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Abstract 

Observations of midlatitude vortices on the tropopause indicate that cyclones typically ex- 

hibit more intense pressure, wind and temperature perturbations than anticyclones. The 

primitive equations for rotating stratified flow have previously been simplified in various 

ways to create models which capture vortex asymmetries. Quasigeostrophic models, which 

represent the leading order theory in the asymptotic limit of zero Rossby number, have no 

vortex asymmetry. However, next-order corrections to quasigeostrophic theory have exhib- 

ited the proper asymmetry (more intense cyclones than anticyclones) when the tropopause 

is modeled as a flat, rigid surface. On the other hand, a study of the shallow-water primitive 

equations found anticyclones to be slightly more intense than cyclones; a part of this we 

think may be due to effects of the free-surface boundary condition. 

This study attempts to reconcile these seemingly opposing results by implementing a 

free-surface quasigeostrophic model with next-order corrections, where the rigidity of the 

surface boundary condition is parameterized. The background to quasigeostrophy with next- 

order corrections and the shallow-water equations is presented. Next, free-surface boundary 

conditions are considered and the equations for free-surface quasigeostrophy are derived. 

Then numerical results are presented, including: convergence in the completely rigid limit 

of the free-surface, a characterization of cyclone and anticyclone dynamics, and an analysis of 

cyclone-anticyclone asymmetry for various surface rigidities using initially balanced, freely- 

decaying turbulence. Results indicate that the shallow-water asymmetry is not obtained 

even for a flexible surface, but a weakening of the cyclone-anticyclone asymmetry is observed 

as the surface becomes more flexible. 
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Chapter 1 

Introduction 

1.1 Rotating, stratified fluid dynamics 

Problems in atmospheric fluid dynamics typically involve scales where the effects of both 

rotation and stratification are important. The Earth's rotation creates the Coriolis force, 

which is significant when the period of rotation is comparable to the time taken to cover a 

length L at a speed U.' Therefore when 

period - 
- 

27r/w 27rU 
E = - 

time to cover L at speed U L/U wL (1.1) 

is less than one ( E  5 1) rotation is important. If strong enough, rotation causes the flow to 

be vertically rigid, which is an effect known as "Taylor curtains" [5]. Stratification effects 

on the other hand become important when the change in potential energy due to density 

variation is greater than the associated kinetic energy (y 5 1) 

where A p  is the change in density over height H and po is the average density. In equilib- 

rium, stratification creates stacked horizontal layers which make the fluid "stably stratified" 

because it resists vertical motion. 

'Centrifugal forces are also created but are negligible at length (L=1000km) and velocity scales 
( ~ = l ~ m s - ' )  of interest, see Section 2.1.1 for more on the Coriolis force and Section 2.1.2 for typical scales. 
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1.2 Cyclone-anticyclone asymmetry on the tropopause 

This study is concerned with vortex asymmetries on synoptic scales2 at midlatitudes ( a  z 

45"), a regime where both rotation and stratification dominate the flow, and nonlinear effects 

are subtle. Vortices are persistent eddies with closed streamlines around a centre. For the 

purposes of this work, anticyclones (cyclones) are vortices resulting from high (low) pressure 

and temperature perturbations which generally rotate clockwise (counter-clockwise) in the 

northern hemisphere [l8]. 

Vortices are thought to organize asymmetrically from small-scale turbulence on the 

"tropopause"[16], which is the boundary between the well mixed troposphere3 (linear strat- 

ification, weak potential vorticity4) below and the stratosphere (strong stratification, strong 

potential vorticity) above. This boundary is typically identified as either the "thermal" or 

"dynamical" tropopause, depending on the variable of interest. The "thermal tropopause" 

is typically defined as the lowest height where the vertical temperature gradient is greater 

than -2 ~ k m - '  while the "dynamical tropopause" is defined at a specific value of potential 

vorticity (Q). The concept of the dynamical tropopause is advantageous because it is a ma- 

terial surface since Q is conserved along particle paths in inviscid, incompressible flows[20], 

which means 

Observations of vortices on the tropopause at midlatitudes indicate that cyclonic distur- 

bances exhibit more intense pressure, wind and temperature perturbations compared to 

anticyclones [l2], [8]. The reasons for the preferred asymmetries are not completely under- 

stood. This thesis work contributes to the understanding of vortex asymmetry by modeling 

the tropopause as a free-surface of constant potential vorticity. 

1.3 Summary of previous studies 

The physics which give rise to cyclone-anticyclone asymmetry have been studied numeri- 

cally using various models for simplified versions of the primitive equations of atmospheric 

'weather phenomena that are 250km to 2000km across[6]. 
3 ~ h e  troposphere is the lowest layer of the atmosphere, ranging from the ground to a height H xl0km. 
4Potential vorticity is an exact conserved quantity in atmospheric fluid flow that  is dependent on wind 

and temperature gradients, see Section 2.2 for its definition. 
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fluid flow5. For example, Cushman-Roisin and Tang[4] studied the emergence of eddies 

using a generalized geostrophic model, and Yavneh et a1. [21] analyzed decaying geostrophic 

turbulence with a balance equation model. Both of these studies, as well as a study in the 

shallow-water regime by Polvani et a1.[14] found larger and stronger anticyclones compared 

to cyclones, an asymmetry which is opposite to that observed on the tropopause. In con- 

trast, a quasigeostrophic6 model with next-order corrections (and therefore finite Rossby 

number) by Hakim et a1. [8] has exhibited the correct asymmetry. 

The Hakim et al. study, called sQG+' which stands for surface quasigeostrophy (with 

next-order corrections), used the Polvani shallow-water study as a benchmark by using 

equivalent random initial conditions. However the shallow-water equations and sQG+' are 

different approximations to the primitive equations. For example, the shallow-water sys- 

tem is comprised of a homogeneous fluid (constant density) with a kinematic free-surface 

representing the tropopause is effectively piecewise constant stratification (density po be- 

low the surface and zero above). On the other hand, SQG+' includes continuous (linear) 

stratification but assumes the height of the surface which represents the tropopause to be 

fixed in time. The results of [8] and [14] leave one wondering what the effect is of adding a 

free-surface to sQG+l? Will the preferred asymmetry weaken and eventually reverse as the 

surface becomes more flexible? The purpose of this work is to present the theory and results 

of "free-surface quasigeostrophy" (fsQG+') simulations, with the hopes of reconciling the 

apparently divergent results in [14] and [8]. 

The f s ~ G + l  model is part of a suite of tropopause models being developed by David 

Muraki with collaborators Greg Hakim and Chris Snyder. The evolution of these models 

is illustrated in Figure 1.1. Starting on the left, sQG is the original (leading-order) sur- 

face quasigeostrophy model developed by Held et a1.[9] which constructed, based on theory 

developed by Blumen [2], a half space of uniform potential vorticity bounded by a sur- 

face. Juckes[lO] argued that such a system is relevant to tropopause dynamics because the 

tropopause may be approximated as a discontinuity in two constant regions of potential 

vorticity. Typical potential vorticity values are nearly six times larger in the lower strato- 

sphere than the troposphere[l8]. The oval at the top left corner of Figure 1.1, QG+', is 

 he full primitive equations are the Euler equations with rotation and an energy equation, detailed in 
Section 2.1. 

6~uasigeostrophic models, described in Section 2.2, represent the primitive atmospheric fluid equations 
in the asymptotic limit where Rossby number is zero. 
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Figure 1.1: Flow chart of the sQG+' research plan 

the method developed by Muraki et a1.[13] for next-order asymptotic corrections to quasi- 

geostrophy (QG), summarized in Section 2.2.2. The sQG+' model in Hakim et a1.[8] is a 

QG+' version of sQG, with a fixed surface and decay below (representing the troposphere). 

The next-order corrections were responsible for cyclone-anticyclone asymmetry. Cyclones 

were more intense and had a preferred length scale while anticyclones did not. Single el- 

liptical anticyclones tended to axisymmetrize while cyclones kept their ellipticity. Also, the 

fixed SQG+' surface experienced mean warming as the initially random surface conditions 

organized into vortices. 

Next in Figure 1.1, HsQG+' is a finite depth version of sQG+', and 2sQG+', which 

stands for two surface quasigeostrophy, incorporates a ground surface. The current model, 

fsQG+', developed from sQG+', is the most like shallow-water (with infinite depth), with 

a fluid below the free-surface and a void, or passive fluid, above. The ultimate goal in the 

research plan is to develop "interface quasigeostrophy" (iQG+') which will be a true model 

of the tropopause with a free-interface separating two fluids that represent the troposphere 

and the stratosphere. 

1.4 Overview of this work 

This work aims to reconcile the differing conclusions about cyclone-anticyclone asymmetry 

between sQG+l and the shallow-water equations by allowing the sQG+l surface to be flex- 

ible. The flexibility of this surface is controlled by a parameter ( a  > 0). Until now the 

phenomena associated with fsQG+l were unknown. This work implements a well-behaved 

numerical scheme for time derivative surface boundary conditions and characterizes the 
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dynamics of fsQG+l. 

The remainder of this work is comprised of five chapters. Chapter 2 reviews the primi- 

tive equations of atmospheric fluid dynamics, and outlines the theory of the shallow-water 

equations and sQG+', the two main sources for this work. The assumptions and their 

ramifications are discussed for each of these systems. Chapter 3 introduces the theory and 

equations for ~sQG+', with emphasis on the free-surface boundary conditions. The special 

case of time steady axisymmetric flow is solved analytically, and the cyclone-anticyclone 

asymmetry is shown to reverse for a very flexible surface (small a )  in Figure 3.4. 

Chapter 4 is devoted to numerical methods and issues. In the first section, spectral 

methods for inverting Laplace equations are discussed, and spectral convergence is shown. 

Section 4.2 is concerned with the time evolution of a nonlinear advection equation, where 

large gradients that grow at  small scales must be annihilated by properly tuned hyperdif- 

fusion. The rest of Chapter 4 deals with the creation of random initial conditions and the 

statistical methods used for a vortex census based on freely-decaying turbulence simulations. 

Chapter 5 characterizes the organization of cyclones and anticyclones in fsQG+l and 

discusses the results of the vortex census. Mean surface warming is also considered as a 

function of surface flexibility (a) .  The ensemble statistics indicate that as a decreases, the 

cyclone-anticyclone asymmetry is weakened, but not reversed. At a = 1, Figure 5.5(f) shows 

that there is almost no asymmetry between cyclone and anticyclone radii, but cyclones are 

still on average slightly more intense (Figures 5.5(b) and 5.5(d)). 

Finally, the project is summarized and an outline for further research is given in Chapter 

6. 



Chapter 2 

Background: quasigeostrophy and 

shallow-wat er 

2.1 Primitive equations and approximations 

The primitive equations of atmospheric fluid motion are analogous to the Euler equations 

with rotation and stratification built-in. Instead of pressure, an equivalent (density ab- 

sorbed) variable called geopotentiall, denoted by q5T, is used. Also, density p is replaced by 

potential temperature2 OT, which is inversely proportional to density in an ideal gas. Even 

though temperature decreases approximately linearly with height z in the troposphere, po- 

tential temperature increases linearly. However, at a fixed height potential temperature is a 

measure of temperature so cold spots (noT < 0) are associated with heavy air, and a warm 

spots are associated with light air. 

The following primitive equations are for an f-plane geophysical fluid system that is 

'Geopotential is a measure of the altitude of a surface of equal atmospheric pressure a t  a given time[6]. 
' 1 9 ~  is defined as the temperature that a parcel of air would assume if it were brought adiabatically to  

the surface pressure (1 atm) [6]. 
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adiabatic, inviscid, and ~ o u s s i n e s ~ ~  [13]: 

where the advective (or material) derivative is defined as 

The constant f is the Coriolis frequency, which is defined in the next section on approxi- 

mations, Q0 = 300K is the reference potential temperature, and g is the usual gravitational 

acceleration. The Boussinesq approximation assumes that the relative density variations 

pt(x, y, z, t) are small compared to the mean density po(z) which decreases linearly with 

height. Therefore, the first equation in (2.1) is a Boussinesq conservation of mass statement 

because the relative variations of density in time and space are typically much smaller than 

the relative variations of velocity. The last equation is the adiabatic statement which says 

potential temperature is conserved along particle paths. 

2.1.1 The f -plane approximation and hydrostatic balance 

To understand the f-plane terms in the primitive equations (2.1), consider what happens 

to the total advective derivative when rotation is included [11] : 

where 6 is the angular velocity and the primed coordinates denote the inertial reference 

frame. Remembering that iit is just advection of r', the absolute acceleration becomes 

D'i? - - Dii + 2Sixi i  + S i x S i x r '  D t -  Dt 

inertial relative Coriolis centrifugal 
(2.5) 

3 ~ h e  f-plane approximation is explained in section2.l.l. Adiabatic means dry and without heat loss or 
gain in the system. 
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with the acceleration due to centrifugal force being negligible[5]. Next, create the f-plane 

by approximating the physical domain using Cartesian coordinates as shown in Figure 2.1. 

In the midlatitude region of Figure2.1 (a FZ 45") that is cut out, R from equation (2.5) is 

Figure 2.1: Illustration of the f -plane approximation: a local rectangular coordinate system 
is used to approximate the more correct spherical system. 

the same as f, = w 4 n a  where w is the angular speed of the Earth, which is one rotation 

per day (w FZ 7.3 x l ~ - ~ r a d / s ) .  Thus the Coriolis constant in Equation (2.1) is f FZ 1 0 - ~ s - ~ .  

Another essential approximation is hydrostatic balance, which assumes that the pressure 

is equal to the weight of the air above in a steady (no wind) atmosphere 

In [13], the stratification in the troposphere is approximated as linearly decreasing density 

(p oc const - z) and linearly increasing potential temperature with height. If the term 

in (2.1) is dropped then 

Justification for neglecting is given in the next section. Finally, disturbance geopotential 
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q5 and potential temperature 6' are distinguished from their bulk hydrostatic parts: 

9 T 9 -6' = N 2 z +  -0, T 1  
6'0 e0 2 

q5 = -N2z2+q5, (2.8) 

where N E 1 0 ~ ~ s - l  is the Brunt-Vaisala frequency and superscript T denotes total q5 or 6'. 

2.1.2 Nondimensional primitive equations 

Nondimensionalization proceeds using the typical tropospheric, midlatitude, synoptic scales 

specified in Table 2.1 from [12]. The primitive variables are scaled as 

where the units of q5y are first matched with f u,  then 6' is matched to q5, and N2w is matched 
DO to m. 

Table 2.1: Values for typical dimensional quantities and dimensionless parameters at mid- 

The dimensionless primitive equations (with disturbance 6' and q5) then become 

latitude synoptic scales. 
Dimensional quantities 

L 

U 

f 
N 

H 

Dimensionless parameter 
R 

B 

b 
F 

Value 
lOOOkm 

10ms-' 

~ O - ~ S - ~  

10-~s-l 

lOkm 

Definition 
u 
F 

( )  = (8)' 
NL 
U - 

1-1 
N H  - m 

Value 
0.1 

1 

0.001 
0.1 
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and the dimensionless advective derivative becomes 

where R is the Rossby number and B is the Burger number4, as defined in Table 2.1. 

The Rossby number is proportional to 6 in Equation (1.1) and R << 1 indicates that the 

Coriolis force is dominant in this flow regime. The parameter F is the Froude number which 

is proportional to y in Equation (1.2) and F << 1 indicates that stratification is strong. 

The Burger number is a relative measure of the strength of rotation versus stratification; 

B = 1 means that both are important. Also, since 6' is negligible, the hydrostatic balance 

approximation is justified. The full nondimensional potential temperature and geopotential 

are 

2.2 Quasigeostrophy 

Quasigeostrophy is a flow regime derived from the limit as Rossby number goes to zero 

(R + 0). If one simply sets R = 0 in the nondimensionalized primitive equations (2.10) then 

"geostrophy" is obtained, as illustrated in Figure 2.2. Geostrophic flow is time-independent 

and winds (u and v) flow along contours (isobars) of geopotentialq5, which acts as a stream- 

function. Notice that 0, the projection Earth's rotation vector (w )  in the 2 direction of 

the f=plane, is in the same direction as the flow in the low pressure system, which might 

appear like a source for cyclone-anticyclone asymmetry. However, quasigeostrophy is known 

to exhibit cyclone-anticyclone symmetry [8] so the asymmetry is a next-order phenomenon. 

Quasigeostrophy, developed by Charney in 1948 [3], is like geostrophy but retains time 

dependence via conservation of potential vorticity (Equation (1.3)) which can be derived 

from the primitive equations. Total potential vorticity, defined as 

4Since B FZ 1 in the troposphere, it will be left out of most equations. If this study included a stratosphere 
then B would experience a jump across the tropopause. 
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Figure 2.2: Geostrophic flow is along isobars. (Left) Anticyclonic flow is clockwise in the 
northern hemisphere, (right) cyclonic flow is counterclockwise which is the same as the 
Earth's rotation w.  

is passively advected in the flow. But only the disturbance potential vorticity5 

q -- (v, - uy + 8,) + R [(v, - uY)ez - vZe, + uZeyl, 

is relevant to  the disturbance primitive equations in (2.10) [13]. 

2.2.1 Potential representation of the primitive equations 

An important step in the development of sQGfl is the reformulation of the momentum 

equations in (2.10) into a potential representation, using the Helmholtz decomposition6 [13]: 

5 ~ h e  disturbance potential vorticity is obtained by separating the stratification of oT in 2.13 so that 
Q = l + R q .  

 h he Helmholtz decomposition is also known as the Hodge decomposition. 
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where the potentials a, F, and G are not unique since any harmonic function ( V ~ H  = 0 )  

satisfies 

This "harmonic ambiguity" allows flexibility in choosing boundary conditions for the po- 

tentials F and G.  

Sufficient manipulation of Equation (2.15) through divergence and curl operations give 

the following Poisson equations that potentials must satisfy 

and the continuity equation in (2.10) yields the consistency statement 

F, + G ,  = Rw. 

2.2.2 Next-order corrections to quasigeostrophy 

With the potential formulation of the primitive equations we can write the potentials and 

primitive variables in terms of systematic Rossby number perturbation expansions: 

( x ,  y ,  z ,  t )  = a0 + R a l  + 0 ( R 2 )  

F ( x ,  y , ~ ,  t )  = R F ~  + o ( R ~ )  

G ( x ,  y , ~ ,  t )  = R G ~  + o ( R ~ )  
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where the F  and G  have no leading-order terms to be consistent with (2.18). The primitive 

variables up to order R, except w which is only needed to leading-order, are 

so knowing a0 allows one to find leading-order 0 ,  u ,  and v. Then the leading order primitive 

variables can be substituted into (2.17) to derive Poisson equations for each of the potentials 

at leading and next-order 

where J ( f ,  g)  = f,gy - fyg, is the 2D Jacobian. 

2.2.3 Surface quasigeostrophy (sQGf ') 

In sQGfl the problem of computing a0 is easy because the potential vorticity is assumed 

to be uniformly zero ( q  = 0 ) .  This idealization makes the total potential vorticity piecewise 

constant7 as in [ lo] .  Setting q EE 0 also simplifies the inversion of Equation (2.21) from 

a three-dimensional problem to a two-dimensional problem because a0 becomes harmonic. 

The equations for @ in (2.21) now simplify to 

and fortunately particular solutions to F 1 ,  G 1 ,  and a1 can immediately be specified 

F' = a;@; + E", G  1 = -@:@;+G~, 
1 a' = -@;a; + 6' 
2 

(2.23) 

' Q  = 1 in the tropopause and nothing above. Presumably for iQGtl in Figure 1.1, Q will take a value 
such as 6 in the stratosphere. 
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Figure 2.3: Diagram of sQG+l domain and boundary conditions. The surface is a t  z = 0 ,  
dynamics decay as z + -oo, and the domain is periodic in x and y. 

so that  we only need to solve for the harmonic functions F1, GI,  and 6' on the surface 

to solve for the next-order winds in Equation (2.20).  The derivatives of the potentials are 

found easily using a Fourier representation. Derivatives in the vertical direction, such as 

F,, are also easy to obtain since F is harmonic which means E ( k ,  I ,  t )  = d m ~ ( k ,  I ,  t )  

in the Fourier domain. 

Figure 2.3 shows the boundary conditions that completely specify the system. Potential 

temperature (8,) is specified on the surface ( z  = 0 )  as an  initial Neumann boundary condi- 

tion, which is inverted to obtain the potentials to within an arbitrary constant. The logical 

flow of the solution is illustrated in Figure 2.4. We compute leading and next-order winds 

on the surface8 so that  BS can be updated via advection 

where 

are nonlinear functionals of the surface potential temperature BS. This system is solved 

using spectral methods in space and finite differences in time as described in Chapter 4. 

The findings of the SQG+' study by Hakim et  a1.[8] were outlined in Section 1.3. 

'Although in principle the winds are known throughout the 3D domain. 
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Figure 2.4: Solution flow chart for sQG+'. First specify 9 on the surface and invert to get 
aO. Then compute the leading order winds and next-order potentials from aO. Finally, 
compute nonlinear leading and next-order functionals to update 9 

2.3 The shallow-water equations 

The shallow-water equations are the simplest form of the equations of motion that can be 

used to describe the horizontal structure of the atmosphere[l5]. The main assumption in the 

shallow-water equations is the barotropic approximation which assumes the stratification of 

the fluid is only piecewise-constant instead of continuously stratified as in quasigeostrophy. 

The only effective stratification is the jump across the free-surface. The dimensional shallow- 

water equations in an incompressible rotating fluid are [14]: 

Dh* - 
Dt + h*(u, + v,) = 0, 

where h* is the total depth of the fluid, which acts like pressure. The nondimensional 

shallow-water equations are: 

where R << 1 and B z 1 are the Rossby and Burger numbers as defined in Table 2.1, 

and h is the perturbation height defined by h* = H ( l  + RBP'h). A full derivation of the 
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shallow-water equations can be found in [15]. 

In the shallow-water study [14], various regions of the (R,B) parameter space were in- 

vestigated. A weak bias towards anticyclones was exhibited (Fig. 11) in the most similar 

study (Trial B, with (R,B)=(0.05,1)) to the quasigeostrophic regime. 



Chapter 3 

Free-Surface Quasigeostrophy 

3.1 Free-surface boundary conditions 

In this chapter, the theory of sQGfl is taken one step further to free-surface quasigeostrophy 

(fsQG+l) which allows the surface to be weakly displaced. Two new conditions, reminiscent 

of the shallow-water boundary conditions, are specified at the surface instead of the no 

vertical surface flow (w3 = 0) condition in sQG+'. First, the pressure (c$~) is held fixed 

at zero on the free-surface since in this model there is nothing above the surface1. Second, 

a kinematic free-surface condition is applied for weak (Rossby order) displacement. These 

two conditions combine to make a free-surface parameter S which is the fsQG+' equivalent 

of 9" in sQG+'. 

3.1.1 Constant pressure boundary condition 

Recall how total potential temperature and pressure were defined for the typical synoptic 

scales in Equation (2.12). The introduction of a positive constant a in the total poten- 

tial temperature acts merely as an offset and does not affect stratification. Then under 

hydrostatic balance (gT = @), 

where the disturbance potential temperature is still equal to the gradient of disturbance 

geopotential (9 = 4,). The total pressure is still zero at z = 0 but now the stiffness of 

is no longer geopotential as defined earlier when $T = 0 a t  z = 0. But it still represents a pressure 
like quantity with the correct stratification. 
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the interface is parameterized by the constant a, as illustrated in Figure 3.1. For small 

u the surface is flexible compared to large u because in equilibrium the vertical pressure 

gradient at the surface (4: = -a/R in steady state) is weaker2 for small u. Allowing weak 

-5 1 
-1 0 0 10 20 

Pressure (+') 

Figure 3.1: Total pressure profiles for small and large u. When u is small (left) the hydro- 
static gradient 4: is small just below the surface making it flexible. When u is larger (right) 
4: is larger, making the surface heavier and more rigid. 

displacement of the surface z = Rh(x, y, t ) ,  the following zero surface pressure condition is 

obtained at z = 0 using a Taylor series: 

'Ftemember that 4, = -gp in hydrostatic balance so the value of t - a (where t < 0) is proportional to  
density which means that large a corresponds to  heavy air. 
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3.1.2 Kinematic condition at free-surface 

The second free-surface boundary condition is a kinematic condition found in any derivation 

of a free-surface, see for example [ I ] .  Since ( z  - Rh ( x ,  y, t ) )  I S  = 0 it is clear that 

D 
- ( 2  - R h )  I S  = R (W - ht - uShx - v S h y )  = 0, 
Dt 

where w is the vertical velocity which comes from advecting z using Equation (2.11). This 

motivates the definition of a dynamical surface quantity 

T S 0 ( x ,  y, z = Rh(x ,  y, t ) ,  t )  = h + BS(x, y, z = Rh, t )  + constant (3.4) 

which is the fsQGfl analogue of BS(x, y, z = 0, t )  in sQGfl. Advection of S is 

using Equation (3.3). This expression reduces to zero as follows 

because + w = 0 everywhere from (2.10) and = wS from (3.3) 

3.2 Potential vort icity inversion 

In SQG+ l the problem, illustrated in Figures 2.3 and 2.4, was to invert q -- 0 to obtain the 

potentials given some BS on the surface, and then compute the winds and advect B S .  The 

inversion with BS represented a Laplace problem with Neumann boundary conditions. The 

problem in fsQGfl is to invert potential vorticity subject to the new free-surface conditions 

which result in a Robin boundary condition. 

As with sQGf l ,  the physical variables and potentials are expanded as power series in 

Rossby number to perform the potential vorticity inversion order-by-order. But now the 

new height variable h and B must be expanded also: 
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Expanding S as a Taylor series about z = 0, then substituting the expansions in (3.6) gives 

and the total pressure at the surface (3.2) is 

3.2.1 Lead ing  order invers ion ( fsQG) 

At leading-order the height is proportional to pressure 

because the constant pressure boundary condition (3.2) forces total pressure to be zero. 

Therefore (3.7) gives a Robin boundary condition on a0 if S is specified at the free-surface: 

v2a0 = 0 

= 0) +a; (z = 0) = S (3.10) 

decay (z --+ -oo) , periodicity in (x, y). 

This situation is illustrated in Figure 3.2, and is solved using Fourier Transforms which are 

described in the next section. 

3.2.2 Next-order invers ion ( f sQG+l)  

The essential step in the next-order fsQG+' inversion is defining a convenient condition 

(harmonic ambiguity) on F and G so that they can be uniquely solved. The most convenient 

condition is 

G: - Fi = 0 (3.11) 

which allows one to solve for from (2.23) using the next-order conditions on S and $ T I 3  
from (3.7) and (3.8) respectively 
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Figure 3.2: Diagram of fsQG+' domain and boundary conditions. The surface is at a = Rh, 
dynamics decay as z + -00, and the domain is periodic in x and y. 

Together these conditions form a Robin boundary condition for the Laplace problem of 6'. 
The potentials FI and GI are found using (3.1 1) and (2.18). For full details of the next-order 

fsQG+' inversion, including the application of the harmonic ambiguity and the evaluation 

of wO, please see Appendix A. 

The solution logic for fsQG+' is shown in Figure 3.3 and is analogous to Figure 2.4 for 

s ~ G + l .  The surface dynamical quantity S is updated via advection and the leading and 

Figure 3.3: Solution flow chart for fsQG+l. First specify S on the surface and invert to 
get aO. Then compute the leading order winds and next-order potentials from QO. Finally, 
compute nonlinear leading and next-order functionals to update S 

# -+ + 1 * * 

next-order winds form nonlinear functionals of S when multiplied by the spatial derivatives 

+ & + A 4 + 
I 

uO, vO, 80, ho, wD=o0, Given S NOISl Compute @O + + 



CHAPTER 3. FREE-SURFACE QUASIGEOSTROPHY 22 

where 

are nonlinear functionals of the surface parameter S .  In practice, an initial S is specified, 

the Fourier Transform is used for the inversion of potential vorticity, then S is updated using 

time differencing with the derivative in (3.13). The salient details of these calculations are 

described in Chapter 4. 

3.3 Axisymmet ric Free-Surface Quasigeostrophy 

The first fsQG+l model was implemented in MATLAB to solve problems involving axisym- 

metric S boundary conditions. The case where S is axisymmetric is time-independent, 

which is shown in detail in Appendix B. The time-independence argument relies on the 

linearity (and no dependence in the azimuthal direction) of the inversions. 

The axisymmetric model was useful in three ways. First, as a quick and easy to build 

model, it gave preliminary results which showed that the theory was correct and that devel- 

opment of a time-dependent model would be worthwhile. Second, until the axisymmetric 

model was developed, the harmonic ambiguity (2.16) in the potential representation of the 

primitive equations had not been independently verified. That is, the s ~ G + l  model en- 

forced one condition on F and G but did not show that the condition was not unique. A 

convergence test in the limit 110 -+ 0 (Section 4.1.2) later showed that the time-dependent 

f s ~ G + l  model was equivalent to sQG+l in this limit. Third, the axisymmetric model acted 

as a sanity check to ensure the time-dependent code was working properly. A plot in Sec- 

tion 4.1.1 illustrates the match between the three-dimensional time-dependent code and the 

two-dimensional time-independent code. 

The boundary value problem in (3.10) has the following Hankel Transform3 solution in 

polar coordinates when S is radially symmetric 

3~roperties and numerical implementation details of the Hankel Transform are given in Section 4.1.1. 
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where Jo(.) is the Bessel function of the first kind and zeroth order [17]. The derivation of 

the next-order potentials, winds, and potential temperature is explained in Appendix B. 

The key results of the axisymmetric fsQG+l code are shown in Figure 3.4. Plots of h 

compared with h0 are shown for a Gaussian surface (S = P2) and two a values (0.25 and 

4). The top plots correspond to a positive disturbance, as in a high pressure system, and the 

bottom plots correspond to an equivalent low pressure system. Since cyclone-anticyclone 

asymmetry comes from the next-order corrections [8], the left and right plots in Figure 3.4 

make it clear that the next-order contribution is reversed as a goes from 0.25 (flexible) to 

4 (rigid). This plot indicates that, at  least for a single gaussian shaped vortex, the cyclone- 

anticyclone asymmetry observed in the Hakim et al. study [8] is reversible if the surface is 

made sufficiently flexible. 



CHAPTER 3. FREESURFACE QUASIGEOSTROPHY 
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Figure 3.4: Axisymmetric inversion for positive and negative Gaussian surface values (S = 
f e-"1. Plots show h = h0 + ~ h '  (dotted) and h0 as a function of radius for a=0.25 and 
a=4. For small a (left) the shallow-water asymmetry is shown, for large a (right) the sQG+' 
asymmetry is shown. 



Chapter 4 

Implement at ion of fsQG +1 

The time-dependent fsQG+l model was implemented numerically in Fortran 90. Initial 

conditions (described in Section 4.3) and post-processing plotting routines were performed 

with MATLAB. This chapter describes some of the key issues and numerical techniques 

required to solve the fsQG+l equations. The first section outlines spectral inversion of 

Laplace problems such as in (3.10) and presents plots that show equivalence between the 

axisymmetric solution and the time-dependent solution as well as convergence of sQG+l to 

fsQG+l when a + oo. The second section details how to maintain numerical stability when 

the system contains an intrinsic small-scale energy cascade. The final two sections briefly 

mention how the random initial conditions were created for the freely-decaying turbulence 

simulations, and how the resulting vortex census data was captured. 

4.1 Spectral inversion 

4.1.1 Integral Transforms 

Equation (3.10) is easily solved using the Fourier Transform 1171, 

1 
~ ( k ,  1, t)e'(kx+'y)em' dkdl ~ O ( x , ~ r . r t )  = /""I 7 

m + ;  

where m = d m  for consistency with v2Q0 = 0, and s is the Fourier Transform of S 
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The properties of the Fourier Transform mean that derivatives of a0 are easy to obtain 

In practice, the Discrete Fourier Transform was used to evaluate the above integrals with 

256 x 256 points on the domain x, y E [-77rf 147r/256,77r] and k ,  1 E [-128/7+ 1/7,128/7].l  

In the axisymmetric case, the Laplace equation : ( ~ c P : ) ~  + = 0 has 

as its general solution given the decay condition, where Jo is the Bessel function of the 

first kind and order zero [17]. The function ~ ( m )  is determined using the Robin boundary 

condition involving S and a O .  The Hankel Transform of order zero and its inverse are 

defined for S ( r )  as 
00 00 

~ ( m )  = S ( r )  J o ( m r ) r  dr S ( r )  = 1 ~ ( m )  J o ( m r ) m  d m ,  (4.5) 

so the solution a 0 ( r ,  Z )  is given by 

00 m * a O ( r ,  Z )  = ~ ( m )  JO (mr )emz  d m .  

As with the Fourier Transform derivatives of a0 are easily obtained 
00 m2 

~ ( m )  ~ ~ ( m r ) e ~ '  d m ,  

00 - m2 
~ ( m )  J I  (mr)emZ d m .  

The integrals in (4.6) and (4.7) were summed in MATLAB using Simpson's Rule. The 

Gaussian disturbance ( S  = e-pr2) used in Figure 3.4 is particularly helpful in debugging 

the numerics because the Hankel transform of a Gaussian is well known 

Figure 4.1 shows the match between the Hankel Transform based inversion and the Fourier 

Transform based inversion for a single plateau ( S  = f (1-tanh(r2 - 2 ) / 2 ) )  disturbance. 

' ~ o t e  that it is important to remember to always zero the Nyquist frequency (wavenumber k = T I A X )  
when taking spectral derivatives, and to zero pad the Fourier domain (to twice its original length and width) 
when multiplying terms to ensure aliasing does not occur. 
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Figure 4.1: Sanity check comparison between the time-dependent Fortran code which uses 
the Fourier Transform and the time-independent axisymmetric Matlab code that uses the 
Hankel Transform. In all plots, a = 1 and the free-surface boundary condition is a "plateau" 
S = +(I-tanh(r2 - 2)/2). 



4.1.2 Convergence studies 

To ensure the implementation of fsQG+l was correct, two convergence studies were per- 

formed. The first showed spectral convergence in the difference between sQG+l and fsQG+l 

in the limit u + oo as the number of grid points was increased2. The results of this study 

are shown in Figure 4.2 which shows semi-log plots of the maximum and root mean square 

(RMS) errors between the next-order winds in fsQG+l and SQG+' .~  The RMS error for u1 

Convergence of fsqg" to sqg" 

Figure 4.2: Convergence of an fsQG+l (a  + oo) inversion to an sQG+l inversion as the grid 
is refined. (Left) Convergence of the maximum error, (right) convergence of the RMS error. 

(and vl) is determined using 

The second convergence study showed the fsQG+l inversion (with u = 2) is spectrally accu- 

rate by comparing errors between coarse grid inversions and a fine grid (N=512) inversion. 

 he limit a + cx is realized by setting l/a = 0. 
3Note that these errors get multiplied by R = 0.1 in the next-order corrected winds u = uO + Rul, 

v  = v O + ~ v l .  
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The results of this study are shown in Figure 4.3 as semilog plots of maximum and RMS 

errors. 

10) 

fsqg*' convergence wlth increasing N 

Figure 4.3: Convergence of an fsQG+' (a = 2) inversion as the grid is refined. Errors are 
computed by comparing with the most refined grid (N=512). (Left) Convergence of the 
maximum error, (right) convergence of the RMS error. 

4.2 Time evolution with hyperdiffusion 

In the freely-decaying turbulence simulations used for the vortex census, potential tempera- 

ture 0 is known to cascade down-scale with a ~ Z I - ~ / ~  energy spectrum, where ~ i l  = d m  
is the horizontal wavenumber4 [2]. This down-scale cascade tends towards grid scale spacing 

and must be dissipated to ensure numerical stability. Typically horizontal "hyperdiffusion" 

is added to the time stepping scheme to kill off any high wavenumber components that 

develop. 

Consider the effect of diffusion in the two-dimensional heat equation gt = In 

Fourier space, the equation becomes it + v(k2 + 12)i = 0, which gives exponential decay 

4Wavenumber is the magnitude of the wave vector i and is inversely proportional to wavelength ( $  = 
27rIA).  
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- 
ij(t) = e-v(k2+12)tg(0) that is dependent on wavenumber: higher wavenumber components 

are dissipated faster. Hyperdiffusion (-V8) behaves the same, but because the exponent 

(n=8) is so large, it has almost no effect on low wavenumber components when the diffusion 

constant v is sufficiently small. 

In the main vortex census the diffusion constant was5 

With a 256x256 grid and domain from -77r to 77r, k,,, and l,,, were both 12817. Fig- 

ure 4.4 shows the regions in the Fourier domain that are most affected by the hyperdiffusion. 

An example of the Fourier spectrum of 0 is shown in Figure 4.5, indicating that the hyper- 

Figure 4.4: Fourier space showing regions (shaded and marked with x's) where hyperdiffusion 
acts most to kill off high wavenumbers. 

diffusion (v = lop9) starts to affect the k-5/3 down-scale cascade at about 1 i 1  = 13.3. The 

dashed vertical line on the right shows k,,, = 7r/ Ax, the largest wavenumber that can be 

resolved by the grid. 

The time derivative of S is approximated via advection with added hyperdiffusion: 

 h his is the same amount of hyperdiffusion that was used in [8] and 1141. 



Figure 4.5: Example scatterplot of Fourier spectrum of 8, showing the effect of hyperdif- 
fusion on high wavenumbers (with v = lo-'). The dashed line on the right shows k,,. 
The diagonal line identifies the region of the k-5/3  down-scale cascade in 8. The effect of 
hyperdiffusion is noticeable at Ikl > 10. 

To solve this equation, the integrating factor eu(k2+12)4t is multiplied: 

so that the time stepping scheme updates the variable T+!J = e"(k2+12)4at~ wing a third-order 

Adams-Bashforth method [7] : 

where the time step was At = 0.01. For the first two time steps, forward Euler time stepping 

is used. 

The main census was performed with a = 4 and a + oo (34 freely-decaying turbulence 

simulations each). A mini-census was also performed with v = for a = 10, a = 4 and 

a = 1 (7 turbulence simulations each for a = 10 and a = 4, and 17 simulations for a = 1). 

The mini-census was run as a backup with ample diffusion (v = to ensure stability. 

Although the simulations with v = appear faded (or "washed out"), the a = 1 results 

(Section 5.2) show the most symmetry. 



4.3 Random initial conditions for decaying turbulence 

Decaying turbulence simulations are given random initial surface conditions, which are then 

released to allow coherent structures to develop naturally. The fsQGtl initial conditions 

are identical to those used in [14] and [8]. The desired kinetic energy spectrum is chosen to 

peak at a particular scale ( I &  = d m 2 )  using: 

where M = 25 is a constant and m = d m .  Then the leading-order pressure is con- 

structed using $m21G(k,1)12 = EK(k, l ) ,  

which gives the (yet to be normalized) Fourier spectrum in Figure 4.6. The initial conditions 

Figure 4.6: Fourier spectrum of initial 1&O1 with ko = 7 and M = 25. 

are made random by giving random phase, and then normalizing with respect to RMS 

leading-order winds (a ( ( u O ) ~  + ( v O ) ~ ) / N ~ ) .  

4.4 Capturing vortex census data 

The Hakim et al. [8] sQGt' census algorithm was used, with minor f s ~ G + l  modifications, 

to capture vortex amplitude and radius data from the ensemble of freely-decaying turbulence 



CHAPTER 4. IMPLEMENTATION OF FSQGtl 33 

simulations. The first stage of the algorithm searches the surface S values for cyclones and 

anticyclones. Candidates must have four properties to be considered vortices: 

1. All points in the vortex must be greater (in magnitude) than some threshold above 

or below the mean surface value (ISij - SI > Smin) This criterion filters vortices that 

are too weak. 

2. The diameter of the region where ISij - 31 > Smin (measured along 8 radial arms from 

the central maximum) must be greater than some minimum threshold. This criterion 

filters vortices that are too small. 

3. The center of mass of the region ISij - SI > Smin must be within a certain distance of 

the maximum S value in the region. This criterion filters colliding or merging vortices. 

4. The aspect ratio between the major and minor axes must be less than some threshold 

to filter out filaments. 

Vortex radii are computed by taking a box around a vortex maximum with dimensions 

proportional to the minimum of the 8 radial arms. The center of mass of this box is then 

computed using 

Finally, the radius is taken as the square root of the minimum eigenvalue (minor axis) of 

the covariance matrix M = xxT/(C Sij), where X is a 2 x N deviation matrix for each of 

the N points in the box: 

The results of the census algorithm are shown for a single simulation in Figure 4.7 with cap- 

tured vortices highlighted (dashed circles which show the captured radius for each vortex). 

Rejected vortices are encircled by faint dashed lines. 

Normalization is vital when comparing simulations with different values of a. In the 

sQGtl model, leading-order winds are a consistent scaling measure because the root mean 

square of u0 and v0 scale with RMS(BO). This relation is derived using the leading-order 

definitions (uO = -a:, v0 = a!, and B0 = a:), the fact that a0 is harmonic, and Parseval's 
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Figure 4.7: Example of vortices captured at t=500 in freely-decaying turbulence run ( a  = 4 
and diffusion constant = 1 x 

equality [19] : 

However, S does not scale with leading-order winds: as a changes so does RMS(S). As a 

result census amplitude data increases as a decreases unless the data is re-normalized6. No 

obvious scaling for S as a function of a was found so the relation was determined statistically 

by computing RMS(S) for a set of initial conditions over a ranging from [0 .5 ,~ ) .  The 

'~ormalizing by wind is still useful for comparing surface warming versus a, which is analyzed in Sec- 
tion 5.3 
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statistical mean of RMS(S) for each a is plotted in Figure 4.8, from which it is clear that 

RMS(S) scales as 1 + 0.82/a. The standard deviations of RMS(S) a t  each value of a was 

negligible. 

Rmormalization curve for RMS(S) 

2 8 r - " ' " " I  

Figure 4.8: Re-normalization curve for S. The initial conditions are normalized using 
~ ( u O ) ~  + (VO)~ which is a 8 normalization and works only for l/a = 0. For finite a census 
amplitudes, S data is re-normalized with this curve. 



Chapter 5 

Numerical results 

5.1 Characterisation of vortex structure 

In this section the structure and dynamics of cyclones and anticyclones are analyzed. Visual 

observations of single cyclonic and anticyclonic disturbances are made in Section 5.1.1. In 

Section 5.1.2 the statistics of the vortex census are presented. The census data is then 

plotted in Section 5.2 which discusses cyclone-anticyclone asymmetry in fsQG+'. 

5.1.1 Single vortex dynamics 

Figure 5.1 illustrates the structure of single cyclones and anticyclones for different a values 

(including a + oo which is sQG+'). Notice how anticyclones retain their tails while cyclones 

do not because cyclones are cold anomalies and cold air sinks, breaking the tail. Also, 

the tendency for anticyclones to  axisymmetrize is stronger than for cyclones, which prefer 

larger aspect ratios even as a becomes small. Note that when anticyclones axisymmetrize, 

their rate of rotation increases compared to  cyclones (although this effect is not visible in 

Figure 5.1). In the shallow-water regime, cyclones tend to  axisymmetrize, which indicates 

that fsQG+' does not tend exactly to  the shallow-water equations in the limit of small a. 

Even though both the ~SQG+' and sQG+' vortices are normalized so that the maximum 

winds are the same, the ~SQG+' vortices rotate slower than the SQG+' vortices because in 

fsQG+' part of the kinetic energy is transferred to  potential energy. In fsQG+' the surface 

is allowed to  move, and raising or lowering it requires energy because of buoyancy. The 

situation is illustrated in Figure 5.2, where potential temperature disturbances are added 
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(a) a --, oo: cyclone 

(c) a = 2: cyclone 

s 

(e) a = 112: cyclone 

(b) a -+ oo: anticyclone 

(d) a = 2: anticyclone 

8 

(f) a = 112: anticyclone 

Figure 5.1: Plots of next-order corrected S at t = 20 for single cyclones (left) and anticy- 
clones (right). (Top) sQG+' (a -+ oo) at 518 of a rotation. (Middle) fsQGfl (a = 2) at 
318 rotation. (Bottom) fsQG+l (a  = 112) at 114 rotation. Color axis scaling for all plots is 
from -2 (blue) to 2 (red). 
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to the base hydrostatic system. The movement of the fsQG+l surface has the effect of 

FAST 43 SLOW 

Figure 5.2: Illustration of potential temperature disturbances on the surface for sQG (left) 
and fsQG (right). The horizontal lines are lines of constant total potential temperature oT. 
For both anticyclones (top) and cyclones (bottom), fsQG surface motion weakens the 8, 
gradient, so fsQG vortices rotate slower than sQG vortices. 

lengthening both cyclonic and anticyclonic disturbances so the 8, gradients become less 

severe. This lengthening is increased as a becomes smaller so the a = 0.5 vortices at the 

bottom of Figure 5.1 rotate even slower than a = 2 vortices. Also recall that 8; is equal to 

the leading-order vorticity ui - v:, so a smaller 8: gradient means slower rotation. 

5.1.2 Vortex census statistics 

The ensemble (using v = included 34 runs to t = 500 with a = 4 and a -+ w. 

Also, a mini-ensemble (using v = lo-') was run, which included 7 runs each with a = 10 

and a = 4, and 17 runs with a = 1. Simulation time per run was approximately 10 hours 

using 4 parallel 833 MHz processors on a DEC Alpha Cluster. The majority of that time 

was spent in the potential vorticity inversion subroutine which calls 16 256 x 256 Discrete 

Fourier Transforms. Examples of typical freely-decaying turbulence simulations for various 

a values are shown in Figure 5.3. Typical initial conditions are shown in Figure 5.3(a), but 

note that RMS(S) in the initial conditions of each of the three runs is different (see the end 

of Section 4.4 for details on normalization). Figure 5.3(d) was run with a = 1 and diffusion 



CHAPTER 5. NUMERICAL RESULTS 

(a) Initial S 

(c) fsQGfl (a = 4, t = 500, v = lo-') 

(b) sQG+' (t = 500, u = lo-') 

(d) fs&G+l (o = 1, t = 500, u = lo-') 

Figure 5.3: Plots of S in freely-decaying turbulence runs. (a) Initially random S. (b) At 
t = 500, the sQG+' system evolves into coherent structures with surface warming. Cyclones 
are more intense than anticyclones and do not tend to axisymmetrize. (c) The asymmetry 
in the fsQG+' solution with a = 4 is similar to (b), while (d) the a = 1 solution (with more 
diffusion) shows more diffuse cyclones and more significant anticyclones. 
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constant v = lo-' while the other two simulations used v = lo-' 

The census statistics for both ensembles are shown in Tables 5.1 (mean data) and 5.2 

(standard deviations). Note that the amplitudes of S first have the mean subtracted (S-s), 

then are re-normalized using the equation 

from Section 4.4. From the mean data, increasing v from lo-' to lo-' has a slight sym- 

Table 5.1: Census MEAN vortex radius, amplitude and number of vortices (u + rn repre- 
sents sQG+l). All ratios are cyclone/anticyclone. Data for v = lo-': 17 runs at a = 1, 7 
runs at a = 4 and a = 10, for v = lo-': 34 runs each. 

metrizing effect. With v = lo-', cyclones are slightly weaker in amplitude and anticyclones 

are slightly larger in amplitude than for v = lo-'. Also, the mean radii for both cyclones 

Measure 

radius 

amplitude 

number of 
vortices 

and anticyclones are increased with v = lo-'. The v = lo-' and a = 4 ensemble exhibits 

slightly less asymmetry in terms of the ratio of the mean amplitude between cyclones and 

Vortex 

cyclone 
anticyclone 

ratio 
cyclone 

anticyclone 
ratio 

cyclone 
anticyclone 

ratio 

anticyclones than the a + co ensemble. The most notable symmetrization though is in the 

v = lo-s v = lo-' 
u = 1  I a = 4  1 a = 1 0  1 a = 4  1 a + c o  

v = lo-' ensemble where amplitude, radii, and number of vortices tend to symmetrize as 

a gets smaller. The important information in the standard deviation data (Table 5.2) is 

6.57 
6.07 
1.08 
3.00 
1.67 
1.80 
14.65 
16.71 
0.88 

that for both v = lo-' and v = 10-', the ratio of cyclone to anticyclone radii standard 

deviations increases as u becomes smaller1. This means that the tendency found by Hakim 

5.83 
5.33 
1.09 
3.09 
1.67 
1.85 
11.86 
15.43 
0.77 

et al. in [8] for cyclones to prefer a distinct length scale (anticyclones did not) is weakened 

as a becomes smaller. 

 h he radius ratio in the u = 1 column is only 0.81 because 17 runs with u = 1 were made instead of 7 as 
with u = 4 and a = 10 so the standard deviations for the u = 1 data contain different sample size error. 

5.72 
4.92 
1.16 
3.05 
1.58 
1.93 
10.00 
15.57 
0.64 

5.41 
4.69 
1.15 
3.35 
1.46 
2.29 
12.54 
19.08 
0.66 

4.85 
4.32 
1.12 
3.55 
1.51 
2.35 
10.35 
15.62 
0.66 
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Table 5.2: Census STANDARD DEVIATION of vortex radius, amplitude and number of 
vortices (a + co represents sQG+l). All ratios are cyclone/anticyclone. Data for v = 

17 runs 

radius 

amplitude 

vortices 

ns at a = 4 and a = 10, for v = lo-': 34 runs each. 

ratio 
cyclone 0.81 0.90 1.16 0.98 0.91 

anticyclone 0.75 0.79 0.75 0.81 0.87 
ratio 1.08 1.14 1.55 1.21 1.05 

cyclone 1.90 1.35 1.41 1.71 1.81 
anticyclone 3.06 2.99 2.23 3.72 2.92 

ratio 0.62 0.45 0.63 0.46 0.62 

5.2 Cyclone-ant icyclone asymmetry 

Plots of single vortices in Section 5.1.1 showed that cyclones do not tend to axisymmetrize 

as much as single anticyclones, even for a < 1. On the other hand, mean and standard 

deviation data from Section 5.1.2 indicated symmetry trends as a becomes small. The 

census data is plotted in amplitude and radius (mean) histograms, as well as radius versus 

amplitude joint probability distributions in Figures 5.4 and 5.5. In the histograms the 

vertical gray lines indicate one standard deviation, and in the probability distributions the 

contours are interpolated constant-density contours (.01,.02,.03, etc.). The plots indicate 

a slight weakening in the asymmetry at a = 4, and Figures 5.5(b) and 5.5(f) show near 

cyclone-anticyclone symmetry for a = 1 and v = lo-'. No simulations were attempted 

with even smaller a (as in Figure 3.4) for stability reasons because of how S was normalized 

by RMS leading-order wind. Simulations with a = 1 and v = 10W9 were attempted but only 

for a few initial conditions did the simulation maintain stability. 

5.3 Surface warming 

Mean surface warming (& > 0) is an effect observed in sQG+l that is believed to be caused 

by warm (cold) air rising (sinking) 2 .  Part of the goal of this study is determine the effect 

' ~ c t u a l l ~  in [8] mean surface cooling was observed because the surface in that study was below the domain 
(on the ground). 
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(a) a -+ w :  radius vs. amplitude 

(c) a + w:  amplitude 

(e)  a -i w:  radius 

(b) a = 4: radius vs. amplitude 

t7-4 

-11 
6 4 - 2 0 2 4  

S AmpHbd. 

(d) a = 4: amplitude 

0-4 

( f )  a = 4: radius 

Figure 5.4: Vortex census data at t = 500 with v = lo-' for SQG+' a + oo (left) and fsQG+l 
a = 4 (right) showing (a), (b) vortex radius as a function of S - 3, (c), (d) ensemble-mean 
vortex amplitude, and (e), (f) radius. The census data is from 34 runs with a + oo and 34 
runs with a = 4. In each plot, cyclones are on the left, anticyclones on the right. 
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(a) u = 10: radius vs. amplitude 

(c) a = 10: amplitude 

(e) u = 10: radius 

(b) o = 1: radius vs. amplitude 

(d) u = 1: amplitude 

( f )  a = 1: radius 

Figure 5.5: Vortex census data at t = 500 with v = lo-* for ~SQG+' a = 10 (left) and a = 1 
(right) showing (a), (b) vortex radius as a function of S - 3, (c), (d) ensemble-mean vortex 
amplitude, and (e), (f) radius. The census data from 7 runs with a = 10 and 17 runs with 
a = 1. In each plot, cyclones are on the left, anticyclones on the right. 
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of finite a on mean surface warming. As Figure 5.6 shows, the effect of decreasing a from 

4 to 1 has little effect on the mean h and 8'; apparently the surface height drifts upwards 

regardless of the stiffness (except if a + m of course), possibly because there is no pressure 

from above the surface. The mean plots appear as though the surface is actually exhibiting 

mean cooling because 8S decreases with time. But recall that OS is only the disturbance 

potential temperature and S is the total potential temperature on the surface ( S  = eTIS) 

and 3 is increasing with time. The variance in surface height is quite sensitive to its stiffness 

even though the mean is not. Notice that the variance of 8' is approximately the same for 

both a = 4 and a = 1 (because both are normalized by leading-order RMS winds, see the 

end of Section 4.4 for reasoning), but the variance of height h decreases significantly for 

a = 4. A flexible surface certainly absorbs some of the energy in a given S field, so clearly 

for the same S, the variance in 8' would be less for a flexible surface than a rigid surface. 

This assertion agrees with the observation in Section 5.1.1 that small a vortices rotate slower 

than large a vortices because the variance of h absorbs part of the the variance of 8, which 

is equal to the RMS leading-order winds. 
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Figure 5.6: Plot of mean and variance of S, h, and 13' versus time for a = 1 and a = 4 with 
the same initial conditions and v = All plots are normalized with leading-order RMS 
winds so RMS S is different for the left and right plots, which is why the axes are scaled 
differently. 



Chapter 6 

Summary and conclusions 

This work attempts to reconcile the seemingly contradictory results between a study of 

cyclone-anticyclone asymmetry in the shallow-water regime [14] and a next-order corrected 

quasigeostrophic study [8]. This work also serves as the next step in the sQG+' research 

plan illustrated in Figure 1.1. 

The first two chapters introduce rotating, stratified fluid dynamics and the problem of 

asymmetric vortex organization on the tropopause. Chapter 1 gives a brief summary of some 

of the literature available on the subject. Chapter 2 introduces the primitive equations of 

atmospheric motion and outlines quasigeostrophic theory, including next-order corrections. 

The shallow-water equations are also listed for completeness. 

Chapter 3 introduces the theory of the next step in surface quasigeostrophy, allowing the 

previously fixed surface to become flexible. The inclusion of the stratification constant (a) 

in (3.1) parameterizes the surface rigidity and transforms the sQGtl equations into free- 

surface fsQG+l equations. The importance of the boundary conditions cannot be overstated, 

they are vital to the behavior of the entire fsQGtl system. In fsQGtl, the conserved 

quantity S is equal to the total potential temperature at the surface (as in sQGtl) except 

now the surface is at a nonzero height z = Rh(x,  y,  t ) .  The result is that S becomes a Robin 

boundary condition in the Laplace problem for a0 in (3.10). The next-order potentials a', 
F ~ ,  and G1 are computed from a0 and the next-order boundary conditions (3.8) and (3.11). 

Chapter 3 ends with plots of axisymmetric (Gaussian) cyclone and anticyclonic disturbances 

for small and large a values. For a = 0.25, next-order corrections positively affect the 

disturbance height (h) for both cyclones and anticyclones, making a given perturbation 

S more intense when anticyclonic (like shallow-water). On the other hand with a = 4 
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(which is closer to sQG+') a given disturbance in S is negatively affected by the next-order 

corrections, making cyclones more intense than anticyclones. The quadratic nature of the 

boundary value for the harmonic part of a' (in (B.9) of Appendix B) indicates that the 

sign of the next-order correction is dependent on a and not the sign of aO. However, the 

physical interpretation of the boundary value is not understood. 

Chapter 4 describes some of the salient implementation details, most of which are familiar 

from sQG1, except for the last part on scaling. The robin boundary condition on the surface 

of fsQGf' presents a scaling problem because the root mean square of the leading order 

winds (uO and vO) does not normalize S when a is finite. Leading-order winds only normalize 

the a; part of S = $a0 + a;, which means the :a0 term grows as a becomes small. The 

next-order potentials also grow, increasing the effects of nonlinearity and destabilizing the 

decaying turbulence simulations. Runs with a = 4 and hyperdiffusion constant v = lo-' 

were rarely affected by nonlinear instabilities, however a = 1 and v = lo-' runs often 

became unstable. Instead of increasing the hyperdiffusion (to v = as done in the 

mini-ensemble), a better approach is likely to decrease the Rossby number R (from 0.1 to 

0.05) which controls the amount on nonlinearity in the primitive equations (2.10). 

The main results of the study are presented in Chapter 5. Given the same leading-order 

winds, vortices in fsQGfl (with finite a )  rotate slower than sQGf' vortices because the free- 

surface allows for height changes that decrease 0, which corresponds to uy - v, (horizontal 

vorticity) at leading-order. The vortex census data exhibits a weakening in the asymmetry 

between cyclones and anticyclones as a becomes smaller. Table 5.1 shows that the ratio 

of mean amplitudes between cyclones and anticyclones tends towards unity as a becomes 

smaller for both v = lo-' and v = lo-'. Table 5.2 shows the ratio of standard deviations 

between cyclones and anticyclones tends towards as a becomes smaller, meaning that the 

tendency for cyclones to prefer a distinct length scale (from sQGf l )  is weakened in fsQGf '. 
However, the tendencies listed above are modest, for example from a = oo to a = 4 (with 

v = lo-') the ratio of cyclone to anticyclone mean amplitudes only decreases from 2.35 

to 2.29. For a more illuminating test of weakened vortex asymmetry, it seems that a 5 1 

with v = lo-' is necessary. Chapter 5 also addresses the issue of mean surface warming, 

which is an indicator of vortex asymmetry because under mean warming cyclones of equal 

magnitude to anticyclones deviate more from the mean. The hypothesis in [8] is that top 

surface warming is due to warm air rising and cold air sinking. In fsQG+l, finite a leads 

to a different effect, as increases in the mean of S = h + 0" are absorbed by the mean of h 
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and not @ (see Figure 5.6). The physical reason for the mean of h to absorb the mean of 

S is not understood. On the other hand, the variance of S, h, and 8' behave as expected, 

smaller a implies larger variance in h relative to d 3 ,  which just means that the surface is 

indeed more flexible. 

The purpose of this thesis work was to advance the sQGfl model developed in [8] one 

step closer to a true tropopause model. Specifically, we asked what effect a free-surface would 

have on sQGf l? would cyclone-anticyclone asymmetry in fsQGfl depend on the value of 

the surface rigidity a? we found vortex asymmetry to be weakened as we expected, but 

many of the details of the fsQG+l dynamics are not yet understood. The time-independent 

axisymmetric solution showed near cyclone-anticyclone symmetry (in the height field h) by 

a = 1 and reversal of the asymmetry at a = 0.25, while the decaying turbulence vortex 

census showed only modest weakening of the asymmetry at a = 1. Why does a single 

axisymmetric vortex behave so much differently than a set of freely-evolving cyclones and 

anticyclones? Perhaps the structure of cyclones favors them over equally strong anticy- 

clones. In certain f s ~ G + '  turbulence simulations, strong oval shaped cyclones behaved like 

propellers, dispersing the outer regions of the more axisymmetric anticyclones. So perhaps 

the predominance of cyclones in freely-decaying turbulence has as much to do with preferred 

shape of cyclones (in Figure 5.1) as with the sign of the next-order corrections. 

Another question is what causes the asymmetry of single vortices to reverse as the 

surface becomes more flexible? Polvani [14] argued that anticyclones are stronger than 

cyclones in shallow-water theory because as anticyclones raise the surface they increase 

the "radius of deformation". The radius of deformation defines the length scale of the 

problem and decreases the Rossby number, making rotation stronger for anticyclones than 

cyclones. Perhaps we have observed this effect for single axisymmetric vortices, but the 

above "propeller effect" combined with continuous stratification (warm air rising, cold air 

sinking) dominate the formation of coherent structures in turbulence simulations. Further 

unresolved questions include the mean behavior of S over time in the turbulence simulations. 

The dependence on a of the mean of S over time is unknown because we normalized the 

initial conditions by root mean square winds. Also, the reason why h absorbed nearly all of 

the mean of S is not known. 

The developmental stage of the f s ~ G + '  is now complete. A larger vortex sample will help 

characterize the dynamics of the model, but the most important future work is to understand 

the physical consequences of the free-surface. In the sQGfl model frontogenesis, which is the 
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formation or intensification of fronts between regions of different temperature, was identified 

as a likely source of vortex asymmetry. As small scales in potential temperature develop 

on the surface, warm regions tend to expand and cold regions contract. Also, in sQGfl 

anticyclones tended to merge producing larger scales, while cyclones tended not to merge. 

The goal for future f s Q ~ + l  work will be to understand how a free-surface affects these 

convergence and divergence effects. 



Appendix A 

Details of next-order fsQG +1 

inversion 

At order Rossby number the surface boundary conditions from (3.7) and (3.2) are 

which contain 5 unknowns (h1,@1,G1,F1,41) because 4' = a0 and h0 = @'/a. But c+hl can 

be eliminated using the fact that 4; = 0': 

The harmonic ambiguity of Equation (2.15) allows one degree of freedom, and choosing 

on the surface makes a convenient boundary condition. Equation (A.4) also implies that 

4' is a function of 6' and a0 only because both F1 and are harmonic so G; - l?; = 

0 everywhere in the domain in Equation (A.3). Thus, inserting (A.3) into (A.2) and 
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combining with (A.l) to eliminate h1 gives a Laplace problem for 6': 

~ 2 6 '  = 0 

-a1 (z = 0) + (5; (z = 0) = f (a0, a;, { :- 
decay(~  + -m),  periodicity in (x, y) 

where 

evaluated at the surface. So 6' is given by 

where m = d m .  
Finding w0 at the surface is possible if Equation (3.3), the kinematic free surface 

boundary condition, is combined with the 8 primitive equation (2.10). In (3.3) the advective 

part is zero at leading-order because at leading-order 

Therefore (3.3) and the leading-order primitive equation for 8 give 

since 8' = @!. This is similar to the familiar Robin condition of Equation (3.10), but now 

operating on a!. The z and t derivatives commute since the condition holds for all time, 

including t = 0, so wO is 

To solve for G: and pi, we need another boundary condition in addition to the harmonic 

ambiguity, Equation (A.4). This condition comes from Equations (2.18) and (3.3), 



where J(o', hO) is identically zero because in (3.9) O0 is proportional to hO. Solving for G: 
and p: proceeds as follows 

Combining (A.4) with (A . l l )  in Fourier space gives 

where multiplication by ik ,  il, or m constitute x, y, or z differentiation in the Fourier 

domain. Thus, pi and G: are 
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Details of next-order axisymmetric 

~SQG+' inversion 

Solving for the next-order correction iP1 is simplified by noticing that F' and G1 are zero 

in the axisymmetric case. Since S is axisymmetric, then iPO is also axisymmetric because 

in (4.1) iPO is a linear function of S with no azimuthal dependence. By the same argument, 

iP: is also axi-symmetric. In this case, Equation (A.9) says that w0 = 0 because the Jacobian 

in polar coordinates is defined as 

where a is the azimuthal coordinate. We also know from Equation (A. l l )  that if S is 

axisymmetric 

F: + G: = w0 + J(@', iP:) = 0. (B.2) 

This result combined with the boundary condition (harmonic ambiguity) in (A.4) means F1 
and G' can be set to zero since 

Fi+Gt=o + F1 and are arbitrary constants. 
G; - F; = 0 
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Advection of S (3.13) now becomes St = 0 because 

since S, @O and @: are axisymmetric and have no dependence in the azimuthal direction 

(see the definition of the Jacobian in (Eq:defjac)). so the axisymmetric problem is time 

independent. 

Solving for a Robin condition on is now possible using Equations (A.1) and (A.2) 

which become 

and noting that 
0 0 -  a02 @;a$ + @,ay - ( .) + = 

r (B.7) 

in polar coordinates. Equations (B.5) and (B.6) together can eliminate h1 and form a Robin 

condition on 6l. Thus the solution to the Laplace problem in (2.22) for (with decay as 

z + -m) is given by 

where j (m)  comes from the Robin condition at the surface 

1 1 1 
f (r, z = 0) = -2@:@:, + @:@:, - ;@O@:, - -(a;)' + -(a;)' 

u 2a 
(B.9) 

l o 2  l o o  
- -(@ ) - -@ @,. 

203 ~2 

Next-order velocities and potential temperature are needed to compare the 2D, time 
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dependent Fourier solutions with the axisymmetric Hankel solution. The next-order axi- 

symmetric wind speed (V) in the azimuthal (a) direction is computed using polar coordi- 

nates 

= (ay + F,) sin(a) + (a, - G,) cos(cr) 

= (a, cos(cr) + ay sin(cr)) + F, sin(cr) - G, cos(a) 

= a, + R(@:(@; sin(a) + cos(a)) + F' sin(a) - COS(~) ) ,  

= a; + ~ ( 6 ;  + 2a;a;, + a;,+;). (B.IO) 

The next-order potential temperature (8) is computed similarly 
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