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Chapter 1 

Introduction 

Understanding the deformation of drops and bubbles in a slow viscous flow has practical 

application in the rheology of emulsions, and mixing in multiphase viscous systems. While 

in physical applications it would be preferable to have solutions for a three-dimensional 

drop or bubble, these are difficult to obtain both analytically and computationally. Sig- 

nificant work has been done, however, on the simplified model of two-dimensional drops 

and bubbles. Two-dimensional models are found to behave similarly to the corresponding 

three-dimensional bubbles observed in experiments [3]. Therefore, our study should prove 

useful in understanding bubbles in the real world. 

In one analytical study, Tanveer and Vasconcelos [26] obtained a restricted class of 

analytical solutions to the two-dimensional problem. Since in two-dimensions the Stokes 

equations reduce to the biharmonic equation, these authors exploit an extensive complex 

theory of the biharmonic equation (cf. Mikhlin [19], Muskhelishvili [20], and Carrier, Krook, 

and Pearson [6]) to formulate the problem in terms of complex analytic functions. By 

finding these harmonic functions subject to certain conditions on the boundary, they present 

analytical solutions for a class of polynomial initial bubble shapes. The need to represent the 

bubble as a polynomial, however, limits the scope of these solutions. In particular, general 

bubble shapes and multiple bubble interactions cannot be developed by this approach. 

In recent work, Kropinski 115, 161 overcomes both of these limitations by computing 

the evolution of drops and bubbles numerically. These computations feature an accurate 

and efficient integral equation method for the biharmonic equation developed by Greengard, 

Kropinski, and Mayo [12]. This method uses the above mentioned complex theory to formu- 

late the Sherman-Lauricella integral equation. The discretization of the integral equation is 
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specti.ally accurate and the matrix-vector products are computed using the fast inultipolc 

mctliod [8]. Using N points to discretize the boundary, this method requires only O ( N )  

operations compared to direct matrix inversion, which is O ( N ~ ) .  Granted that the  Stokes 

equations must be solved a t  each time-step, this reduction in computation is necessary for 

largc. scale simulations. 

These computations are limited in that surface tension is constant. In the case wherc 

a buhble is coated with a surface active agent (surfactant), for example, surface tension 

varies. Analytical solutions have been investigated by Siege1 [23, 241 and numerical solutions 

by Johnson and Borhan [14] and Pozrikidis [21]. There is still a need, however, to  develop 

efficient, robust, and highly accurate numerical methods for the varying surface tension case, 

of the kind developed in [15]. 

The focus of this work is to survey mathematical models and analytical solutions for thc 

variable surface tension, or surfactant, case. Incorporating surfactant involves an additional 

term in the stress balance on the interface [23], and solving a convective-diffusive partial 

differential equation for the evolution of surfactant concentration [28]. The  nature of the 

domain lends this problem to fast Fourier transforms and spectral methods. These solutions 

are useful test cases for the future development of a high-speed, general purpose solver such 

as that  in [15]. 

In chapter 2, we look at  mathematical models of time-evolving bubbles in a slow vis- 

cous flow. First, the governing equations are derived from the more general Navier-Stokes 

equations. The domain geometry is described. Then the boundary conditions particular to 

constant and variable surface tension are defined and the transport equation for surfactant 

is derived. All relevant equations are presented in non-dimensional form. 

In chapter 3, we examine analytical solutions to  the constant surface tension problem. 

First, the biharmonic theory and complex analysis associated with the Goursat represen- 

tation is developed. Then, a set of ordinary differential equations comprising a class of 

polynomial solutions are derived. Examples follow, including a collapsing bubble placed 

within a quiescent flow and a constant area bubble placed within a pure strain flow. 

In chapter 4, the previous analytical solution theory is elaborated to  account for the 

variable surface tension case. The surfactant transport equation is composed in complex 

variables consistent with previous analytical solutions. Some examples are then considered. 

Finally, a summary of our results and potential problems for future research are presented 

in chapter 5. 



Chapter 2 

Mat hemat ical Models 

In this chapter, we present the equations and boundary conditions comprising the math- 

ematical models considered in our study. Many of these equations come from well known 

scientific laws and it is assumed the reader has a familiarity with them. Wherever possible, 

elaboration on the physical concepts is provided. We follow the models presented by Tan- 

veer and Vasconcelos [26] and Kropinski [15] for the constant surface tension (no surfactant) 

problem, and Siege1 [23] for the variable surface tension problem. The surfactant-free case 

is also called clean-flow. We begin by describing the governing equations in slow viscous 

flow. 

2.1 Slow Viscous Flow 

Imagine being dropped into a pool of molasses and having to  swim through it. The heavy, 

sticky fluid would impede one's movement because of the frictional forces in the fluid. It 

would be difficult to gain any momentum and glide as in aquatic swimming. Such dynamics 

are caused by the high viscosity of molasses. In another scenario, imagine looking through 

a microscope a t  a tiny organism propelling itself through a sample of pond scum. It might 

appear that the micro-organism must propel itself constantly to keep in motion. Water 

"seems" a great deal more viscous at a microscopic level. In this case, such dynamics are 

caused by the length scale. These two very different scenarios have a similar fluid dynamical 

behavior (known as slow viscous flow) because in both cases viscous forces dominate over 

inertial forces. 

Newtonian fluids can be described generally using the Navier-Stokes equations. The 
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equations for slow viscous flow are a special case of the Navier-Stokes equations. A more 

thorough discussion of these equations can be found in [2]. If we assume the flow is incom- 

pressible we have 

where u is the velocity, p is the pressure, p  is density, p  is viscosity, and v = p/p  is the 

kinematic viscosity. Suppose that U and L are characteristic values of velocity and length. 

Equation (2.1) can be non-dimensionalized with the following substitutions: 

u = Uii, x = Lx, 

(2.1) now appears as 

R[iiE + (ii . V)u] = -Vp + v 2 u ,  

where 

is the Reynolds number, and spatial derivatives are taken to be non-dimensional. R turns 

out to be the ratio of inertial forces to viscous forces. The value of this number characterizes 

the nature of the flow. When R is small (R  << I ) ,  the inertial terms become negligible and 

the viscous and pressure terms dominate the flow. By contrast, when R is large ( R  >> 1) the 

viscous forces are dwarfed and inertial forces dominate, as in atmospheric and supersonic 

flows. Thus, small R is the appropriate case to consider. Low Reynolds number flow is also 

known as slow viscous flow and is given by the Stokes equations (with bars dropped): 
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2.2 Domain Geometry 

With the governing equations of slow viscous flow, we now consider the problem of a bubble 

placed in a two-dimensional flow of this type. Another example assists an intuition of the 

problem. Imagine blowing through a straw into a jar of molasses. An air bubble will expand 

and possibly separate from the straw. Motion in the fluid will interact with the fluidlbubble 

interface causing it to  deform. If one took a horizontal cross section of the bubble, one could 

track the deformation of the bubble from an aerial point of view in two-dimensions. 

From now on, general vector notation is taken to  be two-dimensional. In two-dimensions, 

u(x, y) = (u, v, 0). We assume that the fluid inside the bubble has a negligible viscosity and 

is at a constant pressure, chosen to  be zero without loss of generality (since it is the difference 

in pressure across the interface that matters). To be more general we could consider drops 

instead of bubbles, where the viscosity of the interior fluid is not negligible (as in [15]). In 

this case, we would be required to  solve the Stokes equations on both sides of the interface. 

In the case of bubbles, however, the interior flow equations are trivially satisfied. The fluid 

domain is therefore exterior to  the bubble. 

Figure (2.1) below illustrates the fluid domain, and other geometrical details of the 

problem. The unit normal n points out of the fluid domain (into the bubble), and the unit 

tangent s points in the clockwise direction. 8 is the angle between the horizontal axis and 

s. The local curvature is given by K, = 8,, where s is the arclength increasing in a clockwise 

direction. 

Figure 2.1: A viscous fluid domain D with interface r 
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2.3 Boundary Conditions: Clean-Flow 

Boundary conditions (BCs) for this problem are given on the bubble interface and in the 

far-field, as 1x1 approaches infinity. We consider first the interface boundary conditions. 

The bubble surface evolves in time making this a free or moving boundary value problem. 

Following 1231 and [15], the boundary conditions on the bubble interface include continuity 

of shear stress and a jump in normal stress proportional to curvature. These two stress 

boundary conditions can be written as 

where E is the rate of strain tensor whose j, k component is given by 

Each of the indices j and k take on the values 1 or 2 corresponding to the a: or y-directions, 

00 is the constant surface tension, n is the curvature, ng is the unit vector in the direction 

of gravity, Ap is the difference in density between the bubble and the exterior fluid, and g 

is acceleration due to  gravity. We assume a constant surface tension 00 for the clean-flow 

problem, but will require more complicated boundary conditions with the introduction of 

surfactant into the model in section (2.4). 

In addition, we account for the effects of gravity on the stress interface condition as in 

[16]. Our analytical solutions neglect the effect of gravity (g = 0) but we include it in our 

mathematical model for completeness. We have not included body forces in our derivation 

of the equations of slow viscous flow, but gravity effects is absorbed into the pressure term 

by defining p = IT - pgng . x, where IT is the dynamic pressure. 

Turning our attention to  the far-field condition, we assume that far from the bubble 

the velocity of the incident flow is linear, and the area of the bubble A is changing at a 

prescribed rate m ,  which may depend on time. The 

where x is a unit vector in direction x when 1x1 + m 

far-field condition appears as 

for 1x1 + m, (2.8) 

(usually unit vectors will be designated 
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with bold type), and 

Here wo is the vorticity of the far-field flow, while a0 and Po characterize its strain rate. 

These conditions determine the solution to the boundary value problem associated with 

the Stokes equations (2.4, 2.5). We can in principle determine the velocity u in the exterior 

domain, particularly on the bubble interface. But this is a steady-state solution; how is the 

time-evolution of the bubble interface determined? After solving the Stokes equations, we 

employ the kinematic condition that a point x on the interface advances according to the 

normal velocity at that point, or 

In other words, we solve a sequence of steady-state boundary value problems to evolve the 

the bubble in time. This is known as a quasistatic problem. 

In a previous section we obtained the non-dimensional Stokes equations; now we com- 

plete the problem description by presenting non-dimensional boundary conditions. We left 

some ambiguity in our choice of characteristic values (2.3) and we now choose the charac- 

teristic value U to be 

This choice conveniently removes characteristic values from the stress interface condition. 

We now non-dimensionalize pressure and time by 

This permits us to eliminate a0 and p from the boundary conditions. The stress interface 
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condition becomes 

-pn + 2 s .  n = -nn + Bng . xn, 

where the bars have been dropped for convenience. Here, B is the Bond number, 

The appearance of the far-field condition (2.8) remains unchanged, however we non- 

dimensionalize the rate of contraction by 

and drop the bar as before. If we wish to study the zero surface tension case [26], these 

choices in characteristic quantities for non-dimensionalization will not work, since there will 

be division by zero. It may be preferable to leave the problem in dimensional form. 

2.4 Boundary Conditions: Surfactant 

A degree of complexity can be added to  our model of a time-evolving bubble in a slow 

viscous flow if we consider the presence of an agent on the interface of the bubblelfluid 

regions. Surfactant  (i.e. a surface active agent) is simply a coating on the bubble that 

modifies surface tension ( a ) ,  but does not affect the flow of the exterior fluid directly. It 

will therefore modify the stress-interface boundary condition (2.13). The motion of the 

exterior fluid causes the convection of surfactant around the bubble, but surfactant will not 

be treated as part of the fluid domain influencing the exterior flow. 

The addition of surfactant is helpful for studying interesting phenomena in fluid dynam- 

ics. In laboratory experiments, scientists observe how the physical addition of surfactant 

modifies the behaviour of a bubble in a viscous fluid. Because the interfacial tension is 

sensitive to  the presence of even small amounts of surfactant, they play an important role 

in many free-boundary problems. For example, surfactant can increase the drag on trans- 

lating drops [14], or damp wave motion [ 25 ] .  In other cases, surfactant may promote the 

development of cusps, or point-like regions attaining an infinite curvature. Michael Siege1 
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[23] investigated the influence of surfactant on cusp formation and tip streaming: 

"Tip streaming is a mode of breakup in which a drop develops a deformed 

shape featuring cusp-like ends, from which small drops are emitted into the 

exterior fluid (see, e.g., [9, 11, 221 for experimental results). The shear or strain 

rate required for this type of breakup is typically much less than that required 

for the normal mode of breakup (fracture), in which a drop ruptures into two 

or three pieces of similar size, with a few tiny satellite drops in between. [9] 

Furthermore, the droplets produced by tip streaming can be much smaller than 

those produced by fracture. The experiments of [9] provide strong evidence 

that tip streaming occurs when interfacial tension gradients develop due to the 

presence of surfactant. Therefore, it is vital to take the influence of surfactant 

into account when examining the various modes of breakup in a drop exposed 

to  shearing or straining flows." 

Siege1 goes on to capture this behavior mathematically and produces analytical bub- 

ble solutions with cusp-like features. Other interesting effects include the accumulation of 

surfactant in stagnant caps at the rear of translating or deforming bubbles. Johnson and 

Borhan 1141 write 

"When surface convection is the predominant mechanism for surfactant trans- 

port on the interface, and the surfactant flux from the bulk [or exterior fluid 

domain] is extremely slow compared to the surface convective flux (i.e., in the 

limit of an insoluble surfactant monolayer), the interface is partitioned into a 

surfactant-free region near the leading end of the drop and a surfactant-saturated 

region near the trailing end which behaves like a stagnant cap." 

Our model does not account for the flux of surfactant to and from the exterior fluid domain 

and so it may be possible to compute surfactant caps. This is investigated in section (4.3.2). 

Below, we incorporate surfactant into our mathematical model by modifying the stress- 

interface condition, and then present the convection-diffusion equation governing surfactant 

movement around the bubble. 

2.4.1 Modified Boundary Conditions 

How is it that surfactant influences bubble or drop mechanics? In an investigation of the 

effects of surfactant on the mobility of risinglfalling drops, Johnson and Borhan [14] offer a 
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helpful explanation: 

"Surfactants alter the mechanics of interfaces and, as such, their presence can 

have a profound effect on the macroscopic behavior of drops [lo]. For instance, it 

is well known that the free riselfall of drops can be significantly hindered by the 

presence of surfactants in the bulk phase ... In this process, a nonuniform sur- 

factant concentration profile is developed on the surface of the drop. If the only 

effect of surfactant is assumed to  be a local reduction in the interfacial tension, 

the interface will be pulled from the low tension (high surfactant concentration) 

region at the rear pole to the high tension (low surfactant concentration) region. 

The resulting tangential (Marangoni) stress resists the surface flow, and eventu- 

ally causes the interface to behave like a no-slip surface, thereby increasing the 

drag on the drop and reducing its mobility." 

The above mentioned Marangoni forces are accounted for in [23] with an additional term 

in the stress-interface condition (2.6). a represents the non-uniform surface tension and is 

non-dimensionalized by 00, chosen to be a characteristic value for surface tension (the same 

dimensional quantity chosen in the clean-flow problem). In non-dimensional form, the new 

stress-interface condition is 

Here, V, = (I-nnt)  .V is the surface gradient, which in two dimensions is a scalar derivative 

with respect to arclength. The non-uniformity of surface tension arises from its dependence 

on surfactant concentration A. This is given by an equation of state of the form 

Surfactant concentration is expressed in units of mass of surfactant per unit of interfacial 

length, and is non-dimensionalized with the uniform concentration of surfactant that exists 

in the absence of flow, Ao. Though more complicated equations of state might be proposed, 

we assume a linear relationship (in non-dimensional form) here: 
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is a parameter that controls the degree of sensitivity of surface tension to changes in the 

concentration of surfactant. This linear equation of state is simple, widely used, and useful, 

but it can easily be changed without disrupting the model presented. 

2.4.2 Surfactant Transport 

As the exterior fluid moves about the bubble, surfactant concentration will be spread across 

the bubble in a non-uniform layer. Other effects, like diffusion, and the evolution of the 

interface will change the distribution of surfactant as well. An equation for the evolution 

of surfactant must be coupled with the slow flow equations to complete our mathematical 

model. Stone [25]  presents a simple derivation for the transport of surfactant along a 

deforming interface, which we use as a guide. 

We consider a bubble interface I' with a distribution of surfactant concentration A on 

it. I' may be deforming. If we assume that surfactant is conserved, i.e. no diffusion, gain, 

or loss of surfactant into the surrounding fluid, a mass balance yields 

where d l d t  denotes the material derivative. Proceeding formally, we may differentiate inside 

the integral: 

where the first term expresses the change in A from the perspective of a moving particle, and 

the second term accounts for stretching and distortion of the interface. By the definition of 

the material derivative, and the fact that A is only defined along the interface, 

where S = u . s. 

Following the presentation in Stone 1251 we deduce that the material derivative of a 

vector interface length is 

d 
-dl? = d r V .  u - (VU)  . dl?. 
dt 
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Substituting dl? = n d r ,  and taking the inner product with n, we have 

Returning to  (2.17) we expand the material derivatives, and note that because r ( t )  is 

arbitrary we isolate the integrand: 

Next, we decompose u into its components tangential and normal to the surface: u = 

Ss + Un, 

We note that V, . (AS) = V, . (Au) and write 

Within the last term, V . n is equivalent to the mean curvature 6. When we add another 

term for diffusion across the interface, we have 

ah - + V, . (Au) + A(V,. n ) ( u .  n) = D,V?A, 
a t  

where D, is the diffusion constant. 

The previous derivation provided by Stone [25] is simple and intuitive, but it leaves the 

nature of the unsteady time derivative ambiguous, as Wong, Rumschitzki, and Maldarelli 

have shown [28]. With the use of differential geometry, they show that it is necessary to 

include an additional term to account for the changing Lagrangian coordinate system, i.e. 

the bubble interface. The corrected equation is 

ah ax - - - .  
at at 

V,A + V, . (Au) + A(V, n)(u .  n) = D,V;A. 
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Finally, we non-dimensionalize this equation to get 

where Pe,  is the surface Peclet number 

ooL Pe, = -. 
PDS 

The surface Peclet number can be thought of as the parameter that controls diffusion. In 

our numerical simulations, we choose large Pe, so that the effects of diffusion are minimal. 



Chapter 3 

Biharmonic Theory and Analytical 

Solutions 

A general class of analytical solutions for a time-evolving bubble in a two-dimensional slow 

viscous flow is presented by Tanveer and Vasconcelos [26]. These "clean" solutions do not 

take into account the variation in surface tension caused by surfactant. Following [26], we 

consider the more basic model presented in section (2.3). We develop the solution method 

they outline and seek to present the theory behind it including complex variables and the 

biharmonic equation, the Goursat representation, complex Poisson's formula, and complete 

elliptical integrals of the first kind. Several solution examples will be given, including a 

collapsing four-fold bubble that develops cusps, and a bubble placed within a pure straining 

flow. Similar computations have been performed in [15, 261. 

3.1 The Biharmonic Equation and Complex Analysis 

The clean flow problem, specified by the Stokes equations (2.4, 2.5) and appropriate bound- 

ary conditions, can be reformulated in terms of a scalar stream function W (This calculation 

has been previously completed by Acheson [2] and Langlois [18]). The benefit of this formu- 

lation is that the information of the vectorized Stokes equations can be concisely represented 

with one scalar equation. This comes as a consequence of the incompressibility condition 
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O . u (2.5) ,  and restriction to two dimensions. Since V . u = 0, then u is solenoidal [17] and 

3 W 3 u = V x W .  (3.1)  

Because u is two-dimensional, 

where k is the unit normal pointing out of the plane. By substituting W into the Stokes 

equation, we see that for creeping flows the stream function satisfies the biharmonic equa- 

tion: 

V2(V x W k )  = V p  

V x V2(V x  W k )  = V x O p  

V 2 ( 0  x  V x W k )  = O  

v4w = 0. 

In the case at hand the curl operator may be taken into the quantity on the left hand side, 

but this is not a general identity. There is a complex variable theory for the biharmonic 

equation that can be exploited to derive analytical solutions [23, 261 or numerical methods 

[15]. We outline this theory here. 

It follows from (3.3) that V2W is harmonic; that is, it satisfies Laplace's equation: 

We introduce vorticity, defined 

w = V x u  

= V x V x W k  

= v x  - uy 

= wk.  
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We see that this function is the component of vorticity pointing out of the plane (the only 

component of vorticity in two-dimensional flow). When we apply the Laplacian operator 

(V2) to  the definition of W (3.2) we find 

Hence, it follows from 3.4 that w is a harmonic function: 

Now, consider pressure. Applying the divergence operator to  the Stokes equation (2.4) we 

find 

v .  (Vp) = v .  (v2u) 
v2p = v2(v . U) 

v2p = 0, 

where the last step is accomplished with the incompressibility condition (2.5). Hence, p is 

a harmonic function as well. With further calculations, we can show that  w and p are the 

components of a complex analytic function. 

From the definition of w (3.6), observe 

By the incompressibility condition (2.5), 

we find that 
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Following a similar calculation, we find 

Comparing (3.9) and (3.10) with Stokes' equation (2.4), we see that w and p satisfy the 

Cauchy-Riemann equations: 

We observe that w and p are conjugate harmonic functions; that is to say they satisfy 

(3.11) and as a result both satisfy Laplace's equation. This is the crucial step since the real 

and imaginary parts of a complex analytic function must be conjugate harmonic functions 

[6]. Thus, we can define an analytic function of z whose real and imaginary parts are w and 

p. We define the function 4(z) to satisfy 

-44'(z) = w + ip, , 

whereas its integral is also analytic, 

Here, a prime indicates a derivative, and g and i j  are the real and imaginary parts of 4(z).  

Implicit in this definition is the representation of the x - y plane as the complex z-plane, 

with 

z = x + iy, and 

u = u + iv. 

Let us additionally define 

G ( x ,  Y)  = xg(z, Y)  + Y ~ X ,  Y)  + W. 
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Applying the Laplacian operator, 

and hence G is harmonic. We set G as the real part of complex analytic function X, 

The imaginary part could be determined by the Cauchy-Riemann equations but is not 

of immediate consequence here. Rearranging (3. Is) ,  we have 

where we have made use of the identity xg + yij = -Re[ z# ( z ) ] ,  and a bar (Z)  indicates a 

complex conjugate. We have now expressed the stream function W in terms of the analytic 

functions 4 and X. (3.17) is known as Goursat's formula. 

We can find expression for all relevant physical quantities in terms of Goursat functions. 

Recall from the definition of 4 (3.12), 

In a similar way we find velocity, 

i(u + iv) = i(Wy - iWx) 

= W, + iWy 
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where we have defined $(z) = ~ ' ( z ) .  From (2.6) we find stress, 

The analytic functions 4 and $ are known as Goursat functions [6, 181. They are analytic, 

and hence harmonic functions in x and y. We solve for them in the fluid domain by solving 

Laplace's equation. 

3.2 Goursat Function Formulation 

With the preceding biharmonic and complex theory in place, we are equipped to investigate 

analytical solutions to the problem posed in (2.3). For these solutions our physical model 

is simplified by neglecting the influence of gravity and surfactant. We follow the solutions 

presented in [26]. 

The task of solving the governing equations has been reduced to finding the Goursat 

functions, $(z) and $(z). They must be chosen so that the boundary conditions are sat- 

isfied. For this, our original boundary conditions must be recomposed in order to produce 

conditions on the Goursat functions. Consider first the integral of (3.18) as z approaches 

infinity, 

where p ,  and B( t )  are to be determined. By rewriting the far-field condition (2.8) in terms 

of Goursat functions, and using (3.21) and (3.19) we find, 

In this problem, it is convenient to define the unit normal vector on the surface of the 
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bubble, 

if3 n = nl + in2 = - i ( x ,  + iy,) = - iz ,  = -ie , (3.23) 

where the arclength s increases in the clockwise direction and 8 is the angle between the 

positive real axis and the tangent. We note that this is consistent with our geometric 

definition in section (2.2). Implicitly, we have also defined the unit tangent vector as z,. 

Then, the two stress conditions (2.13) can be written as one equation: 

By inserting (3.18), (3.20), and (3.23) we rewrite the stress condition in terms of Goursat 

functions. 

This last step was accomplished with a careful use of the chain rule. Observe that  

a4 a4az --  - -- - - ( z ) z  but as az a s  

When curvature is defined n = t?,, we can write the right hand side of (3.24) as 

Integrating (3.25) with respect to s ,  we have 
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In terms of velocity, this reads 

We apply this stress condition on the bubble interface, which is irregularly shaped. It is 

a very difficult domain for either solving for the Goursat functions or applying an interface 

condition. By introducing a conformal mapping (angle magnitude and orientation remain 

the same [6]), however, we can map the shape of the bubble onto the unit circle. We define 

this as the C-plane and relate it to the a-plane (fluid domain) by the conformal mapping 

h(5, t )  is assumed analytic and a< # 0 in JCI < 1 for at  least some period of time. It maps the 

interior of the unit circle in the C-domain to the exterior of the bubble in the fluid domain. 

The C = 0 point corresponds to a = oo in the fluid domain. 

The advantage of using the Goursat formulation becomes clear here. Whereas the bi- 

harmonic equation is not preserved under conformal mappings, Laplace's equation is [18, 61. 

It is by virtue of the fact that  the problem is posed in terms of Goursat functions that we 

are able to map the solution from the unit circle to the fluid domain. Once a solution is 

obtained on the unit circle (independent of time), the evolving bubble is characterized by 

a ( t )  and h(<, t ) .  

Continuing with the kinematic condition (2.10), we write it as one complex equation 

using u  . n = unl  + vnz = Re((u + iv)n) 

zt - ( u .  n)n = 0 

u +  iv 
2 - 1 r n ( ? )  ia, = O  

which holds on the unit circle (I<[ = 1). Another useful identity, 

can be verified with Z, = 1/a,. Combining the stress condition (3.28) and (3.31) with the 
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kinematic condition (3.30), the following holds on ICJ = 1 

where 

and the right hand side of (3.32) is defined r(C, t )  for convenience. 

The analyticity of (3.32) depends on the analyticity of @(C,  t). As defined, @ is analytic 

in 5 1, except at the origin (corresponding to the far-field boundary condition). From 

(3.21) and (3.29), we see that it is a simple pole: 

Fortunately the simple poles in the numerator and denominator cancel out, so that the 

quantity in the square brackets (3.32) has a removable singularity. Clearly, r(C, t )  must also 

be analytic here. It follows that r(C, t )  is a harmonic function. Since r(C, t )  is specified on 

the boundary, we can solve for r(C, t) in ICI < 1 as the solution to a well-posed Dirichlet 

problem: 

Poisson's formula provides the solution when r(C, t )  is real, but it can be extended to  complex 

analytic functions as well. For our problem, the given boundary data is real but there is 

implicitly an imaginary part of the boundary data determined by the Cauchy-Riemann 

equations. Suppose r is the real part of a complex function R(C, t )  = r + if .  The imaginary 

part, f ,  is then determined by the Cauchy-Riemann equations. 

Since the imaginary part of R is thus constrained, we must specify only the real data 

on the boundary to  obtain the analytic function R (providing both would likely contradict 

the Cauchy-Riemann equations). On the other hand, with the given data we could obtain 

a strictly real solution, but we want a complex solution in order to specify the complex 

analytic function @. Carrier [6] provides the complex analogue of Poisson's formula. For 
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ICI < 1, 

= iC + I (< ,  t ) ,  

where C = ?(C = 0) and may be determined later. By analytic continuation of (3.32), we 

obtain an expression for a([, t)  in ICJ < 1: 

It may seem strange to construct m(C,t) in this way, but it is sufficient as long as it 

satisfies the boundary conditions. By taking the limit as C 4 0 in (3.34) and matching 

singular terms we find, 

where the dot denotes time derivative. We also seek an expression for $, our other Goursat 

function, in ICI < 1. For convenience, define 

Examining (3.22) and (3.29) we note that Q(C, t )  is analytic everywhere in ICI 5 1, 

except for a simple pole at C = 0. Using (3.31) in the stress boundary condition (3.27) and 

taking the complex conjugate, we obtain 

where we use the fact that (=  I/[ on = 1. As with (3.34), 

ICI = 1 and becomes valid in 5 1 by analytic continuation 

this holds on the boundary 

We eliminate m(c,t) from 
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this equation using (3.34), and simplify to obtain 

where we have made use of the fact that on = 1, 

Much of the information in the original boundary value problem is concentrated in (3.36) .  

In the next section, it is coupled the assumption that the bubble has a polynomial repre- 

sentation to generate a set of ordinary differential equations describing the motion of the 

bubble. 

3.3 Polynomial Analytical Solutions 

The constraint that (3.36) is analytic is imposed to derive evolution equations for the param- 

eters characterizing the conformal mapping (3.29). In other words, the mapping function 

z(C, t )  is determined by (3.36). To obtain a general class of solutions, we assume that the 

function h(<, t )  (3.29) is a polynomial of degree N: 

The problem is now to find a set of evolution equations for the coefficients a and b j .  

This is made possible with a procedure of matching singular terms in (3.36). First multiply 

(3.36) by z< to  obtain 

2 . ~ ~ 9  = z( {<- '[I(<,  t )  + iC]zC  + 3 )  + Z {zCt - < I < q  - [zC + CzSS 

Using the far-field condition on G (3.22) and (3.29) we see that 

. ]  [ I ( < ,  t )  + i C ] )  . (3.39) 

as < -+ 0 the singular 
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behavior of the left-hand side of (3.39) is 

To find the singular terms on the right-hand side of (3.39), consider the Taylor series 

expansion of I (C, t )  : 

where the coefficients I. and jj, using (3.33), are 

dv, k21. 

We define 10 = I. + iC for simplicity, and [ = ei" on the unit circle in the c-plane so 

that it is parameterized in v. It is now possible to expand the right-hand side of (3.39) as 

a polynomial in C and match with the singular terms on the left-hand side (3.40). This is 

a tedious procedure, the details of which can be consulted in [26]. The resulting system is 

conveniently written by defining the quantities ck, (as in [23]) 
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The ODEs then take the form 

We note that the area enclosed by the bubble (the image of the unit circle) is given by 

A = 7 r q .  This set of ODEs forms a general class of analytical solutions to the clean-flow 

problem posed in (2).  We must specify far-field flow (parameters cro, Po) and the initial 

bubble shape (a, bj) to find a particular solution. These ODEs can be solved approximately 

by standard numerical methods. We investigate a solution below. 

3.3.1 Collapsing Bubbles in a Quiescent Flow 

One of the solutions obtained by the Tanveer and Vasconcelos [26] is that of a contract- 

inglexpanding bubble in a quiescent, or undisturbed, flow. Physically, one could think of 

this as blowing/sucking air into/from the bubble. This corresponds to setting the coeffi- 

cients of the external flow to zero, a 0  = Po = wo = 0 (see (2.9)). The far-field behavior 

is then entirely governed by the contraction rate m, which we take to be a constant for 

simplicity. The coefficients bj are taken to be real and a is real and negative. In addition, 

we choose bj = 0 for j < N so that 

With this construction, N = 1 corresponds to an ellipse and N > 1 corresponds to N + 1 

fold symmetry. In this case, the set of ODEs (3.44, 3.45) reduces to  one evolution equation 

given by 

while the area condition, given by (3.44) after integration, is 

A(t )  = n[a2 - ~ b k ]  = [A(O) + mt] , 

where the constant of integration, A(O), is the initial bubble area. 
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As in [15], I. can be expressed as 

where p = a/NbN, and K is the complete elliptic integral of the first kind defined (see 

Abramowitz and Stegun [I]) by 

It is helpful to  express the evolution equation (3.47) as an ODE in one variable; we 

recompose it in p. Then we must express the other quantities in terms of p. Dividing (3.48) 

by a2 we find 

Then the evolution equation appears, 

after some simplification and collection of terms. The ODE for p specifies the evolution of 

a symmetric collapsing bubble in slow viscous flow. 

One exact solution appears in figure (3.1). We integrate (3.52) with built-in MATLAB 

solver ODE45 setting tolerance levels (RelTol) to lo-''. Note the formation of cusps as the 

bubble collapses. 

In theory, granted that the bubble has a non-zero surface tension (a), the solution exists 
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Figure 3.1: A collapsing 4-fold symmetric bubble with initial parameters a(0)  = 0.9, bN(0)  = 
0.1, initial area A ( 0 )  = 0 . 7 8 ~ ,  and contraction rate m = -27r. It evolves until t = 0.368. 

Figure 3.2: n* approaching infinity as t approaches t = 0.39 
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until all the air is removed from the bubble [26], at t = 0.39. It is a t  this time that curvature 

is infinite and a true cusp forms. According to Kropinski [15j, we can compute the maximum 

curvature on the interface from 

Nevertheless, it is difficult to compute until all the air is removed since the magnitude of 

curvature becomes unmanageable for integration. The maximum curvatures for the compu- 

tations in figure 3.1 are shown in figure 3.2. 

This difficulty seems to be related to the computation of the complete elliptic integral of 

the second kind (3.49). As maximum curvature increases, p approaches the value I+, and 

the argument of K approaches the value I-, where K blows up. If we attempt to compute 

beyond this blow-up time, we find non-physical solutions where the interface crosses itself 

at the near-cusps. 

In what sense are these solutions exact? We have avoided calling them "exact solutions," 

preferring "analytical solutions," because they have been computed numerically. Neverthe- 

less, they are a vast improvement upon a fully numerical calculation involving spatial as well 

as time integration. They are a class of solutions reduce to ODES, granted the assumption 

of polynomial initial bubble shapes, until the ordinary differential equations are integrated 

in time. They are primarily analytical solutions which are reliable for comparison with fully 

numerical solutions. 

3.3.2 A Non-collapsing Bubble in Pure Straining Flow 

For analytical solutions, changes in the problem dynamics, such as the type of far-field flow 

or the initial bubble shape, are not trivial. Rather than merely changing the values of a 

couple parameters it is often the case that the evolution equations must be derived afresh 

from (3.44, 3.45). Below, we discuss the derivation of evolution equations for a bubble 

placed in a pure straining flow following [26] with several corrections. 

Pure straining flow is given by setting the far-field parameters (2.9) cro = Q and Po = 

wo = 0. Consequently, the far-field velocity is 
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where C is the capillary number 

The appearance of the capillary number in the far-field flow is determined by the non- 

dimensionalization of u, (2 .9 ) .  Physically, pure straining flow is similar to  a flow driven by 

Taylor's four-roller mill [24, 271, in which a bubble placed in the center will stretch along 

the horizontal axis and compress along the vertical axis (see figure ( 3 . 3 ) ) .  

Figure 3.3: Taylor's four-roller mill. 

We consider elliptical bubbles. This corresponds to  N = 1 in (3.46):  

z(G t )  = a ( t ) / <  + b( t )< .  (3.56)  

The coefficients a and b  are assumed real. The analysis provided in 1261 indicates that for 

later times, the bubble 

that the evolution of a 

will maintain a profile of this form. From the ODES (3 .45) ,  we find 

bubble in pure straining flow is given by 
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We assume that the bubble area remains constant so that (3.44) provides the area condition, 

Here, R is the radius of the initial bubble, which we assume is a circle. In general we choose 

R = 1, but leave it here for completeness. To compute Io,  we set N = 1 in (3.49), 

- - 1 1  4~ 
;;i;;ip+lK [(l + p)2] 

It is convenient to define the parameter p = b/a. From the area condition it is possible 

to express a and b in terms of p. Observe, 

so that 

R2 
a2 = - 

1 - p2 

b = pa. 

Dividing (3.57) by the product ab, we have 

We may calculate the terms on the left hand side by appealing 

the definition of p: 

(3.61) 

to the area condition and 
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We can make these substitutions to obtain an evolution ODE in p: 

Tanveer and Vasconcelos [26] report that steady-state solutions only exist for capillary 

numbers below a certain critical value; 0 < C < CCrit = 0.6097. In figure (3.4) we present a 

steady-state solution obtained for capillary number C = 0.5. The capillary number captures 

the speed of the far-field flow, and can be intuitively associated with the strain rate Q. 

For contrast we also present an unsteady solution with C = 0.7. This corresponds 

to an increase in the strain rate. Stretching along the horizontal axis continues without 

approaching a steady-state. Integration beyond the final time t = 12 failed, however, as the 

elliptic integral blows up (similarly to the previous example). This time may represent the 

point a t  which a bubble bursts. Such a conjecture seems to  be supported by Buckmaster 

and Flaherty [4] who argue that certain parameter values for which steady-state solutions 

do not exist correspond to  bubble bursting. 
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Figure 3.4: On the top, a circular bubble with initial parameters a ( 0 )  = 1, b(0) = 0 ,  capillary 
number C = 0.5, and area A = T placed in a pure straining flow approaches steady-state. 
On the bottom, C = 0.7; an unsteady solution. The bubble evolves until t = 12. 



Chapter 4 

Surfactant and Analytical Solutions 

As discussed in section (2.4), the inclusion of surfactant has the effect of introducing a 

variable surface tension into the boundary conditions on the fluid-bubble interface. In this 

cha,pter we investigate analytical solutions to bubbles with surfactant. The analysis followed 

here has been outlined by Siege1 [23]. Like the clean-flow (no surfactant) solutions in chapter 

(3), these solutions neglect the effects of gravity resulting in a zero Bond number. 

4.1 Modified Analytical Solutions 

Much of the analysis employed in finding clean-flow solutions carries over here. Solving the 

Stokes equations in two-dimensions is equivalent to solving the scalar biharmonic equation 

(3.3) by introducing a stream function (3.2). According to the Goursat representation for 

biharmonic functions, the stream function can be expressed in terms of complex analytic 

functions (3.17). All relevant physical quantities can likewise be expressed in terms of the 

analytic functions (3.18, 3.19, 3.20). We find the analytic functions by imposing boundary 

conditions on them. The far-field conditions are given in (3.21, 3.22). 

The interface condition, however, is modified by the spatially varying surface tension as 

a result of the presence of surfactant. We follow this step carefully since it is here that these 

solutions differ from the clean-flow solutions. From (2.14), we have 

Recalling (3.25) and the definitions of the unit normal (3.23) and curvature (3.26) we can 
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rewrite this condition in terms of the Goursat functions. We follow [23] in doing so. 

Combining the two terms involving u as above consolidates the influence of surface tension 

in one term. By tracking this term, we find that the original analytical solution is relatively 

unchanged. Indeed, surface tension influences only one term in the solution and we may 

retain much of the analysis. To see this, integrate both sides by s to find 

In terms of velocity, the interface condition is 

Combining the stress interface condition with the kinematic condition (3.32), the resulting 

condition is 

At this stage we must appeal to Poisson's formula, as discussed in section (3.2). The right 

hand side of (4.5) provides the boundary data for Poisson's formula. Extended into the unit 

circle of the <-domain, we now have 

where 

In computing solutions, we make almost exclusive use of the first term in a Taylor expansion 

of I((, t) .  This is incidental t o  the examples studied here, and not to  any truncation of terms. 
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Similar to (3.42), this term is 

Compare I(<, t )  to (3.33) and observe that the only difference with the clean flow problem is 

the addition of a variable u(v, t )  (The constant sigma was removed by non-dimensionalizing). 

This is the only point at which surfactant has an effect on analytical solutions. The system 

of ordinary differential equations (3.44, 3.45) remains unchanged in the surfactant case. 

Only computations of I (< ,  t )  need to  be modified. 

4.2 Surfactant Transport in Complex Variables 

As the interface boundary condition is affected by surface tension, so also does surface 

tension depend on the non-uniform distribution of surfactant concentration. Surfactant 

concentration is transported along the fluid-bubble interface according to the surfactant 

transport equation in (2.26). Here we rewrite the transport equation in terms of complex 

variables consistent with our analytical solutions. 

The spatial variable is no longer arclength (s) but v, the parameter that describes 

movement along the unit circle in the <-plane defined in (3.42). Spatial derivatives are 

equated by the relation 

This can be thought of as the chain rule where Izvl is likened to  the change in arclength 

with respect to  v. The unit tangent and normal vectors are given by 

which is consistent with our previous definition in terms of 6' (3.23). 

The first term of (2.26), the partial time-derivative of surfactant concentration, is un- 

changed. 
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The second term: 

The last step is accomplished with the identity zuEu = 12, 1 2 .  
The third term: 

where, 

In the fourth term, the surface divergence of the unit normal vector appears. It can be 

related to curvature (3.26) by 

where we have also made use of the definition of the unit normal vector (3.23). Curvature 
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can in term be expressed in terms of complex variables. From the definition of curvature 

given in [13], 

The fourth term: 

The fifth term: 

1 1 a 
-V:A P ~ s  

= -s- . (sg~)  
Pe, as 

The complete transport equation for A is 

At each time step, the velocity on the boundary (u) must be computed. Using (4.4) to 
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eliminate @(<, t)  from (4.6) we obtain an expression for velocity (see [23]), 

where PV denotes Cauchy principal value integral. In [15], Kropinski shows that such an 

integral can be solved using the Hilbert transform. The new expression for u is 

where the 3-1 is the Hilbert transform [19], which can be computed in Fourier space by 

The function sgn(n) denotes the sign function. 

4.3 Computed Solutions 

Computing solutions to a time-evolving surfactant-laden bubble requires solving the sur- 

factant transport equation (4.20) coupled with the ODES characterizing evolution of the 

bubble interface (3.44, 3.45). The influence of surfactant on the evolution of a bubble is 

concentrated in computing I. (4.8). 

A pseudo-spectral method is employed to compute surfactant transport. Simply stated, 

the spatial derivatives are computed using Fast Fourier Transforms (FFTs), leaving ODES 

in time which may be computed using some other method (e.g. Runge-Kutta). By contrast 

a (fully) spectral method computes even the time-derivatives in Fourier space, and thus 

evolves Fourier coefficients (A) rather than the function itself (A) .  

Pseudo-spectral methods are a natural choice for this problem. First, by representing 

the surfactant distribution in Fourier space, computing spatial derivatives is reduced to 

multiplication. These computations are spectrally accurate, meaning convergence is expo- 

nential. They can therefore be used to produce highly accurate computations. Second, 

the periodicity of the bubble interface, and hence the domain of surfactant concentration is 

amenable to FFTs. 

Surfactant concentration is expressed below as a sum of its Fourier coefficients, followed 

by its derivatives. The interface of the bubble is discretized into N marker points, given by 
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vj, where 0 5 j 5 N. Derivatives are given at the marker points. 

Derivatives of z and P may be similarly computed. 

There are limitations to pseudo-spectral methods. First, using multiple forward and 

backward transforms at each time step can become very costly timewise. In this regard, 

spectral methods may be preferable since backward transforms may be eliminated from the 

inner loop. Second, accuracy is lost when a function cannot be easily represented with a 

Fourier series. 

After computing spatial derivatives spectrally, the coupled problem is reduced to a set 

of ODEs. We compute them using a second order Runge-Kutta method (modified Euler) 

151. 2nd order convergence has been verified by numerical experiments. Because of the 

small time-steps required by the stability constraint, truncation errors are sufficiently small. 

A higher order method could be implemented for computing to  the desired accuracy. It 

would have been advantageous to compute the highest derivatives (e.g. the diffusion term) 

implicitly, but lzvl is not known in advance and is computed explicitly. ' 
Solutions to these ODEs are computed in FORTRAN. It is preferable t o  computing in 

MATLAB because of computational speed. Computational time for bubble simulations range 

between 10 mins and 48 hrs. All computations cited were performed on a Compaq Alpha 

ES-40. 

Mesh adaption is employed. When the surfactant concentration becomes under-resolved, 

the number of marker points is doubled and the time step is divided by 4 according to the 

'lz,l is constant and may be known in advance, however, when marker points are equally spaced along 
the interface [13]. It is also possible to compute lzvl explicitly and still use an implicit method [7]. 
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stability constraint: 

The resolution is determined inadequate when the magnitude of any Fourier coefficient in 

the upper or lower quarters of the Fourier spectrum exceeds 10-12. When the number 

of marker points doubles, the Fourier spectrum is padded with zeros. When the inverse 

FFT is applied, the new grid points are assigned values automatically (according to Fourier 

interpolation). 

Since no surfactant is added to or leaves the interface of the bubble, total surfactant 

should be conserved for all time. Total surfactant [23] may be calculated by 

This is a helpful test of computational accuracy. Throughout a bubble simulation in FOR- 

TRAN, total surfactant only changed a fraction of a percent. The code was also tested by 

setting p = 0 (surfactant has no influence on bubble evolution; see equation (2.15)) and 

reproducing the clean-flow solutions. 

Plots of surfactant concentration, bubble profile, and the Fourier spectrum of A are 

output and we present the results of several simulations below. 

4.3.1 Collapsing Bubbles 

We return to our experiments with collapsing bubbles, introduced in section (3.3.1), in 

order to compare evolving bubbles with surfactant to those without. Collapsing bubbles 

are not the easiest examples with which to begin. Several experiments were performed on 

simpler stationary ellipses with non-uniform surfactant distributions. One distribution used, 

that of a Gaussian having only one concentrated area of non-uniformity, should have made 

the effects of surfactant obvious. Unfortunately, it proved difficult to resolve the Gaussian 

adequately with a limited number of marker points. More readily resolved patterns were 

experimented with as well, but unfortunately they were too un-featured to produce any 

noticeable changes in the evolution of a bubble. This was compounded by the lack of 

exterior fluid velocity. 

The profile of a collapsing bubble, however, is noticeably modified by the presence of 
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surfactant. We set the surface Peclet number Pe, = 1000 in order to  suppress diffusion 

for all simulations with the exception of the second simulation. (For small values of Pe,, 

features in the surfactant profile can be difficult to detect.) While analyzing the results, it 

became apparent that all of these simulations either break symmetry constraints on A or 

produce non-physical solutions in some other way. Nevertheless, they are more interesting 

than correct solutions because they illustrate why certain solutions do not work. 

Figure 4.1: Simulation 1: Evolution of surfactant concentration on a collapsing four-fold 
symmetric bubble. The topmost profile is at t = 0.28. 

Simulation 1 

Figure (4.1) displays the evolution of the surfactant profile for a simple initial distribution. 

The initial distribution is the lowest profile in figure and is given by the function 
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On the right side of the bubble sits the bulk of surfactant and on the left side it is spread 

thinly. We set ,B = 0.5, the other parameters as in figure (3.1), and evolve until t = 0.28. 

Surfactant concentration is plotted against v = 0 to 27r, which increases in the clockwise 

direction (see figure (2.1) for orientation). 

The progression of surfactant profiles indicates that the concentration of surfactant in- 

creases everywhere along the interface. As the bubble contracts, the length of the interface 

decreases. Because surfactant is conserved on the bubble, there is more surfactant per unit 

of interface. The other prominent feature is that the surfactant is drawn out in four equally 

spaced spikes. The contraction of the bubble is a mechanism for convecting surfactant to 

the four corners, as cusps form. According to the linear equation of state (2.15), the surface 

tension is lowest at these local maxima. 

Figure (4.2) displays the corresponding bubble profile, and that of a bubble without 

surfactant evolved to the same time. The profiles become more frequent on the left when 

the mesh is adapted and the time step decreases. The differences are subtle, but differences in 

curvature along the inner bubble are noticeable. Using the formula for maximum curvature 

(3.53) we find that for the surfactant-laden bubble, n* = 38.7937 whereas for the clean 

bubble, n* = 19.1912. The development of a cusp is therefore accelerated by the presence 

of surfactant. 

Figure 4.2: Collapsing four-fold symmetric bubbles. On the left, a surfactant laden bubble 
with ,B = 0.5 (simulation 1). On the right, a clean bubble. The inner profiles are at t = 0.28. 
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We also expect to see a difference between the left and right sides because of the uneven 

surfactant distribution, but instead they look very similar. It may be the case that a 

simple two-parameter (a and b) polynomial representation of a bubble cannot account for 

the differences in surfactant distribution on the left and right sides. In other words, two 

parameters are not be enough to capture the detail introduced by a general surfactant 

distribution. It seems the bubble is required to maintain four-fold symmetry and thus 

should not respond to differences in surfactant from one quadrant to the next. 

Simulation 2 

With this in mind, the choice of A. in the second simulation is made to cause the distribution 

of surfactant in each of the four quadrants to conspire. If A. is four-fold symmetric, hopefully 

the effects of surfactant will be evident in each of the four quadrants. Figure (4.3) displays 

the evolution of a four-fold symmetric distribution of surfactant given by the function 

Figure 4.3: Simulation 2: Evolution of surfactant concentration. The topmost profile is at 
t = 0.28. 

The crests of A. do not coincide with the four corners of the bubble. This was done to 

maximize the gradient of surfactant, and hence the Marangoni forces (see equation (2.14)), 
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where cusps form. In retrospect, however, it is the concentration itself and not the gradient 

that influences the bubble evolution through I,. The parameters are the same as for the 

first collapsing bubble simulation in figures (4.1, 4.2) with the exception of Pe, = 100 and 

the final profile is at t = 0.28. 

We see that surfactant concentration maintains four-fold rotational symmetry through- 

out the duration of the simulation, but reflective symmetry is lost. For this reason, the 

accuracy of this solution is also in doubt. Siege1 [23] imposes a two-fold symmetry con- 

straint when studying elliptical ( N  = 1) bubbles, which seems to suggest that four-fold 

rotational and reflective symmetry is required when N = 3. Further investigation is re- 

quired to understand the precise nature of symmetry restrictions on A. 

The maximum curvature on the inner bubble is n* = 38.162, which is slightly less than 

the maximum curvature in the first simulation. Comparing surfactant in the two simulations, 

we see that the surfactant concentration is greater on three of the four spikes in the first 

simulation. This has the effect of creating a lower surface tension, which explains why the 

maximum curvature is higher. In fact, the surfactant concentration is so high on the right 

spike that surface tension is negative at this point. 

Figure 4.4: Close up comparison from left to right: A clean bubble, simulation 1, and 
simulation 2. The innermost profiles are at t = 0.28. 

A close up plot of the innermost bubble profile appears in figure (4.4), compared with 

a clean bubble and simulation 1. Increased curvature can be observed on bubbles with 

surfactant. Another notable feature is the advancement of the inner profile. On the bubbles 
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with surfactant, the profile is less advanced where the cusp forms. 

Simulation 3 

Neither of the previous simulations test the limits of computability, but the third simulation 

is directed at computing a collapsing surfactant-laden bubble as far as possible. The same 

parameters are chosen as in the previous simulations, Pe, = 1000, and the idealistic final 

time is set to 0.356. This is the time to which a collapsing bubble without surfactant is 

computed in [15], and if successful, would have made an interesting case for comparison 2 .  

The choice of A. is a simple variation on those previously chosen: 

The simulation ran for approximately 48 hours and then ceased due to numerical overflow, 

computing to t = 0.339. A ceiling of allowable marker points was set at  32768. When this 

number of marker points failed to accurately resolve surfactant concentration, the num- 

ber of marker points could not be increased and the higher frequency Fourier modes grew 

unbounded. Fortunately, the data from the simulation was preserved until shortly before 

overflow. The evolution of surfactant concentration appears in figure (4.5). 

Because A. does not share the periodicity of the four-fold bubble, four interesting non- 

uniform spikes emerge. The length of the simulation causes the surfactant concentration to 

exceed 2.5; significantly more than the concentration levels in the previous simulations. The 

space between plots becomes less and less as the marker points and time steps are modified 

in mesh adaption. The dynamics at the tops of the spikes requires closer examination and 

the fourth spike is enlarged in figure (4.6). 

From the plot densities, we can see that the spike grows up to a peak near A = 2.7, and 

then shrinks back to A = 2.6 where it begins to split into two lesser peaks. The phenomena 

of retreating spikes was not observed in previous simulations. It is the subject of curiosity, 

requiring some explanation. As noted in simulation 2, for /? = 0.5 the surface tension of 

the bubble becomes negative when A = 2. Negative surface tension is non-physical and 

may have undesirable side-effects. It is likely such effects were not present in simulation 2 

because negative surface tension in a few regions was balanced by the positive surface tension 

everywhere else. Local surface tension has a global influence through through Io. Simulation 

'1t should be noted that [15] does not report reaching a limit at t = 0.356. 
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Figure 4.5: Simulation 3: Evolution of surfactant concentration until t = 0.339. 

Figure 4.6: Magnification of the fourth spike in figure (4.5) 
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Figure 4.7: Simulation 3: A bubble collapses until t = 0.339. 

Figure 4.8: Close up comparison: a clean bubble, and simulation 3 (4.7) 
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3,  however, provides a sufficient amount of time for the effects of negative surface tension 

to compound and conspire. It seems that the retreating spike is caused by negative surface 

tension. Examining the transport equation (4.20), we see that surface tension influences 

surfactant transport through P(v,  t ) .  

The retreating spike may also indicate a weakness in the linear equation of state chosen 

(2.15). Siegel [23] uses this equation of state only for small values, which reduces the risk 

of getting negative surface tension. Alternatively, more complicated equations of state may 

be employed; e.g. quadratic or cubic functions for surface tension. 

The bubble profiles (figure (4.7)), on the other hand, do not indicate any outward retreat, 

as with surfactant. They continue collapsing steadily and do not double back, even though 

the influence of negative surface tension is evident. Nevertheless, cusp formation is advanced 

when compared with a clean bubble a t  the same time (figure (4.8)). The maximum curvature 

on the inner bubble in simulation 3 is n* = 3.0601 x lo4 compared to r;* = 9.8337 x lo2 on 

a clean bubble at the same time; a remarkable increase. 

4.3.2 Pure Straining Flow 

The experiments with pure straining flow are a rather anticlimactic finale to  this study. The 

computational duration of these simulations approaching steady-state made it difficult to 

explore computational limitations. Nonetheless, they seem to  be the most reliable in terms 

of avoiding non-physical solutions and respecting symmetry constraints. One experiment is 

reported here. 

The initial distribution of surfactant, Ao, is chosen to be uniformly equal to 1. We set 

the Capillary number (modestly) t o  C = 0.2, the parameters a(0) = 1, b(0) = 1 (initial 

bubble a unit circle), and evolve until t = 2. The evolution of surfactant concentration 

appears in (4.9). Surfactant is transported along the major axis of the bubble and collects 

at the ends. The average surfactant concentration around the bubble interface remains 1 

for all time, since the bubble area does not change. 

By performing an analytical steady-state calculation, Siegel [23] reports that eventually 

regions of the bubble will be swept clean of surfactant, leaving "surfactant caps" on the 

ends. As the capillary number increases, the bald region of the bubble grows until a critical 

value where a steady-state may no longer be possible. Siegel's results indicate that one 

would need to compute to  t = 64 to  see a surfactant cap with these parameters. It was 

the hope of the present author to  compute surfactant caps in a time-dependent simulation, 
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Figure 4.9: Pure Strain: Evolution of surfactant concentration. Final profile a t  t = 2. 

Figure 4.10: Pure Strain: Evolution of an initially circular bubble. Final profile a t  t = 2. 



CHAPTER 4. SURFACTANT AND ANALYTICAL SOLUTIONS 

but unfortunately it proved too expensive. It took approximately 48 hours to compute to 

t = 6.8, where the simulation became very slow due to mesh refinement. An alternative 

computational approach is required to compute surfactant caps. 

The evolution of the bubble (4.10) indicates that it, unlike the surfactant concentration, 

is rapidly approaching a steady-state. We also find that its behavior in the presence of 

surfactant is comparable to that in previous simulations. The maximum curvature is n* = 

1.7495, compared to rc* = 1.6837 on a clean bubble evolved to  the same time. In addition, 

the bubble is more deformed in the presence of surfactant. The right end of the bubble 

extends to x = 1.205, compared to x = 1.19 on a clean bubble. 

Cusp formation is possible in a pure straining flow. Using an expression for far-field flow 

with cubic terms, Siege1 1231 obtains a steady-state result with cusps. Cusp formation does 

not, however, appear to be possible with the current far-field flow. 



Chapter 5 

Conclusion. 

We have investigated computational solutions to evolving surfactant-laden bubbles in slow 

viscous flow. In particular, we computed solutions to a collapsing four-fold symmetric 

bubble and a bubble placed within a pure straining flow. The features examined were max- 

imum curvature and deformation of the bubble, and patterns in the evolution of surfactant 

concentration. The simulations consistently demonstrated that the presence of surfactant 

facilitates the formation of cusps by reducing surface tension. 

Analytical solutions of the type produced by Tanveer and Vasconcelos [26] are delicate 

and restricted to certain symmetries. The symmetry of the collapsing four-fold bubble was 

forced, though the surfactant distribution may not have shared its symmetry. This problem 

comes as a consequence of assuming a truncated polynomial form for bubble shapes. This 

form is not capable of capturing the effects of irregular patterns of surface tension. Careful 

attention must be paid to the symmetry restrictions of an analytical solution in order to 

obtain an accurate result when surfactant is involved. 

When computing surfactant, there is a danger of computing non-physical solutions. In 

the third simulation of a collapsing bubble, the surface tension became negative, causing the 

surfactant concentration to fall mysteriously. This problem is identified with an inadequate 

equation of state; smaller p values should be chosen, or perhaps a non-linear equation of 

state. 

One of the drawbacks with using a pseud~spectral method became patently obvious 

while attempting to approach a steady-state by computing time-dependent solutions of a 

bubble placed in pure straining flow. The number of marker points needed to accurately 

resolve surfactant concentration at later times make such a calculation impractical. Better 
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suited computational methods may enable further time-dependent investigations of surfac- 

tant caps and cusp formation. 

The methods employed here are nevertheless effective in computing bubbles to moderate 

times with simple initial surfactant distributions (Ao). Highly accurate solutions are readily 

obtained when A. = 1 (so that symmetry is preserved) and 0 is small (so that the equation 

of state leads to physical solutions). 

The next step in this work is to incorporate surfactant into a general purpose solver, such 

as that described in [15]. The analytical solutions developed here would be useful as cases 

for comparison. In addition, experimentation with more advanced far-field flows involving 

non-linear terms might prove helpful in developing other solutions with cusplike features. 

Investigating alternative equations of state may develop the physical accuracy of the model. 

Finally, the symmetry constraints on surfactant concentration (A) should be investigated if 

computing with non-uniform initial distributions. 
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