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ABSTRACT 

We employ a global quasi-stationary manifold to rigorously reduce the parametrically 

forced nonlinear Schrodinger equation (PNLS) to a finite-dimensional flow. While this man- 

ifold is not invariant, the long-time evolution of the full system is captured as a flow on the 

manifold through a renormalization group method. An explicit ODE for the flow is derived. 

Using this ODE, we show that the stationary pulse solution of the PNLS undergoes a Hopf 

bifurcation in a certain parameter regime, and that there exists a stable oscillatory limit cycle 

beyond criticality. In particular, we show that the Hopf bifurcation is supercritical. 
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CHAPTER 1. 

INTRODUCTION 

We study the parametrically forced nonlinear Schrodinger equation (PNLS): 

where y and a are the forcing and detuning parameters respectively. With this scaling, the 

dissipationless case corresponds to a --t co. This equation describes a wide variety of physical 

phenomena, including the optical parametric oscillator in the large pumpdetuning limit, 

Faraday resonance in water, spin waves and magnetic solitons in ferromagnets, and phase- 

sensitive parametric amplification of solitons in optical fibres [2, 5, 111. For sufficiently strong 

parametric excitation, y > I ,  the system can produce and sustain the solitonic waves 

where 

The lower branch solution 4- exists only when y E , and it is always unstable due 

to the presence of point spectrum in the right-half complex plane [3]. We therefore disregard 

4- and study only the local behaviour and stability properties of the upper branch solution 

4+. Direct computer simulations were previously done in the stable [3] and unstable [5] regions 

in the parameter plane which revealed that the existence of two internal oscillation modes 

of 4+. For a > a2 z 2.645, the system undergoes a Hopf bifurcation as y increase. beyond 

the critical value y, (a) ,  and these modes resonate to produce a stable oscillatory solution for 

1 



y E (y, (a) , d m ) .  This is accompanied by a complex conjugate pair of eigenvalues of the 

associated linearized operator crossing the imaginary axis into the right-half complex plane 

161. 

Previous work was done in [2] in which the supercritical dynamics of d+ were described 

analytically. The oscillatory solution was expressed as a perturbation expansion about @+, 

and reduced amplitude equations governing the nonlinear evolutions were obtained. The goals 

of this thesis are to extend this body of work as follows. First, we analyze the stability and 

long-time behaviour of the oscillatory solution itself. In doing so, we also obtain an analytic 

description of the behaviour of nearby solutions. The conditions under which these descrip 

tions are valid are also investigated. Lastly, we explicitly show that the Hopf bifurcation is 

supercritical. Our results are summarized in Theorem 19. We note, however, that our inves- 

tigations are valid for the fully dissipative case only (finite a ) ,  whereas the authors in [2] also 

investigated the stability problem for the dissipationless case (a -+ m).  In the latter case, 

the mechanism of soliton instability is due to the oscillatory-instability bifurcation, which is 

characterized by the collision of two pure imaginary eigenvalues of the associated linearized 

operator, one detaching from the essential spectrum and the other originating from the broken 

U (1) gauge invariance [3]. 

The PNLS also possesss the trivial solution 4 = 0. It is stable when the forcing 

parameter is small, y E 0, d m  , and unstable against essential spectrum perturbations ( ) 
when the forcing parameter is large, y E (&+a2, m )  . As with 4-, we also disregard this 

solution. 

In [6], the Hopf bifurcation curve y = y, (a) was computed by constructing Dirichlet 

expansions on the stable manifold of the eigenvalue problem associated with the linearization 

of the PNLS about @+. This expansion was then used to construct the Evans function, a 



Bifurcation Diagram 

Figure 1.1: Bifurcation Diagram for the PNLS. 

Wronskian-like analytic function whose zeros coincide with the eigenvalues of the linearized 

operator. The Evans function is particularly useful for detecting bifurcations because the 

order of the zero is equal to the algebraic multiplicity of the eigenvalue [I]. The technique 

used in [6] was also used in [13] to analyze the polarizational mode instability in birefringent 

fiber optics. Using the Evans function for the PNLS, the following stability diagram was 

obtained. 

As y increases from 1, the Hopf eigenvalues travel in the complex plane as follows [6]. 

To describe the eigenvalue trajectories which accompany the Hopf bifurcation, it is convenient 



to rescale the eigenvalue X of the linearized operator as J = X /v+: The scaled eigenvalues 

enjoy four-fold symmetry with respect to the point -1 in the sense that, if J is a scaled 

eigenvalue, then so are z, -2 - J, and -2 - J. The linearized operator possesses the scaled 

eigenvalues J = 0, -2 and the scaled essential spectrum 

ce,waled ( L )  = { ~ = x + i y l x  E (-1 - J=!-I+ J-)! y = O  

or x = -1, y E (-m, -Jq] LJ (J-,m)}. (1.5) 

Consider f i s t  the case a > a1 = 1.132. As y increases from 1, the scaled eigenvalue JH 

leaves the origin along the real axis towards -1, while the scaled eigenvalue tE bifurcates out 

from the essential spectrum through the point - 1 + id= along the line - 1 + iy towards 

- 1. Although the scaled essential spectrum also expands along - 1 + iy towards - 1, its edge 

always trails behind JE. AS y further increases, J H  collides with its symmetrical counterpart 

-2 - JH at -1. It then makes a right angle turn and moves along -1 + iy towards JE. JH 

then collides with JE at some critical value of y before moving off towards the imaginary axis. 

tH and its symmetrical counterpart then cross the imaginary axis as y increases through 

y, (a), and the Hopf bifurcation results. 

Meanwhile, as y increases, the scaled essential spectrum forms a "cross" centered at 

-1, and it eventually crosses the origin along the real axis. An essential bifurcation then 

results. For a E (al ,  ag), the essential bifurcation occurs before the Hopf bifurcation, so @+ 

remains stable for its domain of existence. For a E (ag, m ) ,  the Hopf bifurcation occurs first, 

at  which point 4, becomes unstable and an oscillatory wave solution emerges. 

The case a < a1 is similar to that of a > a1 except that the eigenvalues bifurcate off 

of the real axis rather than along the line -1 + iy. 

In the next chapter, we illustrate our methods by applying them to a toy example. We 

then proceed in the subsequent chapter to analyze the PNLS. 
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CHAPTER 2. 

THE TOY EXAMPLE SYSTEM 

The problems and solutions presented in this chapter is a simplified version of the ideas 

presented in [17]. In the next chapter wherein we will analyze the PNLS, those methods will 

be a slight generalization. 

The purpose of this chapter is to illustrate the methods we will use to analyze the 

PNLS. We do so by applying these methods to an ODE problem. Our goal is to determine 

the long-time behaviour and stability properties of a quasi-stationary solution of an ODE 

We do so by constructing a (not necessarily invariant) manifold parametrized by q which 

contains the quasi-stationary solutions Qq which we study. We then reduce the flow onto M  ̂

through the decomposition 

where W is the residual term. Our problem thus becomes one of identifying the flow on 

the manifold and obtaining estimates on W. The decay estimates which characterize these 

manifolds are exponential in nature, and are often obtained from the semigroup generated by 

the linearization Lq = F' (Qq). 

We describe the flow on the manifold using a series of local coordinate systems tied 

to the manifold itself. These coordinate systems are not chosen a priori however, but rather 

are selected to adapt to the flow on the manifold as the flow evolves. A key condition which 

characterizes our problem is that Z evolves slowly along the direction of the manifold. This 

enables us to control and remove the secularity through a slow modulation of the parameters 

and renormalization. 
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To explain our problem more precisely, let us discuss the properties of the linearization 

which characterize our problem. We then present the toy example and give an overview of 

our activities in this chapter. Our main results are summarized in Theorem 5. 

2.1 Description of the ODE Problem 

Let 

Z , = F ( Z ) ,  K I P - l R n ,  Z € R n  

be an ODE which possesses an attractive manifold M  ̂of stationary solutions Q,  parametrized 

by q E RE,  fi < n: 

M - 1 1  Q, P (Q , )=o ,  P E R ' ,  f i < n j .  (2.4) 

Suppose we perturb this ODE by shifting a bifurcation parameter or adding small terms to 

F: say, thereby transforming (2.3) to 

A 

In particular, this perturbation is such that M becomes a quasi-stationary manifold with 

respect to (2.5) in the sense that 

llF (Qq) ll = 0 ( 6 )  (2.6) 

for some small parameter 6. What then remains of G ?  What are the new dynamics near 

G ?  

To further characterize our problem, let us expand solutions of (2.5) as 

( 4  = Q,(t) + W ( t )  , (2.7) 

where Qq is the quasi-stationary solution which shadows Z on M  ̂and W is a small residual 

term. Substituting this decomposition into (2.5) and linearizing F about Qq yields 



where 

is the n by fi matrix containing the partial derivatives of Qq with respect to the components 

of q, 

is the linearization of F about Qq, and 

contains the higher-order nonlinear terms in .. 

Figure 2.1 : Schematic picture of the decomposition (2.7). 

The following conditions characterize our problem. 

Condition 1 (Normal Hyperbolicity) The spectmm of each operator Lq may be decom- 

posed into a stable part a; strictly contained in the left-half complex plane and an active part 

aq comprised of a jixed number of eigenvalues with small real part. In  particular, 



where a, is contained in { z  E @ IRer 5 -k )  for some k > 0 and oq, which consists of 

ezgenvalues including multiplicity, is contained in { z  E @ I IRe zl 5 6)  for some positive 6 < k .  

Both k and % do not depend on  q. 

perturbation X - 
Figure 2.2: Schematic picture of the spectrum of the perturbed and unperturbed linearized 

operator, ODE case. 

The fi-dimensional Lq-invariant subspace associated with aq is denoted by Xq and 

is called the active space. It contains the salient dynamics of the ODE. The complementary 

subspace of dimension n - % is denoted X i  and is called the stable space. Under the action 

of Lq, members of X< satisfy the following decay estimate. 

Condition 2 (Semigroup) Each operator Lq generates a semigroup Sq which satisfies 

for some constant c~ >_ 1, for all Z E Xi, and for all t 2 0. The constant c~ is chosen to be 

independent of q. 

9 



The semigroup decay estimate (2.13) is uniform in q in the sense that the constant 

cs does not depend on q, but this estimate is only applicable for each fixed q. We wish to 

exploit this estimate to bound the residual term W but the corresponding manifold parameter 

function q = q (t)  varies with time t .  Fortunately, q is seen to evolve slowly for the class of 

problems which we consider, so given the initial condition 

at the initial time tb, Lb will approximate L, well for a long time after tb. We are thus 

motivated to impose the condition 

W E X b  (2.15) 

under which W will decay under the action of Lb in accordance with (2.13). Bounds on W 

can then be obtained by exploiting (2.13). These bounds will be obtained for the toy example 

of this chapter in Sections 2.4 and 2.5. Observe that (2.15) implies that both W,t and Lb W 

also lie in X i .  

The price for imposing the condition (2.15) is the appearance of a secular term which 

grows as q evolves away from b. To see this, we "anchor" all q-dependent terms in (2.8) to 

b like 

A, = Ab + (Aq - Ab) , 

where 4 represents any q-dependent term, which recasts (2.8) as 

Tbq,t  + W,t = F (Qb) + LbW + Nb (W) + Sb  (q, W) : 

where 

Sb  (qI W) - ( F  (Q,) + LqW + Nq (W) - f ,q,t) 

- ( F ( Q ~ )  + LbW f Nb ( W )  - 4bq.t)  

10 



is the secular term. All terms in (2.17) except for Sb depend on b and not on q while Sb 

is at most 0 (lq - bl). Since q evolves slowly, Sb is guaranteed to be small compared to the 

other quantities in (2.17) for a long time after tb. In essence, then, Sb may be ignored until 

it grows to a size comparable to the other quantities in (2.17). This eventual happenstance 

and its resolution is addressed for the toy example of this chapter in Section 2.5. 

The time t b  and the point b are hereby called the anchor time and anchor point 

respectively. 

A 

The eigenvectors of Lq which span Xq are denoted by Q$) , j = 1, ..., N, and the 

corresponding adjoint eigenvectors by Q$It. The corresponding eigenvalues are denoted by 

A j .  The spectral projection operators corresponding to Xq and Xi are denoted by xq and 

x; respectively. 

The evolution equation for q is obtained as follows. Taking the inner product of each 

side of (2.17) with Q t ) t  yields 

where we have used the fact that WYt,  LbW E X i ,  and where we have introduced the matrix 

The following condition guarantees the solvability of (2.19) for q,t. 

Condition 3 (Compatibility) The matrix fiq is uniformly boundedly invertible i n  q. In 

particular, we require the manifold parameters and eigenvectors to be ordered i n  such a way 

that 

fi, = I + 0 ( E )  , 

where I is the identity matrix and E is a small parameter. 



Provided that this condition is satisfied, we may multiply both sides of (2.19) by fib1 

to obtain the equation 

s,t = W b  (W) + Z b  ((4, W) (2.22) 

which determines the evolution of q, where 

The evolution equation for W is obtained by projecting (2.17) onto Xi 

Substituting q,t (2.22), we rewrite (2.25) as 

where 

Lastly, we substitute q,, (2.22) into Sb (2.18) to obtain 

which implicitly defines Sb. 

2.2 The Tov Exam~le  Svstem 

We now illustrate our methods by applying them to a toy example. 

12 



Notation The following notation is employed throughout this chapter only. Transposition 

is denoted by the superscript t. The components of a vector quantity A are denoted by 

A = (al ,  ~ 2 ) ~ .  The inner product (. 1 . )  of two real vectors A and B is defined as 

This inner product induces the norm 1 1 . 1 1  which in turn induces the operator norm II.II+. The 

adjoint of an operator L with respect to (. 1. ) is denoted by L+. The differentiation operator 

with respect to the variable x is denoted by d,, and its action on a function f is denoted 

by d, f = f,,. Quantities will be enumerated with the superscript ( j ) ,  where j = 0,1 ,2 , .  . .. 

Constants are denoted by cteXt, where "text" is an abbreviated description of the constant. 

Description of the TES The unperturbed ODE which we study in this section is 

where f E c2 (B, B), and it and its derivatives are uniformly bounded: 

for some constant cf. Examples off include f (I) = sin i, f (n) = sech I, or f ( r )  = (1 + n2) 

for instance. (2.31) possesses the manifold 

of stationary solutions Q, which coincides with the curve z2 = f ( q )  in the qz2-plane. 

h h 

Solutions of (2.31) near M are driven onto M along trajectories parallel to  the i2-axis. 

We perturb (2.31) by adding the following terms. In the following, it is assumed that 

6 is a sufficiently small positive constant such that 

6cf < c d <  1 (2.34) 

13 



[ ~ n ~ e r t u r b e d  Sys tem 

Figure 2.3: Solution of the unperturbed ODE. 

for some positive constant cd. Imagining that Z represents the position of a virtual particle, 

the term (6, o ) ~  represents "wind" which pushes the virtual particle along 22 = f (zl), while 

(-bf' ( q )  , o ) ~  represents "gravity1' which tends to push the particle forward if it is on a 

( 
t 

downslope, and backwards if on an upslope. The nonlinear term (f ( a )  - 0) takes 

into account that the "wind" is stronger the further the particle is away from 22 = f (zl). 

Adding these terms to (2.31) yields the perturbed ODE which we call the Toy Example 

System (TES): 

h 

With respect to (2.35), M is now a quasi-stationary manifold in the sense that /IF (Q,)II = 

0 (6). 

Our goal is to analyze the long-time evolution of TES solutions and their stability 

properties. We also wish to obtain the initial conditions and class of TES problems (i.e. 

bounds on b) under which our analysis holds. To describe the evolution of solutions Z near 



Perturbed System 

W Z 1  

Figure 2.4: Solution of the perturbed ODE. 

2, we decompose Z as 

and substitute into the flow F (2.35) and linearize about the quasi-stationary solution Qq 

(2.33).  We then anchor q to an anchor point b, and the secularity in the system becomes 

apparent via the appearance of the term Sb ( q ,  W )  (2.18).  By projecting the resulting evolution 

equation onto the active space Xb and the stable space X;, the evolution equations for q and 

W are obtained. We then solve for the mild solution (2.74) for W from which we obtain the 

decay estimate (2.123) for W valid for the current anchor point b. This estimate shows that 

control of Mi is lost after a finite time period, and this is caused by secular growth. We then 

remove this secularity by rechoosing our anchor point to b* in such a way that W E XG. 

This is done by Theorem 4. Lastly, we show that by appropriately choosing the &xed time 

length At in which each anchor point is used (see 2.144), the TES solution will approach and 

remain near the manifold under suitable initial conditions. 

15 
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Figure 2.5: Spectrum of the un [perturbed and perturbed linearized operator. 

The Linearized Operator Ln this section, we calculate the linearized operator Lq, its adjoint 

L;, and their eigenvalues and eigenvectors. Lq possesses a small eigenvalue Xq = -6 f" (q) and 

a fired eigenvalue A; = - 1, and its stable space X; is spanned by a fked vector yl; = (0, I ) ~ .  

While these properties are nongeneric in the sense that @; does not depend on q, it does not 

diminish the generality of our methods. Lastly, we determine the semigroup decay estimate 

(2.50) which will be used to bound the residual term W. 

For economy of notation, denote 

Under the assumptions (2.32,2.34), nq is 0 (1) and its denominator is uniformly bounded 

away from zero. 

The linearized operator 



possesses the eigenvalue-eigenvector pair 

associated with the active space X,. It also possesses the eigenvalue-eigenvect or pair 

associated with the stable space Xq-. Some remarks are in order. First, X; does not depend 

on q since both AQ and \Ir; do not. Second, Xq- is infinite-dimensional for the PDE case, 

so no PDE analogues of X i  and Q; exist. Lastly, the expressions (2.39,2.41) for X q  and XQ 

show that the Normal Hyperbolicity condition is satisfied. 

The adjoint linearized operator 

possesses the eigenvectors 

which correspond to the eigenvalues A, and A; respectively. Both adjoint eigenvectors have 

been normalized so that ( A  ] A + )  = 1, where A = Qq, Q; 

17 



The operator which spectrally projects onto the active space X, is given by 

Its complementary operator which spectrally projects onto the stable space X; is given by 

where I is the identity operator. 

The relation (L,Z 2 )  = - 112112 holds for all Z E X;. The restriction of L, to X i  

therefore generates a strongly continuous semigroup of contractions Sq which satisfies the 

estimate 

for all Z E X; and t 1 0. This shows that the Semigroup condition is satisfied with both cs 

and k equal to 1. 

2.3 The Evolution Eauations 

In this section, we compute explicit expressions for the evolution equations (2.22,2.26) 

for q and W. This primarily involves computing explicit expressions for wb (W) (2.23) and 

S Z b  ( W )  (2 .27) .  We then obtain the mild solution (2.74) for W .  

For the TES, wb (W) (2.23) is given by 



The terms comprising wb ( W )  are computed as follows. First, fjq is obtained by differentiating 

Qq (2.33): 

and then taking the inner product with P i  (2.44): 

The Compatibility condition is thus satisfied. Next, direct substitution of the solution Q, 

(2.33) into the flow F (2.35) and subsequent dotting with Q; (2.44) yields 

Finally, since Qb_ = (0, l ) t  (2.42) spans X; and since W E X;, we may write W = wPb_ = 

(0, w ) ~  where w = 11 Wll. Therefore, it follows by direct calculation that 

With these expressions in hand, 

wb ( W )  = b (1 - f' (b)) + w2. 

Also, for the TES, Zb (q, W) (2.24) is given b y  



The evolution equation (2.22) for q is thus explicitly given by 

For the TES, Clb ( W )  (2.27) is given by 

Using the operator ;rb (2.49) to spectrally project F (Qb) ,  Nb ( W ) ,  and Y b  onto X; yields 

With these expressions in hand, 

0 s  ( W )  = 6 (M!') + 6Mj2))  + w2 (Mj3)  + 6Mb(l)) , (2.67) 

where 



. . 

are 0 (1) quantities which depend only on b. Also, for the TES, Sb (q, W) (2.24) is given by 

- 
s b ( 9 , W ) = ~ ; ( ~ b ( 9 ~ w ) - f b ( ~ b ( 9 , ~ ) ~ ~ ~ ) ) .  . (2.72) 

The evolution equation (2.26) for W is thus explicitly given by 

where ab (W) and Sb (q, W) are given as above, and it possesses the mild solution 

w (t) = S (t - tb) Wb + S (t - T) Gb (T) d ~ ,  

where the "forcing term" Gb is given by 

and Wb E W (tb) is the initial residual with respect to the anchor point b. 

2.4 Bounds on the Residual Term 

From the mild solution (2.74) for W, we obtain the estimate (2.123) for W valid for 

the current anchor point b. This estimate shows that control of W is lost after a finite time 

period, and this is caused by the secular growth in Sb (2.72). We remove this secularity in 

the following section by rechoosing our anchor point as b* in such a way that W E X;. This 

is done by Theorem 4. Lastly, we show that by appropriately choosing the fixed time length 

At in which each anchor point is used (see 2.144), the TES solution will approach and remain 

near the manifold under suitable initial conditions. 

Introduction Fix the anchor point at b on the time interval Itb, td) and denote the final value 

of q on [tb, td] by d. Also denote w - IIWII, and the initial and final values of w on [tb, td] by 

wb and wd. The following equations then hold: 



The following control quantities play prominent roles in our analysis. The quantity 

is the total length of time in which the anchor point b has been in use. The quantity 

controls the distance between the manifold position parameter q and the anchor point b, and 

the quantity 

controls the size of W. W will decay exponentially in accordance with the semigroup decay 

estimate (2.50), so the purpose of the exponential factor ee-tb in (2.79) is to compensate for 

this decay. 

Apply the triangle inequality and the semigroup decay estimate (2.50) to the mild 

solution (2.74) for W to obtain 

where gb = IIGbll. A bound on Gb is obtained in the next section, which will then be used to 

bound W. 

Bound on the Forcing Term The goal in this section is to obtain a bound on the "forcing 

term" Gb (2.75). 

A bound on fib (W) is obtained as follows. By the assumptions (2.32,2.34), nb (2.37) 

satisfies 
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In conjunction with (2.32), we thus see that MP) (2.68 thru 2.71) are uniformly bounded in 

b: 

where 

and where each of the arguments in the definition of CM are bounds on Mf), j = 1 thru 4, 

respectively. Applying these estimates for M:) to Rb (W) (2.67) then yields 

Bounds on qIt and Sb (q, W) are obtained as follows. Applying the triangle inequality 

to (2.18) yields 

Let us estimate each of the terms appearing in the right-hand side. Direct substitution of F 

(2.35) and ?, (2.53) yields 

Thus, by applying the Mean Value Theorem on f' and subsequently the uniform boundedness 

assumption (2.32) on f", 



Next, since V!; = (0 , l ) '  (2.42) spans Xb and since W E X;, we may write W = wQ; = 

(0, w ) ~ .  By direct calculation then, LqW = (0, - w ) ~  and N, (W) = (w2, o)', and so 

Applying the above estimates to Sb (2.85) and q,t (2.62) then yields 

which we combine as 

Control of Sb and q,t by the estimates (2.94,2.95) is lost when T(Q) grows too large. 

We therefore impose the constraint 

which restricts the possible size of At, thereby bounding Sb and qYt as 

where c,, max {2cj (2 + cj) , 2cj, 2 (i + cf) ,2).  We further impose the condition 

which restricts the initial size of the residual to obtain 



~ ( 9 )  by its definition (2.78) then satisfies the estimate, 

which may be applied to (2.100) to obtain 

2 2  2 IlSb ( 4 ,  W ) ] ]  5 c : ~  ( 1  + ~ 6 )  6 At. 

Lastly, a bound on S b  (q ,  W )  is obtained as follows. Applying the triangle inequality 

to (2.72) yields 

l l g b  (q,  ~ 1 1 1  5 \lri l\* ( I IS~  (q,  W ) \ l  + llTbll l ( ~ b  (4 ,  w, IQ!)~)  . (2.105) 

By direct computation, both nb (2.49) and T b  (2.53) have norms less than 1 + c2,  and so 6 
/Isb ( ( ,  ~ 1 1  5 c 3 6 2 ~ t ,  (2.106) 

where CJ - JG ( 1  + J-) cis ( I +  2)'. 
With the bounds (2.84,2.106) for Qb ( W )  and Sb (q, W) in hand, the "forcing term" Gb 

(2.75) satisfies the bound 

where c, = max { c M  + 6cM,  c3}. 

So long as the constraints ~ ( q )  5 2 (2.96) and w < c6& (2.99) hold, then the 
2cf  

estimates (q,tl < cq, (1  + c:) 6 (2.101) and ~ ( 9 )  5 c,, (1 + c:) 6 A t  (2.103) also hold. On the 

other hand, if the estimate (2.103) holds, then the constraint (2.96) also holds if 

1 
c,, ( 1  + c i )  6 A t  5 -. (2.108) 

2cf 

It is thus self consistent to replace the constraint (2.96) with the constraint (2.108), and we 

do so. Lastly, we rewrite (2.108) as 

A t  5 ct6-I, 
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where ct - (2ctcqs ( 1  + c i )  ) -'. 

Residual Decay Estimates We assume that the constraints (2.99,2.109) hold, and we apply 

the bound (2.107) for Gb to the estimate (2.80) for W to obtain 

t 
( t )  5 e-(t-tb)b)Wb + Cy 1 e-(t-7) (w2  (7)  + 6 (1  + 6At)) d r ,  (2.110) 

t b  

Replacing t with 19, multiplying by eePtb, and taking the supremum over 0 E [tb,td),  (2.110) 

becomes 

T ( ~ )  5 wb + c, sup ee-tb e-(e-r) (w2 ( 7 )  + 6 ( 1  + d ~ t ) )  d ~ ,  
@ E [ t b , t d )  

Since 

and 

(2.112) may be rewritten as 

where 

yl ( t )  = 1 - e-t, 

y2 ( t )  (et - 1 )  ( 1  + 6t )  . 
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Kote that y2 is a strictly increasing function. The inequality (2.117) implies that either 

T(W) < zl or T(") > z2, where zl < zz are the two roots of the quadratic equation 

c,yl ( A t )  z2 - + (wb + h b 9 2  ( A t ) )  = 0 .  (2.120) 

This quadratic equation possesses real solutions so long as its discriminant is positive, and this 

is always true for tub and by2 ( A t )  sufficiently small. Since T(") is continuous, T(") (At = 0 )  = 

wb, and  z2 (At = O f )  = m, it follows that initially T(") ( A t  = 0 )  < zl ( A t  = 0 )  and hence, by 

continuity of T("), q,  and z2 with respect to At, the inequality T(") 5 zl holds for all At. 

That is, with zl obtained via the quadratic formula, the inequality 

holds. By the approximation % 1 - $x then, 

where c,, is a constant slightly greater than 1. By further substituting T(") (2.79) and the 

inequality yl (At) 5 1,  we obtain the residual decay estimate 

Moreover, by replacing A t  with t - t b  and substituting y2 (2.1 lg),  we obtain the residual 

decay estimate for general time t :  

2.5 The Reanchor Method 

The evolution equations (2.62,2.73) for q and W remain valid so long as  the secular 

term Sb (2.18) remains sufficiently small. When this is no longer true, we rechoose the anchor 



point to remove this secular growth. Moreover, this new anchor point 6' is chosen so that 

the new residual lies in XG. Theorem 4 will show that such a choice exists and is unique, 

provided that q is sufficiently close to the old anchor point b and provided that W is sufficiently 

small. The price of reanchoring is jump discontinuities in both q and W wherein W could 

in principle increase, yet we will show that the residual decay estimate (2.123) controls this 

possible growth provided that A t ,  the length of time in which each anchor point is used, is 

suitably long. The residual decay estimate (2.123) is the key estimate whch allows us to 

determine such a A t  so that secular growth is controlled and removed. Lastly, we will show 

that after an initial transient stage wherein the residual decays, the residual will remain small 

for all time and so our solution remains close to the manifold for all time. 

/ 
M I Reanchor ~ e t h o d ]  

Figure 2.6: The reanchor method, ODE Case. 

The Reanchor Method Again, fix the anchor point at b on the time interval [ tb ,  t d )  and denote 

the final value of q on [ta, td] by d- When reanchoring, Z may be decomposed as either 

Z = Qd + Wd with respect to the old anchor point b, where Wd E XT, or as Z = Qb- + Wb' 
with respect to the new anchor point b*, where b* is to be determined so that Wb. E Xb;. 

Reanchoring introduces a jump discontinuity in both q and W wherein q jumps from d to b* 



. - 

and W jumps from Wd to Wb*. Equating these two decompositions and solving for Wb., we 

obtain 

Wp = Wd + Q d  - Qb*. (2.126) 

Since Wb. E XG, then 

Given d and Wd, the following theorem shows that there exists a unique b* such that (2.127) 

is satisfied. In addition, this theorem gives an estimate on the jump discontinuity in q when 

reanchoring. 

Theorem 4 Express Wd = wdSb for some scnlar wd 2 0 and vector S b  E Xr satisfying 

llZbll = 1. For wd suficiently small, there exists a unique smooth function 31 : R+ -, R such 

that, by  choosing b* = d + 31 ( w d ) ,  (2.127) i s  satisfied. M O T ~ O V ~ T ,  the estimate 

holds for some constant G. 

Proof. The equation (2.127) is equivalent to I' = 0, where 

I' (wd, b*) - wdib + Qd - Qb* / 8:. ) . ( 

As -Q, , It = -1 and (z, I 8 ; )  = 0 ,  the partial derivatives of I' are ( I , )  



. . 

r has a root at ( w d ,  b*) = (0, d )  and r,b* ( 0 ,  d )  = -1 which is 0 ( 1 ) ;  so the implicit function 

theorem guarantees the existence of a smooth function % such that b* = d+% ( w d ) .  Moreover, 

since r,,, ( 0 ,  d )  is 0 ( d  - b ) ,  the implicit function theorem implies that I'H' (0)I is 0 ( d  - b) 

also. The estimate (2.128) then follows from the Mean Value Theorem. 

The reanchor method for the TES was presented in greater generality than was needed 

for pedagogical reasons. In particular, the unique choice of b* is actually d because X; is 

bindependent. 

Estimates on the Reanchor Jump Discontinuities Apply the triangle inequality and substitute 

Qq (2.33) to the identity (2.126) to obtain 

Application of the Mean Value Theorem on f and the uniform boundedness assumption (2.32) 

on f' then yields 

Inserting the estimate (2.128) for Id - b* 1 and subsequently (2.103) for Id - bl , we then obtain 

where CJ E c, 1 + c2c . ( 1  + 4). This estimate shows that w could in principle increase 
G q  

when reanchoring, yet we will show in the next section that the residual decay estimate 

(2.123) controls this possible growth provided that At, the length of time in which each 

anchor point is used, is suitably long. 
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The Iterations We now investigate two states in which, for some m to be determined, either 

wb E (m6, cg&) or wb E 10, m6] respectively. These states are called the initial transient and 

asymptotic states. We will show that w decreases on the whole in the initial transient state 

in the sense that wb* < wb, while w remains small in the asymptotic state. Moreover, we will 

show that we can take At = In (1 + 2 ~ )  and m = y2 (At). 

Inserting the residual decay estimate (2.123) into the reanchor jump estimate (2.138) 

yields 

wb- 5 c,e-At (1 + 6cjAt) (wb + cdyz  (At)) .  (2.139) 

This inequality holds so long as  the two constraints wb < c6& (2.99) and At 5 ct6-' (2.109) 

holds. To continue using (2.139), we must rechoose our anchor point before either of these 

constraints fail. 

Initial Transient State In the initial transient state wherein wb E 

impose the constraint 

by2 (At) I wb (2.140) 

on At and apply it to (2.139) to obtain 

where 

h (x) = c, (1 + L) (1 + 6 c ~ x )  e-= 

We now choose the fixed length of time At in which the current anchor point b is used such 

that h (At) z i. (The choice of $ is somewhat arbitrary. As long as h (At) < 1, our analysis 

can proceed forward.) By demanding that 6 and cg are sufficiently small such that 



the choice 

yields 

and (2.141) thus becomes 

2 
Wb* 5 hmwb 5 -Wb. 

3 

We further choose 

so that the constraint (2.140) is automatically satisfied by virtue of the fact that wb E 

(m6, c a d ) .  It remains to show that our choice of At also satisfies the constraint (2.109), 

but this is easily achieved if we demand that 6 satisfy 

We have thus proven that, if wb E m6, c a d  and At = In (1 + 2&), the residual ( 1 
decays on the whole in the sense that wb. < h,wb. Moreover, we have determined the 

appropriate initial conditions and the class of TES problems under which our analysis holds. 

In particular, the solution must be close enough to the manifold such that the residual satisfies 

w (0) < c a d  (2.99) where ca is determined by (2.143). Also, the class of TES problems which 

we consider are constrained to satisfy (2.149). 

The residual will continue to decay until wb E [0, m6] at which point the system enters 

the asymptotic state. 
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Asymptotic State In the asymptotic state wherein wb E [0,  m b ] ,  we choose At as in (2.144): 

At = In ( 1  + 2 h ) .  (2.150) 

Since y:, (At) = m and wb < m6,  (2.139) then becomes 

Wb- < h (4 ( m 6 ) ,  

where h is given by (2.142) as before. Since h ( A t )  = h ,  5 $, we have 

wb- < m6. (2.152) 

We have thus proven that, if wb E [0, mb] and At = In ( 1  + 2%), then wb- E [0, mb]  

also. In conjunction with the decay estimate (2.123), this shows that 

for all time t in the asymptotic state. 

2.6 Conclusion 

We conclude this chapter with the following theorem which summarizes our results. 

Theorem 5 Consider the Toy Example System ( T E S )  

where 6 > 0 and f and its derivatives are uniformly bounded. For 6 suficiently small and 

w < c&, the T E S  posesses the solution 

for each jixed anchor point b, where q satisfies the evolution equation ( in  the asymptotic state) 



and W satisfies the condition 

and the bound 

w ( t )  I ce-(t-tb) (wb + by2 ( t  - t b ) )  

with y2 ( t )  ZE (et - 1) (1  + 6t) .  Moreover, one can use each anchor point for an 0 ( 1 )  time 

period and rechoose the anchor point thereafter according to Theorem 4 such that, i n  the initial 

transient state, wb. < hmwb for some fixed constant h, < 1 and, i n  the asymptotic state, 

w I m b  for some 0 ( 1 )  constant m. 



CHAPTER 3. 

THE PNLS 

We now generalize the methods from the previous chapter to analyze the PNLS. Our 

goal remains to analyze the stability and long-time behaviour of the oscillatory solution itself. 

In doing so, we also obtain an analytic description of the behaviour of nearby solutions. The 

conditions under which these descriptions are valid are also investigated. Lastly, we explicitly 

show that the Hopf bifurcation is supercritical. Our results are summarized in Theorem 19. 

We construct a manifold consisting of the upper branch solutions 4+ and the eigen- 

functions corresponding to the Hopf eigenvalues of the linearization. The manifold parameters 

are 

P =  (PO,P~,PZ) = (q , r l , r2) ,  (3.1) 

where q describes the position and 11-1 describes the oscillation amplitude. The angular fie- 

quency can be obtained from the evolution equation for T. We reduce the flow onto the 

manifold and linearize the PNLS about 4+ to obtain a general evolution equation. The 

evolution of p  and W are then determined by projecting the general evolution equation onto 

active space Xb (which corresponds to the zero and Hopf eigenvalues) and the complementary 

space Xb (which corresponds to essential spectrum strictly contained in the left-half complex 

plane). 

As before, we describe the flow on the manifold using a series of local coordinate 

systems tied to the manifold itself. These coordinate systems are not chosen a priori however, 

but rather are selected to adapt to the flow on the manifold as the flow evolves. Our key 

modification of this method from [I?] is that, not only do we adapt the local coordinate 

systems, but we also adapt the manifold itself to the flow. In some sense, we are adapting 

the manifold to capture higher order modes which also resonate via the Hopf bifurcation (or 
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perhaps some other mechanism) - higher order modes that are not-adequately captureable 

by the unmodified manifold. We speculate that this adaptation also provides a method of 

constructing an invariant manifold for the PNLS, but we shall not show this. Only once we 

adapt the manifold to the flow are we able to exhibit and classify the Hopf bifurcation. 

To explain our problem more precisely, let us discuss the properties of the linearization 

which characterize our problem. We then reintroduce the PNLS and give an overview of our 

activities in this chapter. We note that the notation for the PDE case is consistent with that 

for the ODE case. 

3.1 Description of the PDE Problem 

Let 

2 ,  = F (2) 

be a PDE which possesses an attractive manifold of stationary solutions. Denote this manifold 

by M^, the stationary solutions by Qql and the parameters which parametrize this manifold 

by q E RR: 

G c { ~ q l F ( ~ q ) = ~ ,  q ~ ~ R } .  (3.3) 

Suppose we perturb this PDE by, say, shifting a bifurcation parameter or adding small terms 

to F, thereby transforming (3.2) to 

Z,t = F (2) . (3.4) 

In particular, we consider those perturbations which induce bifurcations in the system, thereby 

A 

inducing new dynarnical behaviour not adequately captureable as a reduced flow on M. To 

capture this new behaviour then, we enlarge M^ as 

M 5 {a, = Q~ + R~ 1 1 1  F (a,) 1 1  = o (a ) ,  p = (q, r) E B~ x cN-$} , (3.5) 



where b is some small parameter. The N parameters p which parametrize M consist of the 

slowly-evolving parameters q and the small complex parameters r. 

[phase Space Dajectory 

Figure 3.1: Schematic picture of the trajectory p = p (t) in phase space. 

To further characterize our problem, let us expand solutions of (3.4) as 

where ap is the quasi-stationary solution which shadows Z on M and W is a small residual 

term. Substituting this decomposition into (3.4) yields 

where 

'p -- (dP1aP,dP2ap>"' 7dPNaP) (3.8) 

is the vector of partial derivatives of ap with respect to the components of p. Because the 

Normal Hyperbolicity and Semigroup conditions pertain to the linearization of F about Q,, 
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we linearize F about Qq (as opposed to Qp) to obtain 

where 

Lq = F' (Qq) 

is the linearization of F about Q, and 

contains the higher-order nonlinear terms in .. 

Figure 3.2: Schematic picture of the decomposition (3.6). 

The following conditions characterize our problem. 

Condition 6 (Normal Hyperbolicity) The spectrum of each operator Lq may be decom- 

posed into a stable part a; strictly contained in the left-half complex plane and an active part 

a, comprised of a @ed number of eigenvalues with small real part. I n  particular, 

a (L,) = a, U o,, 

where a; is contained in {t E @ IRez 5 -k )  for some k > 0 and aq, which consists of N 
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eigenvalues including multiplicity, is contained i n  { z  E C ] /Re zl 5 6 )  for some positive 6 < k .  

Both k and N do not depend on q. 

In contrast with the ODE case, o, consists of N eigenvalues rather than fi eigenvalues. 

Condition 7 (Semigroup) Each operator Lq generates a Co semzgroup Sq which satisfies 

for some constant c~ 2 1,  for all Z E X;, and for all t >_ 0. The constant cs  is  chosen to  be 

independent of q .  

The semigroup decay estimate (3.13) is uniform in q in the sense that the constant 

cs does not depend on q, but this estimate is only applicable for each f ied q. We wish to 

exploit this estimate to bound the residual term W but the corresponding manifold parameter 

function q = q ( t )  varies with time t .  Fortunately, though, q is seen to evolve slowly for the 

class of problems which we consider. So, given the initial condition 

at  the initial time tb, Lb will approximate Lq well for a long time after tb.  We are thus 

motivated to impose the condition 

W E X i  (3.15) 

under which W will decay under the action of Lb in accordance with (3.13). Bounds on W 

can then be obtained by exploiting (3.13). These bounds will be obtained for the PNLS in 

Sections 3.5 and 3.6. Observe that (3.15) implies that both W,t and LbW also lie in X i .  

We stress that only the slowly-evolving parameters q are anchored; the small complex 

parameters r are not. 



The price for imposing the condition (3.15) is the appearance of a secular term which 

grows as q evolves away from b. To see this, we "anchor" all q-dependent terms in (3.9) to 

b like 

where A, and Ap = represent any q and p dependent term respectively, which recasts 

(3.9) as 

where 

is the secular term. All terms in (3.18) except for Sb depend on b and not on q while Sb 

is at most 0 (Iq - b/). Since q evolves slowly, Sb is guaranteed to be small compared to the 

other quantities in (3.18) for a long time after tb .  In essence, then, Sb may be ignored until 

it grows to a size comparable to the other quantities in (3.18). This eventual happenstance 

and its resolution is addressed for the PNLS in Section 3.6. 

The evolution equation for q is obtained as follows. Taking the inner product of each 

side of (3.18) with Q ? ) ~ ,  we then obtain 

where 



The following condition guarantees the solvability of (3.26) for p,t. 

Condition 8 (Compatibility) T h e  matr ix  II, is uniformly boundedly invertible in p. In 

particular, we  require the  manifold parameters and eigenfunctions t o  be ordered in such a way 

that 

where I is the identi ty  matria: and E i s  a small parameter. 

It will be shown that E = Irl for the PNLS. Provided that this condition is satisfied, 

we may multiply both sides of (3.20) by II&) to obtain the equation 

which determines the evolution of p, where 

The evolution equation for W is obtained by projecting (3.18) onto Xb: 

Substituting the equation (3.23) for p,t, we rewrite (3.26) as 

which determines the evolution of W, where 



Lastly, we may substitute the equation (3.23) for p,t into Sb (3.19) to obtain 

which implicitly defines Sb. 

To have M capture the dynamics of nearby solutions well, we require that W decays 

until it remains small. For instance, we require that W decay to 0 ( r 4 )  for the PNLS so that 

the reduced flow on M and its associated ODE can demonstrate the Hopf bifurcation and the 

existence of a stable oscillatory limit cycle beyond criticality. Because W is the same order 

as Sib ( r ,  W) in the asymptotic state, this requirement is equivalent to the following condition 

on Qb (r, W ) .  

Condition 9 (Quasi-Invariant Manifold) For each anchor point b, the modified mani- 

fold must be chosen so that 

n b  ( r ,  0 )  = 0 (0 (3.31) 

for some small parameter 5. and all time t .  

3.2 The PNLS 

Notation The following notation is employed throughout this chapter only. Transposition 

is denoted by the superscript t .  The components of a vector quantity A are denoted by 

A = (al ,  The L~ inner product (. 1 . )  of two complex vectors A and B is defined as 



This inner product induces the L~ norm ) (  . 11 and Hs norm ( 1  . / I H S  which in turn induce the 

operator norms /I . ( 1 ,  and 1 1  . ( ( * , J S  respectively. The orthogonal complement in L~ is denoted 

by I. Given an operator A, its adjoint with respect to (-  1.) is denoted by A+, and its spectrum 

and resolvent sets by a (A) and p ( A ) .  Quantities associated with a complex variable z include 

its complex conjugate Z, its magnitude It./ and argument argz, and its real and imaginary 

parts Re z and Im t. The differentiation operator with respect to the variable x is denoted 

by a,, and its action on a function f is denoted by a, f = f,,. Quantities will be enumerated 

with the superscript (j), where j = 0,1,2, .  . .. Constants are denoted by ctext, where "text" 

is an abbreviated description of the constant. Lastly, we will use the (slightly bad) notation 

Description of the PNLS Denote 

We rescale the dependent and independent variables of the PNLS (1.1) as 

and drop the tilde notation to recast (1.1) as 

Introducing 

Z = (zl , z2)t = (Re 9,1m $)t 

with 121 = , /z lz  + 2 2 8 ,  we vectorize (3.35) to obtain the vectorized PNLS 



where 

and 

p = v+/v-. 

For a E (0, m) and y E (1, ~m),  the PNLS possesses the manifold 

of stationary pulse solutions Q,, where 

s, (x) = h s e c h  (x - q) . 

Note that s, is simply the solitary wave solution q5+ with the scalings (3.34) applied. 

As discussed in the introduction, the PNLS undergoes a Hopf bifurcation as y is 

increased beyond y, (a) for fixed a > a, = 2.645. To show this and to capture the resulting 

oscillatory pulse solution, we must enlarge M  ̂ by adding new parameters and new terms. 

But how should this be done? Because the PNLS possesses two simple Hopf eigenvalues at 

criticality, let us add two small parameters 7-1 and 7-2: 

Note that the index in p starts at 0, not 1. We then expand the correction term Rp in powers 

of 7-1 and 7-2 as 



The Stationary Pulse Solution 

Figure 3.3: The stationary pulse solution of the PNLS. 

Figure 3.4: Conceptual picture of the solution of the PNLS. 
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where 

and RP) ,  Rkk), and Rfk') are 0 (1) terms. Higher order correction terms need not be 

considered, as will be shown later. We now select Rf) so that the Compatibility condition 

is satisfied, while we select Rfk) and Rfkl) so that the Quasi-Invariant Manifold condition is 

satisfied. 

We satisfy the Compatibility condition as follows. The modified manifold M consists 

with tangent plane spanned by 

where we have introduced the symmetry condition Rfk) = RY) .  To satisfy the Compatibility 

condition aPkQp d j ) '  = djk +O ( E ) ,  where djk are the components of the Kronecker delta, ( I q )  
we choose 

where Qfv) are the eigenfunctions of the linearized operator L, corresponding to the Hopf 

(0) eigenvalues Xj, j = 1,2. (It will later be shown that Q,,, = Q, .) Moreover, must be real 



because it is the vectorized form of a complex quantity (i.e. 3.36), so we choose 

- 
because qr) = @PI. Henceforth, we shall denote 

Lemma 10 By choosing R f )  = ~ f ) ,  the Compatibility condition is satisfied. 

The physical significance of the parameters in p are that q describes the position and 

Irl describes the oscillation amplitude. The angular frequency can be obtained from the 

evolution equation for r. 

We choose RPk) and Rfk'') so that the Quasi-Invariant Manifold condition is satisfied 

with q = r4: 

f i b  (r, 0) = 0 (r4)  1 (3.53) 

so that the Hopf bifurcation for the PNLS can be analytically exhibited. This is because 

the number q = q (a) which determines whether the bifurcation is supercritical or subcritical 

is obtained from the PoincarC normal form of the evolution equation for r ,  and this normal 

form requires that the evolution equation has all terms up to 0 ( T ~ )  explicitly given. The 

bifurcation is supercritical if Rev > 0 and subcritical if Rev < 0. The computation of 7 is 

performed in Section 3.4. 

We sketch how the Quasi-Invariant Manifold condition motivates our choice of RF') 
and Rkk') as follows. The details are presented in Section 3.3. By substituting F (Q,) = 0 

and W = 0 into (r, W) 

Ob (r, 0) = 7 ~ ;  

(3.28), we obtain 



The Quasi-Invariant Manifold condition (3.53) is then equivalent to a system of equations for 

( j k )  and R f k l )  which we solve for. However, because Rb 

contains q-derivatives of RFk) and R t k l ) ,  (3.53) is actually a system of PDEs for RYk) and 

R t k 1 )  which are at best very difficult to solve! To circumvent this difficulty, we remove these 

q-derivatives by choosing RFk) and R t k l )  such that they are q-independent: 

thereby recasting (3.53) as a system of equations for RFk) and R f k l )  which now only depend 

on the anchor point b. The other condition which we choose is 

which is consistent with the condition W E Xt (3.15). This is a natural condition to impose 

since the correction terms R(p2) and RF) can be viewed as a resolution of the residual term 

W in the sense that W i ~ ( p 2 )  + R f )  + W .  

As a consequence of (3.56), the modified manifold is anchor point dependent, and so 

the act of reanchoring becomes equivalent to rechoosing the modified manifold. This is the 

key modification of what was done in [17]. Not only do we adapt the local coordinate systems 

to the flow on the manifold (each of which is tied to the manifold itself), we also adapt the 

modified manifolds themselves to the flow! 

Each modified manifold is given by 

with 



. . 

A direct calculation (with details presented in Section 3.3) then reveals that 

+ x qrkrl ( L ~ R ~ " )  - 3~ 3 b  . ~ ( j " )  + u ~ ~ ' ) + ~ ( T ~ ) ,  (3.60) 
j ,k , l=l  

where u?*) and UYk1) will be given by (3.128) and (3.129) respectively. Solving for Rfk)  

and Rfk') ,  and imposing the symmetry condition that ~ f ' )  and Rfk1)  are symmetric with 

respect to the interchange of any two indices, we obtain 

where pjk  -- X j  + X k  and pjkl -- Aj + X k  + X1. Thus, we have obtained the correction terms 

R f k )  and Rfk1)  which will enable us to adapt the manifold to the flow to capture resonant 

behaviour in higher-order modes with "resonant frequencies'' at p jk  and pjkl. 

Our goal is to analyze the long-time evolution of the oscillatory solutions and their 

stability properties. We also wish to obtain the initial conditions under which our analysis 

holds. To describe the evolution of solutions 2 near M, we decompose 2 as 

and substitute into the flow F (3.38) and linearize about the quasi-stationary solution Q, 

(2.33). We then anchor q to an anchor point b, and the secularity in the system becomes ap- 

parent via the appearance of the term Sb (p, W) (3.19). By projecting the resulting evolution 

equation onto the active space Xb (associated with the zero and Hopf eigenvalues) and the 

stable space X;, the evolution equations for p and W are obtained. We then solve for the 

mild solution (3.156) for W from which we obtain the decay estimate (3.234) for W valid for 

the current anchor point b. This estimate shows that control of W is lost after a finite time 



period, and this is caused by secular growth. We then remove this secularity by rechoosing 

our anchor point to b* in such a way that W E X;. This is done by Theorem 4. In rechoos- 

ing our anchor point, not only to do we rechoose the local coordinate system but we also 

rechoose the modified manifold. However, except for a jump discontinuity in q, the values of 

the parameters p remain the same. Lastly, we show that by appropriately choosing the fixed 

time length At in which each anchor point is used (see 3.262), the oscillatory solution will 

approach and remain near the manifold under suitable initial conditions. 

The remainder of the chapter is devoted to obtaining explicit descriptions on the 

evolution of p and rigorous bounds on W. In addition, the supercriticality of the Hopf 

bifurcation is to be demonstrated. 

Due to the invariance of the PNLS under spatial translations, all quantities associated 

with the stationary pulse solution Qq (with fixed q) may be obtained from their q = 0 

counterparts by applying the translation x - x - q. Such quantities include the linearized 

operator Lq, its adjoint L;, and their eigenvalues and eigenfunctions. The spectrum of L, 

remains invariant under such translations, however, as does the spectrum of its constituent 

operators C, (3.65) and Dq (3.66). 

The Linearized Operator In this section, we calculate the linearized operator L,, its adjoint 

L;, and their eigenvalues and eigenfunctions. The eigenvalues and eigenfunctions of L, are 

computed numerically using a Dirichlet expansion and the Evans function from 161, while 

various other quantities are derived analytically from these ones. Lemmas are presented 

which show that the normalization constants for the adjoint eigenfunctions are well defined in 

the sense that they are nonzero for the domain of existence of 4-. While the zero eigenvalue is 

shown to be simple, we had to rely on numerical evidence to infer that the Hopf eigenvalues are 

simple. In particular, we plotted the Evans function E = E (J) and observed-that &E (J) # 0 
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at the scaled eigenvalue J = Xlv. This suggests that these eigenvalues are simple because the 

order of the zero is equal to the algebraic multiplicity of the eigenvalue [I]. Lastly, we present 

the semigroup decay estimate (3.90) from [17] which will be used to bound the residual term 

W. 

The linearized operator Lq is given by 

where Cq and Dq are the self-adjoint operators 

Cq has the eigenvalue-eigenfunction pairs (-3, s i ) ,  (0, sq,,) and essential spectra (1, m), 

while Dq has the eigenvalue-eigenfunction pair { p  - l , sq )  and essential spectra z E [p ,  m). 

In addition. D, has a bounded self-adjoint inverse for y E (1, \/1+). See [ll] for more 

details. 

Lemma 11 For y suficiently close to y,(a) and a > 2.645, the linearized operator Lq 

posesses an essential spectrum uniformly bounded away from the imaginary axis and three 

eigenvalues with small real part. Thus the Nonnal Hyperbolicity condition is satisfied. 

Of particular interest are the eigenvalue-eigenfunction pairs of Lq which correspond to 

the translational and oscillatory modes of the PNLS. The translational mode pair { X o ,  Q$} 

is given by 





while the oscillatory mode pairs {XI ,  P!)} and {X1, Yf )}  are numerically computed from 

the Evans function from 161. The translational mode eigenfunction $) i~ the q-derivative of 

the stationary pulse solution Q,: 

~ ( 0 )  =.Q 
4 414, 

because, since Qq is a solution of the PNLS for each iixed q, then F (Q,) = 0, and so 

0 = aqF (Q,) = L,Q,,,. The oscillatory mode eigenfunctions are complex conjugates of one 

another: 

because Lq is real and X2 = K. For notational convenience, we further denote the components 

The adjoint of L, with respect to the L~ inner product is given by 

Since s , , ~  is the eigenfunction of C, which corresponds to the zero eigenvalue of Cq, it follows 

is the adjoint eigenfunction which corresponds to the zero eigenvalue of L,. Moreover, by 

writing out the components of the eigenvalue equation L P ~ )  = XI!@): 
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Figure 3.6: Graph of Q0 for y = 2.4 and a = 2.8. 
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. . 

we see that the adjoint eigenfunctions which correspond to the eigenvalues XI and X2 are 

given by 

respectively. The normalization constants 

have been selected so that the orthonormality condition 

holds, where Sjk are the components of the Kronecker delta. These normalization constants 

remain invariant under spatial translations. 

We now show that the adjoint eigenfunctions are well defined in the sense that their 

normalization constants nj are nonzero within certain parameter regimes. We also show 

that the zero eigenvalue is simple, and we infer from some numerical evidence that the Hopf 

eigenvalues are simple. 

Lemma 12 If y E ( 1 ,  d m ) ,  then Xo = 0 is an eigenvalue of Lq with algebraic multi- 

plicity 1. Furthermore, no < 0. 

Proof. Since the kernel of Cq (3.65) is spanned by s,,, and since Dq (3.66) is invertible 

, it follows that the kernel of L, (3.64) is spanned by Q?' = (-sq,=, o ) ~ .  



The component equations of the generalized eigenvalue equation L,Z = are 

By the F'redholm alternative and by the self-adjointness of Cq, (3.82) has a solution iff its 

RHS is in (ker c,)'. That is, (3.82) has a solution iff (D;ls,,, I S , , , )  = 0, or equivalently 

no = 0. We show in the sequel that no is negative, and so the generalized eigenvalue equation 

(0 )  L,Z = @, has no solutions and the zero eigenvalue is simple. 

Denote the space of all functions orthogonal to s, by s t ,  and denote the restriction of 

D, to s t  by D:'. Since D:' is self-adjoint and (-cm, p) c p (D:'), Theorem 2.6.6 of [14] 

implies that ( z  I Di'z) 2 p 1 1 ~ 1 1 ~  for all z in the domain of D:'. In particular, this inequality 

applies for z = s , ,  since s,,, is orthogonal to s,. Hence, 

The proof is complete. 

Claim 13 If ReXl # -v and Im Xl # 0, then X is a n  eigenvalue of L, with algebraic 

multiplicity 1. 

Numerical evidence suggests that deE (J) # 0 at the zero corresponding to the Hopf 

eigenvalues. A plot of the magnitude of the derivative of the Evans function along the Hopf 
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Figure 3.10: The magnitude of the derivative of the Evans function along the Hopf bifurcation 

curve. 

bifurcation curve is shown above. Our claim then follows since the order of the zero is equal 

to the algebraic multiplicity of the eigenvalue [I]. Moreover, the normalization constant is 

always well defined by Theorem 1.1 of [9]. 

The operators which spectrally project onto the active space Xq and the stable space 

Xi are given by 



respectively, where I is the identity operator. 

Because the spectrum of the linearized operator is not contained in any sector of the 

complex plane, Lq generates only a Co semigroup Sq ( t ) .  However, because u (Lq)  \{Ao, XI, Az) 

is a strict subset of the left-half complex plane, the restriction of Lq to X; enjoys the following 

estimate. See Proposition 4.1 of [ll] for details. 

Lemma 14 Each operator Lq generates a Co semigroup Sq which satisfies 

for some constant cs  2 1, for all Z E X;, and for all t 2 0. The constant cs  is chosen to be 

independent of q. Thus the Semigroup condition is satisfied. 

We end this section with the following lemma. 

Lemma 15 If  y E (1, dm) and Re Xl # -v and Irn XI # 0, then (I!$ lPF)t ) = 0 for 

j , k =  1,2. 

Proof. Because the PNLS is invariant under spatial translations, it suffices to show 

that ($4 1 9f)t ) = 0 for q = 0. For notational convenience, denote P = ( P f') . 
q=o 

Now, L (3.64) is an even operator in the sense that it is invariant under the reflection 

x - -x. So, by replacing x with -x in the eigenvalue equation 

we obtain 

L (x) @ (-2) = X P  (-2) (3.92) 

Adding and subtracting (3.91) and (3.92) yields 

L (2) ( P  (2) + P (-x)) = X ( 9  (x) + P (-2)) , (3.93) 

L (x) ( 9  (x) - 9 (-x)) = X ( 9  (x) - P (-x)) (3.94) 



respectively. By Claim 13, X has algebraic multiplicity 1 and so it is associated with only one 

linearly independent eigenfunction. Because \E (x) - 9 (-x) and \E (x) + \E (-x) are linearly 

independent, one of these functions must be zero, and so 9 is either even or odd. By the 

expressions (3.76,3.77) for the adjoint eigenfunctions, this is also true of 9t. 

We remark that the numerical computations from [6] show that \EF) for q = 0, j = 1,2, 

is even. 

Functions of opposite parity are mutually orthgonal since, if A is odd and B is even, 

we have 

To prove our lemma, then, it is sufficient to show that, for functions of definite parity, differ- 

entiation changes parity. If A is odd, then 

A' (-x) = dA (-X) =- dx aA(-x) - _-- dA (x) a(-x) a(-x) ax ax - A' (4 7 

and so A' is even. Similarly, if B is even, then B' is odd. 

The Nonlinear Term We compute the nonlinear term N, (3.11) by computing each of the 

terms on the right-hand side of 

as follows. Denoting the components of Y as Y = (yl, yz)t, direct substitution of Q, + Y = 

(s, + yl, ~ 2 ) ~  into F (3.38) yields 



As Qq is a stationary solution of the PNLS for all q, then 

Finally, direct multiplication of L, (3.64) by Y yields 

Substituting these expressions into (3.98), as well as applying the identity 

which arises from (3. loo), we obtain 

where 

Observe that N2 and N3 are bilinear and trilinear in each of their arguments respectively. For 



3.3 The Correction Terms 

In this section, we determine the correction terms 

so that the Quasi-Invariant Manifold condition is satisfied with q- = r4: 

T h s  is necessary so that W will decay to 0 ( r4)  which in turn is necessary for transforming 

the evolution equation for r  into Poincare normal form in the asymptotic state. As noted 

earlier, we demand that Rfk) and Rfkl) depend only on the anchor point and not on q. 

Moreover, we impose the same condition 

as was imposed on the residual term W. 

We impose the following symmetry conditions on Rfk) and Rfk') to ease our calcula- 

tions. 

(S l )  Rf4,  Rfk') is symmetric with respect to the interchange of any two indices. 

(3) - O.kl) ( ' ) = P a n d R b  -Rb  , (S2) Denote = 2 and 5 = 1. Then, Rb 

b b - p. Note that, under these conditions, Rr2)  is real since Rf 2, = R(~')  and R(~ ' )  - 

We calculate the terms comprising (3.109) as follows. Recall from (3.59) that 



First, multiplying Lb (3.64) by R(b,r) (3.59) yields 

Next, by direct substitution of R, (3.59) into Nb (3.104) and using the bilinearity and trilin- 

earity of N2 (3.105) and N3 (3.106) respectively, 

where 

Next, direct differentiation of (3.58) yields 

where we have used the identity Q , ,  = 8p) (3.69) and applied the symmetry conditions 

(Sl,S2). Substituting these expressions for apj@, into I I (b , r )  (3.21) then yields 

where we have used the orthonormality condition (3.80) and Lemma 15. The inverse of Il(b,r) 



Finally, substituting F (Q4) = 0 and W = 0 into wb ( r ,  W) (3.24) yields 

where we have used the relation 

Substituting (3.119) for II&, (3.111) for R(b,,), and (3.113) for Nb (R(b,,)) then yields 

and, for j = 1,2, 

where we have introduced the constants 

which are independent of b due to the invariance of the PNLS under spatial translations. 

Collecting all of the above expressions (3.112,3.113,3.116,3.117,3.122,3.123), we substitute 

into the Quasi-Invariant Manifold condition (3.109) and group the 0 (r2) and 0 (r3) terms 

to obtain 

where 



Applying the symmetry conditions (S1 ,S2), we obtain 

where 

Both the R's and U's lie in the decay space X;, so the R's are s o h  lble provided the 

operators (Lb - p) are boundedly invertible on X;. The restriction of Lb to X; has the 

spectrum 

(3.134) 

contained in {z E (C IRe z 5 -k). Thus, by a slight generalization of Lemma 4.2 from [ll], 

(Lb - z)-I exist and are uniformly bounded on {z E (C (Rez > -6 > -k). Because the reso- 

nances p lie in {z E (C [Re z > -d > -k), the R's are solvable. 

Lemma 16 By choosing the correction t e r n  R:) and RF) as 

where 
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Figure 3.11: Graph of the manifold correction term RI1 for y = 2.4 and a = 2.8. 

and 

/-Ljk Xj + X k ,  

= X j + X k + X l .  pjkl - 

the Quasi-Invariant Manifold condition is satisfied. 

3.4 The Evolution Equations 

In t h s  section, we compute explicit expressions for the evolution equations (3.23,3.27) 

for p and W. This primarily involves computing explicit expressions for w i  (W) (3.24) and 
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Rb (W) (3.28). We then obtain the mild solution (2.74) for W. Lastly, we transform the 

evolution equation for r into Poincare normal form which analytically exhibits the Hopf 

bifurcation. In particular, we shall show that the coefficient q of the cubic term in the 

Poincarb normal form has positive real part at criticality, and this implies that the Hopf 

bifurcation is supercritical. 

Most of the following calculations have already been performed in Section 3.3. 

The Evolution Equations Recasting wb (r ,  W) (3.24) as 

where 

Gjb  (r, W) = wb (r ,  W) - wb (r ,  0) 

we substitute the expressions (3.122,3.123) for the components of wb (r, 0) to obtain 

and, for 3 = 1,2, 

where 

Also, the components of Zb (p, W) (3.25) are given by 



The evolution equation (3.23) for q,t is thus explicitly given by (to leading order) 

and ~ j , ~  by 

Recasting ab ( r ,  W )  (3.28) as 

where 

Also, &, (p, W )  (3.29) is given by 

The evolution equation (3.27) for W is thus given by 

which posesses the mild solution 

W ( t )  = S ( t  - t b )  W b  + S (t  - r )  Gb (7) dr ,  (3.156) 



where the "forcing term" Gb is given by 

G(T)  Ob (r (T) 0) + f i b  (1 (7) , W (7)) + gb (P (7) , W (7)) (3.157) 

and Wb - W (tb) is the initial residual with respect to the anchor point b. 

The Hopf Bifurcation The evolution equation for rj is given by (3.149): 

where it will be shown in Section 3.5 that Zb (r, W) is 0 ( I T /  w, w2) and Zb  (p, W) is 0 ( ( q  - bl). 

It will also be shown in Section 3.5 that, in the asymptotic state wherein w is 0 ( r4) ,  zb (r, W) 

and Zb (p,  W) are also 0 (r4) .  Thus, in the asymptotic state, all terms in (3.149) up to 0 (r3) 

are explicitly given. Defining 

we rewrite (3.149) as 

hkl  k - l  r,t=k+ C z r r  + o ( T ~ ) .  

2<k+1<3 

We now apply Lemma 3.6 from [12], which we restate below, to transform the evolution 

equation (3.166) for r into the Poincari! normal form for the Hopf bifurcation. 



Lemma 17 The equation (3.166) with X = X (y), Re X (7,) = 0, Im X (7,) > 0, and hkl = 

hkl (y), can be transforned by the invertible parameter-dependent change of complex coordi- 

nate: 

with jzl = 0 into an equation with only the resonant cubic tern: 

for all y such that ly - y,l is suficiently small. hrthermore, 

which, at the critical bifurcation value y,, reduces to 

If Re q < 0, the Hopf bifurcation is supercritical; otherwise, the Hopf bifurcation .ts subcritical. 

The coefficient q, of the cubic term was numerically computed along the Hopf bi- 

furcation curve for a E (2.8,4.9) according to (3.170). These computations were performed 

using Matlab R13. The most challenging aspects of this computation were the numerical 

determination of the Hopf eigenfunction P (3.71) and the correction terms R f k )  (3.137) and 

R f k ' )  (3.138). Using results from 161, the Hopf eigenfunction was numerically computed as a 

linear combination of Dirichlet expansions on the stable manifold of the associated linearized 

eigenvalue problem. The corresponding Evans function plays a key role in this computation, 

yielding the Hopf eigenvalues as its zeros and the coefficients used in the linear combination. 

See [6] for details. On the other hand, the computation of the correction terms involved 

implicitly solving ODES of the type 



Figure 3.13: Hopf bifurcation constant 7 versus detuning parameter a along Hopf bifurcation 

curve. 

where L is the linearized operator, p is the resonance, R is a correction term, and U is some 

combination of the terms ufk) (3.128) and/or ufkL) (3.129). This was done using Matlab 

R13's two-point boundary value problem solver bvp4c with boundary conditions R = 0 and 

R' = 0 at x = 100 (i.e. infinity). The results are shown in the figure above. 

Because Re 7 (yc (a ) )  < 0, we conclude that the Hopf bifurcation is supercritical. 



3.5 Bounds on the Residual Term 

From the mild solution (3.156) for W, we obtain the estimate (3.234) for W valid for 

the current anchor point b. This estimate shows that control of W is lost after a finite time 

period, and this is caused by the secular growth in Sb (3.154). We remove this secularity in 

the following section by rechoosing our anchor point as b* in such a way that W E Xi. This 

is done by Theorem 18. Lastly, we show that by appropriately choosing the fixed time length 

At in which each anchor point is used (see 3.262), the oscillatory solution will approach and 

remain near the manifold under suitable initial conditions. 

Introduction Fix the anchor point at b on the time interval [tb, td) and denote the h a l  value 

of q on [tb, td] by d. Also denote w = IIWIIH1, and the initial and h a l  values of w on [tb, td] 

by wb and wd. The following equations then hold: 

The following control quantities play prominent roles in our analysis. The quantity 

is the total length of time in which the anchor point b has been in use. The quantity 

controls the distance between the manifold position parameter q and the anchor point b, the 

quantity 

controls the amplitude of the oscillating solution, and the quantity 



controls the size of W. W will decay exponentially in accordance with the semigroup decay 

estimate (3.90), so the purpose of the exponential factor ek(e-tb) in (3.176) is to compensate 

for this decay. 

Apply the triangle inequality and the semigroup decay estimate (3.90) to the mild 

solution (3.156) for W to obtain 

where gb ((GbllH1. A bound on Gb is obtained in the next section, which will then be used 

to bound W .  

Bound on the Forcing Term The goal in this section is to obtain a bound on the "forcing 

term" Gb (3.157). The constant 

is chosen for convenience to facilitate our computations. We shall frequently make use of this 

fact about the = H1 (R) norm: 

and we shall frequently use inequalities like 

r + r2 + . . .  5 2r, r small (3.180) 

to dismiss the higher order terms in r .  In particular, take note of the factor 2 on the right-hand 

side of this inequality. 

Bounds on Ob (r, 0) and f i b  (r, W )  are obtained as follows. All anchor point dependent 

quantities such as the linearized eigenfunctions qf)  and the correction terms ~ f ~ )  have norms 



which are anchor point i n d e p e n d e n t  because the PNLS is invariant under spatial translations. 

Moreover, the nonlinearity in the PNLS is polynomial in nature, whch means that these 

nonlinearities satisfy some type of (bi- or tri-) linearity property. In particular, all the 0 (r4) 

terms appearing in Sections 3.3 and 3.4 arise from Nb (R,) and therefore satisfy bounds like 

1 1  All Hl 5 c lr14 for some constant c which is anchor point i ndependen t .  It therefore follows 

from the Quasi-Invariant Manifold condition that 

for some constant cn i n d e p e n d e n t  of b. As for fib (r, W), let us estimate each of the terms 

appearing in the right-hand side of (3.152). First, applying the triangle and Cauchy-Schwarz 

inequalities to the spectral projection operator nb (3.89) yields 

for any A, and so 

Also, by direct substitution of Nq (3.104) in Zq (3.153) and the bilinearity and trilinearity of 

N2 (3.105) and N3 (3.106) respectively, 

Next, the components of n;Y(b,r) are obtained by applying the spectral projection operator 



T; (3.89) on the derivatives of @, (3.116,3.117): 

Finally, llSb (r, W) 1 1  is obtained by substituting wb (r, W) (3.24) and subsequently lI(alr) 

(3.119) into S b  (r, W) (3.142), and then applying the estimate (3.186) for sq: 

Applying the above estimates to f ib  (r ,  W) (3.152), we obtain 

where c~ - max { (1 + 3ci)  2c;, (1 + 3 4 )  ~ C Q ,  4c;, 4~;). 

Bounds on q,t and Sb (p, W) are obtained as follows. Applying the triangle inequality 

to (3.19) yields 

Let us estimate each of the terms on the right-hand side. As Qq is a stationary solution of 

the PNLS for all q, then F (Qq) = 0 for all q, and so 



Next, by the expression (3.64) for Lq, Lq - Lb is a multiplicative operator satisfying the bound 

llLq - Lbll,,H1 5 C$ I!? - bl, and so 

Next, by direct substitution of R(b,T) + W into Nq (3.104) and the bilinearity and trilineary 

of N2 (3.105) and N3 (3.106) respectively, 

Finally, multiplying Lq (3.64) by Rp (3.111) and applying the eigenvdue equation L ~ P ~ )  = 

A .*Ci) 
3 Q ,  

while, by direct substitution of dqQp (3.116), arjQp (3.117), and rj,t (3.149), 

Therefore the fourth term on the right-hand side of (3.193), which we denote by s4, satisfies 

Applying the above estimates to S b  (3.193), qrt (3.148), and r,t (3.149) then yields 



. . 

where c, - max ( 2 4  + 2 4 ,  2cq, 8~ ; , 84} .  We further combines these estimates as 

where we have used the fact that Iq,t] and IrYt - rAl obey the same estimate. 

Control of Sb and q,t by the estimates (3.205,3.206) is lost when ~ ( 4 )  grows too large. 

We therefore impose the constraint 

which restricts the possible size of At, thereby bounding Sb and q,t as 

where cqs -- max {4c,, 2c, (1 + 2c,)). We further impose the condition 

which restricts the initial size of the residual to obtain 

~ ( 9 )  by its definition (3.174) then satisfies the estimate, 

2 < 2cqs ( ~ ( ' 1 )  At, 

which may be applied to (3.21 1) to obtain 



. - 

Lastly, a bound on & (p,  W) is obtained as follows. Applying the triangle inequality 

to (3.154) yields 

and subsequent application of the above estimates yields 

With the bounds (3.181,3.192,3.217) for !db (W), fib (r, W), gb (q, W) in hand, the 

"forcing term" Gb (3.157) satisfies the bound 

ge (7) 5 c, ((T('))~ + w ( T )  T(') + (T(')) A t )  , (3.220) 

where c, = c~ max icn, 2cii, cF). 

So long as the constraints ~ ( 9 )  5 & (3.207) and w < cs (T('))~ (3.210) hold, then 

the estimates 1q.t 1 < 2cq, (T(')) (3.212) and ~ ( 9 )  < 2cqs (T(')) A t  (3.214) also hold. On the 

other hand, if the estimate (3.214) holds, then the constraint (3.207) also holds if 

2 1 
2cqs (T(')) At < 7, (3.221) 

4% 

It is thus self consistent to replace the constraint (3.207) with the constraint (3.221), and we 

do so. Lastly, we rewrite (3.221) as 

where ct - (8c~cqS)-'. 



Residual Decay Estimates We assume that the constraints (3.210,3.222) hold, and we apply 

the bound (3.220) for Gb to the estimate (3.177) for W to obtain 

t 

w ( t )  5 cse -k( t - tb )  wb + q,, / e-k(t-T) ( W  ( T )  T(' + (~( '1)  ( 1  + A t ) )  d ~ .  (3.223) 
t b  

Replacing t with 0, multiplying by ek(e-tb), and taking the supremum over 8 E Itb, t d ) ,  (3.223) 

becomes 

Since 

and 

(3.225) may be rewritten as 

T ( W )  5 cgwb + q,, 

where 

92 ( t )  - k-' (en - 1)  ( I  + t )  . 

Note that y2 is a strictly increasing function. Upon solving for T(w) ,  we obtain 



which, by inserting T ( ~ )  (3.176), yields the decay estimate 

Because control of wd by (3.232) is lost when At = c;' ( ~ ( ' 1 )  -', we impose the additional 

constraint 

so that the denominator in (3.232) is uniformly bounded away from zero. It is clear that this 

2 
constraint is always more exigent than At 5 ct ( ~ ( ' 1 ) -  (3.222) for T(') sufficiently small, and 

so we hereby replace that constraint with this one. With this constraint, (3.232) becomes 

Moreover, by replacing At with t - tb and substituting y2 (3.230), we obtain the residual 

decay estimate for general time t: 

+2&k-' 

3.6 The Reanchor Method 

The evolution equations (3.148,3.149,2.73) for p and W remain valid so long as the 

secular term Sb (3.19) remains sufficiently small. When this is no longer true, we rechoose 

the anchor point to remove this secular growth. Moreover, this new anchor point b* is chosen 

so that the new residual lies in X;. Theorem 18 will show that such a choice exists and is 

unique, provided that q is sufficiently close to the old anchor point b and provided that W is 

sufficiently small. The price of reanchoring is jump discontinuities in both q and W wherein W 



could in principle increase, yet we will show that the residual decay estimate (3.234) controls 

this possible growth provided that At, the length of time in which each anchor point is used, 

is suitably long. The residual decay estimate (3.234) is the key estimate which allows us to 

determine such a At so that secular growth is controlled and removed. Lastly, we will show 

that after an initial transient stage wherein the residual decays, the residual will remain small 

for all time and so our solution remains close to the manifold for all time. 

The Reanchor Method Again, fix the anchor point at b on the time interval [tb, td) and denote 

the ha1 value of q on [tb, td] by d. Let us introduce the term 

and rewrite the decomposition (3.63) for Z as 

a 

When reanchoring, Z may be decomposed as either Z = + Wd with respect to the old 

- a 

anchor point b, where Ed E X;, or as  Z = Q((*,=) + Wb- with respect to the new anchor point 

b', where b' is to be determined so that Eb* E X;. In particular, note that E d  E x?)' 

and Eb* E x!!)'. Reanchoring introduces a jump discontinuity in both q and W wherein q 

jumps from d to b* and jumps from Ed to Eb.. Equating these two decompositions and 

solving for Eb*, we obtain 

- R- = Ed + O(d,,) - Q(b*,,, . 

a 

Since Wp E x:?~, then 

( E d  + G(d,=) - &P,,) /pt) = 0. (3.240) 

Given d and k, the following theorem shows that there exists a unique b' such that (3.240) 

is satisfied. In addition, this theorem gives an estimate on the jump discontinuity in q when 

reanchoring. 



Theorem 18 Express & = GdZb for some scalar Gd 2 0 and function Zb E xjO)' satisfying 

l/ZbllH1 = 1. For Gd suficiently small, there exists a unique smooth function 'H : IRf - IR 
such that, by choosing b* = d + 'H (Gd), (3.240) is satisfied. Moreover, the estimate 

Id- b*( 5 +GdId - bl (3.241) 

holds for some constant +. 

Proof. The equation (3.240) is equivalent to r = 0, where 

r has a root at (Gd, b*) = (0, d) and r,b* (0, d) = - 1 + 0 ( r )  which is 0 (I) ,  so the implicit 

function theorem guarantees the existence of a smooth function 'H such that b* = d +'H (Gd). 

Moreover, since r,Gd (0, d) is 0 (d - b), the implicit function theorem implies that J'H' (0) I is 

0 (d - b) also. The estimate (3.241) then follows from the Mean Value Theorem. 

Estimates on the Reanchor Jump Discontinuities Since N2 (3.105) and N3 (3.106) are bilinear 

and trilinear with respect to their arguments respectively, they are also continuous maps from 

H' x H1 and H1 x H1 x H 1  to H1 respectively. Moreover, Lb (3.64) and ~ f )  (3.68,3.71) 

are continuous with respect to b, and so it follows that R f k )  and R f k l )  are continuous with 



respect to b  as well. This continuity property plays a crucial role in-the computation of the 

reanchor jump estimate, as we shall see forthwith. 

When reanchoring, Z may be decomposed as either 

with respect to the old anchor point b, where Wd E X b ,  or as 

with respect to the new anchor point b*, where Wb- E Xb; . Equating these two decompositions 

and solving for Wb- yields 

Apply the triangle inequality to obtain 

Since Q,, R::!~), R[&, R::!~) are continuous with respect to their arguments, 

andsince Ib-b*l = l b - d + d - b * l  < I d - b l + I d - b * l ,  

Finally, inserting the estimates (3.241) for Id - b*l yields 



which, by inserting the estimate (3.214) for Id - b/ and using the fact that Gd = R r )  + RP I I 
becomes 

wag < wd + CJ (T('))  At, (3.254) 

where CJ - (8c;c' + 2cq) 2cq,. This estimate shows that w could in principle increase when 

reanchoring, yet we will show in the next section that the residual decay estimate (3.234) 

controls this possible growth provided that At, the length of time in which each anchor point 

is used, is suitably long. 

The Iterations We now investigate two states in which, for some m to be determined, either 

wb E ( m  ( T ( ' ) ) ~ ,  CJ (T(')12) or wb E 0, m T(') respectively. These states are c d e d  the [ ( )41 

initial transient and asymptotic states. We will show that w decreases on the whole in the 

initial transient state in the sense that wb- < wb, while w remains small in the asymptotic 

state. Moreover, we will show that we can take At = k-' In (h;' (4cs + 4e, + 2kcJ) + 1) and 

m = y2 ( A t )  for some h,  < 1. 

Inserting the residual decay estimate (3.234) into the reanchor jump estimate (3.254) 

yields 

wb- 5 2e-'at ( c ~  wb + e, (T(')) y2 ( a t ) )  + CJ ( ~ ( ' 1 ) ~  At (3.255) 

This inequality holds so long as the two constraints wb < CJ ( T ( ' ) ) ~  (3.210) and A t  < 

(e,T('))-' (3.233) holds. To continue using (3.255), we must rechoose our anchor point 

before either of these constraints fail. 

4 
Initial Tkansient State In the initial transient state wherein wb E T(')) , CJ ( ~ ( ' 1 ) ~ ) ~  we 

further impose the constraint 



on A t  and apply it and substitute the expression (3.230) 

gz ( a t )  = k-' (ekAt - 1 )  ( 1  + a t )  

into (3.255) to obtain 

= h ( A t )  wb,  (3.260) 

where 

We now choose the h e d  length of time At in which the current anchor point b is used such 

that h ( A t )  z hm for some hm < 1. The choice 

yields 

hm = h ( A t ) ,  

- - ~ ( C S  f h ) h m  f  kc^ h m  
4 (cs + c,) f 2kcj + hm 4 (cs + h )  + 2kcj 

and (3.260) thus becomes 

We further choose 



so that the constraint (3.256) is automatically satisfied by virtue of the fact that wb E 

(m ( T ( ' ) ) ~  , cs It remains to show that our choice of At also satisfies the constraint 

(3.233), but this is easily satisfied if we demand that T(') satisfy 

For what initial conditions on r and w does (3.269) hold? We again transform the 

evolution equation (3.166) for r into Poincar6 normal form, but this time we retain the higher 

order terms Gb + Zb since we're working in the initial transient state: 

Express v = Ivl eis and gather real parts. 

Applying the bounds (3.142) and (3.219) for Sb (r ,  W) and Eb (p, W) then yields 

lvl, = (ReX) Ivl + (Req) lv3  + ~ C $ W T ( ' )  + 4c;w2 + c*cz ( ~ ( ' 1 ) ~  At + 0 (lv14) . (3.272) 

2 
Finally, applying the constraints w < cs (T(')) (3.210) and the choice (3.222) for At, we 

obtain 

1 ~ 1 , ~  = (Re A) lvl + (Req) lu13 + 4 c & ,  ( T ( ' ) ) ~  + 0 (1v14) . (3.273) 

Choose cs is sufficiently small such that Req + 4c& < 0. Then I T (  will always satisfy the 

bound 



if 17.1 is initially small enough, while Iri will eventually satisfy this bound if Irl is initially 

large provided the constraint (3.269) initially holds. Note that, since w decays, Irl actually 

approaches J- Re X /Re 7 .  In any case, for Re X and cs sufficiently small, the constraint 

(3.269) always holds. 

We have thus proven that, if wb E ( m  ( T ) ~  , c ( T ' ) ~ )  and At is chosen as in 

(3.262), the residual decays on the whole in the sense that wb* 5 h,wb. Moreover, we have 

determined the appropriate initial conditions under which our analysis holds. In particular, 

the solution must be close enough to the manifold and the oscillation amplitude must be small 

enough such that the residual satisfies w (0) < ca ( ~ ( ' 1 ) ~  (3.210) and such that the condition 

(3.269) holds. 

The residual will continue to decay until wb E at which point the system 

enters the asymptotic state. 

Asymptotic State In the asymptotic state wherein wb E , we choose At as in 

(3.262): 

Since 32 (At) = rn and wb 5 m  (T('))~, (3.255) then becomes 

where h is given by (3.261) as before. Since h (At) = h,, we have 

We have thus proven that, if wb E 0, m  T(') and At is chosen as in (3.262), then [ ( 141 



also. In conjunction with the decay estimate (3;234), this shows that 

w ( t )  5 2 (cs + G) ( m  ( T ( ' ) ) ~ )  (3.279) 

for all time t in the asymptotic state. 

3.7 Conclusion 

We conclude our thesis with the following theorem which summarizes our results. 

Theorem 19 Consider the vectorized parametrically-forced nonlinear Schrodinger equation 

Provided that Re X  and w are suficiently small, the PNLS posesses the solution 

for each jixed anchor point b, where 

Here, Qq is the stationary pulse solution, '2:) are the linearized eigenfunctions, and RFk) 

and RFk') are the anchor-point dependent comction terms. The manifold parameters satisfy 

the evolution equations ( in  the asymptotic state) 

where X j  are the Hopf eigenvalues, and yjkl and yjklm are anchor-point independent numbers. 

The residual term W satisfies the condition 



and the bound 

w ( t )  j 2e-k('-'b) (cswb + c, ( T ( ' ) ) ~  yyz ( t  - t b ) )  (3.286) 

with y2 ( t )  G k-' (ekt - 1 )  ( 1  + t ) .  Moreover, one can use each anchor point for an 0 ( 1 )  time 

period and rechoose the anchor point thereafter according to  Theorem 18 such that, in the 

initial transient state, wb. < hmwb for some f i e d  constant h, < 1 and, in the asymptotic 

state, w 5 mb for some 0 ( 1 )  constant m. 



2 X Material 

Figure 3.14: Schematic diagram of an OPO (Promislow). 

APPENDIX 

The Optical Parametric Oscillator An optical parametric oscillator (OPO) is a nonlinear 

optical device consisting of a non-centrosymmetric medium and a Fabry Perot cavity. The 

device converts sufficiently powerful pump waves into two tuneable coherent waves named 

the signal and idler waves. Like conventional lasers, gain is produced at the signal and idler 

frequencies, and this gain is combined with feedback to produce coherent radiation. Unlike 

conventional lasers, no population inversion takes place, so OPOs are capable of producing 

frequencies not easily producible by conventional lasers. In particular, OPOs can be tuned to 

hit band-gap frequencies with high precision. First demonstrated by Giordmaine & Miller in 

1965, OPOs became outdated due to the lack of efficient resistant crystals and the development 

of dye lasers. In recent years, however, improvement and availability of high quality crystals 

have renewed interest in OPOs as the phase-matching characteristics and broad wavelength 

coverage of these new crystals have given the OPO a much wider frequency tuning range. 

Moreover, no degradation in the active medium is exhibited by the new OPOs, raising the 

possibility of maintenance-free operation. 

In this section, we derive the PNLS as the good cavity, large pump detuning limit of the 

OPO. This derivation is from [ll] and is summarized here for completeness and convenience. 
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We consider the degenerate OPO near the single-mode resonances at the fundamental 

and second harmonic of a planar cavity in the good cavity limit. The mean-field model for 

dimensionless signal and pump field envelopes are respectively denoted by u and v and are 

governed by the equations 

where A1 and A2 are the cavity detuning parameters, p is the diffraction ratio between the 

signal and pump fields, cr is the pumpto-signal loss ratio, and s represents the pumping 

term. See [18, 191. The OPO exhibits subcritical bistable behaviour for both front and 

solitary wave solutions, but we investigate this behaviour for only solitary wave solutions in 

the large pumpdetuning regime for which >> 1. Rewriting (3.288) as 

1. 
= A?' (s - u2) - iv, 

we assume s = 0 (lA21), u = 0 (m), and v = 0 (I) ,  as well as neglect the left-hand side 

terms to obtain 

For consistency with (3.287,3.288), we also require that \All >> a / /A2 ( .  Inserting (3.290) 

into (3.287) yields the PNLS equation 

Rescaling as u = m4, a = A, > 0, and y = AT'S, we obtain the focusing PNLS 

where y is the pump strength and a is the detuning parameter. 
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