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Abstract 

A graph H is a retract of a graph G if H is a subgraph of G and there exists an edge 

preserving function of the vertex set of G to the vertex set of H that fixes each vertex 

of H. There are no known necessary and sufficient conditions for H to be a retract of 

G. We can, however, choose a particular necessary condition, call it N, and study the 

graphsfor which that particular necessary condition is also sufficient. Such graphs 

are called absolute retracts with respect to N. 

A simple necessary condition is preserving distances; this generates the class of 

absolute retracts with respect to isometry, which has been well studied. 

Another necessary condition is the following: if there is no vertex in H that is 

within prescribed distances to a fixed set of vertices of H and H is a retract of G, 

then there is no such vertex in G either. Thus there is a hole in H that can't be filled 

by a vertex of G. This is the first necessary condition we explore. 

There are two other necessary conditions that we study. The former is concerns 

partial mappings of trees and the latter is based on rephrasing the retraction problem 

as a list homomorphism problem. 

These three necessary conditions generate the class of absolute retracts with re- 

spect to holes, the class of absolute retracts with respect to tree obstructions, and the 

class of absolute retracts with respect to arc consistency. 

We investigate chordal graphs with regard to all three classes of absolute retracts 

listed above. This leads to the introduction of three classes of graphs that generalize 

chordal graphs: stretched graphs, strongly stretched graphs, and wheeled graphs. 



Stretched graphs and strongly stretched graphs are used to characterize the variety 

generated by chordal graphs, and we prove that wheeled graphs are absolute retracts 

with respect to arc consistency. 

We also compare these three classes of absolute retracts with the graphs that 

admit near unanimity functions and the dismantlable graphs. 
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Chapter 1 

Introduction 

A graph H is a retract of a graph G if H is a subgraph of G and there exists an edge 

preserving function from G to H that fixes each vertex of H. Such a map is called a 

retraction. Retractions on graphs were first studied by Hell in [40] and by Nowakowski 

and Rival in [56, 571, who were inspired by related work on posets. A question of 

great interest is "When do retractions exist?" There has been research concerning 

this question in regards to bipartite graphs, i.e., graphs without loops at  any vertex 

and without odd cycles, see [3, 4, 6, 41, 42, 561. This question has also been posed for 

reflexive graphs, i.e., graphs with loops at each vertex, see [4, 5, 9, 43, 45, 56, 57, 611. 

It is retractions on reflexive graphs, and when they exist, that will be the focus of this 

thesis. 

There are no known necessary and sufficient conditions for a graph H to be a 

retract of a graph G. We can however make classes out of graphs H for which the 

necessary conditions are sufficient. A graph H will be called an absolute retract with 

respect to necessary condition N if H is a retract of supergraph G whenever necessary 

condition N is satisfied. We will be studying absolute retracts with respect to different 

necessary conditions N. 

Absolute retracts were first studied in topology [ll], see [12, 471. Let X and Y be 

(Hausdorff) spaces , where X Y. Borsuk [ll] points out that for X to be a retract 

of Y, X must be closed in Y; his definition of an absolute retract is based on this 
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necessary condition. Absolute retracts have also be studied for posets. Nevermann 

and Rival [55] defined their version of an absolute retract based on the necessary 

condition of gap separation, a concept related to preserving holes, see Chapter 2. 

To illustrate the approach of this thesis, we will present a simple necessary con- 

dition N for a retraction from a graph G to a subgraph H to exist, showing why it 

is necessary. Then we will define the class of absolute retracts with respect to N and 

provide a simple characterization of these absolute retracts. 

A graph H is an induced subgraph of a graph G if H is a subgraph of G and if two 

vertices of H are end points of an edge e in G, then this edge e must also be an edge 

of H .  We claim that if H is a retract of G, then H must be an induced subgraph of 

G. 

Let H and G be (reflexive) graphs, and suppose that H is a retract of G. By the 

definition of retracts, H is a subgraph of G. Let 0 be a retraction from G to H; thus 0 

is an edge preserving map from G to H such that o ( ~ )  = g whenever g is also a vertex 

of H .  Let x and y be vertices of H. Hence x and y are also vertices of G. If xy is 

an edge in G, then Q(x)O(y) must be an edge in H as 8 is edge preserving. Moreover, 

as Q fixes each vertex of H, Q(x) = x and Q(y) = y, and so xy must be an edge of H. 

Therefore, if H is a retract of G, H must be an induced subgraph of G. The graph 

in Figure 1.1 demonstrates that a graph H being an induced subgraph of a graph G 

is not a sufficient condition for H to be a retract of G. 

Figure 1.1: The graph on the round vertices is an induced subgraph of the graph on 
all the vertices, but the graph on the round vertices is not a retract of the graph on 
all the vertices. 
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Now we can construct a class of graphs for which being an induced subgraph is 

a sufficient condition for the existence of a retraction. We will restrict ourselves to 

connected graphs; the arguments that we make concerning connected graphs can be 

applied to each component of a disconnected graph. Let Z be the necessary condition 

that a connected graph H is an induced subgraph of a connected graph G. Then we 

can define the class of absolute retracts with respect to Z, denoted by ARz, to  be the 

set of all connected graphs H such that H is a retract of a connected supergraph G 

whenever H  is an induced subgraph of G. 

While the definition of ARz is simple, it is hard to recognize graphs that are in 

AXz based on the definition. Thus our next step is to  try to  classify the graphs in 

AXz in terms of properties we can recognize. 

A universal vertex in a graph H is a vertex x  that is adjacent to all vertices of H. 

Theorem 1.1. Let H be a connected graph. Then H is in AXz if and only if H has 

a universal vertex. 

Proof. Let H be a graph in AXz. Let G be a connected supergraph of H 

such that the vertex set of G is the vertex set of H plus one other vertex w ,  where 

w  is adjacent to all vertices of H .  Clearly H is a induced subgraph of G as we have 

not added any edges between the vertices of H in creating G. Thus there exists a 

retraction 0  from G to  H because H E ARz. Consider the vertex w  in G. By the 

way we defined G, w x  is an edge of G for all vertices x  of G; the vertex w  is adjacent 

to  all vertices of G including itself. Since Q is an edge preserving map, Q ( w ) Q ( x )  is an 

edge of H for all vertices x  of G. If x is also in H, then O(x) = x .  Thus O(w)x is an 

edge of H for all vertices x  in H and so Q ( w )  is a universal vertex in H. 

Let H be a connected graph that has a universal vertex, call it y. Let G be a 

connected graph such that H is an induced subgraph of G. Then define the map 0  

from G to  H as follows: 
g i f g  E V ( H )  

Qb) = 
y otherwise. 

We claim that 0  is a retraction. Clearly 0  fixes every vertex of H. Now we need to  

show that Q is edge preserving. Let gg' be an edge of G. If both g and g' are vertices 
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of H ,  then B ( g )  = g  and B(gl )  = g'. As H is an induced subgraph of G,  gg' is also an 

edge of H .  Hence B(g)B(g l )  is an edge of H. Now suppose that g  is a vertex of H and 

the g' is not. Then O(g)  = g  and B(gl )  = y. Since y is a universal vertex of H ,  gy is 

an edge of H and so B(g)B(g l )  is an edge of H. Lastly, assume that neither g  nor g' is 

a vertex of H. Then O(g)  = 0 ( g 1 )  = y.  Because H is a reflexive graph, 0 ( g ) O ( g 1 )  is an 

edge of H. Therefore B  is an edge preserving map. 

0 

At this point, we have presented a necessary condition Z for the existence of a 

retraction, defined ARz and studied the graphs in ARz. We will repeat this process 

for three stronger necessary conditions and their related absolute retracts. 

In the remainder of this chapter, we present the needed graph theory definitions 

and some background material. In particular, we will present a well studied class of 

absolute retracts, we will justify our interest in chordal graphs and we will present 

some basic results about dismantlable graphs, graphs that admit near unanimity 

functions and chordal graphs. 

In Chapter 2 we present the idea of a hole; this a constraint derived from unsat- 

isfied distance requirements. We then show that 'preserving' all holes is a necessary 

condition for the existence of a retraction. After proving some basic results about 

holes and absolute retracts with respect to holes, we prove that holes imply the exis- 

tence of certain isometric subgraphs in connected chordal graphs. Then we introduce 

the class of stretched graphs, whose definition is based on holes. We prove that the 

variety generated by connected chordal graphs is contained in the class of stretched 

graphs and we use stretched graphs to classify graphs that are in the intersection of 

the variety generated by connected chordal graphs, and absolute retracts with respect 

to holes. Lastly, we compare absolute retracts with respect to holes to graphs that 

admit near unanimity functions and dismantlable graphs. 

In Chapter 3 we introduce tree obstructions; this is a constraint derived from 

trees with labeled leaves and partial functions that don't extend to homomorphisms. 

We then show the 'preserving' all tree obstructions is a necessary condition for the 

existence of a retraction. Next we prove some basic results about tree obstructions and 
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absolute retracts with respect to tree obstructions. Then we relate tree obstructions to 

tree duality, an idea originating from homomorphisms on digraphs. As with holes, we 

study tree obstructions on connected chordal graphs. We then introduce the class of 

strongly stretched graphs, whose definition is based tree obstructions. We prove that 

the variety generated by connected chordal graphs is contained in the class of strongly 

stretched graphs and use strongly stretched graphs to conjecture a classification of 

the variety generated by connected chordal graphs. At the end of the chapter, we 

relate absolute retracts with respect to tree obstructions to graphs that admit near 

unanimity functions. 

In Chapter 4, we rephrase the retraction problem as particular list homomorphism 

problern. Then we derive a necessary condition for the existence of a retraction based 

the idea of arc consistent lists. We present some basic facts about absolute retracts 

with respect to arc consistency and three classes of graphs that are equivalent to the 

class of absolute retracts with respect to arc consistency. Then we introduce a new 

class of graphs that generalizes connected chordal graphs and is contained in the class 

of absolute retracts with respect to arc consistency. Lastly, we prove that the class of 

absolute retracts with respect to arc consistency and the class of dismantlable graphs 

are incomparable. 

1.1 Definitions 

For any definitions not mentioned here, see Bondy and Murty [lo] or Golumbic [37].  

A graph H is an ordered pair (V(H) ,  E ( H ) ) ,  where V(H)  is a finite non-empty 

set of vertices and E ( H )  is a set of edges, where each edge is a subset of size 1 or 2 of 

V ( H ) .  Let H be a graph and let e be an edge in E ( H ) .  Then the vertex or vertices 

in e are called the endpoint(s) of e. If e = {x, y),  then e is an unordered pair and will 

sometimes be denoted by xy or yx. If e = {x), then we call the edge e a loop, and e 

will sometimes be denoted by xx to remain consistent with the non-loop notation and 

to avoid confusion with the vertex x. For a vertex x E V ( H ) ,  the loop xx is called 

the loop at x. Note that referring to an edge by its endpoint(s) causes no confusion 
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as E ( H )  is a set and so each edge is uniquely defined by its endpoint(s). A graph H 

is called irreflexive if H has no loops and H is called reflexive if xx is an edge of H 

for each vertex x of H ,  i.e., if there exists a loop at each vertex of H .  For the rest 

of this thesis, all graphs are to be assumed to be reflexive unless otherwise specified. 

We omit the loops when drawing reflexive graphs to avoid clutter. 

Let H be a graph. If xy E E ( H ) ,  then we say that the vertices x and y are 

adjacent and that x is a neighbour of y and vice versa. The set of neighbours of x will 

denoted by NH(x), or N(x)  if the graph is clear from the context. Note that since 

we are assuming H is reflexive, x E N(x) for all vertices x E V(H).  We call a vertex 

z of H a nontrivial neighbour of x if z E N(x)  \ {x). For the purposes of this thesis, 

the degree of the vertex x, deg,(x), is the number of nontrivial neighbours of x, i.e., 

I N b )  \ {XI 1.' 
Let G be a graph. We call a graph H a subgraph of G if V(H)  c_ V(G) and 

E ( H )  c E(G) ;  we denote this by H c G. Conversely, G is called a supergraph of H .  

Kote that G is a subgraph of itself. The graph H is a proper subgraph G if H is a 

subgraph of G and V(H)  c V(G) or E ( H )  C E ( G )  (or both); we then write H c G. 

For a set S V(G), the subgraph of H induced b y  S is the graph on vertex set S with 

edge set {xy I x, y E S and xy E E(G)) .  A subgraph H of G is an induced subgraph 

of G if H is the subgraph of G induced by V(H).  We may obtain other induced 

subgraphs of G by removing vertices of G. For S 2 V(G),  the graph G \ S is the 

subgraph of G induced by V(G) \ S .  Thus G \ S is the subgraph of G we obtain by 

removing from G the vertices of S and all edges of G that have a t  least one endpoint 

in S .  We may also remove edges of G to obtain a subgraph; for a set E' 2 E ( G ) ,  

G \ E' is the subgraph G' of G where V(G' ) = V(G) and E (GI) = E (G) \ El. Observe 

that G \ E' is not necessarily an induced subgraph of G. Let x be a vertex of G and 

e an edge of G. We will abuse notation slightly and write G \ x and G \ e instead of 

G \ {x) and G \ { e ) .  

Let H and G be graphs which have at least one vertex in common. Then we define 

H n G  to be the graph with vertex set V(H)  n V ( G )  and edge set E ( H )  n E(G) .  Note 

that H n G is a subset of both H and G. 
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A graph on n vertices is called a complete graph o n  n vertices, denoted by Kn, if all 

vertices of Kn are pairwise adjacent. Hence, for each vertex x  E V ( K n )  , deg(x) = n- 1 

and N ( x )  = V ( K n ) .  Let H  be a graph and let S C V ( H ) .  The set S is a clique in H  

if the subgraph induced by S in H  is a complete graph. Note that  a graph, and hence 

a complete graph, may not have an empty vertex set. Therefore a clique contains a t  

least one vertex. A set S is a maximal clique in H  if S is a clique and if St C V ( H )  

is not a clique whenever S C S'. Thus S is a maximal clique in H  if the subgraph 

induced by S in H  is complete and if S N ( x )  for all vertices x  E V ( H )  \ S .  A 

vertex x  E V ( H )  such tha t  N ( x )  is a clique in H  is called simplicial. 

A subset S of vertices in a graph H  is an independent set if the subgraph in H  

induced by S has no edges other than the loops each of the vertices of S.  

A walk in a graph H  is a sequence of vertices of H  xoxl . . . xk such that  xixi+l E 

E ( H )  for i = 0 , .  . . , k - 1 ;  we call the vertices X I , .  . . , xk-1 the internal vertices of 

the walk. Moreover, we say tha t  ~ 0 x 1 . .  . xk is a walk from xo t o  xk, or an xo - xk 

walk. A walk between vertices x  and y in H  can refer t o  either an x  - y walk or a 

y - x  walk. If xi and xj each appear once in the walk P  = xoxl . . . xk, 1 5 i < j 5 k, 

then P[xi ,  x j ]  denotes the walk xixi+l . . . xj-lxj. The length of a walk is the number 

of edges in the walk; thus xoxl . . . xk is a walk of length k .  A path in a graph H  is a 

walk xoxl . . . xk in H  in which all the vertices are distinct. The definitions for internal 

vertices, length, etc. in regards to  walks carry over to  paths. Lastly, a cycle in H  is 

a walk xoxl . . . xk where the vertices X I , .  . . , xk are distinct, xo = xk and k 2 3. The 

length of a cycle is the number of edges in the cycle; thus ~ 0 x 1 .  . . xk-1x0 is a cycle of 

length k. A cycle of length k will referred to  as a k-cycle. Moreover, a cycle of length 

3 is called a trivial cycle and all others are referred to as nontrivial cycles. 

We call a graph G  a path if G  has vertex set V ( G )  = {xO,  X I ,  . . . , x k )  and 

edge set E(G)  = { X ~ X ~ + ~  I i = 0 , 1 ,  . . . ,  k -  1 )  U {xixi I i = 0 , 1 ,  . . . ,  k). We call a 

graph G a cycle if it has vertex set V ( G )  = { x l ,  xz, . . . , x k )  and edge set E(G)  = 

( i = 1 , 2 , .  . . , k - 1) u { x k x l )  u {xixi I i = 1 , 2 , .  . . , k ) ,  k > 3; we often denote 

this graph by Ck. Moreover, if the graph C  is a cycle and C  is an induced subgraph of 

graph H ,  we say that  C is an induced cycle in H. We define induced paths similarly. 
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An induced path will also be referred to as a chordless path. 

A graph without induced cycles of size 4 or more is called chordal. Thus all induced 

cycles in chordal graphs are trivial cycles. Chordal graphs will be studied in detail in 

Section 1.2.2. A wheel on k+ 1 vertices, k 2 4, is a graph, denoted by Wk, with vertex 

set V(W) = {rl, . . . , rk, h) and edge edge E ( W )  = {rlr2, 7-93 ,  . . . , rk-irk, r k r l )  U 

{hri I i = 1,. . . , k) U {xx I x E V(W)).  We call 7-17-2.. . r k r l  the rim cycle of Wk and 

the vertices r1,. . . , r k  the rim vertices of Wk. The vertex h is the hub of Wk. We 

often refer to Wk as the wheel on k rim vertices. 

Let H be a graph. We say that H is connected if for all vertices x, y E V(H)  there 

exists a path between x and y in H and H is disconnected otherwise. A component 

of H is maximal connected induced subgraph of H; if J is a component of H and J' 

is another subgraph of H such that J' is connected and J C J', then J = J'. We will 

also apply the term connected to sets; a subset S of V(H)  is connected if the subgraph 

of H induced by S is connected and S is disconnected otherwise. We call a subset 

S V(H)  a vertex cut set if H \ S is disconnected. The set S is a minimal vertex 

cut set there does not exist a proper subset S' of S such that H \ S' is disconnected. 

A subset S c V(H)  is called an x - y separator if there does not exist an x - y path 

in H \ S and x, y @ S.  The set S is called a minimal x - y separator there does not 

exist a proper subset S' of S such that S' is an x - y separator. The set S is called 

a separator if there exist vertices x, y E V(H)  such that S is an x - y separator. 

Moreover, S is a minimal separator if there exist vertices x, y E V(H)  such that S is 

a minimal x - y separator. Note that while every minimal vertex cut set is a minimal 

separator, a minimal separator may not be a minimal vertex cut set. Also, if H is 

disconnected, then 0 is a vertex cut set. 

A connected graph H that does not have a cjpcle as subgraph is called a tree. 

Let H be a graph. The distance between two vertices x and y in H is the length 

of a shortest x - y path. This will be denoted by dH(x, y), or just d(x, y) if the the 

graph H is clear from the context. If there does not exist a path between x and 

y, then dH(x, y) = m. The diameter of H is nlax {d(x, y) ( x,  y E V(H)) .  A vertex 

z E V(H)  is a diametrical vertex if there exists y E V(H)  such that d(z, y) is equal 
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to the diameter of H ;  note that y is also a diametrical vertex 

We can use the concept of distance in graphs to define a new type of subgraph. 

Let G be a graph and let H be subgraph of G. Let x and y be two vertices of H and 

let P be an x - y path in H of length dH(x, y). As H is a subgraph of G, P is also 

an x - y path in G. Thus the length of P is bounded below by dG(x, y). Therefore 

dG(x, y) 5 dH (x, y) for all vertices x, y E V(H) .  If dc(x, y) = dH(x, y) for all vertices 

x, y E V(H) ,  then we say that H is an isometric subgraph of G. 

We can also use distances to define discs in graphs. Let H be graph. Given a 

non-negative integer k and a vertex x E V(H) ,  we define the disk centred at vertex x 

of H with radius k to be the set DH (x, k) = {y I dH (x, y) 5 k ) .  Given a non-negative 

integer k and a non-empty subset S C V(H) ,  we define the disk centred at subset S 

of V(H)  with radius k to be the set DH(S, k) = uZESDH(x, k); in both cases we omit 

the subscript H when the graph H is understood from the context. 

In the next paragraph, we will define a class of graphs based on permissible vertex 

orderings. As vertex orderings will be used frequently in this thesis, we will now set 

up some standard notation. To begin with, when listing elements of a set or ordering, 

we will write xl  , . . . , x, instead of xl  , x2, . . . , x,. Given a graph H and an ordering 

hl ,  . . . , h, of some or all of the vertices of H, we will use Hi to denote the graph 

H \ {hl ,  . . . , hi), i = 1, . . . , n ,  with the following exception: if {hl , . . . , h,) = V(H) ,  

then H, does not exist. For technical reasons, we set Ho = H .  

A vertex x in a graph H is covered by a vertex y in H, y # x, if the neighbourhood 

of y contains the neighbourhood of x, i.e., N(x) N(y). Note that as all vertices are 

self-adjacent, then x and y must also be adjacent. We will refer to x as a dismantlable 

vertex of H if there exists a vertex y of H that covers x. A graph H with n vertices 

is called dismantlable (or cop win [58]) if there exists an ordering h l ,  . . . , h, of V(H)  

such that for each i < n ,  h, is dismantlable in Note that if n = 1, then H is 

trivially dismantlable. The ordering hl ,  . . . , h, is call a dismantling ordering of H. 

If H has a dismantling ordering, then H must be connected since for each i < n, 

the vertex hi has a neighbour h,, i < j .  We say that a graph H dismantles to a 

subgraph J if there exists a partial ordering hl ,  . . . , hk of vertices of H such that hi is 
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dismantlable in Hi-l, i = 1, . . . , k, and Hk = J .  Observe that J is in fact an induced 

subgraph of H .  A graph on at  least two vertices is called ramified (or s t ig  [16]) if it 

has no dismantlable vertices. 

A function from a graph G to a graph H is a function 4 of V(G) to V(H);  we 

denote this by 4 : G + H.  Such a function is call a homomorphism if for all edges 
4 xy E E(G) ,  we have that 4(x)4(y) E E(H). This is denoted by G + H; we write 

G + H to indicate that G f H for some 4. 

We will now define some common variations of homomorphisms. 

Let G and H be graphs. For each vertex g of G,  assign to g a subset of V(H) ,  

which we will call the list of g and denote by L(g). A honlomorphism 4 of G to H is 

called a list homomorphism with respect to L if 4(g) E L(g) for all g E V(G).  In this 
d d case we write (G, L) + H; we write (G, L) + H if (G, L) + H for some 4. Given 

graph-list pairs (J, L') and (G, L) ,  we say that (J, L') is homomorphic to (G, L) if 
4 there exists a homomorphism 4, J + G, such that L1(x) = L ( ~ ( x ) )  for all vertices 

x of J; we denote this by (J, L') 5 (G, L). As before, we write (J, L') + (G, L) if 

(J, L') f (G, L) for some 4. 

An isomorphism from a graph G to a graph H is a one-to-one, onto function 4 : 
G + H such that xy E E(G)  if and only if 4(x)4(y) E E(H) .  Thus an isomorphism 

is always a homomorphism, but not vice versa. 

Let H and G be graphs such that H is subgraph of G. We call a homomorphism 

8 from G to H a retraction if Q(g) = g for all g E V(H)  and we call the graph H a 

retract of G. It is retractions and retracts that are the focus of this thesis. 

Let H and G be graphs such that H is a subgraph of G. Suppose that H has com- 

ponents HI , .  . . , H, and that G has components G I , .  . . , G,, where Hi is a subgraph 

of Gi, for i = 1, . . . , n. Note that H is a retract of G if and only if Hi is a retract of 

Gi, for i = 1,. . . , n. If m > n ,  we can map the extra components of G to some vertex 

of H since H is reflexive. Therefore, when studying retractions and retracts, we will 

restrict our analysis to connected graphs. 

Let Hi be a graph for i = 1 , .  . . , k .  We define the (categorical) product of 
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HI, . . . , Hk, denoted by H1 x Hz x . . x Hk or by llf=l Hi, to be the graph with 

vertex set V(H1) x V(H2) x . . x V(Hk), where vertices (xl ,  . . . , xk) and (xi,  . . . , x',) 

are adjacent if and only if xi is adjacent to xi in Hi, for i = 1 , .  . . , k. When referring 

to a vertex of l l f = l ~ i ,  we will either write ( x l , .  . . , xk)  or use vector notation and 

write x. The function 7ri : H + Hi defined by 

is the ith projection of H ,  i = 1,. . . , k. Clearly 7ri is a homomorphism, i = 1 , .  . . , k .  

Let H be a graph and let k 2 1 be an integer. We define H k  to be the graph 

llf==,Hi, where H1 = H2 = . . . = Hk = H .  

Let H be a graph and let k 2 3 be an integer. A vertex (x l , .  . . , xk) of H k  is 

called constant if xl = xz = . . . = xk and (xl ,  . . . , xk) is called nearly unanim,ous if 

all the entries of (x l ,  . . . , xk) are the same except for one. We will use T to denote the 

constant vertex (x, . . . , x). A function q : H k  + H is called a near unanimity function 

of arity k if q is a homomorphism and q(xl,  . . . , xk) = x whenever at least k - 1 of the 

xi's are equal to x. Thus if x = (x l ,  . . . , xk) is constant or nearly unanimous, then 

q (x)  is the vertex of H that occurs at least k - 1 times in x. The graph H admits a 

near unanimity function if it admits a near unanimity function of some arity. A near 

unanimity function of arity 3 is commonly called a majority function. 

Let C be a class of graphs. The class C is a variety if C is closed under retractions 

and products; thus for all H E C, all retracts H' of H are in C and for all H I , .  . . , Hk 

in C, we also have that @==,Hi E C. Let C be a class of graphs. Then the variety 

generated by C is the smallest variety that contains C. For example, the variety 

generated by paths is the smallest variety that contains all graphs made of retractions 

and products of paths. Note that if C is a variety, then the variety generated by C is 

itself, C. Moreover, when the class C is a variety, we will refer to as the variety of C. 

To prove that a class of graphs C is a variety, we must prove two properties. The 

first is that for all graphs H E C, each retract of H is also in C. The second is 

that for any collection of graphs HI ,  . . . , Hk E C, we have that IIf=,Hi E C. Since 

llFzlHi = HI x IIf=:=,Hi, it suffices to prove that if HI, H" E C, then H' x H" E C. 
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1.2 Background work 

We began our discussion on absolute retracts with a very simple example. We showed 

that if a graph H is a retract of a graph G,  then H must be an induced subgraph 

of G. Next we defined a class of absolute retracts based on this necessary condition, 

AR,, and then we studied this class. Now we will show that if a graph H is a 

retract of graph G, then G must preserve the distances in H .  This leads to absolute 

retracts with respect to isometry, which has been well studied. We will present a 

list of equivalences for this type of absolute retract, picking out the characteristics 

that we are interested in. In particular, we will justify our interest in chordal graphs. 

We will finish this section by presenting basic results concerning chordal graphs and 

the related graphs we are interested in, namely graphs that admit near unanimity 

functions and dismantlable graphs. 

1.2.1 Absolute retracts with respect to isometry 

In this section we present results concerning absolute retracts with respect to isometry 

and justify our interest in chordal graphs. 

Let H be a graph and let G be a supergraph of H. Let x and y be vertices of H. 

Recall that dc(x, y) 5 dH(x, y). Assume that H is a retract of G and let Q : G + H be 

a retraction. Let x = uoul . . . up = y be a shortest x - y path in G; thus dG(x, y) = p. 

As Q is a homomorphism, B(uo), Q(ul) ,  . . . , @(up) is a walk from Q(uo) = x to @(up) = y 

in H .  Hence dH (x, y) 5 dG(x, y) and so dH (x, y) = dc(x, y). Thus H must be an 

isometric subgraph of G. Therefore a necessary condition for H to be retract of G 

is for G to preserve the distances in H ,  i.e., H must be an isometric subgraph of 

G. Now we can use this necessary condition to create a class of absolute retracts. 

As we mentioned when we gave the definition of a retraction, we will restriction our 

attention to connected graphs. 

The class of absolute retracts with respect to isometry, denoted by AR,,  is the 

set of all connected graphs H such that H is a retract of a connected supergraph G 
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whenever H is an isometric subgraph of G. 

Note that preserving distances is not a sufficient condition for the existence of a 

retraction. Let H be the graph in Figure 1.2 that is induced by the round vertices, 

and let G be the entire graph. Then H is an isometric subgraph of G, but H is not 

a retract of G. 

Figure 1.2: The graph on the round vertices is not a retract of the entire graph even 
though the graph on round vertices is an isometric subgraph of the entire graph. 

Let H be a graph that is in ARz. Then H is retract of a connected supergraph 

G whenever H is an induced subgraph of G. Let G a supergraph of H such that H 

is an isometric subgraph of G. Then H must obviously be an induced subgraph of G. 

Therefore H is a retract of G and hence ARz 2 ARI. Recall that all graphs in AR, 

have a universal vertex by Theorem 1.1. Therefore all graphs with universal vertices 

are in ARr. For example, this implies that wheels are in ARI as the hub of a wheel 

is a universal vertex. 

Lemma 1.1. Let Wk be a wheel on k rim vertices, k 2 4. Then Wk E AR,. 

As mentioned at the beginning of the chapter, research on absolute retracts has 

also been conducted for irreflexive graphs, i.e., graphs without loops at any vertex. 

In particular, much of the research in this area has been in with respect to bipartite 

graphs, irreflexive graphs that do not have odd cycles as subgraphs. We will discuss 

briefly some necessary conditions for retracts on irreflexive graphs. 

Let H and G be irreflexive graphs such that H is subgraph of G. Clearly H being 

an isometric subgraph of G is still a necessary condition for H to be a retract of G; the 



CHAPTER 1. INTRODUCTION 

reasoning we applied to reflexive graphs carries over as we made no use of loops. Since 

we are dealing with irreflexive graphs, homomorphisms may not send the endpoints 

of an edge to  the same vertex. Thus chromatic numbers come into play as follows: 

suppose that H has a proper n-colouring. It is well known that an n-colouring of H is 

equivalent to  H t K,, where in this instance we mean by K, the complete irreflexive 

graph on n vertices. If H is a retract of G, then G + H. Thus G + K,, implying that 

G also admits a n-colouring. Conversely, if G admits an n colouring so does H ,  since 

H is a subgraph of G. Therefore H and G must have the same chromatic number. 

Now we can define n-chromatic absolute retracts; the class of n-chromatic absolute 

retracts, denoted by A R T , ,  is the set of all connected n-chromatic irreflexive graphs 

H such that H is a retract of a connected supergraph G whenever G has chromatic 

number n and H is an isometric subgraph of G.  The class ART, has been studied 

in [8, 59, 60,  621. It is well know that bipartite graphs are exactly those irreflexive 

graphs that admit a two colouring. .The class of absolute bipartite retracts with respect 

to  isometry,  denoted by ART,, is tbe set of all connected bipartite graphs H such 

that H is a retract of a connected bipartite supergraph G whenever H is an isometric 

subgraph of G.  The class ARTI has been studied in [3 ,  6 ,  40 ,  41 ,  421. In [ 4 ] ,  the 

authors explored the strong similarities between the two classes AR, and ART,, and 

their many characterizations. Pesch has written a monograph [61] studying absolute 

retracts, both reflexive and irreflexive, with respect to isometry. 

Now we return to A R , ,  which has been investigated extensively [5 ,  9 ,  43,  44,  45 ,  

56, 57, 61 ,  651. We will present some of the results concerning A R I .  But first, we 

need one last definition. 

Let F be a finite family of finite sets. We say that F has the Helly property if for 

any subfamily F' of F the following holds: nxEFtX # 0 whenever X n Y # 0 for all 

X, Y E F'. A graph H is clique Helly if the set of maximal cliques of H has the Helly 

property. 

Theorem 1.2. 15, 9, 43, 44,  57, 651 Let H be a connected graph. Then  the following 

statements are equivalent: 

i . )  H E AR,. 
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ii .)  the discs of H centred at vertices have the Helly property. 

iii.) H is dismantlable and clique Helly. 

iv.) H is  in the variety generated by paths. 

v . )  H admits a majority function. 

vi.) H has no k-holes, k > 3, see Chapter 2 

vii.) for every diametrical vertex x E V ( H ) ,  x is  dismantlable and H \ x E AR, 

The equivalence of statements i, ii and vii is proved in [5], the equivalence of 

statements iii and ii is proved in [9], the equivalence of statements iv and vi is proved 

in [57], the equivalerxe of statements v and i is proved in 1441, and the equivalence of 

statements vi and i is proved in [43] (cf. [65]). 

There are four items from the list of equivalences in Theorem 1.2 that we are 

particularly interested in. To begin with, as AR, is the variety generated by paths, 

we know that AR, is a variety. Also, all graphs in AR, are dismantlable and all 

graphs in AR, admit a near unanimity function of arity 3. Lastly, every graph in 

AR, is made of paths. We will expand upon each of these points, explaining their 

significance. 

We have defined AR, to  be the class of all connected graphs H such that H is 

a retract of a connected supergraph G whenever H is an isometric subgraph of G. 

Thus it is very logical that AR, is closed under taking retracts. The reason why AR, 

is closed under taking products is not as immediate, but it follows from projections 

being homomorphisms. In the following chapters, when studying ARN for various 

necessary conditions N ,  we will provide direct proofs that ARN is a variety. 

The class of graphs AR, is the intersection of dismantlable graphs and clique Helly 

graphs by Theorem 1.2. Thus AR, is contained in the class of dismantlable graphs. 

As we look at AR, for different necessary conditions N ,  we will investigate whether 

this containment is maintained. 
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The class of graphs AR,  is exactly the set of all connected graphs that admit a 

near unanimity function of arity 3. As will be seen in the next section, this implies 

that graphs in ARI  admit a near unanimity function of arity k, Ic 2 3. If H is in 

AR,, for some necessary condition N, we will investigate whether H admits a near 

unanimity function; we will also investigate bounds on the arity of such a function, if 

it exists. 

Lastly, Theorem 1.2 tells us that a graph H E ARI can be made of products 

and retracts of paths. For any class of graphs C' such that C' contains all paths, 

the variety generated by paths is contained in the variety generated by C'. If in 

addition, C' C ARI ,  then the variety generated by C' is a subset of AR,, as the 

variety generated by ARI is ARI.  Thus, for such a class C', the variety generated by 

C' would be equal to the variety generated by paths, by Theorem 1.2. We would like 

to  find a class of graphs C such that C generalizes paths, has properties that make it 

easily recognizable but is not contained in ARI.  Note that C containing the class of 

paths and C \ AR, # 8 implies that the variety generated by C strictly contains ARI.  

Now we need to find a such a class C. 

A very reasonable candidate for C is the class of all trees; all paths are trees and 

trees are easy to recognize. However, all trees are in ARI, [56, 651 and so we must 

look expand our search for C. Note that trees are graphs that don't have cycles. 

Interval graphs, those graphs that are the intersection graphs of intervals on the real 

line, have cycles, but no induced nontrivial cycles (see [37]). Unfortunately, the class 

of connected interval graphs is still not large enough to be our desired class C. This 

is demonstrated in the following proposition, which follows easily from Theorem 1.2. 

Proposition 1.1. Let H be a connected interval graph. Then H is in AR,.  

Proof. By Theorem 1.2, it is sufficient to prove that connected interval graphs 

are dismantlable and clique Helly. 

Let {h . l , .  . . , h,) be the vertex set of H and let 11, . . . ,I, be intervals on the real 

line such that hihj E E(H) if and only if Ii f? I, # 8. Let r(Ii) be the right boundary 

point of the interval Ii. 
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Without loss of generality, we may assume that the intervals 11, . . . , In are ordered 

such that r(Il) 5 r(Iz) < . . . 5 r ( In) .  Now consider the corresponding ordering 

hl ,  . . . , hn of the vertices of H .  We claim that hi is simplicial in Hi-l, i = 1,. . . , n. 

Let hj and hk be neighbours of hi, where i < j < k. Thus Ii n Ik # 8, Ii n I, # 8 and 

r(Ii) < r(Ij) < r ( Ik) .  Therefore r(I,) E Ij rl Ik, implying that hkhj E E(H). As hi is 

simplicial in Hi-1, hi is clearly dismantlable in Hi-1, i = 1, . . . , n - 1. 

The maximal cliques of H can be ordered S1, .  . . , Sp such that if Si rl Sj # 8, then 

Si rl Sk rl Sj # 0 for all k, i _< k 5 j ,  [52]. Thus H must be clique Helly. 

0 

Our next candidate for C is the class of connected strongly chordal graphs. Let 

H be a graph. Then hl ,  . . . , h, is a strong elimination ordering of the vertices of 

H if hihk, hjhk E E(H), where i > j > k, implies that hih, E E(H), i.e., hk is 

simplicial in HkP1, and hihp, hjhp, hj hk E E(H), where i > j > k > p, implies that 

hihk E E ( H ) .  A graph that admit's a strong elimination ordering is called strongly 

chordal [25]. Interval graphs are stro6gly chordal [25] and so we have a larger class of 

graphs. Strongly chordal graphs are also recognizable in polynomial time [25]. 

A graph J on 2n vertices, n 2 3, is a trampoline [25] (or complete sun [19]) if 

the vertex set of J can be partitioned into two sets IV = {wl, . . . , w,) and U = 

{ul, . . . , u,) such that W is independent, U is a clique and wj is adjacent to ui if and 

only if i = j or i - j + 1 mod n. 

Theorem 1.3. [19, 25) A graph H is strongly chordal if and only if H is chordal and 

has no induced trampoline. 

Unfortunately, there do not exist connected strongly chordal graphs outside of 

AR,;  again, this follows easily from Theorem 1.2. 

Proposition 1.2. Let H be a connected strongly chordal graph. Then H is in AR, .  

Proof. By Theorem 1.2, it is sufficient to prove that connected strongly chordal 

graphs are dismantlable and clique Helly. It is easy to see that connected strongly 

chordal graphs are dismantlable; a strong elimination ordering of a connected graphs 
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is also a dismantling ordering. Hence all that is left is to prove that strongly chordal 

graphs are clique Helly. 

Let H be a strongly chordal graph and suppose that H is not clique Helly. Thus 

there exists maximal cliques S1, . . . , Sk such that Si n Sj # 0, 1 5 i ,  j 5 k and 

n:==,Si = 0. We may assume that for p = 1 , .  . . , k, there exits a vertex up E n,,,S,. 

Since Sl n S2 # 0 and nf=lSi = 0, we must have that k 2 3. Consider the vertices u l ,  

u2 and ug. The set {ul, u2, u3) is a clique as ui, u j  E Sp, where i ,  j # p. By the way we 

chose ui, there exists a vertex wi E Si \ N(ui) ,  i = 1,2,3.  Observe that u2, US, w1 E S1. 

Thus ~ 2 ~ ~ 3  E N(wl).  Similarly, ui, u j  E N(wp), for i ,  j # p,  1 5 i ,  j , p  5 3. If 

wiwj E E(H), then uiujwiwjui is an induced 4 cycle in H,1 5 i # j 5 3, which 

is a contradiction as strongly chordal graphs are chordal by Theorem 1.3. Thus 

{wl, w2, w3) is independent. Relabel the vertices wl, wz and w3 as follows, w', = w3, 

wk = wl and wi = w2. Then the subgraph J of H induced by {ul, u2, U ~ ) U { W ~ ,  wk, wi) 

is a trampoline, contradiction. 

0 

We still have not been able to find our desired class of graphs C, but we do have 

the following result: 

Corollary 1.1. T h e  following classes of graphs are the same: 

i . )  AR, 

i i . )  the  variety  generated by paths. 

i i i . )  the  variety  generated by trees. 

i v . )  t he  variety  generated by connected interval graphs. 

v . )  the  variety  generated b y  connected strongly chordal graphs. 

Now consider chordal graphs. All strongly chordal graphs are chordal by Theo- 

rem 1.3 and chordal graphs have many nice algorithmic properties, see [37] ,  one of 

which is polynomial time recognition. The graph induced by the round vertices in 

Figure 1.2 is chordal, yet is not in ARr as mentioned previously. Thus the variety 
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generated by connected chordal graphs is not contained in ARI. Hence the variety 

generated by connected chordal graphs strictly contains AXI. We will study the in- 

tersection of the variety generated by connected chordal graphs and ARN for various 

necessary conditions N. In the last chapter, we will present a class of graphs which 

generates a variety that  strictly contains the variety generated by connected chordal 

graphs and we will prove that  this new class is a particular type of absolute retract. 

1.2.2 Dismantlability, near unanimity functions and chordal 

graphs 

In this section, we will provide some basic facts about dismantlable graphs, graphs that  

admit near unanimity functions and chordal graphs; in particular, we will mention 

how these graph classes compare to  each other. For further information on these 

graph classes and others, see [13]. 

Dismantlable graphs have been studied in [I, 9, 16, 26. 36, 58, 63, 651. The 

following lemmas and theorem concerning dismantlable graphs closely resemble results 

on dismantlable posets [22]. 

Lemma 1.2. If a graph H is not dismantlable, then H is ramified or there exists 

vertices h l ,  . . . , hk of H such that h,, is dismantlable in  for i = 1,.  . . , k and Hk 
is ramified. Moreover, Hk is a retract of H. 

Proof. The lemma is trivial if H is ramified. 

Assume that  H is not ramified. Then H has a dismantlable vertex, call it hl .  Now 

consider H1. If H1 has a dismantlable vertex. call it h2. Continue on in the manner 

until a partial ordering h l ,  . . . , hk has been created such that  h, is disrnantlable in 

Hi-l for i = 1, . . . , k and Hk has no dismantlable vertices. As H is not dismantlable, 

Hk has a t  least two vertices and hence Hk is ramified. 

As hi is dismantlable in Hipl, there exists a vertex h: E V ( H i )  such that hi covers 

hi in Hi-l, i = 1, . . . , k. Let Oi : Hi-1 -- Hi be the map defined by 
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Clearly Oi is a homomorphism. Let 0 : H  + Hk be the map 0  = Ok o Ok-l o . . . o O1. 

Then again 0  must be a homomorphism and moreover O(h) = h for all h E V ( H k ) .  

Thus 0  is a retraction from H  to Hk.  

0 

Lemma 1.3. [49] Let H  be a connected graph. Then H  is dismantlable if and only if 

no retract of H  is  ramified. 

Proof. Let H  be a dismantlable graph. We will prove that no retract of H  is 

ramified by induction on the number of vertices of H .  

Let H' be a retract of H  and let 0  : H + H' be a retraction. Let x  be the first 

vertex of a dismantling ordering of H  and let y  be a vertex of H  that covers x  in 

H .  If x  # V ( H f ) ,  then H' is clearly a retract of H  \ x  and so H' is not ramified 

by induction. Therefore we may assume that x  E V ( H f ) .  If x  is dismantlable in 

H',  there is nothing to prove, and so assume that x  is not dismantlable in H'. As 

O(z) = z  for all z  E V ( H f )  and as 0  is a homomorphism, O(y) must be adjacent to 

every neighbour of x  in H'. Since we have assumed that x  is not dismantlable in H', 

this implies that 0 ( y )  = x .  In other words, y  @ V ( H f ) .  Let H" be the subgraph of 

H  induced by ( V ( H f )  \ { x ) )  U { y ) .  We claim that H" and H' are isomorphic. To 

prove this, we need only prove that N H " ( y )  \ { y )  = NH1(x) \ { x ) .  AS y  covers x  in 

H ,  clearly NHll(y) \ { y )  2 NH1 ( x )  \ { x ) .  NOW let w be a nontrivial neighbour of y  

in H". Thus w E V ( H 1 )  and so O(w) = w. Since 8  is a homomorphism, yw E E ( H )  

implies that O(y)O(w) E E  (HI ) .  As O(y) = x ,  w is a neighbour of x  in H'. Therefore 

NHll(y) \ { y )  C N H / ( x )  \ { x ) .  Thus H' and H" are isomorphic. Define the map 

8' : H  \ x  t H" as follows: 

y if 0 ( z )  = x  
0 ' ( z )  = 

0 ( z )  otherwise. 

Clearly 0' is a retraction. Thus, by induction H" is not ramified, and hence neither 

is H'. 
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Now assume that no retract of H is ramified. Then, by Lemma 1.2, H must be 

dismantlable 

Theorem 1.4. The class of disrnantlable graphs is a variety. 

Proof. We will first prove that the class of dismantlable graphs is closed under 

taking retractions, and then secondly we will prove that the class of dismantlable 

graphs is closed under taking products. 

Let H be a dismantlable graph, and let HI be retract of H .  If H' is not dismant- 

lable, then HI has a ramified retract HI1 by Lemma 1.2. As H' is a retract of H, so 

is HI1. This contradicts Lemma 1.3. Hence HI must be dismantlable. 

Let H = H1 x H2, where Hi is dismantlable, i = 1,2.  Let x l ,  . . . , x,, be a 

dismantling ordering for H1 and let yl, . . . , y,, be a dismantling ordering for H2. 

Then it can be easily checked that the following ordering of the vertices of H is a 

dismantling ordering for H : 

Graphs admitting majority functions have been studied in [6, 561, and lately there 

has been interest in graphs that admit near unanimity functions of arity k, k > 3, see 

[15, 491. There has long been interest in near unanimity functions in other areas such 

as posets see [38, 51, 64, 711 and universal algebras see [2, 7, 20, 46, 541. We present 

some folklore results concerning near unanimity functions on graphs and varieties, 

plus two new theorems from [49]; one theorem we can use to identify graphs that 

admit near unanimity functions in polynomial time and the other theorem relates 

graphs that admit near unanimity functions to dismantlable graphs. 

Let q be a near unanimity function of arity k on a graph H, where k 2 3. Since 

k 2 3, the value of q(x, . . . , x, y) is well defined; if k = 2, then both x and y would 
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appear k - 1  times in the k-tuple and q  would not be well defined. 

Lemma 1.4. The class of graphs that admit a near unanimity function of  arity k, 

k >_ 3, is a variety. 

Proof. We will proceed by proving that the class of graphs that admit a near 

unanimity function of arity k is closed under taking retractions, and then prove that 

it is closed under taking products. 

Let H  be a graph that admits a near unanimity function q  : Hk t H ,  and let 

0  : H t J  be a retraction. Let q' : J k  t J  be the function defined by q f ( x )  = Ooq(x )  

for all vertices x E V ( J k ) .  It is easy to see that q' is a near unanimity function of 

arity k. Therefore, the class of graphs that admit a near unanimity function of arity 

k is closed under taking retractions. 

Let H be the product of two graphs that admit near unanimity functions of 

arity k ,  say H  = H1 x Hz.  Note that a vertex of H k  is a vector of the form 

( ( 5 1 1  ~ l ) ,  ( 5 2 1  Y Z ) ,  . . . r ( x k , ~ k ) ) ,  where ( ~ 1 ,  . .  . , x k )  is a vertex of HF and ( ~ 1 ) .  . . lyk) 
is a vertex of H!. Let qi : HF + Hi be a particular near unanimity function on Hi,  

i = 1,2. Now we can construct a function q  of arity k on H  as follows: 

We will prove that q  is a near unanimity function on H .  The function q  is clearly a 

homomorphism as Q is a homomorphism for i = 1,2.  Suppose that at least k - 1  of 

the pairs ( x i ,  y,) are the pair ( x ,  y ) .  Then at  least k - 1  of the xi's are x .  Therefore 

q l ( x l l  . . . , x k )  = x. Similarly q2(y l ,  . . . , yk) = y. Hence 

Therefore q  is a near unanimity function and the class of graphs that admit a near 

unanimity function of arity k is closed under taking products. 

0 

Lemma 1.5. Let H be a graph that admits a near unanimity function of arity k ,  

k _> 3. Then H  admits a near unanimity function of arity k + 1.  
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Proof. Let q  : H k  + H  be a near unanimity function. Define the function 

7j : Hktl + H  as follows: 

If the vertices ( x l , .  . . , x k t l )  and ( y l , .  . . , yktl)  are adjacent in Hkt l ,  then the ver- 

tices ( x l , .  . . , x k )  and (91,.  . . , yk )  are adjacent in H k .  As 7 is a homon~orphism, 

fj(xl, . . . , xk+1) and 7j(yl, . . . , yktl)  are adjacent in H .  Thus f j  is a homomorphism. 

Let ( x l ,  . . . , xk t l )  be a vertex of V ( H k t l )  and suppose that at least k of the x,'s 

are the vertex x  E V ( H ) .  Then at least k - 1  of the xi's in ( x l ,  . . . , x k )  are the vertex 

x  E V ( H ) .  As 7 is a near unanimity function of arity k on H ,  q ( x l , .  . . , x k )  = x ,  and 

SO f j(xl , .  . . , xk t l )  = x .  Therefore f j  is a near unanimity function of arity k + 1  on H .  

0 

Theorem 1.5. The class of graphs that admit a near unanimity function is a variety. 

Proof. We will prove that the class of graphs that admit near unanimity functions 

is closed under retractions and products. 

Let H  be a graph that admits a near unanimity function of arity k .  Then by 

Lemma 1.4, all retracts of H  also admit a near unanimity function of arity k. 

Let H  = HI  x H z ,  where Hi admits a near unanimity function of arity pi, i = 1,2. 

Then by Lemma 1.5, H I  and Hz both admit a near unanimity function of arity 

p = max { p l ,  p 2 )  Therefore H  admits a near unanimity function of arity p, by 

Lemma 1.4. 

0 

Theorem 1.6. [49] Let H  be a connected graph and let H be the copy of H  in H z  

on the constant vertices. Then H  admits a near unanimity function if and only if H 2  

dismantles to H .  

Theorem 1.7. 1491 Each connected graph that admits a near unanimity function is 

dismantlable. 
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Chordal graphs have also been studied under the following names: triangulated 

graphs, rigid-circuit graphs, monotone transitive graphs and perfect elimination graphs 

(see [13]). Orderings of the vertices of graphs will play an important role in much of 

the analysis we will do on chordal graphs. Let H be graph and let h l ,  . . . , h, be a or- 

dering of all of the vertices of H. Recall that Hi = H \ {hl, . . . , hi} for i = 1, . . . , n - 1 

and that Ho = H .  If h l ,  . . . , h, is an ordering of all the vertices of H such that hi 

is simplicial in Hi-l for i = 1, . . . , n ,  then h l ,  . . . , h, is a perfect elimination ordering 

of H .  We say that a graph H admits a perfect elimination ordering if there exists a 

perfect elimination ordering of its vertices. 

Theorem 1.8. 121, 34, 37, 661 Let H be a graph. Then the following statements are 

equivalent: 

i.) H is chordal. 

ii.) Every minimal vertex separator of every induced connected subgraph of H is a 

clique. 

iii.) Eve y induced subgraph of H has a simplicia1 vertex. 

iv.) H admits a perfect elimination ordering. 

The equivalence of statements i and ii is proved in [21], the equivalence of state- 

ments i and iii is proved in [66], and the equivalence of statements i and iu is proved 

in [34]. The equivalence of i, ii and iv are presented in the book by Golumbic [37]. 

Proof. We will prove that the above statements are equivalent by showing i + 
ii + iii + iv =+ i. 

i + ii. Assume that H is a chordal graph. Without loss of generality, assume that H 

is connected. Suppose there exists a minimal vertex separator K in H that is not a 

clique; thus K is a minimal x - y separator for some x, y E V(H) .  Let Hx and Hy be 

the components of H \ K that contain x and y respectively. 

Suppose that there exists a vertex z in K that doesn't have a neighbour in Hx. 

Thus all paths from x to  y in H must contain a vertex from K' = K \ { z ) ,  implying 
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that K '  is a smaller x-y separator in H ,  contradicting the minimality of K .  Therefore 

each vertex of K has a neighbour in Hx.  Similarly, each vertex of K has a neighbour 

in H,. 

As we have assumed that K is not a clique, it contains vertices u and 21 that are 

not adjacent in H .  As u and 21 both have neighbours in Hz, there exists a chordless 

path Px in H from u to v whose internal vertices are in V(Hx).  Similarly, there exists 

a path Py in H from v to u whose internal vertices are in V(H,). Note that as Hx 

and H, are disjoint, we can concatenate Px and Py to form a cycle C. Moreover, C 

contains a t  least 4 distinct vertices and must be chordless by construction. This is a 

contradiction as H is chordal. Hence every minimal vertex separator of every induced 

connected subgraph of H is a clique. 

ii + iii. Instead of proving ii + iii, we will prove the following claim: 

If every minimal vertex separator of every induced connected subgraph of 

H is a clique, then if H is not a complete graph, H has two non-adjacent 

simplicial vertices [21]. 

Note that ii + iii follows from the claim. Let H be a graph such that every 

minimal vertex separator of every induced connected subgraph of H is a clique. Then 

either H is a complete graph, and all vertices are simplicial, or H is not a complete 

graph, and by the claim, H has two non-adjacent simplicial vertices. Since any induced 

subgraph H' of H inherits the property that every minimal vertex separator of every 

induced connected subgraph of H is a clique, every induced subgraph H' of H has a 

simplicial vertex. 

Let H be a graph such that every minimal vertex separator of every induced 

connected subgraph of H is a clique. Assume that H is not complete. Thus there 

exist non-adjacent vertices x and y in H. Let K be a minimal x - y separator in H, 

and let Hx and H, be the components of H \ K that contain x and y ,  respectively. 

Let H' be the subgraph of H induced by V(Hx) U K .  By induction on the number 

of vertices of H, either H' is complete or H' has non-adjacent simplicial vertices. If 

H' is complete, then all vertices of H' are simplicial (in H'). Now assume that H' 
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is not complete and thus it has two non-adjacent vertices. Since K is a clique, one 

of these simplicial vertices must be in V(Hx). By construction, all the neighbours of 

vertices in V(Hx) in H are contained in K U V(Hx), and there exists a vertex, say x' 

in V(Hx) that is simplicial H .  Similarly, there exists a vertex, say y', in V(H,) that 

is simplicial in H .  Again by construction, x' and y' can't be adjacent, and we have 

produced non-adjacent simplicial vertices in H, contradiction. Therefore, the claim 

must be true. 

iii + iv. Assume that every induced connected subgraph of H has a simplicial vertex. 

Thus, in particular, H has a simplicial vertex, call in hl .  The graph H1 is an induced 

subgraph of H, and so H1 has a simplicial vertex, call it h2. We can continue in this 

manner, creating the ordering h l ,  . . . , h, of all the vertices of H, where hi is simplicial 

in HiPl for i = 1, . . . , n. Therefore h l ,  . . . , h, is a perfect elimination ordering of the 

vertices of H. 

iv + i. Assume that H admits a perfect elimination ordering hl ,  . . . , h,. Let C be an 

induced cycle in H, and let hi be the vertex of C with lowest index. Thus C HiPl 
and so the neighbours of hi in C must be adjacent. Therefore C must be a trivial 

cycle and so H is chordal. 

0 

The following lemma is a well known property of chordal graphs. 

Lemma 1.6. (see [la]) Let C be a cycle of a chordal graph H. Then  for each edge 

uv of C ,  there exists a common nontrivial neighbour w of u and t i  o n  C .  

The next theorem will be used when we present the idea of convexity in Chapter 2 

with regard to chordal graphs. 

Theorem 1.9. [24] Let H be a chordal graph. Then  every non-simplicia1 vertex of 

H lies o n  a chordless path between two simplicial vertices. 

Proof. Let z be a non-simplicia1 vertex of H. Thus z has non-adjacent neighbours 

x and y. Let K be a minimal x - y separator in H; clearly z E K. Let Hx and H, be 

the components of H \ K that contain x and y respectively. By the arguments in the 
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proof of Theorem 1.8 ii + iii, there exist vertices x' E V ( H , )  and y' E V ( H y )  such 

that x' and y' are simplicia1 in H .  As x E V ( H , )  and y E V ( H y ) ,  the vertex z  has 

a neighbour in V ( H x )  and a neighbour in V ( H y ) .  Then there exists a chordless path 

Px in H  from x' to  z  such that  all vertices on Px are in V ( H , )  U { z ) .  Similarly, there 

exists a chordless path Py from z to y' such that all vertices on Py are in V ( H y )  u { z ) .  

Now let P  be the path from x' to y' in H  formed by concatenating the paths P, and 

Py. The path P  must also be a chordless path as there can be no edge from a vertex 

in V ( P x  \ z )  V ( H x )  t o  an edge of V ( P y  \ z )  V ( H y ) .  
0 

We will finish by relating chordal graphs to  dismantlable graphs and those graphs 

that  admit near unanimity functions. 

Let H  be a connected chordal graph. By Theorem 1.8, the graph H  admits a 

perfect elimination ordering h l ,  . . . , h,. Since the neighbourhood of hi is a clique in 

Hi-1 for i = 1,. . . , n and since H  is connected, the vertex hi is covered in Hi-l for 

i = 1, . . . , n - 1. Thus a perfect elimination ordering is also a dismantling ordering, 

and hence connected chordal graphs are obviously dismantlable. The relationship 

between chordal graphs and those graphs that admit near unanimity functions is not 

as easy to  derive, and so we only quote the following result: 

Theorem 1.10. [15] Let H  be a chordal graph. Then H  admits a near unanimity 

function of arity k ,  where k 5 IV(H)I 

Note that  we can derive the dismantlability of connected chordal graphs from 

Theorem 1.10; since all chordal graphs admit a near unanimity function, and since 

all connected graphs that admit a near unanimity function are dismantlable by The- 

orem 1.7, all connected chordal graphs are dismantlable. 
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Holes 

A distance constraint on a connected graph H is a function f with domain Df C V(H),  

whose values are non-negative integers. A complete filler of the distance constraint f 

is a vertex a such that d(a, x) 5 f (x) for all x E D f .  The set of all complete fillers 

of f is denoted by FH ( f )  (or just F ( f )  if H is clear from the context). Recall that 

DH(x,k)  = { Y E  V(H)  1 dH(x,y) 5 k). Thus 

We also need to consider vertices that 'almost' satisfy a distance constraint f on 

a graph connected H. If z E Df ,  then a z-relaxed filler of f is a vertex a such that 

d(x, a )  5 f (x) for all x E Df \ {z). Of course, any complete filler of f is a z-relaxed 

filler of f ,  for all z E Df.  

A distance constraint f on a connected graph H is feasible if F ( f )  # 0, and f is 

infeasible otherwise. We can define a partial order of distance constraints on a given 

connected graph H as follows: for two distance constraints f and f '  on H we say that 

f '  5 f if Df /  D and f '(x) 2 f (x) for all x E D f ~ .  Moreover, we write f = f '  if 

Df/  = D f and f ' ( x )  = f ( x )  for all x E Df/, and we write f' < f  i f f '  < f  and f' # f .  
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In particular, if f x  is the distance constraint with D f Z  = D f  defined by 

f ( z ) + l  i f z = x  
f X ( 4  = 

f ( z )  otherwise, 

then f x  < f .  Additionally, if f '  is a distance constraint on H where D f l  is a proper 

subset of D  and f ' ( x )  = f ( x )  for all x  E D  I ,  then f '  < f . 

Proposition 2.1. Let H be a connected graph and let f a distance constraint on  H .  

For any distance constraint f '  on  H such that 

i . )  f '  5 f ,  we have that F ( f )  G F ( f l )  

ii .) f '  < f ,  there exists a vertex x E D f  such that f '  5 f x  < f .  

Proof. Let f '  be a distance constraint on H such that f '  5 f .  Then by 

definition Df1 D f  and f l ( z )  > f ( z )  for all z  E Dfl .  Therefore D ( z ,  f ( z ) )  C 
D ( z ,  f l ( z ) )  for all z  E D f /  and so 

which implies that 

n D H ( ~ I ~ ( z ) )  E n D ~ ( f 3 f ' ( z ) )  

z E D f  z E D p  

Therefore F ( f )  G J' ( f I). 

ii .  Let f' be a distance constraint on H such that f '  < f .  Since f' # f ,  there exits - 

a vertex x  E D  such that either x  # Dfl or f l ( x )  > f ( x ) .  By the definition of f,, 

D f Z  = D f  with f x ( x )  = f ( x )  + 1 and f,(z) = f ( z ) ,  2 # x .  Hence Df1 C D f i .  If x  # 
D f / ,  then clearly f '  5 f,. Thus suppose that x  E D f / .  Then f l ( x )  >_ f ( x )  + 1 = f x ( x )  

and f ' ( 2 )  2 f ( z )  = f x  ( 2 )  for z  E Dfl \ { x )  . Therefore again we have that f '  5 f,. 

We already know that f x  < f by the construction of f,. Thus f '  5 f, < f .  

0 

Let H be a connected graph and let f be a distance constraint on H. We say that 

f is minimally infeasible, or a hole, if f is an infeasible distance constraint on H and 
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all distance constraints f' on H such that f' < f are feasible. Thus, for a hole f and 

for each x E D f ,  the distance constraint f ,  is feasible. The cardinality IDf 1 is called 

the size of the hole f .  A k-hole is hole of size k. We call a k-hole f a degenerate hole 

if k = 2 and a non-degenerate hole otherwise. 

Holes have been studied previously for graphs and posets, but with a slight differ- 

ence. Let f be a distance constraint on a connected graph H such that f is infeasible 

but any distance constraint f' on H is feasible when D f~ C D and f ' ( x )  = f ( x )  for 

all x E Df,. Then f is a hole on H in [43], a minimal hole on H in [44] and a gap in H 

in [57]. Related structures in posets have been studied under the names zigzag [71], 

hole [55] and gap [22]. Consider graph in Figure 2.1. Regard the numbers labeling 

Figure 2.1: The difference between holes as defined in this thesis and related structures 
studied by others. 

the vertices to  be the values for distance constraints. Then both distance constraints 

are holes/minimal holes/gaps as defined in the papers mentioned above. However, 

only the distance constraint on the right is a hole as defined in this thesis. 

Theorem 1.2 tells us that  a connected graph H E AR, if and only if H has no 

k-holes, k > 3. This equivalence was originally stated using the definition of a hole 

as in [43]. It  is not hard to  see that the statenlent is still true using holes as defined 

in this thesis. 

We end this section with more basic facts about holes on connected graphs. 

Proposition 2.2. Let H be a connected graph and let f be a hole o n  H .  

i . )  Then  for each x E D f ,  there exits an  x-relaxed filler a,  such that d ( x ,  a,) = 
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ii.) I f f  is a degenerate hole, with say Df = { x ,  x ' ) ,  then d ( x ,  x') = f ( x )  + f ( x ' )  + 1. 

iii.) I f f  is a non-degenerate hole, then d ( x ,  x') 5 f ( x )  + f ( x ' )  for all distinct vertices 

x,x'  E Df. 

Proof. For each vertex x in Df, consider the distance constraint f,. Clearly 

f ,  < f with respect to the distance constraint poset on H ,  and so f ,  must be feasible. 

Let a, be a vertex in F ( f , ) .  Thus, d ( x ,  a,) 5 f,(x) = f ( x )  + 1 and d ( z ,  a,) 5 f ( z )  

for all z E Dj \ { x ) .  Hence a, is an x-relaxed filler of f in H .  Since f is not feasible 

by definition, we must have d ( x ,  a,) > f ( x )  and so d ( x ,  a,) = f ( x )  + 1. Therefore, for 

each x E Df , there exits an x-relaxed filler a, of f on H such that d ( x ,  a,) = f ( x )  + 1. 

ii. Suppose that f is a degenerate hole with DJ = { x , x ' ) .  By the arguments in - 

the previous paragraph, there exists a vertex a,  such that d ( x ,  a,) = f ( x )  + 1 and 

d(xt ,a,)  5 f ( x t ) .  Therefore d ( x , x t )  6 f ( x )  + f ( x l )  + 1. If d ( x , x t )  < f ( x )  + f ( x t ) ,  

we could pick a vertex a on a shortest x - x' path in H such that d ( x ,  a )  < f ( x )  and 

d(xt  , a )  5 f (z'), contradicting the infeasibility of f .  Hence d ( x ,  x') = f ( x )  + f (x ' )  + 1. 

iii. Suppose that f is a non-degenerate hole and let x ,  x' E Df be distinct vertices. 

Let a be a z-relaxed filler for some vertex z E Df \ {x, x'). Then d(a,  x )  5 f ( x )  and 

d ( a ,  x') 5 f (x ' ) .  Thus d ( x ,  x') 5 f ( x ' )  + f ( x ) .  

0 

For a non-degenerate hole f in a connected graph H ,  a vertex that is an x-relaxed 

filler for some x E Df is called a relaxed hole filler. 

Lemma 2.1. Let f be a distance constraint on a connected graph H such that f ( x ' )  = 

0 for some x' E Df . Then x' is the only possible x-relaxed filler o f f  for x E Df \ { x ' ) .  

Proposition 2.3. Let f a non-degenerate hole on a connected graph H .  Then the 

range o f f  is a set of positive integers. 
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Proof. Let Df = isl,. . . , xk),  and suppose that f (x l )  = 0. Note that k 2 3 

as f is a non-degenerate hole. Then by Lemma 2.1, XI  is an xi-relaxed filler for 

i = 2, . . . , k. Specifically, xl is an x2-relaxed filler and an x3-relaxed filler; in other 

words, x is within the desired distance of each vertex of Df \ {x2) and of Df \ {x3). 

Thus xl is a complete filler. This contradicts the definition of a hole. 

0 

2.1 Absolute retracts with respect to holes 

As the title of this section indicates, we will present a class of absolute retracts with 

respect to a necessary condition N ,  where N has to do with preserving holes. Let 

H be a connected graph and let G be a connected supergraph of H .  Observe that a 

distance constraint f on H is also a distance constraint on G as Df C V(H)  C V(G). 

We will show that if H is a retract of a G, then all holes on H must also be holes on 

G. We will then use this property to define the class of absolute retracts with respect 

t o  holes. Next we will present a proof that the class of absolute retracts with respect 

to holes is a variety. Lastly, given a graph H ,  we will construct a graph that in some 

sense "contains all the holes" of H .  We will use this constructed graph to classify the 

graphs that are absolute retracts with respect to holes. 

Proposition 2.4. [45] Let H be a connected graph, and let G be a connected su- 

pergraph of H such  that  H is a retract of G. Let f be a distance constraint tha t  i s  

infeasible o n  H .  T h e n  f m u s t  also be infeasible o n  G. 

Proof. Suppose not; thus while FH ( f )  is empty, there exists a vertex g E FG ( f  ). 

By the definition of FG ( f ) ,  dc(g, x)  5 f (x) for all x E Df. Let 0 : G -+ H be a 

retraction. Let g = uoul . . . u p  = x' be a shortest path in G from g to a vertex x' in 

Df. Then 0(g) = 8(uo)8(u1) . . . @(up) = x' is a walk in H from 0(g) to  x' of length 

dG(g. 5'). Therefore dH(d(g), x) 5 f (x) for all x E Df , contradicting the infeasibility 

o f f  on H.  

0 
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Let H be a connected graph and let G be a connected supergraph of H. By 

Proposition 2.4, a necessary condition for H to be a retract of G is for each infeasi- 

ble distance constraint on H to be an infeasible distance constraint on G. We will 

now show that each infeasible distance constraint on H being an infeasible distance 

constraint on G is equivalent to each hole on H being a hole on G .  

Proposition 2.5. Let H be a connected graph and let G be a connected supergraph 

of H .  T h e n  the following conditions are equivalent: 

i . )  Each infeasible distance constraint o n  H is an  infeasible distance constraint o n  

G. 

ii.) Each hole o n  H is  a hole o n  G .  

Proof. i + ii. Assume that each infeasible distance constraint on H is an 

infeasible distance constraint on G. Let f be a hole on H .  As f is an infeasible 

distance constraint on H ,  f is an infeasible distance constraint on G by assumption. 

Now we just have to prove that f is minimally infeasible on G. By Proposition 2.1, it 

is sufficient to  prove that f ,  is feasible on G for each x E Df. Since f is a hole on H ,  

f ,  is a feasible distance constraint on H for each x E Df. Hence there exists a vertex 

a, E FH ( f , ) .  As H is a subgraph of G ,  we must have that a, E FG ( f , ) .  Thus f ,  is 

a feasible distance constraint on G for each x E Df. 

ii + i .  Assume that each hole on H is a hole on G. Suppose that there exists an 

infeasible distance constraint f on H that is feasible on G. There exists a hole f' on 

H such that f' 5 f in the distance constraint poset on H .  By Proposition 2.1, we 

have that, FG ( f )  C FG ( f ' ) .  Since f is feasible on G ,  there exits a vertex g E V ( G )  

such that g E FG ( f ) ,  and so g E FG ( f ' ) .  Therefore f' is feasible on G .  This is a 

contradiction we assumed each hole on H is a hole on G ,  implying that f' must be 

infeasible on G. 

0 

Let H be a connected graph and let G be a connected supergraph of H .  As 

mentioned after Proposition 2.4 a necessary condition for H to be a retract of G is 
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for each infeasible distance constraint on H to be an infeasible distance constraint on 

G. By Proposition 2.5, it is equivalent to say that a necessary condition for H to be 

a retract of G for each hole on H to be a hole on G. This leads to the next class of 

absolute retracts. 

The class of absolute retracts with respect to holes, denoted by ARH, is the set of 

all connected graphs H such that H is a retract of a connected supergraph G whenever 

each hole on H is also a hole on G. 

Note that preserving holes is not a sufficient condition, as seen in Figure 2.6. The 

graph induced by the round vertices is not a retract of the entire graph even though 

each hole in the subgraph induced by the round vertices is a hole in the graph. 

Let H be graph in AR,. Then H is a retract of a connected supergraph G whenever 

G preserves the distances in H. Let G be a supergraph of H such that each hole on 

H is a hole on G. Thus, in particular, each degenerate hole on H is a degenerate hole 

on G, and so H is an isometric subgraph of G. Therefore H is a retract of G and 

hence AR, c ARH. Hence, ARH is a good generalization of AR,. 

Similarly to [43], we will show that ARH is a variety. 

Theorem 2.1. The class of graphs ARH is a variety. 

Proof. We will first prove that AR, is closed under taking retractions, and then 

secondly we will prove that ARH is closed under taking products. 

Let H be graph in ARH, and let H' be a retract of H; thus both H and H' are 

connected. Let G' be a connected supergraph of H' such that each infeasible distance 

constraint on H' is an infeasible distance constraint on GI. If we can prove that H' is 

a retract of GI, then H' E ARH by Proposition 2.5. 

We begin by noting that H' C H n GI, as H' is a subgraph of both H and GI. 

We may, without loss of generality, assume that in fact H' = H n G' for the following 

reason; if there exists a vertex x in H n G' that is not in HI, we may replace H and 

G' with isomorphic graphs H, and G,, respectively, that are formed by replacing x 

with distinct vertices XH and xc that have the same neighbours as x in H and GI, 

respectively. 
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Let G = H U G'. As HI, H ,  and G' are all connected graphs, and as H' = H n GI, 

G is also connected. The graphs H', H ,  G' and G, and their relation to each other 

is depicted in Figure 2.2. If we can prove each infeasible distance constraint on H is 

an infeasible distance constraint on G ,  then H is retract of G by Proposition 2.5. We 

can use this to  prove that H' is a retract of GI. 

Figure 2.2: How the graphs H', H ,  GI, and G relate to each other. 

Let f be an infeasible distance constraint on H with D  = { x l ,  . . . , x k ) .  Suppose 

that there exists a vertex a E FG ( f ) .  For each vertex xi,  choose a shortest xi - a 

path in G and let yi be the first vertex of this path in HI; if xi E V ( H 1 ) ,  then 

xi = yi. Let f '  be the distance constraint on H' with D j /  = { y l , .  . . , yk )  where 

f t ( y i )  = f ( x i )  - d H ( y i ,  x i )  for i = 1, . . . , k. AS f is an infeasible distance constraint 

on H and H' is an isometric subgraph of H ,  we must have that FHt ( f ' )  = 0.  By the 

way we defined G ,  the vertex a must be in G'. Thus a E FG/ ( f ' ) ,  contradicting our 

choice of G'. Therefore each infeasible distance constraint on H is also an infeasible 

distance constraint on G. Hence H is a retract of G .  Thus we have a homomorphism 

from G to H that fixes each vertex of H ,  and hence of HI. Since H' is a retract of 

H ,  we can obtain a retraction from G' to H' by composing a retraction from G to H 

and a retraction from H to HI. 

Let H = H1 x H2 ,  where H I ,  H2 E AR,. Let .iri : H + Hi be the ith projection, 

i = 1,2 .  Let G be a connected supergraph of H such that every infeasible distance 

constraint on H is an infeasible distance constraint on G .  Let Gi be the graph we 
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obtain from G  by identifying all the vertices h ,  h' E V ( H )  such that r l ( h )  = r i ( h l ) .  

Clearly Hi is a subgraph of Gi.  We will prove that each infeasible distance constraint 

of Hi is also an infeasible distance constraint of Gi,  thus implying existence of a 

retraction Qi : Gi + H z ,  for i = 1 , 2  by Proposition 2.5. We will then use these 

retractions to construction a retraction from G to  H .  

Let f l  be an infeasible distance constraint on H1 with domain { x l l  . . . , x k ) .  Let y  

be a vertex of H z .  Then the distance constraint f on H  with domain { ( x l ,  y ) ,  . . . , ( x k ,  y ) )  

such that f ( x j ,  y )  = f l ( x j )  for j = 1 , .  . . , k is infeasible on H .  Suppose that there 

exists a vertex a E FG, ( f l ) .  As a E V ( G 1 )  \ V ( H 1 ) ,  we have that a E V ( G )  and 

so a E Fc ( f ) ,  which contradicts the way we chose G .  Therefore f l  must also be an 

infeasible distance constraint on G 1 .  Hence there exists a retraction Q1 : G 1  + H1. 

Similarly, there exists a retraction 82 : G 2  + H2. 

Define a function 0  : G  -+ H  as follows: 

We claim that 8  is a retraction. It is obvious that 0  fixes each vertex of H and that 

8 ( G )  2 H .  We need to prove that 8  is a homomorphism. Let gg' be an edge of G .  

If both or neither of the vertices are in H ,  then it is easy to see that 8(g)8(g1) is an 

edge in H .  Thus, without loss of generality, assume that g  is in H ,  and that g' isn't. 

Then ri ( g )  and g  are vertices of Gi with ri ( g )  E V ( H i ) ,  and so r i ( g )  and Oi (g')  are 

adjacent in Hi,  i = 1,2.  Therefore g and 8(g1) are adjacent in H ,  and H  is a retract 

of G .  Thus H  E ARH by Proposition 2.5. 

Let H be a graph. We will construct a supergraph of H called the vector graph 

[70] of H ,  denoted by V ( H ) .  The distance vector of h  E V ( H ) ,  denoted by v ( h ) ,  is 

the vector indexed by the vertices of H  such that 

v(h),t = d H ( h ,  h ' ) ,  for all h' E H. 

A vector a satisfies a vector b, denoted by a 5 b, if a is less than or equal to b 

component-wise. The vertices of V ( H )  are IV(H)I-dimensional vectors a indexed by 
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the vertices of H  such that the entries of a are integers between 0 and the diameter 

of H  and there exists a vertex h E V ( H )  such that v (h )  < a. Two vertices a,  b of 

V ( H )  are adjacent if and only if 

(ah - bhl 5 1 for all h  E V ( H ) .  

It is easy to see that V ( H )  has an induced copy of H  on the distance vectors of the 

vertices of H ;  denote this subgraph of V ( H )  by Hv. For a vertex a of V ( H ) ,  let f a  

denote the function from V ( H )  to  the non-negative integers defined by fa (h)  = ah. 

Note that fa  is a distance constraint on H  and that FH ( f a )  is the set of all vertices 

in H  whose distance vectors satisfy a. 

The following theorem is a corrected version of Theorem 3 in [43]. 

Theorem 2.2. (701 Let H  be a  connected graph. Then H  E ARH zf and only if there 

exists a  retraction from V ( H )  to Hv.  

Proof. Assume that H  E ARH. As H  and Hv are isomorphic, Hv is also in AR,. 

Let f be an infeasible distance constraint on Hv with Df = { v ( x l ) ,  . . . , v ( x k ) } ,  xi E 

V ( H ) .  Then the following distance constraint f '  on H  is infeasible; D f /  = { x l ,  . . . , x k }  

and f l ( x i )  = f ( v ( x i ) )  for i = 1, . . . , k. If we can prove that F V ( ~ )  ( f )  = 0 ,  then Hv is 

a retract of V ( H )  as Hv is in ARH using Proposition 2.5. Suppose that there exists 

a vertex a E F V ( ~ )  ( f ) .  By the definition of V ( H ) ,  there exists a vertex a  of H  such 

that v ( a )  5 a ,  i.e., d H ( a ,  h )  <_ ah for all h E V ( H ) .  Thus in particular, 

This irnplies that a  E FH ( f  I), which contradicts the infeasibility of f '. 

Assume that Hv is a retract of V ( H ) .  Let G be a connected supergraph of H  such 

that all holes on H  are holes on G. We will construct a homomorphism from G to  

V ( H )  and then use this homomorphism to construct a retraction from G to  H .  

Let 4 : G 4 V ( H )  be the function defined by 

~ $ ( g ) ~  = min {diam(H), dc(g,  h ) }  for all h  E V ( H )  
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We must first prove that  4 is well defined and that  4 is a homomorphism. 

Let g be a vertex of G. We will prove that  + ( g )  is a vertex of V ( H )  by showing 

that  there exists a vertex h in H such that  the distance vector of h satisfies #(g ) .  Let 

f g  be the distance constraint on H with domain V ( H )  defined by f g ( h )  = dG(g,  h )  

for all h E V ( H ) .  Certainly g E FG ( f g ) ,  i.e., f g  is a feasible distance constraint on G. 

By the way we chose G and by Proposition 2.5, f g  must also be feasible on H .  Let 

h* be a vertex in FH ( f g ) .  Then 

d H ( h * , h )  5 fg (h )  = d G ( g , h )  for all h E V ( H )  

The quantity dH(h* ,  h )  is certainly bounded above by the diameter of H for all h E 

V ( H ) .  Hence 

d ~ ( h * ,  h )  5 min {diam(H), dc(g, h ) )  for all h E V ( H ) ,  

and so v ( h * )  satisfies + ( g ) .  Therefore 4 is well defined. 

It is easy to  see that  4 is a homomorphism from G to  V ( H ) .  If gg' E E(G) ,  then 

for any vertex h of H ,  I d ~ ( h ,  g )  - d ~ ( h ,  g')  I 5 1. 

Let 8 be a retraction from V ( H )  t o  Hv and let 4' be the isomorphism from Hv t o  

H defined by $ ' ( v ( h ) )  = h for all vertices v ( h )  of Hv. Then 4' o 8  o 4 is a retraction 

from G to H ;  clearly this function is a homomorphism and for all vertices h of H ,  

4' o 8 o +(h )  = 4' o 8 ( h )  = $ ' ( v ( h ) )  = h .  

0 

2.2 Holes on chordal graphs 

In this section, we will be using the concept of convexity in chordal graphs to  analyze 

holes on connected chordal graphs. In particular we will prove a lower bound on 

the distance between vertices in the domain of a hole on a connected chordal graph 

and we will prove that  non-degenerate holes on connected chordal graphs imply the 

existence of a specific isometric subgraph. 
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The convexity we present here is a specific convex geometry (see [13, 231). A 

convex structure 1131 (or alignment of V [24]) is a pair (V, C), where V is a set and 

C is a collection of subsets of V, called the convex sets, such that 8, V E C and C 
is closed under taking intersections. The convex hull of a set S V is the smallest 

convex set containing S .  If S C V is convex, an element x E S is an extreme point 

of S if S \ {x) is also convex. Then a convex structure (V, C) is a convex geometry 

if (V, C) has the following additional property: Every convex set is the convex hull of 

its extreme points. This is referred to as the Minkowski-Krein-Milman property. 

There have been two main types of convexity studied for graphs: geodesic convex- 

ity and monophonic convexity. We will be studying monophonic convexity exclusively 

and hence will refer to monophonically convex sets as convex, etc. The chapter on 

convexity in [13] contains many references and results concerning convexity in general, 

not just monophonic convexity. Let H be a graph. We say that a set X V ( H )  is 

monophonically convex if all chordless paths between vertices of X are contained in 

X. The authors of [24] proved that if H is a chordal graph and if C is the set that 

consists of the convex sets of H, then (V(H)  , C) is a convex geometry. In Theorem 2.3 

we present the proofs of properties of (V(H) ,  C) that we use in analyzing holes on 

connected chordal graphs. 

A partial perfect elimination ordering of graph H is an ordering hl ,  . . . , hk of some, 

possibly all, of the vertices of H such that hi is simplicia1 in Hi-1, for i = 1 , .  . . , k. 

Recall that Hi = H \ {hl , .  . . , hi) for i = 1 , .  . . , k, where i # IV(H)I, and Ho = H. 

Theorem 2.3. 1241 Let H be a chordal graph. Then  the following statements are 

true. 

i . )  If X ,  Y V ( H )  are convex i n  H ,  then X n Y is also convex in H 

i i . )  Let X be a connected subset of  V(H)  and let j 2 1 be a n  integer, then D ( X ,  j) 

is  convex i n  H .  

iii.) Let X be subset of V ( H ) .  Then  X is  convex i n  H zf and only zf there ex- 

ists partial perfect elimination ordering h l l  . . . , hk of H such that X = V(H)  \ 
{h,, . . . , hk). 
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Proof. Let X, Y V(H)  be convex sets in H .  If IX n Y ( 5 1, then we are 

done as sets of size a t  most one are obviously convex. Therefore we can assume there 

are distinct vertices h and h' in X n Y. Let P be any chordless path in H from h to 

h'. As X is convex in H, the vertices of P must be contained in X. Similarly, the 

vertices of P must be contained in Y. Therefore X n Y is convex in H. 

ii. Let X C_ V(H)  be connected and let j 2 1 be an integer. Suppose that D(X, j) - 

is not convex in H .  Thus there exist distinct vertices h, h' in D(X, j) that have a 

chordless path P from h to h' such that P is internally disjoint from D(X, j). Let 

H' be the subgraph of H induced by D(X, j) U V ( P ) .  Clearly H' is chordal and it 

is also connected as D(X, j) is connected and P is a path with endpoints in D(X, j). 

By construction, { h ,  h') is a minimal cut set of HI. Thus by Theorem 1.8, {h, h ' )  

must be a clique, contradicting the way we chose h and h'. Therefore D(X,  j) must 

be convex. 

iii. Let X be a subset of V(H)  that is convex in H. Let h l ,  . . . , hk be a partial perfect 

elimination ordering of H (that is possibly empty) such that any simplicial vertex of 

Hk is in X .  Note that Hk is chordal as Hk is an induced subgraph of H and for the 

same reason, X is a convex set in Hk.  Suppose there exists a vertex h E V(Hk) \ X .  

Thus h is not simplicial in Hk by assumption. By Theorem 1.9 applied to Hk, the 

vertex h must lie on a chordless path P in Hk between two simplicial vertices x and x'. 

By assumption, x, x' E X .  But, by the definition of convexity, all vertices of P must 

be in X. This is a contradiction as we assumed that h @ X. Therefore V(Hk) = X. 

Let X be a subset of V(H)  such that there exists a partial perfect elimination 

ordering h l , .  . . , hk of H where X = V(H)  \ { h l , . .  . , hk). Suppose that X i sno t  

convex. Then there exist vertices x, x' in X with a chordless path P from x to x' that 

is internally disjoint from X. Let h, be the first vertex of P that occurs in the partial 

perfect elimination ordering hl ,  . . . , hk. Then P Hi-l. As h, is simplicial in HiP1, 

the neighbours of hi on P must be adjacent. This is a contradiction as we assumed 

that P was chordless. Hence X is convex in H. 

0 

Note that statement iii of Theorem 2.3 also implies that all chordal graphs have 
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perfect elimination orderings as 0 is always a convex set. 

Corollary 2.1. Let H be a chordal graph. Then for any set of discs D ( x i , j i ) ,  i = 

1, . . . , k in H ,  the set n;=,D(xi, ji) is convex. In particular, F ( f )  is convex for all 

distance constraints f on H .  

Proof. Let D ( x i ,  j i ) ,  i = 1 , .  . . , k be a set of discs in H. By Theorem 2.3, 

D(x i ,  ji) is convex if ji 2 1. If ji = 0, then D ( x i ,  0) = { x i )  is trivially convex. Thus 

n;=, D ( x i ,  ji) is convex, again by Theorem 2.3. 

Let f be a hole on H. Then F ( f )  = nZEDI D ( x ,  f (x)) must be convex by our 

arguments in the preceding paragraph. 

0 

At this point, we have presented the results concerning convexity the we need. 

We will now start using these convexity results to analyze holes on connected chordal 

graphs. 

Lemma 2.2. Let H be a connected chordal graph, and let f be a non-degenerate hole 

on H with domain D f  = 1x1,.  . . , xk). Suppose that A = { a l , .  . . , a,), 2 < p < k is a 

clique in H such that each ai is an xi-relaxed filler, 1 5 i 5 p. If a is an xj-relaxed 

filler, where p < j 5 k ,  then a is equidistant to all vertices of A. 

Proof. Without loss of generality, assume that a is closer to al than a2. As A 

is a clique, aSl and a2 are adjacent and so a1 is on a shortest path between a2 and a. 

Thus by definition of convexity al must belong to any convex set that contains both 

a and a2. Note that both a2 and a are within f ( x l )  of XI .  Hence, by Corollary 2.1 the 

vertex al must also be within f ( x l )  of x l .  By assumption, al is an xl-relaxed filler. 

Hence, we in fact have that al  E n,k,,D(xi, f ( x i ) ) .  Thus a1 is a complete filler of f ,  

contradicting the definition of a hole. Therefore a is equidistant to all vertices of A. 

0 

Let P be a walk in a graph H. Recall that if a and b are vertices that each appear 

once on P ,  we denote by P[a ,  b] the section of the walk from a to b. 
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The next theorem tells us that the existence of a non-degenerate hole on a con- 

nected chordal graph implies the existence of a clique of relaxed fillers. We will use 

this later to bound the size of holes, and the distance between elements in the domain 

of holes, on connected chordal graphs. In addition, we will use Theorem 2.4 to prove 

that the existence of a non-degenerate hole on a connected chordal graph implies the 

existence of a particular isometric subgraph. 

Theorem 2.4. Let f be a non-degenerate hole on a connected chordal graph H with 

domain Df = {xl, . . . , xk).  Then there exists a clique A = {a l , .  . . , ak)  such that each 

ai is an xi-relaxed filler o f f ,  i = 1,.  . . , k ,  and 

Proof. The proof of this theorem will be given in two parts. First we will prove 

that we can choose an xi-relaxed f i i r  of f for i = 1,2 ,3 ,  such that these three relaxed 

fillers are mutually adjacent. Second we will prove that if {al ,  . . . , a,) is a maximal 

clique such that a; is an xi-relaxed filler of f for i = 1, . . . , p, then p = k. 

Choose an xi-relaxed filler ai of f for i = 1) 2,3, such that Cllz<j<3 d(ai, aj)  is 

minimized. Note that a l ,  a2 and a3 must be distinct, otherwise f is not a hole. If 

the vertices a l ,  a2 and a3 that we have chosen are mutually adjacent, then we have 

accomplished the first part the the proof. Thus without loss of generality, assume 

that a l  and a2 are not adjacent. 

Let Pi, be a shortest path from ai to a,, 1 _< i < j 5 3 and let PG~ denote 

the path Pi,j in reverse order. Let u be the first vertex on that has a nontrivial 

neighbour on P2,3. It is possible that u = a3. Let v be the nontrivial neighbour of u 

on P2,3 that is closest to az. Note that if u = a3, then v is the nontrivial neighbour 

of a3 on P2,3. Let P' be the path ~ ~ , 3 [ a ~ , u ] P ~ [ v , a 2 ]  from a1 to a,. Note that P' is 

chordless by the way we chose u and v.  We have depicted the paths described above 

in Figure 2.3. 

As the three paths P I ,  and P2,~ are chordless, we can use convexity to garner 

some information. 
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Figure 2.3: The paths P2,3 and PI 

First consider the path P' from a1 to a2. By the definition of convexity, P' must 

be contained in any convex set that contains both a l  and a2.  As ai is an xi-relaxed 

filler of f for xi, i = 1,2 ,  both a l  and a2 are close enough to all vertices of Df ,  

except for possibly xl and x2. This means that a1 and a2 are in nx+xl,z2D(x, f (x)),  

which is a convex set by Corollary 2.1. Thus u and v are also in nx+,, , ,2D(~,  f (x)) 

as u, v E V(P1). 

Now consider the path which contains u. As above, the path must be 

contained in any convex set that contains both a1 and a3. Then, by similar arguments, 

the path and hence u ,  is in the set nx+x1,x3D(x, f (x)).  We already know that u 

is also in the set nx+xl,x2D(x, f (x)).  Therefore u is in the set nxZXl D(x, f (x)) and so 

u is an xl-relaxed filler of f .  

Next consider the path P2,3 which contains v. By repeating the same argument 

as above, we see that v is an x2-relaxed filler of f .  Thus we can replace a l  by 

u and a2 by v. However, this contradicts the way we chose a l ,  a2, and a3 since, 

d(u, 21) + d(ul a31 + '('1 '3) < Cl<i<j<3 d(ai,  aj) .  Hence we may assume that there 

exists an xi-relaxed filler ai of f for i = 1 , 2 , 3  such that {al,  a2, a3) is a clique. 

Let p be the largest integer such that there exists a clique A, = {a l , .  . . , a,}, 

where ai is an xi-relaxed filler of f for i = 1, . . . , p. By the above work, we know 
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that p 2 3. If p = k, then we are done. Thus suppose that p < k and let a,+l be an 

 relaxed filler of f .  By Lemma 2.2, is equidistant to  all vertices of A, and 

so by the maximality of p, a,+l has no neighbours in A,. Let P be a shortest path 

from a,+l to a l  and let P' be a shortest path from a2 to  Clearly P and P' are 

of the same length. Thus the closed walk PP' contains a cycle C with the edge ala2. 

By Lemma 1.6, a1 and a2 have a common nontrivial neighbour w on C. As P and P' 

are both shortest paths of the same length, we may assume without loss of generality 

that w is the neighbour of a2 on P'; if w were a vertex on P' other than the neighbour 

of a2, then a l  P' [w, would be a path from a l  to a,+l that is shorter than P .  

By arguments similar to those in the first part of the proof, the path a l  Pt[w, is 

contained in n , + p + l D ( ~ , ,  f (x,)) and P' is contained in n ,Z2,p+lD(~, ,  f (x,)). Hence 

Pt[w, is contained in the set of  relaxed fillers of f .  In particular, w is 

an  rela relaxed filler of f with neighbours in A,, and so by Lemma 2.2, w is an 

 relaxed filler of f that is adjacent to all of A,. This contradicts the maximality 

of p. Hence there is a clique A = {al, . . . , ak} with a, an x,-relaxed filler of f for 

i =  1, . . . ,  k .  

By definition, d(xi, aj)  < f (xi) for all j # i. If the inequality is strict for some j, 

then as A is a clique, we would have that d(xi, a,) < d(xi, a,) + d(aj, ai) < f (xi) + 1 5 
f (xi), implying that a, is a complete filler of f .  Therefore we must have d(xi, a,) = 

f (xi) for all j # i and d(xi, ai) = f (xi) + 1 for all i = 1 , .  . . , k .  

0 

Corollary 2.2. Let H be a connected chordal graph and let f be a non-degenerate 

hole H .  Then IDfl 5 [IV(H)1/2J,i.e., the size off is bounded above by [IV(H)1/2J. 

Proof. By Theorem 2.4, there is a clique A in H that consists of exactly one 

x-relaxed filler of f for each x E Df .  Each of the relaxed fillers of f in A must be 

distinct as a hole has no complete fillers. Thus (A1 = I Df 1 .  We claim that A is disjoint 

from D f .  

Suppose there exists a vertex x E A n D f ,  and let a be the x-relaxed filler of f 

in A. Then as A is a clique, d(x, a )  = 1, and so we must have f (x) = 0. This is a 

contradiction by Proposition 2.3. 
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Therefore 21Df1 = IDf u A1 5 IV(H)I. As IDf( is an integer, IDf 1 5 LIV(H)(/2]. 

0 

Let H be a connected graph and let f be a hole on H with Df = {xl,  . . . , xk).  If f 

is a degenerate hole, i.e., if Ic = 2, then d(xl , x2) = f (xl ) + f (x2) + 1 by Proposition 2.2. 

There is a tightness here in that f is not feasible, and the vertices of the domain of 

f are just far enough away to  cause f to  not be feasible. If f is a non-degenerate 

hole, i.e., Ic 2 3, we know that d(xk, xj)  - < f (xi) + f (xj),  again by Proposition 2.2. In 

Figure 2.4, the graph H has a hole f with domain Df = {xl,  5 2 ,  x3) where f (xi) = 1 

for i = 1,2 ,3 .  We see that d(x2, x3) = 1 < f (x2) + f (x3) = 2. Thus the tightness of 

the degenerate hole is missing. However, we shall show that,  if we restrict ourselves 

to  connected chordal graphs and the variety they generate, tightness is retained 

Figure 2.4: A graph with a squished hole. 

Let H be a connected graph with hole f .  A pair X I ,  x2 E Df is squished if 

d(xl , x2) < f (x l )  + f (x2). A hole is called squished if it has a squished pair. Thus, 

the graph in Figure 2.4 has a squished hole. Consider a degenerate hole f '  on a 

connected graph H with Dff = {yl, y2). Then d(yl,  y2) = f '(yl) + f1(y2) + 1 by 

Proposition 2.2. Hence degenerate holes can't be squished. A connected graph that 

has no squished holes is called stretched. Recall that ARI, the class of absolute retracts 

with respect to  isometry, are exactly those graphs that do not have non-degenerate 

holes by Theorem 1.2. Thus all graphs in ARI are stretched. 
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Theorem 2.5. Each connected chordal graph is stretched. 

Proof. Suppose that there exists a connected chordal graph H that has a 

squished hole f .  Thus, there exist vertices X I ,  2 2  E Df such that d ( x l ,  x2) < f ( x l )  + 
f ( x 2 ) .  Then f must be a non-degenerate hole by Proposition 2.2, and so by Theorem 

2.4, there exist xi-relaxed fillers of f ,  vertices ai, i = 1,2 ,  such that a1 and a2 are 

adjacent and d(x i ,  ai)  = f ( x i ) + l  for i = 1,2 and d(x i ,  a j )  = f ( x i )  for i # j ,  i , j  = 1,2.  

Let P  be a shortest path from xl  to 22. Let w  be the vertex on P  that is distance 

f ( x l )  from x1 if the length of P  is more than f ( x l ) ,  and let w  be x2 otherwise. The 

length of P [ w ,  x2]  is at  most f ( x 2 )  - 1  as the length of P  is at  most f ( x l )  + f ( x 2 )  - 1. 

Let P' be a shortest path from x2 to a l .  We know that P' has length f ( 2 2 )  and so all 

the vertices of P' \ al are within distance f ( 2 2 )  - 1  of x2. Thus P [ w ,  x2] P1a2 is a walk 

from w  to a2 such that all the vertices except a2 and al are within f ( 2 2 )  - 1  of 2 2 .  This 

walk contains a chordless path P" from w  to a2. The penultimate vertex of P" must be 

a l ,  else a2 would have a neighbour within f ( x 2 )  - 1  of x2, implying d(a2,  x2) < f ( 2 2 ) ;  

this would contradict the infeasibility of f .  Recall that d ( x l ,  a2 )  = f ( X I )  and that we 

chose w  such that d ( x l ,  w )  < f ( x l ) .  Thus P" is a chordless path between elements of 

D ( x l ,  f ( x l ) )  that is not contained in D ( x l ,  f ( x l ) )  as d ( x l ,  a l )  = f ( x l )  + 1. This is a 

contradiction as D ( x l ,  f ( x l ) )  is convex by Theorem 2.3. 

Therefore connected chordal graphs can not have squished holes and so connected 

chordal graphs are stretched. 

0 

Let f be a non-degenerate hole of connected graph H, and let Df = { x l ,  . . . , x k ) .  

A base for f is an isometric subgraph J of H consisting of clique { a l ,  . . . , a k ) ,  vertices 

{ z l ,  . . . , z k )  such that zi is adjacent to all of { a l , .  . . , a k )  except for ai, and disjoint 

paths P I , .  . . , Pk where Pi is a path of length f ( x i )  - 1 from zi to a vertex xi. There 

are no other edges in J, see Figure 2.5. 

In [15], the authors proved that if a connected chordal graph H is not in AR,, 
then there exists a non-degenerate hole on H whose range is (1) which has a base. 

In fact, any non-degenerate hole f on a connected chordal graph H has a base by the 
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Figure 2.5: A generic hole base of a non-degenerate hole. 

theorem below. 

Theorem 2.6. Let H be a connected chordal graph and let f be a non-degenerate hole 

o n  H .  T h e n  f has a base in H. 

Proof. Let f be non-degenerate hole on a connected chordal graph H .  By 

Theorem 2.4, there exists a clique A in H that consists of one x-relaxed filler of f for 

each x E D f .  Without loss of generality choose a vertex x E Df .  We will construct 

a perfect elimination ordering with a particular distance property and then use this 

perfect elimination ordering to  find an induced path of length f (x) - 1 in H from 

x to  some vertex z that is adjacent to  all of A but the x-relaxed filler. Note that 

f ( x )  - 1 2  0 by Proposition 2.3. 

The disc DH(x,  f (x) - 1) is convex in H by Theorem 2.3. Also by Theorem 2.3, 

there exists a partial perfect elimination ordering yl, . . . , yl of H such that V(Hl) = 

D(x ,  f ( x )  - 1).  The subgraph HI of H is also chordal and {x) is trivially convex in 

HI. Hence there exists a partial perfect elimination ordering yl+l, . . . , ym of Hl such 

that ~ ( H L )  \ { ~ 1 + 1 ,  . . . , ~ m )  = {x). 

Clearly y l , .  . . , yl, y ~ + ~ ,  . . . , ym, x is a perfect elimination ordering of H such that 

DH (x, f (x)  - 1) = { Y ~ + ~ ,  . . . , ym, x}. For technical reasons, let y m + ~  = x. 
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Let a, be the x-relaxed filler of f in A. By Theorem 2.4, dH(x, a )  = f (x) for all 

a E A \ a, and dH(x, a,) = f (x) + 1. Thus A C {yl, . . . , yl). Let a be the vertex of 

A\{a,) in 91,.  . . , yl of lowest index, i.e., a = yk and A\{a,) 5 {yk, . . . , yl). The vertex 

a has a neighbour z that is f (x) - 1 from x. Obviously z must be in {ylS1,. . . , Y m + l )  

and z can't be adjacent to  a,. As the neighbours of a that appear after it in the 

perfect elimination ordering yl, . . . , ym+l form a clique, (A \ {a,)) U {z) is a clique. 

Let P be a path from z to  x of length f (x) - 1. Thus we have produced a vertex z 

that is adjacent t o  each vertex of A \ {a,) such that d(z, x)  = f (x) - 1. Observe that 

z and a, are not adjacent since dH(z1 x) = f (x) - 1 and dH(ax, x) = f (x) + 1. 

Let Df = {xl , .  . . , xk). By the above arguments, for each i, 1 < i 5 I; ,  there 

exists in H a chordless path Pi of length f (xi) - 1 from some vertex zi to  xi where zi 

is adjacent to  all of A but the xi-relaxed filler of f in A, call it ai. 

Consider the walk Q in H from xl  to  x2 we create by traveling backwards down 

Pl from xl  t o  21, then to as, then t o  z2 and then traveling from z2 t o  x2 on P2, i.e., 

pc1a3 p2. This walk has length f (xi)  + f (x2) as the path Pi has length f (xi) - 1 for 

i = 1 ,2 .  Since f is not squished by Theorem 2.5, dH(xl,  x2) = f (xl)  + f (x2). Thus Q 

is in fact a shortest path and so Q is isometric in H. Therefore if J is the subgraph 

of H induced by A U V(Pl)  U . . . U V(Pk), then J is an isometric subgraph of H. 

Hence f has a base in H 

2.3 Stretched graphs and the variety generated by 

chordal graphs 

We will use stretched graphs to  study the relationship between ARH and the variety 

generated by connected chordal graphs. 

From Chapter 1, we know that the variety generated by connected chordal graphs 

strictly contains AR,, i.e., the variety generated by connected chordal graphs contaiils 

A R ,  and there exists a graph that is in the variety generated by connected chordal 
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graphs which is not in AR,. It turns out that there exist connected chordal graphs 

that are not in ARH,  as seen in Figure 2.6; let H be the graph induced by the round 

vertices, and the let G be the entire graph. Even though each hole on H is also a 

hole on G, H is not a retract of G. However, there also exist graphs in ARH that 

Figure 2.6: The subgraph induced by the round vertices is a chordal graph that is not 
in A R H .  

are not in the variety generated by connected chordal graphs, as seen in Figure 2.4. 

The graph in this figure is in A R H  [43], but is not in the variety generated by chordal 

graphs; the graph is not stretched and the variety generated by connected chordal 

graphs is contained in the class of stretched graphs, by Corollary 2.3. Using stretched 

graphs, we can describe exactly the graphs that are both in ARH and in the variety 

generated by connected chordal graphs. 

Proposition 2.6. T h e  class of stretched graphs i s  a variety. 

Proof. To prove that the class stretched graphs is a variety, all we need to  consider 

are two cases; when a graph H is the retract of a stretched graph and when a graph 

H is the product of stretched graphs. 

If H is a retract of a stretched graph H', then clearly H can have no squished 

holes as H is an isometric subgraph of H'. 



CHAPTER 2. HOLES 50 

Now assume that H is the product of two stretched graphs, say H = HI x Hz. 

Suppose that H has a squished hole f .  Let rii : H + Hi be the projection onto the ith 

co-ordinate. The function fi on r i ( D f )  defined by fi (s) = min,,(,),, f (z) is certainly 

a distance constraint on Hi. Suppose that fi is not feasible. Then there exists a hole 

f,l on Hi such that  f,! 5 fi. Let x and y be a squished pair of f in H .  As .iri(x) and 

.iri(y) can't be a squished pair of f,l in Hi, we must have .iri(x) = .iri(y) or a t  least 

one of .iri(x) and .iri(y) is not in Df!. Without loss of generality, we may assume that 

Df! .iri(Df \ 9 ) .  Consider the set of y-relaxed fillers of f in H .  By assumption, 

there does not exist a vertex wi in Hi such that 

Thus there can't be a vertex w in H such that 

Hence f has no y-relaxed fillers. This contradicts the minimal infeasibility of f .  Thus 

fi has a complete filler wi in Hi for i = 1 , 2  and the vertex w = (wl, w2) will be a 

complete filler of f in H ,  contradicting the infeasibility of f in H. Thus H cannot 

have squished hole and so H is stretched. 

Therefore the class of stretched graphs is a variety. 

0 

Corollary 2.3. The variety generated by connected chordal graphs is a subset of the 

variety of stretched graphs. 

Proof. Any variety that contains conneckd chordal graphs must also contain 

the variety generated by connected chordal graphs. Since the class of stretched graphs 

is a variety by Theorem 2.5, the lemma is true. 

0 

The variety of stretched graphs is larger than the variety generated by connected 

chordal graphs, as seen by the graph in Figure 2.7; this graph is not in the variety 

generated by chordal graphs as it has a squished tree obstruction, a structure that 
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Figure 2.7: A stretched graph that is not in the variety generated by connected chordal 
graphs. 

will be discussed in Chapter 3. Note that the graph in Figure 2.7 was obtained by 

adding an edge to  the graph induced by the round vertices in Figure 2.6. 

We will show that within AR,, the variety of stretched graphs and the variety 

generated by connected chordal graphs are in the same. Before proving this, we 

present a technical lemma concerning holes, products of graphs and projections. 

Let H and J be connected graphs, and let be a homomorphism where H J .  

Let f be a hole on H. We say that y is a preserving map [45] of f if 

Equivalently, we say that y is a preserving map of f if Fj ( f  * )  = 8, where f * ( X I )  = 

min,(,),,, f ( x ) .  The terms hole separating [43] and gap preserving [57] have also been 

used. 

Lemma 2.3. 1431 Let H be a fixed connected graph. If for each hole f of H there 

exists a connected graph J f  and a function y f  : H -+ J f  such that y f  is a preserving 

map o f f ,  then H is isomorphic to a subgraph H of G ,  where 

G = II { J f  : f is a hole of H )  , 

such that each hole on H is a hole on G 



CHAPTER 2. HOLES 52 

Proof. The vertices of G are vectors indexed by the holes of H. Define a map 

q5 : H + G by q5(h) = ( y f  ( h ) ) f  for each hole f of H and let H = q5(H). Since yf is a 

homomorphism for each hole f on H ,  the function $ must also be a homomorphism. 

Let h and h' be distinct vertices of H ,  and let f' be the degenerate hole on H with 

Df l  = {h ,  h'} such that f f ( h )  = 0 and f f (h ' )  = dH(h,  h') - 1. Since there exists a 

graph Jfl and a function y f ~  : H t Jfl that is a preserving map of f ' ,  we have 

which implies that dc($(h),  $ ( h f ) )  2 dH(h,  h'). Hence $ preserves distances, and so 

H is isomorphic to  H. 

Now we will prove that each hole on H is a hole on G. Suppose that there exists a 

hole f on H such that & f # 0. Let f be the corresponding hole on H. Therefore ( 7 
there exists a graph J f  and a function yf : H t Jf that is a preserving map of f .  

Let n f  : G t Jf be the projection onto J f .  For any vertex h E V ( H ) ,  note that 

yf ( h )  = n f  ($ (h ) ) .  In particular, this is true for any vertex h E D f .  Hence the domain 

of f is exactly q5(Di). If g is a vertex in FG ( f ) ,  then 

dG(g, h)  5 f ( h )  for all h E Di. 

Therefore d J j  ( n f ( g ) ,  n f  ( h ) )  f ( h )  for all h E Di. By definition of H and since 

Dj = +(Of  ), 

d J j ( ~ f  ( g ) ,  ~ f ( h ) )  I f ( h )  for all h E Df 7 

which is a contradiction t o  the way we chose J f  Therefore f is certainly an infeasible 

distance constraint on G. As in the proof on Proposition 2.5, it is easy to see that f 

must in fact be a hole on G. 
0 

Thus if H is in ARH and G is a graph as constructed in Lemma 2.3, then there 

exists a retract of G which is isomorphic to  H. 

Theorem 2.7. I n  ARH, the variety generated by connected chordal graphs and the 

variety of stretched graphs are the same. I n  other words, if we let X be the variety 
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generated by connected chordal graphs and let Y be the variety of stretched graphs, 

Proof. If a graph H is in the variety generated by connected chordal graphs, 

then by Corollary 2.3, H is stretched. Thus this containment obviously holds when 

we restrict ourselves to A X H .  

Now consider a stretched graph H in AR,. By Lemma 2.3, if for each hole f 
of H we can find a preserving map of f from H to a chordal graph Jf, then H is 

isomorphic to a retract of ITJf. In particular, H would be in the variety generated by 

chordal graphs. Thus our task now is to find a chordal graph J for each hole f of H 

such that there is a preserving map of f from H to J. 

Let f be a degenerate hole of H with Df = {x, y). Let J be a path UO, v1,. . . ,up 

with p = f (x) + f (y) + 1. Then it is easy to  see that a function y : H + J defined by 

ul i f d H ( h , x ) = l < p  
y(h) = 

up otherwise 

is a preserving map of f from H to J 

If H only has degenerate holes, there is nothing more to be done. Thus we may 

assume that H has a non-degenerate hole f with Df = {yl, . . . , yk).  Since H is 

stretched, it has no squished holes and so 

Let J be a graph that consists of independent paths PI, . . . , Pk and a clique {al ,  . . . , ak),  

with { a l , . .  . , ak)  U V(Pi) U . . . U V(Pk) a partition of V( J ) .  Each path Pi is a path 

of length f (yi) - 1 from xi to zi where zi is adjacent to all of {al ,  . . . , ak)  but ai ,  for 

i = 1 , .  . . , k. There are no other edges in J than those mentioned; see Figure 2.5. 

Note that dJ(xi, xi) = f (yi) + f (yi) for i # j .  Clearly, J is chordal and the distance 

constraint f '  on J defined by f l(xi)  = f (yi) for all i = 1, . . . , k is a hole. In fact J 

itself is a base for f'. 



CHAPTER 2. HOLES 

Define a map y  : H -t J  by 

the jth vertex of Pi if d H ( h , ~ i )  = j < f ( ~ i )  

r(h) = 
a j ,  where j is the smallest integer 

if d H ( h ,  yi) 2 f  ( y i )  for all i = 1 , .  . . , k 
such that d H ( h ,  y j )  > f  ( y j )  

We claim that y  is a preserving map of f .  

First note that y  is well defined. Let h be a vertex of H. If d H ( h ,  y,) < f  ( y i )  for 

some i ,  then d H ( h ,  y,) > f  (y,) for all p # i by equation 2.1. Further, if d H ( h ,  y,) 2 
f  ( y i )  for all i = 1, . . . , k,  there must some index p such that d H ( h ,  y,) > f  (y,) as f  is 

not feasible. 

Now we will show that y  is a homomorphism. 

Let hh' be an edge of H with h # h'. Without loss of generality assume that 

d H ( h ,  yi) = j < f ( y i )  for some i = 1 , .  . . ,  k .  Then j - 1  5 d H ( h l ,  yi) 5 j + 1  5 
f  ( y i )  If d H  (h', y i )  < f  ( y i ) ,  then clearly y  (h )  and y  ( h ' )  are adjacent vertices of the 

path Pi If d H  (h', pi) = d H ( h ,  y i )  + 1  = f  ( y i ) ,  then y ( h )  is zi and y ( h 1 )  is some a j ,  

with j # i. Again y ( h )  and y ( h 1 )  are adjacent vertices in J .  Lastly, assume that 

dH (h ,  y i ) ,  d H  (h', yi) 2 f  ( y i )  for all i = 1,  . . . , k.  Then y  ( h ' )  and y  ( h )  are vertices in 

{ a l , .  . . , a k ) .  As { a l , .  . . , a k )  is a clique in J ,  y ( h )  and y ( h 1 )  are adjacent. Therefore 

y  is a homomorphism from H to J. 

By construction, f  ' ( x i )  = y (  f  ( y , ) )  for i = 1,  . . . , k and Fj ( f ' )  = 8. Hence y  is a 

preserving map of f from H to J .  

0 

Let H be a connected chordal graph and let f  be a non-degenerate hole on H. 

I11 the proof of Theorem 2.7, we essentially showed that f  has a base J ,  and J is a 

retract of H. 
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2.4 Near unanimity functions and dismantlability 

In Chapter 1, we presented a theorem of equivalences for AR,, Theorem 1.2. In 

particular, Theorem 1.2 stated that ARI is exactly the set of connected graphs that 

admit majority functions and that all graphs in ARI are dismantlable. Now we 

will show the relationship between ARH and the graphs that admit near unanimity 

functions and the graphs that are dismantlable. 

Let H  be a graph and let k 2 3 be an integer. Let M k ( H )  be the graph we 

obtain from H~ by identifying all w with Ic - 1  components equal to x with the vertex 
- x = (x, x, . . . , x). More specifically, M k ( H )  is the graph whose vertex set is 

v ( H ~ )  \ {u I u is nearly unanimous) 

and whose edge set is 

{uw I U , W  E V ( M k ( H ) )  and uw E E ( H ' ) }  U 

{ZW I x E V ( H )  and 3 uw E E ( H ~ ) ,  where x occurs Ic - 1 times in u }  

When we constructed M k ( H ) ,  we did not add any edges between the constant 

vertices of H ~ .  Thus the subgraph of M k ( H )  induced by {T  I x E V ( H ) )  is isomorphic 

to  H ;  we will denote this subgraph by H M k .  We will show that H  admits a near 

unanimity function of arity Ic if and only if H M k  is a retract of M k ( H ) ,  and we will 

also show that all holes on H M k  of size at most Ic - 1  are also holes on M ( H ) .  Then, 

we use this information to relate ARH and the graphs that admit a near unanimity 

function. 

Proposition 2.7. Let H  be a graph and let Ic 2 3 be an integer. Then H admits a 

near unanimity function of arity Ic if and only if H M k  is a retract of M k ( H ) .  

Proof. Suppose that H  admits a near unanimity function 7  of arity Ic .  Define a 

function 13 : M k ( H )  -+ H M k  as follows: 

Q(w)  = ~ ( w )  for all w E M k ( H ) .  
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We claim that 8 is a retraction from M k ( H )  to H M k .  The function 8 is well defined 

as the vertex set of M k ( H )  is a subset of V ( H k ) .  It is easy to see that 8 fixes each 

vertex of H M k ,  and that the range of 0  is V ( H M k ) .  It is also easy to verify that 8 is 

a homomorphism. 

Now suppose that there exists a retraction 8 from M k ( H )  to  H M k .  Then define 

the function q  : H k  + H  as follows: 

x  if w E V ( M k ( H ) )  and 0 ( w )  = (: 
~ ( 4  = 

y if y appears Ic - 1 times in w. 

By definition, q  sends all constant and nearly unanimous vertices of H k  to  the appro- 

priate vertices in H .  Again, it is easy to see that q  is a homomorphism, and hence a 

near unanimity function. 

Let H  be a connected graph arid let p be an integer, p > 3. Before proving that 

every k-hole on H M p  is a hole on M p ( H ) ,  where 2 5 Ic 5 p- 1, we will first show that 

every 2-hole on H M P  is a 2-hole on M p ( H ) ,  3 5 p, i.e., H M p  is an isometric subgraph 

of M p  ( H )  . 

Lemma 2.4. Let H  be a graph and p 2 3 an integer. Then H M p  is an isometric 

subgraph of M p ( H ) .  

Proof. Suppose that H M p  is not an isometric subgraph of M p ( H ) ;  thus there 

exits a path P  in M p ( H )  from a vertex : to another vertex j j  of length dMp(H)( : ,  j j ) ,  

where d H M  ((:, j j )  > d M p ( H ) ( ( : ,  v). Without loss of generality, we may assume that 

the internal vertices of P lie outside H M p .  Thus the internal vertices of P  consist of 

vertices that are neither constant nor nearly unanimous; recall that we removed all 

nearly unanimous vertices when creating M , ( H ) .  Let P' = P  \ {T ,  ) .  Then, by the 

definition of M p ( H ) ,  there exists vertices x' and y' of HP such that x'P1y' is a path 

in HP where x  occurs a t  least p - 1 times in x' and y occurs at least p - 1 times in y'; 

it is possible that : = x' or j j  = y'. Kote that P and x1P'y'  have the same length. 

Since p > 3, there exists an index q such that .ir,(xf) = x  and .irq(yl) = y, where .irq is 

the qth projection. Therefore d H p ( x l ,  y ' )  > d H ( x ,  y )  = d H M P ( z 1 i j ) .  This implies that 



CHAPTER 2. HOLES 5 7 

the path P' in HP has length a t  least d H M p  ( E ,  g), which is impossible since the path 

P  has length a t  most d H M p  (z, v) - 1  in M p ( H ) .  

0 

Lemma 2.5. Let H  be a  connected graph and p 2 3 an integer. I f f  is a  hole of size 

k ,  k  5 p - 1 ,  on H M p ,  then f is also a  hole on M p ( H ) .  

Proof. Suppose that there exists a hole f on H M p  of size k ,  k 5 p - 1, such that 

f is a feasible distance constraint on M = M p ( H ) .  We assume that f is a minimum 

such hole on H M p  in the following sense: if f '  is a hole on H M P  of size at most k  

such that CYED,, f ' ( y )  < CZED, f ( x )  then f '  is also a hole on M .  Note that by 

Lemma 2.4, we may assume that 2 < k  5 p - 1. 

Since f is feasible on M but not on H M p ,  there exists a vertex a E Fm ( f )  \ 
V ( H M p ) .  Let Df = { x l , .  . . , x k }  and let P, be a shortest path in M  from xi to a, 

i  = 1 , .  . . , k .  Then, Pi has length a t  most f ( x i ) ,  i  = 1 , .  . . , k .  

We will prove that xi is the only vertex on Pi that is in H M p .  Let y ,  be the last 

vertex on Pi that is in H M P ,  i = 1, . . . , k .  Suppose that there exists an index j such 

that x j  # y j .  As H M p  is an isometric subgraph of M by Lemma 2.4, we may assume 

that P,[xi ,  y i ]  is in H M p ,  i  = 1, . . . , k .  Let f' be a distance constraint on H M P  with 

domain DP = { y l , .  . . , y k }  defined by f 1 ( y i )  = f ( x i )  - d ~ ~ ~ ( x ~ ,  y i )  for i = 1 , .  . . , k .  

Then f '  is clearly a hole on H M P  such that f a feasible distance constraint on M .  

Since x j  # y,, EYED,/ f 1 ( y )  < CxEDf f ( x ) ,  we have a contradiction. Therefore xi is 

the only vertex on Pi that is in H M P .  

Consider the vertex xi, i = 1 , .  . . , k .  Since xi E V ( H M p ) ,  xi is a constant vertex 

and so there exists a vertex zi E V ( H )  such that xi = Zi, i  = 1 , .  . . , k .  Let P,' = P,\xi, 

i  = 1 , .  . . , k .  Because xi is the only constant vertex on Pi and by the definition of M ,  

there exits a vertex yi in HP such that yip,( is a path in H P  and ri occurs at least 

p - 1  times in y i ,  i = 1, . . . , k .  Note that the length of yi P,I is equal to the length of 

Pi, which is bounded above by f (xi). Thus d H p  ( y , ,  a )  < - f ( x , ) .  Lastly, as k  < p - 1, 

there exists an index q such that n,(y,) = zi for i  = 1 , .  . . , k ,  where T ,  is the qth 

projection. Then d ~ ( z i ,  TTTq(a))  F d ~ P ( y , ,  a )  = dM(x; ,  a )  F f ( x i ) ,  i  = 1 ,  . . . , k .  Let 
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contradicting the infeasibility of f on HMp.  

Thus, we have proved that if H is a connected graph and p is large enough, all 

holes on HMp are also holes on M,(H).  Using Proposition 2.7 and Lemma 2.5, we 

can now comment on H and near unanimity functions, when H E ARH.  

The following theorem is implied by [33] with they state that the k-Helly property 

is equivalent being of strict width k; strict width k is the same as admitting a near 

unanimity function of arity k + 1. 

Theorem 2.8. Each graph H in A R H  admits a near unanimity function. In partic- 

ular, there exists an integer k such that all holes on H are of size at most k - 1 and 

H admits a near unanimity function of arity k .  - 

Proof. As the domain of any hole on H is a subset of V(H) ,  there exits an 

integer k such that all holes on H are of size a t  most k - 1; indeed k - 1 < IV(H)I. 

Consider the graph H M k .  AS HMk and H are isomorphic, HMk E A R H  and all 

holes on HMk are of size a t  most k - 1. Then, by Lemma 2.5, all holes on HMk are 

holes on M k ( H ) ,  implying that HMk is a retract of M k ( H ) .  Therefore H admits a 

near unanimity function of arity k by Proposition 2.7. 

0 

Corollary 2.4. If H is graph in ARH and in the variety generated b y  connected 

chordal graphs, then H admits a near unanimity function of arity k, where k = 

max-3 lIV(H)II2J + 1). 

Proof. Let H be a graph in AR, and in the variety generated by connected 

chordal graphs. 

If H has only degenerate holes, then H is in AR,,  and thus it admits a majority 

function, all by Theorem 1.2. Hence assume H has a t  least one non-degenerate hole. 
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If H is chordal, then by Corollary 2.2, the size of the largest hole of H is a t  most 

LIV(H)1/2J. Thus by Theorem 2.8, H admits a near unanimity function of arity 

LIV(H> 1/21 + 1. 

If H is in the variety generated by chordal graphs, then as seen in the proof of 

Theorem 2.7, there exist connected chordal graphs J1, . . . , J, such that each graph Ji 

has no more vertices than H and H is a retract of n:=, Ji .  

Note that  if Ji admits a near unanimity function of arity k, i = 1, .  . . , p, then H 

also admits a near unanimity function of arity k as the class of graphs that admit 

a near unanimity function of arity k is a variety by Theorem 1.5. By the reasoning 

in the previous paragraphs, the chordal graph Ji admits a near unanimity function 

of arity max (3, LIV(Ji)(/2] + I ) ,  i = 1, . . . , p. Therefore H admits a near unanimity 

function of arity max (3, LJV(H) 1/21 + 1). 

0 

In [15], the authors have the following bound for the arity of near unanimity 

functions on chordal graphs: 

Theorem 2.9. 1151 Let H be a chordal graph o n  n vertices with max imum clique 

size w, w 2 3. Then  H admits a near unanimity function of arity k, where k 5 

min {n - w + 2, n/(w - 1) + 1). I n  particular, k - 1 5 n - &. 

Corollary 2.4 and Theorem 2.9 are both best possible. The chordal graph in 

Figure 1.2 is a chordal graph on 6 vertices that admits a near unanimity function of 

arity 4 by these results, but, by the following proposition, does not admit a majority 

function as the graph has a 3-hole. 

Proposition 2.8. 1151 Let H be a connected graph with a hole of size k > 3. The H 

does not admit a near unanimity function of arity k. 

Proof. Let f be a hole of H of size k, k > 3. Let D j  = {xl,  . . . , xk), and let ai 

be an xi-relaxed filler of f for i = 1 , .  . . k. Now consider the vectors in the vertex set 

of Hk Let vxz be the vector with ai in its ith position and xi in all other positions, 

for i = 1 , .  . . , k and let a be the vector ( a l , .  . . , ak) .  It is clear that there is a path 



CHAPTER 2. HOLES 60 

from vxl to a of length f (xi) in H k ,  Thus there can't be near unanimity function 

of arity k, as vxi would be forced to be mapped to xi, i = 1,.  . . , k, hence making it 

impossible to  send a anywhere. 

0 

Corollary 2.5. Let H be a graph in ARH and let k - 1 be the size of the largest hole 

of H .  Then H admits a near unanimity function of arity k ,  but does not admit a near 

unanimity function of arity k - 1. 

In Section 1.2.2, we presented basic properties of dismantlable graphs, and those 

graphs that admit near unanimity functions. In particular, we presented Theorem 1.7, 

stating that connected graphs that admit near unanimity functions are dismantlable. 

We can now use this to relate ARH and dismantlable graphs. 

Corollary 2.6. Each graph in ARH is dismantlable. 

Proof. Let H be a graph in ARH; thus H is connected and H admits a near 

unanimity function by Theorem 2.8. By Theorem 1.7, H is dismantlable. 

0 

Therefore, as we moved from AR, to AR,, we have retained the following prop- 

erties: admitting a near unanimity function and being dismantlable. 



Chapter 3 

Tree Obstructions 

A leaf-labeled tree (T ,  t )  is a tree T ,  together with a labeling ! of its leaves; we denote 

by l ( x )  the label of leaf x. Suppose TI is a subtree of T such that all leaves of TI are 

also leaves of T .  Let !' be labeling of the leaves of T1 such that P(x) = O(x) for all 

leaves x of TI. Then we say that the leaf-labeled tree (TI, e l )  is a leaf-labeled subtree 

of the leaf-labeled tree (T ,  !), denoted by (TI, P )  C (T ,  !). 

Figure 3.1: Let (T ,  e) be the leaf-labeled tree on the left, (TI, P )  the leaf-labeled tree 
in the middle and (T", t") the leaf-labeled tree on the right, where the labels of the 
of leaves are as indicated in the figure. 

Consider the leaf-labeled trees in Figure 3.1. While T' and T" are subtrees of T, 

neither (TI, t') nor (TI1, ! I 1 )  is a leaf-labeled subtree of (T ,  !); there is a leaf of TI that 

is not a leaf of T ,  and while all leaves of TI1 are leaves of T ,  there exists a leaf x of T 
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and T" such that !(x) # P1(x). 

Recall that we subdivide an edge e of a graph H by removing e from H and 

replacing it with a path of length 2. A graph HI is called a subdivision of a graph 

H if H' can be obtained from H by a sequence of edge subdivisions. Note that H 

is a subdivision of itself by the empty sequence of edge subdivisions. Let (T, C) a 

leaf-labeled tree. If T' is a subdivision of T, then we say that (TI, e) is a subdivision 

of (T, el. 

A tree constraint on a connected graph H is a leaf-labeled tree (T, e), where the 

range of e is a subset of V(H) .  A tree constraint (T, !) on a connected graph H is 

called feasible if there exists a homomorphism 4 from T to H such that $(x) = l ( x )  

for each leaf of x of T; we say that 4 extends e. If such a homomorphism does not 

exist, then (T, e) is called infeasible. 

As with the distance constraints of Chapter 2, we will define a partial order on the 

set of tree constraints on a given connected graph H .  Let (TI, el) and (T, e) be two 

tree constraints on H. We say that (TI, e') 5 (T, e) if (TI, P) is a subdivision of some 

leaf-labeled subtree of (T, !). Moreover (TI, P) = (T, e) if T = TI and P(x)  = e(x) for 

all leaves x of TI. We say that (TI, el) < (T, !) if (TI, el) 5 (T, e) and (TI, el) # (T, e). 
In particular, if Te is the tree obtained by subdividing the edge e of tree T, then 

(Te  e) < (T, el. 

Let H be a connected graph. Let (T, e) a be tree constraint on H .  We say 

that (T, C) is a minimally infeasible tree constraint, or a tree obstruction, if (T, e) is 

infeasible and all tree constraints (TI, el) on H such that (TI, el) < (T, e) are feasible. 

Thus, for each edge e of T, the tree constraint (T,, e) is feasible as (T,, C) < (T, e),  
and so there exists a homomorphism from Te to  H that extends !; denote such a 

homomorphism by 4,. 

Related structures have been studied recently by others. Infeasible tree constraints 

have been studied by [15] under the name of tree certificates. More generally, let H 

and J be graphs, and let Q a partial labeling of the vertices of J with the vertices of 

H .  Then (J, e) is an obstruction [49] or a conflict [15] on H if there does not exist 

a hon~omorphism 4 : J -+ H that extends e, but there does exist a homomorphism 



CHAPTER 3. TREE OBSTRUCTIONS 6 3 

4 : J' -+ H that extends !' for any proper subgraph J' of J ,  where !'(x) = ! ( x )  for 

all labeled vertices of J'. 

Proposition 3.1. Let H be a connected graph and let (T ,  !) be tree constraint on H .  

i . )  For any tree constraint (TI, ! I )  o n  H such that (T', !') < (T ,  !), there exists an  

edge e of  T such that (TI, !') <_ (T,, !) < (T ,  !). 

ii .) Let e = tt' be an  edge of T .  Then  

where 4, is  a homomorphism from T, to H that extends !. 

Proof. Let (T',  !') be a tree constraint on H such that (TI, P) < (T ,  !). Suppose 

that (TI, !') a leaf-labeled subtree of (T,  !) and that T' is a proper subgraph of T .  Then 

there exists an edge e E E ( T )  \ E (TI). Then (TI, !') < (T,, !). Now suppose that there 

exists a leaf-labeled subtree (T",  P') of (T ,  !) such that (TI, ! I )  is subdivision of (T", !") 

and T' # T". Then there exists an edge e E E(TU)  such that e was subdivided in the 

creation of (TI, P). Then clearly (TI, !') 5 (T,", !") 5 (T,, !) < (T ,  !). 

ii. As (T ,  !) is a tree obstruction, (T,, !) is a feasible tree constraint on H.  Therefore - 

there exists a homomorphism 4, : T, -+ H that extends !. As 4, is a homomorphism, 

dH(4,(t), qhe(tt)) 5 2. If 4,(t) and 4,(t1) are adjacent in H ,  then the restriction of 

4, to V ( T )  is a homomorphism from T to H that extends !. This contradicts the 

infeasibility of (T ,  !). Hence dH (4, ( t ) ,  4,(t1)) = 2. 

0 

Proposition 3.2. Let H be a connected graph. Let (T ,  !) be a tree obstruction o n  H 

and let x and y be two distinct leaves of T .  

ii.) If T is  not a path, then 
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Proof. Suppose that T is a path. If d H  ( ! ( x ) ,  ! ( y ) )  < d T ( x ,  y ) ,  then we could 

map the path T to a walk of length d T ( x ,  y )  in H between e ( x )  and e ( y ) ;  the needed 

walk is a shortest l ( x )  - l ( y )  path in H plus the vertex l ( y )  repeated as many times as 

necessary. Since (T ,  l )  is infeasible, this is impossible, and so d H ( l ( x ) ,  l ( y ) )  > d T ( x ,  3 ) .  

Let e be a non-loop edge of T .  As (T,  !) is minimally infeasible, the tree constraint 

(T,, l )  is feasible on H and so there exists a homomorphism 4, : T, -+ H that extends 

l. Thus, d H  ( l ( x ) ,  l ( y ) )  5 dTe ( x ,  9 ) .  We created T, by subdividing the edge e of T ,  

and so d T e ( x ,  y )  = d T ( x ,  y )  + 1. Therefore d H ( e ( x ) ,  l ( y ) )  = d T ( x ,  y )  + 1. 

ii. Now suppose that T is not a path. Then there exists an edge e that is not on - 
the unique x - y path in T .  As (T,  l )  is a tree obstruction, (T,, !) is a feasible tree 

constraint on H and so there exists a homomorphism 4, : T, -+ H that extends t. 
Therefore d H ( l ( x ) ,  l ( y ) )  5 d T e ( x ,  y ) .  Since we chose e to be an edge off the x - y path 

in T ,  dT ( X I  3 )  = dTe (x, 3 ) .  Hence dH ( ! ( X I  e ( ~  )) 5 ~ T ( x ,  Y ). 

Let T be a tree. A vertex b E V ( T )  of degree at  least 3 is called a branching point 

of T .  In addition, a leaf x of T is called direct leaf of the vertex b in T if b is the only 

branching point on the unique path from b to x in T .  

At this point we would like to point out a correspondence between tree constraints 

on a connected graph H and the distance constraints (see Chapter 2) on H .  This 

correspondence will.demonstrate that tree constraints are a very natural generalization 

of distance constraints. 

Proposition 3.3. Let H be a connected graph. 

i . )  For each distance constraint f o n  H there exists a tree constraint (T,  !) o n  H 

such that f i s  feasible if and only if (T,  t )  is feasible. 

i i . )  For each tree constraint (T,  !) o n  H ,  where T has at most  one branching point 

and distinct leaves of T have distinct labels, there exists a distance constraint f 

o n  H such that (T ,  t) i s  feasible if and only i f f  i s  feasible. 

Proof. Let f be a distance constraint on H with Df = { x l , .  . . , x k ) ,  k 2 2. 

If k = 2, let T be a path of length f ( x l )  + f ( x g )  = d ~ ( x 1 , x Z )  - I ,  with endpoints 
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(leaves) yl and y2. If k > 3, let T be a tree with branching point b, where b has direct 

leaves yl, . . . , yk such that dT(b, yk) = f (xk),  i = 1 , .  . . , k .  In both cases, assign the 

leaf yi the label t(yi) = xi, for i = 1 , .  . . , k .  Clearly f is feasible if and only if (T, t) 
is feasible. 

ii. Let (T, t) be a tree constraint on H ,  where T has at  most one branching point and - 
distinct leaves of T have distinct labels. Let {yl, . . . , yk) be the leaves of T. Then let 

f be a distance constraint on H with Df = {[(y,), . . . , e(yk)) defined by 

if k = 2, or defined by 

f(e(yi)) = dT(yi,b) for i = 1 , .  . . , I c  

if k 2 3 and b the is branching point of T. Note that f is well defined as distinct 

leaves of T have distinct labels. Clearly (T, t) is feasible if and only if f is feasible. 

0 

3.1 Absolute retracts with respect to tree obstruc- 

tions 

In this section, we present a new class of absolute retracts with respect to a necessary 

condition N ,  where N has to do with preserving tree obstructions. Let H be a con- 

nected graph and let G be a connected supergraph of H .  As with distance constraints, 

each tree constraint (T, t) on H is a tree constraint on G because t (x)  E V(H) C V(G) 

for all leaves x of T. We will prove that if a graph H is a retract of a supergraph 

G,  then all tree obstructions on H are also tree obstructions on G. We will then 

use this property to define the class of absolute retracts with respect to tree obstruc- 

tions. Lastly, we will prove that the class of absolute retracts with respect to tree 

obstructions is a variety. 
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Proposition 3.4. Let H be a connected graph, and let G  be a connected supergraph 

of H such that H is a retract of G .  Let ( T ,  e )  be an infeasible tree constraint on H .  

Then ( T ,  e )  must also be infeasible on G.  

Proof. Suppose not. Then there exists a homomorphism 4 : T t G that extends 

k'. Let 6' : G t H be a retraction. Then 6' o 4 is a map from T to H such that for 

each leaf t of T ,  6'(4(t))  = 6'( l ( t ) )  = e( t ) .  Thus 6' o 4 : T t H is an extension of l ,  

contradicting the infeasibility of ( T ,  l )  on H .  

Thus, by Proposition 3.4, if a connected graph H is a retract of a connected 

supergraph G ,  it is necessary that each infeasible tree constraint on H is an infeasible 

tree constraint on G. We will now show that this is equivalent to each tree obstruction 

on H being a tree obstruction on G. 

Proposition 3.5. Let H be a connected graph and let G  be a connected supergraph 

of H .  Then the following conditions are equivalent: 

i .) Each infeasible tree constraint on H is an infeasible tree constraint on G .  

ii.) Each tree obstruction on H is a tree obstruction on G .  

Proof. i + ii. Assume that each infeasible tree constraint on H is an infeasible 

tree constraint on G. Let (T, e )  be a tree obstruction on H. By definition ( T ,  e )  is an 

infeasible tree constraint on H, and thus ( T ,  l )  is an infeasible tree constraint on G 

by assumption. Now all we have to do is prove that ( T ,  l )  is minimally infeasible on 

G. By Proposition 3.1, it is sufficient to prove that (T,, e )  is feasible on G for each 

e E E ( T ) .  Since ( T ,  l )  is a tree obstruction on H, (T,, e )  is feasible on H for each 

e E E ( T ) .  Thus there exists a homomorphism 4, : T, + H that extends e. As H is a 

subgraph of G ,  we have that 4, : Te t G extends e for each edge e E E ( T ) .  Therefore 

(T,, !) is a feasible tree constraint on G for each e E E ( T ) .  

ii + i. Assume that each tree obstruction on H is a tree obstruction on G. Suppose 

that there exists an infeasible tree constraint (T, l )  on H that is feasible on G. There 
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exists a tree obstruction (TI, €I) on H such that (T', €I) < (T, l). By assumption, 

(TI, C) is also a tree obstruction on G. Since (T, l) is feasible on G, there exists a 

homomorphism 4 : T -, G that extends C. Since (TI, C') < (T, C ) ,  there exists a 

leaf-labeled subtree (T", l") of (T, C) such that (TI, C) is a subdivision of (T", C"). If 

(T", C") = (TI, C'), then the restriction of 4 to T' is a homomorphism from T' to  G that 

extends C, which is a contradiction as (TI, C) is a tree obstruction on G. Thus (TI, C') 

is a subdivision of (Tu,C"). Hence there exists an edge e of T" that we subdivided 

in the process of making T'. Let 4" be the restriction of 4 to TI'. We can create a 

homomorphism from T," to  G that extends C". Let x and y be the endpoints of e in 

T", and let xzy be the new path of length 2 in T:. Then define 4: : T: -+ G as 

follows: 
$"(x) i f t = z  

4','(t> = 
$"(t) otherwise. 

This is a homomorphism as 4" is a homomorphism and because G is reflexive. It easy 

to see that 4; : T," -, G extends C". Continuing in this manner, we can thus create a 

homomorphism 4' : TI -, G that extends C', contradiction. 

0 

Let H be a connected graph and let G be a connected supergraph of H. As 

mentioned after Proposition 3.4, a necessary condition for H to be a retract of G is 

for each infeasible tree constraint on H to be an infeasible tree constraint on G. By 

Proposition 3.5, this is equivalent to  saying that a necessary condition for H to be a 

retract of G is for each tree obstruction on H to be a tree obstruction on G. Now we 

can define the class of absolute retracts with respect to tree obstructions. 

The class of absolute retracts with respect to tree obstructions, denoted by AR,, is 

the set of all connected graphs H such that H is a retract of a connected supergraph 

G whenever each tree obstruction on H is also a tree obstruction on G. 

Note that if H is connected graph that is a subgraph of another connected graph 

G, where each tree obstruction on H is a tree obstruction on G, H need not be a 

retract of G,  see Figure 4.1. Let H be the graph induced by the round vertices, and 

let G be the entire graph, where the square vertices form a clique. 
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Let H be a graph in ARH. Then H is a retract of a connected supergraph G 

whenever each hole on H is a hole on G. Let G be a connected supergraph of H 

such that each tree obstruction on H is a tree obstruction on G. By Proposition 3.3, 

this implies that each hole on H is a hole on G and so H is a retract of G. Thus 

ARH c ARo. 

Theorem 3.1. T h e  class of graphs AR, i s  a var ie ty .  

Proof. We will first prove that AR, is closed under taking retractions, and then 

secondly we will prove that AR, is closed under taking products. 

Let H be graph in AR,, and let H' be a retract of H .  Let G' be a connected 

supergraph of H' such that all infeasible tree constrainsts on H are infeasible tree 

constraints on G'. If we can prove that H' is a retract of GI, then H' E AR, by 

Proposition 3.5. 

As in the proof of Theorem 2.1, we may assume that H' = H n GI. Let G = H U G'. 

As H and G' are both connected, so is G. Thus, if we can prove the each infeasible 

tree constraint on H is an infeasible tree constraint on G, then H is a retract of G by 

Proposition 3.5. We can use this to prove that H' is a retract of G'. 

Let (T, l) be an infeasible tree constraint on H .  Suppose that (T, l) is feasible 

on G. Hence there exists a homomorphism 4 : T + G that extends P. Let T' be 

the largest subtree of T such that $(TI) C G'. For each leaf x' of TI, assign x' the 

label Pt(x') = @( x). Since H' = H G', G = H U G', and all paths from G \ H to 

H \ G pass through H', we have that Q1(x') E V(Hf)  for each leaf x' of T'. It is easy 

to see that (T', P) is an infeasible tree constraint on H'. Then, by the way that. we 

chose GI, the tree constraint (T', PI)  must infeasible on G' also. Yet if we restrict the 

homomorphism @ to  V(T1), we have a homomorphism from T' to G' that extends 

Q', contradiction. Hence (T, P) must be infeasible on G, and so H is a retract of G. 

Using the same arguments as in the proof of Theorem 2.1, we can now construct a 

retraction from G' to H'. 

Let H = H1 x Hz,  where HI ,  H2 E AR,. Let .iri : H + Hi be the ith projection, 

i = 1,2.  Let G be a connected supergraph of H such that every infeasible tree 
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constraint on H is also an infeasible tree constraint on G. If we can prove that H is 

a retract G, then H E AR, by Proposition 3.5. Let Gi be the graph we obtain from 

G by identifying all the vertices h, h' E V ( H )  such that .rri(h) = ni(hf) .  Clearly Gi is 

connected and Hi is a subgraph of Gi for i = 1,2. We will prove that each infeasible 

tree constraint of Hi is also an infeasible tree constraint of Gi, thus implying existence 

of a retraction Oi : Gi -+ Hi, for i = 1 , 2 ,  by Proposition 3.5. The retractions O1 and O2 

can then be used to construct a retraction from G to H, as in the proof of Theorem 2.1. 

Let ( T I ,  e l )  be an infeasible tree constraint on H1 where Tl has leaves { x l ,  . . . , xk ) .  

Let y be a vertex of H2. Then the tree constraint (TI ,  !) on H with !(xi)  = ([ , (x i ) ,  y), 

i = 1, .  . . , k ,  must be an infeasible tree constraint on H. Suppose that there exists 

homomorphism : Tl -+ G1 that extends !. Then the homomorphism 4 : Tl -+ G 

defined by { ( 4 d t )  Y) if 41 ( t )  V!HlI 
= 4l ( t )  otherwise 

extends !, which contradicts the way we chose G. Therefore ( T I ,  e l )  must also be 

an infeasible tree constraint on G1,  and so there exists a retraction O1 : G1 -+ H1. 

Similarly, there exists a retraction O2 : G2 -+ H2. 

0 

3.2 Tree duality 

In [39], the authors introduced the idea of tree duality. An irreflexive digraph H is 

said to have tree duality if and only if the following two statements are equivalent for 

all irreflexive digraphs G: 

i.) G f t  H 

ii.) There exists an oriented tree T such that T -+ G but T f t  H. 

We will adapt this idea to list homomorphisms and retractions to create list tree 

duality and retraction tree duality. We will then relate retraction tree duality and 

AR, . 
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Let G and H be graphs. Assign to each vertex g of G a list L(g) V(H).  Recall 

from Section 1.1 that a homomorphism q5 : G -+ H is a list homomorphism with 

respect to L if q5(g) E L(g) for all g E V(G) and we denote this by (G, L) H .  List 

homomorphisms have been studied in [17, 28, 29, 30, 31, 32, 691. Let J be a graph 

and assign to each vertex x of J a list L1(x) V(H).  Recall also from Section 1.1, 
4 that (J, L') is homomorphic to (G, L) if there exists a homomorphism q5, J + G, such 

that L1(x) = L(q5(x)) for all vertices x of J. This is denoted by (J, L') a (G, L). We 

say that a graph H (of whatever sort) has list tree duality if and only if the following 

two statements are equivalent for all graphs G: 

i.) (G, L) f t  H .  

ii.) There exists a tree T with lists L' such that (T, L') + (G, L) but (T, L') f t  H. 

Consider the list homomorphism question in this particular case; let H be a graph 

and let G be a supergraph of H ,  where the lists L are 

L(9) = 
(91 if g E V(H)  

V(H)  otherwise. 

It is easy to see that (G, L) + H if and only if there exists a retraction from G to 

H .  Thus we may adapt list tree duality to retraction tree duality by interpreting the 

retraction problem as a particular type of list homomorphism problem. A connected 

graph H has retraction tree duality if and only if the following two statements are 

equivalent for all connected supergraphs G of H with list assignment L(g) = {g} if 

g E V(H) and V(H) otherwise: 

i.) H is not a retract of G 

ii.) There exists a tree T with lists L' such that (T, L') + (G, L) but (T, L') f t  H .  

By definition, a connected graph H is in AR, exactly when the following two 

statements are equivalent for all connected supergraphs G of H :  

i.) H is not a retract of G. 
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ii.) There exists a tree obstruction ( T ,  t )  on H that is feasible on G. 

It turns out that a graph H has retraction tree duality if and only if H is in AR,. 

Theorem 3.2. Let H be connected graph. Then H has retraction tree duality if and 

only if H is in AR,. 

Proof. Let H be a connected graph. We will show that H has retraction 

tree duality if and only if H E AR, by showing that the second statements from the 

definition of retraction tree duality and the alternate definition of AR, are equivalent. 

Let G be a connected supergraph of H with lists L, where L(g) = { g }  if g E V ( H )  

and L(g) = V ( H )  otherwise. Suppose that there exists a tree T with lists L' such that 

( T ,  L') 5 (G,  L)  and ( T ,  L') + H and assume that T is minimal with respect to this 

property; for any proper subgraph J  of T ( J ,  L;) + H ,  where L; is the restriction 

of L' to the vertices of J, i.e., L ) ( x )  = Lt (x )  for all x  E V ( J ) .  If we can prove that 

all leaves of T have lists of size one and all other vertices have lists equal to V ( H ) ,  

then we can create an infeasible tree constraint ( T ,  I )  on H ,  where I ( x )  is the single 

vertex in L t ( x ) ,  for all leaves x  of T .  This tree constraint (T, I )  must then be feasible 
4 on G as ( T ,  L') + (G,  L ) .  Then there exits a tree obstruction ( T ,  i) on H ,  where 

( T ,  1) 5 ( T ,  I )  on H ;  clearly ( T ,  i) would be feasible on G. 

Note that as ( T ,  L') 3 (G ,  L ) ,  we have that Lt( t )  = L($( t ) )  for all t  E V ( T )  and 

so the list of each vertex in T either contains a single vertex from V ( H )  or is V ( H ) .  

Suppose that there exists a leaf x  of T such that Lt (x )  = I f ( H ) .  Let L"(t)  = Lt( t )  

for all t  E V ( T )  \ { x ) .  Then by the way that we chose ( T ,  L') ,  we must have that 

( T  \ x,  L") -% H. Let y be the nontrivial neighbour of x  in T and let h be a neighbour 

of a ( y )  in H. Then let a' : T + H be the map 

h i f t = x  
a1( t )  = 

a ( t )  otherwise 

It is easy to see that ( T ,  L') 5 H ,  which is a contradiction. Therefore each leaf of T 

has a list of size one. 
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Now suppose that there exists a non-leaf vertex z of T such that L'(z) has size 

one. Since all non-leaf vertices of trees are cut vertices, there exists subtrees T' and 

T" of T such that V(T') n V(TU) = (2)  and T' \ z and T" \ z are the components of 

T \ z .  Let L' be the lists L restricted to V(Tt), and let L" be the lists L restricted to 

V(T"). By the minimality of (T, L), we know that (T', L') 5 H and (T", L") 5 H.  

Since L(z) = Lt(z) = LU(z) are lists of size one, CY' and a" agree on z .  Now define the 

map CY : T + H as follows: 

Clearly (T, L) 3 H ,  which is a contradiction. Therefore the list for each non-leaf 

vertex of T must be equal to V(H).  

Let G be a supergraph of H such that there exists a tree obstruction (T, !) on H 

that is feasible on G. Hence there exists a homomprphism 4 : T --, G that extends !. 

Assign to each vertex g E V(G) the list L(g) such that 

L(9) = 
(9) i f g E V ( H )  

V(H)  otherwise. 

Assign to each vertex t E V(T) the list Lt(t) such that Lt(t) = L(q5(t)). Clearly 
4 (T, L') -+ (G, L). Since q5 : T --, G extends !, 4(x) = l (x)  for each leaf x of T.  

As (T, !) is a tree constraint on H ,  !(x) € V(H)  for each leaf x of T. Therefore 

L'(x) = {!(x)) for each leaf x of T. Since (T, e )  is infeasible on H, then clearly 

(T, L') ft H.  

0 

3.3 Tree obstructions on chordal graphs 

In Section 2.2, we used convexity to investigate the structure in connected chordal 

graphs implied by holes. In particular, we proved for any non-degenerate hole f on a 

connected chordal graph H, the vertices in Df can't be 'too close'. This idea carries 

over to tree obstructions on connected chordal graphs; if (T, !) is a tree obstruction 



CHAPTER 3. T R E E  OBSTRUCTIONS 73 

on a connected chordal graph H, then the labels of the leaves of T can't be 'too close' 

in H .  However, we do not use convexity to prove this; this method proved to be 

too unwieldy even when applied to  tree constraints with only two branching points. 

Instead, we will rephrase tree obstructions as list homomorphism problems as was 

done in the previous section, and use a list homomorphism algorithm. 

Given a tree constraint (T, k') on a graph H, we say that (T, Le) is the list homo- 

morphism problem related to (T, k') on H, where 

{k'(t)} if t is a leaf 
Ld t )  = 

V(H)  otherwise. 

Clearly (T, k') is feasible if and only if (T, Le) -+ H .  Furthermore, the lists of (T, Le) 

are connected. In [28], the authors proved that the connected list homomorphism 

problem is polynomial time solvable when the target graph, i.e., the graph being 

mapped to, is chordal. We will present the algorithm they use, and their proof that 

it is correct. Then we will apply the algorithm to (T, Le) to prove that (T, k') can't be 

'squished', when (T, !) is a tree obstruction on a chordal graph H .  
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Algorithm 3.1. [28] 

Input: A graph chordal graph H 

: A perfect elimination ordering hl ,  . . . , h, of H. 

: A pair (G, L) , where G is a graph and where L(g) c V(H)  is a 

connected list for each g E V(G). 

Task: To find a list homomorphism from G to H if one exists. 

iction: Process the vertices of H using the perfect elimination ordering 

h l ,  . . . , h,. For each vertex g of G 

* if hi E L(g) and 

** if L(g) = {hi), 

(L(g) 1 2 2, then remove hi from L(g). 

L(g) L(g) \ {hi) 

then for each neighbour g' of g in G, 

remove from L(gl) the non-neighbours of hi. 

(do this for i = 1 , .  . . , n - 1 or until an empty list is produced) 

If no empty list is produced, create 4 : G + H by setting d(g) to be 

the single vertex in L(g). 

Consider the lists a t  each stage of Algorithm 3.1. The lists we start with are subsets 

of V(H).  Once we process the vertex h l ,  each list is empty, a single vertex of V(H)  

or a subset of V(H1). In general, once we have processed vertex hi, 1 5 i 5 n - 1, 

all lists are of size a t  most 1 or are subsets of V(Hi). Thus once we have processed 

the vertex hn-l, all lists are of size a t  most one or are subsets of V(HnP1) = {h,). 

Therefore, once the vertex hn-l has been processed, all lists are of size a t  most 1. 

We have made one slight modification of Algorithm 3.1; we do not process the 
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vertex h,. Since we are studying reflexive graphs exclusively, h,h, is always an  edge. 

The vertex h, must be processed if H is an irreflexive graph as h,h, is never an edge. 

We say that Algorithm 3.1 fails if an empty list is produced, and we say the 

Algorithm succeeds otherwise. 

The following lemma is used in proof of the correctness of Algorithm 3.1. 

Lemma 3.1. [28] A graph H is  chordal if and only if for any connected sets X,  Y & 
V(H) ,  the set X n D(Y, 1) is  also connected. 

Proof. Without loss of generality, assume that H is connected; if H is not 

connected, perform the same analysis on each component. Now suppose that H is 

chordal, and let X and Y be connected vertex sets in H .  Suppose that there exists 

distinct vertices u and v in X n D(Y, 1). Since X is connected, there certainly exists 

a path P from u to v that is contained in X. In fact, we may assume that P is 

chordless. By Theorem 2.3, D(Y, 1) is convex, and so any chordless path from u to v 

is contained in D(Y, 1). Thus P must also be contained in D(Y, 1). Hence X n D(Y, 1) 

is connected. 

Let H be a graph such that for any connected X ,  Y C V(H) ,  X n D(Y, 1) is 

connected. Suppose that ul ,  . . . , ukul is an induced k-cycle in H .  Let Y = {ul) 

and let X = {uz, .  . . , uk) Clearly Y and X are connected. Thus, by assumption, 

X n D(Y, 1) = {uz, uk) is connected. Therefore u2uk is an edge of H ,  and as we 

assumed ul ,  . . . , ukul was an induced cycle, k = 3. Therefore H must be chordal. 

0 

Theorem 3.3. (281 Let H be a connected chordal graph with perfect elimination or- 

dering hl ,  . . . , h,, and let G be graph such that each vertex g of G has been assigned a 

connected list L(g) C V(H) .  T h e n  (G, L) + H if and only if Algorithm 3.1 succeeds 

o n  (G, L) and H .  

Proof. Suppose that (G, L) + H .  We will prove that as we apply Algorithm 3.1 

to (G, L) and the perfect elimination ordering hl ,  . . . , h,, the lists assigned to the 

vertices of G remain connected, and a list homomorphism continues to exist with 

respect to the newly created lists. 
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Suppose that before we process the vertex h,, L(g) is connected for each g E V ( G )  

and that (G,  L )  -+ H. We will prove that this continues to hold after hi has been 

processed. Let g be a vertex of G such that h, E L(g).  

If JL(g ) (  1 2, then we apply action * to L(g) and remove hi from L(g).  Note 

that L(g)  V(H)+l  by our comments following Algorithm 3.1. Therefore if hi has 

two neighbours in L(g) ,  they are adjacent since hi is simplicial in Hi-l. Hence list 

connectivity is maintained. Now we must show that a list homomorphism continues 

to exist after we remove hi from L(g).  Let $ be a list homomorphism that existed 

before removing hi from L(g) ,  and let g' be a neighbour of g. If $ ( g )  # hi, there is 

nothing to prove, so assume that $ ( g )  = hi. Let hk = $ ( g l ) .  As L(g) is connected 

and contains at  least two vertices, hi has a neighbour hj in L(g).  Define a function 

f : G -t H by $*(x)  = $ ( x )  if x # g and f ( g )  = hj .  To prove that $* is a list 

homomorphism we need only prove that hj and hk are adjacent. If k < i ,  then action 

** was performed on the list of g' when we processed hk ,  thus ensuring that hk is 

adjacent to all the vertices of L(g). 1f.k _> i ,  then hk, hj E V ( H i P 1 ) ,  and so hk and hj  

are adjacent as hi is simplicial in Hip1. 

If I L(g)l = 1, then we apply action **. Let g' be a neighbour of g .  By Lemma 3.1, 

N ( h i )  n L(gl) is connected. Clearly, removing non-neighbours of hi from L(gl) will 

not affect the existence of a list homomorphism. 

Therefore, there exists a list homomorphism from G to H with respect to the final 

lists produced by Algorithm 3.1. By our comments following Algorithm 3.1, the final 

lists are singletons. Hence the function created in the last step of Algorithm 3.1 must 

be list homomorphism of (G, L)  to H. 

Now assume that Algorithm 3.1 applied to (G,  L) and the perfect elimination 

ordering h l ,  . . . , h, succeeds. From our comments following Algorithm 3.1, we note 

that the final lists are singletons, and so the function $ created in the last step is well 

defined. Clearly $ ( g )  E L(g)  for all g E V ( G ) .  Let gg' be an edge of G. If $ ( g )  or 

$ ( g l )  is not h,, then action ** has been applied to g or g' (or both) at some point in 

application of Algorithm 3.1 to (G ,  L )  and hl , . . . , h,, ensuring that $ ( g ) $ ( g l )  is an 

edge of H. If # ( g )  = $(gl) = h,, then clearly $ ( g ) $ ( g l )  is an edge of H. Therefore 
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(G, L)  3 H. 

Recall that  for any edge e of a tree T ,  T, denotes the tree we obtain from T by 

subdividing the edge e. 

Lemma 3.2. Let H be a connected chordal graph with perfect elimination ordering 

h l ,  . . . , h,. Let ( T ,  !) be a tree obstruction on H and let e be an edge of T .  Then 

(T,, Le) + H and Algorithm 3.1 succeeds on (T,, Le) and h l ,  . . . , h, producing a list 

homomorphism from (T,, Le) to H .  

Proof. Since ( T ,  !) is minimally infeasible, (T,, Q) must be a feasible constraint 

on H. Thus (T,, Le) + H .  By Theorem 3.3, Algorithm 3.1 succeeds on (T,, Le) and 

h l ,  . . . , h,, producing a list homomorphism from (T,, Le) to H .  

Let H be a connected chordal graph with perfect elimination ordering h l ,  . . . , h, 

and let ( T ,  t )  be tree constraint on H. The following Lemma is a detailed analysis of 

Algorithm 3.1 applied to (T ,  Le) and the perfect elimination ordering h l ,  . . . , h,. 

Lemma 3.3. Let H be a connected chordal graph and let ( T ,  !) be a tree obstruction 

on H .  Let x be a leaf of T and let t o t l . .  . tm be a path in T with to = x. Let ei be the 

edge tit,-l in T and let T ' b e  the component of T \ ei that contains t i ,  i = 1, .  . . , m. 

Then we have the following facts: 

i.) There exists a perfect elimination ordering h l ,  . . . , h, with h, = ! ( x )  

ii.) When we apply  Algorithm 3.1 to ( T ,  Le) and the perfect elimination ordering 

h l ,  . . . , h,, the algorithm stops when the list of  x becomes empty. At this time, 

the list of each t E V ( T  \ x )  is a singleton {i). Moreover, ! (x )  > il > . . . > h, 
with respect to the perfect elimination ordering h l ,  . . . , h,. 

iii.) When we apply  Algorithm 3.1 to (T,,, Le) and the perfect elimination order- 

ing h l ,  . . . , h,, the algorithm succeeds and produces a list homomorphzsm +,,, 
4.z 

(Te,, Le) 4 H ,  such that 4,; ( t )  = for t E V(T,"). 
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Figure 3.2: Let H be the graph on the left. Let T be the tree on the right, with 
leaf-labeling l ,  where l ( x l )  = hl ,  t ( x 2 )  = hZ, e(x3)  = h4 and l ( x4)  = h8. 

Before presenting the proof of Lemma 3.3, we will present an example to illustrate 

each statement of the lemma. Let H and (T, t )  be as defined in the caption of 

Figure 3.2. Let x4 of T be the chosen leaf x from Lemma 3.3, and let x4vux1 be the 

path totl . . . t,. The ordering hl ,  . . . , h8 of the vertices of H shown in Figure 3.2 is a 

perfect elimination ordering of H. Thus there exists a perfect elimination ordering of 

H such that l ( x 4 )  is the last vertex in the ordering. 

In Table 3.1, we show the lists of the vertices of T after each iteration when 

Algorithm 3.1 is applied to ( T ,  Le)  and h l ,  . . . , h , .  The * (**) in the upper right corner 

indicates that action * (**) has been performed on the vertex in that iteration. We see 

that the list of x4 becomes empty after action ** is performed on its only nontrivial 

neighbour, the vertex v .  Thus Algorithm 3.1 applied to h l ,  . . . , h8 and ( T ,  Le) stops 

when the list of x4,  our chosen leaf of T ,  becomes empty. Also, at  this time the list 

of each vertex of T other than x4 is a singleton. Moreover, t ( x 4 )  > 5 > ii > f i  with 

respect to the perfect elimination ordering h l ,  . . . , h8 

Let e be the edge vx4 in T .  Let w be the new vertex in the tree T,; thus vwx4 

is the path in T,  that replaces the edge e in T. In Table 3.2, we show the lists of 
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Table 3.1: The lists of vertices of T at each iteration of Algorithm 3.1 applied to 
(T, Lp)  and hl , . . . , h,. 

Table 3.2: The lists of vertices of Te at each iteration of Algorithm 3.1  applied to 
(T,, i?) and hl , . . . , h,. 

the vertices of Te after each iteration when Algorithm 3.1 is applied to (Te, Le) and 

hl ,  . . . , h,. Let 4, be the list homomorphism produced by Algorithm 3.1. Let T" be 

the component of T \ e that contains v; in this case, T" = T \ x4. By looking at 

the last row of each table, we see that $,(t) is indeed the vertex f for each vertex 

t E V(T1'). 

Proof. The set {i?(x)) is convex in H. Therefore, by Theorem 2.3 ,  there 

exists a partial perfect elimination ordering hl ,  . . . , hnPl such that {i?(x)) = V ( H )  \ 
{h l , .  . . , h,-l). If we set h, = [(x), then we have the desired perfect elimination 

ordering. For the rest of this proof, all applications of Algorithm 3.1 will use the 

perfect elimination ordering h l ,  . . . , h, just described. 
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Since (T, l) is a tree obstruction on H, (T, Le) f t  H and so by Theorem 3.3, we 

know that Algorithm 3.1 fails on (T, Le). Now we need to  prove that Algorithm 3.1 

fails on (T, Le) when the list of z becomes empty. 

Apply Algorithm 3.1 to (T, Le) and consider the actions taken on the lists of tl  

and x. As the initial list of x is {[(x)) and l (x)  = h,, we do not process the vertex 

l ( z ) .  Therefore the list of z has no effect on the list of t l .  Suppose that the list of 

t l  has no effect on the list of x; i.e., even if we perform action ** on the list of t l ,  

no vertex is lost from the list of x. Therefore, as tl  is the only nontrivial neighbour 

of z, when Algorithm 3.1 fails on (T, Le), the list of some vertex t', t' # z, becomes 

empty. Moreover, the list of t' will still become empty when Algorithm 3.1 is applied 

to  ( T  \ x,  L) ,  where L(t)  = Le(t) for all t E V(T \ x). As T \ x c T,, and L(t) = Le(t) 

for all t E V(T \ z), this implies that Algorithm 3.1 fails on (T,, , Le). This contradicts 

Lemma 3.2. Therefore when Algorithm 3.1 is applied to (T. L o ,  the list of t l  does 

effect the list of z .  Hence the list of t l  must become a singleton say { E l ) ,  and when 

il is processed, action ** is performed on the list of t l ,  causing the list of x to loose a 

vertex; thus il < l ( x )  also. As the list of z was originally {[(x)), this implies that the 

list of z becomes empty. Therefore when Algorithm 3.1 fails on (T, Le), it is because 

the list of x becomes empty. 

Let t i  be the new vertex added when we subdivide the edge el, of T to form T,,. 

Thus the tree Tek contains the path tktktk-l. 

By Lemma 3.2 we know that Algorithm 3.1 applied to (T,,, Le) produces a list 
@el  homomorphism, say d,,, where (T,,, Le) + H .  Thus when Algorithm 3.1 stops on 

(T,, , Le), each vertex t of T has the singleton list {$,, ( t)) .  Consider the tree T \ z  =, T;'; 

it is a subgraph of both T and Tel . If we can prove that the final lists for the vertices 

of T \ x are the same when whether we apply Algorithm 3.1 to (T, Le) or to  (T,,, Le), 

then we have proved that when Algorithm 3.1 stops on (T, Le), the list of t ,  t # x, is 

a singleton {i) and more over that i = q5,, ( t )  for t # x. 

Since l (x )  = h,, the vertex [(x) is not processed when we apply Algorithm 3.1 

to (T, Le) or to (T,,, L e )  Therefore the list of x doesn't effect the list of t l  when 

Algorithm 3.1 is applied to (T, Le) and the list of x doesn't effect the list of tl, when 
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Algorithm 3.1 is applied to (T,,, Le). As t l  and to = x are the only nontrivial neigh- 

bours of tl, in T,, , the list of t', can't become a singleton before the list of t l  does, 

and so the list of ti  has no effect on the list of tl  when Algorithm 3.1 is applied to 

(T,,, L e )  Therefore the vertices of T \ x must have the same final lists whether we 

apply Algorithm 3.1 to (T, Le) or to (Tel, Le). 

We have already observed that El < l (x)  and that the list of t l  causes the removal 

of at  least one vertex from the list of to via action ** when Algorithm 3.1 is applied 

to (T, L e )  Therefore we may assume that the following is true for k - 1 2 1: 

when we apply Algorithm 3.1 to (T, Le), the algorithm stops when the list of 

x becomes empty. At this time, the list of t E V(T \ x) is a singleton {i). In 

fact, when the vertex ti was processed by the algorithm, action ** was applied 

to the list of ti, causing at  least one vertex to be removed from the list of ti-l, 

i = 1,. . . , k - 1. Moreover, l (x )  > il > . . . > ik-l, with respect to the perfect 

elimination ordering hl ,  . . . , h,. 

when we apply Algorithm 3.1 to (T,,, Le), list homomorphism 4ei is produced 

and @,,(t) = i for t E V(T,(') and 1 5 i 5 k - 1. 

We will now prove that the above statements hold for k .  

X = f,, 

Figure 3.3: The tree T,,, and the subtrees TL and TL. 

Consider the vertex tk.  Suppose that the list of tk doesn't effect the list of tkPl 

via action ** when Algorithm 3.1 is applied to (T, L e )  As the vertex tk-1 is second 
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vertex on the only tk - x path in T, we can remove the edge ek and still have the list 

of x become empty. In other words, when we apply Algorithm 3.1 to (T \ ek, Le), the 

list of x will still become empty. Let TL be the component of T \ ek that contains x 
and let L' be the restriction of L to the vertices of V(TL). Then Algorithm 3.1 will 

fail on (Tk, L'). Note that TL is a subtree of Tek. Therefore Algorithm 3.1 must fail 

on (T,,, Le), contradicting Lemma 3.2. Therefore action ** will be performed on the 

list of tk when Algorithm 3.1 is applied to (T, C), causing the removal of a t  least one 

vertex from the list of tk-1. 

Now we need to  prove that & < i k - 1  with respect to the perfect elimination 

ordering h l ,  . . . , h,; recall that ik, and &-l, denote the single vertex in the list of t k ,  

tk-l respectively, when Algorithm 3.1 fails on (T, e). Let L(t) be the list of t E V(H)  

just before the vertex 6 is processed. Therefore L(tk)  = {&) and there exists a 

vertex h in L(tk-1) such that h is removed from L(tk-1) when action ** is performed 

on L(tk);  thus h is not adjacent to  &. As the list of will eventually become {ik-l), 
we know that ik-l E L(tkPl).  In fact h # as action ** ensures that and fkPl 
are adjacent. Therefore IL(tk-1)l 2 2. By our comments following Algorithm 3.1, just 

before we process the vertex ik, all lists of size 2 or more may not contain vertices 

preceding in the perfect elimination ordering h l ,  . . . , h,. Therefore 5 ik-1. It 

remains to  prove that & # i k - 1 .  This is clearly true if $ L(tk-1). Therefore assume 

that & E L(tk-l) .  AS noted in the proof of Theorem 3.3, lists remain connected 

through the running of Algorithm 3.1. Hence L(tk-1) is connected and so there exists 

a neighbour h' oft;, in L(tk-l)  such that h' is on a path from & to h in H. Thus, even 

after removing the non-neighbours of from L(tk-1), the resulting list contains the 

distinct vertices & and h'. Hence when processing the vertex ik, the vertex & will be 

removed from the list of tk-l via action *. Therefore # &-l,  and so & < GPl with 

respect t o  the perfect elimination ordering h l ,  . . . , h,. 

Lastly, we need to  prove that Bek(t) = i for t E V(T,':), where (T,,, Le) 5 H. 

Observe that T[ is a subgraph of both T and T,,. If we can prove that the final 

lists of the vertices in V(T[) are the same whether we apply Algorithm 3.1  to  (T, Le) 

or to (T,,, Le), then Be, (t)  = t for t E V(TL), where (T,,, Le) 5 H. 
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By previous work, we know that when we apply Algorithm 3.1 to (T, Le), the 

action ** is performed on the list of tk causing the removal of at least one vertex from 

the list of tk-l at  that time. Hence in this instance, the list of tkPl has no effect on 

the list of tk ;  when and if action ** is performed on the list of tk-l, the list of tk is 

already a singleton and as tk # x, the list of tk doesn't become empty. 

Now consider what happens when we apply Algorithm 3.1 to (Tek, Le). The edge 

ek of T has been replace by the path tkt',tk-l and the vertex t', is assigned the list 

V(H).  Everything else is the same as (T, Le). The only way the list of t; could effect 

the list of tk is if the list of t', became a singleton before the list of tk did. This could 

only happen if action ** was performed on the list of tk-l causing as least one vertex 

to be removed from the list of t',. In other words, the list of tkPl must be come a 

singleton before the list oft', does and hence before the list of tk does. Yet this would 

imply that the list of tk-l becomes a singleton before the list of tk becomes a singleton 

when we apply Algorithm 3.1 to (T, Le), which is a contradiction. Hence the list of t', 

doesn't effect the list of tk when Algorithm 3.1 is applied to  (T,, , Le). Therefore the 

final lists of the vertices in V(T:) are the same whether we apply Algorithm 3.1 to  

(TI Le) or to ( T e k l  Le) 
0 

Given a tree T, and two distinct vertices x ,  y E V(T) ,  let pT(x, y) be the number 

of branching points internal to the unique path between x and y in T; if x or y is a 

branching point, then they are not counted by pT(x, y). If the tree is clear from the 

context, we omit the subscript. 

Let H be a connected graph. Let (T, e) be a tree obstruction of H and let x and y 

be distinct leaves of T. If T is a path, then dH ([(x), !(y)) = dT (x, y) + 1 by Proposi- 

tion 3.2. On the other hand, if T is not a path, all we know is dH(!(x), !(y)) 5 dT(x, y) ,  

again by Proposition 3.2. If H is a chordal graph and T has one branching point, 

then by Proposition 3 . 3  and Theorem 2 . 5 ,  we have that dH(!(x), !(y)) = dT(x, y). 

In other words, the hole corresponding to (T, e) is not squished. Unfortunately, this 

tightness in the upper bound for dH(!(x), !(y)) is not maintained when we consider 

trees T with more than one branching point, as we demonstrate below. 
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Figure 3.4: On the left is a leaf-labeled tree, (T,  !), where ! ( x i )  = hi for i  = 1 , .  . . ,4 .  
This leaf-labeled tree is a squished tree obstruction for the graph on the right; the 
vertices h l  and h3 are too close together. 

Let H be the graph on the right in Figure 3.4 and let H' = H \ hlh3.  Ob- 

serve that H  is isomorphic to the graph in Figure 2.7 and that H' is isomorphic 

to the graph in Figure 2.6. Let (T ,  !) be the tree obstruction in Figure 3.4, where 

qxi) = hi ,  i  = 1 ,2 ,3 ,4 .  While d H f ( ! ( x l ) ,  ! ( x 2 ) )  = d T ( x l ,  x 2 )  and dH1( ! (x1 ) :  ! ( x 4 ) )  = 

d T ( z l ,  x 4 ) ,  we have d H ~ ( ! ( x 1 ) , ! ( x 3 ) )  = 2 < 3  = d T ( x l :  23). However, it is true that 

d H l ( ! ( x l ) , ! ( x i ) )  2 d T ( x l ,  x i )  - pT(x l ,  x i )  + 1  for i  = 2,3 ,4 .  Note H' is chordal, and 

this distance property is violated by the non-chordal graph H; d ~ ( ! ( x l ) ,  ! ( x 3 ) )  = 1  < 
2 = d T ( x l ,  x3 )  - pT(x l ,  x 3 )  + 1.  Thus if we wish to define squished tree obstructions 

such that chordal graphs avoid them, we must take the number of branching points 

between leaves into consideration. 

Let H be a connected graph and let ( T ,  !) be a tree obstruction on H .  Let x  and 

y  be distinct leaves of T .  Then x  and y  are called a squished pair if dH(! (x ) ,  ! ( y ) )  5 
d T ( x ,  Y )  - pT(x ,  Y ) .  We call (T ,  t) squished if it has a squished pair. Note that if T is a 

path, then ( T ,  !) can't be squished as d ~ ( ! ( x ) ,  !(v)) = d ~ ( x ,  y )  + 1  by Proposition 3.2 

and d T ( x ,  y) - pT(x,  y )  = d T ( x ,  y ) .  A connected graph that has no squished tree 

obstructions is called strongly stretched. If f is a squished hole on H ,  then observe 

that the tree obstruction associated with f that we created in Proposition 3.3 is also 

squished. Therefore all strongly stretched graphs are stretched and so Theorem 2.5 
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is a special case of Theorem 3.4. 

Theorem 3.4. Each connected chordal graph is strongly stretched. 

Proof. Suppose that H does have a squished tree obstruction and let (T, !) be 

a minimum squished tree obstruction on H in the sense that there does not exist 

another squished tree obstruction (TI, P) on H such that IV(T1)I < IV(T)I. Pick a 

squished pair of leaves x and y of T.  We know that pT(x, y) 2 1 as T can't be a path, 

by our comments following the definition of a squished tree obstruction. 

By Lemma 3.3, there exists a perfect elimination ordering hl ,  . . . , h, of H such 

that h, = x. For the rest of this proof, all applications of Algorithm 3.1 will use this 

particular perfect elimination ordering. 

Let t,, t rnpl , .  . . , t l ,  to be the path in T with t, = y and to = x and let ei be the 

edge titi-l. 

Apply Algorithm 3.1 to (T, Le).  Again by Lemma 3.3, we know that the algorithm 

fails because the list of x becomes empty and also that at this time, for all vertices 

t E V(T) \ x, list of t is a singleton {i}. Let z = trnpl, the nontrivial neighbour of 

y in T. Let T' = T \ {t I z is an internal vertex of the unique t - x path in T). Note 

that z is a leaf of TI. Define a leaf-labeling C on TI as follows: 

2 i f t = z  
eyt) = 

e(t) otherwise 

The function P is well defined as z is the only leaf of T' that isn't also a leaf of T. 

Thus (TI, P) is certainly a tree constraint on H. If we can prove that (TI, !I) is a 

squished tree obstruction on H, then we have a contradiction to the way we chose 

(T, !) as IV(T1)I 5 IIT(T) \ y l  < /V(T)I. This would then imply that H can not have 

a squished tree obstruction. 

We will first prove that (TI, P )  is a tree obstruction and then secondly prove that 

(TI, P) is squished. 

To prove that (TI, P)  is a tree obstruction, we must prove that (TI, !I) is infeasible 

and moreover that (TI, !I) is minimally infeasible. 
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Suppose that (TI, P) is feasible on H .  Then we have (TI, Le/) 5 H .  Note that in 

particular, #(z) = P(z) = E .  Let e be the edge em-1. Since (T, e) is a tree obstruction 

on H ,  (T,, !) must be feasible on H .  Let 4, be the function produced by Algorithm 3.1 
4 applied to (T,, Le). By Theorem 3.1, (T,, Le) St H and by Lemma 3.3, 4,(z) = 2. 

Define a function d : T -+ H as follows: 

4'(t) if t E V(Tt) 

4,(t) otherwise. 

The function 4 is a homomorphism as 4' and 4, are both homomorphisms and as 

#(z) = 2 = 4,(z). Moreover, 4 : T + H is an extension of !. This contradicts the 

infeasibility of (T, t) on H .  Hence (TI, !') is infeasible on H .  

Our next task is to prove that (TI, e') is minimally infeasible. Specifically, we 

need to prove that (T", !") is a feasible tree constraint on H for all tree constraints 

(T", Pt) on H such that (T", P) < (TI, P). By Pjoposition 3.1, we need only prove 

that (T,', P) is feasible for each edge e of TI. Let e be a particular edge of Tt. Then, 

since T' is a subgraph of T ,  e is also an edge of T.  As (T, !) is a tree obstruction 

on H ,  (T,, t) is a feasible tree constraint on H. Apply Algorithm 3.1 to (T,, Le). By 

Theorem 3.3, the algorithm succeeds, and the function it produces, call it $,, is a 

list homomorphism from (T,, Le) to H. There exists a path pjp,-1 . . . po in T, where 

p, = x and p,pj-l = e. Since z is a leaf of T', and since e E E(Tt), we have that 

z # pi, i = 0 ,1 , .  . . , j - 1. Therefore, by Lemma 3.3, 4,(z) = 2. Note that T,' is a 

subtree of T,. Therefore 4, is defined on each vertex of T,' and moreover, if we let 4' 
be the restriction of 4, to T,', then 4' : T,' + H is an extension of P. Therefore (T,', P) 

is a feasible tree constraint on H and so (TI, !I) is a tree obstruction on H .  

Now we need to prove that (TI, P) is squished. In particular, we will prove that 

Since P(z) = 2 and t t(x)  = [(x), this is equivalent to proving that 

~ H ( . Z ,  [(x)) 5 d ~ f  (z, x) - PTI (2, x) .  

To do this, we will rely on the properties of perfect elimination orderings and Lemma 3.3. 
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By Lemma 3.3, there exists a list homomorphism 4,, from (T,,, Le) to H such 

that d,, (ti) = & ,  i = 1, . . . , m, where {i) is the final list of t E V(T \ x) when 

Algorithm 3.1 is applied to (T, e) . As @,, is a homomorphism, . . . il is a walk in 

H ,  where = I(y). In fact, . . . tl is a path that is strictly increasing with respect 

to the perfect elimination ordering hl , . . . , h, as [(x) > tl > . . . > & = [(y), also by 

Lemma 3.3. Denote this path & . . . il by P. 

Let Q be a shortest, and hence chordless, path from [(y) to [(x) in H .  As x 

and y are a squished pair of the tree obstruction (T, t), the length of Q is bounded 

above by dT(x, y) - pT(x, y). Since Q is a shortest path that ends a t  h, = [(x), the 

vertices of Q are strictly increasing with respect to the perfect elimination ordering 

hl ,  . . . , h, = [(x). Let h be the nontrivial neighbour of [(y) on Q. 

As P and Q are strictly increasing paths in H, h and 2 are both neighbours of [(y) 

that occur after [(y) in the perfect elimination ordering hl ,  . . . , h,. Therefore h and 

2 are adjacent in H .  Since the lengih of Q is bounded above by dT(x, y) - pT(x, y),  

we have that dH(h, l (x ) )  5 dT(x, y) -'PT(x, Y )  - 1, and so 

As dT/(z, x) = dT(x, y) - 1, we in fact have 

Note that pT/(z, x)  = pT(x, y) if z is not a branching point of T and pT/(z, x)  = 

pT(x, y) - 1 if z is a branching point of T .  

Assume that z is a branching point in T. Thus p ~ / ( z ,  x) = pT(x, y) - 1 and so 

inequality 3.2 becomes 

Therefore (TI, P) is squished if T' is not a path. 

Suppose that T' is a path. We have already proved that (TI, L )  is a tree obstruc- 

tion. Then by Proposition 3.2, 
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As P(z) = 5, P(x) = !(x) and pTt(z, x) = 0, inequality 3.3 becomes 

contradicting equation 3.4. Therefore T' can't be a path and so (TI, C') is a squished 

tree obstruction. 

Now assume that z is not a branching point of T.  Then inequality 3.2 becomes 

To prove that z and x are a squished pair, we must reduce this upper bound by 1. 

Since z is not a branching point of T, its only nontrivial neighbours in T are y 

and tm-2 By the proof of Lemma 3.3, we know that when we apply Algorithm 3.1 

to (T, La), the list of y will cause a vertex to be removed from the list of z via action 
- - **. As 5 = tm-l < tm-2, the list of tm-2 will not cause the removal of a vertex 

from the list of z .  Hence, the list of y is the only list that will effect the list of z 

when Algorithm 3.1 is applied to (T, La). Recall that h is the nontrivial neighbour of 

C(y) on Q. If 5 < h with respect to the perfect elimination ordering hl ,  . . . , h,, then 

Algorithm 3.1 applied to (T, La) would have removed the vertex 5 from the list of z 

via action *, hence we may assume that h < 5. Let h' be the nontrivial neighbour 

of h on Q other than C(y). Then, by the definition of a perfect elimination ordering, 

we have that 5 and h' are adjacent as they are neighbours of h that occur after h in 

the perfect elimination ordering hl ,  . . . , h,. Since the length of Q is bounded above 

by ~ T ( x ,  y) - PT(X, y),  we have that d ~ ( h ' ,  [(x)) < ~ T ( x ,  Y )  - P(X,  Y )  - 2, and so 

Now when we make the substitutions d ~ ( x ,  y) = dTt(2, x) + 1 and p ~ ( x , y )  = 

p p  (x, z) in inequality 3.1, we can conclude 

Therefore (TI, C') is a squished tree obstruction on H. 
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Hence connected chordal graphs are strongly stretched. 

Let H be a connected chordal graph, and let (T, t) be a tree obstruction on H, 

where T is not a path. Let x and y  be leaves of T.  As leaves can't be branching 

points, dT(x, y )  - p(x, y )  + 1 2 2, and so the bound tells us that l (x )  and [(y) can't 

be adjacent in H .  

We analyzed holes on connected chordal graphs using convexity in Section 2.2. 

Using this technique, we were able to prove that a non-degenerate hole f on connected 

chordal graph H implied the existence of particular isometric subgraph J in H; we 

called this graph the base of f in H .  This graph J was in fact a connected chordal 

graph such that f was also a hole on J and each vertex of J was necessary; if any 

vertex of J was removed, f was no longer a hole on J. In some sense, there was 

one base for all holes with the same values on all connected chordal graphs. For 

example, if f is a hole on a connected chordal graph H, where Df = {xl, x2, xs) and 

f (xi) = i for i = 1 ,2 ,3 ,  then the base admitted by f in H is isomorphic to the graph 

in Figure 3.5. By Proposition 3.3, we know that for any connected graph H and 

Figure 3.5: 'The' base for any 3-hole with values 1 , 2 , 3  on any connected chordal 
graph. 
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for each tree obstruction (T, C) where T has at  most one branching point and all the 

leaf-labels on T are distinct, there exits a corresponding hole f on H. Assume that 

H is chordal. Then as H is strongly stretched by Theorem 3.4, all tree obstructions 

on H must have distinct labels. Therefore if (T, C) is a tree obstruction on H where T 

has one branching point, then there exits a corresponding hole f on H which admits 

a base by Theorem 2.6. 

However, if H is a connected chordal graph and (T, C) is a tree obstruction on 

H, where T has at least two branching points, we can't guarantee the existence of 

any such subgraph in H. Let H' be the chordal graph in Figure 3.6, let H" be the 

chordal graph in Figure 3.7 and let T be the tree in Figure 3.8. Then (T, e') is a tree 

obstruction on H', and (T,tU) is a tree obstruction on H", if we set !'(xi) = wi and 

!''(xi) = vi, for i = 1,2,3,4.  

Figure 3.6: A chordal graph that is a potential tree obstruction base. 

Notice that dH'(wi, wJ) = dH~~(v i , v j )  for 1 5 i ,  j 5 4 and that each vertex of H' 

and each vertex of H" is necessary in the following sense: if any vertex or edge of H' 

is removed, then (T, t') is not a tree obstruction for the resulting graph. Similarly 

for H" and (T, C"). Thus there can't exist a (chordal) graph J with the following 

property: J is isomorphic to a subgraph J' of H' and to a subgraph J" of H" where 

(T, C') is a tree obstruction on J' and (T, C") is a tree obstruction on J". 
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Figure 3.7: A chordal graph that is a potential tree obstruction base. 

Figure 3.8: 

Let y be the hon~omorphism from H1 to HI1 defined by 

The l~omomorphism y 'preserves' the tree obstruction (T, el) the sense that (T, y o el) 

is a tree constraint on HI1. In fact, (T, y o E' )  is the tree obstruction (T, ! I 1 )  on HI1. 

Therefore, if (T, !) is a tree obstruct ion on a connected chordal graph H, we can't 

guarantee the existence of a particular subgraph in H. Instead, we hope to guarantee 

the existence of a particular graph J and a particular homomorphism y, H 5 J, 

such that J is chordal and y 'preserves' the tree obstruction (T, e ) .  This is an area of 
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future research. 

3.4 Stronglystretchedgraphs and thevarietygen- 

erated by chordal graphs 

In Section 2.3, we used stretched graphs to study the variety generated by connected 

chordal graphs. Now, we will used strongly stretched graphs in the same manner. We 

will prove that  the variety generated by connected chordal graphs is a subset of the 

class of strongly stretched graphs and make a conjecture concerning strongly stretched 

graphs and the graphs that  are in both AR, and the variety generated by chordal 

graphs. 

Theorem 3.5. The class of strongly stretched graphs is a variety. 

Proof. Let H be graph that  is a retract of a graph HI, where HI is strongly 

stretched. Obviously, H must also be strongly stretched. 

Let H = H1 x Hz, where H, is strongly stretched, i = 1,2.  Suppose there exists a 

tree obstruction (T, e) on H, where the tree obstruction has a squished pair x and y.  

Note that  (T, tl) is a tree constraint on H I ,  where el(v) = .rrl(e(v)) for all leaves 21 of 

T .  Since 

and since H1 is strongly stretched, (T, el)  is not a tree obstruction on H1. Thus 

either (T, e l )  is feasible or it is not minimally infeasible. Suppose that  there exists 

a tree obstruction (TI, !I) on H1 such that  (TI, !I) < (T, el) .  Now consider the tree 

constraint (TI, el1) on H, where e"(v) = e(v) for all leaves v of TI; this is well defined 

as all the leaves of TI are leaves of T by construction. Then since .rri(!ll(v)) = P(v) for 

all leaves of TI, (TI, !") is an  infeasible tree constraint on H such that  (TI, e") < (T, l ) ,  

a contradiction. Hence (T, el)  is feasible. Similarly, the tree constraint (T, 12) on H2 

is feasible, where 12(v) = r2(!(v)) for all leaves v of T .  Then it is easy to construct 

a homomorphism from T to  H that extends k!, again a contradiction. Therefore H 
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must be strongly stretched. 

Corollary 3.1. T h e  variety generated by connected chordal graphs is a subset of the 

variety of strongly stretched graphs. 

Let H be a connected graph and let (T, l) be a tree obstruction of H. Note that 

we can regard ! as a function from the set of leaves of T to H. A homomorphism y  

from H to a connected graph J is called a preserving m a p  of (T, l) if (T, y  o l) is an 

infeasible tree constraint of J .  

Lemma 3.4. Let H be a fixed connected graph. If for each tree obstruction (T,  !) o n  

H there exists a connected graph J(T,e) and a function y ( ~ , e )  : H + J(T,e) such that 

Y ( T , ~ )  i s  a preserving m a p  of (T, l ) ,  then  H i s  isomorphic to  a subgraph H of G ,  where 

G = ll { J ( , , )  : (T,l)  i s  a tree obstruction of H }  , 

such that  each tree obstruction o n  H is  a tree obstruction o n  G.  

Proof. This lemma is an extension of Lemma 2.3, and accordingly, the proof is 

similar. 

Note that the vertices of G are vectors that are indexed by the tree obstructions 

of H.  Define the map 4 : H + G by 

for each tree obstruction (T, l). Since each y ( ~ , e )  is a homomorphism, so is 4. Choose 

a pair of distinct vertices h and h' in H .  Let (T', !I) be a tree obstruction on H ,  where 

T' is a path of length dH(h, h') - 1 with endpoints x and y such that l (x )  = h and 

!(y) = h'. Since y ( ~ / > e l )  : H + J(T,e)l is a preserving map of (TI, !I), 

which implies that dc(4(h), q5(h1)) 2 dH(h, h'). Therefore $J preserves distances, and 

so H is isomorphic to H .  
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Now we will prove that each tree obstruction on H is a tree obstruction on G. 

Suppose that there exists a tree obstruction ( T ,  &) of H such that (T ,  &) is feasible 

on G. Thus, there exists homomorphism P : T + G such that for each leaf t of T, 

P ( t )  = i ( t ) .  Let (T,  Y )  be the corresponding tree obstruction on H ,  i.e., T = T and 

e = @ o e. Thus for each leaf t of T ,  P ( t )  = @ ( e ( t ) ) .  Let r(~,e)  : G + J(T,e) be the 

projection onto J(T,e). Consider the function r (T , e )op  : T + J(T,e). This composition is 

a homomorphism as @(T,e) and /3 are each homomorphisms. Moreover, for each leaf t of 

T ,  7rcT,e) ( p ( t ) )  = T ( , ~ )  (@(e( t ) ) )  = r(T,el ( e ( t  ) ) . Thus we have created a homomorphism 

from T to J(T,e) that extends Y ( T , ~ )  o e ,  which is a contradiction to the way we chose 

J(TSe).  Therefore (T ,  &) is not feasible on G. As in the proof of Proposition 3.5, ( T ,  i) 
is in fact a tree obstruction on G. 

0 

Conjecture 1. I n  AR,, the variety of strongly stretched graphs i s  exactly the variety 

generated b y  chordal graphs. I n  other words, if we let X be the variety generated by 

connected chordal graphs and let Y be the variety of strongly stretched graphs, 

The proposed method of proof for Conjecture 1 is the same method used in the 

proof of Theorem 2.7. Let H be a given graph in AR,. If H is in the variety generated 

by connected chordal graphs, then H is in the variety of strongly stretched graphs 

by Corollary 3.1. Now assume that H is a strongly stretch graph. By, Lemma 3.4, if 

for each tree obstruction (T, t )  of H we can find a separating map of (T, t )  from H 

to a chordal graph J(T,e), then H is isomorphic to a retract of n J ( , e ) .  In particular, 

H would be in the variety generated by connected chordal graphs. Thus our task 

now is to find a connected chordal graph J for each tree obstruction (T ,  t )  of H such 

that there is a preserving map of (T,  e )  from H to J .  As mentioned at the end of the 

previous section, this is an area for future research. 
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3.5 Near unanimity functions 

In Section 2.4, we proved that each graph in ARH admits a near unanimity function. 

The relation between AR, and those graphs that admit near unanimity functions is 

not the same. Instead, we will prove that a graph H E AR,, whose tree obstructions 

have a bounded number of leaves, admits a near unanimity function. Moreover, we 

will give an example of a graph in AR, which has tree obstructions with an arbitrarily 

large number of leaves; these tree obstructions prevent the graph from admitting a 

near unanimity function of any arity. 

Let H be a graph and let k >_ 3 be an integer. Recall the graphs Mk(H) and HM, 

from Section 2.4. We will use these graphs to relate the graphs in AR, and those 

graphs that  admit near unanimity functions. 

Lemma 3.5. Let H be a connected graph and p 2 3 an  integer. If (T,!) is a tree 

obstruction on HMp, where T has k leaves, k 5 p - 1, then (T, !) is also a tree 

obstruction o n  M,(H) .  

Proof. Suppose that there exists a tree obstruction (T, !) on HMp such that 

T has k leaves and such that (T, !) is a feasible tree constraint on M = M,(H). 
We assume that  (T, !) is a minimum such tree obstruction on HMp in the following 

sense: if (T', !I) is a tree obstruction on HMp with a t  most p - 1 leaves such that 

JV(T1) I < JV(T)  1 ,  then (TI, !I) is also a tree obstruction on Mk(H). 

Let {xl,  . . . , xk)  be the leaves of T. Then as (T, !) is a tree obstruction on HMp, 

!(x,) = Zi for some vertex zi E V ( H ) ,  i = 1, . . . , k. Let C#I : T --+ M be a homomor- 

phism that extends !. We will show that for all vertices w of T, $(w) E V(HMp) if 

and only if w is a leaf of T. 

Suppose that there exits a vertex w of T such that w is not a leaf and C#I(w) E 

V(HMp).  Let Tl, . . . , Tj, j = deg,(w), be the subtrees of T such that for i = 1 , .  . . , j, 
each tree Ti contains w, each T, \ w is a component of T \ w and T = u;~=,T,. Observe 

that w is a leaf of T, and in fact w is the only leaf of Ti that is not also a leaf of T, 

i = 1, . . . , j. Let (T,, ti) be the tree constraint on HMp with leaf-labeling ti defined 
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4(w) if z = w e , ( ~ )  = 
e(z) otherwise. 

As (T, e) is an infeasible tree constraint on HMp, at least one of (TI, e l ) ,  . . . , (Tj, ej) 
must also be infeasible on HMp. Without loss of generality, assume (TI, el)  is infeasible 

on HMp Then, by the way that we chose (T, e), the tree constraint (TI, el)  must also 

be infeasible on M .  This is a contradiction as 4 restricted to Tl is homomorphism 

from TI to M that extends el.  Therefore only the leaves of T are mapped to  HMp. 

Let wi be the nontrivial neighbour of xi in T.  Let T' = T \ {x l , .  . . , xk). Then by 

the work done in the previous paragraph, $(TI) G M \ HMp. By the construction of 

M, we also have that M \ HMp HP. Consider the edge 4(xi)4(wi) in M. Since 

4(xi) = !(xi) = Z, and 4(wi) E V(HP), there exists a vertex yi  in HP such that 

yi4(wi) is an edge of Hp and zi occurs at  least p - 1 times in y i ,  i = 1 , .  . . , k. Since 

k 5 p - 1, there exists an index q such that rq(yi) = zi, for i = 1 , .  . . , k, where r, is 

the qth projection. Now define 4' : T + HMp as follows: 

if t = xi 

otherwise 

The function 4' is a homomorphism by construction and $'(xi) = = !(xi), i = 

1, . . . , k. Therefore 4' : T + HMp is a homomorphism that extends e, contradicting 

the infeasibility of (T, e) on H .  

0 

Theorem 3.6. Let H be a graph i n  AR,. If there exits an  integer k such that all 

tree obstructions o n  H have at most k - 1 leaves, then H admits a near unanimity 

function of arity k. 

Proof. Let H be a graph in AR, and suppose that there exists an integer k 

such that all tree obstructions on H have at most k - 1 leaves. Then, as H and HM, 
are isomorphic, HM, E AR, and all tree obstructions on HM, have at most k - 1 

leaves. By Lemma 3.5, all tree obstructions on HM, are tree obstructions on M k ( H ) .  

Therefore HM, is a retract of M k ( H ) ,  and so H admits a near unanimity function of 
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arity k by Proposition 2.7. 

0 

The key difference between Theorem 2.8 and Theorem 3.6 is the following: the 

size of hole f on a graph H is bounded above by the number of vertices of H as 

Df C V(H) ,  but the number of leaves in a tree obstruction (T, !) on H has no 

inherent upper bound. We make use of this fact in constructing a graph in AR, that 

has tree obstructions with arbitrarily large numbers of leaves. But first we will show 

that tree obstructions prevent near unanimity functions in the same way that holes 

prevent near unanimity functions. 

Theorem 3.7. Let H be a connected graph that admits a near unanimity function of 

arity k .  T h e n  all tree obstructions o n  H have at most k - 1 leaves. 

Proof. Suppose that there exists a tree obstruction (T,!) on H such that T 

has leaves X I , .  . . , x,, p 2 k. Let yi be the nontrivial neighbour of xi in T and let 

ei = xiyi, i = 1, . . . ,p .  Since (T, !) is a tree obstruction, the tree constraint (T,,, !) is 

feasible on H ,  i = 1 , .  . . , p. Let qeZ : T,, -+ H be a homomorphism that extends !. 

Define the map 4i : T -+ H as 

a neighbour of 4,, (yi) in H if t = xi 
4i (t) = 

4 e i  (t) otherwise 

Clearly 4i is a homomorphism, i = 1 , .  . . , p .  

As H admits a near unanimity function of arity k ,  it must also admit a near 

unanimity function of arity p by Lemma 1.5. Let 77 : HP -+ H be such a near 

unanimity function. Now define the map 4 : T -+ H by 

As 17 and qbi, i = 1, . . . , p, are homomorphisms, 4 must also be homomorphism. By 

the definition of $i, $i(xj) = li(xj) for 1 5 i ,  j 5 p and i # j .  Therefore, since 7 

is a near unanimity function, $(xj) = !(xj), j = 1 , .  . . ,p .  Hence $ : T -+ H is an 

extension of !, contradiction. 
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Therefore all tree obstructions on H may have at most k - 1 leaves. 

0 

Corollary 3.2. Let H be a graph i n  AR,. If there exists an  integer k such that 

there exists a tree obstruction on H with k - 1 leaves, but there does not exist a 

tree obstruction on H with more than k - 1 leaves, then H admits a near unanimity 

function of arity k ,  but does not admit a near unanimity function of arity k - 1. 

We now present a graph that prevents AR, from being contained in the class of 

graphs that admit a near unanimity function. 

Theorem 3.8. There exists a graph in  AR, that does not admit a near unanimity 

function of any arity. 

Proof. Let W be the graph in Figure 3.9. We will show that W is in AR, in 

Section 4.4.1. 

Figure 3.9: A graph in AR, that does not admit a near unanimity function of any 
arity. 

We claim that for any positive integer k,  we can create a tree obstruction on W 

that has a t  least 5k leaves. Then by Theorem 3.7, W does not admit a near unanimity 
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function of arity 5k. This in turn implies that W does not admit a near unanimity 

function of arity p, 3 5 p 5 5k, by Lemma 1.5. 

Let Tk be a tree with V(Tk) = {xl, . . . , x5k, y2, . . . , y5k-1), where xly2y3 . . . Y5k-lX5k 

is a path and xiyi is an edge for i = 2, . . . ,5k- 1; there are no other edges of Tk (except 

for the loops a t  each vertex). Observe that {xl, . . . , xk) is the set of leaves of Tk. Give 

Tk the following leaf-labeling: e(xl) = e(xSk) = r l  and e(xi) = hj when i - j mod 5 .  

We will first prove that (Tk, f k )  is infeasible, and then prove that it is minimally 

infeasible. 

Suppose that there exists a homomorphism 4 : Tk + W that extends fk .  Since 

we must have $(xl) = e(xl)  = rl and $(x2) = !(x2) = h2, this forces $(y2) = 7-2. 

Assume that $(yi) = rj, where j - i mod 5, for i > 2 and consider Since 

$(yi) = rj, where j = i mod 5 and $(xi+1) = !(x,+~) = h,, where p = i + 1 mod 5, 

j + 1 = p mod 5 and so we must have $(yi+1) = rj+1, where i = j mod 5. Hence, in 

particular, we have that = r4 and so $ ( Y ~ ~ - ~ ) $ ( x ~ ~ )  is not an edge of W as 

$(x5k) = e(x5k) = r1. Therefore (Tk, ek) is an infeasible tree constraint on W. 

Now we will prove that (Tk, fk )  is minimally infeasible. By Proposition 3.1, it is 

enough to prove that any subdivision of (Tk, fk )  is feasible. Note that in the argument 

in the previous paragraph, every edge was used once to force a value of $ (or in the 

case of Y5k-lX5k to  cause the contradiction). Thus any subdivision of (Tk, f k )  will be 

a feasible constraint' on W. 

0 

When we introduced the definition of a tree obstruction, we remarked on a more 

general concept called an obstruction. We know that if H is in AR,, then H admits 

a near unanimity function of arity k if and only if all tree obstructions on H have at  

most k - 1 leaves. However, if we consider obstructions, the same equivalency is true 

even when we don't restrict H to AR,. Namely, a graph H admits a near unanimity 

function of arity k if and only if all obstructions on H have at most k - 1 labeled 

vertices [49, 151. 
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Arc Consistency 

In Chapter 3, we rephrased the retraction problem as a list homomorphism problem 

to relate AR, to tree duality and to make use of Algorithm 3.1 when studying tree 

obstructions on chordal graphs. Now, we will use the list homomorphism problem 

version of the retraction problem to derive a necessary condition for the existence of 

a retraction. 

Let H be a graph. Let (G ,  L)  be a pair where G is a graph and where L(g) 2 V ( H )  

is a list for each g E V ( G ) .  Consider an edge gg' of G. We say that a vertex h E L(g) 

has support in L(gl) if there exists a vertex h1 E L(gl) such that hh' E E ( H ) .  If all 

vertices in L(g) have support in L(gl) and all the vertices of L(gl) have support in 

L(g) ,  we say that L(gl) and L(g) are arc consistent. Note that if there exists a list 

homomorphism 4, (G ,  L)  5 H ,  then obviously 4 ( g )  E L(g) for all g E V ( G ) ,  and for 

all vertices g' E NG(g),  4 ( g )  has support in L(gl).  Thus if a vertex h in L(g) has no 

support in L(gl),  then we may as well remove h from L(g) as g could never be sent to 

h by 4. Thus it is logical that when looking for a list homomorphism from G to H, we 

remove vertices from lists until the lists of adjacent vertices in G are arc consistent. 

We then say that the lists of G are arc consistent. This leads to the well known Arc 

Consistency Algorithm [53]. 
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Algorithm 4.1. 

Input: A graph H.  

: A pair (G, L), where G is a graph with non-loop edges {el, . . . , em) 

and where L(g) V(H)  is a list for each g E V(G). 

Task: To produce arc consistent lists for the vertices of G. 

iction: Process the non-loop edges of G. In iteration i 2 1, we consider the 

edge e j ,  j = i mod m. If el = gg', then we make L(g) and L(g1) arc 

consistent by removing from L(g) any vertex that has no support in 

L(g1) and vice versa. 

L(g) +- {h E L(g) I 3h' E L(gf), hh' E E ( H ) )  

L(gl) +- {h'. E L(g1) I 3h E L(g), h'h E E (H) )  

: Stop with failure if a list becomes empty. 

: Stop with success if no list has been changed in the last m iterations. 

Note that the algorithm ends as the input graphs are finite. 

Our area of interest, however, is not the general list homomorphism problem " Does 

there exist a list homomorphism from (G, L) to H?", where H and G are graphs and 

L(g) V(H)  for all g E V(G); instead, we are interested in the list homomorphism 

problem that is equivalent to the retraction problem. 

Let H be a connected graph and let G be a connected supergraph of H .  Assign 

to each vertex g of G the list L(g), where 

L(g) = 
(9) if g E V(H)  

V(H)  otherwise. 

As mentioned in Section 3.2, H is a retract of G if and only if (G, L) -+ H .  We refer 

to (G, L) and H as the list homomorphism problem related to the retraction problem. 
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We can apply Algorithm 4.1 to  (G, L) and H .  Since the lists of G  are derived from 

H,  we can incorporate this into the Arc Consistency Algorithm when we apply it to 

this special case of the list homomorphism problem. 

Algorithm 4.2. 

Input: A graph G with non-loop edges {el, . . . , em). 

: A subgraph H of G 

Task: To test for the existence of a retraction from G to H .  

Action: Initialize the lists of the vertices of G. For each vertex g of G, assign 

g the list L(g) that consists of { g )  if g E V ( H )  and V ( H )  otherwise. 

: Apply Algorithm 4.1 to (G, L) and H .  

The Algorithm 4.2 will end as the input graphs are finite. 

Hereafter, the original Arc Consistency Algorithm, Algorithm 4.1, will be referred 

to  as the ACL Algorithm and the version of the Arc Consistency Algorithm modified 

for retractions, Algorithm 4.2, will be referred to as the ACR Algorithm. 

4.1 Absolute retracts with respect to arc consis- 

tency 

We will define the class of absolute retracts with respect to  arc consistency. Next, we 

state that  this new class is a variety, but we defer this proof to a later section. Lastly, 

we will present a graph that in some sense "contains all arc consistent lists" relative 

to  H, which we use to classify the graphs that are absolute retracts with respect to 

arc consistency. 

Let H  be a connected graph and let G be a connected supergraph of H. Assign 



CHAPTER 4. ARC CONSISTENCY 

to  each vertex g of G a list L(g) ,  where 

L(g) = 
( 9 )  if g E V ( H )  

V ( H )  otherwise. 

In the previous section, we pointed out that (G,  L) + H only if the ACL Algorithm 

applied to (G,  L )  and H succeeds. This is equivalent to saying that H is a retract 

of G only if the ACR Algorithm applied to  H and G succeeds. Thus arc consistency 

provides us with a new necessary condition for the existence of retractions. 

The class of absolute retracts with respect to arc consistency, denoted by ARC, is 

the set of all connected graphs H such that H is a retract of a connected supergraph 

G if and only if the ACR Algorithm succeeds when applied to H and G. 

Note that the success of the ACR Algorithm is not a sufficient condition, as demon- 

strated by Figure 4.1. 

Figure 4.1: Let H be the graph induced by the round vertices. Observe that H is 
dismantlable. Let G be the entire graph where the square vertices form a clique. The 
ACR Algorithm succeeds when applied to H and G,  but there is no retraction from 
G to H. 

Theorem 4.1. The class ARC is a variety. 

The proof of Theorem 4.1 is deferred to Section 4.3.2. 
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Let H be a graph. Define the power graph of H ,  denoted by P ( H ) ,  to be the 

graph whose vertex set is the set of all non-empty subsets of V(H).  Furthermore, 

two vertices X and Y of P ( H )  are adjacent if every vertex x in X has a neighbour 

in Y in the graph H, and every vertex y in Y has a neighbour in X in the graph H .  

In other words vertices X and Y of P ( H )  are adjacent if and only if every vertex of 

X has support in Y and every vertex of Y has support in X .  Let x and y be two 

vertices of H.  Then {x) and {y) are vertices of P ( H ) .  Let {x) = ZoZl . . . Zn = {y) 

be a path from {x) to {y) in P ( H ) .  By definition of adjacency in P ( H ) ,  there is 

a neighbour of x in Z1 in H .  Call this neighbour zl. For i = 2 , .  . . , n,  let zi be a 

neighbour of zi-l in Zi in H .  Thus xzl . . . zn-lz, = y is a walk from x to y in H .  

Clearly we must have n 2 dH(x, 9). Hence d p ( ~ )  ({x) , {y)) 2 dH(x, 3). On the other 

hand, if there is a path x = wowl . . . wk = y in H ,  there is a corresponding path 

{x) = {WO) ( ~ 1 ) .  {wk) = {Y) in P ( H ) .  Thus ~ H ( x ,  Y )  = ~ P ( H )  ({x) , (9)). Let HP 

be the subgraph of P ( H )  induced by vertices that are sets of size one. Clearly Hp is 

isomorphic to H ,  and by our discussipn, Hp is an isometric copy of H in P ( H ) .  

We are interested in when Hp is a retract of P ( H ) .  In [33], they also studied the 

idea of a power graph and investigated when P ( H )  -+ H ,  where H is irreflexive. 

Proposition 4.1. Let H be a connected graph. Then H is in ARC if and only if Hp 

is a retract of P ( H ) .  

Proof. Assume that H is in ARC. As H and Hp are isomorphic, Hp E ARC. 
Thus if the ACR Algorithm succeeds when applied to Hp and P ( H ) ,  then Hp is a 

retract of P ( H ) .  Let X be a vertex of P ( H ) .  Then X is an element of the list assigned 

to it in the initialization phase of the ACR Algorithm. We may assume that X is 

an element of the list assigned to it up to iteration i for all vertices X of P ( H ) .  Let 

X Y  be the edge of P ( H )  that is processed in iteration i. By assumption X is in its 

own list, and so is Y. We just stated that X Y  is an edge, so neither X nor Y will be 

removed from their respective lists when the edge X Y  is processed. Therefore as we 

run the ACR Algorithm on Hp and P ( H ) ,  the lists will never become empty and so 

the ACR Algorithm will stop with success. Therefore Hp is a retract of P ( H ) .  

Now assume that Hp is a retract of P ( H )  and let 0 : P ( H )  -+ Hp be a particular 
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retraction. Let G  be a connected supergraph of H  such that the ACR Algorithm 

succeeds when applied to H  and G .  For each vertex g of G ,  let L ( g )  be the final list 

assigned to g  by the ACR Algorithm. As L(g)  is a non-empty subset of V ( H ) ,  L ( g )  is 

a vertex of P ( H ) .  Thus we can defined a function (b from G  to P ( H )  by sending the 

vertex g  of G to the vertex L ( g )  of P ( H ) .  The function (b is in fact a homomorphism 

from G  to  P ( H ) ;  if vertices g  and g' of G  are adjacent, then all vertices of L ( g )  must 

have support in L ( g f )  and vice versa. Thus L(g)  and L(gt )  are adjacent in P ( H ) .  

Then it is not hard to see that 0 o (b is a homomorphism from G  to H p  such that 

0 o 4 ( x )  = { x )  for all vertices x  in H .  As H  is isomorphic to Hp,  there is a retraction 

from G  to H .  

0 

The power graph has another very nice property; namely, if H  is a connected 

graph, then P ( H )  E ARC, as proven in Proposition 4.2. We will use this property in 

Section 4.5 to describe a particular family of graphs in ARC. 

Proposition 4.2. 1481 Let H  be a  connected graph. Then P ( H )  is i n  A R C .  

Proof. Let P 2 ( H )  = P ( P ( H ) ) .  The vertices of P 2 ( H )  are of the form 

{ X I , .  . . , X,), where X i  is non-empty subset of V ( H )  for i = 1,. . . ,p .  The graph 

P ( H ) p  is the subgraph of P 2 ( H )  induced by the vertices { X )  where X  is a vertex of 

P ( H ) ,  i.e., X  is a non-empty subset of V ( H ) .  We will prove that P ( H ) p  is a retract 

of P 2 ( H ) .  Thus by Proposition 4.1, P ( H )  will be an element of ARC 

Define a function 0 from P 2 ( H )  to P ( H ) p  by 

Let { X I ,  . . . , X,) and { Y l ,  . . . , Y,) be adjacent vertices of P 2 ( H ) .  By definition of 

adjacency in P 2 ( H ) ,  X i  is adjacent to some y, E {Yl, . . . ,I\)  in P ( H )  for i = 1, . . . , p. 

Now as Xi  and E j i  are adjacent vertices of P ( H ) ,  each x in X i  must have a neighbour 

y in Y,, in H  for i = 1,  . . . , p. Thus each x E u:='=,Xi has a neighbour y E u ~ = ~ Y ,  in H .  

Similarly, each y E U;='=,X has a neighbour x  E u : = ~ X ~  in H .  Therefore {UY',X~) and 

{u;='=,Y,) are adjacent in P ( H ) p  and so f is a homomorphism. Let X  be a non-empty 
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subset of V ( H ) .  Then { X )  is a vertex of P 2 ( H )  and f ( { X ) )  = { X ) .  Thus Q is a 

retraction from P 2 ( H )  to  P ( H ) p .  

0 

4.2 Near unanimity functions and chordal graphs 

The relation between absolute retracts with respect t o  necessary condition N and 

graphs that admit near unanimity functions, and chordal graphs has changed as we 

varied the necessary condition N. Starting with ARI, all graphs in ARI admit a near 

unanimity function of arity 3 and are in the variety generated by connected chordal 

graphs, see Section 1.2. Next, in Chapter 2, we found that all graphs in ARH admit a 

near unanimity function, but that the variety generated by connected chordal graphs 

does not contain ARH and vice versa. Then, in Chapter 3, we found that there exists 

a graph in AR, that does not admit a near unanimity function. In this section, 

we find that the relationship between ARC and graphs that admit near unanimity 

functions, and chordal graphs is completely the opposite of the relationship between 

ARI and the graphs that admit near unanimity functions and chordal graphs: the 

class ARC contains all connected chordal graphs, and hence the variety generated by 

connected chordal graphs, and A R C  contains all connected graphs that admit a near 

unanimity function. 

Theorem 4.2. 1271 Let H be a connected graph that admits a near unanimity func- 

tion. Then H is in ARC. 

Theorem 4.3. The class of graphs ARC strictly contains the class of connected graphs 

that admit near unanimity functions. 

Proof. Let W be the graph that is in Figure 3.9. As shown in the proof of 

Theorem 3.8, the graph W does not admit a near unanimity function of any arity. 

We will prove in Section 4.4.1 that W is in ARC;  the graph W is a wheel extension, 

as defined in Section 4.4. 

0 
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Theorem 4.4. [15, 281 Let H be a connected chordal graph. Then H is in ARC. 

The proof we present here is based on comments made in [28]. We have chosen 

this proof since we use a modified version of the techniques displayed further on in the 

thesis. Note that we can also use Theorem 4.2 to  infer that connected chordal graphs 

are in ARC as all chordal graphs admit near unanimity functions by Theorem 1.10. 

Proof. Let H be connected chordal graph with perfect elimination ordering 

hl, . . . , h,. Let G be a connected supergraph of H such that ACR Algorithm succeeds 

on H and G and let L1(g) be the final list assigned to g E V(G) by the ACR Algorithm. 

We will prove that L1(g) is connected and moreover that Algorithm 3.1 succeeds on 

(G, L') and hl , . . . , h,. 

Consider what happens when ACR Algorithm is applied to  H and G. In the 

initialization step, each vertex g of G is assigned a list L(g), where L(g) = {g) if 

g E V ( H )  and L(g) = V ( H )  otherwise. Thus the initial lists are connected. This 

connectivity is maintained as we process the non-loop edges of G. Assume all lists are 

connected before we process the non-loop edge gg' E E(G) .  When processing the edge 

gg' we replace the list of g with L(g) nD(L(gl) ,  1) and vice versa. By Lemma 3.1, these 

new lists are connected. Therefore the final lists produced by the ACR Algorithm on 

H and G are connected. 

Not only will we prove that Algorithm 3.1 succeeds on (G, L') and H, we will 

prove that action ** need never be performed. 

As the lists produced by the ACR Algorithm on H and G are connected and arc 

consistent, we may assume the following when we apply Algorithm 3.1 to  (G, L') and 

the perfect elimination ordering hl, . . . , h,: before we process vertex hi, all lists are 

connected and arc consistent. Moreover, action **  has not changed any lists. Let 

L(g) be the list of g before we process the vertex hi. Now process vertex hi. 

Let g be a vertex of G such that hi E L(g). 

Suppose IL(g)J >_ 2. Then action * is applied to  the list of L ( g )  As in the proof 

of Theorem 3.3, L(g) \ {h,i) is still connected. Let g' be a neighbour of g, and let 

hk be a neighbour of hi in L(gl). Again as in the proof of Theorem 3.3, the vertex 
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hi has a neighbour hj in L(g) ,  i < j .  If L(g1) = {hk), then hk and hj are adjacent 

as arc consistency has held up till now. If JL(g')l > 2, then i 5 k ,  and so hj and 

hk are adjacent as they are neighbours of hi that follow hi in the perfect elimination 

ordering. Hence action * maintains arc consistency. 

Now suppose that L(g)  = {hi). As arc consistency has held till now, hi is adjacent 

to  all vertices in L(gt), for all neighbours g' of g in G. Hence action ** has no effect. 

Corollary 4.1. The variety generated b y  connected chordal graphs is contained in 

ARC. 

Proof. By Theorem 4.4, all chordal graphs are in ARC. Since ARC is a variety 

by Theorem 4.1, ARC contains the the variety generated by chordal graphs. 

4.3 Equivalent classes 

The previous section concerned classes that are strictly contained in ARC. In this 

section, we will prove that ARC is equivalent to three other classes of graphs. 

4.3.1 TSI graphs 

While the graphs that admit near unanimity functions are strictly contained in ARC 

by Theorem 4.3, there is another type of function that all graphs in ARC do admit. 

In fact, the graphs in ARC are characterized as being exactly those graphs that admit 

this new function. 

Let A be a set and let f be a function from An to A, where n 2 1 is an integer. 

The function f is a totally symmetric function if 

f ( a l ,  . . . , a,) = f (b l ,  . . . , b,) whenever {al, . . . , a,) = { b ~ ,  . . . , bn) , ai, bi E A. (4.1) 
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Notice that a totally symmetric function essentially acts on the non-empty subsets of 

A of size at most n. The function f is called an idempotent function if 

4 (a , .  . . , a )  = a for all a E A. (4.2) 

Then 4 is a totally symmetric idempotent function, or a TSI function, if equations 4.1 

and 4.2 both hold. 

Let H be a graph, and let 4 : Hn -, H be a homomorphism, where n 2 1. Then 

4 is called a TSI homomorphism if 4 : V ( H n )  --+ V ( H )  is TSI function. We will 

show that the connected graphs that admit a TSI homomorphism of any arity are 

exactly the graphs in ARC. We note that a TSI homomorphisn~ is closely related to  

the f-functions defined on templates in [33]. 

The following proposition is a simplification of Proposition 1 in [67] on algebras. 

Proposition 4.3. Let H be a graph. 

i.) If H admits a TSI homomorphism of arity n 2 2, then H admits a TSI homo- 

morphism of arity n - 1.  

ii.) If H admits a TSI homomorphism of arity n 2 I V ( H ) ( ,  then H admits a TSI 

homomorphism of arity n + 1. 

Proof. Suppose that H admits a TSI homomorphism of arity n 2 2; call it 4. 
Define a new function 4' of arity n - 1 on H as follows: 

(p1(x1,. . . , xn-1) = $ ( X I , .  . . ,  xn-1,xn-1). 

The function 4' is well defined because { x l ,  . . . , xn-1) = { x l ,  . . . , xn-1, xn-1). If 

( x l , .  . . , xnP1)  is a constant vector, so is ( x l ,  . . . , x,-1, xn-1). Therefore 4' is idempo- 

tent as 4 is idempotent. It easy to  see that 4' must also be totally symmetric and a 

homomorphism. Therefore 4' is a TSI homomorphism of arity n - 1. 

ii. Suppose that H admits a TSI homomorphism $J of arity n 2 IV(H)I.  As H has - 

at most n vertices, any n + 1 tuple of vertices of H will contain at most n distinct 

vertices. Thus we may define a function 4' of arity n + 1 as follows: 



CHAPTER 4. ARC CONSISTENCY 110 

Because 4 is a TSI homomorphism, not only is d' well defined, but 4' is also a TSI 

homomorphism. 

0 

The next proposition is a modification of Proposition 2.3 in 1501 on posets. 

Proposition 4.4. Let H  be a graph. Then H  admits a TSI homomorphism of arity 

IV(H)I if and only if H p  is a retract of P ( H ) .  

Proof. Clearly H p  is a retract of P ( H )  if and only if the partial homomorphism 

4 : P ( H )  + H p  defined by $ ( { X I )  = { x )  extends to a homomorphism. Thus, instead 

of proving Proposition 4.4, we will prove the following claim: 

H  admits a TSI homomorphism of arity IV(H)I if and only if the partial 

homomorphism 4 : P ( H )  + H p  defined by 4 ( { x ) )  = { x )  extends to a 

homomorphism. 

Suppose that 4 extends to a homomorphism 4'. Thus 4' is a homomorphism from 

P ( H )  to H p  that fixes the vertices of H p .  Define a function 4" : Hn -+ P ( H )  by 

and a function 11, : H p  + H  by 

11,({x)) = x .  

Obviously, @ I ,  and 4" are all homomorphisms. Then $ q b ' o ~ "  is a homomorphism 

from H n  to H  that is also a TSI function of arity n. 

Now assume that there exists a TSI homomorphism of arity n = IV(H)I on H ,  

call it 0. Define a function 4" : P ( H )  + H p  by 

Then 4" is well defined homomorphism that extends 4. 

The following equivalency is a modification of a poset result [51] and was brought 

to the attention of the author by Benoit Larose. 
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Theorem 4.5. Let H  be a connected graph. T h e n  H  admi ts  a T S I  homomorph i sm  

of ari ty  k for  all positive integers k if and only  if H  i s  in ARC. 

Proof. Note that H  admits a TSI homomorphism of arity k for all k if and 

only if H  admits a TSI homomorphism of arity IV(H)I by Proposition 4.3 and H  

admits a TSI homomorphism of arity IV(H)I if and only if HF is a retract of P ( H )  

by Proposition 4.4. Lastly, H p  is a retract of P ( H )  if and only if H is in A R C  by 

Proposition 4.1. 

0 

4.3.2 Tree duality 

We will prove that a graph H  has retraction tree duality if and only if H is in ARC. 

Thus if a graph H  is in A R C  and H  is not a retract of some connected supergraph 

G ,  then there exists a tree T that is somehow preventing the retraction. 

Recall from Section 3.2 that a connected graph H  has retraction tree duality 

exactly when the following two statements are equivalent for all connected supergraphs 

G of H  with list assignment L ( g )  = { g )  if g E V ( H )  and V ( H )  otherwise: 

i.) H  is not a retract of G. 

ii.) There exists a tree T with lists L' such that (T ,  L')  4 ( G ,  L )  but (T,  L') ft H .  

By the definition of ARC,  a connected graph H  is in ARC exactly when the 

following two statements are equivalent for all connected supergraphs G  of H: 

i.) H is not a retract of G 

ii.) The ACR Algorithm fails on H  and G  

Lemma 4.1. Let H be a graph. Let T be a tree wi th  lists L such  tha t  L ( t )  V ( H )  
for  all t E V ( T ) .  T h e n  (T,  L )  4 H  i f  and  only  i f  t he  A C L  Algor i thm succeeds o n  

(T,  L )  and H .  
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Proof. Assume that (T, L) H .  Then, when we apply the ACL Algorithm 

to (T, L) and H, the vertex 4(t)  will remain in the list of t during all iterations of 

the ACL Algorithm. Hence no list may become empty, and so the ACL Algorithm 

succeeds on (T, L) and H. 

Now assume that the ACL Algorithm succeeds on (T, L) and H, and let L' be 

the non-empty lists that result. If L1(t) is a singleton for all t E V(T),  then clearly 

(T, L) -+ H. Thus, suppose that there exists a vertex to E V(T) such that 1 L1(to)l > 2, 

and let h  be a vertex in L1( to)  Assign the vertices of T new lists L", where 

L"(t) = 
otherwise. 

If we can prove that the ACL Algorithm succeeds on (T, L") and H ,  then we can 

continue in this manner, and eventually produce singleton arc consistent lists for the 

vertices of T, which would imply that (T, L) -+ H .  

Order the non-loop edges of T as follows: the edges incident with to, the edges 

xy such that d(x, to) = 1 and d(y, to) = 2, the edges xy such that d(x, to) = 2 and 

d(y, to) = 3, and so on. This is possible as T has no cycles. Now apply ACL Algorithm 

to (T, L") and H with this ordering of the non-loop edges of T.  When we process an 

edge incident with to, say totl,  then all vertices of Ll1(to) = L1(to) \ { h }  have support 

in LU(tl)  = Lt(t l) ,  but not all vertices of LU(tl) necessarily have support in LU(to). 

Hence LU(to) won't change. However the list LU(tl) may change, but doesn't become 

empty because each vertex of LU(to) is supported by Ltt(tl). Let t2 be a neighbour 

of tl  at  distance two from to. When we process the edge tlt2, all the vertices in the 

new list of t l  have support in the list of t2 ,  but not vice versa. Therefore the list of t l  

will not change, and while the list of t2 may change, it will not become empty, and so 

on. Hence, once we have processed all the edges of T, using the described ordering, 

we end with non-empty arc consistent lists. Note that we pass through the non-loop 

edges of T twice when we apply the ACL Algorithm to (T, Ll1) and H; once to change 

all the lists appropriately, and the second time to fulfill the stopping condition of the 

ACL Algorithm. 

0 
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Theorem 4.6. A graph H has retraction tree duality if and only if H is in ARC. 

Proof. Let H be a connected graph and let G be a connected supergraph of H. 

Associate a list L(g) with each vertex g E V ( G )  such that L(g) = {g )  if g E V ( H )  

and V ( H )  otherwise. We will prove that H has retraction tree duality if and only if 

H E ARC by showing that second statements from the definition of retraction tree 

duality and the alternate definition of ARC are equivalent. 

Suppose that there exists a tree T with lists L' such that (T ,  L') f (G,  L) ,  but 

(T ,  L') f t  H. Then the ACL Algorithm fails on (T ,  L') and H by Lemma 4.1. Let GT 

be the image of T under # in G, and let LT be the restriction of L to  the vertices of GT, 

i.e., LT(g) = L(g) for all vertices g E V(GT) .  By the definition of (T ,  L') 3 (G,  L) ,  

we have that L1(t) = L($( t ) )  for all t  E V ( T ) .  Let e l , .  . . ,em the order in which the 

non-loop edges of T were processed when we applied ACL Algorithm to  (T ,  L) and 

H. Apply ACL Algorithm to (GT, LT) and H, processing the non-loop edges of GT in 

the order # ( e l ) ,  . . . , $(em), ignoring loops as necessary; note that the ACL Algorithm 

must fail in this instance also. Since the ACL Algorithm fails on (GT, LT) and H, and 

since GT G where LT(g) = L(g) for all vertices g E V ( G T ) ,  the ACL Algorithm 

must also fail when applied to (G,  L)  and H. Therefore ACR Algorithm fails on H 

and G. 

Now suppose that the ACR Algorithm fails on H and G. Then the ACL Algorithm 

fails on (G, L) and H. We construct a tree T with lists L' and a homomorphism 

# : T -+ G such that (T ,  L') 3 (G,  L) and (T ,  L') + H by back-tracing through the 

ACL Algorithm applied to (G, L) and H. 

Let go be the vertex of G whose list became empty when the ACL Algorithm failed 

on (G,  L)  and H. Initialize the tree T to be the vertex to,  set #( to)  = 90 and set p(tO) 

to be the iteration of the ACL Algorithm applied to (G, L)  and H in which the list 

of go became empty. Put to a t  the end of the queue Q. 

Repeat the following steps while Q is not empty: let t be the vertex at the be- 

ginning of the queue Q and let g be the vertex of G such that g = # ( t ) .  For each 

neighbour g' of g such that the list of g' caused the list of g to loose a vertex in 
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some iteration i < p( t ) ,  create a neighbour t' of t ,  set q5(t1) = g' ,  set p(tl) = i ,  set 

L'(t1) = L(gr) and put t' at the end of the queue Q. 

This process ends as we back-trace the actions in the ACL Algorithm applied to 

finite graphs. It is easy to see that ( T ,  L') f (G,  L) .  By construction, ( T ,  L') j-t H; 

apply ACL Algorithm to ( T ,  L') and H, processing the edges of T in the reverse 

ordering in which they were created. Thus we have constructed (T, L') and 4, as 

advertised. 

Corollary 4.2. Let H be a connected graph. Then the following statements are equiv- 

alent: 

i.) The graph H admits a TSI of arity k ,  for all k > 1. 

ii.) The graph H has retraction tree duality. 

iii.) The graph H is in AR,. 

iv.) The graph H is in ARC 

Proof. Let H be a connected graph. Then H admits a TSI of arity k, for all 

k > 1 if and only if H E ARC by Theorem 4.5. Next, H is in ARC if and only if H 

has retraction tree duality by Theorem 4.6. Lastly, H has retraction tree duality if 

only if H is in AR, by Theorem 3.2. 

0 

Proof of Theorem 4.1. Since AR, = ARC by Corollary 4.2 and since AR, is 

a variety by Theorem 3.1, the class of graphs ARC is a variety. 

0 

Since we now know that the classes ARC and AR, are in fact the same, we can 

comment further on how these classes relate to chordal graphs. We ended Section 3.4 

with a conjecture concerning the intersection of the variety generated by connected 

chordal graphs and AR,. By Corollary 4.1, ARC, and hence AR,, contains the vari- 

ety generated by connected chordal graphs. Therefore, we can rephrase Conjecture 1 

as follows: 
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Conjecture 1'. T h e  var ie ty  generated b y  connected chordal graphs i s  exact ly  t h e  

in tersec t ion  of t h e  v a r i e t y  of strongly stretched graphs a n d  AX,. I n  o t h e r  words ,  i f  

w e  le t  X be t h e  v a r i e t y  generated by connected chordal graphs a n d  let  Y be t h e  v a r i e t y  

o f  s trongly  stretched graphs,  

X = A R , n Y .  

Conjecture 1' can also be stated with respect to the class ARC 

Conjecture 2. T h e  var ie ty  generated b y  connected chordal  graphs i s  exact ly  t h e  i n -  

t e r sec t ion  of t h e  var ie ty  of  s trongly  stretched graphs a n d  A R C .  I n  o t h e r  words ,  i f  w e  

le t  X be t h e  var ie ty  generated b y  connected chordal graphs a n d  let  Y be t h e  var ie ty  of  

s trongly  stretched graphs,  

X = A X c  nY. 

Wheeled graphs 

Here we introduce the new class of graphs 

of the two classes called wheel extensions 

called wheeled graphs, which is the union 

and multi-wheel extensions; these graphs 

are formed by modifying a property of chordal graphs with respect to  clique cut 

set decompositions. We then spend some time developing useful properties of wheel 

extensions and multi-wheel extensions. Next we prove that  both classes are contained 

in ARC. The proofs are based on modified versions of Algorithm 3.1 and Theorem 4.4. 

We will be using clique cut sets to decompose connected graphs; for disconnected 

graphs, we may apply the following analysis to  each component. Recall from Sec- 

tion 1.1 that a vertex cut set of a graph H is a set S C V ( H )  such that H \ S is 

disconnected. For a graph H, we call a clique S in H such that H \ S is disconnected 

a clique c u t  se t  of H .  Recall from Section 1.1 that 0 may never be a clique cut set as 

cliques always contain a t  least one vertex. 

Suppose a connected graph H has a clique cut set K. Then H has a vertex 

partition A U B U K such that A has no neighbours in B and A # 0 # B. We can 
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then decompose H into two subgraphs H'  and H", separated by K, where H'  is the 

subgraph of H induced by A U K and H" is the subgraph of H induced by B U K. 
Note that H' and H" are also connected. By decomposing H' and H" in the same way 

and repeating until no longer possible, we can decompose H into a set of connected 

induced subgraphs of H that have no clique cut sets, which are called a t o m s  135, 681. 

Such a set is called a clique c u t  s e t  decompos i t ion  of H .  As remarked in [68], there can 

be more than one clique cut set decomposition of a graph. This is demonstrated by 

Figure 4.2. We will show that two distinct clique cut set decompositions for a graph 

H have the same set of atoms that are not complete graphs. 

Figure 4.2: A graph with two different clique cut set decompositions; the decompo- 
sition on the left used the clique cut set {x, y),  and the decomposition on the right 
began with the clique cut set {x, y, z }  and then used the clique cut set {x, y}. 

Lemma 4.2. L e t  H be a connected graph a n d  le t  J be a connected induced subgraph 
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of H that does not have a clique cut set. Then  for all clique cut set decompositions D 

of  H ,  there  ex i s t s  a n  a t o m  o f  D t h a t  h a s  J a s  a n  induced subgraph. 

Proof. Let D be a clique cut set decomposition of H ,  and consider the induced 

subgraphs of H produced in decomposing H to create V. Let G be a minimal induced 

subgraph of H produced in this process such that J G G .  Thus if G has a clique cut 

set K and is decomposed into G' and G",  then neither G' nor G" can have J as a 

subgraph. As J and G are both induced subgraphs of H ,  J must also be an induced 

subgraph of G .  Hence G if is decomposed into G' and G", then either J is a subgraph 

of G' or G",  or K n V ( J )  must be a clique cut set of J .  The first case contradicts the 

way we chose G ,  and the second case contradicts the fact that J doesn't have a clique 

cut set. Thus G must in fact be an atom of V. 

Proposition 4.5. Let H be a connected graph. Let J be a connected induced subgraph 

of H such that J has no clique cut set and such that if J' is  a connected induced 

subgraph of H with J 2 J ' ,  then J' must  have a clique cut set. Then  J must  be an 

atom of any clique cut set decomposition of H .  

Proof. Let V be a clique cut set decomposition of H .  By Lemma 4.2, J is an 

induced subgraph of some atom J' E D. According to the definition of an atom, J' 

is a connected induced subgraph of H and J' has no clique cut set. Therefore J = J' 

by the maximality of J ,  and so J is an atom of V. 

0 

Lemma 4.3. Let H be a connected graph and let D be a clique cut set decomposition 

of H .  Suppose that there exists an  induced subgraph J of H such that J is  an induced 

subgraph of two distinct atoms of V. Then  J is  a complete graph. 

Proof. Let G1 and Gz be two distinct atoms of D such that J is an induced 

subgraph of both. As in the proof of Lemma 4.2, we will make use of the induced 

subgraphs of H that are produced in creating V. Let G be a minimal induced subgraph 

of H produced in creating 2) such that G1 and G2 are induced proper subgraphs of G. 
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As G1 and G2 are atoms of 23, we may assume that G has a clique cut set K and that 

induced subgraphs G' and G" of G are produced such that G1 is an induced subgraph 

of GI, G2 is an induced subgraph of G" and G2 GI, G1 G" (note that there 

may be some atom of D that contains both G1 and G2) .  By the way a clique cut set 

decomposition is made, K = V ( G 1 )  n V(G") .  Therefore, as J is in the intersection of 

G I  and G2, which is contained in the intersection of G' and G", J must be a complete 

graph. 

0 

Proposition 4.6. Let H be a connected graph and let D and D' be two clique cut  set 

decompositions of H .  If there exists a n  a t o m  J' E D' \ D, t h e n  J' i s  a complete graph. 

Proof. Suppose there exists an atom J' in D' that is not in D. The atom J' has 

no clique cut set by definition and so J' must be an induced subgraph of some atom 

J of D by Lemma 4.2. If J' = J Qr if J is a complete graph, then there is nothing 

left to proof. Thus assume that J i~ not a complete graph and that J' is a proper 

induced subgraph of J.  

Now consider the atom J .  By definition of an atom of H, J has no clique cut 

set and J is a connected induced subgraph of H. Thus by Lemma 4.2, J must be 

an induced subgraph of some atom J" of D'. Hence J' must be a proper induced 

subgraph of J" as J' C J J". Therefore J' is an induced subgraph of itself and J", 

two distinct atoms of D' and so J' must be a complete graph by Lemma 4.3. 

Let H be a connected graph and let D and D' be two clique cut set decompositions 

of H .  By Proposition 4.6 we know that D and D' can only differ with regard to their 

complete atoms; the non-complete atoms of D and D' must be exactly the same: 

{ J E D 1 J not a complete graph ) = { J' E D' I J' not a complete graph } . 

Denote the set of non-complete atoms of the clique cut set decomposition ZJ of H (and 

hence of any clique cut set decomposition of H )  by 'D(H) .  Clearly ' D ( H )  is a subset of 

all clique cut set decompositions of H. Moreover, for any clique cut set decomposition 

D of H, D \ C(H) is either empty or consists solely of complete subgraphs of H. Let 
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J be a connected induced subgraph of H that has no clique cut set, is not complete 

and any connected induced subgraph of H that properly contains J has a clique cut 

set. By Proposition 4.5, J is an atom of any clique cut set decomposition of H. As 

we have specified that J is also not a complete graph, J must therefore be a member 

of C ( H )  In fact, such graphs are exactly the elements of C ( H ) .  

Proposition 4.7. Let H be a connected graph. Then 6 ( ~ )  is the set of all connected 

induced subgraphs J of H such that: 

i.) J is not a complete graph. 

ii.) J does not have a clique cut set. 

iii.) if J' is a connected induced subgraph of H such that J C J ' ,  then J' must have 

a clique cut set. 

Proof. Let J be a connected induced subgraph of H that has the above proper- 

ties. Then J is an element of C ( H )  by our discussion preceding Proposition 4.7. 

Let J be an element of 5 ; ~ ) .  Then by the definition of C ( H ) ,  J is not complete 

and J does not have a clique cut set. Let J' be any connected induced subgraph of 

H that properly contains J .  We will now prove that J' must have a clique cut set. 

Let D be a clique cut set decomposition of H .  Consider the induced subgraphs of 

H created in the process of making D. Let G be one of these induced subgraphs that 

is minimal with respect t o  containing J'. Either G has a clique cut set or G is an 

atom of D .  If G is an atom of D ,  then J is an induced subgraph of two distinct atoms 

of D ,  itself and G as J c J' G. Therefore by Lemma 4.3, J must be complete, 

a contradiction. Hence G must have a clique cut set, say K. The clique cut set K 

separates G into two induced subgraphs G' and G", neither of which contain J' by 

the way we chose G. Thus K f l  V ( J 1 )  is a clique cut set of J'. 

0 

Dirac proved that every minimal cut set of every induced connected subgraph of a 

chordal graph is a clique, see Theorem 1.8. Thus any clique cut set decomposition of 
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any connected chordal graph consists solely of complete graphs [68]. In fact connected 

chordal graphs are exactly those graphs whose clique cut set decompositions consist 

of complete graphs. In this chapter we will be studying connected graphs that have 

clique cut set decompositions that consist of complete graphs and wheels. Recall from 

Chapter 1 that a wheel is graph with a nontrivial induced cycle (the rim cycle) and 

one vertex (the hub) adjacent to all the vertices of the induced nontrivial cycle. It  is 

easy to see that wheels do not have clique cut sets. 

Corollary 4.3. Let H be a connected graph with a clique cut set decomposition D 

that consists of wheels and complete graphs. Then  all clique cut set decompositions 

of H consist of wheels and complete graphs and Z)(H) is  exactly the set of induced 

wheels of H .  

Proof. Let D' be another clique cut set decomposition of H, if one exists. Then 

by Proposition 4.6, D' \ D and D \ D' may only contain complete subgraphs of H .  

Therefore D' must consist of all the wheels that are in D, plus possibly some complete 

graphs, which may or may not be in D. 

Now consider C(H)  By definition, C(H) is a subset of D. In particular, Z)(H) 

contains the atoms of 2) that are not complete graphs. Thus 5 ( H )  is exactly the set 

of wheels in 23. Therefore if J is an element of 5 ( ~ ) ,  then J is wheel and as atoms 

of D are induced subgraphs of H, J must be an induced wheel of H .  

Let CV be an induced wheel in H .  As W has no clique cut set, M,' must be an 

induced subgraph of some atom J of D by Lemma 4.2. By the choice of D, J must 

either a complete graph or a wheel. Thus J = W ,  and 14' E D. Therefore W E C(H). 
0 

A connected graph H is said to be a wheel extension if there exists a clique cut set 

decomposition of H that consists of exactly one wheel on at least 5 rim vertices and 

possibly some complete graphs. In other words, H is a wheel extension if and only if 

@(H) is exactly one wheel on a t  least 5 rim vertices. Clearly all wheels on a t  least 5 

rim vertices are themselves wheel extensions. 

Let H be the graph in Figure 4.3. It's easy to see that we can decompose H 
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using clique cut sets into the subgraph that is the five wheel and the various complete 

subgraphs of H. 

h3 

Figure 4.3: An example of a wheel extension. 

Proposition 4.8. Let H be a wheel extension. Then H has a unique induced wheel 

and the rim of this wheel is the only induced nontrivial cycle of H. 

Proof. As noted above, H is a wheel extension if and only if Z ) ( H )  is exactly one 

wheel on at  least 5 rim vertices. By Corollary 4.3, Z ) ( H )  is exactly the set of induced 

wheels of H. Thus H has a unique induced wheel. 

Let C be an induced nontrivial cycle of H .  As C has no clique cut set, C must 

be a subgraph of some atom in each clique cut decomposition of H by Lemma 4.2. 

Each clique cut set decomposition of H consists of the unique induced wheel of H and 

possibly some complete graphs. Thus C must be the rim cycle of the unique induced 

wheel in H. 

0 

Recall that if H is a graph with a partial ordering of its vertices, say hl ,  . . . , h,, 
then Hi = H \ {hl , .  . . ,hi) for i = 1 , .  . . , n ,  where i # (V(H)J ,  and Ho = H. 



CHAPTER 4. ARC CONSISTENCY 122 

Proposition 4.9. Let H be a connected graph. Then  H is  a wheel extension if and 

only if there exists a partial perfect elimination ordering hl ,  . . . , h, of H such that H, 

is  wheel o n  at least five r i m  vertices. 

Proof. Let H be a wheel extension. If H is also a wheel, then Ho = H is a wheel 

on at least 5 rim vertices and desired partial perfect elimination ordering is the empty 

ordering. Thus we may assume that H is not a wheel, and that all proper induced 

subgraphs of H that are wheel extensions have the desired partial perfect elimination 

ordering. As H is not a wheel, it must have a clique cut set K, that separates H into 

two connected induced subgraphs H' and H" where K = V(Ht)  n V(H1'). As the set 

of atoms of any clique cut set decomposition of H consists of one wheel on at least 

5 rim vertices and some complete graphs, then without loss of generality, the set of 

atoms of any clique cut set decomposition of H' consist of complete graphs, and the 

set of atoms of any clique cut set decomposition of H" consists of one wheel on at 

least 5 rim vertices and possibly some complete graphs. Thus H' is chordal and HI' 

is a wheel extension. 

Consider the chordal graph H'. It contains the clique K by construction, and 

cliques are convex (see Section 2.2). Therefore by Theorem 2.3, there exists a partial 

perfect elimination ordering of HI, say xl ,  . . . , xk, such that K = V(Hk). 

Now consider the graph HI', which also contains the clique K by construction. 

Since HI' is a proper induced subgraph of H that is a wheel extension, HI' has a 

partial perfect elimination ordering yl, . . . , yl such that Hr is a wheel on at least 5 

rim vertices. Let h l ,  . . . , h, be the partial ordering of H we obtain by concatenating 

21,. . . , xk and yl, . . . , yl in that order 

We claim that hl ,  . . . , h, is a partial perfect elimination ordering of H such that H, 

is a wheel on at least 5 rim vertices. As H, = H \ ({xl, . . . , xk)  U {yl, . . . , y l ) )  = Hi', 

we see that H, is indeed a wheel on at least 5 rim vertices. Now we must prove that hi 

is simplicial in Hi-l,  i = 1, . . . , n - 1. Consider a vertex hi. If hi is in HI', it is easy to 

see that hi is simplicial in Hip1 since hi = y, for some p and HiP1 = H\ ({xl, . . . , xk)  u 
{yl, . . . , yp)) = H i .  Thus assume that hi is in H' \ HI' = H' \ K. Therefore hi = xi 

and all the neighbours of xi in H are contained in HI. Hence, as xi is simplicial in 
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H,(-, it must also be simplicial in Hi-l = H \ hl ,  . . . , hi-1 = H \ X I ,  . . . , xi-1. Therefore 

hi is simplicial in Hip1 for i = 1, . . . , n. 

Let H be a graph that has a partial perfect elimination ordering h l ,  . . . , h, such 

that H, is a wheel on at  least five rim vertices. If h l ,  . . . , h, is the empty ordering, 

then H is wheel on at least 5 rim vertices and clearly is a wheel extension. Thus 

assume that n 2 1. Then the set of nontrivial neighbours of hl in H = Ho form 

a clique cut set, separating H1 and the subgraph of Ho induced by NHo(hl) (recall 

that hl E NHo(hl)).  Continuing on in this manner, we can create a clique cut set 

decomposition of H, whose atoms are the graph H, and the complete subgraph of 

Hi-1 induced by NH,-, (hi) for i = 1,. . . , n. Therefore H must be a wheel extension. 

0 

Let H be a wheel extension. Then by Proposition 4.9, H has a partial perfect 

elimination ordering hl ,  . . . , h, such that H, is a wheel on at least 5 rim vertices. 

Call such a partial perfect elimination ordering a wheel extension ordering; the graph 

in Figure 4.3 with the partial ordering as indicate is an example of wheel extension 

with a wheel extension ordering. Let r l r 2 . .  . r k r l  be the rim cycle of H ,  and h the 

hub. Each vertex ri is covered by h in H,. Therefore h l ,  . . . , h,, r l ,  . . . , r k ,  h is a 

dismantling ordering of H.  We can summarize these observations in the following 

proposition. 

Proposition 4.10. Each wheel extension is dismantlable. 

Let H be a connected graph and let E be a subset of E ( H ) ;  for ease of discourse, we 

will use V(E) to denote the set of vertices that are endpoints of the edges of E. Then 

the pair (H,  E) is a multi-wheel graph if there exists a clique cut set decomposition 2) 

of H that consists of at  least one wheel and possibly some complete graphs such that 

i.) any clique cut set K used in decomposing H into the atoms of D is disjoint from 

v ( 0  

ii.) each atom of V that is a wheel has exactly one edge e from E, and e is a rim 

edge of that wheel. 
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iii.) each atom of V that is a complete graph is edge disjoint from I .  

Recall that we are assuming that the rim cycle of a wheel is always at least size 4. 

Let H be the graph in Figure 4.4 and let & = { e l ,  e z ) .  Note that the cliques {x, y) 

and {y, z )  are disjoint from V(E). We can use the clique cut set { z ,  y) to decompose 

H into the subgraph induced by the clique {y, z ,  u), call it HI, and the subgraph 

induced by the two wheels, call it H". We can then use the clique cut set {y, x) to 

decompose H" into the four wheel, call it W,  and the five wheel, call it W'. The 

complete graph H' is edge disjoint from &, and W and W' each contain exactly one 

edge from E, and this edge is a rim edge. Thus (H, E) is a multi-wheel graph. 

Figure 4.4: An example of a multi-wheel graph. 

Note that by Corollary 4.3, if (H, E) is a multi-wheel graph, then all the of clique 

cut set decompositions of H consist of wheels and comp1et.e graphs. 

Proposition 4.11. Let (H,  I )  be a multi-wheel graph. Then 

i . )  each induced wheel of H appears as an atom in any clique cut set decomposition 

of H. 

ii.) each edge e E E is contained in  n unique induced wheel of H and so \ & I  = 5 ( ~ )  1 .  
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iii.) each induced nontrivial cycle of H is the rim cycle of exactly one induced wheel 

of H .  

iv.) if s is the endpoint of an edge in E, then s is contained in a unique induced 

wheel W of H and the neighbourhood of s in H is contained in V(W), i.e., 

NH(s) G V(W). 

v.) H \ E is a chordal graph. 

Proof. Let D be a decomposition of H that satisfies the requirements of the 

definition of a multi-wheel graph. In particular, D consists of wheels and complete 

graphs. By Corollary 4.3, C(H) is exactly the set of induced wheels of H .  As C(H) 
is a subset of D by definition, statement i is true. 

ii. By the definition of a multi-wheel graph, each wheel atom of D,  i.e., each element - 

of C(H), contains exactly one edge of E, and so I ~ ( H )  1 5 I &  1 .  Suppose two wheels of 

Z)(H), say W and W', share an edge e E E. At some point in the process of creating 

D ,  W and W' must be separated; thus there exists induced subgraphs H' and H" of 

H such that W G HI, W E H" and K = V(H1) nV(H1') is a clique cut set used in the 

creation of D. Obviously K must contain all vertices common to W and W'. Thus K 

must contain the end points of e ,  contradicting the requirement that V(E) n K = 0 
in the definition of a multi-wheel graph. Therefore statement zi must be true. 

iii. Let C be an induced nontrivial cycle of H. Clearly C has no clique cut set, and 

so C is an induced subgraph of some atom J in D by Lemma 4.2. The cycle C is 

nontrivial so J can't be complete. Thus J must be a member of C(H), which is 

exactly the set of induced wheels of H, as noted previously. Therefore C must be 

the rim cycle of an induced wheel of H .  If C is the rim cycle of two distinct wheel 

atoms of D ,  then C is an induced subgraph of two distinct atoms of D. Thus by 

Lemma 4.3, C must be a complete graph, which is a contradiction as C is not the 

3-cycle. Therefore statement iii must hold. 

iv. Let s be an endpoint of an edge e E E. Then by the definition of multi-wheel graphs, - 

e is the rim edge of an induced wheel W in H .  Suppose that s has a neighbour y 

in H that is not in V(W).  Let G be the last induced subgraph of H produced in 
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creating V that contains both y and W. Then G must have a clique cut set K ,  where 

the subgraph W \ K must be in one component of G \ K and the vertex y must be 

in another. Thus s must be in K ,  which contradicts the definition of a multi-wheel 

graph and so all neighbours of s in H are contained in W. Therefore statement iv 

must hold. 

v. Suppose that there exists an induced nontrivial cycle C in H \ &. If C is also an - 

induced cycle of H, then by statement iii, C is the rim cycle of a unique induced wheel 

of H .  But by definition of a multi-wheel graph, there exists an edge of C that is in 

&, a contradiction. Thus C is not an induced cycle of H .  Hence there exist vertices 

s and s' in C that are not adjacent in C such that ss' E &. By statement iv, the 

vertex s is in the vertex set of a unique induced wheel W of H, and NH(s) C_ V(W).  

Consider the non-trivial neighbours of s.  They are the vertex st, the other non-trivial 

neighbour of s on the rim cycle of W ,  call it r ,  and the hub h of W. As ss' is not an 

edge of C, r and h must be the nontrivial neighbours of s on the cycle C. As C is an 

induced nontrivial cycle in H \ &, this implies that r h  E &. By statement ii, M/ is the 

unique wheel that contains rh.  This contradicts the definition of a multi-wheel graph 

as r h  is not a rim edge of W.  Therefore statement v is true. 

The last statement of Proposition 4.11 shows how close to chordal multi-wheel 

graphs are; there exists one special edge in each induced cycle such that removing all 

these edges produces a chordal graph. 

Let H be a graph and let & be subset of E ( H ) .  Then (H, &) is a multi-wheel 

extension if: 

1. (H,  I )  is a multi-wheel graph. 

2. H has a simplicia1 vertex 21 with a t  most one neighbour in V(&) such that 

(H \ v,  &) is a multi-wheel extension. 

Thus, as opposed to multi-wheel graphs, if (H, &) is a multi-wheel extension, then 
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vertices in V(&) may have neighbours outside the induced wheels that contain them. 

Let H be the graph in Figure 4.5 and let & = {el, e z ) .  Let H' = H \ { x ,  y). Then 

H' is the graph in Figure 4.4, and (HI, I) is a multi-wheel graph. Thus (HI, I) is also 

a multi-wheel extension. The vertex x is simplicial in H \ y, the vertex x has one 

neighbour in V ( I )  and (H \ { x ,  Y )  , I) is a multi-wheel extension. Thus (H \ y ,  I) is a 

multi-wheel extension. The vertex y is simplicial in H, y has one neighbour in V ( I )  

and (H \ y, I) is a multi-wheel extension. Therefore (H, &) is a multi-wheel extension. 

Figure 4.5: An example of a multi-wheel extension. 

Proposition 4.12. Let H be a graph and let C be a subset of E ( H ) .  Then (H,&) 

is a multi-wheel extension if  and only i f  H has a partial perfect elimination ordering 

hl ,  . . . , h, such that 

i . )  the neighbourhood of hi i n  Hi-l contains at most one vertex from V ( I ) .  

ii.) (H,, I) is a multi-wheel graph. 

Proof. If (H, I) is a multi-wheel graph, then the desired partial perfect elimina- 

tion ordering is the empty ordering. Otherwise there exists a simplicial vertex, call it 

hl , with at most one neighbour from V ( I )  in H = Ho, such that (H \ hl , I) = (HI, I) 
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is a multi-wheel extension. Either (HI ,  I )  is a multi-wheel graph, or we can repeat 

the previous step. Therefore we can create a partial perfect elimination ordering 

h l ,  . . . , h, of H with properties i and ii. 

Now assume that H is a graph with a subset I of edges such that properties i 

and ii hold. As (H,, E) is a multi-wheel graph, it is also a multi-wheel extension. 

Consider the graph H,-l. The graph HnP1 contains the simplicial vertex h, with 

a t  most one neighbour from V(E) in Hn-l such that (Hn-l \ h,, E) = (H,, E) is a 

multi-wheel extension. Therefore (H,-l, I )  is a multi-wheel extension. By repeating 

this argument, we prove that (Hi, I) is a multi-wheel extension for i = n - 1 , .  . . , 0 .  

Since Ho = H, (H, I )  is a multi-wheel extension. 

0 

Note that Proposition 4.12 implies that multi-wheel extensions must be connected 

as wheel extensions are connected. 

Proposition 4.13. Let (H, I) be a multi-wheel extension. If C is an  induced non- 

trivial cycle i n  H, then C is the r i m  of a unique induced wheel in H. Moreover, H \I 

is chordal. 

Proof. Let h l ,  . . . , h, be a partial perfect elimination ordering of H as described 

in Proposition 4.12. Then (H,, I )  is a multi-wheel graph. 

If C is an induced nontrivial cycle in H, then each vertex of C has non-adjacent 

neighbours, namely its neighbours on C .  Therefore the vertex set of C and the set 

{h l ,  . . . , h,) are disjoint and so C must also be an induced subgraph of H,. Then by 

Proposition 4.11, C is the rim of a unique induced wheel of H,, and hence of H .  

Suppose that C is an induced nontrivial cycle ir, H \ I .  If V(C) is not disjoint from 

{ h l , .  . . , hh),  then there exists a vertex hi such that C Hi-1. As hi is simplicial in 

Hi-1, the nontrivial neighbours of hi on C ,  say h and h', are adjacent in and 

hence in H .  Therefore, as C is nontrivial, hh' E E. This contradicts Proposition 4.12 

as hi is allowed to have at most one neighbour in V ( I ) .  Hence V(C) is disjoint from 

{hl ,  . . . , hh)  and so C is an induced cycle of H,\I. As (H,, I )  is a multi-wheel graph, 

this contradicts Proposition 4.9. 
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In defining multi-wheel extensions, we have retained the property that made multi- 

wheel graphs nearly chordal; removing all special edges produces a chordal graph. 

Note that this property is lost if we allow a vertex in the partial perfect elimination 

ordering of Proposition 4.12 to have two neighbours that are endpoints of the special 

edges. 

Proposition 4.14. Let H be a multi-wheel extension. Then H is dismantlable. 

Proof. We will construct a dismantling ordering of H in three steps. 

By Proposition 4.12, there exists a partial perfect elimination ordering h l ,  . . . , h, 

of H such that (H,, &) is a multi-wheel graph. The partial ordering h l ,  . . . , h, is the 

first part of the dismantling ordering of H; simplicia1 vertices are covered by all of 

their nontrivial neighbours. 

Let e = ss' be an edge of &. By Proposition 4.11 , both s and st are contained in a 

unique induced wheel W of H, and all the neighbours of s and st in H are contained 

in W. Thus s and st are covered by the hub of W .  Let & = {el, . . . , ek) and let 

ek = sks;. Then sl,  si, . . . , s k ,  S; is the second part of the dismantling ordering of H .  

The graph (H,, &) is a wheel extension. Thus H, \ & is chordal by Proposition 4.9 

and so H, \ V(&) is clearly chordal. As (H,, &) is a wheel extension, H, is connected. 

Hence, it is not hard to see that H, \ V(&) is both chordal'and connected. Therefore 

H, \ V(&) admits a perfect elimination ordering, say h,+l, . . . , h,, by Theorem 1.8. 

This is the last part of the dismantling ordering of H. 

Thus, the dismantling ordering we have created for H is 

0 

Let H be graph such that either H is a wheel extension or ( H ,  &) is a multi-wheel 

extension for some & C E(H). We call such a graph a wheeled graph. 
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Theorem 4.7. Let H be a wheeled graph. Then H is dismantlable. 

Proof. This follows from Proposition 4.10 and Proposition 4.14. 

0 

Proposition 4.15. There exists a wheeled graph that does not admit a near unanimity 

function of any arity. 

The technique used is this proof is similar arguments used in 1141 and 1151. 

Proof. Let H be the graph in Figure 4.6. 

Figure 4.6: A wheeled graph that does not admit a near unanimity function of any 
arity. 

The graph H is clearly a wheel extension. It is enough to  prove that H does 

not admit a near unanimity function of arity 5k for all k 2 1; by Lemma 1.5, if H 

does not admit a near unanimity function of arity 5k ,  then H does not admit a near 

unanimity function of arity p, 3 5 p 5 5k.  In the proof of Theorem 3.8, we proved 

that H does admit have a near unanimity function of arity 5k by showing that H has 

a tree obstruction (T,  !) where T has 5k leaves; here, we present a direct proof. 

Suppose there exists a near unanimity function q : H5k + H for some positive 
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integer k. Define the vertex v l  of H5k to  be the vector 

and define the vertex v5k of H5k to be the vector 

For i = 2 , .  . . , 5k  - 1, define the vertex vi of H5k as follows: 

where the indices of rim cycle vertices and the indices of the hi's are to  be interpreted 

modulo 5. 

Since q is a near unanimity function, we must have q (v l )  = r l .  Consider the image 

of v 2  under q. In H5" the vertices v2 = ( r2 , .  . . , r2, h, r3) and h', = (h2 , .  . . , h2, h, h2) - - 
5k-2 5k-2 

are adjacent. By the definition of a near unanimity function, the image under q of 

the nearly unanimous vector hi is h2. Thus q(v2) must be adjacent to  h2 in H .  Note 

also that  v l  and v2 are adjacent in H ~ ~ .  Hence, q (v l )  = rl and q(v2) must also be 

adjacent in H .  The only vertex of H adjacent to both rl and h2 is r 2 .  Thus we must 

have q(v2) = r g .  

Consider the vertex vi of H ~ ~ ,  3 5 i 5 51; - 1. We may assume that q(vj)  = rj for 

1 < j < i .  The vertices vi-1 and vi are adjacent in H5k by construction, and by as- 

sumption q ( ~ i - ~ )  = riPl. Thus the image of vi under q must be adjacent to  ri-l. The 

vertex vi is also adjacent to  the nearly unanimous vector h'; = (hi, . . . , hi, h, hi, . . . . hi) - - 
5k-i a- 1 

in Hjk .  The image of h', under q must be hi. Thus the image of vi under q must be 

adjacent to  hi. Therefore we can conclude that q(vi)  = ri. 

By our arguments in the previous paragraph, we know that in particular q ( ~ ~ ~ - ~ )  = 

r5k-l = rd. The vertices v5k-1 = ( r d ,  h,  7-5,. . . , r5) and v5k = (r5, r l ,  . . . , rl)  are adja- - - 
5k-2 5k- 1 

cent in H5" For q to  be a homomorphism, the image of vsk must be adjacent to  r d .  
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Yet, by definition of a near unanimity function, the image of v5k must be rl ,  which is 

not adjacent to r4. Thus we have a contradiction. 

Therefore H does not admit a near unanimity function of arity 5k for all k. 

0 

Figure 4.7: A graph which admits a ncar unanimity function that is not in the variety 
generated by wheeled graphs. 

Notice that the graph in Figure 4.7 has the hole f with domain Di = {xl,  x2, x3} 

where f ( z l )  = 2 and f ( x 2 )  = f ( 5 3 )  = 1. 

Lemma 4.4. Let H be the graph in Figure 4.7 and let f be the hole on H as described 

above. If there exists a graph J and an onto homomorphism y  : H + J such that y  

is a separating map o f f ,  then J is isomorphic to H .  

Proof. We will prove that y  is an isomorphism by showing that y (h )  # y(h1) ,  

whenever h  # h,'. This is sufficient as we already know that y  is an onto homomor- 

phism. 

Let f * be the distance constraint on J with domain y ( D f )  where 

f * ( s 1 )  = min f ( s )  
r ( s ) = ( s l )  

Then as y  is a separating map of f, the distance constraint f * is infeasible on J. 
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Let Xi = ( ~ 3 ) ~  X2 = (y4, y5) and X3 = (31 ,  y2). Then for each z  E X i ,  z  is an 

xi relaxed filler such that d H ( z ,  x i )  = f ( x i )  + 1, i  = 1,2 ,3 .  Thus d  ~ ( y ( z ) ,  y ( x i ) )  5 
f ( x i )  + 1 for z  E X i  and i = 1,2,3.  If there exists i  E { 1 , 2 , 3 )  and a vertex z  E X i  

such that d  J ( y ( z ) ,  ? ( x i ) )  5 f ( x i ) ,  then y ( z )  E FJ(  f *), contradicting the infeasibility 

of f * .  Thus d J ( y ( z ) ,  ? ( x i ) )  = f ( x i )  + 1  for z  E X i  and i  = 1 ,2 ,3 .  Thus if hh' is a 

non-loop edge on a shortest z  - xi path in H ,  z  E X i ,  then y ( h )  # y ( h l ) ,  i  = 1,2 ,3 .  

It is easy to check that all the non-loop edges lie on a shortest z  - xi path in H  for 

some z  E X i  and some i E { 1 , 2 , 3 ) .  

Proposition 4.16. There exists a  graph that admits a  near unanimity function that 

is not in the variety of wheeled graphs. 

Proof. Let H  be the graph in Figure 4.7. If we can prove that H 2  dismantles 

to its subgraph induced by the constant vertices, then H  admits a near unanimity 

function by Theorem 1.6. 

Note that in H ,  the vertex xl is covered by yl ,  the vertex x2 by y2 and the vertex x3 

by y4. Thus, in H 2 ,  the vertex ( x l ,  z )  is covered by ( y l ,  z )  for all z  E V ( H ) ,  the vertex 

( x 2 ,  u) is covered by ( y2 ,  u )  for all u  E V ( H )  and the vertex ( x 3 ,  v )  is covered by ( y4 ,  v )  

for all el E V ( H ) .  Thus all vertices of the form ( x i ,  x j )  in H 2  are covered by some 

vertex. Let H' be the graph we obtain from H 2  be removing all vertices of the form 

( x i ,  x ; ) ,  i # j .  Clearly H 2  dismantles to H'. Let ( y i ,  y j )  be a vertex of H' such that 

(y i ,  y j )  is not adjacent to Z k ,  k = 1 ,2 ,3 .  Then ( y i ,  y j )  is covered by ( y4 ,  y4) ,  when i # j .  
The set of all vertices (y i ,  y;) such that (y; ,  y;) is not adjacent to  Fk for k = 1,2,3 is 

( ( ~ 1 ,  ~ 3 1 ,  ( ~ 1 ,  ~ 4 1 1  ( ~ 3 ,  ~ l ) ,  ( ~ 4 ,  ~ l ) ,  ( Y ~ I  3 4 )  2 5 4 2 5 2 3 5 5 3 Let 

H" be the graph we obtain from H' by removing these vertices. Clearly H', and thus 

H 2 ,  dismantles to H". Then, by inspection, H" dismantles to the graph induced by 

the constant vertices via the following partial ordering: 

Therefore H 2  also dismantles to its subgraph induced by the constant vertices. 
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Now we will show that H  is not in the variety generated by wheeled graphs. 

Clearly H  is not a wheeled graph itself; while xl is simplicial, H1 is neither a wheel 

extension nor a multi-wheel graph. Thus, suppose that H  is a retract of G = Ji, 
where Ji is a wheeled graph and Ji is not isomorphic to  H, for i = 1,. . . , I c .  Let .iri 

be the projection from G  onto Ji. Let yi be the restriction of .iri to  H .  Note that we 

may assume yi : H  4 Ji is onto. As H  is a retract of G, we must have FG ( f )  = 0 for 

all holes f on H .  Thus for each hole f on H ,  there must exist an index i such that 

.iri : G + Ji and hence yi : H + Ji, is a separating map of f .  Let f be the hole on H 

from Lemma 4.4. Without loss of generality, assume that yl : H  4 J1 is a separating 

map for f. Then by Lemma 4.4, J1 is isomorphic to H, which is a contradiction as 

H  is not a wheeled graph. 

0 

Theorem 4.8. The variety generated by wheeled graphs and the set of connected 

graphs that admit near unanimity function are not comparable. 

Theorem 4.9. The variety generated by connected chordal graphs is a subset of the 

variety generated by wheeled graphs. 

Proof. We will prove the theorem by showing any connected chordal graph is 

the retract of some wheel extension; the class of connected chordal graphs being a 

subset of the variety generated by wheeled graphs implies that the variety generated 

by chordal graphs is a subset of the variety generated by wheeled graph. 

Let H  be a connected chordal graph. If H is a single vertex or a single edge, then 

clearly H  is the retract of a wheel with 5 rim vertices. Thus assume H  has at least 

3 vertices. Let rlr2 be an edge of H. As {rl, r2) is clearly a convex set, there exists 

a partial perfect elimination ordering h l ,  . . . , h, of H such that V ( H , )  = {rl, r2) 

by Theorem 2.3. Let G be the supergraph of H  with vertex set V ( G )  = V ( H )  U 

{r3, rq, r5, h) where { r l , .  . . , r g ,  h) induces a wheel in G with rim cycle rlr2r3r~r5r1 

and hub h. Assume moreover that rl and 7-2 are the only vertices of H that have 

neighbours in G \ H .  Note that h l ,  . . . , h, is a partial perfect elimination ordering 
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of G such that G \ {hl, . . . , h,) is a wheel with 5 .  Thus G is a wheel extension by 

Proposition 4.9. Define the map B : G + H by 

g i f g ~ V ( H )  
%l) = 

rl otherwise. 

Clearly 0 fixes each vertex of H .  To prove that 0 is a retraction, we only need to prove 

that B is a homomorphism. Let gg' be an edge of G. If g and g' are both in V(H) or 

both not in V(H) ,  it is clear that B(g)B(gl) is an edge H .  Thus assume that g E V(H) 

and g' $ V(H) .  As r l  and r2  are the only vertices of H that have neighbours in G\ H, 
we must have that g is rl and 7-2. As B(gl) = T I ,  B(g)B(g1) is an edge of H .  

0 

In the next two sections, we will show that wheel extensions and multi-wheel 

extension are each in ARC by using modified forms of Algorithm 3.1 [28]. Thus we will 

conclude that the variety generated by wheeled graphs is contained in ARC as ARC 

is a variety by Theorem 4.1. Note that as the variety generated by connected chordal 

graphs is contained in the variety generated by wheeled graphs by Theorem 4.9, this 

is another proof that connected chordal graphs are in ARC.  

Before proving that wheeled graphs are in ARC, we will review why connected 

chordal graphs are in ARC, stressing the useful qualities shared by connected chordal 

graphs and wheeled graphs. 

Recall the proof we presented of Theorem 4.4, the theorem stating that connected 

chordal graphs are in ARC. Let H be a connected chordal graph with perfect elim- 

ination ordering hl ,  . . . , h, and let G be a connected supergraph G of H such that 

ACR Algorithm succeeds on H and G. Let L' be the final lists produced by ACR 

Algorithm on H and G. We proved that we could find a retraction from G to H by 

only applying action * of Algorithm 3.1 to (G, L') and hl ,  . . . , h,. 

We would like to use a similar technique to prove that if H is a wheeled graph 

and if G is a connected supergraph of H such that the ACR Algorithm succeeds on 

H and G, then there exists a retraction from G to H. Thus our first step will be to 

prove that the ACR Algorithm produces connected lists when H is a wheeled graph. 

Next, we will consider wheel extensions and multi-wheel extension separately. In each 
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case, we will create a partial ordering that contains most of the vertices of the graph 

under consideration and is close to a perfect elimination ordering. We will use action 

* of Algorithm 3.1 to process these vertices. There will be a special operation or two 

to deal with the vertices that are not in the partial ordering, i.e., the vertices that 

prevent the graph from being chordal. 

Lemma 4.5. Le t  H  be a wheeled graph. Let  W be a n  induced wheel in H  and  let x 

a n d  y be non-ad jacen t  rim vert ices  o f  W .  T h e n  every  path between x a n d  y has  a n  

internal vertex in V ( W ) .  

Proof. Suppose not. Let H be a wheeled graph such that the lemma is false for 

H ,  but is true for any wheeled subgraph H' of H. Let W be an induced wheel of H  

such that I V  has non-adjacent rim vertices x and y that are connected by a path P in 

H that is internally disjoint from W .  Moreover, assume that P  is chordless. Consider 

the subgraph J of H  induced by V ( W )  U V ( P ) .  Note that J is neither a complete 

graph nor a wheel. 

We claim that J has no clique cut set. Note that LV and P  are both induced 

subgraphs of J, and neither W nor P  have a clique cut set. Thus if h' is a clique cut 

set of J, I V  \ K must in an component of J \ K and P  \ K must be in another. This 

implies that the common vertices of W and P ,  namely x and y, must be in K. This 

is impossible as x and y are not adjacent. 

As J is a connected induced subgraph of H  with no clique cut set, J must be a 

subgraph of at  least one atom of any clique cut set decomposition of H by Lemma 4.2. 

We noted earlier that J is neither a wheel nor a complete graph. Therefore H  cannot 

be a wheel extension or multi-wheel graph. Therefore ( H ,  E )  is a multi-wheel extension 

for some E c E ( H ) .  As we have stated that ( H ,  E )  is not a multi-wheel graph, there 

must exist a simplicia1 vertex v of H  such that ( H  \ v, I )  is a multi-wheel extension. 

Thus H  has a simplicia1 vertex such that H  \ v is a wheeled graph. By the minimality 

of H, v must be a vertex of J ; J can't be a subgraph of H \v. Any vertex of V ( W )  in 

J has non-adjacent neighbours as M' is an induced subgraph of J and W is a wheel. 

Therefore v must be a vertex internal to  P .  As we assumed that P was chordless, 

this implies that P has length 2 and that the endpoints of P ,  x and y, are adjacent, 
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a contradiction. 

Lemma 4.6. Le t  H be a wheeled graph and  let  W be a n  induced wheel in H .  Let  x 

and  y be t w o  non-adjacen t  r i m  vertices o f  W .  Let  h be the  hub  of W .  Let  B V(H)  

be connected. T h e n  if  B supports x and  y ,  B m u s t  also support h. 

Proof. Suppose that x and y have neighbours u and v in B. The vertices u and 

v are connected by a path P such that V ( P )  B as B induces a connected subgraph 

in H. We may assume that P is chordless and that x and y are only adjacent to u 

and v on P, respectively. By Lemma 4.5, any path from x to  y must have an internal 

vertex in W. Thus P must contain a neighbour of h since xPy  is a path from x to  y. 

Therefore B supports h. 

Proposition 4.17. Let  H be a wheeled graph, and  let G be a connected supergraph 

of H .  T h e  lists produced by the  A C R  Algor i thm applied t o  H and  G are connected. 

Proof. We will analyze what occurs when the ACR Algorithm is applied to H 

and G. 

We first initialize the list of every vertex g of G to either { g )  if g E V(H)  or V ( H )  

otherwise. Certainly each list created initially is connected. We will prove that this 

property is maintained as we process the edges of G. 

Assume that the list of every vertex of G is connected in all iterations before 

iteration i ,  and let gg' be the edge to  be processed in iteration i. Note that only the 

lists of g and g' may change when we process the edge gg'. Hence all that is needed 

is to prove that the lists of g and g' retain their connectivity. This is trivially true if 

the lists of g and g' become empty in iteration i, at which point the algorithm would 

stop with failure. Hence we may assume that some vertex of L ( g ) ,  the list of g the 

beginning of iteration i ,  has support in L ( g l ) ,  the list of g' beginning of iteration i .  

Let S be the vertices of L(g) that have support in L(gl). If S is connected, there is 

nothing to  prove. Thus suppose that S is not connected. Let S1 and S2 be distinct 
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connected subsets of S .  Hence there exists a path P in H whose vertices are contained 

in L(g) ,  where P is internally disjoint from S with one endpoint x in S1 and the other 

endpoint y in S2. We may assume that P is chordless. Thus x and y have support 

in L(g f ) ,  but no internal vertex of P does. Note that P contains at least 3 vertices 

as P has a t  least one internal vertex. Let u and v be the neighbours of x and y 

respectively in L(gf )  such that the distance between u and v in the subgraph of H 

induced by L(gf )  is minimum; it is possible that u = v. Let P' be a path from u to  v 

in L(gf ) .  Then V ( P )  U V ( P f )  induces a nontrivial cycle C in H. By Proposition 4.8 

and Proposition 4.13, C is the rim of an induced wheel W in H.  Let h be the hub of 

W. The vertex h obviously has support in L(gf )  and it is a common neighbour of x 

and y. Thus h is not in L(g) .  As L(g) contains a t  least three vertices, the original list 

of g was V ( H )  and so h must have been removed from the list of g in some iteration 

previous to  the current one. Hence g must have a neighbour gf' such that the edge 

g g f f  was processed in iteration j ,  1 5 j  < i where the list of gf' at  the beginning of 

iteration j  had support for x and y ,  but not h. This contradicts Lemma 4.6 since 

we have assumed that all lists were connected in all iterations previous to  iteration 

i. Therefore the vertices in L(g) that have support in L(gf )  form connected set, and 

vice versa. 

0 

4.4.1 Wheel Extensions 

In this section we will prove that wheel extensions are in ARC by using a modified 

version of Algorithm 3.1. 

Let H be a wheel extension. By Proposition 4.9, H has a wheel extension ordering 

h l ,  . . . , h,. Thus H, is a wheel on at least 5 rim vertices. Let rlr2. . . r k r l  be the rim 

cycle of H, and let h be the hub of this wheel. As H, is the unique induced wheel of 

H, we will also call r l r z . .  . rkrl the rim cycle of H and h the hub of H. Note that 

{ h l , .  . . , h,) U {r l , .  . . , r k )  U {h) is a partition of the vertex set of H. 
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Algorithm 4.3. 

Input: A graph G. 

: A subgraph H of G which is a wheel extension with a wheel extension 

ordering h l ,  . . . , h,, rim cycle r l ,  . . . , rk and hub h. 

: A non-empty list L(g) for each g E V ( G )  produced by the ACR 

Algorithm applied to H and G. 

Task: To find a retraction from G to  H. 

iction: Process the vertices h l ,  . . . , h,. For each vertex g of G 

* if hi E L(g) and IL(g)l 2 2, then remove hi from L(g) 

(do this for i = 1,. . . , n).  

L(g) + Lig) \ {h i )  

: Process the vertex { h ) .  For each vertex g of G 

t if h  E L(g) then remove all vertices but 

L(g) + { h )  

h  from 

: Process the vertices r l ,  . . . , rk. For each vertex g of G 

tt if r,, L(g) for some i, where the indices are modulo 

k ,  then remove vertex ri from L(g) .  

: Create a retraction 0 : G -t H by setting B ( g )  to  be the single vertex 

in L(g) .  
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Consider the lists at each stage of Algorithm 4.3. The lists provided by the ACR 

Algorithm applied to H and G are subsets of V(H) .  Once we process the vertex h l ,  

each list is either a single vertex of V ( H )  or is a subset of V(H1); note that processing 

the vertices of h l ,  . . . , h, will never produce an empty list. In general, once we have 

processed vertex hi, 1 5 i 5 n, all lists are singletons or subsets of V(Hi). Next 

we process the the hub h of H by replacing any list that contains h with the list 

{h). Thus once we have processed the vertices hl , . . . , h,, h, each list is a singleton 

or consists solely of rim vertices of H .  

Theorem 4.10. Let H be wheel extension, and let G be a connected supergraph of 

H .  If the ACR Algorithm succeeds when applied to H and G, then Algorithm 4.3 will 

produce a retraction from G to H .  

Proof. As H is a wheel extension, H has a wheel extension ordering, a partial 

perfect elimination ordering h l ,  . . . , h, such that H, is wheel on a t  least 5 rim vertices 

by Proposition 4.9. Let rlr2..  . r k r l  be the rim cycle of H, and h the hub. Let G be 

a connected supergraph of H such that the ACR Algorithm succeeds when applied t o  

H and G. Thus the ACR Algorithm produces a non-empty list L(g) V(H)  for each 

vertex g of G, and the lists are arc consistent. In addition, each list is connected by 

Proposition 4.17. We claim that list connectivity and arc consistency are maintained 

throughout the execution of Algorithm 4.3 applied to  (GI L) and H. 

For the rest of this proof, L(g) will be the list of g E V(G) at the beginning of the 

action in question. Process the vertices of the wheel extension ordering h l ,  . . . , h, of 

H .  Assume that the claim is true before we process vertex hi,  i 2 1. 

Suppose that we are about to  perform action * on L(g). Thus IL(g)J 2 2. Since 

hi is simplicia1 in HiPl and since L(g) C V(Hi-1), action * on L(g) will perserve list 

connectivity as in the proof of Theorem 3.3 and action * will preserve arc consistency 

as in the proof of Theorem 4.4.  

Thus, once we have processed the vertices of the wheel extension ordering, all lists 

are still connected and arc consistent. 

Process the hub h of H. Suppose that h is in L(g) for some g E V(G) and that 
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I L(g) 1 2 2. Clearly {h) is connected, thus we only need to prove that {h) supports 

all the vertices L(g) supports. Let g' be a neighbour of g in G. If the list of g', L(g1), 

is a singleton, then clearly arc consistency is maintained as this single vertex must be 

adjacent to all vertices of L(g) and in particular is adjacent to h. Thus suppose that 

L(gl) is not singleton. Then L(g1) V(H,) by our comments following Algorithm 4.3. 

Recall that h is the hub of H,, the unique induced wheel in H .  Hence h is adjacent to 

every vertex of L(g1), and so arc consistency is preserved after h has been -processed. 

Therefore all lists of the vertices of G are connected and arc consistent after we 

have process h l ,  . . . , h,, h. 

Consider the lists a t  this time. Suppose that IL(g)J 2 2, for some g E V(G). Thus 

h # L(g). The vertex h is never removed from a list by any action of Algorithm 4.3, 

and so h must have been removed from the list of g in the running of the ACR 

Algorithm applied to H and G. Lemma 4.6 tells us that if a connected list doesn't 

support h, it can't support non-adjacent rim vertices of the wheel H,. In the proof of 

Proposition 4.17, we demonstrated that the lists of the vertices of G were connected 

initially and remained so throughout all iterations of the ACR Algorithm. Thus if h 

was removed from the list of g in some iteration of the ACR Algorithm, the list of g 

at the end of that iteration did not contain non-adjacent rim vertices of H,. As L(g) 

is a subset of this previous list, L(g) can not contain non-adjacent rim vertices of H,. 

As noted in our comments after Algorithm 4.3, L(g) contains only rim vertices of H. 

Hence L(g) must consist of two adjacent rim vertices of H,. 

Therefore, for each list L(g), g E V(G), either L(g) = {r i , r i+l )  or L(g) is a 

singleton. 

Lastly, process the rim vertices of H ,  rl, . . . . r k .  Let g and g' be adjacent vertices 

in G with non-singleton lists. Without loss of generality we may assume that L(g) = 

{rp, rpfl) and L(g1) = {r,, r,+l), with 1 5 p 5 q 5 k and the indices modulo k .  

Suppose that rp+l and r,+l aren't adjacent. As L(g) and L(gl) are arc consistent, 

rp+l must be adjacent to r, and r,+l must be adjacent to r,. Recall that r l r z . .  . r k r l  

is an induced cycle in H .  Thus if r, is adjacent to r,, then q = p + 1 implying that 

rp+l is adjacent to r,+l. This contradicts our assumption. Hence rprp+lr,r,+lrp is 
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an induced 4-cycle in H,  \ h .  But this is impossible as by the definition of a wheel 

extension, the rim cycle of H must be of size at least 5. Hence the vertices r,+l and 

r,+~ are adjacent and so list connectivity and arc consistency are maintained once the 

rim vertices of H have been processed. 

Thus, after processing all the vertices of V ( H ) ,  the lists of the vertices in G are still 

connected and arc consistent. Moreover, all lists are singletons. Therefore the map 4 
created in the last step of Algorithm 4.3 is well defined and it is a homomorphism. 

The function 4 is in fact a retraction as the initial list assigned to  g E V ( H )  by ACR 

Algorithm was {g). 

0 

Corollary 4.4. Each wheel extension is i n  ARC. 

4.4.2 Multi-wheel Extensions 

In this section, we will prove that multi-wheel extensions are in ARC by using a 

modified version of Algorithm 3.1. But first we need some additional structure lemmas 

which highlight the necessity of the 'special' edges in multi-wheel extensions. 

Lemma 4.7. Let ( H ,  I )  be a multi-wheel extension and let s ,  st  be distinct vertices of 

V ( & ) .  Then s and s' are contained in  unique induced wheels I V  and W' ,  respectively, 

i n  H ,  where W = W' if and only if s and st are adjacent. Moreover, if there exists a 

path P of length 2 or more from s to st! then P has internal vertices i n  both V ( W )  

and V ( W f ) .  

Proof. By Proposition 4.12, there exists a partial perfect elimination ordering 

hl . . . . , h ,  of H such that (H,, I )  is a multi-wheel graph and I NH,-] ( h , )  n V ( & )  I < 1 

for i = 1 , .  . . , n. By Proposition 4.11, there exists unique induced wheels W and W' 

in H,, such that s E V ( W )  and s' E V ( W 1 ) .  Since H,  is an induced subgraph of 

H and as vertices of induced wheels can't be simplicial, W and W' are the unique 

induced wheels of H such that s E V ( W )  and s' E V(I4"). 
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We will use induction n to prove that any path P in H of length a t  least 2 between 

s and s' has internal vertices from V(W) and V(W1). If (H,  E)  is a multi-wheel graph, 

i.e., n = 0, s and s' only have neighbours in W and W' by Proposition 4.11. Thus we 

may assume that n 2 1. Suppose there exists a path P in H with no internal vertices 

from W. Then we must have that hl is a vertex of P, otherwise P C V(H1). Let x 

and y be the neighbours of hl on P. Then xy E E ( H )  as hl is simplicia1 in H .  Let P' 

be the path we get from P by replacing xhly with xy. Then P' V(H1). Thus by 

induction, P' must be a path of length 1. This implies that,  without loss of generality, 

x = s and y = sf. Hence hl has two neighbours in V(E)  in H ,  contradiction. Therefore 

at  least one internal vertex of P is from V(W). Similarly, at  least one internal vertex 

of P is from V(W1). 

0 

Lemma 4.8. Let (H,  &) be a multi-wheel extension and let s, s' be distinct vertices of 

V(&). Then s and s' are contained in unique induced wheels W and W', respectively, 

in H .  Let h be the hub of W and h' *the hub of W'. Let B be a connected subset of 

V(H).  Then if B supports s and sf ,  it must also support h and h'. 

Proof. The existence induced wheels W and W' in H that contain s and sf ,  

respectively, follows from Lemma 4.7. 

As B supports s and st, there exist vertices u, v E B adjacent to s and s' respec- 

tively. By assumption, there is a path P in H with V(P).  C B from u to v. Then 

sPs' is a walk from s to sf. By Lemma 4.7, P must contain vertices from W and from 

W', with the possibility that GIr = 14''. Therefore B must also support h and h', the 

hubs of W and W'. 

Let (H ,  &) be a multi-wheel extension. Recall the dismantling ordering of H 

that we created in Proposition 4.14. This dismantling ordering consisted of three 

sections that we constructed separately. The first section, h l ,  . . . , hp is a partial perfect 

elimination ordering of H such that (H,, &) is multi-wheel graph. The third section of 

the dismantling ordering, hpfl ,  . . . , h,, is a perfect elimination ordering of Hp \ V(&). 

Call the partial ordering of the vertices of H hl,  . . . , h,, hp+l, .  . . , h, a multi-wheel 
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extension ordering of H. By construction, {hl, . . . , h,} U {h,+l,. . . , h,} U V(E) is a 

vertex partition of H 

Algorithm 4.4. 

Input: A graph G. 

: A subgraph H of G such that (H, I )  is a multi-wheel exten- 

sion, for some & E(H), with a multi-wheel extension ordering 

h l , . . . , h p , h p + l ,  . . .  , h n .  

: A non-empty list L(g) for each vertex g E V(G) produced by the 

ACR Algorithm applied to  H and G. 

Task: To find a retraction from G to H. 

iction: Process the vertices hl , . . . , h,. For each vertex g of G 

* if hi E L(g) and JL(g)l >. 2, then remove hi from L(g) (do 

this for i = 1,. . . , p ) .  

: Process the vertices of V(E). For each vertex g of G 

$ if IL(g)l > 2, remove all vertices of V(E) from the list of 

: Process the vertices h,+l,. . . , h,. R.epeat action * for i = p+ 1 , .  . . , n. 

: Create a retraction Q : G -+ H by setting Q(g) to be the single vertex 

in L(g). 

As with Algorithm 4.3, once we have processed the vertex hi, 1 5 i 5 p ,  each list 

is either a singleton or a subset of V(Hi). After processing the vertices of V(&), each 
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list of size at least two is disjoint from V(•’). Thus after processing the vertex hi, 

p + 1 5 i <_ n, all non-singleton lists are subsets of V(Hi) \ V(E). 

Theorem 4.11. Let (H ,  I )  be a multi-wheel extension and let G be a connected su- 

pergraph of H .  If the ACR Algorithm succeeds when applied to H and G,  then Algo- 

rithm 4.4 will produce a retraction from G to H .  

Proof. As H is a multi-wheel extension, H has a multi-wheel extension ordering 

h l , .  . . , h,, hp+1,. . . , h,. Let G be a connected supergraph of H such that the ACR 

Algorithm succeeds when applied to H and G. Thus the ACR Algorithm produces a 

non-empty list L(g) V ( H )  for each vertex g of G, and the lists are arc consistent. 

By Proposition 4.17, the lists produced by the ACR Algorithm for the vertices in G 

are connected. We will prove that arc consistency and list connectivity are retained 

throughout the execution of Algorithm 4.4, with one exception; arc consistency may 

temporarily be lost in the midst of action $, but it will be regained once that action 

has been applied to  all vertices of G.  

List connectivity and arc consistency are maintained as we process the vertices 

h l ,  . . . , h,, as in the proof of Theorem 4.10. 

Let L(g) denote the list of g E V(G) after we have processed the vertices hl , . . . , h,, 

but before we perform action $ on any vertex of G.  As we have just commented, these 

lists are connected and arc consistent. By our comments following Algorithm 4.4, if 

IL(g)( 2 2 for some g E V(G),  then L(g) C V(H,). Since h l , .  . . , h,, hp+l,.  . . , h, 

is a multi-wheel extension ordering of H, (H,, E )  is a multi-wheel graph. Thus by 

Proposition 4.11, for any vertex s E V(•’) ,  the only neighbours of s in H, are those it 

has in the unique induced wheel of H, that contains s. 

Now we wish to  process the vertices of V ( • ’ ) .  Let g be a vertex of G such that 

L(g) contains vertices from V(•’) and let {sl , . . . , sk )  = L(g) n V(•’).  

Suppose that k > 2. We know that arc consistency holds before we process the 

vertices of V(E). Thus, if g' is a neighbour of g in G, then L(gl) must support 

{sl , . . . , sk}. By Lemma 4.8, L(gl) must also support {hi,, . . . , hi,) E V(H,) \ V(&), 

where hi, is the hub of the induced wheel in H, that contains sj. As this support 
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exists now, it must also have existed when the ACR Algorithm was applied to H and 

G. Therefore we must have {hi,, . . . , hi,) L(g) now. Thus L(g) \V(&) is non-empty 

and in particular, as hi, covers all the neighbours of si in H,, L(g) \ V(&) is connected. 

In addition, if g1 is a neighbour of g in G and if a vertex y of L(gl) had support in 

L(g), it will still have support in L(g) \ V ( & ) ;  if y is the sole vertex of L(gl), then y 

is adjacent to  all vertices of L(g) and if (L(gl) 1 > 2 and y is adjacent t o  si, then y is 

also adjacent to hi,. Therefore list connectivity and arc consistency are maintained 

when k 2 2. 

Now suppose that k = 1. By definition, there exists a vertex s E V(&) such that 

sl s E &. Moreover, there is a unique induced wheel W of H, such that ssl is a rim 

edge of W by Proposition 4.11. As noted above, the only neighbours of sl in H, are 

those it has in W. These would be sl itself, the neighbours of sl on the rim cycle of 

W,  one of which is s, and the hub of W. Hence sl has two neighbours outside V(E), 

and they are adjacent. As L(g) is connected, s l  has a neighbour x in L(g). Moreover, 

since sl is the only vertex from V(E) in L(g), x E V(H,) \ V(E) , and so L(g) \ V(E) is 

non-empty. Let y be the other neighbour of sl in V(H,) \ V(&). As remarked before, 

x and y are adjacent. Thus L(g) \ sl is connected as y is the only other possible 

neighbour of sl in L(g). Let g' be a neighbour of g in G. As arc consistency has held 

till we process the vertices of V(&),  sl has a neighbour in L(gl). If this neighbour is 

x or y,  then clearly it has support in L(g) \ {sl).  Thus suppose this neighbour of sl 

is s', where s' E V(E). If L(gf) = {s'), then as arc consistency has held till now, s' 

is adjacent t o  all vertices of L(g) . If IL(gl)J > 2, then s' will be removed from L(gl) 

when we apply the current action t o  L(gl). Therefore it doesn't matter if sl is the 

only neighbour of s' in L(g). Thus list connectivity is maintained when k = 1, and if 

arc consistency is temporarily lost, it will be regained once action i, has been applied 

t o  all the vertices of G. 

List connectivity and arc consistency are maintained as we process the vertices 

hp+l, . . . , h, for the same reasons as when we processed the vertices hl  , . . . , h,. 

By our comments following Algorithm 4.4, all the lists are now singletons. There- 

fore the map $I created in the last step of Algorithm 4.4 is well defined. This map 
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must be a homomorphism as we have just proved that the final lists produced by 

Algorithm 4.4 are arc consistent. The function 4 is in fact a retraction as the initial 

list assigned to each g E V ( H )  by ACR Algorithm was { g ) .  

0 

Corollary 4.5. Each multi-wheel extension is i n  ARC. 

Corollary 4.6. The class of wheeled graphs, and hence the variety generated by 

wheeled graphs, is contained i n  ARC. 

Ramified graphs 

We have examined many classes of graphs that are contained in ARC, such as AR,, 
ARH, the variety generated by wheeled graphs, and the connected graphs that ad- 

mit a near unanimity function. All of these graphs are dismantlable. We naturally 

expected a nice relationship between the variety of dismantlable graphs and ARC.  

Unfortunately, ARC does not contain the variety of dismantlable graphs, as shown 

by the graph in Figure 4.1, and the variety of dismantlable graphs does not contain 

ARC, as we will demonstrate shortly. We will in fact produce two families of ramified 

graphs that are contained in ARC.  

Call a graph H a net if its vertex set can be partitioned into sets A and B where 

A induces a nontrivial k-cycle, and B induces a clique such that all adjacent pairs 

of vertices in A have a common neighbour in B if k 1 5 and such that all pairs of 

vertices in A have a common neighbour in B if k = 4. If B is a single vertex, then H 

is a wheel, which is dismantlable as the hub of H covers all the other vertices of H. 

The graph in Figure 4.8 is a net that is not dismantlable. 

Lemma 4.9. Let H be a net with vertex partition A U  B ,  where A induces a nontrivial 

cycle, and B is a clique. Let G be a connected supergraph H .  If the ACR Algorithm 



CHAPTER 4. ARC CONSISTENCY 

Figure 4.8: A ramified net with an  induced 5 cycle. 

succeeds when applied t o  H and G,  then every non-singleton list produced by  the ACR 

Algorithm contains at least one vertex from B .  

Proof. We will analyze what occurs when we apply the ACR Algorithm t o  H 

and G. 

We begin by assigning to  each vertex g of G a list L(g) ,  where L(g)  = { g )  if 

g E V ( H )  and L(g)  = V ( H )  otherwise. Thus: 

0 Each non-singleton list contains a t  least one vertex from B. 

We will prove tha t  property 0 is maintained as we process the edges of G. 

Assume that  property 0 holds for all iterations of the ACR Algorithm up to  the 

beginning of iteration i > 1. Let gg' be the edge t o  be processed in iteration i. If 

IL(g)l = IL(g) 1 = 1, then the property 0 will also hold a t  the end of iteration i as 

neither list will change since we have assumed tha t  the ACR Algorithm succeeds and 

so no empty lists are produced. Therefore we may assume, without loss of generality, 

that  1 L(g)  1 2 2. Thus, by assumption, L(g) contains a t  least one vertex from B. If 

there exists a vertex of L(g)  n B that has support in L(g1),  we are done. Therefore 

suppose that no vertex of L(g)  fl B has support in L(g1). We will prove that  this 

implies that  L(g1) is of size one and that  the list of g will be a singleton a t  the end of 

iteration i .  

Since B is a clique and since no vertex of L(g1) supports a vertex in L(g)  n B, we 

must have L(g1) 2 A. As we have assumed property 0 has held till the beginning of 
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iteration i, this implies that L ( g )  = {a ' ) ,  where a' E A. By our choice of G, the ACR 

Algorithm succeeds. Therefore a' has a neighbour a  E L ( g )  \ B. Thus a  E A. B y  the 

definition of a net, a  and a' have a common neighbour b E B .  Clearly b $! L ( g ) .  Since 

IL(g) I 2 2, the initial list of g  must have been V ( H ) .  Hence b  was removed from the 

list of g  in iteration j ,  1 5 j < i .  In other words, there exists a neighbour g" E V ( G )  

of g  such that the edge gg" was processed in iteration j, and b was removed from the 

list of g  a t  this time. For the same reasons are before, the list of g" at  the beginning 

of iteration j must have been {a") ,  with a" E A, such that a" is not adjacent to b. In 

particular this means that a' and a" are distinct vertices. Since a  is in the list of g  

at  the beginning of iteration i, a'' must be adjacent to a.  Thus a"aal is a path in the 

k-cycle induced by A. 

Suppose that a' and a" have a common neighbour b' in B.  Then, as before, 

b' $! L ( g ) .  Therefore there exists a neighbour g"' of g  such the edge gg"' was processed 

in iteration p, 1 5 p < i ,  such that the list of g"' at  the beginning of iteration p was 

{a"') c A, where at" is not adjacent to b', but is adjacent to a.  This is impossible as 

the only neighbours of a  in A are a' and a", both of which are adjacent to b'. Hence 

a' and a" can not have a common neighbour in B .  In particular, this implies that A 

can't induce a 4 cycle in H by the definition of a net. 

Since A induces at least a 5 cycle in H ,  a  is the only common neighbour of a' and 

a" in A. Along with the result from the previous paragraph, this implies that a  is the 

only common neighbour of a' and a" in the graph H .  At the end of iteration j, the 

list of g  was a subset of N (a") .  Therefore we must have that L ( g )  C N(a l ' ) .  Thus 

the list of g  at the end of iteration i must be a subset of N ( a U )  n N ( a l )  = { a ) .  We 

have chosen G such that the ACR Algorithm doesn't produce empty lists when it is 

applied to H and G .  Therefore, the list of g  as the end of iteration i is { a ) .  

0 

Theorem 4.12. Let H be a net and let G be a connected supergraph of H .  If the 

A C R  Algorithm succeeds when applied to H and G, there exists a retraction from G 
to H .  

Proof. Let H be a net with vertex partition A U B ,  where A induces a cycle and 
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B is a clique. Let G be a connected supergraph of H such that the ACR Algorithm 

succeeds when applied to H and G. Let L(g) be the non-empty list produced by the 

ACR Algorithm for g E V ( G ) .  We claim that 4 : H -+ G is a retraction where 

h if L(g) = {h) 

any vertex of B n L(g) otherwise. 

By Lemma 4.9, if lL(g)( 2 2 for g E V(G), then L(g) n B # 8. Thus 4 is well defined. 

We will now show that #I is a homomorphism. Let ggt be a non-loop edge of G. If L(g) 

consists of a single vertex, say h, then by arc consistency, h is adjacent to all vertices 

of L(gt),  and so 4(g)4(gt) is an edge of H. Thus assume that both L(g) and L(g') 

contain more than one vertex. Then, 4(g),  @(gt) E B. As B is a clique, @(g)d(gf) is 

an edge of H. 

0 

Corollary 4.7. Each net is in A R C .  

Now that  we know that all nets are in ARC, we will construct an infinite family 

of graphs such that each graph is a net and each graph is ramified; 

Theorem 4.13. There exists an infinite family of ramified nets in ARC.  

Proof. By Theorem 4.12, any net is in ARC.  We will construct an infinite family 

of nets that are ramified. 

Let Nk be the graph on 2k vertices, with vertex partition A U B such that 

i.) A = {al ,  . . . ,  ak} and B = { b l , . .  . , b k }  

ii.) A induces a k-cycle, a l a z . .  . akal. 

iii.) B is a clique. 

iv.) the only neighbours of ai in B are biPl and bi. 
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The graph in Figure 4.8 is N5. 

By statement iv, ai and ai+l are both adjacent to bi. In other words, all pairs of 

adjacent vertices in A have a common neighbour in B. Thus Nk is a net for k 2 5. 

We will now prove that Nk is ramified. 

Consider the vertex ai. It's only nontrivial neighbours in A are ai+l and aiPl ,  

which are not adjacent as k > 5. Thus none of the nontrivial neighbours of ai in 

A cover ai .  By statement iii, the only neighbours of ai in B are bi-1 and bi. The 

vertex bi-l is not adjacent to ai+l and the vertex bi is not adjacent to ai-l .  Thus the 

neighbours of ai in B don't cover ai. Hence ai is not dismantlable. 

Now consider the vertex bi. The neighbourhood of bi is B U { a i ,  As bi is 

the only common neighbour of ai and ai+l in B ,  no vertex of B \ {bi ) covers bi. In 

addition, neither ai nor ai+l covers bi since neither ai nor ai+l is adjacent to all of B. 

Hence bi is not dismantlable. 

Note that all nets have diameter at most 3 as all vertices of the induced nontrivial 

cycle have a neighbour in the central clique. 

We will now construct a second family of ramified graphs in ARC. This construc- 

tion will make use of the power graph defined in Section 4.1. Recall that if H  is a 

graph, we denote the power graph of H  by P ( H )  and we denote the copy of H  in 

P ( H )  induced by the sets of size one by Hp.  

Let H  be a graph and let J be a subgraph of H .  Recall that we say H  dismantles 

to  J if there is a partial ordering hl ,  . . . , hk of H  such that hi is dismantlable in HiP1 

for i = 1, . . . , k, and J = Hk.  Note that a graph trivially dismantles to itself via the 

empty ordering. 

Theorem 4.14. Let H  be a connected ramified graph. T h e n  there exists a connected 

ramified subgraph H of P ( H )  such that P ( H )  dismantles t o  H and H p  is a n  isometric 

subgmph of H .  

Proof. Note that since H  is connected, so is P ( H )  and any retract of P ( H ) .  If 

P ( H )  is ramified, then the theorem is obviously true as we noted when we defined 
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H p  that H p  is an isometric subgraph of P ( H ) .  Thus let H be a minimal subgraph of 

P ( H )  such that P ( H )  dismantles to H and H p  is a subgraph of H. Therefore, either 

H is ramified or any dismantlable vertex X of H is of the form X = {x), x E V ( H ) .  

Suppose there exists a vertex X = {x) of H that is dismantlable. Thus {x) is covered 

by some vertex Y in H .  In particular, Y is a adjacent to  {x) in H. By the definition 

of adjacency in P ( H ) ,  and hence in H, each vertex of H  in Y must a neighbour of x 

in H .  In other words, Y is a subset of the set of neighbours of x in H .  As Y covers 

{s) in H, Y is adjacent to  {z) in H for all neighbours z of x in H  and hence Y must 

be a subset of the set of neighbours of z in H. Thus any vertex in Y will cover x in 

H ,  a contradiction. Therefore H must be ramified. 

0 

Corollary 4.8. L e t  H  be a connected ramif ied graph. T h e n  there  exis ts  a connected 

ramif ied graph HI in ARC s u c h  t h a t  H  i s  i s o m e t r i c  subgraph of HI. 

Proof. By Theorem 4.14, there exists a connected ramified graph H such that 

P ( H )  dismantles t o  H and H p  is an isometric subgraph of H. The graph H is a 

retract of P ( H )  by Lemma 1.2. The graph P ( H )  is in ARC by Proposition 4.2. 

As ARC is a variety by Theorem 4.1, the retract of any graph in ARC is again in 

ARC. Thus H is in ARC. Since H p  is isomorphic t o  H  and since H p  is an isometric 

subgraph of H, there exists a connected ramified supergraph H' of H  such that H' is 

isomorphic to  H and H  is an isometric subgraph of HI. Moreover, H' E ARC as HI 

and H as isomorphic. 

0 

Call a graph that  is the ramified retract of the power graph of some connected 

ramified graph a ramif ied re tract  graph. 

Note that nontrivial cycles are ramified and connected, and so there exist ramified 

graphs of arbitrarily large diameter in ARC by Corollary 4.8. Recall that nets have 

diameter a t  most 3. Thus the ramified retract graphs include graphs that are not 

nets, although the ramified retract of P(C4) is a net. We conjecture that the ramified 

nets created in the proof of Theorem 4.13, N k ,  k > 5, are not ramified retract graphs. 
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Figure 4.9: Let H be the graph in the above figure where the square vertices are a 
clique. Then H is the ramified graph t o  which P(C5) dismantles. 



Chapter 5 

Summary 

We end the thesis by reviewing how all the varieties studied relate to each other and 

by presenting a table of graphs that illustrate the differences between these varieties. 

In Figure 5.1, we illustrate the relation between the various classes of absolute re- 

tracts (and their equivalent formulations), the variety generated by connected chordal 

graphs, the variety generated by wheeled graphs, the variety of connected graphs that 

admit near unanimity functions and the variety of dismantlable graphs. 
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NUF (whee ledy  

, = NUF, = (path)v = ( intervaly  = (strongly chorr 

Figure 5.1: A poset of some the varieties studied where the ordering is by inclusion. 
The superscript V indicates "the variety generated by (connected) ..." , N U F  indicates 
the variety of connected graphs that admit a near unanimity function, NUF3 indicates 
the variety of connected graphs that admit majority functions, TSI indicates the class 
of connected graphs that admit a TSI of arity k for all k 2 1 and RTD indicates the 
variety of graphs that have retraction tree duality. The dotted line indicates that we 
don't know if ARH is contained in variety generated by wheeled graphs. 
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In Table 5.1, we illustrate the differences between the varieties in Figure 5.1. 

Table 5.1: The varieties of Figure 5.1 and graphs exhibiting their differences. 

Figure 5.2: A dismantlable graph that is not in ARC.  

NUF 
Y 
Y 
Y 
N 
Y 
N 
N 

Graph 
W k , k _ > 4  
Figure 1.2 
Figure 2.6 
Figure 4.6 
Figure4.7 
Figure 4.8 
Figure5.2 

dismant. 
Y 
Y 
Y 
Y 
Y 
N 
Y 

AR, 
Y 
N 
N 
N 
N 
N 
N 

AR, 
Y 
Y 
N 
N 
N 
N 
N 

( c h ~ r d a l ) ~  
Y 
Y 
Y 
N 
N 
N 
N 

A R C  
Y 
Y 
Y 
Y 
Y 
Y 
N 

(wheeled)' 
Y 
Y 
Y 
Y 
N 
N 
N 



CHAPTER 5. SUh4MARY 

When trying to classify the variety generated by connected chordal graphs, we 

introduced two new classes; stretched graphs and strongly stretched graphs. Both of 

these classes are varieties, and they both contain the variety generated by connected 

chordal graphs, as sunlmarized in statement 5.1 (see Chapter 2.3 and Chapter 3.4): 

(chordal)' strongly stretched c stretch,ed. (5.1) 

Recall from Figure 5.1 that the superscript V indicates "variety generated by (con- 

nected) ..." . 

In Theorem 2.7, we were able to use stretched graphs to classify the variety gen- 

erated by connected chordal graphs when restricted to AR,, i.e., 

(chordal)' n ARH = stretched n ARH. (5.2) 

We were unable to prove the generalization of statement 5.2, and have left it  as a 

conjecture, see Conjecture 1' and Cohjecture 2: 

( ~ h o r d a l ) ~  = strongly stretched n AR, (5.3) 

= strongll~ stretched fl ARC. (5.4) 
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