runs. 

1.2. Thesis Organization 

The thesis provides brief introductions to BPEL and the ASM paradigm, presents the 

BPEL service abstract machine at different levels of abstraction, and discusses the results 

and possible future work. Chapter 2 introduces BPEL and describes the core aspects of 

the language. Chapter 3 provides an overview on abstract state machine paradigm and 

investigates the DASM model. Chapter 4 introduces the abstract model. In Chapter 5, the 

result of the first refinement step, i.e. the intermediate model, is introduced. In Chapter 6, 

the executable model is introduced and some results of the experimental validation are 

presented. Chapter 7 provides a critical analysis of BPEL based on the experience 

achieved through the formal modeling process. Chapter 8 concludes the thesis and 

discusses the possible future work. 



Chapter 2. Business Process Execution Language for 
Web Services 

2.1. Introduction 

Several XML based Web standards have been introduced to define the Web services 

space and facilitate interoperability between a variety of Web applications, for instance, 

in e-business. Each of these standards targets a specific domain within the Web services 

space. For example, the widely used Simple Object Access Protocol (SOAP) [30] defines 

a standard message passing protocol, while WSDL provides a standard way of describing 

Web services [32]. 

These standards basically provide us with a structural view of Web services. They enable 

us to view Web services as communication endpoints which interact with each other by 

sending and receiving messages via a collection of ports associated with each of the 

communication endpoints. To this end, WSDL and SOAP support a stateless model of 

Web services. 

The Business Process Execution Language for Web Services (BPEL) builds on top of 

WSDL (and indirectly also on SOAP) effectively introducing a stateful interaction model 

that allows to exchange sequences of messages between business partners (i.e. Web 

services). Like many other domain specific languages (DSLs), BPEL is designed to 

capture the problems in a particular application domain which is stateful interaction of 

Web services. Domain specific languages are usually less expressive than general- 

purpose languages; however they contain appropriate domain specific notations and high 

level domain specific abstractions that make them suitable to be used in their desired 

application domain [ l  11. 



In April 2003, members of OASIS, including IBM and Microsoft among other leading 

companies in the e-business market, formed the Web Services Business Process 

Execution Language Technical Committee (WSBPEL TC) [34] in order to continue work 

on BPEL version 1.1. As for other standardization attempts, e.g. ITU-T standards for 

telecommunication, standardization of BPEL is inspired by the facilitation it provides in 

trades and transferring technologies and is expected to increase interoperability, 

reliability and consumer comfort. The objective of the WSBPEL TC is to standardize the 

common concepts for a business process execution language that forms the technical 

foundation for designing and executing business processes [34]. 

2.2. Overview of BPEL 

BPEL 

WSDL 

Messaging 
(SOAP) 

BPEL Document 

Partner Links 1 

I Variables 
(Message 

Activity 
\\\: l m 

(Process Program) 

\ I  
I Network I 

1 WSDL Document 

Figure 2-1 The structure of a BPEL process definition 

The BPEL process model is built on top of WSDL. A BPEL process and its partners are 

defined as abstract WSDL services, and they use abstract messages defined by WSDL 

model for interaction. Figure 2-1 gives an overall view of the general structure of a BPEL 

business process document. A process is defined by specifying its partners (Web services 

that this process interacts with), a set of variables that keep the state of the process and an 

activity defining the logic behind the interactions between the process and its partners. 

This definition is just a template for creating business process instances. Process creation 

in BPEL is always implicit and is done by defining start activities. A start activity is 



either a receive or a pick activity that is annotated with 'createlnstance = yes' causing a 

new process instance being created whenever a matching message is received. At least 

one such start activity must be defined in a template. Whenever a message arrives for a 

start activity, a new instance of the business process is created and starts its execution. 

2.3. Initial Example 

To better understand the basic structure and some fundamental concepts of BPEL, we 

will provide an example: a fictitious e-Book Store. The process of buying a book from 

this online store is simple. A customer first sends the order to the e-Book Store. The book 

store then sends the order to the publisher and also sends a shipping request to a shipping 

company. The book store then waits to receive a call-back from the shipping company 

containing the shipping schedule. Upon receiving that call-back, it replies back to the 

customer indicating the order is received and processed successfully. 

Customer 

e-Book Store Business Process 

Figure 2-2 The e-Book store business process 

Figure 2-2 illustrates the structure of the interaction between publisher, shipping 

company, and customer for the sample business process of our e-Book Store. A business 



process interacts with other services through its ports, where each port is of a certain port 

type specifying some set of operations. Operations can be Input-Only, Output-Only, or 

Input-Output. 

An abstract schema of the e-Book Store business process can also be found in Figure 2-2, 

where the numbers show the order in which the events occur. The BPEL process consists 

of 5 basic activities, two of which being executed concurrently (as indicated by identical 

order numbers annotating these two events). A process is instantiated when a message is 

received from the customer (interaction #I). This specific process instance is then 

responsible for serving the customer request. It will contact the publisher and the 

shipping company, at the same time, by invoking the corresponding Web services 

(interactions #2) and waiting for their confirmation (interactions #3). After receiving a 

call-back from the shipping company containing the shipping schedule and other required 

information (interaction #4), the e-Book store process instance will send a reply message 

to the costumer including all the required information (interaction #5) .  The customer's 

order request is then serviced and the transaction is completed. 

2.4. Abstract Syntax Tree 

A systematic approach to capture the complete structure of a BPEL process (focusing on 

the relevant aspects rather than syntactical details) is its representation in the form of an 

abstract syntax tree [18]. Many times during this project we had to refer to a precise and 

concise definition of the structure of a BPEL process. As the language definition in the 

LRM is currently lacking an abstract syntax, we have defined our own abstract syntax as 

outlined below. The complete definition of the abstract syntax tree is presented in 

Appendix A. 



ProcessDef 
ProcessAttributes 
PartnerLinks? 
Partners ? 
Variables? 
Correlationsets? 
FaultHandlers? 

2.5. Correlation 

One of the main challenges in integrating Web services, and specifically business 

processes, is to deal with stateful interactions. Business processes normally act according 

to a history of external interactions. Therefore, i t  is necessary to keep track of the state of 

each business process instance. Since we have different instances of a business process, 

messages need to be delivered not only to the correct port, but also to the correct instance 

of the business process. To ensure global interoperability and avoid implementation 

dependencies, the mechanism required for dynamic binding of messages needs to be 

defined in a generic manner rather than leaving this to the individual implementations 

[lo]. 

The need for such a mechanism can be seen in our e-Book Store example. Each order that 

is sent by the customer is handled by an e-Book Store business process instance. For each 

order that is sent from this process instance to the publisher, there is also one business 



process instance at the publisher side. These pairs of process instances need to interact 

with each other and as a result they need to "know" each other. Therefore, there must be 

a mechanism to route messages to the correct process instances. One standard approach 

to this problem is to carry a business token (e.g. such as an order number) in all 

transactions between e-Book Store and the publisher. This business token acts as a key 

indicating the exact business process instances. When a message arrives at each Web 

service, it is routed to the correct process instance that is identified based on the value of 

the business token in the message. In this way, all the messages that arrive for a specific 

process instance should carry the desired business token value. 

Such a mechanism is supported in BPEL by providing the ability to define a set of such 

correlation tokens; i.e. a set of tokens shared by all messages in a correlation group. This 

set is called a correlation set. Once a correlation set is initiated, the values of correlation 

tokens must be identical for all the messages in that correlation group. In this way, an 

application-level conversation between business process instances is identified. 

2.6. Activities 

Activities that can be performed by a business process instance are categorized into basic 

activities and structured activities. Basic activities perform simple operations like 

receive, reply, invoke, assign, throw, terminate, wait, and empty. Structured activities 

impose an execution order to a collection of activities. It is important to note that 

structured activities can be nested. Structured activities include sequence, switch, flow, 

pick and while. The following sections briefly describe the semantics of BPEL activities. 



2.6.1. Basic Activities 

Receive Activity 

The role of a receive activity is twofold: it is used both for providing Web services 

operations to the partners and for creating new instances of the business process. A 

receive activity specifies the partner link from which a message is received and the port 

type and operation that is used in receiving the message. If receive activity is annotated 

with the createInstance attribute set to 'yes', a new instance of the business process must be 

created when the expected message arrives. In this sense, receive acts as the start activity 

of the process and has an important role in its life cycle. It is worth mentioning that such 

start activity must be an initial activity as well, that is every other basic activity that is 

performed prior to or concurrently with this receive activity must be annotated with the 

createhstance attribute set to 'yes' as well. 

Reply Activity 

A reply activity is always associated with a receive activity. It is meant to send a response 

to a request that is accepted by the associated receive activity. Such an interaction is 

viewed as a synchronous interaction in BPEL, whereas asynchronous responses are 

treated as Web services invocation and performed by an invoke activity. 

Invoke Activity 

An invoke activity enables a business process instance to use the services that are 

provided by its partners. These services are used by invoking certain operations provided 

by the Web services. The operations can be synchronous request/response or 

asynchronous one-way operations, as described in [32]. An invoke activity can perform 

both types of operations by defining corresponding input and output messages. In an 



asynchronous interaction only the input variable is defined4, whereas in synchronous 

interactions both input and output variables are mandatory. 

Wait Activity 

A wait activity defines a period of time for which the business process instance will have 

to wait. This period of time is specified either by a duration Cfor) or by a deadline (until). 

Terminate Activity 

A terminate activity stops all the activities currently running in a business process 

instance and terminates the behaviour of the business process instance. 

Empty Activity 

An empty activity performs the simplest job; it does nothing. 

Assign Activity 

An assign activity is used to ( I )  copy data from one variable to another one; (2) construct 

new data using expressions; and (3) copy endpoints references to and from partner links. 

In a valid assign activity, the elements need to be type compatible. Type compatibility 

constraints and further details can be found in [lo]. 

An input variable carries the message that is sent to the partner in order to invoke its operation. It is called 
"input" variable, because it carries the input for that operation. 



Throw Activity 

A throw activity is used to report an internal fault explicitly. It specifies the name of the 

generated fault and, optionally, it can also fill out a fault variable with further information 

about the fault and pass it to the respective fault handler. 

Note: Since the behaviour of the assign activity and the throw activity is not captured in 

this project, the description given here is minimal. Capturing the behaviour of these two 

activities requires further refinements and considerations and is carried out as part of 

another project in our group. For more details about the behaviour of these activities, the 

reader is referred to [lo]. 

2.6.2. Structured Activities 

Sequence Activity 

A sequence activity structures a collection of activities to take place one after another. A 

sequence activity is completed when the last activity in the sequence is completed. 

Switch Activity 

A switch activity provides the ability to choose among a collection of activities. A set of 

conditional branches, called case elements, are introduced in switch activity and are 

examined in the order they appear. The first branch with true condition is chosen and its 

corresponding activity is then executed. If none of the cases is true, the otherwise branch 

will be taken and its activity is executed. A default otherwise branch is assumed to exist 

with an empty activity. 

Flow Activity 

A flow activity enables the concurrent execution of a set of activities together with 

synchronization between these activities. A flow activity is completed when all its 

12 



activities have finished execution. The synchronization dependencies are expressed by 

defining links between concurrent activities. 

Link Semantics: Each BPEL activity includes the standard source and 

target elements that are used to link two activities. An activity can be 

defined as the source or the target of a set of links. Links are defined to 

impose synchronization dependencies on concurrent activities. If activity 

A is the source of link L and activity B is the target of link L, then we say 

B has synchronization dependency on A; i.e., if B is ready to start 

execution, it has to wait until the status of link L (and any other incoming 

links) is determined. Once A is completed, the status of all outgoing links 

(including L) is determined based on their transit ionCondi t ion; if 

this condition is true the status of the link is positive, otherwise it is 

negative. Once the status of all incoming links of B (including L) is 

determined the standard joincondition of B is evaluated. If the 

condition is true then B is executed; otherwise a fault is thrown5. Figure 

2-3 shows how the synchronization dependencies are specified in a flow 

activity. A, S, and D are three activities that are executed concurrently in 

flow F. S is a sequence activity in which B and C are executed in the given 

order. Two links are defined in the flow activity: LinkAtoB and LinkDtoB. 

When the flow activity is executed, A, S and D start their execution 

concurrently. However, S will stop immediately because its first activity 

(B) has synchronization dependency both on A and D. Thus, it has to wait 

until A and D are completed and the status of LinkAtoB and LinkDtoB is 

determined. Once completed, LinkAtoB becomes positive and LinkDtoB 

becomes negative. The joincondition of B is then evaluated and B is 

executed if the join condition is true. 

"If the explicit j oinCondi tion is missing, the implicit condition requires the status of at least one 
incoming link to be positive [lo, 12.5.11.'' 



clink name= "LinkAtoBn> 
clink name= "UNKDtoBU> 

csource linkName= 'LinkAtoB" 
transitioncondition = 'C(I,J)"> M LinkAtoB: I ... POSITIVE 

LinkDtoB: 
NEGATIVE 

' 

Figure 2-3 A flow activity with synchronization dependencies 

Pick Activity 

rn 

B 

A pick activity waits on a set of events for one of them to occur and then executes its 

corresponding activity. If more than one event occurs then the pick activity will choose 

the one that has occurred first. As soon as an event is chosen, the pick activity no longer 

accepts any of the other events. Basically, there are two types of events: onMessage 

events and onAlamz events. The semantics of an onMessage event is very similar to a 

receive activity. An onMessage event occurs as soon as its corresponding message is 

received. onAlann events are very similar to timers. They wait for a period of time or 

until a certain deadline is reached before they occur. 

ctarget linkName= 'LinkAtoB"> 
<target linkName= "LinkDtoB"> 
. . . 

. . . C 

2.7. e-Book Store Re-visited 

4 

Based on the description of BPEL activities presented above, we now present the sample 

business process from our e-Book Store in a pseudo-code-like style. Although the 



definition is written in a syntax similar to BPEL, there are certain details and 

requirements that have not been considered. Hence, the complete and correct BPEL 

definition requires dealing with these details and following the precise syntax. 

2.7.1. Partners 

The first step in defining a business process is to identify its partners. This includes 

identifying the shape of the conversation with partners by specifying messages and port 

types used in the interactions. The services with which a business process interacts are 

identified with partner links. From a partner link one can characterize the conversations 

between two services and the port types that are used in the communication. Thus, a 

partner link provides the static shape of the conversation. Nevertheless, it is worth 

mentioning that communicating with a partner via a partner link requires additional 

information about the actual partner service and communication bindings, which can be 

set as part of the business process deployment. This is outside the scope of BPEL [lo, 

Section 7.21. Figure 2-4 illustrates the static shape of e-Book Store relationships with its 

partners. Each circle specifies one partner link of the e-Book store business process. The 

business process interacts with three partners, through three partner links: purchasing, 

publishing, and shipping. These identifications are used in the definition of the business 

process, as it can be seen in the next section. 



e-Book Store 
Business Process 

Customer 

1 Publishing I 

Figure 2-4 Partners and port types of the e-Book Store business process 

2.7.2. e-Book Store Business Process 

As illustrated below, the business process of e-Book store is named 

eBookStoreProcess and contains three partner links: purchasing, publishing and 

shipping. A set of variables is introduced in the process to maintain the state of the 

process. Each variable corresponds to a message that is communicated between the 

business process and its partners. In a way these variables work as wrappers for the 

messages; i.e. as soon as a message arrives, the business process wraps it in a variable 

and uses it afterwards. For example, order is a variable that embraces orderMessaqe 

as soon as it arrives at the business process. It is then used to conduct further 

communication with other services. bookorder is a correlation set which identifies the 

business token that is required for specifying business process instances. Although the 

details are not presented here, orderNo is associated with a specific part of each of the 

messages belonging to the correlation group. In eBookStoreProcess all of the 

interactions are annotated with this correlation set, meaning that all interactions belong to 



the same correlation group. Hence, this business token must be carried by all the 

incoming and outgoing messages. 

Process 
ProcessName = "eBookStoreProces 

I In 
: : rkncr Uef ini i ions 

Par tnerLinks 
PartnerLink name="purchasing" 
PartnerLink name= "pub1 ishing " 

name= "shipping " 

Variables 

name= "order " 
messageType="orderMessage" 

a ti onMessage " 



t= "bookorder " ini tia te= "No " 

' i  ln t. er a c t  

The main activity of this process is a sequence activity, which causes a sequence of 

actions taking place one after another. The first activity in the sequence is a start activity; 

if a message is received which belongs to the conversation identified by the purchasing 

partner link, purchasePT port type, and sendpurchaseorder operation, a new 

instance of the business process must be created to handle this request. Moreover, the 

bookstore correlation set is initiated which initializes and keeps the value of orderNo 

for further interactions. In the next step, the business process instance contacts the 

publisher and the shipping company at the same time and requests an order confirmation 

from both. This is accomplished by a flow activity which performs two invoke activities, 

one for the publisher and one for the shipping company. It is important to note that both 

invoke activities follow the bookstore correlation set, and hence the messages must 

carry the correlation token. When the confirmations are received from both partners, the 



business process instance performs the next action, which is to receive a call back from 

the shipping company specifying the shipping schedule and other information. The last 

activity is a reply activity that passes this information to the customer. As mentioned 

before, both of these activities belong to the bookstore correlation group, therefore the 

message ( s h i p p i n g ~ n f o )  must carry the orderNo information. 

2.8. Long-running Business Processes and Compensation Behaviour 

Business processes are meant to define the interactions between several partners that are 

based on certain business logic. These processes usually have long durations and include 

asynchronous message passing between the partners. Consequently, error handling in 

such an environment is not easy. It is done by compensation, i.e. "application specific 

activities that attempt to reverse the effects of a previous activity that was carried out as 

a part of a larger unit of work that is being abandoned. " [lo, Section 13.21 This ability 

of compensating exceptions in an application-specific manner enables business processes 

to have so-called Long-Running (Business) Transactions (LRTs). 

Compensation and fault handling in BPEL is done using the scope activity. Scope defines 

a logical unit of work for which a compensation handler or a set of fault handlers can be 

defined. A compensation handler defines the compensating behaviour of the logical unit 

in case of an error. A fault handler defines the reaction of the logical unit to an error. 

However, BPEL only deals with LRTs locally and within a single business process 

instance. The problem of achieving distributed agreement is addressed in [33]. As 

outlined in the LRM, the need to combine WS-Transaction with BPEL is well 

recognized. Clearly, the formal definition of BPEL and WS-Transaction will be an asset 

in this regard. Although they are not addressed in this project, the formal definition of 

compensation behaviour and fault handling is captured by another work in our group. 



Chapter 3. Abstract State Machines 

Our approach to modelling is based on the abstract state machine (ASM) paradigm. In 

this chapter, we first give a brief introduction to the basic ASM concepts, including 

parallelism and non-determinism. In the second section, we introduce distributed abstract 

state machines (DASMs) as a generalization of basic ASMs. The DASM computation 

model is widely used for modelling concurrent and distributed systems; hence we try to 

investigate the main DASM concepts, namely concurrency, reactivity and real-time 

behaviour, in more detail. The last section describes the operations and convention that 

have been introduced in our DASM model and used in this project. 

The definitions recalled here should be sufficient for the purpose of this thesis. For a 

more comprehensive and rigorous definition, we refer the reader to the original literature 

on the theory of ASMs [23], [3] and their applications [9]. 

3.1. Basic Abstract State Machines 

A basic ASM consists of a program, a set of states which can be viewed as first-order 

structures in mathematical logic, and a collection of initial states. A state S of vocabulary 

V consists of a base set X and the interpretations of function and relation names defined 

in V. An r-ary function name is interpreted as an r-ary function from X 'to X, called basic 

function of S. Similarly, an r-ary relation name is interpreted as an r-ary function from 

X r  to {true, false}, a basic relation of S. Every vocabulary contains static logic symbols 

true, false, undef and standard Boolean operations. The default value for basic functions 

is undef and is false for basic relations. Constants are represented as nullary function 

names and are interpreted as elements of X. Unary relation names can be interpreted as 

20 



special universes and allow a state to be viewed as a many-sorted structure where each 

universe represents some sort [23], [9 ] .  

A basic ASM program is just a rule. In basic ASMs this rule can be an update rule, a 

conditional rule, a do-in-parallel rule or an import rule. 

An update rule has the form 

f ( t , ,  ..., t n ) := to  

where f is a dynamic function (or relation) and each ti is a term (recursively defined as in 

first-order logic). A location of a state S is defined as a pair (f ,E) where f is an r-ary 

dynamic function name and E is an r-ary tuple of elements. The content of this location is 

defined as c = f (E) . An update (1, c') of state S replaces the old content of 1 with c' in the 

next state. An update rule of the above form fires an update (1, v, ) where 1 = f (v, , . . . , v, ) 

and v, is the value of each t i .  

A conditional rule has the form 

if e then Rl else R2 

where e is a Boolean term and Rl, R2 are ASM rules. If e is evaluated to true then Rl is 

executed, otherwise R2 is executed. 

A do-in-parallel rule has the form 

do-in-parallel 

Rl 

R2 

where Rland R2 are ASM rules. Such a rule executes Rl and R2 simultaneously. 

In order to capture all sequential algorithms, the import rule is introduced in addition to 

these three basic rules. By using the import rule, we can model dynamic resource 

allocation for instance, such as adding a new elements to the model, e.g. add a new node 

to a graph. For further details the reader is referred to [23]. 



3.1.1. Non-determinism 

Non-determinism is often required for describing algorithms at higher levels of 

abstraction. The basic ASM model is extended with the choose rule to capture explicit 

non-determinism. 

A choose rule has the form 

choose x E S 

R(x)  

where R(x) is a rule. To execute this rule, any element of S is chosen non- 

deterministically and R(x)  is executed. 

A generalized version of choose is also introduced in [23], where a satisfying condition 

can be added to the rule: 

choose x E S with g(x)  

R(x)  

where g(x)  is a Boolean term. The meaning of this rule is to choose an arbitrary x among 

those elements of S that satisfy g; i.e. {yl  y  E S, g (y )  = true}. 

3.1.2. Parallelism 

The notion of parallelism is introduced in the basic ASM model by means of the forall 

rule. 

A forall rule has the form 

forall x E S 

R(x)  

where R(x)  is a rule. It executes all rules R(x),  where x is an element of S, simultaneously. 

Analogous to the definition of choose, the forall rule can be generalized by introducing a 

satisfying condition. 



3.2. Distributed Abstract State Machines 

A distributed abstract state machine M includes a set of agents. The behaviour of each 

agent is described by its program. A DASM M is defined over a given vocabulary V with 

a program 17~ and a non-empty set IM of initial states. An initial state specifies a possible 

interpretation of V over some potentially infinite base set X. The behaviour of an agent a 

in a given state S of M is defined by programs(a). The dynamic universe AGENT 

represents the set of all agents in a DASM and the static universe PROGRAM represents 

the set of programs that these agents can execute. Agents can be dynamically added to or 

removed from AGENT. 

In every state S reachable from an initial state of M, the set AGENT is well defined as 

follows. 

AGENTs r { x E X :  programs (x)  E PROGRAM) 

Each computation step of a single agent is called a move. Agents operate concurrently. As 

stated in [23], every run p of a DASM M is given by a triple (P, A, 0) satisfying the 

following conditions: 

1- P is a partially ordered set of moves where each move has only finitely many 

predecessors; i.e. {yl y 5 x )  is finite. Figure 3-1 presents one such partially 

ordered set of moves where each mi represents a move. 

2- The set of moves of a single agent are linearly ordered. h is a function on P 

associating agents with moves, so { X I  h(x) = a )  is linearly ordered for every 

agent a. In Figure 3-1, ml, m2, m4, and m6 belong to agent al while m3 and m5 

belong to agent a2. 

3- o(X)  returns a state of M resulted by performing all moves in X; i.e. for each 

initial segment Y of P, o(P) specifies a state of M. o ( 0 )  is an initial state. An 

initial segment of P is a substructure Y of P such that if y E Y and x < y in P 

then x E Y. In Figure 3-1, the circles specify initial segments of P. 



4- The coherence condition: If x is a maximal element in a finite initial segment 

X of P and Y = X -{x) then o(X) is obtained from o(Y) by firing h(x) at o(Y) 

(h(x)  is an agent in o(Y)). In Figure 3-1, m6 is the maximal element of X and 

Figure 3-1 A partial ordered set of moves 

While the above definition is concise, it needs further investigation to fully understand 

the implication of the coherence condition on the runs of a DASM. Each partially order 

run specifies a class of possible executions of a DASM. One immediate corollary of the 

coherence condition is expressed in terms of the linearizations of partially ordered runs; 

i.e. if p' is a finite initial segment of p, then all linearizations of p' yield to the same final 

state of M. 

To further illustrate the meaning of the coherence condition in the above definition and 

the relationship between partially ordered runs and their linearizations, the following 

section considers two simple but meaningful examples. 



3.2.1. Concurrency in Sample DASM models 

We show some implications of the coherence condition on the semantics of partially 

ordered runs through the following examples. 

Example 3 .1 .~  Suppose that we have three propositional variables (dynamic nullary 

relation symbols) door, window and light. Intuitively door = true means that "the door is 

open", window = true means that "the window is open" and light = true means that "the 

light is on". Now, consider a DASM consisting of three agents: a door manager (agent 

4, a window manager (agent w) and a light manager (agent 1). The door manager opens 

the door only when the window is closed (move x), the window manager opens the 

window only when the door is closed (move y), and the light manager turns on the light 

when either the door or the window is closed (move z). 

WindowManagerProgram = if -door then window := true 

DoorManagerProgram = if -window then door := true 

LightManagerProgram = if -door or lwindow then light := true 

Figure 3-2 shows all of the possible DASM runs assuming that in the initial state So the 

door and the window are closed and the light is turned off. There are six possible runs 

(MI -M6) yielding to two different final states (S4, SS). 

We cannot have x c y because w is disabled in state SI obtained from So by performing x. 

Similarly we cannot have y c x because d is disabled in state S j  obtained from So by 

performing y. Finally, we also cannot have a run where x and y are incomparable, that is 

neither x c y nor y c x. This follows from the fact that all the linearizations of such a run 

This example is derived from [19]. 



must result in the same state (thus it is impossible to go from state So to S6 Or S7 ,  Or from 

state S2 to S7). 

Figure 3-2 All possible runs of the DASM of Example 3.1 

Example 3.2. Suppose a single producer agent is placing items, one by one, into a queue. 

Two consumer agents concurrently attempt to remove these items by popping the head of 

the queue. This example shows the effect of the coherence condition in the presence of a 

race condition (between the two consumers simultaneously trying to remove the same 

item of the queue). 

We abstract from the details of adding items to the queue and removing items from it. In 

each step of the producer agent, it adds a single new item to the queue (move p). In each 

step of a consumer, it removes the head item if the queue is nonempty (moves cl, c2). The 

programs of the producer agent and the consumer agents can be written as follows. 



ProducerProgram ADD-lTEM(queue, newItem) 

ConsumerProgram = if queue # empty then item := headItem(queue) 

In the initial state the queue is empty. The most important property of this DASM is that 

there is no run where cl and c2 are incomparable. Note that if both consumers would 

make an attempt to remove the same head item at the same time (incomparable cl and c2), 

this would not cause conflicting update operations on the queue; rather it would produce 

a logical conflict (notably, a duplication of this item). The coherence condition prohibits 

this behaviour as any linear execution of such a run, for instance cl c c2, can not produce 

the same result. Figure 3-3 shows some segment of possible runs of this DASM and helps 

clarifying this argument. Clearly, it is not possible to go from states S2 or S3 to S4; hence 

cl and c2 are not incomparable. 

Figure 3-3 Some segment of possible runs of Example 3.2 



3.2.2. Reactivity 

In support of the principle of separation of concerns, the communication between an 

agent and its environment (or similarly among different agents in a DASM) is not 

supported by any specific mechanism. Instead, functions act as means of communication 

in ASMs. Thus, it is natural to categorize functions based on their role in a specific ASM 

M P I .  

Basic functions of M are categorized in two main groups: static and dynamic. Static 

functions are those with constant values during all runs of M. On the other hand, the 

value of a dynamic function may change in different states of M. Dynamic functions are 

then categorized into different groups based on their role in M. 

A monitored function of M is a dynamic function that is only updated by the 

environment. The machine reads the monitored function, but does not update it. In case 

of a DASM, a monitored function (defined for a specific agent) can also be updated by 

other agents. Monitored functions are the means of transferring information from the 

environment (or other agents) to a specific machine (agent) [9]. A typical example of 

such a function is the nullary function now, which is defined in real-time distributed 

ASMs (see Section 3.2.3). This function returns the global system time and is updated by 

the environment. As such, it truly resembles the behaviour of a clock, or watch, in the 

real world. We do not keep track of the time ourselves; we look at a watch to know the 

time. 

On the other hand, out functions are the functions that are only updated, but never read, 

by M. Conversely, they are read but not updated by the environment (or other agents). 

Consequently, through out functions agents can forward information to the environment 

or to each other. To describe the interaction between an agent and the environment, one 

can also define shared dynamic functions that are updated and read both by the machine 

and the environment (or other agents) [9] .  



A clear distinction of various types of functions enables ASMs to support reactive 

behaviour as well as separation of concerns, information hiding, data abstraction and 

stepwise refinement [9]. The reactive behaviour of a system is captured in ASMs by 

introducing well-defined functions as interfaces of interactions between a machine and its 

environment. Specifying interactions through monitored, shared and out functions as 

interfaces, enable us to define the reactive behaviour of a system while abstracting from 

communication concerns. The following example shows how reactive behaviour is 

captured by the ASM paradigm. 

Example 3.3. Assume an asynchronous interaction model between three autonomously 

operating entities that are involved in Automated Teller Machine (ATM) transactions, 

namely: an ATM manager, an authentication manager, and an account manager. For 

simplicity, here we restrict our attention to the withdrawal transaction of the ATM. 

Performing a withdrawal transaction requires the following logical steps: 

1- Input the bank card, PIN code and withdrawal amount. 

2- Authenticate the bank card and PIN code. 

3- Check the account balance against the credit line. 

4- On approval update the account balance. 

5- Output cash or notification about denial. 

Assuming an unreliable communication medium, timeout mechanisms may cause the 

cancellation of a transaction at any time. 

The Abstract Model. In this initial model we do not formally define the behaviour of the 

account manager and the authentication manager. Instead, we consider these two entities 

as parts of the environment and focus on the behaviour of the ATM manager. 

The ATM agent communicates with its environment through various monitored 

functions. An activation event occurs whenever a user requests the service. The user then 



enters the card number, PIN code and the desired withdrawal amount. Beyond reading 

this data from the environment, the machine can also perform more complex interactions 

with the environment to get other, non-trivial information like authentication 

approvallrejection and transaction approvalldenial. The abstraction mechanisms allow us 

not only to define (and decide about) the environment, but to freely choose the level of 

detail and precision. 

The behaviour of the ATM control is described as follows: 

if Idle and activationEvent then 
data : = getCardData 
code : = getpincode 
amount : = getWithdrawAmount 
mode := processing 

if Processing and isAuthenticated(data, code) and 1cancellationEvent then 
if isValidTransaction(data, amount) then 

RELEASE-CASH(amount) 
UPDATE-ACCOUNT-BALANCE(data, amount) 

else 
OUTPUT-CANCELLATION-NOTIFICATION 

mode := idle 
if Processing and (lisAuthenticated(data,code) or cancellationEvent) then 

OUTPUT-CANCELLATION-NOTIFICATION 
mode := idle 

where 
Idle - mode = idle, 
Processing = mode = processing 

The machine is idle in the initial state. activationEvent is a monitored predicate that causes 

the DASM to become active. Other monitored functions getCardData, getpincode and 

getWithdrawAmount serve to obtain the user's data and withdrawal amount. In this way, a 

series of interactions between the DASM and the environment takes place and in each 

step some required information, ranging from the requested withdrawal amount to user 

authentication, is obtained from the environment and is used to perform the operation. 

isAuthenticated and isValidTransaction are two important monitored functions that 

respectively provide the authentication and account management services to the ATM 

abstract machine. At this level of abstraction, the ATM manager does not issue any 



information (data, code or amount) to the authentication manager or the account manager. 

Alternatively, we assume that these communications take place in the background. 

cancellationEvent is another important monitored predicate that indicates cancellation of 

the operation caused by the timeout mechanism. 

This example also makes use of another convenient feature. RELEASE-CASH, 

UPDATE-ACCOUNT-BALANCE and OUTPUT-CANCELLATION-NOTIFICATION are parts of the 

model that are meant to perform the final operations. However, we do not want to deal 

with the details of such operations at this level of abstraction. Thus, we left the definition 

of these rules abstract assuming that more detailed definition of these rules will be 

provided as part of the next refinement step. 

3.2.3. Real-Time Behaviour 

In order to capture real time behaviour, additional constraints are imposed on DASM runs 

ensuring that the agents react instantaneously and environmental changes take place 

instantaneously [25]. We introduce an abstract notion of local system time for modelling 

timeout events. In a given state S of M, the global time (as measured by some global 

system clock) is given by a nullary monitored function now taking values in some 

linearly ordered domain TIME. Time values are represented as positive real numbers. 

Additionally, 'a' represents a distinguished time value such that t c co for all 

t E TIME - {a}. We assume the values of now to increase monotonically over runs of M. 

Our semantic model of time resembles those defined in [S], [IS], and [22]. 

3.3. Our DASM 

Our formal definition of an abstract operational semantics of BPEL is based on the real- 

time distributed abstract state machine model. However, we introduce two additional 

operations that facilitate the creation and termination of DASM agents. These operations 



are different from normal creation and termination in the sense that they also update the 

(sub-) domain of the agent. 

new a : (domain) 

new creates a new agent a of type (domain) and sets program(a). Additionally, it also 

adds agent a to the associated domain of agents. 

stop a 

stop discards agent a from the associated domain of agents and resets program(a) to 

undef. 

To cope with partial updates of sets, we follow the solution proposed in [26] and use the 

following operations for addinglremoving an element tolfrom a set. 

add a to A 

add inserts element a into set A of elements. 

remove a from A 

remove deletes element a from set A of elements. 

3.4. Notational Conventions 

The ASM specifications presented in this document use the following notational 

conventions for improved readability. 

Program names are entirely written in capital letters with no separator between 

individual words (e.g. PROCESSPROGRAM) 



Function names start with a lowercase first letter. The individual words start with 

capital letters and the rest of the letters are written in lowercase (e.g. 

functionName). 

Abstract rule names are entirely written in capital letters and the individual words 

are divided by underscore '-' (e.g. INITIATE-CORRELATION). 

Abstract predicate names are entirely written in lowercase letters. The individual 

words are divided by underscore '-' (e. g. message-i s-received). 

Rule names start with a capital letter. The individual words also start with capital 

letters and are separated by underscore '-'. The rest of the letters are written in 

lower'case (e.g. Pick-Activity-Clearance). 

ASM keywords are written in lowercase using bold font (e.g. else). 

Domains are written in all capital letters (e.g. MESSAGE). 



Chapter 4. Formalization of the BPEL Web Services 
Architecture 

We formalize here the key functional attributes of the BPEL Web services architecture 

based on the asynchronous computation model of distributed abstract state machines [23]. 

The primary focus is on the concurrent and reactive behaviour of Web services and their 

interaction through TCPIIP communication networks. This includes concurrent control 

structures, communication primitives, and dynamic creation and termination of services. 

For dealing with real time aspects, we define an abstract notion of global system time and 

impose additional constraints on the runs defining the behaviour of our BPEL abstract 

machine. 

4.1. Overall Organization 

Logically, the BPEL Web services architecture splits into two basically different 

components, namely: (1) the TCP/IP communication network, and (2)  the BPEL services 

residing at the communication endpoints. We separate the behaviour of the network from 

the behaviour of services by decomposing our architecture model of the BPEL abstract 

machine into two sub-models, each of which in turn is a distributed ASM, or DASM. 

In this project, we concentrated on the service abstract machine model, whereas a 

network abstract machine model is defined in [20]. The composition of these two 

machines is well defined by the underlying semantics of the DASM computation model. 

Any interaction between these models is restricted to actions and events occurring at well 

identified interfaces. Each Web service in the service model interacts with the external 

world (i.e. the communication network and remote Web services) through two well 



defined interfaces, one for incoming messages and the other for outgoing messages. The 

network model delivers the messages to the input mailbox (inbox space) of a service and 

carries the messages from the output mailbox (outbox space) of a service to remote 

services. The service abstract machine model and the network abstract machine model 

both are based on asynchronous models; hence they can easily be composed into one 

coherent and consistent DASM. It is worth mentioning that since BPEL is defined on top 

of WSDL, it is sometimes necessary to take into account the service or message bindings 

described by the WSDL definitions. Thus, a transformation phase is required to make the 

messages conform to the correct format and carry the required information. Figure 4-1 

gives an overview of the composition of the two models. 

Message1 Service 
Bindings 

Figure 4-1 The composition of the BPEL service model and the network model 

Network Abstract 
Machine Model 

The overall organization of the BPEL abstract machine splits into three different layers 

as illustrated in Figure 4-2. The abstract model is introduced in this chapter. The 

intermediate model and the executable model are presented in Chapter 5 and Chapter 6. 

Outbox 
Space 

+ Inbox 
Space 

BPEL 
Service Abstract 
Machine Model 





The inbox manager operates on the inbox space, a possibly empty set of inbound 

messages, and takes care of all the messages that arrive at the Web service. For each such 

message, the inbox manager is responsible to find a process instance that is waiting for 

that message, and assigns the message to this instance. The outbox manager, on the other 

hand, delivers outbound messages from process instances to the network. Inbox 

managers, outbox managers, and process instances are modelled by three different types 

of DASM agents. Additionally, we introduce another agent type, activity agent. Each 

process agent executes a single process instance and it  uses dynamically created activity 

agents for executing complex (structured) activities. 

I AGENT - INBOX-MANAGER u OUTBOX-MANAGER u PROCESS u ACTIVITY-AGENT I 
In the initial DASM state, there are only three DASM agents: the inbox manager, the 

outbox manager and a dummy process. The role of the dummy process instance merely is 

to simplify the creation of new process instances. There is always one and only one such 

process instance waiting on its start activity. By receiving the first matching message, the 

dummy process instance becomes a normal running process instance and a new dummy 

process instance will be created automatically by the inbox manager. The DASM 

program given below specifies the behaviour of the inbox manager agent. 

- 

domain MESSAGE 
inboxspace: IN BOX-MANAGER 3 MESSAGE-set 
/ / in~t~al  value: 3 
j/Keeps the messages that have arrived for a busmess process and have 
//not yet been actively processed. 

match: (PROCESS, MESSAGE) 3 BOOLEAN 
//Tells whether a messages matches a process instance or not. 

I waiting: PROCESS 3 BOOLEAN 
I //Tells whether a process instance is waiting for a message or not. 



INBOXMANAGERPROGRAM - 
if inboxSpace(se1f) z 0 then 

choose p E PROCESS, m E inboxSpace(se1f) 
with match(p, m) and waiting(p) 

ASSIGN-MESSAGE(p, m) 
//Effectively assigns message m to process instance p. 
if p = dummyProcess then 

new newDummy : PROCESS 
dummyProcess : = newDummy 

In each step, the inbox manager chooses a message among the messages waiting in the 

inbox space and tries to find a matching process instance to assign the message to this 

process instance. The predicate match(p: PROCESS, m: MESSAGE) checks whether message 

m can be delivered to process instance p or not, trying to match the message type and the 

correlation information between the waiting process instance and the incoming message. 

If the matching is successful, the message is assigned to the process instance by calling 

ASSIGN-MESSAGE(p, m) which is left abstract at this level but will be defined as part of the 

next refinement step. 

The outbox manager operates on the outbox space, a possibly empty set of output 

descriptors, one for each outgoing message that is to be generated. The outbox manager 

then performs the actual output operation based on the information specified by the 

respective output descriptor. The following DASM program defines the behaviour of the 

outbox manager. 

domain OUTPUT-DESCRIPTOR 
outboxspace: OUTBOX-MANAGER + OUTPUT-DESCRIPTOR-set 
; / ~ n ~ t ~ a l  value: :r 
, /Trw set keeps the ~nformation 01-1 all the outbound messages In a gwen state. 

OUTBOXMANAGERPROGRAM = 
if outboxSpace(self) z 0 then 

choose od E outboxSpace(self) 
SEND(od) //Effective send operation 

To send a message to a specific remote destination, the process instance which needs to 

send the message creates an outbox descriptor in the outbox space. This descriptor 

encapsulates sufficient information on the message destination and the message itself. In 

38 



each step, the outbox manager chooses a single output descriptor and generates the 

corresponding message. The output operation itself is not further defined leaving the 

details of the operation SEND abstract. 

In general, a BPEL program combines two different types of activities: basic activities 

and structured activities. Structured activities impose an execution order on a collection 

of activities. These activities can be both basic and structured activities. The execution of 

each structured activity inside a process instance is modelled by a single DASM agent of 

type activity agent. Figure 4-4 combines all the potential control structures of DASM 

activity agents at the top-level layer. A process instance uses five types of activity agents 

(sequence agent, while agent, pick agent, switch agent and flow agent) to execute 

different structured activities. A pick agent uses a pick alamz agent and a pick message 

agent to handle onAlarm events and onMessage events respectively. A flow agent creates 

a number offlow thread agents to concurrently execute its activities. 

Process Instance 

I i 
Sequence While 

[=I Pick Alarm Pick Message 

Figure 4-4 The combination of all potential control structures of DASM activity agents 
at the top-level layer 

Below is the DASM program that abstractly specifies the behaviour of process agents. 

RUNNING-AGENT = PROCESS U ACTIVITY-AGENT 
//RUNNING,-.AGENT is the set of agents that are executing (running) an activity. 

startedExecution: PROCESS 3 BOOLEAN 
//initial value: false 
//Tells whether a process has started executing its activity or not, 



busy: RUNNING-AGENT 3 BOOLEAN 
//initial value: false 
//An agent is busy while one of its activities is being executed. 

activity: RUNNING-AGENT 3 ACTIVITY 
//Returns the activity that must be executed in a running agent. 
//derived from the BPEL document and defined in the initial state 

PROCESSPROGRAM 
if 1 busy(se1f) then 

if ~startedExecution(self) then 
startedExecution(self) : = true 
busy(self) := true 

else 
stop self 

else 
EXECUTE-ACTIVITY(activity(self)) 

The program of a process agent describes its behaviour in one DASM step. The routine is 

to execute the activity defined inside the process, and if the execution is completed the 

process agent is terminated. startedExecution is a predicate that specifies whether the 

execution of the activity is started or not. When the execution is started 

(startedExecution(seIf) = true), the process agent becomes busy (by setting the predicate 

busy to true) and remains busy during the execution. Once the execution is completed, 

the agent is released; i.e. busy is reset to false (by EXECUTE-ACTIVIY). Thus, the process 

agent knows the execution is completed and is terminated. Despite its important role, 

EXECUTE-ACTIVTY is not further defined at this level and is left abstract7. 

Modelling the behaviour of a BPEL process requires certain information that is specific 

for the given business process to be derived from the underlying BPEL document. For 

instance, the process agent program is defined to execute the main activity of the BPEL 

process which can only be extracted from the underlying BPEL process definition. The 

construction of the initial state is not further detailed here; rather we assume that the 

' Note that we introduced a constraint on EXECUTEACTIVITY which requires it to release the agent when 
the execution of the activity is completed. 



relevant information is generated automatically in a pre-processing step through static 

analysis of the underlying BPEL document using standard compiler techniques. This 

information is formalized by a set of statically defined functions (like activity) as part of 

the definition of the initial state of the DASM*. 

4.3. BPEL Abstract Model: Details 

The BPEL abstract model captures the behaviour of a business process, the underlying 

framework and core BPEL activities in a high level of abstraction. In this sense, the 

abstract model provides guidelines for the specification of each activity. This section 

provides these high level specifications along with basic descriptions. The specifications 

are refined and discussed in more detail in the next chapter. 

4.3.1. Basic Activities 

The behaviour of each basic activity is defined by a single ASM rule in our model. As 

mentioned in Section 4.2, the process program fetches an activity and executes that 

activity. For basic activities the execution is handled by the corresponding ASM rule. For 

instance, Execute-Receive is responsible for executing a receive activity. These rules are 

formally defined and described in the following subsections. 

4.3.1.1. Receive Activity 

Executing a receive activity is done in two phases: 

1- The running agent informs the inbox manager that a receive activity is 

executed and a message is anticipated. 

These functions are identified in the BPEL DASM with a comment ("derived from the BPEL document 
and defined in the initial state"). 



2- The running agent waits until the message arrives and is assigned to the agent 

by the inbox manager 

As a result, Execute-Receive works in two modes which are distinguished by receiveMode, 

a unary predicate that specifies whether an agent is waiting to receive a message or not. If 

receiveMode is false, it means that the inbox manager has not yet been informed about the 

receive activity and the anticipated message. The inbox manager can assign a message to 

an agent only when it is informed which agent is waiting for which message. The 

information about the expected message and the waiting agent is collected in an input 

descriptor and is passed to the inbox manager through a set, called waiting set. If 

receiveMode is true, it means that the input descriptor is already added to the waiting set 

and the agent has to wait until the message is received. When the message is received, the 

receiveMode is toggled (back to false) and the agent is released by setting busy to false. 

receiveMode: RUNNING-AGENT 3 BOOLEAN 
!'/initial value : false 
//Tells whether a runnig agent is waiting to receive a message  ctr not 

Execute-Receive (activity : RECEIVE) = 
if lreceiveMode(self) then 

receiveMode(se1f) := true //The running agent waits to .eceive a message 
ADD-INPUT-DESCRIPTOR-TO-WAITING-SET(activity) 

else 
if message-is-received(activity) then 

receiveMode(se1f) : = false 
busy(self) : = false 

4.3.1.2. Reply Activity 

Executing a reply activity requires sending a message out. As described in 4.2, in our 

model the outbox manager is responsible for the outgoing messages. Thus, in order to 

send a message out the running agent has to inform the outbox manager about the 

outgoing message. This is done by adding an output descriptor, which contains the 

required information for an outgoing message, to the outbox space of the outbox 

manager. 



Execute-Reply ( activity : REPLY) = 
ADD~OUTPUT~DESCRIPTOR~TO~OUTBOX~SPACE(activity) 
busy(self) := false 

4.3.1.3. Invoke Activity 

As described in 2.6.1 the behaviour of an invoke activity is very similar to a combination 

of reply and receive. Initially, an invoke activity invokes a service of a partner by sending 

an appropriate message to that partner. Similar to what is done in the reply activity, this 

behaviour is captured by informing the outbox manager. However, if the invoke activity 

is synchronous (synchronous(activity) = true) the agent has to wait for a response from the 

partner. Basically, this behaviour is captured by the same approach that is applied to the 

receive activity. Thus, if the invoke activity is synchronous the receiveMode is set to true 

and the agent will wait to receive the message from the partner, as follows. 

synchronous: INOVKE 3 BOOLEAN 
//returns true if the invoke activity contains synchronous interact~ons; 
;/i.e. request/response 
//derived from the BPEL document and defined in the initial state 

ExecuteInvoke (activity : INVOKE) = 
if lreceiveMode(self) then 

ADD~OUTPUT~DESCRIPTOR~TO~OUTBOX~SPACE(activity) 
if ~synchronous(activity) then 

busy(self) : = false 

if synchronous(activity) then 
receiveMode(se1f) : = true 
ADDJN PUT-DESCRIPTOR-TO-WAITING-SET(activity) 

if receiveMode(se1f) and message~is~received(activity) then 
receiveMode(se1f) : = false 
busy(self) : = false 



4.3.1.4. Terminate Activity 

Executing a terminate activity requires stopping the current business process instance and 

all its subordinate agents. 

Execute-Terminate = 
STOP-ALL-SUBORDINATE-AGENTS 
stop rootProcess(self) 

4.3.1.5. Wait Activity 

When a wait activity is executed, the agent has to wait for a specified period of time, or 

until a specified time. While the latter can be accomplished by chechng the current time 

against the deadline, modelling the former requires keeping track of the time that the 

waiting period starts. Thus, when the execution of a wait activity starts, the current time 

is recorded as the starting point of the waiting period, and then the agent remains busy 

until the waiting period is completed. 

Execute-Wait (activity : WAIT) = 
if waitjust-started(activity) then 

RECORD-WAIT-START-TIME(activity) 
else 

if wait-completed(activity) then 
busy(self) := false 

4.3.1.6. Empty Activity 

Empty activity makes the agent do nothing for one DASM step. Thus, the agent becomes 

busy when this activity is fetched and is released when the empty activity is executed. 

Execute-Empty (activity : EMPTY) =- 

busy(self) : = false 



4.3.2. Structured Activities 

As mentioned in Section 4.2, the behaviour of each structured activity is captured by a 

single DASM agent created to handle that activity. These DASM agents are called 

activity agents and include sequence agents, switch agents, while agents, pick agents, and 

flow agents. In addition, there are three other types of DASM agents that are categorized 

as activity agents and help in modelling the behaviour of structured activities: flow thread 

agents, pick message agents, and pick alarm agents. 

domain SEQUENCE-AGENT 
domain SWITCH-AGENT 
domain WHILE-AGENT 
domain PICK-AGENT 
domain FLOW-AGENT 
domain PICK-ALARM-AGENT 
domain PICK-MESSAGE-AGENT 
domain FLOW-THREAD-AGENT 

ACTIVITY-AGENT = SEQUENCE-AGENT u SWITCH-AGENT u WHILE-AGENT u 
PICK-AGENT u FLOW-AGENT u PICK-M ESSAGE-AGENT u 
PICK-ALARM-AGENT u FLOW-THREAD-AGENT 

The high level behaviour of each of these agents is abstractly presented in the following 

sections. It is important to notice that upon completion an activity agent has to take an 

additional action, which is releasing its parent. In Section 4.3.1 we showed that each 

execution rule is finished by setting busy to false, in order to inform the current agent that 

the execution of the activity is completed. In case of structured activities, the parent 

agent has to be informed about the completion; therefore RELEASE-PARENT is called 

whenever an activity agent completes its execution. RELEASE-PARENT has to set busy to 

false for the parent agent. 

4.3.2.1. Sequence Activity 

A sequence activity is handled by a sequence agent which executes a sequence of 

activities one by one. currentActivity is a function that indicates the activity that is being 

executed. A sequence agent program starts by setting this function to the first activity 

45 



specified in the sequence activity. When the activity is fetched, the agent becomes busy 

and starts executing it. When the execution is completed, the sequence agent is released; 

i.e. busy is set to false again. Thus, the next activity can be fetched and this continues 

until the last activity of the sequence is executed. 

currentActivity: SEQUENCE-AGENT + ACnVrrY 
,:/Keeps track of the current activity wh~ch  1s bemg executed 

SEQUENCEPROGRAM - 
if -busy(self) then 

SET-CURRENT-ACTIVITY-TO-N EXT-ACTIVITY 
busy(self) : = true 

if busy(self) then 
if sequence~is~not~completed then //There are still some activities !o execute 

EXECUTEPCTIVrrY(currentActivity(self)) 
else //No more activities 

stop self 
RELEASE-PARENT 

4.3.2.2. Switch Activity 

Switch activity performs two main tasks: 

1- Finds the first branch with a true condition (or selects the otherwise branch) 

2- Executes the activity associated with that branch. 

In our model, a switch activity is handled by a switch agent which performs the two tasks 

mentioned above. First, it selects the appropriate branch and becomes busy. This 

selection is always successful because the LRM introduces a default otherwise branch for 

every switch activity. Second, the agent remains busy until the execution of the activity 

associated with the selected branch is completed. foundBranch is a function that indicates 

this activity and is updated when the branch is selected. When the execution is 

completed, the agent is required to release its parent agent and terminate its execution. 



foundBranch: SWITCH-AGENT 3 A C n V I l Y  
//The activity associated with the branch that is chosen by switch to be executed 

SWITCHPROGRAM = 
if lbusy(self) and -branch-found then / /KO branch is sekcted yet 

FIND-BRANCH //foundbranch(self) is set to the selected branch. 
//Always successful (because of the default o,'l;c;~r-wiw) 

busy(self) : = true 

if busy(self) then 
EXECUTE-ACnVIlY(foundBranch(self)) 

if lbusy(self) and branch-found then 
stop self 
RELEASE-PARENT 

4.3.2.3. While Activity 

A while activity is handled by a while agent. If the while condition is true, the while 

agent becomes busy immediately and starts executing the activity defined inside the 

while loop. The while agent remains busy until the activity is executed once, then busy 

becomes false again. Whenever the while agent is not busy (either in the beginning or 

when the execution of the activity is completed), the while condition is checked. If the 

while condition is still true the agent goes through the same steps again, otherwise the 

while agent releases its parent agent and terminates itself. 

WHILEPROGRAM = 
if lbusy(self) and true-while-condition then 

busy(self) : = true 

if busy(self) then 
EXECUTE-ACnVIlY(activity(self))) 
//Excxuting the activity irside while 
//after it is executed once, busy becomes false 

if lbusy(self) and false-while-condition then 
stop self 
RELEASE-PARENT 



4.3.2.4. Pick Activity 

A pick agent is responsible for handling a pick activity. A pick agent waits for an 

onMessage event or an onAlarm event to occur. To handle each of these two categories 

of events, the pick agent is assisted by two other DASM agents: pick message agent and 

pick alarm agent. A pick message agent is responsible for the onMessage events while a 

pick alarm agent is responsible for the onAlarm events. The pick agent starts by creating 

a pick alarm agent and a pick message agent, and then becomes busy, meaning that the 

agent is waiting for an event to happen. As soon as one or more events happen, the pick 

agent chooses the event that has happened first and sets chosenActivity to its associated 

activity. If two or more events happen at the same time, one of them is chosen non- 

deterministically9. Once the activity is chosen, the pick agent has to wait until the 

execution of the chosenActivity is completed. Upon completion, the pick agent releases its 

parent agent and terminates its execution. 

chosenActivity: PICK-AGENT 3 ACTIVITY 
//The activity that is chosen by a pick agent to be executed 

PICKPROGRAM = 
if lbusy(self) then 

if activity-is-not-chosen then 
CREATE-PICK-ALARM-AGENT // To manage oriAlaram evcnls 
CREATE-PICK-MESSAGE-AGENT // To manage o~Mcssage events 
busy(self) : = true //The agent is wahng for an event to happen 

else 
RELEASE-PARENT 
stop self 

if busy(self) then 
if activity-is-not-chosen then 

CHOOSE-EARLIEST-HAPPENED-EVENT 
//Among the onMessage and onAlarm events choose the one that occurred 

//first; chosenAct~v~ty IS set to the corresponalng actlvity of that e ~ e n t  
else 

EXECUTEPCnVITY(chosenActivity(self)) 

9 According to the LRM, "lf the events occur almost simultaneously, there is a race and the choice of 
activity to be performed is dependent on both timing and implementation. " [lo, Section 12.41 



Pick Message Agent 

A pick message agent performs the following steps: 

1- It notifies the inbox manager about all of the related onMessage events; i.e. it 

informs the inbox manager that any of the messages requested by the 

onMessage events can be assigned to this agent. This is done by adding one 

input descriptor for each onMessage event to the waiting set. 

2- Once the inbox manager is informed, the pick message agent waits until one 

such event is completed; i.e. the corresponding message has been received. 

3- It informs the pick agent that such an event has occurred and terminates itself. 

Meanwhile, whenever an onAlarm event occurs (time-out) the pick message agent must 

terminate. However, before termination the pick message agent has to remove all the 

input descriptors (if any) from the waiting set informing the inbox manager that it is not 

waiting for such messages anymore. 

PICKMESSAGEPROGRAM 5 

if onAlarm-event-occured then 
REMOVE-ALL-ONMESSAGE-INPUT-DESCRIPTORS-FROM-WAITING-SET' 
stop self 

else 
if 7 busy(self) then 

ADD-ALL-ON MESSAGE-INPUT-DESCRIPTORS-TO-WAITING-SET' 
busy(self) := true 

else 
CHOOSE-A-COM PLETED-ONM ESSAGE-EVENT-AN D-IN FORM-PICK-AGENT 

stop self 

Pick Alarm Agent 

A pick alarm agent is responsible for all of the onAlarm events defined inside a pick 

activity. Similar to the while activity, onAlarm events are defined in terms of a period of 

time ('for'), or a deadline ('until'). Therefore, the pick alarm agent has to record the 

starting time at the very beginning. As soon as the waiting period is completed or the 

deadline is passed, the pick alarm agent informs the pick agent and terminates thereafter. 

Note that it is possible that more than one alarm occur between two steps of a DASM. In 

49 



such a case the pick agent is informed about all the triggered alarms and it will pick the 

earliest one. 

Moreover, if an onMessage event occurs while the pick alarm agent is waiting for an 

alarm to trigger, the pick alarm agent must terminate. 

PICKALARMPROGRAM 
if onMessage~event~occured then 

stop self 
else 

if 1 busy(self) then 
RECORD-ALARM-START-TIME 
busy(self) : = true 

else 
FORALL-PASSED-ONALARM-EVENTS-IN FORM-PICK-AGENT 

s t o ~  self 

4.3.2.5. Flow Activity 

Each flow activity is handled by a flow agent which concurrently executes the set of 

activities defined inside the flow activity. To allow concurrent execution, the flow agent 

is assisted by another type of DASM agents, called flow thread agent. Each flow thread 

agent is responsible for executing one of the concurrent activities. 

A flow agent performs the following steps: 

1- It creates one flow thread agent for each activity defined inside the flow 

activity and becomes busy. The flow agent keeps track of these thread agents 

by a set calledflow agent set 

2- The flow agent is completed when all of the flow thread agents are completed. 

After completion, the flow agent releases its parent agent and terminates itself. 



flowActivitySet: FLOW + ACnVTTY-set 
//Set of the activities defined inside a FLOW , , 

//derived from the BPEL document and defined in the initial state 

FLOWPROGRAM a 

if lbusy(self) then 
//Creates threads to concurrently execute activities grouped iriside the flow. 
forall activity in flowActivitySet(self) 

CREATE-A-FLOWTH READ-AGENT-AN D- ADD-TO-FLOWAGENTSET(activity) 
busy(self) : = true 

if busy(self) and empty-flowagentset then 
/ /A!/  threads are done, flow activity is completed. 
RELEASE-PARENT 
stop self 

The flow agent set has a main role in defining the behaviour of the flow activity. The 

thread agents are created and added to this set. When the threads are completed, they 

remove themselves from this set. When this set becomes empty, the flow agent will know 

that all of the threads are completed and the flow activity is completed as well. 

A flow thread agent executes a single activity. Thus, its behaviour is very similar to a 

process agent, except that when completed, it has to remove itself from the flow agent 

set. 

startedExecution: PROCESS u FLOW-THREAD-AGENT + BOOLEAN 
//initial value: false 
//Telis whether a process or a flow thread agent has started executing 
//its activity or not. 

FLOWTHREADPROGRAM 
if lbusy(self) and lstartedExecution(self) then 

startedExecution(self) := true 
busy(self) : = true 

if busy(self) then 
EXECUTE-ACnVTTY(activity(self)) 

if 1 busy(self) and startedExecution(self) then 
REMOVE-SELF-FROM-FLOWAGENTSET 
stop self 



Chapter 5. Complete Formal Model 

By refining the abstract model of Chapter 4, we obtain the intermediate model which 

provides the complete BPEL service abstract machine model of the core constructs of 

BPEL. The intermediate model forms the basis for deriving the executable model in 

Chapter 6. In the following sections, different parts of the intermediate model are 

described while the full model is available in Appendix C. In this chapter the goal is to 

clarify notable and principle parts of the intermediate model whereas details that are more 

related to making the formal model executable on real machines are considered in 

Chapter 6. Note that the required specifics on a given business process definition as 

extracted from the underlying BPEL document are encoded in terms of statically defined 

functions as part of the initial state of the DASM (see also Section 4.2 for details). 

5.1. Znbox Manager 

The refined inbox manager program presented in the intermediate model describes the 

behaviour of the inbox manager more concretely and in more detail. At this level of 

abstraction, the inbox manager uses the information canied by the input descriptors to 

identify the input activity (or event) that is waiting for the message. A message is 

matched to an input operation (activity or event) of a business process instance, if it 

satisfies the requirements specified by the waiting operation (including correlations). If 

the matching is successful, the message is assigned to that specific operation waiting in a 

process instance (or one of its subordinate agents). The refined inbox manager program 

is presented below. 



INBOXMANAGERPROGRAM 
if inboxSpace(se1f) # 0 then 

choose p E PROCESS, m E inboxSpace(self), 
(agent, op) E waitingForMessage(p) with match(p, op, m) 

Assign-Message(p, agent, op, m) 
Pick-Activity-Clearance(p, agent, op) 

if p = dummyProcess then 
new newDummy : PROCESS 

dummyProcess := newDummy 

waitingForMessage is a function that identifies the set of waiting operations of each 

process. Moreover, match and ASSIGN-MESSAGE are refined as follows to incorporate 

additional parameters that identify the waiting operation and the agent to which it 

belongs, so that the message can be assigned to that specific activitylevent. 

IN-OPERATION = RECEIVE u INVOKE u ONMESSAGE 

waitingForMessage: PROCESS+ (RUNNING-AGENT X IN-0PERATION)-set 

match: PROCESS X IN-OPERATION X MESSAGE + BOOLEAN 

5.1.1. Assign Message 

To assign a message to the correct process instance, the inbox manager has to deal with 

correlations in two basically different ways: 

1- If an input operation belongs to a correlation group then the message must 

contain the appropriate correlation token values. 

2- If the input operation is responsible for initiating a new correlation set then the 

inbox manager has to deal with initiating this correlation set. 



The match predicate takes care of the first condition by considering the constraints 

imposed through correlations in matching a message with a process instance. Correlation 

initiation is managed by an INITIATE- CORRELATION'^ operation. 

completedInOperations: PROCESS 3 (RUNNING-AGENT X IN-OPERATION 
X TIME)-set 

//i:litral value: 53 

Assign-Message (p : PROCESS, agent : RUNNING-AGENT, op : IN-OPERATION, 
m : MESSAGE) = 

if initiateCorrelation(op) then 
INITIATE-CORRELATION(p, agent, op, m) 

remove m from in boxSpace(se1f) 
remove (agentlop) from waitingForMessage(p) 
add (agent, op, now) to completedInOperations(p) 

When assigning a message to a process instance, the related input descriptor is removed 

from the waiting set (since the associated request is served and is not waiting anymore). 

In addition, a new descriptor containing the information on the input operation and its 

serving time is added to the completedInOperations set. For each process this set indicates 

the input activities (or onMessage events) that have received a message together with the 

receiving time. The role of the receiving time becomes clear when the behavior of the 

pick activity is discussed in Section 5.12. Assign-Message also updates the inbox space by 

removing the assigned message from it' ' . 

l o  In the absence of scopes and variables, the behaviour of INITIATE-CORRELATION is reduced to 
assigning values to a set of properties. Thus, this rule is left abstract at this level and is refined in the 
executable model. 

I '  Please note that since this work does not capture the behaviour of variables, the value of a message is not 
explicitly assigned to a variable inside a process instance. According to the BPEL LRM, this is a valid 
behaviour for abstract business processes. However, the future work on the variable extension captures this 
issue. 



5.1.2. Pick Activity Clearance 

Pick-Activity-Clearance introduces a new responsibility for the inbox manager. In the 

abstract formal definition of the pick activity behaviour (Section 4.3.2.4), we mentioned 

that for each onMessage event, the pick message agent adds one input descriptor to the 

waiting set. According to the LRM, once one of these messages is received, the business 

process must not accept any of the other messages. Thus, it is required to remove the 

remaining input descriptors from the waiting set. Here we had two design choices: 

1- Assigning this responsibility to the pick message agent; i.e. the pick message 

agent is responsible to remove the remaining input descriptors once a message 

is received. 

2- Assigning this responsibility to the inbox manager; i.e. whenever the inbox 

assigns a message to a pick activity, it is responsible to remove the remaining 

unwanted input descriptors. 

The second choice was preferred over the first one because there might be a delay 

between the time a message is assigned to an onMessage event and the time the pick 

message agent is informed. This delay may cause the inbox manager to accept another 

message for one of the other onMessage events which would violate the semantics of the 

business process as it is defined by the LRM. Pick-Activity-Clearance is responsible for 

such an action. 

Pick-Activity-Clearance (p : PROCESS, a : RUNNING-AGENT, 
op : IN-OPERATION) = 

if a E PICK-MESSAGE-AGENT then 
forall (a, op') E waitingForMessage(p) with op' + op 

remove (atop') from waitingForMessage(p) 



5.2. Outbox Manager 

In the outbox manager program, presented in Section 4.2, elements of the domain 

OUTPUT-DESCRIPTOR were used to access the required information on the outgoing 

message and its destination. In the intermediate model, we refine this domain by 

identifying the information camed by output descriptors more concretely. Similar to an 

input descriptor, we suggest that an output descriptor must identify a waiting activity and 

the waiting agent to which it  belongs. The required information for generating an 

outbound message can then be extracted from the output descriptors. Thus, 

OUTBOX-DESCRIPTOR is refined as follows. 

OUT-OPERATION n REPLY u INVOKE 

/ OUTBOX-DESCRIPTOR a RUNNING-AGENT X OUT-OPERATION 

As mentioned in Section 4.1, sending a message out also requires the BPEL abstract 

machine model to interact with the network abstract machine model through a well- 

defined interface. As the details of the composition of two models and the 

communication were not further detailed in this project, SEND is left abstract and must be 

considered in another refinement step where the network model and the BPEL service 

model are combined into a single DASM model. 

5.3. Execute Activity 

Section 4.2 described how a process agent executes its main activity, without actually 

defining Execute-Activity. According to the LRM, an activity can be any of the structured 

or basic activities. It is worth mentioning that for the purpose of this project we restrict 

the domain ACl-IVTTY to only include the core activities allowed in BPEL'~. By focusing 

l 2  These activities include receive, reply, invoke, wait, terminate, empty, sequence, switch, while, pick and 
flow. Not included are the following activities: assign, throw, scope, and compensate. 

56 



on the core BPEL activities, we show how our approach to formally modelling the core 

activities solves the problem in principle. Basically, the same approach can be used in 

formal modelling of the remaining activities and concepts of BPEL defined by the LRM. 

An extension of the core model presented in this work, including all remaining concepts 

of BPEL, is being developed as part of another project in our group. 

domain RECEIVE 
domain SEQUENCE 
... :'/and all other BPEL core activities 
A&vITY I REPLY u RECEIVE u INVOKE u WAIT u TERMINATE u EMPTY 

u SEQUENCE u SWITCH u WHILE u PICK u FLOW 

The partial definition of Execute-Activity is presented below while the complete definition 

is available in Appendix C. To execute a basic activity the corresponding rule is invoked. 

For executing a structured activity, a new activity agent is created to handle that specific 

activity. 

Execute-Activity(activitiy: ACTIVITY) = 
if IinkStatusDefined then 
//checks whether the predecessors of the activity are completed or not 

if activityJoinCondition(adivity) then 
//evaluates the join conditon defined by the activity 

if activity E REPLY then 
Execute-Reply(activity) 

if activity E RECEIVE then 
Execute-Receive(activity) 

... //and all other basic activities 

if activity E SEQUENCE then 
if assignedAgent(activity) = undef then 

new s : SEQUENCE-AGENT 
assignedAgent(activity) : = s 
Initialize(s, activity) 



if activity E FLOW then 
if assignedAgent(activity) = undef then 

new f : FLOW-AGENT 
assignedAgent(activity) : = f 
Initialize(f, activity) 

... //and all other structured activities 

else 
TH ROW-JOIN-FAILURE 

//loinCondition is false. A fault (joinFailure) is thrown, 
//&c 
//There are some activities linked to this activity that are not yet completed. 
//Therefore, the activity can not be executed yet. 
where 

IinkStatusDefined = 
'v'x (x E targetLinkSet(activity) 3 linkStatus(x) # NOTDEFINED) 

As defined in the above rule, before starting the execution of an activity, two conditions 

must be satisfied which are specified by two predicates: IinkStatusDefined and 

adivityJoinCondition. The first condition (IinkStatusDefined) checks whether the activity is 

ready to be executed. The synchronization dependencies between concurrent activities 

introduced in the LRM suggest that each activity must be executed only after its 

predecessors, as defined by the related links (see Section 2.6.2), are completed. The first 

condition captures this behaviour and is further explored in Section 5.13.1. Moreover, as 

described in Section 2.6.2, each BPEL activity is defined along with a join condition and 

it can be executed only if the join condition is true. The second condition 

(adivityJoinCondition) checks this requirement and according to the LRM, if this condition 

is not satisfied a fault must be thrown. This behaviour is captured in the intermediate 

model by THROW-JOIN-FAILURE, but is not further explored since fault handling is part of 

another project in our group13. 

In connection with structured activities, we define a function parenagent for linking the 

parent agent and the subordinate activity agent. A process instance has one subordinate 

l 3  THROW-JOIN-FAILURE can be refined in the refinement step where faults are captured. 



agent for each structured activity that is being executed inside it. For each activity agent, 

a derived dynamic function rootProcess is defined that returns the process instance to 

which the agent belongs. Furthermore, the root process has to keep track of all its 

subordinate agents. subordinateAgentSet is another derived dynamic function which 

provides the set of subordinate agents of a process instance. In order to identify the 

activity agents that are responsible for executing structured activities, we further define a 

function assignedAgent. For each structured activity that is being executed, this function 

indicates the agent that handles the activity. These functions are defined as follows. 

parenugent: RUNNING-AGENT + RUNNING-AGENT 

I rootProcess: RUNNING-AGENT + PROCESS 

: a€  PROCESS, 
rootProcess(a : RUNNING-AGENT) = 

rootProcess(parentAgent(a)) : otherwise. 

subordinateAgentSet: PROCESS + ACTIVITY-AGENT-set 

subordinateAgentSet(p: PROCESS) = {a I a E ACTIVTTY-AGENT, rootProcess(a) = p) 

I assignedAgent: ACIWITY + ACTIVITY-AGENT 

The parentAgent relation is maintained by calling the Initialize rule. Whenever a new 

activity agent is created (either in an Execute-Activity rule or inside activity agents like the 

flow agent) Initialize is called. This rule also updates baseActivity which is the activity that 

must be executed by this activity agent. 

baseActivity : ACTIVITY-AGENT+ ACTIVITY 

Initialize (agent: ACTIVITY-AGENT, activity: ACTIVITY) = 
parentAgent(agent) : = self 
baseActivity(agent) : = activity 

Figure 5-1 clarifies these relations, by illustrating the structure of an e-book Store 

business process instance (presented in Section 2.3) in our model and the relationships 

among its subordinate agents. An e-Book Store business process instance executes a 

sequence of activities which is handled by a sequence agent in our model. The sequence 

agent executes the activities one after another in the order of their appearance. The basic 



activities defined inside the sequence, including receiving a request from a customer and 

sending a response to the customer are handled by basic ASM rules inside the sequence 

agent. However, to execute the flow activity which defined two invoke activities to be 

executed concurrently, the sequence agent creates a flow agent. The flow agent then 

assigns each of these concurrent activities to one flow thread agent and waits until both 

threads are completed. All the created agents form the subordinate agent set of the 

process instance and the process instance is the root process of all of them. 

\ \ '\ pljre~iAgem.8, \ \  . 
\ '\ 

Sequence Agent 

Figure 5-1 The structure of an e-book Store business process instance in our model 

5.4. Receive Activity 

In the abstract formal definition of Execute-Receive, presented in Section 4.3.1.1, some 

parts were left abstract. Here we take the next step to refine two abstract parts: 

ADD-INPUT-DESCRIPTOR-TO-WAITING-SET and message-is-received. 

As mentioned before, to execute a receive activity of a given process instance, the inbox 

manager has to be informed that the process instance (or one of its subordinate agents) is 

waiting for a message. To accomplish this, we define a set called waitingForMessage for 

each process instance. This set indicates the input descriptors that provide the required 

information on the expected messages and the waiting agents. An input descriptor is 

60 



defined as (self, activity); therefore it identifies both the waiting agent and the waiting 

activity which contains the required information on the partner of the interaction 

(including port type and operation). Informing the inbox manager is performed by adding 

an inputDescriptor to the waitingForMessage set of the root process. 

ADD-INPUT-DESCRIPTOR-TO-WAITNGGSET(activity: ACTIVITY) = 
add inputDescriptor to waitingset 
where inputDescriptor = (self, activity), 

waitingset = waitingForMessage(rootProcess(self)) 

The inbox manager inspects the waiting set to identify the expected messages. Once one 

such message arrives, the inbox manager assigns it to the matching process instance. As 

described in Section 5.1, the inbox manager also removes the input descriptor from this 

set whenever the assignment is performed. Thus, the agent will be informed that the 

assignment is performed and the message is received, whenever the input descriptor is 

removed from the waiting set. The agent can then proceed with processing the message. 

message-is-received(activity : ACTIVITY) = inputDescriptor E waitingset 
where inputDescriptor = (self, activity) 

- - 

The complete formal definition of Execute-Receive is presented in Appendix C. 

5.5. Reply Activity 

According to the abstract formal definition of Execute-Reply (presented in Section 

4.3.1.2), to model a reply activity an output descriptor is placed in the outbox space of the 

outbox manager. An output descriptor is an element of the domain OUTPUT-DESCRIPTOR. 

Hence, based on the refinement introduced in Section 5.2, an output descriptor is defined 

as (self, activity). The reply activity contains the required information about the destination 

partner (including port type and operation). 

Thus, ADD-OUTPUT-DESCRIPTOR-TO-OUTBOX-SPACE is refined as follows. 



ADD-OUTPUT-DESCRIPTORRTOOOUTBOXUSPACE (activity: ACTIVITY) = 
add outputDescriptor to outspace 
where inputDescriptor = (self, activity), 

outspace = outboxSpace(outboxManager(rootProcess(self))) 

The complete formal definition of Execute-Reply is presented in Appendix C. 

5.6. Invoke Activity 

As mentioned in Section 4.3.1.3, invoke activity can be viewed as a combination of 

receive and reply. Therefore, the same refinements are applied to the invoke activity as 

well. For the detailed formal definition of Execute-Invoke the reader is referred to 

Appendix C. 

5.7. Terminate Activity 

As mentioned in Section 4.3.1.4, a terminate activity has to stop all the subordinate 

agents of a process instance as well as the instance itself. In the intermediate model, the 

derived function subordinateAgentSet identifies the subordinate agents of a process agent, 

so it is fairly simple to stop all of them. 

STOP-ALLSUBORDIN ATE-AGENTS = 
forall agent in subordinateAgentSet(rootProcess(self)) 

stop agent 

5.8. Wait Activity 

The abstract formal definition of Execute-Wait (presented in Section 4.3.1 3, includes two 

abstract predicates (waitjust-started, wait-completed) and one abstract rule (RECORD- 

WAIT-START-TIME) that must be refined. 



In the refinement step, we define two functions startTime and completionTime. startTime is 

used to record the starting time of a wait activity. Its initial value is undef and it is 

updated by the agent as soon as the execution of the wait activity is started. Therefore, if 

startTime is undef it means that the execution is just started. 

startTime: WAIT 3 TIME 
//initial value: undef 

I waitjust-started(activity: WHILE) - startTime(activity) = undef 

completionTime is a function that indicates the time when a wait activity is completed. If 

the wait activity uses 'until' to specify a deadline, then this function simply returns this 

deadline. On the other hand, if the wait activity is defined with 'for' and specifies a 

period of time, then this function uses the starting time to calculate the deadline. 

I completionTime: WAIT 3 TIME I 

In modelling the behaviour of a wait activity we are benefited from the abstract notion of 

time in real-time DASM as described in Section 3.2.3. The nullary monitored function 

now specifies the global system time and is well used in this refinement step. As soon as 

a wait activity is executed, startTime is updated and records the current time denoted by 

the monitored function now. 

I RECORD-WAIT-START-TIME(activity: WHILE) - startTime(activity) : = now 

The completion of a wait activity is determined by checking its completionTime against the 

current time. If the completion time reaches (or is passed'4) then the wait activity is 

completed. 

I wait-completed(activity: WHILE) - completionTime(activity) I now 

The complete formal definition of Execute-Wait is presented in Appendix C. 

l4 Note that the completion time may reach in between of two DASM steps; hence it can be less than the 
current time. 



5.9. Sequence Agent 

One important task of a sequence agent is to fetch the activities defined in the 

corresponding sequence activity one by one. In the intermediate model, fetching the 

activities is performed by a function called sequencecounter. Each time it is called, the 

sequence counter indicates the next activity in the sequence and this activity is recorded 

as the current activity. 

sequencecounter: SEQUENCE+ ACTIVITY 
//:=turns undef when reaches the end of the list of activit~cs 
l i de r~ved  from the BPEL document m d  def~ned in the ~n i t~a l  state 

SET-CU RRENT-ACTIVTTY-T0-N Em-ACTIVITY = 
currentActivity(self) : = sequenceCounter(baseActivity(self)) 

Another refinement that is needed in the sequence agent program is for determining the 

completion of the sequence activity. The sequence is completed when the last activity 

defined in the sequence is completed. We assume that sequencecounter returns undef 

when it reaches the end of the list of activities. Thus, the abstract predicate 

sequence~is~not~completed is refined as follows. 

[ sequence-is-not-completed - currentActivity(self) # undef 

It is also important to refine the abstract rule RELEASE-PARENT. As mentioned in Section 

4.3.2, all the activity agents have to release their parent agents after completion. Thus, 

RELEASE-PARENT is refined as follows. 

1 RELEASE-PARENT = busy(parentAgent(se1f)) := false 

The complete program of the sequence agent is presented in Appendix C. 

5.1 0. Switch Agent 

In the abstract switch agent program (presented in Section 4.3.2.2), one main issue which 

is finding the correct branch (FIND-BRANCH) was left abstract. Refining the abstract rule 

64 



FIND-BRANCH requires searching through all switch case elements and finding the first 

one with a true condition. In this refinement step we introduce the following functions 

and predicate. 

swCaseSet: SWITCH + SWCASE-set 
//dcrivcd from ihe BPEL document and defircd In the ~ n ~ t i a l  slate 

swprority: SWCASE + PRIORrrY 
/:derived from the BPEL doccmcnt and defined in the initial state 

I swCaseCondition: SWCASE + BOOLEAN 

swCaseSet indicates the set of case elements defined inside a switch activity plus 

otherwise (or default otherwise). swCaseCondition evaluates the condition of a specific 

case element. In case of an otherwise it always returns true. To keep the order of the case 

elements and find the first one with a true condition, a priority is assigned to each case 

element. swpriority indicates the priority of a specific case element. The element with the 

highest priority is the first case element. 

FIND-BRANCH is refined using the above mentioned functions and predicate, as follows. 

foundBranch: SWITCH-AGENT + ACTIVITY 

FIND-BRANCH = 
let caseset = swCaseSet(baseActivity(self)) in 

choose c E caseset with (swCaseCondition(c) A 

Vx ((x E caseset A swCaseCondition(x))+ swPriority(c) > swPriority(x))) 
foundBranch(se1f) : = swCaseActivity(c) 

To find the right branch the agent investigates the set of all case elements (caseset), 

chooses the element with a true condition and ensures that the chosen branch is the one 

with the highest priority. The foundBranch function was defined in Section 4.3.2.2 and the 

signature is presented here again. Once the correct branch is selected, foundBranch is 

updated with the associated activity of the selected branch. As mentioned before, it is 

supposed that the otherwise branch is also an element of the case set with an always-true 

condition and the lowest priority. Therefore, if none of the conditional branches is 

selected, otherwise will be automatically selected. 

65 



Another abstract part of the definition of Section 4.3.2.2 is the branch-found predicate 

which indicates whether any branch is selected or not. The initial value of foundBranch is 

undef and it remains undef until a branch is selected. Therefore, the abstract predicate 

branch-found can be refined as follows. 

foundBranch: SWITCH-AGENT 3 ACnVrrY 
//initial value: undef 

branch-found = foundBranch(se1f) = undef 

The complete formal definition of the switch agent program is presented in Appendix C. 

5.11. While Agent 

To refine the abstract while agent program presented in Section 4.3.2.3, we have to define 

a way to evaluate the condition of a while activity. This is performed by the wacondition 

predicate. Thus, the abstract predicates true-while-condition and false-while-condition are 

refined as follows. The complete formal definition of the while agent program can be 

found in Appendix C. 

wacondition: WHILE 3 BOOLEAN 

true-while-condition= waCondition(baseActivity(self)) 

false-while-condition = lwaCondition(baseActivity(self)) 

5.12. Pick Agent 

As defined in the abstract pick agent program (Section 4.3.2.4), a pick agent starts with 

creating a pick message agent and a pick alarm agent abstractly performed by 

CREATE-PICK-ALARM-AGENT and CREATE-PICK-MESSAGE-AGENT. In the intermediate 

model these rules are refined as follows. 



CREATE-PICK-ALARM-AGENT = 
new a : PICK-ALARM-AGENT 

Initialize(a, baseActivity(se1f)) 

CREATE-PICK-MESSAGE-AGENT = 
new b: PICK-MESSAGEAGENT 

Initialize(b, baseActivity(se1f)) 

The next step is to refine the abstract predicate activity-is-not-chosen. The initial value of 

chosenActivity is undef, thus activity-is-not-chosen is refined as follows. 

chosenActivity: PICK-AGENT 3 AClWTPI  
//~nit ial value: undef 

I activity-is-not-chosen = chosenActivity(self) = undef 

As described in the abstract model, when any of the onAlarm or onMessage events 

occurs, the corresponding agent will inform the pick agent. In the refined model, this 

information exchange takes place through a set, called triggeredEvents. When an event 

occurs, the responsible agent records the occurrence of the event together with its 

occurrence time15 in this set. 

I triggeredEvents: PICK-AGENT 3 (EVENT X TIME)-set 
1 //initial value: i: 

The pick agent then checks this set to choose the event that happened first and executes 

its corresponding activity. The abstract rule CHOOSE-EARLIEST-HAPPENED-EVENT is 

refined as follows where onEventActivity is a function that specifies the activity associated 

with an event. 

onEventActivity: EVENT 3 ACl lVTPI  
ilderived from the BPEL document and defined in the mitial state 

15 The occurrence time for an onMessage event is the time when the message is received, and in case of an 
onAlarm event it is the time when the alarm is triggered. 



[ CHOOSE-EARLIEST-HAPPENED-EVENT - 
- 

choose (event, time) E triggeredEvents(se1f) with 
VeVt ((e,t) E triggeredEvents(se1f) 3 time 5 t) 

chosenActivity(self) : = onEventActivity(event) 

5.12.1.Pick Message Agent 

Refining the pick message agent program is fairly simple, since its behaviour is very 

similar to a receive activity. In the first step, input descriptors must be created for all 

onMessage events and added to the waitingForMessage set, as follows. onMessageSet is a 

function that specifies all the onMessage events listed inside a pick activity. 

onMessageSet: PICK 3 ONMESSAGE-set 
/!derived from the BPEL document and defined in the initial state 
ADD-ALL-ON M ESSAGE-IN PUT-DESCRIPTORS-TO-WAITING-SET = 

forall event E onMessageSet(baseActivity(self)) 
let inputDescriptor = (self, event) in 

add inputDescriptor to waitingForMessage(rootProcess(self)) 

The pick message agent will then wait until one of the messages is received to record the 

event occurrence together with the occurrence time. The occurrence time is extracted 

from the completedInOperations set, where the inbox manager records the completed input 

operations together with their completion time. Note that once one of these events 

happens, the inbox manager prevents the rest of them from happening by removing them 

from the waiting set (see Section 5.1 for details). 

CHOOSE-A-COMPLETED-ONM ESSAGE-EVENTSANDDINFORMMPICKKAGENT = 
choose event E onMessageSet(baseActivity(self)) with 

(self, event, time) E c~mpletedInOperati~n~(rootProcess(self)) 
add (event, time) to triggeredEvents(parentAgent(se1f)) 

Meanwhile, if an onAlarm event occurs while the pick message agent is waiting for an 

onMessage event, the pick message agent must terminate. Every event registers itself in 

the triggeredEvents set whenever it occurs, so if the triggeredEvents set is not empty it  

means that an onAlarm event has already happened. 



In addition to termination, the pick message agent has to remove all the input descriptors 

from the waiting set so that the inbox manager is informed that the agent is not waiting 

for those messages anymore. 

REMOVE-ALLONMESSAGE-INPUT-DESCRIPTORS-FROMMWAmNGGSET = 
forall event E onMessageSet(baseActivity(self)) 

let inputDescriptor = (self, event) in 
remove inputDescriptor from waitingForMessage(rootProcess(self)) 

5.12.2.Pick Alarm Agent 

As mentioned in the abstract model, a pick alarm agent has to record its starting time to 

calculate the time when each alarm is triggered and inform the pick agent as soon as an 

onAlarm event occurs. Keeping track of the alarms is very similar to what is done for a 

wait activity (Section 5.7). Hence, the definition of the startTime function is extended to 

capture pick alarm agents as well as wait activities. 

I startTime: WAIT u PICK-ALARMAGENT 3 TIME I 
RECORD-ALARM-START-TIME a startTime(se1f) : = now 1 

The pick alarm agent is then responsible to check all the alarms and see which one is due. 

The completion time of an onAlarm event is determined by a function, called triggerTime, 

with a similar functionality as completionTime defined for a wait activity (Section 5.7). 

triggerTime indicates the time when an alarm event is triggered. If the alarm uses 'until' to 

specify a deadline, this function simply returns the deadline. If the alarm is defined with 

'for' and specifies a period of time, the function has to know when the alarm was started; 

i.e. the deadline is calculated using the starting time (second parameter). 

I triggemme: ONALARM X TIME 3 TIME 

The pick alarm agent waits for any alarm to occur and informs the pick agent about the 

triggered alarms as soon as an alarm is triggered, as follows. 



FORALL-PASSED-ONALARM-EVENTS-INFORM-PICK-AGENT = 
forall event E onAlarmSet(baseActivity(self)) with 

triggerTime(event, startTime(se1f)) 5 now 
add (event, triggerTime(event, startTime(self))) to 

triggeredEvents(parentAgent(se1f)) 

Moreover, the pick alarm agent must terminate if an onMessage event occurs while the 

alarm agent is waiting for an alarm to trigger. Analogous to the pick message agent, the 

pick alarm agent checks the triggeredEvents set to be informed if an onMessage event 

occurs. 

For a complete formal definition of the pick agent program, the pick message agent 

program, and the pick alarm agent program we refer the reader to Appendix C. 

5.13. Flow Agent 

In Section 4.3.2.5, where the abstract flow agent program was presented, we mentioned 

the key role of the flow agent set. In the intermediate model, this set is concretely defined 

as a set of flow thread agents belonging to a flow agent that makes it easy to determine 

whether it is empty or not. 

flowAgentSet: FLOW-AGENT3 FLOW-THREAD-AGENT-set 
// ~nitial value: @ 

I empty-flowagentset = flowAgentSet(se1f) = 0 

As discussed before, the flow agent program starts with creating one flow thread agent 

for each activity defined inside the flow and adding these thread agents to the flow agent 

set. This behaviour is refined in the intermediate model as follows. 



I CREATE-A-FLOWTHREAD-AGENT-AND- ADD-TO-FLOWAGENTSET(activity: 
A rnV lTY)  = 

new f fhread : FLOW-THREAD-AGENT 
Initialize(ffhread, activity) 
add f fhread to flowAgentSet(se1f) 

The flow agent program is completed when all of these flow thread agents complete the 

execution of their associated activities. Once each thread is completed, it has to remove 

itself from the flow agent set (abstractly defined by REMOVE-SELF-FROM-FLOWAGENTSET 

rule in Section 4.3.2.5). Thus, the flow agent program is completed when the flow agent 

set becomes empty. 

REMOVE-SELF-FROM-FLOWAGENTSET = 
remove self from flowAgentSet(parentAgent(se1f)) 

The complete formal definitions of the flow agent and the flow thread program are 

presented in Appendix C. 

5.13.1.Link Semantics 

As described in Section 2.6.2, the LRM allows synchronization dependencies to be 

defined between concurrent activities by introducing link semantics. An activity can be 

the source of a set of links or it can be the target of a set of links. sourceLinkSet and 

tragetLinkSet are two functions that indicate these sets of links respectively. 

sourceLin kSet: ACrIVlTY + LINK-set 
//derived from the BPEL document and defined in the initial state 

targetlinkset: ACTIVlTY + LINK-set 
//derived from the BPEL document and defined in the initial state 

Initially the status of all outgoing links is NOTDEFINED. linkstatus is a function that 

indicates the status of a single link. When activity A completes, certain steps are 

performed to determine the effect of the synchronization links on further execution. First, 

the status of all outgoing links of A must be determined. The status will become either 

POSITIVE or NEGATIVE. 



linkstatus: LINK + {POSITIVE, NEGATIVE, NOTDEFINED) 
//initial value: NOTDEFINED 

IinkTransitionCondition: LINK + BOOLEAN 

To determine the status of each link its transition condition is evaluated. 

IinkTransitionCondition is a predicate that evaluates this condition. If the condition is 

evaluated to true the status will be POSITIVE, otherwise it will be NEGATIVE. This 

behaviour is captured in our model by the Synchronization rule. 

Synchronization(activity : ACTIVITY) r 
forall link E sourceLinkSet(activity) 

if linkTransitionCondition(link) then 
linkStatus(1ink) := POSITIVE 

else 
linkStatus(1ink) : = NEGATIVE 

Synchronization must be performed whenever the execution of an activity is completed, 

either in basic activities or structured activities. In the complete formal definition of the 

intermediate model presented in Appendix C, this rule is called at the end of all basic 

activity execution rules and whenever an activity agent is terminated. 

Second, if an activity B which has a synchronization dependency on A is ready for 

execution, and the status of all incoming links of B is determined, the join condition of B 

is evaluated. If the join condition is true then B starts its execution, otherwise a standard 

fault is thrown. These pre-requisites are captured in Execute-Activity, and were introduced 

in Section 5.1. 

IinkStatusDefined Vx (x E targetLinkSet(activity) + linkStatus(x) # NOTDEFINED) 

activitvJoinCondition: ACTIVITY + BOOLEAN 

IinkStatusDefined is a predicate that ensures the status of all the incoming links of an 

activity have been determined before executing that activity. If so, activityJoinCondition is 

evaluated and the activity can be executed only if the condition is true. 



Chapter 6. Executable Model 

This section introduces an abstract executable semantics of BPEL obtained from the 

intermediate model as the result of another refinement step. Experimental validation of 

abstract requirement specifications provides us with an effective instrument to further 

eliminate undesirable behaviour and hidden side effects in early design stages [18]. In 

combination with analytical techniques, simulation and testing can provide valuable 

feedback for establishing key system attributes and exploring alternative design choices. 

In this project, we use AsmL [1] for this purpose. 

6.1. Introduction to AsmL 

AsmL, developed by the Foundation of Software Engineering Group at Microsoft 

Research [16], is a high level executable specification language based on the concept of 

ASM. AsmL specifications are executable, hence they can be used to test and validate the 

specifications itself [19]. Experimental validation is widely accepted for checking the 

conformance of the specifications to the requirements [17], [18]. In most cases, only 

execution can reveal many loose ends and ambiguities both in the formal specification 

and the informal requirements [17]. Moreover, a machine compiler can effectively detect 

possible syntactic errors in the formal specification. AsmL provides us with the means to 

investigate specifications both syntactically and semantically. Besides, AsmL is 

integrated with Microsoft software development and run-time environments which 

facilitate creating useful user interfaces to simulate and test AsmL executable 

specifications. 



AsmL is a rich language and although its advance language constructs are definitely 

helpful in rapid prototyping and object oriented software development [19], for the 

purpose of this project we actually need a subset of the language which is as close as 

possible to the pure ASMs. For modeling the BPEL semantics, a tight relation between 

the full DASM model and the executable model is of utmost importance. Though, in 

order to be executable some changes and additions were inevitable [15]. 

6.2. The AsmL Model 

Refining the DASM model of Chapter 5 to the AsmL executable model requires certain 

considerations with respect to the translation aspects, refining abstract parts of the model, 

dealing with the underlying communication model and achieving a useful method of 

visualization. 

Intuitively, the AsmL encoding splits into five separate modules, each of which deals 

with a basically different aspect: (1) the original model (2) the internal structure (3) the 

refinement of the original model (4) GUI-related extensions, and (5) the communication 

model. It is worth mentioning that the current executable model does not cover the 

complete intermediate model. Our main goal was to establish a minimal, yet principle 

executable model to reveal the feasibility of achieving such a model through refinement. 

Through such model we also show the importance of executable specifications in early 

design stages and prove how simulation and testing using such a model provide useful 

feedbacks to establish key system attributes. As a result, the current executable model 

captures the behaviour of main entities of the intermediate model including the inbox 

manager, the outbox manager, process instances, sequence agents, flow agents, receive 

and reply. The complete executable model is under development as part of another 

project in our group. 



6.2.1. Original Model 

The original model is basically the translation of the intermediate model to AsmL. The 

DASM model of the BPEL semantics is subject to changes and several iterations due to 

the dynamics in the development of the BPEL in an industrial setting. Hence, to maintain 

the tight relation between the DASM model and the executable model, it is necessary to 

keep the executable model as simple as possible. The advanced constructs of AsmL are 

beneficial for structuring complex models; however, in this project our main challenge 

was to keep the executable close to the pure ASM by using a subset of the language. The 

following provides an example of the translation from the intermediate model to the 

executable model for the sequence agent. 

The sequence agent program is defined as follows in the intermediate model. 

SEQUENCEPROGRAM = 
if 1 busy(self) then 

currentActivity(self) : = sequenceCounter(baseActivity(self)) 
busy(self) : = true 

else 
if currentActivity(self) + undef then 

Execute-Activity(currentActivity(self)) 
else 

stop self 
busy(parentAgent(se1f)) := false 

In the executable model the sequence agent program is translated to the following. 



p u b l i c  c1aSS SEQUENCEAGENT extends ACTIVITYAGENT 
var  cu r rentAct i  v i  t y  as ACTIVITY? = undef 

uenceProgran 
overr ide  Program0 

match baseActivi  t y  
, '/r,eyui r e d  r y p e  <.heck i n y  -in astn~. 

b a s e ~ c t  as SEQUENCE: 
i f  not  busy then 

c u r r e n t ~ c t i v i t y  := sequenceCounter(intStr, b a s e ~ c t )  
busy := t r u e  

e l s e  
i f  not ( c u r r e n t ~ c t i v i  t y  = n u l l )  then 

E x e c u t e A c t i v i  ty(rne, c u r r e n t ~ c t i v i t y )  
e l s e  

stop(rne1 
parentAgent. busy := f a l s e  

In the executable model a new parameter is introduced for the sequencecounter function 

which refers to the internal structure described in the next section. 

6.2.2. Internal Structure 

The internal structure acts as an interface between our abstract machine model and the 

BPEL definition of the business process. In order to execute a process instance, we need 

a way of accessing the definition of the business process. Normally, each process 

instance is executing an activity as defined in the BPEL process definition and further 

determined by the history of that specific instance. As discussed in Section 4.2, we 

assume that the required information on a given business process is extracted from the 

underlying BPEL document and is formalized as function definitions in the initial state. 

To make the model executable, we have to resolve the abstractions and define such 

functions explicitly. In the executable model, the internal structure provides the specific 

information on a business process based on the BPEL process definition. For instance, 

consider the sequencecounter function in the sequence agent program of the previous 

section (Section 6.2.1). As described in Section 5.9, this function yields the activities 

specified inside a sequence one by one. Abstractly, it operates on the definition of the 

business process as provided by the internal structure of the executable model. 



The internal structure is defined as an AsrnL interface16 [I] which allows different 

implementations of it. This project uses an array-based implementation of the internal 

structure where the definition of a business process is hard-coded in the internal structure 

while other possible implementations can be considered in the future. The definition of 

the interface and some of the methods provided by the internal structure are presented 

below. The reader is referred to Appendix D for more details. 

i n t e r f a c e  INTERNAL-STR 

sequenceCounter(s as SEQUENCE) as ACTIVITY? 
/ / t t. t u r  n3 I h e  n e x t  a r t  I v I I y  t o  be execu ted  i r ~  d -cclueqt e  d(j?nt' 

p r0cessAct iv i  t y  0 as ACTIVITY 

'r-ciur-n\ t h ?  m i n  a i t l v i t y  of t h e  p r o r c 5 s  

a c c e p t ( a c t i v i t y  as ACTIVITY, rn as MESSAGE) as Boolean 

/ , / r - ( . ~ u r n \  t r u e  i f  t h e  Ineh\ilqc' hLis t h e  r o r r c c  t t y p e  d3 reqhr  rt.c: hy  t h e  ac t  l w t i  

taggedwi t h c o r r e l  a t i o n ( a c t i v i  t y  as INPUTACTIVITY) as Boo1 ean 
j j r e t ~ ; r n s  !:rue i f  t h e  a c t T v i t y  i s  associatcci  w i t h  a c o r r c l ; i t - i n  seT 

i n i  ti a t e c o r r e l  a t i o n ( a c t i v i  t y  as INPUTACTIVITY) as 13001 ean 

j / r c ! t u r n s  l r u e  .if t h e  c - o r r e l a ' t j o n  s e t  assoc- i  s.ted w i  ti1 thc?  a c t i v i t y  
/ / rwsr  be .it--i t-iat.ecl 

6.2.3. Execution-Specific Additions to the ASM Model 

In the stepwise refinement of the original model, abstract parts are refined depending on 

their role in the model, either by introducing non-determinism or assigning clear 

deterministic behaviour to them. In some cases, complex substructures had to be 

introduced. For example, in order to model the correlation behaviour in a business 

process instance, we need a structure for correlation sets mapping properties to their 

values. This structure completely complies with the definition of the correlation sets in 

the LRM. In addition, a predicate is defined to check the compatibility of a message to a 

16 AsmL interfaces provide a vocabulary (or type signature) without implementation [I].  



correlation set, i.e. to check whether the message contains the required correlation token 

values or not. The abstract definition of the correlation sets of the intermediate model and 

the refined definition of the executable model are both presented below. It is worth 

mentioning that although the intermediate model deals with the correlation sets 

abstractly, this refinement is necessary in the executable model in order to deal with the 

correlation values. 

Correlation sets are defined by the CORRELATIONSET domain in the intermediate model. 

1 domain CORREIATIONSET 

The definition of the correlation sets in the executable model is as follows. 

~1 ~ S S  CORRELATIONSET 

var properties as Map of string t o  DATA 

messagecontai nsTokens(m as MESSAGE) as ~ o o l  ean 
/ / ! h i s  method checlcs the. c o ~ ~ p a t i b i  1 i t y  o-f a rnessaye t o  a c o r r 6 l a t i o n  s e t .  

6.2.4. GUI-Related extensions 

An executable model needs a GUI that makes i t  a useful tool for user-controlled 

simulation and testing. The GUI is written in Visual C#   NET'^. By utilizing AsmL's 

APIs with C#, we were able to integrate the model with its GUI, by defining an 

appropriate interface called View. Figure 6-1 shows the current version of GUI, capturing 

the state of a set of business process instances. 

- 

17 Microsoft Visual C# NET, Microsoft Development Environment 



Me.;i,ye Histo~y 

Message To P~ocesx Agenl 
msg2 : 84 Lo p0:sO 
msg2.11 lo p1:sO 
mrgl 84 to p0:sO 
msgl 11 to p1:sO 
mrgl . 29 to ~ 2 . ~ 0  r 

- -* -- -. .- -. - Process p2 I Bury Tue  I Cutml Acllnty SEQUENCE 0 I C a ~ e b l t m ~  c2 0 Squeme 
Sea Awn1 ~2 iO I Busy False I Cwlenl Achvtu Rece~ve 1 ~ c ~ e e 0 i r a t r n  maal vatable ID ~realelnalance l t ve  ~c 

- Pvocess: p i  I Bury Ttue l ~ u r e n l ~ c t v i t y .   SEQUENCE:^ I ~ a r e b t ~ m t -  wo* Zrepb. Dpkt ion:  sendD.~a ibde  IDCorrektmTags: O 
- Seq Agent pD rO I Buay: True I Current AcIki!y FLOW.4 %receive. Operdsn . msg2,Vaiable. ID2. Cteatdndance: True ( 

- FLOW AGENT: PO so10 - 4 llow 
FLOW THREAD: pO rO:hX2. C u m l A c l ~ A y  Recewe:7 6:reply. Opcmllon: tendRep$.Va~ibale : IDCorrdal~onTags: 0 
FLOW THREAD: pO.t&IO:tO. Cwenl Acti4ly: R e c a d 3  7 receive. Ope~a(lon : rnsg3,Va1iable : 102. C~eatelntlarce TI 

-. Process. p l  IBury: True I Curenl Adinly. 5EQUENCE:O I Carebt~mt: c2. 8.1-we. Opslallon : mrg4,Vanable. ID. Dealelnrlance F d  
-: Seq Agent p l  $0 I Busy: True I Cur& Acliviy: FLOW4 Sleceivc. Opc~alion : m2,Veriable : ID. Createlnstance: False COII 

- FLOW AGENT: p1:sO:IO 
FLOW THREAD ~ 1 . ~ 0  10:tO. Curenthtmly: ReceNe:7 
FLOW THREAD: pl:sO:IO.ll . Curent Actintr RepIy.6 
FLOW THREAD: p l ~ r O : I ~ I 2 .  Cwent Act'ity: Rece&t:B 

Add Ihe Messape 1 

Figure 6-1 Graphical user interface of a sample AsmL model 

There is a list of processes that shows the process instances together with their internal 

states. Pending Messages shows the messages that had arrived at the Web service and 

were placed in the inbox space of the inbox manager. Outbox space shows a list of output 

descriptors that are created and left in the outbox space of the outbox manager. Finally, 

message history keeps track of the messages that have been assigned to different 

instances of the business process. 

Obviously, to establish the required connections between the AsrnL model and the user 

interface, certain methods and interfaces are needed. View is the class that provides the 

graphical user interface and is written in C#. Its integration into the AsrnL model needs 

appropriate interfaces, as defined below. 



[External] 
c lass view 

publ i c  r e f  r e s h ~ e s s a g e ~ i  St(mArray as ArrayLi s t )  
pub1 i c r e f  reshprocess~reevi  ew(mArray as A r r a y ~ i  s t )  
publ i c  refreshMsgHi s toryLis t  ( m ~ r r a y  as ArrayLi s t )  
publ i c  refreshoutspaceLi st(mArray as ArrayLi s t )  
publ i c  setProgramBox(mArray as ArrayLi s t )  

c lass MODEL 
var  view as view 

The AsmL model uses these methods to interact with the GUI. For example, as 

mentioned the GUI needs to keep track of the messages that have been assigned to 

different business process instances. To maintain this list, and to keep it up-to-date, the 

model records all the assignments done in one step of DASM and informs the GUI at the 

end of each step. For details of such an interaction please refer to Appendix D. 

6.2.5. Communication Model 

As mentioned in Section 4.1, this project concentrated on the service model while 

assuming the abstract network model of [20] as the core of the underlying 

communication model. The composition of the service model and the network model is 

well-defined, as the inbox space and the outbox space perform as the interfaces of a Web 

service with the outside world and are naturally viewed as two mailboxes for the network 

model. Although an executable version of the network model [20] is being developed in 

our group, a full composition of the two models requires taking into account the specific 

message bindings and service bindings as mentioned in Section 4.1. In the current 

executable model the interactions with the network model, which includes receiving a 

message and sending a message as well as the corresponding transformations according 

to WSDL binding rules, are done manually. However, as this problem is addressed by 

other projects of the group, considering both the network model and the service model, 

we are confident that the full composition will be accomplished in the near future. 



6.3. Experirn ental Validation 

A receive activity is a "blocking activity in the sense that it will not complete until a 

matching message is received by the process instance." [lo, Section 1 1.41 Therefore, it is 

implicitly assumed that a matching message will arrive after the corresponding receive 

activity has been executed. Consider the following activity in a business process: 

<sequence> 

. . . 
="PLln port ration="OPl"> 

</sequence> 

Suppose that when a process instance is executing activity2, a message arrives from 

partnerLink PLl using portType PTl and operation OPl. Since the process instance has 

NOT executed the receive activity yet, i t  is not waiting for this message. It is not clear 

from the LRM what happens to such a message. Indeed, there could be multiple choices: 

Buffer: The message can be stored in a buffer, so that the receive activity can 

fetch it  later. 

Discard: The message can simply be discarded, when there is no receive activity 

waiting for it. 

Fault: A fault can be thrown since the Web service has received a message for 

which no process instance is waiting. 

It is certainly important for the LRM to distinguish among these choices, since it  will 

cause inconsistencies in the behaviour of different implementations of the language. 

This problem was discovered during experimental validation, when our inbox manager 

received a message that no process instance was expecting at the time. 



Chapter 7. Critical Analysis of BPEL 

The goal of the LRM is to establish the key system attributes of the Web services 

architecture for automated business processes as a basis for the development of 

e-business applications. However, a careful analysis of the language points out a number 

of weak points and open issues in the language definition. The goal of the OASIS 

technical committee is to discover and address these weak points, so that the language 

becomes more robust and clear. To this date, the technical committee has listed 97 issues 

and has resolved a number of them. In this chapter, we mention the weak points that were 

discovered in this project through modelling key system attributes of the language. Some 

of them have been already acknowledged in the WSPEL TC issue list [34]. 

7.1. Ambiguities 

The definitions and constraints introduced for different constructs of the language are, in 

many cases, scattered and not centralized. The lack of a formal organization, together 

with the imprecise nature of the natural language definitions causes inevitable 

ambiguities and uncertainties in the language. We present two such ambiguities here. 

7.1.1. Correlations 

The LRM states that "After a correlation set is initiated, the values of the properties for a 

correlation set must be identical for all the messages in all the operations that carry the 

correlation set and occur within the corresponding scope until its completion" [lo, 

Section 10.21 Logically, the operations that carry the correlation sets can be categorized 



into two basically different groups: input activities, including receive, invoke, and pick, 

and output activities, including reply and invoke. Therefore, we can decompose the above 

consistency constraint into two separate constraints: (1) the property must hold on all 

input activities; (2) the property must hold on all output activities. 

To see that the first constraint is satisfied is trivial. The LRM clearly specifies that a 

message must carry the required correlation tokens in order to be accepted by the process 

instance. This is true for every input activity. In our model, the inbox manager fulfils this 

duty. A message will be assigned to a process instance only if it "matches" the process 

instance; thus, it must carry the required correlation token values. 

The second property, however, requires a closer investigation. This property can itself be 

decomposed to two sub-properties: (2.1) the property must hold in all output activities, 

where the correlation is initiated by the same output activity; (2.2) the property must hold 

in all output activities where the correlation set is already initiated. 

(2.1) is confirmed by the LRM as well. The correlation set will be initiated and the 

correlation tokens get their values from the message that is to be sent out. For (2.2), the 

language does not provide enough details to prove or falsify the second property. 

In case of incoming messages, the business process is capable of filtering the messages; 

i.e. i t  will only pick those messages that match the correlation. On the other hand, in case 

of outgoing messages, the business process has no responsibility other than sending the 

message out. Although the LRM defines the semantics of a process that violates this 

consistency constraint as undefined, it is not precisely mentioned that output activities 

(like input activities) are blocking activities, and thus the ambiguity leads to further 

problems as follows. 

7.1.2. Synchronous ReceiveJReply 

According to the LRM "A reply activity is used to send a response to a request 

previously accepted through a receive activity. Such responses are only meaningful for 

8 3 



synchronous interactions." [lo, Section 11.41 In order to clarify a requestfresponse 

interaction, the BPEL LRM states that "The correlation between a request and the 

corresponding reply is based on the constraint that more than one outstanding 

synchronous request from a specific partner link for a particular portType, operation and 

correlation set(s) MUST NOT be outstanding simultaneously." [lo, Section 11.41 

Although the definition of "outstanding" is not elucidated in the LRM, according to its 

interpretation by WSBPEL TC ([34, issue #26]), one can assume that an outstanding 

synchronous receive is a receive activity for which the required message has arrived but 

the reply is not sent out yet. Therefore, the following must be permissible: 

Assuming that operation 0 1  is an input-output operation, these two receive activities start 

two synchronous requestfresponse transactions, and as the correlation sets of these 

receive activities are different, these two transactions are valid to be outstanding 

concurrently. The problem arises when a reply message is sent to the same partner 

without specifying any correlation set. This is a valid reply. The problem in this case is 

that it is impossible to determine to which receive activity this reply is coupled; it is not 

clear which requestfresponse is still outstanding and which one is not [15]. 

7.2. Loose Ends 

The BPEL reference manual suffers from the lack of precision caused by natural 

language definitions. The lack of formalism makes it difficult to delineate the scope of 

the language and to identify the interfaces of a business process with the outside world. 

This problem inevitably causes missing points and loose ends. This section presents two 

examples of such loose points which were discovered through the modelling process. 



7.2.1. Partners Communication 

The LRM defines the communication between a business process and its partners through 

partner links (see Section 2.7.1). For example, in the e-Book store example (Section 2.7), 

the communication between the business process and the shipping company is defined by 

identifying the port type of the shipping company Web service which is responsible for 

the communication. Hence, in order to establish a conversation, it is important for the 

message to carry the required information about the partner link, the port type and the 

operation to which it belongs. Suppose that a business process invokes a partner service 

by sending a message using the correct port type and operation of that service. The 

business process then waits to receive a call-back from that service, which is sent back 

using the same port type and operation. The inbox manager, or any other entity 

responsible for assigning the messages to the business process instances, needs a 

mechanism to distinguish this message from all the other messages that amve at the 

business process. The LRM does not specify how such a conversation is established. It is 

not clear whether there is a mechanism to build a fixed communication channel between 

two partners or how the underlying messaging protocol must carry the required 

information along with the messages. The LRM does not specify any requirements for the 

underlying messaging protocol. It states that "BPELAWS depends on the following XML- 

based specifications: WSDL 1 .I, XML Schema 1 .O, XPath 1.0 and WS-Addressing. 

Among these, WSDL has the most influence on the BPEUWS language. " [lo, Section 31 

Nevertheless, WSDL is used in conjunction with different messaging protocols (e.g. 

SOAP 1.1, HTTP GETPOST, and MIME) and does not impose the protocol to carry 

such information. Thus, this requirement must indeed be clarified by the LRM. 

7.2.2. Re-Initiating a Correlation Set 

In Section 2.2 we introduced the notion of a start activity and described its role in the life 

cycle of a business process. The LRM states that "The only way to instantiate a business 

process in BPELA WS is to annotate a receive activity with the crea t eIns tance attribute 



set to "yes" (see 12.4. Pick for a variant). The default value of this attribute is "no". A 

receive activity annotated in this way MUST be an initial activity in the process, that is, 

the only other basic activities may potentially be pedomzed prior to or simultaneously 

with such a receive activity MUST be similarly annotated receive activities."[lO, Section 

1 1.41 

Now, consider a Web service that receives a number of commands from different users 

and then performs them one at a time. A business process instance is created for each 

user that communicates with the system (and has a unique ID). Once a business process 

instance is created it handles all the commands from that specific user. The definition of 

such a business process is presented here in a pseudo-code-like style. 

This is a valid process definition and satisfies the condition of having at least one start 

activity. However, the problem arises when we want to assign messages to this business 

process. Consider the following scenario. A message ml  = (12, "start") arrives and 

accordingly a new business process instance pl is instantiated and a correlation set is 

initiated (c = (ID: 12)). From now on, the messages with the same correlation token 

value (12) are expected to be assigned to this process instance, so if a message m2 with 

same correlation token value (12) arrives, it is expected to be assigned to the same 

business process. 

To check whether the message can be assigned to the existing process instance, the 

message must be checked against its correlation set; i.e. m2 has to carry the required 

correlation token value. The matching procedure can be defined as follows: 



if m2 has the correct message type then 
if activity has a correlation set attribute then 

if this correlation set is tagged with initiation then 
if the correlation is not yet initiated then 

m2 matches pl 
else 

SPECIAL-CASE //The matching is done, only if the 
//waiting actii~ity has certain properties 

else 
if the correlation set is initiated then 

if m2 carries the required correlation token values then 
m2 matches pl 

else 
m2 does NOT match pl 

else 
Error. The semantics is undefined 

else // No correlation exists, so the message matches the process 
m2 matches pl 

else // The message does not ha\~e the required type at all 
m2 does NOT matches pl 

Now, consider the part in the above procedure which is defined as SPECIAL-CASE. 

According to the LRM, "A correlation set can be initiated only once during the lifetime 

of the scope it belongs to." [lo, Section 10.11 Hence, we can conclude that if receiving a 

message causes re-initiation of a correlation set, it can not be matched to the current 

process instance; i.e. a new process instance must be created for it. It is worth mentioning 

that there is an exception to this rule in case of concurrent start activities1*, but this does 

not affect our example. Therefore, if the special case happens in this example, it means 

that the message does not match the process instance, and a new business process 

instance must be created to handle m2. 

The above mentioned exception is defined for concurrent start activities and enables them 

to ignore the fact that the correlation is already initiated. If a set of concurrent start 

activities is defined for a business process, the LRM states that "compliant 

18 This is the reason why this case is called a special case. 



implementations MUST ensure that only one of the inbound messages carrying the same 

correlation set tokens actually instantiates the business process (usually the first one to 

arrive, but this is implementation dependent). The other incoming messages in the 

concurrent initial set MUST be delivered to the corresponding receive activities in the 

already created instance. " [lo, Section 11.41 Though it is not clearly mentioned, one can 

conclude that once the first message is received and a business process is created, the 

following messages for the remaining concurrent activities (carrying the same correlation 

tokens) will not attempt to initiate any new correlation sets, and thus are permissible. In 

other words, as confirmed by the issue #78 "the 'initiate='yesU value is only true on the 

first multi-start activity that fires, the rest are magically transformed into 'initiate='noU 

once the first multi-start fires." [34] Such an exception is not introduced for a while 

activity, making it  impossible to define the behaviour of such a business process as we 

did in this example. 

7.3. Inconsistencies 

Inconsistencies are another category of defects caused by natural language descriptions. 

Normally, natural language definitions seem meaningful and reasonable; however, they 

can (-and sometimes do) introduce contradicting, or confusing meanings for a concept. 

The inconsistencies presented in this section were discovered during the formal 

modelling process, where we had to assign a specific meaning (or behaviour) to each 

entity of the language, and we found some of these meanings were indeed contradictory. 

As mentioned before, the LRM permits a business process definition to have multiple 

concurrent start activities: 

"It is permissible to have the createInstance attribute set to ''yes" for a set of 

concurrent initial activities. In this case the intent is to express the possibility that any 

one of a set of required inbound messages can create the process instance because the 

order in which these messages arrive cannot be predicted." [lo, Section 11.41 



Thus, as soon as a message arrives for one of these activities, a new business process 

instance must be created and the rest of the activities do not create any new process 

instances as long as they receive messages in the same correlation group. In other words, 

this special case implies that createInstance = "yes" does not always mean that a new 

business process instance must be created; it actually depends on the circumstances. 

The same problem exists for the correlation initiation attribute. As mentioned in Section 

7.2.2, initiate = "yes" does not always mean a new correlation set must be initiated either. 

In case of concurrent start activities, after the first activity receives a message and 

initiates a correlation, correlation initiation is disabled in all other activities. The 

confusion that is caused by this inconsistency is addressed in issue #78: "The use of the 

initiate attribute on correlations in multi-start activities can easily lead to 

misunderstanding. The 'initiate = 'yes"' value is only true on the first multi-start activity 

that fires, the rest are magically transformed into 'initiate = "No"' once the first multi- 

start fires. One can easily imagine the resulting confusion. To prevent this confusion 

perhaps we should add a new value for initiate such as 'initiate = "multiStart"'. This shows 

that the programmer understands the special semantics of correlation sets on multi-start 

activities. " [34] 

Nonetheless, the technical committee has not yet addressed the same problem with the 

createhstance attribute. 



Chapter 8. Conclusion and Future Work 

Our formalization of the key semantic aspects of BPEL in terms of a hierarchically 

defined service abstract machine forms the major building block of the BPEL abstract 

machine and shows that the asynchronous DASM model is a natural choice for defining a 

precise semantic foundation. The resulting formal model transforms the abstract language 

definition in two refinement steps into an executable specification. In combination with 

inspection by analytical means, e.g. the ability to formally reason about critical language 

properties, experimental validation through simulation and testing helps establishing 

coherence and consistence of the semantics, thereby improving the quality of the 

language definition [15]. An advanced GUI facilitates such tasks. 

A prerequisite for feasibility of formalization when applied as a practical instrument in an 

industrial standardization context is conciseness, intelligibility and robustness [18]. 

Standardization is an ongoing and potentially open-ended activity which brings a high 

dynamics into the development and maintenance of a language. Such dynamics demands 

a formalization framework that also meets the basic pragmatic needs. To this end, the 

abstract machine concept has already proven to be useful for enhancing conciseness and 

robustness of the formal model. The proposed hierarchical structuring of this model into 

three levels of abstraction reflects a clear separation of concerns, enhances intelligibility, 

and enables a tighter integration of the formal and the informal language description [15]. 

The current work forms the first building block on which a comprehensive formal model 

of BPEL can be established. To the author's best knowledge this work is the first 

published formal model of BPEL [14], [15]. Its orientation toward practical needs in 

industrial system design may even result in an opportunity to get involved in the design 

and standardization process of the language. As such, this work is already recognized and 

90 



encouraged by the WSBPEL TC in response to the necessity of formalism "in surfacing 

ambiguities and irregularities in the process of construction of the formal model" [34, 

Issue#42]. 

The work presented here is being continued as part of different projects in our group. A 

major revision of the current model is being developed incorporating a two dimensional 

organization of the model which facilitates extending the service abstract machine model 

towards modeling and integration of variables, compensation behaviour and fault 

handling. Moreover, the executable model is being extended to capture the complete 

service abstract machine model. On the other hand, the availability of an executable 

network model [20], which has been developed as part of another project in our group, 

will allow the full composition of the executable model and the network model in the 

near future. In addition, further expected improvements on the GUI and the underlying 

visualization tools will definitely be a great asset for performing validation through 

simulation and testing. 



Appendices 

Appendix A. BPEL Abstract Syntax Tree 

(Sorted Alphabetically) 

ActStandardAttributes : :=  

ActStandardElements : :=  

Ass i gnAc t : := 

CatchAll : := 

CompensateAct : := 

ActivityName 
Condition 
SuppressJoinFailure 

Source* 
I ~arget * 

ActStandardAttributes 
ActStandardElements 
COPY+ 

Activity 

ScopeName 
ActStandardAttributes 
ActStandardElements 



CompensationHandler : :=  Activity 

Condition : : =  Boolean-Expr 

COPY . . .= . From-Spec 
To - Spec 



L i 

OnAlarmEvent 

OnMessageEvent 

Otherwise 

Pattern : : =  ninll I 'out" 1 'out-in" 





Otherwise? 

Target . . .=  . LinlcNarne 

To-Spec 

VarAccessSerial 

WaitAct 



Appendix B. Abstract Model 

B.1. Initial Definitions 

//Agents 
domain PROCESS 
domain INBOX-MANAGER 
domain OUTBOX-MANAGER 

//Activity Agents 
domain SEQUENCE-AGENT 
domain SWITCH-AGENT 
domain WHILEAGENT 
domain PICK-AGENT 
domain FLOW-AGENT 
domain PICK-ALARM-AGENT //The agent responsible for the alarms 

//in a pick activity 
domain PICK-MESSAGE-AGENT //The agent responsible for the onMessage events 

//in a pick activity 
domain FLOW-THREAD-AGENT //sub agents of a flow agent 

ACTIVITY-AGENT = SEQUENCE-AGENT U SWITCH-AGENT U WHILEAGENT U 
PICK-AGENT U FLOW-AGENT U PICK-MESSAGEAGENT U 
FLOW-TH READ-AGENT U PICK-ALARM-AGENT 

RUNNING-AGENT = PROCESS U ACTIVITY-AGENT 
//RUNNING-AGENT is the set of agents that execute (run) an activity. 

AGENT = RUNNING-AGENT U INBOX-MANAGER U OUTBOX-MANAGER 

//Events 
domain ONMESSAGE // 0nf.lessageEvents of Pick activity 
domain ONALARM // OnAlarmEvents of Pick activity 

EVENT = ONMESSAGE U ONALARM 

// Activities 
domain REPLY 
domain RECEIVE 
domain INVOKE 
domain WAIT 
domain TERMINATE 



domain EMPTY 
domain SEQUENCE 
domain SWITCH 
domain WHILE 
domain PICK 
domain FLOW 

ACTIVITY= REPLY U RECEIVE U INVOKE U WAIT U TERMINATE U EMPTY 
U SEQUENCE U SWITCH U WHILE U PICK U FLOW 

domain MESSAGE 
domain OUTPUT-DESCRIPTOR 

activity: RUN NING-AGENT + ACTIVITY 
//Returns the activity that must be executed in a running agent. 
/ / I t  is derived from the BPEL document and defined in the initial state 

busy: RUNNING-AGENT + BOOLEAN 
//initial value: false 
//An agent is busy while one of its activities is being executed. 

chosenActivity: PICK-AGENT + ACTIVITY 
//The activity that is chosen by the pick agent to be executed 

currentActivity: SEQUENCE-AGENT + ACTIVITY 
//Keeps track of the current activity which is being executed 

flowActivitySet: FLOW + ACTIVITY-set 
//Set of the activities defined inside a FLOW 
//It is derived from tne BPEL document and defined in the initial state 

foundBranch: SWlTCH-AGENT + ACTIVITY 
//initial value: undef 
//The activity associated with the branch that is chosen by switch to be executed 

inboxspace: INBOX-MANAGER + MESSAGE-set 
//Keeps the messages that have arrived for a business process and are 
//not yet serviced. 

match: PROCESS X MESSAGE + BOOLEAN 
//Tells whether a messages matches a process instance or not, 

outboxSpace: OUTBOX-MANAGER + OUTPUT-DESCRIPTOR-set 
//initial value: G3 
//This set keeps the information about all the messages that should go out. 



receiveMode: RUNNING-AGENT + BOOLEAN 
//initial value : false 
//Tells whether a runnig agent is waiting to receive a message or not. 

startedExecution: PROCESS u FLOW-THREAD-AGENT+ BOOLEAN 
//initial value: false 
//Tells whether a process or a flow thread agent has started executing its 
//activity or not. 

synchronous: INOVKE + BOOLEAN 
//returns true if the invoke activity contains synchronous interactions; 
//i.e. request/response 
//It is derived from the BPEL document and defined in the initial state 

' waiting: PROCESS 3 BOOLEAN 
, //Tells wheather a process instance is waiting for a message or not 



B.2. Programs 

Inbox Manager 

INBOXMANAGERPROGRAM = 
if inboxSpace(se1f) + 0 then 

choose p E PROCESS, m E inboxSpace(se1f) with match(p, m) and 
waiting(p) 

ASSIGN-M ESSAGE(p, m) 
if p = dummyProcess then 

new newDummy : PROCESS 
dummyProcess : = newDummy 

Outbox Manager 

OUTBOXMANAGERPROGRAM= 
if outboxSpace(self) z 0 then 

choose od E outboxSpace(self) 
SEN D(0d) 

Process 

PROCESSPROGRAM = 
if 1 busy(self) then 

if lstartedExecution(self) then 
startedExecution(self) := true 
busy(self) : = true 

else 
stop self 

else 
EXECUTEACnVTTY(activity(self) ) 



Receive Activity 

Execute-Receive (activity : RECEIVE) = 
if ~receiveMode(self) then 

receiveMode(se1f) := true //The running agent waits to  receive a message 
ADD-IN PUT-DESCRIPTOR-TO-WAITING-SET(activity) 

else 
if message-is-received(activity) then 

receiveMode(se1f) : = false 
busy(self) : = false 

Reply Activity 

Execute-Reply ( activity : REPLY) r 
ADD~OUTPUT~DESCRIPTOR~TO~OUTBOX~SPACE(activity) 
busy(self) : = false 

Invoke Activity 

Execute-Invoke (activity : INVOKE) = 
if ~receiveMode(self) then 

ADD~OUTPUT~DESCRIPTOR~TO~OUTBOX~SPACE(activity) 
if ~synchronous(activity) then 

busy(self) := false 

if synchronous(activity) then 
receiveMode(se1f) : = true 
ADD-IN PUT-DESCRIPTOR-TO-WAITING-SET(activity) 

if receiveMode(se1f) and message~is~received(activity) then 
receiveMode(se1f) : = false 
busy(self) := false 

Terminate Activity 

Execute-Terminate = 
SOP-ALL-SU BORDINATE-AGENTS 
stop rootProcess(self) 



Wait Activity 

Execute-Wait (activity : WAIT) 
if waitjust-started(activity) then 

RECORD-WAKSTART-TIM E(activity) 
else 

if wait-completed(activity) then 
busy(self) := false 

Empty Activity 

Execute-Empty (activity : EMPTY) = 
busy(self) : = false 

Sequence Activity 

SEQUENCEPROGRAM = 
if 1 busy(self) then 

SET-CU RRENT-ACnVrr/_TO-N EXT-ACTIVITY 
busy(self) : = true 

if busy(self) then 
if sequence~is~not~completed then //There are still some activities to execute 

EXECUTEPCnVTTY(currentActivity(self)) 
else //No more activities 

stop self 
RELEASE-PARENT 

Switch Activity 

SWITCHPROGRAM = 
if lbusy(self) and ?branch-found then //No branch is selected yet 

FIND-BRANCH //toundbranch(self) is set to the selected branch. 
//Always successful (because of the default OTH ERLZIISE) 

busy(self) := true 
if busy(self) then 

EXECUTE-ACnVTTY(foundBranch(se1f)) 

if lbusy(self) and branch-found then 
stop self 
RELEASE-PARENT 



While Activity 

WHILEPROGRAM = 
if 7busy(self) and true-while-conditionthen 

busy(self) := true 

if busy(self) then 
EXECUTEACTIVITY(activity(self))) 
//Executmg tile activ~ty Inside while; when completed, busy becomcs t a ! w  

if ~busy(self) and false-while-condition then 
stop self 
RELEASEPARENT 

Pick Activity 

PICKPROGRAM = 
if 7 busy(self) then 

if activity_is-not-chosen then 
CREATE-PICK-ALARM-AGENT // To manage onAlaram events 
CREATE-PICK-M ESSAGE-AGENT // To manage onMessage events 
busy(self) : = true //The agent is waiting for an event to happen 

else 
RELEASE-PARENT 
stop self 

if busy(self) then 
if activity-is-not-chosen then 

CHOOSE-EARLIEST-HAPPENED-EVENT 
//choose one of the onMessage or onAlarm events that happened ;\ru 
//chosenActivity is set to the corresponding activity of that event 

else 
EXECUTE-ACTIVITY(chosenActivity(self)) 



Pick Message Agent 

PICKMESSAGEPROGRAM = 
if onAlarm-event-occured then 

REMOVEALLONMESSAGEINPUT-DESCRIPTORS-FROM-WAITINGGSET 
stop self 

else 
if 1 busy(self) then 

ADD-ALL-ON MESSAGE-IN PUT-DESCRIPTORS-TO-WAITING-SET 
busy(self) : = true 

else 
CHOOSE-A-COMPLETED-ONMESSAGE-EVENT-AND-INFORM-PICK-AGENT 

stop self 

Pick Alarm Agent 

PICKALARMPROGRAM = 
if onMessage~event~occured then 

stop self 
else 

if lbusy(self) then 
RECORD-ALARM-START-TIME 
busy(self) : = true 

else 
FORALL-PASSED-ONALARM-EVENTS-IN FORM-PICK-AGENT 

stop self 

Flow Activity 

FLOWPROGRAM = 
if lbusy(self) then 

//Creates threads to concurrently execute activities grouped ioside the flow. 
forall activity E flowActivitySet(self) 

CREATE-A-FLOWH READ-AGENT-AN D-ADD-TO-FLOWAGENTSET(activity) 
busy(self) := true 

if busy(self) and empty-flowagentset then 
//All threads are done, flow activity is completed. 

RELEASE-PARENT 
stop self 



Flow Thread Agent 

FLOWTH READPROGRAM = 
if lbusy(self) and +tartedExecution(self) then 

startedExecution(self) : = true 
busy(self) : = true 

if busy(self) then 
EXECUTE-AClTVITY(activity(self)) 

if lbusy(self) and startedExecution(self) then 
REMOVE-SELF-FROM-FLOWAGENTSET 
stop self 

//Each thread executes one activity. When the execution is completed, 
//the tiiread removes itself from the flow agent set and is term~nated. 



Appendix C. Complete Formal Model 

C. 1. Initial Definitions 

//Agents 
domain PROCESS 
domain INBOX-MANAGER 
domain OUTBOX-MANAGER 

ilActrvity Agents 
domain SEQUENCE-AGENT 
domain SWITCH-AGENT 
domain WHILEAGENT 
domain PICK-AGENT 
domain FLOW-AGENT 
domain PICK-ALARM-AGENT //The agent responsible for 

//in a pick activity 
domain PICK-MESSAGE-AGENT //The agent respons~ble for the onMessage events 

//in a pick activity 
domain FLOW-THREAD-AGENT //sub agents of a f lo~v agent 

ACnVIlY-AGENT r SEQUENCEAGENT U SWITCH-AGENT U WHILE-AGENT U 
PICK-AGENT U FLOW-AGENT U PICK-MESSAGE-AGENT U 
FLOW-TH READ-AGENT U PICK-ALARM-AG ENT 

RUNNING-AGENT = PROCESS U ACTIVIlY-AGENT 
//RUNNING-AGENT is the set of agents that execute (run) an activity. 

AGENT = RUNNING-AGENT U INBOX-MANAGER U OUTBOX-MANAGER 

//Events 
domain ONMESSAGE //OnMessage events of Pick activity 
domain ONALARM //OnAlarm events of Pick activity 

EVENT = ONMESSAGE U ONALARM 

// Activities 
domain REPLY 
domain RECEIVE 
domain INVOKE 
domain WAIT 
domain TERMINATE 



domain EMPTY 
domain SEQUENCE 
domain SWITCH 
domain WHILE 
domain PICK 
domain FLOW 

4CTIVrrY= REPLY U RECEIVE U INVOKE U WAIT U TERMINATE U EMPTY 
U SEQUENCE U SWITCH U WHILE U PICK U FLOW 

//MESSAGE 
domain MESSAGE 

[N-OPERATION = RECEIVE U INVOKE U ONMESSAGE 
3UT-OPERATION = REPLY U INVOKE 
3UTPUT-DESCRIPTOR = RUNNING-AGENT X OUT-OPERATION 

//Activity dependents 
domain LINK 
//Represents the hnk between actwt~es in a parallel execut,or; (flo\w). 

domain SWCASE 
//case elements of a switch, it includes conditional cases and otherwise 
//otherwise is a special case with an always-true condition 

domain PRIORrrY 
//An ordered domain, with a least element called LEAST-PRIORITY 

iICORREL-ATIONSET 
domain CORRELATIONSET 

rootProcess: RUNNING-AGENT + PROCESS 
//Returns the process agent to which this running aoent belongs. 

rootProcess(a: RUNNING-AGENT) = 
- a : a E PROCESS, 
- rootProcess (parentAgent(a)) : otherwise. 

receiveMode: RUNNING-AGENT+ BOOELAN 
//initial value : false 
//Tells whether a running agent is waiting to receive a message or not. 



parentAgent: RUNNING-AGENT + RUNNING-AGENT 
//Returns the parent agent (one layer above in the creation tree) of an agent 

outboxManager: PROCESS + OUTBOX-MANAGER 
//An outbox manager is assigned to each process instance 

mainActivity: PROCESS + ACnVITY 
,:/This is the activity wh~ch the process should execute 
//It is derived from the BPEL document and defined In the ~ n ~ t ~ a l  state 

startedExecution: PROCESS u FLOW-THREAD-AGENT + BOOLEAN 
//initial value: false 
//Tells whether a process or a flow thread agent has started executing its 
//activity or not 

waitingForMessage: PROCESS + (RUNNING-AGENT X IN-OPERATION)-set 
//initial value: k? 
//For each process this set indicates the input activities (or onMessage events) 
//waiting for a message 

completedInOperations: PROCESS + (RUNNING-AGENT X IN-OPERATION X 
TIME)-set 

//initial value: 
//For each process this set indicates the input activities (or onMessage everts) 
//that have received a message, together with the receiving tirne 

subordinateAgentSet: PROCESS + ACnVITY-AGENT-set 
//Returns the set of actwity agents that have 9een created and worh under control of 
//this process. 
subordinateAgentSet(p: PROCESS) - 

{a I a E ACTIVITY-AGENT where rootProcess(a) = p) 

//---------------------------------INBOX MANAGER properties---------------------------------- 

inboxspace: INBOX-MANAGER + MESSAGE-set 
//initial value: 43 
//Keeps the messages that have arrived for a business process and are 
//not yet serviced. 

match: PROCESS X IN-OPERATION X MESSAGE + BOOLEAN 
//Tells whether a messages matches a specific input operation of 
//a process instance or not. 



// --. ------- ------. ACTIV/T/ AGENT propedjes 

base~ctivity: ACnVTTY-AGENT+ AC~VIT? 
//The adivity for which an activity agent is responsible 

I/-------------------------------- ACTIVITY properties--------------------------------------------- 

assignedAgent: ACnVrrY + ACnVTTY-AGENT 
// Assumes that every activity that is fetched is unique 
// For each structured activity returns the activity agent that is executing it 
// returns undef it no agent is assigned yet or the activity is a basic activity 
// so there is no need for agents to eliminate this relationship when they cnd 

sourcelinkset: ACnVrrY + LINK-set 
//An activity can be the source of a set of links; returns this set 
//It is derived from the BPEL document and defined in the initial state 

targetlinkset: ACTIVITY + LINK-set 
//An activity can be the target of a set of links; returns this set 
//It is derived from the BPEL document and defined in the initial state 

activityJoinCondition: ACnVI lY  + BOOLEAN 
//default joincondition: The logical OR of the link status of all the mcoming I~nkc, 
//of the actrvity 
//returns true if the joincondition of the activity is sat~sfied 

//---------------------------------- I n  Operation Properties .......................... 

initiatecorrelation: IN-OPERATION + BOOLEAN 
//indicates whether an input operation initiates a new correlation set or not 
//It is derived from the BPEL document and defined in the initial state 

/I---------------------------------- Invoke Activitiy Properties .......................... 

synchronous: INOVKE + BOOLEAN 
//returns true if the invoke activity contains synchronous interactions; 
//i.e. request/response 
//It is derived from the BPEL document and defined in the initial state 

//--------------------------------------- Wait Activity Properties ------ -- ----------- 
completionTime: WAIT + TIME 
//completionTime returns the time when a wait activity is completed. 
//In case of 'until' its trivial, but in case of 'for' it needs the stafiing time, 
//which is accessible through the activity itself. 



startTime: WAIT u PICK-ALARM-AGENT + TIME 
//initial value: undef 
//startTime keeps the starting time of a wait activity and 
!!is needed In case of waiting for a duration. < ,  

//Pick alarm agent also keeps a starting time. 

//--------------------------------------- Sequence Activity Properties-------------------- 

sequencecounter: SEQUENCE + ACTIVITY 
//Raturns the next activity in the sequence 
;/lf there is no more activities in the sequence, returns undef 
// It is derived from the BPEL document and defined in the initial state 

// wh. ~ l e  Activity Propert~es 

wacondition: WHILE + BOOLEAN 
//Returns the value of the conditional expression of a while activity 

innerActivity: WHILE + ACTIVrPl 
// Returns the activity that is defined inside a while. 
//It is derived from the BPEL document and defined in the initial state 

/I--------------------------------------- Switch Activity Properties ---------------- 

swCaseSet: SWITCH + SWCASE-set 
//returns the list of case elements of the switch plus otherwise 
//It is derived from the BPEL document and defined in the initial state 

swCaseCondition: SWCASE + BOOLEAN 
//Returns the value of the conditional expression of a switch case element 
//For otherwise, it always retgrns true 

swCaseActivity: SWCASE + ACTIVITY 
//the activity associated with a case element or otherwise 
//It is derived from the BPEL document and defined in the initial state 

swPrority: SWCASE + PRIORrPl 
//Each switch case element is assigned a priority, 
//resembling the order between cases. 
//'The lowest priority is assigned to otherwise. 
//It is derived from the BPEL docunient and defined in the initial state 

!/ ----- - - - - - - -  p' ~ c k  Activity Properties ---------------- 
onMessageSet: PICK 3 ONMESSAGE-set 
//Set of the onMessage events defined in a pick activity 
//It is derived from the BPEL document and defined in the initial state 



onAlarmSet: PICK + ONALARM-set 
//Set of the onAlarm events defined in a pick activity 
//It is derived from the BPEL document and defined in the initial state 

// .......................... Event(OnMessae and OnAlaram) Propertips 

onEventActivity: EVENT + ACnVlTY 
//Returns the activity associated with a specific event 
//It is cerived from the BPEL document and def~ned in the init~al stat(? 

triggermme: ONALARM X TIME + TIME 
//returns the trigger t ~ m e  of an onAlarn: activity. 
//If onAlarm is defined by a 'for', it uses the second parameter (startinu h i re  of tile 
//alarm agent) to determine the trigger time. 

//-------------------------------------- Switch Agent Properties------------------------- 

foundBranch: SWITCH-AGENT + ACnVlTY 
//initial value: undef 
//The activity associated with the branch that is chosen by switch to be executed 

chosenActivity: PICK-AGENT + ACnVlTY 
//initial value: undef 
//The activity that is chosen by the pick agent to be executed 

I/-------------------------------------- Pick Alarm Agent---------------------------------- 

startmme: PICK-ALARM-AGENT u WAIT+ TIME 
//~nitial value: undef 
//startTime keeps the starting time of a pick alarm agent and 
//is needed in case of waiting for a duration. 
//startTime is also used for the wait activity. 

//--------------------------------------- Flow Activity Properties ---------------- 

flowActivitySet: FLOW 3 ACnVITY-set 
//Set of the activities defined inside a flow 
l i l t  is derived from the BPEL document and defined in the initial state 



flowAgentSet: FLOW-AGENT 3 FLOW-THREAD-AGENT-set 
// initial value: $3 
//The set of alive thread agents that are working under a flow agent: 

;/------------------------------------Flow Thread Agent------------------------------ 
startedExecution: FLOW-THREAD-AGENT u PROCESS + BOOLEAN 
/ / ~ n ~ t ~ a l  value: false 
//Tells whether a process or a flow thread agent has started exechny its 
//actlv~ty or not 

linkstatus: LINK + {POSlTIVE,NEGATIVE,NOTDEFINED) 
jjinitial value: NOTDEFINED 
j!returns the status of a link 



C.2. Programs 

Znbox Manager 

INBOXMANAGERPROGRAM - 
if inboxSpace(se1f) + 0 then 

choose p E PROCESS, m E inboxSpace(self), (agent, op) E 

waitingForMessage(p) with match(p, op, m) 
Assign-Message(p, agent, op, m) 
Pick-Adivity_Clearance(p, agent, op) 

if p = dummyProcess then 
new newDummy : PROCESS 

Assign Message 

Assign-Message(p : PROCESS, agent : RUNNING-AGENT, op : IN-OPERATION, 
m : MESSAGE) = 

if initiateCorrelation(op) then 
INlTATE-CORRELATION(p, agent, op, m) 

remove m from inboxSpace(se1f) 
remove (agentlop) from waitingForMessage(p) 
add (aaent.oo.now) to ~ ~ m ~ l e t e d I n O ~ e r a t i ~ n ~ ( ~ )  

Pick Activity Clearance 

Pick-Activity_Clearance (p : PROCESS, a : RUNNING-AGENT, 
op : IN-OPERATION) = 

if a E PICK-MESSAGEAGENT then 
forall (a, op') E waitingForMessage(p) with op' + op 

remove (a,op') from waitingForMessage(p) 

Outbox Manager 

OUTBOXMANAGERPROGRAM= 
if outboxSpace(self) + 0 then 

choose (agent, op) E outboxSpace(self) 
SEND(agent, op) 



Process 

PROCESSPROGRAM = 
if 1 busy(self) then 

if lstartedExecution(self) then 
startedExecution(se\f) : = true 
busy(self) := true 

else 
stop self 

else 
Execute-Activity(mainActivity(se1f)) 

Execute Activity 

'/suppose that busy is set to true before entering this module 
Ixecute-Activity (activitiy: ACTIVITY) = 

if Vx (x E targetLinkSet(activity) 3 linkStatus(x) # NOTDEFINED) then 
if activityJoinCondition(activity) then 

if activity in REPLY then 
Execute-Reply (activity) 

if activity in RECEIVE then 
Execute-Receive (activity) 

if activity in INVOKE then 
Execute-Invoke (activity) 

if activity in TERMINATE then 
Execute-Terminate 

if activity in WHILE then 
Execute-While(activity) 

if activity in EMPTY then 
Execute-Em pty(activity) 

if activity in SEQUENCE then 
if assignedAgent(activity) = undef then 

new s: SEQUENCEAGENT 
assignedAgent(activity) : = s 
Initialize(s, activity) 

if activity in SWITCH then 
if assignedAgent(activity) = undef then 

new sw: SWITCH-AGENT 
assignedAgent(activity) : = sw 
Initialize(sw, activity) 

if activity in WHILE then 
if assignedAgent(activity) = undef then 

new w : WHILE-AGENT 
assignedAgent(activity) := w 



Initialize(w, activity) 
if activity in PICK then 

if assignedAgent(activity) = undef then 
new p : PICK-AGENT 

assignedAgent(activity) : = p 
Initialize(p, activity) 

if activity in FLOW then 
if assignedAgent(activity) = undef then 

new f : FLOW-AGENT 
assignedAgent(activity) := f 
Initialize(f, activity) 

else 
TH ROW-JOIN-FAILURE 
//Joir?Condition is false. A fault (joinFailure) is thrown. 

//else I I 

//There are some activities linked to this activity that have not yet finished 
//execution. Therefore, the activity can not be executed yet. 

Initialize 

Initialize(agent: ACTIVTr/_AGENT, activity: ACTIVITY) = 
parentAgent(agent) : = self 
baseActivity(agent) : = activity 

Receive Activity 

Execute-Receive (activity : RECEIVE) = 
let inputDescriptor = (self, activity) in 

if lreceiveMode(self) then 
receiveMode(se1f) := true //The running agent waits to receive a rnessayc 
add inputDescriptor to waitingset 

else 
if inputDescriptor 4 waitingset then 

receiveMode(se1f) := false 
busy(self) : = false 
Synchronization(activity) 

where waitingset = waitingForMessage( rootProcess(self) ) 



Reply Activity 

Execute-Reply ( activity : REPLY) = 
let outputDescriptor = (self, activity) in 

add outputDescriptor to outspace 
busy(self) : = false 
Synchronization(activity) 

where outspace = outboxSpace(outboxManager(rootProcess(self))) 

Invoke Activity 

Execute-Invoke (activity : INVOKE) = 
let ioDescriptor = (self, activity) in 

if lrecevieMode(self) then // i.e. if it is the first step 
add ioDescriptor to outspace 
if ~synchronous(activity) then // i.e, i f  not synchronous invoke 

busy(self) : = false 
Synchronization(activity) 

if synchronous(activity) then // i.e. if synchronous invoke 
receiveMode(se1f) : = true 
add ioDescriptor to waitingset 

if receiveMode(se1f) and ioDescriptor E waitingset then 
receiveMode(se1f) : = false 
busy(self) := false 
Synchronization(activity) 

where 
outspace = outboxSpace(outboxManager(rootProcess(self))) 
waitingset = waitingSetForMessage(rootProcess(self)) 

Terminate Activity 

Execute-Terminate = 
forall agent in subordinateAgentSet(rootProcess(self)) 

stop agent 
stop rootProcess(self) 



Wait Activity 

Execute-Wait (activity : WAIT) = 
if startTme(adivity) = undef then 

startTime(activity) : = now 
else 

if completionTime(activity) I now then 
busy(self) : = false 
Synchronization(activity) 

//startTime IS associated with each wait activity and its initral value is undef 
j/startTime IS  also used separately in pick alarm agent, 
//but won't cause any problem here. 

Empty Activity 

Execute-Empty (activity : EMPTY) = 
busy(self) : = false 
Synchronization(activity) 

Sequence Activity 

SEQUENCEPROGRAM = 
if lbusy(self) then 

currentActivity(self) := sequenceCounter(baseActivity(self)) 
busy(se1f) : = true 

else 
if currentActivity(se1f) # undef then 

Execute~Activity(currentActivity(se1f)) 
else 

stop self 
busy(parentAgent(se1f)) : = false 
Synchronization(baseActivity(se1f)) 



Switch Activity 

SWITCHPROGRAM 
if 7 busy(self) then 

if foundBranch(se1f) = undef then //No branch is seiected yet 
let caseset = swCaseSet(baseActivity(self)) in 

//caseset is the set of all cases 
choose c E caseset with (swCaseCondition(c) A 

b'x ((x E caseset A swCaseCondition(x))+ swPriority(c) 2 swPriority(x))) 
foundBranch(se1f) : = swCaseActivity(c) 

//choosing the first [with the highest prior~ty] brdnch w ~ t h  a true 
//condition. It is always successfcll, because of the default othcnnl~scl 
busy(self) : = true 

else //branch IS executed and finished 
busy(parentAgent(se1f)) := false 
stop self 
Synchronization(baseActivity(self)) 

if busy(self) then //Execute the found branch 
Execute~Activity(foundBranch(self))) 

While Activity 

WHILEPROGRAM = 
if busy(self) then 

Execute~Activity(innerActivity(baseActivity(self))) 
else 

if waCondition(baseActivity(self)) then 
busy(self) : = true 

else 
busy(parentAgent(se1f)) := false 
stop self 
Synchronization(baseActivity(self)) 



Pick Activity 

PICKPROGRAM = 
if lbusy(self) then 

if chosenActivity(self) = undef then 
new a : PICK-ALARM-AGENT 

Initialize(a, baseActivity(se1f)) 
new b: PICK-M ESSAGEAGENT 

Initialize(b, baseActivity(se1f)) 
busy(self) := true //The agent is waiting for an event to happen 

else 
busy(parentAgent(se1f)) : = false 
stop self 
Synchronization(baseActivity(self)) 

if busy(self) then 
if chosenActivity(self) = undef then 

choose (event, time) E triggeredEvents(self) with 
VeVt ((e,t) E triggeredEvents(self) 3 time I t) 

chosenActivity(self) : = onEventActivity(event) 
else 

Execute~Activity(chosenActivity(self)) 

Pick Message Agent 

PICKMESSAGEPROGRAM - 
if triggeredEvents(parentAgent(se1f)) # 0 then 

forall event E onMessageSet(baseActivity(self)) 
let inputDescriptor = (self, event) in 

remove inputDescriptor from waitingForMessage(rootProcess(self)) 
stop self 

else 
if 1 busy(self) then 

forall event E onMessageSet(baseActivity(self)) 
let inputDescriptor = (self, event) in 

add inputDescriptor to waitingForMessage( rootProcess(self)) 
busy(self) : = true 

else 
choose event E onMessageSet(baseActivity(self)) with 

(self, event, time) E c~mpletedInOperati~n~(rootProcess(self)) 
add (event, time) to triggeredEvents(parentAgent(se1f)) 
stop self 



Pick Alarm Agent 

PICKALARMPROGRAM = 
if triggeredEvents(parentAgent(se1f)) + 0 then 

stop self 
else 

if 1 busy(self) then 
startTime(se1f) := now 
busy(self) : = true 

else 
forall event E onAlarmSet(baseActivity(self)) with 

triggerTime(event, startTime(self)) l now 
add (event, triggerTime(event, startTime(se1f))) to 

triggeredEvents(parentAgent(se1f)) 
s t o ~  self 

Flow Activity 

FLOWPROGRAM 
if 1 busy(self) then 
//Creates threads to concurrently execute activities grouped inside the flow. 

forall activity E flowActivitySet(self) 
new ffhread : FLOW-THREAD-AGENT 

Initialize(ffhread, activity) 
add ffhread to flowAgentSet(se1f) 

busy(self) : = true 
else 

if flowAgentSet(se1f) = 0 then 
//All threads are done, flow activity is completed. 

busy(parentAgent(se1f)) : = false 
stop self 
Synchronization(baseActivity(self)) 



Flow Thread Agent 

FLOWTHREADPROGRAM = 
if lbusy(self) and lstartedExecution(self) then 

startedExecution(self) : = true 
busy(self) : = true 

if busy(self) then 
Execute~Activity(baseActivity(self)) 

if lbusy(self) and startedExecution(self) then 
remove self from flowAgentSet(parentAgent(self)) 
stop self 

//Each thread executes its baseActivity. 
//When baseActivity is completed, the thread removes itself from the flow agent set 
//and is terminated. 

Link Semantics 

Synchronization(activity : ACnVITY) = 
forall link E sourceLinkSet(activity) 

if linkTransitionCondition(link) then 
linkStatus(1ink) := true 

else 
linkStatus(1ink) := false 



Appendix D. Executable Model 

D.1. Original Model 

Name Space 

namespace ~ o d e l G u 1  
impor t  system.co1 l e c t i o n s  
impor t  System.windows. Forms 

.. .- ..... .. . .. . .. . -. -. . . .... .. - . .. - .- .. . ..,... . .. . .. .. ,. , . . . ... .. .. . .. ... ... , , . - .- .. .. .... ., . . . , - -. . -, , -- - . .. . . ,. , . , .. . ... .. . - . , . -, .... , . .. 

Global Definitions 

The inbox Manager, the outbox manager and a dummy process are the DASM agents 

available in the initial state. agents and processes are two sets representing the 

corresponding domains: AGENT and PROCESS. The internal structure has replaced the 

oracle in the ASM model, where it was used to access the BPEL process definition. 

va r  inbox~anager  as INBOX-MANAGER 
v a r  outboxManager as OUTBOX-MANAGER = new OUTBOXMANAGER 
v a r  dummy as PROCESS 
//domains 
va r  agents as se t  o f  AGENT = 0 
v a r  processes as Set o f  PROCESS = 0 
/ / € x e c u t i o n  s p e c i f i c  
va r  i n t s t r  aS ARRAY-BASED-INT-STR = new ARRAY-BASED-INTSTR 
va r  g loba l ID  as I n tege r  = 1 

Agent 

p u b l i c  c l ass  AGENT 
v i  r t u a l  Program0 



Running Agent 

p u b l i c  c l ass  RUNNINGAGENT extends AGENT 
va r  busy as ~ o o l e a n  = f a l s e  
va r  rootprocess as PROCESS? = undef 
va r  parentngent as RUNNINGAGENT? = undef 
va r  r e c e i v e ~ o d e  as Boolean = f a l s e  
va r  i d  as s t r i n g  

v i r t u a l  s t o p 0  
/ /  - - - - - - - - -  ----------. - - - - - - -  I n i  t i  j ze- .  . -- --. --- - - -  - - - -  .. - 

1 n i  ti a l i  ze(agent as ACTIVITYAGENT) 
agent.parentngent := me 
agent.rootProcess := me.rootProcess 
add agent t o  me.rootProcess.subordinateAgentset 
add agent t o  agents 

I n i  ti a1 i ze maintains two functions r oo t  process and subordi  natengentset. It also 

updates the parentAgent function. In addition, it maintains the set of agents in the domain 

AGENT by adding the new agent to agents. 

In box Manager 

c l ass  INBOX-MANAGER extends AGENT 
va r  inboxspace as Set o f  MESSAGE = {I  

In box Manager Program 

~1 ass I NBOX-MANAGER 
ove r r i de  program0 

i f  n o t  (inboxspace = 0)  then  
choose p i n  processes, rn i n  inboxspace, (agent, a c t i v  
p. wai tingForMessage where Match(p,m, a c t i v i t y )  

n s s i  gn-~essage(p, agent, a c t i v i  t y  , rn) 
M ~ ~ ~ L . r n e s s a g e ~ s ~ s s i g n e d ( p , r n ,  agent, a c t i v i t y )  

i t y )  i n  

i f  p = dummy then //need new dummy 
newDumrny = ~~~C~SS.newProcess(globalID,outbox~anager) 
dummy := newDummy 
add newDummy t o  processes 
add newDummy t o  agents 
 global^^ := g l o b a l I ~  + 1 

i fnone 
w r i  t e ~ i  ne("No ~ssign") 



Assign Message 

tl ~ S S  INBOX-MANAGER 
Assign-Message(p as PROCESS, agent as RUNNINGAGENT, i n ~ c t i v i t y  as 
I N P U T A C T I V I T Y ,  m as MESSAGE) 

i f  i n i t i a t e ~ o r r e l a t i o n ( i n t S t r ,  i n ~ c t i v i  t y )  then 
1 n i t i a t e ~ ~ o r r e l a t i o n ( p , g e t ~ o r r e l a t i o n ~ e t s ~ o 1 n i t i a t e ( ~ n t ~ t r  , i n ~ c t i v i t y )  ,m) 

choose (a, act) i n  p .wa i t i ng~or~essage  where a  = agent and ac t  = i n ~ c t i v i t y  
remove (a, act) from p. wai ti ngFOrMeSSage 

remove m from inboxspace 
add (agent, i n ~ c t i v i t y )  t o  p. completed~noperation 

.. - " - " - 

Outbox Manager 

pub l i c  c lass OUTBOLMANAGER extends AGENT 

var  outboxspace as set  o f  (RUNNINGAGENT, OUTPUTACTIVITY) = {) 

Process 

pub1 i c c lass PROCESS extends RUNNINGAGENT 

var wait ingFor~essage as set  o f  (RUNNINGAGENT, INPUT-ACTIVITY) = {) 
var  completed~noperat ion as set  o f  (RUNNINGAGENT, INPUT-ACTIVITY) = {}  
var  cor re la t ions  as set  o f  CORRELATIONSET = {I  
var mainnct iv i  t y  as ACTIVITY = processnctivi  t y  ( i n t s t r )  
var  wai t i n g ~ c t i  v i  t y  as INPUTACTIVITY? = nu1 1  
var  subordinate~gentset  as se t  o f  ACTIVITYAGENT = {) 
Var outbox~anager as OUTBOLMANAGER? 
var s ta r ted~xecu t i on  as ~ o o l e a n  = f a l s e  

//..- ----------  --- - 

overr ide s t o p 0  
remove me from agents 
remove me from processes 

Process Program 

pub1 i c c l  ass PROCESS 

overr ide program() 
i f  no t  busy then 

i f  no t  startedExecution then 
startedExecuti on : = t r u e  
busy := t r u e  

e lse  
s tophe )  

e lse  
~ x e c u t e ~ c t i v i  t y  (me, mai n n c t i v i  t y )  



Initiate Correlation 

~ n i t i a t e - c o r r e l a t i o n  initiates a number o f  correlation sets by setting the value o f  each 

property in the correlation set to the values o f  the tokens carried by the message. 

~1 ass PROCESS 

~ n i  ti ate-correl  a t ion(cse t  as se t  o f  CORRELATIONSET, m as MESSAGE) 

Activities 

pub1 i C ~1 ass A C T I V I T Y  

p u b l i c  c lass  STRUCTUREDACTIVITY extends ACTIV ITY  

var  assignedAgent as ACTIVITYAGENT? = undef 

p u b l i c  c lass  I N P U T A C T I V I T Y  extends A C T I V I T Y  

p u b l i c  c lass  OUTPUT-ACTIVITY extends ACTIV ITY  

p u b l i c  c lass  RECEIVE extends I N P U T A C T I V I T Y  

pub1 i c ~1 ass REPLY extends O U T P U T A C T I V I T Y  

p u b l i c  c lass  FLOW extends STRUCTUREDJCTIVITY 
var  f l o w ~ c t i v i t y s e t  as se t  o f  ACTIVITY 

p u b l i c  c lass  SEQUENCE extends STRUCTUREDACTIVITY 
. . - - . . .. - . - - . .. -. .- - . . .. - . . -. .. .. .. . .. .. .... ......, .... , . 

Activity Agents 

pub1 i c  ~1 ass ACTIVITYAGENT extends RUNNINGAGENT 

var  baseActi v i  t y  as ACTIV ITY  

over r ide  s t o p 0  
remove me from agents 
remove me from me. roo t~rocess .subord ina te~gentse t  

When an act iv i ty agent is  terminated, the subordinateAgentset funct ion must also be 

updated. 



Sequence Agent 
.............................. -. -...........-... ............. .-.-.-........-...... .......... ........-........... ................ - -.......... ................... -. .. ............. - .... -. .......... ............ .................. - ......... .......... 

pub l i c  c lass SEQUENCE-AGENT extends ACTIVITYAGENT 
var cu r ren tAc t i v i t y  as ACTIVITY? = undef 

/ /  ----. . .  - .......... ... - ..Sequenceprogra"l-- .. - - -  - -  . .  - .... - . . . .  -. 

overr ide Program() 
match baseActivi  t y  

baseAct as SEQUENCE: 

i f  not  busy then 
cur rentAct i  v i  t y  : = sequencecounter (i n t s t  r , baseAct) 
busy := t rue  

e lse  
i f  not  (cur ren tAct iv i ty  = n u l l )  then 

~ x e c u t e - ~ c t i v i  t y  (me, c u r r e n t ~ c t i v i t y )  
e lse  

stop(me1 
parentAgent.busy := f a l s e  

Flow Agent 

class FLOWAGENT extends ACTIVITYAGENT 

var  f l o w ~ g e n t s e t  as se t  o f  FLOW-THREADAGENT = { }  
....................................... / /  ................................ F1 ow~rogram 

overr ide Program() 
match baseActi v i  t y  

b a s e ~ c t  as FLOW: 

i f  not  busy then 
busy := t r u e  

step foreach a c t i v i t y  i n  b a s e ~ c t  . f l o w ~ c t i v i  t yse t  
var  f ~ h r e a d  as FLOW-THREADAGENT = new FLOW-THREADAGENT( i d  + ":t" 

+ i dcounter , a c t i v i  t y )  
idcounter := idcounter + 1 
I n i  ti a1 i ze( f~hread)  
add f ~ h r e a d  t o  flowAgentset 

e l  se 
i f  flowAgentset = 0 then 

~ r i  t e ~ i n e ( " ~ L L  thread agents f in ished ' )  
parentAgent. busy := f a l s e  
stop (me) 



Flow Thread Agent 

c l ass  FLOW-THREADAGENT extends ACTIVITYAGENT 
va r  s tar tedExecut ion as Boolean = f a l s e  

/ / . - - - - - - - - - - - - - - - - - - - - - - .. - - - - ~1 ow~hreadprogram--. .- --. . - - -- - - - - -  - - 

o v e r r i d e  program() 
i f  (not busy) and (not startedExecut ion) then  

s tar tedExecut ion := t r u e  
busy := t r u e  

i f  busy then  
Execute-Act iv i  ty(me, b a s e ~ c t i v i  t y )  

i f  (not busy) and s tar tedExecut ion then  
match me.parentAgent 

parent  as FLOWAGENT: 
remove me from parent .  f l o w ~ g e n t s e t  
s top (me) 

Execute Activity 

~ x e c u t e - ~ c t i  v i  t y  (se l  f as RUNNINGAGENT, a c t i  v i  t y  as ACTIVITY) = 

match a c t i v i t y  
i n A c t i v i  t y  as RECEIVE: 

~xecu te -~ece i ve ( se1  f , i n ~ c t i v i  t y )  
i n ~ c t i  v i  t y  as REPLY: 

~ x e c u t e - ~ e p l  y  (se l  f, i n ~ c t i v i  t y )  

i n ~ c t i v i t y  as FLOW: 

i f  i n ~ c t i  v i  t y  . ass i  gned~gen t  = nu1 1 then  
va r  fAgent as FLOWAGENT = new F L O W - A G E N T ( S ~ ~ ~  . i d  + " : f ' +  

s e l f .  i dcoun te r ,  i n ~ c t i v i  t y )  

i nAct i  v i  t y  as SEQUENCE : 
i f  i n ~ c t i v i t y .  ass igned~gent  = n u l l  then  

va r  sAgent as SEQUENCEAGENT = new S E Q U E N C E _ A G E N T ( ~ ~ ~  f. i d  + " :s"+ 
s e l f .  i dcoun te r ,  i n ~ c t i v i  t y )  

s e l f  . i dcoun te r  := s e l f .  i dcoun te r  + 1 
i n ~ c t i  v i  t y .  ass i gned~gen t  := sAgent 
~ n i  ti a1 i ze(se1 f ,  sAgent) 



Execute Receive 

~ x e c u t e - ~ e c e i v e ( s e 1 f  as RUNNINGAGENT, a c t i v i t y  as INPUTACTIVITY) 
l e t  i n p u t ~ e s c r i  p t o r  = ( s e l f ,  a c t i v i t y )  
i f  not s e l f .  recei  veMode then 

s e l f  . rece i  v e ~ o d e  : = t r u e  
add i n p u t ~ e s c r i  p t o r  t o  s e l f .  rootprocess.  wai ti ng~orMessage 

e lse  
i f  not ( i n p u t ~ e s c r i p t o r  i n  s e l f .  r o o t ~ r o c e s s . w a i  t i n g ~ o r ~ e s s a g e )  then 

s e l f  . rece i  veMode : = fa1  se 
s e l f  . busy : = fa1  se 

Execute Reply 

Execute-Reply(se1f as RUNNINGAGENT, a c t i v i t y  as OUTPUTACTIVITY) = 

l e t  o u t p u t ~ e s c r i p t o r  = ( s e l f ,  a c t i v i t y )  
add o u t p u t ~ e s c r i p t o r  t o  se1f.root~rocess.outboxManager.outboxSpace 
sel f .busy := f a l s e  

Message 

pub1 i c class MESSAGE 

Correlation Sets 

class CORRELATIONSET 
name as s t r i n g  



D.2. Execution-Specific Additions to the ASM Model 

Executable Model 

agents := 
processes 
i n t s t r  := 

s tep 
i n t s t r . i n  

s tep 
g lobal  ID 
dummy := P~OC~SS.newProcess(O,outbox~anager) 

step 
add inbox~anager t o  agents 

s tep 
add dummy t o  agents 
add dummy t o  processes 

step 
showprogram0 

[ ~ n t r y ~ o i n t l  
run 0 

step 
f o r a l l  a i n  agents 

show~essages () 
showprocesses0 
showoutspace0 
a. Program() 
i nformnssignments() 

/ /  - - - a d d ~ e s s a g e - - -  - - -  - 

[Entrypoi n t ]  
addMessage(m as S t r ing ,  p as In teger)  

add new MEssAGE(new DATA(p),m) t o  inboxManager.inboxspace 

Data 

p u b l i c  c l ass  DATA 
var  data as I n tege r  
i sEqual (d as DATA) as ~ o o l  ean 



i f  data = d.data then 
r e t u r n  t r u e  

e l se  
r e t u r n  f a l s e  

Message 

... - . .......... ................................. ............ ...... ........ ...... .. .............................................. .- .......... ................................ ..... ........ 

pub1 i C Class MESSAGE 

va r  d a t a ~ i e l d  as DATA? 
va r  msgType as s t r i n g  

Correlation Set 

C l  ~ S S  CORRELATIONSET 
v a r  p rope r t i e s  as Map o f  s t r i n g  t o  DATA 

/ /For now we suppose t h a t  each c o r r e l a t i o n  se t  on ly  has ONE p roper ty  i n  i t .  
/ / s i  ze(proper t  i es) = 1 
/ / . - - - - - - - - - - - - - - - .. . . . - - - - messageContainsTokens--- - - - - - - - - - - - - - - - - .  

messageContains~okens(m as MESSAGE) as Boolean 
choose i i n  ~ n d i  ces(proper t i  es) 

r e t u r n  m . d a t a ~ i e l d .  i s ~ q u a l  (p roper t ies ( i1 )  
i fnone 

W r i  t e L i  ne(" ERROR!!  his cor re7a t ion  had no property!!") 
r e t u r n  f a l s e  

. ... ..-- ................. .. ....... ..... .. - ........ ............... - ,- - .......... ..... ...... - ............. ... -- ............. ...... .................-.. -. .. - .....-.... ....-........... - -. - -..........-. - -. 

This method checks the compatibility of a single message to a correlation set. To check 

this, we normally should check if the message carries the correlation token values. For 

now, as correlation sets just have one property and messages just carry a single data field, 

it is implemented as above. 

Activity 

... - . -. .. .- ... .... ...... .-.-.-..-...... ................................. ...... - - 

pub1 i C ~1  ass ACTIVITY 
va r  refNumber as I n t ege r  



Process 

New Process Creation 

This static function takes care of creating new processes and initializing its properties. 

... ... .......... ....................... - .- ..... .. - -- ...................... - ................. - . - - ......-.-. -. ..- ........................ .... - - - .............. 

class PROCESS 

shared newProcess(id as Integer, oManager as OUTBOX-MANAGER) as PROCESS 

var newp as PROCESS 
step 

newP := new  PROCESS("^" + id,oManager) 
step 

newP.rootProcess := newp 
newp.parentagent := undef 

step 
return newp 

..--.-.......--.-. ..... ....... .... ... - .......... - .......... - .. ....... - ..... -. ... - - .- - -- - 

Correlation Existence 

This function checks to see whether any of the correlation sets in cSet already exists or 

not. cSet is the set of correlation sets for a specific activity where they are all tagged with 

initiation. 

..... -.. .--. ............ .... - -. - ... ........................ ......... ..... 

class PROCESS 

correlat ion~xis ts(cset  as se t  o f  CORRELATIONSET) as Boolean 
var result as Boolean = t r u e  
step foreach cor i n  cset 

choose c i n  correlations where c.name = cor.name 
skip 

i fnone 
result := f a l s e  

step 
return result 

Satisfy 

If the correlation set is already initiated the message has to carry the required values for 

all the business tokens specified by corresponding correlation sets. sat isfy checks if the 

message satisfies this condition. 



~ 1  ass PROCESS 

s a t i  s f y  (i n ~ c t i v i  t y  as INPUTJCTIVITY?, m as MESSAGE) as ~ o o l e a n  
l e t  co r r s  = g e t c o r r e l a t i o n ~ e t s T o ~ a t i s f y ( i n t ~ t r ,  i n A c t i v i t y )  
va r  f l a g  = t r u e  

i f  co r r s  = {}  then 
r e t u r n  t r u e  

e l s e  
s tep  foreach c  i n  co r r s  

choose c2 i n  c o r r e l a t i o n s  where c .  name = c2. name 
i f  n o t  (messagecontai nsTokens(c2 ,m)) t hen  

f l a g  := f a l s e  
i f n o n e  / /  T r y i n g  t o  acces a c o r r e l a t i o n  t h a t  i s  n o t  i n i t i a t e d  y e t .  

w r i t e~ i ne ( "ERRO~!  T ry ing  t o  access a  co r re7a t i on  t h a t  i s  n o t  y e t  
i n i t i a ted ! " )  

f l a g  := f a l s e  
s tep  

r e t u r n  f l a g  

Initiate Correlation 

This function initiates a set of correlation sets by initializing the properties defined in the 

correlation sets with the token values carried by the message. 

c l ass  PROCESS 

1 n i  ti ate-carrel a t i  on(cset as Set o f  CORRELATIONSET, m as MESSAGE) 

f o r a l l  c  i n  cse t  
f o r a l l  i i n  ~nd i ces ( c . p rope r t i e s )  

c . p rope r t i e s ( i )  := m . d a t a ~ i e l d  

add c  t o  c o r r e l a t i o n s  
" " 

Note: Although for now size (properties) = 1, it does not affect this method. 

Global Functions 

Opaque 
. ... .. ... ..... -- - 

opaque0 as I n t e g e r  
l e t  x = any y l  y  i n  {1..100} 
r e t u r n  x 



~1  ass PROCESS 

s a t i  s f y  (i n ~ c t i v i  t y  as INPUTACTIVITY? , m as MESSAGE) as Boo1 ean 
l e t  c o r r s  = g e t c o r r e l a t i o n S e t s T o S a t i s f y ( i n t ~ t r ,  i n ~ c t i v i t y )  
va r  f l a g  = t r u e  

i f  c o r r s  = {I then  
r e t u r n  t r u e  

e l s e  
s tep  foreach c  i n  c o r r s  

choose c2 i n  c o r r e l a t i o n s  where c.name = c2.name 
i f  n o t  (messageContainsTokens(c2,m)) then  

f l a g  := f a l s e  
i f n o n e  / /  ~ r y i n g  t o  acces a c o r r e l a t i o n  t h a t  i s  n o t  i n i r i a t e d  y e t .  

writeLine("ERKOK! Trying t o  access a corre7ation tha t  i s  no t  y e t  
i n  i t i a  red!" ) 

f l a g  := f a l s e  
s tep  

r e t u r n  f l a g  

Initiate Correlation 

This function initiates a set of correlation sets by initializing the properties defined in the 

correlation sets with the token values carried by the message. 

~1  ass PROCESS 

~ n i  t i  ate-corre l  a t i  on(cset as s e t  o f  CORRELATIONSET, m as MESSAGE) 
f o r a l l  c  i n  cset  

f o r a l l  i i n  Ind ices (c .  p roper t ies )  
c . p rope r t i e s ( i )  := m.dataField 

add c  t o  c o r r e l a t i o n s  

Note: Although for now size (properties) = I ,  it does not affect this method. 

Global Functions 

Opaque 

opaque0 as I n t ege r  
l e t  x = any y l  y  i n  { I .  . lo01 
r e t u r n  x 

,. ..... " - 



Random 

random0 as ~ o o l e a n  
l e t  x = any y l  y  i n  { I .  . loo} 
i f  x  >= 50 then  

r e t u r n  t r u e  
e l s e  

r e t u r n  f a l s e  

Match 

Match specifies whether message m can be matched to process instance p or not. If the 

corresponding waiting activity in p follows a correlation, the message can be matched to 

the process instance if and only if it carries the required correlation tokens. 

Match(p as PROCESS, m as MESSAGE, i n ~ c t i v i t y  as INPUTACTIVITY) as ~ o o l e a n  
i f  a c c e p t ( i n t S t r , i n A c t i v i t y , m )  then //checks the  message source ,des t ina t ion  

i f  taggedwi t h ~ o r r e l a t i o n ( i n t s t r ,  i n ~ c t i v i  t y )  then 
i f  i n i t i a t e C o r r e l a t i o n ( i n t s t r ,  i n ~ c t i v i t y )  then  

i f  c0 r re l a t i onEx i  s ts(p,  
g e t c o r r e l a t i  onsetsTo1ni ti a t e ( i  n t S t r  , i n ~ c t i v i  ty ) )  then  

r e t u r n  f a l s e  
/ / ~ c c o r d i n g  t o  the  LRM, the  matching can on ly  be performed i n  case 
/ / o f  p i c k  a c t i v i t y ,  which i s  no t  covered i n  t he  cu r ren t  ve rs ion .  

e l s e  
r e t u r n  t r u e  

e l  se 
i f  sa t i s f y (p ,  i n ~ c t i v i t y ,  m) t hen  

r e t u r n  t r u e  
e l s e  

r e t u r n  f a l se  
e l s e  

r e t u r n  t r u e  
e l s e  

r e t u r n  f a l s e  



D.3. GUI-Related Additions 

Model 

c l ass  MODEL 
shared v a r  assignments as s e t  o f  HISTORY-TUPLE = {I  

/ /  ----  m e s s a y e I s ~ e c e i  ved- - -  .. - - -  - - 

shared message~sAssigned(p as PROCESS,m as MESSAGE,agent as 
RUNNING-AGENT,activity aS ACTIVITY) 

t = new HISTORY- TUPLE(^,^, agent,  a c t i v i t y )  
add t t o  assignments 

/ /  showprogram -- - 

showprogram0 
va r  b as A r r a y L i s t  
s t ep  

b := mapToAr rayL is t ( in ts t r .  program) 
s tep  

view. s e t ~ r o g r a m ~ o x ( b )  
/ /  -----  show~essages- - -  -. - - - - -  - 

show~essages0 
v a r  b as A r r a y ~ i  s t  
s t ep  

b := setToArrayLi st(inboxManager. inboxspace) 
s t ep  

view. r e f  r e s h ~ e s s a g e ~ i  st(b) 
/ /  --------  ..-//---------------------------show0utspacshow~~t~pace - - - -  - - - - - - - - - - - - - -  

showoutspace() 
v a r  b as A r r a y L i s t  
v a r  newset as s e t  o f  OUTBOXTUPLE ={) 
s t ep  foreach (a,act)  i n  outbox~anager.outboxspace 

add new ouTBox~TuPLE(a,act) t o  newset 
s t ep  

b := setToArrayLi st(newSet) 
s tep  

view. r e f  r eshou t space~ i  st(b) 
//. ---- ----  -- - -  - ---  - -  showprocesses ----------- ---- ---  - 

showprocesses() 
v a r  b as Ar rayL i  s t  
v a r  nodes as Map o f  S t r i n g  t o  T ree~ode  = {->I 
s tep  

nodes := b u i l d T r e e 0  
s tep  

b := S e t T o ~ r r a y L i  st(va1 ues(nodes1) 
s t ep  

view. r e f  reshprocessTreevi ew(b) 
.- .. .. .- .- - . .- -. - .. - .. -. .. . -. , . . .... - .. ... . . .- .. - -. .. -. . . ..... -. .. . -. .. . . -. - - -. . - .. . .. . . 



//. . - - - -  ----------  - -  - i  nformAss i gnlnents - - - - - - - - - -  .-- 

i nformnssi gnments () 
v a r  b as n r r a y L i s t  
s tep  

b := setTonrrayList(assignments) 
s tep 

view. r e f  r e s h ~ s g ~ i  s t o r y L i  s t (b)  
//. .. -bu i  1 d ~ ~ e e - - -  - - - - -  - - - - - - - -  

b u i l d ~ r e e o  as Map o f  s t r i n g  t o  TreeNode 
v a r  temp as Map o f  s t r i n g  t o  TreeNode = {->I 
v a r  newngentset as s e t  o f  ACTIVITYAGENT = {I 
va r  ags as se t  o f  ACTIVITYAGENT = {) 
v a r  a l iveprocesses as se t  o f  PROCESS = processes 
s tep  

remove dummy from al iveprocesses 
s t ep  foreach p i n  a l i v e ~ r o c e s s e s  

W r i  t eL ine( "  For process" + p .  i d )  
s tep  

temp(p.id) := new TreeNode(p.Tostring()) 
s t ep  / / t o  f i n d  the  leaves 

foreach a i n  p.subordinatengentset 
choose b i n  p.subordinatengentset where b.parentngent = a 

s k i p  
i f n o n e  / / i t  means a i s  a l e a f  

w r i t e ~ i n e ( a . ~ o s t r i n g ( )  + " i s  l e a f ' )  
temp(a. i d) : = new TreeNode(a.Tostri ng()) 
add a t o  newngentset 

s tep  u n t i l  newngentset = {) 
s tep  

ags := newngentset 
newngentset := I )  

step 
w r i t e ~ i n e ( " a g s "  + ags) 

s tep  foreach a i n  ags 
choose b i n  p.subordinatengentset where a.parentngent = b 

s tep 
i f  not (b .  i d  i n  Indices(temp)) then 

temp(b. i d )  := new TreeNode(b.Tostri n g 0 )  
s tep 

temp(b. i d )  .Nodes .ndd(temp(a. i d ) )  
remove temp (a. i d) 
add b t o  newngentset 

i f n o n e  / /a  i s  a d i r e c t  c h i l d  
s k i p  

s tep  foreach a i n  ags 
temp(p.id).~odes.Add(temp(a.id)) 
remove temp(a. i d )  

step 
r e t u r n  temp 



Agent 

pub1 i c  c lass  AGENT 
v i r t u a l  Tostr ing()  as S t r i n g  

............................................................... .- .... ................. .. 

Running Agent 

pub1 i c c lass  RUNNINGAGENT 
var  idcounter  as I n tege r  
p u b l i c  g e t ~ d ( )  as s t r i n g  

r e t u r n  i d  

Process 

p u b l i c  c l ass  PROCESS extends RUNNINGAGENT 
over r ide  ~ o s t r i  ng() as S t r i n g  

s tep 
var  s l  as s t r i n g  = "process: " + i d  + 

~ c t i v i t y :  " 
step 

s l  := s l  + m a i n ~ c t i v i t y . T o s t r i n g ( )  
s tep 

s l  := s l  + " / corre7ations: " 
step foreach c  i n  co r re l a t i ons  

s l  := s l  + c . ~ o s t r i n g ( )  + " / /  " 
s tep 

r e t u r n  s l  

getBusy() as Boolean 
re tu rn  busy 

g e t c u r r ~ c t i  v i  t y  () as ACTIVITY? 
r e t u r n  m a i n ~ c t i v i  t y  

Activity Agents 

Sequence Agent 

Busy: " + busy + 

...... ............. 

/ Current 

... - ..... .- .- - ..... 

c lass  SEQUENCEAGENT extends ACTIVITYAGENT 
over r ide  ~ o s t r i n g ( )  as s t r i n g  

s tep 
var  s l  as s t r i n g  = "Seq Agent " + i d  + " / BUSY: " + busy + " / cur ren t  

A c t i v i t y :  " 
............... - -.- -- -. ..... .- ........ -. ... - ..... .... ....... - -. ............. ........ 



step 
i f  not ( cu r ren tnc t i v i  t y  = n u l l )  then 

s l  : = s l  + cur ren tAc t iv i  t y  .Tos t r i  n g 0  
e l se  

S l  := " ~ ~ 7 7 "  

step 
re tu rn  s l  

Flow Agent 

class FLOWAGENT extends ACTIVITYAGENT 
over r ide  ~ o s t r i  ng() as S t r i ng  

retU r n  "FLOW AGENT: " + i d 

Flow Thread Agent 

class FLOW-THREADAGENT extends ACTIVITYAGENT 
over r ide  ~ o S t r i n g ( )  as s t r i n g  

re tu rn  "FLOW THREAD: " + i d + "  , c u r r e n t  
basencti v i  t y  . ~ o s t  r i  ng () 

Activities 

A c t i v i t y :  " + 

pu b l  i c c l  ass ACTIVITY 
v i r t u a l  ~ o s t r i n g 0  as s t r i n g  
v i r t u a l  get1nfo0 as s t r i n g  

Sequence 

pub l i c  c lass SEQUENCE extends STRUCTUREDACTIVITY 
overr ide ToStr i  n g 0  as S t r i ng  

re tu rn  "SEQUENCE" + ":" + re f~umber  

p u b l i c  c lass  FLOW extends STRUCTURED-ACTIVITY 
over r ide  T o s t r i n g 0  as S t r i ng  

re tu rn  " F L O ~ '  + " . '" + re f~umber  

Receive 

p u b l i c  c lass  RECEIVE extends INPUTJCTIVITY 
over r ide  ~ o s t r i n g o  as s t r i n g  

re tu rn  " R e c e i v e "  + " . '" + refNumber 
-. - -. -- .. - .. . . .. . 



pub1 i c ~1 ass REPLY extends OUTPUTACTIVITY 
va r  msgType as S t r i n g  

ove r r i de  T o s t r i n g 0  as s t r i n g  
r e t u r n  " ~ e p 7 Y '  + " :" + re f~umber  

ove r r i de  g e t I n f o 0  as s t r i n g  
r e t u r n  msgType 

Additions to Other Classes 

Message 

pub1 i c  c lass  MESSAGE 

g e t ~ s g ~ y p e 0  as S t r i  ng 
r e t u r n  msgType 

~ o s t r i  ng() as S t r i n g  
i f  d a t a ~ i e l d  = n u l l  then 

r e t u r n  mSgType 
e l  se 

r e t u r n  msgType + " : " + d a t a F i e l d . ~ o s t r i n g O  

Data 

c lass  DATA 
~ 0 ~ t t - i  n g 0  as S t r i  ng 

r e t u r n  "" + data 

Correlation Set 

~1 ass CORRELATIONSET 
Tost r ing( )  as s t r i n g  

s tep  
va r  s  as S t r i n g  = name + ": " 

s tep foreach a  i n  ~ n d i  ces (proper t i  es) 
s  := s  + a  + ": " + proper t ies (a) .Tos t r ing( )  + " , " 

s tep  
r e t u r n  s  



New Classes 

Outbox Tuple 

pub1 i c ~1 ass OUTBOX-TUPLE 
Var agent as RUNNINGAGENT 
v a r  a c t i v i t y  as OUTPUTACTIVITY 

g e t ~ g e n t  () as RUNNINGAGENT 

r e t u r n  agent 

g e t ~ c t i  v i  t y ( )  as OUTPUTACTIVITY 
r e t u r n  a c t i v i t y  

History Tuple 

pub1 i c  ~1 ass HISTORY-TUPLE 
va r  proc as PROCESS 

va r  msg as MESSAGE 

v a r  agent as RUNNINGAGENT 
va r  a c t i v i t y  as ACTIVITY 

g e t p r o c 0  as PROCESS 

r e t u r n  proc 

getMSg() as MESSAGE 

r e t u r n  rnsg 

g e t ~ g e n t  () as RUNNINGAGENT 
r e t u r n  agent 

g e t A c t i v i  t y  0 as ACTIVITY 

r e t u r n  a c t i v i t y  

Interfaces 

External View 

[ ~ x t e r n a l ]  
c l ass  view 

publ i c  r e f  r e s h ~ e s s a g e ~ i  st(mArray as ArrayLi  s t )  
publ i c  r e f  resh~rocessTreeview(rnArray as ArrayLi  s t )  
p u b l i c  r e f  r e s h ~ s g ~ i  s t o r y ~ i s t  ( m ~ r r a y  as ArrayLi  s t )  
p u b l i c  re f reshou tspace~ i  St(mArray as ~ r r a y ~ i s t )  
publ i c setProgramBox(rnArray as ArrayLi  s t )  



Auxiliary Methods 

, . -  . - - - - . . - . . -.-... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 

\c l l -oar : -ay!  I T: - -  - 

setToArrayList(s as Set o f  ob ject )  as A r r a y ~ i s t  
var  mArray as ArrayLis t  = new ~ r r a y ~ i s t ( )  
step foreach a i n  s 

mAr ray . ~ d d ( a )  
step 

re turn  mArray 
i - -  -............... - .. . . .  . . .  . . . . . . . . . . . .  . . . . .  ......... , - -  - -  - -  - - -  ,:,;i,) 1 Oj,l  ;';+y; I <;.'; - - - - -  

rnapTo~rrayList(m as Map o f  I n t e g e r  t o  ACTIVITY) as ~ r r a y ~ i  s t  
w r i t e ~ i n e ( " s i z e "  + size(rn)) 
var  mArray as A r r a y ~ i  s t  = new A r r a y ~ i  s t ( s i  ze(m)) 
step foreach i i n  ~ndices(m) 

rnArray .Add(rn(i)) 
step 

re turn  mArray 
apToAr ray1 

rnapT~ArrayList(m as Map o f  I n t e g e r  to INTJCTIVITY) as ArrayLiSt  
wr i teL ine("s izeU + size(rn)) 
var  mArray as ~ r r a y L i s t  = new ArrayList(size(rn)) 
step foreach i i n  Indices(m) 

mArray . ~ d d ( m ( i ) )  
step 

re tu rn  rnArray 



D.4. Internal Structure 

i n i  t i a t e c o r r e l a t i o n ( a c t i v i  t y  as INPUTJCTIVITY) as ~ o o l e a n  
i trt,tur.n\ I ~ U C  . f  t l i t :  c o r - r e i C \ t i ~ r l  <,et d \ ~ o ~ i c ~ t t ~ ~ l  w i r h  t h e  d c t i ~ i ~ :  

/IILISL be ~ r ~ l t ~ a ~ ~ t l  

g e t c o r r e ~ a t i o n S e t s ~ o ~ n i t i a t e ( a c t i v i t y  as INPUTJCTIVITY?) as Set o f  
CORRELATIONSET 
//returns :hQ sc3t o f  c o r r e l d t  lor! se t  dssor ~ d t ~ c !  i v i  t h  t h ~  ~ l t  I I 'J; t y  t h a t  

;,'vust be i n i t i a r c d  

getcorre1at ionSetsToSat i  s f y ( a c t i v i  t y  as INPUTJCTIVITY?) as s e t  o f  
CORRELATIONSET 
/ / r e t u r n \  he seL o f  c o r r e l a [  I O I I  ~ P L  d ~ ; < o c i a t c ~ l  v i  t h  I h e  C ~ C L  I V I  L Y  l-nnt nu \ :  

f o  l lo:.,ct: ( c I c l t  1s: ~ c d j  

Internal Activities 

p u b l i c  c l a s s  INTACTIVITY extends ACTIVITY 
v a r  a c t i v i t y ~ y p e  as s t r i n g  
v i  r t u a l  g e t ~ c t i  v i  t y  0 as ACTIVITY 

getRefNurnber() as I n t e g e r  
r e t u r n  re f~urnber  

Internal Output Activity 

p u b l i c  c l a s s  INT-OUTPUTJCTIVITY extends INTACTIVITY 
v a r  OpMSgType as s t r i n g  
va r  c o r r e l a t i o n ~ a g s  as s e t  o f  CORRELATION-USAGE 

o v e r r i d e  ge tAc t i  v i  t y  () as ACTIVITY 
i f  a c t i v i t y ~ y p e  = "rep7y" then  



r e t u r n  new ~ ~ ~ ~ ~ ( r e f ~ u m b e r ,  0pMSgType) 
e l s e  

r e t u r n  new OUTPUTACTIVITY(15) 

o v e r r i d e  Tos t r ing( )  as s t r i n g  
r e t u r n  refNumber +":" + a c t i v i t y ~ y p e  + ", operation: " + OpMsgType + " 

corre7ationrags: " + cor re la t ionTags  

Internal Input Activity 

pub1 i c ~1  ass INT-INPUTACTIVITY extends INTACTIVITY 
v a r  OpMSgType as s t r i n g  
va r  c rea te Ins tance  as ~ o o l e a n  
v a r  cor re la t ionTags  as s e t  o f  CORRELATION-USAGE 

o v e r r i d e  ge tAc t i  v i  t y  () as ACTIVITY 

i f  a c t i v i  t y ~ y p e  = "receive" then  
r e t u r n  new ~ ~ ~ ~ ~ ~ ~ ( r e f ~ u m b e r )  

e l s e  
r e t u r n  new INPUTJ\CTIVITY(~~) 

o v e r r i d e  ~ o s t r i  ng() as S t r i n g  
r e t u r n  re f~umber  + ":" + a c t i v i t y T y p e  + ", operation : " + OpMsgType + 

", createmstance: " + c rea temstance + " corre7ationTags: " + c o r r e l a t i o n ~ a g s  

Internal Structured Activities 

p u b l i c  c l a s s  INT-STRUCTUREDACTIVITY extends INTACTIVITY 
v i r t u a l  g e t I n s i d e A c t i v i  t i e s ( )  as Ar rayL i  s t  

Internal Sequence Activity 

p u b l i c  c l a s s  INT-SEQUENCEACTIVITY extends INT-STRUCTUREDACTIVITY 
v a r  a c t i v i t y s e t  as Map of I n t e g e r  t o  INTACTIVITY 

o v e r r i d e  g e t I n s i d e A c t i v i  t i e s ( )  as ~ r r a y ~ i  s t  
r e t u r n  m a p ~ o ~ r r a y ~ i  s t ( a c t i v i  t y s e t )  

o v e r r i d e  g e t ~ c t i v i  t y  () as ACTIVITY 

r e t u r n  new SEQU~~C€(refNumber) 

o v e r r i d e  Tos t r ing( )  as s t r i n g  
r e t u r n  re f~umber  + " :" + a c t i v i t y ~ y p e  



Internal Flow Activity 

p u b l i c  c l a s s  INT-FLOWJCTIVITY extends INT-STRUCTUREDJCTIVITY 
v a r  a c t i v i  t y s e t  as s e t  o f  INTJCTIVITY 

o v e r r i d e  g e t ~ n s i d e ~ c t i v i  t i e s ( )  as A r r a y L i s t  
r e t u r n  SetToArrayLi s t  ( a c t i v i  t y s e t )  

o v e r r i d e  g e t ~ c t i v i  t y  () as ACTIVITY 
i f  a c t i v i t y ~ y p e  = " f7od '  t hen  

v a r  temp as s e t  o f  ACTIVITY = {) 
s t e p  fo reach  a c t  i n  a c t i v i t y s e t  

add a c t .  g e t ~ c t i  v i  t y 0  t o  temp 
s t e p  

r e t u r n  new ~LOw(refNumber, temp) 

o v e r r i d e  T o s t r i  ng() as s t r i n g  
Var s as S t r i n g  = r e f ~ u m b e r  + " :" + a c t i v i t y ~ y p e  + " " 
s t e p  

r e t u r n  s 

Array-Based Internal Structure 

c l a s s  ARRAY-BASED-INT-STR implements INTERNAL-STR 
s t r u c t u r e  CORRELATION-USAGE 

name as s t r i n g  
i n i t i a t e  as Boolean 
p a t t e r n  as Boolean 

v a r  a c t i v i t i e s  as Map o f  I n t e g e r  t o  INTJCTIVITY = {->I 
v a r  program as Map o f  I n t e g e r  t o  INTJCTIVITY = {->I 
v a r  SeqUenCeMap as Map o f  SEQUENCE t o  I n t e g e r  ={->I 

Initialize 

c l a s s  ARRAY-BASED-INT-STR 
i n i  ti a1 i ze () 

s t e p  
a c t i v i  t i e s ( 1 )  . . - - new INT-INPUTJCTIVITY (1, " rece ive" ,  "msgl" , t r u e ,  

{CORRELATION-USAGE("WO~', t r u e ,  f a1  se)}) 
a c t i v i t i e s  (2) : = new INT-OUTPUTJCTIVITY(~ , " rep7y", " s e n d r ~ "  , 1)) 

. - a c t i v i  t i e s ( 3 )  - -  new INT-INPUTJCTIVITY(~, " rece ive" ,  "msg2", f a 1  se 
, {CORRELATION-USAGE("WO~', f a1  se, f a 1  se)}) 

a c t i v i  t i es (5 )  := new INT-INPUTJCTIVITY(~, "receive",  "m2", f a l se  , 1)) 



s t e p  
a c t i v i t i e s  (6) : = new 1NT-OUTPUTJCTIVITY (6, " rep7y", " send~ep7y" ,  {I) 
a c t i v i  t i es (7 )  . . _ - new 

INT-INPUTJCTIVITY (7, " rece ive" ,  "InSg3', f a 1  se, {CORRELATION-USAGE(" cY, t r u e ,  fa1 ~ e )  
I) 

a c t i  v i  t i es(8) : = new INT-INPUTJCTIVITY(~ ," receive","msg4" a se, 1)) 
s t e p  

a c t i v i  t i es (4 )  . . - - new INT-FLOWJCTIVITY (4, " f 70d1, Cact i  v i  ti es (6) , 
a c t i v i  t i es (7 )  , a c t i v i  t ies(8)) )  

s t e p  
a c t i v i  t i es (0 )  . . - - new INT-SEQUENCEJCTIVITY (0, "sequence",CO-> 

a c t i v i t i e s ( 1 )  , 1-> a c t i v i t i e s ( 2 ) ,  2-> a c t i v i t i e s ( 3 ) ,  3-> a c t i v i  t i e s ( 4 ) ,  4 - 
> a c t i v i  t i es(5))) 

s t ep  
program(0) := a c t i v i  t i es (0 )  

Process Activity 

c l a s s  ARRAY-BASED-INT-STR 
p r o c e s s ~ c t i v i  t y ( )  as ACTIVITY 

r e t u r n  g e t ~ c t i v i  t y  (program(0)) 

Sequence Counter 

c l a s s  ARRAY-BASED-INT-STR 
sequenceCounter(s as SEQUENCE) as ACTIVITY? 

match ( a c t i v i  ti es(s. r e f~umber ) )  
seq as INT-SEQUENCEJCTIVITY: 
if s i n  ~ n d i  ces(sequenceMap) 

i f  S i ze (seq .ac t i v i t ySe t  ) > sequenceMap(s) + 1 then 
/ / c h c r c  i s  s: i l l some a c t i v i t i e s  t h e r e  

sequenceMap(s) := sequence~ap(s) + 1 
r e t u r n  g e t ~ c t i v i  t y  (seq . a c t i v i  tyset(sequence~ap(s)+l)) 

e l s e  / /pro(-ess i s  c:r,dnri 
r e t u r n  n u l l  

e l s e  
sequence~ap(s) := 0 
r e t u r n  get~ctivity(seq.activityset(0)) 

-. 
w r i  te~ine("ERR0R") 
r e t u r n  n u l l  



Accept 

c l a s s  ARRAY-BASED-INT-STR 
a c c e p t ( a c t i v i t y  as ACTIVITY, m as MESSAGE) as Boolean 

a  = g e t 1 n t A c t i v i  t y  ( a c t i v i  t y )  
match a  

inpu tA as INT-INPUTJZCTIVITY: 
i f  m.msgType = inputA.opMsgType then  

r e t u r n  t r u e  
e l s e  

r e t u r n  f a l s e  
-. 

w r i  t e L i  ne(" ERROR") 

r e t u r n  f a l s e  

Tagged With Correlation 

c l a s s  ARRAY-BASED-INT-STR 
taggedwi t h c o r r e l a t i o n ( a c t i v i  t y  as INPUTACTIVITY) as ~ o o l e a n  

a  = g e t ~ n t ~ c t i v i  t y ( a c t i v i  t y )  
match a  

inpu tA as INT-INPUTACTIVITY: 
i f  n o t   input^. cor re la t ionTags  = 1)) then  

w r i  t e ~ i  ne(" HEY! THERE I5 CORRELATION!") 
r e t u r n  t r u e  

e l  se 
r e t u r n  f a l s e  

-. 
w r i  t e ~ i   ERR ERROR") 
r e t u r n  f a l s e  

Initiate Correlation 

c l a s s  ARRAY-BASED-INT-STR 
i n i  ti a t e c o r r e l  a t i o n ( a c t i v i  t y  as INPUTJZCTIVITY) as Boolean 

a  = g e t 1 n t A c t i v i  t y ( a c t i v i  t y )  
match a  

inpu tA as INT-INPUTJZCTIVITY: 
choose c  i n   input^. c o r r e l  a t i  0 n ~ a g s  where c.  i n i  ti a t e  

r e t u r n  t r u e  
i f  none 

r e t u r n  f a l s e  
-. 

w r i  t e ~ i  ne (" ERROR") 

r e t u r n  f a l s e  



Get Correlation Sets to Initiate 

c l a s s  ARRAY-BASED-INT-STR 
getCorrelationsets~o~nitiate(activity as INPUTJCTIVITY?) as s e t  o f  

CORRELATIONSET 
Var CSet as Set o f  CORRELATIONSET = { }  
i f  a c t i v i t y  o n u l l  then  

a  = g e t I n t A c t i v i  t y ( a c t i v i  t y )  
match a  

inpu tA as INT-INPUTACTIVITY: 
s t e p  fo reach  c  i n  i npu ta .  c o r r e l a t i o n ~ a g s  where c . i n i t i a t e  

add new CORRELATIONSET(C. name, { "  id'->new DATA(0) 1) t o  cse t  
s t e p  

r e t u r n  cse t  
-. 

r e t u r n  cse t  
e l s e  

w r i  t e ~ i  ne ("ERROR") 

r e t u r n  cse t  

Get Correlation Sets to Satisfy 

c l a s s  ARRAY-BASED-INT-STR 
g e t c o r r e l  a t i o n s e t s ~ o s a t i  s f y  ( a c t i v i  t y  as INPUTJCTIVITY?) as s e t  o f  

CORRELATIONS ET 
v a r  CSet as Set o f  CORRELATIONSET = { }  
i f  a c t i v i t y  o n u l l  then 

a  = g e t ~ n t ~ c t i v i  t y ( a c t i v i  t y )  
match a  

 input^ as INT-INPUTJCTIVITY: 
s t e p  fo reach  c  i n  i n p u t ~ . c o r r e l a t i o n T a g s  where no t (c .  i n i  t i a t e )  

add new C O R R E L A T I O N S E T ( C . ~ ~ ~ ~ , { " ~ ~ ' - > n e w  DATA(O) 1) t o  cse t  
s t e p  

r e t u r n  cse t  
-. 

r e t u r n  cse t  
e l s e  

w r i  t e ~ i   ERR ERROR") 
r e t u r n  cse t  

Get Internal Activity 

c l a s s  ARRAY-BASED-INT-STR 
g e t ~ n t ~ c t i v i t y ( a c t i v i t y  as ACTIVITY) as INTJCTIVITY 

r e t u r n  a c t i v i  t i e s ( a c t i v i  t y .  r e f ~ u m b e r )  



Random Internal Structure 

~ 1  ass RANDOM-INT-STR imp1 e m e n t ~  INTERNAL-STR 
va r  num as I n t e g e r  = 0  

' 1  . . 
. . .  . . . . . . . . .  .. 

, . pro( ("-;>;nc:-t,i \-, t, .- .-- - 

p r o c e s s ~ c t i v i  t y  () as ACTIVITY 

r e t u r n  new RECEIVE(O) 
/ i  . .......... . .. ... .. 

/ ;  ~ , ,~q~~~n( . ( :> ro : l n? - ( ) r - - .  - 
- - - -  . - -  

sequencecounter(s as SEQUENCE) as ACTIVITY? 
w r i t e ~ i n e ( " c u r r e n t  a c t i v i t y  i s  a  RECEIVE") 
r e t u r n  new RECEIVE (0) 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  / j ; ' c c c . v , t .  - .  
A -  , . .  

accep t (ac t i v i  t y  as ACTIVITY, m as MESSAGE) as Boolean 
l e t  r e s u l t  = random() 
w r i t eL ine ( " rhe  message has c o r r e c t  type f o r  the  w a i t i n g  a c t i v i t y  " + 

r e s u l t )  
r e t u r n  r e s u l t  

/ /  . . .  -. - . . . . . .  - - - . . .  ... -. ~ a g g e d w i  itlcorr-e 1 a t  ion. .............. . . . . . . . . .  - 

taggedwi t h c o r r e l a t i o n ( a c t i v i  t y  as INPUTACTIVITY) as Boolean 
l e t  r e s u l t  = random() 
w r i t eL ine ( " rhe  a c t i v i t y  i s  tagged w i t h  corre7at ion:  " + r e s u l t )  
r e t u r n  r e s u l t  

> , , . - - - - - ... - .... - .. - ........... - -. - - ...... - - - - .in i i a t e ~ o r . r c l a t - ;  on- 
i n i  t i a t e c o r r e l a t i o n ( a c t i v i  t y  as INPUTACTIVITY) as B001ean 

l e t  r e s u l t  = random() 
w r i  t e ~ i n e ( " c o r r e 7 a t i o n  must be i n i t i a t e d :  " + r e s u l t )  
r e t u r n  r e s u l t  
. . . . . . . .  

/' i el:Corre x'ii onSersTo. in i 1: i ;  
g e t c o r r e l a t i o n  i v i t y  as INPUTACTIVITY?) as s e t  o f  

CORRELATIONSET 
v a r  CSet as Set o f  CORRELATIONSET = {) 
add new CORRELATIONSET(" wod' , { "  id '->new DATA(O)}) t o  CSet 
i f  a c t i v i t y  o n u l l  then  

r e t u r n  cse t  
e l s e  

w r i  t e L i  ne ("ERROR") 
r e t u r n  cse t  

. . , . , . .  .......... - - -  - -- --...- 
I - y e  tC.0rr.c 1 0n5etgo,;;: t i  s f  y-. - -  - - -  

g e t ~ 0 r r e 1 a t i 0 n ~ e t ~ T 0 ~ a t i  s f y  ( a c t i v i  t y  as INPUTACTIVITY?) as Set o f  
CORRELATIONSET 

v a r  CSet as s e t  of CORRELATIONSET = {} 
add new CORRELATIONSET("WO~', {" id '->new DATA(O))) t o  cse t  

i f  a c t i v i t y  o n u l l  then  
r e t u r n  cse t  

e l s e  
w r i  t eL ine  ("ERROR") 
r e t u r n  cse t  



References 

The Abstract State Machine Language [online]. Microsoft Research, 
Foundations of Software Engineering [cited June 20031. 
Available from: <www.research.microsoft.com/foundations/AsmL~. 

A. Benczur, U. Glasser and T. Lukovszlu. "Formal Description of a 
Distributed Location Service for Ad Hoc Mobile Networks." In Abstract 
State Machines 2003 - Advances in Theory and Practice, eds. E. Borger, 
A. Gargantini, E. Riccobene. Vol. 2589 of LNCS, pages 204-217, 
Springer, 2003. 

A. Blass and Y. Gurevich. "Background, Reserve, and Gandy Machines." 
In Proceedings of CSL12000, eds. Peter Clote and Helmut Schwichtenberg. 
Vol. 1862 of LNCS, pages 1-17, Springer, 2000. 

E. Borger. "A Logical Operational Semantics for Full Prolog. Part I: 
Selection Core and Control." In CSL'89. 3rd Workshop on Computer 
Science Logic, eds. E. Borger, H. Kleine Biining, M. M. Richter, and W. 
Schonfeld. Vol. 440 of LNCS, pages 36-64. Springer, 1990. 

E. Borger. "A Logical Operational Semantics of Full Prolog. Part 11: Built- 
in Predicates for Database Manipulation." In Mathematical Foundations of 
Computer Science, ed. B. Rovan. Vol. 452 of LNCS, pages 1-14. Springer, 
1990. 

E. Borger. "The Origins and the Development of the ASM Method for 
High Level System Design and Analysis." Journal of Universal Computer 
Science, Vol. 8, no. 1, pages 2-74, 2003. 

E. Borger, U. Glasser and W. Miiller. "The Semantics of Behavioral 
VHDL'92 Descriptions." In Proc. of EURO-VHDL194, pages 500-505, 
Grenoble, France, Sep. 1994. 

E. Borger, U. Glasser and W. Miiller. "Formal Definition of an Abstract 
VHDL'93 Simulator by EA-Machines." In Formal Semantics for VHDL, 
eds. C. Delgado Kloos and Peter T. Breuer, pages 107-139, Kluwer 
Academic Publishers, 1995. 



[9] E. Borger and R. Stark. Abstract State Machines: A Method for High-Level 
System Design and Analysis. Springer, 2003. 

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. 
Weerawarana, Business Process Execution Language for Web Services 
Version 1.1, BEA Systems, International Business Machines Corporation, 
Microsoft Corporation, SAP AG, Siebel Systems, May 2003. 

A. van Deursen, P. Klint, and J. Visser. "Domain-Specific Languages: An 
Annotated Bibliography." In ACM SIGPLAN Notices, 35(6):97-105, June 
2000. 

R. Eschbach , U. Glasser, R. Gotzhein, M. von Lowis and A. Prinz. 
"Formal Definition of SDL-2000 -Compiling and Running SDL 
Specifications as ASM Models." In Journal of Universal Computer 
Science, 7 (1 1): 1025-1050, Springer Pub. Co., Nov. 2001. 

R. Eschbach, U. Glasser, R. Gotzhein and A. Prinz. "On the Formal 
Semantics of SDL-2000: a Compilation Approach Based on an Abstract 
SDL Machine." In Abstract State Machines - Theory and Application, 
eds. Y .  Gurevich, P.W. Kutter, M. Odersky and L. Thiele. Vol. 1912 of 
LNCS, pages 244-265, Springer-Verlag, 2000. 

R. Farahbod, U. Glasser, M. Vajihollahi. Specification and Validation of 
the Business Process Execution Language for Web Services. SFU-CMPT- 
TR-2003-06, Sep. 2003 

R. Farahbod, U. Glasser and M. Vajihollahi. "Specification and Validation 
of the Business Process Execution Language for Web Services." To appear 
in Proc. of the 11th International Workshop on Abstract State Machines 
(ASM'2004), Germany, May 2004. 

Foundations of Software Engineering Group at Microsoft [online, cited 
June 20031. Available from: <http://research.microsoft.com/fse> 

N. E. Fuchs. "Specifications are (Preferably) Executable." In Software 
Engineering Journal, pages 323-324, September 1992. 

U. Glasser, R. Gotzhein and A. Prinz. "Formal Semantics of SDL-2000: 
Status and Perspectives." In Computer Networks, Vol. 42, Issue 3, pages 
343-358 (June 2003), ITU-T System Design Languages (SDL), Elsevier, 
2003 

U. Glaesser, Y. Gurevich and M. Veanes. An Abstract Communication 
Model. Technical Report MSR-TR-2002-55, Microsoft Research. 



U. Glasser, Y. Gurevich, and M. Veanes. "An Abstract Communication 
Architecture for Modeling Distributed Systems." Submitted to IEEE TSE, 
2003. 

U. Glasser, M. Vajihollahi, "Engineering Concurrent and Reactive Systems 
with Distributed Real-Time Abstract State Machines." Submitted to IFIP 
World Computer Congress, France, August 2004. 

U. Glasser and M. Veanes. "Universal Plug and Play Machine Models: 
Modeling with Distributed Abstract State Machines." In Design and 
Analysis of Distributed Embedded Systems, eds. B. Kleinjohann, K. H. 
Kim, L. Kleinjohann, A. Rettberg. Kluwer Academic Publishers, 2002. 

Y. Gurevich. "Evolving Algebras 1993: Lipari Guide." In Specification 
and Validation Methods, ed. E. Borger. pages 9-36, Oxford University 
Press, 1995. 

Y. Gurevich and J. Huggins. "The Semantics of the C Programming 
Language." Vol. 702 of LNCS, 1993, pages 274-308. 

Y. Gurevich and J. Huggins. "The Railroad Crossing Problem: An 
Experiment with Instantaneous Actions and Immediate Reactions." In 
Computer Science Logic, ed. H.K. Biining. Vol. 1092 of LNCS, pages 266- 
290, Springer, 1996. 

Y. Gurevich and N. Tillmann. "Partial Updates: Exploration." In Journal of 
Universal Computer Science. Vol. 7, no. 11 (2001): 918-952, Springer. 

I. J. Hayes, and C.B. Jones. "Specifications are not (necessarily) 
executable." In Software Engineering Journal, no. 6 (1989): 330-338. 

ITU-T Recommendation 2.100 Annex F (1 1/00), "SDL Formal Semantics 
Definition," In International Telecommunication Union, Geneva, 200 1. 

W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf, and W. Rosenstiehl. 
"The Simulation Semantics of SystemC." In Proc. of DATE 2001. IEEE 
CS Press, March 2001. 

SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 [online, cited 
June 20031. Available from: <www.w3c.org/TlUsoap12-part0>. 

R. Stark, J. Schmid and E. Borger. Java and the Java Virtual Machine: 
Definition, Verification, Validation. Springer, 200 1. 



[32] Web Services Description Language (WSDL) Version 1.2 Part 1: Core 
Language [online, cited June 20031. Available from: 
<www.w3c.org/TR/wsdl12>. 

[33] Web Services Transaction (WS-Transaction) [online, cited August 20021. 
BEA Systems, International Business Machines Corporation, Microsoft 
Corporation, Inc. 
Available from: <www.ibm.com/developerworks/library/ws-transpec~. 

[34] WSBPEL TC at the Organization of Advancement of Structured 
Information Standards (OASIS) [online]. Available from: <www.oasis- 
open.org>. 


