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Abstract 

Runge-Kutta methods are one of the fundamental techniques in scientific computing. They 

are used to compute numerical solutions in a step-by-step fashion for ordinary differential 

equations (ODES) and also, via the method of lines, for partial differential equations (PDEs). 

By sharing information, embedded Runge-Kutta methods execute two Runge-Kutta 

schemes simultaneously while incurring minimal additional cost. Traditionally this is done 

for the purpose of actively selecting step-sizes for error control. However, in this thesis, we 

suggest another possible use where the two schemes would be used in different regions of 

the spatial domain based on local properties of the solution. For example, the solutions 

of hyperbolic conservation laws contain both smooth and non-smooth features. Strong- 

stability-preserving (SSP) Runge-Kutta schemes are particularly well suited for use near 

non-smooth or discontinuous behavior such as shocks because they have a nonlinear stabil- 

ity property that helps them prevent spurious oscillations (such as the Gibb's phenomenon) 

and other non-physical behaviour. Unfortunately, SSP schemes have limitations that make 

them expensive or inappropriate in smooth regions of the solution where a high order of 

accuracy is desired. In these regions, schemes based on "classical" linear stability analy- 

sis are likely a better choice. This motivates the use of high-order Runge-Kutta schemes 

with embedded SSP pairs, where the higher-order scheme, based on linear stability analysis, 

would be used to evolve smooth regions of the solution. The lower-order SSP scheme would 

be used near shocks or other discontinuities to help prevent spurious oscillations. This thesis 

explores the construction of these new methods. 

Following a review of Runge-Kutta methods, strong-stability, and other related concepts, 

the proprietary BARON optimization software is introduced as a powerful tool for deriving 

optimal SSP schemes. Various Runge-Kutta methods with embedded SSP pairs are then 

constructed using a combination of BARON optimization and analytical techniques. 
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Chapter 1 

Introduction 

The original motivation behind this thesis was to construct embedded Runge-Kutta meth- 

ods for use in computing numerical solutions to hyperbolic conservation laws. The methods 

would use a high-order linearly stable Runge-Kutta scheme in smooth regions of the spa- 

tial domain and, in the vicinity of shocks or other discontinuities, switch to a lower-order 

scheme possessing a "nonlinear stability" property which would help prevent spurious oscil- 

lations and overshoots. The derivation of such a method turned out to be more challenging 

and interesting than was originally thought and, as such, this thesis has more to do with 

the construction of these embedded methods than it does with the original motivational 

example. 

This chapter begins with an introduction to Runge-Kutta methods and linear stability. 

It then touches briefly on the topics related to the solution of hyperbolic conservation laws, 

including nonlinear stability and strong-stability-preserving Runge-Kutta schemes. 

Finally, the chapter concludes with a discussion of linearly stable Runge-Kutta methods 

with embedded strong-stability-preserving Runge-Kutta schemes. 

1.1 Runge-Kutta Methods 

Runge-Kutta methods are a class of numerical methods for computing numerical solutions 

to the initial value problem (IVP) consisting of the ordinary differential equation (ODE) 
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and the initial conditions 

U(to)  = uO, 

where U E JRM, F : R x RM + JRM and t E [to, t f ]  c R. A Runge-Kutta method computes 

a numerical solution, U n  E U(tn) ,  to (1.1) by taking time steps of size h = At with 

t, = to + nh. For example, the simplest Runge-Kutta method is Euler's method or Forward 

Euler which computes 

un+l = un + hF( tn ,  U"). (1.2) 

Forward Euler is an example of a 1-stage method, that is, F is evaluated once per time 

step. It is explicit in the sense that no system of equations must be solved to proceed from 

un to un+' .  

Although Forward Euler is simple to understand and easy to implement, the global 

error (the difference between uN and U( t f ) ,  where t f  = to + Nh) is proportional to h. 

Heuristically speaking, one might expect around lo6 steps to compute a solution accurate 

to 6 decimal places [HNW93]. Suppose however, that instead of (1 . I ) ,  we have a quadrature 

problem 

i i l = P ( t ) ,  u ( t o ) = u o l  

which has the solution 

Then highly accurate numerical solutions can be calculated using a s-stage quadrature 

formula (see, for example, [BFOl]) 

where the cj are the nodes or abscissae (typically cj E [ O , l ] )  and the bj are the quadra- 

ture weights (CjSz1 bj = 1). Now reconsider problem (1.1) and note, that to extend the 

quadrature formula (l .4),  we could use 

where U' is an estimate for U at the node point cj .  Explicit Runge-Kutta methods build 
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these stage estimates recursively using 

where ujk are the stage weights for U' and ujk = ck. Note in (1 .5~)  that v2 is 

obtained with a Forward Euler step of size hazl. Although not immediately obvious from 

(1.5), an s-stage Runge-Kutta method requires exactly s evaluations of F. To see how this 

is possible, consider an alternative formulation which lends itself well to implementation: 

KS = F (t, + csh, Un + h(uSlK1 + .  . . + u ,,,- I KY-')) , (1 .6~)  

Un+' = U n  + h(blK1 + . . . + bsKs).  (1.6d) 

This formulation also makes it obvious that a general s-stage Runge-Kutta scheme will 

require s temporary vectors for the K ' s ;  this can be a significant amount of storage for 

very large problems such as those resulting from the discretization of partial differential 

equations (PDEs) in three dimensions. 
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1.1.1 Butcher Tableaux 

The node points cj, weights bk, and stage weights ajk are often expressed in Butcher Tableau 

form using a matrix A, and s-vectors b and c: 

and, to reiterate, the corresponding s-stage Runge-Kutta method is 

For example, the 2-stage Modified Euler method 

has the Butcher tableau 

The simple Forward Euler scheme (1.2) has the Butcher tableau 

Here we are restricting our discussion to explicit Runge-Kutta methods; that is, methods 

where each U' can be calculated explicitly from the previous stage estimates ifx, k = 

1 , .  . . , j - 1. In particular, this implies that A must be lower triangular. If A is not lower 
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triangular, then the scheme is known as an implicit Runge-Kutta scheme and requires 

expensive system solves at each time step. For this thesis, we will concentrate on explicit 

Runge-Kutta methods and thus use the terms "Runge-Kutta method" and "explicit Runge- 

Kutta method" interchangeably. 

1.1.2 a-p Notation 

An alternative notation to Butcher tableaux is a-p notation where the Runge-Kutta method 

is broken down into a series of Forward Euler steps. The a-p notation uses two matrices 

and the Runge-Kutta scheme is 

where a i k  > 0 and a i k  = 1. 

Given a particular scheme in a-p notation, there is a unique corresponding Butcher 

notation. Following [SR02, RS02a1, we define the intermediate K, matrix using the following 

recursive definition 
i-I 

The ~ , i k  coefficients are related to the Butcher tableau coefficients by 

However, for a given Runge-Kutta method in Butcher notation, there is no unique conversion 

to a-p notation; instead there is a family of a+ representations. For example, consider the 
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Modified Euler scheme (1.8) which has the following one-parameter family of a-/3 notations 

for X E [O,1]  (see [SR02]). The family of a-,f3 representations are algebraically equivalent 

(see [S088]) and should produce the same results up to roundoff errors. However, particular 

members of the family may be easier to implement, require less memory storage or expose 

certain stability restrictions. 

1.1.3 Error and Order 

There are typically two reasons for using an s-stage Runge-Kutta method with s 2 2 over 

Forward Euler: improved accuracy and/or improved stability properties. Here we discuss 

error and the order of an s-stage Runge-Kutta scheme. 

Definition 1.1 (Global Error) Global error is simply the difference between the exact 

solution U ( t f )  and the numerical approximation uN measured i n  some norm. Specifically 

where 1 1  . 1 1  i s  typically the 1-norm, 2-norm, or  m - n o r m .  

Definition 1.2 (Local Truncation Error) If we assume that u"-' is exact, i.e., un-l = 

U ( t n - l ) ,  then the local truncation error is the error introduced by the single t ime step from 

tn-1 to  t,. The local truncation error is the vector 

although we are often interested i n  1 1  l.t.e.11 for some norm. 

A Runge-Kutta method is said to  be order p if the global error is order p, that is, if 

for some constant K. For sufficiently smooth problems, the global error can be related to 

the local truncation error and this motivates the following definition. 
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Definition 1.3 (Order) A Runge-Kutta method i s  order p if, for suficiently smooth prob- 

lems, the local truncation error is order p + 1, that is, zf 

for some constant K .  

We will often use the notation RK (s,p) to refer to an s-stage, order-p Runge-Kutta scheme. 

1.1.4 T h e  Order  Conditions 

For a Runge-Kutta method to be of order p, it must satisfy certain order conditions. These 

conditions are based on matching leading terms of Taylor expansions of U ( t ,  + h )  and of 

(1 .7~ )  as a function of h (see [HNW93]). For example, a 2-stage, order-2 Runge-Kutta 

method satisfies the following order conditions 

and a 3-stage order-3 Runge-Kutta method must satisfy 

As in [HNW93], we denote the order conditions with tq, where r indexes the order conditions 

of order q (also, T and t l l  are used synonymously). 

As seen in Table 1.1, the number of order conditions grows exponentially as order in- 

creases (see [HNW93]). Specifically, a 5th-order Runge-Kutta method must satisfy the 17 

order conditions shown in Table 1.2. 

# of order-p conditions I 1 1 2 4 9 20 48 115 286 719 

Table 1.1: Number of order conditions up to order 10. 
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Table 1.2: The 17 order conditions up to order 5. 

Each order condition has a tree associated with it and in fact there is a 1-1 mapping 

between the set of rooted labeled trees of order q and the order conditions of order q [HNW93]. 

Given a rooted labeled tree (see Figure 1.1 for example), we can find the corresponding order 

condition as follows [VerOS]: 

1. Assign an index i, j, k, . . . to each non-leaf node. Assign the parameter bi to the root 

node. Starting at the root, assign aij to each non-leaf node j adjacent to node i, and 

ck to each leaf node connected to node k. The left-hand-side of the order condition is 

the sum of all products of these parameters. 

2. Assign a 1 to each leaf node and assign n + 1 to each node having n descendent nodes. 

The right-hand-side is the reciprocal of the product of these integers. 

For example, in Figure 1.1 the left-hand-side turns out to be biaijcjajkck and the right- 

hand-side is &. This corresponds to the order condition t57, 

We will refer to the trees with only one leaf node as "tall trees" (i.e., r ,  t 3 2 ,  t44, 

and ts9 in Table 1.2). The "broad trees" are the trees were each leaf node is connected 
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Figure 1.1: The rooted labeled tree corresponding to order condition ts7: biaijcjajkck = 
1 - 

40'  

directly to the root. In Table 1.2, the "broad trees" are r, t21, tsl, t41, and tsl and they 

have the special property that the corresponding order conditions are functions of only bk 

and ck; indeed they correspond to the conditions for quadrature methods to be exact for 

polynomials up to degree 4 (see [Hea97]). 

1.1.5 Linear Stability Analysis 

The Linear stability analysis of a Runge-Kutta method identifies restrictions on the spectra 

of the linearized differential operator and on the possible time steps. says add a introduction 

The linear stability function R(z) of a Runge-Kutta method (see [HW91]) can be iden- 

tified with the numerical solution after one step of the method of the scalar Dahlquist test 

equation 

Uf=XU, U O = l ,  z = h X  (1.17) 

where X E C. The linear stability region or linear stability domain is the set 

Let L be the linear operator obtained by linearizing F. For a Runge-Kutta method to be 

linearly stable for (1.1), we must choose h such that hXi E S for each of the eigenvalues Xi 

of L. Typically this will impose a time stepsize restriction. 

For an s-stage order-p Runge-Kutta method, R(z) can be determined analytically (see 
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where t t t )  are the s-stage, order-k "tall trees". Figure 1.2 shows the linear stability regions 

for Runge-Kutta schemes with s = p for s = 1 , .  . . , 4  (that is, the schemes that do not require 

tall trees). These plots were created by computing the 1-contour of IR(z)I. To quantify the 

size of these linear stability regions, we measure the linear stability radius (see [vdMgO]) and 

the linear stability imaginary axis inclusion (for example, as discussed in [SvL85]). These 

quantities are defined as follows: 

Definition 1.4 (Linear Stability Radius) The  linear stability radius is  the radius of the 

largest disc that can fit inside the stability region. Specifically, 

p = sup{? : y > 0 and D(y)  c S}, (1.20) 

where D(y)  i s  the disk 

D(y)  = {z E @ : Jz + yl i y} 

Definition 1.5 (Linear Stability Imaginary Axis Inclusion) T h e  linear stability imag- 

inary axis inclusion is  the radius of the largest interval o n  the imaginary axis that is  con- 

tained in the stability region. Specifically, 

p2 = sup{y : y 2 0 and 1(-iy, iy) c S}, (1.22) 

where 1 (zl , z2) i s  the line segment connecting zl ,  z2 E @. 

In Figure 1.2, the linear stability radius and the linear stability imaginary axis inclusion are 

noted. When s # p, the linear stability region is determined by the value of the additional 

tall trees. For &stage order-5 Runge-Kutta methods, the linear stability function is 

where 

ttF' = b6a65a54a43a32a21. (1.23b) 

Figure 1.3 shows some examples of the linear stability regions for RK (6,5) methods and in 

Figure 1.4, the values of p and p2 are plotted against t t?)  Two important values on this 
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Figure 1.2: Linear stability regions for Runge-Kutta schemes with s = p. The roots of R ( z )  
are marked with *'s and the linear stability radius p and linear stability imaginary axis 
inclusion p:! are labeled. 
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C.' 
Figure 1.3: Various linear stability regions for RK (6,5) schemes. The roots of R(z) are 
marked with *'s and the linear stability radius p and linear stability imaginary axis inclusion 
p~ are labeled. 

(a) Wide-angle (b) Magnified 

Figure 1.4: Linear stability radius (solid) and linear stability imaginary axis inclusion 
(dashed) for RK (6,5) schemes. 
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plot are the global maximum of p = 2.3868 at t t f )  = 0.00084656 and the global maximum 

of min(p, p2) = 1.401 at t t f )  = 0.0029211. 

For 7-stage 5th-order Runge-Kutta methods, the linear stability function is 

for the tall trees 

Figure 1.5 shows several example RK (7,5) linear stability regions and in Figure 1.6, the 
(7 )  values of p and pz are plotted against t t r )  and tt, . 

Figure 1.5: Various linear stability regions for RK (7,5) schemes. The roots of R(z) are 
marked with *'s and p and p2 are labeled. 

1.1.6 Embedded Runge-Kutta Pairs 

Two Runge-Kutta schemes can be embedded and, by sharing common stages, the result- 

ing embedded Runge-Kutta method will be computationally cheaper then running the two 
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(a) Wide-angle (b) Magnified 

Figure 1.6: The linear stability radius (solid contours) and linear imaginary axis inclusion 

(dashed contours and shading) of RK (7,5) for various values of tt:) and t t r ) .  

schemes independently. We refer to the two schemes of an embedded Runge-Kutta method 

as pairs. The Butcher Tableau for an embedded Runge-Kutta method has two s-vectors of 

weights & and b and is expressed as 
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and the schemes are 

- n+l 
where U and u"+' are the two solutions. After each time step, one of the two solutions 

is typically propagated and the other discarded. Traditionally, embedded Runge-Kutta 

methods are used for error control for ODEs; the two schemes typically differ in order, 

where the higher-order scheme provides a way to estimate the error in the lower-order 

scheme. If the error estimate is within acceptable tolerances, then the step passes and the 

lower-order scheme is propagated to the next timestep.' Otherwise, the step is rejected and 

a new stepsize is selected. 

In this thesis we present another possible use for embedded schemes in a partial differen- 

tial equation context. Depending on spatially local characteristics of the solution, one of the 

two embedded schemes (or a convex combination of the two) could be used to propagate 

that component of the solution. That is, each scheme could be used in different regions 

of the spatial domain depending on characteristics of the solution. Over the next several 

sections, we discuss this idea in more detail. 

1.2 The Method of Lines 

The method of lines is a widely used technique for approximating partial differential equa- 

tions (PDEs) with large systems of ODEs in time. A numerical solution to the PDE is then 

calculated by solving each ODE along a line in time (see Figure 1.7). 

Consider a general PDE problem with one temporal derivative 

where f is some function. The method of lines begins with a semi-discretization of the 

problem. First, the spatial domain is partitioned into a discrete set of points. In one 

'Some methods, such as Dormand-Prince 5(4) propagate the higher-order result and use the lower-order 
for the error estimate [HNW93]. 
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t 
A 

Figure 1.7: The method of lines. 

dimension, for example, the domain x E [O,1] could be discretized with constant spatial 

stepsize Ax = & such that xj = jAx for j = 0,.  . . ,  M. For higher-dimensions, a suitable 

ordering of the spatial points zj for j = 0 , .  . . ,  M is chosen. Then we associate the time 

dependent vector U ( t )  with each of these spatial points, specifically 

Here we consider a finite difference approach where all of the spatial partial derivatives are 

replaced with finite difference equations. For example, the spatial partial derivative u, could 

be approximated with the simple forward difference 

or the with the essentially non-oscillatory schemes of the next section. After all spatial 

partial derivatives have been replaced with appropriate finite differences, and any boundary 

conditions have been discretized or otherwise dealt with2, we are left with a system of ODES 

where the operator F depends on the particular spatial discretizations and often also on 

the value of the solution itself. 

Usually the spatial stepsize imposes a stability requirement upon the time stepsize. In 

the case of hyperbolic conservation laws, this restriction is known as the Courant-Friedrichs- 

Lewy or CFL condition and is the requirement that the numerical domain of dependence 

2 ~ e a l i n g  with boundary conditions in a method of lines framework is non-trivial particularly for higher- 
order schemes. For this thesis, we will deal with periodic boundary conditions to avoid these additional 
complications. 
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Physical domain of dependence 

Numerical domain of dependence 

Figure 1.8: The physical and numerical domains of dependence for U z .  

must contain the physical domain of dependence (see Figure 1.8 and [Lan98]). In other 

words, the time stepsize must be chosen so that all pertinent information about the solution 

at t, has an influence on the solution at tn+l. 

1.3 Hyperbolic Conservation Laws 

Hyperbolic conservation laws (HCLs) are fundamental to the study of computational gasdy- 

namics and other areas of fluid dynamics. They also play an important role in many other 

areas of scientific computing, physics and engineering. 

HCLs are PDES which express conservation of mass, momentum or energy and the 

interactions between such quantities. The gcncral HCL initial value problem (IVP) is the 

PDE 

ut + divf (u) = 0, (1.30) 

coupled with boundary conditions and initial conditions, where u is a vector of conserved 

quantities and f is a vector-valued flux function. From a mathematical point of view, and 

particularly from a computational point of view, HCLs pose difficulties because they can 

generate non-smooth (or weak) solutions even from smooth initial conditions. These solu- 

tions are typically not unique and can include both physically relevant non-smooth features 

(like shocks or contact discontinuities) and non-physical features such as expansion shocks. 

Specifying an entropy condition (see [Lan98]) will enforce unique and physically correct fea- 

tures of the solution (such as correct shock speeds and smooth expansion fans rather then 

expansion shocks). Because of the importance of dealing with these phenomena correctly 
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within the computational fluid dynamics (CFD) community, there is a lot of interest in 

computing the correct entropy satisfying solution to HCLs. 

The general one-dimensional scalar conservation law is 

with appropriate boundary conditions and initial conditions, where u is some conserved 

quantity and f (u) is the flux function. Scalar conservation laws exhibit much of the same 

behavior as general HCLs such as shocks and other discontinuities. The computation of 

their solutions also involves finding the correct entropy satisfying solution. For this reason, 

scalar conservation laws such as the linear advection equation 

or the nonlinear inviscid Burger's equation 

are often exploited in the development and refinement of numerical techniques. 

1.4 Essentially Non-Oscillatory Discret izat ions 

Consider the scalar conservation law 

where physical flux f (u) is convex (that is, f l (u)  > 0 for all relevant values of u). A method 

of lines approach to solving (1.34) using finite differences usually involves the conservative 

where f (u,+;) = f ( Y - ~ ~ + ~ , .  . . , U ~ + K ~ )  is the numerical f i x .  The numerical flux should 

be Lipschitz continuous and must be consistent with the physical flux in the sense that 

f (u ,  . . . , U) = f (u) [Lan98]. 

Often f,+; = h(uj, u , + ~ )  where h(a, b) is a Riemann solver such as the Lax-F'riedrichs 

approximate Riemann solver 
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or one of many others (see [Jia95, Shu97, Lan981). Unfortunately, schemes built using these 

Riemann solvers are at most first-order for multi-dimensional problems [GL85]. 

Essentially non-oscillatory (ENO) discretizations take a different approach from most 

discretization techniques. They are based on a dynamic stencil instead of a fixed sten- 

cil. Given a set of candidate stencils, E N 0  discretizations attempt to pick the stencil 

corresponding to the smoothest possible polynomial interpolate. Geometrically speaking, 

E N 0  discretizations choose stencils that avoid discontinuities by biasing the stencils toward 

smoother regions of the domain. 

1.4.1 E N 0  Schemes 

The E N 0  numerical flux f,,; is a high-order approximation to the function h(x,+;) defined 

implicitly by 
z+ 9 

f W ) )  = -- I 1 h(F)dE, Ax ,-az 
2 

Assuming a constant spatial stepsize Ax, we compute the third-order E N 0  numerical 

flux f,+; as follows [Jia95]: 

1. Construct the undivided (or forward) differences (see [BFOI]) of f (uj) for each j 

2. Choose the stencil based on comparing the magnitude of the undivided differences. 

Using the smallest (in magnitude) undivided differences will typically lead to the 

smoothest possible approximation for h(xi+;). The left most index of the stencil is 

chosen by computing 
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3. Finally, we compute the interpolating polynomial evaluated at  xj+; 

fj+; = x ~ ( i  - j , m )  f [i, m], 

where 

If A x  is not constant, then divided differences could be used instead of undivided differences 

and c(q, m) changed accordingly. 

The E N 0  discretization technique is quite general and can be extended to any order (at 

the cost of increased computation of undivided differences and wider candidate stencils). 

However, for the purposes of this discussion, we will use the term "ENO" to refer to third- 

order E N 0  discretizations. 

1.4.2 WEN0 Schemes 

Weighted essentially non-oscillatory (WENO) numerical fluxes build upon E N 0  schemes 

by taking a convex combination of all the possible E N 0  numerical fluxes. WEN0 uses 

smoothness estimators to choose the weights in the combination in such a way that it 

achieves sth-order in smooth regions and automatically falls back to a 3rd-order E N 0  choice 

near shocks or other discontinuities. 

Note that we have used the term "WENO" when discussing fifth-order WEN0 discretiza- 

tions (which in turn are based on third-order E N 0  discretizations) but that higher-order 

WEN0 discretizations are possible and indeed ninth-order WEN0 discretizations have been 

constructed (see [QS02]). 

WEN0 discretizations must compute all possible E N 0  stencils and are therefore more 

computationally expensive then E N 0  discretizations on single-processor computer architec- 

tures. However, WEN0 schemes can be more efficient on vector-based or multi-processor 

architectures because they avoid the plethora of "if" statements typically used to implement 

the stencil choosing step (1.38) of E N 0  schemes [Jia95]. 
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1.4.3 Other ENO/WENO Formulations 

There are also E N 0  and WEN0 formulations for Hamilton-Jacobi equations such as the 

level set equation 

4 t + V . V 4 = O 7  (1.40) 

where 4 implicitly captures an interface with its zero-contour and V may depend on many 

quantities. Hamilton-Jacobi equations do not contain shocks or discontinuities but they 

do contain kinks (i.e., discontinuities of the first spatial derivatives) and as such their nu- 

merical solution can benefit from schemes like ENO/WENO which help minimize spurious 

oscillations. See [OF031 for a detailed and easy-to-follow description of Hamilton-Jacobi 

ENO/WENO. Additional information on level set equations and their applications can be 

found in [Set991 and [OF03]. 

For the purposes of this thesis, in either the hyperbolic conservation law or Hamilton- 

Jacobi formulations, E N 0  discretizations provide uniformly third-order spatial stencils al- 

most everywhere in the domain. WEN0 discretizations provide fifth-order spatial stencils 

in smooth regions and third-order spatial stencils near shocks and other discontinuities. 

1.5 Nonlinear Stability 

For hyperbolic conservation laws where solutions may exhibit shocks, contact discontinuities 

and other non-smooth behavior, linear stability analysis may be insufficient because it is 

based upon the assumption that the linearized operator L is a good approximation to F. 

Numerical solutions using methods based on linear stability analysis often exhibit spurious 

oscillations and overshoots near shocks and other discontinuities. These unphysical behav- 

iors are known as weak or nonlinear instabilities and they often appear before a numerical 

solution becomes completely unstable (i.e., blows up) and in fact they may contribute to 

a linear instability. We are interested in methods which satisfy certain nonlinear stability 

conditions. E N 0  and TIENO are examples of spatial discretization schemes that satisfy a 

nonlinear stability condition in the sense that the magnitudes of any oscillations decay at 

O (AxT) where r is the order of accuracy (see [HEOC87]). The strong-stability-preserving 

time schemes discussed next satisfy a (different) nonlinear stability condition. Finally, a 

survey of nonlinear stability conditions is presented in [Lan98]. 
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1.6 Strong-Stability-Preserving Runge-Kutta Methods 

Strong-stability-preserving (SSP) Runge-Kutta methods satisfy a nonlinear stability require- 

ment that helps suppress spurious oscillations and overshoots and prevent loss of positivity. 

We begin with the definition of strong-stability. 

Definition 1.6 (Strong-Stability) A sequence of solutions {Un) to  (1.1) is strongly sta- 

ble if, for all n > 0, 

IIun+'II 5 IwnII, (1.41) 

for some given norm I I . I I. 

We say that a Runge-Kutta method is strong-stability-preserving if it generates a strong- 

stable sequence {Un).  The following theorem (see [S088], [GSTOl], and [SR02]) makes a-,D 

notation very useful for constructing SSP methods. 

Theorem 1.1 (SSP Theorem) Assuming Forward Euler is SSP with a CFL  restriction 

h 5 A t F , ~ , ,  then a Runge-Kutta method i n  a-,D notation with ,Dij 2 0 is SSP for the modified 

CFL  restriction 

h 5 CAtF.E.1 

where C = min 9 is the CFL coefficient. Pi j 

The proof of this theorem is illustrative and we include it for the case when s = 2. 

Proof The general s-stage Runge-Kutta method in a-,B notation is 

where aik 2: 0, ~ i l k a i k  = 1. Assume ,Dik 2 0 and that Forward Euler is SSP for 

some time stepsize restriction. That is llun + hF(un) 1 1  5 llun 11 for a11 h _< ~ l t ~ , ~ , .  Now 

llu(')II = ~lu(O) + h ~ ~ ~ ~ ( u ( O ) ) l l  and thus ~lu( ') l(  5 llu(O)II for 
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Now consider 

and, provided that 

then 

Note that the three restrictions (1.42), (1.43), and (1.44) are exactly the condition in the 

theorem. I 

The SSP property holds for a particular Runge-Kutta scheme regardless of the form it is 

written in. In this sense, a-p notation should be interpreted as a form that makes the SSP 

property and time step restriction evident. Also note that a given a-,D notation may not 

expose the optimal C value for a particular Runge-Kutta method (recall the Modified Euler 

example from Section 1.1.2). 

We will use the notation SSP (s,p) to refer to an s-stage, order-p strong-stability- 

preserving Runge-Kutta method. 

1.6.1 Optimal SSP Runge-Kutta Methods 

For a given order and number of stages, we would like to find the "best" strong-stability- 

preserving Runge-Kutta scheme. As in [SR02], we define an optimal s-stage, order-p, s > p, 

SSPRK scheme as the one with the largest possible CFL coefficient C. That is, an optimal 

SSPRK method is the global maximum of the optimization problem 

a i k  max min-, (1.45a) 
~ i k r p i k  Pik  
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subject to the constraints 

where tqr(a,  P) and yq, represent, respectively, the left- and right-hand sides of the order 

conditions up to order p written in terms of a i k  and Pik. The order conditions in Butcher 

notation are polynomial expressions of bk and aik and thus, using (1.11), t,,(a, 0) are poly- 

nomial expressions in a i k  and Pik. 

This optimization problem is difficult to solve numerically because of the highly nonlinear 

objective function (1.45a). In [SR02], the problem is reformulated, with the addition of a 

dummy variable a,  as 

subject to the constraints 

max z ,  
aik,Pik 

where tq,(a, P) and yqr are again the left- and right-hand sides of the order conditions, 

respectively. Notice that the dummy variable z  is just the CFL coefficient we are looking 

for. 

In Chapter 2, we will find some optimal strong-stability-preserving Runge-Kutta meth- 

ods using a numerical optimizer to  find a global maximum for (1.46). 

In Theorem 1.1 we assumed that Pik 2 0. While it is possible to have SSP schemes with 

negative p coefficients, these schemes are more complicated. For each Pik < 0, the downwind- 

biased operator F is used in (1.10~) instead of F. The downwind-biased operator is a 
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discretization of the same spatial derivatives as F but discretized in such a way that Forward 

Euler (using F) and solved backwards in time generates a strongly-stable sequence {Un) for 

h 5 CatFE (see [S088, Shu88, SR02, RS02al). At best, the use of F complicates a method 

because of the additional coding required to discretize the downward biased operator. At 

worst, if both F and F are required in a particular stage, then the computational cost and 

storage requirements of that stage are doubled! In [RS02a] and [RuuOS] schemes are found 

with negative ,B coefficients that avoid this latter limitation. Also, schemes involving F 

may not be appropriate for any PDE problems with artificial viscosity (or other dissipative 

terms), such as the viscous Burger's equation ut + uu, = EU,,, because these terms are 

unstable when integrated backwards in time.3 However, as is proven in [RS02b], strong- 

stability-preserving Runge-Kutta schemes of order five and higher must involve contain 

some negative ,B coefficients in order to satisfy the order conditions. In summary, there are 

significant reasons to avoid the use of negative ,B coefficients although this is not possible 

for fifth- and higher-order schemes. 

1.7 Motivation for a Embedded RK/SSP Pair 

Recall that weighted essentially non-oscillatory (WENO) spatial discretizations provide 

fifth-order spatial discretizations in smooth regions of the solution and third-order spatial 

discretizations near shocks or other discontinuities. 

Because of the fifth-order spatial regions, it is natural to use a fifth-order time solver 

with WEN0 spatial discretizations. In fact, we should use a strong-stability-preserving 

Runge-Kutta method because the solution may contain shocks or other discontinuities. 

Unfortunately, as noted above, fifth-order SSPRK methods are complicated by their use of 

the downwind-biased operator F .  However, the SSP property is  only needed i n  the vicinity 

of non-smooth features and i n  these regions WEN0 discretizations provide only third-order. 

This idea motivates the construction of fifth-order linearly stable Runge-Kutta schemes 

with third-order strong-stability-preserving embedded pairs. The fifth-order scheme would 

be used in smooth regions whereas the third-order scheme SSP scheme would be used near 

shocks or other discontinuities. 

We could also use these embedded methods or build others like them for error control. 

To construct an error estimator for a SSP scheme, we could embed it in a higher-order 

3For example, it is well known (see [Str92]) that the heat equation ut - u,, = 0 is ill-posed for t < 0. 



C H A P T E R  1. INTRODUCTION 

linearly stable Runge-Kutta scheme and use the difference between the schemes as the error 

estimator. Although the error estimator scheme would not necessarily be strongly stable, 

its results would not be propagated and thus any spurious oscillations produced could not 

compound over time. 

1.7.1 On Balancing z and p 

Recall that within a PDE context, the CFL coefficient C (or z )  measures the time stepsize 

restriction of an SSP scheme in multiples of a strongly-stability-preserving Forward Euler 

stepsize A tF ,E , .  Now, because p = 1 for Forward Euler, p effectively measures the time 

stepsize restriction of an linearly stable Runge-Kutta scheme in multiples of a linearly stable 
h 

Forward Euler stepsize, say A ~ F , ~ , .  Thus, assuming that these two fundamental stepsizes are 

the same ( A t F , E  = ZF,~,),  the overall CFL coefficient for method consisting of embedded 

Runge-Kutta and SSP pairs will be simply the minimum of z and p. We use the following 

working definition of the C F L  coefficient for a RK method with embedded SSP pair: 

Definition 1.7 The C F L  coefficient c for an embedded RK / S S P  method is the m in imum 

of the C F L  coefficient of the S S P  scheme and the linear stability radius of the RK scheme. 

That  is, 

C = min (C, p) = min (2, p )  . (1.47) 

Methods typically cannot be compared solely on the basis of CFL coefficients; to achieve 

a fair comparison, one must account for the number of stages each method uses. This 

motivates the following definition 

Definition 1.8 (Effective CFL Coefficient) A effective CFL coefficient Cefl of a method 

is 

C, = Cis, (1.48) 

where (? is the C F L  coefficient of the method and s i s  the number of stages (or more generally 

function evaluations). 

In the next chapter, we use an optimization software package to find optimal strong- 

stability-preserving Runge-Kutta schemes. We investigate embedded methods further in 

Chapters 3 and 4. 



Chapter 2 

Finding 

Strong-Stability-Preserving 

Runge-Kutta Schemes 

In this chapter, we present a technique for deriving strong-stability-preserving Runge-Kutta 

schemes using the proprietary software package GAMSIBARON. Some optimal SSPRK 

methods are then shown. 

The General Algebraic Modeling System (GAMS) [GAMOl] is a proprietary high-level mod- 

eling system for optimization problems. The Branch and Reduce Optimization Navigator 

(BARON) is a proprietary solver available to GAMS that is particularly well-suited to 

factorable global optimization problems. BARON guarantees global optimality provided 

that the objective function and constraint functions are bounded and factorable and that 

all variables are suitably bounded above and below. The optimization problem (1.46) has 

polynomial constraints and a linear objective function so if appropriate bounds are pro- 

vided, BARON will guarantee optimality given sufficient memory and CPU time (at least 

to within the specified tolerances). 
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2.1.1 Using GAMS/BARON to Find SSPRK Schemes 

We use a hybrid combination of Butcher and a+ notation using the A, b, and a coefficients. 

This allows the order conditions (by far the most complicated constraints of the optimization 

problem) to be written in a slightly simpler form. Each Pik can be written as a polynomial 

expression in the Butcher tableau coefficients. The optimization problem (1.46) can then 

be rewritten as 

subject to the constraints 

(2. l a )  

(2.lb) 

( 2 . 1~ )  

(2.ld) 

(2.le) 

(2.lf) 

where, as usual, tqT denote the left-hand side of the order conditions up to order-p. Some 

of the GAMS input files that implement (2.1) are shown in Appendix A. 

2.1.2 Generating GAMS Input with Maple 

The order condition expressions grow with both p and s and entering them directly quickly 

becomes tedious and error prone. The proprietary computer algebra system maple was 

used to generate the GAMS input file using the worksheet in Appendix B.1. Basically this 

involves expanding the order conditions and other constraints in (2.1) and formatting them 

in the GAMS language. 

2.2 Optimal SSP Schemes 

The remainder of this chapter presents some optimal strong-stability-preserving Runge- 

Kutta schemes. Table 2.1 shows the optimal CFL coefficients for s-stage, order-p SSPRK 

schemes. Note that [GS98] prove there is no SSP (4,4) scheme. 
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"There is no SSP (4,4) scheme. 

Table 2.1: Optimal CFL coefficients for s-stage, order-p SSPRK schemes. BARON was not 
run to completion on boxed entries and thus these represent feasible but not necessarily 
optimal SSP schemes. 

2.2.1 Optimal First- and Second-Order SSP Schemes 

The optimal first- and second-order SSP schemes have simple closed-form representations 

which depend only on the number of stages s. The following results are proven by [GS98], 

[SR02], and others: 

1. The optimal first-order SSP schemes for s = 1,2,3,  . . . are 

1 k = i - 1 ,  
a& = , i = l ,  . . . ,  S, 

0 otherwise. 

pirc = i = l ,  . . . ,  S. 
0 otherwise. 

That is, a consists of 1's down its diagonal and ,b' consists of down its diagonal and 

they have a CFL coefficient of s .  
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2. The optimal second-order SSP schemes for s = 2,3,4 , .  . . are 

1 lc=i-1, 
O i k  = 

0 otherwise. ' 
1  - l c = o ,  

lc=s-1, , 
0 otherwise. 

s-l  lc = i - 1, 
P i k  = 

0 otherwise. ' 

- k = s - 1 ,  
P s k =  

0 otherwise. 

The optimal SSP (s,2) schemes have CFL coefficients of s - 1. 

2.2.2 Optimal Third-Order SSP Schemes 

The optimal SSP (3,3), SSP (4,3), SSP (5,3) and SSP (6,3) schemes are shown in Tables 2.2, 

2.3 and 2.4. For these schemes, BARON ran to completion and thus was used to guarantee 

optimality. 

2.2.3 Optimal Fourth-Order SSP Schemes 

As noted in [GS98], there is no 4-stage, order-4 strong-stability-preserving Runge-Kutta 

scheme. For five stages, BARON ran to completion and Table 2.5 shows the optimal 

SSP (5,4) scheme. For six or more stages, BARON was not able to prove optimality within 

a reasonable amount of time (24 hours of computation on a Athlon MP 1200). I t  does how- 

ever, readily find feasible schemes; for example, Table 2.6 shows a feasible but not proven 

optimal SSP (6,4) scheme. 
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Table 2.2: The optimal SSP (3,3) and SSP (4,3) schemes in Butcher tableau and a-P 
notation. The CFL coeff ients are 1 and 2 respectively. 

Table 2.3: The optimal SSP (5,3) scheme in Butcher tableau and a-@ notation. This scheme 
has a CFL coefficient of 2.65063. 
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Table 2.4: The optimal SSP (6,3) scheme in Butcher tableau and a-P notation. This scheme 
has a CFL coefficient of 3.51839. 
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Table 2.5: The optimal SSP (5,4) scheme in Butcher tableau and a-P notation. This scheme 
has a CFL coefficient of 1.50818. 
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Table 2.6: A SSP (6,4) scheme in Butcher tableau and a-@ notation. This scheme has a 
CFL coefficient of 2.29455. This scheme has not been proven optimal. 



Chapter 3 

Fourt h-Order Runge-Kut t a 

Methods with Embedded SSP 

Pairs 

In this chapter we look for fourth-order Runge-Kutta schemes with embedded strong- 

stability-preserving Runge-Kutta pairs. We begin with the formulation of an optimization 

problem for finding such pairs. The optimization software GAMSIBARON is then used to 

compute solutions to this problem. This chapter then closes with some comments about 

using this technique for order-5 and higher. 

3.1 Finding Lower-Order Pairs with BARON 

We wish to find RK ( s , p )  schemes with embedded SSP ( s* ,p*)  schemes where s* 5 s and 

p* 5 p. The optimization problem (2.1) for the SSP (s*,p*)  can be augmented as follows 
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subject to the constraints 

i = l ,  . . . ,  s*, k = l ,  

2 x 1  , . . . ,  s*, k = l ,  

i =  l , . . . , s t ,  

i = l ,  . . . ,  st, k = l ,  

(up to order-p*), 

(up to order-p), 

, i - 1, (3.lb) 

, i  - 1, (3 .1~)  

(3.ld) 

, i -  1, (3. le) 

(3.lf) 

(3.169 

where, as before, tqr and yqT denote the left- and right-hand side of the order conditions. 

Note that we are only optimizing z ,  the CFL coefficient of the SSP scheme; in particular, 

the RK method only has to be feasible. 

At first glance, it seems strange that we specify s*; after all, in most tradional embedded 

Runge-Kutta methods, both schemes have access to all of the stages. However, the SSP 

condition imposes additional constraints upon the coefficients of all stages up to the last 

one used by the SSP scheme (namely stage s t ) .  For example, ( 3 .1~ )  specifies that each 

,B coefficient used by the SSP scheme is non-negative which implies the corresponding A 

coefficients must also be non-negative.' However, non-negative A coefficients is not a re- 

quirement for non-SSP Runge-Kutta methods. Using too many or all of the stages for the 

SSP scheme could (theoretically) make it impossible to satisfy the necessary order condi- 

tions for the Runge-Kutta scheme. Although in practice this was not observed, increasing 

s* did occasionally have an adverse effect on the resulting schemes, e.g., the RK (5,4) / 
SSP (4,l) versus the RK (5,4) / SSP (5,l) methods in Table 3.4. 

An example GAMS input file that implements (3.1) for RK (5,4) with embedded SSP (3,3) 

is shown in Appendix A.2 and others can be found in Appendix C. CPU time for each of 

the computations in this chapter was limited to 8 hours on a Athlon MP 1200 processor 

with 512MB of RAM. 

'This follows trivially from the recursive relationship (1.11) between Butcher tableaux and a-/3 notation. 
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3.2 4-Stage Methods 

For s = p = 4, the CFL coefficients for the possible combinations of s* and p* are shown 

in Table 3.1. Note that it is not possible to embed a third-order RK scheme in a RK (4,4) 

"It is not possible to embed a 3rd-order RK scheme in an 4th-order RK scheme. 
b ~ h e r e  is no SSP (4,4) scheme. 

Table 3.1: CFL coefficients of SSP (s*,p*) schemes embedded in order-4 linearly stable RK 
schemes. Boxed entries correspond to methods which are feasible but not proven optimal 
(r.1 denotes proven upper bounds) 

scheme regardless of strong-stability properties (see [HNW93]) and there is no SSP (4,4) 

scheme (as proven in [GS98]). For many of the calculations, the alloted time was not 

sufficient to guarantee optimality for the given values of s, p, s* and p*; in these cases, both 

the best value found and the upper bound are shown. 

Tables 3.2 and 3.3 show the Butcher tableaux for the particular schemes with p* = 1 and 

p* = 2 respectively. The upper and lower bounds for the A and b coefficients were chosen 

to be 10 and -10 respectively. In some cases (like Table 3.2a), these values were actually 

chosen by BARON; barring a rather unlikely coincidence, this would seem to indicate the 

presence of at least one free parameter in the solution that could be used, for example, 

to minimize the magnitude of the A and b coefficients. All 4-stage, order-4 methods have 

the same linear stability region (shown in Figure 1.2d) and therefore all of these embedded 

methods have the same linear stability region for the RK (4,4) scheme. 

3.3 5-Stage Methods 

For s = 5, p = 4, the CFL coefficients for the possible combinations of s* and p* are 

shown in Table 3.4. Again note that there is no SSP (4,4) scheme and that for some of 

the calculations, the alloted time was not sufficient to for BARON to run to complete and 
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(a) RK (4 ,4) ,  SSP (2,1),  C = 2, T = 1.7s (b) RK (4,4),  SSP (3,1),  C = 2, 
T = 911s 

(c) RK (4,4),  SSP (4,1),  C = 0.957 

Table 3.2: RK (4,4) schemes with embedded SSP (s*,l)  pairs. C is the CFL coefficient of 
the SSP scheme and T is the computation time. 
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(a) RK (4,4), SSP (2,2),  C = 1, T = 41.7s 

(b) RK (4,4),  SSP (3,2),  C = 1, 
T = 4313s 

(c) RK (4,4),  SSP (2 ,2) ,  C = 1, T = 41.7s 

Table 3.3: RK (4,4) schemes with embedded SSP (s*,2) pairs. C is the CFL coefficient of 
the SSP scheme and T is the computation time. 
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ensure optimality. 

Table 3.5 shows the Butcher tableaux for the embedded methods with p* = 3. These 

methods are significant because in the WEN0 context discussed in Chapter 1, they are 

competitive with the commonly used optimal SSP (3,3) scheme. Consider the RK (5,4) / 
SSP (5,3) method where the RK scheme has a linear stability radius of about p = 1.84 (see 

Figure 3.1) and the SSP pair has a CFL coefficient of C x 2.30. Thus by Section 1.7.1, we 

would expect that the overall CFL coefficient for the method would be min(C,p) = 1.84. 

The effective CFL coefficient for this 5-stage embedded method is thus about = 0.368 

and thus the method is about 10% more computationally efficient then the optimal SSP (3,3) 

scheme (which has an effective CFL coefficient of i) and about 20% more efficient then the 

optimal SSP (5,4) scheme (which has an effective CFL coefficient of about = 0.302). 

The embedded method is also potentially more accurate in smooth regions of the domain 

if used with WEN0 discretizations as discussed earlier. It is likely possible to optimize the 

linear stability properties of the RK scheme and further improve these methods. 

"There is no SSP (4,4) scheme. 

Table 3.4: CFL coefficients of SSP (p,s) schemes embedded in linearly stable RK (5,4) 
schemes. Boxed entries correspond to methods which are feasible but not proven optimal 
( r.1 denotes proven upper bounds). 

3.4 Higher-Order Schemes 

In theory, this technique should work for s = 6 and p = 5 as well, however, the nine 

additional constraints from the order-5 order conditions increase the complexity of the op- 

timization problem (3.1). Unfortunately, BARON was not able to find a feasible solution 

to any problems with p = 5 within several days of computation. 

In the next chapter, we simplify the problem by specifying particular SSP schemes and 
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(a) RK (5,4), SSP (3,3),  C = 1,  T = 28800s 

(b) RK (5,4),  SSP (4,3), C = 2, T = 5106s 

(c) RK (5,4), SSP (5,3),  C = 2.30128, T = 64800s 

Table 3.5: RK (5,4) schemes with embedded SSP (s*,3) pairs. C is the CFL coefficient of 
the SSP scheme and T is the computation time in BARON. 
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Figure 3.1: Linear stability regions for RK (5,4) schemes with embedded third-order SSP 
pairs. 
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attempting to satisfy the order conditions using the remaining A and b coefficients 



Chapter 4 

Fifth-Order Runge-Kutta Methods 

with Embedded SSP Pairs 

In this chapter we look for fifth-order Runge-Kutta schemes with embedded strong-stability- 

preserving Runge-Kutta pairs. Recall, the motivation is to find a fifth-order linearly stable 

Runge-Kutta scheme with an embedded third-order SSPRK scheme. The linearly stable 

scheme could then be used in smooth regions of a WEN0 spatially discretized problem 

and the SSPRK scheme used near shocks or other discontinuities where spurious oscilla- 

tions are more likely to develop. However, the techniques in this chapter, particularly the 

modified Verner's method in Section 4.2, are not limited to the hyperbolic conservation law 

application, and could potentially be used to find other types of embedded pairs. 

We begin by finding some porder Runge-Kutta schemes with p 5 4 with embedded 

SSPRK schemes. 

4.1 Specifying an RKSSP Scheme 

Instead of solving the complete optimization problem (3.1) for an RK (s,p) scheme with 

embedded SSPRK (s*,p*) scheme, the problem can be simplified by specifying a particular 

SSPRK scheme and thereby decreasing the number of unknown coefficients. 

Recalling the motivation of finding a fifth-order linearly stable scheme with embedded 

third-order SSP scheme, we concentrate on the problem with p = 5 and p* = 3. For 

example with s = 6 and specifying the optimal SSP (3,3) scheme from Section 2.2.2, we 
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have the partially complete Butcher tableau in Table 4.1. Tables 4.2 and 4.3 show two other 

embedded methods, and of course many others are possible. 

Table 4.1: Butcher tableau for an RK (6,5) scheme with the optimal SSP (3,3) scheme 
embedded. 

Table 4.2: Butcher tableau for an RK (6,5) scheme with the optimal SSP (4,3) scheme 
embedded. 

We are left with the problem of finding the remaining coefficients such that the 17 order 

conditions are satisfied. We can do this by directly looking for a feasible solution or by 

converting the problem into one of optimization through several techniques. 

One intuitive way of formulating an optimization problem is to maximize the linear 

stability radius p;  that is, set the objective function to be p and specify the order conditions 

as constraints. Another option is to minimize the sum of the coefficients squared and again 

specify the order conditions as constraints. Unfortunately, BARON was not able to find 

any feasible solutions within a reasonable amount of computing time (3 or 4 days) using 

either of these ideas. Instead we seek a solution directly by solving the order conditions 

algebraically. 
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Table 4.3: Butcher tableau for an RK (7,5) scheme with the optimal SSP (5,3) scheme 
embedded. 

4.2 Modified Verner's Method 

In [Ver82], Verner presents a technique of deriving explicit Runge-Kutta methods which he 

compares to solving difficult jigsaw puzzles. Verner begins with s = p and satisfies as many 

of the order conditions as possible. Additional stages are then introduced with zero weights 

and the remaining order conditions satisfied with the help of certain simplifying assumptions 

(see [HNW93]). Here we follow a modified technique which requires only that we assume p 

of the s nodes are distinct; for example, for an RK (6,5) method, we have to assume that 

some set of five of the six c coefficients are distinct. Put  another way, one duplicated c 

coefficient is acceptable. 

Consider the problem of embedding the known optimal SSP (3,3) scheme into an un- 

known RK (6,5) scheme. We begin by satisfying 11 of the 17 order conditions by means of 

a series of Vandermonde system inversions. 
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4.2.1 Six Stages with Embedded Optimal SSP (3,3) 

The "broad tree" order conditions 7, tzl, t31, t411 and tsl can be written in the following 

Vandermonde matrix formulation 

If the optimal SSP (3,3) scheme from Section 2.2.2 is embedded then c2 = 1 and cs = 112 

and the system can be rewritten as 

1 1  1 1  1 

0 1 112 c4 c5 

0 1 114 ci cg 

0 1 118 c: c; 

0 1 1/16 c j  cz 

and, assuming c4 and c5 are distinct from each other and from {0,1/2, I) ,  this system is 

invertible. The solution of this system uniquely determines bl ,  b2, b3, b4, and b5 in terms of 

the free parameters c4, CS, Cf3, and b6. 

Now consider the tzl, t3zr t43, and t56 order conditions, which can be written in the 

following Vandermonde matrix system of second-order homogeneous polynomials 

where the second-order homogeneous polynomials are defined as 
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Rewriting the system (4.3) as 

we invert to find I s l ,  Is2, 1 6 3 ,  and 164 in terms of c 4 ,  cs ,  and 1 6 5 .  

Continuing with the t 3 2 ,  t 4 4 ,  and t58 order conditions, we can form the Vandermonde 

svstem 

Defining the third-order homogeneous polynomials as 

we invert the system 

to find 1517 1 5 2 ,  and 153 in terms of c 4  and 1 5 4 .  

The fourth-order homogenous polynomial equations come from the tq4 and ts9 order 

conditions written as the Vandermonde system 

and, defining 14, = xj,k,l bjajkaklalm, we invert the system 

to find 141 and 142 in terms of 1 4 3 .  
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Finally, we write the t59 order condition as 

and the solution for the fifth-order homogenous polynomials is 

The "jigsaw puzzle" is half done. The information gleaned so far can be summarized in 

the following homogeneous polynomial tableau1: 

where the unboxed entries are known from the process above in terms of the boxed en- 

tries and the unknown entries of c (namely, cd, c5, %). Table 4.4 shows the homogeneous 

polynomial expressions associated with each of these Iij. 

We then proceed with a back-substitution algorithm starting in the bottom-right corner 

and working column-by-column to the left. Beginning in the fifth column, we find 

We move to the fourth column and calculate 

Working down the third column, we find 

'Note this is not a Butcher tableau. 
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Continuing in this fashion we can find expressions for each aij which depend on c4, c5, c6, 

b6, 165, 154,  and 143. In particular 

However, by our choice of the embedded SSP (3,3) scheme, these expressions for a31 and 

a32 should both equal and of course a21 = c2 = 1. Solving (4.15), we find that for the 

method to contain the embedded optimal SSP (3,3) scheme2 we must have 

I43  
= -. 

4 
(4.16) 

Recall from Section 1.1.5 that the linear stability region for a RK (6,5) method is deter- 

mined by one-contour of the expansion factor 

where t t f )  is the "tall tree" of order 6, specifically, 

Note that tt6 = Izl = 132a21 and thus we have 

The linear stability properties of our RK (6,5) scheme are therefore determined completely 

by our choice of 143. 

The formation and solution of the homogeneous polynomial equations has satisfied the 

order conditions T ,  tzl, t31, tS2, t411 t43, t44, t51, t56, t59. The remaining order conditions, t42, 

t52, t53] t54, t55, and t57 define six equations that the aij, c and b must satisfy. Thus we have 

a system of six nonlinear equation in seven variables: c4, c5, c6, IG5, 154, and b6. Using 

maple, we can compute four solutions to this system shown in Tables 4.7, 4.8, 4.9, and 4.10. 

Notice that each of the solutions contain free parameters and thus each corresponds to a 

family of embedded RK (6,5) / SSP (3,3) methods. We will analyze each of these families 

to find a "good" RK (6,5) / SSP (3,3) method based on the following approximately ranked 

criteria: 

' ~ t  first glance this seems counterintuitive because we began by embedding the optimal SSP (3,3) scheme; 
however, until this point we had only used the node values c and not the particular a,j values of SSP (3,3) 
scheme. 
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Table 4.7: The first maple solution with free parameter c6. 

cq = 615 - c 5  (the other root), 
16 1 

154 = - C g -  -, 
45 5 

Table 4.8: The second maple solution with free paremeters 1q3 and b6. 
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1. Linear stability properties (large p and p2 values). 

2. Small magnitude A and b coefficients. Large magnitude A and b values can contribute 

to dangerous build up of rounding errors. 

3. b2 = 0. Without this property, the internal stages may be restricted to first-order (see 

[Ver82]). 

Of course, other properties could also be used to evaluate the solutions. 

The first family of solutions is shown in Table 4.7 and has one free parameter c6. The 

linear stability properties of this family of schemes are fixed because 143 is fixed. In particular 

t t f )  = % = , 0 0 3 3 ,  and examining Figure 1.4 this corresponds to a linear stability radius 

of p = 1.25 and a negligible linear stability imaginary axis inclusion (p2 z 0.024). 

The second solution shown in Table 4.8 has two free parameters 143 and b6. Additionally, 

c4 and cs are the roots of the quadratic lox2 - 122 + 3. Here we choose c5 = 315 - 
292 1 0  Recalling from Section 1.1.5 that t t f )  = maximizes min(p, p2), we choose 

= 4-. The resulting one-parameter family of methods is shown in Table 4.11a. 

By choosing a value for the parameter b6, say b6 = i, we obtain the embedded RK (6,5) / 
SSP (3,3) method shown in Table 4.11b. This method has optimal linear stability properties 

(in the sense that min(p, p2) is maximized) and has no overly large coefficients. However, 

b2 # 0 and thus the method cannot have high stage order. 

The third maple solution is shown in Table 4.9 with free parameters c5, 143, and IG5. 

Again we optimize the linear stability properties by choosing = 4 a .  Next we chose 
2 c5 = and 165 such that b2 = 0; the resulting embedded RK (6,5) / SSP (3,3) method is 

shown in Table 4.12. This method has optimal linear stability properties, no overly large 

coefficients, and b2 = 0. 

The fourth maple solution is shown in Table 4.10 with free parameters c5 and IG5. In this 

case, 143 is known in terms of the free parameters and thus to optimize the linear stability 

and find an expression for 16.5 in terms of c5. The remaining parameter c5 is chosen so 

that b2 = 0 and no coefficients are overly large. Table 4.13 shows the resulting embedded 

RK (6,5) / SSP (3,3) method. 
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(a) One parameter family of methods 

(b) bs = $ (Rounded to five decimal places) 

Table 4.11: An embedded RK (6,5) / SSP (3,3) method obtaned from the second maple 
solution. This method has z = 1, p = 1.4 and pz = 1.4. 

The RK (6,5) / SSP (3,3) methods in Tables 4.11, 4.12, and 4.13 all have z = 1 and 

p = 1.4 and thus they all the effective CFL coefficient 

and thus incur about twice the computational expense of the optimal SSP (3,3) scheme. 

However, using the WEN0 discretization idea, the method should be able to produce a 

more accurate fifth-order answer in smooth regions of the domain. 
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(a) Exact 

(b) Rounded to five decimal places 

Table 4.12: An embedded RK (6,5) / SSP (3,3) method obtained from the third maple 
solution. This method has z = 1, p m 1.4 and pz m 1.4. 
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4.2.2 Seven Stages with Embedded SSP (5,3) 

Assume that we have embedded a 5-stage, third-order SSP method such as the optimal 

SSP (5,3) scheme in Section 2.2.2. Suppose, as is the case for the optimal SSP (5,3) scheme, 

that the values for 0, c2, cg , c4, c5 are distinct. 

The "broad tree" order conditions T, tzl, tsl, t41, and tsl can be written in the Vander- 

monde matrix formulation 

By the distinctness of c2, c3, c4 and c5, the system 

is invertible and the solution uniquely determines bl, b2, b3, b4, and b5 in terms of the free 

parameters c6, c7, b6, and b7. 

The tzl, t32, t43, and tS6 order conditions can be written in the Vandermonde matrix 

system 

The second-order homogeneous polynomials are now defined as 
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and rewriting system (4.24), we invert 

to we find 171 ,  1 7 2 ,  173 ,  and 174 in terms of c 6 ,  175 and 176 .  

The t 3 2 ,  t 4 4 ,  and t553 order conditions form the Vandermonde system 

We define the third-order homogeneous polynomials as = Cj,k bjajkakl  and invert the 

system 

to find 1 6 1 ,  1 6 2 ,  and 163  in terms of 164 and 1 6 5 .  

The t 4 4  and ts9 order conditions form the Vandermonde system 

to find 151 and in terms of 153 and 154 .  

Finally, we write the t 5 9  order condition as 
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and find 

The homogeneous polynomial tableau for the RK (7,5) scheme is thus 

where the unboxed entries have been determined above in terms of the boxed entries and 

c6 and c7. Table 4.5 shows the homogeneous polynomials associated with each of these I i j .  

Using the back-substitution algorithm, we find 

Continuing in this fashion we can find expressions for each aij ,  i 2 4 which depend on cs, 

c7, b6,  b7, 176, 175, 165, 164,  154 ,  153, 143, and 142. Of course, these expressions also depend 

on c2 = a21, c3, c4, c5, agl,  and a32 but these have already been specified by our choice of 

the SSP (5 ,3 )  scheme. Indeed this choice also specifies values for the aqj,  1 5 j 5 3 and 

a s j ,  1 5 j 5 4 expressions: this gives a system of seven equations which must be satisfied 

for the RK (7,5) scheme to contain the specified SSP (5 ,3 )  scheme. 

Perhaps surprisingly, these seven equations depend only on 142 ,  143, 153, 154, 164,  and 

165; specifically they are independent of 176, 175, C 6 ,  c7, b6, and b7. In fact, maple can find 
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a solution to these equations with one free parameter, that is we can solve for any five of 

them to be linear in terms of the sixth. Suppose we choose 165 to be the free parameter. We 

will use this free parameter to maximize the linear stability region of the RK (7,5) scheme. 

Maximizing the Linear Stability Region 

Recall that the linear stability region for an RK (7,5) method is determined by one-contour 

of the expansion factor 

where t t r )  and t t r )  are the "tall trees" of order 6 and 7, specifically: 

These two expressions are dependent only on 142, 143, 153, 154,  164 ,  and 165 and thus using 

our solution from above, only on 165. For example, using the optimal SSP (5,3) scheme, the 

tall trees become 

(7) (7) which define a straight line through the tt6 -tt7 space shown in Figure 4.la. By examining 

the cross-section of t tF)-ttr)  space defined by this line (see Figure 4.lb), we can choose 

Is5 such that the resulting RK (75) scheme has linear stability properties that are in some 

sense optimal. A possible choice is to maximize min(p, p2),i.e., maximize the minimum of 

the linear stability radius and the linear stability imaginary axis inclusion. In this case, by 

choosing 165 = .02215, we find p % ppz % 1.56. 

Solving the Remaining Order Conditions 

Six order conditions, namely t42, t52, t53, t54, t55, and t571 have not yet been satisfied by the 

solution of the homogeneous polynomial equations above. 
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(a) Linear stability disc radius (solid contours) and 
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(b) Cross-section along dashed line in (a). Linear 
stability disc radius (solid line) and imaginary axis 
inclusion (dash-dot line). 

Figure 4.1: Matching the coefficients of the RK (75) scheme with the optimal SSP (53) 

scheme restricts the values of t t r )  and tti7) to a line parameterized by Is5 (dashed line in 
(a)). A judicious choice of Is5 will result in a scheme with optimal linear stability properties. 
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Solving these equations with maple results in the Butcher tableau shown in Table 4.14. 

This method has an effective CFL coefficient of 

and is thus about 50% more computationally expensive then the optimal SSP (3,3) scheme. 

However, using the WEN0 discretization idea, the method should be able to produce a 

more accurate fifth-order answer in smooth regions of the domain. 

There is another family of solutions with one free parameter but the magnitudes of its 

coefficients are unreasonably large regardless of the parameter. A typical Butcher tableau 

is shown in Table 4.15. 

Table 4.14: An embedded RK (7,5) / SSP (5,3) scheme with z x 2.65, p = 1.56 and 
p2 x 1.56. 

Table 4.15: A poor embedded RK (7,5) / SSP (5,3) scheme with z x 2.65, p x 1.56 and 
pz = 1.56. The coefficients of this scheme are unreasonably large. 
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Concluding Remarks 

In this thesis, we have successfully constructed the first high-order Runge-Kutta methods 

with embedded strong-stability-preserving pairs. Specifically, we have found families of 

6-stage fifth-order Runge-Kutta methods with embedded third-order SSP pairs and one 

7-stage fifth-order Runge-Kutta method with an embedded third-order SSP pair. 

Although the original motivation for such methods came from the solution of hyperbolic 

conservation laws whose solutions contain both smooth and non-smooth regions, the tech- 

niques we developed and to some extent, the methods themselves, are more general than 

that. In particular, the modified Verner's technique in Chapter 4 can be used to embed 

a given Runge-Kutta method in a larger method under very general assumptions. For ex- 

ample, this technique could be used to build error control pairs for existing Runge-Kutta 

schemes. 

Additionally, Chapters 2 and 3 showed that GAMSIBARON is a viable software package 

for constructing strong-stability-preserving Runge-Kutta schemes and lower-order embedded 

methods. For lower-order schemes, BARON can find global optima and even on higher-order 

methods, BARON is often quick to locate feasible solutions which are likely close to optimal. 

It remains to be investigated how effective the new embedded methods will be for the the 

time evolution of hyperbolic conservation laws. The question of automatic stepsize control 

for strong-stability-preserving methods is also worthy of future research. 
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GAMS/BARON Codes 

A. l  Example Optimal SSP Input Files 

$ eolcom # 

posit ive variables 
k10 
k20, k21 
b l ,  b2, b3 
r2 1  
r31, r32 

# objective cannot be declared posit ive 
variables 

z  

# i n i t i a l  guess fo r  minos run (not required i f  baron i s  run f i r s t )  
#kl0.1 = . 5  5 

#k20.1 = .333333; k21.1 = .333333; 
# b l . l  = .333333; b2.1 = .333333; b3.1 = .333333; 
#r21.1 = .5  I 

#r3l .  1 = .333333; r32 . l  = .333333; 
# z . l  = -48 
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equations 
zcio 
zc20, zc21 
zc30, zc31, zc32 
ar20, ar30 
bp20 
bp30, bp31 
ti1 
t21 
t31, t32 

# SSP conditions 
# conditions arising from dummy var z: 
zclO . .  I-z*klO =G= 0; 
zc20 . .  I-r21-z*(k20-r21*klO) =G= 0; 
zc21 . .  r21-z*k21 =G= 0; 
zc30 . .  l-r31-r32-z*(bl-r31*klO-r32*k20) =G= 0; 
zc31 . . r31-z*(b2-r32*k21) =G= 0; 
zc32 . .  r32-z*b3 =G= 0; 
# each row of alpha must sum to I: 
ar20 . .  I-r21 =G= 0; 
ar30 . .  I-r31-r32 =G= 0; 
# each beta must be >= 0: 
bp20 . .  k20-r21*kl0 =G= 0; 
bp30 . .  bl-r31*kl0-r32*k20 =G= 0; 
bp31 . .  b2-r32*k21 =G= 0; 

# Order Conditions 
ti1 . . bl+b2+b3 =E= I; 
t21 . . 2*( b2*klO+b3*(k20+k21) ) =E= I; 
t31 . .  3*( b2*kl0*klO+b3*(k20+k21)*(k20+k21) ) =E= I; 
t32 . . 6* ( b3*k2l*kl0 =E= I; 

# decimals only affects the display command and cannot be > 8 
option decimals = 8; 

# BARON run: 
model m /all/; 
option nlp = baron; 
m. optf ile = I; 
m.workspace = 500; 
solve m maximizing z using nlp; 

# MINOS run: 
model m2 /all/; 
option nlp = minos; 
option sysout = on; 
m2.optf ile = I ;  
solve m2 maximizing z using nlp; 

variables 
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betalO.l = 
beta20.1 = 
beta21.1 = 
beta30.1 = 
beta31.1 = 

beta32.1 = 
file out / 
put out; 
out.nd=i5; 
out. nr=0 ; 
out. nz=0 ; 
out.nw=22; 

put 2.10, z.1, z.up/; 
put ' #  A matrix: ' / / ;  
put ki0.1/; 
put k20.1, k2i.U; 
put ' #  b vector:'/; 
put bl.1, b2.1, b3.1/; 
put / ' #  alpha matrix:'/; 
put I/; 
put r20.1, r2i.U; 
put r30.1, r31.1, r32.1/; 
put ' #  beta matrix: ' / ;  
put betalo. l/; 
put beta20.1, beta21.1/; 
put beta30.1, beta31.1, beta32.1/; 

put close out ; 

A.2 Example Embedded RK/SSP Input File 

$ eolcom # 

positive variables 
ki0 
k20, k21 
bhi, bh2, bh3 
r21 
r31, r32 
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variables 
k30, k31, k32 
k40, k41, k42, k43 
bl, b2, b3, b4, b5 

variables 

# initial guess for minos run (not required if baron is run first) 
#k10.1 = .5 3 

#k20.1 = .333333; k21.1 = .333333; 
#bhl.l = .333333; bh2.1 = .333333; bh3.1 = .333333; 
#r21.1 = .5 , 
#r31.1 = .333333; r32.1 = .333333; 
#z.l = 2.5 I 

equations 
zcl0 
zc20, zc21 
zc30, zc31, zc32 
ar20, ar30 
bp20 
bp30, bp31 
thll 
th21 
th31, th32 

# chp, c410 
# &up, c510 

tll 
t21 
t31, t32 
t41, t42, t43, t44 

# SSP conditions 
# conditions arising from dummy var z: 
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zclO . .  1-z*klO =G= 0; 
zc20 . .  1-r21-z*(k20-r21*k10) =G= 0; 
zc21 . .  r21-z*k21 =G= 0; 
zc30 . .  1-r31-r32-z*(bhl-r31*k10-r32*k20) =G= 0; 
zc31 . .  r31-z*(bh2-r32*k21) =G= 0; 
zc32 . .  1-32-z*bh3 =G= 0; 
# each row of alpha must sum to 1: 
ar20 . .  1-1-21 =G= 0; 
ar30 . .  1-r31-r32 =G= 0; 
# each beta must be >= 0: 
bp20 . .  k20-r21*k10 =G= 0; 
bp30 . .  bhl-r31*klO-r32*k20 =G= 0; 
bp31 . .  bh2-r32*k21 =G= 0; 

# Order Conditions for SSP scheme 
thll . .  bhl+bh2+bh3 =E= 1; 
th21 . .  2*( bh2*klO+bh3*(k20+k21) ) =E= 1; 
th31 . .  3*( bh2*k10*k10+bh3*(k20+k21)*(k20+k21) ) =E= 1; 
th32 . .  6*( bh3*k21*k10 ) =E= 1; 

# each c-i should be in [0,1] 
#c4up . .  k30 + k31 + k32 =L= 1; 
#c41o . .  k30 + k31 + k32 =G= 0; 
#c5up . .  k40 + k41 + k42 + k43 =L= 1; 
#c51o . .  k40 + k41 + k42 + k43 =G= 0; 

# Order Conditions for RK scheme 
tll . .  bl+b2+b3+b4+b5 =E= 1; 
t21 . .  2*( b2*k10+b3*(k20+k21)+b4*(k30+k31+k32)+b5*(k4O+k41+k42+k43) ) =E= 1; 
t31 . . 3* (b2*klO*klO+b3* (k2O+k21) * (k20+k21)+b4* k30+k3+k32 * k30+k3+k32 + 
b5*(k40+k41+k42+k43)*(k40+k41+k42+k43)) =E= 1; 
t32 . .  6*(b3*k21*k10+b4*k31*k1O+b4*k32*(k20+k21)+b5*k4l*k1O+b5*k42*(k2O+k21) + 
b5*k43*(k30+k31+k32)) =E= 1; 
t41 . .  4*(b2*k10*k10*k10+b3*~k20+k21)*~k20+k21)*(k2O+k21 + 
b4*(k30+k31+k32)*(k3O+k31+k32)*(k30+k31+k32) + 
b5*(k40+k41+k42+k43)*(k40+k41+k42+k43)*(k4O+k4l+k42+k43)) =E= 1; 
t42 . .  8*( b3*k21*k10*(k20+k21)+b4*k31*klO*(k3O+k31+k32) + 
b4*k32*(k20+k21)*(k3O+k31+k32)+b5*k41*kl0*(k4O+k4l+k42+k43 + 
b5*k42*(k20+k21)*(k4O+k41+k42+k43) + 

b5*k43* (k30+k31+k32) * (k40+k41+k42+k43) ) =E= 1 ; 
t43 . .  12*( b3*k21*k10*k10+b4*k3l*k1O*k10+b4*k32*(k2O+k21*k2O+k21 + 
b5*k41*k10*k10+b5*k42*(k20+k21)*(k20+k21 + 

b5*k43*(k30+k31+k32)*(k30+k31+k32) ) =E= 1; 
t44 . .  24*( b4*k32*k21*k10+b5*k42*k21*k1O+b5*k43*k31*k1O + 

b5*k43*k32*(k20+k21) ) =E= 1; 

# BARON run: 
model m /all/; 
option nlp = baron; 
m.optfile = 1; 
m. workspace = 400; 
solve m maximizing z using nlp; 
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# MINDS run: 
#model m2 /all/; 
#option nlp = minos; 
#option sysout = on; 
#m2.optf ile = I; 
#solve m2 maximizing z using nlp; 

variables 
r20, r30 
beta10 
beta20, beta21 
beta30, beta31, beta32 
3 

r20.1 = I - r21.1; 
r30.1 = I - r31.1 - r32.1; 
betalO.l = klO.l; 
beta20.1 = k20.1 - r21.l*k10.1; 
beta21.1 = k21.1; 
beta30.1 = bh1.l - r31.l*k10.1 - r32.l*k20.1; 
beta31.1 = bh2.1 - r32.l*k21.1; 
beta32.1 = bh3.1; 
file out / rk54-ssp33. coef f /; 
put out; 
out.nd=l5; 
out. nr=0 ; 
out. nz=0 ; 
out.nw=22; 

put 2.10, 2.1, z.up/; 
put ' #  A matrix:'//; 
put k10.U; 
put k20.1, k21.1/; 
put k30.1, k31.1, k32.U; 
put k40.1, k41.1, k42.1, k43.1/; 
put ' #  bh vector:'/; 
put bhl.1, bh2.1, bh3.1/; 
put ' #  b vector:'/; 
put bl.1, b2.1, b3.1, b4.1, b5.1/; 
put / ' #  alpha matrix:'/; 
put I/; 
put r20.1, r21.1/; 
put r30.1, r31.1, r32.1/; 
put ' #  beta matrix: ' / ;  
put betalo. l/; 
put beta20.1, beta21.1/; 
put beta30.1, beta31.1, beta32.1/; 

putclose out; 



Appendix B 

Maple Worksheets 

# Notes: 
# the resulting .gms file needs to the all of the 'I-" replaced with 
# "**"  or alternatively powers could be expanded 
> restart : 
> with(LinearA1gebra): 
# Number of stages and order. Note only s <= 8, p <= 5 is supported 
# without making changes belou 
> s := 7; p := 5; 

# Upper bound on each k-ij, upper and lower bounds on z 
> KUP := 1; ZUP :=  4; ZLO := 1; 

KUP := 1 

ZLO := I 

# Size of workspace: 
> WORKSPACE :=  500; 

WORKSPACE := 500 

# The output filename: (will be overwritten if exists) 
> GAMS-FILENAME := sprintf("ssp%d%d.gms", s, p); 

GAMS-FILENAME := "ssp75.gms" 

# Filename that GAMS should store the coefficients in: 
> COEF-FILENAME := sprintf("ssp%d%d.coeffN, s, p); 

COEF-FILENAME := "ssp75.coeffn 

# Shouldn't need to change anythin past here 
> f d : = f open(GAMS-FILENAME, WRITE?; 

# Header 
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> fprintfcfd, "$  eolcom #\nW): 
> #fprintf(fd, "$ inlinecom / *  */\nu): 
> fprintf (fd, "\nu): 
> 
# Optionally put some comments at the top of the CAMS file: 
> # fprintf(fd,"# SSP65 example\n\n"): 
> 
# Define A, b, alpha, beta 
# Need to make this bigger if you want to support s > 8: 
> A := Matrix(~~O,O,O,O,O,O,O,Ol, [k10,0,0,0,0,0,0,01, 
> [k20,k21.0,0,0,0,0,0], Ck30,k31.k32.0.0,0,0,0], 
> Ck40,k4l,k42.k43.0,0,0,0], Ck50,k51,k52,k53,k54,0,0,0]. 
> [k60,k61,k62.k63,k64,k65,0,0], Ck70,k71,k72,k73,k74,k75,k76,0]1, 
> readonly=true) ; 

# First column will not be used for optimization: 
> alpha := Matrix([[1,0,0,0,0,0,0,0], [r20,r21.0,0,0,0,0,0], 
> [r3O,r3l ,rX, 0,0,0,0,0] , Cr4O ,r4l ,r42 ,r43,O, 0,O ,0] , 
> Cr5O ,r5l ,r52 ,r53 ,r54,0,0,01, Cr6O ,r6l ,r62 ,r63,r64,r65,0,0] , 
> [r7O,r7l ,r72,r73,r74,r75,r76,0] , Cr80,r81,r82,r83,r84,r85,r86,r8711 , 
> readonly=true) ; 

L J 
Cr40 r41 r42 r43 0 0 0 0 1 

alpha := C 1 
Cr50 r51 r52 r53 r54 0 0 
r O! 

> c := Vector(s): 
> for j from 1 to s do 
> f o r k f r o m l t o s d o  
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> cCj1 := cCj1 + ACj,kl; 
> end; 
> end; 
> VectorOptions(c, readonly=true); 
> c := c; 

> beta := Matrix(s, s) : 
> for i from 1 to (s-1) do 
> f o r k f r o m l t o i d o  
> beta[i,kl := A[i+l,kl - sum('alpha[i,j+ll*ACj+l,kl ','jJ=k. .i-1): 
> end do: 
> end do: 
> for k from 1 to s do 
> betaCs,kl := bCk1 - sum('alphaCi, j+ll*A[j+l,kl','j1=k. .i-1): 
> end do: 
> MatrixOptions(beta, readonly=true); 
> beta := beta; 

beta := 

k62 - r63 k32 - r64 k42 - r65 k52 , k63 - r64 k43 - r65 k53 , 

k64 - r65 k54 , k65 , 01 
[bl - 1-71 k10 - r72 k20 - r73 k30 - r74 k40 - r75 k50 
- r76 k60 , 

b2 - r72 k21 - r73 k31 - r74 k41 - r75 k51 - r76 k61 , 
b3 - r73 k32 - r74 k42 - r75 k52 - r76 k62 , 

# 
> 
# Variables & Bounds 
# Variables 
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> fprintf (fd, "positive variables\nU) : 
> for j from 2 to s do 
> fprintfcfd, " " ) :  
> fork from 1 to (j-2) do 
> printf ( "%s, " , convert (A [j , k] ,string) ) : 
> fprintf (fd, "%s, ", convert(A[j ,kl ,string)) : 
> end do: 
> printf ( "%s\nV , convert (A [j , j-11 ,string)) : 
> fprintf (fd, "%s\n", convert(A[j, j-11 ,string)) : 
> end do: 
k10 
k20, k21 
k30, k31, k32 
k40, k41, k42, k43 
k50, k51, k52, k53, k54 
k60, k61, k62, k63, k64, k65 
>fprintf(fd, " "1: 
> for j from 1 to (s-1) do 
> printf ( "%s, " , convert (bCj1 ,string) ) : 
> fprintf(fd, "%s. ",  convert(bCj1,string)): 
> end do: 
> printf ( "%s\nU , convert (bCs1 ,string)) : 
> fprintf(fd, "%s\nU, convert(bCs1,string)): 
> 
bl, b2, b3, b4. b5, b6, 
h7 -. 
>for j from 2 to s do 
> fprintfcfd, " " ) :  
> for k from 2 to (j-1) do 
> printf( "Is, ", convert(alpha[j,kl,string)): 
> fprintf(fd, "%s, ", convert(alpha[j,kl,string)): 
> end do: 
> printf( "%s\nU, convert(alphaCj.jl,string)): 
> fprintf(fd, "%s\nn, convert(alpha[j,jl,string)): 
> end do: 
r21 
r31, r32 
r41, r42, r43 
r51, r52, r53, r54 
r61, r62, r63, r64, r65 
r71, r72, r73, r74, r75, r76 
> fprintf(fd, " ;\n\nl'): 
> fprintf (fd, "# objective cannot be declared positive\n"): 
> fprintf (fd, "variables\n z\n ;\n\nM) : 
# Bounds 
# Upper bounds on matrix A 
> for j from 2 to s do 
> for k from 1 to (j-2) do 
> printf ( "%s .up = ?g; ", convert (A [j ,kl ,string), KUP) : 
> fprintf (fd, "%.up = Lg; ", convert(A[j,kl ,string), KUP) : 
> end do: 
> printf ( "%s.up = %g;\nU, convert(A[j, j-11 ,string), KUP) : 
> fprintf(fd, "%.up =%g;\nn, convert(A[j,j-l].string), KUP): 
> end do: 
kl0.up = 1 
k20.up = 1 ; k2l.up = 1 
k30.up = 1 ; k3l.up = 1 ; k32.up = 1 
k40.up = 1 ; k41 .up = 1 ; k42.up = 1 ; k43.up = 1 

> for j frbm 1 to s do 
> printf( "%s.up = Xg; ", convert(bCj1 ,string), KUP): 
> fprintf (fd, "%s.up = %g; ", convert(bCj1 ,string), KUP) : 
> end do: 
> printf ( "\nu) : 
> fprintf (fd, "\nu) : 
bl.up = 1 ; b2.up = 1 ; b3.up = 1 ; b4.up = 1 
; b5.up = 1 ; b6.up = 1 ; b7.up = 1 

>for j from 2 to s do 
> for k from 2 to (j-1) do 
> printf ( "' As .up = 1; ", convert (alphacj ,k] ,string) ) : 
> fprintfcfd, "%s.up=l;",convert(alphaCj,kl,string)): 
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> end do: 
> printf ( "' AS .up = 1; \n" , convert (alphaCj , jl ,string)) : 
> fprintf (fd, "%.up = l;\nl', convert(a1phaCj , jl .string)) : 
> end do: 
r2l.up = 1; 
r3l.up = 1; r32.up = 1; 
r4l.up = 1; r42.up = 1; r43.up = 1; 
r5l.up = 1; r52.up = 1; r53.up = 1; r54.up = 1; 
r6l.up = 1; r62.up = 1; r63.up = 1; r64.up = 1; r65.up = 1; 
r7l.up = 1; r72.up = 1; r73.up = 1; r74.up = 1; r75.up = 1; r76.up = 
1; 
> fprintf(fd, "z.up = %g;\n", ZUP): 
> fprintf(fd, "z.10 = %g;\nU, ZLO): 
> fprintf(fd, "\n"): 
> 
> fprintf (fd, "#  initial guess for minos run (not required if baron is 
> run first)\nH): 
> for j from 2 to s do 
> printf ( " # " ) :  
> fprintf (fd, " # " ) :  
> for k from 1 to (j-2) do 
> printf( "%s.l = %g; ", convert(ACj,kl ,string), l/j): 
> fprintf (fd, "Xs.1 = %g; ", convert(ACj ,kl ,string), l/j): 
> end do: 
> printf ( "%s.l = %g;\n9', convert(ACj, j-11 ,string), l/j) : 
> fprintf (fd, "%s.l = %g;\n0', convert(ACj, j-11 ,string), l/j) : 
> end do: 

> :printf (fd, " # " j  : 
> for j from 1 toms do 
> printf ( "Xs.1 = %g; ", convert(b[jl ,string), Us): 
> fprintf (fd, "%s.l = %g; ", convert(blj1 ,string), l/s) : 
> end do: 
> printf ( "\n") : 
> fprintf (fd, "\no'): 
# 
bl.1 = .142857; b2.1 = .142857; b3.1 = ,142857; b4.1 = .142857; b5.1 = 
.142857; b6.1 = .142857; b7.1 = .142857; 

> for j from 2 to s do 
> printf ( "#")  : 
> fprintf (fd, " # " ) :  
> for k from 2 to, (j-1) do 
> printf ( "Ls. 1 = %g; " , convert(a1phaCj ,kl ,string), l/j) : 
> fprintf(fd, "Xs.1 = %g; ",  convert(alphaCj,k],string), l/j): 
> end do: 
> printf( "Xs.1 = %g;\nn, convert(alphaCj,jl,string), l/j): 
> fprintf (fd, "Xs.1 = %g;\nl', convert(alphaCj, j] .string), l/j) : 
> end do: 
k21.1 = .5 
#dl. 1 = .3333331 r32.1 = .333333; 
#r41.1 = .25 ; r42.1 = .25 ; r43.1 = .25 ; 
#r51.1 = .2 ; r52.1 = .2 ; r53.1 = .2 ; r54.1 = .2 ; 
#r61.1 = .166667; r62.1 = .166667; r63.1 = .166667; r64.1 = .166667; 
r65.1 = ,166667; 
#r71.1 = .142857; r72.1 = .142857; 1-73.1 = .142857; r74.1 = .142857; 
1-75.1 = .142857; r76.1 = .142857; 
> printf( "k.1 = %g;\nU, (ZUP+ZL0)/2): 
> fprintf(fd, "#z.l = %g;\nn, (ZUP+ZL0)/2): 
#z.l = 2.5 . 
> fprintfcfd, "in"): 
> 
# Equation Header 
> fprintf (f d, "equations\n") : 
>for j from 1 to s do 
> fprintf(fd, " 'I); 

> for k from 1 to (j-1) dz 
> printf ( "zcLd%d, , j, k-1); 
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> fprintf(fd, "zc%d%d, ", j, k-1); 
> end do: 
> printf ( "zc%d%d\nU, j, j-1); 
> fprintf (fd, "zc%d%d\nU , j , j-1) ; 
> end do: 
zcl0 
zc20, zc21 
zc30, zc31, zc32 
zc40, zc41, zc42, zc43 
zc50, zc51, zc52, zc53, zc54 
zc60, zc61, zc62, zc63, zc64, zc65 
zc70, zc71, zc72, zc73, zc74, zc75, zc76 
> fprintf(fd, " " ) .  
> for j from 2 to (s-i) do 
> printf ( "ar%d%d, ", j, 0): 
> fprintf(fd, "ar%d%d, ",  j, 0): 
> end do: 
> printf( "ar%d%d\nn, s, 0): 
> fprintf(fd, "ar%d%d\nU, s, 0): 
> 
ar20, ar30, ar40, ar50, -60. 
ar70 
> for j from 2 to s do 
> fprintf (fd, " "1. 
> fork from 1 to (j-i) do 
> printf( "bpLd%d, ",j,k-1): 
> fprintf(fd, "bp%d%d. " ,  1 ,  k-1): 
> end-do: 
> printf ( "bp%d%d\nV , j , j -2) : 
> fprintf (fd, "bp%d%d\nH, j , j-2) : 

- - 

> end do: 
bp20 
bp30, bp31 
bp40, bp41, bp42 
bp50, bp51, bp52, bp53 
bp60, bp61, bp62, bp63, bp64 
bp70, bp71, bp72, bp73, bp74, bp75 
# The number of order conditions: (pg 147 of Hairer): 
> cardTq := [1.1,2,4,9,20.48,115,286,7191; 

> for j from 1 to p do 
> fprintf (fd, " " ) :  
> for k from 1 to (cardTq[jl-1) do 
> printf ( "t%d%d, ", j, k): 
> fprintf(fd, "t%d%d, ", j ,  k): 
> end- do: .-- 

> printf ( "t%d%d\nU, j , cardTqEj1) : 
> fprintf(fd, "t%d%d\nU, j, cardTqEj1): - .  
> end- do: 
tll 
t21 
t31, t32 
t41, t42, t43, t44 
t51, t52, t53, t54, t55, t56, t57, t58, t59 
> fprintf (fd, " ; \n\n") : 
> 
> 
# SSP Conditions 
> fprintf(fd, " #  SSP conditions\nn): 
> fprintf(fd, " #  conditions arising from dummy var z:\nN): 
> printf ( "zc%d%d . . %s =C= O;\n", 1. 0, convert(alphaC1,11 - 
> z*betaCl, 11 ,string)) : 
> fprintf (fd, "zc%d/.d . . %s =C= O;\nl', 1, 0, convert(alphaC1.11 - 
> z*betaCl, 11 ,string)) : 
> for j from 2 to s-do 

> fprintf (fd, "zc%i%Ld - .  %s =C= O;\h", j, 0, 
> convert((1-sum('a1phaCj ,kl ' ,  'kJ=2.. j)) - z*beta[j ,11 ,string)): 
> f o r k f r o m 2 t o j d o  

- 

> printf ( "zc%d%d . . 1s =G= 0 ;  \no', j , k-1 , convert (alpha [j , k] - 
> z*beta[j ,kl ,string)) : 
> fprintf(fd, "zc%d%d . .  %s =C= O;\nn, j, k-1, convert(alphaCj.kl - 
> z*betaCj .kl ,string)) : 
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> end do: 
> end do: 
zclO . .  1-z*klO =G= 0; 
zc20 . .  l-r21-z*(k20-r21*klO) =G= 0; 
zc21 . .  r21-z*k21 =C= 0; 
zc30 . .  l-r31-r32-z*(k3O-r31*klO-r32*k20) =C= 0; 
zc31 . .  r31-z*(k31-r32*k21) =G= 0; 
zc32 . .  r32-z*k32 =C= 0; 
zc40 . .  1-r41-r42-r43-z*(k40-r41*k10-r42*k20-r43*k30 =C= 0; 
zc41 . .  r41-z*(k4l-r42*k21-r43*k31) =C= 0; 
zc42 . .  r42-z*(k42-r43*k32) =C= 0; 
zc43 . .  r43-z*k43 =C= 0; 
zc50 . .  1-r51-r52-r53-r54-z*(k50-r51*k10-r52*k2O-r53*k3O-r54*k4O =C= 
0; 
zc5l . .  r51-z*(k51-r52*k21-r53*k31-r54*k41) =C= 0; 
zc52 . .  r52-z*(k52-r53*k32-r54*k42) =C= 0; 
zc53 . .  r53-z*(k53-r54*k43) =C= 0; 
zc54 . .  r54-z*k54 =C= 0; 
zc60 . . 
1-r61-r62-r63-r64-r65-z*(k60-r61*k10-r62*k2O-r63*k3O-r64*k4O-r65*k5O) 
=C= 0; 
zc61 . .  r61-z*(k61-r62*k21-r63*k31-r64*k4l-r65*k51 =C= 0; 
zc62 . .  r62-z*(k62-r63*k32-r64*k42-r65*k52) =C= 0; 
zc63 . .  r63-z*(k63-r64*k43-r65*k53) =C= 0; 
zc64 . .  r64-z*(k64-r65*k54) =C= 0; 
zc65 . .  r65-z*k65 =C= 0; 
zc70 . . 
1-r71-r72-r73-r74-r75-r76-z*(bl-r71*klO-r72*k2O-r73*k3O-r74*k4O-r75*k5 
0-r76*k60) =C= 0; 
zc71 . .  r71-z*(b2-r72*k21-r73*k3l-r74*k41-r75*k5l-r76*k6l) =C= 0; 
zc72 . .  r72-z*(b3-r73*k32-r74*k42-r75*k52-r76*k62 =C= 0; 
zc73 .. r73-z*(b4-r74*k43-r75*k53-r76*k63) =C= 0; 
zc74 .. r74-z*(b5-r75*k54-r76*k64) =C= 0; 
zc75 . .  r75-z*(b6-r76*k65) =C= 0; 
zc76 . .  r76-z*b7 =C= 0; 
> 
> fprintf (f d, " #  each row of alpha must sum to 1 :\n") : 
> for j from 2 to s do 
> printf( "ar%dO . .  %s =C= O;\nn, j, convert 
> sum('alpha[j,~l ','k'=2.; j), string)): 
> fprintf(fd, ar%d0 . .  Ls =C= O;\nn, j, convert 
> sum('alpha[j,k]','k'=2..j), string)): 
> end do: 
ar20 . . 1-r21 =G= 0; 
ar30 . .  1-r31-r32 =C= 0; 
ar40 . .  1-r41-r42-r43 =C= 0; 
ar50 . .  l-r51-r52-r53-r54 =C= 0; 
ar60 . .  l-r6l-r62-r63-r64-r65 =C= 0; 
ar70 .. l-r71-r72-r73-r74-r75-r76 =C= 0; 
> fprintf (fd, "#  each beta must be >= O:\n") : 
>for j from 2 to s do 
> for k from 1 to i-1 do 
> printf ( "bp%d%d . . %s =C= O;\nU, j, k-1, convert(beta[j ,kl , 
> string)): 
> fprintf(fd,"bp%d%d . .  %s =C= O;\n0, j, k-1, convert(beta[j,kl, 
> string)): 
> end do: 
> end do: 
bp20 . .  k20-r21*k10 =C= 0; 
bp30 . .  k30-r31*klO-r32*k20 =C= 0; 
bp31 . .  k31-r32*k21 =C= 0; 
bp40 . .  k40-r4l*klO-r42*k20-r43*k30 =C= 0; 
bp41 . .  k41-r42*k21-r43*k31 =C= 0; 
bp42 . .  k42-r43*k32 =C= 0; 
bp5O . .  k50-r5l*klO-r52*k20-r53*k30-r54*k40 =C= 0; 
bp51 . .  k51-r52*k21-r53*k31-r54*k41 =C= 0; 
bp52 . .  k52-r53*k32-r54*k42 =C= 0; 
bp53 . .  k53-r54*k43 =C= 0; 
bp60 . .  k60-r61*klO-r62*k20-r63*k30-r64*k4O-r65*k50 =C= 0; 
bp61 . .  k61-r62*k21-r63*k31-r64*k41-r65*k51 =C= 0; 
bp62 . .  k62-r63*k32-r64*k42-r65*k52 =C= 0; 
bp63 . .  k63-r64*k43-r65*k53 =C= 0; 
bp64 . .  k64-r65*k54 =C= 0; 
bp70 . .  bl-r71*k10-r72*k20-r73*k30-r74*k40-r75*k5O-r76*k6O =G= 0; 
bp71 . .  =G= 0 ;  
bp72 . .  b3-r73*k32-r74*k42-r75*k52-r76*k62 =C= 0; 
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bp73 . .  b4-r74*k43-r75*k53-r76*k63 =C= 0; 
bp74 . .  b5-r75*k54-r76*k64 =C= 0; 
bp75 . .  b6-r76tk65 =G= 0; 
> fprintf(fd, "\nu): 
# 
> 
# Order Conditions 
> fprintf(fd, "#  Order Conditions\nU): 
> 
# OC1 
> if (p >= 1) then 
> # this is called tau but easier for the scripts if we call it tll 
> suml := sum('b[jl', ,'jJ=l..s): 
> printf ( "tll . . As =E= l;\n", convert(sum1,string)): 
> fprintf (fd, "tll . . %s =E= l;\n", convert(sum1,string)): 
> fi: 
tll . .  bl+b2+b3+b4+b5+b6+b7 =E= 1; 
> 
# oc2 
> if (p >= 2) then 
> suml := sum('b[j];c[~]', 'jJ=l..s): 
> printf( "t21 * (  %s ) =E= l;\nU, convert(sum1,string)): 
> fprintf(fd, "t21 . .  2*( %s ) =E= l;\nU, convert(sum1,string)): 
> fi: 
t21 . . 2*( 

> 
# OC3 
> if (p >= 3) then 
> suml := sum('b[jl*c[jl-2', 'jJ=l. .s): 
> printf ( " t31 . .  3*( %s ) =E= l;\nU, convert(sum1,string)): 
> fprintf(fd, "t31 . .  3*( %s ) =E= l;\n", convert(sum1,string)): 
> 
> suml := 0: 
> for j from 1 to s do 
> f o r k f r o m l t o s d o  
> sum1 := sum1 + b[j]*A[j,k]*c[k]; 
> end: 
> end: 
> printf( "t32 . .  6*( %s ) =E= l;\nH, convert(sum1,string)): 
> fprintf(fd, "t32 . .  6*( 1s ) =E= 1;\nH, convert(sum1,string)): 
> fi: 
t31 . . 3*( 
b2*k10-2+b3*(k20+k21)~2+b4*(k30+k31+k32)-2+b5*(k4O+k4l+k42+k43)-2+b6*( 
k50+k51+k52+k53+k54)-2+b7*(k60+k61+k62+k63+k64+k652 ) =E= 1; 
t32 . . 6*( 
b3*k21*k10+b4*k31*klO+b4*k32*(k20+k21)+b5*k4l*klO+b5*k42*~k2O+k2l~+b5* 
k43*(k30+k31+k32)+b6*k51*k10+b6*k52*(k20+k2l)+b6*k53*~k3O+k3l+k32)+b6* 
k54*(k40+k41+k42+k43)+b7*k61*k10+b7*k62*~k2O+k2l)+b7*k63*~k3O+k3l+k32~ 
+b7*k64*(k40+k41+k42+k43)+b7*k65*(k50+k5l+k52+k53+k54 ) =E= 1; 
# OC4 
> if (D >= 4) then 

s&l := ~um('b[jl*c[jl-3~, 'jJ=l. .s): 
printf( "t41 . .  4*( %s =E= l;\nU, convert(sum1,string)): 
fprintf (f d, "t41 . . 4*( %s ) =E= l;\nl', convert (suml, string)) : 

suml := 0: 
for j from 1 to s do 
for k from 1 to s do 
suml := suml + b[j]*A[j,k]*c[k]*c[j]; 

end: 
end: 
printf( "t42 . .  8*( %s ) =E= l;\nn, convert(sum1,string)): 
fprintf(fd, "t42 . .  8*( %s ) =E= l;\nU, convert(surn1,string)): 

suml := 0: 
for j from 1 to s do 
fork from 1 to s do 
suml := suml + b[j]*A[j,kl*c[kl"2; 

end: 
end : 
printf( "t43 . .  12*( %s ) =E= l;\nU, convert(sum1,string)): 
fprintf(fd, "t43 . .  12*( %s ) =E= l;\nU, convert(sum1,string)): 

suml := 0: 
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> f o r j f r o m l t o s d o  
> for k from 1 to s do 
> for 1 from 1 to s do 
> sum1 := sum1 + b[jl*A[j ,kl*A[k, lI*c[11;  
> end : 
> end: 
> end: 
> printf ( "t44 . . 24* ( %s ) =E= 1 ; \n" , convert (sum1 , string)) : 
> fprintf(fd, "t44 . .  24*( 1s ) =E= l;\nU, convert(sum1,string)): 
> fi: 
t41 . . 4*( 
b2*k10~3+b3*(k20+k21)~3+b4*~k30+k31+k32)~3+b5*~k4O+k4l+k42+k43~~3+b6*( 
k50+k51+k52+k53+k54)^3+b7*(k60+k61+k62+k63+k64+k65)3 ) =E= 1; 
t42 . . 8* ( 
b3*k21*k10*(k20+k21)+b4*k31*k10*(k30+k31+k32)+b4*k32*~k2O+k2l)*(k3O+k3 
l+k32)+b5*k41*k10*(k40+k41+k42+k43)+b5*k42*(k2O+k2l~*~k4O+k4l+k42+k43~ 
+b5*k43*(k30+k31+k32)*(k40+k41+k42+k43)+b6*k5l*klO*(k5O+k5l+k52+k53+k5 
4)+b6*k52*(k20+k21)*(k50+k51+k52+k53+k54~+b6*k53*~k3O+k3l+k32)*~k5O+k5 
l+k52+k53+k54)+b6*k54*(k40+k41+k42+k43)*(k5O+k5l+k52+k53+k54)+b7*k6l*k 
10*(k60+k61+k62+k63+k64+k65)+b7*k62*(k20+k2l~*~k6O+k6l+k62+k63+k64+k65 
)+b7*k63*(k30+k31+k32)*(k60+k61+k62+k63+k64+k65~+b7*k64*~k4O+k4l+k42+k 
43)*(k60+k61+k62+k63+k64+k65)+b7*k65*(k5O+k5l+k52+k53+k54)*(k6O+k6l+k6 
2+k63+k64+k65) ) =E= 1; 
t43 . . 12*( 
b3*k21*k10~2+b4*k31*k10~2+b4*k32*(k20+k2l~~2+b5*k4l*klO"2+b5*k42*(k2O+ 
k21)~2+b5*k43*(k30+k31+k32)~2+b6*k51*k10"2+b6*k52*(k2O+k2l~"2+b6*k53*( 
k30+k31+k32)~2+b6*k54*(k40+k41+k42+k43)~2+b7*k6l*klO~2+b7*k62*(k2O+k2l 
)^2+b7*k63*(k30+k31+k32)"2+b7*k64*(k40+k4l+k42+k43)-2+b7*k65*(k5O+k5l+ 
k52+k53+k54)-2 ) =E= 1; 
t44 . . 24* ( 
b4*k32*k21*k10+b5*k42*k21*klO+b5*k43*k3l*klO+b5*k43*k32*(k2O+k2l)+b6*k 
52*k21*k10+b6*k53*k31*k10+b6*k53*k32*(k2O+k2l)+b6*k54*k4l*klO+b6*k54*k 
42*(k20+k21)+b6*k54*k43*(k30+k31+k32)+b7*k62*k2l*klO+b7*k63*k3l*klO+b7 
*k63*k32*(k20+k21)+b7*k64*k4l*k10+b7*k64*k42*(k2O+k2l)+b7*k64*k43*(k3O 
+k31+k32)+b7*k65*k51*k10+b7*k65*k52*(k20+k2l~+b7*k65*k53*(k3O+k3l+k32~ 
+b7*k65*k54*(k40+k41+k42+k43) ) =E= 1; 
> 
# OC5 
> if (p >= 5) then 

suinl := 0: 
for j from 1 to s do 

suml := suml + b[jl*c[jl-4; 
end: 
printf( "t51 . .  5*( %s ) =E= l;\nn, convert(sum1,string)): 
fprintf(fd, "t51 . .  5*( %s ) =E= l;\nU, convert(sum1,string)): 

suml :=  0: 
for j from 1 to s do 

for k from 1 to s do 
suml := sum1 + b [ j 1 * A ~ j , k l * c [ k l * c [ j l - 2 ;  

end: 
end : 
printf( "t52 . .  lo*( %s ) =E= l;\nV, convert(sum1,string)): 
fprintf(fd, "t52 . .  lo*( %s ) =E= l;\n", convert(sum1,string)): 

suml :=  0: 
for j from 1 to s do 

f o r k  from 1 to s do 
sum1 := suml + b[jI*~[j,kl*c[k]-2*c[jl ; 

end: 
end: 
printf ( " t53 . .  15*( %s ) =E= l;\nt', convert(sum1,string)): 
fprintf(fd, "t53 . .  15*( %s ) =E= l;\nl', convert(sum1,string)): 

suml := 0: 
for j from 1 to s do 

f o r k  from 1 to s do 
for 1 from 1 to s do 

suml := suml + b [ j l * A [ j , k l * A [ k , 1 l * c ~ 1 1 * c ~ j l ;  
end : 

end: 
end : 
printf ( "t54 . . 30*( %s ) =E= l;\nl'. convert(sum1,string)): 
fprintf(fd, "t54 . .  30*( %s ) =E= l;\nU, convert(suml,string)): 

suml := 0: 
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for j from 1 to s do 
fork from 1 to s do 
for m from 1 to s do 
suml := suml + b[j]*~[j ,kl*c[kl*ACj ,m]*c[ml ; 

end: 
end: 

end : 
printf ( "t55 . . 20*( %s ) =E= 1; \n" , convert (sum1 , string) ) : 
fprintf (fd, "t55 . . 20*( 1s ) =E= l;\nU, convert(sum1,string)) : 

suml :=  0: 
for j from 1 to s do 
for k from 1 to s do 
suml := suml + b[jl*A[j,k]*c[kl-3; 

end: 
end: 
printf( "t56 . .  20*( %s ) =E= l;\n", convert(sum1,string)): 
fprintf(fd, "t56 . .  20*( %s ) =E= l;\nl', convert(sum1,string)): 

suml := 0: 
for j from 1 to s do 
fork from 1 to s do 
for 1 from 1 to s do 
suml := sum1 + b[j] *A[j ,kl *A[k,ll *c [l] *c [kl ; - - 

end : 
end : 

end: 
printf( "t57 . .  40*( %s ) =E= l;\nV, convert(sum1,string)): 
fprintf(fd, "t57 . .  40*( %s ) =E= l;\nt', convert(sum1,string)): 

suml := 0: 
for j from 1 to s do 
for kfrom 1 to s do 
for 1 from 1 to s do 
suml := suml + b[j]*A[j,kl*ACk,ll*cClI-2; 

end : 
end: 

end: 
printf( "t58 . .  60*( %s ) =E= l;\nU, convert(sum1,string)): 
fprintf(fd, "t58 .. 60*( %s ) -E= l;\nU, convert(sum1,string)): 

suml := 0: 
for j from 1 to s do 
for k from 1 to s do 
for 1 from 1 to s do 
form from 1 to s do 
sum1 := suml + b[jl*~[j,kl*~~k,l~*A[l,ml*ch~; 

end: 
end: 

end : 
end: 
printf( "t59 . .  120*( %s ) =E= l;\nU, convert(sum1,string)): 
fprintf(fd, "t59 . .  120*( %s ) =E= l;\n", convert(sum1,string)): 

fi: 
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t55 . . 20*( 
b5*k41-2*k10"2+2*b5*k41*k10*k42*(k20+k21)+2*b5*k4l*klO*k43*(k3O+k31+k3 
2)+b4*k31~2*k10-2+2*b4*k31*k10*k32*(k20+k21)+b4*k32-2*(k20+k21)-2+b3*k 
21-2*k10-2+b5*k43-2*(k30+k31+k32)^2+b7*k62-2*(k2O+k21)-2+2*b7*k62*(k2O 
+k21)*k63*(k30+k31+k32)+2*b7*k62*(k20+k21)*k64*(k40+k41+k42+k43)+2*b7* 
k62*(k20+k21)*k65*(k50+k51+k52+k53+k54)+b7*k63-2*(k30+k31+k32)-2+2*b7* 
k61*k10*k65*(k50+k51+k52+k53+k54)+b6*k54-2*(k4O+k41+k42+k43)-2+b6*k53- 
2*(k30+k31+k32)-2+2*b6*k53*(k30+k31+k32)*k54*(k40+k41+k42+k43)+b7*k6l- 
2*k10-2+2*b7*k61*k10*k62*(k20+k21)+2*b7*k6l*k1O*k63*(k3O+k31+k32)+2*b7 
*k61*k10*k64*(k40+k4l+k42+k43)+b6*k51~2*k1O"2+2*b6*k5l*kl0*k52*(k20+k2 
1)+2*b6*k51*k10*k53*(k30+k31+k32)+2*b6*k51*k1O*k54*(k4O+k4l+k42+k43)+b 
6*k52-2*(k20+k21)-2+2*b6*k52*(k20+k21)*k53*(k3O+k31+k32)+2*b6*k52*(k2O 
+k21)*k54*(k40+k41+k42+k43)+b5*k42'2*(k2O+k21)-2+2*b5*k42*(k20+k21)*k4 
3*(k30+k31+k32)+b7*k65^2*(k50+k51+k52+k53+k54)-2+2*b7*k64*(k40+k4l+k42 
+k43)*k65*(k50+k51+k52+k53+k54)+2*b7*k63*(k3O+k31+k32)*k64*(k40+k4l+k4 
2+k43)+2*b7*k63*(k30+k31+k32)*k65*(k50+k51+k52+k53+k54)+b7*k64-2*(k40+ 
k41+k42+k43) "2 ) =E= 1; 
t56 . .  20*( 
b3*k21*k10-3+b4*k31*k1Oo3+b4*k32*(k20+k21)"3+b5*k41*k1O-3+b5*k42*(k2O+ 
k21)-3+b5*k43*(k30+k31+k32)^3+b6*k51*k1O-3+b6*k52*(k20+k2l)-3+b6*k53*( 
k30+k31+k32)-3+b6*k54*(k4O+k41+k42+k43)"3+b7*k61*k1O-3+b7*k62*(k2O+k21 
) -3+b7*k63* (k30+k31+k32) ̂3+b7*k64* (k40+k4l+k42+k43) -3+b7*k65*(k50+k51+ 
k52+k53+k54)-3 ) =E= 1; 
t57 . . 40*( 
b4*k32*k21*k10*(k20+k21)+b5*k42*k21*k1O*(k2O+k21)+b5*k43*k31*k1O*(k3O+ 
k31+k32)+b5*k43*k32*(k20+k21)*(k30+k31+k32)+b6*k52*k2l*klO*(k20+k21)+b 
6*k53*k31*k10*(k30+k31+k32)+b6*k53*k32*(k2O+k21)*(k3O+k3l+k32)+b6*k54* 
k41*k10*(k40+k41+k42+k43)+b6*k54*k42*(k2O+k21)*(k40+k41+k42+k43)+b6*k5 
4*k43*(k30+k31+k32)*(k40+k41+k42+k43)+b7*k62*k21*k1O*(k20+k2l)+b7*k63* 
k31*k10*(k30+k31+k32)+b7*k63*k32*(k20+k21)*(k3O+k31+k32)+b7*k64*k41*k1 
0*(k40+k41+k42+k43)+b7*k64*k42*(k20+k21)*(k40+k4l+k42+k43)+b7*k64*k43* 
(k30+k31+k32)*(k40+k41+k42+k43)+b7*k65*k51*klO*(k50+k51+k52+k53+k54)+b 
7*k65*k52*(k20+k21)*(k5O+k5l+k52+k53+k54)+b7*k65*k53*(k30+k31+k32)*(k5 
O+k51+k52+k53+k54)+b7*k65*k54*(k40+k41+k42+k43)*(k5O+k51+k52+k53+k54) 
) =E= 1; 
t58 . . 60* ( 
b4*k32*k21*k10-2+b5*k42*k21*k10^2+b5*k43*k31*k1O-2+b5*k43*k32*(k2O+k2l 
)-2+b6*k52*k21*k10-2+b6*k53*k31*k10^2+b6*k53*k32*(k2O+k21)-2+b6*k54*k4 
l*k10-2+b6*k54*k42*(k20+k21)^2+b6*k54*k43*(k3O+k3l+k32)-2+b7*k62*k2l*k 
10-2+b7*k63*k31*k10^2+b7*k63*k32*(k20+k21)-2+b7*k64*k41*k1O-2+b7*k64*k 
42*(k20+k21)-2+b7*k64*k43*(k30+k31+k32)-2+b7*k65*k5l*k1O-2+b7*k65*k52* 
(k20+k21)"2+b7*k65*k53*(k30+k31+k32)"2+b7*k65*k54*(k40+k41+k42+k43)-2 
) =E= 1; 
t59 .. 120*( 
b5*k43*k32*k21*k10+b6*k53*k32*k21*k1O+b6*k54*k42*k21*k1O+b6*k54*k43*k3 
l*k10+b6*k54*k43*k32*(k20+k21)+b7*k63*k32*k21*k1O+b7*k64*k42*k21*kl0+b 
7*k64*k43*k31*k10+b7*k64*k43*k32*(k20+k2l)+b7*k65*k52*k2l*k1O+b7*k65*k 
53*k31*k10+b7*k65*k53*k32*(k20+k21)+b7*k65*k54*k41*klO+b7*k65*k54*k42* 
(k20+k21) +b7*k65*k54*k43* (k30+k31+k32) ) =E= 1 ; 
> fprintf (fd, "\nu): 
> 
# Model setup, BARON call 
> fprintf(fd, "#  only affects the dis la command and cannot be > 8\nM): 
> fprintf (fd, "option decimals = 8;\n&"!: 
> 
> fprintf(fd, " #  BARON run:\nU): 
> fprintf (fd, "model m /all/;\nM) : 
> fprintf (fd, "option nlp = baron;\ng') : 
> fprintf (fd, "m-.optf ile- = l;\nn) : 
> fprintfcfd, "rn.workspace = %d;\nU, WORKSPACE): 
> fprintf(fd, "solve m maximizing z using nlp;\n\nn): 



APPENDIX B. MAPLE WORKSHEETS 

> 
> 
> fprintf(fd, " #  MINOS run:\nU): 
> fprintf(fd, "model m2 /all/;\nn): 
> fprintf(fd, "option nlp = minos;\nU): 
> fprintf(fd, "option sysout = on;\nn): 
> fprintf(fd, "m2.optfile = l;\nH): 
> fprintf(fd, "solve m2 maximizing z using nlp;\n\nfl): 
> 
> fprintf(fd, "variables\nH): 
> fprintf(fd, " " ) :  
> for j from 2 to (s-1) do 
> printf ( "%s, ", convert(alpha[j ,I] ,string)) : 
> fprintf (fd, "%s , " , convert (alphacj , 11 ,string) ) : 
> end do: 
> printf ( "%s\nM , convert (alphaCj ,11 ,string)) : 
> fprintf (fd, "%s\n", convert (alpha[j , 11 ,string)) : 
r20, r30, r40, r50, r60, 
r70 
>for j from 1 to s do 
> fprintf (fd, " "1: 
> for k from 1 to (j-1) do 
> printf ( "beta%d%d, ", j, k-1): 
> fprintf (fd, "beta%d%d, ", j, k-1): 
> end do: 
> printf ( "beta%d%d\n", j , j-1) : 
> fprintf (fd, "beta%d%d\nfl, j, j-1): 
> end do: 
beta10 
beta20, beta21 
beta30, beta31, beta32 
beta40, beta41, beta42, beta43 
beta50, beta51, beta52, beta53, beta54 
beta60, beta61, beta62, beta63, beta64, beta65 
beta70, beta71, beta72, beta73, beta74, beta75, beta76 
>fprintf(fd, " ;\nH): 
> for j from 2 to s do 

Ls.1 = 1 - ", convert(alpha[j ,I], string)) : > printf ( "' 
> fprintf (fd, "Xs.1 = 1 - " ,  convert(alpha[j,ll, string)): 
> fork from 2 to,(j-1) do 
> printf ( "/.s.l - ", convert(alpha[j ,kl , string)) : 
> fprintf (fd, "%s.l - " ,  convert(alpha[j ,kl , string)) : 
> end do: 
> printf ( "%s. l;\nU, convert (alpha[j, jl , string) ) : 
> fprintf(fd, "%s.l;\nn, convert(alpha[j,jl, string)): 
> #printf ( "7 .s. 1 = 7 .s, '\nu , convert(alpha[ 11, string), 
> convert(1-sun('alpha[j ,k1 ', 'k'=2.. j), strin jj: 
> #fprintf (fd, "Xs.1 = %s;\nH, convert(alphaf' 11, string), 
> convert(1-sum('alpha[j .k] ' , 'k1=2.. j) , stringjj : 
> end do: 
> 

r70.1 = 1 - r71.1 - r72.1 - r73.i - r74.1 - r75.1'- r76.1; 
> for i from 1 to s do 
> fork from 1 to i do 
> if (i = S) then 
> printf ( "beta%d%d.l = %s.ln, i, k-1, b[k]): 
> fprintf(fd, "beta%d%d.l = %s.ln, i, k-1, bCk]): 
> else 
> printf ( "beta%d%d. 1 = %s. 1" , i, k-1, A [i+l ,kl) : 
> fprintfcfd, "beta%d%d.l = %s.lU, i, k-1, A[i+l,k]): 
> fi: 
> for j from k to i-1 do 
> printf ( " - %s.l*%s.l", alphaCi, j+ll , A[j+l,kl): 
> fprintfcfd, " - %s.l*%s.ltl, alpha[i,j+ll, A[j+l.kl): 
> end do: -- 

> printf ( ";\nu): 
> fprintf(fd, ";\nH): 
> end do: 
> end do: 
betalO.l = klO.l; 
beta20.1 = k20.1 - r21.1*k10.1; 
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- - - 

> ## unfortunately, this will not work! (the expression won't have .l's) 
>#for j from 1 to s do 
> # for k from 1 to j do 
> #  printf( " b e t a % d % d . l = % s ; \ n n , j , k - 1 ,  
> convert (beta[j ,kl ,string)) : 
> # fprintf (fd, "betaXdxd.1 = %s;\nU, j, k-1, 
> convert (beta[j ,k] ,string)) : 
> # end do: 
> #end do: 
> 
> 
> fprintfcfd, "file out / %s /;\nN, COEF-FILENAME): 
> fprintf(fd, "put out;\nU): 
> fprintf(fd, "out.nd=15;\nout.nr=O;\nout.nz=O;\nout.n~=22;\n\n"): 
> fprintf (fd, "put 2.10, 2.1, z.up/;\nM): 
> 
> 
> 
> fprintf (fd, "put ' #  A matrix:'//;\nl'): 
> for j from 2 to s do 
> printf ( "put " ) :  
> fprintfcfd, "put 'I): 

> for k from 1 to (j-2) do 
> printf ( "%s. 1. " , convert (A [j , kl ,string) ) : 
> fprintf (fd, "Xs.1, ", convert(A[j ,kl ,string)) : 
> end do: 
> printf ( "%s.l/;\n", convert (A[j, j-11 ,string)) : 
> fprintf (fd, "%s.l/;\n", convert(A[j, j-11 ,string)) : 
> end do: 
put k10.1/; 
put k20.1, k21.1/; 
put k30.1, k31.1, k32.1/; 
put k40.1, k41.1, k42.1, k43.U; 
put k50.1, k51.1, k52.1, k53.1, k54.U; 
put k60.1, k61.1, k62.1, k63.1, k64.1, k65.1/; 
> fprintf(fd, "put ' #  b vector:'/;\nU): 
>printf( "put"): 
> fprintf(fd, "put ' I ) :  

> for j from 1 to (s-1) do 
> printf ( "%s.l, ", convert(b[jl ,string)) : 
> fprintf (fd, "Xs.1, ", convert(b[j] ,string)): 
> end do: 
> printf ( "%s. l/;\nU , convert (b[sl ,string)) : 
> fprintf (fd, "%s.l/;\n", convert(b[s] ,string)) : 



APPENDIX B. MAPLE WORKSHEETS 

b7.l/; 
> fprintf(fd, "put / ' #  a1 ha matrix:'/;\nM): 
> printf ( "put l/;\nV'P: 
> fprintf (fd, "put l/;\nU): 
>for j from 2 to s do 
> printf ( "put '0: 
> fprintfcfd, "put "1: 
> for k from 1 to (j-1) do 
> printf ( "%s.l, ", convert(alpha[j .kl ,string)) : 
> fprintf (fd, "Xs.1, ", convert(alpha[j .kl ,string)) : 
> end do: 
> printf ( "%s.l/;\nfl , convert(a1phaCj. j] ,string)) : 
> fprintf(fd, "%s.l/;\nV, convert(alphaCj.j],string)): 
> end do: 
put l/; 
put r20.1, r21.1/; 
put r30.1, r31.1, r32.U; 
put r4O. 1, r4l. 1, r42.1, r43.1/; 
put r50.1, r51.1, r52.1, r53.1, r54.1/; 
put r60.1, r61.1, r62.1, r63.1, r64.1, r65.U; 
put r70.1, r71.1, r72.1, r73.1, r74.1, r75.1, r76.U; 
> fprintf (fd, "put ' #  beta matrix: '/;\nu): 
>for j from 1 to s d; 
> printf ( "put ) :  
> fprintfcfd, "put " ) :  
> for k from 1 to (j-1) do 
> printf( "beta%d%d.l, ", j, k-1): 
> fprintfcfd, "beta%d%d.l, ",  j, k-1): 
> end do: 
> printf( "beta%d%d.l/;\n0, j, j-1): 
> fprintfcfd, "beta%d%d.l/;\nU, j, j-1): 
> end do: 
put betalO.l/; 
put beta20.1, beta21 .I/; 
put beta30.1, beta31.1, beta32.1/; 
put beta40.1, beta41.1, beta42.1, beta43.1/; 
put beta50.1, beta51.1, beta52.1, beta53.1, beta54.1/; 
put beta60.1, beta61.1, beta62.1, beta63.1, beta64.1, beta65.1/; 
put beta70.1, beta71.1, beta72.1, beta73.1, beta74.1, beta75.1, 
beta76.U; 
> fprintf(fd, "\nu): 
> 
> 
> fprintf (fd, "putclose out;\nH) : 
> 



Appendix C 

Additional Source Code 

The author's website at http://www.math.sfu.ca/~cbm/ contains additional source code, 

errata lists and machine readable code for the various Butcher tableaux and a-P notation 

matrices contained in this thesis. 
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