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Abstract 

Over the last twenty years, moving mesh methods have become a very useful tool for 

solving many partial differential equations (PDEs) numerically, in particular, PDEs 

having large solution variations such as boundary layers, shock waves, blow-up, and 

moving wave fronts. Various types of moving mesh methods have been developed to 

solve such problems. These methods generally use a non-uniform mesh with a fixed 

number of mesh points as time evolves. The points are concentrated in regions with 

steep solutions. In their recent paper, Cao, Huang and Russell introduce a moving 

mesh niethod based on specifying the Jacobian of the coordinate transformation, the 

geometric conservation law (GCL) and a curl condition. In this thesis, we study the 

relationship between the resulting GCL method and the hIonge-Kantorovich mass 

transfer problem: a civil engineering problem first formulated by hIonge in 1781. The 

transfer problem is concerned with finding the optimal path, in the sense of moving 

parcels of materials from one site to  another one with minimal transportation cost. We 

also investigate the link between moving mesh theory and fluid dynamics, meteorology, 

computational anatomy and image registration by establishing a relationship between 

the coordinate transformations used in their formulations. 
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Chapter 1 

Mat hemat ical Background 

Transformation techniques have been used in many different areas of mathematics. 

For example, transformation techniques have been used to  describe the Lagrangian 

method for solving computational fluid dynamics problems. the Monge-Iiantorovich 

mass transfer problem and moving mesh methods for mesh adapt,ion. 

In this chapt,er we review some basic definit,ions and t,heorems from calculus and 

vector analysis that we encounter in some parts of the thesis. 

1.1 Vector Fields 

Points in a p l a ~ c  call be identified by using a two-dimensional Cartesian co-ordinate 

system. A plan(. togetlier with the Cartesian co-ordinate system is called the xy-plane 

and is dmotctl 1 )>. R'. 

R" {(x, y )  I x E R. y E R) , 

where R is t11c~ sclt o f  a11 real numbers. The set 

describes all t l1c1 1)oiiit s ill three-dimensional space. Similarly. points in n-dimensional 

space are defiiied t ~ s  

Rn = {(xlrZ2 . . . . .  x,,) I 2,  E R ) .  (1.1) 
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Figure 1.1: Repre~entat~ion of a vector in a plane 

Definition 1.1. A vector is a quantity characterized by both magnitude and direction. 

A vector in JR7' is an ordered n-tuplc v = (vl.  u 2 ,  . . . , v,) of real numbers. In particular, 

a vector in R 2  is an ordered pair v = ( c l .  u2) ,  and a vect,or in R3 is an ordered triple 

v = (vl,  v2,2l3). The real nunibers are called the components or the coordinates of v .  

The length of a vector in R2 is defiiied as (see figure 1.1) 

Definition 1.2. The dot piot l~~c t of t ~ v o  vectors v = ( t i 1 .  212..  . . . u,) and 

w = ( w  . , wn) E R7'. I I  2 2 1, the real number v . w defined by 
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Figure 1.2: Geometric representation of vector product. 

An equivalent definit,ion of the dot product of two vectors in R2 or R3 is 

where 8 is the angle between v and w. This definition implies 

v . w = 0 if and only if v and w are orthogonal. 

Defini t ion 1.3. The vector product of two vectors is an operation that assigns a 

vector to two given vectors. Unlike the dot product, it is defined only for vectors in 

R3.  The vector product, of two vectors v = ul i  + ,u2j + u3k and w = w l i  + ,w2 j  + w3k 

is the vector v x w defined as 

i j k  

'U1 v2 213 

'W1 w2 w3 

The direction of the vector v x w is determined by the right-hand rule (see fig- 

ure 1.2) .  
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In R2 and R3 an equivalent definition of the vector product of two vectors v and w is 

where e is a unit vect,or normal to  both v and w. (1.5) shows that non-zero vectors 

v and w are parallel if and only if v x w = 0. The tangential velocit,y v of a body 

rotating with constant angular speed w about a certain axis in space is defined as 

where w is t.he angular velocity with magnit,ude w and r is the position vector of the 

rot,ating body. 

1.2 Calculus of Functions of Several Variables 

In this sect,ion we int,roduce some definitions and theorems on funct.ions of several 

variables. 

Definition 1.4. A function whose domain is a subset of IRm and whose range is 

contained in R" is called a real-valued function of m variables if n = 1, and a vector- 

valued function of m variables if n > 1. Real-valued functions are also called scalar- 

valued or just scalar functions. 

Definition 1.5. .A voctor field on R IRm is a vector-valued function F : R - Rn' 

defined oil a s ~ ~ l w r  f! of Rn'. 

Alt,llougl~ t l ~ c '  ( l o l l l i \ i l ~  and the range of a vect,or field belong to  t.he same set Rm,  

we often visualizcl t lic~ii ill a different way: we can think of the elements of the domain 

as points, vlicrcas wc can view the elements of the range as vectors. For example, a 

vect,or field on R:' is a funct,ion that assigns a vect,or. F(x, y, z) t o  every point (x, y, z) 

in t,he t,llree-dinlensioiial space R3. This int.erpret,ation helps us graph a \rect,or field : 
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it.s value F ( x ,  y, z) at ( x ,  y, Z )  is represented as a vector F ( x ,  y, Z)  whose initial point. 

is ( x ,  y, z ) .  Similarly, a vector field on R2 assigns the vector F ( x ,  y )  E R2 to each 

point ( x ,  y )  in its domain. 

There are some situations when it is more convenient to  visualize a vect.or-valued 

function F  : R & Rm + Rm as a mapping of points. This is a useful way of thinking 

about F ,  for example, in the change of variables technique used for solving part,ial 

differential equations. 

Definition 1.6. Consider a function x  : [a, b] + R3 defined on an interval [a,b] of real 

numbers. The value x  at t  E [a, b] can be interpreted as a point x ( t )  = ( x ( t ) ,  y ( t ) ,  z ( t ) )  

in space; as t changes from a to  b, the values x ( t )  defines a curve in R3. Similarly a 

function x  : [a, b] + R2 describes a curve in the xy-plane. 

Definition 1.7. Let F ( x )  be a vector-valued function F  : fl c Rn' --, Rn.  We denote 

the n x m mat,rix of part.ia1 derivatives of the components F  evaluated at x  as 

provided that all partial derivatives exist a t  x .  If F  : R + R then D F ( x )  is 1 x 1 

matrix and D F ( x )  is the usual derivative F' (x ) .  Assume t,hat F ( x )  : R c Rm + R 

is a real-valued function of m variables . Then D F ( x ) ~  is the m x 1 matrix 

D F ( x ) ~  is called the gradient of F at  x  and is denoted by V F ( x ) .  

Definition 1.8. A vector-valued funct,ion F  : R c Rm + Rn defined on an open set, 

R c Rm is differentiable at a point x,-, E R if 
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1. all partial derivatives of the components Fl ,  F 2 , .  . . , Fn of F exist at. xo, and 

2. the matrix of partial derivatives D F ( x o )  of F at xo satisfies 

where )I . I (  in the numerator denotes the length in Rn,  and 1 1  . ) I  in the denomi- 

nator is the length in Rm. 

If a vector-valued function F satisfies the conditions (1) and (2) of definition [1.8]. 

the matrix defined in (1.6)  is called the derivative of F at 2 0 .  

Theorem 1.1. Let F : R c Rm --+ Rn be a vector-valued function with components 

Fl ,  F2 . . . Fn : R c Rm --+ R. If all partial derivatives 

are continuous at  xo, then F is differentiable a t  xo 

Definition 1.9. A function whose partial derivatives exist and are continuous is said 

to be in the class of C1 or smoot,h functions. 

In the following we give some brief introduction to  Monge-Ampere equations. 

Definition 1.10. A Monge-Ampere equat,ion is a second order partial differential 

equation of the form (see [46] )  

where H, h', L, M ,  and N are functions of x, y, $, $, and 4,. 
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Simplified Monge-Ampere equations arise in the form (see [47] and [48]) 

and 

The classical Monge-Ampere equation (1.10) has been the center of considerable 

interest in recent years because of its important role in various areas of applied math- 

ematics. Also, Monge-Ampere type equations have applications in the areas of differ- 

ential geometry, the calculus of variations, and several optimization problems, such 

as the Monge-Kantorovich mass transfer problem [I].  

For future reference, we state the following Helmholtz decomposition theorem. 

Theorem 1.2. Let R be a smooth bounded connected open set in Rn. Then any 

vector field v with continuous first derivatives in R can be written uniquely as 

where q5 is a smooth potential function, defined on R up to  an additive constant, and 

u is a smooth divergence free vector field (i.e,V . u = 0) ,  parallel t o  the boundary of 

R .  Note that V4  is irrotational since V x V4 = 0. 

The Helmholtz dec~mposit~ion theorem [44] is the simplest application of the Hodge 

decomposition theorem (see [42]). Brenier [3] shows that the Helmholtz decomposition 

is a linearization of the polar factorization of vector-valued functions. 



Chapter 2 

General Theory 

In this chapter we introduce the ideas behind fluid dynamics, moving mesh methods, 

the mass transfer problem, semi-geostrophic equations and computational anatomy. 

Fluid Dynamics 

Fluid dynamics describes the motion of liquids and gases in response to applied forces. 

Consider a fluid in an arbitrary volume f l ( t ) ,  moving with velocity v ( x ,  t ) .  Then 

the fluid motion can be described by following the fluid particle path lines x ( t )  con- 

trolled by the equation 
d x  
- = v(x ( t ) ,  t ) ,  x (0)  = x,,. 
dt 

The above description of fluid motion is called the Lagrangian formulation. 

The study of fluid motion provides us with the capability of understanding the 

transport of mass, momentum and energy. The equations of fluid dynamics are best 

described via conservation laws for mass. momentum, and energy. These conservation 

laws are given in terms of challenging nonlinear PDEs. For future reference, in this 

section we discuss the conservation laws for mass and momentum. In deriving the 

conservation laws, one frequently faces the problem of finding the time derivative of 

integrals such as 
d 

(2.2) 
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where the F(x, t )  can be a scalar or vector-valued function, R(t)  is either a fixed or a 

material volume (i.e., consists of the same fluid part,icles and whose bounding surface 

moves with the fluid). In one-dimensional space, we have Leibniz's rule 

t o  compute the integral (2.2). Generalizing Leibinz's rule, in two and three dimensions 

we write 

where v is the velocity of the boundary, which is equal to  the fluid velocity when R(t)  

is a material volume and n is a unit vector normal to  the surface of R(t) .  (2.4) is 

called the Reynolds transport theorem. Using the divergence theorem the transport 

equation (2.4) can be written equivalently as 

The conservation laws can be derived by using (2.5). Since R is an arbitrary test 

volume, then from the Reynolds transport theorem for F = p (t,he fluid density) 

follows the conservation law for mass 

a~ 
- a t  + o. (/I.) = 0, 

which is sometimes called the continuity equation. If the fluid is incompressible, then 

the continuity equation reduces to  

To derive the equation for conservation of momentum, Newton's second law of me- 

chanics can be written as 
d m  
-- 
dt - f ,  

where f is the total force acting on the fluid volurne and m is the tot,al momentum 

= L(,) p v  dx. 
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The total force f can be written as (see [45]) 

where fl is internal pressure, f2 is t,he viscosit,~ dissipation in the fluid, and f3  represent,^ 

the ext,ernal forces. 

The momentum equat,ion can be derived by using the Reynolds transport theorem 

(2.5). To this end, consider an incompressible fluid flow where p = constant,. For 

F = pv (momentum per unit mass), (2.5) gives 

The conservation of momentum is described by (2.11). For an incompressible fluid 

flow, it is shown that (see [45]) 

where P is the fluid pressure and p is the viscosity of t,he fluid. Thus, for f3 = pg 

(only the gravity), the momentum equation (2.11) gives 

where v = pip. These equations are called t,he Navier-Stokes equations. If viscous 

effects are negligible, which is generally found to be true far from boundaries of the 

flow field, (2.13) reduces to  the Euler equation 

Moving Mesh Methods 

Over the last t,wo decades many moving mesh methods have been developed to  solve 

he -dependen t  PDEs with steep solutions. The aim of these methods is to  find an 

efficient wag for an automatic selection of meshes depending upon the behavior of 

the solut,ion of t,he PDE. In the following t,wo subsections we give a description of the 
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moving mesh methods based on the idea of the equidistribution principle. which was 

first introduced for differential equations by de Boor 1141 and Dodson [15], and also 

give a summary of the GCL method described in [I]. 

Consider the initial-boundary value probleni (IBVP) 

The following two approaches are often used to  solve (2.15) nunierically. The first 

approach is t o  use a finite difference scheme to  discretize the PDE both in time and 

space on a fixed uniform spatial mesh. As a result of this discretization, we obtain an 

algebraic system of equations. The numerical solution of (2.15) will be obtained by 

solving the resulting algebraic system of equations. The second approach is by using 

the method of lines (MOL), in which the discretization is done in space or in time only. 

Discretizing in space produces a system of ordinary differential equations (ODES) 

with appr~pr ia t~e  boundary and initial conditions. The MOL approach separates the 

spatial and temporal variables which allows the possibility of using different meshes 

at different time levels. In the case of solving PDEs with steep solutions, a standard 

hlOL approach in the variables (x ,  t )  requires the ODE solver t o  take very small time 

step to  maintain accuracy. To resolve this problem, moving mesh methods are often 

used to  obtain the numerical solution of the system (2.15). The idea behind moving 

mesh methods is t o  introduce new variables ([, t) so that the given problem can be 

solved numerically easier than for the original variables (x ,  t ) .  The new variables are 

normally defined via a co-ordinate transformation, x = x([, t ) ,  x E [a, b], t 2 0. 

The variables (x,  t )  and ([, t) are called the physical and computational variables 

respectively. 

2.2.1 Equidistribution Method 

The most commoilly used moving mesh methods are based on the idea of equidistri- 

bution. Several moving mesh methods based on equidistribution principle have been 

developed in the literature (i.e.. see [lG]. [IS], [19], [13], [5], [S] and [I]) .  
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The idea of equidistribution is as follows: Suppose some measure of the error 

function is available. Then, a good selection for a mesh 

IT : { a  = xo(t)  < x l ( t )  < . . .  < xN-1(t) < xN(t )  = b), (2.16) 

would be one where the contribution of the error function is distributed equally over 

the subintervals for all values of t. In practice, however, the mesh IT is found by 

approximately equidistributing with respect to the monitor function M ( x ,  t )  > 0. 

The arc-length monitor function 

is commonly used to  determine the distribution of t,he mesh a t  each time level. For ex- 

ample, the arc-length monitor function is used for the mesh selection to  solve Burgers' 

equation (see [9]) 

Figure 2.1 illustrates the mesh distribution and the solution of Burgers' equation (2.18) 

a t  time t = r/lO. From figure 2.1 we notice that the mesh points are concentrated in 

the regions where the variation of t,he solution is large. 

To obtain a mathematical expression for the EP we first assume, without loss of 

generality, that the computational co-ordinate lies in the unit interval [0,1], and a 

corresponding uniform mesh is given on the computational domain by 

Mathematically, finding moving meshes 7i for which the monitor function M is equally 

distributed for all values of t means 

This equidistribution equation can be rewritten as 
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Figure 2.1: The solution of Burgc~s '  qua t ion  and the distribution of the mesh points 
at t = ~ 1 1 0  using the arc-lei~gtl~ moilitor function. 
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From (2.19) and (2.21) follows the continuous form of EP 

For notational simplicity, the explicit dependence of A1 on u is not. specified. Differ- 

entiate (2.22) with respect t o  [ to  obtain 

or equivalently 
dx - - -  O(t) 
ar w x ( r , w l  

and then differentiate (2.23) with respect to < t o  get. 

The differential forms of the equidistribution principle (2.23) and (2.25) can be used 

t,o obtain the moving mesh {x,(<, t)):,. In [9] several other forms of nloving mesh 

partial differential equations (MMPDEs) have been formulated from (2.22). (2.23) 

and (2.25) by differentiation with respect t,o time. 

Differentiating the equidistribution equation (2.22) with respect t o  time along lines 

where <(t)  is constant. yields 

Differentiat,e (2.2G) with respect t o  x to get 

Note that we have used Leibniz's rule in conlputing the right hand side of (2.26) and 

(2.27). Combining (2.24) and (2.27) gives 
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Define a normalized monitor function as 

Rearranging (2.30) gives 

AT = pe 

Taking the time derivative of (2.31) yields 

Taking the derivative of M x with respect to  x gives 

a a a .  
- ( M x )  = - (pox)  = 0- ( p x )  = 0 div(px) 
a x  ax a x  

Substituting (2 .30) ,  (2.32) and (2.33) into (2.29) yields 

Note that (2.34) is just the conservation of mass equation found in fluid dynamics, 

where p is interpreted as density. Thus. mesh points can be treated as particles in 

a flow. Furtlieriiiore, this suggests that it is meanirigful to  construct a moving mesh 

strategjr based or1 conservation laws found in fluid dynamics. 

2.2.2 The GCL Method 

The AlhlPDE..; (2.231 and (2.25) directly control the location of mesh points. Another 

class of nm-ill; I I I (AI  i i~et l~ods is the veloczty based moving mesh methods. These 

methods c o ~ ~ r  1.01 t 1 ~ 5  ti!iic derivative of the mesh x([, t ) .  Ve1ocit.y based met,hods 

include t 1 1 ~  11lo\.i11; t i ~ ~ i t ~  clement, method described in [lo] and [ I l l )  the deformation 

metshod [li']. m(1 t l i c ,  GCL method [ I ] .  For a velocit,y based method, the MMPDEs can 

be formula.tcd for tlic 11lcs11 velocity. The nlesli points are then obt,ained by integrating 

the mesh \doc i ty  field. In this subsection, we summarize t,he GCL method derived 

bj. Cao: H u m g  and Russell [I]. 
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Figure 2.2: The mapping from R,  to R 

Consider a problem of sol\wqg a time-dependent PDE defined over a physical 

domain R c R n ,  n = 1, 2  or 3 In order to obtain a numerical solution of the PDE 

using moving mesh methods, an automatic selection of an adaptive mesh at each time 

step is required. To this end, dcfinc a one-to-one co-ordinate transformation from a 

computational domain R,  c R" to thc physical domain R (see figure 2.2) 

x : 0,. - R. x(<:t )  = x V <  E R,. (2.35) 

Let A,  be an arbitrary, fixed \rolumc ill R, enclosed by a smooth boundary aA,, and 

let A ( t )  = { x ( x  = x(<, t )  < E .-I,) l ~ e  the corresponding image of A, in R under the 

transformation x = x(<, t ) .  Tlicii tlic change in volume of A ( t )  equals the total flux 

through the surface a A ( t )  

( I  
- /' (1% = l.4(tl xt . n dS. (2.36) 
(I t  . : l ( ,  , 

where xt is t,he mesh velocit!.. E(1uatioii (2.36) is the integral form of the geometric 

conservation law (GCL) derivctl 1)y Thomas and Lombard [4] in the context of fluid 

dynamics. The left'-hand sidr of ('2.X) call be rewrit'ten as 
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where J is the Jacobian of the transformation, which gives the ratio of the volume 

element in R t o  volume element in R,, and & is t,he time derivative in the co-ordinat,e 

system (t, t ) ,  and has the form 

where V is spatial gradient operator and a/& is the time derivative when x is fixed. 

Using the divergence theorem, the right-hand side of (2 .36)  can be written as 

Since A, is an arbitrary test volume, (2.36)  gives t,he differential form of the GCL, 

Suppose we are given a densit.y function p ( x ,  t )  > 0 such t.hat 

Jn d l ,  t )  d x  = 1, 

where p ( x ,  t )  is proportional to the variation in the solution of the underlying problem. 

Based on the one-dimensional equidistribution equation (2 .24)  discussed in Subsection 

5 2.2.1, for mesh adaptation it is reasonable t o  choose the Jacobian 

where c ( t )  is a time-independent function which can be determined from the initial 

co-ordinate transformation. 

In particular, in one dimension (2.41)  reduces to  the equidistribution equation 

(2.24)  when taking c ( t )  =l .  This means t.hat (2.41)  can be viewed as a generalization 

of the one-dimensional equidistribution principle. 

Differentiate (2 .41)  with respect to time t to get 

and differentiating (2.41)  with respect to  x gives 
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Using (2 .38)  we obtain 
DJ aJ - - - - + x t . V J  
~t at 

Substituting (2 .42)  and (2.43)  into (2.44)  gives 

which is equivalent to  
DJ 

- - C D P  - 
D t  p2 D t  ' 

so that 
1 DJ -C D p  ~ D P  
-- J D t  = ( f )  (-) = 

p D t  ' 

Using (2 .47)  we can rewrite the differential form of the GCL (2 .40)  as 

or equivalently, 
a~ + 0 - ( p t )  = 0 .  (2.49)  

Note that (2 .49)  is mathematically equivalent t o  (2 .41)  since (2.41)  is satisfied by any 

nonsingular tr.aiisformation. and (2 .49)  is just the conservation of mass equation in 

fluid dynamics. Therefore, as seen in the one-dimensional space, for two- and three- 

dimensional spaces it is also meaningful t o  construct a moving mesh method based 

upon the coiiscri;~tiori laws found in the literature of fluid dynamics. 

Suppose tlic plivsical domain R does not move with time. Integrating (2 .49)  over 

R and usiiig tlio diiwgence theorem we obtain 

where n is it l i l i i t   tor. normal t,o a n .  If we assume that t,he boundary points are 

not allowcd tc) 11101x~ olit of the physical domain, 

so the b o ~ l l d i ~ l . ~  t c m  ill (2 .50)  vanishes. Thus, (2.50)  gives the compatibility condition 
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Using the Helmholtz's decomposition theorem 1.2: Cao, Huang and Russell [I] 

show that the mesh velocity field can be determined using the additional condition 

where w and u are, respectively, a weight function and a background velocity field 

to  be specified, and v is the mesh velocity field which was previously denoted by s t .  

Equivalently, (2 .53)  can be rewritten as 

where 4 is a smooth potential function. In terms of the notation v for the mesh 

velocity, the boundary condition (2 .51)  can be rewritten as 

Substituting (2 .54)  into (2 .49)  and (2 .55)  yields the elliptic system 

Solving the system (2 .56)  for 4, the mesh x = x ( J ,  t )  can then be determined from 

the initial mesh x ( J 1  0 )  by time integration of the velocity field 

In [ l ]  (2 .49)  and (2 .53)  are shown to be exactly the Euler Lagrange equations for the 

least square functional 

where the minimization is over all vector fields v ( x ,  t )  that satisfy t,he boundary 

condition (2 .55) .  Thus! the velocity field can be computed directly by minimizing the 

functional I ( v )  in (2 .58) ,  and the mesh can be found by solving 
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2.3 Mass Transfer Problem 

The mass transfer problem was first described by Monge in 1781. It was formulated 

as a problem of displacing parcel material from one site t o  another one with minimal 

transportation cost. This problem was later studied by Kantorovich in 1942 (see [ G I ) ,  

leading to the so-called Monge-Kantorovich problem (MKP) which has applications 

in many different fields. Benamou and Brenier [2] formulate MKP in a computational 

fluid mechanics framework. In this Section, we give a summary of the MKP framework 

described in [2]. The Monge-Kantorovich mass transfer problem is stated as follows: 

Given two density functions po(x) > 0, pT(x) > Ob'x E Rn, with total mass one, 

determine a mapping x : Rn --t Rn,  x = x([, t )  such that, 

for all bounded subsets 0 of Rn. 
If x((, t )  is a smooth and one to one mapping, then (2.61) gives 

Since 0 is arbitrarily chosen, (2.61) and (2.62) give 

a 4 0  - J = det (F)  - PO(<) 
PT (x (0) ' 

where J is the determinant of the Jacobian matrix which describes the rate of com- 

pression or spreading of the mass induced by the mapping x : ( --, x ( 0 .  

The selection of the mapping x(() that satisfies (2.63) is not unique. To show this 

non-uniqueness. for inst,ance, if we take 0, = 0 = B1(O, 0) (the unit circle with cent,er 

(0,O)): then 

x k  (r. Q) = ( r  cos (Q + 2k7rr2) , r sin (0 + 2k7rr2)) k = 1, 2, 3 . . . 
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satisfy (2.63) with po/pT = 1. Therefore, the mapping which sat,isfies (2.63) can be 

selected t,o be optimal in a suitable sense. One way is to  int,roduce the LP Kant~orovich 

(or Wasserstein) distance between po and PT defined as 

where p 2 1 is fixed, I . I denot,es the Euclidean norm in Rn and the infimum is t,aken 

among all maps x ( t )  t,ransport,ing po to  p ~ .  The original hlonge transfer problem 

corresponds t o  p = 1. The case p = 2 has been studied by Benamou and Brenier 121. 

Definition 2.1. The mapping x = x(c) is said t,o be an optimal mapping and solves 

t,he L P  Monge-Kantorovich problem (MKP) if t,he infimum in (2.64) is achieved by 

the map x = x( t ) .  

This definition concludes that the Monge-Kantorovich problenl consists of finding 

a mapping x = x(t)  which satisfies (2.63) and minimizes the transportation cost, 

where J x ( t )  - < 1 2 p o ( ( )  is the traveled squared dist,ance weighted by the amount of the 

t,ransferred mass. In the following, we state t,he basic theoret,ical result of the L'MI<P 

(see VI. PI 1. 

Theorem 2.1. There is a unique optimal transfer x = x(6,  t )  characterized as the 

unique mapping which transfers po to p~ and can be written as a gradient of a convex 

function Q 

x(t, t)  = VQ(<). (2.66) 

Substituting (2.66) into (2.63) shows that Q is a solution (in a suitable weak sense) 

of the Monge-Ampere equation 
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where H 6  is the Hessian matrix of 6. Therefore, the solution of the hlonge-I<antorovich 

mass transfer problem reduces to  solving the Monge-Ampere equation (2.67). 

To avoid solving equation (2.67) directly, Benamou and Brenier [2] introduce an 

alt,ernative numerical method for the L ~ M K P  based on transforming the mass trans- 

fer problem into a continuum mechanics framework. To establish this framework 

they artificially fix a time interval [O,T] and consider all possible smooth enough, 

t.ime-dependent, density and velocity fields p(x ,  t )  > 0 ,  v ( x ,  t )  E Rn t.hat. satisfy t,he 

continuity equation 
a p  - a t  + v . (PV) = 0, 

for 0 5 t 5 T ,  x E Rn , with init,ial and final conditions 

The new problem then is to  minimize t,he functional 

for all (p, v )  satisfying (2.68) and (2.69). 

The relationship between the Monge-Kantorovich problem and continuum fluid 

mechanics is established through the following proposition [2]. 

Proposition 2.1. The square of the L2 Kantorovich dist,ance is equal to  the infimum 

of the functional 

among all ( p ,  v )  satisfying (2.68) and (2.69). 

There exists moreover a unique opt,imal flow written as 

In terms of the pot.entia1 6 the flow is given as 
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The optimality conditions of this space-time minimization problem are shown to 

be (see [2]) 

v(? t )  = V 4 ( x I  t ) ,  (2.74) 

and the Hamilton- Jacobi equation 

where the potential 4 is the Lagrange mult,iplier of the constraints (2.68) and (2.69). 

2.4 Semi-geostrophic Equations 

The semi-geostrophic equations are the standard model for slowlv varying flows con- 

strained by rotation and stratification. They have been used to  describe front for- 

mation in meteorology. In this section we give a summary of the semi-geostrophic 

equations studied by Purser and Cullen 1381. 

For a constant Coriolis force f ,  the semi-geostrophic equations can be written as 

(see [34], [38], [36]) 

where (u,. 21,) is the geostrophic wind, Q is the potential temperature, dl is the geo- 

potential and g is the acceleration due to  gravity. 

The system (2.76) can be solved by defining the co-ordinate transformation (see 
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The transformation (2.77) describes the evolut,ion of a spatial mesh. Using (2.77). the 

semi-geostrophic equations ( 2 . 7 6 ~ ~ )  , (2.76b) and (2 .76~)  reduces t,o the Lagrangiari 

form 

It is shown that the Jacobian of the transformation (2.77) defined as 

satisfies 

Using (2.76e); the transformation (2.77) can be written as 

where 
$1 1 P(z) = - + - (x2 + I J ~ ) .  (2.82) 
f 2  2 

The transformation (2.77) is due to Hoskins [36]. Substituting (2.81) into (2.79) gives 

the Monge-Ampere equation 

q = det,(H, P), (2.83) 

where Hz P is the Hessian of P with respect to coordinates x. The Hessian of P is 

symmetric, and if it is nonsingular its inverse is also symmetric. This implies that z 

is the gradient of some function R ( X ) ,  i.e., 

where 
8 d a 

Oh = (-, -, -) . a x  au a z  
R is called the Legendre conjugate convex function of P, and they can be shown to 

be related by (see [37]) 

P + R = z . X .  (2.85) 
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From (2.77) and (2.84) we get, 

Taking p = l / q ,  i.e., p has a meaning of densit.y, then from (2.79) and (2.84) we obtain 

the Monge-Ampere equation 

p = det(Hx R).  (2.87) 

It can be shown that, 

where 

The velocit,y field (u,, v,) then can be computed as follows: 

1. Given the values of p at  t = 0: solve the hlonge-Ampere equation (2.87) for R 

2. Calculate the velocity field (u,, v,) from R using (2.86) 

3. From (2.88) compute a new density p using the values of the just calculated 

velocity (u,, v,), and return to 1. 

2.5 Computational Anatomy 

Miller et al. [24] show that, there are three aspects of Computational Anatomy (CA): 

1. Automated construction of anatomical manifolds, points, curves, surfaces and 

subvolumes. 

2. Comparison of these manifolds 

3. St,atist,ical codificat,ion of variabilit,y of anatomy via probability measures allow- 

ing for inference and hypothesis testing of disease states. 

Definition 2.2. AIatheniatical struct,ures are termed as anat,omies in CA. 
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In [24] it is shown that the study of the second aspect of CA is based on the theory 

of transformations. There are two types of transformations that have been st,udied in 

the literature of CA: 

1. Geometric or shape type studied through mappings of the co-ordinate systems 

of the anatomies. Variation in the image space is acc~mmodat~ed by int,roducing 

groups of transformations carrying individual elements from one site to  another. 

2. The second transformations type is of photometric values accommodating the 

appearance or creation of new structures. 

Dupuis et al. [27] and Trouve [26] (see also [24], [25]) est,ablished a variational forniu- 

lation of the basic transformation problem. We review their findings in this Section. 

The mappings of shape type are invertible, 1-1, onto continuous mappings with 

continuous inverses that are differentiable (i.e., diffeomorphisms). These transforma- 

tions form a group denoted by X. 

Let the background space R be a bounded domain m~ith a piecewise C1 boundary 

on R". Define the transformations x ( t )  E X : Q -+ R, t E [O. 11. 
The inverse transformations xP1(t)  = [(t) are uniquely defined according to  

The evolution equations of x ( t )  and its inverse [(t) can be written as (see [24]) 

where id is the identity map and D is the Jacobian matrix of the inverse transformation 

[(x.  t ) .  giving an n x n matrix for Rn valued function f ,  

Figure 2.3 shows the description of the evolution equations (2.91) and t'he variat,ion 

of the flows x(,).  
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Figure 2.3: The figure on tlw lcf't s1ron.s t,he Lagrangian description of t,he flow; The 
figure on t,he right shows thc \.xiatioir of the flow element x(.) by q( . ) .  
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Remark 2.1. Not,e that in the moving mesh context the notation J has been used 

for the det,erminant of the Jacobian matrix, i.e., in CA 

An essential aspect of CA is t,o define the met,ric distance between anat,omies 

through the mapping between them. In [27], [24] and [26] the distance bebeen  t,wo 

anat.omies is defined via the geodesic length of the flows that. connect them. 

Definition 2.3. The geodesic length is defined as the square root of the energy of 

the transformation of t,he path 

where ( 1  . l l L  is a suitable norm defined on R (e.g., a Sobolev space wit,h L a differ- 

ential operator). In practice, linear differential operators have been used to enforce 

smoothness on maps; it is generally constructed from t,he Laplacian and its powers. 

In Rn,  L is an n x n matrix of differential operators L = (La,) defined as 

The norm-square energy density is defined as 

= (Lv( . ,  t ) .  Lv(..  t ) )  < m, t E [0, 11. 

Theorem 2.2. The metric between transfornlations x(O), x (1)  is defined as the length 

of the shortest path x ( t ) ,  t E [0, 11 satisfj.ing (2.91b) with the boundary conditions 

x(0)  = xo. x(1)  = x l ,  i.e., 

1 1 

E , ( t ) d t  = inf 1 ~ l v ( t ) ~ ~ i d t ,  
x 
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The geodesics satisfv the Euler-Lagrange equat,ion (see [24] )  

a -ou E,(., t )  + ( D V ( . ,  t ) ) T ~ , ~ t , ( . ;  t )  + ( D  V ,  EJ . ,  t ) )v ( . ,  t )  at 
+ div v ( . ,  t )  V t ,  E,,( . ,  t )  = 0 ,  (2.96)  

where V,E,,(.: t )  = 2 L * L v ( t )  with the adjoint defined as ( L x ( l ) ,  x ( 2 ) )  = ( ~ ( 1 ) :  L * x ( 2 ) ) ,  

and div is the divergence operator. 

Remark 2.2. Note that, in one dimension equation (2 .96)  reduces to  the Burgers' 

equation. In fact for L = id, V,,E, = 2v and DU = ( 0 ~ ) ~  = divv = v,, hence, (2.96)  

reduces to 

vt + 3v,v  = 0 .  (2.97) 

Equation (2 .96)  was first derived by hlumford [35].  He used a variational argument 

t o  compute (2 .96)  via perturbing the geodesic by q( t ) .  t E [0,  11 and leaving the 

endpoints unchanged (see Figure 2.3) .  

Remark 2.3. Note that the distance (2 .95)  has similar form as t,he L2MKP distance 

(2 .71 )  defined in Sect,ion 2.3. 

Definition 2.4.  Image functions in CA are defined as functions from the background 

space 9 to R". I : !! - R" . For example, in h1RI 8-bit gray-scale images, 

I ( x )  E [O. 2551, x E 9 = (0.1)' ( 2 0 ) .  ( 0 ,  1 ) " 3 0 ) .  

Denote tlw sct of id1 anatomical image functions by 1, 

Z = { I '  : I / ( , )  = I (x ( . ) ) ,  I E Z x E X) . 
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For any two images In,  I1 E 1, there exists a transformat,ion x that regist.ers the 

given images I1 = Io(x) .  Given two a~lat~omical images In and 11, identify the first 

image with the identity transformation and the second image, call it t,arget, image, with 

a transformation (to be estimated) x l .  The deformable template model approach to  

image comparison involves estimation of the unknown diffeomorphism x l  registering 

the given images i.e., I1 = I. 0 X I .  

The goal in CA is essentially t o  construct the shortest length curve x ( t ) ,  t E [O: 11 

which connects two elements In. Il E 1 and minimizes the target norm squared 

This is called inexact matching which has been studied by Dupuis [27]. 

In the literature of medical imaging the regzstrutzon problem is defined as the 

problem of determining the corresponding points between two images or between an 

image and the anatomy. In other words, the regzstratzon problem is a problem of 

constructing a coordinate trailsforniations between the data sets. In [28] and [31] 

a method of registration based on the AIonge-Iiantorovich problem of optimal mass 

transport is derived. 
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Links with Mesh Adaptivity 

Techniques 

When using moving mesh methods to solve a time dependent PDE, it is generally 

required to  find an automatic way of selecting an adaptive mesh which suits the 

behavior of the physical solution. The adaptive mesh is determined by constructing a 

time dependent co-ordinate transformation between a computational donlain R, and 

a physical domain f2 This co-ordinate transformation is determined by solving a 

set of moving mesh PDEs. In this Chapter, we present a relationship between the 

co-ordinate transformation techniques that have been used in moving mesh methods 

for the purpose of generating adaptive mesh and the co-ordinate transformation used 

in the Monge-Kantorovich mass transfer problem for the purpose of obtaining an 

optimal transport mapping. We also present some links between the trailsformatiorid1 

techniques of moving mesh methods and those found in some applications that are 

related to  the hlonge-Kantorovich problem; for example. fluid dynamics, meteorology. 

computational anatomy, and image registration. 

3.1 Links with the Monge-Kantorovich Problem 

The main purpose of this section is t,o establish a link between the transformatioris 

t,hat. have been used for solving t.he hlonge-Katorovich mass transfer problem [2] and 
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the techniques of adaptivity for moving mesh methods. 

Consider the mapping x(<) = x defined in the MIiP formulation that transfers 

a densky po(<) > 0 defined on 0, to  a density p T ( x )  > 0 defined on R. To establish 

a link between this rnapping and those transformational techniques of moving mesh 

methods, 0, and R can be thought of as a physical and cornputational domains, re- 

spectively, with p~ being independent of time. Recall that from t,he MKP formulation 

(see section 5 2.3)  we have tthe condition 

Condition (3.1)  states that the two domains R, and fl have the same amount of 

mass. Thus, t,his condition is equivalent to the ~ompatibilit~y condition (2.52)  for the 

transformation defined in the GCL met,hod to  generate adaptive mesh. 

For the mapping defined for the MKP, it is shown that its Jacobian has the form 

(see section !j 2.3)  

and (3 .2 )  is shonm to be equivalent to  the Alonge-Ampere equation 

det ( H 6 ( < ) )  = POW 
PT (x(<)) ' 

We first consider the one-dimensional problem. If we take po = 1 and p~ = 

M ,  where 111 is a ~iionitor function. t,hen equation (3 .2 )  is just the equidistribution 

principle (2 .24)  
1 

Moreover, usill; (:3.2). (3 .3 )  and (3 .4) .  the optimal t,ransport problem reduces t,o 

solving 
1 

6[[ = -. 
11 1 (3 .5 )  

Finding a suitn1)lo l i~oi~itor function Af is very problem dependent; for example, when 

solving the prol)lciii (2 .15)  n-ith f (x, u,, u,,) = EU,,  - uu,, the selected monitor 

functlon is the arc.-length monitor function -11 = Jw. The optimal mapping 
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x(J)  can be obtained by solving (3.5) for XQ and then setting 

In two- or three-dimensions, a link between the mapping of the opt,imal trans- 

portat,ion mapping and t,he technique of adaptivit .~ can be established via the gen- 

eralized form of the equidistribut,ion principle (2.41) derived by Cao, Huang and 

Russell [l] (see Subsect,ion 5 2.2.2). This link can be shown by taking po(E) = c(E) 

and pT(x) = p(x, T), (3.2) reduces to the generalized form of the equidistribution 

principle (2.41) 

Thus, the optimal transport. mapping can be obtained by solving the Monge-Ampere 

equation 

det (HXQ(()) = c(E) 
P ( x  (6: TI)  ' 

The mesh velocity field in t,he GCL met.hod formulation [I] is comput,ed by using 

the Helmholtz's decomposition theorem [44] (see Subsection 5 2.2.2). However, in the 

following we present a derivation of the mesh velocity field in the Monge-Kantorovich 

mass transfer problem framework. To this end, fix a time interval [0, TI! and without 

loss of generality, set T = l .  To generat,e an adapt,ive mesh define a t,ransformatiori 

x : f2, + f2, x = x(E, t ) .  Suppose t,hat. the density function p(x, t )  > 0, t E [0, 11 is 

given. Let x ,  := v be the mesh velocit,y field, which satisfy the conservation of mass 

equation 
8~ 
- + v . (pv) = 0 
a t  

and the boundary condition 

v . n = O ,  

where n is the outward unit vector normal t,o the dL? 

The energy of the transformation can be defined as 

We can link the co-ordinate transformation defined for the GCL method to the optimal 

mapping defined for the I\IKP via the following theorem. 
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Theorem 3.1. The mesh velocity field x ,  = v in the GCL met,hod [ I ]  can be det,er- 

mined as a minimizer of the energy (3.1 I ) ,  subject to  the conditions (3 .9)  and (3.10) .  

and the obtained velocity field has the form 

where the potential function 4 is the Lagrange multiplier of the con~t~raint (3 .9 ) .  

Proof 3.1. The Lagrangian for this minimization problem is defined as 

L ( v ,  4 )  = /' / { i p  1.1~ + 4 ($ + V . ( p v ) )  } d x d ? .  (3.13)  
0 R 

The rninimum of the functional (3.13)  occurs when 

If = 0, then differentiating (3.13)  with respect to  4 yields 

1' ($ + V . ( p v )  d x d t  = 0) 1 
and since the spatial and time domains of integrations are chosen arbitrarily, (3.15)  

gives the con ti nu it,^ equation (3 .9 ) .  To show (3.12) ,  consider 

This gives, l2 " . ( P V )  d x  = 0. ( w v )  d x  - VO. (04 d x .  

and by using the divergence theorem we obtain 

where n is the outward unit vector normal to  an. Using (3.10) we get 
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Therefore, (3.16) reduces to 

and L(v, 4) becomes 

If $& = 0, then differentiating (3.19) with respect to  v  yields 

Taking into account that the spatial and time domains of integrations are chosen 

arbitrarily, (3.20) gives 

pv - pVd = 0, or equivalently v  = V+, (3.21) 

This shows that the velocity v  = V@ minimizes the energy of the transformation. 

Note that constraint (3.9) of the minimization problem in Theorem 3.1 is originally 

derived from the geometric conservation law (2.40) and the generalized form of the 

equidistribution principle (2.63) in the GCL method formulation [I] .  In other words 

the const.raint (3.9) has been derived as a result of the idea of adaptivity and the 

volume preserving law in the GCL method. This constraint has also been derived as 

a result of conservation of mass in the optimal mass transport problem. Theorem 3.1 

shows that the mesh velocity field (3.12) that minimizes the transportation energy 

(3.11) is a gradient of the pot,ential 4; therefore, it is a curl free vect,or field. i.e.. 

V x v  = 0 .  This means that the velocity field is free of rotlation and the corresponding 

transformation can be t'hought of the nearest transformation to  the identity. This 

result agrees with the result obtained by Cao, Huang and Russell [I]. In fact, the 

velocity (3.12) obtained in the MKP framework is a particular case of t,he velocity 

(2.54) derived in [I]  when u = 0 and w = 1. 
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Subst,ituting (3.12) into (3.9) and (3.10) yields 

and 

V @ . n = O  on 8 0 .  

Solving (3.22) and (3.23) for 4,  then t,he optimal mapping, or equivalent,ly the adaptive 

mesh for a given initial mesh x (< ,  0 )  = <, can be computed by integrating 

xt = 0 4 ( x ,  t ) .  

3.2 Links with Fluid Dynamics 

In this section we show some links between the transformation t.echniques of moving 

mesh methods and those found in fluid dynamics. 

In the literature of fluid dynamics, we have the Reynolds transport theorem, 

where F ( x ,  t )  represent,s a property of the fluid, n is a unit vector normal to  d R  and 

R ( t )  is the fluid volume. 

For F ( x ,  t )  = 1,  the Reynolds transport theorem reduces to  

This is precisely the geomet,ric conservation law that. has been used in the deri~at~ion of 

t.he GCL method (see Subsection 5 2.2.2). Also, for F ( x ,  t )  = p (t.he fluid densit,y), and 

using the divergence theorem the Reynolds transport theorem gives the conservation 

of nlass equa.tion 
8P 
- + ' 7 .  (pv) = 0. 
at 

(3.27) 

Rote that this is just t,he moving mesh equation derived earlier in the GCL method 

formula.tion (see Sect,ion 3 2.2 .2) .  
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Solving the incompressible fluid dynamics problems in Lagrangian co-ordinates 

reduces to solving the Lagrangian system (see [45]) 

where uf is the flow velocity field. From moving mesh theorv we know that most 

of the moving mesh methods are based on a Lagrangian type approach which is 

best introduced via a co-ordinate transformation. The fluid flow equation (3.28) can 

be considered as a moving mesh equation, where the fluid particles are treated as 

mesh points. In fact in [I]  it is shown that the GCL method can be considered as a 

generalization of the Lagrangian method when choosing the background velocity u 

to be the flow velocity uf .This can be shown by recalling the system (see Subsection 

3 2.2.2) 

84 
- = - W U .  n o n  8R: 

and considering the case p is constant for incompressible fluid flow. where from 

V . uf = 0 (conservation of mass equation (3.9)) we have 4 = constant. Hence, for 

ILI = 1 (3.29a) reduces t,o (3.28). 

3.3 Links with Semi-geostrophic Equations 

In [33] Budd and Piggot present a link between the analytical transforrnation found 

in solving the semi-geostrophic equations in meteorology and the adapt,ivity ideas. In 

this section we present their findings for the one-dimensional problem, but for the 

two- and three-dimensional problems we show this link in a different way than that 

given by Budd and Piggot. 

Recall that in Section 3 2.4 a co-ordinate trarisformation from a physical donlain 

(x,  y, 2 )  to a dual space (X.Y,Z). 
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is defined to solve the semi-geostrophic equations (2.76a, 2.76b, 2 . 7 6 ~ ) .  Since the dual 

space is where the computations are performed, then t,he transformation (3.30) can be 

thought. of as a transformation from a physical domain R to a comput,ational domain 

0,. 

Transformation (3.30) describes the evolution of the spat,ial mesh. Under t,his 

transformation t,he semi-geostrophic equations (2.76a, 2.7613, 2 . 7 6 ~ )  were shown t,o 

take the form [38], [34], [33] (see Sect>ion 3 2.4) 

In the previous section, it. is shown that. t,he GCL method can be considered as a 

generalization of the Lagrangian method. Thus, a numerical method based on (3.31) 

will perform in an adaptive way, and is a Lagrangian form of mesh adapt,ivit,y where 

the mesh moves at the speed of the wind velocity field. 

In Section 5 2.4, the Jacobian of the transformation (3.30) is shown to be writt,en 

Now we show a relationship between the transformation (3.30) and the transforma- 

tional techniques of mesh adaptivity. 

In one-dimensional space, we have the eq~idist~ribution principle 

If we take the monitor function A l  = q in (3.32), and set the computational variable 

X to be < then (3.32) reduces to  

ncr = P,,. 

This equation shows a relationship between the transformation defined for solving 

the semi-geostrophic equations and the monitor function introduced for t,he mesh 

adaption in moving mesh methods. 

In three-dimension, Budd and Piggott use the co-ordinate transformation tech- 

niques defined in [22] to  establish a link between the transformation defined in (3.30) 

and t,he idea of the mesh adaptivity. We now proceed by a different, route and show 
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this link via the co-ordinate transformation defined for the GCL met'hod [I]. To t'his 
end, recall from the GCL method in Section $2.2.2 that. we have t,he generalizat,ion of 

the equidistribution principle relation 

Comparing (3.32) and (3.34), if we t,ake c ( t )  = 1 and p = q: then (3.32) reduces t.o 

thus, t,he geostrophic equations can be solved if the density p is found. Therefore, we 

have shown some link between the co-ordinate t.ransformation found in the lit,erat,ure 

of semi-geostrophic equations in meteorology and t,he mesh adaptivity techniques used 

in moving mesh methods. 

3.4 Links with Computational Anatomy 

The comparison between two manifolds (e.g., points, curves, surfaces and subman- 

ifolds) in comp~t~at ional  anatomy is based on co-ordinate transformations betaween 

these manifolds. In this sect,ion, we show a relationship bet,ween t.he co-ordinate 

t'ransformations bet,ween t,hese manifolds and mesh adapt,ivity t,echniques for moving 

mesh methods. To this end, recall t.hat in cornputat,ional anatomy (see Sect.ion 5 2.5) 

we have the syst,em of equations 

a 
-x(<: t )  = v(x(< .  t ) ,  t ) ,  
a t  

(3.35a) 

d 
- t ( x :  t )  = -D<(x,  t ) v ( x ,  t ) ,  
at 
x (0 )  = <(0) = id, 

describing the transformations as arising from an evolution in t,irne. In rrioving mesh 

t,erniinology, the solut,ions of the system (3.35) can be thought of as co-ordinate trans- 

format.ions between a comput,ational domain R, and a physical domain R,  where < 
arid x are tthe ~omput~at ional  and physical variables respectively. The evolution equa- 

t,ions are in Lagrangian form. Therefore, by the discussion given in Section 5 3.3, the  

system (3.35) can be considered as a part,icular case of the GCL method [I]. 
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In Section 5 2.5 it is shown that the problem of CA is to det,ermine the shortest 

length curve z ( t ) ,  t E [O, 11 which minimizes the target norm IIIo([(l)) - I~ 1 1 2 .  In 

other words. the goal in CA is to find an optimal mapping that transfers I. to  I1 and 

minimizes the distance between the two images. In moving mesh methods t,erminology, 

this is equivalent to  finding a co-ordinate transformation between a computational 

domain and a physical domain which is close to  the identity. In Section 5 2.5 it is also 

shown that the velocity field can be determined as the minimizer of 

1 1 

inf 1 E,(t)dt = inf 1 ~lv(t)ll:dt, 
x x 

where x satisfies the system (3.35). 

In the GCL method framework it is shown that the mesh velocity can be deter- 

mined by minimizing the functional (see Section f j  3.1) 

(3.37) 

Thus we conclude that,  for both the GCL method and computational anatomy for- 

mulations, the velocity field v is obtained by minimizing a transportation cost, and 

both have an inherent relation to  the Lagrangian method. 

Links with Image Registration 

Recall that t,he image registration problem in Section f j  2.5 is defined as a problem of 

constructing a co-ordinate taransformation between two data sets. 

To establish a link between transformations of dat,a sets and t,he idea of mesh 

adapt,ivity in moving mesh methods, we state the following theorem found in the 

literat,ure of image registaration (see [30]). 

Theorem 3.2. Suppose two images are taken at times to and t respectively. The first 

one has density po > 0. defined on Ro, and the second one has density p > 0, defined 

on R.  If the two images are assumed to differ only as a result of the motion of par- 

ticles in the three-dimensional scene. then there exists a one-to-one two-dimensional 
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mapping 9 : R2 -+ R2 that transforms points E E f10 into their corresponding points 

x = Q ( < )  E 0. The associated change is given by 

where J;' is the inverse of the Jacobian of the mapping Q .  

(3.38)  implies that if a small region in Ro is mapped t.o larger region in R,  then there 

must be a corresponding decrease in density, which is the idea of the equidistribution 

principle. Recall that the GCL method in Section 5 2.2.2 has the following form for 

mesh adaptation: 

If we consider the first image donlain as a computational domain and the target 

image domain R as a physical domain. t,hen by t,aking po(<)  = c ( 0 ,  (3.38) will be the 

same as the GCL method relat,ion (3.39) .  Hence we see that there is a link betaween t.he 

co-ordinate transformations used ill thc image regist,ration process and the adapt,ivity 

technique for the GCL met,liocl. 
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Numerical Experiments 

In Section 5 3.1 (see theorem 3.1), it is shown that the mesh velocity field can be 

derived by minimizing the energy of the transformation which is shown to be a curl 

free vector field v = VO. This curl free vector field is shown to be a particular case of 

the velocity field derived for the GCL method. To understand different features of the 

GCL method and to explain how the adaptive mesh computed 1)). the GCL xmtllod 

can be interpreted as a mapping that solves the Nonge-Iiantorovicli mass transfer 

problem, in this chapter we use the velocity form v = VQ to  generate an adaptive 

mesh in two-dimensional space for which the density function is given. Precisely 

speaking, we solve the system 

(4. l a )  

(4 . lb)  

( 4 . 1 ~ )  

t o  generat,e the adapt,ive mesh. The syst,em (4.1) is defined on the physical domain R. 
However, in order t,o perform t,he comput,at,ions, we transform (4.1) to  a computational 

domain R,. The syst,em (4.1) can be rewrit,t'en in terms of the computational variables 
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[ = ([, q )  as follows (see [39]): 

where 

V, is a spatial gradient operator defined on flc as 

J is defined as 

and 

where 

4.1 Finite Difference Scheme 

In this sect i o l ~ .  s l ~ o \ v  Iio\v t,he syst,em (4.2) can be discretized and t,ransformed int.0 

a linear s!.st O I I I  i ) f  cliff'twnc-c equat,ions. 

For spat i i ~ l  l t cwpol.al discret,ization of t.he system (4.2) : let 

1 
11 = -.[,, = ( ~ h . . ? h ) ,  At > 0. tT' = ? A t .  and UI([,,~ t n )  = W ;  

.\- 

Now, let 21; a n d  0:; denote approximations at time tn.  These values may be used 

for the spatial discretization of (4.2b) and ( 4 . 2 ~ )  by using a standard finite difference 
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method on a nine point stencil (see figure 4.1). As a result of this discretization we 

obtain a linear system of algebraic equations in q5;+'. Approximations dzi1 can be 

obtained by solving the resulting linear system. The new mesh at tnil may be obtained 

by discretizing (4.2a), first in the spatial domain by using the standard centered finite 

difference to  obtain a system of ODEs and then discretizing the resulting ODEs system 

in time using a suitable finite difference method. 

Figure 4.1: The nine steiicil used in discretization in the spatial domain 

To find a corresponding systcili of difference equations to  the system (4.2), replace 

the terms J and V, by the finite difference terms 

and 

For any function g ( x ,  t )  let 
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and define G~j+,12 similarly. Let 

Then the term V, . AV,$ can be approximated by 

where b(,  bF, b,, and b, are the forward and backward difference quotients in the 

variables J and q ,  and All,  A12 = A2', and AZ2 are approximations of all,a12 = 

a21 and an2 evaluated at  xn and tn .  Therefore, (4.2b) and ( 4 . 2 ~ )  can be replaced by 

the difference equations 

and ( 4 . 2 ~ ~ )  will be replaced by the ODES system 

If the density function p is given, then the system (4.3) is linear and can be rewritten 

in matrix form as 

A@ = b. (4.5) 

To compute the new mesh 2::' at tntl ,  we solve the system (4.4) by using a 

4th-order Runge-Kutta method. 

For a given initial mesh 2:' and initial potential 4;: the following procedure may 

be used to  calculate the new mesh x:;++': 

1. Given approximations xn and 4" at  time t = tn ,  compute 

K~ = atf (tn, x:,) 

2. From (4.5) compute (xz + iA-1) 
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3. Calculate 

4. From (4.5) compute 4::' (x; + ; h ' 2 ) ,  

5. Compute 

6 From (4.5) compute $:+ (xz + N;) , 

7. Compute 

tn+i ,  x~ + K3)  

8. Compute I:;' by setting 

9. Set n = n + 1 

4.2 Numerical examples 

In this s ec t i o~~ .  \vo gii-e some numerical examples of generating adaptive meshes in 

two-dimerisional spacc for some given densit,y functions. 

I11 all of orir n \ l ~ ~ ~ ( ~ r i c a l  examples we choose R, = fl = (0, 1) x (0,  I ) ,  fl, to  be a 

fixed 41 x -11 m ~ i f ' o ~ x ~  ~wtangular  mesh, and take a 41 x 41 uniform rectangular mesh 

as an initial I I I ( ~ . + ~ I .  

The c11oic.v of' t 1 1 ~  tlciisitj. function is motivated by the fact that p satisfies the 

generalized form of' t 2 1 ~  equidistribution principle (2.41), so that p can be interpreted 

as a density fui~ctioil. i.c., the comput,ed mesh by p is concentrated in regions where 

p is large. 
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In order to satisfy the compatibility condition (2.52), we normalized the given 

density function at  each step time. The function 

is defined to  show how accurate the computed mesh satisfies the equidistribut,ion 

relation (2.41). The computed mesh is accurate when the function E is close to  1. 

For all of the examples, the density functions chosen to  generate the mesh are 

similar t o  those used in [I]. 

Example 4.1. For the first example, an adaptive mesh will be generated by using 

the density function 

p(x)  = 1 + Aexp (-50 l(x - 0.5)' + (y - 0.5)' - 0.09)  , 

where A is a parameter adjusting the ratio of the largest cell size to  the smallest one. 

Using the GCL method the time-dependent density function can be defined as 

p(x ,  t )  = 1 + t A exp (-50 1 (x - 0 . 5 ) ~  + (y - 0 . 5 ) ~  - 0.091) 

If we let the time variable take values from t = 0 to  t = 1. then the density function p 

varies from po = 1 to  pl = 1 + Aexp (-50 l(x - 0.5)2 + (y  - 0.5)2 - 0.091). This can 

be thought of as an example of the Monge-Kantorovich problem for transferring the 

density po to  the density pl. The mapping that solves the MKP in this case corre- 

sponds to  the adaptive mesh at time t = 1. 

We use a time step At = 0.1. The plots for the computed mesh and the function 

E at time t = 1 with two parameter values A = 5,10, are shown in figure 4.2. Note 

that the computed mesh is concentrated in the region where p is large, i.e., in the 

region near the circle (s - 0 . 5 ) ~  + (y - 0.5)' = 0 . 3 ~ ,  which agrees with the results 

derived in [l]. The values of the function E are between 0.8087 and 1.2502 for A = 5, 

and between 0.6575 and 1.7933 for A = 10. This shows that the larger the parameter 

A, the larger the density p. 
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Example 4.2. For t,his example, the mesh is generated by using a density function 

defined as 

1 + 50 (0.1 + t )  exp (-50 (y - 0.5)2) , for -0 .1  < t < 0, 

1 + 5exp (-50 (y - 0.5 - 0.25 sin(2rrx) sin(2iit))') ; for t > 0. 

Note that the values of the density function p vary from an initial densitv po = 1 at 

t = -0.1 to  pl = 5exp (-50 (y - 0.5)2) at t = 1, which shows a transfer of density p 

from po to  pl. Again, the mapping that solves the MKP corresponds to  the adaptive 

mesh at t = 1. 

We use A t  = 0.0005. Figure 4.3 shows the plots of the computed mesh at four 

different times t = 0, 0.25, 0.75 and 1. Note that the density function is periodic. 

The computed mesh plots at t = 0 and t = 1 appear to  be the same. However, these 

two plots are not identically the same plots because of the discretization errors. As 

expected, the generated mesh is concentrated in regions where the density p is large. 

Example 4.3. For this example, an adaptive mesh will be generated for the densit,y 

function 
2 

p(x,  t )  = 1 + Aexp( - 5 0 ( ~  - 0.5 - 0.25 sin(2rrx)) ) .  

The time-dependent density function can be defined as 

For this density function, we can think of a transfer of density from po = 1 at  t = 0 

to  p l  = 1 + Aexp( - 5 0 ( ~  - 0.5 - 0.25 s i n ( 2 ~ x ) ) ~ )  at t = 1 We use At  = 0.05, and 

choose t,wo values for the parameter A = 5,lO. Figure 4.4 shows t,he plots of the 

computed mesh and the furlct,ion E at t = 1. Note that for this example, the given 

density function is not periodic in time but maintains a sine wave shape. Also, here 

t,he mesh is concentrated in regions where the density p is large, and the concent,ration 

increases with the increase of the parameter A. The values of the function E vary 

betaween 0.9416 and 1.0220 for A = 5 and between 0.8673 and 1.0310 for A = 10. 
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Example 4.4. In this example, an adaptrive mesh is generated by a densit,y funct.ion 

defined as 

1 + 100 (0.1 + t )  exp (-50 l (x  - 0.5)2 + (y - 0.5)2 - 0.091) , -0.1 5 t 5 0 ,  
P ( x ,  t )  = 

1 + 10exp (-50 l ( x  - 0.5 - t ) 2  + ( y  - 0.5)2 - 0.091), t 2 0. 

The time step used for this example is A t  = 0.01. The plots for the computed mesh for 

this density function are shown in figure 4.5. Note that the mesh is also concentrated 

around the circle ( x  - 0.5)2 + ( y  - 0 . 5 ) ~  = 0.32 at time t  = 0 and the circle shape 

moves to  the right, till it leaves the domain. 

Example 4.5. In example 4.3 above we notice that the computed mesh is conceri- 

trated around a circle moving to  the right while time changes. It would be int,eresting 

t o  see mesh adaption which shows two circles moving in two opposite directions. In 

this example we show this pict.ure by defining the following t,wo densities: 

1 + 50 (0.1 + t )  exp (-50 l ( x  - 0.65)2 + ( y  - 0.5)2 - 0.091). -0.1 5 t  5 0. 
Pl = { 

1 + 5exp (-50 [ ( x  - 0.65 - t ) 2  + ( y  - 0.5)2 - 0.091) , t  > 0 ,  

1 + 50 (0.1 + t )  exp (-50 ) ( x  - 0.25)' + ( y  - 0.5)' - 0.091) , -0.1 5 t  5 0. 
P2 = { 

1 + 5 exp (-50 I(x - 0.25 - t ) 2  + ( y  - 0.5)2 - 0.091) , t  2 0 ,  

The plots of the generated mesh and the funct.ion E at  different times are shown in 

figures 4.6, 4.7, 4.8 and 4.9, each of which shows that the computed mesh is concen- 

trated around t,wo circular regions. These two circles move as time evolves till they 

leave t.he domain while maintaining their circular shapes. 

4.3 Remarks 

In the above examples we have indicated that t,he computed adaptive mesh at tiiiie 

t  = 1 corresponds to the optimal mapping that solves the Monge-Iiantorovich mass 
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transfer problem, i.e., the mapping that transfers po to  pl wit,h minimum transporta- 

tion energy. However, in solving the Monge-Kantorovich mass transfer problem the 

density in the time between the initial and final times is not given. It can be com- 

puted together with the velocity field by solving a set of Euler Lagrange equations 

obtained from minimizing an energy functional subjected to some constraints (see 

Section 5 2.3). In fact, in moving mesh methods. when solving a physical problem the 

density function is computed from the physical solution. There is need to do a nu- 

merical study in greater detail to show how to use these transformational techniques 

for mesh adaption to solve the Monge-Kantorovich mass transfer problem. Recently, 

Budd and Williams 1171 show some interesting numerical results generating adaptive 

meshes using the Monge-Ampere equation. 

In example 4.1 and example 4.2, we use the procedure explained in the previous 

sections to compute the mesh, and the code we use in the computations of these two 

examples is written in Fortran. For example 4.3, example 4.4 and example 4.5, we 

follow the approach of Cao, Huang and Russell [I] in the computations of the adap- 

tive mesh, and we use the GCL code which was originally written for the numerical 

experiments in [I]. 
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The computed mesh for A=5, t= l  

The computed mesh for A=10, t=l 

The plot of the function E for A=5, t= l  

The plot of the function E for A=10, t=l 

Figure 4.2: Example 4.1: The mesh solution at t = 1, for A = 5 ,  10. 
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The computed mesh at t=O The computed mesh at k0.25 

The computed mesh at t=0.75 The computed mesh at t=l 

Figure 4.3: Example 4.2: The mesh solutions a t  t = 0, 0.25, 0.75, 1 
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The computed mesh for A=5, t= l  The plot of the function E for A=5, t= l  

The computed mesh for A=10, t= l  

Y 0 0 X 

The plot of the function E for A=10, t= l  

Figure 4.4: Example 4.3: The computed mesh and the function E a t  t = 1. 
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mesh solution at t=O mesh solution at t=0.25 

mesh solution at k0.5 mesh solution at t=0.75 

Figure 4.5: Example 4.4: The mesh solution at t = 0, 0.25, 0.5, 0.75. 
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mesh solution at t=-0.05 The plot of the function E at t=-0.05 

X 

mesh solution at t=O The plot of the function E at t =O 

X 

Figure 4.6: Example 4.*5: TllC plot of the mesh and E at t = -0.05, 0. 
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mesh solution at t=0.1 

mesh solution at t=0.2 

The plot of the function E at t=0.1 

The plot of the function E at t=0.2 

Figure 4.7: Example 4.5: The plot of t,he mesh and E at t = 0.1, 0.2. 
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mesh solution at t=0.25 The plot of the function E at k0.25 

mesh solution at t=0.5 The plot of the function E at t=0.5 

X 

Figuw 4.S: Esw~iiplc 4.5: The plot of the  mesh and E a t  t = 0.25, 0.5. 
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The plot of the function E at t=0.75 

mesh solution at t=l The plot of the function E at t=0.1 

Figure 4.9: Examplv 4.5:  T l i ~  plot of the rnesh and E a t  t = 0.75. 1 
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Concluding Remarks 

In t,his thesis we st,udied the relationship bet,ween the optimal mapping used in the 

Monge-Kantorovich mass t,ransfer problem and the idea of adaptivity used in mov- 

ing mesh methods. We extend this study to consider t,he link bet,ween the idea of 

adaptivit ,~ of moving mesh methods and the transformation techniques found in the 

literature of fluid dynamics, the semi-geostrophic equations in meteorology, comput,a- 

t,ional anatomy and image registration. M'e also showed that the mesh velocity field 

in the GCL method can be determined via a Monge-Kantorovich framework, and it 

is shown that the obtained velocity by this framework is a gradient of some potential 

function. This agrees with the results of the GCL method. It is shown that the so- 

lution of the Monge-Kantorovich mass t,ransfer problem, image registration problem, 

and the problem of finding an adapt,ive mesh in moving mesh t,heory all reduce to 

solving the Nonge-Ampere equation. However, in the case of two-dimensional space 

the Monge-Ampere equation derived in each of t,hese problems is a highly non-linear 

second-order equation, and its numerical solution is very challenging. Some alterna- 

tives are required to avoid a direct use of a Monge-Ampere equation to  solve those 

problems. 

Furt,her investigation is needed in order to be able to employ t,he transforma- 

tion techniques that have been used in moving mesh methods for obtaining adapt,ive 

meshes, for solving the optimal mass tran~portat~ion mapping problem, witah the goal 

of obtaining better results than the other methods t,hat have been used t,o solve MKP. 



CHAPTER 5. CONCLUDING REMARKS 60 

In the future we would like to  develop the above mentioned relationships in such 

a way that enables us to use co-ordinat,e transformation t,echniques for moving mesh 

methods to  solve some interesting problems in some fields of applied mathematics 

including fluid dynamics problems, the optimal mass transportation problem and the 

image registration problem. 
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