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Abstract 

The cathode of a Proton Exchange Membrane (PEM) fuel cell serves to conduct 

reactant (02) gas to the catalyst layer, while removing by-products of the reaction, 

namely water in both liquid and vapour phase. This leads to delicate transport issues 

involving counter propagation, multi-phase flow sensitively coupled to the temperature 

profile through the phase change. 

We develop a 1D model of this coupled liquid-gas transport in the gas diffusion 

layer of a PEM fuel cell electrode. We non-dimensionalize the model, indentifying 

scaling regimes in which the temperature and water vapour are slaved to the temper- 

ature profile at  steady-state. We find that the liquid water transport is dominated by 

capillary pressure, that the heat transport is dominated by diffusion, while the gas 

transport is convectively dominated during transients but settles down to a diffusively 

driven steady-state. 

We introduce a parameter u whice determines the ratio of liquid water to water 

vapour production in the catalyst layer and tune v so there is no boundary layer in 

the slaved water vapour concentration. In this regime the liquid water equation will 

de-couple from the gas and temperature equations when we are solving up to leading 

order. 

We use the reduced model to examine the role of hydrophobicity on liquid water 

transport and the role of temperature gradients on gas transport. 



Acknowledgments 

I would like to extend a huge thanks to my supervisor, Keith Promislow, for all his 

patience, suggestions and help - I would not have written this thesis without him. 

Thanks as well to Jean St-Pierre from Ballard Power Systems and Brian Wetton, 

from UBC, for their helpful hints and encouragement. Thanks to John Stockie, from 

the University of New Brunswick, for all his help and for providing figures and research 

material for me. Thanks as well to all the members of the "Ballard" team (at Ballard 

Power Systems). It has been a great experience working with such a wonderful group 

of people. 

I would also like to thank all of my office mates, in particular, Colin Macdonald, 

Ben Ong, Jeffrey Gilmore, Mohamed Sulman and Reza Naserasr for all their patience, 

friendship and the many helpful tips they have shared with me over the last two years. 

My experience at  SFU would not have been the same without them! 

A huge thanks also goes to  the members of the Math Department at SFU, in 

particular, Dave Muraki and Bob Russell for their great instruction, patience and 

inspiration that they provided all of us in the Math Department. 

Finally, many thanks go to my family and friends for all their encouragement, 

support and belief in me over the last six years. 



Contents 

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Abstract ill 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Acknowledgments iv 
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  List of Figures vlll 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.1 The structure of the PEM fuel cell . . . . . . . . . . . . . . .  1 

. . . . . . . . . . . .  1.2 The key issues in PEM fuel cell modeling 3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 The Model 5 

. . . . . .  2.1 The Conservation Equations for the Reactant Gases 7 

. . . . . . . . . . . . . . . .  2.2 Defining U,, Jk. f . piat and cia' 9 

. . . . . . . . . . . .  2.3 The Liquid Water Conservation Equation 10 

. . . . . . . . . . . . . . .  2.4 The Temperature Energy Equation 13 

. . . . . . . . . . . . . . . . . . . .  2.5 The Boundary Conditions 14 

. . . . . . . . . . . . . . . . . . . . .  2.5.1 At the channel 14 

2.5.2 At the Catalyst Layer . . . . . . . . . . . . . . . . .  15 

. . . . . . . . . . . . . . . . . . . . .  3 The Non-Dimensional Equations 17 

. . . . . . . . . . . . . . . . . . . . . . .  3.1 The oxygen equation 17 

. . . . . . . . . . . . . . . . . . .  3.2 The Water Vapour Equation 18 

. . . . . . . . . . . . . . . . . . . . .  3.3 The Total Gas Equation 19 

3.4 The Liquid Water Equation . . . . . . . . . . . . . . . . . . .  20 

. . . . . . . . . . . . . . . . . . .  3.5 The Temperature Equation 20 

. . . . . . . . . . . . . . .  4 The Non-dimensional Boundary Conditions 23 

. . . . . . . . . . . . . . . .  4.1 The Oxygen Boundary Conditions 23 

4.1.1 At thechanne l ($=O)  . . . . . . . . . . . . . . . . .  23 



. . . . . . . . . . . . . . . . . .  4.1.2 At the catalyst layer 23 

. . . . . . . . . . . .  4.2 The Water Vapour Boundary Conditions 24 

. . . . . . . . . . . . . . . . . . . . .  4.2.1 At the channel 24 

. . . . . . . . . . . . . . . . . .  4.2.2 At the catalyst layer 25 

. . . . . . . . . . . . . .  4.3 The Total Gas Boundary Conditions 26 

. . . . . . . . . . . . . . . . . . . . .  4.3.1 At the channel 26 

. . . . . . . . . . . . . . . . . .  4.3.2 At the catalyst layer 26 

. . . . . . . . . . . .  4.4 The Liquid Water Boundary Conditions 27 

. . . . . . . . . . . . . . . . . . . . .  4.4.1 At the channel 27 

. . . . . . . . . . . . . . . . . .  4.4.2 At the catalyst layer 29 

. . . . . . . . . . . . .  4.5 The Temperature Boundary Conditions 30 

. . . . . . . . . . . . . . . . . . . . .  4.5.1 At the channel 30 

. . . . . . . . . . . . . . . . . .  4.5.2 At the catalyst layer 30 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5 The Reduced Model 32 

. . . . . . . . . . . .  5.1 The Approximations and Simplifications 33 

. . . . . . . . . . . . . . . . . . . . . . . . .  5.2 The Assumptions 33 

. . . . . . . . . . . . . . . .  5.3 Approximating the Size of [CT], 34 

. . . . . . . . . . . . . . . . . .  5.4 Approximating the size of P(') 36 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.5 The constants 37 

. . . . . . . . . . . . . . .  5.6 Reducing the Differential Equations 38 

. . . . . . . . . . . . . . .  5.6.1 The Total Gas Expansion 38 

. . . . . . . . . . . . .  5.6.2 The Water Vapour Expansion 38 

. . . . . . . . . . . . . . .  5.7 Reducing the differential equations 39 

. . . . . . . . . . . . .  5.7.1 The reduced oxygen equation 39 

5.7.2 The reduced water vapour equation . . . . . . . . . .  40 

. . . . . . . . . . .  5.7.3 The Reduced Total Gas Equation 41 

. . . . . . . . .  5.7.4 The Reduced Liquid Water Equation 41 

5.7.5 The Reduced Temperature Equation . . . . . . . . .  42 

5.8 Reducing the Boundary Conditions . . . . . . . . . . . . . . .  43 

5.8.1 The Oxygen Boundary Condition at the Catalyst Layer 43 



5.8.2 The Water Vapour Boundary Condition at the Cata- 

lyst Layer . . . . . . . . . . . . . . . . . . . . . . . .  

5.8.3 The Total Gas Boundary Condition at the Catalyst 

. . . . . . . . . . . . . . . . . . . . . . . . . .  Layer 

5.8.4 The Liquid Water Boundary Condition at the Channel 

5.8.5 The Liquid Water Boundary Condition at the Catalyst 

Layer . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.8.6 The Temperature Boundary Condition at the Catalyst 

Layer . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.9 The Resulting Differential Equations at Steady State . . . . .  

6 The Outer Solutions at Steady-State . . . . . . . . . . . . . . . . . .  

6.1 Solving for the Liquid Water Volume Fraction . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2 Solving for T 

. . . . . . . . . . . . . . . . . . . . . . . . . .  6.3 Solving for ~ ( l )  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.4 Solving for u 

. . . . . . . . . . . . . .  6.5 The resulting constants of integration 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  6.6 Solving for Ug 

6.7 Solving for C1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . .  6.8 Solving for c!') 

6.9 The Validity of the Assumptions . . . . . . . . . . . . . . . .  

7 Summary of Main Results . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Studying u 

. . . . . . . . . . . . . . . . . . . . . .  7.2 The effects of varying I 

. . . . . . . . . . . . . . . . . . . . .  7.3 The effects of varying K ,  

7.4 The effects of varying S, . . . . . . . . . . . . . . . . . . . . .  

7.5 The Liquid and Gas Fluxes . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  7.6 The change in P and r with I and K,  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 The Conclusions 

9 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Bibliography 

vii 



List of Figures 

1.1 A cross-section of a PEM Fuel Cell. The MEA is surrounded by 

graphite plates, within which are etched the oxygen and hydrogen flow 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  channels. 

2.1 A 3D view of the PEM fuel cell (from [23]). In the model, we take a 

slice in the y-direction through the GDL from the channel to  the PEM. 

2.2 The saturation pressure, P,Sa'(T) (left) and the saturation concentra- 

tion, c;.~(T) (right). qa t (~)  is given in atmospheres whereas C;"'(T) 
p a t  

is given in the dimensionless form + (see Chapter 3). . . . . . . . .  

2.3 The relative liquid and gas permeabilities, kTl(P) (left) and kT,(P) 

(right), where the liquid water volume fraction P is varied from 0 to 1. 

2.4 The log plots of the Leverett and van Genuchten functions, J(P) (left) 

and Ju(P) (right), where the liquid water volume fraction varies from 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O t o l .  

. . . . . . . .  5.1 The log plot of f (P) = PkTl (P)J1(P) for P E [0, 11. 

6.1 Contour plot of P$')(v, 10) at y=1, where v E [-2,O) and I. E (0,0.0474]. 

On the second contour from the top, where v = -0.5, P$') = 0. . . .  

6.2 Relative error between T ( ~ ) ~ ~ " ' ( Y )  and its linear approximation across 

theGDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

... 
Vl l l  



The two solutions of c;') - the first correction for the dimensionless 

water vapour concentration at  steady-state - derived from (6.20) and 

(6.21) and plotted across the GDL (left). The error between the two 

solutions (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

[ln?] (left-hand figure) and C(y) (right-hand figure). . . . . . . . . 
Y 

LQ across the GDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C1 

The variation in v with the current, I, at the catalyst layer. The thermal 

conductivity constant is fixed at r;, = 10~erg/cm. s - K.  . . . . . . . . 

The variation in v with the thermal conductivity, K, vs, v, where the 

current is fixed at I = 1Amp/cm2. . . . . . . . . . . . . . . . . . . . . 

The variation in v with the nondimensional channel temperature, where 

the current is fixed at I = 1Amp/cm2 and r;, = 105erg/cm s . K. . . 

The oxygen concentration for 3 different current values: I= 112, 1, 2 

Amplcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The water vapour concentration for 3 different current values: I= 112, 

1 , 2  Amp/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The total gas concentration for 3 different current values: I= 112, 1, 2 

Amplcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The temperature distribution for 3 different current values: I= 112, 1, 

2 Amp/cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The oxygen concentration for 3 different thermal conductivity values: 

r;, = 5 x lo4, lo5, lo7 erglcm . s . K ,  where I is fixed at 1 Amp/cm2. 

The water vapour concentration for 3 different thermal conductivity 

values: K, = 5 x lo4, lo5, lo7 erglcm . s . K ,  where I is fixed at  1 

Amplcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7.10 The total gas concentration for 3 different thermal conductivity values: 

r;, = 5 x lo4, lo5, lo7 erglcm . s - K ,  where I is fixed at 1 Amp/cm2. 

7.11 The temperature distribution for 3 different thermal conductivity val- 

ues: K;, = 5 x lo4,  lo5, lo7 erglcm . s . K ,  where I is fixed at 1 Amp/cm2. 68 



7.12 The liquid water volume fraction for 3 different hydrophobicity con- 

stants: S, = 1, 10, 100, where I is fixed at 1 Amp/cm2  and K ,  is fixed 

at  lo5 e rg lcm . s . K.  . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7.13 The semilog plot of oxygen concentration fluxes (their absolute values) 

for I = 1 A m p / c m 2 ,  kappa, = lo5 e rg lcm . s . K .  . . . . . . . . . . .  

7.14 The semilog plot of the water vapour concentration fluxes (their abso- 

lute values) for I = 1 A m p / c m 2 ,  kappa, = lo5 erg lcm . s . K.  . . . .  
7.15 The total gas concentration flux for I = 1 A m p / c m 2 ,  kappa, = lo5 

erg lcm . s . K.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.16 The total gas velocity across the GDL for I = 1 Amp/cm2 ,  K ,  = 5  x  lo4 ,  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  . lo5,  lo7 erg lcm s K .  

7.17 The change in U, with K ,  at  the catalyst layer, where I = 1 Amp/cm2 .  

7.18 The gas velocity with K ,  = lo7 erg lcm . s K at the catalyst layer, 

where I = 1 Amp/cm2 .  . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.19 The change in the gas pressure, where I = 112, 1 ,  2 Amp/cm2  and 

K ,  = lo5 erg lcm a s . K. . . . . . . . . . . . . . . . . . . . . . . . . .  
7.20 The change in the gas pressure, where I = 1 Amp/cm2  and K ,  = 5 x  lo4,  

lo5,  lo7 e rg lcm . s . K.  . . . . . . . . . . . . . . . . . . . . . . . . . .  

7.21 The condensation rate where I = 112, 1, 2 Amp/cm2  and K ,  = lo5 

erg lcm a s a K .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7.22 The condensation rate where K ,  = 5  x  lo4 ,  lo5,  lo7 erg lcm . s . K and 

I = 1 Amp/cm2.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Chapter 1 

Introduction 

The PEM (proton exchange membrane) fuel cell is an innovative and non-polluting 

energy conversion system. It consumes the reactant gases oxygen and hydrogen and 

generates useful potential voltage with water as a by-product. 

The fuel cell can be used as an energy source for diverse purposes that vary from 

laptop computers, to generators, to car engines. The most popular focus, as fossil fuel 

reserves are depleted and the ozone layer decays, is to  power vehicles. Unfortunately, 

for this purpose, pure hydrogen is difficult to transport and therefore cannot be used 

directly to run the fuel cell. Instead, hydrogen must be extracted from methane, 

which is both costly and produces such by-products as carbon-monoxide which harm 

the environment. Still, to  run the fuel cell on methane does not produce as many 

toxins as the combustion engine and methane is a much more abundant fuel. 

1.1 The structure of the PEM fuel cell 

The PEM fuel cell is composed of five major components. The first, the outer casings, 

are the graphite plates. Within these graphite plates, are etched oxygen and hydrogen 

flow channels. Next, there are two gas diffusion layer electrodes. On one side, there 

is the gas diffusion layer anode, and on the other, the cathode. Next, there is a 

thin platinum catalyst layer on either side of the PEM between the two electrodes. 

Finally, between the catalyst layers, there is the polymer proton exchange membrane 
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which is permeable to the hydrogen protons but impermeable to its electrons. It is 

this niembra.ne, a,long with other factors, tha,t allows for current flow and hence for 

energy production in the PEM fuel cell. The GDL electrodes, catalyst layer and PEM 

together form w11a.t is called the NIEA (men~bra,ne electrode assembly). See Fig. 1.1 

(from [as ] ) .  
I I 

I I 

: O2 flow channel 
t 

I HZ flow channel a 
I 

I I 

Figure 1.1: A cross-section of a PEM Fuel Cell. The MEA is surrounded by graphite 
plates, within which are etched the oxygen and hydrogen flow channels. 

The graphite plates surround the GDL and help conduct the current generated 

within the fuel cell. The flow channels etched within these plates serve to transport 

the reactant H2 and 0 2  gases on the anode and cathode sides respectively. As well, the 

flow cha.nnels on the ca.thode side contain wa.ter in liquid and vapour form produced 

in the reaction a t  the catalyst layer. 

The PEM is a. polymer membrane that is permeable to  the Ht protons but not 

the elect,rons. The protons pass through the membrane to the catalyst la,yer on the 

cathode side while the electrons must pass via an external circuit to reach the catalyst 

layer. 

The catalyst layer on either side of the PEM is comprised of platinum and other 

elements and is impregnated with Teflon to prevent flooding. This layer serves two 
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main purposes. On the anode side, it serves to facilitate the splitting of the hydrogen 

gas into protons (which then migrate across the PEM) and electrons. On the cathode 

side, it serves to facilitate the combining of oxygen, hydrogen protons and electrons 

to  form water. The two reactions that occur on the anode and cathode sides can be 

written respectively as follows: 

This separation of the reaction 2H20 + 0 2  + 2 H 2 0  into these two steps generates the 

useful potential energy in the PEM Fuel Cell. 

Finally, the GDL electrodes (anode and cathode) are composed of a thin porous 

carbon fiber paper. These electrodes serve three main purposes. Firstly, they dis- 

tribute the reactant oxygen and hydrogen gases uniformly to the catalyst layer. Sec- 

ond, they hold the catalyst layer. Third, they help eliminate the water produced 

a t  the catalyst layer on the cathode side. As well, like the graphite plate, the GDL 

electrodes are also made of conducting material. Like the catalyst layer, the GDL is 

also impregnated with Teflon to prevent flooding - which inhibits gas flow and hence 

the reactions in the fuel cell. We model the multiphase flow in the GDL cathode. 

The key issues in PEM fuel cell modeling 

The mains concern in the GDL of a fuel cell is the 0 2  flux to the catalyst layer. 

THis is impacted by the temperature at  which the fuel cell operates and the water 

content within the GDL. These two issues are sensitively coupled - since condensation 

produces heat and heat causes evaporation. The temperature in the fuel cell is a 

sensitive issue since too low a temperature can reduce the effect of the catalyst in 

the reactions and too high temperature can cause dehydration of the membrane or 

worse, structural damage to  the fuel cell. The water content is a sensitive issue also. 

In order for the membrane to be conductive to H', it needs a certain water level. 

At the same time, too much water within the GDL can block the pores and inhibit 

hydrogen gas diffusion to  the catalyst layer. The result is that the fuel cell ceases 
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to produce electricity. Therefore, both the temperature and water levels must be 

carefully controlled within the fuel cell. 



Chapter 2 

The Model 

Let us first explain the coordinate system chosen for the model. The x-axis follows 

along the horizontal direction of the MEA (membrane electrode assembly). The y-axis 

goes in the direction through the thickness of the MEA. Finally, the z-axis follows 

along the length of the flow channels. (See Fig.2.1). We will present a ID model where 

we examine the variations in the oxygen, water (vapour and liquid) and nitrogen 

concentrations as well as temperature levels in the y-direction. 

In the model, we will assume that the PEM fuel cell is operating at a prescribed 

current, I = 1 amp/cm2. As well, as explained later on, the fuel cell is assumed to be 

running with the water vapour almost at saturation and there is no water cross-over 

to the anode side. As a result, the water vapour concentration is prescribed, which 

causes the boundary condition at  the catalyst layer and GDL interface to  be an extra 

constraint. To avoid a boundary layer at the catalyst layer due to this constraint, we 

introduce the parameter u which specifies the percentage of water produced in the 

liquid form. We tune v so that the water vapour is at  saturation a t  the catalyst layer. 

This is a fairly important assumption - we are explicitly specifying the percentage of 

liquid water produced in the fuel cell. If u is found to be equal to  -1, there is no 

water vapour flux and all the product water is in liquid form. Whereas, if v is equal 

to 0, there will be no liquid water flux. 

We will also assume that the carbon fiber paper that comprises the GDL is homo- 

geneous. Therefore, the void fraction within the GDL, 6 is a constant value - 6 = 0.74 
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Figure 2.1: A 3D view of the PEM fuel cell (from [23]). In the model, we take a slice 
in the y-direction through the GDL from the channel to the PEM. 

- which is standard for carbon fiber paper. This void fraction will be occupied by 

both gas and liquid. The fraction occupied by liquid water we will call P.  The re- 

maining fraction, occupied by gas, will then be 1 - @. As well, we will let the GDL 

equations be independent of the other components in the fuel cell and couple them 

via the appropriate boundary conditions. 

Within the GDL, the three principle gases are the reactant gases, hydrogen and 

oxygen, and the inert gas, nitrogen. We will only include these three gases within the 

model. So the total molar gas concentration, C, is a sum of the three molar concen- 

trations. We will call c1 the molar concentration of 0 2 ,  c2 the molar concentration 

of water vapour and e3 the molar concentration of nitrogen. We do not explicitly 

solve for the nitrogen molar concentration in this model, but we do solve for the total 

gas concentration, &, where: 

c = c, + c2 + c3 (2.1) 

We will also let pk and Adk (k=1,2,3) denote the densities and mo1a.r masses of 
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oxygen, water vapour and nitrogen respectively. Where: 

and 

2.1 The Conservation Equations for the Reactant 

Gases 

In the model, we will describe the variations in the oxygen, water vapour, and total 

gas molar concentrations as well as the liquid water volume fraction and temperature 

all in the y-direction. The first four quantities will be given by conservation equations, 

the fifth, temperature, will be given by an energy equation. Each of these equations 

is based upon a model created by Promislow, Stockie and Wetton [23]. 

The total volume fraction occupied by the total gas is 1 - P, as noted earlier. Let 

us now define a as follows: 

a = (1 - p) 

The mass per volume of this gas is given by (1 - P)p. During the operation of the 

fuel cell it can be described by the following conservation equation [23]: 

The second term Ug is the mass-averaged gas velocity and pug is the mass flux of the 

gas in the GDL. The third term, f is the rate of condensation/evaporation due to 

overlunder saturation. Both of these terms will be described later on. The equation 

can be modified with the following definition [23] : 

then (2.4) becomes: 
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The oxygen and water vapour equations are, like the total gas molar concentration 

equation, both conservation of mass equations. The one major difference between the 

equations is that the total gas flux is only driven by convection, whereas the oxygen 

and water vapour fluxes are also driven by diffusion. Their fluxes are given by the 

following equation [23] : 

Nk = ckug + J~ P6) 
where Jk is the molar diffusive flux (relative to the mass-averaged velocity) of the kth 

species and can be given by the following formula (to be derived in the next section): 

From (2.7) we can see that there is no diffusive flux for the total gas concentration: 

Let us now write the molar concentration equations for oxygen and water vapour 

as follows [23]: 
a -[aG] + V .  (Gu, + Jl) = 0 at̂  (2.8) 

In (2.9) the right-hand term f is a sink-term for the water vapour lost due to 

condensation. In our model, we assume that the water vapour is at  saturation up to 

leading order. Therefore (2.9) gives us a second equation to solve for f' up to leading 

order. 



CHAPTER 2. THE MODEL 

2.2 Defining U,, Jk ,  F, Piat and Qat 
Let us assume the the gas velocity obeys Darcy's law for flow in porous media (as 

Here Pg denotes the gas pressure, K denotes the permeability of the porous GDL, and 

pg denotes the gas viscosity. k,,(,B) is a term added into Darcy's law to represent the 

relative permeability of the porous GDL to the gas phase. We will assume that the 

gas pressure obeys the ideal gas law: 

where R is the universal gas constant and T is the temperature of the mixed oxygen, 

water vapour and nitrogen gases. We will let kTg(,B) be a polynomial fit to experimental 

results: 

krg(8) = (1 - P)3 (2.12) 

Defining Jk is somewhat more complicated. We will first examine the Maxwell- 

Stefan equations for the mole-averaged velocity J,' - these are the appropriate equa- 

tions to use: 

The mole-averaged velocities J,' (k=1,2) can be converted to  mass-averaged velocities 

by the 2 x 2 conversion matrix S which is given as follows: 

Skg = hkj - - ' j  (1 - ) and [:I = $$ [:] 
P9 

The effective diffusivity, ~ f f ,  is a 2 x 2 matrix as well, given by the following 

formula: 
3 3Jq-J vff = [€(I  - p) ] 

where D is a 2 x 2 matrix of the Maxwell-Stefan diffusivities: 
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The entries Dkj of D are free-space diffusion coefficients that are dependent on the 

species concentrations and the binary gas diffusivities. While (2.15) is a Bruggeman 

correction and is derived from the fact that gas diffusion is inhibited by the presence 

of water in the GDL pores. 

As now seen, the Maxwell-Stefan equation are complicated. We will simplify down 

the model and use Fick's Law instead - as outlined in Sec 2.1. 

Let us define the rate of condensation f .  This rate is given by Fowler [Ill  who 

is describing annular, two-phase flows (where the degree of water oversaturation is 

proportional to the condensation rate i') , 

f = {  HZ(1 - P ) ( C ~  - elat (T)) if C'2 2 elat (T) 

H , ~ ( c ~  - c ; ~ ~  (T)) if c2 < c l a t ( ~ )  
This condensation rate equation also accounts for the fact that no condensation will 

occur once all the water is in liquid form and no evaporation will occur if all the water 

is in vapour form. 

We will simplify down the expression for f' be assuming that 0 < P < 1 and 

consequently neglect (1 - P) and P (since we do not need to account for whether all 

the water is in liquid form or all the water is in vapour form). As well, we will assume 

that H; = H$ and define that value as H*. Then f reduces to: 

Finally, we will define the functions that state the pressure and concentration of 

the water vapour at  saturation and illustrate them in Fig.2.1, 

2.3 The Liquid Water Conservation Equation 

Just as we used conservation of mass equations for the gas equations, we will use 

the same principle for the liquid water equation. In this case, the liquid water molar 
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I I 1 . . . . , . 1 
357357.2 357.4 357.6 357.8 358 358.2 358.4 358 6 0 0.2 0.4 0.6 0.8 1 

Dimensional Temperature Y 

Figure 2.2: The saturation pressure, piat (T) (left) and the saturation concentration, 
c,""~(T) (right). P,""~(T) is given in atmospheres whereas c,""~(T) is given in the 

C s a t  

dimensionless form + (see Chapter 3).  

concentration per volume CZp is conserved (Cl is the liquid water concentration which 

is equal to p1/M2), 
d 
--(ClP) + 0 - (ClPUl) = at̂  (2.20) 

where f' is a source term for this equation (water is produced due to condensation) 

and the water flux is given by: 

Np = ClPUl (2.21) 

The liquid water velocity, Ul obeys Darcy's law, 

where Pl is the liquid pressure (to be defined below), ~1 is the liquid viscosity and 

kTl(P) is the relative liquid permeability of the GDL defined as follows, 
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where krl(P) captures the hydrophobicity of the GDL, which prevents flow of liquid 

water if p < P,. 

beta beta 

Figure 2.3: The relative liquid and gas permeabilities, krl(P) (left) and k,,(P) (right), 
where the liquid water volume fraction P is varied from 0 to 1. 

The liquid pressure (q)  is due to both the capillary pressure (PC) and the gas 

pressure (P,) , 
8 = P, + PC 

where the capillary pressure is given by the following equation [23], 

where y is the liquid surface tension constant, Sp = 100 is a scaling term in order 

for our capillary pressure equation to be of the right order of magnitude, B is the 

contact angle between the liquid and solid phases (which is acute if the solid phase 

is hydrophilic and obtuse if the solid phase is hydrophobic) and J ( P )  is the capillary 

function that relates the water volume fraction quantity to the capillary pressure (the 

more water present, the higher the capillary pressure). For our model, let us assume 
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that 8 = so that cos(8) = -1. Let us also define a function for J(p) that roughly 

fits the van Genutchen equation, 

1 
.(PI = /(1 - p)2 - 1 (2.26) 

where the van Genutchen equation [35] is given as 

otherwise 

Figure 2.4: The log plots of the Leverett and van Genuchten functions, J(P) (left) 
and Jv(/3) (right), where the liquid water volume fraction varies from 0 to 1. 

2.4 The Temperature Energy Equation 

We assume that the temperature is uniform amongst the three phase (since the GDL 

pores are so small = lpm wide) and denote it by T. The energy equation is 



CHAPTER 2. THE MODEL 

where c is the specific heat, i is the thermal conductivity averaged over the three 

phases, 

k = (1 - E)K, + ~ ( 1 -  P ) K ~  + EPK~ (2.29) 

and ,G and px are averaged over the gas and liquid phases, 

In our model, since the current is constant, ? = I (where ? is the average current 

density). a is the electrical conductivity in the GDL and therefore the first source 

term is due to ohmic heating (from resistance to electron transport in the GDL). Since 

this term is very small, we can neglect it in our model. The second source term h,r 

is due to the heat released by water evaporation. Through non-dimensionalization, 

we also see later that this term is neglible and can be ignored when solving T up to 

leading order. 

2.5 The Boundary Conditions 

2.5.1 At the channel 

We assume that the gas concentrations are held fixed on the boundary of the channel 

and the GDL, 

c ~ ( o )  = c,", 
&(0) = c;, 
C(0) = 77. 

We assume that the average gas pressure is held fixed at  2 atmospheres at  the channel. 

Then from the ideal gas law, we can find C = &. Let us also assume that the oxygen 

concentration is 20 percent of the total gas concentration at  the channel and that the 

water vapour is at saturation at the channel, 
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We prescribe the temperature to be fixed at  357OK at  the channel, 

Unlike the gas and temperature, the liquid water volume fraction will not be held 

constant at  the channel. We will prescribe the following boundary condition on P: 

This boundary condition assumes that the liquid water flux at the channel is driven by 

the pressure gradient. This pressure gradient is approximated by a finite difference, 

where Lp is the pore length, where No is the liquid water flux and PC is the capillary 

pressure. The expression for v P l  and (2.35) give the boundary condition, rewritten 

as follows: 

2.5.2 At the Catalyst Layer 

The oxygen flux at  the catalyst layer is proportional to the current I, 

where Nel denotes the oxygen flux. 

The water vapour flux has a similar relation to the current, 

where v denotes the negative of the percentage of water production at  the catalyst 

layer which is in liquid form. If v = 0, then the product water is being released from 

the proton exchange membrane as vapour and if v = -1, all the water produced in 

the reaction is released as liquid water. In the case where v < -1, then liquid water 

is produced at a rate above the reaction by condensation. In our case, we solve for 
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v from the boundary condition (2.38) and the assumption that the water vapour is 

at  saturation up to leading order. This amounts to neglecting an 0 (&) boundary 

layer. We are implicitly assuming that the product water goes into the GDL, that 

the membrane is saturated. 

In order to obtain the total gas molar concentration boundary condition, we take 

a no flux condition for Nitrogen, 

NC3 = 0 (2.39) 

. This is consistent with the fact that the membrane is impermeable to gas. 

Summing up the oxygen, water vapour and nitrogen concentration boundary con- 

ditions gives us the boundary condition for the total gas, 

Like the gas concentration, the liquid water volume fraction boundary condition 

states that the liquid water flux is proportional to the current: 

Finally, let us also assume that the temperature flux is proportional to  the current: 

where h, denotes the heat of reaction and h, denotes the heat of vaporization and h, 

is defined as follows, 

h , = T A S + 2 F q c  (2.43) 

where we take a prescribed value for the cathode overpotential. 
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The Non-Dimensional Equations 

Let us choose the following new variables to render the equations dimensionless: 

The Dimensionless Variables 

Time 

Oxygen Concentration 

Water Vapour Concentration 

Saturation Concentration 

Total Gas Concentration 

Temperature 

GDL Thickness 

3.1 The oxygen equation 

We start with the oxygen DE (2.8) 

( a ~ l ) ~  + (c1ug + J l ) j ,  = O 

Now, plug in the new dimensionless variables and the expressions for Ug and J1:  
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Multiplying through by t ,  and dividing through by C and finally grouping the constant 

terms (including bringing the factors of D and L out of the two expressions on the 

right) gives: 

Since we know that t ,  = g, this simplifies down the oxygen equation. Let us also 

define the following constant R, as follows to  further simplify the equation: 

Finally, with these simplifications, the oxygen equation reduces to: 

3.2 The Water Vapour Equation 

Let us start with the water vapour DE (2.9) 

Now, again, plug in the new variables and the expressions for Ug and J2 

Again, we multiply by t ,  and divide by C and group the constant terms, which gives: 

Again t ,  = simplifies the equation and let us also define r as follows: 
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Where, plugging in the definition of f (2.17) and the non-dimensional expressions for 

C and Ciat gives: 
t * I? = = H* (m2 - CC,""~) 
C 

Canceling out gives: 

I? = t,H*(C2 - C r t )  

Finally, let us define the new constant H:  

then I? reduces down to the following: 

Finally, with these simplifications, the water vapour equation reduces to: 

3.3 TheTotalGasEquation 

The initial total gas DE (2.4) gives: 

Again, we plug in the expression for Ug and the dimensionless variables: 

Dividing through by C, multiplying through by t, and grouping the constant terms 

By the same reasoning as the oxygen and water vapour equations we get: 
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3.4 The Liquid Water Equation 

The liquid water DE (2.20) gives: 

Plugging in the dimensionless variables and the expression for Ul into the liquid water 

equation gives: 

Let us again multiply through by t,, multiply and divide through by D in the right- 

hand term and group the constant terms: 

Finally let us define the following two constants to  simplify the liquid water equa- 

tion: 

Plugging these simplifications and Rg and F into the liquid water equation gives: 

3.5 The Temperature Equation 

Let us start with the dimensional temperature DE (2.28): 

We know that 

PX = apgcgug + P P I C I ~ I  
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Plugging in the expressions for Ug and Ul into p c ~  gives: 

Now, if we plug in (3.7) into (??), we get: 

Substituting in the dimensionless variables: 

Now, we multiply through by t ,  and divide by T,: 

Let us assume that a and p are roughly constant. So a z a, and /3 E P,, where 

a, = 0.75 and P, = 0.25. Let us approximate Tc by: 

Treating pc as a constant value allows us to  divide it out of the t and y derivative 

terms on the left-hand side of the temperature equation. 
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Finally, let us group all the constant terms together and multiply and divide by 

D in the convection and diffusion terms and by C on the right-hand side: 

Let us now name the following constants to reduce down the temperature equation: 

When we plug in these constants and r = $, we get the following reduced 

temperature equation: 
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The Non-dimensional Boundary 

Conditions 

4.1 The Oxygen Boundary Conditions 

4.1.1 At the channel ( y = 0 )  

We start with the dimensional boundary condition c1 (0) = 0.2c  when we add the in 

dimensionless parameters we get: 

4.1.2 At the catalyst layer 

Now, take the dimensional boundary conditions at y = L, 

The dimensional expression for the oxygen flux is as follows: 

We have seen the non-dimensionalization of this flux term in section 3.1, equation 

(3.1), and from it we can determine the following expression for the non-dimensional 



CHAPTER 4. THE NON-DIMENSIONAL BOUNDARY CONDITIONS 24 

oxygen flux: 

Ncl = - 
C'KRT. 

ClL,(B)[CT], - T C  - 
LPS [,] 

Grouping the constants in the above expression gives: 

Substituting in R, gives: 

So, the oxygen boundary condition at the GDL becomes: 

- 
Dividing both sides through by -? gives: 

Let us now define I. to simplify down the right hand side of the above equation: 

In effect, I. is the oxygen consumption rate at the membrane. Plugging it into the 

boundary condition gives: 

4.2 The Water Vapour Boundary Conditions 

4.2.1 At the channel 

Since we are assuming that the water vapour is at  saturation up to leading order, we 

get the following boundary condition at the channel: 
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We can nondimensionalize this boundary condition as follows: 

4.2.2 At the catalyst layer 

Assuming that the water vapour flux is proportional to the current at  the GDL, we 

get the boundary condition, 

( I  + v)I 
Ne21jl=~ = - 

2 F  

Again, like the oxygen flux, we have non-dimensionalized the water vapour flux when 

we non-dimensionalized the water vapour DE in section 3.2 - equation (3.2). So, from 

these results, the flux can be written as follows: 

Grouping the constant terms in the above expression gives: 

Substituting in R, gives: 

Therefore, from above result, our water vapour boundary condition at 

be written as: 

- 
Dividing both sides through by -$ gives: 

(4.7) 

the GDL can 
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The right-hand side of the above expression can be rewritten as follows: 

Substituting in I. gives: 
( I  + v)IL 

= 2 ( l +  .)Io 
~ F C D  (4.9) 

Equating the LHS of (4.8) and the RHS of (4.9) gives the following boundary condi- 

t ion: 

From this boundary condition, we not ice that the water vapour flux at the membrane 

is -2(l+v) times that of the oxygen flux. From this, we can determine that if v = -1, 

all the water vapour produced is released as liquid water. 

4.3 The Total Gas Boundary Conditions 

4.3.1 At the channel 

As we stated earlier, the total gas concentration at the channel is as follows: 

C(0) = C 

The resulting dimensionless boundary condition (when we divide both sides by C) 
becomes: 

4.3.2 At the catalyst layer 

Let us start with the total gas boundary condition: 

The total gas flux can be written in dimensionless form as follows (see section 2.3 , 
equation (3.5) for further details) : 
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Grouping the constant terms gives: 

Therefore, the boundary condition then becomes: 

- 
Dividing both sides through by gives: 

The right-hand side of the above expression can be rewritten as follows: 

Substituting I. into the above expression gives: 

Equating (4.13) and (4.14) gives the following boundary condition for the total gas 

concentration at  the catalyst layer: 

4.4 The Liquid Water Boundary Conditions 

4.4.1 At the channel 

Recall the liquid water boundary condition at the channel (2.36) 
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We have already non-dimensionalized the liquid water flux in section 3.4 - see (3.6), 

and Np can be expressed as follows: 

Grouping the constant terms gives: 

Finally, substituting in R1 and Rc gives: 

Let us now rewrite the RHS of (2.36) by substituting in the expression for PC: 

Regrouping the constants and multiplying both the numerator and denomenator on 

the right-hand side by D gives: 

Finally, substituting in Rc gives: 

Equating (4.17) and (4.16) gives the following boundary condition: 

Dividing both sides through by -9 gives: 
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4.4.2 At the catalyst layer 

The liquid water boundary condition at  the catalyst layer (2.41) is as follows: 

We know the expression for the water flux (4.16) from the previous section and can 

therefore rewrite the boundary condition at the catalyst layer as follows: 

Dividing through by -9 gives: 

The RHS of (4.19) can be rewritten as follows: 

Let us define the constant eB: 

Substituting Op and I. into the RHS of (4.19) gives: 

Equating the RHS of (4.21) and the LHS of (4.19) gives the following 

condition for the liquid water at  the catalyst layer: 

(4.19) 

(4.20) 

(4.21) 

boundary 

(4.22) 

This boundary condition implies that the liquid water flux is vOp times that of the 

oxygen flux at  the catalyst layer. From this, we can conclude that if v = 0, all the 

water produced at  the membrane is being released as vapour and none as liquid. 
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4.5 The Temperature Boundary Conditions 

4.5.1 At the channel 

Our boundary condition at y=O: 

which can be nondimensionalized as: 

4.5.2 At the catalyst layer 

Recall the temperature boundary condition at the catalyst layer (2.42): 

The temperature flux, NT was non-dimensionalized in section 3.5. From (3.9), we 

get the following: 

From the above expression, bringing out i, multiplying and dividing by FT*D gives: 

Bringing out ,EcT,D and substituting in r,, rl, r, and Fb gives: 

From this expression, we can rewrite the boundary condition at the catalyst layer as 

follows: 



C H A P T E R  4. T H E  NON-DIMENSIONA L BOUNDARY CONDITIONS 

-cT* D Dividing both sides by J+ gives: 

(h ,  - h,v) IL  
T ,T[CT],  + r@kTc,l(P)T[CTIy + ref (P)PYT + F b T ~  = 

2FpcT* D 

The RHS of (4.24) can be rewritten as follows: 

We define BT as follows: 
2ChT eT = - 
,=* 

Plugging this new constant and I. into (4.25) gives: 

(h ,  - h V u ) I L  hv 
= (1  - - u ) O ~ I ~  

2FpcT, D hT 

Equating the RHS of the above expression with the LHS of (4.24) gives the following 

boundary condition for the temperature at the catalyst layer: 
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The Reduced Model 

Let us first summarize the assumptions that have been made so far: 

a The fuel cell runs at a prescribed current I = 1 amp/cm2. 

a The water vapour is almost at saturation. 

a Y is to  be specified by the Cz boundary condition at y = 1. 

a The GDL carbon fiber paper is homogeneous ( E  is constant). 

a The gas and liquid velocities obey Darcy's Law. 

a The gas pressure obeys the Ideal Gas Law. 

a The contact angle 0 is F. 
a The temperature is uniform amongst the three phases. 

iZ a - 0 is small compared to h,r. 

a The oxygen concentration accounts for 20% of the total gas concentration. 

H,S = H;. 

a The liquid water fraction is almost constant - ,B = 0.25. 

Let us now make the following approximations, simplifications and assumptions 

to reduce down the equations: 
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5.1 The Approximations and Simplifications 

krg(P) 3 1 

akrg(P) 3 1 

H = H*t* 

f (P) = PkTl (P)J1(P) (which is shown in the Fig. 5.1) 

5.2 The Assumptions 

( A l )  2 5 O(1) and [ln (%)I = 0(101) / /  (The "Moderate Current" 
Y 

assumption) 

(A2) C = O(1) 

(A3) r << O(1) 

(A4) H >> 1 which implies Hi >> $ 3 33 

(A5) > 0 everywhere 

(A6) 61 << 1 

Note: ,& = 0.25 is the immobile water volume fraction. 

Plugging in the approximations kTg(P) = 1 and akTg(P) = 1 and the expression 

for f (P) gives the following non-dimensional equations: 
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Figure 5.1: The log plot of f ( P )  = PkTl (P)J'(P) for P E [O, 11. 

From equations (5 .1)  through (5 .5 ) ,  we can determine the time-scales for the gases, 

liquid water and temperature equations. They are given in the following table: 

5.3 Approximating the Size of [CT], 

- 

The Time Scales 

In order to reduce down the model, let us look at  the term 

Oxygen - C d y )  

Water vapour - C 2 ( y )  

Total gas - C ( y )  

Liquid water - P ( y )  

Temperature - T ( y )  

[CTIy since it appears 

in every equation. We would like to  get a rough estimate of its size. We can do so 

by taking the oxygen equation at  steady state (since steady state is what we impose 

t 

t 

t 

Rct 

Fbt 

O ( t )  

o(t> 
O ( t )  

O ( l O 1 t )  
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later to solve the system of equations). This equation is as follows: 

If we integrate both sides, we get the following result (where dl  is the constant of 

integration) : 

R g k g  (l) CI [CT] , + C [$I = dl (5.6) 
Y 

- 
The LHS of (5.6) can be rewritten as a flux by multiplying and dividing by -?: 

Now, by (4.3), the expression inside the brackets can be recognized as the oxygen 

flux Nc,, which gives the following expression for d l :  

We can now determine dl  from the boundary condition at the membrane (y=l) 

(2.37) - which gives us a value for Ncl: 

We will now rewrite (5.6) as an expression for [CT],: 

which can be rewritten as: 
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Then apply (Al)  - the Moderate Current assumption. As a result, the term inside 

the brackets is O(1) and, 

Since [CT], is so small, then R,[CT], = O(1) and the convective and diffusive 

terms balance in both the oxygen and water vapour equations. As well, the time scale 

for C (R,[CT],) is also roughly O(1). 

5.4 Approximating the size of P(') 

The total gas boundary condition a t  the catalyst layer gives: 

As defined in the previous section (5.3), 

Therefore, equation (5.9) becomes: 

By (A2), we know that C(y) = O(1). Also, since v = 0(1), then (1 + 2v) = O(1) as 

well. Consequently, 
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The constants 

Given Constants 

mol /cm3 

c m 2 / s  

C lmol  

cm2 

erglmol OK 

erg19 OK 

erg19 OK 

er9l9 OK 

9 / s 2  

erglmol 

Chosen Constants 

Constants Created 1 Non-Dimensionalizing 
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5.6 Reducing the Differential Equations 

5.6.1 The Total Gas Expansion 

We can expand the total gas concentration expression as follows: 

Recall, C(0) = 1 and T(0) = 1 from the boundary conditions. Consequently, we 

get the following expansion for C(y): 

5.6.2 The Water Vapour Expansion 

To determine the correct expansion for the water vapour, let us first examine the 

definition (3.4) of r: 
r = H(C2 - Clat) 

Assumption (A4) requires that H is very large. As a result, in order for r to still be 

O(1) (see (A3)) the following must be true: 
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Note that the assumption (A3) that I' = O(1) is not inconsistent with the water 

Since R,C2[CT], = c ~ P ( ' )  5 O(1) and C [%] Y < - O(1). 

The expression (5.12) leads to the following expansion: 

The assumptions (A3) and (A4) also imply that the water vapour is very near 

saturation. As well, the expansion (5.13) for C2 provides the following expansion for 

r: 

Now, we employ the assumptions and the expansions to reduce our system of equations 

and boundary conditions. 

5.7 Reducing the differential equations 

5.7.1 The reduced oxygen equation 

Let us start with the oxygen equation (5.1) at  steady-state: 
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Now, let us add in the total gas concentration and water vapour expansions and group 

terms with the 0 

We integrate both sides and recall the constant of integration is dl = -Io (see 

(5.7)).  

5.7.2 The reduced water vapour equation 

Let us start with the water vapour equation (5.2) at steady-state: 

Now, if we plug in the expansions for C(y)  and C2(y) - (5.11) and (5.13) respectively, 

we get the following expression: 

( 
(cia' + +c$" + 0 (&)) + 1 - - + o  -,- - (2, da)) [(  l - F + o  ( AL R, ' L T? ' L)) R; I,) Y =-r 

Now, we factor the R, into the first term and drop the second order terms: 

((cia.+. ($)) [ R , + P + o  (;)Iy+ (i.0 (;)) [rt+;;jy + O  - I.) Y =. 
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terms. 

41 

Then, we take the derivative in the first term and bring out the 0 (k) and 0 ( i)  

From the expansion (5 .  I S ) ,  we see that (5.16) is an expression for 

correction c;'): 

(5.16) 

the water vapour 

5.7.3 The Reduced Total Gas Equation 

Let us start with steady-state total gas equation 

Plugging in the expansions for C(y)  and Cz(y) and the expression for r (5.13) gives 

the following: 

Now, factoring the R, term into [CT], and dropping the second order terms gives: 

Finally, taking the derivative of the second term and bringing out the 0 (k) terms 

gives: 

5.7.4 The Reduced Liquid Water Equation 

Let us start with the water equation a t  steady-state 

- (RlBh(B)[CT],  + RCf (B)&)Y = 6rr 
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Plugging in the expansions for C(y) and r - (5.11) and (5.13) respectively - gives: 

Taking the derivative in the first term and bringing out the 0 (&) and 0 (g) terms 

gives: 

Since 4 = 0(1V3), we will group 6J with the 0 (k) term (the first term in the 

equation). We will also now neglect the 0 (*) and 6,0 (h) terms, which gives: 

5.7.5 The Reduced Temperature Equation 

Let us start with the steady-state temperature equation 

- (rgT[CT] y + rl@k~l (@)T[CT]y + r c f  (/?)AT + FbTy)y = br 

Plugging in the expansions (5.11) and (5.13) gives: 

We now take the derivative of the first and second terms and neglect the 0 

and hTO (h) terms: 

Keeping only the highest order terms: 
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5.8 Reducing the Boundary Conditions 

5.8.1 The Oxygen Boundary Condition at the Catalyst Layer 

We start with oxygen boundary condition at  the channel as expressed (4.5): 

R,kT,(P)Cl [CT], + C 

Now, plugging in the asymptotic expansion for C(y) gives: 

Grouping the 0 (k) terms and plugging in the previous approximation, 

kTg(P) = 1,the above equation becomes: 

The oxygen boundary condition at  the channel does not need to be reduced. 

5.8.2 The Water Vapour Boundary Condition at the Catalyst 

Layer 

At the catalyst layer, we will start with the boundary condition (4.10): 

R,kT,(P)C2[CTIY + C  

Plugging in the expansions for C2(y) and C(y), the boundary condition becomes: 

Grouping the 0 (k) and 0 (8) terms and plugging in the approximation kTl(P) = 1 

gives: 

[ C $ ~ ~ P ~ "  + +[TC,""'], + 0 (8, $)I = 2(l  + v)Io 
11= 1 

(5.22) 
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5.8.3 The Total Gas Boundary Condition at the Catalyst 

Layer 

Let us start with the boundary condition at the catalyst layer (4.15):  

[Rgk~g( l )CICT]y]y=I  = + 2 u ) I ~  

Plugging in the expansion for C ( y )  gives: 

Bringing out the 0 (k) terms and plugging in the assumption kTl(,f?) = 1  gives: 

5.8.4 The Liquid Water Boundary Condition at the Channel 

Let us start with the liquid water boundary condition at the channel (4.18): 

Plugging in the expansion for C ( y )  gives: 

Keeping only the highest order terms gives the following boundary condition: 

5.8.5 The Liquid Water Boundary Condition at the Catalyst 

Layer 

We start with the boundary condition (4.22) 
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We then plug in the C(y) expansion, 

Now, plugging in the approximation lcTi(4) FZ 1 and keeping only the highest order 

terms gives: 

5 3 . 6  The Temperature Boundary Condition at the Catalyst 

Layer 

The boundary condition (4.27) gives: 

Plugging in the expansion for C(y) gives: 

Keeping only the highest order terms and plugging in the approximation kVl(B) FZ 1 

gives: 
I I 

5.9 The Resulting Differential Equations at Steady 

State 

Here is the summary of the equations and their boundary conditions that we have 

derived so far. Please note that there are five unknowns for the five equations at 

leading order: C1, c;~), ~ ( ' 1 ,  @ and T 
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Chapter 6 

The Outer Solutions at 

Steady-State 

Note: The lower case constants in the following section are all constants of integration 

and they are as follows: a l ,  bl ,  cl, c2 and dl. All but bl and dl are dependent upon 

v, which will be determined close to the end of this section. 

6.1 Solving for the Liquid Water Volume Fraction. 

Integrating this equation once gives: 

f ( P ) P y  = C l  + 0 61, ( t )  
Now, let F(P) = J f (,f3)Pydy and then integrate both sides of (6.1): 

We can now solve for p up to leading order: 

I ,f3 = FP1(cl y + c2) 1 
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In order to solve for the constants of integration, we will again use the boundary 

conditions at y=O and 1. First, we will solve for cl with the boundary condition at 

y=l - see (5.25) 

f ( P ) P y  Iy=1 = -%I0 

Note: (6.1) gives f(/3)Py = cl up to leading order. Plugging this into the boundary 

condition gives : 

In order to now solve for c2, we will use the boundary condition at y=O (5.24): 

From (6.2) we know that F(P(0)) = c2, and we can solve for P(0) from (6.4). In 

order to do so, let us first rename krl (P)J(P): 

From (6.5) and the boundary condition (6.4)) we can now solve for P(0) : 

And finally, from (6.6) and the fact that c2 = F(P(O)), we can solve for c2: 
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6.2 Solving for T 

Starting with (5.31): 

(ref ( B ) B y T  + F ~ T Y ) ~  + 0 (i) = -677. 

Since 677 << 1 (A7), we neglect it when solving for T ( y )  to  leading order. Therefore, 

( rc f  ( B ) P y T  + FaTYIy 

Next, we expand out the derivative terms: 

rc(f(P)P,),T + f ( P W  + 

Plugging in the expansions for f ( P ) &  and ( f  ( P ) p y )  from (5.19) and (6.1) we get the 

following expansion for the temperature equation: 

Since Z T  = O ( 1 )  (see the table of constants), the first term is 0 (6 ,  k) and we will 

group it with the other small terms: 

Integrating the above equation once gives: 

The boundary condition at the catalyst layer (5.26) with f @)By  replaced by cl 

gives: 
hv 

[rcclT + FbTyly=l = ( 1  - -v)OTIO 
h, 

With the above equation and (6 .8) ,  we may solve for al = a l ( v ) .  
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Using separation of variables, we can solve for T(y): 

We now plug in the boundary condition at the channel T(0) = 1 and get the 

following expression for T: 

6.3 Solving for ~ ( l )  

Subtracting (5.29) from (5.28), which cancels out c;'), we find 

Integrating both sides gives: 
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We can solve for bl with the boundary conditions for the water vapour and total 

gas fluxes at  the catalyst layer (y=l) - (5.22) and (5.23). 

Plugging both these boundary conditions into (6.12) gives: 

Which can be simplified down to 

p i q  
Note: bl is independent of u and it is also equal to  the oxygen concentration flux. 

Now that we have solved for bl ,  we can continue to  solve for P(l)(y) .  In order to 

do this, we can rewrite (6.12) as an expression P:'): 

Integrating this expression with respect to y gives: 

Multiplying both the top and bottom of the fraction within the integral by T and 

applying the boundary condition P(')(o) = 0, we get the following expression for 

which can be reduced to: 

Which gives: 
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It is useful to know where pi1) (1) > 0. Since pi1) (1) depends on both u and lo, we 

will include a contour plot of ~ , ( ' ) ( l ) ( v ,  Io) (Figure 6.1). We can notice from the plot 

that P$')(u, Io) = 0 when u is roughly -0.5 (which is roughly the value we determine 

for u in the next section). 

Figure 6.1: Contour plot of pJ1)(v, lo) at y=l ,  where v E [-2,O) and I. E (0,0.0474]. 
On the second contour from the top, where u = -0.5, P,(~) = 0. 

6.4 Solving for u 

As discussed in the introduction, v is a parameter in our model that is prescribed by 

the assumption that the water vapour is at  saturation and that we have no boundary 

layer at  the catalyst layer. Therefore, v can be solved by the water vapour boundary 

condition at  the catalyst layer (5.22): 
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Please note that both T(y) and PJ')(~) depend upon u since both of their boundary 
(1) conditions at  y= l  depend upon v. Let us rewrite both T(l) and Py (1) as functions 

of v: 

where al(v) and cl(v) are also functions of v given by (6.9) and (6.1) respectively, 

Since the equation for v (6.15) is nonlinear, we use Maple's built-in solver - which 
(1) gives: m. For comparison, let us also examine the contour plot of Py 

(Fig.6.1) and the total gas concentration boundary condition at  the catalyst layer: 

Note: P:') = 0 when v = -0.5 and (1 + 2v)Io = 0 when u = -0.5. Therefore, 

the total gas concentration boundary condition is satified when v == -0.5 - which is 

consistent with Maple's result. The solution v = -112 is important for two reasons: 

firstly, it implies that roughly half of the water produced at  the membrane condenses. 

Secondly, it implies that the total gas flux at  the catalyst layer is roughly zero. 

6.5 The resulting constants of integration 

Now that we have determined v, we can also determine a l  (v),  cl (v) and ca(v). Given 

below is a table of all the constants of integration used. 
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I The constants of integration 

6.6 Solving for U, 

We can now also solve for the gas velocity, U,. From ( lo) ,  we know that 

Plugging in all the non-dimensional variables and multiplying and dividing by D gives: 

Finally, substituting in R, gives: 

As we have seen in previous sections: 

Let us plug the above expression for Rg[CT], and the approximation kTg(P) FZ 1 into 

(6.16) to  get an expression for the total gas velocity: 
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6.7 Solving for Cl 

We will start with the reduced oxygen equation (5. IS), 

Multiplying both sides by T gives: 

T C ~ P J ~ )  + [ T C ~ I ~  = - 6 1 ~  + o (k) 
Let us now define the following substitution w = TC1 and plug this into the above 

equation, 

Now, multiplying through by the integrating factor e l l P ; ) ~  gives: 

where this integrating factor can be simplified down (please note that P(') (0) = 0) : 

Plugging in this simplification into (6.18) and integrating gives: 

Now, we can plug back in the expression for w, (TC1) 

From the boundary conditions at  the channel - (4.23) and (4.1), we know that T(0) = 1 

and Cl(0) = 0.2. Plugging these conditions in and solving for Cl (y) gives: 
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Figure 6.2: Relative error between T(y)eP"'(~) and its linear approximation across 
the GDL. 

where I. = 2.372 x 

Both T (y ) and T ( y ) eP'''(y) are approximated by linear functions when plotting 

Cl (9). Fig.6.2 illustrates the error between T(y)eP"'(~) and its linear approximation. 

This relative error is O(10-'). Consequently, the linear approximation to T(y)eP"'(~) 

is not too bad of an approximation. 

6.8 Solving for c$') 
There are two different ways to solve for c;') from the two equations (5.29) and (5.28). 

We will use both equations and then determine the error (or difference) between them. 

This error will be due to the fact that we are using a linear approximation for T(y) 

and the approximation &(,f3) = 1. Let us first solve for c;') from (5.29): 

Now, we substitute in the expression for ~ ( ' 1 :  
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The fundamental theorem of calculus gives: 

Consequently, ~ 4 ' )  can be expressed as below and is illustrated in Fig.6.3 

We can now solve for c;') using (5.28): 

Note: We will not write out the explicit solution given from this equation, but we 

will plot the resulting Cil) in the right-hand plot of Fig.6.3. We will also examine the 

error between the two solutions - as seen in left-hand plot of Fig.6.3. 

0 0 01 0 02 0.03 0 04 0 05 

~egendY 0- 
Solulion to 6 21 0.01 0.02 0.03 0.04 0.05 

. . . . . . . . . . . - - . solullon lo {6:22] Y 

Figure 6.3: The two solutions of Cil) - the first correction for the dimensionless water 
vapour concentration at steady-state - derived from (6.20) and (6.21) and plotted 
across the GDL (left). The error between the two solutions (right). 

From comparing the plots left and right-hand plots Fig.6.3, we can see that the 

difference between the two solutions is 0 ( 1 0 - ~ ) .  Therefore, the relative error is about 

1%. Hence, both results are close in value, which strongly implies that our calculations 

of T(y) and P(') are correct. 
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6.9 The Validity of the Assumptions 

Now that we have the solutions for the five variables C1, C2, C, p and T, let us 

now examine the assumptions, (Al)  through (A3), and check to see whether they are 

valid assumptions. Please note that (A4) cannot be verified, since we have no way of 

calculating H explicitly. 

The first assumption, (Al) ,  that [ln$+] = O(1) is true. See the left-hand plot 

in Fig.6.4. The second assumption, (A2), that C(y) = O(1) is also true - in fact, the 

non-dimensional total gas concentration is almost exactly 1. See the right-hand plot 

in Fig.6.4. 

Fkom the previous section, we know that c!') = 0(10-6). We also know, from 

(3.4) that c!') = r up to  leading order. Therefore, assumption (A3) that r = O(1) or 

less is also true. Finally, we can also verify (Al)  that 2 5 O(1) since, from Fig.6.5, 

we determine that 2 E [0.119,0.136] and therefore, 2 5 O(1). Consequently, the 

assumptions (Al)  through (A3) are valid and the solutions we obtain to  leading order 

should also be valid as a result. 
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Figure 6.4: [lng] (left-hand figure) and C(y) (right-hand figure). 

Figure 6.5: $ across the GDL. 



Chapter 7 

Summary of Main Results 

There are several interesting studies to perform on our steady-state solutions with 

the assumption that the entire GDL is at  saturation. The first of these studies in- 

volves varying the input parameters I, K, and To and examining the effects on v (the 

percentage of product water manufactured in liquid form). 

7.1 Studying v 

The first parameter to vary is I, the current - which we will vary from 0.1 to 

2 Amp/cm2. As we see in Fig.7.1, v increases with the current and, more impor- 

tantly, there is a rapid change in v for I E (0, 0.3)Amp/cm2. We also observe from 

Fig. 7.1 that when the current is very low then v < -1, which implies that more 

water than produced is condensed in this regime. We finally notice that when we 

take the current a t  I = 1 Amp/cm2, we get the expected value v = -0.4877 (which 

implies that roughly half of the water produced condenses). We will discuss several 

interesting consequences of v z -112 in later sections. 



CHAPTER 7. SUMMARY OF MAIN RESULTS 

Figure 7.1: The variation in v with the current, I, at the catalyst layer. The thermal 
conductivity constant is fixed a t  K, = 10~erg lcm.  s - K. 

The second parameter to vary is K, , the thermal conductivity. As we see in Fig.7.2, 

v decreases as K, increases. As well, v changes rapidly while K, E (lo4, lo5) erglcm s K. 

We also notice that v < -1 when K, > 5 x lo5 erglcm s K. 

The third and final parameter to vary is To, the channel temperature. We vary 

this temperature from 323 to 363 K and observe from Fig.7.3 that v increases with 

the channel temperature. This result is physical - as the channel becomes hotter, less 

water will condense and v will become less negative. An interesting observation to be 

noted is that v is not as sensitive to small changes in To as it is to I and K,. 
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kappa-s 
1 e+05 le+06 1 e+07 

Figure 7.2: The variation in v with the thermal conductivity, K, vs. v, where the 
current is fixed at I = 1Amp/cm2. 

Figure 7.3: The variation in v with the nondimensional channel temperature, where 
the current is fixed at I = 1Amp/cm2 and K,  = 105erg/cm. s . K .  
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Figure 7.4: The oxygen concentration for 3 different current values: I= 112, 1, 2 
Amp/cm2. 

The effects of varying I 

Let us now examine the effects of varying I on the oxygen, water vapour, total gas 

concentration and the temperature. Firstly, we examine the O2 concentration for 

different currents. As we see in Figure 7.4, the 0 2  concentration decreases as the 

current increases at  the catalyst layer. This result is physical, since a larger current 

implies that more reactions are taking place at  the catalyst layer. Hence, the O2 

concentration will lower as the current increases. 

Secondly, we examine the water vapour concentration for 3 different current values. 

As we see in Figure 7.5, the water vapour concentration increases with the current. 

This result is reasonable since a larger current implies that more reactions are taking 

place a t  the catalyst layer and therefore, more water vapour is being produced in 

vapour form. The increase in the water vapour concentration with the current can 

also be explained by examining Fig. 7.1 - which shows that v becomes less negative 

as the current increases and therefore more water is produced in vapour form. 

Thirdly, we examine the change in the total gas concentration as I varies - shown 
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Figure 7.5: The water vapour concentration for 3 different current values: I= 112, 1, 
2 Amp/cm2. 

in Fig.7.6. We observe from this figure that the total gas concentration decreases as 

the current increases. 

Finally, we examine the temperature distribution as I varies. We observe, in 

Fig.7.7, that the temperature increases with the current. This effect is due to the 

heat produced by the reaction - the larger the current, the more reactions occur at  

the catalyst layer and the higher the temperature there. 
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Figure 7.6: The total gas concentration for 3 different current values: I= 112, 1 ,  2 
Amp/ c m 2 .  

Y 
Legend 

low current (112) .............. hysical current ................ 8 x current 

Figure 7.7: The temperature distribution for 3 different current values: I= 112, 1 ,  2 
A m p / c m 2 .  
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The effects of varying K,  

We will now vary the thermal conductivity constant K,, and observe how the gas and 

temperature distributions are effected. Figures ?? through ?? illustrate the effects of 

varying the conductivity by factors of 112 and 100. 

From Fig.??, we observe that the oxygen and total gas concentrations increase 

at  the catalyst layer with K,, while the water vapour concentration and temperature 

decrease as K, increases - as seen in Fig. ?? and ??. 

The last effect - that the temperature decreases as K, increases - can be physically 

explained. The more conductive the material, the more heat will be conducted away 

and the lower the temperature in the GDL will be. The effects on the total gas 

concentration follow from the temperature distribution. The total gas concentration, 

C(y) is inversely proportional to the temperature. Therefore, as T decreases with K,, 

C increases. 

The decrease in the water vapour concentration as KS increases can also be ex- 

plained by the temperature distribution. The lowest conductivity produces the largest 

temperature gradient across the channel and therefore causes the most evaporation 

from the channel to the catalyst layer. For this reason, the water vapour concentration 

is the highest for the lowest K,. 

Finally, the increase in 0 2  concentration with K, is less intuitive to understand 

(see Fig. ??). Instead, we can note that for the fuel cell - a larger K, seems favorable 

since more 0 2  is present with higher K, and therefore more O2 is available for the 

reactions that produce useful potential energy. As we will later conclude, the oxygen 

concentration is not the only effect to examine to determine the efficiency of the fuel 

cell (and therefore, K, = lo7 might not be optimum). 
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Y 
Legend 

exlremely low conductivity (112) .............. ph sical conductivity 
................ 106 x conductivity 

Figure 7.8: The oxygen concentration for 3 different thermal conductivity values: 
K,  = 5 x lo4, lo5, lo7 erglcm . s . K, where I is fixed at  1 Amp/cm2. 

Y 
Legend 

exlremely low conductivity (112) .............. ph slcal conducl~ity ................ 108 x conductwlty 

Figure 7.9: The water vapour concentration for 3 different thermal conductivity val- 
ues: K,  = 5 x lo4,  lo5,  lo7 erglcm e s . K, where I is fixed at  1 Amp/cm2. 
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I . .  . 
0 0.01 0.02 0.03 0.04 0.05 

Y 
Legend 

exlremely low conductivity (112) .............. ph sical conductivity 
................ 108 x conductivity 

Figure 7.10: The total gas concentration for 3 different thermal conductivity values: 
K ,  = 5 x lo4,  lo5, lo7 erglcm . s K, where I is fixed at 1 Amp/cm2. 

Y 
Legend 

extremely low mnductivity (112) .............. ph sical mnductivity 
................ 1 OK x conductivity 

Figure 7.11: The temperature distribution for 3 different thermal conductivity values: 
K,  = 5 x lo4, lo5, lo7 erglcm . s . K, where I is fixed a t  1 Amp/cm2. 
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~egendY 
Weak Hydro hobicity (11100 

.............. Medium H d?ophobidty (lllh) 

................ Physical k&drophobicity 

Figure 7.12: The liquid water volume fraction for 3 different hydrophobicity constants: 
Sp = 1, 10, 100, where I is fixed a t  1 Amp/cm2 and K~ is fixed at  lo5 erglcm - s . K.  

The effects of varying S, 

The final parameter we vary is the hydrophobicity constant, Sp. Sp = 100 represents 

strong hydrophobicity and is the actual value in our model. Sp = 1 represents very 

weak hydrophobicity. As expected, the liquid water volume fraction, ,/3, increases as 

Sp decreases. This implies that as the GDL becomes less hydrophobic, more liquid 

water accumulates at  the catalyst layer. This study illustrates the importance of the 

hydrophobic Teflon impregnated in the catalyst layer in order to  decrease the amount 

of liquid water and hence, prevent flooding of the membrane. 
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Y 
Legend 

Convective .............. Diffusive ................ Total 

Figure 7.13: The semilog plot of oxygen concentration fluxes (their absolute values) 
for I = 1 Amp/cm2, kappa, = lo5 erglcm . s . K .  

The Liquid and Gas Fluxes 

Let us now fix kappa, = lo5, I = 1, To = 1 and S, = 100 and examine the convective, 

diffusive and total gas fluxes of the liquid volume fraction and gas concentrations. We 

observe, in Fig. 7.13 that the total oxygen flux is positive and is therefore toward the 

catalyst layer. This result is physical - 0 2  will flux toward the membrane due to  its 

consumption there. We also observe that the diffusive flux dominates the convective 

flux. Please note that the absolute value of the convective flux has been plotted and 

is positive (toward the membrane) until y = 0.02, then, for y E (0.02,0.05), the water 

fluxes away from the catalyst layer. This result is also physical and can be explained 

by the condensation effects - which we further explain with the water vapour flux. 

The H20 vapour flux is again shown in a semilog plot in Fig. 7.16 where the 

diffusive flux is always positive and the convective flux is positive for y E (0,0.02) 

and negative for y E (0.02,0.05). Although the convective flux is negligible compared 

to the diffusive flux, it is an interesting effect to examine. There exists a water sink 

a t  y = 0.02 cm as liquid water moves from the channel and evaporates and as water 
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Y 
Legend 

Convective .............. D~ffusive 
................ Total 

Figure 7.14: The semilog plot of the water vapour concentration fluxes (their absolute 
values) for I = 1 Amp/cm2, kappa, = lo5 erglcm s K. 

vapour produced at  the catalyst layer moves toward the channel and condenses. 

Figure 7.15 illustrates the total gas flux. Please note that this flux is purely 

convective. Just as we have seen in the O2 and H20 vapour flux, the convective flux 

is toward the membrane until y % 0.02 cm and then away for y E (0.02,0.05). Again, 

this effect is due to condensation but is also negligible. 

In order to  further understand the gas movement, let us also examine the total gas 

velocity, Ug - given in Fig.?? by the second dotted line (K, = lo5). Just as we observe 

in Fig. 7.15, the gas velocity due to convection changes direction at y % 0.02 cm. We 

also examine the gas velocity for 112 and 100 times the physical thermal conductivity. 

As can be seen, if K, = 112 x lo5, the gas convection is purely toward the channel. If 

K, = 100 x lo5, the gas convection is purely toward the membrane and is no longer a 

negligible effect. 

The phenomenon of changing the direction of Ug with K, is shown in Fig.7.17. 

Please note that K, in our model is such that Ug is very small. 

Finally, let us also examine the convective, diffusive and total water vapour fluxes 

when K, = lo7 (100 times larger than the chosen value). These fluxes are shown in 
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Figure 7.15: The total gas concentration flux for I = 1 A m p / c m 2 ,  kappa, = lo5 
e r g l c m  s K. 

Legend 
eairernely low conductivity (112) .............. ph sicai conductivity ................ 108 x conductivity 

Figure 7.16: The total gas velocity across the GDL for I = 1 A m p / c m 2 ,  K,  = 5 x lo4, 
lo5, lo7 e r g l c m  . s . K .  
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Figure 7.17: Th ange in U, with K ,  at the catalyst layer, where I = 1 Amp/cm2. 

Fig. 7.18. Note that now the convective flux dominates and is toward the catalyst 

layer. 
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Legend 
Convect~ve .............. Diffusive ................ Total 

8&7 - 
H20 flux 

6&7 - 

4&7 1 

2&7 - 

0 - 

Figure 7.18: The gas velocity with K, = lo7 erglcrn. s. K at  the catalyst layer, where 
I = 1 Amp/cm2.  

abr ----- nOk-~---ab3------o&-----aos 

The change in P and r with I and K,. 

Y 

Let us finally observe the effects of changing the thermal conductivity and current on 

the gas pressure correction and condensation rate. Firstly, let us fix K, = lo5 and vary 

the current. In Fig.7.19, we see that all the minimum pressures occur at  y % 0.02. 

This is consistent with the sink that occurs there. Please note that the larger I, the 

larger the pressure gradient and the more gas flux will occur. This is consistent with 

the gas profiles seen in Fig.7.4 and Fig.7.6. Next, we will fix I = 1 Amp/cm2 and vary 

K,. As seen in Fig.7.20, the gas pressure correction is strictly positive (and therefore 

gas moves away from the membrane) for low conductivities and strictly negative for 

high conductivities (and the gas movew toward the membrane). 

Lastly, let us examine the effects on r when we vary the current and the thermal 

conductivity (seen in figures 7.21 and 7.22). For the physical current value and twice 

its value, where K, = lo5 erglcm s K ,  then J? < 0 and the water in the GDL is 

condensing. For half of the physical current value, we observe that the water is in 

fact evaporating in the GDL. Finally, as seen in Fig.7.22, for K, = 5 x lo4 and lo5 



CHAPTER 7. SUMMARY OF MAIN RESULTS 

Legend 
low current (112) .............. physical current ................ 2 x current 

Figure 7.19: The change in the gas pressure, where I = 112, 1, 2 Amp/cm2 and 
K ,  = lo5 erglcm s . K. 

Legend 
extremely low conductivity (112) .............. ph sical conduq~v~ty 

................ 706 x conduct~v~ty 

Figure 7.20: The change in the gas pressure, where I = 1 Amp/cm2 and K,  = 5 x lo4, 
lo5, lo7 erglcm . s . K .  
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I 

6- - 

Gamma 

Y 
Legend 

. . -. . . . -. - -. -. low current (112) 

. . . . . . . . . . . . . . . . hysical current 9 x current 

Figure 7.21: The condensation rate where I = 112, 1 ,  2 A m p / c m 2  and K ,  = 

erg l cm  s . K. 

e rg l cm  s K ( I  = 1 A m p / c m 2 ) ,  we observe that water in the GDL is condensing, 

whereas for K,  = lo7,  water is evaporating in the GDL. 
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Legend 

.---.--------. exlremely low conductivity (112) 

. . . . . . . . . . . . . . . . ph sical ~ O n d ~ ~ t ~ l t y  
10g x conductivity 

Figure 7.22: The condensation rate where K ,  = 5 x lo4, lo5, lo7 erg/cm . s - K and 
I = 1 Amp/cm2. 



Chapter 8 

The Conclusions 

There are many parameters to be varied in the model presented. Amoungst these, the 

only three we studied we the current (assumed to be constant) the thermal conductiv- 

ity, K, and the channel temperature, To. The most interesting study was to examine 

the value of v when these parameters were varied. We can conclude from the studies 

that v is very sensitive to changes in the prescribed current and conductivity of the 

GDL. As a result, all or evn more than 100% of the water produced at the catalyst 

layer can be condensed with slight changes in the current or thermal conductivity. 

We chose a small current, I = 1 Amp/cm2, which can be called a weak current 

regime. In this regime, the model gives rise to almost consant values for the gas 

concentrations, liquid water volume fraction and temperature wwith small derivative 

terms. Consequently, the gas concentrations and temperature distributions are almost 

linear. 

Finally, we observe that the gas and liquid are convected towards the point y = 

0.02 cm due to condensation but this convective flux is much smaller than the diffusive 

flux terms for each. This result is consistent with the observation that the phase 

change has little effect on the gas, temperature and liquid water distributions (I' is 

very small in our model). 



Chapter 9 

Future Work 

Our assumption that the GDL is saturated all the way to the membrane, and hence 

that there is no boundary layer there, implies that we have taken the case H >> 1. 

The constraint r = H(C2 - Ciat) = O(1) along with the limit H > 1 imply that 

Cz FZ Ciat. An interesting future study would be to allow a boundary layer of width 

1 H at the membrane. We suppose that the following would be true for this case: water 
1 vapour would be convected from the channel to the boundary layer at y FZ 1 - E,  where 

it would condense. At the same time, the water vapour produced at the membrane 
1 would diffuse away from the membrane and condense at y FZ 1 - -. H 

Another further study would involve taking all the variables to be time-dependent 

as well, and solve for the system of equations. An interesting effect to observe would 

be the water distribution and the amount of humidity at  the channel. A question to 

ask would be, what happens if the channel becomes dry when the GDL cathode is at 

saturation? From our model, we suppose that the water concentration in the GDL 

would drop as a result. 
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