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ABSTRACT 

In mathematics, as in many fields, there are often several ways to solve a 

particular problem. A student may know one valid approach, which will give a 

correct answer, but there may also be a different method which is in some way 

better. I have observed that many students do not adopt the methods presented 

in class if a previously known method can be applied. 

In this study I focus on three topics discussed in a mathematics course 

designed for pre-service elementary teachers: greatest common factor and least 

common multiple, compound percentage change, and addition and subtraction 

of mixed numbers. The procedures used by the students before and after 

instruction were recorded and clinical interviews were conducted to discover 

what motivated the students to adopt a new method or caused them to resist a 

new approach. 

A theory of conceptual change, proposed by Posner, Strike, Hewson and 

Gertzog (1982), is used as a theoretical framework for interpreting the results, 

which indicate that a variety of factors influence a student's choice of procedure. 

The theory is then adapted to include procedural change, making it applicable to 

the adoption of a new method for solving a mathematical problem when a valid 

method is already known. This theory of procedural change can give a greater 

insight into what must take place in the classroom in order to make adoption 

more likely and thereby giving students the ability to choose the most suitable 

method for each situation. 
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CHAPTER 1 

INTRODUCTION 

The following dialogue could have taken place in a faculty lounge or 

staffroom . . . 

Researcher : Imagine a classroom where, after instruction in a particular topic, 

every student can correctly answer every question on that topic. 

Responder : Ah, surely this would be ideal! All students understanding the 

approaches and methods presented by the teacher. 

Researcher : At first glance it may appear so, but let us look deeper. What does 

the ability to get the correct answer indicate? Perhaps the students 

have learned to apply the methods correctly, but do not fully 

understand them. 

Responder: Even so, this can be regarded as a success, since the students 

have learned something. All the students must have understood 

the teacher to some extent. 

Researcher : Not so, for there may be a number of approaches, all of which lead 

to a correct solution. The student who did not grasp the newly 

presented method could achieve success using a previously known 

method. 

Responder: But then the teacher would know from the use of an old method 

that the student had not understood the new. 



Researcher : You are forgetting that we all have freedom of choice! Perhaps the 

student understood the new method, but chose to use a different 

one. 

Responder : I see the difficulty - the teacher would not know why the student did 

not use the new method. But I have to ask, if the student already 

knows a valid approach, why should he or she adopt the method 

presented by the teacher? 

Researcher: The new method may encourage a richer understanding of the 

concept, or may be more efficient. It may be that the new approach 

permits the student to move into realms that would otherwise be 

unattainable. 

Responder : Then the teacher must point out these benefits. 

Researcher : l fear this is not sufficient. We need to understand what it is that 

motivates a student to adopt a new method or causes resistance to 

a new approach. 

Responder : With this knowledge the teacher would be better equipped to help 

the student progress. 

Researcher : That is my desire for the outcome of my work. 

For several years I have worked as a teaching assistant and an instructor 

with students enrolled in the Math 190 course, Principles of Mathematics for 

Teachers, at Simon Fraser University. The course is designed to encourage 

students to examine their understanding of elementary mathematics as a whole 

and to explore different methods with which to approach a variety of problems in 

several content areas. Many of the students in this course have little confidence 



in their mathematical ability and many have not studied the subject for several 

years. 

In the Spring of 2000 1 was given the opportunity to teach the Math 190 

course and became aware of a difference between the methods I was discussing 

in class and the methods used by many of the students after instruction had 

taken place. For example, it is not unusual for students to find the value of 

12 22 1 4 + 7 1 by using improper fractions: + Y = - 3 + - 3 = 2 3 = 1 1  - , , even after 

discussion in class which highlights the simplicity of adding the wholes directly. I 

wished to know if this type of resistance was common. In 2001 1 taught the 

course once more and again I observed that the students often did not use the 

methods or approaches I had demonstrated in class. They either did not want to, 

or for some reason could not, use the newly introduced methods and were 

continuing to use procedures they knew before the course began. This 

phenomenon is not limited to the students in this course, or to the specific 

material covered. For example, I have observed students studying linear algebra 

solving a problem such as 

A = [ :  81, B = [ "  b 2 d  2 c ]  and d e t A = 3 .  Find d e t / ~ B ' ) .  

by multiplying out the matrices, finding an expression for the determinant, and 

then substituting ad -bc = 3, rather than by using the methods discussed in 

class which would give 

det (ABT)  = det ( A )  det ( B ~ )  and det ( BT)  = 2 det ( A )  
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Why would a student use a method which requires so much more effort, takes 

longer, even though time is often precious in examinations, and is more likely to 

lead to a mistake in computation? 

Schoenfeld (2000) describes the two main purposes of mathematics 

education research as "to understand the nature of mathematical thinking, 

teaching and learning" and "to use such understandings to improve mathematics 

instruction" (p. 641). Under the first of these purposes, we may attempt to 

classify a difficulty in learning, locate its source, and construct a theoretical 

framework to analyse it. Without attempts to do this a difficulty may remain 

unnoticed or poorly understood (Sierpinska, Kilpatrick, Balacheff, Howson, Sfard 

& Steinbring, 1993). From the examples mentioned above, it is clear that many 

students experience difficulty in adopting some methods presented in 

mathematics courses. Selden and Selden (1 993), in their overview of collegiate 

mathematics education research, raised several issues which remain to be 

investigated, including the question, "What aspects of teaching influence a 

student's inclination to use a skill or apply a technique? The inclination to carry 

out a technique is distinct from the ability to do so" (p. 443). Students who have 

demonstrated their ability to use a particular method when required to do so, or 

under certain circumstances, at other times choose not to use that method. The 

decision may be unconscious, but can be described as a choice because the 

student has knowledge of, and the ability to use, a variety of methods. What 

factors influence this choice to resist or adopt the methods presented during 

instruction? 
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Since a student must possess the relevant knowledge before any choice 

can be made about which method to use, in the next chapter I will review 

literature discussing the acquisition of knowledge and obstacles to learning. 

Research about conceptual and procedural understanding is also considered, 

since it is suggested that students may have different types of understanding of 

procedures. The theory of conceptual change proposed by Posner, Strike, 

Hewson and Gertzog (1982) will be examined in some detail. Occasional 

personal observations and comments will be used to illustrate some of the ideas 

presented in the literature and to relate it to the current study. 

The topics of greatest common factor and least common multiple, 

compound percentage change, and addition and subtraction of mixed numbers 

were chosen for examination in this study. The majority of students in the course 

knew a procedure for solving problems in each of these areas, but frequently 

their approach was different from that presented in class. These specific topics 

have not yet received much attention from researchers, but studies investigating 

content within the same domains are discussed in chapter 3. Some of the 

difficulties experienced by students relate to their understanding of the symbolic 

representations, or their ability to visualise and attribute meaning to the 

procedures. Research in these areas, and a brief look at some aspects of 

problem solving will also provide useful background information for the issues 

raised in this study. 

In chapter 4 1 give a description of the participants in this study, the 

instruction they received and the methods used to collect the data. This data is 



6 

presented in a variety of formats in chapter 5. My initial observations were of 

students using methods and procedures that were not those promoted in the 

course. This raised the question, "What causes students to adopt a new method 

or what prevents them from so doing?" Some of the motivations given by the 

students in the interviews seemed to fit with the theory of conceptual change 

proposed by Posner et al. (1 982). Therefore I shall use this framework in chapter 

6 when interpreting the data collected in this study. 

The literature discussing conceptual change, or the overcoming of 

obstacles in general, assumes that the student's current conception or 

knowledge is incorrect, or no longer valid in the new situation. The development 

that I would like to propose is to those situations where a student knows a 

correct and valid procedure, but where there exists a 'better' method. 

Recognising one method as better than another depends on one's view point 

and so it is necessary to consider what constitutes 'better' for the student. When 

discussing conceptual or procedural change, or the overcoming of obstacles, 

researchers seem to agree that the learner must first be convinced that their 

current knowledge will produce incorrect responses in situations where the new 

knowledge will give rise to correct responses. However, the 'old' procedures 

used by students for the topics in this study will give correct solutions to all the 

problems. The students must be convinced that the old methods are 

'inadequate', even though they produce the right answer. 

Students come to a course with certain knowledge, but they must still be 

able to adopt new approaches to familiar topics, giving them the ability to choose 
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the most suitable method for each situation. If this adoption is difficult, then we 

must examine how to make it more likely. If there is still resistance to change, 

then educators will have to reconsider what is taught to students which causes 

this lack of flexibility. The conceptual change theory was originally designed to 

describe conditions necessary to correct scientific misconceptions. I develop and 

adapt this theory to apply to the adoption of a new method for solving a 

mathematical problem when a valid method is already known. This will give a 

greater insight into what must take place in the classroom in order to encourage 

more flexibility in students. 



CHAPTER 2 

KNOWLEDGE, OBSTACLES AND CHANGE 

It is widely believed that learning is not only dependent on what a student 

is taught, but also on the knowledge and understanding which the student brings 

to the situation. Support for this view will be demonstrated throughout this 

chapter. We will consider how a student acquires knowledge and some of the 

obstacles which hinder learning. If a student's current knowledge or 

understanding is in some way inadequate, then conceptual change may be 

required. A distinction can be drawn between conceptual knowledge and 

procedural knowledge, and this issue is examined along with the types of 

understanding which can be associated with the different forms of knowledge. As 

I review literature in these areas I will show how it relates to the current study 

and include personal observations and comments to illustrate some of the ideas. 

Knowledge Acquisition 

At one time it was believed that knowledge could be acquired by 

transmission. By presenting information in a clear verbal form, or through careful 

monitoring of the behaviour of the learner until it resembled the desired 
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behaviour, knowledge could be transmitted from teacher to student. This belief is 

not generally supported today since cognitive studies have shown that even with 

simple rules and algorithms learners will adapt the presented information in an 

attempt to make sense of it. Thus, learners construct their own knowledge from 

what is presented to them. Some of the evidence in support of the constructivist 

point of view is that this constructed knowledge often contains errors. For 

example, many young children use an incorrect algorithm for the subtraction of 

multi-digit numbers, although they have never been taught the variations which 

they implement (Brown & Burton, 1978). That knowledge is constructed by the 

learner, rather than simply transmitted to the learner, is the first of five 

characterisations of long-term acquisition of knowledge given by Hatano (1 996). 

The second characterisation of the acquisition of knowledge, according to 

Hatano, is that the knowledge is restructured. As the learner acquires more 

knowledge, it is reorganised. There is an attempt to integrate the new information 

with prior knowledge, to understand and think about the new in terms of what is 

already known (Glaser, 1984). Some separate pieces of knowledge may be 

recognised as closely related, while others may take on a new significance. If a 

student is faced with a new concept (or piece of knowledge) which is closely 

related to concepts that are already present in the student's knowledge structure 

then it can simply be added to the new knowledge within the existing structure. 

However, when the new concept is radically different from the concepts held by 

the student, the current concepts must be replaced, or the student's knowledge 

must be restructured. Following Piaget, the processes of adding to the current 
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structure or restructuring are referred to as assimilation or accommodation 

respectively. 

The construction and restructuring of knowledge is constrained. This is 

Hatano's third characterisation of the acquisition of knowledge. The constraints 

can be both positive and negative influences and are individual and societal in 

nature. Personal prior knowledge in a particular domain has been shown to 

enhance the acquisition of new pieces of knowledge within that domain (Glaser, 

1984; Kuhara-Kojima & Hatano, 1991). Cultural constraints are those which are 

shared by the majority of a given community. They include documented pieces 

of knowledge, physical tools, social institutions and much more, but they also 

include shared beliefs. Although these constraints are external to the individual, 

they become internalised as knowledge when the person is repeatedly exposed 

to them or practises their use. It is these constraints which allow a person to 

reduce the number of possible hypotheses or interpretations in a given situation 

to a manageable level in order to make reasonable choices quickly. 

The fourth of Hatano's characterisations is that knowledge acquisition is 

domain specific. The domains are essentially self-contained knowledge systems 

within which comprehension and problem solving take place. New knowledge 

acquired during these activities is stored in the domain in which the activity took 

place. Kuhara-Kojima and Hatano (1991) found that students who knew many 

facts in a particular domain were able to make more meaningful connections for 

new knowledge relating to that domain. The advantage of domain specificity is 

that by storing knowledge within a specific domain we are able to retrieve 
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relevant information more rapidly, since we are searching only a part of our total 

knowledge system. Research has shown (e.g., Chi, Glaser & Rees, 1982) that 

relevant domain-specific knowledge is a critical factor in problem solving and that 

knowledge acquired through such activities is stored in that domain only. 

Furthermore, all knowledge is acquired within a context (Brown, Collins & 

Duguid, 1989), and it may then be tied, more or less tightly, to that context. How 

the knowledge was acquired and how it has been used, including the goal to 

which the activity was directed, are contextual features with which the knowledge 

is closely associated. Becoming an expert is partly dependent on 

decontextualising, or desituating, the knowledge, allowing it to be retrieved and 

used in different contexts (Hatano & Inagaki, 1992). The fifth and final 

characterisation of knowledge acquisition given by Hatano is therefore that it is 

situated in contexts. 

There are some problems inherent in the way we acquire knowledge as 

described by these characterisations. If the knowledge is constructed rather than 

transmitted, then there will always be the possibility that learners will construct 

their own knowledge which differs from that which was presented. This is the 

case when students create an incorrect version of an algorithm, such as the 

variations of the multi-digit subtraction algorithm mentioned earlier (Brown & 

Burton, 1978), or make an inappropriate assumption from what is presented, for 

example, conclude that when dividing, the quotient is always smaller than the 

dividend (Tirosh & Graeber, 1 989). 
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Our prior knowledge can be seen as a constraint to our acquisition of new 

knowledge. On the one hand, existing conceptions guide the understanding and 

interpretation of new information and so our prior knowledge is essential to the 

acquisition of new pieces of knowledge. On the other hand, this prior knowledge 

may also be an obstacle to the acceptance of the new knowledge. A student who 

has a concept built into a stable structure may be reluctant to adapt or give up 

previously successful thinking when faced with a new concept which cannot be 

assimilated into that structure (Booker, 1996). In other words, the prior 

knowledge may actually prevent the more radical restructuring of 

accommodation from taking place. In this situation, the student must be more 

strongly convinced that a change is necessary. Glaser (1984) found that change 

occurs when there are challenges and contradictions to one's prior knowledge, 

but Booker (1996) stated that it is not always easy to provide situations which 

encourage this type of change, especially if the concept has previously been 

successful, or if it has been practised for some time. Even if a student is willing 

to change, the choice of a new central concept will be influenced by the student's 

current concepts if more than one alternative view is presented (Posner, Strike, 

Hewson & Gertzog, 1982). 

The constraints which can help us to retrieve more rapidly the relevant 

knowledge can also limit us and prevent us from making new connections. Social 

constraints, such as a method or algorithm presented and practised repeatedly, 

can lead to a belief that this is the only option when a particular situation is 

faced. Many beliefs may develop in the mathematics classroom and these 
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beliefs can influence us in a variety of ways, they may prevent us from even 

considering a new concept. One such belief is that 'there is a formula for 

everything'. The students believe that questions presented to them in the 

mathematics classroom can be answered by the application of the formula given 

to them while studying the particular topic. For example, I have observed the 

work of Math 190 students who were presented with the following sequence : 

2, 14, 98, 686, . . . Having established that this is a geometric sequence with 

first term, a = 2, and common ratio, r = 7, the students were asked, "If possible, 

find the sum to infinity. [If not possible, explain why.]" In spite of the hint in the 

question, many students did not appear to consider that it may not be possible to 

find the sum, and simply used the formula: 

giving as the answer. 

Very few seemed troubled by the implausible value for the sum of the sequence, 

and some who recognised that it was not sensible commented that it must be 

correct because they had used the formula. 

The situation of knowledge in contexts may give rise to a variety of 

difficulties for students. A clear occurrence of this was found in the street-vendor 

children of Brazil who could successfully carry out many arithmetic calculations 

relating to the cost of multiple items at the market (Carraher, Carraher & 

Schliemann, 1985). These calculations were performed mentally, using a variety 

of informal procedures. When these same calculations were represented 

mathematically, and pencil and paper were available, the children attempted to 
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use the formal procedures taught in schools. However, they obtained very few 

correct answers because the school-taught procedures were incorrectly 

remembered. Sometimes learners may attempt to change the conditions 

surrounding a problem rather than face the conflict with previous concepts raised 

by the problem (Booker, 1996). For some students this avoidance of conflict 

takes the form of suspending common sense while in the mathematics 

classroom. For example, students are often taught to spot the key words in a 

question, such as the phrase 'all together' signifying 'add'. The students in the 

Math 190 course were given the question, "A water main for a street is being laid 

using a particular kind of pipe that comes in either 18-foot sections or 20-foot 

sections. The designer has determined that the water main would require 14 

fewer sections of 20-foot pipe than if 18-foot pipe were used. Find the total 

length of the water main." (Musser, Burger & Peterson, 2001, p14). Several 

students struggled with understanding what this problem was describing and 

reverted to their belief that '14 fewer' meant 'subtract 14'. They were not sure 

whether to subtract the 14 from 20 or 18, but most gave 6 or 4 feet as the 

answer. The presence of certain words may encourage a student to use a 

certain algorithm, even if this is inappropriate to the problem, but also the 

association of certain words or types of question with a specific method or 

algorithm may prevent the student from using that method if those words are not 

present. 



Obstacles 

As mentioned earlier, if new knowledge is integrated into a learner's 

existing cognitive structure, it is termed assimilation. However, if the new concept 

cannot be assimilated, then a more radical restructuring must take place, termed 

accommodation. The new knowledge may be in conflict with previously held 

notions and may eventually replace them, but existing cognitive structures are 

often difficult to change significantly. The prior knowledge then becomes an 

obstacle to the construction of the new structures (Herscovics, 1989). In their 

research regarding the role of prior knowledge, Merenluoto and Lehtinen (2000) 

concluded that it is easier for a student if a concept need only be assimilated into 

the student's existing knowledge structure. However, prior knowledge which 

allows for the assimilation of a new piece of knowledge can be an obstacle to the 

student undergoing the more radical reorganisation of accommodation. In this 

situation the student may not see the need for the restructuring, that it would give 

a more advanced understanding. They note that the concepts which call for a 

radical revision of prior knowledge are quite resistant to traditional teaching. 

For many years, researchers have asked questions about obstacles to 

learning, examining their nature and causes, and ways to overcome them. 

Working in the experimental sciences, Bachelard (1938, in Brousseau, 1997) 

formed a list of potential obstacles, which included such things as first 

experience, general knowledge, improper use of familiar images, and 

quantitative knowledge. Duroux (1982, in Brousseau, 1997) examined the nature 

of an obstacle and the conditions necessary for an obstacle to exist. He 
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describes an obstacle as "a piece of knowledge or a conception . . . [which] 

produces responses which are appropriate within a particular, frequently 

experienced, context. But it generates false responses outside this context. A 

correct, universal response requires a notably different point of view" (p. 99). 

Duroux goes on to state that "this piece of knowledge withstands both occasional 

contradictions and the establishment of a better piece of knowledge. Possession 

of a better piece of knowledge is not sufficient for the preceding one to 

disappear" (pp. 99-100). Even "after its inaccuracy has been recognized, it 

continues to crop up in an untimely, persistent way" (p. 100). It is because the 

knowledge has been satisfactory so far that it is firmly anchored in the mind and 

now becomes an obstacle (Cornu 1983, as cited in Tall, 1991). Brousseau 

suggests that obstacles are made apparent by errors. These errors are 

persistent and reproduceable, not random or careless, and there is a reason 

behind the error. 

The origins of various obstacles have been categorised by Brousseau 

(1 997) as being ontogenic, didactical and epistemological. Ontogenic obstacles 

are those which arise because of the particular stage of development reached by 

a student. Didactical obstacles depend on the choices made in the educational 

system as to how, and in what order, to present concepts. There are also 

obstacles which are epistemological in origin. These obstacles are necessary 

"because of their formative r61e in the knowledge being sought" (Brousseau, 

1997, p. 87) and they should not, indeed cannot, be avoided. 
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According to Sierpinska (1 992), epistemological obstacles seem to belong 

to the meaning of the concepts themselves and are not just results of particular 

ways of teaching the concepts. They are not something that occurs in just one or 

two people, but are common in the frame of some culture, whether past or 

present. For example, the dictionary definition of vector is, "a quantity that has 

magnitude and direction and that is commonly represented by a directed line 

segment whose length represents the magnitude and whose orientation in space 

represents the direction" (Merriam-Webster, 1993, p. 1304). However, when 

studying linear algebra, the concept of a vector as an object having 'magnitude 

and direction' would be very limiting and would constitute an epistemological 

obstacle to a deeper understanding of the concept of vector. Sierpinska 

describes three areas from which epistemological obstacles can arise. Firstly 

there are our attitudes and beliefs, our 'world view', and secondly our schemes of 

thought, including how we approach problems, interpret situations, and the 

things we have learned by practice or imitation in the course of our socialisation 

and education. Thirdly, there is our technical knowledge, and the application of 

this knowledge is influenced by the contents of the other areas. Since many of 

our beliefs and schemes of thought are unconscious, they may function as 

obstacles to our thinking in the technical area. An obstacle of this nature is 

overcome only if we are able to step back and consider other points of view. It is 

worth remembering that if an obstacle is a piece of knowledge, then it cannot 

exist before that knowledge is acquired. Sierpinska (1994) found that in some 

cases younger children were more successful in their learning than older children 



18 

because they did not have to overcome epistemological obstacles, since these 

had not yet been constructed. 

Having acknowledged the existence of these cognitive obstacles, it is 

natural that researchers should turn their attention to matters of overcoming 

them. According to Sierpinska (1 987, 1 9W), an epistemological obstacle is 

linked with some kind of conviction. In order to understand better, or see different 

aspects of the things we are considering, we have to become aware of our 

attitudes, beliefs and schemes of thought. She claims that to overcome an 

obstacle we should not simply replace one conviction by an opposite one, 

instead we should rise above these convictions. We must consider how we solve 

problems, recognising the reasons behind our choices, and become aware of 

other possibilities. Brousseau (1997) adds that it is not enough to identify where 

the obstacle fails, but its successes must be recognised. 

While studying scientific misconceptions, researchers (e.g., Burbules & 

Linn, 1988; Viennot, 1979) found that misconceptions held by students prior to 

instruction are often highly robust and typically outlive teaching, or experimental 

results, which contradicts them. Brousseau (1997) explains that since an 

obstacle has the same nature as knowledge, it will resist rejection. Students 

must be provided with many situations where the knowledge is inadequate or 

wrong, to convince them to consider something else. To overcome the obstacle 

the students must carry out work of the same kind as when applying knowledge; 

it must be numerous, important to the student, and sufficiently different to require 

the acceptance of the new knowledge. 
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Several researchers talk of the necessity of mental conflict for overcoming 

obstacles (e.g., Sierpinska, 1987). The argumentation and justification which is 

involved in negotiating the meaning in certain mathematical situations is often 

referred to as cognitive conflict, but Booker (1996) points out that this term is 

more appropriately applied to a situation where an inadequate or inappropriate 

construction is ingrained in the learner. Tall (1991) found that a student can hold 

conflicting views, with each being evoked at different times, and not be aware of 

the conflict until they are evoked simultaneously. This can occur when the new 

ideas are not satisfactorily accommodated. When obstacles arise from deeply 

held convictions about mathematics they are difficult to remove. The beliefs may 

be suppressed in order for the student to apply the new knowledge successfully, 

but they will remain and may show themselves in feelings of uneasiness in 

certain situations. The use of an 'exposing event' to make students aware of their 

own pre-conceptions was suggested by Nussbaum & Novick (1982). The 

students should be invited to describe their current conceptions verbally or 

pictorially, and by stating their ideas clearly and concisely, they become aware of 

the elements in their own 'alternative framework'. This awareness can be 

increased by debating the pros and cons of their own preconceptions and 

noticing the differences in the ideas held by others. 

We have seen that obstacles are pieces of knowledge, sometimes related 

to beliefs, and often unavoidable in the learning process. Even though new 

situations can show the knowledge to be false, it can be very resilient. Now let us 

consider a slightly different situation, one in which a student's current knowledge 
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is appropriate within a particular context, but does not necessarily generate false 

responses outside this context. This can be illustrated by the example of finding 

the solution to a system of linear equations. When first introduced, the method of 

substitution is usually presented to the students and only two equations are 

involved. However, for larger systems this method becomes impractical and 

students encounter the method of linear combinations. It would seem reasonable 

that students adopt the new method, at least for larger systems, but some 

continue to use the method of substitution, frequently making computational 

mistakes in the process. Another example, from the work done by students 

involved in the current study, is that of finding a term in an arithmetic sequence. 

Given the first three terms of an arithmetic sequence the students are asked to 

find the 6th term and most simply find each term up to the 6th. However, when 

asked to find the 17th term it would seem sensible to use the formula for the nth 

term, namely t , = t , + ( n - 1 ) d  . Many students who have mastered the use of 

this formula still find every term up to the 17th. Is the knowledge of how to find 

the 1 7 ' ~  term by finding all earlier terms of the sequence an obstacle to the 

students integrating the nth term formula into their network of knowledge from 

which the most appropriate method is chosen for any given problem? 

One could question whether the examples given above are illustrations of 

true obstacles as Duroux (1982, in Brousseau, 1997) and others use the word. 

Listing every term of a sequence will always give the correct value of any given 

term and the method of substitution will always give the correct solution to the 

system of linear equations, provided that no careless computational errors are 
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made. This does not seem to fit with the requirement for the knowledge or 

conception to generate false responses in certain contexts, and its inaccuracy 

cannot be demonstrated. However, these examples do satisfy the other criteria 

for an obstacle, especially that 'possession of a better piece of knowledge is not 

sufficient' and 'it continues to crop up in an untimely, persistent way'. The fact 

that calculation errors are much more likely to occur if a cumbersome method is 

used may be enough to elevate this type of situation to the status of obstacle. 

The characteristic of this situation is that the knowledge here is of a procedure, 

rather than a concept. 

Procedural and Conceptual Knowledge 

Hiebert, Lefevre and Wearne describe the distinction between conceptual 

and procedural knowledge (Hiebert & Lefevre, 1986; Hiebert & Wearne, 1986). 

According to these researchers, conceptual knowledge is rich in relationships 

and is gained by constructing relationships between pieces of information, which 

leads to understanding, whereas procedural knowledge is knowledge of 

symbols, or formal language, and the algorithms or rules for completing tasks. 

Knowledge of the meaning of the symbols or understanding of the algorithms is 

not necessary for successful application of procedures, and it is possible to learn 

procedures by rote. In contrast, conceptual knowledge must be learned 

meaningfully, in fact cannot be learned by rote, since meaning is generated as 

relationships between pieces of knowledge are formed. Procedures which are 
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learned with meaning are linked to conceptual knowledge, and it is those 

procedures which make the conceptual knowledge observable. Both types of 

knowledge are necessary, and they must be related within the learner, together 

giving meaning and aiding the memory. Conceptual knowledge should be used 

in the selection of an appropriate procedure and to check for the reasonableness 

of the outcomes to procedures; procedural knowledge allows for efficient 

completion of tasks. Conceptual knowledge is gradually transformed into set 

routines with repeated use, thus becoming procedural, and new procedures can 

trigger the development of concepts. 

Hiebert & Wearne (1986) claim that mathematical competence is 

characterized by connections between conceptual and procedural knowledge. 

They found that students often look at only surface features of problems and 

apply memorised symbol manipulation rules, but often this produces 

mathematically unreasonable answers. Three sites were identified where links 

between conceptual and procedural knowledge, or the lack of those links, are 

particularly significant. Site 1 is the interpretation of the problem, and it is here 

that the symbols in the presented problem are given some meaning. Site 2 is 

where procedures are selected and implemented, and Site 3 is where the 

solution is checked for reasonableness. Unless connections between conceptual 

and procedural knowledge are made at Site 1, it will be impossible to establish 

connections at the remaining sites. Although rules and algorithms are motivated 

by conceptual considerations, the absence of links between these procedures 

and the concepts involved may not hinder successful performance. It is not 
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always clear whether a student who can use a rule appropriately actually 

understands why it works. 

The absence of connections to conceptual knowledge can become 

obvious at Site 3, where the reasonableness of a solution is considered. 

Conceptual features of a problem do not generate exact answers, but they can 

provide information about the solution. Unfortunately, many students do not 

check for reasonableness of their answers either because they do not think to 

check, or because they have not made the necessary links at Site 1 and 

therefore do not know what the symbols mean. Their only means of checking is 

then whether the answer fulfils the rules of syntax of the symbols. 

The process of selecting a procedure is passed over by Hiebert & Wearne 

who simply say, "After the problem has been interpreted, procedures are 

selected and applied to solve the problem. The execution of procedures is the 

domain of Site 2" (p. 7). They go on to suggest that procedures need not be 

linked to conceptual understanding, as long as they are recalled and applied 

correctly, but that the presence of such links would contribute to genuine 

competence. I believe that the selection process can not be taken for granted 

and that a lack of conceptual understanding will result in an inability to make 

appropriate choices when more than one procedure is applicable. Evidence 

supporting this belief was found during this study, and will be discussed in later 

chapters. 

Hiebert & Lefevre (1986) noted that pre-school children seem to develop 

conceptual and procedural knowledge side by side, but the effect of schooling is 
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to separate them. Written symbols are introduced whose meaning has not been 

well established, and then an emphasis is placed on the use of procedures 

involving these symbols. Throughout their school years, students can succeed at 

levels far beyond their conceptual understanding. Furthermore, it may be more 

difficult for students to connect symbols with referents once the symbol 

manipulation rules have been routinised (Hiebert, 1988). 

Silver (1986) found that some students were not troubled by getting 

different answers to the same calculation when using manipulatives and 

symbolic paper and pencil techniques. This divorcing of the mathematics learnt 

in the classroom from the reality of the objects being represented in the 

procedures can be reduced if conceptual knowledge is adequately developed at 

the concrete level and relationships between physical procedures and 

conceptual knowledge are firmly established (Carpenter, 1986). Baroody & 

Ginsburg (1986) suggest that older children believe that they are supposed to 

calculate when presented with an arithmetical problem rather than look for 

patterns or relationships to simplify the problem. Some students go so far as to 

believe that finding an answer by a method other than calculation is cheating. 

Understanding 

It was stated above that conceptual knowledge, rich in relationships, leads 

to understanding, whereas procedural knowledge can be memorised without 

understanding. However, understanding means different things to different 
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people and Skemp (1976) explores the possibility that there are in fact two types 

of understanding. Instrumental understanding is limited to knowing what to do in 

a given situation, whereas relational understanding is not only knowing what to 

do, but also why. Many of us may not regard instrumental understanding as 

actual understanding, but rather as memorisation of rules, or rote learning. 

However, Skemp suggests that for many students, and even teachers, the 

knowledge of a rule and the ability to use it is what they mean by understanding 

in mathematics. Many text books have been guilty of giving a rule or procedure 

without an explanation of why or how it works. Instrumental mathematics is 

easier to understand, and success is more immediate, but relational 

mathematics has the advantages of being adaptable to new tasks, easier to 

remember and more deeply satisfying. 

Skemp's instrumental understanding is similar to what Zazkis & Campbell 

(1996a) term procedural understanding. They contrast this with conceptual 

understanding which relates to the construction of a mental object. The use of a 

procedure, or evidence of procedural understanding, does not necessarily mean 

a lack of conceptual understanding, but Zazkis & Campbell suggest that if a 

student spends time using a procedure which is not necessary for the solution of 

the problem, then this indicates a lack of conceptual understanding. 

Harel & Tall (1991) demonstrate how it may be initially difficult to 

determine the type of understanding a student possesses. Consider some 

students who can each successfully use the method of linear combinations to 

solve simultaneous equations in two unknowns. They then meet a generalisation 
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of this method for solving arrays of m x n equations by row operations on the 

matrix of coefficients. A student who has relational understanding can see the 

initial case as a particular example of the new. Harel & Tall refer to this as 

expansive generalisation, in which the range of applicability of an existing 

schema is expanded, without reconstructing it. An intermediate stage might be 

called reconstructive generalisation, where the existing schema is reconstructed 

in order to expand its applicability. Here the student has instrumental 

understanding of the method, but when given the new situation, begins to see 

the underlying meaning of the solution process and the initial case is seen as a 

particular example. Alternatively, a student who has instrumental understanding 

may simply memorise another procedure when given the new situation, without 

relating it to the original. This is disjunctive generalisation, where a new, disjoint 

schema is constructed to deal with the new situation. However, disjunctive 

generalisation is not in fact true generalisation, although the students may 

appear to have generalised, since they can perform the required procedures. 

Ideally, students should be led to a meaningful understanding from which 

expansive generalisation would take place. In reality, many students will have an 

instrumental understanding and so conditions must be provided in which 

reconstructive generalisation is likely to take place. 

Pirie & Kieren (1994) have developed a theory of growth of mathematical 

understanding, describing levels through which a person may progress. They talk 

of 'don't need' boundaries, beyond which the learner is able to work without 

reference to the previous forms of understanding which gave rise to the current 
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understanding. For example, if one has grasped a formal mathematical idea then 

one no longer needs a mental image of the idea. However, in order to extend 

current understanding, the learner must be able to return to earlier levels. Some 

of the difficulties experienced by students in developing their understanding may 

arise from forgetting how to form the images they have not used for a long time. 

A student who knows a rule can work at the formalising level, but if the student 

has no image, then the previous understanding cannot be recaptured and used 

to develop understanding when faced with future unsolvable problems. 

Acts of understanding can be described in terms of qualitative changes in 

knowledge, or as jumps from old ways of knowing to new ways of knowing 

(Sierpinska 1990, 1992). If we look back at our old ways of knowing, we see 

things that prevented us from knowing in a new way, some of which may be 

epistemological obstacles, but if we look at what we have jumped to, we tend to 

speak of understanding. When considering epistemological obstacles we are 

focusing attention on what was wrong or insufficient in our ways of knowing. Our 

new way of knowing may, in turn, start functioning as an epistemological 

obstacle in a different situation. Hence, some acts of understanding are acts of 

overcoming epistemological obstacles. 

We have seen that our prior knowledge can act as an obstacle to 

acquiring new knowledge, and that, in order for understanding to develop, the 

obstacles to the new knowledge must be overcome. The prior knowledge may be 

conceptual or procedural in nature, but both can be very resistant to change. We 

must discover what will motivate a student to consider a new way of knowing and 



28 

what factors cause the resistance to change. Sierpinska (1987) suggests that 

examining the reasons for a student changing approach might be helpful in 

understanding the processes of overcoming obstacles. It is hoped that the 

current study will contribute to the research in this area. It may also be fruitful to 

expand the scope of the term obstacle to include the type of knowledge 

described above, and then to examine research in the area of obstacles in order 

to deepen our understanding of the choices made by students. Whether 

'obstacle' is understood in a broader or narrower sense, overcoming an obstacle 

requires change in the knowledge structure of the learner, and it is to this 

process that we now turn. 

Conceptual Change 

Taking the constructivist view, and having recognised that knowledge 

construction takes place under certain constraints, within a domain and in a 

context, we now look in more detail at the conditions necessary for a student to 

restructure his or her knowledge system. Posner, Strike, Hewson and Gertzog 

(1982) asked the question, "Under what conditions does one central concept 

come to be replaced by another?" (p. 21 3). 

The research of Posner et al. (1982) is in the scientific domain and it 

discusses the situation where a new experience cannot be explained by the 

student's current conception. For example, if a student has an incorrect concept 

of the motion of an object, it can be directly challenged by the presentation of 
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experimental evidence. The student is then convinced that the current 

knowledge or conception is incorrect. This may well be similar to the evidence 

which can be presented to convince a student that some informal mathematical 

concepts brought into the classroom are not correct in all situations, or that a 

concept which has been generalised inappropriately should be limited to its 

original domain. 

According to Posner et al. (1982), "Central concepts are likely to be 

rejected when they have generated a class of problems which they appear to 

lack the capacity to solve. A competing view will be accepted when it appears to 

have the potential to solve these problems" (p. 213). This can be seen to happen 

within mathematics when, for example, a child who has the concept of whole 

numbers meets subtraction. At first the child's concepts and knowledge are 

adequate, but then a class of problems is encountered for which a larger number 

must be subtracted from a smaller number. A new concept of number, which 

includes the negative integers, must be accepted in order for these problems to 

be solved. The accommodation which must take place does not involve a 

rejection of the original concept, but rather an expansion of it, so that the term 

'number' now has a broader meaning. 

Under what conditions is the accommodation of a new concept likely to 

occur? Posner et al. (1982) propose a set of four conditions which are common 

to most cases of the accommodation of a scientific concept. I will return to these 

conditions in chapter 6 where they will provide the structure for my exploration of 



students' motivations to adopt new mathematical procedures and their reasons 

for resisting some of the new approaches. The conditions are as follows: 

1. There must be dissatisfaction with existing conceptions. A student must 

believe that his or her current concepts will not suffice, that there are 

anomalies which cannot be explained or problems which cannot be solved 

using the existing conceptions, and that these anomalies and 

inconsistencies must be reconciled with current beliefs. Attempts at 

assimilation into current knowledge structure must be seen to fail before 

accommodation will take place. 

2. A new conception must be intelligible. A learner must be able to grasp 

how experience can be structured by the new concept sufficiently to 

explore further. At a superficial level, the meaning of the words and 

symbols must be known, but also the learner must construct or identify a 

coherent representation of what the new concept is portraying. 

3. A new conception must appear initially plausible. The new concept must 

at least appear to have the capacity to solve the problems generated by 

previously held conceptions. It must be consistent with other knowledge 

previously constructed by the learner and with past experience. Also, the 

new conception must be compatible with one's beliefs and fundamental 

assumptions. 

4. A new concept should suggest the possibility of a fruitful research 

program. It should have the potential to be extended, to open up new 

areas of inquiry. 

It may be that this set of conditions for conceptual change accurately 

describes the conditions necessary for conceptual change in any field, or there 

may be some slight adaptations which will allow them to be applied to the 

accommodation of, for example, a mathematical concept or piece of knowledge. 
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It should be noted that the accommodation of a new concept is likely to be 

gradual, so that at any given time, some aspects will have been accommodated, 

but others may not. 

Research Questions and Objectives 

In the current study, I examine the methods used by students for solving 

particular mathematical problems, and the effect of their exposure to methods 

that are more efficient or elegant in certain circumstances. For some students 

the accommodation of a new concept may be necessary, but for others simply a 

change in procedure may be all that is required in order to adopt the new 

approaches. 

The research of Baroody & Ginsburg (1986), examining addition 

procedures used by young children, shows that a procedure will often be chosen 

if it reduces effort, but then in simpler cases the new procedure may be 

discarded in favour of an old procedure. Whether this was because the old 

procedure had related conceptual understanding, or perhaps was just ingrained, 

they were unable to say. They did state that children often use informal 

procedures that make sense in terms of their informal concepts, rather than 

adopt procedures taught in school for which they do not have an adequate 

conceptual understanding. Of course, we must bear in mind that as we judge 

what a student knows or understands, and attribute choice to the student's 

resistance to a particular approach, it may simply be a temporary inability to 
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recall the new knowledge (Asiala, Brown, Devries, Dubinsky, Mathews & 

Thomas, 1996). 

My intention in this study is to reveal some of the factors which motivate 

students to adopt new procedures and also to highlight some causes of 

resistance to change. This will be achieved by pursuing the following objectives: 

+ to determine the methods used by students before instruction 

+ to observe the influence of the instructional intervention on the choice 

of method 

+ to examine the motivations for adoption or reasons for resistance of the 

presented methods 

+ to consider the applicability of the conceptual change theory to this 

situation 

+ to develop a theory of procedural change 

The fourth and fifth objectives raise the two questions, "Does procedural 

change require the same conditions as those described for conceptual change?" 

and, "Can the four conditions provided by Posner et al. (1982) be expanded or 

modified to aid our understanding of what allows a student to adopt an 

alternative approach to solving a problem when some, perhaps inadequate but 

correct, method is already known?" 

Based on the four conditions of conceptual change proposed by Posner et 

al., my specific research questions were: 

+ What causes dissatisfaction with a method? 

+ What affects the intelligibility of a mathematical procedure? 



+ In what ways might the new method fail to be initially plausible? 

+ What is the equivalent of 'fruitful research' for a mathematical 

procedure? 

Before answering these questions, it will be helpful to consider the three 

content areas used in this study and to examine the findings of research carried 

out in those domains. In the next chapter I will also discuss literature on 

representations and visualisation, and problem solving strategies, to the extent 

that it is relevant to the findings of this study. 



CHAPTER 3 

PROCEDURES, SYMBOLS AND MEANING 

The three content areas featured in the current study are multiples and 

factors, percentages and fraction arithmetic. Each of these has been explored to 

a greater or lesser extent within the mathematics education community. 

However, there appears to have been little research concerned with the specific 

topics under consideration here: greatest common factor and least common 

multiple, compound percentage change, and addition and subtraction of mixed 

numbers. A review of the literature most relevant to this study is presented in this 

chapter. 

For each topic, certain procedures are taught to students. The meaning 

we attribute to the symbols used in algorithms has a great effect on our ability to 

understand the concepts underlying the procedures. Literature on symbolic 

representation, and the mental image evoked by these symbols, or by other 

forms of representation, is discussed and related to the current study. Finally, 

literature on the motivations to learn, and the strategies used by students when 

problem solving, is examined for its contribution to our knowledge of the choices 

made by students. 



Content Areas 

The understanding which students have of the different methods to find 

the greatest common factor (GCF) and least common multiple (LCM) has not 

been documented and little research is available on this topic. Brown, Thomas & 

Tolias (2002) examined conceptions of divisibility and observed that students 

often deal with number theoretic tasks without consciously using their knowledge 

of multiplicative structure. Students frequently choose to perform computations 

when reasoning about computations will suffice and they lack the understanding 

that the divisors of a number can be obtained directly from its prime factorisation. 

They identified three approaches to finding the LCM: 'set intersection', where 

multiples of each number are listed, 'create a multiple and divide', where 

multiples of one number are checked for divisibility by the other, and 'prime- 

factorization', where the powers of primes are compared and extracted from the 

prime factorisation of the numbers. Many students, they say, find it difficult to see 

that the prime factorisation method actually produces the LCM. They attribute 

the successful adoption of this method by students to the fact that it can be 

memorised and applied easily. Few of their students could explain why the 

procedure worked and from this they concluded that, "applying the algorithm 

correctly requires only a manipulation of surface features, not an understanding 

of its rationale" (p. 108). 

Similarly, not much is known about the understanding of percentage 

change. Jabon & Tolias (2003) observed that college students taking a 

quantitative reasoning course had difficulties with compound percentage change 
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questions, finding that even after instruction, 57% did not answer correctly. They 

called for further study of adults' understanding of percentages, suggesting that 

the use of percentages in everyday life does not correspond to what is taught in 

elementary schools. 

Many studies have been conducted in the area of fractions, although little 

of this relates specifically to the notion of mixed numbers. Much of the work 

discusses the algorithms used for calculations involving fractions and the rote 

memorisation often associated with such procedures. Mack (1990) claims that 

many students' understanding of fractions is characterised by a knowledge of 

rote procedures, rather than by the concepts underlying the procedures. Some 

feel that the concept of the 'whole' is not sufficiently promoted as an essential 

idea in understanding fractions and that teachers' visual representations of 

fractions are incomplete and unsatisfactory (Linchevski & Vinner, 1989). Lamon 

(1999) discusses the confusion created by questions which do not indicate 

clearly the intended whole, which leads students to believe that it is either 

unimportant or a matter of personal choice. She goes on to describe several 

different interpretations of the fraction notation and points out that focusing on 

the part-whole comparison leads to an inadequate understanding and lays a 

poor foundation for the rational number system and all that builds on it. Tzur 

(1999) found that the part-whole emphasis when teaching fractions caused 

children to resist the concept of improper fraction, with the total amount being 

regarded as a new whole. 
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When the concept of fraction is introduced to children, a reasonable 

amount of time is spent relating the symbols to physical representations, but 

when arithmetic involving fractions is encountered, the algorithms are often 

introduced with great haste. Carpenter (1986) found that the procedures were 

not clearly connected to the conceptual knowledge which the children had. Poor 

foundations in fractions lead to rote learning of the algorithms (Booker, 1996). 

When students meet mixed numbers and improper fractions, less attention is 

given to the development of a sound conceptual base. Booker found that the 

change from a part-whole conception of fraction to mixed numbers causes 

confusion and Rees (1 987) claims that the algorithm to change mixed numbers 

to improper fractions removes meaning and is confusing to students. She found, 

for example, that few students equate 8/3 with Z2/3. 

Woodward (1998) used the term 'fraction sense' to refer to the ability to 

understand the meaning of fractions, to reason qualitatively and to make 

judgements about the reasonableness of calculations. She commented that little 

time is spent in schools developing this fraction sense and that students who 

could succeed by memorising the algorithms were frequently unable to say 

whether their answers were reasonable. After instruction, the students 

demonstrated good progress, but the results showed that they would abandon 

what they had learned when confronted with unfamiliar situations. It was 

concluded that fraction sense must be thoroughly developed and mastered 

before algorithms are introduced. 
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Others have also found that knowledge of procedures which have been 

memorised without understanding can interfere with, or even prevent, the 

adoption of a more meaningful approach (Hiebert & Wearne, 1988; Mack, 1990). 

If students carry out computations with the symbols linked to referents which are 

meaningful to them, then this understanding may inform the selection of an 

appropriate syntactic rule. However, Hiebert and Wearne suggest that most 

students rely on syntactic rules recalled without considering the meaning. Mack 

found that students rejected answers obtained by using their informal knowledge 

of fractions, trusting in memorised procedures, even when these were faulty. 

Overcoming their reliance on these procedures required a great deal of time and 

practice in taking real world situations and modelling them symbolically. These 

findings add weight to the argument that concepts should be taught thoroughly 

before algorithms are introduced. However, for students who already know the 

procedures, especially those who have memorised them correctly, the task of 

building meaning for the procedures might be much harder. 

Representations and Visualisation 

The dangers of rote memorisation of procedures have been mentioned 

several times in the preceding section, contrasting this form of knowledge with 

conceptual understanding. According to Harel and Kaput (1991), notations can 

be substituted for conceptual entities, but these notations do not refer to any 

mental content other than the physical structure of the notation itself. The 
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inventors of the notations were looking for a way to express their own 

conceptions, but in schools we often teach the manipulation of the notations 

before the conceptions have been established. Zazkis and Campbell (1 996b) 

confirmed that many students regard the form of the notation as an integral part 

of the meaning. Different representations can draw our attention to different 

properties of a number, but many students do not take advantage of this. For 

example, in the work of Zazkis & Gadowsky (2001), students were given 

M = 3 3 ~ 5 2 ~ 7  and asked if M is divisible by 7. Several students chose to carry 

out the multiplication, determining the value of M, then divided by 7 to see if a 

whole number resulted. They seemed to consider the prime factorisation as an 

instruction rather than as a representation of a number. I have observed that 

'18% of 534', for example, is often seen as an instruction to calculate rather than 

as a representation of a quantity, and similarly, some students appear to regard 

the mixed number notation as an instruction to calculate the equivalent improper 

fraction. Zazkis & Gadowsky suggest that students do not "think before carrying 

out calculations, using sometimes extensive computation when it could be 

avoided. They described this strategy as 'not elegant' and attributed students' 

perception of number to their prior school practices, where more emphasis had 

been put on calculations than on attention to number structure. This may be the 

case for mixed number calculations, where converting to an improper fraction 

allows students to proceed with algorithms for multiplication or division as well as 

addition or subtraction. The conversion method is therefore a more general 

approach, requiring less thought before calculation commences, but the 
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calculation involved is more complex than is necessary for addition or 

subtraction, thereby falling into the category of 'not elegant'. 

The ability to capitalise on the strengths of a given representation is an 

important component of understanding mathematical ideas (Lesh, Behr & Post, 

1987), but students need to develop meaning for the symbols before this is 

possible. Goldin (1998) suggests that we should help students to construct 

powerful, internal systems of representation rather than concentrating on the 

manipulation of formal notational systems. Herscovics (1996) suggested that 

students may even develop their own interpretations for notations when 

algorithms are learned without an understanding of the underlying concepts. 

Symbols are manipulated during the application of procedures, but as 

argued above, the underlying meaning of the symbols, the concepts they 

represent, must not be lost. Hiebert (1988) proposed a theory of developing 

genuine competence with written symbols consisting of four stages: (1) connect 

symbols with referents, (2) develop symbol manipulation procedures, 

(3) elaborate and routinise the procedures, (4) build more abstract symbol 

systems using the symbols and rules as referents. He claims that many 

deficiencies of students can be explained by their not following this sequence. 

Stage 1 involves much repetition and must lead to the students being able to call 

up a mental image of the referent and reason directly about it to solve a problem 

presented symbolically. The numeric symbols must be well connected to the 

referents before the operation symbols can connect with the actions on those 

referents. Then the students can monitor their own actions on the referents and 
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detect errors and modify their procedures (stage 2). However, this mental 

recollection of the referent must be stopped for further competence to develop, 

or the cognitive load would be too great. "The power of mathematics comes, not 

from the connections of symbols with referents, but from the fact that symbols 

can be manipulated without regard to their referents" (p. 341). At stage 3, 

routinising (executing automatically, with little conscious thought) separates rules 

from referents. Problems arise here if insufficient attention has been paid to the 

first two stages so that the meaning of the symbols cannot be accessed when 

needed. Further development at stage 4 then becomes meaningless rote 

memorisation. It may be more difficult to go back to rebuild the initial processes if 

they have not been established when the symbol system is first encountered. 

Hiebert found that instruction designed specially to promote stages 1 and 2 was 

less effective with students who had already routinised symbol manipulation 

rules. After instruction most of these students returned to using their prior 

approach, even when their procedure was flawed. Moving too quickly through the 

stages, leads to the commonly held view that mathematics consists of symbols 

on a page which have rules for manipulation and has little to do with intuitive 

thought or 'real' problems. 

A definition of a concept may be learned, but it may not always be 

understood. When a word is said, a mental image is invoked which may be a 

picture or remembered experiences or even some impressions, but it is rarely a 

definition. This mental image can be called the 'concept image' (Vinner , 1991). 

One description of understanding, suggested by Vinner, is that one has formed a 
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concept image for the concept. Ideally, the concept image and the definition 

interact and both are consulted, but in reality, we usually rely on the concept 

image alone. This may be helpful, or may be misleading. For example, by 

x , x 2 0  
definition, 1x1 = { - x ,  , but often we think of it as "the number part, without 

the sign". This concept image is adequate in some situations, but often leads to 

mistakes in others. A definition may help to form a concept image, but once the 

image is formed the definition is sometimes put aside, and may even be 

forgotten. 

According to Vinner, educators often assume that a student will refer to 

the concept definition alone, or perhaps in conjunction with the concept image, 

but in reality, most refer only to the concept image. In order to encourage 

students to refer to the definition, problems for which the concept image is 

incomplete must be presented and this, in turn, will encourage the development 

of a more complete image. The fact that students rarely refer to the concept 

definition could explain why they are not troubled by some of the inconsistencies 

present in their work. 

There is much debate over what is meant by internal representations or 

imaging or visualisation and these terms are used in different ways by different 

researchers. Zimmerman & Cunningham (1991), for example, define 

visualisation as the ability to represent a mathematical concept or problem by an 

appropriate diagram and to use the diagram to achieve understanding, and as 

an aid in problem solving. Dawe (1993) speaks of imaging, in which parts of the 



problem are visualised and brought together to form a whole, in order to 

understand a mathematical task. Goldin & Kaput (1996) state that an internal 

imagistic representation is essential to understanding and that to construct these 

internal representational systems we need to be able to interpret the formal rule- 

based procedural systems through representational acts. When faced with a 

task, the first step is to understand the problem and we do this by constructing a 

problem representation. How good this representation is determines the next 

step in our thinking (Glaser, 1984). If students see a question as invoking a rote 

procedure, but do not have a deeper understanding of the situation, they will not 

pause to think about a meaningful or different way to solve the problem. 

Students discussed in Zazkis & Dubinsky (1996) showed a lack of ability 

to connect a diagram with its symbolic representation, but it was suggested that 

both visual and analytic thinking must be present and integrated in order to 

construct rich understandings of mathematical concepts. Students may be 

reluctant to visualise, or may not have been encouraged to do so, because of the 

assumptions present within the educational system that the use of visual 

strategies is connected with weak mathematical ability. However, weaker 

students exist among those who have a preference for analytic thinking as well 

as those preferring visual thinking. The difference may be that students who 

prefer analytic approaches can be more successful in school because of the 

emphasis on imitation of algorithms. At higher levels, where a deeper 

understanding is necessary, these students may no longer be able to succeed. 

According to Eisenberg & Dreyfus (1991), there is a prevalent belief that 
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mathematics is non-visual among mathematicians and teachers, and this is 

passed to students, even when a visual representation is at the base of an idea. 

Mathematicians often use visualisation in their own work, but in their teaching, it 

is relegated to an illustrative role if it is used at all. They suggest that some 

learning problems might be eradicated by stressing a visual approach to 

mathematical concepts, but also claim that visual problem solving is cognitively 

more demanding than analytic, and it is harder to teach. 

Problem Solving Strategies 

It has been observed that children do not always choose to use the most 

superior strategy they know (Siegler & Shipley, 1995). Even when taught a 

strategy which improved their performance, few continued to use the new 

strategy when given a choice. Siegler & Shipley found that if the children were 

experienced in a particular domain, their strategy choice seemed to be a 

relatively automatic, hard-to-change process. While examining the development 

of problem solving strategies in children, Kuhn and Phelps (1982) found that 

knowledge of an effective strategy was not sufficient for students to abandon 

inadequate ones. Even after more advanced strategies had been successfully 

applied by the students, much time and practice was needed before their use 

became consistent. Using new methods is often not the safest or fastest way to 

achieve a correct answer and many students believe it is safer to rely on their old 

procedures. Hatano and lnagaki (1992) list as one of the conditions for 
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comprehension activity that people must be "free from urgent external need" 

(p. 128), such as the pressures of time or being assessed on performance. 

According to Schoenfeld (1985), what you know makes little difference if 

your beliefs will not let you even consider a particular approach. This is 

supported by the work of Cramer & Lesh (1988) in which pre-service teachers 

who solved story problems using their informal knowledge did not think to use 

their informal knowledge to solve problems presented in symbolic form. In fact 

they did not represent the story problem symbolically at all, but for symbolic 

problems they used only procedural methods. Many believe that mathematics is 

to do with following established procedures and rules, and our beliefs influence 

our decisions. There is also an affective component, such as what feels familiar. 

These beliefs and feelings are involved as we decide which are acceptable 

procedures to follow (Goldin, 1998). 

The willingness to adopt new approaches also depends on what might be 

termed the personality of the learner. Nolen (1988) discusses different types of 

learner, or rather the different goals in learning they hope to achieve, which may 

cause students to choose, or persist with, a particular study strategy. These 

goals of learning relate to beliefs about causes of success in school. Different 

types of learner may use different learning strategies, which may in turn 

influence the nature of what is learned. The learning strategies described by 

Nolen could also apply to problem solving, and are presented here with slight 

modifications to fit with terminology appropriate to strategies for solving 

mathematical problems. 
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'Task oriented' students value learning for its own sake, they strive to 

understand and the more they learn, the more competent they feel. They believe 

that success depends on hard work, interest, co-operation and understanding 

rather than memorisation. These students are therefore more likely to use and 

value methods that facilitate understanding or are more elegant, even if they 

require more effort to learn. 'Ego oriented' students seek to do better than others, 

and for them learning and understanding is a means to an end. They believe 

success depends on competitiveness and impressing the teacher. They will 

change method only if they perceive that they are more likely to get the right 

answer, or if the teacher requires it. For 'work avoidance' students the amount of 

effort required is critical. They will adopt a new method only if they are convinced 

it will save them enough effort to be worth the effort involved in learning it. Nolen 

concludes that the competition for grades usually present in the education 

system may not be the best way to encourage meaningful learning and we need 

to do more to encourage students to value learning for its own sake. 

In this chapter we have examined research in the domains of the 

mathematical topics used in this study. It has been suggested that many 

students, successful in the school system, carry out algorithms with little or no 

reasoning and do not relate the procedures to the concepts underlying them. We 

have seen how the symbols themselves can contribute to this removal from 

reality, encouraging rote memorisation when their meaning has not been firmly 

established. The beliefs and personality of the student are also factors in 
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determining whether the learning is with understanding. These and other issues 

influence what students learn and what they choose to use in particular 

situations. 



CHAPTER 4 

METHOD 

The Course 

Math 190, 'Principles of Mathematics for Teachers', is a course offered at 

Simon Fraser University. Students who wish to enter the program for a teaching 

certificate in elementary education are required to take a mathematics course as 

part of their degree. The Math 190 course is recommended to these students 

and is designed to address their needs. A few students take this course who do 

not intend to be elementary teachers, but who have an interest in education 

because of, for example, involvement in private tutoring. Below I describe the 

structure of the course offering in which the study took place. There are 

variations in the specifics of the offerings, depending on the instructor, although 

these differences are minor. 

The course was conducted through two 2-hour class meetings per week, 

for 13 weeks. Homework was assigned each week and a drop-in workshop was 

available to the students, where they could meet to work in groups and obtain 

help from experienced Teaching Assistants. Assessment of the students was 

based on two 1-hour midterm examinations, a 3-hour final examination, an 
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extended investigation, and a small selection of the weekly homework problems. 

Throughout the course students were encouraged to work together, with much 

discussion and peer-teaching taking place. The use of calculators was permitted 

in every part of the course, although it is acknowledged that this reduces the 

necessity for students to choose procedures which lead to simpler calculations. 

However, because of the widespread acceptance and use of calculators in 

society, it was felt that to deny students this assistance would be unreasonable, 

creating an unrealistic environment in which to work. 

The content of the course includes arithmetic, geometry, number theory, 

an introduction to problem solving techniques, and a small amount of statistics 

and probability. The majority of the content consists of topics which are typically 

met in the elementary school curriculum, although the approach and language 

used may be more advanced than that used with children. Three of the topics 

encountered in the course were selected for attention in this study and they will 

be discussed in detail at a later stage. 

The weekly homework questions gave an opportunity for the students to 

examine, practise and discuss the material covered in class. Credit was given for 

any correct method used to solve problems and answer questions, although the 

techniques discussed in class were usually the most efficient, or the most 

explanatory, and these methods were used for the published solutions. 

Students were also required to carry out an open-ended investigation. 

There was a choice of two topics, for each of which an initial simple problem was 

given. In investigations of this type, the students must develop the topic by 
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asking, and attempting to answer, their own related questions which require the 

use of a higher level of mathematics. An emphasis is placed on clarity of 

communication and the reasoning used in solving the problems. 

The Participants 

The students taking the Math 190 course come from diverse ethnic 

backgrounds and although the majority is female, there is a significant minority of 

men each semester. There is a wide variety of ages within the group, from recent 

high school graduates to those in their forties. Consequently, many have not 

studied mathematics for several years. The pre-requisite for the course is grade 

11 mathematics with a grade C, or an equivalent, or higher, qualification. A large 

number of students taking this course express a fear of the subject, or 'math 

anxiety', and often claim that they had 'bad experiences' during their school 

years. 

To allow the homework, examinations, and observations made in class or 

during discussions to be used as data for this study, students in the Spring 2001 

course offering were given the opportunity, during two of the class sessions, to 

sign a consent form (see Appendix A). Of the 95 students enrolled in the course, 

81 gave their permission, however only 78 of these students completed all three 

of the written items used for data collection. All the students were then invited to 

participate in individual, clinical interviews. Out of the 23 volunteers, 20 were 

interviewed and 3 were not available during the times arranged for the 
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interviews. Code names have been used for all students, although the gender 

indicated by the name remains unchanged. 

Data Sources 

The data is drawn from the following sources, the details of which are 

provided below: 

+ first homework 

+ second midterm examination 

+ clinical interviews 

+ final examination 

At the beginning of the course, the students were asked to answer some 

questions on the three topics used in this study with the aim of establishing the 

methods they used before any instruction was given in the course. This took the 

form of the first homework and the students were informed that credit would be 

given to those who showed clearly the methods they used, rather than for the 

correctness of their answers. The written responses of those students who had 

signed consent forms were analysed. 

Other sources of written response used as data for analysis were the 

second midterm examination and the final examination. Instruction on the three 

topics used for this study was given after the first midterm examination, during 

weeks 4 to 8. This timing allowed the students to be familiar with the style and 

requirements of the course before meeting the methods being introduced for 

these topics. The second midterm examination was at the beginning of week 10, 
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which allowed time for the students to practise using the new methods after their 

introduction in class. There was a small amount of time during the final week of 

classes (week 13) for review of topics and this included some discussion of the 

three topics used for this study. The final examination was at the end of week 15. 

After the second midterm, but before the final examination, clinical 

interviews were conducted with 20 volunteers from the course. A list of interview 

questions is provided in Appendix E. As outlined in Zazkis and Hazzan (1999), 

the questions asked initially in the interview were 'performance' questions, that is, 

questions of a type frequently found in mathematics lessons and text books. The 

interest from the point of view of the interviewer was the students' choice of 

method for answering each question rather than their success or failure in 

achieving a solution. After they had answered the questions, students were 

asked to reflect on their choice of method. They were encouraged to discuss why 

they had used their chosen procedures for the questions asked during the 

interview itself and to compare them with those they had used in the midterm 

and with the methods presented in class. 

Throughout the course there were informal observations of students' work 

and discussions. These were made during class sessions, in the workshop 

where students were working together on the homework and investigations, and 

in my office when students came for help. Although these observations were not 

formally recorded, they contributed to my knowledge of the approaches used by 

the students, their motivations and the difficulties they experienced. 



Mathematical Content 

The three topics chosen for this study were greatest common factor and 

least common multiple, compound percentage change, and addition and 

subtraction of mixed numbers. Of the topics covered in the course, these 

appeared to be the areas where many students were familiar with a method 

which was different from that presented in class. For other topics the students 

were, in general, either reviewing familiar methods in order to gain a deeper 

understanding, or they did not know, or remember, any method to solve the 

problems. 

Greatest Common Factor and Least Common Multiple 

For this discussion we will consider the greatest common factor (GCF) or 

least common multiple (LCM) of two whole numbers, although the same 

methods can be applied for more than two numbers. The majority of students 

were familiar with the method of 'listing'. By this I mean the factors of each 

number are listed in order and then the largest common entry is selected to give 

the GCF. Some students modify this method in order to reduce the amount of 

work. They considered the factors of one number, from largest to smallest in the 

most efficient cases, and check, by division, whether each is a factor of the other 

number. Similarly, to find the LCM, the first few multiples of each number are 

listed and the first common entry is selected, the lists being extended if 

necessary. This is modified by some to checking each multiple of the larger 

number for divisibility by the smaller. 
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In the course, the method of listing was acknowledged as a useful 

introduction to the concept of GCF and LCM. It was then shown to be a very 

inefficient method to use in many situations. The students were subsequently 

taught the method of selecting appropriate powers of the prime factors from the 

prime factorisation of the numbers. A few students claimed to be familiar with 

this method. 

Examples: 

1. Find the GCF and LCM o 

By listing - 
Factors of 8 = (1, 2,4, 8) 

Factors of 12 = (1, 2, 3,4, 6, 12) 

Multiples of 8 = (8, 16,24, 32, 40, . . .) 
Multiples of 12 = (1 2, 24, 36, 48, 60, . . .) 
So GCF(8,12) = 4 and LCM(8,12) = 24 

By modified listing - 
Largest factor of 8 is 8, but 8 does not divide 12 

Next largest factor of 8 is 4, and 12 + 4 = 3 

So GCF(8,12) = 4 

First multiple of 12 is 12, but 8 does not divide 12 

Second multiple of 12 is 24, and 24 + 8 = 3 

SO LCM(8,12) = 24 

By prime factorisation - 

8 = 2 3  and 1 2 = 2 2 ~ 3  

So GCF(8,12) = 22 = 4 and LCM(8,12) = Z3 x 3 = 24 



It may be argued that the amount of work required to find the prime factorisation 

of the numbers means that there is not a significant saving of effort over that 

required for the listing methods. However, consider the following example. 

2. Find the GCF and LCM of 360 and 378. 

By listing - 
Factors of 360 = (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, lJ3, 20, 24, 30, 36, 40, 

45, 60, 72, 90, 120, 180,360) 

Factors of 378 = (1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 

378) 

Multiples of 360 = (360, 720, 1080, 1440, 1800, 21 60, 2520, 2880, 3240, 

3600, 3960, 4320, 4680, 5040, 5400, 5760, 6120, 

6480,6840,7200,7560, . . .) 
Multiples of 378= (378, 756, 11 34, 151 2, 1890, 2268, 2646, 3024, 3402, 

3780, 4158, 4536, 4914, 5292, 5670, 6048, 6426, 

6804,7182,7560, . . .) 
So GCF(360,378) = 18 and LCM(360,378) = 7560 

By modified listing - 
The large factors of 360 are not easy to spot, without considering the 

smaller factors and obtaining the larger by dividing 360 by 2, 3, etc. Using 

this method, all the factors of 360 would be found before the 18 was 

identified as the GCF. 

To find the LCM, the multiples of 378 would be listed in order, with each 

being checked for divisibility by 360. 

By prime factorisation - 

3 6 0 = 2 ~ ~ 3 ~ x 5  and 3 7 8 = 2 ~ 3 ~ x 7  

So GCF(360,378) = 2 x 32 = 18 

and LCM(360,378) = Z3 x 33 x 5 x 7 = 7560 
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Clearly, the prime factorisation method is much quicker in this situation, and both 

the GCF and LCM can be found with little effort after the work done to find the 

prime factorisations. 

Compound Percentage Change 

The method most familiar to the participants for finding a quantity after a 

percentage increase or decrease was first to calculate the actual increase or 

decrease. This amount was then added to or subtract from the original value. I 

will refer to this method as the 'two-step' method. Some students were familiar 

with multiplying the original by a single number to find an increased value (here 

termed the 'one-step' method), but few used this method for a decrease. 

When percentage increases and decreases were compounded the 

majority of students used the one-step or two-step methods to calculate the 

value after each change. The value after one change was used as the original 

amount for the next change. This is referred to as the 'repeated' one-step or two- 

step method. In class it was demonstrated how the one-step method could be 

applied to compounded percentage changes, thus allowing the complete 

calculation to be written as one string of multiplications ('compound one-step' 

method). 

Examples: 

1. Last year a house was valued at $379,000. Prices of houses of that type 

have fallen by 8%. What is the current value of the house? 

By the two-step method - 8% of 379,000 = 0.08 x 379,000 = 30,320 

new value = 379,000 - 30,320 = $348,680 



By the one-step method -92% of 379,000= 0.92 x 379,000 = $348,680 

The initial representation of an '8% decrease' as '92% remaining' is regarded as 

simple enough to be found mentally, and is therefore not counted as a 'step' in 

the method. Similarly, it is assumed that the students are familiar with writing 

percentages as decimals. 

2. A mutual fund has the following five-year history : 16% loss, 7% gain, 2% 

loss, 12% gain, 9% gain. What would be the overall percentage loss or 

gain on an investment made five years ago and cashed in today? 

By the repeated two-step method - almost all students assume an arbitrary value 

for the investment, say $1 000 : 

16% of 1,000 =0.16x 1,000 = 160 

value after one year = 1000 - 160 = $840 

7% of 840 = 0.07 x 840 = 58.8 

value after two years = 840 + 58.8 = $898.80 

2% of 898.80 = 0.02 x 898.80 = 17.976 = $1 7.98 

value after three years = 898.80 - 17.98 = $880.82 

12% of 880.82= 0.1 2 x 880.82 = 105.6984 = $1 05.70 

value after four years = 880.82 + 105.70 = $986.52 

9% of 986.52 = 0.09 x 986.52 = 88.7868 = $88.79 

value after five years = 986.52 + 88.79 = $1075.31 

change in investment value = 1075.31 - 1000 = $75.31 

overall gain = 75.3111 000 x 100 = 7.531 % 

By the repeated one-step method - again, almost all students assume an 

arbitrary value for the investment, say $1 000: 

84% of 1,000 = 0.84 x 1,000 = $840 

107% of 840 = 1.07 x 840 = $898.80 

98% of 898.80 = 0.98 x 898.80 = 880.824 = $880.82 

112% of 880.82= 1.12 x 880.82 = 986.51 84 = $986.52 



109% of 986.52 = 1.09 x 986.52 = 1075.3068 = $1 075.31 

overall change = 1 O75.3l/lOOO x 100 = 107.531 % 

overall gain = 7.531 % 

By the compound one-step method - 
new value = 0.84 x 1.07 x 0.98 x 1.12 x 1.09 x old value 

= 1.0753099392 x old value 

overall gain = 7.531% 

[The exact value of the product was noted because students obtained this 

answer when using calculators. There was then a discussion about choosing an 

appropriate number of significant figures for each stage in a calculation.] 

The compound one-step method is obviously more efficient and, for those who 

understand the relationship between decimal fractions and percentages, the 

calculation is much clearer. 

Addition and Subtraction of Mixed Numbers 

Almost exclusively, the method used by the students was to convert the 

mixed numbers to improper fractions, find a common denominator, add or 

subtract and then, in most cases, convert back to a mixed number. This method, 

which I will refer to as the 'conversion' method, was used even when one of the 

numbers was a whole. 

In class, we discussed the 'wholes-first' method in which the whole 

numbers and the fractional parts are added or subtracted separately. For 

addition, the resulting fractional part is then simplified, and converted to one 

whole and a fractional part, if appropriate. For subtraction, if the second 

fractional part is larger than the first then one whole from the resulting whole 
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number, along with the first fractional part, could be converted to an improper 

fraction and the subtraction carried out by conversion. A slightly easier method is 

to subtract the second fractional part from one of the resulting wholes and then 

add the remainder to the first fractional part. I will refer to this as the 'wholes-first- 

one' method. This method was promoted in class, but it appeared that no 

students had encountered the wholes-first-one method before the course. 

Examples: 

1. Find the value of 7 + 8 $ . 

5 7 53 42 53 - 95 - BY conversion - 7 + 8; = + a = a+: - - 6 - 15 $ 

By wholes-first - 7 + 8 $ = 15 $ 

One advantage of the wholes-first method is that calculations are carried out 

using smaller numbers, thereby reducing the likelihood of errors. Another 

advantage is that the whole number after the initial addition or subtraction is a 

reasonable estimate of the size of the final answer. The wholes-first-one method 

can also simplify the numbers involved in the calculation, with subtraction from 

one being a very easy operation and resulting in the addition of two small 

fractions. Also, the wholes-first-one method (perhaps even more than the 
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wholes-first method) is more closely related to the actions carried out in physical 

situations. 

Instruction 

Greatest Common Factor and Least Common Multiple 

Four hours of class time were spent discussing factors and multiples. The 

instruction took place in weeks 4 and 5 of the course. After a discussion of the 

definition of a factor, how to find all the factors of a number, and the definition of 

prime and composite numbers, the Fundamental Theorem of Arithmetic was 

introduced. Implications of this theorem were discussed and the students 

practised finding the prime factorisation of numbers. The meaning of the term 

'greatest common factor of two numbers' (GCF(a,b)) was introduced by listing 

the factors of the numbers. The students were then asked if they could find a 

quicker way to find the GCF. Relating the GCF, found by listing, to the prime 

factorisation of the numbers, the students were able to see that the product of 

the primes common to the factorisations gave the GCF. This was discussed 

further and illustrated as the product of elements in the intersection of the sets of 

prime factors (multiple powers being repeated entries in the sets) on a Venn 

diagram. An example is shown in Figure 4.1. This method was then shown to be 

a much more efficient method than that of listing, by giving examples where the 

numbers have many factors. 



18=2,3.3 and 30=2-3.5 so GCF (l8,30)=2.3 
Prime Factors Prime Factors 

Figure 4.1 Visual Representation of GCF(a,b) from Prime Factors of a and b 

The definition of multiple was then reviewed, and the concept of least 

common multiple (LCM) was illustrated by listing multiples of two numbers and 

finding the smallest value common to both lists. Again, the students were asked 

to find a quicker way to find the LCM. This time they found that the LCM is the 

product of elements in the union of the sets of prime factors (remembering to 

show multiple powers by repeated entries) and this was discussed further. This 

also was demonstrated to be much more efficient when the LCM is a large 

multiple of each number. 

The students went on to practise these techniques and to use them to find 

the GCF and LCM of more than two numbers. The homework questions included 

direct questions such as "Find GCF(117, 195)" and word problems such as 

"Three neighbourhood dogs barked consistently last night. Spot, Patches and 

Lady began with a simultaneous bark at l lp.m. Then Spot barked every 4 

minutes, Patches every 3 minutes and Lady every 5 minutes. Why did Mr. Jones 

suddenly awaken at midnight?" (Musser, Burger & Peterson, 2001, p. 201, 202). 



Compound Percentage Change 

After studying fractions and decimal fractions, one two-hour class session 

was spent discussing percentages in week 8 of the course. Percentages were 

introduced as a special fraction where the denominator is always 100. The 

similarity of the representations of fractions as decimals and as percentages was 

considered. After finding a percentage of a quantity using 

x % of Q = A x % x Q = A (with x % written as a decimal) 

the concept of percentage increase or decrease was introduced. Emphasised in 

the discussion was the importance of identifying which quantity is the whole, or 

100%, to which the increase or decrease is applied. 

Questions such as "Company A made a profit of lo%, and Company B 

made a 60% profit. Which company is the more successful?" were considered in 

class. The answer to this question depends on how we define success. We also 

need to know how the percentage profit has been calculated. Suppose the profit 

is given as a percentage of the costs incurred by the company and that 

Company A had costs of $10,000, whereas Company B had costs of only $500. 

Then Company A made a profit of 10% of $10,000, which is $1000, and 

Company B made a profit of 60% of $500, which is $300. 

Next, percentage change was discussed. We may know the initial size of 

a quantity and be given the increase, or decrease, as a percentage. We then 

want to know the new size of the quantity. This may arise in situations discussing 

population changes, loans and investments, and many others. In class we 

considered the new value as a percentage of the original value. For example, 



for a 15% increase, new value = 11 5% of original value= 1.1 5 x original value 

for a 7% decrease, new value = 93% of original value = 0.93 x original value 

Compound percentage change problems were approached with a 

reference to 'real life' situations. The above method of calculation was shown to 

be very efficient when several changes were involved. For example, an increase 

of 20%, followed by a decrease of 6%, then an increase of 4% and finally a 

decrease of 15% can be represented by one calculation: 

new value = 1.20 x 0.94 x 1.04 x 0.85 x original value 

= 0.9971 52 x original value 

= 99.7% of original value 

which is equivalent to an overall decrease of 0.3% 

This method also has the advantage of not requiring knowledge of the original 

value, which is needed in the two-step method in which the actual increases and 

decreases are calculated. 

The homework questions included compound problems such as "A 

bookstore had a spring sale. All items were reduced by 20%. After the sale, 

prices were marked up at 20% over the sale price. How do prices after the sale 

differ from prices before the sale?" (Musser, et al., 2001, p. 298) 

Addition and Subtraction of Mixed Numbers 

A total of three two-hour class sessions were spent discussing fractions 

and mixed numbers. The instruction took place in weeks 6 and 7 of the course. 

The essential concepts of the topic of fractions were introduced through a 

practical demonstration using two chocolate cakes. The session had a story 

theme running throughout which was based upon the story I had used when 
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teaching this topic to 11 year-olds in a secondary school in England. I hoped that 

the story and the visual aids would help the students remember the concepts we 

discussed and also it was a demonstration of a style of teaching which had 

proved successful in teaching this topic to children. 

When discussing calculations with mixed numbers I also used a visual aid 

and a story. Beginning with 12 chocolate bars, I explained to the students that 

my husband had eaten 4 of a bar on the way to work that morning, so I had only 

1 - 5 of that bar, leaving a total of 1 1  $ bars now. Each chocolate bar consisted of 

10 small pieces. "A student in the class wants 3 full bars and 7 small pieces to 

share with friends. How can this transaction be represented in the form of a 

calculation?" The students gave the expected response: 1 1  - 3 $ . I asked 

how I could carry out the calculation, and then suggested an answer to that 

question, based on the 'conversion method' commonly used by the students. My 

strategy would therefore be to open all the wrappers and break the bars into 

double pieces (to get 56 pieces of size one fifth of a bar). Then I would work out 

that 3 full bars and 7 small pieces gives 37 small pieces (of size one tenth of a 

bar) and so I needed to break up all the double pieces to get 112 small pieces. 

Then I could give 37 of these to the student and gather the remaining small 

pieces into groups of ten to put back into the wrappers and tape them up. Any 

small pieces left over I would place together in one wrapper, folding it up to keep 

them together. As I described my strategy, the students accused me of being 

ridiculous, and said that they would never do that! So I asked what they would do 
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and was told first to give away the three full bars ( 11 t - 3  = 8 $ ). Then there 

was some disagreement as to what to do next. Some suggested I give away the 

two small pieces in my part bar and open another bar and give away 5 of its 10 

1 7  12 7 5 small pieces ( 1 7 -, = , -, - - , ), whereas others said it would be easier to 

take all 7 small pieces from a full bar and then put the two part bars together 

7 3 1 3  5 (1-,=,then,+,=,). 

Summarising the calculations representing the different strategies, we 

have: by conversion - 

7 ( 1 1 ~ 5 + 1 )  ( 3 X 1 0 + 7 )  - 56 37 - 112 37 - 75 11'-3- = - - --- ---- - - - 5 I 
5 10 5 10 5 10 10 10 10 - 7, = 7 ?  

by wholes-first-one - 
1 7 1 7  1 7 3 5 1 11,-3, = 8,-, = 7,+1-, = 72+, = 7 z  = 7 7  

Since the 'wholes-first-one' method appeared to be unfamiliar to many of the 

students, we did several examples in class and found the method to be 

particularly efficient and elegant for calculations involving large numbers, for 

example: 

7322-308; 8 = 424;-$ = 423;t.l-$ = 423%++ = 423% 

rather than: 

(732X8+3)  - (308X12+11) - 5859 3707 - 17577 7414 - 10163 - 732:-308% = - --- - --- - - - 
12 8 12 24 24 24 423 2 
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In order to give further practice, the homework questions included 

questions such as "Calculate the following and express as mixed numbers in 

simp1estform.a. 11:-9: b. 7;+135 c. 11$+9: d. 135-7; "andword 

problems such as "A man measures a room for a wallpaper border and finds he 

needs lengths of 10 ft. 6: in., 14 ft. 9 a in., 6 ft. 5 in., and 3 ft. 2 1 in. 

What total length of wallpaper border does he need to purchase? (Ignore 

amount needed for matching and overlap.)" (Musser, et al., 2001, p. 230, 231) 

Pilot Study 

In the fall of 2000 1 was not teaching the Math 190 course, but I invited the 

students of that course to join a support group to which I offered my experience 

as a tutor. The students were asked to be committed to the group and to attend 

most of the weekly sessions throughout the semester. Nine students regularly 

attended. During these sessions any problems which arose from the material 

covered in class were discussed. The focus was not on the homework questions, 

but rather on their general understanding of the topics covered. Towards the end 

of the semester I requested that students allow me to interview them and an 

audio recording was made of each interview. Seven students volunteered for 

these interviews, during which I asked them to find the GCF and LCM of some 

numbers, to calculate some percentage changes in the context of real-life 

situations, and to carry out some additions and subtractions with mixed numbers. 

A full list of the questions used in these interviews can be found in Appendix B. 
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These interviews were then transcribed and studied to examine the 

methods used by the students to answer the questions, and to see whether they 

were those methods discussed in the support group sessions. Questions on the 

final examination for the course were also used to gather extra information on 

which methods the students chose to use. 

The pilot interviews were a good source of information as to which 

questions were useful in determining the students' choice of method and which 

appeared to be perhaps confusing, causing the students to search for something 

irrelevant to the purposes of this study. Using this knowledge I was able to 

develop a more appropriate set of questions for the interviews in the main study. 

The following is a description of my reflections on the questions used in the pilot 

and how they could be improved. 

In considering the questions on mixed numbers, I was concerned that by 

starting with simple fraction calculations, the students might be more inclined to 

convert the mixed numbers to improper fractions, in order to make the 

calculation of the same form as those they had just answered. There seemed to 

be few difficulties with adding and subtracting simple fractions, so I decided to 

remove these questions. Similarly, asking the students to explain the meaning of 

a mixed number, immediately before calculating with mixed numbers, could be 

an influence towards the wholes-first method, since many of the students drew 

pictures to help with the explanation. These thoughts led to a reduced number of 

questions in this section of the interview for the main study. 
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The students were familiar with basic percentage calculations, such as 

"Find 18% of 374", and my main interest was in how they responded to 

percentage increase or decrease, so I removed these introductory questions for 

the main study. In the pilot interviews I found that the students were recognising 

20% as a percentage which could be calculated mentally in a variety of ways, 

such as dividing by 10 to find 10% and then doubling that quantity. This seemed 

to distract the students from the task of finding the price after the 20% reduction. 

In the main study I avoided such 'special' percentages. 

From observations of students in class and at the workshop, those who 

were inclined to use the one-step method seemed more likely to use it for an 

increase than for a decrease. In the main study I started with a simple increase 

question, rather than the questions about sale prices, in the hope that students 

would consider this method. This was followed by a simple decrease question to 

indicate whether there really was a greater reluctance to use the one-step 

method for decreases. 

When compounding the same percentage change, the students in the 

pilot were tempted to multiply the single change by the number of changes. For 

the main study I avoided this problem by using different numerical values for the 

percentage changes to be compounded, and also interwove increases and 

decreases. The fact that two different percentage decreases had given the same 

actual decrease, in the used car question in the pilot, had been a source of 

confusion, so this was avoided in the main study. 
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The physical set-up of the interviews was found to be without major 

problems. The audio recordings were mostly clear, with little background noise. 

Some students were initially nervous, but relaxed after a few minutes, and were 

able to talk freely about their work and any difficulties they were experiencing. 

Each student had access to pen and paper, and a calculator, but was free to 

decide how much to use these. 

Main Study 

In the Spring of 2001 1 had the privilege of teaching the Math 190 course 

for the second time. During the first week of the course the students were given 

a set of questions designed to determine how each student would approach the 

topics used in the study before any instruction had taken place. This was 

presented as the first homework, and a full listing of these questions can be 

found in Appendix C. The questions were based on those used in the pilot 

interviews. Fundamental understanding of percentage was tested first and then 

compounded percentages were introduced in the form of the interest on a GIC 

and price increases and decreases for an item in a shop. An example and 

explanation of greatest common factor and least common multiple was given, 

before students were asked to find the GCF and LCM of two numbers, in order 

to remind the students of the meaning of these terms. Finally, questions asking 

students to explain what fractions and mixed numbers are, by means of 

examples, and to carry out simple fraction calculations were included in order to 



70 

establish the students' familiarity with this topic. A variety of addition and 

subtraction questions involving mixed numbers was then given. 

When discussing both the greatest common factor and least common 

multiple, and percentages topics I reviewed the methods with which most 

students were familiar (those of listing the factors or multiples, and calculating 

the increase or decrease, followed by adding or subtracting, to find the new 

quantity) before developing the methods which I was promoting in the course. 

For the discussions of mixed numbers I used chocolate bars with ten segments 

to illustrate the methods for addition and subtraction. 

After instruction in class, and after opportunities to practise the 

approaches used in the course, students were given a midterm examination 

which included questions designed to allow any reasonable approach. A full 

listing of these questions can be found in Appendix D. The students were again 

asked to add and subtract mixed numbers and to find the greatest common 

factor and least common multiple of two numbers. For the percentage questions, 

the students were asked to find a simple decrease, and were then given a 

compound question based on the gains and losses of a mutual fund over four 

years. 

The students were then invited to participate in interviews in which they 

were first given questions similar to those on the midterm examination and then 

asked to comment on their chosen approaches in the interview and in the 

midterm. Interviews with 20 students were audio taped and later transcribed. A 

more detailed discussion of the interviews follows below. 
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Once again, students were asked questions of a similar type in the final 

examination for the course, which took place after the interviews. This provided 

additional data and was also used to check for any changes in the choice of 

methods used by the students who had, by participation in the interviews, been 

encouraged to consider further the benefits of the methods discussed in class. 

Since almost all of the students had used the prime factorisation method for 

finding the greatest common factor and least common multiple in the midterm 

examination, I did not include this topic on the final. Only one mixed number 

calculation was included, which was a subtraction with the second fractional part 

larger than the first. The compound percentages question was again based on 

price increases and decreases of an item in a shop. A full listing of these 

questions can be found in Appendix F. 

The Interviews 

The interviews were conducted in a private office and the students had 

access to pencil and paper, and also a calculator. They were encouraged to 

explain what they were doing as they answered the questions, but this was not 

required. After answering all questions the students were engaged in a 

discussion about their choice of method and were asked about their knowledge 

of methods prior to the commencement of the course. They were asked if they 

could explain why they used the methods they did, why they had changed, or not 

changed, from their pre-course methods and whether they could suggest what 
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did, or would have, encouraged or enabled them to adopt the methods 

discussed in class. The students were assured that there were no right or wrong 

reasons, but that an accurate description of their thoughts would be most helpful. 

All written work produced by the students was collected at the end of the 

interview to aid the interpretation of the transcripts of their verbal work. 

The interview questions can be found in Appendix E. The questions fell 

into two distinct sections: the first dealt with the addition and subtraction of mixed 

numbers, the second with percentages. Since the majority of the students had 

used the prime decomposition method for finding the GCF and LCM in the 

midterm examination, I did not ask them to answer questions of this type. 

Instead, I asked them if prime decomposition was a method with which they were 

familiar before the course, and if not, why they had decided to use it in the 

examination. 

The first question, "Find the value of 8 :-5 I ", was a type of question 

very familiar to the students and was designed both to help them relax and also 

to show which method they would use for a straight forward calculation. 

The second question, "Find the value of 6 + 2 $ ', was chosen to explore 

whether the student would recognise the simplicity of the wholes-first method in 

this situation. 

The third question, "Find the value of 5 - 3 ", was included to discover if 

subtraction causes an approach different from addition when there is no 

fractional part in the first number from which to subtract the fractional part of the 

second number. 



The fourth question, "Find the value of 42 f - 30 f ", was chosen to both 

increase the size of the numbers and to discover how the students dealt with the 

subtracted fractional part being larger than the fractional part of the first mixed 

number. 

Finally, the fifth question, "Find the value of 324 &+ 213 1 ', was 

included to investigate the effect of large numbers on the choice of method. 

The second section began with two simple, one-stage problems using 

percentages. They were included to examine the students' understanding of both 

increases and decreases. 

1. House prices rose by 12% during 1994. If an average house cost 

$180,000 at the beginning of the year, how much would it cost at the end 

of the year? 

2. House prices fell by 8% during 1998. How much would a house costing 

$250,000 at the beginning of the year be worth at the end of the year? 

The third question was deliberately long to see if students who had used 

two-step methods for the first questions would use the one-step method when 

faced with multiple calculations: 

3. The records of the Keep Fit gym show that in 1995 there were 600 

members. The membership rose by 15% in 1996 and rose again, by 9%, 

in 1997. 1998 was a bad year and the number of members fell by 17%, 

and this was followed by another small decrease (of 4%) in 1999. 2000 

was a better year and the membership rose by 19%. How many members 

did the gym have in 2000? 
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The students seemed more confident in these interviews than the 

students participating in the pilot interviews had been. One possible explanation 

of this was the change in the first questions. Most of the pilot students had been 

confused over the meaning of the words factor and multiple, either reversing 

them, or giving the same definition for both. In the main study the first questions 

were mixed number calculations, which the students were able to do correctly 

and confidently. In both studies some students were a little nervous to begin 

with, but soon seemed to relax, and the students appeared to be happy to talk 

about their work and their thoughts. No one seemed intimidated by the tape 

recorder or the general situation of the interview. 

Throughout the interviews, an atmosphere of relaxed chatting was 

maintained in order to reduce the students' anxiety. Words of encouragement 

were given to help build their confidence. The students were also encouraged to 

talk freely about anything that occurred to them as they worked. 

As they worked on the questions, occasional prompts were given by the 

interviewer. One intention of these interventions was to correct, or direct the 

student to correct, any simple calculation errors or any mistakes due to 

misreading a question. These were errors considered to be of little significance 

to the choice of method used by the student, but potentially distracting and 

confusing. Many students in the pilot interviews simply added the percentages 

when attempting to find the compounded changes. This was not helpful in 

determining whether they would use the two-step or one-step method when they 

remembered that it was incorrect to simply add or subtract, so in the main study 
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a brief review of compound changes was explored with any students who were 

taking that path. 

The interviewer was free to rephrase the questions and to answer any 

requests for clarification as to their meaning. Since the focus of this study is to 

examine the choice of method when solving problems, it was felt necessary that 

the students understood fully what they were being asked to do. In the pilot 

interviews the students were primarily describing what they were actually doing 

when solving the problems. In the main study the students were encouraged to 

talk much more about their choice of method, why they did what they did, and 

even to describe how they felt about their work. 

In the presentation of excerpts from the interviews '. . .' is used to indicate 

that there was a pause, or that dialogue which is not relevant to the discussion 

has been omitted. Words such as um, err, OK, and repetitions of single words or 

parts of phrases, have been edited out where it was felt that they distracted from 

the clarity and ease of reading and did not add to what was being 

communicated. 

Summary 

This study uses data gathered from the work of students in the Math 190 

course, 'Principles of Mathematics for Teachers', taught at Simon Fraser 

University in the Spring 2001 semester. The results of a pilot study conducted in 
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the Fall 2000 semester served to inform the design of the research instruments 

for the main study. 

Three mathematical topics were chosen for examination in this study: 

greatest common factor and least common multiple, compound percentage 

change, and addition and subtraction of mixed numbers. For these topics almost 

all students were familiar with a procedure which would give the correct answer 

to questions, but which was not the method promoted in class. 

Written data, showing the methods used by the students, was gathered 

from questions in the first homework, the second midterm and the final 

examination. Clinical interviews were conducted with 20 students in which they 

were invited to explain their choice of method for answering the questions. This 

data is presented in the next chapter in a variety of formats. 



CHAPTER 5 

RESULTS 

Introduction 

Here I present the data collected from the first homework, the midterm 

examination, the interviews and the final examination. A full list of the questions 

used in this study and presented to the students on each of these occasions is 

given in Appendices C to F. I will give examples of the work of some individual 

students and will also summarise the number of students within the group using 

particular methods. The analysis of and commentary upon these data can be 

found in the next chapter. The privacy of the students has been protected by the 

use of code names, which do, however, maintain gender. 

Students who adopted the approach presented in class for a particular 

topic, who had previously used a different method, are referred to as 'adopters' 

(A). Those who sometimes used the new approach, but sometimes reverted to a 

method they had used before instruction, are described as 'in process'(P). Some 

students continued to use a method which was not recommended in class, but 

which they knew before the beginning of the course. These students are referred 
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to as 'resistersl(R). Students who already used the recommended approach, 

before instruction in class, are described as 'users' (U). 

First we will consider how each student responded to the instruction and 

whether he or she adopted or resisted the recommended methods. Later in this 

chapter we will look at each of the three content areas separately. 

Change by Student 

A full set of written data was collected from 78 students, 66 of whom 

adopted the prime factorisation method for finding the greatest common factor 

(GCF) and least common multiple (LCM), demonstrating a willingness and ability 

to learn new methods. In what follows I will consider how these 66 students 

responded to the methods presented in the course for the percentages and 

mixed numbers topics. 

Table 5.1 shows that only one of these students already used the 

prescribed method for both percentages and mixed numbers. Four other 

students already used the prescribed method for mixed numbers, but showed no 

evidence of adopting the prescribed method for percentages. The new method 

was resisted for both topics by 15 students. All these 20 students, indicated by 

the cross-hatching in the table, demonstrated no change in method for either 

topic. 

The 31 students represented in the right-hatched cells of Table 5.1 

showed some change in method for one of the two topics. Of these, 14 students 
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adopted, or showed progress in, the method used for percentages while resisting 

the wholes-first method for mixed numbers, but only 8 students adopted, or were 

in process of adopting, the wholes-first method while resisting the prescribed 

method for percentages. The remaining 9 students adopted, or were in process 

of adopting, the prescribed method for percentages, but already used the 

prescribed method for mixed numbers. 

The white cells in Table 5.1 show that 7 students made progress in both 

topics, adopting for one topic and being in process for the other, or being in 

process for both topics, and 8 students fully adopted the prescribed methods for 

both topics. 

Mixed Numbers 

u R I P I A  

U 'user': used prescribed method before instruction 
R 'resister': used same method before and after instruction, or, in the case 

of mixed numbers, having used the wholes-first method for most 
questions in the first homework, did not always continue to use this 
method for subsequent work 

P 'in process' 
A 'adopter' 

Table 5.1 Response of 66 Prime Factorisation Adopters to Methods for 
Percentages and Mixed Numbers 
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There were 12 students who did not fully adopt the prime factorisation 

method for the greatest common factor and least common multiple. If a student 

was familiar with, and chose to use, the prescribed methods before instruction in 

class took place, then it cannot be claimed that he or she adopted these 

methods. As can be seen from the columns of Table 5.2, seven students already 

used the prime factorisation method (U), three resisted this method (R), and two 

adopted the method for one of GCF and LCM (P). Only one student used the 

prescribed methods for all three topics before they were presented in class. 

U 'user': used prescribed method before instruction 
R 'resister': used same method before and after instruction, or, in the case 

of mixed numbers, having used the wholes-first method for most 
questions in the first homework, did not always continue to use this 
method for subsequent work 

P 'in process' 
A 'adopter' 

Table 5.2 Response of 12 Prime Factorisation Non-Adopters to Methods for 
Percentages and Mixed Numbers 
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The cross-hatching in Table 5.2 indicates the students who showed no 

evidence of changing their approach, either because they resisted the methods 

presented in class, or because they already used them. Students who showed 

some progress, or fully adopted the prescribed method for one topic, while 

resisting or already using those prescribed for the other two topics, are identified 

by right-hatching. The two remaining students (white cells) made progress in, or 

adopted two topics, while resisting or using the third. 

Four Illustrations 

Since only one student resisted for all three topics and only 7 out of 78 

students fully adopted the prescribed methods for all three topics, it is 

reasonable to conclude that it is not the case that a particular student can be 

described as an adopter or a resister in general terms. It appears that adoption 

or resistance to adoption depend in some way on the individual topic or specific 

method as well as on characteristics of the particular learner. 

To illustrate the variety of factors influencing adoption or resistance, let us 

consider four students who responded quite differently to the methods taught in 

class. 

The Story of Ray 

Ray is an example of a student who adopted some methods, but resisted 

others. As did the majority of students, Ray adopted the prime factorisation 
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method. He explained that prior to the course he felt he had no established 

method. 

Ray: It would have been kind of hit and miss. I might have broken 
down the, like try to write out all the factors and look for the 
one that was common . . . the greatest common factor. 

For the mixed numbers, Ray used improper fractions for every question in 

the first homework, but whole-heartedly adopted the wholes-first method after 

instruction, using it for every question in the midterm, interview and final. His 

explanation of his adoption of the new method contained a somewhat surprising 

comment. 

Ray: 

Interviewer: 

Ray: 

Interviewer: 

Ray: 

Ray: 

It was so obviously a simpler, clearer, more sensible, more 
meaningful way. 

So it was the impact with which it hit you, that it made more 
sense to do this. 

Yeah, it was a tremendous relief actually. 

Oh, OK (laugh). 

Yeah, well I mean when you think about it, first of all, the 
lowest common denominator thing seems like a math 
classroom trick, right? Whereas, if you get the pizzas, you 
get the chocolate bars, you get the cases of beer, whatever 
they are, it's, you know after being around for a few years 
you don't, you just never would do that . . . right? And so this 
way, for one thing, it's easier to come up with a sensible 
answer, and the other part of it is that, even if you were 
making a mistake in the real world kind of thing, you'd be 
making a smaller one, you know . . . 

Yeah and, you know, math has been a real challenge for me 
. . . I haven't understood it since I got out of grade 7. . . . And 
it just went downhill from there over the next few years. 

His description of the feeling of relief shows that Ray is seeking meaning 

and understanding in his mathematics and wants to relate it to real life. He is a 



person who is influenced by his feelings towards the subject and his adoption of 

the wholes-first method for mixed numbers satisfied his desires. However, Ray 

did not adopt the compound one-step method for percentages. In the first 

homework, he used one step for increases and two steps for decreases, and 

continued to use repeated one-step or two-step methods on all occasions. When 

asked whether he would have used the repeated one-step method before the 

course, his response was again quite surprising. 

Ray: Yeah, um, now let me think. (pause) Yeah, but I always felt I 
was cheating. 

Interviewer: Oh? So what did you feel was expected of you? 

Ray: Uh, to take, to figure out the 12% first and then add it on 
instead of doing it all in 'one swell foop' as they say. 

Interviewer: OK. So when I came along and said, "Well actually this 
question we could do by just writing 5,000 times," [referring 
to an example used in class] and put a string of numbers, 
"1.12 x 1.1 3 x 0.84 x 1.08"; how do you feel about that? And, 
actually not even writing down these answers on the way? 

Ray: And not even writing them down on the way, how would I 
feel about? Um, well it would depend on the purposes for 
which I was doing it. If I'm doing it for an exam I would like to 
show the work and the thinking. . . . If I were doing it to figure 
out something of sort of low consequence that I would never 
need to reflect on, I would probably do it that way. 

Here Ray was influenced by his beliefs about the expectations of others, 

particularly his early teachers. 

The Story of Paul 

Paul is another student who adopted some methods, but resisted others. 

He adopted the prime factorisation method for finding the greatest common 



factor and least common multiple, and the compounded one-step method for 

percentages, immediately after instruction, but used the conversion method for 

mixed numbers throughout. When asked if he could explain why he did or did not 

adopt the methods presented in the course he gave the following reply. 

Paul: Well I guess that being comfortable with these kinds of 
numbers in the first place, maybe I might be more willing to 
let go of the numbers that I've used. I guess for me fractions 
has always been a problem. . . . I mean I'm not a math 
student by any means (this is the only math course I've 
taken here at SFU), so when I see fractions, immediately I 
just say, "OK, well what have I always used?" . . . And I just, 
I use that method. But with, with these, with percentages 
and factors and multiples, I think that I feel comfortable with 
these concepts already. So in that sense, I might be more 
receptive to different ways of looking at them. . . . I guess, 
maybe I can't see fractions, or it's difficult for me to see 
fractions in ways other than what I've become accustomed 
to. . . . So for me, what I know is just what I use, . . . 
although obviously the methods that you're teaching are 
much quicker. . . . But I just don't feel comfortable looking at 
them in that way. 

Paul was claiming that only if he had a good grasp of a concept was he able to 

adopt a new method for a procedure involving that concept. 

The Story of Nicola 

Nicola was a student who adopted all three new methods and yet gave 

different reasons for her adoption of each. When asked why she adopted the 

wholes-first approach to mixed numbers she responded that the wholes-first 

approach is "easier because then you're not dealing with as big numbers . . . and 

then you have less of a chance of not being able to put it in its lowest terms." 

About using the compound one-step method for the third percentage 

question she indicated that the new method saved work. 



Nicola: This was more than one year, so there was many. To me 
this is a lot of steps, where this was just finding the 
difference and then adding or subtracting to it. 

Further, she associated the new method with a particular style of question. 

Nicola: 

Interviewer: 

Nicola: 

But now that there was more than one, you showed us this 
way and it just stayed in my head. . . . I didn't even think, I 
would have never even thought of doing it this way up here. I 
think because this is, typically, if I have to figure out a 
percentage, it's only one thing and then I'd either add or 
subtract, . . . in real life. 

And yet you straight went to this when you knew that you 
had several steps to do, so you're obviously very 
comfortable with this, you knew exactly what to do. And yet 
you still wouldn't apply it to a simpler situation. 

It didn't even cross my mind to do it that way there. . . . This 
did stick in my head from the homework and from the review 
in class, this method, with more than one thing. 

Nicola's adoption of the prime factorisation method for finding the greatest 

common factor and least common multiple was prompted by a need for speed. 

Nicola: I've never, I don't even remember seeing a factor tree 
before. I would have, um, sat there and figured out every 
single [multiple and factor]. . . . I think I knew I had to [use 
the prime factorisation method], because you said we 
wouldn't have enough time in the exam if we did it the old 
way. 

Nicola successfully adopted all three methods after instruction, using them 

in the midterm and final examinations. In the interview she also used the new 

methods, but only after a hesitant start. She talked about why she had used the 

conversion method for the first mixed number question, even though she then 

changed to the wholes-first for the next question. Partly it was a matter of 

confidence, 



Nicola: I think for the first one, I knew I could do it. And then once I 
felt like I could do it, I could then maybe try something I 
wasn't as sure of. But I knew that I would, by doing it that 
way, I would find the right answer. 

but also familiarity. 

Nicola: I haven't practised this method very much, so I think, . . . to 
do it first choice, . . . because I've only done the questions in 
the homeworks with it, where I've done the other way for. . . 
years (laugh). 

To some extent she was still in the middle of the adoption process, with the old 

and new methods competing for supremacy. 

Nicola: In the exam . . . I started doing it my way and then I got 
confused because I, your way was coming into my mind. So 
in the exam I had started doing my way and then went back 
to this other way. . . . And then I felt comfortable, because I 
double checked with the calculator, so I knew I had done it 
right. 

Nicola used the two-step method for the simple percentage questions, but then 

used the compound one-step method for the third question. Her explanation for 

this also indicated familiarity or habit as the reason. 

Nicola: Because that's, that was how I was taught and I've always 
done that. But then, in what I did at school, we would have 
only had to figure out one thing. . . . But now that there was 
more than one, you showed us this way and it just stayed in 
my head. 

The Story of Diane 

Of the 20 students interviewed, Diane was the most resistant to the 

methods taught in the course. She was one of only two students who did not use 

prime factorisation method for finding either of the greatest common factor and 

least common multiple on the midterm. She raised several issues in her 



explanation for her reluctance to change. About the mixed numbers and 

percentages she said she used her old methods "because it was an exam. I 

wanted to make sure I got it right." Diane seemed to be primarily concerned with 

certainty and familiarity. 

Interviewer: In all these three cases in the exam, you've used, 
presumably, the method that you knew before, and you 
haven't used the method that I've taught in the course. . . . 
What is it that stopped you using the method that I taught? 

Diane: Just how I feel comfortable. Like, I practised with your 
method, but when it comes to something that I have to get 
right, then I have to do what I feel comfortable. 

Interviewer: OK, even though that takes longer? 

Diane: Yeah. 

Unlike Nicola, she did not feel the need for a faster method. She was able 

to succeed in the examinations because she had a good exam technique and 

was able to carry out calculations quickly enough. 

Interviewer: 

Diane: 

Interviewer: 

Diane: 

OK, so you're kind of saying that because you've got good 
exam technique and because you can actually work quite 
quickly, you've got time to use these methods. 

Yeah, yeah. 

And you're more comfortable with these methods? 

Yeah. If I knew that I had less time, I would have done the 
factor tree, . . . just because it's quicker. But I don't feel as 
confident with it, so I'd probably have to double check myself 
again using the old method. 

Diane had two recommendations for encouraging herself to adopt the new 

methods. One was simply to practise more, to increase her comfort level: "I think 

that I needed to work way more with the factor tree to be more confident with it." 
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The other suggestion was: "Probably a quiz in class and you have to use that 

method." 

This brief examination of Ray, Paul, Nicola and Diane has shown that the 

reasons for a student adopting or resisting a new method for the solving of 

mathematical problems are numerous and varied. Although some of these 

reasons are dependent on the abilities and personalities of the learners and their 

prior knowledge, some influencing factors relate to a particular method or to the 

mathematics involved. We now turn to the three topics used in the study: 

greatest common factor and least common multiple, compound percentage 

change, and addition and subtraction of mixed numbers. 

Greatest Common Factor and Least Common Multiple 

Listing the factors and multiples of the numbers involved is a clear method 

to use to find the greatest common factor (GCF) and the least common multiple 

(LCM) of two or more numbers. Sometimes the students modified the listing 

method to reduce the amount of work. These methods were used by the majority 

of students in the first homework. However, during the course, the method of 

prime factorisation was discussed along with some of the benefits and 

drawbacks of using this method. 

Almost all of the 20 students who volunteered for interview used the listing 

or modified listing method, or even just made a guess and tested it, to find both 

the GCF and the LCM in the first homework, but adopted the prime 



decomposition method for the midterm examination. Two students used some 

form of prime factorisation in the first homework. One of these, Laura, found the 

prime factors of 42 and 154, but then chose the largest of these as the GCF, 

rather than taking the product of the common prime factors. In the midterm she 

correctly used the prime factorisation method for both the GCF and the LCM. 

In both the first homework and the midterm examination, Kevin correctly 

used the prime factorisation method for the LCM. When finding the GCF he first 

listed all the factors of the smaller number. In the first homework he also listed 

the factors of the larger number, up to the GCF, but did not indicate how he 

knew that he had reached the desired factor. In the midterm he used the 

modified listing method of testing, starting with the largest factor of the smaller 

number, until a factor of the larger number is found. Only one student, Diane, 

continued to use the listing method in the midterm examination, although she 

factored ten out of the 280 and 300 when finding the GCF, then listed the factors 

of 28 and 30. 

Summary of the Whole Group 

Data was collected from 78 members of the class. Of these, 73 used the 

prime decomposition method for finding both the GCF and the LCM in the 

midterm examination. Table 5.3 shows the methods which these students used 

in the first homework. 

From Table 5.3 we can see that only 14 of the 73 students used prime 

decomposition before instruction, with only 7 of these using it for both GCF and 

LCM . Clearly the majority of students adopted the method presented in class. 



Method for LCM 

X had an incorrect understanding of the question 
G appeared to simply guess until an answer was found 
L used the listing method 
M used the modified listing method 
P found the prime decomposition of the numbers 

Table 5.3 First Homework Methods for GCFJLCM of 73 Students Using Prime 
Factorisation in Midterm 

Only 5 of the 78 students did not use the prime factorisation method for 

both the GCF and the LCM in the midterm examination. Two of these students 

used the prime factorisation method for finding the GCF in the midterm, but 

continued with their previous method for finding the LCM (one guessed, one 

listed). Kevin, mentioned above, used the prime factorisation method for the 

LCM, but continued to list factors to find the GCF. One student, who had simply 

guessed for the first homework, used the method of listing in the midterm, and 

Diane, also mentioned above, used the listing method throughout. 



Percentages 

The method most commonly used by students before the course began, 

for finding an amount after a percentage increase or decrease, was to find the 

actual increase or decrease and add this to, or subtract this from, the original 

amount. This is referred to as the two-step method. In class, the method of 

calculating the new amount in one step was discussed. It was shown how this 

could be used to simplify the calculation for situations where several percentage 

changes occurred consecutively. This method is referred to as the compound 

one-step method. If a student used either the one-step or the two-step method 

for each percentage change within the compounded problems, the term 

'repeated' was used to describe the method. 

Paul - An Adopter 

The majority of students used the repeated two-step method for the 

percentage questions in the first homework. Paul was one such student. He 

showed each step in each calculation. However, in the midterm examination, 

after this topic was covered in class, he used the one-step method for the simple 

percentage decrease, and the compound one-step method for the question 

involving a mixture of compounded increases and decreases. His work was very 

clear and direct, indicating no hesitation to use this method. 

During the interview, he temporarily reverted to the two-step method for 

the first simple increase: "I would want to figure out 12% of this, this cost here, 



and then add it to the original cost." However, in the very next question he 

realised that he could apply the one-step method. 

Paul: OK, for this one (I guess you could use the same method for 
this [the previous question] as well) um, take this figure here, 
multiply it by .92 because you're losing 8% of that price. . . . 
So multiplying that by .92 would save you the trouble of 
having to add it to that cost there. 

For the compounded question he immediately described the compound 

one-step method. Paul confirmed that the one-step method was not something 

that he had met before this course. In the final examination, Paul once more 

demonstrated a clear use of the compound one-step method. 

Ray - In Process 

Some students demonstrated that they had adopted part of the method 

taught in class, but had not adopted the full compound one-step method. For 

example, Ray used the repeated one-step method for question 2 of the first 

homework, where the compounded increase was the same each year, but used 

the two-step method for the decrease and one of the increases in question 3, 

when the percentages varied. By the midterm examination, Ray was using the 

one-step method for decreases, as well as increases, and used the repeated 

one-step method for compounding different percentage changes. 

During the interview Ray used the one-step method for both the increase 

and decrease questions, as is shown in the following excerpt. 

Ray: How much would a house cost? (pause) OK, alright, so if 
they fell by 8%, then it was worth 100% minus the 8%, so it 
would be worth 92%. . . . So 250,000 x 0.92 = $230,000. 



However, when it came to the compound changes in the third question, he was a 

little confused. 

Ray: 15% increase in '96, 9% in '97, so two years of increase was 
24% increase, and there were 600 members. . . . So I'm 
multiplying by 1.24, and so at the end of that year there were 
744 members. Now '98 was a bad year, so we're going 
down. It fell by 17%, followed by another small decrease of 
4%. So because they're consecutive years, I can add those 
two together, I believe. So if it went down 21%, it was then 
79% of what it was. So that times .79. 

As I paused to consider what to say about his method of adding or subtracting 

the percentages for compounding, Ray reflected on his work: 

Ray: Now I might just review that, having gone through it. . . . Now 
I wonder, actually now I have to think about this a bit. OK, it 
went up 15% in '96. No, you know I should have separated 
them, (pause) because I should be multiplying the product of 
these two numbers, of the 15% by the 9% 1 think. I don't 
think I can add, no I'm not sure. If I were doing this on an 
exam, or if I wanted to feel that I was accurate, I would try it 
using the separate numbers, and then add the two of them 
together, and see if I got the same answer. 

Ray proceeded to check his work by using the repeated one-step method. 

Ray: 690 are the number of people that there were in, uh, working 
in the Keep Fit Gym by the end of 1996, because the 
number of members had risen by 15%. And I now want to 
find out what it will be at the end of 1997, when it's gone up 
an additional 9%. So I would want to multiply this by 1.09. 
(pause) Yeah, that makes more sense, 752.10 which is quite 
different from this. . . . And I don't know if I'm seeing this 
very clearly or not, but I want to separate them, because if I 
add the two together, I'm kind of short-changing myself the 
opportunity to multiply the higher number by a certain 
amount of the percentage. 

He then attempted the question again. 

Ray: All right, well I will now keep them all as separate years. 
Yeah OK, that's what I will do. So 699 in '95 (1 think I'll forget 
the years, just call it one) times 1.15, whoops, 690. The 



second year it went up by an additional 9%: 752.1 (1 think I'll 
just leave that number in there, um, the decimal point that 
is). The bad year it went down by 17%. 17%, so 83 - that 
doesn't sound familiar, (pause). OK, (laugh) this half partial 
person is becoming stranger (pause). So that's the third 
year, the fourth year it fell another 4% (pause). This is really 
weird, (pause). 

Ray was having difficulty knowing what to multiply by for a decrease of 4%. 1 

asked him if he could explain why he found that a problem. 

Ray: What's left after I take away the 4%, how many parts out of 
the 100 are left? . . . It's hard to describe, it's like a blur in 
my head . . . because I was trying to do two things at once. . 
. and one was shift from having I'point'. Like this, this to me 
is fairly easy to take, to subtract, what I believe was 
correctly. 17% would leave me with 83% . . . and what I'm 
doing mentally is just subtracting that from that. . . . For 
some reason, going to taking four parts away on that side of 
the decimal it's, I don't know, it's just not as clear to me. 

So Ray was attempting to adopt the methods used in class, but had not 

yet achieved the proficiency required to use them with confidence. Clearly he did 

not have a good conceptual understanding, and this contributed to his inability to 

fully adopt the one-step method. In the final examination he repeated his mistake 

of adding and subtracting the percentages for compounding. He then also 

considered an 'imaginary coat' costing $100. For this coat he calculated 

(correctly) the price after each change and found the amount saved by a 

customer, and correctly expressed that as a percentage. Faced with two different 

answers to the question, he was unsure what to do and wrote the comment, 

"Sorry to say - still not clear on this!" 



Hazel - A Resister 

Only a few students continued to use the repeated two-step method for 

the compound percentage questions after instruction in the one-step method. 

One such student was Hazel, in fact she was the only student of the 20 

interviewed who persisted with this method through to the final examination. 

In her first homework Hazel found the value of the investment after four 

years (question 2) by showing the amount of interest gained each year and then 

used the new value of the investment for the calculation of the interest for the 

following year. Also, for the price of the jacket in the third question, she found 

each increase or decrease and then the new price after each change. Similarly, 

in the midterm, she showed the amount of each gain or loss for the investment 

and then the value at the end of each year. 

Hazel continued to use this method in the interview, for example, when 

finding the value of a house after prices had fallen by 8%, she found 8% of the 

price then subtracted it from the original price. As she began question 3, she 

described her thinking about a compound change which consisted of an original 

amount of 600 increasing twice, decreasing by 17% and 4% and then increasing 

again. 

Hazel: Well I'd probably figure them out all individually, but I know 
that you taught us how to do the [inaudible comment]. So 
what do we start with? 600 (pause), this is right. This right 
here, is it 1.7? 1 have to do it individually. 

Hazel clearly knew that a different method had been presented during the 

course, but had chosen to continue to use the repeated two-step method. 
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In the final examination Hazel once more used the repeated two-step 

method after assuming a price of $100 to enable her to calculate the actual 

increases and decreases. She correctly interpreted her final answer to give the 

percentage saved by the customer. 

Summary 

The vast majority (17 out of 20) of the interviewees used the two-step and 

repeated two-step methods in the first homework, although six students 

incorrectly calculated simple interest for question 2b. One student used the 

standard compound interest formula A = A , ( ~ + x ) '  for question 2, but used the 

repeated two-step method for question 3. Only one student added and 

subtracted the percentages for compounding. Nine of these 17 students fully 

adopted the compound one-step method after instruction and used this method 

in the midterm examination, the interview and the final. Of the other eight, five 

progressed to using the compound one-step method at least by the final 

examination, one attempted this method for the midterm and interview, but 

reverted to the repeated one-step method for the final, and one used the one- 

step method for increases, but continued to use the two-step method for 

decreases. Only one student used the repeated two-step method throughout the 

course. 

Three students used the one-step method at some point in the first 

homework and I would like to consider each of these separately. Ray, as 

described above, initially used the one-step method for increases, but the two- 
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step method for decreases. After instruction he used the repeated one-step 

method for both types of change, but did not progress to the compound one-step 

method. Laura certainly used the one-step method in the first homework, but did 

not clearly show her method for all calculations, making it impossible to know 

whether she used the one-step or two-step method for decreases. In the 

midterm she carried out the simple decrease in two steps, but used the repeated 

one-step method for compounding (including the decrease). However, during the 

interview she reverted to two steps for all decreases. In the final examination she 

compounded by adding and subtracting the percentages! In the first homework, 

Cathy used the two-step methods for all changes, except one of the increases, 

and in the midterm she used only the two-step methods. In the interview, Cathy 

used the two-step methods for decreases, but the one-step method for all 

increases. By the final examination, Cathy was able to use the compound one- 

step method, although some work had been erased indicating that she had used 

a different method first. 

I consider there to be a progression in the sophistication of the methods 

used by the students, with the repeated two-step method (R2) being the most 

basic. Some students are able to calculate increased amounts in a single step, 

but have difficulty seeing the equivalent factor for decreases (li2d). The next 

development is to calculate decreases, as well as increases, in one step, which 

leads to the use of the repeated one-step method (R1). It is interesting to note 

that no one used one step for decreases while using two steps for increases, 

which supports my ordering. Use of the compound one-step method (C1) 
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requires the ability to express increases and decreases as single factors and so I 

regard this as the highest level of sophistication. 

A summary for the whole class is given in Table 5.4, where the lay-out 

reflects the progression in sophistication. The 'method before instruction' is taken 

to be the method used in the first homework. For the 'method after instruction', 

the most advanced method demonstrated by the student in either examination is 

taken. An incorrect method of compounding (e.g. adding and subtracting the 

percentages) is denoted by 'X'. 

Method after instruction 

X 1 R2 I l i2d 1 R1 I C1 

X incorrect understanding of compounding 
R2 used repeated two-step method 
1 i2d used one-step for increases and two-step for decreases 
R1 used repeated one-step method 
C1 used compound one-step method 

Table5.4 Methods Used Before and After Instruction for Compound 
Percentage Change 

The cells on the diagonal of Table 5.4 (right-hatching) indicate that 29 of 

the 78 students continued to use their original method. The cells below the 
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diagonal (cross-hatching) show that five students actually used a less efficient 

method in the examinations than in the first homework. Of the remaining 44 

students, appearing above the diagonal, 13 made some progress in the 

sophistication of their chosen method (left-hatching) and 31 adopted the 

compound one-step method (white cells). 

Mixed Numbers 

In class, the wholes-first method, in which the calculation is simplified by 

dealing with the whole numbers before the fractional parts, was discussed and 

students were encouraged to use this method when adding or subtracting mixed 

numbers. Several students were familiar with this method before instruction took 

place, but the majority chose to change the mixed numbers to improper fractions 

before adding or subtracting (the conversion method). The wholes-first-one 

method (see chapter 4) was also presented in class as an alternative approach 

to subtraction. 

Ray - An Adopter 

Ray was a student who used the conversion method before instruction, 

but chose to use the wholes-first method for the midterm examination. At the 

beginning of the course, he described the meaning of a mixed number by 

referring to the whole and fractional parts. Ray's explanation continued with, "It 

can alternatively be written as an improper fraction." He used the conversion 

method for each mixed number calculation in the first homework. By the time of 



the midterm he had adopted the wholes-first approach and answered every 

question using this method. However, he did not go so far as to use the wholes- 

first-one method for the subtraction questions. 

During the interview Ray used the wholes-first method with confidence, 

making the following remarks. 

Ray: I would separate them. I never would have done it this way 
before. . . . I would have taken all the chocolate bars and 
broken them up into 1 Oths (laughter) then handed them out. . 
. . I would have found the denominator. . . and turned them 
all into . . . improper fractions. 

Jill - In Process 

Many of the students were not as confident as Ray about using the new 

method. They saw benefits in the wholes-first approach, but often reverted to 

their previous conversion method. Jill is one such student. At the beginning of 

the course, her description of the meaning of a mixed number included the 

explanation that a whole number is a fraction in which the numerator and 

denominator are the same, and she showed how to convert the mixed number to 

an improper fraction. She used the conversion method for each mixed number 

calculation in the first homework. 

After instruction in class, she chose to use the wholes-first method in the 

midterm examination, however, for the two questions which involved a whole 

number without a fractional part, she changed one whole into a fraction before 

proceeding. Her solution for the addition was: 



It is interesting to note that in both these questions, the denominator she chose 

for the whole was the original number of wholes, and not the denominator of the 

fractional part of the other number. This may indicate a confusion in her 

understanding of the part-whole concept of fractions, or may relate to an attempt 

to apply the algorithm to convert mixed numbers to improper fractions. 

During the interview Jill confirmed that her adoption of the wholes-first 

method was only partially complete. For the first mixed number question in the 

interview she immediately used the conversion method, but added a comment. 

Jill: I know this isn't how you taught it, and now I'm remembering 
how you taught it, (pause). Yeah, like I said, this isn't how 
you taught it, but (pause) I'll do the next one like how you 
taught it, or the next next next one. 

On consideration of the other questions, Jill decided that she would use the 

wholes-first method for questions 4 and 5, which involved large numbers, but 

admitted that she still was not confident with this method. When challenged with 

the second question ( 6+2f ) she responded: 

Jill: I think I would still use my old method. . . . 'GI7 (pause), it's 
just, um (pause). Wouldn't it just be 8217? . . . (laugh) Yeah 
OK, I don't know why that one fumbles me. . . . But now that 
I think about it, yes it's 6 wholes, and then there's . . . 2 
wholes, and it's just a fraction added on. 

Her explanation of her use of the wholes-first method in the midterm was: 

Jill: I knew for your test that that's how we were taught, it was 
still relatively fresh, and it made sense, and I knew that 
that's how you wanted us to do it. 



Paul - A Resister 

Some students who used only the conversion method for the questions on 

the first homework continued to use only that method. Paul gave a good 

description of the meaning of a mixed number, with no reference to improper 

fractions: "A mixed number consists of a whole number in addition to a fraction. If 

we have 3 whole pies, and two pieces of a pie that had been divided into 7 equal 

slices, then we would have 3% of pie." He used the conversion method for all the 

first homework questions, however three out of six answers were wrong because 

of mistakes in converting the improper fractions back to mixed numbers. 

In the midterm examination Paul again used the conversion method for all 

questions, but this time he was accurate in all his calculations. In the interview he 

did not hesitate to use the conversion method, although, as in the first 

homework, he made a mistake: 

2 2X7+2 6 16 7 16 2 6+2i = ++- 7 = = i f T  = q = 3i 

When asked about his choice not to use the method discussed in class he made 

the following comments: 

Paul: Well fractions is always something that I've had problems 
with. . . . I guess maybe I can't see fractions or it's difficult 
for me to see fractions in ways other than what I've become 
accustomed to. . . . So for me, what I know is just what I use. 

Summary 

Of the 20 students who volunteered for interview, 11 used only the 

conversion method in their first homework. Five of these used the wholes-first 

method for the midterm examination and can therefore be regarded as being 
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willing to change their method. This may not be a complete change, as was 

shown in Jill's interview above, however, these students have demonstrated the 

ability to use the new method when they choose. Three students did not use the 

wholes-first method at any stage (midterm, interview or final), but continued to 

use the conversion method which they knew prior to the course. The remaining 

three students showed a gradual change as the course progressed, increasingly 

using the wholes-first method. 

Of the nine students who were obviously familiar with the wholes-first 

method before the instruction during the course, three chose to use 

predominantly the conversion method for the examinations (midterm and final) 

although they used the wholes-first method in the first homework and the 

interview. Five students used the wholes-first method for almost all questions at 

all times, but one used this method for only some of the questions on each 

occasion. 

Data from 78 students was collected, showing the methods which they 

used in the first homework, the midterm examination and the final examination. 

Tables 5.5 to 5.7 display this information. For the first homework there were six 

mixed number calculations. In the category 'Mostly Wholes-First' shown in Table 

5.5, in which only one or two questions were answered using the conversion 

method, 13 out of the 15 students used the conversion method for the second 

question ( 6-2:). Students who answered only the first ( 4+7+) ,  or first and 

second questions, by the wholes-first method ('Mostly Conversion') have been 

considered separately from those who answered two or three of the other 
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questions by that method ('Mostly Wholes-First'), since these questions involve a 

whole without a fractional part. 

I Method Used in First Homework I Number of Students 

Conversion Only 
(All 6 questions) 

Mostly Conversion 
(First or first two only by Wholes-First) 

W holes-First 
(All 6 questions) 

5 

Some by Wholes-First 
(2 or 3 from remaining four) 

Mostly W holes-First 
(4 or 5 questions) 

Table 5.5 Method Used in First Homework for Mixed Number Calculations 

4 

15 

Method Used in Midterm I Number of Students 

Conversion Only 
(All 5 questions) 

Mostly Conversion 
(3 or 4 questions) 

Mostly W holes-First 
(3 or 4 questions) 

Table5.6 Method Used in Midterm Examination for Mixed Number 
Calculations 

13 

11 

W holes-First 
(All 5 questions) 

A summary of the methods used in the midterm examination are shown in 

23 

Table 5.6. Of the 13 students in the 'Mostly Conversion' category, 9 used the 
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wholes-first approach for question (ii) 8+3f .  In the 'Mostly Wholes-First1 

category, all students used the wholes-first method for question (v) 57++211+ , 

the conversion method being used for one or two of the other questions. 

In the final examination the students were asked to, "Find the value of 

3 f  - 1 and draw a diagram to illustrate the calculation". The method used was 

taken to be that of any written calculation, regardless of what any diagrams 

showed. If a student demonstrated both methods of calculation, he or she was 

counted as 'wholes-first', since an ability and willingness to use that method had 

been demonstrated. Some students subtracted the ' I , ,  but then faced with 

21-1 
4 8 they resorted to the conversion method. 

Method Used in Final I Number of Students 

Conversion Only 

Subtract the whole, then conversion 

36 

4 

I Diagram only (all divided into 8'") 

Table 5.7 Method Used in Final Examination for Mixed Number Calculations 

8 

Diagram only (indicating wholes-first) 

As is shown in Table 5.7, 13 students showed diagrams without a clearly 

written calculation, and of these, 5 clearly described the wholes-first approach. 

5 



For the other 8 it was not possible to determine their approach, but each of these 

students showed all the wholes divided into eight parts. 

Table 5.8 shows how the method used by the students changed from 

before to after instruction. Some students (indicated by cross-hatching) actually 

decreased their usage of the wholes-first method. The right-hatching indicates 

students who exhibited no significant change and the left-hatched cells show 

those who increased their usage of the wholes-first method only slightly. There 

are 74 students represented in this table, but only 14 significantly increased their 

usage of the wholes-first method (white cells). 

Method after instruction 

CO 1 MC 1 MW 1 WO 

CO conversion method only 
MC mostly conversion method 
SW some by wholes-first method 
MW mostly wholes-first method 
WO wholes-first method only 

Table 5.8 Methods Used by 74 Students Before and After Instruction for 
Mixed Number Calculations 



The summary given in Table 5.8 does not include 4 of the 78 students. 

These students did not fit the common pattern of change and are worth 

considering individually. 

+ One student used the conversion method for all but one question in the 

first homework, midterm and final, but in the interview used the wholes- 

first approach to all questions. 

+ One student used the conversion method for all questions in the first 

homework, the wholes-first method for all the midterm questions, but 

then the conversion method for the final examination. 

+ One student who used the wholes-first method for the first homework 

and midterm examination used the conversion method for the final 

examination. 

+ One student used the wholes-first method for all the first homework 

questions, then the conversion method for all the midterm examination 

questions, but returned to using the wholes-first method for the final. 

It was not simple to categorise students as users, resisters, in process 

and adopters for the mixed numbers topic. Most students had some knowledge 

of the wholes-first method before instruction in the course, but few were 

consistent in their choice of method. To be considered a 'user' the student must 

have used the wholes-first method for all questions, or all but one of questions 3 

to 6, of the first homework. Those who were not considered to be 'users' and 

who used the wholes-first method for all questions, or all but one of questions 3 

to 5 of the midterm, were considered to be 'adopters'. Those who decreased, or 

did not increase, their usage of the wholes-first method were considered to be 

'resisters', as were those whose only usage of the wholes-first method was for 
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one of questions 1 and 2 in the midterm. The remaining students showed some 

significant increase in their usage of the wholes-first method and were deemed 

to be 'in process'. 

Where The Results Lead 

We have seen that students are not by nature adopters or resisters, and 

that a particular method will not be adopted or resisted by all students. In the 

next chapter I will present more of the wide variety of factors which the students 

indicated influenced their ability or desire to adopt the methods presented in the 

course. These factors have been grouped into reasons to adopt and reasons to 

resist using the prescribed methods. By considering all the influences, I hope to 

expand the theory of Posner, Strike, Hewson and Gertzog (1982), which refers to 

the accommodation of a scientific concept, to include procedural change in 

mathematics. 

The theory was originally applied to situations where the students can be 

shown that their current concept cannot explain a new experience or some new 

data. Here, the students know that all methods, if applied correctly, will solve the 

problem correctly. The question, "Under what conditions is the accommodation 

of a new concept likely to occur?", attended to in the conceptual change theory 

of Posner et al., can now be modified to ask, "Under what conditions is the 

adoption of a method or procedure likely to occur?". 



CHAPTER 6 

ANALYSIS 

Introduction 

The results in the previous chapter support my initial observation that 

frequently students do not adopt the methods presented to them if they already 

know a method which will give a correct answer. This prior knowledge of a 

method which can be successfully applied in a given situation was an obstacle to 

their adoption of a new method which would be better in some way, and in some 

situations, than the method they currently use. What is it that motivates students 

to overcome this obstacle? Clearly their satisfaction with their prior method was 

different for the different content areas. 

The conceptual change theory presented by Posner, Strike, Hewson and 

Gertzog (1982), and discussed in detail earlier, responds to the question, "Under 

what conditions is the accommodation of a new concept likely to occur?", by 

providing a set of four conditions which they found common to most cases. Their 

theory was developed from research carried out in the scientific domain and 

related to situations where a new experience cannot be explained by the 

student's current conception. The student is presented with experimental 



evidence showing the inadequacy of his or her present knowledge and this must 

be resolved in some way. The student may not always achieve the goal of 

accommodation of the new concept, but may simply store the new concept as a 

separate piece of knowledge. The new knowledge may be retrieved in 

appropriate situations, but the prior concept may continue to be recalled and 

used inappropriately. Frequently the two concepts can exist side by side without 

the student being aware of a conflict. 

This theory, I believe, can be applied to the learning of mathematical 

concepts, as students develop from initial understandings to more complex 

situations. For example, many students believe, from early experience, that 

division always leads to a quotient smaller than the dividend (Tirosh & Graeber, 

1989). Later, when division by fractions is encountered, this belief is challenged. 

Evidence is presented which shows that the student's current conception is 

inadequate and the student may respond by expanding his or her concept of 

division, or may learn the outcome of division by fractions and store this as a 

separate piece of knowledge. In the future, either concept may be recalled and 

applied appropriately, or sometimes inappropriately. 

In this study we consider a different scenario: the students have learnt a 

valid procedure, appropriate perhaps to their mathematical knowledge at the 

time, or useful in the development of understanding of a particular concept. At a 

later date, the students are presented with a different procedure which is in some 

way better than the original in at least some circumstances. The students are not 

asked to reject their prior methods, but rather to add to their repertoire these new 
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methods which they can then call upon when appropriate. For some this may 

involve a change in their conceptions or beliefs, but for others, it is simply a case 

of accepting that the new method is worth learning. The theory of conceptual 

change can be applied to this situation; the same four conditions hold true. What 

must change is our interpretation of, for example, causes of dissatisfaction, or 

'fruitfulness'. It may be true that each problem presented to the students can be 

solved using their current method, but at the same time their procedure 'will not 

suffice' in some way. While examining the interview transcriptions I focused on 

the following issues raised by the conceptual change theory of Posner et al.: 

+ What causes dissatisfaction with a method? 

+ What affects the intelligibility of a mathematical procedure? 

+ In what ways might the new method fail to be initially plausible? 

+ What is the equivalent of 'fruitful research' for a mathematical 

procedure? 

Applying the Conceptual Change Theory 

Many reasons were suggested by the students in this study for their 

adoption of, or resistance to, the methods and procedures presented in class. By 

considering these reasons, grouped under the four conditions given by Posner, 

Strike, Hewson and Gertzog (1982), 1 will show how this theory can be expanded 

to help our understanding of the students' choice of methods. Ultimately it is 

hoped that this understanding could help in the development of teaching 
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strategies to encourage students to adopt new methods. The examples given to 

illustrate each motivation are taken from the interviews during which students 

were encouraged to examine why they adopted or resisted a particular method 

and also to discuss differences in response to different topics. The abbreviations 

GCFJLCM, %C and M# will be used to indicate when a student was referring to 

greatest common factor or least common multiple, percentage change and 

mixed numbers respectively. 

There Must Be Dissatisfaction With the Existing Method 

The first condition given in the theory of conceptual change is that there 

must be dissatisfaction with what the student currently uses. We will examine 

what it was that students felt encouraged them to adopt the new procedures. 

The following factors were raised by students in the interviews. 

9 The new method is easier or requires less effort - the prior method 'fails in 

complexity of execution'. 

GCFJLCM: 

OhC: 

M#: 

Priscilla: Because it's easier and it takes less time, I think. 

Laura: Because I hate writing that much stuff out. [Referring to 
listing] 

Kevin: . . . because this seems like such a shorthand method, I 
really found this really efficient, and so I was like, oh that's 
awesome. 

Sue: Um, well because you've showed me an easier way, it's much 
faster and it's easier. You can't, it's not as many steps. 

Cathy: (laugh) Because it was so revolutionary to me, it was like 
wow! . . . This is so much easier than trying to make them the top- 
heavy fractions. 

Elise: It kind of lets you skip out all the stuff from the middle. 



P The new method is faster - the dissatisfaction comes from the amount of 

time needed. 

GCFILCM: Tanya: Because actually what I was used to, I didn't really like 
doing that either, because it took a long time, . . . so I didn't really 
like that method. 

Sue: Well I think also, like this was, when I looked at these lowest 
common multiple, the factor trees, and that was just, that was that 
wow!, you know, it saves you so much time, it's so much easier, 
that's so great. This [wholes-first], the steps, I mean you save a 
little bit of time, but not enough time to be so significant that that's 
all you want to do is that. 

Nicola: I think I knew I had to, because you said we wouldn't have 
enough time in the exam if we did it the old way. 

%C: Mandy: Because it's faster. 

Sue: Um, well because you've showed me an easier way, it's much 
faster and it's easier, . . . it's not as many steps. 

M#: Jill: And I mean this is a lot faster than making that into a 
fraction . . . then finding the common denominator for it and adding 
it or subtracting whatever it is out. And then reducing it even more. 

> The new method is less error prone - the dissatisfaction comes from the lack 

of reliability of their method. 

GCFILCM: Tanya: I think, well definitely greatest common factor one, I always 
hated doing those. Because sometimes even after you, like so 
much work, sometimes if you, I don't know, if you have a mental 
lapse or something and you're not, and you miss a multiple or 
something, then you get, your answer is completely wrong, and I 
hated it. . . . Because it took so long, and even if you took a long 
time doing it, but this is, this way it was more reliable. 

Fran: It gets to the right number every time. 

%C: Isabel: However, in doing it in a hurry, it's like writing an exam, you 
want to get it right the first time. 

M#: Elise: Well this is a lot simpler in a lot of ways, because you don't 
end up dealing with bigger numbers. Like it seems like there's less 
margin for error. 



P They did not previously have what they would describe as a method (it seems 

they did not consider the method of listing to be a genuine method). 

GCFILCM: Ray: It would have been kind of hit and miss, I might have broken 
down the, like try to write out all the factors and look for the one 
that was common, . . . the greatest common factor. 

Mandy: I didn't know an efficient method for finding greatest 
common factor, least common multiple before any ways. 

Olga: I can't remember, I had to relearn the greatest. I knew, when 
we talked about it, I knew what they were, and I knew that I should 
know it, I knew that I had done it, but I couldn't remember how. 

%C: Mandy: I don't know if I even really learned percents. If I did, it was 
a small lesson. I think I just know it from like working and, I don't 
know, . . . it's easier to give up on this method and take a new one. 

P They were dissatisfied with the conversion method for mixed numbers 

because they had simply memorised it, without any understanding. 

M#: Elise: Oh yeah, well I think, well at least in my experience when I 
was in elementary school . . . I was never really encouraged to look 
at things that way very much at all. . . . It would be like, OK a fourth 
is . . . this thing here, but we'd never really be shown how to relate 
that to doing addition, subtraction. . . . Like especially not with 
mixed numbers, but I don't think even really with simpler fractions. . 
. . It was really just like, OK this is what you're supposed to do, and 
do it. . . . That's why I really like this class, because it's so much 
stuff that I feel like, OK I basically know, but to really understand 
why it works is something that you don't really get taught in school. 

Olga: I think that I didn't really get what I was doing with them. . . . 
They just seemed like a whole bunch of unruly numbers that were 
all over the place, and just learning a bunch of rules for adding 
them and subtracting them and multiplying them and things like 
that. 

Priscilla: I think because we've constantly just had numbers given 
to us and we just had to do it. So I think it was the process, how do 
you find the answer, the fastest, instead of just thinking it, I don't 
think of it as being pieces of anything. . . . And it seems weird to 
take this class and think about what it actually means. . . . I was 
really, really good in math . . . all through school. And I don't know 
if it was because I could memorise formulas or something. . . . But 



I've never really been taught that this is why you're doing 
something - 'here's a formula and do it1. 

> The presence of large numbers in the mixed number questions encouraged 

them to use the wholes-first method. 

M#: Isabel: Well as I got down the page here, and I noticed these 
numbers were too big to do that, like it would just be ridiculous 
numbers I'd be dealing with. 

Kevin: And I know it kind of gets messy when you're dealing with 
big numbers and stuff, so I kind of explore the method of how I'd do 
it. 

Nicola: But the other way is easier because then you're not dealing 
with as big numbers, . . . and then you have less of a chance of not 
being able to put it in its lowest terms. 

This can be contrasted with the reasons given by students who did not 

adopt the methods taught in class. 

> Their prior method was an ingrained habit - rote learning is robust. 

%C: Tanya: It's automatic for me to do it that way. . . . I know I should 
try to learn to do the quicker way. 

Cathy: It comes from doing that so much. That's the way I've done 
it for years and years. 

M#: Mandy: I'm just like programmed to do it this way. So many, like so 
many years of practising doing it the same way. 

Tanya: It's almost automatic to do mixed fractions this way for me. . 
. . When I see fractions, I usually immediately just do what I, I don't 
know, for this I just immediately went to what I knew, what I was 
used to. 

Jill: I've been, I don't know, conditioned to do it that way ever since 
like elementary school. 

Olga: Just forcing myself to do it the new way I think, because the 
old way is just because that's the way I learned to do it, it's just a 
habit. 



9 They found their prior method fast enough. 

GCFILCM: Diane: [Diane had good exam technique and worked quickly] If I 
knew that I had less time I would have done the factor tree. 

M#: Mandy: I can use my calculator quickly. 
Interviewer: Whereas these other two methods, you knew it would 
save enough time to be worth learning it, . . . is that it? 
Mandy: Yeah, yeah. 

Hazel: You taught us the way, but I'm slower at that way I think, a 
little bit more. Like it makes sense when you taught us how to draw 
it out, but I can't draw them myself and visualize it that way. 

9 They were generally comfortable with, or confident in, their old method. 

GCFILCM: Diane: Just how I feel comfortable. Like I practised with your 
method, but when it comes to something that I have to get right, 
then I have to do what I feel comfortable. . . . I needed to work way 
more with the factor tree to be more confident with it. 

M#: Paul: See that, that's the thing: I've just always been more 
comfortable with converting it. 

Sue: I think if I was just more comfortable with it. I think part of the 
problem is that I'm rushing to get my homework done, so I'm doing 
it the way I know best instead of practising the way that I was 
shown. And so I just didn't have enough practice, I didn't feel 
comfortable enough to use it on the exam. 

9 They knew they would get the right answer with their old method. 

%C: Diane: Yeah, because it was an exam, I wanted to make sure I got 
it right. 

M#: Jill: And with math it's just, it's scary for me, it's really scary. So if I 
find a formula, if I find a way that I know that is right, . . . 

Laura: Not making them top-heavy, that's the quick way to do 
it. . . . I didn't realise that I was going to be so pressed for time, so I 
decided to take the time and make sure that they are right, 
because they're easy marks. 



A New Method Must Be Intelligible 

The second condition for the adoption of a new method is that it must be 

intelligible. The students talked about the benefits to understanding of the 

methods presented in class. 

9 The new method helped them to understand the concepts involved or they 

understood how the method worked - their prior method 'failed because 

divorced from understanding'. 

GCFJLCM: Hazel: I always confused them before. And so that's one thing you 
went over, so then I studied the method in the textbook, and that 
you offered, really trying to nail it. 

Fran: I can understand how like the numbers can simplify down 
into these numbers. Like I can understand this is equal to that, and 
therefore like I can visualize how it works. 

%C: Gwen: I just think it was because every problem we did using this, I 
just really understood it. So that just made me remember it. 

M#: Ray: It was so obviously a simpler, clearer, more sensible, more 
meaningful way. 

Jill: Only this class has taught me how to, OK, it's really 6 of these 
and 2 of those, and then just add them together. . . . I'm not very 
confident with math, with um manipulating . . . numbers . . . and 
being confident that I know what I'm doing. 

9 The new method made sense to the students. 

GCFJLCM: Olga: . . . and it made sense to me. 

Jill: It made sense with the prime numbers. . . . The way that the 
numbers, knowing that it's prime, and you're just trying to, . . . these 
are the factors for this number, 280, and then these are the factors 
for 300, and then there's, there's a commonality within them. So 
then once you line them all up and multiply them, because we're 
trying to find the least common multiple, then it would be all of 
these numbers . . . and all of these numbers, but you don't need to 
repeat the ones that have, like, exponents. 



%C: Priscilla: I only really remember with percentages and stuff, doing 
cross-multiplication to find the missing thing that you have. But this 
makes more sense to me now. 

M#: Elise: Yeah, yeah, I really like this idea of like, yeah you take it 
away, that totally makes sense to me. 

Priscilla: That makes sense when you go through it like that. 

k A few said that their good prior understanding of the concepts allowed them 

to explore new ways of looking at procedures involving those concepts and 

therefore to use different methods. 

GCFILCM: Mandy: No I've known, I knew how to do factor trees, but I didn't 
know this. 

Bev: Yeah, because this [prime factorisation] was very similar . . . 
to something I've met before. 

%C: Interviewer: So are you saying that you feel you understand what 
percentages are about, and so you can adapt to a new method? 
Paul: Yeah, yeah. 

M#: Laura: I wasn't taught that way, but . . . we had 2 hours of math at 
the very beginning of every single day, so I became very, very 
comfortable with numbers and fractions and just like easy 
arithmetic. . . . So I can do a lot of the stuff in my head. So even 
though I hadn't been taught to deal with the whole numbers first, I 
did it in my mind probably. 

k Some talked about understanding what the symbols represented, or the 

relationship between different symbolic representations - again, the old 

'failed because divorced from understanding'. 

GCFILCM: Fran: Well I can understand how like the numbers can simplify 
down into these numbers. Like I can understand this is equal to 
that, and therefore like I can visualize how it works. 

Alice: That one, (pause) I think it's something that I learned, but I, 
it's pretty surprising, because this course has, I'm understanding a 
lot more things now. Like I think I have done that process, but I 
never really understood everything. . . . And now I understand a lot 
better, but I think previously what I did do was like list all of them 



and then match up the greatest common factor, the lowest 
common multiple, I never got the factor tree. 

%C: Sue: I didn't know that a 12% increase was the same as 1.12, 
timesing it by 1.1 2. 

M#: Kevin: If you were to actually physically draw, you know, 8 pies, 
and then you have plus 3 more pies and 1 quarter of a pie left, how 
many do you have? I mean it's so easy that way. 
Interviewer: Right, so it's just constantly reinforcing the picture of 
what is represented side by side with the symbols? 
Kevin: Um hmm, definitely. 

Sue: Well the language, when you use language, when you write it 
out in English, so I can see how mathematical language works with 
the English language, so they're not separate any more, they 
actually can be combined, that really helps me. 

P One student related the method presented in class to his real-life experiences, 

and contrasted that with his lack of understanding of his previous method - 
once more, the old method 'failed because divorced from understanding'. 

M#: Ray: Yeah, well I mean when you think about it, first of all, the 
lowest common denominator thing seems like a math classroom 
trick, right? Whereas, if you get the pizzas, you get the chocolate 
bars, you get the cases of beer, whatever they are, it's, you know 
after being around for a few years you don't, you just never would 
do that . . . right? And so this way, for one thing, it's easier to come 
up with a sensible answer, and the other part of it is that, even if 
you were making a mistake, in the real world kind of thing, you'd be 
making a smaller one, you know. 

Only a few students mentioned not understanding the methods as reasons 

for not adopting what was presented in class. However, some other comments 

were made which may relate to the intelligibility of the method to the student. 

> Several couldn't remember the procedures well enough to implement the 

methods. 

GCFILCM: Kevin: That's probably something I don't remember. [Prime 
factorisation method] 



%C: Tanya: I don't even remember. I mean, I think in my review I didn't 
even, I think I skipped over that part. 

Hazel: Like I know we had two homework questions on that, but I 
never can remember how to do it for the subtraction, so I always 
figure it out individually and then keep going from there. 

M#: Elise: [12'13 - 3/4] Yeah, hmm, what am I going to do now? Gees, I 
totally feel like I'm forgetting something doing all of these. Oh I 
know that I did it differently before, but I just, it's not coming to me 
right now (laugh). Um, OK, so I'm thinking I'm going to do what I did 
over there, even though I don't really want to, but I can't really 
remember what else to do. 

Hazel: It's just trying to remember all these different things [%C and 
M#]. There's so many things, like you've taught us so many 
different things. The fractions I can remember when I'm doing it, 
and the homework I do really well, but when I have to do it without 
my, looking at my examples, I don't feel confident to try it. . . . And 
so for me to try to memorise all the examples you've given us, and 
then the formulas, and then coming in and writing it on a test, I 
can't remember. So I always go back to the way that I know is 
going to work. It takes longer but I'm more confident in my answer. 

P One student had missed the class session in which one of the new methods 

was presented. 

%C: Laura: I learned the 1.12, yeah, I learned that in wherever, 
elementary school or wherever it was. And I hadn't learned 0.92, 
and then I wasn't there for that lesson. . . . So, and then I read over 
my friend's notes, but I was, I was, you know, I was trying to quick 
study and . . . 

P Some students did admit that they just hadn't understood the methods 

presented in class, and were therefore unwilling to use them. 

%C: Tanya: Um, I don't really understand it. I still have to go over it, 
actually. I'm not quite clear on how to do it that way. 

Diane: [Asked why she wrote 0.171 Because it's a decrease, um, 
I'm not really sure. I just know that you had to write the 0. 



P A few students said that they had not understood part of the method and 

therefore used the old method in certain situations. 

M#: Fran: Well you can't, you have to have a larger fraction to take 
away [from], and this obviously doesn't work. 

A New Method Must Appear Initially Plausible 

The third condition given by Posner et al. is that the new method must 

appear initially plausible. 

P That the new method solved some of the problems of the old seemed to arise 

mostly in the discussions of causes of dissatisfaction with their prior method, 

but the following is an example of how some adopters felt. 

GCFILCM: Fran: Yeah but this is much more, I've got this, I find this very 
useful. 

P Students who adopted a new method talked of needing to check that it gave 

the same answer as their old method. 

%C: Fran: Well maybe if I, I checked it, like I did it both ways to make 
sure. 
Interviewer: So just do a few examples to convince yourself it gave 
the same answer? 
Fran: Yeah, that's probably it, because it just seems sometimes too 
good to be true. . . . You have to see how it worked out. 

P Two students who did not get the correct answer using the method presented 

in class reverted to their prior method, although others continued trying to 

learn to use the new methods correctly and eventually succeeded. 

M#: Mandy: Like I know the other method for sort of estimating, . . . but 
I was really bad at it. . . . Like I practised it in the homework, but I 
was, I always got the wrong answer. 

Sue: You see I messed up on this one, and that's what scared 
me. . . . I did it that way and it's like, oh I got the wrong answer, so 
I'm going to just resort to the way I know. 



9 A few students rejected the prescribed methods because they were 

incompatible with their beliefs about what they were expected to do in a 

mathematical problem. 

%C: Ray: Yeah, um, now let me think, (pause). Yeah, but I always felt I 
was cheating. [Using one-step method] 
Interviewer: So what did you feel was expected of you? 
Ray: To take, to figure out the 12% first, and then add it on instead 
of doing it all in 'one swell foop', as they say. 

M#: Tanya: [Looking at 73/5] Well if it's in an exam, I just, it's an 
equation to do. 

Elise: I must say I'm thinking of it [2 - *I9] in terms of numbers, I'm 
not really thinking of it in terms of things. Like if I thought about that 
as a picture, then I'd be able to solve it without doing math. 

9 Some were uncomfortable with the concepts involved in the methods and so 

had memorised procedures to obtain correct answers. When faced with 

different approaches, these students could not relate the new approaches to 

their prior knowledge and so rejected them. 

M#: Paul: Um, well I guess that being comfortable with these kinds of 
numbers in the first place, maybe I might be more willing to let go 
of the numbers that I've used. I guess for me fractions has always 
been a problem, . . . so when I see fractions, immediately I just say, 
"OK, well what have I always used?" . . . And I just, I use that 
method. But with, with these, with percentages and factors and 
multiples, I think that I feel comfortable with these concepts 
already. So in that sense, I might be more receptive to different 
ways of looking at them. . . . I guess maybe I can't see fractions, or 
it's difficult for me to see fractions, in ways other than what I've 
become accustomed to. . . . So for me, what I know is just what I 
use. . . . Although, obviously the methods that you're teaching are 
much quicker, . . . but I just don't feel comfortable looking at them 
in that way. 

Kevin: [8 + 3'14] Yeah, it's because I don't see anything here [after 
the 81. So I think to myself, "Well then, I have to find a common 
denominator for this." And it's, there's nothing there though, right? . 
. . So you just keep the 'I4. But I don't, I guess I haven't practised it 
enough to realise that when nothing is there, the 'I4 just remains, 
and it's 8 + 3. 



A New Method Should Suggest the Possibility of Fruitfulness 

The last condition suggested by Posner et al. is that the new method 

should be fruitful, or there should be the possibility of application to new areas. 

This is perhaps the hardest to relate to the learning of mathematical methods. 

Some of the comments made by students do, however, relate to this condition, if 

it can be considered in a broader context. 

> One student valued the prime factorisation method because both the GCF 

and the LCM could be obtained from the one procedure. 

GCFILCM: Sue: It's much more simple. You don't, can't mess up in your 
multiplying all the time, and it's a lot faster. Those numbers would 
take a long time. . . . And also, you can use them both for the same 
purposes, like once you've, whereas you'd have to do two different 
steps. 

> In contrast, one student saw the compound one-step method as being useful 

for only one particular style of question, and not as a more generally 

applicable procedure. 

%C: Nicola: It didn't even cross my mind to do it that way there [For a 
single change]. . . . Because that's, that was how I was taught and 
I've always done that, but then in what I did at school, we would 
have only had to figure out one thing. . . . But now that there was 
more than one, you showed us this way and it just stayed in my 
head. 

> A more common reference to the fruitfulness of a method was that it was 

expected or required by the instructor. 

GCFJLCM: Gwen: I think because when I was doing the homework and I had 
to do it that way . . . 

Tanya: I know that's the method you taught, so then I thought that's 
what you wanted to see, I think, too. 

Jill: I knew for your test that that's how we were taught. It was still 
relatively fresh, and it made sense, and I knew that that's how you 
wanted us to do it. 



Priscilla: Maybe that's why I did do that in the exam, because it's 
not always about just finding the final answer. . . . And that might 
be why, but when, when there was, when I was in high school and 
stuff, it was more, you would just have to find the answer, really. 

> Another interpretation of fruitfulness could be that it would allow the student 

to get more marks. 

GCFILCM: Hazel: So as soon as you say that no one ever gets it, then I'm like, 
"Oh I've got to learn how to do that, or I'm going to lose all these 
marks." 

All topics: Diane: Um, probably a quiz in class and you have to use that 
method. 
Interviewer: OK, so actually forcing you by the assessment, saying 
you'll get it wrong if you don't use this method? 
Diane: Yeah, yeah. 

Topic Dependence 

Some reasons given by the students applied to all three methods under 

examination in this study, but other reasons were mentioned only with regard to 

a specific topic. In what follows I would like to consider the motivations for 

adoption of, or resistance to, the specific procedures presented in the course. 

What aspect of the prime factorisation method caused so many students to 

adopt it, or what were the factors which contributed to their resistance to the 

wholes-first method? Was there something about the specific topic or method 

that made it easier, or harder, for students to change? 



Greatest Common Factor and Least Common Multiple 

1. There must be dissatisfaction with the existinq method 

Several students were dissatisfied with the amount of time or effort 

required by the method of listing, and some mentioned that it is easy to make an 

error when listing out the factors or multiples. Another compelling reason for 

adopting the new method was that many students did not regard listing as a 

genuine method, saying that they did not have a method prior to the course. 

Perhaps this is related to the observation that some students seem to give up if 

the lists becomes longer than about ten entries. 

2. A new method must be intelliqible 

In general, the students felt that they understood the method and the 

symbols and how the method is applied to the problems. They were also able to 

recall the method at appropriate times. 

3. A new method must amear initiallv plausible 

There were no comments about a lack of plausibility of the new method. 

Clearly the prime factorisation method overcame the inadequacies of the method 

of listing felt by the students, as was commented on under the first condition. 

There was no mention of conflicts with the learners' prior knowledge, past 

experiences, or beliefs. 

4. A new method should suaqest the possibilitv of fruitfulness 

Some students were conscious that the instructor expected this method to 

be used during the course, and one referred to the advantage that both the GCF 
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and the LCM could be obtained easily, once the prime factorisations of the 

numbers were found. 

Percentages 

1. There must be dissatisfaction with the existina method 

Several students found the compound one-step method easier and faster 

than the repeated two-step method for compounded percentage changes, but 

only two said that they had no method to solve these problems before the 

course. In contrast, some felt that their prior method was fast enough, or were 

confident that they could get the correct answer using it. Some felt that they used 

their old method out of habit. 

2. A new method must be intelliaible 

Some students talked of understanding the compound one-step method, 

or said that it made sense and gave them a clearer picture of what the 

percentage change meant. For some, the understanding came during the 

interview and they were able to use the compound one-step method in the final 

examination. However, just as many students commented on not understanding 

the method and several struggled to remember it while in the examination. 

3. A new method must appear initiallv plausible 

Most students accepted that the compound one-step method was more 

efficient than the repeated two-step method, but some students needed 

reassurance that it would give the same answers. Once this had been confirmed, 

they were able to accept the new method. Some students indicated that they had 
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not spent enough time working with the new method to be convinced of its value. 

One student felt that it was 'cheating' to not show the intermediate steps in the 

calculation of a percentage change. 

4. A new method should suaaest the ~ossibilitv of fruitfulness 

Once again, few comments were made relating to this condition, with only 

one student talking about the expectations of the instructor. One student used the 

compound one-step method for questions of a particular style only and did not 

recognise that the method could be applied to any percentage change situation. 

Mixed Numbers 

1. There must be dissatisfaction with the existinq method 

No students felt that they did not have a method for adding and 

subtracting mixed numbers before the course, although several recognised the 

wholes-first method as easier, faster and less error prone, especially when large 

numbers were involved. However, several students were satisfied that the 

conversion method gave the correct answer and they were confident in its use. 

Many felt that the conversion method was such an ingrained habit that they used 

it without thinking, but only a few were dissatisfied enough with their rote learning 

of the procedure to adopt the wholes-first method. 

2. A new method must be intelliaible 

Several students talked of understanding the wholes-first method in a way 

that they had not understood the conversion method. They were able to relate 

the symbols to physical objects in the wholes-first method, and for some that 



allowed them to relate the mathematics to their real-life experiences. As with 

percentages, a few students struggled to remember the method, and two 

students did not understand how to apply the method in certain situations. 

3. A new method must appear initially plausible 

A few students had been discouraged in their attempts to use the wholes- 

first method by initially getting the wrong answer. Since they knew they could get 

the correct answer by using improper fractions, they quickly gave up on the new 

method. Several talked about feeling uncomfortable with fractions and therefore 

wanting to stick to the method they had learnt by rote. Some even felt that to use 

the wholes-first method was not 'doing math', or that the mixed number is an 

instruction to convert to an improper fraction. 

4. A new method should suqaest the ~ossibilitv of fruitfulness 

Relating to the fruitfulness of using the wholes-first method, a few students 

referred to the expectations of the instructor, but no other comments were made. 

One additional issue arose in two of the interviews regarding the method 

used by the students for mixed number questions. It seems that their memories 

were not entirely reliable. In the first homework, Alice used the wholes-first 

method in addition to the conversion method for most of the questions. However, 

in the interview, when asked if she was familiar with the wholes-first method 

before the course, she said it was new to her, but 

"I worked on it and I figured it out and it, yeah, it made more sense. 
. . . Because on the first homework that you gave us, I did change 
everything into like top-heavy fractions, and then figured it out, and 
then brought it back to a mixed." 



Cathy also used the wholes-first method in the first homework, but only for the 

addition questions. When asked, in the interview, if the wholes-first method was 

a new idea for her, she said, 

"Yeah, it was totally new to me, because it was so revolutionary to 
me. It was like wow, this is so much easier than trying to make 
them the top-heavy fractions. . . . This is one of those things that 
once you showed it to us, it just totally hit me how much easier . . ." 

A possible explanation for their perception that they had not known the wholes- 

first method before the course is that they may not have understood the method, 

or what the symbols actually represented, until receiving instruction during the 

course. Also, they may not have previously thought about the different methods 

available to them, and the advantages of each, and were therefore struck by the 

benefits of the wholes-first method. Perhaps they saw the method in such a new 

way that they forgot they had actually used it before. 

Motivations 

Some motivations to adopt the methods presented in class were common 

to a number of students, whereas some were suggested by only one. Similarly, 

the reasons for resisting the new methods were sometimes mentioned by 

several students. Table 6.1 shows a summary of the number of distinct students 

who mentioned a particular motivation in relation to a particular method. The 

motivations have been grouped under the four conditions of the conceptual 

change theory. 



GCF IReason for adopting 1 %C 1 M # (Reasons for resisting 1::; / %C I M # 

11. Dissatisfaction with existing method 

lnew easierlless effort 1 5 

4 1 4 lold fast enough /new faster 6 

1 1 3 lold gives right answer / - / 4 / 5 lnew less error prone 1 3 

new easier for large 
numbers 1 - 

comfortable or confident 
with old 

n o  acceptable existing 
/method 

- 1 3 lold ingrained habit lold just rote 1 - 

already confident with 
topic 1 1 didn't remember new 1 4 3 

understood what 
symbols represent 

1 1 3 lmissed class 

1 1 5 ididn't understand new I - 6 1 2  
new helped 
understanding 

new relates to 

/new makes sense 2 
I 

3. Plausibility 

solves problems of old not compatible with 1 I - I - lbeliefs 1 -  l 1  l 2  
lchecked new against old I - 1 2 1 - ldidn't get right answer 1 - 1 - 1 2 

no representation for 
symbols 

14. Fruitfulness 

applicable to more than 
one situation I 1  1 -  used in specific context I -  I 1  I -  
gets more marks 

expected by instructor 

Table 6.1 Number of Distinct Students Mentioning Particular Motivations (by 
topic and conceptual change theory condition) 
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The findings presented in the previous chapter showed that almost all of 

the students adopted the prime factorisation method for finding the greatest 

common factor and least common multiple, whilst only a few used this method 

before instruction. Very few students used the compound one-step method, or 

even the one-step method for single percentage decreases, in the first 

homework. However, over half of the non-users showed progress in using the 

one-step method for percentage changes, with about two fifths of the students 

adopting the compound one-step method. The wholes-first method for mixed 

numbers was used in at least some of the non-trivial questions by a little under 

half of the students in the first homework, but only about one-third of the 

remaining students adopted the wholes-first approach to this extent. This 

information is given in detail in Table 6.2. 

I F ~ , " ~ o ~ w ~ k  

Prime factorisation 
for at least one of GCFJLCM 1 14 1 8  1 6 2  9 7  

Adoption to this level 

No. of 
students 

W holes-first for more than 
simplest mixed number questions 1 3 4  4 4  1 1 5  3 4  

O h  of 
students 

One-step for percentage 
decreases (as well as increases) 

, Compound one-step 

Table 6.2 Number of Users and Adopters to a Given Level by Topic 

The theory can be used to explain the differences in the number of 

students who adopted the methods presented in the course. By considering the 

Of 

students 

10 

3 

% of 
remaining 
students 

13 

4  

39 

3  1  

57 

41 
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motivations suggested by the students, which were summarised by topic above, 

we can recognise which conditions were responsible for the differences and 

which features of the methods contributed most significantly. 

The prior method with which the students were most dissatisfied was that 

of listing for finding the greatest common factor and least common multiple. This, 

I believe, was the main reason why so many students adopted the prime 

factorisation method. They found that the new method was much faster and 

required less effort, and in fact, several students did not regard listing as a 

genuine method. The students mentioned no problems with the intelligibility or 

plausibility of the prime factorisation method and some mentioned that the 

expectations of the instructor were important to them. 

In contrast, the conversion method for mixed numbers was an ingrained 

habit which the students found difficult to break. Many found that, with the use of 

a calculator, improper fractions were easy to deal with accurately and quickly 

enough. Although several indicated that they were able to understand the 

wholes-first method, whereas they had simply memorised the conversion 

method, a few struggled with the application of wholes-first to some of the 

subtraction questions. Many students were unwilling to take the time, or put in 

the effort, to learn to use the new method because they were sufficiently 

confident in their ability to use their old method, and they believed it was 

adequate for their purposes. 

For some students the belief that a mixed number is an instruction to 

calculate the improper fraction prevented them from considering the wholes-first 



approach. A quote from an interview with one of the students in the pilot study 

shows how extreme this belief can be. When asked the value of 4 + 7'13 she 

responded: 

"OK, well I know I can't do 7 and 4, 'cos this is, like, a whole thing 
right here [referring to the 7 and 'I3 as inseparable]. And I think I 
have to put this [4] over 1. . . . I can't add 4. . . . 1 could say this is 
11 and 'I3, but that wouldn't be right. . . . I just don't think I can add 
this [4] to this [7'13], . . . 'COS it's, like I feel like this [7'13] is a whole 
thing, like, by itself, that I have to break down before I can add it to 
4." 

She explained, as did several students taking the course, that the whole number 

and the mixed number must be converted into the same type of number, i.e. an 

improper fraction, before they can be added or subtracted. 

The adoption rate of the compound one-step method for percentages lay 

between that of the prime factorisation and the wholes-first methods. It was 

recognised by many as faster or requiring less effort than their prior method, but 

others were confident in their use of the repeated one or two-step methods. 

Some students found that studying the one-step method increased their 

understanding of percentage change, but many students said they did not 

understand or remember how to apply the compound one-step method. It may 

be that those students who struggled to remember the one-step method did so 

because of a lack of understanding. Others were not convinced that it would give 

them the correct answer. The reasons suggested for adopting and resisting the 

new method were more balanced for this topic. 



Summary 

It is not sufficient that a method presented is 'better' than a student's 

current method. It is clear that only if there is great dissatisfaction with the 

current method for solving a problem, will a student invest the time to learn a 

new method. The main cause of dissatisfaction which has arisen in this study is 

the amount of time or effort needed to implement the method. This was 

countered by the old method being so practised that it had become an ingrained 

habit. A second source of dissatisfaction was the student's lack of confidence 

that the correct answer could reliably be obtained using the current method. 

The level of dissatisfaction with a current method will determine how much 

effort a student is willing to make in order to comprehend and remember the new 

method. To be intelligible, the student must certainly recognise the symbols and 

know how to apply the method, and in what circumstances it should be used. 

Unfortunately, it is not necessary for the student to understand how the method 

works, although this knowledge will encourage the adoption of the new method 

and aid the memory of the procedure. 

The student must be convinced that the new method gives the same 

answer as the old method and agree that the new method truly fulfils the 

shortcomings of the old method by being significantly faster or easier or less 

error prone. It must also be compatible with the student's beliefs about what 

mathematics is or about the requirements of external authorities. The fruitfulness 

of a method did not seem to be an important issue for the students, other than 

with respect to getting more marks or fulfilling the requirements of the instructor. 



Additional Comments 

The above analysis is based on what students said when giving their 

reasons for using the different procedures. Before closing this chapter, I would 

like to speculate about some factors which may, perhaps unconsciously, have 

influenced the students. My speculations are derived from informal observations 

of the students and the conversations which took place throughout the course. 

In chapter 3 there was discussion of the importance of students forming 

strong connections between the concept and the symbolic representation of the 

concept. Students must be able to access the meaning of the symbols in order to 

develop their understanding. If this is lacking, then their only option is rote 

memorisation. Frequently students do not regard certain combinations of symbols 

as representing numbers, but rather as being instructions to calculate a value 

which will be the number. For example, 81t3 must be re-written as 2 before it is 

considered a number, and 2 + 3 is seen as an instruction to be carried out, not 

as one of many representations of the number 5. 1 believe that many students do 

not think of mixed numbers as numbers. In the current study, students were 

asked to explain what a mixed number is, or what it means, using 3 f  as an 

example. Some students appeared to regard the mixed number notation as an 

instruction to calculate the equivalent improper fraction, giving answers such as 

"It's 7 x 3 + 2, over 7". Several students responded with, "A mixed number is a 

fraction where the top number (numerator) is greater than the bottom number 

(denominator)" or similar descriptions, and one student even added, "the original 
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23 number was 7 ". When students come to multiply and divide with mixed 

numbers, they are taught to convert the mixed number to an improper fraction as 

the first step. This approach also works for addition and subtraction. If the 

students have lost sight of the meaning of the symbols, then it may be that they 

choose, or are encouraged to use, this approach for all mixed number 

calculations in order to reduce the number of procedures they must memorise. 

From observation of students in the current study, I would suggest that the 

emphasis on changing mixed numbers to improper fractions can prevent 

students from seeing that the wholes do not need to be split into fractions with 

denominator determined by the fractional part of the mixed number. For 

example, when explaining the meaning of 3: there were responses such as 

the following "You'd have 3 complete . . . numbers that had been divided into 

slices . . . and then the fraction would only have 2 out of 7. So what it's saying is 

that you have ++++$ (so that would be the three whole things) and then 2/7." 

This lack of understanding of the meaning of mixed numbers may have 

contributed to the students' resistance to the wholes-first approach. 

As discussed in chapter 2, learners will assimilate new knowledge into 

their existing structures whenever possible, but the accommodation of a concept 

requires a much more radical restructuring. Students with a strong belief that 

mixed numbers must be converted into improper fractions would need to 

accommodate a new concept for mixed numbers in order to adopt the wholes-first 

method. The difficulty of accommodation may help to explain the high proportion 
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of resisters for this topic. In contrast, a student who knows the one-step method 

for percentage increases may be able to assimilate the one-step method for 

decreases. In this study, 6 out of 8 students who initially used the one-step 

method for increases, but not for decreases, adopted the method for decreases. 

However, only 55% of students who did not initially use the one-step method 

adopted this method for decreases. 

Returning to the discussion of different representations of numbers, a 

percentage of a quantity is another form of number. However, I have observed 

that '18% of 534', for example, is often seen as an instruction to calculate rather 

than as a representation of a quantity. This perspective would hinder the 

acceptance that the new amount can be found after a percentage change by the 

one-step method, with students feeling that they must follow the instruction to 

calculate the actual value of the change first. 

The prime factorisation is also a representation of number. Why is it that a 

lack of understanding of this did not interfere with students' use of the prime 

factorisation method to find the greatest common factor or least common multiple 

of two numbers? Perhaps this understanding is less important when applying this 

method. A more likely explanation is that the effort required to memorise this 

method by rote was outweighed by the students' dissatisfaction with the method 

of listing and so many used the method without understanding the concepts 

underlying it. For the mixed number calculations and, to a lesser extent for the 

percentage change questions, the students were not sufficiently dissatisfied with 

their prior methods to put in the effort to memorise the new methods by rote. 
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Many students seemed uncomfortable with mixed numbers and fractions, 

preferring decimal notation. One contribution to this unease may be the 

increased use of calculators and computers. Typing fractions, and especially 

mixed numbers, is more difficult than using decimals, and this has led to mixed 

numbers and fractions becoming less common in every day life. Percentages are 

used in abundance in the media and other areas of life, but frequently they are 

misunderstood and used incorrectly, especially with percentages greater than 

100%. There is often a confusion between 'percentage change' and 'percentage 

of original'. For example, a 50% increase, leading to the new amount being 

150% of the original, is often referred to as a 150% increase. These two factors 

could encourage students to be comfortable with the percentage notation, but 

lead them to a poor understanding of its meaning, which may account for some 

choosing to 'stick with what they know'. However, greatest common factor and 

least common multiple are concepts very rarely explicitly expressed in real life. It 

may be that this is another encouragement for rote memorisation, as these 

concepts are regarded as useful only in the mathematics classroom and not 

related to life outside. 

The method of listing is clearly useful in helping students to understand 

the concept of greatest common factor or least common multiple. This method is 

transparent, being closely connected to the meaning of the concepts. Similarly, 

the two-step method for finding the amount after a percentage change is also 

very easy to understand and follow. These were the methods used by the 

majority of students at the beginning of the course. The prime factorisation 
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method for finding the greatest common factor and least common multiple and 

the compound one-step method for percentage changes were presented in class 

as being more efficient, but it is acknowledged that it is less obvious that these 

procedures lead to the desired outcome. Conversely, the wholes-first method for 

mixed number addition and subtraction is more transparent than the conversion 

method, being more closely related to the physical actions which would normally 

be used to carry out the operations. However, almost all students adopted the 

prime factorisation method, the majority adopted, or progressed towards 

adopting, the compound one-step method, but a smaller proportion of students 

adopted the wholes-first method. This could indicate that intelligibility of a 

method is not a high priority for many of the students when choosing a method. If 

a student is content with rote memorisation, then intelligibility is not an important 

consideration. In contrast, it can be seen from comments made in the interviews 

that for some, the understanding brought by the wholes-first approach was a 

strong motivation for adoption of this method. 

Next we will consider how the analysis presented in this chapter gives rise 

to a theory of procedural change, growing out of the conceptual change theory of 

Posner, Strike, Hewson and Gertzog (1982). The implications of this theory for 

developing teaching strategies which encourage students to adopt new 

procedures are also examined. Finally, areas for further research are suggested 

which will stimulate the development of this theory of procedural change. 



CHAPTER 7 

DEVELOPMENT OF A THEORY 

A Theory of Procedural Change 

In chapter 5 we looked at how students responded to procedures for 

solving problems in topics for which they already knew a valid approach, 

considering whether they adopted or resisted these new methods. The results 

suggested that the outcome depended upon both the particular topic and the 

individual student. The data collected from the interviews pointed towards a 

variety of motivations for adopting, and reasons for resisting, a new approach. In 

chapter 6 it was shown that organising this data along the lines of the conceptual 

change theory of Posner, Strike, Hewson and Gertzog (1982) allowed a better 

understanding of the students' motivations. Continuing to follow the ideas of 

grounded theory (Glaser & Strauss, 1967), 1 now propose a theory of procedural 

change. 

By broadening Duroux's description of an obstacle (as cited in Brousseau, 

1997) from "A piece of knowledge or a conception . . . [which] produces 

responses which are appropriate within a particular, frequently experienced, 

context, . . . [but] generates false responses outside this context'' (p. 99) to 
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include 'a piece of knowledge which, although correct, is inhibiting the acceptance 

of another piece of knowledge which is applicable, and more appropriate, in 

certain situations', we can apply the discussions on overcoming obstacles to this 

type of obstacle. For example, Sierpinska (1987) speaks of overcoming an 

obstacle by considering the means one uses to solve problems, recognising the 

reasons behind the choices, and becoming aware of other possibilities. We must 

recognise the successes of the obstacle as well as its failures (Brousseau, 1997). 

Misconceptions were found to be highly robust, typically outliving teaching which 

contradicts them. Similarly, these procedural obstacles were highly robust in 

some students and outlived the teaching designed to encourage the students to 

adopt the new approaches. Brousseau (1997) said that students must be 

provided with many situations where the knowledge is inadequate, to convince 

them to consider something else. Overcoming the obstacle demands work of the 

same kind as applying the knowledge; problems must be numerous, important to 

the student, and sufficiently different from those previously encountered to require 

the leap to the acceptance of the new knowledge. The same can be said of the 

adoption of new procedures. 

The four conditions given by Posner et al. (1982), for the accommodation 

of a new concept when prior knowledge is an obstacle, can now be re-written to 

give a 'theory of procedural change'. Italics are used to highlight changes from 

the conceptual change theory. Each condition is followed by a brief explanation, 

which includes comments on any significant differences from the original theory. 



1. There must be dissatisfaction with existinq procedures 

A student must believe that his or her current procedure will not suffice. 

The student must be sufficiently dissatisfied to take the time, or put in the effort, 

to learn to use the new method, to comprehend it and remember it, and to 

overcome the habit and comfort of familiarity of the old method. 

We are not presenting students with evidence which contradicts their 

current beliefs. The dissatisfaction here comes from a variety of sources, such 

as the amount of time or effort required to implement the procedure or the 

likelihood of computational errors, rather than from problems that cannot be 

solved. 

2. A new method must be intelliaible 

A learner must be able to grasp how the new procedure can be applied to 

problems sufficiently to explore further. At a superficial level, the learner must 

know how to manipulate the symbols. 

Unfortunately, it is not necessary for a student to understand what the 

symbols mean or how a method works, since the steps can be memorised by 

rote, although understanding will aid the memory of the procedure and increase 

motivation to use the method. If the method itself helps understanding of a 

concept or if the student had a good prior understanding of the concepts 

involved, or if the student can relate the symbols or the procedure to physical 

objects or real life experiences, the method is more likely to be adopted. 



3. A new procedure must appear initially plausible 

The new method must at least appear to have the capacity to solve the 

problems generated by previously used procedures. It must be consistent with 

other knowledge previously constructed by the learner and with past experience. 

Also, the new method must be compatible with one's beliefs and fundamental 

assumptions. 

These beliefs and assumptions include the expectations of external 

authorities and an understanding of the nature of mathematics. It may be 

impossible to adopt the new method if the prior method was rote memorised 

without understanding, since there is no foundation for understanding the new, 

or perhaps no belief that mathematics can be understood. Certainly, the new 

method must be seen to generate the same solutions as the old method. 

Sufficient time and practice is needed to become comfortable with the new 

procedure or to fully recognise its value. 

4. A new procedure should suagest the possibilitv of fruitfulness 

The new procedure should be seen to be applicable to many situations 

and should meet the requirements of any assessment. 

This replaces the condition for a fruitful research program, with the 

potential for extension of the concept or of application to new areas of inquiry. 

Using the new method, students should be able to solve a variety of problems, 

not just one specific type of problem, and by fulfilling the assessment criteria, its 

use should allow the students to have greater success. 
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It is acknowledged that information gathered in interviews, asking 

questions such as why a student adopted or resisted a method, cannot lead to 

absolute conclusions. However, it is hoped that by examining this issue, the data 

collected can suggest an explanation of the observed behaviour and eventually 

lead to the development of teaching strategies which will help students to accept 

a wider variety of approaches to mathematical problems, increasing their 

repertoire of procedures and algorithms, and allowing them the freedom to 

choose the most appropriate and efficient method. 

Implications for Teaching 

Some students adopted the new methods, showing that change is 

possible, but it should not be taken for granted that adoption will always take 

place as a consequence of instruction. Clearly it is not sufficient that a method 

presented to the students is 'better' in some way, or for some problems, than 

their current method. That some students are resistant to change, and even 

when willing to adopt a new method can find it difficult to do so, is of great 

concern. It implies that what and how a student is first taught is of crucial 

importance, and yet usually we entrust teaching in the early years to non- 

specialists, who are often uncomfortable with the subject. If an elementary 

teacher considers mathematics to consist of rules and procedures to be 

memorised, then this belief will be passed on to the students. If it is conveyed 

that there is one correct way to solve a problem, then students will find it difficult 
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to adopt new approaches in the future. If getting the right answer is all that 

counts, then students will not be concerned with understanding. Teachers often 

mimic how they were taught, and so we must be especially careful how we teach 

teachers (Grouws, 1992). Since we cannot turn the clock back to change how 

potential teachers were taught in elementary school, we must do all that we can 

to teach them to be receptive to new approaches and new understanding when 

participating in pre-service courses. 

Nussbaum and Novick (1982) suggest a teaching strategy to encourage 

the accommodation of a scientific concept. This can be related to the instruction 

given to the students in this study. 

Expose students' alternative conceptions through their responses to an 

'exposing event' and encourage them to describe their preconceptions 

verbally and pictorially. This was the aim of the first homework. 

Make students aware of their own and other students' alternative 

conceptions through discussion and debate. The different methods 

commonly used for each topic were discussed in class, wit0 the benefits 

of each highlighted. 

Create conceptual conflict by students trying to explain a discrepant 

event. Problems were discussed which showed that the students' prior 

methods were inefficient. 

Encourage and guide accommodation of the new cognitive concept. The 

methods recommended in the course were discussed and their 

application to problems demonstrated. 

This is a strategy commonly used when introducing new approaches to 

problems in mathematics. However, Nussbaum and Novick (1982), and Smith 
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(1983), report limited success when using this strategy, with most students 

reaching an intermediate conception between their initial conception and the 

accepted scientific conception. The data in the current study also supports the 

view that this teaching strategy is not entirely successful. 

Can the theory of procedural change proposed above give rise to any 

further suggestions for a teaching strategy? Let us consider the implications of 

the four conditions in the theory. 

1. There must be dissatisfaction with existincl procedures 

Examples and homework questions should involve situations in which the 

students' prior methods prove inadequate, for example, they require too much 

effort and time, such as many compounded percentage changes or large 

numbers. Understanding of how the procedure works can be encouraged by 

requiring the students to explain what they are doing at each stage, in some 

cases relating it to physical actions, or to the underlying concepts. If a student 

has memorised an algorithm without understanding, this will become apparent. 

Only when the students have become dissatisfied with their current 

method should the new method be introduced. Examples used to illustrate a new 

method are typically chosen for simplicity and clarity, but perhaps these do not 

best illustrate the advantages of the new method over the old. A balance must 

be achieved between simplicity, to allow students to follow the application of the 

procedure, and complexity, to induce dissatisfaction with prior methods. 

Students who use an old method out of habit can be asked to describe 

more than one approach and then explain which they think is most appropriate. 
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However, encouraging a student to use the new approach by too much repetitive 

practice may result in rote memorisation of that procedure without an 

understanding of the concepts on which it is based, an appreciation of its value, 

or the ability to discern when it is the most appropriate method to use. 

2. A new method must be intelliaible 

Students are more likely to remember and use a method which makes 

sense to them. A clear connection should be established between the symbols in 

the procedure and the objects or concepts they represent, rather than teaching 

the manipulation of notational systems. This may involve revisiting the concepts 

underlying the procedure. It cannot be assumed that students have grasped 

these concepts at an earlier stage, they may simply have memorised algorithms. 

In some cases, the new method will facilitate understanding of the concepts 

involved. 

Understanding how and why a procedure solves a problem must be 

valued by the educational community (the classroom, school or broader 

community) before students will value understanding over simply getting the right 

answer. The repeated application of the procedure, always accompanied by 

discussion of what is represents at each stage, will help to develop this 

understanding and reduce the likelihood of rote memorisation. 

3. A new procedure must appear initiallv plausible 

The examples and homework questions mentioned under condition 1, 

which require much effort and time when using the students' prior method, must 



148 

then be seen to be solved easily using the new method. It is also important to 

consider appropriate use of current technology when developing questions which 

are intended to show the strengths of the new procedure. The same problems 

should be solved using both methods to convince the students that the same 

answer is obtained, and the students should be encouraged to propose 

advantages and disadvantages of each method. This should prevent a given 

method being associated with a particular style of question and will encourage 

the students to make informed choices for approach in the future. 

It is to be expected that students will need time and practice in order to 

become sufficiently familiar with a method that they will use it in situations of 

consequence, such as examinations. However, confirming that the new method 

is not only acceptable, but desirable, will help to combat beliefs held by some 

students about the type of approaches and procedures that are acceptable to 

the mathematics community, and which may prevent the adoption of some 

methods. 

Since the new method must be consistent with other knowledge 

previously constructed by the learner, it may be necessary to review key ideas 

before introducing the new procedure. This illustrates the importance of teaching 

for understanding at every stage in mathematics education, since a lack of 

understanding can prevent a student from learning at a later stage. 

4. A new procedure should suqqest the possibilitv of fruitfulness 

The students should apply the new procedure to different situations, 

solving a variety of problems, not just one specific type of question. Perhaps 
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other procedures based on the same approach could be demonstrated. Students 

should be encouraged to examine the procedure and seek out any new 

mathematical directions it may suggest. Assessment tools can be used to 

encourage the new approach either by requiring its use, or by giving more credit 

to those who use an elegant or efficient method. 

Further Research 

I would like to continue the work of this study by developing instruction, 

based on this teaching strategy, to promote the methods under discussion here. 

My instruction given in the course underestimated what was needed to make 

some students dissatisfied with the conversion method for mixed number 

calculations and the repeated two or one-step methods for percentage change. 

Problems given in class and for homework should have been more 'extreme'. 

The fact that different notations can represent a given quantity, without having to 

calculate the value and represent it in decimal notation, is knowledge that would 

be beneficial for all the topics and this should have been emphasised more. For 

some students the compound one-step method was difficult to understand and 

more time was needed for relating (1 00 x)% to an increase or decrease of x%. 

Students should be encouraged to explain what is represented by each step in 

the procedures and they should themselves describe the advantages and 

disadvantages of each method. Lastly, the students should be required to 

demonstrate the ability to use all the methods discussed in the course and to 
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choose appropriately for particular questions. This is especially important for the 

students in this study, most of whom will become teachers and will need to be 

able to present more than one method to their own students. 

The theory of conceptual change has been developed to give a theory of 

procedural change, but in this study I did not explore to what degree the 

procedural change was a result of conceptual change. Some comments made 

by students clearly indicated that they had adopted a method because of a new 

grasp of the concept, but others did not refer to their conceptual understanding. 

Similarly, it was not investigated to what extent resistance was due to a lack of 

conceptual understanding. Conducting research into the relationship between 

conceptual change or understanding and the adopting of or resistance to new 

procedures could be very productive. A further component of this work could be 

to discover the robustness of the adoption or resistance: whether students 

continued to use methods adopted during the course, or resisters eventually 

adopted the new procedures, months or years later. 

The introduction of new approaches to problems that can be solved by a 

procedure already known to the students is not limited to the topics under 

discussion in this study, nor to the content of courses for pre-service elementary 

teachers. Examples can be taken from many areas and can be found in 

advanced, as well as elementary, mathematics. In fact, whenever there is more 

than one possible approach to solving a problem, students will usually meet the 

different methods sequentially rather than simultaneously, and must therefore be 

able to adopt a new approach when a correct method is already known. 
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In addition to the examples taken from linear algebra, discussed in an 

earlier chapter, there are several topics suitable for examination in calculus. 

Consider the following integral: 

1 
J o 4 x ( 2 x - l ) 4 d x  

A student first learns to integrate polynomials and can find the value of this 

integral by expanding 4  x ( 2  x - i ) 4  = 6 4  x5 - 128 x4 + 96 x3 - 32 x2 + 4  x , then 

Later, the student meets integration by substitution and finds that a much more 

efficient way to solve the above integral is by substituting u = 2  x  - 1 , giving 

1 1 1 1  1 1  2 S - , 2 ( u + l ) u 4 . $ d u  = S - , ( u 5 + u 4 ) d u  = [ + u 6 + j u 5 ] '  - 1 = [ a + S ] - [ a - S ]  = - 5 

Is there a resistance to adopting the method of substitution when prior methods 

will suffice? What motivates students to adopt the new method in this situation? 

Further research could be conducted in areas of advanced mathematics 

to discover if the adoption of the new methods is influenced by the same factors. 

The theory of procedural change should be tested against the findings of such 

research and adapted as appropriate. Improved teaching strategies can then be 

developed for greater success in encouraging students to be flexible in their 

approach, allowing them to choose the most efficient method for a given 

situation. 

The list of possible topics in mathematics is almost endless and this 

situation is also encountered in other disciplines, for example, medicine. Some 
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doctors are reluctant to move to new ways of healing because of a lack of time to 

learn the new ways and a belief that the risks involved with the current method 

are acceptable. In other words, they are not sufficiently dissatisfied with their 

current methods to adopt a new approach. Perhaps they do not fully 

comprehend the new approach, or perhaps they do not think it will fulfil the 

shortcomings of the old method, or it is incompatible with their beliefs about 

medicine - the new method is not initially plausible. If they do not consider it to 

have the potential to be fruitful, then perhaps they do not consider learning it a 

good investment of their time. 

Summary 

A desirable outcome of mathematics education is to equip students with 

the ability to choose an appropriate strategy for a given problem, from a range of 

procedures and algorithms. We want to discourage students from simply doing 

the first thing that they think of, out of habit, and we want them to understand the 

concepts behind the procedures. In this study I have examined the reasons why 

a student may adopt or resist a new approach to solving a problem. The 

student's prior knowledge, including beliefs, affects this often subconscious 

choice and simply pointing out the benefits of the new method is not always 

enough. 

The theory of conceptual change proposed by Posner, Strike, Hewson 

and Gertzog (1 982), provided a basis for considering what motivates students. 
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This theory was then adapted and extended to fit a broader range of 

circumstances, giving rise to a theory of procedural change. The new theory is 

applicable to situations where the prior knowledge of the student is not incorrect. 

Some of the implications of the procedural change theory for teaching 

strategies were considered and the need for further research has been 

acknowledged. The theory should be tested using other mathematical topics, 

and even topics from other disciplines, in order to confirm that is able to explain 

the behaviour of students. 
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APPENDIX B: PILOT INTERVIEW QUESTIONS 

Math1 SO Support Group Interviews, Fall 2000 

SECTION A 

What is a multiple? 

What is a factor? 

Give some multiples of 12. 

Give some factors of 1 2. 

What is the least common multiple (LCM) of some numbers? 

What is the greatest common factor (GCF) of some numbers? 

Find the LCM of 42 and 154. 

Find the GCF of 42 and 154. 

Find the LCM of 9 and 15. 

Find the GCF of 9 and 15. 

SECTION B 

Explain the meaning of a fraction, for example , 

Find the value of j + . 
7 5 Find the value of , -, . 

Explain the meaning of a mixed number, for example 3 . 

Find the value of 4 + 7 . 

Find the value of 6 - 2 . 
Find the value of 31 + 6 f . 

Find the value of 94 q - 11  f . 

Find the value of 27 $ + 8 . 

Find the value of 89:-34: . 
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SECTION C 

What is a percentage? For example, what does 18% mean? 

What is a percentage of a quantity? For example, what is 18% of 374? 

An item is marked $30. It is then put in a '20% off' sale. What is the sale 
price of the item? 

An item is marked $54. It is then put in a '33% off' sale. What is the sale 
price of the item? 

The population of a small town was 15,000 in 1997. The annual increase 
in the population of the town is 16%. 

What was the population in 1998? 

What was the population in the year 2000? 

A car cost $32,000 when it was new. The first owner sold it for 20% less 
than he paid for it. The second owner sold it for 25% less than he paid for 
it. The third owner sold it for 10% less than he paid for it. 

How much did the third owner get for the car? 

Can you think of a quicker way to get the answer to part (a)? 



APPENDIX C: FIRST HOMEWORK QUESTIONS 

Math190 Homework 1,9th January, 2001 

A l )  (a) Using l8OlO as an example, explain what a percentage is. 

(b) Find 1 8% of 374. 

A2) A GIC gives 4% interest per year. I have $500 which I can use to buy a 

GIC now. How much will I have 

(a) 1 year from now? (b) 4 years from now? 

A3) Five weeks before Christmas a crafty store manager raised all prices by 

15%. In the week before Christmas she announced a sale and lowered 

the prices by 10%. On Boxing Day she put up a sign saying, "Final 

clearance, an extra 10% off all prices!" 

A customer bought a ski-jacket in early November. She was so happy with 

it that she told a friend, who decided to wait until the Boxing Day sales. 

The jacket was originally marked $250. 

(a) How much did the friend pay for the jacket? 

(b) Would you have waited for the Boxing Day sale? 

(Explain your reasoning.) 

An assistant in the store told the manager that he had found a much easier 

way to calculate the final sale price. Since they had added 15%, taken off 

lo%, then another lo%, he could just take 5% off the original price. 

(c) Should the manager let him do that? 

(d) Is there a quick way to calculate the final sale price from the 

original price? 
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B1) (a) Give three multiples of 12. (b) Give three factors of 12. 

The least common multiple of 9 and 15 [written LCM(9,15)] is 45, because this is 

the smallest number which is a multiple of 9 and is also a multiple of 15. 

The greatest common factor of 9 and 15 [written GCF(9,15)] is 3, because this is 

the largest number which is a factor of 9 and is also a factor of 15. 

B2) (a) Find LCM(42,154). (b) Find GCF(42,154). 

4 C1) Using as an example, explain what a fraction is (you may draw a 

picture). 

C2) Find the value of (a) $ +: (b) $-2 

C3) Using 3 f as an example, explain what a mixed number is. 

C4) Find the value of (a) 4 + 7 5 (b) 6-2; 

C5) Find the value of (a) 3 1 + 6 1 3 (b) 94:-11: 

C6) Find the value of (a) 27 % + 8 : (b) 89:-34: 
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APPENDIX D: MIDTERM EXAMINATION QUESTIONS 

Math1 90 Midterm #2,13th March, 2001 

1 .(c) Find the value of each of the following: 

(show enough working to clearly indicate your method of calculation) 

(ii) 8 + 3 f  

(iii) 4 - 2 

2.(a) Find the greatest common factor and least common multiple of 280 and 

300. 
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3.(a) The population of Castleton was 3251 in 1980 and 51 79 in 1990. 

(i) What was the percentage growth in the population between 1980 

and l%O? 

(ii) Between 1990 and 2000 the population of Castleton fell by 19%. 

What was the population in 2000? 

3.(b) Investors in mutual funds are warned that the value of the fund may fall in 

some years. On 1 st January 1997 Sheila invested $5000 in a mutual fund. 

Here is the performance of her fund: 

1997 gained 12% 

1998 gained 23% 

1999 lost 16% 

2000 gained 8% 

What was the value of Sheila's investment on 1 st January 2001 ? 
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APPENDIX E: INTERVIEW QUESTIONS 

Math1 SO Interviews, Spring 2001 

SECTION A 

1) Find the value of 8 f - 5 $ . 
2) Find the value of 6 + 2 . 

3) Find the value of 5 - 3 . 

4) Find the value of 42 f - 30 f . 

5) Find the value of 324 5 + 213 

SECTION B 

1) House prices rose by 12% during 1994. If an average house cost 

$180,000 at the beginning of the year, how much would it cost at the end 

of the year? 

2) House prices fell by 8% during 1998. How much would a house costing 

$250,000 at the beginning of the year be worth at the end of the year? 

3) The records of the Keep Fit gym show that in 1995 there were 600 

members. The membership rose by 15% in 1996 and rose again, by 9%, 

in 1997. 1998 was a bad year and the number of members fell by 17%, 

and this was followed by another small decrease (of 4%) in 1999. 2000 

was a better year and the membership rose by 19%. How many members 

did the gym have in 2000? 



1 70 

APPENDIX F: FINAL EXAMINATION QUESTIONS 

Math1 SO Final Examination, 20th April, 2001 

2.(d) A store raised the price of its winter sports equipment by 16% in October. 

In January there was a New Year sale: 25% off marked prices. 

In March prices were reduced again: 30% off sale price. 

In April a final clearance sale was announced: 40% off March prices. 

What percentage of the original (September) price was saved by a 

customer making a purchase in April? 

4.(c) Find the value of 3 f - 1 and draw a diagram to illustrate the calculation. 




