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Abstract 

The dynamics of knowledge creation, representation, and sharing by members of a commu- 

nity are intertwined with the nature of the community itself and are affected by such diverse 

influences as notions of authority, intellectual property, epistemology, and technological ad- 

vancement. While influenced by informal and formal decision-making by individuals and 

groups from both within and outside the community, the development of domain specific 

knowledge management environments displays some of the characteristics of self-organizing 

systems. This thesis seeks to examine the mathematical knowledge management environ- 

ment and the formative influences on its systems and their protocols and artifacts. 

In all domains, knowledge management environments are currently bridging a divide de- 

fined by well-established typographic paradigms on one side and emerging digital paradigms 

on the other. In traversing this boundary, mathematical knowledge management systems 

are incorporating digital technology in knowledge creation, representation, sharing, and 

archiving. The emergent nature of the digital era presents the possibility that decisions 

made today concerning the allocation of mathematical knowledge management resources 

will have longstanding effects. At stake are tested and valued systems of knowledge ver- 

ification and distribution as well as the economic models and community structures that 

support them. A central objective of this thesis will be the presentation of a framework for 

the discussion and analyses of trends in mathematical knowledge management. 



Each society has its regime of truth, its 'general politics" of truth: that is, the types of 

discourse which it accepts and makes function as true; the mechanisms and instances 

which enable one to distinguish true and false statements, the means by which each is 

sanctioned; the techniques and procedures accorded value in the acquisition of truth; the 

status of those who are charged with saying what counts as truth. 

Michel Foucault 
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Chapter 1 

Mat hemat ical Knowledge 

1.1 Introduction 

Henri Lebesgue once remarked that "a mathematician, in so far as he is a mathemati- 

cian, need not preoccupy himself with philosophy".1 (He went on to add that this was 

"an opinion, moreover, which has been expressed by many philosophers".2) The idea that 

mathematicians can do mathematics without a precise philosophical understanding of what 

they are doing is by observation, mercifully true. Unfortunately, while a neglect of philo- 

sophical issues does not impede mathematical discussion, discussion about mathematics 

tends to quickly become embroiled in philosophy. This is certainly the case with any dis- 

cussion about Mat hematical Knowledge Management (hencefort h MKM) which can't get 

too far without confronting the question of exactly what is being managed. This question, 

the question of what is mathematical knowledge, has been taken up by each of the various 

schools of mathematical philosophy. With a view to establishing philosophical trends and 

tensions that resonate within MKM itself, this chapter briefly examines the major schools 

of the nineteenth and twentieth centuries and looks at  the emerging state of the field in 

the early part of the twenty-first century. The classification presented is derived from that 

of Hersh and, at it's coarsest level, divides the field according to absolutist vs. humanist 

perspectives.3 

'Freeman Dyson, "Mathematics in the Physical Sciences", Scientific American 211, no. 9 (1964): 130. 

'ibid. 

3Reuben Hersh, What is Mathematics Really?, (New York: Oxford University Press, 1997), 137-181. 
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1.2 Absolutism 

In the pure mathematics we contemplate absolute truths which existed in the 

divine mind before the morning stars sang together, and which will continue to 

exist there when the last of their radiant host shall have fallen from h e a ~ e n . ~  

Edward Everett (1 794 - 1865) 

A distinguished nineteenth century American statesman, clergyman, and one time pres- 

ident of Harvard, Edward Everett, to whom the above quote is attributed, was not a math- 

ematician. His words however, capture perfectly a fundamental opinion that many people, 

and indeed many mathematicians, hold of mathematics. The idea of mathematics as being 

an investigation of absolute mathematical truth motivates most of the commonly acknowl- 

edged schools of mathematical philosophy and is characterized by a view of mathematical 

knowledge as being fixed, immutable, and most appropriately expressed in the form of 

deductive proof. Based on the general approach towards mat hematical proof that they 

embrace, absolutist schools can be divided into two categories: the Foundationist and the 

Platonist. 

1.2.1 Foundationism 

Foundationism encompasses the schools of logicism, formalism, and constructivism and is 

distinguished by an attempt to establish mathematical knowledge in a secure deductive 

framework. The framework defines a system from which mathematical truths can be gen- 

erated and against which mathematical truths can be tested. 

Logicism 

Your discovery of the contradiction caused me the greatest surprise and, I would 

almost say, consternation, since it has shaken the basis on which I intended to 

build my arithmetic5 

Gottlob Frege (1848 - 1925) 

4 ~ u r m a n  University Mathematical Quotations Server [online], 2003. 

5Gottlob F'rege, "Letter to Russell, 1902." in f iom fiege to Godel: A Sourcebook in Mathematical Logic, 
1879-1931, ed. Jean van Heijenoort, (Cambridge: Harvard University Press, 1967) 127. 
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Most famously associated with the work of Gottlob F'rege, Bertrand Russell, and Alfred 

North Whitehead, logicism represents an at tempt to provide a foundation for mat hematics 

in classical propositional logic. Logicism was motivated by a recognition of the fundamental 

similarities between set theory and logic: For example, the logical statement A + B + C 

becomes, in a set theoretic context, A c B c C. The work of von Neumann and Herbrand, 

among others, had previously established that the fields of geometry and analysis could be 

modelled upon arithmetic. If in turn, arithmetic could be derived from set theory, then all 

known branches of mathematics could ultimately be formulated as models of set theory and 

consequently, as models of propositional logic. Frege successfully derived arithmetic from 

set theory; the problem that would ultimately defeat logicism arose with set theory itself 

and its corresponding predicate logic. 

The quote which opens this section is from a letter that Gottlob Fege received from 

Bertrand Russell in 1902 on the eve of publication of Frege's Grundgesetze der Arithmetik.6 

The letter described what is presently referred to as the "Russell Paradox", a paradox that 

severely weakened the F'regian system. Underlining the "I am a liar7' type of circular con- 

tradiction which can occur in self-referencing predicates, this paradox asks whether or not 

the set of all sets that do not contain themselves is a subset of itself. The necessary conclu- 

sion that, in Russell's words, "there is no class (as a totality) of those classes which, each 

taken as a totality, do not belong to themselves" seriously undermined Frege's attempt to 

model arithmetic on a predicate logic corresponding to set theory.7 Attempts to resolve the 

inconsistencies proved fruitless and the foundationist movement suffered its first casuality. 

Formalism 

. . . I pursue a significant goal, for I should like to eliminate once and for all the 

questions regarding the foundations of mathematics, in the form in which they 

are now posed, by turning every mathematical proposition into a formula that 

can be concretely exhibited and strictly derived, thus recasting ma thematical 

definitions and inferences in such a way that they are unshakable and yet provide 

an adequate picture of the whole of science. I believe I can attain this goal 

' ~ o t t l o b  Frege, "Letter to Russell, 1902.", 127 

7 ~ e r t r a n d  Russell, "Letter to Frege, 1902." in Rom fiege to Godel: A Sourcebook in Mathematical 
Logic, 1879-1931, ed. Jean van Heijenoort, (Cambridge: Harvard University Press, 1967) 125. 
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completely with my proof theorye8 David Hilbert (1862 - 1943) 

During the 1920s, David Hilbert proposed that mathematics could be divided into a real 

part and an ideal part. The real part includes all mathematical ideas that could be fully 

described without resorting to uncountably infinite entities. Number theory and logic are 

contained within the real part of mathematics. The ideal part includes everything that is 

not real; geometry and real analysis are contained within the ideal part. Hilbert 's program 

was introduced as the proposition that: 

1. all branches of mathematics could be formalized and . . . 

2. the resulting formalization could be proved consistent using only real methods. 

The assumption of the existence of consistent formalizations would also fall victim to 

the Incompleteness Theorem and the formalist attempt at an absolute foundation for math- 

ematics would be abandoned. 

Constructivism: 

Constructive mat hematics is characterized by its rejection of "indirect proof", proof that in 

its logical formulation depends on the "Law of the Excluded Middle". Tracing its intellec- 

tual heritage to the work of Kronecker and others, modern constructivism is most closely 

associated with L.E. J. Brouwer's intuitionism and the work of Errett Bishop respectively. 

Intuititionism 

The subject for which I am asking your attention deals with the foundations of 

mathematics. To understand the development of the opposing theories existing 

in this field one must first gain a clear understanding of the concept "science"; 

for it is as a part of science that mathematics originally took its place in human 

thought.g L. E. J. Brouwer (1881 - 1966) 

Brouwer based the intuitionist thesis on the idea that mathematics is comprised of human 

thought consructs that stem from an inner sense, or intuition, of the nature of time. 

 avid Hilbert, "The Foundations o f  h4athematiq  1927." in From Frege to  Godel: A Sourcebook in 
Mathematical Logic, 1879-1931, ed .  Jean van Heijenoort, (Cambridge: Harvard University Press, 1967) 464. 

'L.E. J .  Brouwer, "Intuitionism and Formalism", Bulletin o f  the American Mathematical Society (New 
Series): 37, no. 9 (2000): 55 .  
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Mathematics arises when the subject of two-ness, which results from the pas- 

sage of time, is abstracted from all special occurrences. The remaining empty 

form [the relation of n to n+l]  of the common content of all these two-nesses 

becomes the original intuition of mathematics and repeated unlimitedly creates 

new mathematical subjects.1•‹ 

In 1930, Brouwer's student and collaborator, Arend Heyting, published a set of axioms 

for intuitionistic logic. Intuitionism is distinguished from other forms of constructivism by 

the acceptance of "free choice sequences", sequences whose progression may not be encap- 

sulated by a formula. The use of free choice sequences allows for the construction of real 

numbers whose place digits might, for example, be based on the possible, but unknown 

occurrence of a randomly chosen sequence of numbers in the decimal expansion of T. While 

the axiomatization of the intuitionistic approach expanded its exposure within the mathe- 

matical community beyond Brouwer's direct collaborators, the extra work that intuitionistic 

methods entailed, along with David Hilbert's high profile objections to its underlying as- 

sumptions, prevented intuitionism from gaining wide spread acceptance. 

Bishop's Constructivism 

The transcendence o f  mathematics demands that it should not be confined to 

computations that I can perform, or you can perform, or 100 men working 100 

years with 100 digital computers can perform. Any computation that can be 

performed by a finite intelligence - any computation that has a finite number o f  

steps - is permissable." 

. . . 
The only way to show that an object exists is to give a finite routine for finding 

it.'' Errett Bishop 

Bishop's constructivist approach is based on the idea that proofs should be constructed 

from finite routines and resonates strongly with the idea of computability. Constructivism 

'O~orris Kline, Mathematical Thought from Ancient to Modern Times, vol 3, (Oxford: Clarendon Press, 
1972) 1199. 

"Errett Bishop, and Donald Bridges, Constructive Analysis, (Berlin: Springer-Verlag, 1985), 6 .  

121bid., p. 1 1 .  
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retains its radical and not-so-radical adherents in modern mathematics. While construc- 

tivist methods can be severely limiting, constructive proofs are valued by the mathematical 

community. In its orientation, Simon Fraser University's Centre for Experimental and Con- 

structive Mathematics perhaps epitomizes a form of practical constructivism which embraces 

constructive methods where possible, aided by digital computation where necessary. 

1.2.2 Platonism 

I believe that mathematical reality lies outside us, that our function is to discover 

or observe it, and that the theorems which we prove, and which we describe 

grandiloquently as our "creations", are simply the notes of our observa tions.13 

G.H. Hardy (1877 - 1947) 

Mathematical Platonism encompasses a range of perspectives that share the idea of a 

mathematical reality with properties and truths that can be discovered through ingenuity 

and insight. In its casual form, no assumptions are made regarding a unifying structure of the 

"mathematical reality". In its more developed form, it is postulated that the mathematical 

reality can be described by the language of set theory. Reuben Hersh quotes Kurt Godel: 

Despite their remoteness from sense experience, we do have something like a 

perception also of the objects of set theory, as is seen from the fact that the 

axioms force themselves upon us as being true. I do not see any reason why we 

should have any less confidence in this kind of perception, i.e., in mathematical 

intuition, than in sense perception.14 

Mathematical Platonism is easily assailed on the grounds that it requires a huge leap in 

faith to believe in a reality that is only accessible by indirect observations and conjectures. 

Despite this achilles heel, Platonist sentiment is very common within the mathematical 

community. Platonism is accepting of any reasonable methodology and it places a minimal 

amount of responsibility on the shoulders of the mathematician. The Platonist perspective 

holds the mathematician responsible for observations and explanations, not creations. 
- 

I 3 G . ~ .  Hardy, A Mathematician's Apology. (London: Cambridge University Press, 1967), 21 
I4Hersh, p.10. 
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1.3 Experimental Mat hematics 

This new approach to mathematics - the utilization of advanced computing tech- 

nology in mathematical research - is often called experimental mathematics. The 

computer provides the mathematician with a laboratory in which he or she can 

perform experiments: analyzing examples, testing out new ideas, or searching 

for pat terns.15 

David Bailey, Jonathan Borwein, and Roland Girgensohn 

Ideas from the developing field of experimental mathematics coalesce not so much into 

a philosophical perspective, an "ism" as it were, as they do into a body of thought con- 

cerning the judicious use of computational technology in mathematics. In Experimentation 

in Mathematics, Bailey, Borwein, and Girgensohn state that experimental mathematics 

comprehends a computational methodology which includes: 

1. Gaining insight and intuition. 

2. Discovering new pat terns and relationships. 

3. Using graphical displays to suggest underlying mathematical principles. 

4. Testing and especially falsifying conjectures. 

5. Exploring a possible result to see if it is worth formal proof. 

6. Suggesting approaches for formal proof. 

7. Replacing lengthy hand derivations with computer-based derivations. 

8. Confirming analytically derived results.16 

It is noteworthy that the methodology bears much in common with the educational 

constructivist perspective of mathematical pedagogy which, where appropriate, advocates 

techniques of learning by discovery. Both experimental mathematical research and construc- 

tivist mat hemat ical pedagogy have benefited immensely from t he development of Computer 

Algebra Systems, such as ~ a ~ l e ~ ~ . ~ ~  The following two pedagogical examples are aimed at 
- 

15David Bailey and Jonathan Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st 
Century, (New York: A.K.  Peters Ltd, 2003), 2-3. 

161bid, p. 3. 

l 7  ~ a ~ l e  is a trademark o f  Waterloo Maple Inc. 
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the undergraduate level and illustrate symbolic calculations which can be carried out by 

hand and then verified with Maple or ~ a t h e m a t i c a ~ . ' ~  

Math: In this case, a positive integral over [O,1]  evaluates to a - 7, thus providing an 

integral "proof' that a # 7. As an introduction to symbolic integration, students can be 

encouraged to first evaluate this integral by hand. (If the numerator of the integrand is 

expanded and the result divided by the denominator, the integrand can be expressed as the 

sum of its polynomial and rational parts; both of which integrate easily.) After convincing 

themselves of the result, they can execute the Maple integration command to verify that 

Maple is in agreement. 

Maple code: This integral is expressible in a single line but is better displayed by the 

following three commands: 

1 1-2 4x4 Execution of this code, yields the following output: Jo dx = 7 - a. 
Methodology: This example falls neatly under item number 4 from the methodology, 

the testing and falsifying of conjectures. It also illustrates item number 7, the replacement 

of lengthy hand derivations by the use of digital tools for, along with its mathematical 

significance, it can motivate the use of symbolic integration by providing an example which 

is just enough work by hand for the student to appreciate the benefits of using the computer. 

The sophomore's dream: 

Math: In this case, Maple helps establish the following singular identity: 

"Jonathan Borwein and Terry Stanway, Numerical and Computational Mathematics at the Undergraduate 
Level A presentation for the Conference on Technology in Mathematics Education at the Secondary and 
Tertiary Levels [online], 1999. 
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This depends on the series expansion: x-" - l - l ) n ( x  
- LO n! . Integration produces: 

1 1  ( - l ) n  J ~ ( z  ~ n ( x ) ) ~ d x  SO -dx X =  = C ~ = O  n!  . Then (1.1) may be proved by substituting y = - ln(x) 

and then z = (n  + 1)y. 

Maple code: The series expansion for x-" can be tested by the following command: 

The advantage to the student of using Maple for (1.1) is the ease with which it handles 

change of variables. To assign the substituted expression to a variable, the command is: 

SO: =changevar (~=-ln(x) , Int ((x*ln(x)) -n,x=O. -1) , y) : 

Methodology: This example also responds to both methodology items numbe 4 and 

number 7. As with the first integral, students can work it through by hand before trying it 

on the computer. (Students will need the series expansion of x - ~  and perhaps the definition 

of the r-function.) 

In defining the role of computational experimentation in mathematics, the experimental 

methodology accepts, as part of the experimental process, standards of certainty in math- 

ematical knowledge which are more akin to the empirical sciences than they are to math- 

ematics. As an experimental tool, the computer can provide strong, but not conclusive, 

evidence regarding the validity of an assertion. While with appropriate validity checking, 

confidence levels can in many cases be made arbitrarily high, it is notable that the concept 

of a 'confidence level' has traditionally been a property of statistically-oriented fields. It is 

important to note that the authors are not calling for a new standard of certainty in math- 

ematical knowledge but rather the appropriate use of a methodology which may produce, 

as a product of its methods, definably uncertain transitional knowledge. 

What the authors do advocate is closer attention to and acceptance of degrees of certainty 

in mathematical knowledge. This recommendation is made on the basis of three assertions: 

1. almost certain mathematical knowledge is valid if treated appropriately 

2. in some cases 'almost certain' is as good as it gets 
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3. in some cases an almost certain computationally derived assertion is at least as strong 

as a complex formal assertion. 

The first assertion is addressed by the methodology. The second is a recognition of the 

limitations imposed by Godel's Incompleteness Theorem. The third is more challenging for 

it addresses the idea that "certainty" is a function of the community's knowledge validation 

systems. The example used is Wiles' proof of Fermat's Last Theorem. In the authors' 

words: 

. . .perhaps only 200 people alive can, given enough time, digest all of Andrew 

Wiles' extraordinarily sophisticated proof of Fermat's Last Theorem. If there is 

even a one percent chance that each has overlooked the same subtle error (and 

they may be psychologically predisposed so to do, given the numerous earlier 

results that Wiles' result relies on), then we must conclude that computational 

results are in many cases actually more secure than the proof of Fermat's Last 

~ h e 0 r e m . l ~  

The idea that what is accepted as mathematical knowledge is, to some degree, dependent 

upon a community's methods of knowledge acceptance is an idea that is central to the social 

constructivist school of mathematical philosophy. 

1.4 Social Constructivism 

Social constructivism begins with the assumption that mathematical practices 

and institutions are a given; they are historically constituted and have a life of 

their own. In other words, the starting point is the existence of mathematical 

"forms of life," with their own participants, representations of knowledge, and 

so forth.*' 

Paul Ernest 

l g ~ a i l e y ,  Borwein, and Girgensohn, p.10. 

2 0 ~ a u l  Ernest, Social Constructivism As a Philosophy of Mathematics, (Albany: State University of New 
York Press, 1998), 148. 



CHAPTER 1. MATHEMATICAL KNOWLEDGE 11 

Associated most notably with the writing of Paul Ernest, an English mathematician and 

Professor in the Philosophy of Mathematics Education, social constructivism seeks to define 

mathematical knowledge and epistemology through the social structure and interactions 

of the mathematical community. Ernest attributes social constructivism's intellectual an- 

tecedents to the writings of Imre Lakatos and Ludwig Wittgenstek2l From Lakatos, social 

constructivism derives its interpretation of the methods of mathematics and it absorbs: 

. . . the account of the genesis of mathematical knowledge and proofs in Lakatos's 

LMD [Logic of Mathematical Discovery first developed in Essays in the Logic 

of Mathematical Discovery, his Cambridge Ph.D. thesis (1960)l. This describes 

the essentially social, dialectical process of mathematical knowledge creation and 

warranting.22 

From Wittgenstein, social constructivism adopts its deeper epistemological foundation, 

locating: 

. . . the basis for logical necessity and mathematical knowledge in linguistic rules 

(be they tacit or explicitly articulated) and practices (which are embedded in 

socially enacted forms of life).23 

In Proofs and Refutations, Imre Lakatos famously imagines a dialogue in which a teacher 

and his students explore the nature of mathematical objects and mathematical knowledge. 

The challenge to absolutist notions of mathematical knowledge presented by both the meth- 

ods of experimental mathematics, and the perspective of social constructivism bring this 

dialogue into the present. 

1.5 Conclusion 

Progress, far from consisting in change, depends on retentiveness. When change 

is absolute there remains no being to improve and no direction is set for possible 
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improvement. . . Those who cannot remember the past are condemned to repeat 

it.24 George Santayana (1 863 - 1952) 

In the early years of the 2oth century, the transformation of the socio-political landscape 

brought about by the First World War was complemented by transformations of the intel- 

lectual landscape brought about by the acceptance of new ideas, and rejection of old, in art, 

literature, and science. In art and literature the modernist perspective had informed such 

works as Picasso's early cubist piece, Les Desmoiselles d'Avignon and Santayana's The Life 

of Reason. In physics, Einstein had published The Special Theory of Relativity, challenging 

the determinism of Newtonian mechanics. Mathematics had not emerged unscathed. In 

his book, What is Mathematics Really?, Reuben Hersh describes the fractures that arose in 

the philosophy of mathematics after the widely accepted idea that all of mathematics could 

be ultimately derived from the principles of Euclidean geometry fell victim first to logically 

consistent non-euclidean geometries and second to geometrically counter-intuitive concepts 

such as space filling curves and such unavoidable consequences of analysis as continuous 

everywhere but nowhere differentiable curves. In Hersh's words: 

The situation was intolerable. Geometry served from the time of Plato as proof 

that certainty is possible in human knowledge - including religious certainty. 

Descartes and Spinoza followed the geometrical style in in establishing the exis- 

tence of God. Loss of certainty in geometry threatened loss of all certainty.25 

In the early days of the twenty-first century, at least the remnants of each of the twentieth 

century responses to this 'intolerable situation' have survived. The ideas and impulses that 

motivated foundationism are expressed in the field of automata theory and the efforts to 

develop automated theorem provers. The QED project provides an ambitious example of 

these efforts. The foundationist spirit of the project is represented eloquently by its mission 

statement, The QED Manifesto, which states in part: 

The QED system will conform to the highest standards of mathematical rigor, 

including the use of strict formality in the internal representation of knowledge 

24George Santayana, The Life o f  Reason: Reason in Common Sense (New York:  Scribner's, 1905-06), 
Volume 1 ,  284. 

25Hersh, p. 137. 
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and the use of mechanical methods to check proofs of the correctness of all entries 

in the system.26 

With its broad, and some might argue shallow, acceptance of any mathematical method 

or statement which is consistent with the idea of mathematics as an act of discovery, math- 

ematical Platonism emerges as the most encompassing perspective and, by consensus, the 

working perspective of most mathematicians. In What is Mathematics Really?, Hersh com- 

ments that "an inarticulate, half-conscious Platonism is nearly universal among mathemati- 

cians" .27 

The constructivist approach retains a high degree of acceptance amongst mathematicians 

and to furnish a constructive proof of a theorem, where previously only standard proofs were 

known, is considered to be an achievement. With its emphasis on defining algorithms, the 

constructivist approach resonates with the methodology of experimental mathematics. 

In the effort to articulate a philosophical foundation for MKM, each of the aforemen- 

tioned perspectives is incomplete for each fails to address the fact that "knowledge man- 

agement" is ultimately a social activity. A philosophy of MKM must comprehend not only 

what is being managed but how and for whom it is being managed. In its consideration 

of knowledge as being constructed through social interaction, social constructivism does 

address these issues and, in so doing, appeals to the idea of "mathematical community". 

Writing about objective knowledge in mathematics, Paul Ernest states: 

the social constructivist philosophy of mathematics takes "objective knowledge" 

in mathematics to be that which is accepted as legitimately warranted by the 

mathematical community. Thus it is the mutually agreed upon, shared knowl- 

edge of that community, knowledge that satisfies its knowledge acceptance pro- 

cedures and criteria, not something superhuman or absolute.28 

Knowledge management systems are both defined by and help to define the structure 

of the mathematical community and its many subcommunities. In the concluding chapter, 

the question of how this structure might be analyzed is addressed. The following section 

presents a brief overview of the characteristics of mathematical communities. 

26~nonymous,  "The QED Manifesto", document in the public domain, 1997 

2 7 ~ e r s h ,  p. 11. 

2 8 ~ r n e s t ,  p. 148. 
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1.5.1 The Mat hematical Community 

The notion of community is loosely defined and can be used to refer to a lot of quite 

different types of social groupings. Intentionally, a broad definition of the mathematics 

community will be adopted to include all those involved with advancing the understanding 

of mathematics; either at its frontiers, the primary occupation of researchers, or within the 

existing body of mathematical knowledge such as teachers and students. The boundary 

is a porous one and relatively few would claim full time membership. Many others are 

interlopers, jumping in and out as the need arises or circumstances dictate. The following 

discussion briefly considers four interrelated factors that help to bind the community: the 

language of the community, the purposes of the community, the methods of the community, 

and the meeting places of the community. 

The Language of the Community 

A man is necessarily talking error unless his words can claim membership in a 

collective body of 

Kenneth Burke 

It is tempting, but tautological, to state that the language of the community is the 

language of mathematics and it only extends the tautology to state that anyone who claims 

membership in the community knows what this statement means. In reality, it may be ar- 

gued that the paradigm for mathematical discourse is the language of the published research 

paper. All other discourse approximates the paradigm by degree according to what level of 

rigor is appropriate to the situation and audience. 

The special symbols of mathematics present a particular challenge to expressing math- 

ematics in mechanically type set or digital forms. An individual claiming membership in 

the mathematical community can generally be assumed to have some understanding of how 

to overcome those challenges. In this area, it can be argued that digital methods have cre- 

ated fractures within the community that did not exist previously. While BTpJ is in wide 

use in research communities, it is almost unheard of in lower level mathematics education 

communities. 

2 g ~ a y n e  C. Booth, Modern Dogma and the Rhetoric of Assent (Chicago: University of Chicago Press, 
1974) 86. 
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The Purposes of the Community 

If intellectual curiosity, professional pride, and am bition are the dominant incen- 

tives to research, then assuredly, no one has a fairer chance of gratifying them 

than a mathernati~ian.~' G .  H. Hardy 

In the sense it is used here, 'purpose' does not refer to the overriding raison d'itre of the 

community; that has already been defined to be an interest in the advancement of mathe- 

matics. Rather, purpose here refers to what motivates an individual to seek membership in 

the community; and there are many. There is a professional motive which expresses itself 

by the simple statement that "I am involved with mathematics because this is how I earn 

my living". There is an egotistical motive which is expressed in the statement that "I am 

involved with mathematics because I take pleasure from proving to myself and others that I 

can overcome the challenges that the field affords". There is a social motive which is evident 

in the statement that "I am involved with mathematics because I benefit from the company 

of others who are involved with mathematics". And, finally, there is an aesthetic motive 

that is reflected in statements like "I am involved with mathematics because I wish to help 

unlock the beauty of mathematics". 

With respect to mathematical knowledge management, an individual's reasons for being 

involved with mathematics strongly affects the individual's role in the community. This 

sense of purpose in the community in turn helps to determine the individual's information 

management needs. 

The Methods of the Community 

The methods of the community encompass how mathematicians do what they do and the 

tools that they use. Traditionally, mathematics has been one of the most purely cerebral 

of the sciences, depending, for its practice, on little more than pencil and paper. This 

austerity is tightly associated with underlying philosophical assumptions about the nature 

of mathematics. The foundational shifts of the last century and developments in computer 

technology paved the way to the present situation which finds mathematicians lining up 

with theoretical physicists, molecular biologists, and others to claim time on the world's 

most powerful super computers. An important consideration regarding the question of how 

30G. H. Hardy, A Mathematician's Apology, (London: Cambridge University Press, 1967), 80. 
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mathematicians do mathematics is the question of how and to whom to mathematicians 

express their mathematics. The meeting places of the community of the community warrant 

special treatment and are addressed breifly here and again in chapter 5 .  

The Meeting Places of the Community 

J. J. Sylvester sent a paper to the London Mathematical Society. His covering 

letter explained, as usual, that this was the most important result in the subject 

for 20 years. The secretary replied that he agreed entirely with Sylvester's 

opinion of the paper; but Sylvester had actually published the results in the 

L.M.S. five years befo~-e.31 J. E. Littlewood 

Tightly associated with the methods of the community, is the notion of the meeting places 

of the community. These are the venues in which mathematics is presented and discussed. 

Not only the offices, classrooms, seminar rooms, labs, and conference halls, but also the 

notes, postcards, letters, journals, and, in this electronic age, their digital equivalents. 

In the early part of the last century it could be still be argued that mathematicians 

could claim membership in an invisible college which, while dispersed geographically, was 

connected by a common experience with a standard undergraduate mathematics curriculum. 

The rapid development of mathematics over the last century and the increasing application 

of mathematics in other domains has reduced this mathematical canon to a few courses 

which are still commonly taught in first and second year. As the community grows and 

becomes more permeable, the connective influence of the invisible college is being replaced by 

other shared experiences and, in many cases, those are the shared experiences of knowledge 

management methods. 

31 J. E. Littlewood, Littlewood's hiiiscellany, ed. Bella Bollob&, (London: Cambridge University Press, 
1986) 148. 



Chapter 2 

A Overview of the Technological 

History of MKM 

The history of knowledge management has been very much bound up in the history of infor- 

mation technology. Significant developments in information technology have catalyzed ma- 

jor shifts in knowledge management practice. In a period in which members of the extended 

mathematical community are wrestling with the challenge of how best to employ networked 

digital technology in the service of MKM, it is useful to examine the history of MKM for 

any lessons that might be derived from precedent. While the relationship of technology to 

MKM shares much in common with the relationship of technology to knowledge manage- 

ment in any particular domain, issues related to mathematical knowledge representation 

play a mediating role between the two. This chapter presents a survey of the technological 

history of western MKM from antiquity to the typographical era with an emphasis on how 

an understanding of the transition between the scribal era and the typographical era might 

inform our understanding of the transition between the typographical and digital eras. 

2.1 MKM in Antiquity 

Presently the object of a massive reconstruction effort, the library at Alexandrina was 

originally constructed in the third century BC in response to a decree issued by Ptolemy I. 

The library was the largest of the ancient libraries and eventually was home to an estimated 

700,000 papyri, scrolls, and, in its later years, codices, the precursors of modern books. 
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Part of the Mouseion, which also included what would today be considered a research 

institute, the library contributed to Alexandria's ascendancy as, along with Athens, one of 

the two great intellectual centres of the period. In several respects, the preoccupations of the 

Alexandrian librarians remain important considerations in archival knowledge management. 

In his mid third-century BC tenure as chief librarian, the poet Callimachus developed a 

cataloguing system that arranged each work by subject sorted alphabetically by author. 

The catalogue entry included a bibliographical element and a brief critical account of the 

author's writing1 He applied this system to the 400,000 works in the library's collection 

at the time consuming 120 scrolls worth of e n t r i e ~ . ~  Callimachus was immediately followed 

by the mathematician and geographer, Eratosthenes, who designed and implemented a 

shelving system for the growing collection. In an October 1999 speech at the University of 

Likges, Birdie Maclennan, an Associate Professor of Library Sciences and Librarian at the 

University of Vermont, draws attention to the legacy of the librarianship work of Callimachus 

and Eratosthenes: 

Les bibliothkaires alexandrins ont pass6 un systkme d'organisation de la col- 

lection (c'est-a-dire le catalogage et la classification de documents) aux futurs 

g6nQations de bibliothkcaires. On peut se demander si les Pinakes et le "tetag- 

manos" de Callimachus et d'Eratosthenes 6taient les pr6d6cesseurs du systkme de 

Melville Dewey qui est employ6 aujourd'hui dans de nombreuses b i b l i ~ t h k ~ u e s ? ~  

Dr. Maclennan goes on to highlight an important parallel between the information 

environment of the Alexandrians and the environment of today: then, as now, there was 

a significant shift in the nature of publishing. While presently it is the shift from paper 

based publishing to digital publishing, in the Alexandrian period, it was a shift from the 

scroll to the codex.4 Due to its compactness and the ease with which it afforded readers 

access to text, the codex was a such a vast improvement over the scroll that Martial, a poet 

writing at the end of the first century, was moved to proclaim, "assign your book-boxes to 

the great, this copy of me one hand can grasp".5 It is interesting to note that portability 

'Sameh M. Arab, "Bibliotheca Alexandrina", Arab World Books [online], 2000. 
'Birdie Maclennan, "To be a librarian, today and tomorrow: Reflections on library education and practice 

in a changing world, U.D. Walthkre Spring, UniversitC de Lihge [online], 2000. 

31bid. 
4~b id .  

James Grout, "Scroll and Codex", Encyclopaedia Rornana [online], 2003. 
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and ease of use alone were not enough to immediately guarantee wide spread acceptance of 

the codex. The replacement of scrolls by codices was only ensured after the early Christian 

church made a "head office" decision to record scripture and religious writings in codices as 

a visible means of distinguishing Christian works from that of Jewish and Pagan writings. 

This is an early example of a recurring theme in the development of knowledge management 

systems: superior technology alone is not enough to ensure the adoption of new systems. 

External societal factors frequently play an important role. In the case of codices, their 

adoption as the standard form of publication for longer works coincided with the spread of 

Christianity and codices had fully replaced scrolls by the end of the third century. 

The library at Alexandria is the first systematic attempt a t  the archiving and orga- 

nization of knowledge for which there is a historical record. The library's demise was in 

no part an internal failure but rather a stark example of the influence of societal factors 

on knowledge management systems. The library's end coincided with the decline of Greek 

religion and the spread of Christianity. Succumbing to sectarian conflict, the last of the 

library's buildings was burned during a riot in 392 AD. The last known head librarian was 

the mathematician, Theon of Alexandria. His daughter, Hypatia, was also a mathematician 

whose adherence to Pagan religion brought about her premature death; she was torn limb 

from limb by a Christian mob in the second decade of the fifth century.6 

2.2 Medieval Knowledge Management 

In Medieval Europe, learning and the production of manuscripts came to be centred in 

universities and monasteries. During this period, there was progress in the way mathematics 

was practised, and consolidation and refinement in the ways in which mathematical texts 

were produced and archived. 

The first significant technological advance illustrates the fundamental relationship be- 

tween MKM and mathematical knowledge representation and concerns the method by which 

numbers are represented. Near the end of the first millenium, hindu-arabic numerals make 

their first, tentative appearance in European manuscripts. While the place-value properties 

of hindu-arabic numerals afford simpler computational algorithms than those of the Roman 

and Greek systems, adoption of the new system is a process which takes place over many 

' ~ i c h a e l  Deakin, "Hypatia and her Mathematics", The American Mathematical Monthly 101, no. 3, 
(1994): pp. 239-241. 
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centuries. In his famous work Liber Abaci written in 1202, Fibonacci describes his discovery 

of the "Indians' nine symbols": 

When my father, who had been appointed by his country as public notary in the 

customs at Bugia acting for the Pisan merchants going there, was in charge, he 

summoned me to him while I was still a child, and having an eye to usefulness 

and future convenience, desired me to stay there and receive instruction in the 

school of accounting. There, when I had been introduced to the art of the 

Indians' nine symbols through remarkable teaching, knowledge of the art very 

soon pleased me above all else and I came to understand it, for whatever was 

studied by the art in Egypt, Syria, Greece, Sicily and Provence, in all its various 

forms.7 

The idea of advances in MKM being bound to advances in mathematics s also evident 

in the development and teaching of classical algebra. Prompted first by Latin translations 

of Al-jabr wa'l-muqabala by the Arab mathematician, al-Khwarizmi, geometrically inspired 

algebraic methods were introduced in Europe beginning in the twelfth century. Again, 

Fibonacci was instrumental. In her paper The Art of Algebra from Al-Khwarizmi to ViGte: 

A Study in the Natural Selection of Ideas, Karen Hunger Parshall describes his contribution 

as follows: 

. . . Fibonacci fashioned his mathematical environment by seeking out texts from 

which, and people from whom, he could learn more of the intricacies of arithmetic 

and algebra. One result of these studies, his most influential book, entitled Liber 

Abaci (1202, revised l228), attested to his mastery not only of the Hindu- Arabic 

techniques of practical calculation but also of the theory of quadratic equations 

as found in the works of al-Khwarizmi, Abu-Kamil, and al-Karaji.8 

The historical development of algebra offers several examples of how progress in math- 

ematical thought is interconnected with progress in knowledge representation and conse- 

quently influences MKM. The late pre-typographic period also saw the rediscovery of the 

7 ~ . ~ .  O'Connor and E.F. Robertson, "The Arabic numeral system", The MacTutor History of Mathemat- 
ics archive [online], 2001. 

' ~ a r e n  Hunger Parshall, "The Art of Algebra from Al-Khwarizmi to Vi6te: A Study in the Natural 
Selection of Ideas", History of  Science 26 (1988): 133. 
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work of the Greek mathematician, Diophantus, whose Babylonian inspired algebra intro- 

duced the use of symbols as abstractions of numbers and sets. 

While the Middle Ages saw progress in knowledge representation aspects of MKM, the 

systems of mathematical knowledge and archiving remained static and associated exclusively 

in monasteries, cathedrals, and universities. Developments did take place, however, in 

knowledge representation at the artifact level. The contemporary use of metadata for the 

classification of knowledge has an interesting antecedent in medieval scholarship. In his book 

The Medieval Theory ofAuthorship, A.J. Minnis describes the use of formal prologues found 

at the beginning of manuscripts. Here, he describes the so-called 'type C' prologue: 

In the systematisation of knowledge which is characteristic of the twelfth cen- 

tury, the 'type C' prologue appeared at the beginning of commentaries on text- 

books os all disciplines: the arts, medicine, Roman law, canon law, and the- 

ology. Its standard headings, refined by generations of scholars and to some 

extent modified through the influence of other types of prologue, may be out- 

lined as follows: Titulus, the title of the work ... Nomen auctoris, the name of the 

author ... Intentio Auctoris, the intention of the author ... Materia Libri, the sub- 

ject matter of the work ... Modus agendi, the method of didactic procedure ... Ordo 

libri, the order of the book ... Utilitas, utility ... Cui parti philosophiae supponitur, 

the branch of learning to which the work belonged.g 

Cast as medieval metadata, these prologues indicate some effort on the part of medieval 

scholars to protect the integrity of scholarly works in a distributed publishing environment. 

Of relevence to present MKM concerns, the addition of structured elements to manuscripts 

provided one means of ensuring stability and protecting author's rights, such as they were, 

in an environment with multiple nodes of document reproduction. 

2.3 The Typographic Period 

The difference between the man of print and the man of scribal culture is nearly 

as great as between the non-literate and the literate. The components of Guten- 

berg technology were not new. But when brought together in the fifteenth 

 innis is, A.J. Medieval Theory o f  Authorship: Scholastic literary attitudes in the later Middle Ages, 
(London: Sco1a.r Press, 1984), 19. 
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century there was an acceleration of social and personal action tantamount to 

"take off7' in the sense that W. W. Rostow develops this concept in The Stages 

of Economic Growth "that decisive interval in the history of a society in which 

growth becomes its normal condition. "lo 

Marshall McLuhan (1911 - 1980) 

In The Gutenberg Galaxy, Marshall McLuhan describes the change in cultural orien- 

tations, expectations, and assumptions that occurred with the wide spread adoption of 

typography in the fifteenth and early sixteenth centuries. The rediscovery of Diophantus' 

number theoretic approach to algebra, coincided approximately with the invention of the 

printing press by Johannes Gutenberg in 1452. The first known printed mathematical work 

was the Campanus translation of Euclid's Elements executed at Venice in 1482 by the Ger- 

man printer, Erhard Ratdolt, from his shop." Ratdolt's reputation in the history of printing 

is partly based on his pioneering work in the field of scientific and technical publishing. In 

an 1863 address to the Bibliographical Society, Gilbert Redgrave states: 

In the course of the year 1482, Ratdolt issued several of his most remarkable 

productions; among them the foremost place is due to the Euclid, with its beau- 

tiful border and elaborate diagrams. It constitutes the first attempt to illustrate 

the text of this author with wood-cuts of the problems, and it must ever be 

memorable for the skill and enterprise it displays in the accomplishment of what 

must have at that time been a most difficult task.'' 

The development of printing had a profound effect on scholarship, education, and civics. 

It led to a redefinition of what constitutes authority and notions of intellectual property 

which were foreign to the pre-typographic intellect. The Ratdolt edition of the The Ele- 

ments provides a good example of another recurring theme in knowledge management: the 

preservation of old media artifacts in the early stages of new media. Ratdolt's work looks 

very much like a finely executed manuscript. Figure 2.1 is an image of the first page of Book 
113. 

l o  McLuhan, Marshall The Gu ten berg Galaxy, (Toronto: University o f  Toronto Press, l962), 90. 

" S U ~ S I T E  DigitalMathArchive, Erhard Ratdolt - first publisher o f  Euclid [online], 2003. 

l2lbid. 

1 3 ~ y  permission: Dr. William Casselman, The  University o f  British Columbia. Original images obtained 
by Dr. Casselman with the cooperation o f  The Fisher Rare Book Library at The  University o f  Toronto. 
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Figure 2.1: Book 1, Page 1 of The Elements (1482) 
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The overall effects on society of mechanized print has been the subject of much scholarly 

research and much debate. With a particular emphasis on effects which bear upon knowledge 

management, a representative list includes: 

1. an increase in literacy rates 

2. the commoditization of knowledge 

3. the stabilization of knowledge 

4. the reorganization of academic communities, including 

(a) the strengthening of communities around subject specialization, and 

(b) the reorganization of elites 

5. the strengthening of notions of intellectual property and authorship. 

In Communication at a Distance: The Influence of Print on Sociocultural Oranization 

and Change, David Kaufer and Kathleen Carley refer to the idea that print technology was 

a singular force behind the observed changes in the knowledge environment as the Strong 

Print Hypothesis.14 They refute this hypothesis by developing an analysis which suggests 

that print was but one factor, albeit a catalyzing factor, in a process of change that was 

determined by a variety of socio-cultural variables. The history of scholarly publishing 

provides a good example of the gradual nature of the changes in knowledge management 

that took place after the advent of print. 

At the time Henry Oldenburg was appointed as Secretary of The Royal Society in 1663, 

personal correspondence was the only means of sharing research within the scientific and 

mathematical communities. In fact, one of the secretary's main occupations was receiving 

research-oriented correspondence and communicating saIient aspects of that correspondence 

to others in the field. Realizing that there was a need to ensure that important research was 

as widely disseminated as possible, in 1655 Oldenburg began publishing edited versions of 

the correspondence he received as the ?2-ansactions of the Royal Society. This publication 

rapidly adopted an informal system of peer review which would formalize into a system 

which has dominated 300 years of academic publishing. Two points are noteworthy: 

14David S. Kaufer and Kathleen Carley, Communication at a Distance: The Influence o f  Print on Socio- 
cultural Organization and Change, (Hillsdale: Lawrence Erlbaum Associates, Inc., 1993), 254. 
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1. the first serialized scholarly publication did not appear until more than 150 years after 

the advent of type and 

2. the publication began as a "repackaging" of a knowledge management system that 

predated type. 

The Transactions o f  the Royal Society and other broadly focussed journals so domi- 

nated European academic publishing that the first academic journal dedicated to mathe- 

matics would not be published until 1795 at Leipzig. The Archiv der reine und angewandte 

Mathematik ceased publication after 10 years however it was followed in 1810 by Joseph 

Gergonne's Annales de Mathe'matiques Pures et Applique'es. This publication lasted until 

1831 but, by this time, several other mathematical journals had entered into publication.15 

It is notable that the subject specialization that was at  least partly the result of print did 

not appear in knowledge management at the journal level until the end of the eighteenth 

century. 

2.3.1 Authorship and Intellectual Property 

Discussing the impact of the printing press, McLuhan argues that, while pre-typographic 

culture was characterized by localized production and limited distribution of production - 

most abbeys would have at least one scribe but a single scribe can only produce so many 

manuscripts - typographic culture would come to be characterized by centralized production 

and mass distribution; a limited number of publishing houses producing and distributing 

many copies of individual texts. The mass production of identical copies of a text introduced 

notions of authority, authorship, and intellectual property that were completely unknown 

in scribal culture. He cites E.P. Goldschmidt, a scholar in medieval studies: 

One thing is immediately obvious: before 1500 or thereabouts, people did not 

attach the same importance to ascertaining the precise identity of the author 

of a book they were reading or quoting as we do now. We very rarely find 

them discussing these points ... Not only were users of manuscripts, writes Gold- 

schmidt, mostly indifferent to the chronology of authorship and to the "identity 

and personality of the author of the book he was reading, or in the exact period 

15~aurent Rollet and Philippe Nabonnand, "Une bibliographie mathkmatique idCale? Le RCpertoire bib- 
liographique des sciences mathdmatiques", Gazette des mathCmaticiens 92 (2002): 12. 
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at which this particular piece of information was written down, equally little, 

did he expect his future readers to be interested in himself."16 

In 1710, England would pass the Statute of Anne which recognized for the first time in 

law an author's entitlement to a fixed term of ownership over his or her works. (Notably, 

the statute also guaranteed the deposition of one copy of any of any published work at each 

of nine selected public libraries.) That there would elapse two and a half centuries between 

the advent of mechanical typesetting and the first copyright law is another indication of the 

gradual nature of change in the knowledge management environment. 

2.4 Conclusion 

The connection between technology and knowledge management is manifest at many levels. 

It is present at  the level of atomic mathematical entities such as numbers and formulas 

and it is present at the level of community wide systems of knowledge dissemination and 

archiving such as journals and libraries. At the atomic level, mathematics has benefited 

from a remarkable degree of universality and stability in knowledge representation. The 

monographs of Euler and Cauchy remains entirely readable today and are still cited. At 

the macro level, methods of knowledge representation have undergone significant shifts 

resulting from developments in information technology. An examination of the influence of 

print suggests that the initial response to the new medium may be a repackaging of artifacts 

that are characteristic of the old medium and that the development of new systems may be 

gradual. External societal factors may also influence the shape and pace of change. 

In The Rise of the Reading Public, Elizabeth Eisenstein discusses the effect of print on 

social structures: 

Even while communal solidarity was diminished, vicarious participation in more 

distant events was also enhanced; and even while local ties were loosened, links 

to larger collective units were being forged. Printed materials encouraged silent 

adherence to causes whose advocates could not be found in any one parish and 

who addressed an invisible public from afar. New forms of group identity began 
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to compete with an older, more localized nexus of loyalties.17 

In mathematics, the "new form of group identity" was based around a shared literature. 

For the first time, those professing an interest in mathematics had access not only to the 

same authors, but also to the same version of the same texts. For the first time, the notion 

of a "mathematics community" made sense. 

17~lizabeth Eisenstein, "The Rise of the Reading Public", Communication in History: Technology, Culture, 
Society 2nd ed. ed. D. Crowley and P.Heyer, (Cambridge: Cambridge University Press 1995), 112. 



Chapter 3 

Doing Mathematics in the Digital 

This chapter is the revised version of an unpublished paper co-authored with Dr. Jonathan 

Borwein and presented to the 1999 meeting of the Canadian Mathematics Education Study 

Group. The focus of this meeting was information technology in the service of mathematics 

education. 

Technology has repeatedly promised to transform mathematics pedagogically. More 

recently it has made similar promises to the research community. That said, mathematics 

at  the beginning of the twenty-first century looks a lot more like mathematics in 1939 than 

is the case with any of its sister sciences. 

That this is about to change is inarguable. The confluence of ubiquitous compute power 

with new networking and collaborative environments will push the teaching and discovering 

of mathematics in conflicting directions often resistant to control. The burgeoning role of 

corporate edu-packages is hardly likely to diminish. Nor are battles over curriculum and 

its delivery about to stop. This chapter surveys and illustrates some of the ways in which 

twenty-first century mathematics will be changed by these new technologies. An attempt 

will be made to distinguish issues of ownership of technology from those of control over 

content and to discuss how mathematical educators might best prepare for the coming 

storms. 
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3.1 Introduction 

In both the realms of research and education, technology has long been put forth as holding 

much promise to mathematicians. Experience, however, frequently leads to a confrontation 

with technology's pitfalls to such an extent that many in the pedagogical and research com- 

munities willingly choose to remain mathematical luddites. The sections that follow, include 

a discussion of the promises and pitfalls, both intellectual and technical, and an examination 

some of the intellectual property and commercial issues that influence the development and 

distribution of mathematical software. While the emphasis is on mathematical education, 

many of the arguments apply equally to mathematical research and indeed to the other 

sciences. 

3.2 Intellectual Promises. . . 

Today, after more than a century of electric technology, we have extended our 

central nervous system itself in a global em brace, abolishing both space and time 

as far as our planet is concerned.' 

Marshall McLuhan 

Thirty-five years ago, Marshall McLuhan's pronouncements were viewed by many as, at 

best, encoded messages that required careful deciphering, or at worst, extreme examples of 

hyperbole. Today, the characteristics of McLuhan's electronic universe are part of everyday 

experience. The central promise of digital technology to mathematics is the extension of 

mathematical senses and faculties. Since ENIAC, computers have extended the human 

capacity for numerical calculations. With developments in the field of computer graphics, 

mathematical software promised to bring mathematics into colour. Today, it is largely 

soon to be resolved band-width problems that prevent the immersive manipulation of three 

dimensional surfaces in real time as they are generated by a colleague on the other side 

of the globe. Technology has also promised to extend the human capacity for inductive 

and deductive reasoning. Symbolics, an abstraction of the computer's traditional domain of 

numerics, were for a long time handled poorly by computers. Increase in computing power 

and advances in programming have resulted in applications such as MapleTMwhich permit 

'Marshall McLuhan, Understanding Media, (New York: Signet Press, 1964), 19. 
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background pattern checking and inverse calculation; the computer extends the capacity 

for ab~t rac t ion .~  Another promise is that of contracting frames of reference for time and 

space. As a means of processing mathematics, digital technology contracts time; as a means 

of communicating mathematics, it contracts space. This dual contraction permits rapid 

insight and entails a corresponding demand for rapid reinforcement via micro parallelism. 

Advocates for computer technology have made specific promises to those involved in 

math education. As early as 1965, Seymour Papert conceived of a programming language 

which would support L'constructivist" teaching and allow students to examine lively and 

realistic mathematics. In collaboration with Marvin Minsky and others, he developed the 

Logo programming language which, through many reincarnations, continues to thrive. An- 

other promise lies in the development of "learner-centered" curricula. The adaptability of 

digital environments has suggested the possibility of expert learning systems that incorpe 

rate intelligent scaffolding to adapt to the learner's pace and learning style. Responding to 

the educational philosophy of "social constructivism", computer math environments promise 

students a richer means of representing and presenting the fruits of their mathematical imag- 

ination. Finally, by making difficult concepts accessible, digital mathematics has helped to 

promote the vision of unifying research and teaching, theory and practice. Even if students 

are not able to understand all of the mathematical complexity of a real world optimiza- 

tion problem, with a coarse-grained understanding of the mathematics and the appropriate 

software, they may still be able to gain insight. 

3.3 Intellectual Pitfalls . . . 
It is generally the way with progress that it looks much greater than it really 

i s3  Ludwig Wittgenstein (1889 - 1951) 

If the promise of digital mathematics may occasionally lead to increasing optimism 

about its potential impact on research and education, its pitfalls can rapidly lead to a 

more realistic assessment. One of the major pitfalls is inappropriate use 

ifests itself as employing technology because it can be done rather than 

be done. Nowhere is this tendency more evident than in the recent 

which often man- 

because it should 

plethora of Java 

'Maple is a trademark of  Waterloo Maple Inc. 

3Evelyn Toynton, "The Wittgenstein Controversy", The Atlantic Monthly 279, no. 
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applets which model poorly in a digital environment a concept which is done nicely by 

hand. In this vein, one encounters Java implementations of Newton's method which ac- 

complish nothing more than what can be accomplished by any first year calculus student 

with a pencil and straight edge. By conkast, the full Java version of Euclid's elements at 

<http://alephO.clarku.edu/'djoyce/java/elements/elements.html>, provides a wonderful ex- 

ample of how this technology can be used effectively. Another pitfall is loss of focus. In The 

Aims of Education a 1929 essay directed to educators, Alfred North Whitehead implored 

"do not teach too many subjects" and "what you teach, teach thoroughly", as his two "ed- 

ucational  commandment^"^. Digital technology puts a vast source of potential curriculum 

topics at the disposal of educators. It is necessary to make intelligent choices; it would be 

impossible to teach all of them thoroughly and it is therefore essential to distinguish educa- 

tionally sound topics from those that are merely superficially attractive. Corresponding to 

the promise of learner-centred curricula, there is a pitfall resulting from loss of control over 

what mathematics the student is learning and at what pace. This pitfall also has strong 

implications for the teacher. Is the role of the teacher merely altered or is it eroded? 

Another pitfall is the degradation of long-lived robust mathematical knowledge. Math- 

ematics has advanced largely through the careful aggregation of a mat hematical literature 

whose reliability has been established by a slow but thorough process of formal and infor- 

mal scrutiny. Unlike the other sciences, mathematical works do not need to be recent to be 

pertinent. The democratization of the web and the instant publishing forum that it ensues, 

can make it difficult to distinguish reliable sources from unreliable ones. Another pitfall is 

the tendency to look for a total solution resulting in a growing reliance on effectively closed 

architecture software sold by such large firms as I.B.M., Sun, and Peoplesoft. The complete 

educational authoring environments that these firms offer, place much stronger limits on 

the flexibility of mat hematical courseware than are encountered if a variety of mat hematics 

software is selected. Within both the educational and research communities, computer tech- 

nology has the tendency to amplify disparity between the haves and have-nots. Class-based 

disparity can driven purely by the financial challenge that computer systems impose. In 

Vancouver, a West-side school holding a silent auction to raise funds for technology can fare 

much better than an East-side school undertaking similar fundraising events for the same 

4Alfred North Whitehead, The Aims of Education, (New York: The Free Press, 1957), 2. 
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purpose. Along with economic differences, disparity can also arise from prejudicial assump- 

tions about class and attitudes based on gender and race. Finally, the perfusion software 

which encourages degeneration to machine-based rote learning is troubling. Media reports 

have heralded the adoption by a number of Ontario and British Columbia school districts of 

a computer-based mathematics instruction system that attempts to deliver the full grades 

nine through eleven curricula. The highly process-oriented approach to math education that 

these systems typically adopt merits caution; their reliance on rote learning and patterning 

does little to teach students about how to think mathematically, albeit being much easier 

to produce. 

3.4 Technical Promises. . . 
'I don't really start ', he said, 'until I get my proofs back from the printer. Then 

I can begin serious writing. l5 

Sir Alec Cairncross quoting John Maynard Keynes (1883 - 1946) 

While underlining the privileges that accompany high public esteem, few quotes also 

show how much publishing has changed since the first half of this century; proofs are now 

created and edited instantly. Digital technology has promised a similar revolution in the 

way mathematics is conducted. From the beginning, computers have been called upon to 

perform big numerical computations, long sortings, and large searches; these are things that 

computers do really well where humans labour. Computers excel at tasks such as these that 

can be described nicely by algorithms. Human cognition is not strongly rooted in this type 

of descriptive approach and therefore an attempt should be made to take full advantage 

of the computer whenever an algorithm can be identified as solving a particular problem. 

Related to student centred learning, another promise is that computers have the potential to 

help facilitate the teacher's ability to meet students' individual demands. Another promise 

is access to global databases; it is important to note that this access must be construed 

as free access to information not access to free information. The development of expert 

systems promises to support mathematical research and education by providing intelligent 

querying to these databases and to make use of advances in the understanding of learning 

to incorporate software that is genuinely able to take account of learners' performance and 

5Sir Alec Cairncross "Keynes the man", The Economist, 339, no. 1962 (1996): 76. 
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personal history. Finally, mathematicians, working with programmers, are on the verge of 

developing seamless digital mat hematical workspaces which marry text and computation in 

the same document. 

3.5 Technical Pitfalls. . . 
'When Gladstone was British Prime Minister he visited Faraday 's laboratory 

and asked if some esoteric substance called 'Electricity' would ever have practical 

significance. "One day, sir, you will tax it." was the answer. ' (Science, 1994) 

The cost of the electricity consumed to keep computers running is minor compared the 

other costs that they entail. Each of these costs is related to a number of important technical 

pitfalls; some deriving from the way technology is acquired and others to the way we use 

it. One of the most pervasive is that of legacy software and hardware. When technology is 

purchased, an investment is made in the level of technology that is available to us at the 

time of purchase. A further investment in time and effort is then made in learning how 

to adapt the individual's way of doing mathematics to the new technology. Upgrades in 

hardware and software and upgrades in personal technical proficiency notwithstanding, it 

is the initial purchase and the initial effort that is put into adapting behaviour, that will 

most strongly determine the ability to incorporate new hardware and software as it becomes 

available. It would be pointless to try and run the latest version of MathematicaTM on a 486 

class machine. Another pitfall is that in any computer-based math system, the weakest link 

will determine its value.6 Examples of this abound; Maplem running on a Pentium IVTM will 

bog down on large calculations if there is a shortage of  RAM.^ Yet another technical pitfall 

lies in the tendency of advocates to promise unrealistic payoffs and underestimate the effort 

required to achieve even modest advances. The technology component of the reform calculus 

initiative provides a good example. In this case, a lot of effort was put into developing 

technology based exercises which were supposed to emphasize real world applications of 

calculus. In practice, instructors found it difficult to make time available to actually use 

these exercises with their classes. Another pitfall is the infinite time-sink that developing 

good mathematics courseware can entail. This is especially true for higher level courses; 

' ~ a t h e r n a t i c a  is a trademark of Wolfram Research Inc. 

7 ~ e n t i u r n  IV is a trademark of Intel Corporation. 
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effectively programming representations of high level mathematics requires high level skills 

and programming effort. There is also less of a chance that a program developed to help in 

one course will be able to be used successfully by another instructor teaching the same topic 

as different instructors inevitably take quite different approaches to the material presented. 

Finally, there is the growing (and unavoidable) reliance on commercial software. To be 

feasible, the amount of effort required to produce good quality mathematical software will 

in most cases require a commercial return. There is no guarantee that what is in the best 

interest of commerce is in the best interest of mathematics. 

3.6 Intellectual Property and Commercial Issues 

Today, with the arrival of automation, the ultimate extension of the electro- 

magnetic form to the organization of production, we are trying to cope with 

such new organic production as if it were mechanical mass production.8 

Marshall McLuhan 

The transition from scribal culture to typographic culture represented a shift from loose 

notions of authorship with distributed loci of publication and limited distribution to firm n e  

tions of authorship with centralized loci of publication and mass distribution, the transition 

to electronic culture turns the equation inside out, presenting the possibility of distributed 

authorship via mass collaboration and multiple nodes of production with various forms of 

near instantaneous mass publication. The transformation that occurred in the foundations 

of mathematics, from a quest for a unified perspective to a modernist acceptance of a plu- 

rality of perspectives, finds resonance in the media environment in which the mathematical 

community exists and has the potential to affect the language, purposes, methods, and 

meeting places of the community. In a speech entitled The Medieval Future of Intellectual 

Culture: Scholars and Librarians in the Age of the Electron, professor Stanley Chodorow 

states: 

In the not-so-distant future, our own intellectual culture will begin to look 

something like the medieval one. Our scholarly and information environment 

will have territories dominated by content, rather than by distinct individual 

'McLuhan,~he Gutenberg Galaxy, p. 130. 
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contributions. The current geography of information was the product of the 

seventeenth-century doctrine of copyright. We are all worrying about how the 

electronic medium is undermining that doctrine. In the long run, the problem 

of authorship in the new medium will be at least as important as the problem 

of ownership of information. 

Works of scholarship produced in and through the electronic medium will have 

the same fluidity - the same seamless growth and alteration and the same de- 

emphasis of authorship - as medieval works had. The harbingers of this form 

of scholarship are the listservs and bulletin boards of the current electronic en- 

vironment. In these forums, scholarly exchange is becoming instantaneous and 

acquiring a vigor that even the great scholarly battlers of old - the legendary 

footnote fulminators - would admire. Scholars don't just work side by side in 

the vineyard; they work together on common projectsg 

Applied to mathematics, Chodorow's ideas suggest the possibility that the community's 

elites, long having been composed of those individuals who demonstrate a particular "in- 

dividual vision and brilliance", may undergo a process of reconstruction, resulting in elites 

whose members are those who have learned how to start with good ideas and develop them by 

using the Internet to harness the intellectual power of the community. In an age of massively 

parallel mathematical computation, the potential exists for massively parallel mathematical 

collaboration. Perhaps the best idea of what a fully digital mathematical scholarship and 

teaching environment might look like can be gleaned from the "hacker culture" of the open 

source programming community. The meeting places of this community are primarily email, 

threaded bulletin boards, and implementations of the Concurrent Version System. Those 

who identify themselves as members, speak of the community's "gift culture" which rewards 

the most talented and generous of members with status in the community meritocracy. In 

the opening section of The Cathedral and the Bazaar, Eric S. Raymond describes hacker 

culture: 

Many people (especially those who politically distrust free markets) would expect 

a culture of self-directed egoists to be fragmented, territorial, wasteful, secretive, 

'Stanley Chodorow, "The Medieval Future of  Intellectual Culture: Scholars and Librarians in the Age of  
the Electron", Association of  Research Libraries Proceedings 189, [online]. 1996. 
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and hostile. But this expectation is clearly falsified by (to give just one example) 

the stunning variety, quality and depth of Linux documentation. It is a hallowed 

given that programmers hate documenting; how is it, then, that Linux hackers 

generate so much of it? Evidently Linux's free market in egoboo [coined by 

the author for 'ego boost'] works better to produce virtuous, other-directed be- 

havior than the massively-funded documentation shops of commercial software 

producers.1•‹ 

He goes on to invoke the idea of a "community of interest": 

I think the future of open-source software will increasingly belong to people who 

know how to play Linus7s game, people who leave behind the cathedral and 

embrace the bazaar. This is not to say that individual vision and brilliance will 

no longer matter; rather, I think that the cutting edge of open-source software 

will belong to people who start from individual vision and brilliance, then amplify 

it through the effective construction of voluntary communities of interest." 

If, indeed, doing mathematics in the digital age were to develop in a similar fashion 

to the way that doing software development has in the open source community, then the 

mathematics community must prepare itself for the loss of fixed notions of authorship and 

ownership and the accountability and economic models that those notions sustain. 

Another intellectual property issue concerns the relationship between supervisor and 

student. As job security disappears more students see intellectual property as their future: 

to wit, there is the case of Ma vs Phong and Stein at  Columbia University in which a grad 

student is suing his supervisor and a collaborator of his supervisor claiming that they stole 

parts of his work for articles that they submitted for publishing. While this suit is almost 

certainly groundless, this type of conflict is likely to become more frequent in the future. 

Finally, there is the researcher as CEO: conflicts of interest are inevitable. They must be 

declared, however, they are rarely resolved. Increasingly, researchers find themselves in the 

position of not only needing to capitalize on their intellectual property for their personal 

benefit, but also to help fund their research. Research may well get done or not done based 

primarily on intellectual property and disclosure issues. 

''Eric S. Raymond, The Cathedral and the Bazaar, (published by Eric S. Raymond under Open Publication 
License, 2000), [online]. 

" ~ a y m o n d ,  The Cathedral and the Bazaar. 
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The extent to which mathematical software is adopted is strongly influenced by intel- 

lectual property issues. Different stakeholders can have very different views about what 

constitutes fair consideration for intellectual property in a particular setting. On the user 

side, one might expect the views of supervisors and teachers to differ from those of stu- 

dents and parents. On the producer side, different commercial entities will adopt different 

approaches to acquiring and protecting intellectual property. 

Commercial issues also strongly influence the type of mathematical software available 

and how it is adopted. The rules of the marketplace dictate that neither can you make 

what you can't sell nor can you sell what you can't make. As far as innovation goes, the 

edu-software business is characterized by a strong conservatism which is reinforced by the 

lack of a working model for research and development. Traditional publishing houses, for 

example, tend to view software like books offering royalties that are too small to justify the 

development required and shying away from anything but "work-for-hire" when contracting 

for software. Another issue is the commoditization of mathematical knowledge associated 

with the use of a standard set of commercial authoring tools. Software produced by these 

tools ends up having the same look and feel. Of greater pedagogical concern is that parts 

of the curriculum that can not be represented in the chosen authoring environment are 

jettisoned. Finally, there is the question of whether the latest and greatest software is 

necessary to meet educational (or research) objectives? 

3.7 Suggestions and Conclusions . . . 

The object of mathematical rigor is to sanction and legitimize the conquests of 

intuition, and there was never any other object for it.12 

Jacques Hadamard 1865 - 1963 

I have no satisfaction in formulas unless I feel their numerical magnitude.13 

Lord Kelvin 1824 - 1 90 7 

The above quote serves as a reminder of what one strives for with the appropriate use 

of technology in mathematical research and education. Some suggestions and conclusions 

12G. Polya, Mathematical discovery: On understanding, learning, and teachingproblem solving (Combined 
Edition), (New York: John Wiley and Sons, 1981), vol. 2, 127. 

13~urrnan University Mathematical Quotations Server [online], 2003. 
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follow. First, in order to choose the appropriate technology, it is important to clearly identify 

expectations and equally important to be realistic about the learning curve. Advanced 

software such as Mathematicamor Maplem, if used wisely, can yield great educational rewards 

however time must be alloted in the curriculum for the students to learn how to use it. 

Another recommendation is in order to avoid some of the pitfalls associated with the use 

of proprietary software, endeavour to use open architecture software whenever possible. 

Furthermore, if when participating in software development, it is advisable to consider the 

formation of not for profit and 'pre-competitive' consortia in order to share expertise and-  

access to markets and to bolster the ability to compete with larger companies. 

For mathematicians, mathematical software development provides the opportunity to 

recapture computing from mathematics' sister sciences. From the point of view of peda- 

gogy and human-computer interface issues, it is now possible to take advantage of recent 

advances not only in software design but also in the field of cognitive neuroscience in which 

researchers have begun to investigate the neurophysiology of mathematical thought. The 

Malthusian principle that "expectations outstrip performance", dictates that good technol- 

ogy will never be cheap. This does not prevent us from hoping that in the not too distant 

future, appropriate technology will be accessible to all students and research communities. 

In conclusion, a final quote from Alfred North Whitehead the spirit of which serves as a 

reminder to consider the challenges and potential that computers present to mathematics 

educators. 

. . . so long as we conceive intellectual education as merely consisting in the ac- 

quirement of mechanical mental aptitudes, and of formulated statements of use- 

ful truths, there can be no progress; although there will be much activity, amid 

aimless rearrangement of syllabuses, in the fruitless endeavour to dodge the in- 

evitable lack of time.14 

14Alfred North Whitehead, "The Rythmic Claims of Freedom and Discipline", The Aims of Education, 
(New York: The Free Press, 1957), 31. 



Chapter 4 

Managing Digital Mat hemat ical 

Discourse 

According to the social constructivist account, new mathematical knowledge 

claims are constructed by individual persons, or groups of individuals working 

jointly, within the context of a mathematical practice or tradition. They are 

formulated linguistically (understood broadly to include diagrams, mathematical 

symbols, and other forms of representation) with reference to traditions of their 

form and con tent (composing part of the tacit knowledge of mathema tics).' 

Paul Ernest 

"Conversation and Rhetoric" is perhaps an unusual chapter title for a text on the phi- 

losophy of mathematics; however, in Social Constructivism as a Philosophy of Mathematics, 

this is the title that Paul Ernest choses to introduce his discussion of the problems associated 

with the exchange of mat hematical knowledge.2 Stating that "the identity and equivalence 

of linguistic forms and expressions that are admitted vary according to tirne, community, 

and context", Ernest cites three factors that have combined to distinguish mathematical 

knowledge exchange from the exchange of knowledge in other d i ~ c i ~ l i n e s . ~  The first is the 

"explosive growth" of mathematics; he cites Davis and Hersh who have estimated that by 

the end of the twentieth century, mathematics was comprised of approximately thirty-four 
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hundred subspecialisms. The second is the growing but robust set of mathematical symbols 

and icons. The third is the relative invariance of mathematical rule-based transformations 

which help preserve semantics across differences in time of writing, mathematical subspecial- 

ism, and even natural language. It is notable that much of eighteenth century mathematics 

remains readable today and it was not too long ago that Euclidean geometry was taught 

from the books of Euclid. 

In the digital context, both the nature of mathematical knowledge and its increasingly 

high volume exchange present a serious challenge to knowledge management systems. The 

technical response to this challenge has been an attempt to fix ontologies typically in the 

form of XML based metadata standards; the OpenMath and MathML projects providing 

the two most notable examples. This chapter considers the use of flexible ontologies for the 

purpose of managing the "mathematical conversation" in its varied forms and is adapted 

from a paper presented at The Second International Conference on Mathematical Knowledge 

Management (MKM 20031.~ 

4.1 MKM's Intellectual Pedigree 

Involving research mathematicians as well as specialists from such diverse fields as librari- 

anship, education, cognitive science, and computer science, there are currently a wide range 

of initiatives and projects that may be considered as belonging to the field of Mathematical 

Knowledge Management (MKM). A perusal of the Proceedings of the First International 

Workshop on Mathematical Knowledge Management reveals that presentations with a focus 

on best practice in the exchange mathematical documents in digital environments, such as a 

presentation on the recommendations of the International Mat hematics Union's Committee 

on Electronic Information and Communication, shared time with presentations focussed on 

foundational concepts, such as a presentation on the underlying logic and language of the 

Theorema theorem proving system.5 The juxtaposition of topics represented by these two 

4Jonathan Borwein and Terry Stanway, "Managing Digital Mathematical Discourse", Lecture Notes in 
Computer Science no. 2594: Mathematical Knowledge Management: proceedings of The Second Inter- 
national Conference, Andrea Asperti, Bruno Buchberger, and James C. Davenport eds., (Berlin: Springer- 
Verlag, 2003) 45. (Portions of this chapter have been reprinted by permission of Springer-Verlag.) 

 he former presentation was by Dr. Jonathan Borwein and the latter by Dr. Bruno Buchberger. 
(Unpublished proceedings of the First International Workshop on Mathematical Knowledge Management.) 
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presentations represents a fundamental duality of focus in the field of MKM, as the intellec- 

tual foundations of the two presentations are distinct: those of the former stretching back 

to the libraries of antiquity and those of the latter, while more recent, reaching back at least 

as far as Leibniz' seventeenth century call for a calculus philosophicus.6 

F'rom this perspective, the pre-history of MKM is the dual histories of mathematical 

librarianship and mathematical logic. While both of these are 'meta-fields' in the sense 

that both are about mathematics, it would not have been immediately obvious to a pre- 

digital intellect that they share anything else in common. That emerging computer and 

network related technologies have redefined these fields in such a way that there are now 

good reasons to consider them as aspects of a single field, is an example of how a shift 

in media can lead to a shift in perspective.7 The benefit of analysing MKM's intellectual 

pedigree is that not only does it help bring into focus the field's central preoccupations 

but it also helps identify some underlying tensions. From the librarianship side, MKM has 

inherited a concern for preservation, metadata, cataloguing, and issues related to intellectual 

property and accessibility. From the mathematical logic side, MKM has inherited a concern 

for foundations and issues related to automated or guided proof generation. Both traditions 

have bequeathed a concern for authentication of knowledge, albeit in different contexts. One 

task that is a concern in both of these two founding fields but is treated differently in each 

is the question of how to establish the underlying semantics that any exercise in information 

sharing requires. From a knowledge management perspective, this is the question of ontology 

definition and in the following section, we examine some of the problems presented by 

ontology definition in MKM. 

4.2 Ontology Definition 

The philosophical concept of domain ontology has important implications for MKM. In 

their Scientific American article, The Semantic Web, Berners-Lee, Hendler, and Lassila 

define "ontology" in the context of artificial intelligence and web-based applications: 

. .an ontology is a document or file that formally defines the relations among 

'Gottlob Rege,  "Begriffsschrift", From Frege to  Godel: A Sourcebook in hlathernatical Logic, 1879-1931, 
Jean van Heijenoort ed., (Cambridge: Harvard University Press, 1967) 6 .  

7 ~ h e  conference description for the First International Workshop on Mathematical Knowledge hfanage- 
rnent describes MKM as an "exciting new field in the intersection o f  mathematics and computer science". 
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terms. The most typical kind of ontology for the Web has a taxonomy and a set 

of inference rules.8 

For our purposes, we will bear in mind this broad definition, but seek out a more 

precise description in order to address ontology problems in MKM. In particular, our focus 

will be on the discourse of mathematical communities as opposed to their literature and 

we will consider management problems arising from the informal exchange of information 

conducted in the shared vocabularies of communities that make up the broader mathematical 

community. 

In The Acquisition of Strategic Knowledge, Thomas R. Gruber describes five overlapping 

stages of knowledge acquisition. These are: identification, conceptualization, formalization, 

implementation, and testingg While originally conceived for the build-up of knowledge in 

expert systems, these five stages provide a useful framework for the description of MKM 

knowledge management tasks. In particular, the description of the conceptualization stage 

draws from the terminology of ontological analysis, specifying three distinct aspects of the 

broad ontology: static ontology, dynamic ontology, and epistemic ontology. Gruber describes 

this stage as follows: 

Conceptualization results in descriptions of categories or classes of the domain 

objects and how objects are related (the static ontology), the operators, func- 

tions, and processes that operate on domain objects (the dynamic ontology), and 

how all this knowledge can be used to solve the application task (the epistemic 

ontology) .lo 

By way of an example, consider the application of the language of conceptualization stage 

ontological analysis to a typical MKM knowledge retrieval task: the discovery of publications 

which mention the Bartle-Graves theorem in their title, abstract, or keywords. In this case, 

the static ontology includes a definition of the 'publication', 'title', 'abstract', and 'keywords' 

entities as well as a definition of the entities to be searched. The dynamic ontology includes 

a definition of the protocols and processes involved in information access and retrieval; this 

'Tim Berners-Lee, James Hendler, and Ora Lassila "The Semantic Web", Scientific American, 284 no. 5 
(2001): 39. 

'Thomas Gruber, The Acquisition of Strategic Knowledge, (New York: Academic Press, 1989), 128. 

1•‹Gruber, p. 128. 
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could be as simple as a SQL search on a fixed database or a more complex specification such 

as that of an agent-based query of a remote database. The epistemic ontology defines the 

interface level entities, both style related and logic related which will be invoked to determine 

the manners in which the information request and results interfaces may be presented to the 

user. According to a defined set of criteria, if the knowledge acquisition cycle is effective, the 

user is presented with output that, in some useful manner, lists publications that are related 

to the Bartle-Graves theorem along with relevant background information regarding these 

publications. A more sophisticated epistemic ontology may present related information 

based on an inference concerning what type of information might be of use to a particular 

user. 

The dual inheritance of MKM is reflected in the definition of static ontologies. Applica- 

tions that draw more strongly from the librarianship tradition, admit degrees of flexibility 

and ambiguity in their ontologies. Both Math-Net's MPRESS and the NSF funded arXiv 

mathematical document servers admit weakly defined elements in their metadata sets, ask- 

ing submitting authors to make subjective assignments of topic descriptors." Applications 

that draw from mathematical logic depend on highly fixed ontologies. The static ontology 

of Theorema is encoded at the implementation level as highly structured 'Theorema Formal 

Text', an implementation of high order predicate logic.12 

Negotiating differences in ontologies is part of human communication. It is therefore 

not surprising that applications that have evolved from the highly human-centred discipline 

of librarianship have inherited a tolerance for subjectivity and a degree of ambiguity. It is 

similarly not surprising that applications that have evolved out of the field of mathematical 

logic depend upon fixed and highly defined ontologies. Certainly, ontology resolution is a 

problem that must be addressed in any effort to interconnect MKM applications. While 

much work has been done in this area resulting in significant progress, notably, by the 

OpenMath and OhfDoc research groups, much work remains. Consider, for example, the 

task of determining whether the proof of a given proposition either exists in the literature or 

can be automatically generated. Significant refinements of current technology are required 

before this determination can be reliably accomplished by a purely agent-based query of 

''In the case of MathNet, these descriptors are referred to as 'keywords' and in the case of arXiv, they are 
referred to as 'Mathematical Categories'. 

" ~ r u n o  Buchberger, "Mathematical Knowledge Management in Theorema", proceedings of The First 
International Workshop on Mathematical Knowledge Management, ed. Olga Caprotti, unpublished proceed- 
ings (2001), 3 
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proof repositories or theorem proving systems. The task is made more difficult if the propo- 

sition is originally expressed using a human-centred application which accepts input, such 

as BTEX or Presentation MathML, that maps directly to standard mathematical text. In 

this case, it is easy to imagine that some form of challenge and response interaction may be 

necessary in order to determine the semantic content of the query. 

While the problems associated with ontology negotiation in MKM have received con- 

siderable attention, equally germane is the fundamental question of ontology construction. 

Motivated by the desire to build applications from a solid foundation in predicate logic, 

explicit attention to ontology construction has historically been a characteristic of research 

in artificial intelligence. This research has resulted in a number of languages and methods 

for building ontologies such as Knowledge Interchange ~ 0 r m a t . l ~  Of note, in the domain 

of MKM, is the work done by Fiirst, Leclkre, and Trichet in developing a description of 

projective geometry based on the Conceptual Graphs model of knowledge representation.14 

Ontology definition is made more difficult if it is impossible to describe a priori aspects of 

the knowledge domain. This is precisely the case with grey literature in which elements of 

the static, dynamic, and epistemic ontologies will inevitably need to be extended as new 

fields and forms of knowledge are defined. In the next section, we examine the need for 

a flexible and extendable ontology in managing digital mathematical grey literature and 

mathematical discourse in general. 

4.3 The Digital Discourse 

As mathematical activity is increasingly conducted with the support of digital network 

helper technologies, it is becoming increasingly possible to address the questions of to what 

extent, and for what purposes, this activity can be captured and archived. The types of 

mathematical activity that are conducted with the aid of digital networks cover a spec- 

trum with highly informal activities such as queries to search engines and mathematical 

databases at one end and, at the other end, activities of a much more formal nature such 

as the publication of papers in online journals and preprint servers. As the majority of 

1 3 ~ h e  Logic Group - Stanford University, Knowledge Interchange Format [online], 2003. 

1 4 F r ~ d ~ r i c  Fiirst, Michel Leclhre, and Francky Trichet, Contribution of the Ontology Engineering to Math- 
ematical Knowledge Management proceedings of  The First International Workshop on Mathematical Knowl- 
edge Management 
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online mathematical activity is informal, the challenge that it presents to MKM is akin to 

the challenge presented by "grey literature" to the field of librarianship. A simple Web 

search reveals that the question of what constitutes grey literature is very much open to 

interpretation. Definitions range from thk restrictive "theses and pre-prints only" to more 

inclusive interpretations such as the following from the field of medical librarianship: 

In general, grey literature publications are non-conventional, fugitive, and some- 

times ephemeral publications. They may include, but are not limited to the 

following types of materials: reports (pre-prints, preliminary progress and ad- 

vanced reports, technical reports, statistical reports, memoranda, state-of-the 

art reports, market research reports, etc.) , theses, conference proceedings, tech- 

nical specifications and standards, non-commercial translations, bibliographies, 

technical and commercial documentation, and official documents not published 

commercially (primarily government reports and documents). l5 

This idea of the "fugitive and sometimes ephemeral" nature of grey literature is partic- 

ularly apt when applied to expression conveyed via digital networks. For purposes which 

will be discussed presently, we choose to adopt a definition of digital mathematical dis- 

course (DMD) which encompasses the full grey to white spectrum. A list of examples from 

this spectrum might contain such diverse mathematical entities as email exchanges, bul- 

letin boards, threaded discussions, CAS worksheets, transcripts of electronic whiteboard 

collaborations, exam questions, and database query strings as well as preprints and pub- 

lished papers. The motivation for this open-ended definition is the potential that methods of 

archiving and retrieving DMD hold for both gaining insight into the nature of mathematical 

activity and facilitating productivity in mathematical activity. We turn now to the problem 

of specifying an appropriate ontology development framework. 

4.4 Ontology Development for Digital Mathematical Discourse 

There are two reasons that careful consideration of an ontology development framework 

for DMD is important. The first relates to the "Web Services" aspect of the Semantic 

Web specification and the potential for DMD oriented applications to both harvest and be 

1 5 ~ h e  New York Academy of Medicine, What is Grey Literature [online], 2003. 
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harvested from, either manually or via agents. The second is more complicated and is related 

to the emerging state of metadata standards. Jokela, Turpeinen, and Sulonen have argued 

that if an application's main functions are content accumulation and content delivery, then 

a highly structured ontology definition and corresponding logic is unnecessary. In this case, 

ontologies may effectively be defined by way of formally specified metadata structures.16 

One problem confronting DMD ontology development is that while it would be enticing 

to simply make the ontology implicit in an application profile combining, for example, the 

Dublin Core and the related Mathematics Metadata Markup metadata specifications, it 

is not clear that such a profile would be rich enough or offer fine enough granularity to 

meet the needs of a DMD specification. A second problem originates from the objective 

that DMD applications be acessable to the broader mathematical community, including 

individuals with possibly limited understanding of the metadata standards at their disposal. 

A lack of understanding of metadata standards introduces the possibility of inappropriate 

use of taxonomy and the unnecessary use of ad hoc taxonomy. For these reasons, for the 

definition of new forms of mathematical expression, an appropriate ontology based on a 

profile of existing metadata standards, must exhaust those standards and then encourage 

the intelligent use of ad hoc taxonomy to complete the definition to the desired degree of 

granularity. As the dominant metadata standards become more fully refined, the ad hoc 

component should be reconciled with the existing metadata profile. Figure 4.1 represents a 

component of the static ontology of the type of threaded discussion that might be motivated 

by an online class discussion; ad hoc elements are connected into the diagram by dotted 

lines. This ontology is based on an application profile that references the Dublin Core and 

Educational Modeling Language name spaces. 

The extension of a metadata application profile by the addition of elements that are not 

defined in the schemata that make up the profile leads to potential management problems. 

These include incomplete object definition, in which not enough elements are defined to 

allow the desired degree of granularity, as well as contradictory or superfluous definition of 

elements. While it is certainly possible, depending on the size of the knowledge base, that 

these problems be resolved manually, the possibility of at least partially automating the 

management process merits attention. 

16Sami Jokela, hlarko Turpeinen, and Reijo Sulonen, " Ontology Development for Flexible Content", 
Proceedings o f  the Hawaii International Conference on System Science (IEEE),  vol 6 ,  (1998):  6506 
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Figure 4.1: The Monk Paradox: Online Class Discussion 

4.5 Conclusion and Future Work 

Due largely to its diverse intellectual inheritance, the field of Mathematical Knowledge Man- 

agement remains divided across a spectrum with applications whose main focus is derived 

from the field of mathematical librarianship at  one end and applications whose main focus 

is derived from the field of mathematical logic at the other. In between, are applications 

such as Computer Algebra Systems, function libraries, and reverse look-up interfaces that 

interact with each other only with human intervention. Each of these applications are, in 

one respect or another, agents in the process of mathematical knowledge exchange. While 

the variety of MKM oriented applications reflects both the increasing diversity of the math- 

ematics community and the needs of its various sub-communities, it presents a challenge 

to interaction between different MKM systems. While to date, much important work has 

focused on defining ontologies by way of metadata standards which are designed to facili- 

tate low level data exchange between applications, it is not clear that fixed ontologies will 

provide the richness and variety needed by MKM systems designed to directly facilitate 

mathematical conversation between members of mathematical communities. 

Dedicated to the investigation of advanced digital collaboration in mathematics research 

and education, the CoLab is part of Simon Fraser University's Centre for Experimental and 

Constructive Mathematics. Work is presently being undertaken on the design of MKM 
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Figure 4.2: The (virtual) CoLab with avatar. 
17 

interfaces which support dynamic ontologies; this work is described in more detail in the 

appendix. 



Chapter 5 

A Framework for the Analysis of 

MKM 

. . . the invention of an ABC of man's thought was needed, and by putting to- 

gether the letters of this ABC and by taking to bits the words made up by them, 

we would have an instrument for the discovery and testing of everything ... if we 

had a body of signs that were right for the purpose of our talking about all our 

ideas as clearly and in as true and as detailed a way as numbers are talked about 

in Arithmetic or lines are talked about in the Geometry of Analysis, we would 

be able to do for every question, in so far as it is under the control of reasoning, 

all that one is able to do in Arithmetic and Geometry.. . ' 
Gottfried Wilhelm von Leibniz (1646 - 1716) 

An examination of the recent history of MKM reveals a rich interplay of technological, 

philosophical, and economic influences as well as the influence of ideas from within the field 

of mathematics itself and its sister fields of logic and computer science. Depending upon 

their intellectual foundations, MKM initiatives may be roughly classified according to the 

degree to which they impose absolute vs. relativistic mathematical epistemologies, cen- 

tralised vs. decentralised nodes of control, and fixed vs. flexible ontologies. Due to external 

societal factors, present trends in MKM are leading to increased diversity in the methods by 

which individuals and communities choose to represent, publish, and access mathematical 
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knowledge. In a previous chapter, it has been argued that any attempt at MKM carries, 

either explicitly or implicitly, assumptions about the nature of mathematical knowledge and 

that it is through these assumptions that MKM defines epistemic communities within the 

broader mathematics community and thus gives shape to the community as a whole. 

Uttered in his personal journal, the opening quote relates Leibniz' dream of an analytical 

approach to human reasoning. Almost 300 years further on, there is still no comprehensive 

"arithmetic of ideas" in sight however methods have been developed to aid decision making 

analysis in situations where reasonable assumptions can be made about human behaviour. 

This chapter is presented as a proposal regarding directions for the application of some of 

these methods to decision making in MKM. 

The complex combination of factors affecting the development of MKM at this cusp 

between the typographic and digital eras encourages the point of view that MKM, like all 

forms of knowledge management, is a social experiment in progress. From this perspective, 

the development of MKM is an organic process under which its defining characteristics at- 

tain some form of equilibrium when, and if, stability comes to its various influencing factors. 

While this perspective respects the complex nature of MKM's development, it down plays 

the fact that the present state of MKM is the result of human decision making. Decisions 

made by individuals and groups concerning policy and the allocation of time and resources 

define the state of the MKM environment. These decisions range from the strictly personal, 

such as whether or not to prepare a mathematical document in B m  to the increasingly 

far-reaching, such as decisions by mathematical software firms concerning product develop- 

ment or decisions by educational policy makers concerning the use of information technol- 

ogy in mathematics education. At the global level, organizations such as the International 

Mathematics Union's Committee on Electronic Information and Communication (CEIC), 

the OpenMath Society, and the Math Working Group of the World Wide Web Consortium 

enact decisions regarding standards and recommendations that are reported to the math- 

ematics community as a whole. That all of these decisions necessarily will be made with 

incomplete knowledge, does not preclude the potential for the development of an analytical 

framework to support the decision making process. Indeed, the emergent nature of the digi- 

tal era presents the possibility that decisions made today concerning the allocation of MKM 

resources will have longstanding effects. At stake are tested and valued systems of knowl- 

edge verification and distribution as well as the economic models and community structures 

that support them. With care, and perhaps some luck, the mathematics community may 
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avoid QWERTY keyboard like legacies in its knowledge management systems. 

Before proceeding with the discussion of an analytical framework, it is necessary to 

characterize good MKM decision making. This endeavour necessarily confronts the social 

nature of knowledge management and recognizes MKM artifacts, be they papers, Web pages, 

knowledge bases or other forms of represented knowledge, as rhetorical instruments designed 

to convey meaning to one or more communities within the mathematics community. In this 

respect, individuals make good MKM decisions when they choose to represent knowledge 

in a manner that is meaningful and useful to the intended audience. This criterion extends 

to group and community oriented policy making as 'good policy favours meaningful and 

useful forms of knowledge representation'. This rather obvious statement is more interesting 

when considered with respect to the variety of digital MKM systems which are currently 

being tested by the mathematics community. Here, the criterion must be interpreted to 

imply that effective systems support meaningful and useful knowledge representation within 

communities and may even encourage community formation. 

When confronted with a decision regarding mathematical knowledge representation, in- 

dividuals must consider the relative utility of the various options available to them. Decisions 

by groups concerning MKM policy or the implementation of an MKM system similarly will 

be based on the relative utility of the options. While it is possible that various utility crite- 

ria, such as financial incentives or access to technical expertise, may enter into the decision 

process, the present discussion considers decisions for which the sole criterion is the adoption 

of meaningful and useful forms of knowledge representation. In the following section, the 

MKM environment is characterized by a set of causal concepts which are then organized 

into a Fuzzy Cognitive Map. 

5.1 A Complex Systems Approach to MKM Decision Making 

Taking as its foundation the multi-valued set theory of Lotfi Zadeh, the concept of a Fuzzy 
Dynamical System has been developed by Kosko and others as a means of modelling sys- 

tems in which statewise knowledge is either inherently uncertain or is affected by feedback 

processes to the extent that certainty is impractical.2 In its simplest form, a Fuzzy Cogni- 

tive Map (henceforth, FCM) is a static construct which represents the causal concepts of a 

'Bart Kosko, Neural Networks and Fuzzy Systems, (Englewood Cliffs: Prentice Hall, 1992), 152-170. 
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system as nodes of a digraph with edges taking values in -1,0,1. If concept Ci stimulates 

concept Cj  (i.e. an increase in Ci causes an increase in Cj), then the corresponding edge 

eij is set to 1. Edge values of 0 and -1 represent neutral and detrimental relationships 

respectively. 

The process of FCM model development has several stages. In the first stage, expert 

opinion is called upon for the definition of a set of causal concepts which describe the 

system. In the second stage, edge values are assigned to the relationship between concepts. 

These edge values may be arrived at through the analysis of relevant data, if such data is 

available, or by again calling on expert opinion. By way of example, the MKM environment 

is described by the following rubric of causal concepts: 

1. Perceived Need for Formal Knowledge Representation - a measure of the desire for 

formal artifacts, such as journal style papers, amongst members of the target commu- 

nities 

2. Perceived Need for Formal Validation - a measure of the desire for formal methods of 

knowledge validation, such as peer review, amongst members of the target communities 

3. Perceived Need for Immediacy - a measure of the desire for "instant gratification" 

amongst members of the target communities; to what extent must knowledge publi- 

cation and retrieval be achievable with "the click of a mouse" 

4. Perceived Need for and Acceptance of Mass Publication - a measure of the desire for 

and acceptance of broad, barrier-free dissemination of knowledge artifacts; the place- 

ment of papers on pre-print servers as opposed to their being restricted to subscribed 

journals 

5. Perceived Need for Maintenance of Community Structure - a measure of the desire to 

maintain the roles which give the community its structure; one aspect of this factor is 

the desire to maintain community elites 

6. Perceived Need for and Acceptance of Collaboration - a measure of the desire to sup- 

port collaborative work and the acceptance of artifacts produced through collaboration 

7. Advances in MKM Media - a measure of the anticipated influence of new hardware 

and software 
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Figure 5.1: An FCM for MKM 

8. Acceptance of Decentralized MKM - a measure of the willingness to accept and the 

desire for MKM systems characterized by flexible ontologies and decentralized nodes 

of control 

Figure 5.1 depicts a possible FCM for MKM as described by these causal concepts. 

This FCM is encapsulated by the following causal connection edge matrix K: 

where Kij is the effect of concept i on concept j .  

The activation stage involves testing the model against an MKM decision. For a group, 

this decision might be framed along the lines of "given our present and anticipated resources 
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and our understanding of trends and causal factors related to MKM, is our support of MKM 

initiative A a good idea". The test involves: 

1. stating a concept vector, Co, that corresponds to the MKM option being tested, 

3. evaluating C1 = f (cl), where f is an appropriate threshold function. 

The process continues with 6'i = K * t i - 1  and Ci = f ( c i )  until C, = Ci-1 making Ci-l 

a fixed point of the FCM dynamical system. 

In the MKM example, to test a decision about whether or not to support an initiative 

that advocates a strongly decentralized approach to MKM, a Co concept vector is con- 

structed with each element switched to 0 except that corresponding to distributed MKM 

which is switched to 1: 

A typical threshold function for this test would be defined as follows: 

I 1 i f k = 8  

f(c) = 0 i f k # 8  and C: < 
1 i f k # 8 a n d ~ : > $  

With this definition, the "decentralized MKM" concept is clamped at 1 while each of 

the other concepts will be set to either 1 or 0 at each iteration. The iterations proceed as 

follows: 

K * C o = C 1  = (0,0,0,0,-1,1,1,0) 

f (6'1) = C1 = (0,0,0,0,0,1,1,1) 

K*C1=6 '2=(0 ,0 ,1 ,1 , - l , 2 ,2 ,2 )  

f 0 5 2 )  = c2 = ( O , O ,  1, L O ,  1,1,1) 

K * C 2 = c 3 =  (0,0,1,1,-1,2,4,3) 

f ( ~ 3 )  = C3 = (0,0,1,1,0,1,1,1) 

C2 = C3 which implies that (0,0,1,1,0, 1,1,1) is a fixed point. This simple analysis 

postulates that a commitment to a decentralized MKM initiative is consistent with an 
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MKM environment that favours immediacy, mass publication, collaboration, and innovation 

in media. 

By the same process, clamping each of 'Formal Knowledge Representation', 'Formal 

Validation', and 'Maintenance of Community Structure' in separate executions leads to 

the steady state vector (1,1,0,0,1,0,0,0) suggesting that these three factors of the MKM 

environment are mutually consistent. 

FCM modelling provides a very simple method for representing the causal relationships 

that characterize a particular field. Experts in the field can quickly define sets of causal. 

concepts and generate the corresponding FCM. With modern computational tools, calcu- 

lating the steady state of a given input, if it exists, is not hard and cycles are easy to detect. 

Along with a consideration of the history and trends of MKM and knowledge management 

in general, the result of an FCM iteration is readily interpreted and provides another means 

of formulating decisions in MKM. The approach does, however, have weaknesses which, if 

unaccounted for, may lead to misleading statements. 

A fundamental weakness of an FCM approach is described by Kosko: 

Yet an FCM equally encodes the expert's knowledge or ignorance, wisdom or 

prejudice. Worse different experts differ in how they assign causal strengths to 

edges and in which concepts they deem causally relevant. The FCM seems only 

to encode its designers biases and may not even encode them accurately.3 

By way of a partial solution to this problem, Kosko proposes an algorithm for the com- 

bination of adjacency matrices generated by different experts. If k experts generate k adja- 

cency matrices, {El ,  E2 , .  . . , E k ) ,  then a combined FCM adjacency matrix F is constructed 

by: 

1. determining n,  the total number of distinct concepts used by the experts 

2. ordering the set of concepts as CI ,  C2,. . . , C, 

3. for each expert's adjacency matrix, Ei, ie{l, 2, . . . , k), construct the corresponding 

n x n augmented adjacency matrix, Fi, by permutating the rows and columns of Ei 

to match the concept ordering in step 2 and adding 'zero' rows and columns where 

necessary 
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4. calculating F as the normalized sum of the F,: 

If each expert chooses adjacency matrix edge values in {-1,0,1), the elements, fij of F 

will take values in [-I, 11. As Kosko points out, given a sufficiently large representation of 

experts, it should be possible to state a confidence measure for how closely F matches an 

ideal population adjacency matrix. Even this approach, however, can not avoid the inherent 

uncertainties associated with ranking by consensus implied by Arrow's theorem. 

There are limitations of the FCM model that go beyond the vagaries of capturing expert 

opinion. In Fuzzy Logic for Business and Industry, Cox outlines three of these  limitation^.^ 
The first concerns the meta-analysis nature of the FCM approach. FCM models are based 

on statements about the causal relationships between factors affecting a system and not from 

any raw data that might be available through monitoring the system. For an MKM system, 

it is possible to imagine a situation where data concerning the frequency of particular types 

of interaction with a Web site might be germane. The FCM approach does not afford an easy 

way of incorporating this data directly into the model. A second limitation stems from the 

static nature of the FCM. While causality is indicated by arrow directions and edge weights, 

it is very difficult to separate out any but the most direct lead-lag relationships between 

concepts. A third limitation is related to computability. As the number of concepts, n,  

belonging to an FCM grows, the size of the adjacency matrix grows only as n2. A problem 

arises with an exhaustive analysis of the system in which it might be desirable to clamp not 

only single concepts but all, or almost all, possible combinations of concepts. Unfortunately, 

the number of possible input concept vectors, Co, grows as 2n. The situation is even worse 

if it is desirable to look at a significant subset of the possible adjacency matrices. Assuming 

that the elements of the adjacency matrix take values in {-1,0, I), the number of possible 

matrices grows as 3n2. 

The usefulness of FCM's in analyzing MKM systems may potentially be improved by 

allowing the nodes of the concept map to be updated by learning algorithms as the execution 

stage passes through its iterations. Research in this area applies ideas from the theory of 

neural networks to the construction of dynamic FCM's. Seminal work by Kosko focuses 

4Earl Cox, Fuzzy Logic for Business and Industry, (Rockland: Charles Media Inc., 1995), 360. 
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on Differential Hebbian Learning algorithms.5 Named in honour of the Canadian cognitive 

psychologist Donald Hebb, Hebbian learning is perhaps best explained in Dr. Hebb's own 

words from his influential connectionist text, The Organization o f  Behaviour: 

When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change 

takes place in one or both cells such that A's efficiency, as one of the cells firing 

B, is in~reased .~  

For FCM's, this general rule implies that if two concepts are either augmented or di- 

minished simultaneously at any given step in the iteration process then the weight of the 

edge adjoining them is increased. Variations of Hebbian learning may be useful in capturing 

some of the dynamics of MKM environments such as subsets of causal factors that tend to 

reinforce each other or pairs of causal factors that change relative to each other in a fashion 

consistent with competition. In contemplating the application of adaptive FCM's to the 

modelling of MKM environments, the challenge will be to determine the most appropriate 

learning algorithms. It is not clear that a single alogorithm will be appropriate for all con- 

cept pairs. In the MKM rubric described above, some concepts, such as the desire for formal 

knowledge validation, depend upon human attitudes while others, such as the anticipated 

influence of new media, are at least partially dependent upon more empirical factors, in this 

case, Moore's Law. 

The FCM approach provides a means of describing an MKM environment in terms of 

concepts and the causal relationships between them. When considering the development 

or deployment of a collaborative MKM system the big question, "if we build it, will they 

come?", is addressed by constructing the appropriate input concept vector, stepping through 

the execution stage, and analyzing the steady state vector if it exists. Support for the initia- 

tive is indicated if the steady state vector is consistent with the characteristics of the desired 

or anticipated MKM environment. This form of analysis indirectly respects the idea that 

the development of MKM environments is the result of individual and collective decision- 

making with the perceptions that influence decisions bound up in the FCM's conceptual 

framework. An approach that directly addresses decision-making at the level of individuals 

and groups is provided by game theory. In this area, recent work by Pappus and others on 

'Kosko pp. 152-165. 

' ~ o n a l d  Hebb, The Organization o f  Behaviour, (New York: John Wiley and Sons Inc., 1949), 62. 
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the development of Open Source Software (henceforth OSS) as the private provision of a 

public good is in~truct ive.~ 

5.2 Ideas from Game Theory: MKM as a Public Good 

Including such diverse entities as roads, trash collection, and the regulation of broadcast 

bands, a public good is something that, once provided, is available at sustainable levels for 

the benefit of all. Global public goods are those whose benefits extend across international 

boundaries. In Providing Global Public Goods: Managing Globalization the editors focus 

on a "top ten" which includes such ideas as the respect for sovereignty between nations 

and the sustainable management of ecosystems. At number eight in their list, there is "the 

concerted management of knowledge, including global property rights" .8 Game theoretic 

models of OSS provision adopt a world view which perceives the potential contributors 

to an OSS project as a community of self-interested agents (in this case, programmers), 

each with privately understood costs and benefits of making a contribution to the project. 

Barring potential benefits related to the perceived gain in personal prestige that one might 

experience by making a contribution, the analysis proceeds along the lines of a prisoner's 

dilemma: the greatest utility would be to freeload as long as enough others contribute that 

the project reaches a useful state of completion. If too many freeload, then no one benefits. 

The adaptation of these models to the context of a Web-based MKM system rests on 

the idea that there are real costs, possibly financial but at least in terms of time and effort, 

associated with making use of the system. In an era when professionals and academics 

of all stripes are confronted with so many demands on their time that the maxim time is 

money often enters into decision-making around the prioritization of even the most mundane 

tasks, the idea that an individual might conduct an informal cost-benefit analysis while 

contemplating the use of a particular MKM system is not far-fetched. There are, however, 

significant differences between common MKM activity and OSS development. Unlike an 

OSS project which, while typically ongoing, can be modelled as a single game which ends 

when a production level version of the software is attained, MKM systems tend to be 

7~us t in  Pappas Johnson, "Economics of Open Source Software", (extension of chapter from M.I.T. Ph.D. 
dissertation. [online], (2001), 5-16 

'Inge Kaul et al., The United Nations Development Programme, Providing Global Public Goods: Man- 
aging Globalization [online], (2003). 
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open-ended. In particular, if an MKM system sustains a stable user community, then the 

ongoing participation of community members needs to be effectively accounted for. This 

suggests that adapting the OSS model to MKM situations might involve its reinterpretation 

in the form of a "repeated game". while there is considerable literature from the field 

of mathematical economics regarding the sequential equilibria of repeated games, most 

of this literature involves symmetric equilibria, equilibria arising from games in which all 

participant's strategies are identical. It is not obvious that any given MKM system can 

be described in such a way that all classes of participants share the same participation 

strategy. Consequently, it may be difficult to elaborate a general game theoretic model for 

MKM systems. 

5.3 Recent Trends in Modelling Socio-Economic Phenomena 

Ultimately, the effort to model productive, collaborative MKM may be best served by 

research which combines game theory's respect for the role of individual decision makers with 

the utility of the dynamical systems approach. In a follow-up to a presentation of a relational 

algebra for FCM's, Chaib-draa examines the use of FCM's in modelling organizational 

decision-making and presents an example of hypothetical departmental decision-making at 

a university.g This analysis takes an agent-based approach in which the interests of different 

types of community members are represented as FCM's which are then synthesized into a 

single FCM by the application of a combination algorithm. Figure 5.2 adapts Chaib-draa's 

approach to the MKM-related context of a "secondary school mathematics teacher" agent. 

Attempts to resolve the analytical approach of game theory and its inherent dependence 

on human players rnaking rational (and optimal) precisely-defined decisions with approaches 

that admit multiple causal influences which may be weakly or fuzzily defined have originated 

from within the field of mathematical economics itself. In an introduction to an upcoming 

text on Cognitive Economics, the editors, Paul Bourgine and Jean-Pierre Nadal, cite two 

research programs that have been brought together under the emerging field: 

an epistemic program, grounded on individual beliefs and reasoning, develops a 

procedural individual rationality, now symbolized by a so-called 'homo cogitans 

'Brahim Chaib-draa, "Causal Maps: Theory, Implementation and Practical Applications in Multiagent 
Environments", IEEE 7kans. on Knowledge and Data Engineering, vol. 14 no. 6 (2002): 9. 
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Figure 5.2: Agent-based Causal Map for a Secondary School Mathematics Teacher 

/adaptam'; [and] an evolutionist program, based on interaction networks and 

adaptation processes, which has developed the idea of self-organization of a 

system and which studies emergent  structure^.'^ 

Drawing ideas and methods from such fields as cognitive psychology, statistical mechan- 

ics, and viability theory, cognitive economics seeks a much broader view of the factors that 

affect economic activity than the view afforded by classical economics. In particular the 

perspective of cognitive economics recognizes the importance of the formation and main- 

tenance of networks and coalitions. In a chapter (as yet untranslated) tentatively entitled 

Formation of Networks on the Internet, the authors state their objective as follows: 

Cet article s'intkresse au problkme de l'kchange d'informations sur Internet et 

aux propriktks d'auteorganisation que cet &change peut faire kmerger, en termes 

de segmentation d'individus consommateurs." 

' O ~ a u l  Bourgine and Jean-Pierre Nadal, "What is Cognitive Economics", Towards Cognitive Economics 
[online], 2001. 

"N. Curien, E. Fauchart, G. LafFond, J .  Laine, J .  Lesourne, F .  Moreau, "Forums de  consommation sur 
Internet :un modde  Cvolutionniste", Towards Cognitive Economics [online], 2001. 
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While presented from a marketing perspective, the impetus to examine the processes by 

which individuals form groups whose interaction is mediated by the Internet is important 

to the understanding of MKM. The model presented draws its theoretical foundation from 

the game theory side of systems science but emphasizes strong descriptive capabilities. It 

incorporates, for example, parameters which represent consumer's trust (fidklitk) in both 

the Internet itself and the information available in on-line consumer forums. As it time- 

steps towards a final state, these parameters are modified according to an evolutionary 

algorithm.12 

A more theoretical treatment is presented in the proposed chapter on Viability Theory 

by Jean-Pierre Aubin.13 Aubin introduces viability theory as relevant to the study of: 

1. cognitive systems that must design learning processes allowing them to 

adapt and evolve in an environment defined by viability constraints in 

unexpected environmental circumstances, before reaching another subset 

regarded as a target if needed 

2. of the architecture of a network described by connectionist tensors operating 

on a coalition of actors.14 

The foundations of viability theory are strongly rooted in optimization however the ap- 

proach imports ideas from the theory of neural networks. Adjacency matrices with elements 

defined by learning algorithms are advocated as one method of regulating a system as it 

evolves towards a desired target.15 Insight into the system is gained through an understand- 

ing of the choice of initial conditions and the nature of the learning algorithms needed to 

attain a particluar target. 

5.4 Quo Vadis? 

The study of how mathematical knowledge is defined, validated, and shared within and be- 

tween mathematical communities is a worthwhile undertaking in its own right. In situations 

12Curien p.12. 

13~ean-Pierre Aubin, "Elements of Viability Theory for the Regulation of the Evolution of the Architecture 
of Networks", Towards Cognitive Economics [online], 2001. 

14Aubin, p.1 

15Aubin, p. 15 
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that require decisions regarding the allocation of MKM resources, mathematical modelling 

will never replace informed "common sense" combined with an understanding of MKM's 

past and the various factors that are shaping its future. Modelling techniques, however, do 

hold the potential to encourage clarity of thought. If, when queried, a well-reasoned model 

were to provide a counter-intuitive answer, then a further investigation of the model and its 

assumptions would be warranted. Amongst both educational and research-oriented math- 

ematical communities, there are enough examples of inappropriate and discarded MKM 

systems to warrant careful, informed decision-making supported by all practical means. On 

the scale of mathematical communities, there is potentially more at  stake than the effective 

use of time and finances. 

In the theory of software development processes, Conway's Law is cited as a caveat 

regarding the tendency of a software project's logical design to take on the characteristics 

of the organizational structure of the work groups that create it. The full statement of 

the law describes a set of complementary forces in which software architecture informs 

organizational structure and vice versa. Ultimately, however, the two become aligned and 

it is therefore important in the early stages of a project to build as much flexibility as 

possible into both architecture and organizational structure.16 While these ideas about the 

software development process were never intended to apply to an undertaking such as the 

development of MKM systems, the potential connection between organizational structure 

and system design is worth considering. 

In an earler chapter, a broad definition of mathematical community was adopted en- 

compassing all "those involved with advancing the understanding of mathematics; either a t  

its frontiers, the primary occupation of researchers, or within the existing body of math- 

ematical knowledge such as teachers and students". This definition is at odds with the 

experience of most who might claim either full or part time membership in the community. 

If there is truth to the idea that an individual's experience of "community" is formed by the 

group of people with whom he or she exchanges ideas, then it can be argued that any un- 

dertaking that attempts to define systems of mathematical knowledge management affects 

the structure of the mathematical community. 

It can reasonably be argued that many of the factors that have determined the cur- 

rent divisions within the broad mathematics community, such as domain specialization in 

16~arnes 0 Coplien, A Development Process Generative Pattern Language, AT&T [online], (1995): 19. 
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research and age group specialization in education, have their origin in the perspectives of ty- 

pographic culture. If these divisions are to be breached, new MKM systems need to support 

the creation of "meeting places" that bring the broader community together. The schism 

that presently exists between school level and university level mathematics provides a good 

example. If properly designed, there is no reason that those interested in exchanging ideas 

regarding a topic in a high school mathematics curriculum could not visit the same elec- 

tronic mathematical "community centre" as members of a particular research community. 

While members of one group may have little use for the specific resources of the other, the 

opportunities for interaction and consultation offer up the hope that each community, even 

if only accidentally, may gain a better understanding of the other's priorities and concerns. 

Today, digital computation and networking technologies are exerting a complex influence 

on the forms of mathematical knowledge validated by mathematical communities and the 

means by which that knowledge is managed and exchanged. The close relationship between 

mathematics and computer science is illustrated in the fact that not only was numerical 

computation the first task of digital computers but, in 1969, the Culler-Fried Interactive 

Mathematics Center at the University of California at  Santa Barbara became only the third 

node on the Arpanet. While the experimental approach presents a digital methodology 

for doing mathematics, at this still early stage in the development of network technologies 

for mathematical knowledge management, it is important to consider the effect that those 

technologies can have on the meeting places of the community and, among other things, 

which communities within the broader mathematical community are invited to those meeting 

places. 



Appendix A 

Some Software and Hardware 

Initiatives 

The first [axiom] said that when one wrote to the other (they often preferred 

to exchange thoughts in writing instead of orally), it was completely indifferent 

whether what they said was right or wrong. As  Hardy put it, otherwise they 

could not write completely as they pleased, but would have to feel a certain re- 

sponsibility thereby. The second axiom was to the effect that, when one received 

a letter from the other, he was under no obligation whatsoever to read it, let 

alone answer it, - because, as they said, it might be that the recipient of the 

letter would prefer not to work at  that particular time, or perhaps that he was 

just then interested in other problems .... The third axiom was to the effect that, 

although it did not really matter if they both thought about the same detail, 

still, it was preferable that they should not do so. And, finally, the fourth, and 

perhaps most important axiom, stated that it was quite indifferent if one of them 

had not contributed the least bit to the contents of a paper under their common 

name; otherwise there would constantly arise quarrels and difficulties in that 

now one, and now the other, would oppose being named co-author.' 

The "axioms" of the Hardy-Littlewood Collaboration as described by Harald 

Bohr (1887 - 1951). 

'Littlewood, pp. 10-1 1. 
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The above recounting by Harald Bohr describes mathematical knowledge management 

at the interpersonal level as designed by G.H. Hardy and John Littlewood. While entirely 

pre-digital, the nature of this collaboration illustrates the need to adapt and customize 

knowledge management systems. In this case the systems being adapted are nothing more 

sophisticated than the interpersonal protocols surrounding the handling of postcards via 

mail and the joint submission of papers to journals. Digital environments provide much 

greater potential for customization with respect to both hardware and software. This ap- 

pendix describes two projects being undertaken at Simon Fraser Univerty's CoLab which 

are designed to facilitate research in MKM. The first, ernkara, is software project which 

investigates the design of interfaces that support dynamic ontologies. The second, the Ce 

LabPad, involves both hardware and software design and is intended to facilitate research 

in human-computer interaction issues related to mathematical education and collaboration. 

A . l  Emkara 

The purpose of the Emkara project is to provide an experimental environment for inves- 

tigations concerning the archiving and retrieval of mathematical knowledge via web-based 

interfaces. At the design level, emkara is a document management system that provides 

for and encourages extensive use of metadata and allows for flexibility in the definition of 

the form of mathematical content to be archived. For each definition of a new form of 

mathematical content, Emkara generates default edit and view interfaces. These interfaces 

may be modified or replaced in order to provide flexibility in both the manner in which 

mathematical content is archived and the manner in which it is retrieved. The types of 

investigations that might be undertaken with the aid of emkara interfaces include: 

data mining: what forms of data can profitably be collected from user interaction with 

emkara based interfaces? 

0 grey literature: what forms of archiving are suitable for grey literature? 

0 interface design: 

- what form of interface is suitable for a particular device? 

- what interface are necessary to support commercial access to data? 
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data encoding: is it more efficient to encode data in multiple formats or to provide 

translation? If translation, should it take place on the server or on the client? 

interaction with remote services: to what extent can an emkara system interact with 

remote services (i.e. a pre-print server) via SOAP/XMLP or the emerging Web On- 

tology Language protocols. 

0 use of metadata: 

- what forms of metadata are necessary for different communities? 

- to what extent can system LLdecisions" based on metadata be exposed to the user? 

A major component of the project is the design and construction of a digital mathemat- 

ical discourse management application based on open source technology. Corresponding 

respectively to the static, dynamic, and epistemic ontologies, this application has three fun- 

damental components: an archiving component which respects the static ontology, an object 

and interface building component that respects the dynamic ontology, and a user interfaces 

component which respects the epistemic ontology. Caste as design objectives, these three 

components reflect the intent to provide: 

0 qualified user control over granularity of object classification 

qualified user control over functionality and interface design, and . . . 

0 end user access to knowledge creation and retrieval interfaces. 

Secondary design objectives include the ability to store all forms of mathematical content 

and the ability to translate structured mathematical text between HTEX, MathML, and, 

ultimately, OMDoc formats. 

At the implementation level, an Emkara system consists of a front-end CSS and MathML 

compatible web interface together with a MathML editor configured as a "helper applica- 

tion". The mid-level implementation consists of a SQL compatible relational database man- 

agement system, functions which support the creation and management of user interfaces, 

functions which support user authentication and session management, and functions which 

support data transformations such as translation of structured text formats. The back-end 

consists of the database tables and a data directory tree. Used primarily for the storage of 



APPENDIX A. SOME SOFTWARE AND HARDWARE INITIATIVES 

Emkara System Architecture 
Front: 

CSS. MathMLcapable browser [ Amaya BmwserEdltor (modtiled) 

Middle: - 
user view and edit interfaces, 

authentication, 
session management, 

data translation (XSLIT) 

Back: 
C J 

I Database tables I I Data Diredory Tree I 

Figure A.l: Emkara System Architecture 

metadata and internal system parameters, the tables also provide a convenient location to 

store data obtained from data mining processes. The directory tree is used for the storage 

of documents and large  object^.^ Figure 2 illustrates the Emkara system architecture. 

While the prototype is intended mainly as an experimental interface, a fully implemented 

Emkara system presents opportunities for research which respond to each of the fundamental 

ontologies. As alluded to in the last section, making the static ontology open and subject to 

extension by qualified users presents design questions concerning how to present an ontology 

editing environment along with the question of how to ensure that the ontology is being 

edited in a useful manner. That the static ontology is being represented as XML makes 

testing for "well-formedness" a simple test for consistency however, such a test makes no 

comment about superfluousness or lack of detail. The latter failings may only become 

apparent with use. It is a valid question, therefore, whether or not data regarding user 

interaction with the system can be processed in such a way as  to reveal strengths and 

weaknesses in the static ontology. If so, then it is possible that the process of ontology 

management can be at  least partially a ~ t o m a t e d . ~  

A compelling question related to the introduction of unneeded vocabulary in the con- 

struction of static ontologies concerns the potential differences between the language that 

members of a particular community of interest use to describe their field and the vocabulary 

2 ~ h e  prototype is implemented using Postgresqlmand PHP4mwith a lightly modified AmayaTnbrowser 
serving as the MathML editor helper application. The modified Amaya browser must be installed on the 
client along with a CSS and MathML compatible browser. 

3The project is expected to make use of the considerable amount of work done by the members of the 
Ontolingua research team concerning ontology development environments and automated ontology analysis. 
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presented by the relevant schemata. The latter are typically developed through extensive 

committee work and are designed to meet a much broader range of needs than those of an 

individual communicating ideas to fellow members of a given community. It is important 

that methods be developed to support the presentation of schemata vocabularies in such 

a way that users can identify the elements they need to express their ideas and make the 

appropriate association with the language of their particular communities. 

The dynamic ontology underlies the relationship between entities in the static ontology 

and the way they interact with each other. A "flash card" object may consist of only 

two main fields: question and answer. The dynamic ontology allows for the description of 

how these two fields interact in the context of the flash card object and directly reflects 

the functions and methods that determine object b e h a v i o ~ r . ~  A valid question concerns the 

numbers and types of general object interactions that are necessary in order to construct the 

type of behaviour required by DMD. A related question is that of ontology representation: 

how many and what types of object access methods must be exposed in order to afford 

qualified "non-programmers" the flexibility they need to create the behaviour they desire. 

With respect to these questions, inspiration, guidance, and, possibly, code, can be derived 

from the work of the members of the Protege-2000 research team who have created a visual 

ontology editor and undertaken research into its application in the creation of ontologies in 

several Semantic Web compatible knowledge interchange languages.5 

Questions that can be addressed at the level of the epistemic ontology include any 

question related to the type of interface appropriate for a particular task and user device. 

If the task is helping students understand the material in a particular lesson, a threaded 

discussion might be part of the solution. The related question is what access and acquisition 

methods make sense for different devices? 

Related to the epistemic ontology, a number of valid research objectives are derived 

from the fact that an Emkara system is necessarily a stateful system which must enforce 

authentication and a system of maintaining read and edit access privileges. From this 

follow questions related to how users interact with the system and the system's function as 

a facilitator of "on-line community". In particular, users are instances of a "user object" that 

4 ~ n  the prototype, the dynamic ontology is bound up in PHP4 classes and scripts and therefore some 
knowledge of PHP is required to customize system behaviour. 

5Natalya F. Noy and Michael Sintek et al., "Creating Semantic Web Contents with Protege-2000", IEEE 
Intelligent Systems, [online], March-April (2001), 60-71. 
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Figure A.2: The modified Amaya MathML editor 

includes metadata that makes up a user profile. This permits the collection and processing 

of data regarding what types of users are accessing what types of data and using what kinds 

of interfaces. 

One of the most compelling features of any system that attempts to provide management 

functions for digital mathematical discourse is the potential that the system has to interact 

with other MKM applications via the emerging Semantic Web interchange languages and 

Web Services protocols. While atomic in nature, search strings for pre-print servers and 

input to theorem provers are forms of grey literature. If a DMD application is able to 

provide interfaces for remote access to these systems coupled with organized methods of 

storing and retrieving the output, it is possible that a significant proportion of access to 

MKM applications would take place via interfaces that could provide meaningful information 

about the ways in which mathematics is being accessed and shared through the Web. In 

this situation, the payoff would be data concerning what types of users are accessing what 

types of documents in pre-print servers and what types of users are using what types of 

services provided by theorem provers. 
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Figure A.3: An early rendition of the CoLabPad. 

A.2 CoLabPad 

The objective of this project is to build and test a portable wireless net-booting mathe- 

matics environment that affords instructors and researchers a high degree of control over 

the available mathematical tools in educationally or research oriented collaborative environ- 

ments. The system will consist of a server, CoLabPads, mathematical applications, and the 

necessary operating system software and wireless hardware. 

In this context, the "CoLabPad" is a terminal that provides students with a set of 

resources that can be defined by the instructor according to the educational or assessment 

objectives. Appliances such as these would hold a number of advantages over graphing 

calculators. Among them, better display capabilities, reconfigurability, and the ability to 

offer a level playing field by ensuring that all students have the same resources at their 

disposal. As well, such appliances would be less prone to theft as they would be close to 

useless when not connected to the server. 



Bibliography 

Anonymous. 1997. "The QED Manifesto [online]." document in the public domain. [Online 
resource: cited 15 June 20031 <http://www-unix.mcs.anl.gov/qed/manifesto.html~. 

Arab, Sameh M. 2000. "Bibliotheca Alexandrina." Arab World Books. [Online resource: 
cited 15 June 20031 <http://www.arabworldbooks.com/bibliothecaAlexandrina.htm>. 

Aubin, Jean-Pierre. 2001. "Elements of Viability Theory for the Regulation of the Evolu- 
tion of the Architecture of Networks." Towards Cognive Economics. [Online resource: 
cited 3 June 20031 <www.cenecc.ens.fr/EcoCog/Livre/Drafts/aubin.pdf~. 

Bailey, David, and Jonathan Borwein. 2003. Mathematics by Experiment: Plausible Rea- 
soning in the 2lst Century. Berlin: A. K .  Peters Ltd. 

Bailey, David, Jonathan Borwein, and Roland Girgensohn. 2003. Experimentation in 
Mathematics: Computational Paths to Discovery. Berlin: A. K .  Peters Ltd. 

Bernays, Paul. 1935. "Platonism in Mathematics." 
Bernays Project text no. 13 (2001). [Online resource: cited 17 Feb. 20031 
<http://www.phil.cmu.edu/projects/bernays/Pdf/bernaysl32002-11-26.pdf>. 

Berners-Lee, Tim, James Hendler, and Ora Lassila. 2001. "The Semantic Web." Scientific 
American 284:35-43. 

Bishop, Errett, and Donald Bridges. 1985. Constructive Analysis. Berlin: Springer-Verlag. 

Booth, Wayne C. 1974. Modern Dogma and the Rhetoric of Assent. Chicago: University 
of Chicago Press. 

Borwein, Jonathan, and Terry Stanway. 2003. "Managing Digital Mathematical Dis- 
course." In Mathematical Knowledge Management: proceedings of the Second Inter- 
national Conference, edited by Bruno Asperti, Andrea Buchberger and Harold James 
Davenport, Lecture Notes in Computer Science, 45 - 55. Springer-Verlag: Berlin, Hei- 
delberg. 

Bourgine, Paul, and Jean-Pierre Nadal. 2001. "What is Cognitive Eco- 
nomics." Towards Cognive Economics. [Online resource: cited 3 June 20031 
<www.cenecc.ens.fr/EcoCog/Livre/Drafts/intro.html~. 

Brouwer, L.E.J. 2000. "Intuitionism and Formalism." Bulletin of the American Mathe- 
matical Society (New Series) 37:55-64. 



Bibliography 72 

Buchberger, Bruno. 2001. "Mathematical Knowledge Management in Theorema." In 
proceedings of The First International Workshop on Mathematical Knowledge Manage- 
ment., edited by Olga Caprotti, 40-51. unpublished proceedings. 

Cairncross, Sir Alec. 1996. "Keynes the man." The Economist 339 (1962): 75-76. 

Chaib-draa, Brahim. 2002. "Causal Maps: Theory, Implementation and Practical Applica- 
tions in Multiagent Environments." IEEE Trans. on Knowledge and Data Engineering 
14 (6): 1-17. 

Chodorow, Stanley. 1996. "The Medieval Future of Intellectual Culture: Scholars 
and Librarians in the Age of the Electron." ARL: A Bimonthly Newsletter of Re- 
search Library Issues and Actions, vol. 189. [Online resource: cited 15 June 20031 
~http://www.arl.org/newsltr/189/medieval.html>. 

Cox, Earl D. 1995. Fuzzy Logic for Business and Industry. Rockland: Charles River Media, 
Inc. 

Curien, Nicholas et al. 2001. "Forums de consommation sur Internet :un modkle 
6volutionniste." Towards Cognive Economics. [Online resource: cited 3 June 20031 
<www.cenecc.ens.fr/EcoCog/Livre/Drafts/curien.pdf>. 

Deakin, Michael A. B. 1994. "Hypatia and her Mathematics." The American Mathematical 
Monthly 101:234-243. 

Dyson, Freeman J. 1964. "Mathematics in the Physical Sciences." Scientific American 
211:129-137. 

Eisenstein, Elizabeth. 1995. "The Rise of the Reading Public." In Communication in  
History: Technology, Culture, Society. 2nd ed., edited by David Crowley and Paul 
Heyer, 105-1 13. Cambridge: Cambridge University Press. 

Ernest, Paul. 1998. Social Constructivism As a Philosophy of Mathematics. SUNY Series, 
Reform in Mathematics Education. Albany: State University of New York Press. 

Everett, Edward. "Mathematical Quotations Server." Furman University. [Online resource: 
cited 18 June 20031 <ht tp://math.furman.edu/'mwoodard/mquot. htmb. 

Foucault, Michel. 1967. "Truth and Power." In Power/Knowledge: Selected Interviews 
and Other Writings 1972-1977, edited by Colin Gordon, 107-133. Brighton, Sussex: 
The Harvester Press: Brighton. 

Frege, Gottlob. 1967a. "Begriffsschrift, a formula language, modeled upon that of arith- 
metic, for pure thought." In From Frege to Godel: A Sourcebook in  Mathematical Logic, 
1879-1931., edited by Jan van Heijenoort, Sourcebook in the History of the Sciences, 
1-82. Cambridge: Harvard University Press. 

. 1967b. "Letter to Russel." In From Frege to Godel: A Sourcebook in  Mathematical 
Logic, 1879-1931, edited by Jan van Heijenoort, Sourcebook in the History of the 
Sciences, 126-128. Cambridge: Harvard University Press. 

Grout, James. 2003. "Scroll and Codex." Encyclopaedia Romana. [Online resource: cited 
15 June 20031 <http://itsa.ucsf.edu/ snlrc/encyclopaediaromana/notaepage.htm13~3. 



Eli bliography 73 

Gruber, Thomas R. 1989. The Acquisition of Strategic Knowledge. New York: Academic 
Press. 

Hardy, G.H. 1967. A Mathematician's Apology. London: Cambridge University Press. 

Hebb, Donald Olding. 1949. The Organization of Behaviour. New York: John Wiley and 
Sons. 

Hersh, Reuben. 1997. What is Mathematics Really? Oxford: Oxford University Press. 

Hilbert, David. 1967. "The Foundations of Mathematics (1927)." In From Frege to 
Godel: A Sourcebook in Mathematical Logic, 1879-1931, edited by Jan van Heijenoort, 
Sourcebook in the History of the Sciences, 464. Cambridge: Harvard University Press. 

Hunger Parshall, Karen. 1998. "The Art of Algebra from Al-Khwarizmi to Vihte: A Study 
in the Natural Selection of Ideas." History of Science 26:129-164. 

Johnson, Justin Pappas. 2001. "Economics of Open Source Software." an extension 
of the author's 1999 Ph.D. thesis (M.I.T.). [Online resource: cited 18 June 20031 
verb2i2ht tp://opensource.mit .edu/papers/johnsonopensource.pdf~. 

Jokela, Sami Turpeinen, Marko, and Reijo Sulonen. 2000. "Ontology De- 
velopment for Flexible Content." Proceedings of the Hawaii International 
Conference on System Science. [Online resource: cited 18 June 20031 
http://computer.org/proceedings/hicss/0493/04936/04936056abs.htm. 

Kaufer, David S., and Kathleen Carley. 1993. Communication at a Distance: The Influ- 
ence of Print on Sociocultural Organization and Change. Hillsdale: Lawrence Erlbaum 
Associates, Inc. 

Kaul, Inge et. al. 2002. "Briefing Note 2." United Nations Devel- 
opment Program Briefing Note. [Online resource: cited 12 May 20031 
~http://www.undp.org/globalpublicgoods/globalization/pdfs/b-note2.pdf~. 

Kline, Morris. 1972. Mathematical Thought from Ancient to Modern T imes ,  vol3,. Oxford: 
Clarendon Press. 

Kosko, Bart. 1992. Neural Networks and Fuzzy Systems: A Dynamical Systems Approach 
to Machine Intelligence. Englewood Cliffs: Prentice Hall. 

Littlewood, John Edensor, and Bella Bollobis 1986. Littlewood's Miscellany. London: 
Cambridge University Press.' 

Maclennan, Birdie. 2000. "To be a librarian, today and tomorrow: Reflec- 
tions on library education and practice in a changing world [online]." U.D. 
Walthkre Spring, Universite' de Likge. [Online resource: cited 15 June 20031 
<http://www.ulg.ac.be/libnet/spring/Birdie.htm~. 

McLuhan, Marshall. 1962. The Gutenberg Galaxy. Toronto: University of Toronto Press. 

. 1964. Understanding Media: The Extensions of Man. New York: Signet Books. 

Minnis, A. J.  1984. Medieval Theory of Authorship: Scholastic literary attitudes in the 
later Middle Ages. London: Scolar Press. 



Bibliography 74 

Noy, Natalya F. et al. 2001. "Creating Semantic Web Contents with Protege-2000." 
IEEE Intelligent Systems, pp. 60-71. [Online resource: cited 12 Aug. 20021 <www- 
smi.stanford.edu/pubs/SMIReports/SMI-2001-0872.pdf~. 

O'Connor, J.J., and E.F. Robertson. 2003. "The Arabic numeral sys- 
tem." The MacTutor History of Mathematics archive, University of St 
Andrews. [Online resource: cited 15 June 20031 <http://www-gap.dcs.st- 
and.ac.uk/'history/HistTopics/Arabicnumerals.html~. 

Raymond, Eric S. 2000. The Cathedral and the Bazaar. Eric S. Ray- 
mond under Open Publication License. [Online resource: cited 15 June 20031 
< http://www .catb.org/'esr/writings/homesteading/cathedral-bazr/index.html: />. 

Resource, Online. "Knowledge Interchange Format [online]." Stanford University. [Online 
resource: cited 18 June 20031 <http://logic.stanford.edu/kif/kif.html>. 

Rollet , Laurent , and Philippe Nabonnand. 2002. "Une bibliographie mat hkmatique 
idkale? Le Rkpertoire bibliographique des sciences mathkmatiques." Gazette des 
mathe'maticiens 92:ll-25. 

Russell, Bertrand. 1967. "Letter to Frege." In From Frege to Godel: A Sourcebook 
in Mathematical Logic, 1879-1931, edited by Jan van Heijenoort, Sourcebook in the 
History of the Sciences, 124-125. Cambridge: Harvard University Press. 

Toynton, Evelyn. 1997. "The Wittgenstein Controversy." The Atlantic Monthly 279 (5): 
28-41. 

Whitehead, Alfred North. 1957. The Aims of Education and other essays. New York: The 
Free Press. 


