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Abstract 

Fourth order model equations arise in many physical applications such as thin film 

theory, lubrication theory, convection-explosion theory, flame and wave propagation, 

phase transition at  critical Lipschitz points, bi-stable systems and so on. In recent 

years, degenerate parabolic equations of fourth order became important for modelling 

diffusion processes in Physics and Material Sciences. Indeed, fourth order terms are 

increasingly recognized as being significant in many physical models, and this has led 

to the burgeoning literature. 

The aim of t h s  thesis is to study the moving collocation method for solving fourth 

order evolutionary partial differential equations. We start by presenting several types 

of fourth order evolutionary partial differential equations. Some difficulties we will 

encounter when numerically solving these fourth order evolutionary partial differential 

equations are addressed. A high resolution moving collocation scheme which uses 

septic Hermite splines is then introduced. MC4, a subroutine written in FORTRAN 

which implements the moving collocation method has been developed. The code is 

basically based on MOVCOL by Huang and Russell in 1996. Some new features of 

the code include a large selection of monitor functions and a conservation checking 

mechanism. Numerical examples are included to show the efficacy of the method. 
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Chapter 1 

Introduction 

Well-chosen model equations have always played an important role in the study of 

complex patterns in physical, mechanical, chemical and biological systems. Classical 

model equations have typically been second-order partial differential equations. Very 

familiar examples are the heat equation, the wave equation, and the Laplace equa- 

tion. They are designed to shed light on specific physical processes, such as diffusion, 

dispersion, absorption or wave propagation and their mutual interaction, and in some 

cases they also give a quantitative description of such processes. 

While these second order model equations capture the essential features of specific 

problems, they are often much simpler than the full equations describing the physical 

processes. They are limited in their ability to describe complex features. When 

complex patterns such as pulses that consist of a series of spikes or other localized 

patterns with nontrivial structure develop, the limitation of these model equations 

becomes acute. To gain insight into the dynamics of the complex spatial and temporal 

patterns in a wide range of physical and mechanical problems, higher order equations 

or systems of equations have been proposed of which fourth order model equations 

commonly arise. 

Fourth order model equations arise in many physical applications such as thin film 

theory, lubrication theory, convection-explosion theory, flame and wave propagation, 

phase transition at critical Lipschitz points, bi-stable systems and so on. In recent 
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years, degenerate parabolic equations of fourth order have become important for mod- 

elling diffusion processes in physics and material sciences. Indeed, fourth order terms 

are increasingly recognized as being significant in many physical models and this has 

led to the burgeoning literature including the recent book [43] which lists a number 

of models and references. 

The investigation of higher order parabolic equations began almost at the same 

time as that of second order equations; however, the study of higher order equations, 

especially of quasi-linear equations, is far from complete compared to that of the 

second order case. The main reason is that many effective methods used in treating 

second order equations, such as those based on maximum principles, are no longer 

effective for higher order equ ations. In addition, the occurrence of degeneracy makes 

things even more difficult. The complex structure of fourth order partial differential 

equations also poses a challenging problem for the design of numerical methods for 

solving these problems. 

Difficulties and challenges involved in numerically solving a fourth order evolution- 

ary partial differential equations include preserving the non-negativity of the solution 

in the thin film equation, preserving the total mass within the Cahn-Hilliard equation, 

handling the case where blow-up and fast-decay are present, removing the singulari- 

ties in the degenerate fourth order partial differential equations, as well as capturing 

the complex patterns in equations of gradient type. 

The aim of this thesis is to study the theory and computation of a moving collo- 

cation method for solving fourth order evolutionary partial differential equations. We 

start by presenting several types of fourth order time-dependent partial differential 

equations and briefly addressing several challenges one normally will encounter when 

numerically solving them. Then, in view of the nature and breadth of the problems 

considered, a moving collocation method for solving fourth order evolutionary par- 

tial differential equations is introduced. This method is basically an extension of the 

moving collocation method for solving second order evolutionary partial differential 

equations. MC4, a subroutine written in FORTRAN which implements the moving 

collocation method has been developed. The code is basically based on MOVCOL by 

Huang and Russell in 1996 [31]. 
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Numerical experiments have been done successfully for the thin film equation, the 

interface fluctuation equation, the Cahn-Hilliard equation and some other problems. 

Numerical results show that the moving collocation method introduced in this thesis 

handles singularities effectively. For the thin film models within which the moving 

contact lines are present, the positivity of the solution is preserved without special 

treatment, while in many articles great efforts have been taken to design a code to 

preserve the positivity of the solution to this equation. Mass conservation is also 

checked and the implication in solving equations with finite time blow-up or fast 

decay are discussed. 

The layout of this thesis is as follows. In Part 11, we present a number of fourth 

order time-dependent partial differential equations, the basic concepts of self-similar 

solutions and scaling invariant PDEs, and some issues related to numerically solving 

fourth order evolutionary partial differential equations. In Part 111, we describe the 

MMPDE approach and introduce the moving collocation method for solving fourth 

order evolutionary partial differential equations. Conclusions are made in part IV, 

and some aspects worthy of further investigation are addressed. 

It should be noted that it is Dr. Jeff Williams from University of Bath who first 

extended MOVCOL-the moving collocation method for solving second order evolu- 

tionary partial differential equation systems, to MC4-a moving collocation method 

for solving fourth order evolutionary partial differential equations. 



Chapter 2 

Evolutionary PDEs of Fourth 

Order 

2.1 Several Types of Evolutionary PDEs of Fourth 

Order 

The theory of fourth order parabolic equations presents many interesting mathemat- 

ical problems. We summarize those we have been investigating as follows: 

Type I: Thin film equations 

n ut = -(u u,,,),, x E R, t > 0, n > 0. (2.1) 

Thin film equations of the above form are derived from a lubrication approximation. 

They model the surface tension dominated motion of thin viscous films and spreading 

droplets [37]. The different values of n are related to the boundary conditions at  the 

bottom used at the Navier-Stokes level. The most important cases in applications 

are n = 3, which corresponds to no-slip boundary conditions, and n = 1, which 

corresponds to the so-called Hele-Shaw cell [4] 

One of the remarkable features of equation (2.1) is that the nonlinearity guarantees 

the nonnegativity preserving property of the solution [14]. 
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Solution to (2.1) are also known to preserve mass [2], i.e. 

It is shown in [4], 1181 that the support of the solution has finite speed of propagation 

and continuous flw unuxxx. They also show a rapid convergence of the solution onto 

the similarity solution before the merging of the support of the solution. 

Recent studies of singularities in which u = 0 at a point, describing rupture of 

the fluid layer, show that such equations exhibit complex dynamics which can be 

difficult to simulate accurately. In particular, one must ensure that the numerical 

approximation of the interface does not show a false premature rupture. Generic 

finite difference schemes have the potential to manifest such instabilities especially 

when under-resolved [54]. 

The thin film equations of the following form [15], 

with m 2 3, are long-wave unstable: flat profiles can't remain linearly stable with 

respect to infinitesimal perturbations which have sufficiently large wave numbers. 

The fourth order term is linearly stabilizing and the second order term is linearly 

destabilizing. When m 2 3, equation (2.3) blows up in finite time. For the critical 

case m = 3 and for the supercritical case m > 3, they have self-similar solutions with 

remarkably different properties. 

A family of equations of the form: 

is considered in [15]. These equations are long wave unstable if f and g perturb 

around a positive constant steady state, hence f and g are nonnegative. 

It is conjectured in [15] that the large-u behavior of g(u)/ f (u) determines the 

presence or absence of a finite-time blow-up: 

(03 : u + 03 i n  f i n i t e  t ime f o r  some s o l u t i o n s  

: marginal case 

: g loba l ly  s t a b l e  so lu t ions .  
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Another type of thin film equation is the thin film equation with absorption [26]: 

It is known that p~ = 3 is the critical Fujita exponent for (2.5): 

I) If p E ( l , p F ] ,  then blow-up occurs for arbitrarily small initial data with non- 

negative first Fourier coefficient. Different initial data will have different blow-up 

regimes. 

2 )  If p > p ~ ,  then solutions are global in time for any sufficiently small initial data 

210. 

Type I1 Interface fluctuations equation 

with non flux boundary condition 

or with periodic boundary condition 

This equation arises as a scaling limit in the study of interface fluctuations in a 

certain spin system [23] and also models the electron concentration in a quantum 

semiconductor device with zero temperature and negligible electric field [35]. 

It is remarked that 

1 )  Equation (2.6) is a particular case of a class of fourth order diffusion equations 

which admit self-similar solutions. 

2 )  The solution shows an algebraic decay in the L1 norm towards the corresponding 

self-similar profile. 

3) The solution converges to the constant steady state u ~ ~ e r y  fast, where uo 

is strictly positive initial data. 
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Type 111 Cahn-Hilliard Equation 

ut + yuxxxx = (F'(u))xx . (2.7) 

where y > 0. This equation was derived by Cahn and Hilliard in 1958 to model 

the phenomenon of first order phase separation in binary alloys. Other than phase 

separation in binary alloys, diffusive processes such as the growth and dispersal in 

population can also be described by the Cahn-Hilliard equation. 

In their book [27], V.A. Galaktionov and J.L. Vazquez addressed the concern 

about the asymptotic blow-up behavior of the following Cahn-Hilliard equation with 

blow-up 
3 2 

Ut + Y ~ x x x x  = (-u + Y1U - 4 x x  . (2.8) 

Type IV: Equations of gradient type [17] 

Ut = -YUxxxx + P ~ x x  - F1(~) (2.9) 

with y > 0, and F(u) is a potential. 

Equations of gradient type occur in many physical models. Two typical examples 

are the Swift-Hohenberg equation and the extended Fisher-Kolmogorov equation. 

For different models, different boundary conditions are adopted. For example, thc 

Neumann Boundary conditions 

ux(O,t) = u,,x(O,t) = O,u,(L, t) = uxxx(L,t) = 0 

are often used in the Swift-Hohenberg equation and the extended Fisher-Kolmogoro\ 

equation. 

There are other boundary conditions such as Navier boundary conditions 

u(0, t) = u(L, t) = 0, ux,(O, t) = uxx(L, t) = 0 

and the general Dirichlet boundary conditions 

u(0, t) = Y, (t); %(O, t) = y2(t); u(L, t) = 21 (t); ux(L1 t) = z2(t) 

where yl (t) , y2 (t) , zl (t) , z2 (t) are any suitable values that u and ux may attain at x = ( 

and x = L, respectively. 
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These types of equations usually display a multitude of stable stationary states. 

Type V: Modified KS equation with blow-up 

This equation admits interesting blow-up patterns - see [43] for a systematic 

study on stable patterns of these equations. 

There are other types of fourth order equations such as the beam equations arising 

in the study of an elastic bar with non-convex stored energy density 

the suspension bridge equation arising in the study of the traveling waves in a sus- 

pension bridge 

Utt + U z z Z 2  + IU - 11 - 1 = 0) 

and the Boussinesq equations arising in the study of the effects of weak dispersion 

and nonlinearity in a shallow water 

For the time being, we only solve problems of the form 

where the superscripts L and R denote the value at the left and right boundary, 

respectively, e.g., u z  = uzz (xR, t )  . 

2.2 Similarity Solutions of Fourth Order Equations 

Finite time blow-up is a common phenomenon in many physical applications, par- 

ticularly in combustion theory and nonlinear optics. To gain a fundamental insight 
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into systems which develop singularities in finite time, scaling and self-similarity were 

introduced in the 1930's and have been an important tool since then. 

The nonexistence of self-similar solutions for second-order semi-linear parabolic 

equations has been known for at least twenty years. Of increasing interest in applica- 

tions are equations with higher order spatial derivatives. With a fourth order model 

from explosion-convection theory, it was shown in [8] that nonexistence of self-similar 

solutions is not necessary the case for higher order equations. 

To be more specific, consider a general partial differential equation which is in- 

variant under the scaling 

t1 = At, x1 = Xmx, u1 = Xnu (2.13) 

for any positive A. A similarity solution to a PDE is any solution which is invariant 

under this scaling. Many interesting fourth order PDEs, including problems leading 

to blow-up, are scaling invariant. 

For example, the equation 

is invariant under the scaling 

For p = 2, this problem blows up at a certain time, denoted by T. Setting X = T-t, 

we can easily show that this equation has a self-similar solution of the form 

Similarly, the equation 
3 

Ut = -(u ux + ~ ~ z x x ) x  

is scaling invariant under the scaling 

t1 = At, XI = X1I55, u1 = X - i u .  
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From this, it can be easily shown that equation (2.16) has a self-similar solution of 

the form 

for a positive constant T such that T - t > 0 for suitable range of t ,  say t E (t,, tb). 
Generally, if a partial differential equation is invariant under the scaling (2.13) for 

any positive A, then this equation has a self-similar solution of the form 

2.3 

2.3.1 

Central 

concept 

Other Issues Related to Numerically Solving a 

Fourth Order PDE 

Compute Solutions near Singularity Time 

to the singularity formation phenomenon for fourth order equations is the 

of finite time blow-up, where the solution of the Cauchy problem with uni- 

formly bounded initial data uo(x) becomes unbounded at some finite time T in the 

sense that u(x, t)  exists and is classical on any time-interval [0, TI] with TI E (0, T)  

and 

sup Ju(x, t ) (  t 00, as t + T-. 
xEi?4 

Finite time blow-up for fourth order semilinear and quasilinear parabolic equations 

has been well known since the 1970s [25]. It involves a delicate balance between the 

spatial and temporal derivatives and the reaction terms driving the blow-up. 

Lubrication equations are fourth order degenerate diffusion equations of the form 

ht + V . (f (h)VAh) = 0, describing thin films or liquid layers driven by surface 

tension. Recent studies of singularities in which h + 0 at a point, describing rupture 

of the fluid layer, show that such equations exhibit complex dynamics which can be 

difficult to simulate accurately. In particular, one must ensure that the numerical 

approximation of the interface does not show a false premature rupture. Generic 

finite difference schemes have the potential to manifest such instabilities especially 

when under-resolved. 
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It is a challenging problem to compute solutions towards singularity time T. Even 

with implicit methods, one needs certain grid adaptation so as to have a more refined 

mesh near blowup points, and a coarse grid elsewhere. 

2.3.2 Preserve the Positivity of a Solution 

One of the main differences between the fourth order parabolic equations and the 

second order equations is that for the fourth order equations the nonnegativity of the 

initial data does not imply the same property of solutions at any time. For instance, 

the linear equation 

U t  f U x x x x  = 0 (2.18) 

belongs to a large class of fourth order (linear and nonlinear) equations which do not 

preserve the sign of the initial data [I], [20]. 

However, this doesn't mean that positive solutions are impossible. For example, 

during the last ten years, it has been established that the thin film equation for 

for n > 0, unlike (2.18), preserves the nonnegativity of the initial data [7], [6]. 

The preservation of nonnegativity or positivity is not only challenging from an 

analytical point of view, but also the derivation of sign-preserving numerical schemes 

for fourth order equations is a field of intensive research. Even for strictly positive 

analytical solutions, if not carefully designed, a discretization scheme may still give 

negative solutions, causing unwanted numerical instabilities [4], [35]. 

2.3.3 Is the Mass Conserved? 

Many fourth order evolutionary partial differential equations we have encountered so 

far evolve with patterns that preserve the mass. For instance, the thin film equations 

(2.1), the interface fluctuation equation, and the Cahn-Hilliard equation with the 

non-flux boundary condition 
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all share the property of mass conservation. 

As a matter of fact, when solving fourth order partial differential equations using 

the moving collocation method described in section 3.2, we always rewrite the equation 

in a conservative form as follows (even for the non-conservative case), 

which satisfies the generalized conservation property 

i" Fdx = Glx=b - Glx=a 

Notice that the fourth order derivative doesn't appear as an argument in equation 

(2.19). An advantage of this conservative collocation lies in that it avoids computing 

the fourth order derivative directly for a fourth order problem. In general, for problems 

with singularity formation, each successive spatial derivative is considerably larger 

than the previous one. Thus the fourth order term will be represented with the 

worst error, and for the finite element method, it is only piecewise continuous. By 

reformulating the main equation into the conservative form, we avoid computing the 

fourth order derivative directly, and thus avoid the error caused by evaluating the 

fourth order derivatives. 

Now a question arises naturally. How does this conservative form work? Since we 

are solving evolutionary partial differential equations on a moving grid, is the mass 

conserved for problems with mass conservation? Usually, an equation can be rewritten 

into different conservative forms. Will it affect the solution, and hence the mass? 

For a problem which conserves the mass within the system and admits finite time 

blow-up solution, the answer to this question is especially important, since any small 

error in the computed mass may lead to considerably larger error in the solution and 

in turn affect the patterns we observe. 

2.4 Summary 

In the previous sections, we have presented several types of evolutionary partial dif- 

ferential equations of fourth order. Each of these problems involves some difficulties 
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and challenges when numerically solving these equations. 

To summarize, these difficulties and challenges include preserving the nonnega- 

tivity of the solution in the thin film equation, preserving the total mass within the 

Cahn-Hilliard equation, handling the case where blow-up and fast-decay are present, 

removing the singularities in the degenerate fourth order partial differential equations 

as well as capturing the complex patterns in equations of gradient type. Many papers 

working on these issues can be found, and a list of models and references can be found 

in the recent book [43]. 

It is part of the aim of this thesis to address some of these issues and numerically 

check some of the theoretical results from a selection of papers. 



Chapter 3 

Moving Collocation Scheme for 4th 

Order PDEs 

3.1 MMPDE Approach 

3.1.1 Motivation 

One of the most important considerations when solving partial differential equations 

having nontrivial solutions is the decision of how to automatically and stably chose a 

non-uniform mesh that suitably adapts to the solution behavior. 

Adaptive mesh methods have been widely used for solving differential equations 

that involve large solution variations, such as shock waves, boundary layers, and con- 

tact surfaces [29]. It has been demonstrated that significant improvements in accuracy 

and efficiency can be gained by adapting mesh points so that they are concentrated 

about areas of large solution variation. 

For time-dependent differential equations, adaptive methods can be divided into 

two categories, static methods and dynamic methods. 

Static methods: The discrete solution and equation are initially defined on a given 

mesh. During the calculation, based on properties of a certain function that measures 

the goodness of the approximation, a new mesh that might have a different number 

of nodes from the old mesh is constructed. The solution is then interpolated from 
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the old mesh to the new mesh, and a new discrete approximation to the solution is 

defined on the new mesh. The redistribution of the old nodes, the addition of new 

nodes, and the interpolation of the dependent variables from the old mesh to the new 

mesh are done at a fixed time. 

Dynamic methods (often called moving mesh methods): A mesh equation that in- 

volves nodes speed is employed to move a mesh having a fixed number of nodes in such 

a way that the nodes remain concentrated in regions of rapid variation of the solution. 

The mesh equation and the original differential equation are often solved simultane- 

ously for the physical solution and the mesh. Unlike static methods, interpolation of 

dependent variables from the old mesh to the new mesh is unnecessary. 

Generally, static methods are robust for problems where regions of rapid variation 

move with time; however, the continual readjustment usually tends to slow down 

the computation, making these methods inefficient. For the dynamic methods, while 

it turns out to be surprisingly difficult to derive consistently reliable moving mesh 

equations, if carefully chosen, very often, they can lead to efficient methods. 

A satisfactory mesh equation should be simple, easy to program, and reasonably 

insensitive to the choice of its adjustable parameters [33]. Among moving mesh meth- 

ods, the moving finite difference method of Dorfi and Drury [22] and the moving finite 

element method of K. Miller [39], [38] have aroused considerable interest. While in 

the moving finite difference method the moving mesh equation is obtained directly 

from an equi-distribution principle, in the moving finite element method the solution 

and mesh are obtained by a process closely associated with equi-distribution of one 

measure: the residual of the original equation written in finite element form. 

In [34], several moving mesh partial differential equations (MMPDEs) based on the 

equidistribution principle are derived and studied both theoretically and numerically. 

Some of them are new while some of them are related to methods developed in [22] 

and other references therein. On the whole, these moving mesh equations are all 

related to the equidistribution idea described in subsection 3.1.2. 
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3.1.2 Equidistribution Principle and MMPDEs 

The equidistribution idea, introduced by de Boor [5] and Dodson [21], is based upon 

the simple idea that if some measure of the error M(x) is available, then a good choice 

for a mesh would be one in which the contributions to the error over the subintervals 

are equalized (or "distributed equally"). 

Mathematically, the goal of finding mesh functions [46] X, ( t ) z i l  or moving meshes 

which are equidistributing for all values of t means that 

Define the error measure as 

A node is said to attract other nodes when a measure of the truncation error at 

this point is larger than average, and a node is said to repel other nodes if the error 

measure is smaller than average. 

Obviously, if all the nodes of a moving mesh attract or repel their neighboring 

nodes, the moving mesh can satisfy our needs to capture the large solution variations 

based on error equi-distribution. 

Let x and J denote the physical and computational coordinates over the unit 

interval [0,1], respectively. we can express (3.2) in an integral form as 

where 

Differentiating (3.4) with respect to [ once and twice will give us two differential forms 

of the equidistribution principle 
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and 

Related to (3.6) and (3.7), various MMPDEs are derived in [34]. In MC4, we use 

the following two of them: MMPDE4, MMPDE6, and a smooth version of MMPDE4 

derived in [32]: 

where X is a positive number and M is defined to satisfy: 

and the boundary condition 

and 

Their discretizations are given, respectively, by [32] 
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We also use 

3-112 = Y1/27 YN+1/2 = YN-l/21 2 0  = XN = 0 

to approximate the boundary conditions (3.12). 

3.1.3 Monitor Functions 

The key to the success of the described MMPDE approach of mesh movement is 

to define a proper monitor function. To perform mesh adaptation in the gradient 

direction of the physical solution u(x, t ) ,  the most common choice is the arc-length 

monitor function 

Numerical experiments have shown that a monitor function based on the solution 

gradient is not always the best option and may fail in many cases [28]. In fact, de- 

pending on the distribution and magnitude of the solution gradient, thus on problems 

to be solved and numerical schemes used, the monitor function may over or under con- 

centrate mesh points in regions of large solution gradient or errors. This will certainly 

make the underlying moving mesh method less robust. 

A common remedy is to introduce a parameter (denoted by a) to control the in- 

tensity of the mesh adaptation [12], [13], [49]. Based on the equidistribution principle, 

Beckett and Mackenzie define the monitor function to be [12] : 

where m is an integer and (.) denotes the average over the domain. They apply 

an adaptive scheme with this monitor function to the finite difference solution of 

a singularity perturbed, two-point boundary value problem and obtain a uniform 

convergence rate. 

It is worthwhile to mention that MC4 gives solutions that always have continuous 

third order derivatives, thus it becomes natural to choose a monitor function which 
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involves the second order derivative, while in MOVCOL the solution only has con- 

tinuous first order derivative so such a choice may be misleading if the second order 

derivative in the monitor function is not carefully reevaluated. 

For a partial differential equation with no blow-up, the monitor function defined in 

(3.16) works well. However, if the solution of a partial differential equation does blow 

up (whch actually occurs very often among fourth order problems), it is almost im- 

possible to control the error near the blow up points in a robust way with a-posteriori 

error control. In view of the self-similarity property of many partial differential equa- 

tions of fourth order, it is very possible for us to preserve the geometrical structure. 

Under this circumstance, we choose a function of the solution and its derivatives 

instead of the error as the monitor function. 

In order to preserve the geometrical structure of the dynamics, we will also have 

to  use scale-invariant monitor functions. It is also why we use MMPDE6 instead of 

MMPDE4 when a scaling invariant function is desired. 

If the PDE is invariant under the scaling 

then for MMPDE6 to be also invariant under (3.17), we require 

For example, for equation (2.14) which is scaling invariant under the scaling (2.15), 

it has been shown that the solution of this equation blows up a t  finite time when p = 2. 

Suppose we are to choose a monitor function which involves only the solution u. It 

can be easily seen that for equation (2.14) with p = 2, the monitor function should 

be M(u) = 1u1. To make it strictly positive, we may choose 

Hence, we get an asymptotically scaling invariant monitor function. We call it asymp 

totically scaling invariant because the solution is large at the blow-up area, and we 

have 1 + 1uJ M IuI. 
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Similarly, if we are going to choose a monitor function which involves u,, we will 

have to choose the monitor function 

Once again, we make it strictly positive by adding some constant and making it 

asymptotically scaling invariant, for example, we can set the monitor function to be 

For blow-up problems, especially for problems with finite time blow-up at a small 

region, the above scaling invariant monitor function may also fail due to the mesh 

over-concentration on this small region. 

One way to overcome this is to combine the scaling invariant idea with the idea 

of Beckett and Mackenzie when they define the monitor function as (3.16) so that we 

have almost half of the mesh points within the blow-up region and half of the mesh 

points outside the blow-up region. Thus instead of (3.19), we can use 

or instead of (3.20), we can use 

3.1.4 Smoothing 

For most problems which involves large solution variations, the monitor function is 

fairly non-smooth in space. This usually will lead to an abruptly varying mesh and 

ultimately cause a deterioration in the convergence rate and an increase in the error 

[40]; thus, some kind of smoothing should be employed in the MMPDEs in order to 

make the mesh move more smoothly. 

In both MOVCOL and MC4, the monitor smoothing technique is applied. The 

values of the smoothed monitor function M at node i are defined by 
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where p determines the range of smoothing. For example, the non-smooth case has 

p = 0, and the three-point smoothing has p = 1. The three-point smoothing is 

commonly used in adaptive methods and will result in a five-block-diagonal algebraic 

system. For a general p7 the resulting algebraic system is (3+2p)-block-diagonal; thus 

the higher the value of p, the more cost needed to solve the nonlinear system, and the 

smoother the resulting mesh. Empirically, p = 1 ,2 ,3  usually give good results. 

The smoothing parameter y has been used by many authors and has a natural 

physical meaning - the "rigidity" of a grid [22]. It requires that the grid spacing 

should not change from one interval to the next by more than $ for the stability of 

the grid. The choice of y is fairly insensitive [33], and generally it can be fixed. It is 

recommended that one choose y to be 1 5 y 5 2. 

One other most critical parameter in equi-distributing mesh moving strategies 

is the time smoothing parameter T. It represents a timescale for forcing the mesh 

toward equidistribution and preventing the mesh from crossing [34]. By comparing 

(3.7) and (3.8) we can see that the term --- I a ( M- ::) is actually a correction 
7 at 

term to make the mesh equidistribute the monitor function. If T is very large, the 

grid will not move and cannot be adapted. If T is extremely small and tends to zero, 

it is possible that we will have a crossing mesh. The optimal choice of T is also related 

to the size and smoothness of the monitor function. This is especially true for explicit 

integration, where a small T can result in mesh crossing and failures in integrations. 

For explicit integration methods, changing T can result in a new evaluation of the 

Jacobian for the Newton iteration; hence T should not change frequently and might 

be kept as a constant. The recommended range for T in both MOVCOL and MC4 is 

< < 
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Moving Collocation Code for Fourth Order PDEs 

3.2.1 A Brief Description of the Code 

The moving collocation code described in the following subsection 3.3.2 is basically 

based on the existing code MOVCOL. Developed by Huang and Russell in 1996, MOV- 

COL is primarily intended to solve system of one dimensional second order PDEs. It 

uses a method of lines approach, in which the physical PDEs are discretized in space 

with MOVing COLlocation method [31], the moving mesh points are computed based 

upon MMPDEs [34], and the resulting ODE system is integrated in time with the 

DAE solver developed by Linda Petzold [41]. 

Dr. Jeff Williams from the University of Bath first extended the idea of MOVCOL 

to solve system of one dimensional fourth order PDEs. He also wrote two codes in 

MATLAB, one using the FORTRAN code DDASSL for the time integration via a 

MEX interface, and the other the MATLAB routine ode15i.m. 

Due to the nature and breadth of the problems considered, we are solving higher 

order problems on a non-uniform grid. The recent work of Saucez et al. shows that 

great care has to be taken to reliably solve for the high-derivatives on a non-uniform 

grid. In [50] they used a finite difference method and the same adaptive strategy 

we use in our approach and found out that large number of nodes (e.g. 1000) were 

required to solve the problems 

When actually running the codes written in MATLAB to solve a fourth order 

evolutionary partial differential equation with a compact scheme which has a large 

number of mesh points, we found out that the codes run extremely slowly. Experience 

showed that only several simple equations with few mesh points (like 40) could be 

solved. The code got stuck on hard problems. 
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Designed as a tool for doing numerical computations with matrices and vectors, 

Matlab is also powerful in displaying information graphically. It is also easy to code a 

problem up in Matlab. However, it certainly slows the computation down especially 

for our purpose. It is also expensive for Matlab to come in and out of the Mex interface 

between Matlab and DDASSL. In view of these facts, I start to write a FORTRAN 

code based on MOVCOL with considerable assistance from Dr. Williams. 

The main subroutine which implements the moving collocation method is called 

MC4. The code solves the fourth-order parabolic PDEs of the general divergence form 

a 
(t 7 1 1 u~ 7 U~~ 1 U~~~ 1 U t  7 U ~ t  , U ~ ~ t  1 u X X X ~ )  = -G (t 7 1 1 U~ 1 U~~ 7 U~~~ 7 U ~ t  1 U ~ ~ t  7 uxxxt)  ax 

(3.24) 

for xL < x < xR and t ,  < t 5 tb, supplemented with the initial condition 

and four suitable boundary conditions. For the time being, we only consider prob- 

lems with two boundary conditions at the left end of the interval and two boundary 

conditions at  the right. 

The equation is assumed to be well-posed, that is, the existence and uniqueness 

of the solution is guaranteed by the user. 

The extension of MOVCOL, MC4, also uses a method of lines approach. The 

PDEs are discretized in space with a moving collocation method similar to the method 

described in [31], and the moving mesh points are computed based on MMPDEs [34] 

exactly the same way as in MOVCOL. For most of the problems, we integrate the 

resulting ODE system in time with DDASSL. A new ODE solver DASPK.f developed 

by Shengtai Li and Linda Petzold in 2001 has also been tried. 

It should be noted that, in theory, MOVCOL can also solve partial differential 

equations of fourth order by converting them into systems of equations of second order. 

However, there are some concerns such as the fact that we will always have continuous 

third order derivatives when solving the equation by MC4, but with MOVCOL we 

would not. Other concerns are related to efficiency. In general, we have encountered 

many fourth order problems which when converted into second order system of equa- 

tions and solved with MOVCOL, the code can't start or only with great difficulty. 
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One guess for why relates to the following fact: Suppose we are trying to solve the 

fourth order evolutionary partial differential equation 

By setting v = uxx, we rewrite equation (3.26) into 

Notice that the second equation in (3.27) is actually v = uxx, which is an algebraic 

equation rather than a differential equation. For our experience, this makes the system 

approach more difficult to start and integrate. 

3.2.2 Moving Collocation Method 

Hermite Interpolating Polynomials 

One criterion for measuring the smoothness of a curve is the continuity of its 

derivatives. Perceptually smooth motion typically has at least two continuous deriva- 

tives, often more. Cubic spline curves, defined to interpolate both the value of a 

function and the value of its first derivative at given data point, generally only give 

solutions continuous in their first derivatives. 

To obtain continuous higher derivatives, we consider using a Hermite interpolant 

of higher order. Suppose that our aim is to develop an interpolating polynomial which 

interpolates the function and its derivatives up to pth order at N + 1 data points. We 

require that 

g(xi) = fi, i = 0,1, .  . . , N N + l  cons t ra in t s  
(1) g(l)(xi) = fi , i = O , 1 ,  - - - , N N + 1  cons t ra in t s  

gC)(xi) = fp), i = O,l, .  . - , N N + l  const ra ints .  

We have a total of (p + 1)(N + 1) constraints. Since the number of constraints must 

equal the number of unknowns in the interpolating polynomial, we need to set up a 
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general polynomial which is of degree (p + 1 ) ( N  + 1)  - 1 

The procedure to develop Hermite interpolation can be summarized as: 

JSe t  up the form for the interpolating polynomial 

J Implement constraints 

JSolve for urlknown coefficients, ai, i = 0, . - . , ( p  + 1 ) ( N  + 1)  - 1. 

Suppose we want to develop the Hermite interpolating polynomial which interpo- 

lates the function and its first, second and third derivatives for the interval [0, 11. We 

have p = 3 and N = 2, so ( p  + 1) ( N  + 1) - 1 = 7. Let 

Applying the constraints, we have 

Denoting S = ( 1  s s2 s3 s4 s5 s6 s7), then 

g(s) = Sa  = SA-I f 
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where 
+o,o(s) = 1 - 35s4 + 84s5 - 70s6 + 20s7, 

$ o , l ( ~ )  = - 2os4 + 45~5  - 36~6 + 1os7, 

$ O J ( S )  = 1/2s2 - 5s4 + 10s5 - 15/2s6 + 2s7, 

$0,3(s) = l /6s3  - 2/3s4 + s5 - 2/3s6 + l /6s7 ,  

$l,o(s) = 35s4 - 84s5 + 7 0 8  - 20s7, 

$l,l(s) = -15s4 + 39s5 - 348 + 10s7, 

$ 1 , 2 ( ~ )  = 5/2s4 - 7s5 + 13/2s6 - 2s7, 

$ 1 , 3 ( ~ )  = -1/6s4 + l /2s5  - 1/2s6 + 1/6s7, 

Each element +i,j(s) of the above matrix SAP1 is a polynomial of order 7.  Those 

polynomials are called the septic Hermite basis functions. 

The polynomial defined in (3.28) interpolate a function and its first, second and 

third derivatives; thus, the interpolating curves should have a continuous third deriva- 

tive. 

The collocation discretization of the physical PDEs then follows naturally. S u p  

pose that at  time t E [t,, tb], a mesh with a fixed number N + 1 of nodes 

L R is given in the interval [x  , x 1 .  
According to (3.28), the physical solution u ( x , t )  can be approximated on mesh 

(3.30) with the piecewise septic Hermite polynomials derived above by 

for x E [Xi ( t ) ,  Xi+l(t)],  i = 1,2, . , N - 1, where vi ( t ) ,  ~ , , ~ ( t ) ,  ~ , , ,~( t )  and ~ ~ , , , ~ ( t )  
denote the approximations to u ( X i ( t ) ,  t )  , ux ( X i  ( t ) ,  t )  , uxx ( X i  ( t ) ,  t )  and uxxx(Xi( t ) ,  t )  
respectively. The local coordinate S ( Z )  is defined by 
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For x E [Xi ( t ) ,  Xi+l(t)] ,  i = 1,2, . , N - 1, we have 

where 4m,n, dk4m,n/dks1 m = 0 , I ;  n = 0 , l .  2,3; k = 1,2,3,4, are functions of s(4. 

With these approximations, we can now write down a system of ordinary differ- 

ential equations for the unknowns vi ( t ) ,  v,,~ ( t )  , v,,,~ ( t ) ,  v,,,,~ ( t )  . 
Notice that the physical PDE in the divergence form (3.24) satisfies the conserva- 

tion law 

Fdx = G~,=,R - G~,=,L. (3.34) 

It will be natural to require the collocation scheme to satisfy an analogous discrete 

conservation law. 

An advantage of conservative collocation lies in that it avoids computing the fourth 

order derivative directly for a fourth order problem. This is especially desirable for 
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problems with singularity formation, which generally means each successive derivative 

is considerably larger than the previous one and thus may be represented with large 

error. Another consideration is that we are using septic Hermite polynomials, so in 

general, the fourth order derivative is only piecewise continuous when solving the 

problem on a moving grid, and this also generates errors. 

We approximate F by its Lagrange interpolant 

where Xij = Xi + sjHi(j  = 1,2,3,4), 

denote the four Gauss points on [0,1], and Xi, i = 1,2 are the two roots of the fourth 

order Legendre polynomial in [O, 11 

The right-hand side of equation (3.24) is integrated between the five Lobatto points 

on each subinterval 
H i x l z  

I1 = / Fdx = G2 - G1 
H i x l l  
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where 
Gj  := G(t, 2, v, vx, vxx vxxx 1 vt 1 vxt 1 vxxt vxxxt) ( x = ~ ~  

Gj+l = G(t, 2, v: Vxr VXZ, Vxxx, Vt ,  vxti Vxxt, vxxxt) I x = L ~ + ~  
L j = X i + E j x H i ,  j = 1 , 2 , 3 , 4 , 5 ,  

l1 = 0, l2 = (1 + y)/2, l3 = 112, l4 = 1 - 12, l5 = 1 (3.39) 

denote the five Lobatto points on [0,1], and y is the nonzero root of Pi(x) in [0,1] 

Combining (3.35) and (3.38), we can obtain a system of equations for F(Xij(t)) in 

terms of Gj  for i = 1,2, . . . , N - 1. Since this system of equations have been obtained 

using a Galerkin approach, we can regard these equations as collocation equations for 

(3.24) but with special treatment for the term dG/dx. The resulting system and the 

method we use are referred as moving collocation. 

For many problems, the initial solution has steep gradients which can't be resolved 

on a uniform mesh. In such a case, it is necessary to generate a corresponding initial 

equidistributed mesh. In this approach, such an equidistributed mesh is first generated 

by integrating the physical PDE 

where U(x) is the initial condition. The obtained mesh at  t = 1 is then used as the 

initial mesh for solving the physical PDE (3.24) 

3.3 Numerical Experiments 

To demonstrate the efficacy of the moving collocation method described in section 

3.2, we now proceed to present some numerical results for a selection of problems. 

3.3.1 A Simple Test Problem with Exact Solution 

We shall start with a simple test problem which has an exact solution. We take ad- 

vantage of this fact and gain some intuitive idea about the equi-distribution principle 
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Figure 3.1: Problem I, Error in the solution: lu - umZtl 

at01 = 1 x rtol = 1 x npts = 160, M F  = d m .  

and property of the solution we obtained using MC4. We solve 

The exact solution of this problem is u(x, t) = e-2t cos(x). 

Figure 3.1 shows that for atol=rtol=l x lop7, the absolute error between the 

numerical solution and the exact solution is less than 8 x Thus the code gives 

the correct numerical solution. 

In figure 3.1, at01 and rtol stand for the absolute error tolerance and the relative 

error tolerance used in the ODE solver; npts stands for the number of points used when 

computed the solution and M F  stands for the monitor function used in the moving 

mesh partial differential equation. We will use same notations for these parameters 

in other figures throughout this section. 
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Figure 3.2: Problem I, The computed fourth derivative 

atol = 1 x rtol = 1 x npts = 160, M F  = d m .  

Figure 3.3: Problem I, Absolute error in the fourth derivative 

at01 = 1 x lo-', rtol = 1 x npts = 160, M F  = d m .  
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We have mentioned in section 3.1.3 that the solution always has third order contin- 

uous derivative. The fourth derivative is often only piecewise continuous. A natural 

question would be: how close is the approximation to the fourth order derivative? 

Figure 3.2 shows the computed fourth order derivative. Here the fourth derivative 

is computed according to (3.33). Since the exact solution is u = e-2tcos(x), the 

fourth derivative is simply uxxXx = e-2t cos(x). This is a continuous function and can 

be viewed as the function cos(x) shrinking as time goes on. However, from figure 3.3 

we can see that the fourth derivative is only piecewise continuous. In particular, it 

has a jump discontinuity at the right boundary. 

Figure 3.3 shows the absolute error in the computed fourth order derivative. As we 

can see, the error is quite large compared to the exact fourth derivative. It is also for 

this reason, in our collocation method, the fourth derivative doesn't appear explicitly. 

For problems in which finite singularities form, the fourth derivatives are very often 

extremely large. A wise choice would be avoiding evaluating this derivative. 

3.3.2 A Coupled Equation System with Exact Solution 

As in MOVCOL, MC4 aims at solving equation systems. Another test problem we 

used to test the performance of the code for equation systems is 

This coupled system has the exact solution 

Figure 3.4 shows the solution to the coupled system. Figure 3.5 shows the error 

of the numerical solution. Once again, MC4 gives the correct solution. 

Have seen that MC4 does solve the MMPDE and give correct answer, we now 

move on to present some of the interestinglchallenging problems we have solved using 

MC4. 
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Figure 3.4: Problem 11, Solution to the system 

at01 = 1 x rtol = 1 x npts = 100, M F  = d m .  

Figure 3.5: Problem 11, Absolute error in the solution 

atol = 1 x rtol = 1 x npts = 100, M F  = dm. 
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Figure 3.6: Problem 111, Finite time single-point blow-up 

at01 = 1 x rtol = 1 x npts = 200, M F  = 1 + Iul/(u). 

3.3.3 A Problem with Finite Time Blow-up 

Theoretically, the solution to this equation blows up at the origin in a finite time 

T = 1. From section 2.2 we know that this equation has a self-similar solution of the 

form 

It is shown in [8] that there exist at least 2 non-trivial self-similar solutions to equation 

(3.44) with the one having the simpler spatial shape corresponding to stable self- 

similar solution. 

Figure 3.6 shows the solution at t = 1.013078490 where we can see clearly the 

single-point blow-up at the origin. From figure 3.6 we also observe that our code can 
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Figure 3.7: Problem 111, Re-scaled solutions at different times 

at01 = 1 x rtol = 1 x npts = 200, M F  = 1 + lul/(u). 

effectively handle sharp corners . 
Figure 3.7 shows the re-scaled solutions at different times. In figure 3.7, we also 

observed two self-similar solutions. The one developed at earlier times is decreasing for 

small values of x/(T - t )1/4  and increasing for larger values of x / ( T  - t )1 /4 .  The other 

one which appears to be a monotone decreasing function of x/(T - t)'I4 corresponds 

to the stable self-similar solution obtained in [8]. The numerical solution confirmed 

theoretical results in [8]. 

3.3.4 A Problem with Finite Time Blow-up and Positivity 

The following quasi-linear equation 

is studied in [52]. It is parabolic only for u 2 0. This equation preserves the positivity 

of the solution. 



CHAPTER 3. MOVING COLLOCATION SCHEME FOR 4TH ORDER PDES 36 

Flnlte tlme blow-up problem wlth posnlvlty 

Figure 3.8: Problem IV, Solutions at  different times, a = 0.2 

at01 = 1 x rtol = 1 x npts = 40, M F  = 1 + lul. 

For our numerical experiments, we solve the equation 

Theoretically, this problem may blow up or not according to the value of the 

constant a. 

Figure 3.8 shows the solution of (3.46) when a = 0.2. Numerical results show 

that the solution starts to increase dramatically at about t = 1. The solution will 

be greater than 10'' before t = 1.47. Noticing that we are using the asymptotically 

scaling invariant monitor function 1 + lul , the mesh points concentrate on areas where 

the values of lul are large. 

Figure 3.9 shows the solution of (3.46) when a = 1. Numerical results show that 

the solution starts to blow up at about t = 0.8. The solution will be greater than lo1' 



CHAPTER 3. MOVING COLLOCATION SCHEME FOR 4TH ORDER PDES 37 

Figure 3.9: Problem IV, Solutions at different times, a = 1.0 

at01 = 1 x rtol= 1 x npt.s= 100, M F  = d m .  

before t = 1. Noticing that we are using the arc-length monitor function d m ,  
the mesh points concentrate on areas where the values of luxJ are large. 

For both cases, the code preserves the positivity of the solutions. 

3.3.5 A Problem with Fast Decay 

The following equation arises as a scaling limit in the study of interface fluctuations 

in a certain spin system [23] and also models the electron concentration in a quantum 

semiconductor device with zero temperature and negligible electric field [35]: 

with non-flux boundary condition 

The initial periodic-boundary value problem for equation (3.47) was first studied 

by Bleher, Lebowitz and Speer in [ll]. One can see [19] for the latest results. 
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Figure 3.10: Problem V, The initial profile 

at01 = 1 x rtol = 1 x npts = 40, M F  = 1 + lul. 

Equation (3.47) is a particular case of a class of fourth order diffusion equations 

which admit self-similar solutions. Using the definition given in section 2.2, one can 

easily show that (3.47) is invariant under the scaling 

t' = At, X I  = ~ ~ 1 ~ 2 ,  U' = U ,  

and hence has a self-similar solution of the form 

for a positive constant T such that T - t > 0. Theoretically, the solution shows an 

algebraic decay in the L1 norm towards the constant steady state UO, where uo is 

strictly positive initial data. 

The initial condition is 
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Figure 3.11: Problem V, Solution a t  t=0.00125 

at01 = 1 x rtol = 1 x npts = 40, M F  = 1 + Ju] 

Figure 3.12: Problem V, Solutions a t  different times 

at01 = 1 x rtol = 1 x npts = 40, M F  = 1 + 1211. 
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To compute the solution to (3.47), we set u = w2 and use the equation 

2  
w x x  

Wt = -Wxxxx + -. 
w 

(3.48) 

Figure 3.10 shows the initial profile. Figure 3.11 shows the solution at t=0.00125. 

By comparing figure 3.10 and figure 3.11 we can see the similarity of the solution to 

(3.48). Since the solution to (3.47) is simply the square of the solution to (3.48), the 

similarity of the solution to equation (3.47) follows naturally. 

Figure 3.12 shows the solutions to equation (3.48) at different times. According 

to section 2.1, the solution should converge to the constant steady state 

whereas our computational solution converges to 

As we can see the decay is fast. 

3.3.6 Long Time Behavior of Cahn-Hilliard Equation 

As indicated in chapter 2, a lot of diffusive processes, such as phase separation in 

binary alloys, growth and dispersal in population, spreading of oil film over a solid 

surface, can be described by the Cahn-Hilliard equation. A special case for this 

It is proved in [53] that if 7 2  < 0, then for uo # 0, there exists a constant I' > 0 

depending only on uo, such that for 7 2  < -I', the solution u of (3.49) blows up at a 

finite time; if 7 2  > 0, then for any initial value uo E Hi.0, I), (3.49) admits a unique 
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solution u E H4t1(Q~); if yl > 3, 3 > 0, uo E Hi(0,  l), and lluOl12 is sufficiently 

small, then (3.49) admits a global solution u E H4?'(QT), and 

where / /  1 1  denotes the norm in H2(0, I ) ,  M = uo(x)dx, and 

QT 3 (0 , l )  x (0, T ) ,  1) = {v E H2(0, 1); 2 Ix=o,i = 011, 
H'>'(QT) = {v; E L 2 ( Q ~ ) ,  E L 2 ( Q ~ ) , 0  5 i 5 4) .  
For the numerical experiments in this section, we solve the equation 

By choosing different values for yl, 72, 73 and k, we can numerically check these 

theoretical results in [53]. Noticing that those theoretical results have no requirement 

on 73, we use 7 3  = 0 for simplicity. 

Type A When yl = 0.02, yz = -1, (3.51) represents a Cahn-Hilliard problem 

with finite time blow-up. 

Figures 3.13-3.15 show the solution of (3.51) with 71 = 0.02,72 = -1,73 = 0, k = 

6. From figure 3.14 we can see the solution blows up at two boundary points of 

the interval at about t = 0.24. Since 7 2  = -1, according to [53], for r 2 1, (3.51) 

represents a Cahn-Hilliard problem with finite time blow-up. 

Type B When yl = 0.02, 7 2  = 1, (3.51) represents a Cahn-Hilliard problem 

with a metastable solution. 

Figure 3.16 shows the solutions of (3.51) with 71 = 0.02, y2 = l,y3 = 0, k = 6. 

Figures 3.17-3.18 show the solutions of (3.51) with yl = 0.02,y2 = 1,ys = 0, k = 1. 

Numerical results show that the solution first tends to a square wave of amplitude 

6 and then evolves very slowly, hence becomes metastable. These results agree with 

the numerical results in [47]. 

Type C When yl = 1, y:! = 1, (3.51) represents a Cahn-Hilliard problem with 

fast decay. 
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Figure 3.13: Problem VI-A, Solutions of the C-H Problem with finite time blow-up 

71 = 0.02, 7 2  = -1, 73 = 0, k  = 6. 
at01 = 1 x rtol = 1 x npts = 301, M F  = d-. 

Figure 3.14: Problem VI-A, Finite time boundary blow-up 
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Figure 3.15: Problem VI-A, Enlargement of the non-blow-up part in figure 3.14 

7 1  = 0.02, 7 2  = -1, 7 3  = 0, k = 6. 
at01 = 1 x ~ t o l  = 1 x npts = 301, M F  = d-, 

Figure 3.16: Problem VI-B, Solution at different times 
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Figure 3.17: Problem VI-B, Solution at different times 

7 1  = 0.02, 7 2  = 1, 7 3  = 0, k = 1. 
at01 = 1 x rtol = 1 x npts = 301, M F  = J-. 

Figure 3.18: Problem VI-B, Solution at different times 

7 1  = 0.02, 7 2  = 1, 7 3  = 0, k = 1. 
at01 = 1 x rtol = 1 x npts = 301, M F  = J-. 
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Figure 3.19: Problem VI-C, Solution at different times 

71 = 1, 7 2  = 1, 73 = o ,  k = 1. 
at01 = 1 x lop6, rtol = 1 x npts = 201, M F  = d m .  

Figure 3.19 shows the solutions of (3.51) with yl = l,y2 = l ,y3 = 0, k = 1. 

Numerical results show that the solution decays fast and converges to the constant 

steady st ate M = ~ , 6  u0 (x)dx. This confirms (3.50). Noticing that we are solving the 

equation on [O, 61 instead of [0, 11 , we can rescale (3.51) into the form of (3.49) using 

x' = x/6 and t' = 1/36. One will find out using yl = 1 in (3.51) is equivalent to 

using yl = & in (3.49). Notice that $ < 5. This implies that for yl < 5 ,  it is still 

possible for (3.49) to admit a solution which decays fast. 

Since this system conserves mass, the exact value of mass should be 0. Figure 

3.20 and Figure 3.21 show how the mass changes with time. In figure 3.20, the error 

tolerance used when solving the equation is absolute error tolerance = 1 x and 

relative error tolerance = 1 x In figure 3.21, the error tolerance used when 

solving the equation is absolute error tolerance = 1 x and relative error tolerance 

= 1 x The time to output the solution is set to be tout(l)=O tout(2)=l.d-12, 

tout (3)=l.d-11, . - - , tout (l3)=l.d-1, tout(l4)=l, and then simply output the solution 

every unit of time. From figure 3.20 and figure 3.21 we can see that when the change 
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Figure 3.20: Problem VI-C, Error in mass in time 

71 = 1, 7 2  = 1, 7 3  = 0, k = 1. 
at01 = 1 x rtol = 1 x lop5, npts = 201, M F  = d m .  

in time is small, the mass change is small, and the error in the mass is small. A good 

aspect of the result is the error is within the error tolerance, which means we can 

actually control the error at each time step. 

Small change in time is related to a small change in the mesh points, this implies 

that when solving finite time blow-up problems or fast decay problems, a small time 

step size is preferred in order to control the error; this in turn will conserve the mass 

better in the long term so that it won't affect the patterns determined by the mass. 
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Figure 3.21: Problem VI-C, Error in mass in time 

7 1  = 1, 7 2  = 1, 7 3  = 0 ,  k = 1. 
at01 = 1 x rtol= 1 x npts = 201, M F  = \/-. 

3.3.7 Moving Contact Lines in Thin Liquid Films 

The following thin film equation is used in [54], [3], [4] to illustrate the effectiveness 

of using a positivity preserving (EDS) scheme over a generic one: 

It was computationally shown in [3] that the solution of this problem develops singu- 

larity in finite time. The solution develops a finite-time "pinching" singularity with a 

simultaneous blowup in the higher derivative. Near the pinch point the solution has 

a leading order asymptotic form 
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where t, is the time of pinch-off, x, is the pinch point and the constant p is the 

curvature of the interface at the time of pinch. 

The blow-up in higher derivatives can be seen in higher order terms 

so that the local curvature ux, has the form 

The solution past the singularity time can be defined by introducing the regular- 

ization 1 

finding the solution of the regularized problem, and taking the regularization param- 

eter c to zero [14], [6], [7]. The resulting "weak solution" is guaranteed to be C1 for 

almost every time and to have a bounded second derivative for almost every time. 1 
Since f,(u,) x u:/c as U( -+ 0 we know that Vc > 0 the analytical solution of the 1 
regularized problem is positive. 

The numerical solutions of the regularized equation in [4] suggest that after the 1 
initial singularity, the solution develops a region where it is identically zero. The 1 
regularized solution stays positive and develops a lot of structure near the edge of the 1 
support of the weak solution. In [4] a fine grid (1024 points) was required in order to 

resolve the spatial structure and keep the numerical solution positive. 

Figures 3.22-3.23 show the solutions at  specified times which are typical for this 

problem. In particular, figure 3.22 shows the initial profile(t = 0)and the solution at 1 
the time of "pinch-off' singularity(t = 0.000729). This "pinching" singularity can be 

observed only in the third derivative, see figure 3.26. Ftom 3.23 we can see that the 1 
solution curve near x = 0 is concave up before the "pinch-off' time and is concave 

down after. Figure 3.23 also shows the solution at t = 0.001. By carefully comparing 1 
it with the solution of Andrea Bertozzi which is shown in figure 4 5  of [4], we conclude 

that the solutions are same. Notice that we are using a moving mesh and c = 2.d - 15 1 
while she is using a fixed mesh and 6 = 1.d - 14. 
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Figure 3.22: Problem VII, Solutions at specified times 

at01 = 1 x rtol = 1 x npts =251. 

Figure 3.23: Problem VII, Solutions at specified times, enlargement 

at01 = 1 x rtol = 1 x npts = 251. 



CHAPTER 3. MOVING COLLOCATION SCHEME FOR 4TH ORDER PDES 50 

Figure 3.24: Problem VII, First derivative of solutions at specified times 

at01 = 1 x lop6, rtol = 1 x lob6, npts = 251. 

Figure 3.25: Problem VII, Second derivative of solutions at specified times 

at01 = 1 x rtol = 1 x npts = 251. 
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Figure 3.26: Problem VII, Third derivative of solutions at specified times 

at01 = 1 x rtol = 1 x npts = 251. 

Figure 3.27: Problem VII, Third derivative of the solution at  t=0.001 

at01 = 1 x rtol = 1 x npts = 251. 
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Figure 3.28: Problem VII, Third derivative of the solution at  t=0.001, enlargement 

at01 = 1 x rtol = 1 x npts = 251. 

Figure 3.24 shows the first derivative of the solutions at specified typical times. As 

above, t = 0 represents the first derivative of the function which serves as the initial 

condition; t = 0.000729 represents the derivative of the solution at the "pinch-off' 

time t = 0.000729. After the "pinch-off' time, the solution develops a region where it 

is identically zero. The way that this region develops highly depends on the value of E 

as seen if we observe it closely. In figure 3.23 we observe that the solution is concave 

down for E = 2.d - 15. However, if E = 0, the solution should be concave up or be a 

straight line segment. For sufficiently small E, the curvature is small, and we observe 

a straight line segment in the solution and its first derivative - see the solution and 

its first derivative at t = 0.001 in figures 3.22-3.24. 

Figure 3.25 shows the second derivative of the solutions at specified typical times. 

This figure clearly shows where the "pinching" singularity happens and where the 

" zero-solution" region locates. 

Figures 3.26-3.28 show the third derivative of the solutions at specified times. In 

figure 3.26, we can see clearly the "pinching" singularity at t = 0.000729. By carefully 

comparing this figure with figure 1 of [4], we can see that once again our result confirm 
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the result of (41. 

In order to resolve the spatial structure developed in the third derivative at later 

times (see figure 3 .27), we constructed the following monitor function: 

i f  x < -0.4 o r  x > 0.4 

M F  = { ::: i f  - 0.4 < x < 0.4 and )uxxx( < 29 . (3.57) 

1 + IuxXx(, otherwise 

Since MMPDEs put more points where the values of the monitor function are larger, 

this monitor function forces the mesh points to concentrate in the neighborhood of 

the two singularities in the third derivative - see figure 3.28. 

To compute the solution, we use E = 2 x 10-15. However we suggest to use 

successively smaller values of E based on the following analysis. 

To remove the singularity of a degenerate thin film problem, we use 

to approximate f (u), which is u1I2 for this problem, where E is a sufficiently small 

positive number acting as a regularization parameter. On the one hand, for large 

value of u, since f,(u,) = f (u), this regularization parameter almost has no effect on 

the solution we obtain. On the other hand, since f,(u,) = U:/E as u, + 0, VE > 0 the 

analytical solution of the regularized problem is positive, hence we can remove the 

singularity. 

Suppose at a certain time, u, = and E = 10-14, then 

Thus for E < $ x 10-14, we can remove the singularity and still obtain a good approx- 

imat ion. 

Now suppose at a certain time, u, = If we still take E = 10-14, then 

while uii2 = We did remove the singularity; however, the speed at which the 

solution at this point approaches zero has been affected by a factor of lo7. Since 
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the speed at which each point approaches zero highly depends on the value of E ,  

it is suggested that we choose E according to the requirement of accuracy. For our 

computation, we aimed at the accuracy of thus we choose 6 = 2 x 10-15. 

As indicated in [3], no rigorous results exist to describe the local structure of the 

singularity for this thin film problem, and there are also a number of open problems 

concerning the weak solutions. Thus, it is a good sign that our results confirm the 

results of Andrea Bertozzi et al. since we are using different methods. 



Chapter 4 

Conclusions and Further Work 

4.1 Conclusions 

In this thesis, we study the theory and computation of a moving collocation method 

for solving evolutionary partial differential equations of fourth order. We start by 

briefly discussing five types of fourth order evolutionary partial differential equations 

we have been investigating. Difficulties and challenges arising in solving these type of 

problems are also addressed. These difficulties and challenges include computing the 

solutions near a singularity time, preserving the positivity of the solution especially 

for degenerate equations, and preserving the mass, especially for finite time blow-up 

problems with mass conservation. 

It is a challenging problem to compute solutions near the singularity time T. Even 

with implicit methods, one needs certain grid adaptation so as to have a more refined 

mesh near blow-up points. The preservation of nonnegativity or positivity is also a 

challenging problem to design a sign-preserving numerical schemes for fourth order 

equations. Even for strictly positive analytical solutions, if not carefully designed, a 

discretization scheme may still give negative solutions, causing unwanted numerical 

instabilities. In a mass conservation system, the behavior of the solution is very 

often determined by the mass within this system. Preserving the mass is especially 

important for a finite-time blow-up system with mass conservation since any small 

error in the mass may lead to a considerably large error in the solution and in turn 
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affect the patterns we observe. 

In view of the breadth and nature of the problems considered, a moving collo- 

cation method for solving fourth order evolutionary partial differential equations is 

introduced in chapter 3. This method is basically an extension of the moving col- 

location method for solving second order evolutionary partial differential equations. 

MC4, a subroutine written in FORTRAN which implements the moving collocation 

method has been developed; the code is based on MOVCOL by Huang and Russell in 

1996 [31]. 

Some practical aspects of the code, including the MMPDE approach, temporal 

and spatial smoothing and construction of the monitor function are discussed in sec- 

tion 3.1, A selection of monitor functions are also included in MC4, which is a new 

feature of MC4 that enables us to solve the fourth order partial differential equations 

efficiently. 

Numerical experiments have been done successfully for finite time blow-up prob- 

lems, the interface fluctuation equation, the Cahn-Hilliard equation and some other 

problems. As we can see in these experiments, the moving collocation method intro- 

duced in this thesis handles singularities effectively. For the thin film model within 

which the moving contact lines are present, the positivity of the solution is preserved 

without special treatment, while in many articles great efforts have been taken to 

design a code to preserve the positivity of the solution to this equation. Mass conser- 

vation is also checked and its implication in solving equations with finite time blow-up 

or fast decay is discussed. 

4.2 Further Work 

While we have successfully solved several problems with MC4, a lot of work still needs 

to be done in order to enable us to solve a large number of problems effectively. 

First, there are some other problems with which we still have difficulty to formulate 

and start the integration efficiently (sometimes it takes hundreds of hours to integrate 

over a small time interval). There are also problems that the current version of 

MC4 can't handle. For instance, we only consider the equations with two boundary 
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conditions from the left end of the interval and two from the right. Modifications 

need to be done so that the code can handle equations with other types of boundary 

conditions. Further work is also needed if equations involving utt are to be solved. 

Second, further theoretical analysis of the moving collocation method for fourth 

order partial differential equations is still in progress. How to choose the monitor 

functions, the MMPDEs and temporal and spatial smoothing parameters are still key 

issues, as they are for the moving collocation method for second order partial differen- 

tial equations. In section 3.1, we have addressed issues related to the construction of 

the monitor functions, spatial and temporal smoothing and choosing the MMPDEs. 

However, most of these discussions are based on an empirical approach. A number of 

issues related to the formulation and solution of the MMPDE are still unclear. In [lo], 

the effect of different choices of MMPDEs and monitor functions as well as the time 

smoothing parameter were studied for the second order semilinear parabolic PDE 

The authors claimed that those methods might be able to be generalized to other 

PDEs with blow-up. It is shown in [8] that in contrast to the solutions of the classical 

second order parabolic equations ut = u,, + uP,p > I arising from the combustion 

theory, the blow-up in their fourth order counterparts is asymptotically self-similar. 

This property tends to make theoretical analysis for fourth order PDEs easier. It 

is very possible that we can do some theoretical analysis for fourth order problems. 

Even if just for a specific problem, it will provide us some guidance on how to solve 

a problem efficiently. 

Finally, and most important of all, it is urgent that we do the convergence and 

error analysis. In our moving collocation method, the convergence rate and errors 

are interwoven with the performance of the ODE solver, which causes great difficulty 

to analyze them; however, even theoretical analysis of the local truncation error in 

formulating the resulting ODES will be very helpful in understanding the numerical 

results we obtained by using MC4. 
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