HIGH LEVEL SPECIFICATION AND VALIDATION OF THE
BUSINESS PROCESS EXECUTION LANGUAGE FOR WEB

SERVICES

by

Mona Vajihollahi

B.Sc., Computer Engineering, Sharif University of Technology, 2001

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the School
of
Computing Science

© Mona Vajihollahi 2004
Simon Fraser University
April 2004

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author

Approval

Name: Mona Vajihollahi

Degree: Master of Computing Science.

Title of Thesis: High Level Specification and Validation of the
Business Process Execution Language for Web
Services

Examining Committee:

Chair: Dr. Joseph G. Peters
Professor of Computing Science

Dr. Uwe Glisser
Senior Supervisor
Associate Professor of Computing Science

Dr. Evgenia Ternovksa
Supervisor
Assistant Professor of Computing Science

Dr. David G. Mitchell
Examiner

Assistant Professor

School of Computing Science
Simon Fraser University

Ao b Zop

Date Approved:

it

SIMON FRASER UNIVERSITY

Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay to users of the Simon Fraser University Library, and to
make partial or single copies only for such users or in response to a
request from the library of any other university, or other educational

institution, on its own behalf or for one of its users.

The author has further agreed that permission for multiple copying of this
work for scholarly purposes may be granted by either the author or the

Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain

shall not be allowed without the author’s written permission.

The original Partial Copyright Licence attesting to these terms, and signed
by this author, may be found in the original bound copy of this work,

retained in the Simon Fraser University Archive.

Bennett Library
Simon Fraser University
Bumaby, BC, Canada

Abstract

The Business Process Execution Language for Web Services (BPEL) is an XML based
formal language for the design of networking protocols for automated business processes.
Originally introduced by leading e-business vendors, including IBM and Microsoft,
BPEL is now a forthcoming industrial standard as the work on the language continues at
OASIS' within the technical committee on the Web Services Business Process Execution
Language (WSBPEL TC).

We formally define an abstract executable semantics for the language in terms of a
distributed abstract state machine (DASM). The DASM paradigm has proven to be a
feasible, yet robust, approach for modeling architectural and programming languages and

has been used as the basis for industrial standardization before.

The goal of this work is to support the design and standardization of BPEL by
eliminating weak points in the language definition and validating key system attributes
through experimental validation. The necessity of formalisation in the standardization
process is well recognized by the OASIS WSBPEL TC and is formulated as one of the
basic issues by the technical committee. “There is a need for formalism. It will allow us
to not only reason about the current specification and related issues, but also uncover

issues that would otherwise go unnoticed. Empirical deduction is not sufficient.”*

We take a hierarchical refinement approach to model the language. Starting from an

abstract ground model of the core attributes of the language, we perform step-wise

! Organization for the Advancement of Structured Information Standards (OASIS), www.oasis-open.org

? Issue #42, WSBPEL Issue List, WSBPEL TC at OASIS

il

refinements obtaining a hierarchy of ground models at different levels of abstraction
which leads to the final executable model. The executable model is then used together
with a graphical visualization tool to experimentally validate the key attributes of the

language through simulation of abstract machine runs.

v

Dedication

In loving memory of my grand fathers,

two outstanding individuals whose spirits always shine on my life.

Acknowledgements

I am deeply grateful to my senior supervisor Dr. Uwe Gldsser whose knowledge and
experience as well as inspiring support and encouragement truly guided me to explore

new dimensions in computing science.

I would like to thank Roozbeh Farahbod, my colleague, dear friend, and loving husband
both for his professional contributions in this research and for all his devotion and

encouraging presence through our journey together. I am also very thankful to my parents

for their continuous support and unlimited love.

Vi

Table of Contents

APPTOVAL crerreriereiiitnisesisscseessssessessestsassnsanansanssssssassasassssssssnasssntsnssssassnssassssnosssassnsassasassnses ii
A D SETACE e eueneeerneecersnssssssosssssssssssssssesssssssssssssranssssssssossassssssssansesesssssssstansssssssassssssssensessssssense iii
DEAECALION voevererensesanmesessssnsnssssssssssessssssasssssssssasessssssssssssssbsnssararsssorsssssrerenssassss sossssnasasasassasasns \
Acknowledgementscccceeeerssecesniessnssncesnsnns . reseersssnesassesenatsssstissssntssssanssnssrne vi
TADIE OF CONEEILS eeveeereeerrererencasssssssasrssesssesssssssassassesssssssssssssssssasssssassnssssssssanessssosessasssnsanns vii
List of Figures...... teesstessssiosantessastsssssnesssssssarasasaans X
List of Abbreviations and Acronyms . rerereensressessssssnnsnssans xi
Chapter 1. INtroducCtionceeeeevieereenscsenesssssrssssessssssesssssssssesssnesssesssscscssesssnsassnsasssananss 1
L.1. Motivation and ODJECHIVEeveviviiviiiiee e 2
1.2. Thesis Organization..........covvviiiininieinie 3
Chapter 2. Business Process Execution Language for Web ServiceS...cccceveenenencsnsens 4
2.1. | S018 e 16 TT 510) o INVRURURUURUUUUEE PO UUOUOUUPPPPITPNE 4
2.2. OVEIVIEW OF BPEL ..ot e e e ss e e e e e e mrabebesa e aesaesaes 5
2.3. Initial EXAMPIE ...veeviveeiiiiiicieiiieini s 6
24. ADBSLract SYNtax TIEEcooiiiiiiiiiiii i 7
2.5. COITE ALION ..o e e eeeee e eeeeee et eeees et e e e senrasesnnsbbbbsbesebaeaaeaasanapeneenneeaeanesssenes 8
2.6. A CHIVITIES e eee et ee s eeeeeaeseeeeeereee e et aaeseseesaesnaarbraaeastaaneressassessanaaassanerenssnntnarnesees)
2.6.1. B aASIC A CH VILIES ooeeereerereseeneeeerereesreessnnmarseseseenesesssniasarassssseensensssesesseseeannnnns 10
2.6.2. SEPUCTUTEA ACH VITIES . eeererereeseesessaseaseeerassrasusssnsesassssssrerssessssnmsmmenenmneesmess 12

2.17. e-BO0K StOT€ RE-VISILEA ..ievvereieeeeeeiiiiieciiiiiretmrnnanenarssaranersemeseerennensnnnnnrcnerenees 14
2.7.1. PATITIETS vvvvvveeeneeeeeeeee e eeeeseseneeseesesssasaasasseeeasnnnnsnnsaaesesteansansssasssessermenmrsnns 15
2.7.2. e-Book Store BusSiness PrOCESS.....oovvvviieiiiiiie e 16

2.8. Long-running Business Processes and Compensation Behaviour................. 19
Chapter 3. Abstract State Machines c......ccecvsisieicecssnsimsisennnnnisenenccssssssssssssssssesss 20
3.1. Basic AbStract Stat€ MACKITIEScoovvvvevvieiriiiiiieieieerriiicaveerereeeraniensseneeaereaes 20
3.1.1. N OB EIITIIIISITL cocvvneeeeeeeeeererersereeseennrereeeasnaeserssesaaeessnaaaasrnteaeanernesesenensusss 22
3.1.2. PATAlIEIISIN oot eeee e st e et eesseseesansasnsaasasaasneneanananseserenssensrenns 22

3.2. Distributed Abstract State MaChINES ...ovvvveeiiiiiiiiiiiieiie et eeerennreens 23
3.2.1. Concurrency in Sample DASM mOdelSs ... 25
3.2.2. REACHIVILY .evcviieiiierei et s 28
3.2.3. REAl-TIimMeE BeRaVIOUT....ceoeeeeneeeieeee et eeee e e e s eesresesevasaceeneeeeaenennnns 31

3.3. (0 Ty a B Y-V (TP O OO ORP PO PR 31

vil

34.

Chapter 4.

4.1.

4.2,

4.3.
4.3.1.
4.3.2.

Chapter 5.

5.1.
5.1.1.
5.1.2.

5.2

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.
5.12.1.
5.12.2.

5.13.
5.13.1.

Chapter 6.

6.1.
6.2.
6.2.1.
6.2.2.
6.2.3.
6.24.
6.2.5.
6.3.

Chapter 7.

1.1.
7.1.1.
7.1.2.

7.2.
7.2.1.
7.2.2.

7.3.

Notational CONVENTIONScevviireiiiiiiriiieee et srree e erea e e 32
Formalization of the BPEL Web Services Architecture........cccceeevaueee 34
Overall OrganiZationccocveruereeriiirreeier it 34
BPEL Abstract Model: OVEIVIEWcocevvrirerreriiicciieiiieeiee e 36
BPEL Abstract Model: Details...........ocoeroiiiiiieniinniieeniieeiecnee e, 41
Basic ACHVITIES c.vviiviieerreeereeeiieetee et eeitreniaeesineenereeeineesneeesnneesrnesenareennns 41
SrUCIUIEd ACHVILIES c.vveeevrieiiriiiiiiecieieeicecreesee s s e sereeestreesereeesras e eaeseanea s 45
Complete Formal Modelcouvmnnenneeeitieceescsencnnsisaens 52
INDOX MaANAGET......oiiiiiiiiiiiiiiiiceetee it 52
ASSIEN MESSAZE ..ovvevvieieiieiieiiiieeeeire 53
Pick Activity Clearanceccccovrvevriiniiiiiniiiiiieeesne e 55
OULDOX MANAZETcciiivieiiiiieeieeite et n e e reeeaae e 56
EXECULE ACHVILY .ottt 56
RECEIVE ACHIVILY Louvvirieiiniiieieesie et st 60
REPLY ACHVILY ..ottt 61
INVOKE ACHVILY tuveiiiiiiiiiiiicereee ettt 62
Terminate ACHVILY....cooooiiiiiiicicicee e s 62
WALt ACHVILY .eoiiiiiiiine it 62
SEQUENCE AZENLeiiiiiiiiiiiiiiiiciierer sttt st 64
SWILCH AZENE ..viiiiiitiieiecieeee e 64
WHhILE AZENL...ciiiiiiiiioiiiiiiiiiie e 66
PICK AZENL ..ottt et 66
Pick MeSSage AZENT ...c..ooviiiiiiciiiiiiiiiiiniieiiccs et 68
Pick AL AENt ...cc.coviioiiiiiiieiiiiiiiicie e 69
FLOW AZENE .c.viiniiiiieireeere ettt e e b s ere e a s 70
Link SEmMAanticscocverierieririeniieire ettt 71
Executable Model......cieiuicsenicsssninessiossnessasssancsasssansssncessessanssassasasssassans 73
Introduction t0 ASIMLoviriiiiiiie ittt 73
The ASML MOdELoiiiiiiiiiiiii e 74
Original MOdel........coccoviiiiiiiiiiiiiniinc e 75
Internal SIUCTUTEocovviiiieeireire et et 76
Execution-Specific Additions to the ASM Model.............cccocovniinnnnn 77
GUI-Related eXteNSIONS.ccccvevieeeeerieenieeeienie it ccesee e e sree e 78
Communication Modelc.coooieiiiiiiiiiiiii 80
Experimental Validation............c.ocooiviiiiiiiiiiiiice 81
Critical Analysis of BPEL ..o 82
AMDIGUILIES ...ovvviiieiiieiiii e e 82
COITEIALIONS.eveeiiiee ettt e s e 82
Synchronous Receive/Reply.......cccooeviiiiiiiiiiiiiiniii 83
LL00SE ENAS ..ooviiiiiiiieciieeriie ettt e s 84
Partners COmMMUNICATIONcooevreeririrrrieiiirieenirene e 85
Re-Initiating a Correlation Set............coovveevcvcrciiiinicincin, 85
TNCONSISIEIICIES .ottt ca e 88

Chapter 8. Conclusion and Future Workceeriinnemnnnicccisnsssnnnncscssnssmmsssnmesnanes 90

Appendices ttessessnssssssnsessssrsssesanssnssnsssassanns 92
Appendix A. BPEL Abstract Syntax TTeeccocccevieiiiiriiiiiiiiiiiccceeeceeenceee e 92
Appendix B. Abstract Modelc.cccooiiiiiiiiiiiiiiieccc e 97
B.1. Initial Definitionsccoiuiiiiiiiiiiiiie e e e 97
B.2. PrOGIAIMS oot s 100
Appendix C. Complete Formal Model.........coovviviiiniiiininniniiiicciees 106
C.1. Initial DefiNitionsccoviiiiiiienieiie ettt e e 106
CL2 PIOZIAINS ...ttt et s et e e e e 113
Appendix D. Executable Modelccoociiiiiiiiiiiiii et 122
D.1. Original MOdelcccovviiiiiiiiicc e 122
D.2. Execution-Specific Additions to the ASM Model..........cccoveviviiniecneniinnnnnn, 129
D.3. GUI-Related AdditionS..........cccoocuerireniieiiriiniiiereneinee et 134
D.4. Internal SIUCTUTEcoiiiiiiiiiiiiiii et 141

ReEfEIENCES . .ovuiruinrensicrinesnssiinesessnssssnsnssnssassssssssansanssssassassnsassassenssassassnssassssssssssssssnsssssssas 148

iX

List of Figures

Figure 2-1 The structure of a BPEL process definitionc.coocerinienciiiniiecrne 5
Figure 2-2 The e-BOoK StOre bUSINESS PrOCESSevveeuriiiieeniieeriiieitenieceeesieeiereseeesee e sieees 6
Figure 2-3 A flow activity with synchronization dependenciescccoceeveeirieniecienane, 14
Figure 2-4 Partners and port types of the e-Book Store business process.............cevn.... 16
Figure 3-1 A partial ordered set Of MOVEScccoiiiiiiiiiniiiiiiiiiii e 24
Figure 3-2 All possible runs of the DASM of Example 3.1c.cccoccoiiiiiiniinieieneirenee 26
Figure 3-3 Some segment of possible runs of Example 3.2 ... 27
Figure 4-1 The composition of the BPEL service model and the network model............. 35
Figure 4-2 A three layer approach: From formal documentation to the executable

TNOAE] ..ot e e e 36
Figure 4-3 High-level abstract structure of our BPEL model...........cccocooeoniiiciiiincnnnne. 36
Figure 4-4 The combination of all potential control structures of DASM activity

agents at the top-level layer..........cooooriiiiiii 39
Figure 5-1 The structure of an e-book Store business process instance in our

10707 [} O OO PO U PO PO OSSO OT VU RO 60
Figure 6-1 Graphical user interface of a sample AsmL model ..., 79

List of Abbreviations and Acronyms

ASM

BPEL

DASM

GUI

LRM

OASIS

SOAP

WSBPEL TC

WSDL

XML

Abstract State Machine

Business Process Execution Language for Web Services

Distributed Abstract State Machine

Graphical User Interface

Language Reference Manual

Organization for the Advancement of Structured Information

Standards

Simple Object Access Protocol

Web Services Business Process Execution Language Technical

Committee

Web Services Description Language

eXtensible Markup Language

X1

Chapter 1. Introduction

In this thesis, we formally define an abstract operational semantics for the Business
Process Execution Language for Web Services — BPEL4WS (or BPEL) [10] - in terms of
a real-time distributed abstract state machine (DASM) model [23], [20]. Version 1.1 of
the informal language description [10], henceforth called the language reference manual
or LRM, is a forthcoming industrial standard proposed by the OASIS® Web Services
Business Process Execution Language Technical Committee (WSBPEL TC) [34]. BPEL
is an XML based formal language for modeling and design of the Web services
orchestration and automated business processes. As such, it builds on other existing
standards for the Internet and World Wide Web and, in particular, is defined on top of the
service model of the Web Services Description Language (WSDL) [32]. A BPEL process
and its partners are considered as abstract WSDL services that interact with each other by
sending and receiving abstract messages as defined by the WSDL model for service

interaction.

The abstract state machine (ASM) paradigm has been extensively used for formal
specification of programming languages (e.g. Java [31], Prolog [4], [5]) and system
modeling languages (e.g. SDL [12], [13], [18], VHDL [7], [8], SystemC [29]). The ASM
formalism supports the integration of high-level modeling and analysis in the
development cycle [9] which enables it to serve as a modeling basis in industrial

standardization (e.g. ITU-T SDL-2000) [28].

3 Organization for the Advancement of Structured Information Standards (OASIS)

1.1. Motivation and Objective

This work was mainly inspired by the successful experience from applying the
asynchronous DASM model for semantic modeling to various industrial system design
languages, including the ITU-T language SDL-2000 [12], [13], [18]. The resulting SDL
formal semantics was officially approved by the International Telecommunication Union

(ITU) as part of the SDL language definition [18].

The goal of our work is twofold. Formalization of BPEL semantics serves two main
purposes, namely: (1) to eliminate deficiencies hidden in natural language descriptions,
for instance, such as ambiguities, loose ends, and inconsistencies; (2) to establish a
platform for experimental validation of key language attributes by making abstract
operational specifications executable on real machines. For the development of BPEL,
the responsible TC at OASIS has listed about one hundred basic issues. Among those, the
necessity of formalization in the standardization process is well recognized as a powerful

means for dealing with weak points of the LRM [15].

“There is a need for formalism. It will allow us to not only reason about the current
specification and related issues, but also uncover issues that would otherwise go

unnoticed. Empirical deduction is not sufficient.”—Issue #42, OASIS WSBPEL TC [34].

Formalization of language semantics based on informally specified requirements faces
the non-trivial problem of ‘turning English into mathematics’. Ideally, the formal and the
informal language definition should complement each other in the endeavor to sharpen
requirements into specifications. That is, the formal model provides the ultimate
reference whenever the clarification of subtle language issues that are difficult to
articulate in plain English requires mathematical precision. The gradual formalization of
the key language attributes at different levels of abstraction and with a degree of detail
and precision as needed would be certainly beneficial for practical purposes, such as

industrial standardization [18].

Our definition of the abstract operational semantics presented here forms a service
abstract machine and is organized into three basic layers reflecting different levels of
abstraction. The top layer, called abstract model, provides an overview and defines the
modeling framework comprehensively. The second layer, called intermediate model,
which is the result of the first refinement step, specifies the relevant technical details and
provides the complete formal model of the core constructs of the language. Finally, the
third layer, called executable model, provides an abstract executable semantics of BPEL
implemented in AsmL [1]. To this end, the service abstract machine model forms a
hierarchy consisting of three DASM ground models [2], [9] obtained as the result of
stepwise refinements of the abstract model. The executable model is complemented by a
graphical user interface (GUI), facilitating experimental validation through simulation

and animation of abstract machine runs.

1.2. Thesis Organization

The thesis provides brief introductions to BPEL and the ASM paradigm, presents the
BPEL service abstract machine at different levels of abstraction, and discusses the results
and possible future work. Chapter 2 introduces BPEL and describes the core aspects of
the language. Chapter 3 provides an overview on abstract state machine paradigm and
investigates the DASM model. Chapter 4 introduces the abstract model. In Chapter 5, the
result of the first refinement step, i.e. the intermediate model, is introduced. In Chapter 6,
the executable model is introduced and some results of the experimental validation are
presented. Chapter 7 provides a critical analysis of BPEL based on the experience
achieved through the formal modeling process. Chapter 8 concludes the thesis and

discusses the possible future work.

Chapter 2. Business Process Execution Language for
Web Services

2.1. Introduction

Several XML based Web standards have been introduced to define the Web services
space and facilitate interoperability between a variety of Web applications, for instance,
in e-business. Each of these standards targets a specific domain within the Web services
space. For example, the widely used Simple Object Access Protocol (SOAP) [30] defines
a standard message passing protocol, while WSDL provides a standard way of describing

Web services [32].

These standards basically provide us with a structural view of Web services. They enable
us to view Web services as communication endpoints which interact with each other by
sending and receiving messages via a collection of ports associated with each of the
communication endpoints. To this end, WSDL and SOAP support a stateless model of

Web services.

The Business Process Execution Language for Web Services (BPEL) builds on top of
WSDL (and indirectly also on SOAP) effectively introducing a stateful interaction model
that allows to exchange sequences of messages between business partners (i.e. Web
services). Like many other domain specific languages (DSLs), BPEL is designed to
capture the problems in a particular application domain which is stateful interaction of
Web services. Domain specific languages are usually less expressive than general-
purpose languages; however they contain appropriate domain specific notations and high
level domain specific abstractions that make them suitable to be used in their desired

application domain [11].

In April 2003, members of OASIS, including IBM and Microsoft among other leading
companies in the e-business market, formed the Web Services Business Process
Execution Language Technical Committee (WSBPEL TC) [34] in order to continue work
on BPEL version 1.1. As for other standardization attempts, e.g. ITU-T standards for
telecommunication, standardization of BPEL is inspired by the facilitation it provides in
trades and transferring technologies and is expected to increase interoperability,
reliability and consumer comfort. The objective of the WSBPEL TC is to standardize the
common concepts for a business process execution language that forms the technical

foundation for designing and executing business processes [34].

2.2. Overview of BPEL

BPEL Document
BPEL N [Partner Links j
p
WSDL '\‘ Variables
\ Y | (Message Containers)
XML-based Y
. \ _ Y,
Messaging \ >
(SOAP) Activity
\\ (Process Program)
Network VL J
\' WSDL Document

Figure 2-1 The structure of a BPEL process definition

The BPEL process model is built on top of WSDL. A BPEL process and its partners are
defined as abstract WSDL services, and they use abstract messages defined by WSDL
model for interaction. Figure 2-1 gives an overall view of the general structure of a BPEL
business process document. A process is defined by specifying its partners (Web services
that this process interacts with), a set of variables that keep the state of the process and an
activity defining the logic behind the interactions between the process and its partners.
This definition is just a template for creating business process instances. Process creation

in BPEL is always implicit and is done by defining start activities. A start activity is

5

either a receive or a pick activity that is annotated with ‘createlnstance = yes’ causing a
new process instance being created whenever a matching message is received. At least
one such start activity must be defined in a template. Whenever a message arrives for a

start activity, a new instance of the business process is created and starts its execution.

2.3. Initial Example

To better understand the basic structure and some fundamental concepts of BPEL, we
will provide an example: a fictitious e-Book Store. The process of buying a book from
this online store is simple. A customer first sends the order to the e-Book Store. The book
store then sends the order to the publisher and also sends a shipping request to a shipping
company. The book store then waits to receive a call-back from the shipping company
containing the shipping schedule. Upon receiving that call-back, it replies back to the

customer indicating the order is received and processed successfully.

Dot e e-Book Store Business Process

receive

S h invoke [€---7"°"
'I K — it
' ' ' .
| i ' invoke L
1 i
i ' S -
' i !
' ' :
|\ h 4 ! 4
\ 1 . . »
\ \ receive . Shipping
. i : Company
‘\
\\
Customer ' reply

Figure 2-2 The e-Book store business process

Figure 2-2 illustrates the structure of the interaction between publisher, shipping

company, and customer for the sample business process of our e-Book Store. A business

process interacts with other services through its ports, where each port is of a certain port
type specifying some set of operations. Operations can be Input-Only, Output-Only, or

Input-Output.

An abstract schema of the e-Book Store business process can also be found in Figure 2-2,
where the numbers show the order in which the events occur. The BPEL process consists
of 5 basic activities, two of which being executed concurrently (as indicated by identical
order numbers annotating these two events). A process is instantiated when a message is
received from the customer (interaction #1). This specific process instance is then
responsible for serving the customer request. It will contact the publisher and the
shipping company, at the same time, by invoking the corresponding Web services
(interactions #2) and waiting for their confirmation (interactions #3). After receiving a
call-back from the shipping company containing the shipping schedule and other required
information (interaction #4), the e-Book store process instance will send a reply message
to the costumer including all the required information (interaction #5). The customer’s

order request is then serviced and the transaction is completed.

2.4. Abstract Syntax Tree

A systematic approach to capture the complete structure of a BPEL process (focusing on
the relevant aspects rather than syntactical details) is its representation in the form of an
abstract syntax tree [18]. Many times during this project we had to refer to a precise and
concise definition of the structure of a BPEL process. As the language definition in the
LRM is currently lacking an abstract syntax, we have defined our own abstract syntax as
outlined below. The complete definition of the abstract syntax tree is presented in

Appendix A.

ProcessDef R ProcessName
ProcessAttributes
PartnerLinks?
Partners?
Variables?
CorrelationSets?
FaultHandlers?
CompensationHandler?
EventHandlers?
Activity

Activity 1a= BasicActivity
| sStructuredActivity
|ScopeRelatedActivity

BasicActivity ReceiveAct | ReplyAct |InvokeAct

|AssignAct | ThrowAct |TerminateAct
|waitAct | EmptyAct

StructuredActivity ::= SequenceAct | SwitchAct |WhileAct
: |PickAct - | FlowAct

ScopeRelatedActivity ::= Scopehact | CompensateAct

2.5. Correlation

One of the main challenges in integrating Web services, and specifically business
processes, is to deal with stateful interactions. Business processes normally act according
to a history of external interactions. Therefore, it is necessary to keep track of the state of
each business process instance. Since we have different instances of a business process,
messages need to be delivered not only to the correct port, but also to the correct instance
of the business process. To ensure global interoperability and avoid implementation
dependencies, the mechanism required for dynamic binding of messages needs to be
defined in a generic manner rather than leaving this to the individual implementations

[10].

The need for such a mechanism can be seen in our e-Book Store example. Each order that
is sent by the customer is handled by an e-Book Store business process instance. For each

order that is sent from this process instance to the publisher, there is also one business

process instance at the publisher side. These pairs of process instances need to interact
with each other and as a result they need to “know” each other. Therefore, there must be
a mechanism to route messages to the correct process instances. One standard approach
to this problem is to carry a business token (e.g. such as an order number) in all
transactions between e-Book Store and the publisher. This business token acts as a key
indicating the exact business process instances. When a message arrives at each Web
service, it is routed to the correct process instance that is identified based on the value of
the business token in the message. In this way, all the messages that arrive for a specific

process instance should carry the desired business token value.

Such a mechanism is supported in BPEL by providing the ability to define a set of such
correlation tokens; i.e. a set of tokens shared by all messages in a correlation group. This
set is called a correlation set. Once a correlation set is initiated, the values of correlation
tokens must be identical for all the messages in that correlation group. In this way, an

application-level conversation between business process instances is identified.

2.6. Activities

Activities that can be performed by a business process instance are categorized into basic
activities and structured activities. Basic activities perform simple operations like
receive, reply, invoke, assign, throw, terminate, wait, and empty. Structured activities
impose an execution order to a collection of activities. It is important to note that
structured activities can be nested. Structured activities include sequence, switch, flow,

pick and while. The following sections briefly describe the semantics of BPEL activities.

2.6.1. Basic Activities

Receive Activity

The role of a receive activity is twofold: it is used both for providing Web services
operations to the partners and for creating new instances of the business process. A
receive activity specifies the partner link from which a message is received and the port
type and operation that is used in receiving the message. If receive activity is annotated
with the createlnstance attribute set to ‘yes’, a new instance of the business process must be
created when the expected message arrives. In this sense, receive acts as the start activity
of the process and has an important role in its life cycle. It is worth mentioning that such
start activity must be an initial activity as well, that is every other basic activity that is
performed prior to or concurrently with this receive activity must be annotated with the

createlnstance attribute set to ‘yes’ as well.

Reply Activity

A reply activity is always associated with a receive activity. It is meant to send a response
to a request that is accepted by the associated receive activity. Such an interaction is
viewed as a synchronous interaction in BPEL, whereas asynchronous responses are

treated as Web services invocation and performed by an invoke activity.

Invoke Activity

An invoke activity enables a business process instance to use the services that are
provided by its partners. These services are used by invoking certain operations provided
by the Web services. The operations can be synchronous request/response or
asynchronous one-way operations, as described in [32]. An invoke activity can perform

both types of operations by defining corresponding input and output messages. In an

10

asynchronous interaction only the input variable is defined*, whereas in synchronous
interactions both input and output variables are mandatory.
Wait Activity
A wait activity defines a period of time for which the business process instance will have
to wait. This period of time is specified either by a duration (for) or by a deadline (until).
Terminate Activity
A terminate activity stops all the activities currently running in a business process
instance and terminates the behaviour of the business process instance.
Empty Activity

An empty activity performs the simplest job; it does nothing.

Assign Activity

An assign activity is used to (1) copy data from one variable to another one; (2) construct
new data using expressions; and (3) copy endpoints references to and from partner links.
In a valid assign activity, the elements need to be type compatible. Type compatibility

constraints and further details can be found in [10].

4 An input variable carries the message that is sent to the partner in order to invoke its operation. It is called
“input” variable, because it carries the input for that operation.

11

Throw Activity

A throw activity is used to report an internal fault explicitly. It specifies the name of the
generated fault and, optionally, it can also fill out a fault variable with further information

about the fault and pass it to the respective fault handler.

Note: Since the behaviour of the assign activity and the throw activity is not captured in
this project, the description given here is minimal. Capturing the behaviour of these two
activities requires further refinements and considerations and is carried out as part of
another project in our group. For more details about the behaviour of these activities, the

reader is referred to [10].

2.6.2. Structured Activities

Sequence Activity

A sequence activity structures a collection of activities to take place one after another. A

sequence activity is completed when the last activity in the sequence is completed.

Switch Activity

A switch activity provides the ability to choose among a collection of activities. A set of
conditibnal branches, called case elements, are introduced in switch activity and are
examined in the order they appear. The first branch with true condition is chosen and its
corresponding activity is then executed. If none of the cases is true, the otherwise branch
will be taken and its activity is executed. A default otherwise branch is assumed to exist

with an empty activity.

Flow Activity

A flow activity enables the concurrent execution of a set of activities together with

synchronization between these activities. A flow activity is completed when all its

12

activities have finished execution. The synchronization dependencies are expressed by

defining links between concurrent activities.

Link Semantics: Each BPEL activity includes the standard source and
target elements that are used to link two activities. An activity can be
defined as the source or the target of a set of links. Links are defined to
impose synchronization dependencies on concurrent activities. If activity
A is the source of link L and activity B is the target of link L, then we say
B has synchronization dependency on A; i.e., if B is ready to start
execution, it has to wait until the status of link L (and any other incoming
links) is determined. Once A is completed, the status of all outgoing links
(including L) is determined based on their transitionCondition; if
this condition is true the status of the link is positive, otherwise it is
negative. Once the status of all incoming links of B (including L) is
determined the standard joinCondition of B is evaluated. If the
condition is true then B is executed; otherwise a fault is thrown’. Figure
2-3 shows how the synchronization dependencies are specified in a flow
activity. A, §, and D are three activities that are executed concurrently in
flow F. § is a sequence activity in which B and C are executed in the given
order. Two links are defined in the flow activity: LinkAroB and LinkDtoB.
When the flow activity is executed, A, § and D start their execution
concurrently. However, § will stop immediately because its first activity
(B) has synchronization dependency both on A and D. Thus, it has to wait
until A and D are completed and the status of LinkAtoB and LinkDtoB is
determined. Once completed, LinkAtoB becomes positive and LinkDtoB
becomes negative. The joinCondition of B is then evaluated and B is

executed if the join condition is true.

5 “If the explicit joinCondi tion is missing, the implicit condition requires the status of at least one
incoming link to be positive [10, 12.5.1).”

13

Flow F

<link name= “LinkAtoB">
<link name= “LINKDtoB">

A

<source linkName= "LinkAtoB”)
transitionCondition = “C(1,J)"> LinkAtoB:
~ POSITIVE

Sequence S

B
<target linkName= “LinkAtoB">
<target linkName= “LinkDtoB"> <

LinkDtoB:
C \ NEGATIVE

D
<source linkName= "“LinkDtoB"> j

Figure 2-3 A flow activity with synchronization dependencies

Pick Activity

A pick activity waits on a set of events for one of them to occur and then executes its
corresponding activity. If more than one event occurs then the pick activity will choose
the one that has occurred first. As soon as an event is chosen, the pick activity no longer
accepts any of the other events. Basically, there are two types of events: onMessage
events and onAlarm events. The semantics of an onMessage event is very similar to a
receive activity. An onMessage event occurs as soon as its corresponding message is
received. onAlarm events are very similar to timers. They wait for a period of time or

until a certain deadline is reached before they occur.

2.7. e-Book Store Re-visited

Based on the description of BPEL activities presented above, we now present the sample

business process from our e-Book Store in a pseudo-code-like style. Although the

14

- definition is written in a syntax similar to BPEL, there are certain details and
requirements that have not been considered. Hence, the complete and correct BPEL

definition requires dealing with these details and following the precise syntax.

2.7.1. Partners

The first step in defining a business process is to identify its partners. This includes
identifying the shape of the conversation with partners by specifying messages and port
types used in the interactions. The services with which a business process interacts are
identified with partner links. From a partner link one can characterize the conversations
between two services and the port types that are used in the communication. Thus, a
partner link provides the static shape of the conversation. Nevertheless, it is worth
mentioning that communicating with a partner via a partner link requires additional
information about the actual partner service and communication bindings, which can be
set as part of the business process deployment. This is outside the scope of BPEL [10,
Section 7.2]. Figure 2-4 illustrates the static shape of e-Book Store relationships with its
partners. Each circle specifies one partner link of the e-Book store business process. The
business process interacts with three partners, through three partner links: purchasing,
publishing, and shipping. These identifications are used in the definition of the business

process, as it can be seen in the next section.

15

e-Book Store

Business Process I Publishing |

P

« | 3

Customer

Shipping
Company

Figure 2-4 Partners and port types of the e-Book Store business process

2.7.2. e-Book Store Business Process

As illustrated below, the business process of e-Book store is named
eBookStoreProcess and contains three partner links: purchasing, publishing and
shipping. A set of variables is introduced in the process to maintain the state of the
process. Each variable corresponds to a message that is communicated between the
business process and its partners. In a way these variables work as wrappers for the
messages; i.€. as soon as a message arrives, the business process wraps it in a variable
and uses it afterwards. For example, order is a variable that embraces orderMessage
as soon as it arrives at the business process. It is then used to conduct further
communication with other services. bookOrder is a correlation set which identifies the
business token that is required for specifying business process instances. Although the
details are not presented here, orderNo is associated with a specific part of each of the
messages belonging to the correlation group. In eBookStoreProcess all of the

interactions are annotated with this correlation set, meaning that all interactions belong to

16

the same correlation group. Hence, this business token must be carried by all

incoming and outgoing messages.

Process :
ProcessName = "eBookStoreProcess"
‘/Partner Definitione '
PartnerLinks

 PartnerLink name="purchasing"
PartnerLink name="publishing"
PartnerLink name="shipping"
/svariablie Definitions
Variables :
Variable
name="order"
messageType="orderMessage"
Variable '
name="shippingConfirmation"
messageType-"sh1pp1ngConf1rmat1onMessage"
Varlable
name="publishingConfirmation"

‘ messageType-"publlshlngConflrmat10nMéssage"
Variable

name—"shlpplngInfo"

messageType—"shlpplngInfoMessage"
SlCorrelation Sets ‘ ,
CorrelationSets
CorrelatlonSet
name-"bookOrder" :
properties= "orderNb”
//Main Activity: Seguence
Sequence o o :
J//Interaction #1: Receive order from the
' Receive :
; partnerL1nk-"purchas1ng"'
portType="purchasePT"
operation="sendPurchaseOrder"
variable="order"
createInstance="yes"
correlation '
‘ set="bookOrder" 1n1t1ate-"yes"
//Interactions #2,#3: Concurrent Invokes
Flow - :

customer

Invoke : S
partnerLink="publishing"
portrype—"publlshPT"
qperatlon~"bookRequest"
1nputVar1able ="order"
outputvarlable—"publlsherConflrmatlon"

17

the

correlatlon S .
set—”bookOrder" initiate="No"

Invoke
partnerLink=="shipping"”
portType="shippingPT"
operation="shippingRequest"
inputVariable="order"

outputVariable="shippingConfirmation"
correlation :
set="bookOrder" initiate="No"
//Interaction #4:Receive the schedule from the shipping company
Receive
partnerLink="shipping"
portType="shippingPT"
operation="sendInfo"
varlable—”shlpplgInfo"
correlation

set="bookOrder" 1n1t1ate—"Nb"
JInteraction #5 Keply to the customer .
Reply ' ,
: partnerL1nk-"purchas1ng"
portType—"sendPurchaseOrder"
‘operation="sendInfo"
varlable—"shlpplngInfo"
correlation: S
set -"bookStore" iﬁitiate:"Nb"

The main activity of this process is a sequence activity, which causes a sequence of
actions taking place one after another. The first activity in the sequence is a start activity;
if a message is received which belongs to the conversation identified by the purchasing
partner link, purchasePT port type, and sendPurchaseOrder operation, a new
instance of the business process must be created to handle this request. Moreover, the
bookStore correlation set is initiated which initializes and keeps the value of orderNo
for further interactions. In the next step, the business process instance contacts the
publisher and the shipping company at the same time and requests an order confirmation
from both. This is accomplished by a flow activity which performs two invoke activities,
one for the publisher and one for the shipping company. It is important to note that both
invoke activities follow the bookStore correlation set, and hence the messages must

carry the correlation token. When the confirmations are received from both partners, the

18

business process instance performs the next action, which is to receive a call back from
the shipping company specifying the shipping schedule and other information. The last
activity is a reply activity that passes this information to the customer. As mentioned
before, both of these activities belong to the bookStore correlation group, therefore the

message (shippingInfo) must carry the orderNo information.

2.8. Long-running Business Processes and Compensation Behaviour

Business processes are meant to define the interactions between several partners that are
based on certain business logic. These processes usually have long durations and include
asynchronous message passing between the partners. Consequently, error handling in
such an environment is not easy. It is done by compensation, i.e. “application specific
activities that attempt to reverse the effects of a previous activity that was carried out as
a part of a larger unit of work that is being abandoned.” [10, Section 13.2] This ability
of compensating exceptions in an application-specific manner enables business processes

to have so-called Long-Running (Business) Transactions (LRTSs).

Compensation and fault handling in BPEL is done using the scope activity. Scope defines
a logical unit of work for which a compensation handler or a set of fault handlers can be
defined. A compensation handler defines the compensating behaviour of the logical unit
in case of an error. A fault handler defines the reaction of the logical unit to an error.
However, BPEL only deals with LRTs locally and within a single business process
instance. The problem of achieving distributed agreement is addressed in [33]. As
outlined in the LRM, the need to combine WS-Transaction with BPEL is well
recognized. Clearly, the formal definition of BPEL and WS-Transaction will be an asset
in this regard. Although they are not addressed in this project, the formal definition of

compensation behaviour and fault handling is captured by another work in our group.

19

Chapter 3. Abstract State Machines

Our approach to modelling is based on the abstract state machine (ASM) paradigm. In
this chapter, we first give a brief introduction to the basic ASM concepts, including
parallelism and non-determinism. In the second section, we introduce distributed abstract
state machines (DASMs) as a generalization of basic ASMs. The DASM computation
model is widely used for modelling concurrent and distributed systems; hence we try to
investigate the main DASM concepts, namely concurrency, reactivity and real-time
behaviour, in more detail. The last section describes the operations and convention that

have been introduced in our DASM model and used in this project.

The definitions recalled here should be sufficient for the purpose of this thesis. For a
more comprehensive and rigorous definition, we refer the reader to the original literature

on the theory of ASMs [23], 3] and their applications [9].

3.1. Basic Abstract State Machines

A basic ASM consists of a program, a set of states which can be viewed as first-order
structures in mathematical logic, and a collection of initial states. A state S of vocabulary
V consists of a base set X and the interpretations of function and relation names defined
in V. An r-ary function name is interpreted as an r-ary function from X "to X, called basic
function of S. Similarly, an r-ary relation name is interpreted as an r-ary function from
X "to {true, false}, a basic relation of S. Every vocabulary contains static logic symbols
true, false, undef and standard Boolean operations. The default value for basic functions
is undef and is false for basic relations. Constants are represented as nullary function

names and are interpreted as elements of X. Unary relation names can be interpreted as

20

special universes and allow a state to be viewed as a many-sorted structure where each

universe represents some sort [23], [9].

A basic ASM program is just a rule. In basic ASMs this rule can be an update rule, a

conditional rule, a do-in-parallel rule or an import rule.

An update rule has the form

f@,...t)=t,
where fis a dynamic function (or relation) and each ¢,is a term (recursively defined as in
first-order logic). A location of a state S is defined as a pair (f,Xx) where fis an r-ary

dynamic function name and X is an r-ary tuple of elements. The content of this location is

defined as ¢ = f(X). An update (I, ¢") of state S replaces the old content of / with ¢'in the
next state. An update rule of the above form fires an update (I,v,) where [= f(v,,...,v,)

and v, is the value of each ¢,.

A conditional rule has the form

if e then R/ else R2

where ¢ is a Boolean term and RI, R2 are ASM rules. If e is evaluated to true then RI is

executed, otherwise R2 is executed.

A do-in-parallel rule has the form
do-in-parallel
RI
R2

where R1and R2 are ASM rules. Such a rule executes RI and R2 simultaneously.

In order to capture all sequential algorithms, the import rule is introduced in addition to
these three basic rules. By using the import rule, we can model dynamic resource
allocation for instance, such as adding a new elements to the model, e.g. add a new node

to a graph. For further details the reader is referred to [23].

21

3.1.1. Non-determinism

Non-determinism is often required for describing algorithms at higher levels of
abstraction. The basic ASM model is extended with the choose rule to capture explicit

non-determinism.

A choose rule has the form
choosex e S

R(x)

where R(x) is a rule. To execute this rule, any element of S is chosen non-

deterministically and R(x) is executed.

A generalized version of choose is also introduced in [23], where a satisfying condition

can be added to the rule:

choose x € S with g(x)
R(x)
where g(x) is a Boolean term. The meaning of this rule is to choose an arbitrary x among

those elements of S that satisfy g; i.e. {y|y € S, g(y) = true}.

3.1.2. Parallelism

The notion of parallelism is introduced in the basic ASM model by means of the forall

rule.

A forall rule has the form
forallxe S
R(x)
where R(x) is a rule. It executes all rules R(x), where x is an element of S, simultaneously.
Analogous to the definition of choose, the forall rule can be generalized by introducing a

satisfying condition.

22

3.2. Distributed Abstract State Machines

A distributed abstract state machine M includes a set of agents. The behaviour of each
agent is described by its program. A DASM M is defined over a given vocabulary V with
a program [y and a non-empty set [y of initial states. An initial state specifies a possible
interpretation of V over some potentially infinite base set X. The behaviour of an agent a
in a given state § of M is defined by programg(a). The dynamic universe AGENT
represents the set of all agents in a DASM and the static universe PROGRAM represents

the set of programs that these agents can execute. Agents can be dynamically added to or

removed from AGENT.

In every state § reachable from an initial state of M, the set AGENT is well defined as

follows.
AGENTs ={ x€ X: programs(x) € PROGRAM}

Each computation step of a single agent is called a move. Agents operate concurrently. As
stated in [23], every run p of a DASM M is given by a triple (P, 4, o) satisfying the

following conditions:

1- P is a partially ordered set of moves where each move has only finitely many
predecessors; i.e. {y| y < x} is finite. Figure 3-1 presents one such partially

ordered set of moves where each m; represents a move.

2- The set of moves of a single agent are linearly ordered. A is a function on P
associating agents with moves, so {x| A(x) = a} is linearly ordered for every
agent a. In Figure 3-1, m,, m,, m,, and ms belong to agent a; while m; and ms

belong to agent a,.

3- o(X) returns a state of M resulted by performing all moves in X; i.e. for each
initial segment Y of P, 6(P) specifies a state of M. o(<J) is an initial state. An
initial segment of P is a substructure Y of P such thatif ye Yandx <y in P

then x € Y. In Figure 3-1, the circles specify initial segments of P.

23

4- The coherence condition: If x is a maximal element in a finite initial segment
X of P and Y = X —{x} then o(X) is obtained from o(Y) by firing A(x) at o(Y)

(A(x) is an agent in o(Y)). In Figure 3-1, ms is the maximal element of X and
Y=X- {mg}.

Figure 3-1 A partial ordered set of moves

While the above definition is concise, it needs further investigation to fully understand
the implication of the coherence condition on the runs of a DASM. Each partially order
run specifies a class of possible executions of a DASM. One immediate corollary of the
coherence condition is expressed in terms of the linearizations of partially ordered runs;

i.e. if p'is a finite initial segment of p, then all linearizations of p' yield to the same final

state of M.

To further illustrate the meaning of the coherence condition in the above definition and
the relationship between partially ordered runs and their linearizations, the following

section considers two simple but meaningful examples.

24

3.2.1. Concurrency in Sample DASM models

We show some implications of the coherence condition on the semantics of partially

ordered runs through the following examples.

Example 3.1.° Suppose that we have three propositional variables (dynamic nullary
relation symbols) door, window and light. Intuitively door = true means that "the door is
open", window = true means that "the window is open" and light = true means that "the
light is on". Now, consider a DASM consisting of three agents: a door manager (agent
d), a window manager (agent w) and a light manager (agent [). The door manager opens
the door only when the window is closed (move x), the window manager opens the
window only when the door is closed (move y), and the light manager turns on the light

when either the door or the window is closed (move z).

WindowManagerProgram = if —door then window := true
DoorManagerProgram = if —window then door := true

LightManagerProgram = if —~door or —window then light := true

Figure 3-2 shows all of the possible DASM runs assuming that in the initial state Sy the
door and the window are closed and the light is turned off. There are six possible runs

(M -M;) yielding to two different final states (Sy4, Ss).
M; = ({x, z},0), M, = ({x,z},{(x<2)), Ms = ({x, z},{z < x)),

My =({y, 2},0)s Ms = ({y, z}, ¥y <2)), Ms = ({y, z},z<y)).

We cannot have x < y because w is disabled in state §; obtained from Sy by performing x.
Similarly we cannot have y < x because d is disabled in state S; obtained from Sy by
performing y. Finally, we also cannot have a run where x and y are incomparable, that is

neither x < y nor y < x. This follows from the fact that all the linearizations of such a run

8 This example is derived from [19].

25

must result in the same state (thus it is impossible to go from state Sy to Ss or S7, or from

state S, to S7).

Prae S7 T
~ door=True
window=True |

. light=True w x,y

A
t
I
E door=True
XY,z window=False S4
r : light=False door=True
' window=False

S, light=True

door=False
window=False
light=True

door=False
window=False
light=False

Ss

door=False
window=True
light=True

door=False
window=True
light=False

Xy

\ 4

o= S el

e — \‘\

g QOor-True N Y, Z
d window=True

r. light=False © ./

~

.......

Figure 3-2 All possible runs of the DASM of Example 3.1

Example 3.2. Suppose a single producer agent is placing items, one by one, into a queue.
Two consumer agents concurrently attempt to remove these items by popping the head of
the queue. This example shows the effect of the coherence condition in the presence of a
race condition (between the two consumers simultaneously trying to remove the same

item of the queue).

We abstract from the details of adding items to the queue and removing items from it. In
each step of the producer agent, it adds a single new item to the queue (move p). In each
step of a consumer, it removes the head item if the queue is nonempty (moves c;, ¢). The

programs of the producer agent and the consumer agents can be written as follows.

26

ProducerProgram = ADD_ITEM(queue, newltem)

ConsumerProgram = if queue = empty then item := headltem(queue)

In the initial state the queue is empty. The most important property of this DASM is that
there is no run where ¢; and c¢; are incomparable. Note that if both consumers would
make an attempt to remove the same head item at the same time (incomparable ¢; and ¢y),
this would not cause conflicting update operations on the queue; rather it would produce
a logical conflict (notably, a duplication of this item). The coherence condition prohibits
this behaviour as any linear execution of such a run, for instance c; < ¢;, can not produce
the same result. Figure 3-3 shows some segment of possible runs of this DASM and helps
clarifying this argument. Clearly, it is not possible to go from states S, or S3 to S4; hence
c; and ¢, are not incomparable.

S; Ss

queue=[b,c] © queue=[c]
item1 =a —> iteml=a
1 item2=undef item2=b

S3

queue=[b,c]
item1=undef
item2=a

Se

queue=[c]
item1=b
item2=a

queue=[a,b,c]
item1=undef
item2=undef

--S4 --.

1, C “\‘," queue=[b,c]
' item1=a X
' item2=a 4/

N
N

.......

Figure 3-3 Some segment of possible runs of Example 3.2

27

3.2.2. Reactivity

In support of the principle of separation of concerns, the communication between an
agent and its environment (or similarly among different agents in a DASM) is not
supported by any specific mechanism. Instead, functions act as means of communication
in ASMs. Thus, it is natural to categorize functions based on their role in a specific ASM

M [9].

Basic functions of M are categorized in two main groups: static and dynamic. Static
functions are those with constant values during all runs of M. On the other hand, the
value of a dynamic function may change in different states of M. Dynamic functions are

then categorized into different groups based on their role in M.

A monitored function of M is a dynamic function that is only updated by the
environment. The machine reads the monitored function, but does not update it. In case
of a DASM, a monitored function (defined for a specific agent) can also be updated by
other agents. Monitored functions are the means of transferring information from the
environment (or other agents) to a specific machine (agent) [9]. A typical example of
such a function is the nullary fﬁnction now, which is defined in real-time distributed
ASMs (see Section 3.2.3). This function returns the global system time and is updated by
the environment. As such, it truly resembles the behaviour of a clock, or watch, in the
real world. We do not keep track of the time ourselves; we look at a watch to know the

time.

On the other hand, out functions are the functions that are only updated, but never read,
by M. Conversely, they are read but not updated by the environment (or other agents).
Consequently, through out functions agents can forward information to the environment
or to each other. To describe the interaction between an agent and the environment, one
can also define shared dynamic functions that are updated and read both by the machine

and the environment (or other agents) [9].

28

A clear distinction of various types of functions enables ASMs to support reactive
behaviour as well as separation of concerns, information hiding, data abstraction and
stepwise refinement [9]. The reactive behaviour of a system is captured in ASMs by
introducing well-defined functions as interfaces of interactions between a machine and its
environment. Specifying interactions through monitored, shared and out functions as
interfaces, enable us to define the reactive behaviour of a system while abstracting from
communication concerns. The following example shows how reactive behaviour is

captured by the ASM paradigm.

Example 3.3. Assume an asynchronous interaction model between three autonomously
operating entities that are involved in Automated Teller Machine (ATM) transactions,
namely: an ATM manager, an authentication manager, and an account manager. For

simplicity, here we restrict our attention to the withdrawal transaction of the ATM.
Performing a withdrawal transaction requires the following logical steps:

1- Input the bank card, PIN code and withdrawal amount.
2- Authenticate the bank card and PIN code.

3- Check the account balance against the credit line.

4- On approval update the account balance.

5- Output cash or notification about denial.

Assuming an unreliable communication medium, timeout mechanisms may cause the

cancellation of a transaction at any time.

The Abstract Model. In this initial model we do not formally define the behaviour of the
account manager and the authentication manager. Instead, we consider these two entities

as parts of the environment and focus on the behaviour of the ATM manager.

The ATM agent communicates with its environment through various monitored

functions. An activation event occurs whenever a user requests the service. The user then

29

enters the card number, PIN code and the desired withdrawal amount. Beyond reading
this data from the environment, the machine can also perform more complex interactions
with the environment to get other, non-trivial information like authentication
approval/rejection and transaction approval/denial. The abstraction mechanisms allow us
not only to define (and decide about) the environment, but to freely choose the level of

detail and precision.

The behaviour of the ATM control is described as follows:

if Idle and activationEvent then
data := getCardData
code := getPinCode
amount := getWithdrawAmount
mode := processing
if Processing and isAuthenticated(data, code) and —cancellationEvent then
if isValidTransaction(data, amount) then
RELEASE_CASH(amount)
UPDATE_ACCOUNT_BALANCE(data, amount)

else
OUTPUT_CANCELLATION_NOTIFICATION
mode := idle

if Processing and (—isAuthenticated(data,code) or cancellationEvent) then
OUTPUT_CANCELLATION_NOTIFICATION
mode := idle
where
Idle = mode = idle,
Processing = mode = processing

The machine is idle in the initial state. activationEvent is a monitored predicate that causes
the DASM to become active. Other monitored functions getCardData, getPinCode and
getWithdrawAmount serve to obtain the user’s data and withdrawal amount. In this way, a
series of interactions between the DASM and the environment takes place and in each
step some required information, ranging from the requested withdrawal amount to user
authentication, is obtained from the environment and is used to perform the operation.
isAuthenticated and isValidTransaction are two important monitored functions that
respectively provide the authentication and account management services to the ATM

abstract machine. At this level of abstraction, the ATM manager does not issue any

30

information (data, code or amount) to the authentication manager or the account manager.
Alternatively, we assume that these communications take place in the background.
cancellationEvent is another important monitored predicate that indicates cancellation of

the operation caused by the timeout mechanism.

This example also makes use of another convenient feature. RELEASE_CASH,
UPDATE_ACCOUNT_BALANCE and OUTPUT_CANCELLATION_NOTIFICATION are parts of the
model that are meant to perform the final operations. However, we do not want to deal
with the details of such operations at this level of abstraction. Thus, we left the definition
of these rules abstract assuming that more detailed definition of these rules will be

provided as part of the next refinement step.

3.2.3. Real-Time Behaviour

In order to capture real time behaviour, additional constraints are imposed on DASM runs
ensuring that the agents react instantaneously and environmental changes take place
instantaneously [25]. We introduce an abstract notion of local system time for modelling
timeout events. In a given state S of M, the global time (as measured by some global
system clock) is given by a nullary monitored function now taking values in some
linearly ordered domain TIME. Time values are represented as positive real numbers.
Additionally, ‘oo’ represents a distinguished time value such that t < oo for all
t € TIME - {o}. We assume the values of now to increase monotonically over runs of M.

Our semantic model of time resembles those defined in [8], [18], and [22].

3.3. Our DASM

Our formal definition of an abstract operational semantics of BPEL is based on the real-
time distributed abstract state machine model. However, we introduce two additional

operations that facilitate the creation and termination of DASM agents. These operations

31

are different from normal creation and termination in the sense that they also update the

(sub-) domain of the agent.

new a :{domain)

new creates a new agent a of type {(domain) and sets program(a). Additionally, it also

adds agent a to the associated domain of agents.
stop a

stop discards agent a from the associated domain of agents and resets program(a) to

undef .

To cope with partial updates of sets, we follow the solution proposed in [26] and use the

following operations for adding/removing an element to/from a set.
add ato A

add inserts element a into set A of elements.

remove a from A

remove deletes element a from set A of elements.

3.4. Notational Conventions

The ASM specifications presented in this document use the following notational

conventions for improved readability.

e Program names are entirely written in capital letters with no separator between

individual words (e.g. PROCESSPROGRAM)

32

Function names start with a lowercase first letter. The individual words start with

capital letters and the rest of the letters are written in lowercase (e.g.

functionName).

Abstract rule names are entirely written in capital letters and the individual words

are divided by underscore ‘_’ (e.g. INITIATE_CORRELATION).

Abstract predicate names are entirely written in lowercase letters. The individual

words are divided by underscore ‘_’ (e.g. message_is_received).

Rule names start with a capital letter. The individual words also start with capital

‘

letters and are separated by underscore ‘_’. The rest of the letters are written in

lower case (e.g. Pick_Activity_Clearance).
ASM keywords are written in lowercase using bold font (e.g. else).

Domains are written in all capital letters (e.g. MESSAGE).

33

Chapter 4. Formalization of the BPEL Web Services
Architecture

We formalize here the key functional attributes of the BPEL Web services architecture
based on the asynchronous computation model of distributed abstract state machines [23].
The primary focus is on the concurrent and reactive behaviour of Web services and their
interaction through TCP/IP communication networks. This includes concurrent control
structures, communication primitives, and dynamic creation and termination of services.
For dealing with real time aspects, we define an abstract notion of global system time and
impose additional constraints on the runs defining the behaviour of our BPEL abstract

machine.

4.1. Overall Organization

Logically, the BPEL Web services architecture splits into two basically different
components, namely: (1) the TCP/IP communication network, and (2) the BPEL services
residing at the communication endpoints. We separate the behaviour of the network from
the behaviour of services by decomposing our architecture model of the BPEL abstract

machine into two sub-models, each of which in turn is a distributed ASM, or DASM.

In this project, we concentrated on the service abstract machine model, whereas a
network abstract machine model is defined in [20]. The composition of these two
machines is well defined by the underlying semantics of the DASM computation model.
Any interaction between these models is restricted to actions and events occurring at well
identified interfaces. Each Web service in the service model interacts with the external

world (i.e. the communication network and remote Web services) through two well

34

defined interfaces, one for incoming messages and the other for outgoing messages. The
network model delivers the messages to the input mailbox (inbox space) of a service and
carries the messages from the output mailbox (outbox space) of a service to remote
services. The service abstract machine model and the network abstract machine model
both are based on asynchronous models; hence they can easily be composed into one
coherent and consistent DASM. It is worth mentioning that since BPEL is defined on top
of WSDL, it is sometimes necessary to take into account the service or message bindings
described by the WSDL definitions. Thus, a transformation phase is required to make the
messages conform to the correct format and carry the required information. Figure 4-1

gives an overview of the composition of the two models.

Message/ Service

Bindings
| Inbox
Space
BPEL
Netwo.rk Abstract Service Abstract
Machine Model Machine Model
1
<VI Outbox
S~ T_Space

Figure 4-1 The composition of the BPEL service model and the network model

The overall organization of the BPEL abstract machine splits into three different layers
as illustrated in Figure 4-2. The abstract model is introduced in this chapter. The

intermediate model and the executable model are presented in Chapter 5 and Chapter 6.

35

o]
o
=
=)
Q
3
B,
o
Q
o)
e
5
=
8
=2
3

BPEL Formal Model

Formal Documentation

(Abstract Model j

(Intermédiate Model]

[Executable Model]

Figure 4-2 A three layer approach: From formal documentation to the executable model

4.2. BPEL Abstract Model: Overview

The top layer of the BPEL abstract machine, called the abstract model, provides an
overview of the abstract machine architecture and defines the underlying modelling
framework. A BPEL document abstractly defines a Web service consisting of a collection
of business process instances. A process instance maintains a continuous interaction with
the external world through two interface components, called inbox manager and outbox
manager, as shown in Figure 4-3. As for the composition of the service model and the
network model mentioned in the previous section (Section 4.2), the inbox manager and
the outbox manager are attached to the network model and operate as the interfaces

between the network model and the service model.

Tnbox Web Service QOutbox
M A Collection of Manager
anager .
Business Process

Instances

Figure 4-3 High-level abstract structure of our BPEL model

36

The inbox manager operates on the inbox space, a possibly empty set of inbound
messages, and takes care of all the messages that arrive at the Web service. For each such
message, the inbox manager is responsible to find a process instance that is waiting for
that message, and assigns the message to this instance. The outbox manager, on the other
hand, delivers outbound messages from process instances to the network. Inbox
managers, outbox managers, and process instances are modelled by three different types
of DASM agents. Additionally, we introduce another agent type, activity agent. Each
process agent executes a single process instance and it uses dynamically created activity

agents for executing complex (structured) activities.

[AGENT = INBOX_MANAGER w OUTBOX_MANAGER u PROCESS U ACTIVITY_AGENT J

In the initial DASM state, there are only three DASM agents: the inbox manager, the
outbox manager and a dummy process. The role of the dummy process instance merely is
to simplify the creation of new process instances. There is always one and only one such
process instance waiting on its start activity. By receiving the first matching message, the
dummy process instance becomes a normal running process instance and a new dummy
process instance will be created automatically by the inbox manager. The DASM

program given below specifies the behaviour of the inbox manager agent.

domain MESSAGE

inboxSpace: INBOX_MANAGER - MESSAGE-set

//initial value: ©

//Keeps the messages that have arrived for a business process and have
//not yet been actively processed.

match: (PROCESS, MESSAGE) - BOOLEAN
//Tells whether a messages matches a process instance or not.

waiting: PROCESS - BOOLEAN
//Tells whether a process instance is waiting for a message or not.

37

INBOXMANAGERPROGRAM =
if inboxSpace(self) # & then
choose p € PROCESS, m € inboxSpace(self)
with match(p, m) and waiting(p)
ASSIGN_MESSAGE(p, m)
//Effectively assigns message m to process instance p.
if p = dummyProcess then
new newDummy : PROCESS
dummyProcess := newDummy

In each step, the inbox manager chooses a message among the messages waiting in the

inbox space and tries to find a matching process instance to assign the message to this

process instance. The predicate match(p: PROCESS, m: MESSAGE) checks whether message

m can be delivered to process instance p or not, trying to match the message type and the

correlation information between the waiting process instance and the incoming message.

If the matching is successful, the message is assigned to the process instance by calling

ASSIGN_MESSAGE(p, m) which is left abstract at this level but will be defined as part of the

next refinement step.

The outbox manager operates on the outbox space, a possibly empty set of output

descriptors, one for each outgoing message that is to be generated. The outbox manager

then performs the actual output operation based on the information specified by the

respective output descriptor. The following DASM program defines the behaviour of the

outbox manager.

domain OUTPUT_DESCRIPTOR

outboxSpace: OUTBOX_MANAGER > OUTPUT_DESCRIPTOR-set

//initial value: &

//This set keeps the information on all the outbound messages in a given state.

OUTBOXMANAGERPROGRAM =
if outboxSpace(self) # @ then
choose od € outboxSpace(self)
SEND(od) //Effective send operation

To send a message to a specific remote destination, the process instance which needs to

send the message creates an outbox descriptor in the outbox space. This descriptor

encapsulates sufficient information on the message destination and the message itself. In

38

each step, the outbox manager chooses a single output descriptor and generates the
corresponding message. The output operation itself is not further defined leaving the

details of the operation SEND abstract.

In general, a BPEL program combines two different types of activities: basic activities
and structured activities. Structured activities impose an execution order on a collection
of activities. These activities can be both basic and structured activities. The execution of
each structured activity inside a process instance is modelled by a single DASM agent of
type activity agent. Figure 4-4 combines all the potential control structures of DASM
activity agents at the top-level layer. A process instance uses five types of activity agents
(sequence agent, while agent, pick agent, switch agent and flow agent) to execute
different structured activities. A pick agent uses a pick alarm agent and a pick message
agent to handle onAlarm events and onMessage events respectively. A flow agent creates

a number of flow thread agents to concurrently execute its activities.

[Process Instance]

Cooqeres) (e] |) | swien) [For)

[Pick Alarm] [Pick MessageJ l Flow Threads I

Figure 4-4 The combination of all potential control structures of DASM activity agents
at the top-level layer

Below is the DASM program that abstractly specifies the behaviour of process agents.

RUNNING_AGENT = PROCESS U ACTIVITY_AGENT
//RUNNING_AGENT is the set of agents that are executing (running) an activity.

startedExecution: PROCESS - BOOLEAN
//initial value: false
//Tells whether a process has started executing its activity or not.

39

busy: RUNNING_AGENT - BOOLEAN
//initial value: false
//An agent is busy while one of its activities is being executed.

activity: RUNNING_AGENT > ACTIVITY
//Returns the activity that must be executed in a running agent.
/fderived from the BPEL document and defined in the initial state

PROCESSPROGRAM =
if ~busy(self) then
if ~startedExecution(self) then
startedExecution(self) := true
busy(self) := true
else
stop self
else
EXECUTE_ACTIVITY(activity(self))

The program of a process agent describes its behaviour in one DASM step. The routine is
to execute the activity defined inside the process, and if the execution is completed the
process agent is terminated. startedExecution is a predicate that specifies whether the
execution of the activity is started or not. When the execution is started
(startedExecution(self) = true), the process agent becomes busy (by setting the predicate
busy to true) and remains busy during the execution. Once the execution is completed,
the agent is released; i.e. busy is reset to false (by EXECUTE_ACTIVIY). Thus, the process
agent knows the execution is completed and is terminated. Despite its important role,

EXECUTE_ACTIVTY is not further defined at this level and is left abstract’.

Modelling the behaviour of a BPEL process requires certain information that is specific
for the given business process to be derived from the underlying BPEL document. For
instance, the process agent program is defined to execute the main activity of the BPEL
process which can only be extracted from the underlying BPEL process definition. The

construction of the initial state is not further detailed here; rather we assume that the

7 Note that we introduced a constraint on EXECUTE_ACTIVITY which requires it to release the agent when
the execution of the activity is completed.

40

relevant information is generated automatically in a pre-processing step through static
analysis of the underlying BPEL document using standard compiler techniques. This
information is formalized by a set of statically defined functions (like activity) as part of

the definition of the initial state of the DASM®.

4.3. BPEL Abstract Model: Details

The BPEL abstract model captures the behaviour of a business process, the underlying
framework and core BPEL activities in a high level of abstraction. In this sense, the
abstract model provides guidelines for the specification of each activity. This section
provides these high level specifications along with basic descriptions. The specifications

are refined and discussed in more detail in the next chapter.

4.3.1. Basic Activities

The behaviour of each basic activity is defined by a single ASM rule in our model. As
mentioned in Section 4.2, the process program fetches an activity and executes that
activity. For basic activities the execution is handled by the corresponding ASM rule. For
instance, Execute_Receive is responsible for executing a receive activity. These rules are

formally defined and described in the following subsections.

4.3.1.1. Receive Activity
Executing a receive activity is done in two phases:

1- The running agent informs the inbox manager that a receive activity is

executed and a message is anticipated.

® These functions are identified in the BPEL DASM with a comment (“derived from the BPEL document
and defined in the initial state”™).

41

2- The running agent waits until the message arrives and is assigned to the agent

by the inbox manager

As a result, Execute_Receive works in two modes which are distinguished by receiveMode,
a unary predicate that specifies whether an agent is waiting to receive a message or not. If
receiveMode is false, it means that the inbox manager has not yet been informed about the
receive activity and the anticipated message. The inbox manager can assign a message to
an agent only when it is informed which agent is waiting for which message. The
information about the expected message and the waiting agent is collected in an input
descriptor and is passed to the inbox manager through a set, called waiting set. If
receiveMode is true, it means that the input descriptor is already added to the waiting set
and the agent has to wait until the message is received. When the message is received, the

receiveMode is toggled (back to false) and the agent is released by setting busy to false.

receiveMode: RUNNING_AGENT -> BOOLEAN
/{initial value : false
//Telis whether a runnig agent is waiting to receive a message or not.

Execute_Receive (activity : RECEIVE) =
if =receiveMode(self) then
receiveMode(self) := true //The running agent waits to receive a message
ADD_INPUT_DESCRIPTOR_TO_WAITING_SET(activity)
else
if message_is_received(activity) then
receiveMode(self) := false
busy(self) := false

4.3.1.2. Reply Activity

Executing a reply activity requires sending a message out. As described in 4.2, in our
model the outbox manager is responsible for the outgoing messages. Thus, in order to
send a message out the running agent has to inform the outbox manager about the
outgoing message. This is done by adding an output descriptor, which contains the
required information for an outgoing message, to the outbox space of the outbox

manager.

42

Execute_Reply (activity : REPLY) =
ADD_OUTPUT_DESCRIPTOR_TO_OUTBOX_SPACE(activity)
busy(self) : = false

4.3.1.3. Invoke Activity

As described in 2.6.1 the behaviour of an invoke activity is very similar to a combination
of reply and receive. Initially, an invoke activity invokes a service of a partner by sending
an appropriate message to that partner. Similar to what is done in the reply activity, this
behaviour is captured by informing the outbox manager. However, if the invoke activity
is synchronous (synchronous(activity) = true) the agent has to wait for a response from the
partner. Basically, this behaviour is captured by the same approach that is applied to the
receive activity. Thus, if the invoke activity is synchronous the receiveMode is set to true

and the agent will wait to receive the message from the partner, as follows.

synchronous: INOVKE - BOOLEAN

//returns true if the invoke activity contains synchronous interactions;
{{i.e. request/response

//derived from the BPEL document and defined in the initial state

Execute_Invoke (activity : INVOKE) =
if =receiveMode(self) then
ADD_OUTPUT_DESCRIPTOR_TO_OUTBOX_SPACE(activity)
if =synchronous(activity) then
busy(self) := false

if synchronous(activity) then
receiveMode(self) := true
ADD_INPUT_DESCRIPTOR_TO_WAITING_SET(activity)

if receiveMode(self) and message_is_received(activity) then
receiveMode(self) := false
busy(self) := false

43

4.3.1.4. Terminate Activity

Executing a terminate activity requires stopping the current business process instance and

all its subordinate agents.

Execute_Terminate =
STOP_ALL_SUBORDINATE_AGENTS
stop rootProcess(self)

4.3.1.5. Wait Activity

When a wait activity is executed, the agent has to wait for a specified period of time, or
until a specified time. While the latter can be accomplished by checking the current time
against the deadline, modelling the former requires keeping track of the time that the
waiting period starts. Thus, when the execution of a wait activity starts, the current time
is recorded as the starting point of the waiting period, and then the agent remains busy

until the waiting period is completed.

Execute_Wait (activity : WAIT) =
if wait_just_started(activity) then
RECORD_WAIT_START _TIME(activity)
else
if wait_completed(activity) then
busy(self) := false

4.3.1.6. Empty Activity

Empty activity makes the agent do nothing for one DASM step. Thus, the agent becomes

busy when this activity is fetched and is released when the empty activity is executed.

Execute_Empty (activity : EMPTY) =
busy(self) := false

44

4.3.2. Structured Activities

As mentioned in Section 4.2, the behaviour of each structured activity is captured by a
single DASM agent created to handle that activity. These DASM agents are called
activity agents and include sequence agents, switch agents, while agents, pick agents, and
flow agents. In addition, there are three other types of DASM agents that are categorized
as activity agents and help in modelling the behaviour of structured activities: flow thread

agents, pick message agents, and pick alarm agents.

domain SEQUENCE_AGENT
domain SWITCH_AGENT
domain WHILE_AGENT
domain PICK_AGENT

domain FLOW_AGENT

domain PICK_ALARM_AGENT
domain PICK_MESSAGE_AGENT
domain FLOW_THREAD_AGENT

ACTIVITY_AGENT = SEQUENCE_AGENT U SWITCH_AGENT U WHILE_AGENT U
PICK_AGENT U FLOW_AGENT u PICK_MESSAGE_AGENT u
PICK_ALARM_AGENT U FLOW_THREAD_AGENT

The high level behaviour of each of these agents is abstractly presented in the following
sections. It is important to notice that upon completion an activity agent has to take an
additional action, which is releasing its parent. In Section 4.3.1 we showed that each
execution rule is finished by setting busy to false, in order to inform the current agent that
the execution of the activity is completed. In case of structured activities, the parent
agent has to be informed about the completion; therefore RELEASE_PARENT is called
whenever an activity agent completes its execution. RELEASE_PARENT has to set busy to

false for the parent agent.

4.3.2.1. Sequence Activity

A sequence activity is handled by a sequence agent which executes a sequence of
activities one by one. currentActivity is a function that indicates the activity that is being
executed. A sequence agent program starts by setting this function to the first activity

45

specified in the sequence activity. When the activity is fetched, the agent becomes busy
and starts executing it. When the execution is completed, the sequence agent is released;
1.e. busy is set to false again. Thus, the next activity can be fetched and this continues

until the last activity of the sequence is executed.

currentActivity: SEQUENCE_AGENT > ACTIVITY
//Keeps track of the current activity which is being executed

SEQUENCEPROGRAM =

if =busy(self) then
SET_CURRENT_ACTIVITY_TO_NEXT_ACTIVITY

busy(self) := true

if busy(self) then
if sequence_is_not_completed then //There are still some activities to execute
EXECUTE_ACTIVITY(currentActivity(self))
else //No more activities
stop self
RELEASE_PARENT

4.3.2.2. Switch Activity

Switch activity performs two main tasks:

1- Finds the first branch with a true condition (or selects the otherwise branch)

2- Executes the activity associated with that branch.

In our model, a switch activity is handled by a switch agent which performs the two tasks
mentioned above. First, it selects the appropriate branch and becomes busy. This
selection is always successful because the LRM introduces a default otherwise branch for
every switch activity. Second, the agent remains busy until the execution of the activity
associated with the selected branch is completed. foundBranch is a function that indicates
this activity and is updated when the branch is selected. When the execution is

completed, the agent is required to release its parent agent and terminate its execution.

46

foundBranch: SWITCH_AGENT > ACTIVITY
//The activity associated with the branch that is chosen by switch to be executed

SWITCHPROGRAM =
if =busy(self) and —branch_found then //No branch is selected yet
FIND_BRANCH //foundbranch(self) is set to the selected branch.

//Always successful (because of the default otferwise)
busy(self) := true

if busy(self) then
EXECUTE_ACTIVITY(foundBranch(self))

if =abusy(self) and branch_found then
stop self
RELEASE_PARENT

4.3.2.3. While Activity

A while activity is handled by a while agent. If the while condition is true, the while
agent becomes busy immediately and starts executing the activity defined inside the
while loop. The while agent remains busy until the activity is executed once, then busy
becomes false again. Whenever the while agent is not busy (either in the beginning or
when the execution of the activity is completed), the while condition is checked. If the
while condition is still true the agent goes through the same steps again, otherwise the

while agent releases its parent agent and terminates itself.

WHILEPROGRAM =
if =busy(self) and true_while_condition then
busy(self) := true

if busy(self) then
EXECUTE_ACTIVITY (activity(self)))
//Executing the activity inside while
//after it is executed once, busy becomes faise

if ~busy(self) and false_while_condition then
stop self
RELEASE_PARENT

47

4.3.2.4. Pick Activity

A pick agent is responsible for handling a pick activity. A pick agent waits for an
onMessage event or an onAlarm event to occur. To handle each of these two categories
of events, the pick agent is assisted by two other DASM agents: pick message agent and
pick alarm agent. A pick message agent is responsible for the onMessage events while a
pick alarm agent is responsible for the onAlarm events. The pick agent starts by creating
a pick alarm agent and a pick message agent, and then becomes busy, meaning that the
agent is waiting for an event to happen. As soon as one or more events happen, the pick
agent chooses the event that has happened first and sets chosenActivity to its associated
activity. If two or more events happen at the same time, one of them is chosen non-
deterministicallyg. Once the activity is chosen, the pick agent has to wait until the
execution of the chosenActivity is completed. Upon completion, the pick agent releases its

parent agent and terminates its execution.

chosenActivity: PICK_AGENT > ACTIVITY
//The activity that is chosen by a pick agent to be executed

PICKPROGRAM =
if =busy(self) then
if activity_is_not_chosen then

CREATE_PICK_ALARM_AGENT // To manage onAlaram events

CREATE_PICK_MESSAGE_AGENT // To manage onMessage events

busy(self) := true //The agent is waiting for an event to happen
else

RELEASE_PARENT

stop self

if busy(self) then
if activity_is_not_chosen then
CHOOSE_EARLIEST_HAPPENED_EVENT
//Among the onMessage and onAlarm events choose the one that occurred
//first; chosenActivity is set to the corresponding activity of that event
else
EXECUTE_ACTIVITY(chosenActivity(self))

? According to the LRM, “If the events occur almost simultaneously, there is a race and the choice of
activity to be performed is dependent on both timing and implementation.” [10, Section 12.4]

48

Pick Message Agent

A pick message agent performs the following steps:

1- It notifies the inbox manager about all of the related onMessage events; i.e. it
informs the inbox manager that any of the messages requested by the
onMessage events can be assigned to this agent. This is done by adding one

input descriptor for each onMessage event to the waiting set.

2- Once the inbox manager is informed, the pick message agent waits until one

such event is completed; i.e. the corresponding message has been received.
3- It informs the pick agent that such an event has occurred and terminates itself.

Meanwhile, whenever an onAlarm event occurs (time-out) the pick message agent must
terminate. However, before termination the pick message agent has to remove all the
input descriptors (if any) from the waiting set informing the inbox manager that it is not

waiting for such messages anymore.

PICKMESSAGEPROGRAM =
if onAlarm_event_occured then
REMOVE_ALL_ONMESSAGE_INPUT_DESCRIPTORS_FROM_WAITING_SET
stop self
else
if =busy(self) then
ADD_ALL_ONMESSAGE_INPUT_DESCRIPTORS_TO_WAITING_SET
busy(self) := true
else
CHOOSE_A_COMPLETED_ONMESSAGE_EVENT_AND_INFORM_PICK_AGENT
stop self

Pick Alarm Agent

A pick alarm agent is responsible for all of the onAlarm events defined inside a pick
activity. Similar to the while activity, onAlarm events are defined in terms of a period of
time (‘for’), or a deadline (‘until’). Therefore, the pick alarm agent has to record the
starting time at the very beginning. As soon as the waiting period is completed or the
deadline is passed, the pick alarm agent informs the pick agent and terminates thereafter.

Note that it is possible that more than one alarm occur between two steps of a DASM. In

49

such a case the pick agent is informed about all the triggered alarms and it will pick the

earliest one.

Moreover, if an onMessage event occurs while the pick alarm agent is waiting for an

alarm to trigger, the pick alarm agent must terminate.

PICKALARMPROGRAM =
if onMessage_event_occured then
stop self
else
if =busy(self) then
RECORD_ALARM_START_TIME
busy(self) := true
else
FORALL_PASSED_ONALARM_EVENTS_INFORM_PICK_AGENT
stop self

4.3.2.5. Flow Activity

Each flow activity is handled by a flow agent which concurrently executes the set of
activities defined inside the flow activity. To allow concurrent execution, the flow agent
is assisted by another type of DASM agents, called flow thread agent. Each flow thread

agent is responsible for executing one of the concurrent activities.

A flow agent performs the following steps:

1- It creates one flow thread agent for each activity defined inside the flow
activity and becomes busy. The flow agent keeps track of these thread agents

by a set called flow agent set

2- The flow agent is completed when all of the flow thread agents are completed.

After completion, the flow agent releases its parent agent and terminates itself.

50

flowActivitySet: FLOW > ACTIVITY-set
//Set of the activities defined inside a FLOW
//derived from the BPEL document and defined in the initial state

FLOWPROGRAM =
if =abusy(self) then
//Creates threads to concurrently execute activities grouped inside the flow.
forall activity in flowActivitySet(self)
CREATE_A_FLOWTHREAD_AGENT_AND_ ADD_TO_FLOWAGENTSET (activity)
busy(self) := true

if busy(self) and empty_flowagentset then
//All threads are done, flow activity is completed.
RELEASE_PARENT
stop self

The flow agent set has a main role in defining the behaviour of the flow activity. The
thread agents are created and added to this set. When the threads are completed, they
remove themselves from this set. When this set becomes empty, the flow agent will know

that all of the threads are completed and the flow activity is completed as well.

A flow thread agent executes a single activity. Thus, its behaviour is very similar to a
process agent, except that when completed, it has to remove itself from the flow agent

set.

startedExecution: PROCESS u FLOW_THREAD_AGENT -> BOOLEAN
//initial value: false

//Telis whether a process or a flow thread agent has started executing
//its activity or not.

FLOWTHREADPROGRAM =
if =busy(self) and —startedExecution(self) then
startedExecution(self) := true
busy(self) := true

if busy(self) then
EXECUTE_ACTIVITY(activity(self))

if =busy(self) and startedExecution(self) then
REMOVE_SELF_FROM_FLOWAGENTSET
stop self

51

Chapter 5. Complete Formal Model

By refining the abstract model of Chapter 4, we obtain the intermediate model which
provides the complete BPEL service abstract machine model of the core constructs of
BPEL. The intermediate model forms the basis for deriving the executable model in
Chapter 6. In the following sections, different parts of the intermediate model are
described while the full model is available in Appendix C. In this chapter the goal is to
clarify notable and principle parts of the intermediate model whereas details that are more
related to making the formal model executable on real machines are considered in
Chapter 6. Note that the required specifics on a given business process definition as
extracted from the underlying BPEL document are encoded in terms of statically defined

functions as part of the initial state of the DASM (see also Section 4.2 for details).

5.1. Inbox Manager

The refined inbox manager program presented in the intermediate model describes the
behaviour of the inbox manager more concretely and in more detail. At this level of
abstraction, the inbox manager uses the information carried by the input descriptors to
identify the input activity (or event) that is waiting for the message. A message is
matched to an input operation (activity or event) of a business process instance, if it
satisfies the requirements specified by the waiting operation (including correlations). If
the matching is successful, the message is assigned to that specific operation waiting in a
process instance (or one of its subordinate agents). The refined inbox manager program

is presented below.

52

INBOXMANAGERPROGRAM &=
if inboxSpace(self) + @ then
choose p € PROCESS, m € inboxSpace(self),
(agent, op) € waitingForMessage(p) with match(p, op, m)
Assign_Message(p, agent, op, m)
Pick_Activity_Clearance(p, agent, op)

if p = dummyProcess then
new newDummy : PROCESS
dummyProcess := newDummy

waitingForMessage is a function that identifies the set of waiting operations of each
process. Moreover, match and ASSIGN_MESSAGE are refined as follows to incorporate
additional parameters that identify the waiting operation and the agent to which it

belongs, so that the message can be assigned to that specific activity/event.

IN_OPERATION = RECEIVE u INVOKE u ONMESSAGE
waitingForMessage: PROCESS—> (RUNNING_AGENT X IN_OPERATION)-set

match: PROCESS X IN_OPERATION X MESSAGE -> BOOLEAN

5.1.1. Assign Message

To assign a message to the correct process instance, the inbox manager has to deal with

correlations in two basically different ways:

1- If an input operation belongs to a correlation group then the message must

contain the appropriate correlation token values.

2- If the input operation is responsible for initiating a new correlation set then the

inbox manager has to deal with initiating this correlation set.

53

The match predicate takes care of the first condition by considering the constraints
imposed through correlations in matching a message with a process instance. Correlation

initiation is managed by an INITIATE_CORRELATION® operation.

completedInOperations: PROCESS -> (RUNNING_AGENT X IN_OPERATION
X TIME)-set
//initial value: &

Assign_Message (p : PROCESS, agent : RUNNING_AGENT, op : IN_OPERATION,
m : MESSAGE) =
if initiateCorrelation(op) then
INITIATE_CORRELATION(p, agent, op, m)

remove m from inboxSpace(self)
remove (agent,op) from waitingForMessage(p)
add (agent, op, now) to completedInOperations(p)

When assigning a message to a process instance, the related input descriptor is removed
from the waiting set (since the associated request is served and is not waiting anymore).
In addition, a new descriptor containing the information on the input operation and its
serving time is added to the completedInOperations set. For each process this set indicates
the input activities (or onMessage events) that have received a message together with the
receiving time. The role of the receiving time becomes clear when the behavior of the
pick activity is discussed in Section 5.12. Assign_Message also updates the inbox space by

. . 2 11
removing the assigned message from it''.

'® In the absence of scopes and variables, the behaviour of INITIATE_CORRELATION is reduced to
assigning values to a set of properties. Thus, this rule is left abstract at this level and is refined in the
executable model.

"' Please note that since this work does not capture the behaviour of variables, the value of a message is not
explicitly assigned to a variable inside a process instance. According to the BPEL LRM, this is a valid
behaviour for abstract business processes. However, the future work on the variable extension captures this
issue.

54

5.1.2. Pick Activity Clearance

Pick_Activity_Clearance introduces a new responsibility for the inbox manager. In the
abstract formal definition of the pick activity behaviour (Section 4.3.2.4), we mentioned
that for each onMessage event, the pick message agent adds one input descriptor to the
waiting set. According to the LRM, once one of these messages is received, the business
process must not accept any of the other messages. Thus, it is required to remove the

remaining input descriptors from the waiting set. Here we had two design choices:

1- Assigning this responsibility to the pick message agent; i.e. the pick message
agent is responsible to remove the remaining input descriptors once a message

is received.

2- Assigning this responsibility to the inbox manager; i.e. whenever the inbox
assigns a message to a pick activity, it is responsible to remove the remaining

unwanted input descriptors.

The second choice was preferred over the first one because there might be a delay
between the time a message is assigned to an onMessage event and the time the pick
message agent is informed. This delay may cause the inbox manager to accept another
message for one of the other onMessage events which would violate the semantics of the
business process as it is defined by the LRM. Pick_Activity_Clearance is responsible for

such an action.

Pick_Activity_Clearance (p : PROCESS, a : RUNNING_AGENT,
op : IN_OPERATION) =
if a € PICK_MESSAGE_AGENT then
forall (a, op”) € waitingForMessage(p) with op’ = op
remove (a,0p") from waitingForMessage(p)

55

5.2. Outbox Manager

In the outbox manager program, presented in Section 4.2, elements of the domain
OUTPUT_DESCRIPTOR were used to access the required information on the outgoing
message and its destination. In the intermediate model, we refine this domain by
identifying the information carried by output descriptors more concretely. Similar to an
input descriptor, we suggest that an output descriptor must identify a waiting activity and
the waiting agent to which it belongs. The required information for generating an
outbound message can then be extracted from the output descriptors. Thus,

OUTBOX_DESCRIPTOR is refined as follows.

OUT_OPERATION = REPLY U INVOKE

OUTBOX_DESCRIPTOR = RUNNING_AGENT X OUT_OPERATION

As mentioned in Section 4.1, sending a message out also requires the BPEL abstract
machine model to interact with the network abstract machine model through a well-
defined interface. As the details of the composition of two models and the
communication were not further detailed in this project, SEND is left abstract and must be
considered in another refinement step where the network model and the BPEL service

model are combined into a single DASM model.

5.3. Execute Activity

Section 4.2 described how a process agent executes its main activity, without actually
defining Execute_Activity. According to the LRM, an activity can be any of the structured
or basic activities. It is worth mentioning that for the purpose of this project we restrict

the domain ACTIVITY to only include the core activities allowed in BPEL'2. By focusing

‘2 These activities include receive, reply, invoke, wait, terminate, empty, sequence, switch, while, pick and
flow. Not included are the following activities: assign, throw, scope, and compensate.

56

on the core BPEL activities, we show how our approach to formally modelling the core
activities solves the problem in principle. Basically, the same approach can be used in
formal modelling of the remaining activities and concepts of BPEL defined by the LRM.
An extension of the core model presented in this work, including all remaining concepts

of BPEL, is being developed as part of another project in our group.

domain RECEIVE

domain SEQUENCE

... //and all other BPEL core activities

ACTIVITY = REPLY u RECEIVE u INVOKE u WAIT u TERMINATE u EMPTY
w SEQUENCE u SWITCH u WHILE u PICK U FLOW

The partial definition of Execute_Activity is presented below while the complete definition
is available in Appendix C. To execute a basic activity the corresponding rule is invoked.
For executing a structured activity, a new activity agent is created to handle that specific

activity.

Execute_Activity(activitiy: ACTIVITY) =
if linkStatusDefined then
//checks whether the predecessors of the activity are completed or not
if activityJoinCondition(activity) then
//evaluates the join conditon defined by the activity
if activity e REPLY then
Execute_Reply(activity)
if activity € RECEIVE then
Execute_Receive(activity)

... //and all other basic activities

if activity e SEQUENCE then
if assignedAgent(activity) = undef then
new s ;. SEQUENCE_AGENT
assignedAgent(activity) := s
Initialize(s, activity)

57

if activity e FLOW then
if assignedAgent(activity) = undef then
new f : FLOW_AGENT
assignedAgent(activity) := f
Initialize(f, activity)

... //and all other structured activities

else
THROW_JOIN_FAILURE
//JoinCondition is false. A fault (joinFaiture) is thrown.

/lelse
//There are some activities linked to this activity that are not yet completed.
//Therefore, the activity can not be executed yet.
where

linkStatusDefined =

vx (x € targetLinkSet(activity) > linkStatus(x) # NOTDEFINED)

As defined in the above rule, before starting the execution of an activity, two conditions
must be satisfied which are specified by two predicates: linkStatusDefined and
activityJoinCondition. The first condition (linkStatusDefined) checks whether the activity is
ready to be executed. The synchronization dependencies between concurrent activities
introduced in the LRM suggest that each activity must be executed only after its
predecessors, as defined by the related links (see Section 2.6.2), are completed. The first
condition captures this behaviour and is further explored in Section 5.13.1. Moreover, as
described in Section 2.6.2, each BPEL activity is defined along with a join condition and
it can be executed only if the join condition is true. The second condition
(activityJoinCondition) checks this requirement and according to the LRM, if this condition
is not satisfied a fault must be thrown. This behaviour is captured in the intermediate
model by THROW_JOIN_FAILURE, but is not further explored since fault handling is part of

another project in our group”.

In connection with structured activities, we define a function parentAgent for linking the

parent agent and the subordinate activity agent. A process instance has one subordinate

> THROW_JOIN_FAILURE can be refined in the refinement step where faults are captured.

58

agent for each structured activity that is being executed inside it. For each activity agent,
a derived dynamic function rootProcess is defined that returns the process instance to
which the agent belongs. Furthermore, the root process has to keep track of all its
subordinate agents. subordinateAgentSet is another derived dynamic function which
provides the set of subordinate agents of a process instance. In order to identify the
activity agents that are responsible for executing structured activities, we further define a
function assignedAgent. For each structured activity that is being executed, this function

indicates the agent that handles the activity. These functions are defined as follows.

parentAgent: RUNNING_AGENT > RUNNING_AGENT

rootProcess: RUNNING_AGENT - PROCESS

rootProcess(a: RUNNING_AGENT) = {2 +a€ PROCESS,
rootProcess(parentAgent(a)) :otherwise.

subordinateAgentSet: PROCESS - ACTIVITY_AGENT-set

subordinateAgentSet(p: PROCESS) = {a | a € ACTIVITY_AGENT, rootProcess(a) = p}

assignedAgent: ACTIVITY > ACTIVITY_AGENT

The parentAgent relation is maintained by calling the Initialize rule. Whenever a new
activity agent is created (either in an Execute_Activity rule or inside activity agents like the
flow agent) Initialize is called. This rule also updates baseActivity which is the activity that

must be executed by this activity agent.

baseActivity: ACTIVITY_AGENT- ACTIVITY

Initialize (agent: ACTIVITY_AGENT, activity: ACTIVITY) =
parentAgent(agent) := self
baseActivity(agent) := activity

Figure 5-1 clarifies these relations, by illustrating the structure of an e-book Store
business process instance (presented in Section 2.3) in our model and the relationships
among its subordinate agents. An e-Book Store business process instance executes a
sequence of activities which is handled by a sequence agent in our model. The sequence

agent executes the activities one after another in the order of their appearance. The basic

59

activities defined inside the sequence, including receiving a request from a customer and
sending a response to the customer are handled by basic ASM rules inside the sequence
agent. However, to execute the flow activity which defined two invoke activities to be
executed concurrently, the sequence agent creates a flow agent. The flow agent then
assigns each of these concurrent activities to one flow thread agent and waits until both
threads are completed. All the created agents form the subordinate agent set of the

process instance and the process instance is the root process of all of them.

\
v
4[Process Instance P
7 NN
] _J Ny Ny
N) N \\ \\ ~
”(JTGNI\Q‘:F.I\\ \‘ . \~\
N ™\ Vo, N
sequence Agent FOOLPGrEss
baseActivity:sequence |---) \
’]]
I’ S]]
e g g . R S] ‘ 4
parentAgent | I ! y
‘\ ~ . Phd ,/
N Flow Agent L’ /
v baseActivity: Flow ‘ J/
S I’
parentAgent ‘ K

'

1 ’
1

Flow Thread Flow Thread
baseActivity:Invoke baseActivity:Invoke

Figure 5-1 The structure of an e-book Store business process instance in our model

5.4. Receive Activity

In the abstract formal definition of Execute_Receive, presented in Section 4.3.1.1, some
parts were left abstract. Here we take the next step to refine two abstract parts:

ADD_INPUT_DESCRIPTOR_TO_WAITING_SET and message_is_received.

As mentioned before, to execute a receive activity of a given process instance, the inbox
manager has to be informed that the process instance (or one of its subordinate agents) is
waiting for a message. To accomplish this, we define a set called waitingForMessage for
each process instance. This set indicates the input descriptors that provide the required

information on the expected messages and the waiting agents. An input descriptor is

60

defined as (self, activity); therefore it identifies both the waiting agent and the waiting
activity which contains the required information on the partner of the interaction

(including port type and operation). Informing the inbox manager is performed by adding

an inputDescriptor to the waitingForMessage set of the root process.

ADD_INPUT_DESCRIPTOR_TO_WAITING_SET(activity: ACTIVITY) =
add inputDescriptor to waitingSet
where inputDescriptor = (self, activity),
waitingSet = waitingForMessage(rootProcess(self))

The inbox manager inspects the waiting set to identify the expected messages. Once one
such message arrives, the inbox manager assigns it to the matching process instance. As
described in Section 5.1, the inbox manager also removes the input descriptor from this
set whenever the assignment is performed. Thus, the agent will be informed that the
assignment is performed and the message is received, whenever the input descriptor is

removed from the waiting set. The agent can then proceed with processing the message.

message_is_received(activity : ACTIVITY) = inputDescriptor ¢ waitingSet
where inputDescriptor = (self, activity)

The complete formal definition of Execute_Receive is presented in Appendix C.

5.5. Reply Activity

According to the abstract formal definition of Execute_Reply (presented in Section
4.3.1.2), to model a reply activity an output descriptor is placed in the outbox space of the
outbox manager. An output descriptor is an element of the domain OUTPUT_DESCRIPTOR.
Hence, based on the refinement introduced in Section 5.2, an output descriptor is defined
as (self, activity). The reply activity contains the required information about the destination

partner (including port type and operation).

Thus, ADD_OUTPUT_DESCRIPTOR_TO_OUTBOX_SPACE is refined as follows.

61

ADD_OUTPUT_DESCRIPTOR_TO_OUTBOX_SPACE (activity: ACTIVITY) =
add outputDescriptor to outSpace
where inputDescriptor = (self, activity),
outSpace = outboxSpace(outboxManager(rootProcess(self)))

The complete formal definition of Execute_Reply is presented in Appendix C.

5.6. Invoke Activity

As mentioned in Section 4.3.1.3, invoke activity can be viewed as a combination of
receive and reply. Therefore, the same refinements are applied to the invoke activity as
well. For the detailed formal definition of Execute_Invoke the reader is referred to

Appendix C.

5.7. Terminate Activity

As mentioned in Section 4.3.1.4, a terminate activity has to stop all the subordinate
agents of a process instance as well as the instance itself. In the intermediate model, the
derived function subordinateAgentSet identifies the subordinate agents of a process agent,

so it is fairly simple to stop all of them.

STOP_ALL_SUBORDINATE_AGENTS =
forall agent in subordinateAgentSet(rootProcess(self))
stop agent

5.8. Wait Activity

The abstract formal definition of Execute_Wait (presented in Section 4.3.1.5), includes two

abstract predicates (wait_just_started, wait_completed) and one abstract rule (RECORD_

WAIT_START_TIME) that must be refined.

62

In the refinement step, we define two functions startTime and completionTime. startTime is
used to record the starting time of a wait activity. Its initial value is undef and it is

updated by the agent as soon as the execution of the wait activity is started. Therefore, if

startTime is undef it means that the execution is just started.

startTime: WAIT > TIME
//initial value: undef

wait_just_started(activity: WHILE) = startTime(activity) = undef

completionTime is a function that indicates the time when a wait activity is completed. If
the wait activity uses ‘until’ to specify a deadline, then this function simply returns this
deadline. On the other hand, if the wait activity is defined with ‘for’ and specifies a

period of time, then this function uses the starting time to calculate the deadline.

completionTime: WAIT -> TIME

In modelling the behaviour of a wait activity we are benefited from the abstract notion of
time in real-time DASM as described in Section 3.2.3. The nullary monitored function
now specifies the global system time and is well used in this refinement step. As soon as
a wait activity is executed, startTime is updated and records the current time denoted by

the monitored function now.

RECORD_WAIT_START_TIME(activity: WHILE) = startTime(activity) := now

The completion of a wait activity is determined by checking its completionTime against the
current time. If the completion time reaches (or is passed'®) then the wait activity is

completed.

wait_completed(activity: WHILE) = completionTime(activity) < now

The complete formal definition of Execute_Wait is presented in Appendix C.

'* Note that the completion time may reach in between of two DASM steps; hence it can be less than the
current time.

63

5.9. Sequence Agent

One important task of a sequence agent is to fetch the activities defined in the
corresponding sequence activity one by one. In the intermediate model, fetching the
activities is performed by a function called sequenceCounter. Each time it is called, the
sequence counter indicates the next activity in the sequence and this activity is recorded

as the current activity.

sequenceCounter: SEQUENCE-> ACTIVITY
//returns undef when reaches the end of the list of activities
//derived from the BPEL document and defined in the initial state

SET_CURRENT_ACTIVITY_TO_NEXT_ACTIVITY =
currentActivity(self) := sequenceCounter(baseActivity(self))

Another refinement that is needed in the sequence agent program is for determining the
completion of the sequence activity. The sequence is completed when the last activity
defined in the sequence is completed. We assume that sequenceCounter returns undef
when it reaches the end of the list of activities. Thus, the abstract predicate

sequence_is_not_completed is refined as follows.

[sequence_is_not_completed = currentActivity(self) # undef J

It is also important to refine the abstract rule RELEASE_PARENT. As mentioned in Section
4.3.2, all the activity agents have to release their parent agents after completion. Thus,

RELEASE_PARENT is refined as follows.

RELEASE_PARENT = busy(parentAgent(self)) := false

The complete program of the sequence agent is presented in Appendix C.

5.10.Switch Agent

In the abstract switch agent program (presented in Section 4.3.2.2), one main issue which

is finding the correct branch (FIND_BRANCH) was left abstract. Refining the abstract rule

64

FIND_BRANCH requires searching through all switch case elements and finding the first
one with a true condition. In this refinement step we introduce the following functions

and predicate.

swCaseSet: SWITCH - SWCASE-set
//derived from the BPEL document and defined in the initial state

swPrority: SWCASE -> PRIORITY
//derived from the BPEL document and defined in the initial state

swCaseCondition: SWCASE - BOOLEAN

swCaseSet indicates the set of case elements defined inside a switch activity plus
otherwise (or default otherwise). swCaseCondition evaluates the condition of a specific
case element. In case of an otherwise it always returns true. To keep the order of the case
elements and find the first one with a true condition, a priority is assigned to each case
element. swPriority indicates the priority of a specific case element. The element with the

highest priority is the first case element.

FIND_BRANCH is refined using the above mentioned functions and predicate, as follows.

foundBranch: SWITCH_AGENT -> ACTIVITY

FIND_BRANCH =
let caseSet = swCaseSet(baseActivity(self)) in
choose c € caseSet with (swCaseCondition(c) A
vx ((x € caseSet A swCaseCondition(x))> swPriority(c) = swPriority(x)))
foundBranch(self) := swCaseActivity(c)

To find the right branch the agent investigates the set of all case elements (caseSet),
chooses the element with a true condition and ensures that the chosen branch is the one
with the highest priority. The foundBranch function was defined in Section 4.3.2.2 and the
signature is presented here again. Once the correct branch is selected, foundBranch is
updated with the associated activity of the selected branch. As mentioned before, it is
supposed that the otherwise branch is also an element of the case set with an always-true
condition and the lowest priority. Therefore, if none of the conditional branches is

selected, otherwise will be automatically selected.

65

Another abstract part of the definition of Section 4.3.2.2 is the branch_found predicate
which indicates whether any branch is selected or not. The initial value of foundBranch is
undef and it remains undef until a branch is selected. Therefore, the abstract predicate

branch_found can be refined as follows.

foundBranch: SWITCH_AGENT > ACTIVITY
/jinitial value: undef

branch_found = foundBranch(self) = undef

The complete formal definition of the switch agent program is presented in Appendix C.

5.11. While Agent

To refine the abstract while agent program presented in Section 4.3.2.3, we have to define
a way to evaluate the condition of a while activity. This is performed by the waCondition
predicate. Thus, the abstract predicates true_while_condition and false_while_condition are
refined as follows. The complete formal definition of the while agent program can be

found in Appendix C.

waCondition; WHILE - BOOLEAN

true_while_condition= waCondition(baseActivity(self))

false_while_condition = =waCondition(baseActivity(self))

5.12. Pick Agent

As defined in the abstract pick agent program (Section 4.3.2.4), a pick agent starts with
creating a pick message agent and a pick alarm agent abstractly performed by
CREATE_PICK_ALARM_AGENT and CREATE_PICK_MESSAGE_AGENT. In the intermediate

model these rules are refined as follows.

66

CREATE_PICK_ALARM_AGENT =
new a : PICK_ALARM_AGENT
Initialize(a, baseActivity(self))

CREATE_PICK_MESSAGE_AGENT =
new b: PICK_MESSAGE_AGENT
Initialize(b, baseActivity(self))

The next step is to refine the abstract predicate activity_is_not_chosen. The initial value of

chosenActivity is undef, thus activity_is_not_chosen is refined as follows.

chosenActivity: PICK_AGENT > ACTIVITY
//initial value: undef

activity_is_not_chosen = chosenActivity(self) = undef

As described in the abstract model, when any of the onAlarm or onMessage events
occurs, the corresponding agent will inform the pick agent. In the refined model, this
information exchange takes place through a set, called triggeredEvents. When an event
occurs, the responsible agent records the occurrence of the event together with its

occurrence time" in this set.

triggeredEvents: PICK_AGENT - (EVENT X TIME)-set
//initial value: &

The pick agent then checks this set to choose the event that happened first and executes
its corresponding activity. The abstract rule CHOOSE_EARLIEST_HAPPENED_EVENT is
refined as follows where onEventActivity is a function that specifies the activity associated

with an event.

onEventActivity: EVENT &> ACTIVITY
//derived from the BPEL document and defined in the initial state

15 The occurrence time for an onMessage event is the time when the message is received, and in case of an
onAlarm event it is the time when the alarm is triggered.

67

CHOOSE_EARLIEST_HAPPENED_EVENT =
choose (event, time) e triggeredEvents(self) with
VeVt ((et) e triggeredEvents(self) > time < t)
chosenActivity(self) := onEventActivity(event)

5.12.1.Pick Message Agent

Refining the pick message agent program is fairly simple, since its behaviour is very
similar to a receive activity. In the first step, input descriptors must be created for all
onMessage events and added to the waitingForMessage set, as follows. onMessageSet is a

function that specifies all the onMessage events listed inside a pick activity.

onMessageSet: PICK > ONMESSAGE-set
//derived from the BPEL document and defined in the initial state
ADD_ALL_ONMESSAGE_INPUT_DESCRIPTORS_TO_WAITING_SET =
forall event € onMessageSet(baseActivity(self))
let inputDescriptor = (self, event) in
add inputDescriptor to waitingForMessage(rootProcess(self))

The pick message agent will then wait until one of the messages is received to record the
event occurrence together with the occurrence time. The occurrence time is extracted
from the completedInOperations set, where the inbox manager records the completed input
operations together with their completion time. Note that once one of these events
happens, the inbox manager prevents the rest of them from happening by removing them

from the waiting set (see Section 5.1 for details).

CHOOSE_A_COMPLETED_ONMESSAGE_EVENT_AND_INFORM_PICK_AGENT =
choose event € onMessageSet(baseActivity(self)) with
(self, event, time) e completedInOperations(rootProcess(self))
add (event, time) to triggeredEvents(parentAgent(self))

Meanwhile, if an onAlarm event occurs while the pick message agent is waiting for an
onMessage event, the pick message agent must terminate. Every event registers itself in
the triggeredEvents set whenever it occurs, so if the triggeredEvents set is not empty it

means that an onAlarm event has already happened.

68

onAlarm_event_occured = triggeredEvents(parentAgent(self)) # @]

In addition to termination, the pick message agent has to remove all the input descriptors
from the waiting set so that the inbox manager is informed that the agent is not waiting

for those messages anymore.

REMOVE_ALL_ONMESSAGE_INPUT_DESCRIPTORS_FROM_WAITING_SET =
forall event € onMessageSet(baseActivity(self))
let inputDescriptor = (self, event) in
remove inputDescriptor from waitingForMessage(rootProcess(self))

5.12.2.Pick Alarm Agent

As mentioned in the abstract model, a pick alarm agent has to record its starting time to
calculate the time when each alarm is triggered and inform the pick agent as soon as an
onAlarm event occurs. Keeping track of the alarms is very similar to what is done for a
wait activity (Section 5.7). Hence, the definition of the startTime function is extended to

capture pick alarm agents as well as wait activities.

startTime: WAIT u PICK_ALARM_AGENT - TIME

RECORD_ALARM_START_TIME = startTime(self) := now

The pick alarm agent is then responsible to check all the alarms and see which one is due.
The completion time of an onAlarm event is determined by a function, called triggerTime,
with a similar functionality as completionTime defined for a wait activity (Section 5.7).
triggerTime indicates the time when an alarm event is triggered. If the alarm uses ‘until’ to
specify a deadline, this function simply returns the deadline. If the alarm is defined with
‘for’ and specifies a period of time, the function has to know when the alarm was started;

1.e. the deadline is calculated using the starting time (second parameter).

| triggerTime: ONALARM X TIME > TIME

The pick alarm agent waits for any alarm to occur and informs the pick agent about the

triggered alarms as soon as an alarm is triggered, as follows.

69

FORALL_PASSED_ONALARM_EVENTS_INFORM_PICK_AGENT =
forall event € onAlarmSet(baseActivity(self)) with
triggerTime(event, startTime(self)) < now
add (event, triggerTime(event, startTime(self))) to
triggeredEvents(parentAgent(self))

Moreover, the pick alarm agent must terminate if an onMessage event occurs while the
alarm agent is waiting for an alarm to trigger. Analogous to the pick message agent, the
pick alarm agent checks the triggeredEvents set to be informed if an onMessage event

occurs.

onMessage_event_occured = triggeredEvents(parentAgent(self)) # @

For a complete formal definition of the pick agent program, the pick message agent

program, and the pick alarm agent program we refer the reader to Appendix C.

5.13.Flow Agent

In Section 4.3.2.5, where the abstract flow agent program was presented, we mentioned
the key role of the flow agent set. In the intermediate model], this set is concretely defined
as a set of flow thread agents belonging to a flow agent that makes it easy to determine

whether it is empty or not.

flowAgentSet: FLOW_AGENT-> FLOW_THREAD_AGENT-set
// initial value: @

empty_flowagentset = flowAgentSet(self) = @

As discussed before, the flow agent program starts with creating one flow thread agent
for each activity defined inside the flow and adding these thread agents to the flow agent

set. This behaviour is refined in the intermediate model as follows.

70

CREATE_A_FLOWTHREAD_AGENT_AND_ ADD_TO_FLOWAGENTSET (activity:
ACTIVITY) =
new fThread : FLOW_THREAD_AGENT
Initialize(fThread, activity)
add fThread to flowAgentSet(self)

The flow agent program is completed when all of these flow thread agents complete the
execution of their associated activities. Once each thread is completed, it has to remove
itself from the flow agent set (abstractly defined by REMOVE_SELF_FROM_FLOWAGENTSET
rule in Section 4.3.2.5). Thus, the flow agent program is completed when the flow agent

set becomes empty.

REMOVE_SELF_FROM_FLOWAGENTSET =
remove self from flowAgentSet(parentAgent(self))

The complete formal definitions of the flow agent and the flow thread program are

presented in Appendix C.

5.13.1.Link Semantics

As described in Section 2.6.2, the LRM allows synchronization dependencies to be
defined between concurrent activities by introducing link semantics. An activity can be
the source of a set of links or it can be the target of a set of links. sourceLinkSet and

tragetLinkSet are two functions that indicate these sets of links respectively.

sourceLinkSet: ACTIVITY - LINK-set
//derived from the BPEL document and defined in the initial state

targetLinkSet: ACTIVITY - LINK-set
//derived from the BPEL document and defined in the initial state

Initially the status of all outgoing links is NOTDEFINED. linkStatus is a function that
indicates the status of a single link. When activity A completes, certain steps are
performed to determine the effect of the synchronization links on further execution. First,
the status of all outgoing links of A must be determined. The status will become either

POSITIVE or NEGATIVE.

71

linkStatus: LINK > {POSITIVE, NEGATIVE, NOTDEFINED}
//initial value: NOTDEFINED

linkTransitionCondition: LINK > BOOLEAN

To determine the status of each link its transition condition is evaluated.
linkTransitionCondition is a predicate that evaluates this condition. If the condition is
evaluated to true the status will be POSITIVE, otherwise it will be NEGATIVE. This

behaviour is captured in our model by the Synchronization rule.

Synchronization(activity : ACTIVITY) =
forall link € sourceLinkSet(activity)
if linkTransitionCondition(link) then
linkStatus(link) := POSITIVE
else
linkStatus(link) := NEGATIVE

Synchronization must be performed whenever the execution of an activity is completed,
either in basic activities or structured activities. In the complete formal definition of the
intermediate model presented in Appendix C, this rule is called at the end of all basic

activity execution rules and whenever an activity agent is terminated.

Second, if an activity B which has a synchronization dependency on A is ready for
execution, and the status of all incoming links of B is determined, the join condition of B
is evaluated. If the join condition is true then B starts its execution, otherwise a standard
fault is thrown. These pre-requisites are captured in Execute_Activity, and were introduced

in Section 5.1.

linkStatusDefined = Vx (x € targetLinkSet(activity) > linkStatus(x) # NOTDEFINED)

activityJoinCondition: ACTIVITY -> BOOLEAN

linkStatusDefined is a predicate that ensures the status of all the incoming links of an
activity have been determined before executing that activity. If so, activityJoinCondition is

evaluated and the activity can be executed only if the condition is true.

72

Chapter 6. Executable Model

This section introduces an abstract executable semantics of BPEL obtained from the
intermediate model as the result of another refinement step. Experimental validation of
abstract requirement specifications provides us with an effective instrument to further
eliminate undesirable behaviour and hidden side effects in early design stages [18]. In
combination with analytical techniques, simulation and testing can provide valuable
feedback for establishing key system attributes and exploring alternative design choices.

In this project, we use AsmL [1] for this purpose.

6.1. Introduction to AsmL

AsmL, developed by the Foundation of Software Engineering Group at Microsoft
Research [16], is a high level executable specification language based on the concept of
ASM. AsmL specifications are executable, hence they can be used to test and validate the
specifications itself [19]. Experimental validation is widely accepted for checking the
conformance of the specifications to the requirements [17], [18]. In most cases, only
execution can reveal many loose ends and ambiguities both in the formal specification
and the informal requirements [17]. Moreover, a machine compiler can effectively detect
possible syntactic errors in the formal specification. AsmL provides us with the means to
investigate specifications both syntactically and semantically. Besides, AsmlL is
integrated with Microsoft software development and run-time environments which
facilitate creating useful user interfaces to simulate and test AsmL executable

specifications.

73

AsmL is a rich language and although its advance language constructs are definitely
helpful in rapid prototyping and object oriented software development [19], for the
purpose of this project we actually need a subset of the language which is as close as
possible to the pure ASMs. For modeling the BPEL semantics, a tight relation between
the full DASM model and the executable model is of utmost importance. Though, in

order to be executable some changes and additions were inevitable [15].

6.2. The AsmL Model

Refining the DASM model of Chapter 5 to the AsmL executable model requires certain
considerations with respect to the translation aspects, refining abstract parts of the model,
dealing with the underlying communication model and achieving a useful method of

visualization.

Intuitively, the AsmL encoding splits into five separate modules, each of which deals
with a basically different aspect: (1) the original model (2) the internal structure (3) the
refinement of the original model (4) GUI-related extensions, and (5) the communication
model. It is worth mentioning that the current executable model does not cover the
complete intermediate model. Our main goal was to establish a minimal, yet principle
executable model to reveal the feasibility of achieving such a model through refinement.
Through such model we also show the importance of executable specifications in early
design stages and prove how simulation and testing using such a model provide useful
feedbacks to establish key system attributes. As a result, the current executable model
captures the behaviour of main entities of the intermediate model including the inbox
manager, the outbox manager, process instances, sequence agents, flow agents, receive
and reply. The complete executable model is under development as part of another

project in our group.

74

6.2.1. Original Model

The original model is basically the translation of the intermediate model to AsmL. The
DASM model of the BPEL semantics is subject to changes and several iterations due to
the dynamics in the development of the BPEL in an industrial setting. Hence, to maintain
the tight relation between the DASM model and the executable model, it is necessary to
keep the executable model as simple as possible. The advanced constructs of AsmL are
beneficial for structuring complex models; however, in this project our main challenge
was to keep the executable close to the pure ASM by using a subset of the language. The
following provides an example of the translation from the intermediate model to the

executable model for the sequence agent.

The sequence agent program is defined as follows in the intermediate model.

SEQUENCEPROGRAM =
if ~busy(self) then
currentActivity(self) := sequenceCounter(baseActivity(self))
busy(self) : = true
else
if currentActivity(self) # undef then
Execute_Activity(currentActivity(self))
else
stop self
busy(parentAgent(self)) := false

In the executable model the sequence agent program is translated to the following.

75

public class SEQUENCE_AGENT extends ACTIVITYAGENT
var currentActivity as ACTIVITY? = undef
R, - . o o S .,"Saquen(leprogram R

i

override Program()
match baseActivity
//required type checking 1in Asml
baseAct as SEQUENCE:
if not busy then

currentActivity := sequencecCounter(intStr, baseAct)
busy := true
else

if not (currentActivity = null) then
Execute_Activity(me, currentActivity)
else
stop(me)
parentAgent.busy := false

In the executable model a new parameter is introduced for the sequenceCounter function

which refers to the internal structure described in the next section.

6.2.2. Internal Structure

The internal structure acts as an interface between our abstract machine model and the
BPEL definition of the business process. In order to execute a process instance, we need
a way of accessing the definition of the business process. Normally, each process
instance is executing an activity as defined in the BPEL process definition and further
determined by the history of that specific instance. As discussed in Section 4.2, we
assume that the required information on a given business process is extracted from the
underlying BPEL document and is formalized as function definitions in the initial state.
To make the model executable, we have to resolve the abstractions and define such
functions explicitly. In the executable model, the internal structure provides the specific
information on a business process based on the BPEL process definition. For instance,
consider the sequenceCounter function in the sequence agent program of the previous
section (Section 6.2.1). As described in Section 5.9, this function yields the activities
specified inside a sequence one by one. Abstractly, it operates on the definition of the

business process as provided by the internal structure of the executable model.

76

The internal structure is defined as an AsmL interface16 [1] which allows different
implementations of it. This project uses an array-based implementation of the internal
structure where the definition of a business process is hard-coded in the internal structure
while other possible implementations can be considered in the future. The definition of
the interface and some of the methods provided by the internal structure are presented

below. The reader is referred to Appendix D for more details.

interface INTERNAL_STR
sequenceCounter(s as SEQUENCE) as ACTIVITY?
//returns the next activity to be executed in a sequence agent

processActivity() as ACTIVITY
//returns the main activity of the process

accept(activity as ACTIVITY, m as MESSAGE) as Boolean
//returns true 1t the message has the correct type as reguired by the activirvy

taggedwithCorrelation(activity as INPUT_ACTIVITY) as Boolean
//returns true il the activity is associated with a correlatin set

initiateCorrelation(activity as INPUT_ACTIVITY) as Boolean
//returns true if the correlation set associated with the activity
J/mist be finitiated

6.2.3. Execution-Specific Additions to the ASM Model

In the stepwise refinement of the original model, abstract parts are refined depending on
their role in the model, either by introducing non-determinism or assigning clear
deterministic behaviour to them. In some cases, complex substructures had to be
introduced. For example, in order to model the correlation behaviour in a business
process instance, we need a structure for correlation sets mapping properties to their
values. This structure completely complies with the definition of the correlation sets in

the LRM. In addition, a predicate is defined to check the compatibility of a message to a

18 AsmL interfaces provide a vocabulary (or type signature) without implementation [1].

77

correlation set, i.e. to check whether the message contains the required correlation token
values or not. The abstract definition of the correlation sets of the intermediate model and
the refined definition of the executable model are both presented below. It is worth
mentioning that although the intermediate model deals with the correlation sets
abstractly, this refinement is necessary in the executable model in order to deal with the

correlation values.

Correlation sets are defined by the CORRELATIONSET domain in the intermediate model.

| domain CORRELATIONSET

The definition of the correlation sets in the executable model is as follows.

class CORRELATIONSET
var properties as Map of String to DATA

messageContainsTokens(m as MESSAGE) as Boolean
//This merhod checks the compatibility of a message to a correlation set.
wvormally, we should check if the message carries the correlation token values.

6.2.4. GUI-Related extensions

An executable model needs a GUI that makes it a useful tool for user-controlled
simulation and testing. The GUI is written in Visual C# NET'. By utilizing AsmL’s
APIs with C#, we were able to integrate the model with its GUI, by defining an
appropriate interface called View. Figure 6-1 shows the current version of GUI, capturing

the state of a set of business process instances.

" Microsoft Visual C# .NET, Microsoft Development Environment

78

[BPLL Executable Semantics

| Pending Messagas

List af Processes

ijvacekss Program

msg? : 33

Message Histary

~ Process: p2 | Busy: True | Custent Activity: SEQUENCE 0| Correlations: c2
Seq Agent p2:s0 1 Busy: False | Current Activity: Receive: 1

< Process: p0 | Busy: True | Cusrent Activity: SEQUENCE:0 | Correlations: war

=t SeqAgent pb:s8 | Busy: True | Current Actviy: FLOW:4
= FLOW AGENT: p0:s0:(0
FLOW THREAD: p0:s0:fit2 . Current Activity: Recerve:7
FLOW THREAD: p0:s0:f0:t0 . Current Activity: Recerve:8
= Process: p1 |Busy: Tiue | Curent Activity, SEQUENCE:Q | Correlations: c2:
= SeqAgent p1:sQ | Busy: True | Cunert Activity: FLOW:4
~ - FLOW AGENT: p1:s0:0
FLOW THREAD: p1:50:f0:10 , Curcent Activity: Recerve:7
FLOW THREAD: p1:s0:f0:t1 , Current Activity: Reply.6
FLOW THREAD: p1:s0:f0:12 , Current Activity: Receive:8

t 0:Seguence
1:1ecesve, Operation : msgl. Vaiable : ID, Createlnstance: True C
2reply. Operation: sendlD, Varibale : IDCorelationT ags: {}
3ireceive, Operation : msg2, Variable : 1D2, Createlnstance: True {
- 4:flow
B:reply, Operation: sendReply, Varibale : IDConelationT ags: {}
7.1eceive. Operation : msg3, Vaiable : (D2, Createlnstance: T
B.1eceive, Opeiation : msgd, Vaiable : ID, Createlnstance Fal
Siteceive. Dperation : m2, Variable : ID, Createinstance: False Con

Message ToPracess: Agent
msg2 : B4 to pO:sD
msg2: 11 to pl:s0
msgl : 84 to p0:s0
msgl: 11 to p1:s0
msgl : 29to p2:s0

< N
w5
< . S G " ¥ Qutbox Space
Add 2 Message Agent: p0:s0:f0:t1 : sendRepiy: 97

Msg
Type: |msgl

Add the Message |

Agent: pl:s0: sendlD: 79
Agent: p0:s0: sendlD: 14

Figure 6-1 Graphical user interface of a sample AsmL model

There is a list of processes that shows the process instances together with their internal
states. Pending Messages shows the messages that had arrived at the Web service and
were placed in the inbox space of the inbox manager. Outbox space shows a list of output
descriptors that are created and left in the outbox space of the outbox manager. Finally,
message history keeps track of the messages that have been assigned to different

instances of the business process.

Obviously, to establish the required connections between the AsmL model and the user
interface, certain methods and interfaces are needed. View is the class that provides the
graphical user interface and is written in C#. Its integration into the AsmL model needs

appropriate interfaces, as defined below.

79

[External]

class view
public refreshmessageList(mArray as ArrayList)
public refreshProcessTreeview(mArray as ArrayList)
public refreshMsgHistoryList(mArray as ArrayList)
public refreshoutspaceList(mArray as ArrayList)
public setProgramBox(mArray as ArrayList)

class MODEL
var view as View

The AsmL model uses these methods to interact with the GUI For example, as
mentioned the GUI needs to keep track of the messages that have been assigned to
different business process instances. To maintain this list, and to keep it up-to-date, the
model records all the assignments done in one step of DASM and informs the GUT at the

end of each step. For details of such an interaction please refer to Appendix D.

6.2.5. Communication Model

As mentioned in Section 4.1, this project concentrated on the service model while
assuming the abstract network model of [20] as the core of the underlying
communication model. The composition of the service model and the network model is
well-defined, as the inbox space and the outbox space perform as the interfaces of a Web
service with the outside world and are naturally viewed as two mailboxes for the network
model. Although an executable version of the network model [20] is being developed in
our group, a full composition of the two models requires taking into account the specific
message bindings and service bindings as mentioned in Section 4.1. In the current
executable model the interactions with the network model, which includes receiving a
message and sending a message as well as the corresponding transformations according
to WSDL binding rules, are done manually. However, as this problem is addressed by
other projects of the group, considering both the network model and the service model,

we are confident that the full composition will be accomplished in the near future.

80

6.3. Experimental Validation

A receive activity is a “blocking activity in the sense that it will not complete until a
matching message is received by the process instance.” [10, Section 11.4] Therefore, it is
implicitly assumed that a matching message will arrive after the corresponding receive
activity has been executed. Consider the following activity in a business process:
<sequence>
<activityl>

<activity2>

<receive partnerLink="PL1" portType="PT1" operation="0P1”>
</sequence>

Suppose that when a process instance is executing activity2, a message arrives from
partnerLink PL1 using portType PT1 and operation OP1. Since the process instance has
NOT executed the receive activity yet, it is not waiting for this message. It is not clear

from the LRM what happens to such a message. Indeed, there could be multiple choices:
e Buffer: The message can be stored in a buffer, so that the receive activity can
fetch it later.

e Discard: The message can simply be discarded, when there is no receive activity

waiting for it.

e Fault: A fault can be thrown since the Web service has received a message for

which no process instance is waiting.

It is certainly important for the LRM to distinguish among these choices, since it will

cause inconsistencies in the behaviour of different implementations of the language.

This problem was discovered during experimental validation, when our inbox manager

received a message that no process instance was expecting at the time.

81

Chapter 7. Critical Analysis of BPEL

The goal of the LRM is to establish the key system attributes of the Web services
architecture for automated business processes as a basis for the development of
e-business applications. However, a careful analysis of the language points out a number
of weak points and open issues in the language definition. The goal of the OASIS
technical committee is to discover and address these weak points, so that the language
becomes more robust and clear. To this date, the technical committee has listed 97 issues
and has resolved a number of them. In this chapter, we mention the weak points that were
discovered in this project through modelling key system attributes of the language. Some

of them have been already acknowledged in the WSPEL TC issue list [34].

7.1. Ambiguities

The definitions and constraints introduced for different constructs of the language are, in
many cases, scattered and not centralized. The lack of a formal organization, together
with the imprecise nature of the natural language definitions causes inevitable

ambiguities and uncertainties in the language. We present two such ambiguities here.

7.1.1. Correlations

The LRM states that “After a correlation set is initiated, the values of the properties for a
correlation set must be identical for all the messages in all the operations that carry the
correlation set and occur within the corresponding scope until its completion” [10,

Section 10.2] Logically, the operations that carry the correlation sets can be categorized

82

into two basically different groups: input activities, including receive, invoke, and pick,
and output activities, including reply and invoke. Therefore, we can decompose the above
consistency constraint into two separate constraints: (1) the property must hold on all

input activities; (2) the property must hold on all output activities.

To see that the first constraint is satisfied is trivial. The LRM clearly specifies that a
message must carry the required correlation tokens in order to be accepted by the process
instance. This is true for every input activity. In our model, the inbox manager fulfils this
duty. A message will be assigned to a process instance only if it “matches” the process

instance; thus, it must carry the required correlation token values.

The second property, however, requires a closer investigation. This property can itself be
decomposed to two sub-properties: (2.1) the property must hold in all output activities,
where the correlation is initiated by the same output activity; (2.2) the property must hold

in all output activities where the correlation set is already initiated.

(2.1) is confirmed by the LRM as well. The correlation set will be initiated and the
correlation tokens get their values from the message that is to be sent out. For (2.2), the

language does not provide enough details to prove or falsify the second property.

In case of incoming messages, the business process is capable of filtering the messages;
i.e. it will only pick those messages that match the correlation. On the other hand, in case
of outgoing messages, the business process has no responsibility other than sending the
message out. Although the LRM defines the semantics of a process that violates this
consistency constraint as undefined, it is not precisely mentioned that output activities
(like input activities) are blocking activities, and thus the ambiguity leads to further

problems as follows.

7.1.2. Synchronous Receive/Reply

According to the LRM “A reply activity is used to send a response to a request

previously accepted through a receive activity. Such responses are only meaningful for

83

synchronous interactions.” [10, Section 11.4] In order to clarify a request/response
interaction, the BPEL LRM states that “The correlation between a request and the
corresponding reply is based on the constraint that more than one outstanding
synchronous request from a specific partner link for a particular portType, operation and
correlation set(s) MUST NOT be outstanding simultaneously.” [10, Section 11.4]
Although the definition of “outstanding” is not elucidated in the LRM, according to its
interpretation by WSBPEL TC ([34, issue #26]), one can assume that an outstanding
synchronous receive is a receive activity for which the required message has arrived but

the reply is not sent out yet. Therefore, the following must be permissible:

<receive . partnerLink="PL1" portType=*PL" operation="01”
correlation="Cl”> :
<receive partnerLink=*PL1" portType=*PLl" -~ operation=“Ql”

correlation="C2"> ...
<reply partnerLink=“PL1" portType=“Pl“ operation=*01“>

Assuming that operation O1 is an input-output operation, these two receive activities start
two synchronous request/response transactions, and as the correlation sets of these
receive activities are different, these two transactions are valid to be outstanding
concurrently. The problem arises when a reply message is sent to the same partner
without specifying any correlation set. This is a valid reply. The problem in this case is
that it is impossible to determine to which receive activity this reply is coupled; it is not

clear which request/response is still outstanding and which one is not [15].

7.2. Loose Ends

The BPEL reference manual suffers from the lack of precision caused by natural
language definitions. The lack of formalism makes it difficult to delineate the scope of
the language and to identify the interfaces of a business process with the outside world.
This problem inevitably causes missing points and loose ends. This section presents two

examples of such loose points which were discovered through the modelling process.

84

7.2.1. Partners Communication

The LRM defines the communication between a business process and its partners through
partner links (see Section 2.7.1). For example, in the e-Book store example (Section 2.7),
the communication between the business process and the shipping company is defined by
identifying the port type of the shipping company Web service which is responsible for
the communication. Hence, in order to establish a conversation, it is important for the
message to carry the required information about the partner link, the port type and the
operation to which it belongs. Suppose that a business process invokes a partner service
by sending a message using the correct port type and operation of that service. The
business process then waits to receive a call-back from that service, which is sent back
using the same port type and operation. The inbox manager, or any other entity
responsible for assigning the messages to the business process instances, needs a
mechanism to distinguish this message from all the other messages that arrive at the
business process. The LRM does not specify how such a conversation is established. It is
not clear whether there is a mechanism to build a fixed communication channel between
two partners or how the underlying messaging protocol must carry the required
information along with the messages. The LRM does not specify any requirements for the
underlying messaging protocol. It states that “BPEL4WS depends on the following XML-
based specifications: WSDL 1.1, XML Schema 1.0, XPath 1.0 and WS§-Addressing.
Among these, WSDL has the most influence on the BPELAWS language.” [10, Section 3]
Nevertheless, WSDL is used in conjunction with different messaging protocols (e.g.
SOAP 1.1, HTTP GET/POST, and MIME) and does not impose the protocol to carry

such information. Thus, this requirement must indeed be clarified by the LRM.

7.2.2. Re-Initiating a Correlation Set

In Section 2.2 we introduced the notion of a start activity and described its role in the life
cycle of a business process. The LRM states that “The only way to instantiate a business

process in BPELAWS is to annotate a receive activity with the createInstance attribute

85

set to "yes" (see 12.4. Pick for a variant). The default value of this attribute is "no". A
receive activity annotated in this way MUST be an initial activity in the process, that is,
the only other basic activities may potentially be performed prior to or simultaneously
with such a receive activity MUST be similarly annotated receive activities.”’[10, Section

11.4]

Now, consider a Web service that receives a number of commands from different users
and then performs them one at a time. A business process instance is created for each
user that communicates with the system (and has a unique ID). Once a business process
instance is created it handles all the commands from that specific user. The definition of
such a business process is presented here in a pseudo-code-like style.
PROCESS
WHILE G
RECEIVE - 1 ;
MESSAGE (ID, command),

createInstance="yes”,
CORRELATION{(initiate=*yes”,ID)

This is a valid process definition and satisfies the condition of having at least one start
activity. However, the problem arises when we want to assign messages to this business
process. Consider the following scenario. A message ml = (12, “start”) arrives and
accordingly a new business process instance pl is instantiated and a correlation set is
initiated (¢ = {ID: 12}). From now on, the messages with the same correlation token
value (12) are expected to be assigned to this process instance, so if a message m2 with
same correlation token value (12) arrives, it is expected to be assigned to the same

business process.

To check whether the message can be assigned to the existing process instance, the
message must be checked against its correlation set; i.e. m2 has to carry the required

correlation token value. The matching procedure can be defined as follows:

86

if m2 has the correct message type then
if activity has a correlation set attribute then
if this correlation set is tagged with initiation then
if the correlation is not yet initiated then
m2 matches p/
else
SPECIAL-CASE //The matching is done, only if the
//waiting activity has certain properties
else
if the correlation set is initiated then
if m2 carries the required correlation token values then
mZ2 matches p /
else
mZ2 does NOT match pl
else
Error. The semantics is undefined
else // No correlation exists, so the message matches the process
m2 matches pl
else // The message does not have the required type at all
m2 does NOT matches pl

Now, consider the part in the above procedure which is defined as SPECIAL-CASE.
According to the LRM, “A correlation set can be initiated only once during the lifetime
of the scope it belongs to.” [10, Section 10.1] Hence, we can conclude that if receiving a
message causes re-initiation of a correlation set, it can not be matched to the current
process instance; i.. a new process instance must be created for it. It is worth mentioning
that there is an exception to this rule in case of concurrent start activities'®, but this does
not affect our example. Therefore, if the special case happens in this example, it means
that the message does not match the process instance, and a new business process

instance must be created to handle m2.

The above mentioned exception is defined for concurrent start activities and enables them
to ignore the fact that the correlation is already initiated. If a set of concurrent start

activities is defined for a business process, the LRM states that “compliant

'® This is the reason why this case is called a special case.

87

implementations MUST ensure that only one of the inbound messages carrying the same
correlation set tokens actually instantiates the business process (usually the first one to
arrive, but this is implementation dependent). The other incoming messages in the
concurrent initial set MUST be delivered to the corresponding receive activities in the
already created instance.” [10, Section 11.4] Though it is not clearly mentioned, one can
conclude that once the first message is received and a business process is created, the
following messages for the remaining concurrent activities (carrying the same correlation
tokens) will not attempt to initiate any new correlation sets, and thus are permissible. In
other words, as confirmed by the issue #78 “the 'initiate="yes' value is only true on the
first multi-start activity that fires, the rest are magically transformed into 'initiate='no"
once the first multi-start fires.” [34] Such an exception is not introduced for a while
activity, making it impossible to define the behaviour of such a business process as we

did in this example.

7.3. Inconsistencies

Inconsistencies are another category of defects caused by natural language descriptions.
Normally, natural language definitions seem meaningful and reasonable; however, they
can (-and sometimes do) introduce contradicting, or confusing meanings for a concept.
The inconsistencies presented in this section were discovered during the formal
modelling process, where we had to assign a specific meaning (or behaviour) to each

entity of the language, and we found some of these meanings were indeed contradictory.

As mentioned before, the LRM permits a business process definition to have multiple

concurrent start activities:

!

“It is permissible to have the createInstance attribute set to "yes" for a set of
concurrent initial activities. In this case the intent is to express the possibility that any
one of a set of required inbound messages can create the process instance because the

order in which these messages arrive cannot be predicted.” [10, Section 11.4]

88

Thus, as soon as a message arrives for one of these activities, a new business process
instance must be created and the rest of the activities do not create any new process
instances as long as they receive messages in the same correlation group. In other words,
this special case implies that createlnstance = “yes” does not always mean that a new

business process instance must be created; it actually depends on the circumstances.

The same problem exists for the correlation initiation attribute. As mentioned in Section
7.2.2, initiate = “yes” does not always mean a new correlation set must be initiated either.
In case of concurrent start activities, after the first activity receives a message and
initiates a correlation, correlation initiation is disabled in all other activities. The
confusion that is caused by this inconsistency is addressed in issue #78: “The use of the
initiate attribute on correlations in multi-start activities can easily lead to
misunderstanding. The '‘initiate = "yes”’ value is only true on the first multi-start activity
that fires, the rest are magically transformed into ‘initiate = "No”’ once the first multi-
start fires. One can easily imagine the resulting confusion. To prevent this confusion
perhaps we should add a new value for initiate such as ‘initiate = "multiStart”’. This shows
that the programmer understands the special semantics of correlation sets on multi-start

activities.” [34]

Nonetheless, the technical committee has not yet addressed the same problem with the

createlnstance attribute.

&9

Chapter 8. Conclusion and Future Work

Our formalization of the key semantic aspects of BPEL in terms of a hierarchically
defined service abstract machine forms the major building block of the BPEL abstract
machine and shows that the asynchronous DASM model is a natural choice for defining a
precise semantic foundation. The resulting formal model transforms the abstract language
definition in two refinement steps into an executable specification. In combination with
inspection by analytical means, e.g. the ability to formally reason about critical language
properties, experimental validation through simulation and testing helps establishing
coherence and consistence of the semantics, thereby improving the quality of the

language definition [15]. An advanced GUI facilitates such tasks.

A prerequisite for feasibility of formalization when applied as a practical instrument in an
industrial standardization context is conciseness, intelligibility and robustness [18].
Standardization is an ongoing and potentially open-ended activity which brings a high
dynamics into the development and maintenance of a language. Such dynamics demands
a formalization framework that also meets the basic pragmatic needs. To this end, the
abstract machine concept has already proven to be useful for enhancing conciseness and
robustness of the formal model. The proposed hierarchical structuring of this model into
three levels of abstraction reflects a clear separation of concerns, enhances intelligibility,

and enables a tighter integration of the formal and the informal language description [15].

The current work forms the first building block on which a comprehensive formal model
of BPEL can be established. To the author’s best knowledge this work is the first
published formal model of BPEL [14], [15]. Its orientation toward practical needs in
industrial system design may even result in an opportunity to get involved in the design

and standardization process of the language. As such, this work is already recognized and

90

encouraged by the WSBPEL TC in response to the necessity of formalism “in surfacing

ambiguities and irregularities in the process of construction of the formal model” [34,

Issue#42].

The work presented here is being continued as part of different projects in our group. A
major revision of the current model is being developed incorporating a two dimensional
organization of the model which facilitates extending the service abstract machine model
towards modeling and integration of variables, compensation behaviour and fault
handling. Moreover, the executable model is being extended to capture the complete
service abstract machine model. On the other hand, the availability of an executable
network model [20], which has been developed as part of another project in our group,
will allow the full composition of the executable model and the network model in the
near future. In addition, further expected improvements on the GUI and the underlying
visualization tools will definitely be a great asset for performing validation through

simulation and testing.

91

Appendices

Appendix A. BPEL Abstract Syntax Tree

(Sorted Alphabetically)

Activity tr= BasicActivity ;

| StructuredActivity

| ScopeRelatedActivity
ActStandardAttributes ::= ActivityName

Condition

SuppressJoinFailure

ActStandardElements

1]

Source*
| Target*

AgsignAct = ActStandardAttributes
ActStandardElements
Copy# '

BasicActivity ‘ ::= . ReceiveAct
|ReplyAct
| InvokeAct
[AssignAct
| Throwact
| Terminateact
[WaitAct
[EmptyAct

Case S sr= Condition
Activity

CatchFault o= FaultName?
VaribleName?
Activity

Catchall 1:= Activity
CompensateAct ve= ScopeName .

ActStandardAttributes
ActStandardElements

92

CompensationHandler
Condition

Copy

CorrelationSets

CorrelationSetDef

CorrelationTag

CorrelationUsage

EmptyAct -
EventHandlers

Expression

FaultHandlers

FlowActivity

From Spec¢

Initiation

InvokeAct

ACtivity
Boolean_Expr

From-Spec
To-~-Spec

CorrelationSetDef+

CorrelationName
PropertyName+

CorrelationUsage~+

CorrelationName
Initiation?
Pattern =

ActStandardAttributes

 ActStandardElements

,(OnMesageEvent*k

OnAlarmEvent*) +

Boolean_Expr

| Deadline_Expr
|Duration_Expr
| General_Expr

(CatchFault*
Catchall?)+

ActStandardAtt:ibutes
ActStandardElements
Links? o

Activity+

From_Variable

From_ Partner
From_Variable_Property
From_General Expr

‘From_LiteralValues

From_Opaque
“Yeg” l ~\\N'0'n~‘ s

PartnerName
PortTypeName
OperationName
InputVariableName?
OutputVariableName?
ActStandardAttribues
ActStandardElements

93

CorrelationTag?
CatchFault*
Catchall?
CompensationHandler?

Links . 1= LinkName+

OnAlarmEvent 1= FOrStructure|UntilStructure¥
Activity

OnMessageEvent Saa= PartnerName
PortTypeName
OperationName
VariableName?
CorrelationTag?
Activity

Otherwise " i:= Activity
Pattern ::= “in” | “out” | “out-in”
Partners vi= ParternDef+

PartnerDef ::= PartnerName .
gs PartnerLinkName+

PartnerLinks = ::i= PartnerLinkDef+

PartnerLinkDef PR PartnerLinkName
: PartnerLinkTypeName
myRole?
parttierRole?

PickActivity ::= CreateInstance?
S ActStandardAttributes
ActStandardElements

OnMessageEvent+:

OnAlarmEvent*

ProcessDef ‘ :1=_ ProcessName
ProcessAttributes
PartnerLinks?
Partners?
Variables?
CorrelationSets?
FaultHandlers? ;
CompensationHandler?
EventHandlers?
Activity

Property = woaas PropertyNamer:
i : - TypeName -

94

PropertyAlias

ReceiveAct

ReplyAct

ScopeAct

ScopeRelatedActivity

SeQuenceAct'

Source

StructuredActivity

SwitchAct

- ‘SequenceAc

- PropertyName

MessageTypeName
PartName
Query

PartnerName
PortTypeName
OperationName
VariableName?
CreateInstance?
ActStandardAttributes
ActStandardElements
CorrelationTag?

PartnerName

‘PortTypeName

OperationName

_VariableName?

FaultName?
ActStandardAttribues
ActStandardElements

CorrelationTag?

VarAccessSerializable |

ActStandardAttributes

ActStandardElements
Variables? = .
CorrelationSets?
FaultHandlers?.
CompensationHandler?
EventHandlers?
Activity ‘

ScopeAct
| CompensateAct

ActStandardAttributes
ActStandardElements
Activity+

LinkName
Conditiop?

|Switchact
|Whileact
|PickAct
|FlowAct
| Scopeact
|Compensat

ActStan,frdAttributésk

‘ActStandardElements

Case+

95

Target

TerminateAct

ThrowAct

To_Spec

Variables

VariableDef

VarAccessSerializable

WaitAct

WhileActivity

TypeName?

Otherwise?
LinkName

ActStandardattributes
ActStandardElements

FaultName .
VariableName? :
ActStandardAttributes
ActStandardElements

To_Variable
To_ Partner
To_Variable_ Property

VariablesDef+

ElementName?

“Yag | wNo

ForStructure| UntilStructure

ActStandardattributes
ActStandardElements

Conditi§n: (T
ActStandardAttribltes

ActStandardElements
Activity

96

Appendix B. Abstract Model

B.1. Initial Definitions

[/Agents

domain PROCESS

domain INBOX_MANAGER
domain OUTBOX_MANAGER

//Activity Agents

domain SEQUENCE_AGENT

domain SWITCH_AGENT

domain WHILE_AGENT

domain PICK_AGENT

domain FLOW_AGENT

domain PICK_ALARM_AGENT //The agent responsible for the alarms
//in a pick activity

domain PICK_MESSAGE_AGENT //The agent responsible for the onMessage events
//in a pick activity

domain FLOW_THREAD_AGENT //sub agents of a flow agent

ACTIVITY_AGENT = SEQUENCE_AGENT U SWITCH_AGENT U WHILE_AGENT U
PICK_AGENT U FLOW_AGENT U PICK_MESSAGE_AGENT U
FLOW_THREAD_AGENT U PICK_ALARM_AGENT

RUNNING_AGENT = PROCESS U ACTIVITY_AGENT
//RUNNING_AGENT is the set of agents that execute (run) an activity.

AGENT = RUNNING_AGENT U INBOX_MANAGER U OUTBOX_MANAGER

//{Events
domain ONMESSAGE // OnMessageEvents of Pick activity
domain ONALARM // OnAlarmEvents of Pick activity

EVENT = ONMESSAGE U ONALARM

// Activities

domain REPLY
domain RECEIVE
domain INVOKE
domain WAIT
domain TERMINATE

97

domain EMPTY
domain SEQUENCE
domain SWITCH
domain WHILE
domain PICK
domain FLOW

ACTIVITY = REPLY U RECEIVE U INVOKE U WAIT U TERMINATE U EMPTY
U SEQUENCE U SWITCH U WHILE U PICK U FLOW

domain MESSAGE
domain OUTPUT_DESCRIPTOR

activity: RUNNING_AGENT > ACTIVITY
//Returns the activity that must be executed in a running agent.
//1t is derived from the BPEL document and defined in the initial state

busy: RUNNING_AGENT -> BOOLEAN
//initial value: false
//An agent is busy while one of its activities is being executed.

chosenActivity: PICK_AGENT > ACTIVITY
//The activity that is chosen by the pick agent to be executed

currentActivity: SEQUENCE_AGENT > ACTIVITY
//Keeps track of the current activity which is being executed

flowActivitySet: FLOW > ACTIVITY-set
//Set of the activities defined inside a FLOW
//1t is derived from the BPEL document and defined in the initial state

foundBranch: SWITCH_AGENT > ACTIVITY
//initial value: undef
//The activity associated with the branch that is chosen by switch to be executed

inboxSpace: INBOX_MANAGER > MESSAGE-set
//Keeps the messages that have arrived for a business process and are
//not yet serviced.

match: PROCESS X MESSAGE - BOOLEAN
//Tells whether a messages matches a process instance or not.

outboxSpace: OUTBOX_MANAGER - OUTPUT_DESCRIPTOR-set
//initial value: &
//This set keeps the information about all the messages that should go out.

98

receiveMode: RUNNING_AGENT - BOOLEAN
//initia) value : false
//Tells whether a runnig agent is waiting to receive a message or not.

startedExecution: PROCESS U FLOW_THREAD_AGENT-> BOOLEAN
//initial vaiue: false

//Tells whether a process or a flow thread agent has started executing its
//activity or not.

synchronous: INOVKE - BOOLEAN

//returns true if the invoke activity contains synchronous interactions;
//i.e. request/response

//1t is derived from the BPEL document and defined in the initial state

waiting: PROCESS - BOOLEAN
//Tells wheather a process instance is waiting for a message or not

99

B.2. Programs

Inbox Manager

INBOXMANAGERPROGRAM =
if inboxSpace(self) # @ then

ASSIGN_MESSAGE(p, m)
if p = dummyProcess then
new newDummy : PROCESS
dummyProcess := newDummy

choose p € PROCESS, m e inboxSpace(self) with match(p, m) and

waiting(p)

Outbox Manager

OUTBOXMANAGERPROGRAM =
if outboxSpace(self) # @ then
choose od € outboxSpace(self)
SEND(od)

Process

PROCESSPROGRAM =
if ~busy(self) then
if =startedExecution(self) then
startedExecution(self) := true
busy(self) := true
else
stop self
else
EXECUTE_ACTIVITY(activity(self))

100

Receive Activity

Execute_Receive (activity : RECEIVE) =
if ~receiveMode(self) then
receiveMode(self) := true //The running agent waits to receive a message
ADD_INPUT_DESCRIPTOR_TO_WAITING_SET(activity)
else
if message_is_received(activity) then
receiveMode(self) := false
busy(self) := false

Reply Activity

Execute_Reply (activity : REPLY) =
ADD_OUTPUT_DESCRIPTOR_TO_OUTBOX_SPACE(activity)
busy(self) := false

Invoke Activity

Execute_Invoke (activity : INVOKE) =
if ~receiveMode(self) then
ADD_OUTPUT_DESCRIPTOR_TO_OUTBOX_SPACE(activity)
if =synchronous(activity) then
busy(self) := false

if synchronous(activity) then
receiveMode(self) := true
ADD_INPUT_DESCRIPTOR_TO_WAITING_SET(activity)

if receiveMode(self) and message_is_received(activity) then
receiveMode(self) := false
busy(self) := false

Terminate Activity

Execute_Terminate =
STOP_ALL_SUBORDINATE_AGENTS
stop rootProcess(self)

101

Wait Activity

Execute_Wait (activity : WAIT) =
if wait_just_started(activity) then
RECORD_WAIT_START_TIME(activity)
else
if wait_completed(activity) then
busy(self) := false

Empty Activity

Execute_Empty (activity : EMPTY) =
busy(self) := false

Sequence Activity

SEQUENCEPROGRAM =
if =busy(self) then
SET_CURRENT_ACTIVITY_TO_NEXT_ACTIVITY
busy(self) := true

if busy(self) then
if sequence_is_not_completed then //There are still some activities to execute
EXECUTE_ACTIVITY(currentActivity(self))
else //No more activities
stop self
RELEASE_PARENT

Switch Activity
SWITCHPROGRAM =
if —busy(self) and =branch_found then //No branch is selected yet
FIND_BRANCH //foundbranch(self) is set to the selected branch.

//Always successful (because of the default OTHERWISE)
busy(self) := true
if busy(self) then
EXECUTE_ACTIVITY(foundBranch(self))

if =busy(self) and branch_found then
stop self
RELEASE_PARENT

102

While Activity

WHILEPROGRAM =
if ~busy(self) and true_while_conditionthen
busy(self) := true

if busy(self) then
EXECUTE_ACTIVITY(activity(self)))
//Executing the activity inside while; when completed, busy becomes faise

if =busy(self) and false_while_condition then
stop self
RELEASE_PARENT

Pick Activity

PICKPROGRAM =
if =busy(self) then

if activity_is_not_chosen then
CREATE_PICK_ALARM_AGENT // To manage onAlaram events
CREATE_PICK_MESSAGE_AGENT // To manage onMessage events
busy(self) := true //The agent is waiting for an event to happen

else
RELEASE_PARENT
stop self

if busy(self) then
if activity_is_not_chosen then
CHOOSE_EARLIEST_HAPPENED_EVENT
//choose one of the onMessage or onAlarm events that happened first
//chosenActivity is set to the corresponding activity of that event
else
EXECUTE_ACTIVITY(chosenActivity(self))

103

Pick Message Agent

PICKMESSAGEPROGRAM =
if onAlarm_event_occured then
REMOVE_ALL_ONMESSAGE_INPUT_DESCRIPTORS_FROM_WAITING_SET
stop self
else
if =busy(self) then
ADD_ALL_ONMESSAGE_INPUT_DESCRIPTORS_TO_WAITING_SET
busy(self) := true
else
CHOOSE_A_COMPLETED_ONMESSAGE_EVENT_AND_INFORM_PICK_AGENT
stop self

Pick Alarm Agent

PICKALARMPROGRAM =
if onMessage_event_occured then
stop self
else
if =busy(self) then
RECORD_ALARM_START_TIME
busy(self) := true
else
FORALL_PASSED_ONALARM_EVENTS_INFORM_PICK_AGENT
stop self

Flow Activity

FLOWPROGRAM =
if ~busy(self) then
//Creates threads to concurrently execute activities grouped inside the flow.
forall activity € flowActivitySet(self)
CREATE_A_FLOWTHREAD_AGENT_AND_ADD_TO_FLOWAGENTSET (activity)
busy(self) := true

if busy(self) and empty_flowagentset then
//All threads are done, flow activity is completed.
RELEASE_PARENT
stop self

104

Flow Thread Agent

FLOWTHREADPROGRAM =
if =busy(self) and ~startedExecution(self) then
startedExecution(self) : = true
busy(self) := true

if busy(self) then
EXECUTE_ACTIVITY(activity(self))

if ~busy(self) and startedExecution(self) then
REMOVE_SELF_FROM_FLOWAGENTSET
stop self
//Each thread executes one activity. When the execution is completed,
//the thread removes itself from the flow agent set and is terminated.

105

Appendix C. Complete Formal Model

C.1. Initial Definitions

/{Agents

domain PROCESS

domain INBOX_MANAGER
domain OUTBOX_MANAGER

/{Activity Agents

domain SEQUENCE_AGENT

domain SWITCH_AGENT

domain WHILE_AGENT

domain PICK_AGENT

domain FLOW_AGENT

domain PICK_ALARM_AGENT //The agent responsible for the alarms
//in a pick activity

domain PICK_MESSAGE_AGENT //The agent responsible for the onMessage events
//in a pick activity

domain FLOW_THREAD_AGENT //sub agents of a flow agent

ACTIVITY_AGENT = SEQUENCE_AGENT U SWITCH_AGENT U WHILE_AGENT U
PICK_AGENT U FLOW_AGENT U PICK_MESSAGE_AGENT U
FLOW_THREAD_AGENT U PICK_ALARM_AGENT

RUNNING_AGENT = PROCESS U ACTIVITY_AGENT
J//RUNNING_AGENT is the set of agents that execute (run) an activity.

AGENT = RUNNING_AGENT U INBOX_MANAGER U OUTBOX_MANAGER

//Events
domain ONMESSAGE //OnMessage events of Pick activity
domain ONALARM //OnAlarm events of Pick activity

EVENT = ONMESSAGE U ONALARM

/[Activities

domain REPLY
domain RECEIVE
domain INVOKE
domain WAIT
domain TERMINATE

106

domain EMPTY
domain SEQUENCE
domain SWITCH
domain WHILE
domain PICK
domain FLOW

ACTIVITY = REPLY U RECEIVE U INVOKE U WAIT U TERMINATE U EMPTY
U SEQUENCE U SWITCH U WHILE U PICK U FLOW

//MESSAGE
domain MESSAGE

IN_OPERATION = RECEIVE U INVOKE U ONMESSAGE
OUT_OPERATION = REPLY U INVOKE
OUTPUT_DESCRIPTOR = RUNNING_AGENT X OUT_OPERATION

//Activity dependents
domain LINK
/{Represents the link between activities in a parallel execution {flow).

domain SWCASE
//case elements of a switch, it includes conditional cases and otherwise
//otherwise is a special case with an always-true condition

domain PRIORITY
//An ordered domain, with a least element called LEAST_PRIORITY

//CORRELATIONSET
domain CORRELATIONSET

[[=mmmmmm e e ee RUNNING_AGENT properties----======-==m=m=mszsomreeoen
busy: RUNNING_AGENT -> BOOLEAN

// initial value: false

// An agent is busy while one of its activities is being executed.

rootProcess: RUNNING_AGENT -> PROCESS
//Returns the process agent to which this running agent beiongs.

rootProcess(a: RUNNING_AGENT) =
-a : a € PROCESS,
- rootProcess (parentAgent(a)) : otherwise.

receiveMode: RUNNING_AGENT-> BOOELAN
//initial value : false

//Tells whether a running agent is waiting to receive a message or not.

107

parentAgent: RUNNING_AGENT - RUNNING_AGENT
//Returns the parent agent (one layer above in the creation tree) of an agent

e PROCESS properties ---=----====-=r-ccmomcmanaae
inboxManager: PROCESS -> INBOX_MANAGER
//An inbox manager is assigned to each process instance

outboxManager: PROCESS - OUTBOX_MANAGER
//An outbox manager is assigned to each process instance

mainActivity: PROCESS - ACTIVITY
//This is the activity which the process should execute
//It is derived from the BPEL document and defined in the initial state

startedExecution: PROCESS U FLOW_THREAD_AGENT - BOOLEAN
//initial value: false

//Telis whether a process or a flow thread agent has started executing its
//activity or not

waitingForMessage: PROCESS - (RUNNING_AGENT X IN_OPERATION)-set
//initial value: &

//For each process this set indicates the input activities (or onMessage events)
//waiting for a message

completedInOperations: PROCESS - (RUNNING_AGENT X IN_OPERATION X
TIME)-set

//initial value: &

//For each process this set indicates the input activities (or onMessage events)

//that have received a message, together with the receiving time

subordinateAgentSet: PROCESS - ACTIVITY_AGENT-set
//Returns the set of activity agents that have been created and work under control of
//this process.
subordinateAgentSet(p: PROCESS) =
{a | a € ACTIVITY_AGENT where rootProcess(a) = p}

inboxSpace: INBOX_MANAGER - MESSAGE-set

//initial value: &

//Keeps the messages that have arrived for a business process and are
//not yet serviced.

match: PROCESS X IN_OPERATION X MESSAGE -> BOOLEAN
//Tells whether a messages matches a specific input operation of
//a process instance or not.

108

[[OUTBOX_MANAGER properties--~=---------=mmmmemrov
outboxSpace: OUTBOX_MANAGER -> OUTPUT_DESCRIPTOR-set

Hinitial value: &

//This set keeps the information about all the messages that should go out.

baseActivity: ACTIVITY_AGENT-> ACTIVITY
//The activity for which an activity agent is responsible

assignedAgent: ACTIVITY -> ACTIVITY_AGENT

// Assumes that every activity that is fetched is unique

// For each structured activity returns the activity agent that is executing it
// returns undef if no agent is assigned yet or the activity is a basic activity
// so there is no need for agents to eliminate this relationship when they end

sourceLinkSet: ACTIVITY - LINK-set
//An activity can be the source of a set of links; returns this set
//1t is derived from the BPEL document and defined in the initial state

targetLinkSet: ACTIVITY - LINK-set
//An activity can be the target of a set of links; returns this set
//1t is derived from the BPEL document and defined in the initial state

activityJoinCondition: ACTIVITY - BOOLEAN

//default joinCondition: The logical OR of the link status of all the incoming links
//of the activity

//returns true if the joinCondition of the activity is satisfied

[[mmmmm e e In Operation Properties ------==~=-=-==-=-mn=manoe
initiateCorrelation: IN_OPERATION - BOOLEAN

//indicates whether an input operation initiates a new correlation set or not
//1t is derived from the BPEL document and defined in the initial state

J[==mmm e e e Invoke Activitiy Properties ~--------=-=-mmmmmemuee--
synchronous: INOVKE - BOOLEAN

//returns true if the invoke activity contains synchronous interactions;

//i.e. request/response

//1t is derived from the BPEL document and defined in the initial state

completionTime: WAIT - TIME

//completionTime returns the time when a wait activity is completed.
//In case of 'until' its trivial, but in case of 'for' it needs the starting time,
//which is accessible through the activity itself.

109

startTime: WAIT u PICK_ALARM_AGENT = TIME
//initial value: undef

//startTime keeps the starting time of a wait activity and
//is needed in case of waiting for a duration,

//Pick alarm agent also keeps a starting time.

[[mmmmm e Sequence Activity Properties--------------------
sequenceCounter: SEQUENCE > ACTIVITY

//Returns the next activity in the sequence

//If there is no more activities in the sequence, returns undef

// Tt is derived from the BPEL document and defined in the initial state

[[e While Activity Properties ~---------mvev
waCondition: WHILE - BOOLEAN
//Returns the value of the conditional expression of a while activity

innerActivity: WHILE > ACTIVITY
// Returns the activity that is defined inside a while.
//It is derived from the BPEL document and defined in the initial state

[[=mm e e Switch Activity Properties ---------------~
swCaseSet: SWITCH - SWCASE-set

{/returns the list of case elements of the switch plus otherwise

//It is derived from the BPEL document and defined in the initiat state

swCaseCondition: SWCASE > BOOLEAN
//Returns the value of the conditional expression of a switch case element
//For otherwise, it always returns true

swCaseActivity: SWCASE > ACTIVITY
//the activity associated with a case element or otherwise
//1t is derived from the BPEL document and defined in the initial state

swPrority: SWCASE - PRIORITY

//Each switch case element is assigned a priority,

//resembling the order between cases.

//The lowest priority is assigned to otherwise.

//1t is derived from the BPEL document and defined in the initial state

[e Pick Activity Properties ----------~----~
onMessageSet: PICK > ONMESSAGE-set

//Set of the onMessage events defined in a pick activity

//1t is derived from the BPEL document and defined in the initial state

110

onAlarmSet: PICK > ONALARM-set
//Set of the onAlarm events defined in a pick activity
//1t is derived from the BPEL document and defined in the initial state

[[e Event(OnMessage and OnAlaram) Praopertieg----=-------=--nwneev
onEventActivity: EVENT > ACTIVITY

//Returns the activity associated with a specific event

//1t is derived from the BPEL document and defined in the initial state

triggerTime: ONALARM X TIME - TIME

//retumns the trigger time of an onAlarm activity.

//1f onAlarm is defined by a *for’, it uses the second parameter (starting time of the
//alarm agent) to determine the trigger time.

[[=mmmmmm e Sequence Agent Properties-—-----=-=r==-s=--mnm--
currentActivity: SEQUENCE_AGENT > ACTIVITY

//initial value: &

/] Keeps track of the current activity which is being executed

[[7mmmmmmmm e e e Switch Agent Properties-----=---=--=---m-rovovoe
foundBranch: SWITCH_AGENT > ACTIVITY

//initial value: undef

//The activity associated with the branch that is chosen by switch to be executed

[[mmmmmmm e e oo Pick Agent Properties---=-----==-==-=---=----
triggeredEvents: PICK_AGENT - (EVENT X TIME)-set

//initial value: @

//The set of events that have happened

chosenActivity: PICK_AGENT > ACTIVITY
//initial value: undef
//The activity that is chosen by the pick agent to be executed

J R Pick Alarm Agent---------==---cwmmmaeoe- Rt
startTime: PICK_ALARM_AGENT u WAIT-> TIME

//initial value: undef

//startTime keeps the starting time of a pick alarm agent and

//is needed in case of waiting for a duration.

//startTime is also used for the wait activity.

[e e o Flow Activity Properties -----=---~------
flowActivitySet: FLOW - ACTIVITY-set
//Set of the activities defined inside a flow

/{1t is derived from the BPEL document and defined in the initial state

111

flowAgentSet: FLOW_AGENT - FLOW_THREAD_AGENT-set
// initial value: @
//The set of alive thread agents that are working under a flow agent

e Flow Thread Agent-------==-~=-=msmerommmemmnee
startedExecutlon FLOW_THREAD_AGENT u PROCESS - BOOLEAN
//initial value: false

//Tells whether a process or a flow thread agent has started executing its
//activity or not

linkTransitionCondition: LINK - BOOLEAN
//Evaluates the transition condition of a link

linkStatus: LINK - {POSITIVE,NEGATIVE,NOTDEFINED}
//initial value: NOTDEFINED
//returns the status of a link

112

C.2. Programs

Inbox Manager

INBOXMANAGERPROGRAM =
if inboxSpace(self) # @ then
choose p € PROCESS, m e inboxSpace(self), (agent, op) €
waitingForMessage(p) with match(p, op, m)
Assign_Message(p, agent, op, m)
Pick_Activity_Clearance(p, agent, op)

if p = dummyProcess then
new newDummy : PROCESS
dummyProcess := newDummy

Assign Message

Assign_Message(p : PROCESS, agent : RUNNING_AGENT, op : IN_OPERATION,
m : MESSAGE) =
if initiateCorrelation(op) then
INITIATE_CORRELATION(p, agent, op, m)

remove m from inboxSpace(self)
remove (agent,op) from waitingForMessage(p)
add (agent,op,now) to completedInOperations(p)

Pick Activity Clearance

Pick_Activity_Clearance (p : PROCESS, a : RUNNING_AGENT,
op : IN_OPERATION) =
if a € PICK_MESSAGE_AGENT then
forall (a, op") € waitingForMessage(p) with op’ = op
remove (a,op’) from waitingForMessage(p)

Outbox Manager

OUTBOXMANAGERPROGRAM =
if outboxSpace(self) # @ then
choose (agent, op) € outboxSpace(self)
SEND(agent, op)

113

Process

PROCESSPROGRAM =
if =busy(self) then
if —startedExecution(self) then
startedExecution(self) := true
busy(self) := true
else
stop self
else
Execute_Activity(mainActivity(self))

Execute Activity

//suppose that busy is set to true before entering this module
Execute_Activity (activitiy: ACTIVITY) =
if Vx (x e targetLinkSet(activity) > linkStatus(x) # NOTDEFINED) then
if activityJoinCondition(activity) then
if activity in REPLY then
Execute_Reply (activity)
if activity in RECEIVE then
Execute_Receive (activity)
if activity in INVOKE then
Execute_Invoke (activity)
if activity in TERMINATE then
Execute_Terminate
if activity in WHILE then
Execute_While(activity)
if activity in EMPTY then
Execute_Empty(activity)
if activity in SEQUENCE then
if assignedAgent(activity) = undef then
new s: SEQUENCE_AGENT
assignedAgent(activity) :=s
Initialize(s, activity)
if activity in SWITCH then
if assignedAgent(activity) = undef then
new sw: SWITCH_AGENT
assignedAgent(activity) := sw
Initialize(sw, activity)
if activity in WHILE then
if assignedAgent(activity) = undef then
new w : WHILE_AGENT
assignedAgent(activity) := w

114

Initialize(w, activity)
if activity in PICK then
if assignedAgent(activity) = undef then
new p : PICK_AGENT
assignedAgent(activity) := p
Initialize(p, activity)
if activity in FLOW then
if assignedAgent(activity) = undef then
new f : FLOW_AGENT
assignedAgent(activity) := f
Initialize(f, activity)
else
THROW_JOIN_FAILURE
//JoinCondition is false. A fault (joinFailure) is thrown,
//else
//There are some activities linked to this activity that have not yet finished
//execution. Therefore, the activity can not be executed yet.

Initialize

Initialize(agent: ACTIVITY_AGENT, activity: ACTIVITY) =
parentAgent(agent) := self
baseActivity(agent) := activity

Receive Activity

Execute_Receive (activity : RECEIVE) =
let inputDescriptor = (self, activity) in
if =receiveMode(self) then
receiveMode(self) := true //The running agent waits to receive a message
add inputDescriptor to waitingSet
else
if inputDescriptor ¢ waitingSet then
receiveMode(self) := false
busy(self) : = false
Synchronization(activity)
where waitingSet = waitingForMessage(rootProcess(self))

115

Reply Activity

Execute_Reply (activity : REPLY) =
let outputDescriptor = (self, activity) in
add outputDescriptor to outSpace
busy(self) := false
Synchronization(activity)
where outSpace = outboxSpace(outboxManager(rootProcess(self)))

Invoke Activity

Execute_Invoke (activity : INVOKE) =
let ioDescriptor = (self, activity) in
if ~recevieMode(self) then //i.e. if it is the first step
add ioDescriptor to outSpace
if =synchronous(activity) then // i.e. if not synchronous invoke
busy(self) := false
Synchronization(activity)
if synchronous(activity) then // i.e. if synchronous invoke
receiveMode(self) := true
add ioDescriptor to waitingSet
if receiveMode(self) and ioDescriptor ¢ waitingSet then
receiveMode(self) := false
busy(self) := false
Synchronization(activity)
where
outSpace = outboxSpace(outboxManager(rootProcess(self)))
waitingSet = waitingSetForMessage(rootProcess(self))

Terminate Activity

Execute_Terminate =
forall agent in subordinateAgentSet(rootProcess(self))
stop agent
stop rootProcess(self)

116

Wait Activity

Execute_Wait (activity : WAIT) =
if startTime(activity) = undef then
startTime(activity) := now
else
if completionTime(activity) < now then
busy(self) := false
Synchronization(activity)
//startTime is associated with each wait activity and its initial value is undef
//startTime is also used separately in pick alarm agent,
//but won't cause any problem here.

Empty Activity

Execute_Empty (activity : EMPTY) =
busy(self) := false
Synchronization(activity)

Sequence Activity

SEQUENCEPROGRAM =
if =~busy(self) then
currentActivity(self) := sequenceCounter(baseActivity(self))
busy(self) := true
else
if currentActivity(self) # undef then
Execute_Activity(currentActivity(self))
else
stop self
busy(parentAgent(self)) := false
Synchronization(baseActivity(self))

117

Switch Activity

SWITCHPROGRAM =
if ~busy(self) then
if foundBranch(self) = undef then //No branch is selected yet
let caseSet = swCaseSet(baseActivity(self)) in
//caseSet is the set of all cases
choose c € caseSet with (swCaseCondition(c) A
VX ((x € caseSet A swCaseCondition(x))—> swPriority(c) = swPriority(x)))
foundBranch(self) := swCaseActivity(c)
//choosing the first [with the highest priority] branch with a true
//condition. It is always successful, because of the default otherwise
busy(self) := true
else //branch is executed and finished
busy(parentAgent(self)) := false
stop self
Synchronization(baseActivity(self))

if busy(self) then //Execute the found branch
Execute_Activity(foundBranch(self)))

While Activity

WHILEPROGRAM =
if busy(self) then
Execute_Activity(innerActivity(baseActivity(self)))
else
if waCondition(baseActivity(self)) then
busy(self) := true
else ‘
busy(parentAgent(self)) := false
stop self
Synchronization(baseActivity(self))

118

Pick Activity

PICKPROGRAM =
if =busy(self) then
if chosenActivity(self) = undef then
new a : PICK_ALARM_AGENT
Initialize(a, baseActivity(self))
new b: PICK_MESSAGE_AGENT
Initialize(b, baseActivity(self))
busy(self) := true //The agent is waiting for an event to happen
else
busy(parentAgent(self)) := false
stop self
Synchronization(baseActivity(self))

if busy(self) then
if chosenActivity(self) = undef then
choose (event, time) € triggeredEvents(self) with
Vevt ((e,t) e triggeredEvents(self) > time < t)
chosenActivity(self) := onEventActivity(event)
else
Execute_Activity(chosenActivity(self))

Pick Message Agent

PICKMESSAGEPROGRAM =
if triggeredEvents(parentAgent(self)) # & then
forall event € onMessageSet(baseActivity(self))
let inputDescriptor = (self, event) in
remove inputDescriptor from waitingForMessage(rootProcess(self))
stop self
else
if =busy(self) then
forall event € onMessageSet(baseActivity(self))
let inputDescriptor = (self , event) in
add inputDescriptor to waitingForMessage(rootProcess(self))
busy(self) := true
else
choose event € onMessageSet(baseActivity(self)) with
(self, event, time) € completedInOperations(rootProcess(self))
add (event, time) to triggeredEvents(parentAgent(self))
stop self

119

Pick Alarm Agent

PICKALARMPROGRAM =
if triggeredEvents(parentAgent(self)) # & then
stop self
else
if =busy(self) then
startTime(self) := now
busy(self) := true
else
forall event € onAlarmSet(baseActivity(self)) with
triggerTime(event, startTime(self)) < now
add (event, triggerTime(event, startTime(self))) to
triggeredEvents(parentAgent(self))
stop self

Flow Activity

FLOWPROGRAM =
if =busy(self) then
//Creates threads to concurrently execute activities grouped inside the flow.
forall activity e flowActivitySet(self)
new fThread : FLOW_THREAD_AGENT
Initialize(fThread, activity)
add fThread to flowAgentSet(self)

busy(self) := true
else
if flowAgentSet(self) = @ then
//All threads are done, flow activity is completed.
busy(parentAgent(self)) := false
stop self
Synchronization(baseActivity(self))

120

Flow Thread Agent

FLOWTHREADPROGRAM =
if ~busy(self) and -startedExecution(self) then
startedExecution(self) := true
busy(self) := true

if busy(self) then
Execute_Activity(baseActivity(self))

if ~busy(self) and startedExecution(self) then
remove self from flowAgentSet(parentAgent(self))
stop self
//Each thread executes its baseActivity.
//When baseActivity is completed, the thread removes itself from the flow agent set
//and is terminated.

Link Semantics

Synchronization(activity : ACTIVITY) =
forall link € sourceLinkSet(activity)
if linkTransitionCondition(link) then
linkStatus(link) := true
else
linkStatus(link) := false

121

Appendix D. Executable Model

D.1. Original Model

Name Space

namespace ModelGUI
import System.Collections
import System.windows.Forms

Global Definitions

The inbox Manager, the outbox manager and a dummy process are the DASM agents
available in the initial state. agents and processes are two sets representing the
corresponding domains: AGENT and PROCESS. The internal structure has replaced the

oracle in the ASM model, where it was used to access the BPEL process definition.

var inboxManager as INBOX_MANAGER

var outboxManager as OUTBOX_MANAGER = new OUTBOX_MANAGER
var dummy as PROCESS

//domains

var agents as Set of AGENT = {}

var processes as Set of PROCESS = {}

//Execution specific

var intStr as ARRAY_BASED_INT_STR = new ARRAY_BASED_INT_STR
var globalID as Integer = 1

Agent

public class AGENT
virtual Program()

122

Running Agent

public class RUNNING_AGENT extends AGENT
var busy as Boolean = false
var rootProcess as PROCESS? = undef
var parentAgent as RUNNING_AGENT? = undef
var receiveMode as Boolean = false
var id as string

virtual stop()
. TRitialiZe-c- o e
Initialize(agent as ACTIVITYAGENT)
agent.parentAgent := me
agent.rootProcess := me.rootProcess
add agent to me.rootProcess.subordinateAgentSet
add agent to agents

Initialize maintains two functions rootProcess and subordinateagentset. It also
updates the parentagent function. In addition, it maintains the set of agents in the domain

AGENT by adding the new agent to agents.

Inbox Manager

class INBOX_MANAGER extends AGENT
var inboxSpace as Set of MESSAGE = {}

Inbox Manager Program

class INBOX_MANAGER
override Program()
if not (inboxSpace = {}) then
choose p in processes, m in inboxSpace, (agent, activity) in
p.waitingForMessage where Match(p,m, activity)
Assign_Message(p,agent,activity,m)
MODEL .messageIsAssigned(p,m,agent,activity)

if p = dummy then //need new dummy
newDummy = PROCESS.newProcess(globaliD,outboxManager)
dummy := newbDummy
add newDummy to processes
add newbummy to agents
globaliD := globaliD + 1

ifnone
writeLine("No Assign'™)

123

Assign Message

class INBOX_MANAGER
Assign_Message(p as PROCESS, agent as RUNNING_AGENT, inActivity as
INPUT_ACTIVITY, m as MESSAGE)
if initiateCorrelation(intstr, inActivity) then
Initiate_Correlation(p,getCorrelationSetsToInitiate(intStr,inActivity),m)
choose (a, act) in p.waitingForMessage where a = agent and act = inActivity
remove (a, act) from p.waitingForMessage
remove m from inboxSpace
add (agent, inActivity) to p.completedInOperation

Outbox Manager

public class OUTBOX_MANAGER extends AGENT
var outboxSpace as Set of (RUNNING_AGENT, OUTPUT_ACTIVITY) = {}

Process

public class PROCESS extends RUNNING_AGENT
var waitingForMessage as Set of (RUNNING_AGENT, INPUT_ACTIVITY) = {}
var completedInOperation as Set of (RUNNING_AGENT, INPUT_ACTIVITY) = {}
var correlations as Set of CORRELATIONSET = {}
var mainActivity as ACTIVITY = processActivity(intstr)
var waitingActivity as INPUT_ACTIVITY? = null
var subordinateAgentSet as Set of ACTIVITYAGENT = {}
var outboxManager as OUTBOX_MANAGER?
var startedeExecution as Boolean = false

override stop()
remove me from agents
remove me from processes

Process Program

public class PROCESS
override Program()
if not busy then
if not startedexecution then
startedExecution := true
busy := true
else
stop (me)
else
Execute_Activity(me, mainActivity)

124

Initiate Correlation

Initiate_Correlation initiates a number of correlation sets by setting the value of each

property in the correlation set to the values of the tokens carried by the message.

class PROCESS
Initiate_Correlation(cSet as Set of CORRELATIONSET, m as MESSAGE)

Activities

public class ACTIVITY

public class STRUCTURED_ACTIVITY extends ACTIVITY
var assignedAgent as ACTIVITYAGENT? = undef

public class INPUT_ACTIVITY extends ACTIVITY
public class OUTPUT_ACTIVITY extends ACTIVITY
public class RECEIVE extends INPUT_ACTIVITY
public class REPLY extends OUTPUT_ACTIVITY

public class FLOW extends STRUCTURED_ACTIVITY
var flowActivitySet as Set of ACTIVITY

public class SEQUENCE extends STRUCTURED_ACTIVITY

Activity Agents

public class ACTIVITYAGENT extends RUNNING_AGENT
var baseActivity as ACTIVITY

override stop()
remove me from agents
remove me from me.rootProcess.subordinateAagentSet

When an activity agent is terminated, the subordinateagentset function must also be

updated.

125

Sequence Agent

public class SEQUENCE_AGENT extends ACTIVITYAGENT

var currentAct1v1ty as ACTIVITY? = undef
// e e = ot e

override Program()
match baseActivity
baseAct as SEQUENCE:

if not busy then
currentActivity := sequenceCounter(intStr, baseAct)
busy := true

else
if not (currentActivity = null) then

Execute_Activity(me, currentActivity)
else

stop(me)
parentAgent.busy := false

- Sequenceprogram__._ e i s e i e e

Flow Agent

class FLOW_AGENT extends ACTIVITYAGENT
var flowAgentSet as Set of FLOW_THREAD_AGENT = {}

Jf e e FlowProgram-———----—=——————-==-——— o
override Program()

match baseActivity
baseAct as FLOW:

if not busy then
busy := true

step foreach activity in baseAct.flowactivitySet

var fThread as FLOW_THREAD_AGENT = new FLOW_THREAD_AGENT(id + "
+ idCounter,activity)

idCounter := idCounter + 1
Initialize(fThread)
add fThread to flowAgentsSet

else

if flowAgentset = {} then

writeLine("ALL thread agents finished")
parentAgent.busy := false
stop(me)

st

126

Flow Thread Agent

class FLOW_THREAD_AGENT extends ACTIVITYAGENT
var startedeExecution as Boolean = false
[/ e FlowThreadProgram--- - - s e cm e
override Program()
if (not busy) and (not startedExecution) then
startedExecution := true
busy := true

if busy then
Execute_Activity(me, baseActivity)
if (not busy) and startedexecution then
match me.parentAgent
parent as FLOW_AGENT:
remove me from parent.flowAgentSet
stop(me)

Execute Activity

Execute_Activity(self as RUNNING_AGENT, activity as ACTIVITY) =
match activity
inActivity as RECEIVE:
Execute_Receive(self,inActivity)
inActivity as REPLY:
Execute_Reply(self,inActivity)

inActivity as FLOw:
if inActivity.assignedAgent = null then
var fAgent as FLOW_AGENT = new FLOW_AGENT(self.id + ":Ff'+
self.idCounter,inActivity)

self.idCounter := self.idCounter + 1
inActivity.assignedagent := fAgent
Initialize(self, fAgent)

inActivity as SEQUENCE:
if inActivity.assignedAgent = null then
var sAgent as SEQUENCE_AGENT = new SEQUENCE_AGENT(self.id + ":s"+
self.jdCounter,inActivity)

self.idcounter := self.idCounter + 1
inActivity.assignedAgent := sAgent
Initialize(self, sAgent)

writeLine("w~Not a valid activity')

127

Execute Receive

Execute_Receive(self as RUNNING_AGENT, activity as INPUT_ACTIVITY)
let inputDescriptor = (self, activity)
if not self.receiveMode then
self.receiveMode := true
add inputDescriptor to self.rootProcess.waitingForMessage
else
if not (inputDescriptor in self.rootProcess.waitingForMessage) then
self.receiveMode := false
self.busy := false

Execute Reply

Execute_Reply(self as RUNNING_AGENT, activity as OUTPUT_ACTIVITY) =
let outputDescriptor = (self, activity)
add outputDescriptor to self.rootProcess.outboxManager.outboxSpace
self.busy := false

Message

public class MESSAGE

Correlation Sets

class CORRELATIONSET
name as String

128

D.2. Execution-Specific Additions to the ASM Model

Executable Model

class MODEL
var view as ModelGUI.View

[EntryPoint]
initialize(Q)
step
inboxManager := new INBOX_MANAGER
agents := {}

processes := {}
intStr := new ARRAY_BASED_INT_STR
step
intStr.initialize()
step
globaliD :=1
dummy := PROCESS.newProcess(0,outboxManager)
step
add inboxmanager to agents
step

add dummy to agents
add dummy to processes
step
showProgram()
// ___ o g e g
[EntryPoint]
run()
step
forall a in agents
showMessages ()
showProcesses()
showOutspace()
a.pProgram()
informAssignments ()
// ___ addMessage———ﬂ-—-»-————----—-----~——v—"~———' e
[EntryPoint]
addMessage(m as String, p as Integer)
add new MESSAGE(new DATA(p),m) to inboxManager.inboxSpace

Data

public class DATA
var data as Integer
isEqual(d as DATA) as Boolean

129

if data = d.data then
return true

else
return false

Message

public class MESSAGE
var datafField as DATA?
var msgType as String

Correlation Set

class CORRELATIONSET
var properties as Map of String to DATA
//For now we suppose that each correlation set only has ONE property in it.
//Size(properties) = 1
F T e messagecontainsTokens----——--—~——————--
messageContainsTokens(m as MESSAGE) as Boolean
choose i in Indices(properties)
return m.dataField.isequal(properties(i))
ifnone
writeLine("ERROR!! This correlation had no property!!™)
return false

This method checks the compatibility of a single message to a correlation set. To check
this, we normally should check if the message carries the correlation token values. For

now, as correlation sets just have one property and messages just carry a single data field,

it is implemented as above.

Activity

public class ACTIVITY
var refNumber as Integer

130

Process

New Process Creation

This static function takes care of creating new processes and initializing its properties.

class PROCESS
shared newProcess(id as Integer, oManager as OUTBOX_MANAGER) as PROCESS
var newP as PROCESS

step
newP := new PROCESS("p" + id,oManager)
step
NewP.rootProcess := newp
newP.parentAgent := undef

step
return newP

Correlation Existence

This function checks to see whether any of the correlation sets in cSef already exists or
not. ¢Set is the set of correlation sets for a specific activity where they are all tagged with

initiation.

class PROCESS
correlationExists(cSet as Set of CORRELATIONSET) as Boolean
var result as Boolean = true
step foreach cor in cSet
choose c in correlations where c.name = cor.name
skip
ifnone
result := false
step
return result

Satisfy

If the correlation set is already initiated the message has to carry the required values for
all the business tokens specified by corresponding correlation sets. satisfy checks if the

message satisfies this condition.

131

class PROCESS
satisfy(inActivity as INPUT_ACTIVITY?, m as MESSAGE) as Boolean
let corrs = getcorrelationsetsTosatisfy(intstr, inActivity)
var flag = true

if corrs = {} then
return true
else
step foreach c in corrs
choose c2 in correlations where c.name = c2.name
if not (messageContainsTokens(c2,m)) then
flag := false
ifnone // Trying to acces a correlation that is not initiated yet.
WriteLine("ERROR! Trying to access a correlation that 71s not yet
initiated!")
flag := false
step
return flag

Initiate Correlation

This function initiates a set of correlation sets by initializing the properties defined in the

correlation sets with the token values carried by the message.

class PROCESS
Initiate_Correlation(cset as Set of CORRELATIONSET, m as MESSAGE)
forall c in cSet
forall i in Indices(c.properties)
c.properties(i) := m.datafField

add ¢ to correlations

Note: Although for now size (properties) = 1, it does not affect this method.

Global Functions

Opaque

opaque() as Integer
let x = any y| y in {1..100}
return x

132

class PROCESS
satisfy(inActivity as INPUT_ACTIVITY?, m as MESSAGE) as Boolean

Tet corrs = getcCorrelationSetsToSatisfy(intstr, inActivity)
var flag = true

if corrs = {} then
return true
else
step foreach c 1in corrs
choose c2 in correlations where c.name = c2.name
if not (messageContainsTokens(c2,m)) then
flag := false
ifnone // Trying to acces a correlation that is not initiated yet.
writeLine("ERROR! Trying to access a correlation that 71s not
initiated!")
flag := false
step
return flag

yet

Initiate Correlation

This function initiates a set of correlation sets by initializing the properties defined in the

correlation sets with the token values carried by the message.

class PROCESS
Initiate_correlation(cSet as Set of CORRELATIONSET, m as MESSAGE)

forall ¢ in cSet
forall i in Indices(c.properties)
c.properties(i) := m.dataField

add ¢ to correlations

Note: Although for now size (properties) = 1, it does not affect this method.

Global Functions

Opaque

opaque() as Integer
let x = any y| y in {1..100}
return x

132

Random

random() as Boolean
let x = any y| y in {1..100}
if x >= 50 then
return true
else
return false

Match

Match specifies whether message m can be matched to process instance p or not. If the
corresponding waiting activity in p follows a correlation, the message can be matched to

the process instance if and only if it carries the required correlation tokens.

Match(p as PROCESS, m as MESSAGE, inActivity as INPUT_ACTIVITY) as Boolean
if accept(intstr,inActivity,m) then //checks the message source,destination
if taggedwithCorrelation(intStr, inActivity) then
if initiateCorrelation(intstr, inActivity) then
if correlationExists(p,
getCorrelationSetsToInitiate(intStr, inActivity)) then
return false
//According to the LRM, the matching can only he performed in case
//of pick activity, which is not covered in the current version.
else
return true
else
if satisfy(p, inActivity, m) then
return true
else
return false
else
return true
else
return false

133

D.3. GUI-Related Additions

Model

class MODEL
shared var assignments as Set of HISTORY_TUPLE = {}

F e messageIsReceived-—-==——-vmom oo e

shared messageIsAssigned(p as PROCESS,m as MESSAGE, agent
RUNNING_AGENT,activity as ACTIVITY)
t = new HISTORY_TUPLE(p,m,agent,activity)
add t to assignments

[/ showProgram----—--~---~----—-moe oo
showProgram()
var b as ArraylList
step
b := mapToArrayList(intStr.program)
step
view.setProgrambox(b)
e showMessages---~------mommm e
showMessages ()
var b as ArrayList
step
b := setToArrayList(inboxManager.inboxSpace)
step
view.refreshMessageList(b)
e showOutspace-----==----mo-mmm e e
showoutspace()

var b as ArrayList

var newSet as Set of OUTBOX_TUPLE ={}

step foreach (a,act) in outboxManager.outboxSpace
add new OUTBOX_TUPLE(a,act) to newsSet

step
b := setToArrayList(newSet)

step
view.refreshoutspaceList(b)

F R e showProcesses--——-=—--——=—--——-—--— oo~

showProcesses()
var b as ArrayList
var nodes as Map of String to TreeNode = {->}

step

nodes := buildTree()
step

b := setToArrayList(values(nodes))
step

view.refreshProcessTreeview(b)

134

—————————————————————————————— ANTOrmASSTgNMENtS= -~ c o mm oo o
informassignments ()
var b as ArraylList
step
b := setToArrayList(assignments)
step
view.refreshMsgHistoryList(b)
————————————————————————————— buildTree-——---—--e o e
buildTree() as Map of String to TreeNode
var temp as Map of String to TreeNode = {
var newAgentSet as Set of ACTIVITYAGENT =
var ags as Set of ACTIVITYAGENT = {}
var aliveProcesses as Set of PROCESS = processes
step
remove dummy from aliveProcesses
step foreach p in aliveProcesses
writeLine(" For process" + p.id)
step
temp(p.id) := new TreeNode(p.Tostring())
step //to find the leaves
foreach a in p.subordinateagentSet
choose b in p.subordinateAagentSet where b.parentAagent = a
skip
ifnone //it means a is a leaf
writeLine(a.Tostring() + "7s Jeaf')
temp(a.id) := new TreeNode(a.ToString())
add a to newAgentSet
step until newAgentSet = {}

{1

step
ags := newAgentSet
newAgentSet := {}
step

writeLine("ags" + ags)
step foreach a in ags
choose b in p.subordinateagentSet where a.parentagent = b
step
if not(b.id in Indices(temp)) then
temp(b.id) := new TreeNode(b.Tostring())
step
temp(b.id) .Nodes.Aadd(temp(a.id))
remove temp(a.id)
add b to newAgentSet
ifnone //a is a direct child
skip
step foreach a in ags
temp(p.id).Nodes.Add(temp(a.id))
remove temp(a.id)
step
return temp

135

Agent

public class AGENT
virtual ToString() as String

Running Agent

public class RUNNING_AGENT
var idCounter as Integer = 0
public getId() as String
return id

Process

public class PROCESS extends RUNNING_AGENT
override Tostring() as String
step
var sl as String = "Process:
Activity: '
step

+ 1id + |/ Busy: + busy + / Current

sl := sl + mainActivity.ToString()
step
sl := sl + " / correlations:
step foreach c in correlations
sl := sl + c.ToString() + " // "
step
return sl

getBusy() as Boolean
return busy

getCurractivity() as ACTIVITY?
return mainActivity

Activity Agents

Sequence Agent

class SEQUENCE_AGENT extends ACTIVITYAGENT
override ToString() as String
step
var sl as Sstring = "Seg Agent
Activity: "

+ 1id + / Busy: + busy + / Current

136

step
if not(currentActivity = null) then
sl := sl + currentActivity.ToString()
else
sl := "anulirn"
step
return sl

Flow Agent

class FLOW_AGENT extends ACTIVITYAGENT
override Tostring() as String
return "FLOW AGENT: " + id

Flow Thread Agent

class FLOW_THREAD_AGENT extends ACTIVITYAGENT
override ToString() as String
return “FLow THREAD: " + id + "
baseActivity.Tostring()

, current ACtTvIty:

Activities

public class ACTIVITY
virtual Tostring() as String
virtual getinfo() as String

Sequence

public class SEQUENCE extends STRUCTURED_ACTIVITY

override ToSstring() as String
return "SEQUENCE" + ":" + refNumber

Flow

public class FLOW extends STRUCTURED_ACTIVITY
override ToString() as String
return "FLowW' + ":" + refNumber

Receive

public class RECEIVE extends INPUT_ACTIVITY
override Tostring() as String
return "“Recerve" + ":" + refNumber

137

Reply

public class REPLY extends OUTPUT_ACTIVITY
var msgType as String

override ToString() as String
return "Reply" + ":" + refNumber

override getInfo() as String
return msgType

Additions to Other Classes

Message

public class MESSAGE
getMsgType() as String
return msgType

Tostring() as String
if dataField = null then
return msgType

else
return msgType + " : " + dataField.ToString(Q)
Data
class DATA
Tostring() as String
return "" + data

Correlation Set

class CORRELATIONSET
Tostring() as String
step
var s as String = name + "
step foreach a in Indices(properties)

s :=s+a+ ":" + properties(a).Tostring(Q + " , "
step
return s

138

New Classes

Outbox Tuple

public class OUTBOX_TUPLE
var agent as RUNNING_AGENT
var activity as OUTPUT_ACTIVITY

getAagent() as RUNNING_AGENT
return agent

getActivity() as OUTPUT_ACTIVITY
return activity

History Tuple

public class HISTORY_TUPLE
var proc as PROCESS
var msg as MESSAGE
var agent as RUNNING_AGENT
var activity as ACTIVITY

getProc() as PROCESS
return proc

getMsg() as MESSAGE
return msg

getAgent() as RUNNING_AGENT
return agent

getActivity() as ACTIVITY
return activity

Interfaces

External View

[External]

class Vview
public refreshMessageList(mArray as ArrayList)
public refreshProcessTreeview(mArray as ArrayList)
public refreshMsgHistoryList(mArray as ArrayList)
public refreshoutspaceList(mArray as ArrayList)
public setProgramBox(mArray as ArrayList)

139

Auxiliary Methods

//.‘ P « e o o e e o e - GOTTOAN ! ay! R

setToArrayL1st(s as Set of Object) as ArrayList
var mArray as ArrayList = new ArrayList()
step foreach a in s
mArray.Add(a)
Step
return mArray

/‘/,/.Agwyu, — e = e e H]pl()/\rlﬁy’l]«)L..-_..__,,-, B,

mapTOArrayL1st(m as Map of Integer to ACTIVITY) as ArraylList
writeLine("s7ze" + Size(m))
var mArray as ArrayList = new ArrayList(Size(m))
step foreach i in Indices(m)
mArray.Add(m(i))
Step
return mArray
/// S . ~mapToOATrayl 161~ - e e e e
mapToArrayL1st(m as Map of Integer to INT_ACTIVITY) as ArrayList
writeLine("s7ze" + size(m))
var mArray as ArrayList = new ArrayList(Size(m))
step foreach i in Indices(m)
mArray.Add(m(i))
step
return mArray

140

D.4. Internal Structure

interface INTERNAL_STR
sequencecounter(s as SEQUENCE) as ACTIVITY?
J/returns the next activity to be executed +in a seguence agent

processActivity() as ACTIVITY
J/returns the main activity of the process

accept(activity as ACTIVITY, m as MESSAGE) as Boolean

J/returns true it the message has the correct type as required by the activity

taggedwithcorrelation(activity as INPUT_ACTIVITY) as Boolean
Sreturns true 17 the activity 1s associated with a correlatin sert

initiatecorrelation(activity as INPUT_ACTIVITY) as Boolean
J/returns true if the correlation set associated with the activity
J/must be initiated

getCorrelationSetsToInitiate(activity as INPUT_ACTIVITY?) as Set
CORRELATIONSET
//returns the set of correlation set associated with the activity that
//must be initiated

getcorrelationSetsToSatisfy(activity as INPUT_ACTIVITY?) as Set
CORRELATIONSET
//returns the ser of correlation sel associated with the activity that must
//he followed (satistied)

of

of

Internal Activities

public class INT_ACTIVITY extends ACTIVITY
var activityType as String
virtual getActivity() as ACTIVITY
getRefNumber() as Integer
return refNumber

Internal Output Activity

public class INT_OUTPUT_ACTIVITY extends INT_ACTIVITY
var opMsgType as String
var correlationTags as Set of CORRELATION_USAGE

override getActivity() as ACTIVITY
if activityType = "reply” then

141

return new REPLY(refNumber, opMsgType)
else
return new OUTPUT_ACTIVITY(15)

override Tostring() as String

return refNumber +":" + activityType + ", Operation: " + opMsgType + "
correlationtags: " + correlationTags

Internal Input Activity

public class INT_INPUT_ACTIVITY extends INT_ACTIVITY
var opMsgType as String
var createInstance as Boolean
var correlationTags as Set of CORRELATION_USAGE

override getActivity() as ACTIVITY

if activityType = "receive” then
return new RECEIVE(refNumber)
else

return new INPUT_ACTIVITY(15)

override ToString() as String
return refNumber + ":" + activityType + ", Operation
, CreateInstance: " + createInstance + " correlationtags:

+ opMngype +
+ correlationTags

Internal Structured Activities

public class INT_STRUCTURED_ACTIVITY extends INT_ACTIVITY
virtual getInsideActivities() as ArraylList

Internal Sequence Activity

public class INT_SEQUENCE_ACTIVITY extends INT_STRUCTURED_ACTIVITY
var activitySet as Map of Integer to INT_ACTIVITY

override getInsideActivities() as ArrayList
return mapToArrayList(activitySet)

override getActivity() as ACTIVITY
return new SEQUENCE(refNumber)

override Tostring() as String
return refNumber + ™ " + activityType

142

Internal Flow Activity

public class INT_FLOW_ACTIVITY extends INT_STRUCTURED_ACTIVITY
var activitySet as Set of INT_ACTIVITY

override getInsideActivities() as ArraytList
return setToArrayList(activitySet)

override getactivity() as ACTIVITY
if activityType = "flow' then
var temp as Set of ACTIVITY = {}
step foreach act in activitySet
add act.getActivity() to temp
step
return new FLOW(refNumber, temp)

override Tostring() as String
var s as String = refNumber +
step
return s

+ activityType +

Array-Based Internal Structure

class ARRAY_BASED_INT_STR implements INTERNAL_STR
structure CORRELATION_USAGE
name as String
initiate as Boolean
pattern as Boolean

var activities as Map of Integer to INT_ACTIVITY = {->}
var program as Map of Integer to INT_ACTIVITY = {->}
var sequenceMap as Map of SEQUENCE to Integer ={->}

Initialize

class ARRAY_BASED_INT_STR
initialize()
step

activities(l) = new INT_INPUT_ACTIVITY(1, " receive","msgl",true,
{CORRELATION_USAGE ("wow"', true,false)})

activities(2) := new INT_OUTPUT_ACTIVITY(2,"reply","sendID",{})

activities(3) 1= new INT_INPUT_ACTIVITY(3," receive","msg2",false
, {CORRELATION_USAGE ("wow'',false,false)})

activities(5) := new INT_INPUT_ACTIVITY(S,"receive","m2",false , {})

143

step
activities(6)
activities(7)
INT_INPUT_ACTIVITY(7,
b
activities(8)
step
activities(4)

]

new INT_OUTPUT_ACTIVITY(6,"reply","sendreply', {})
= new
receive","msg3' ,false, {CORRELATION_USAGE("c3", true,false)
new INT_INPUT_ACTIVITY(8," receive","msg4",false, {})

1= new INT_FLOW_ACTIVITY(4," Flow' ,{activities(6),

activities(7),activities(8)})

step
activities(0)

1= new INT_SEQUENCE_ACTIVITY(O, " Sequence" ,{0->

activities(1), 1-> activities(2), 2-> activities(3), 3-> activities(4), 4 -

>activities(5)})
step

program(0) := activities(0)

Process Activity

class ARRAY_BASED_INT_STR
processAactivity() as ACTIVITY
return getActivity(program(0))

Sequence Counter

class ARRAY_BASED_INT_STR
sequencecounter(s as SEQUENCE) as ACTIVITY?
match (activities(s.refNumber))
seq as INT_SEQUENCE_ACTIVITY:
if s in Indices(sequenceMap)

if Size(seq.activitySet) > sequenceMap(s) + 1 then

//there is still some activities there
sequenceMap(s) := sequenceMap(s) + 1
return getActivity(seq.activityset(sequenceMap(s)+1))

else //process is ended
return null

else

sequenceMap(s) := 0
return getActivity(seq.activityset(0))

return null

writeLine (" ERROR")

144

Accept

class ARRAY_BASED_INT_STR
accept(activity as ACTIVITY, m as MESSAGE) as Boolean
a = getIntActivity(activity)
match a
inputA as INT_INPUT_ACTIVITY:
if m.msgType = inputA.opMsgType then
return true
else
return false
writeLine(" ERROR")
return false

Tagged With Correlation

class ARRAY_BASED_INT_STR
taggedwithcorrelation(activity as INPUT_ACTIVITY) as Boolean
a = getIntActivity(activity)
match a
inputA as INT_INPUT_ACTIVITY:
if not (inputA.correlationTags = {}) then
writeLine("HEY! THERE IS CORRELATION!")
return true
else
return false
writeLine(" ERROR"™)
return false

Initiate Correlation

class ARRAY_BASED_INT_STR
initiateCorrelation(activity as INPUT_ACTIVITY) as Boolean
a = getIntActivity(activity)
match a
inputA as INT_INPUT_ACTIVITY:
choose ¢ in inputA.correlationTags where c.initiate
return true
ifnone
return false
writeLine(" ERROR")
return false

145

Get Correlation Sets to Initiate

class ARRAY_BASED_INT_STR
getCorrelationsetsToInitiate(activity as INPUT_ACTIVITY?) as set
CORRELATIONSET
var cSet as Set of CORRELATIONSET = {}
if activity <> null then
a = getIntActivity(activity)
match a
inputA as INT_INPUT_ACTIVITY:
step foreach c in inputA.correlationTags where c.initiate
add new CORRELATIONSET(c.name,{"7d’->new DATA(0) }) to cSet
step
return cSet

return cSet
else
writeLine ("ERROR")
return cSet

of

Get Correlation Sets to Satisfy

class ARRAY_BASED_INT_STR
getCorrelationsetsToSatisfy(activity as INPUT_ACTIVITY?) as set
CORRELATIONSET
var cSet as Set of CORRELATIONSET = {}
if activity <> null then
a = getIntActivity(activity)
match a
inputA as INT_INPUT_ACTIVITY:
step foreach ¢ in inputA.correlationTags where not(c.initiate)
add new CORRELATIONSET(c.name,{"7d"'->new DATA(Q) }) to cSet
step
return cSet

return cSet
else
writeLine(" ERROR™)
return cSet

of

Get Internal Activity

class ARRAY_BASED_INT_STR
getIntActivity(activity as ACTIVITY) as INT_ACTIVITY
return activities(activity.refNumber)

146

Random Internal Structure

class RANDOM_INT_STR implements INTERNAL_STR
var num as Integer =0
//,._ e — = e - = (PDC RS SACT v lT\ e e e e
processAct1v1ty() as ACTIVITY
return new RECEIVE(O)
/jmm_-_w-; I, PR ~CRUUENTCETCOUNTE I = v e o — oo
sequenceCOunter(s as SEQUENCE) as ACTIVITY?
writeLine("'current activity 7s a RECEIVE")
return new RECEIVE(O)
(//...‘ we e glCent- e e e e
accept(act1v1ty as ACTIVITY, m as MESSAGE) as Boo]ean
let result = random()

writeLine("The message has correct type for the waiting activity " +
result)

return result
[i s e - L aggedWT LhCorrelation: s e e e m e

taggedW1thCOrre1at1on(act1v1ty as INPUT_ACTIVITY) as Boo1ean
Tet result = random()
writeLine(" The activity 71s tagged with correlation: " + result)
return result
"y’;,/'.S._EE_«_v.._...,..A_.,._.._,,,,.“..“..E_.E-,.E,.k,_ﬂ_jn'itiatL:COrre]at-?lonEE_,_v_w_E__E.,_,,_,_E.,_m..-ww,.,_,
initiateCorrelation(activity as INPUT_ACTIVITY) as Boolean
let result = random()
writeLine("correlation must be initiated: " + result)
return result
Iy R coe e @t COP T el ationSetSTOLR T ETATE » ~ v o o oo oo
getc0rre1at1onSetsToIn1t1ate(act1v1ty as INPUT_ACTIVITY?) as set of
CORRELATIONSET
var cSet as Set of CORRELATIONSET = {}
add new CORRELATIONSET("wow',{"7d"'->new DATA(0)}) to cSet
if activity <> null then
return cSet
else
WriteLine ("ERROR")
return cSet
T e e e g R COrTE] ATTONSETSTOS AT STy v e o
getcorre]at1onSetsToSat1sfy(act1v1ty as INPUTHACTIVITY?) as Set of
CORRELATIONSET
var cset as Set of CORRELATIONSET = {}
add new CORRELATIONSET("wow',{"7d"'->new DATA(0)}) to cSet

if activity <> null then
return cSet

else
writeLine (" ERROR")
return cset

147

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

The Abstract State Machine Language [online]. Microsoft Research,
Foundations of Software Engineering [cited June 2003].
Available from: <www.research.microsoft.com/foundations/ AsmL>.

A. Benczur, U. Glasser and T. Lukovszki. “Formal Description of a
Distributed Location Service for Ad Hoc Mobile Networks.” In Abstract
State Machines 2003 - Advances in Theory and Practice, eds. E. Borger,
A. Gargantini, E. Riccobene. Vol. 2589 of LNCS, pages 204-217,
Springer, 2003.

A. Blass and Y. Gurevich. “Background, Reserve, and Gandy Machines.”
In Proceedings of CSL'2000, eds. Peter Clote and Helmut Schwichtenberg.
Vol. 1862 of LNCS, pages 1-17, Springer, 2000.

E. Borger. “A Logical Operational Semantics for Full Prolog. Part I:
Selection Core and Control.” In CSL’89. 3rd Workshop on Computer
Science Logic, eds. E. Borger, H. Kleine Biining, M. M. Richter, and W.
Schonfeld. Vol. 440 of LNCS, pages 36—64. Springer, 1990.

E. Borger. “A Logical Operational Semantics of Full Prolog. Part II: Built-
in Predicates for Database Manipulation.” In Mathematical Foundations of
Computer Science, ed. B. Rovan. Vol. 452 of LNCS, pages 1-14. Springer,
1990.

E. Borger. “The Origins and the Development of the ASM Method for
High Level System Design and Analysis.” Journal of Universal Computer
Science, Vol. 8, no. 1, pages 2-74, 2003.

E. Borger, U. Gldsser and W. Miiller. “The Semantics of Behavioral
VHDL'92 Descriptions.” In Proc. of EURO-VHDL'94, pages 500-505,
Grenoble, France, Sep. 1994.

E. Borger, U. Glisser and W. Miiller. “Formal Definition of an Abstract
VHDL'93 Simulator by EA-Machines.” In Formal Semantics for VHDL,

eds. C. Delgado Kloos and Peter T. Breuer, pages 107-139, Kluwer
Academic Publishers, 1995.

148

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Borger and R. Stérk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S.
Weerawarana, Business Process Execution Language for Web Services
Version 1.1, BEA Systems, International Business Machines Corporation,
Microsoft Corporation, SAP AG, Siebel Systems, May 2003.

A. van Deursen, P. Klint, and J. Visser. “Domain-Specific Languages: An
Annotated Bibliography.” In ACM SIGPLAN Notices, 35(6):97-105, June
2000.

R. Eschbach , U. Glasser, R. Gotzhein, M. von Lowis and A. Prinz.
“Formal Definition of SDL-2000 —Compiling and Running SDL
Specifications as ASM Models.” In Journal of Universal Computer
Science, 7 (11): 1025-1050, Springer Pub. Co., Nov. 2001.

R. Eschbach, U. Glidsser, R. Gotzhein and A. Prinz. “On the Formal
Semantics of SDL-2000: a Compilation Approach Based on an Abstract
SDL Machine.” In Abstract State Machines — Theory and Application,
eds. Y. Gurevich, P.W. Kutter, M. Odersky and L. Thiele. Vol. 1912 of
LNCS, pages 244-265, Springer-Verlag, 2000.

R. Farahbod, U. Glisser, M. Vajihollahi. Specification and Validation of
the Business Process Execution Language for Web Services. SFU-CMPT-
TR-2003-06, Sep. 2003

R. Farahbod, U. Glasser and M. Vajihollahi. “Specification and Validation
of the Business Process Execution Language for Web Services.” To appear

in Proc. of the 11th International Workshop on Abstract State Machines
(ASM’2004), Germany, May 2004.

Foundations of Software Engineering Group at Microsoft [online, cited
June 2003]. Available from: <http://research.microsoft.com/fse>

N. E. Fuchs. “Specifications are (Preferably) Executable.” In Software
Engineering Journal, pages 323-324, September 1992.

U. Gliasser, R. Gotzhein and A. Prinz. “Formal Semantics of SDL-2000:
Status and Perspectives.” In Computer Networks, Vol. 42, Issue 3, pages
343-358 (June 2003), ITU-T System Design Languages (SDL), Elsevier,
2003

U. Glaesser, Y. Gurevich and M. Veanes. An Abstract Communication
Model. Technical Report MSR-TR-2002-55, Microsoft Research.

149

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

U. Glisser, Y. Gurevich, and M. Veanes. “An Abstract Communication

Architecture for Modeling Distributed Systems.” Submitted to /IEEE TSE,
2003.

U. Glésser, M. Vajihollahi, “Engineering Concurrent and Reactive Systems
with Distributed Real-Time Abstract State Machines.” Submitted to IFIP
World Computer Congress, France, August 2004.

U. Gldsser and M. Veanes. “Universal Plug and Play Machine Models:
Modeling with Distributed Abstract State Machines.” In Design and
Analysis of Distributed Embedded Systems, eds. B. Kleinjohann, K. H.
Kim, L. Kleinjohann, A. Rettberg. Kluwer Academic Publishers, 2002.

Y. Gurevich. “Evolving Algebras 1993: Lipari Guide.” In Specification
and Validation Methods, ed. E. Borger. pages 9-36, Oxford University
Press, 1995.

Y. Gurevich and J. Huggins. “The Semantics of the C Programming
Language.” Vol. 702 of LNCS, 1993, pages 274-308.

Y. Gurevich and J. Huggins. “The Railroad Crossing Problem: An
Experiment with Instantaneous Actions and Immediate Reactions.” In
Computer Science Logic, ed. H.K. Biining. Vol. 1092 of LNCS, pages 266-
290, Springer, 1996.

Y. Gurevich and N. Tillmann. “Partial Updates: Exploration.” In Journal of
Universal Computer Science. Vol. 7, no. 11 (2001): 918-952, Springer.

I. J. Hayes, and C.B. Jones. “Specifications are not (necessarily)
executable.” In Software Engineering Journal, no. 6 (1989): 330-338.

ITU-T Recommendation Z.100 Annex F (11/00), “SDL Formal Semantics
Definition,” In International Telecommunication Union, Geneva, 2001.

W. Mueller, J. Ruf, D. Hofmann, J. Gerlach, T. Kropf, and W. Rosenstiehl.
“The Simulation Semantics of SystemC.” In Proc. of DATE 2001. IEEE
CS Press, March 2001.

SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 [online, cited
June 2003]. Available from: <www.w3c.org/TR/soap12-part0>.

R. Stark, J. Schmid and E. Borger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer, 2001.

150

(32]

[33]

(34]

Web Services Description Language (WSDL) Version 1.2 Part 1: Core

Language [online, cited June 2003]. Available from:
<www.w3c.org/TR/wsdl12>.

Web Services Transaction (WS-Transaction) [online, cited August 2002].
BEA Systems, International Business Machines Corporation, Microsoft
Corporation, Inc.

Available from: <www.ibm.com/developerworks/library/ws-transpec>.

WSBPEL TC at the Organization of Advancement of Structured
Information Standards (OASIS) [online]. Available from: <www.oasis-
open.org>.

151

