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Abstract 

Radial basis functions (RBFs) have originally been used as an effective tool to inter- 

polate data. The basis functions (all translations of one radial symmetric function) 

can be centered at arbitrary points in the domain of interest, hence providing a truly 

meshfree approximation, i.e., a wireframe parametric surfaces is not required. For 

certain types of RBFs exponential convergence has been shown. 

This thesis deals with various aspects of using RBFs in scientific computing prob- 

lems. The first part treats the interpolation problem: instead of solving the interpo- 

lation equations, however, a quasi-interpolation procedure provides an approximate 

interpolation formula without solving any matrix system. We propose a multilevel 

scheme for achieving better smoothness of an existing univariate quasi-interpolation 

scheme for RBF, and prove its convergence. Then we extend the results to higher 

dimensions, and study a boundary padding technique that improves accuracy. 

Over the last decade or so, researchers have investigated the use of RBFs in the 

numerical solutions of ordinary (ODES) and partial differential equations (PDEs). 

In the second part of this thesis we introduce a new RBF collocation method for 

singularly perturbed boundary value problems (we implement this method for two- 

point boundary value problems). Our method can achieve high accuracy even for 

extremely thin layers, E = O(10-12). We then modify our scheme to become adaptive, 

which results in a very robust method without the need for fine tuning parameters. 

In general, when using RBFs to solve PDEs, the resulting matrices are full and 

severely ill-conditioned. Therefore, applications of RBF-PDE were once restricted to 

problems of moderate size solved with direct methods. The third part of this thesis 
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addresses this problem with a preconditioning technique based on approximate car- 

dinal basis functions (ACBFs). We then couple the ACBF preconditioning technique 

with the domain decomposition method (DDM) which allows one to solve large-scale 

PDE problems in parallel. 
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Chapter 1 

Background 

1.1 RBF Interpolation 

Over the last 30 years, many researchers have shown a great deal of interest in radial 

basis functions (RBFs). 

Radial basis functions have been used for interpolation problems as well as for 

numerically solving differential equations. 

Definition 1.1.1 If $ : + IR and $(x) = $(y) whenever llxll = llyll, then $ is 

called a radial basis function. 

There are an infinite number of possible univariate RBFs. Denoting r by the Euclidean 

distance between any pair of points in the domain R,  some of the more commonly 

thin-plate spline 

power spline 

Hardy's multiquadric 

inverse multiquadric 

exponential spline 

Gaussian spline 

Matern spline 

CS-RBF spline 

SCPD2 

SCPDl 

SCPDl 

SCPDO 

SCPDO 

SCPDO 

SCPDO 

SCPDO 
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Here K, is the modified Bessel function of order v , and p(r) is a polynomial of 

the Wendland [I031 compactly supported (CS-RBF) spline. The error estimate for 

CS-RBF can be found in [105]. 

The following definition deals with the positive definiteness of $([[xi - xj ( / ) .  

Definition 1.1.2 A function $ E C0 : R+ t R is strictly conditionally posi- 

tive definite of order m (SCPDm) on Rd if for every set of distinct data points 

{xi , .  . . , xN)  C Rd 
N N  

CC xi xj  $(//xi - xj/I) > 0 
i=1 j=1 

for all non-zero {A1,. . . , A N )  satisfying, 

for all polynomials p degree less than m. 

The idea of RBFs is to  use linear combinations of translates of one function $(r) 

of one real variable, centered at  "data centres" xk E IR?, to approximate an unknown 

function: 
n 

S(X) = $ ( \ I x  - ~ k l l )  + P(x), 
k=l 

(1.1) 

where p E II&-l is an appended polynomial of degree m - 1 or less in El!. The data 

centres xk can be chosen arbitrarily in the domain of interest, hence creating a truly 

meshfree method; a wireframe parametric surface or connections between data centers 

is not required. 

The interpolation problem is to find Xk and p(.) such that the interpolant s(x) 

passes through all data, s(xi) = fi. In matrix form, 

where (A4)ij = $(xi - xj) ,  Pij = pj(xi), j = 1 , .  . . , dim(II$-,), {pj) is a basis 

for II$-,, and y is the expansion coefficients of p(x) with respect to the basis for 
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IIL-,. When the degree of the appended polynomial is chosen to be the order of 

strictly conditionally positiveness definite, then the interpolation problem (1.2) is 

always solvable for every set of distinct set of points unisolvent for IIL-, . 

Definition 1.1.3 Let X = {xl, ..., xN) be a subset of IFf and let p E II&-, be any  

polynomial of degree m - 1 or less. The  set X is  said to  be unisolvent if p(xj) = 0 

for all j implies that p E 0. 

A set is unisolvent for II: if all data points are distinct; a set is unisolvent for IIf if 

not all elements sit on a line, and so on. For compact notation, let IId, denotes the 

null space. Now we present a theorem of RBFs solvability. 

Theorem 1.1.1 If the radial basis function q5 i s  SCPDm, then the interpolation ma-  

tr ix in (1.2) i s  non-singular, and the interpolation problem (1.1) has a unique solution 

for every set of distinct data points unisolvent for II&-, . 

Therefore, a SCPDO or SCPDl RBF requires a distinct set of data points. The 

matrix A# resulting from a SCPDO RBF is symmetric positive definite. A SCPDl 

RBF requires any set of data points that is not co-linear in order to guarantee an 

invertible matrix system. 

In [42], F'ranke's numerical experiments compared 29 interpolation methods with 

analytic two-dimensional test functions. One of the most powerful method is the RBF 

method based on multiquadric (MQ) basis function 

suggested by R. L. Hardy [52]. Madych and Nelson [78, 791 showed that interpolation 

with the MQ basis is exponentially convergent based on reproducing kernel Hilbert 

spaces. Wu and Schaback [I081 use a different technique to prove the same results. 

Their technique is general enough to handle the case of interpolation with the power 

spline and the thin plate spline. Buhmann also showed the spectral (i.e., exponen- 

tially) convergence property of the MQ basis in [17, 181. Since the Hilbert space is 

small when the radial basis function is smooth, the function being interpolated has to 
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be extremely smooth for the error estimates to  apply. Yoon [log] showed that the MQ 

basis function method converges exponentially in a Sobolov space. Similar results for 

the thin plate spline (TPS) can be found in [104]. This was verified numerically by 

Fedoseyev et al. [35]. MQ interpolation becomes increasingly accurate as the shape 

parameter c in (1.3) increases 1791; the convergence rate goes as v f  , where v < 1 and 

h is the average distance between pairs of data centres. Carlson and Foley [21] show 

that the location of the data points has less effect on accuracy of the optimal solution, 

but the choice of shape parameter is playing an important role. The price for this 

increased accuracy is usually ill-conditioning of the associated linear systems which 

need to  be solved: the "uncertainty relation" [91, 92, 931 of Schaback. 

To specify the MQ basis, one must specify the centres x j  and the MQ shape 

parameter cj. Most authors use the collocation points as centres for the MQ. Fornberg 

et al. [39] have worked on different data centers and collocation points placements 

near boundary. Too large or too small shape parameters cj make the MQ basis too 

flat or too peaked, respectively, and should both be avoided. Hardy [52] suggested a 

constant shape parameter c = 0.815 x mean(dj), where dj is the distance from the jth 

point to  its nearest neighbour. Moody and Darken 1861 suggested simple varying shape 

parameters cj = 0 dj, where 0 > 0 is a constant factor. Various other nonconstant 

shape parameters are employed by Kansa et al. [69, 871 and Hon et al. [61, 621. Wang 

and Liu [loll studied the effect of shape parameters on the numerical accuracy of 

MQ . 
We list some recent work on handling the RBF's ill conditioning problem. Beatson, 

Cherrie, and Mouat [7] recast the RBF basis in terms of a set of basis functions into 

a better conditioned one based on the far field expansions of RBFs. This results in 

approximate cardinal functions and lowers the computational cost of solving the RBF 

interpolation problem to  O ( N  log N)  operations. Interested readers can find more 

studies of cardinal functions of MQ by Buhmann and Micchelli 1191, and by Baxter 

[5]. Another important work of Beatson and co-workers 17, 8, 11, 131 is the fast matrix- 

vector product algorithm. The set up cost is only O ( N  log N). The evaluation of the 

MQ expansion a t  any x E IF$ requires O(1og N)  operations, that is much faster than 

the O(N)  operations for direct evaluation. This greatly improves the efficiency of all 
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iterative methods designed for MQ interpolation problems. Mouat [85] showed the 

condition number for the preconditioned MQ interpolation matrix with 3200 scattered 

centers in R? is of order C?(102), whereas that of the unpreconditioned matrix is of 

order 0(108). 

Fornberg and co-workers [40, 721 have demonstrated extra-ordinary convergence 

rates with the C" RBFs such as multiquadrics and Gaussians in the limit as c+ co. 

They show that such convergence is not possible with piecewise smooth RBFs such as 

the thin plate splines and the r2"' splines. Near the critical value of the shape param- 

eter (at which rounding error starts to affect accuracy badly), they permit the shape 

parameter to become complex, and find that branch points and removable poles cause 

singularities. They removed such singularities by Cauchy-Pad6 contour integration. 

In [72], Larsson and Fornberg solved the Poisson equation with remarkable accuracy. 

Their MSR errors were on the order of 10-l2 with relatively few data centers. 

Baxter [6] employed the well developed Toeplitz theory to get an iterative solver for 

gridded data. On such data, the resulting interpolation matrix would enjoy (block) 

Toeplitz structure. The approximate inverse of the (MQ) interpolation matrix is 

constructed by the inverse of its m-by-m principle matrix. In the same article, a 

problem with N = 32768 and m = 9 is solved with the conjugate gradient method to 

obtain impressive results. 

Besides direct interpolat ion, the applications of RBF interpolation include finding 

the global minimum of a continuous nonconvex function on a compact subset [51], 

accelerating a simulated annealing method [I], estimating the global minimizer with 

a SQP algorithm [65, 661, medical imaging [22], surface reconstruction [25, 26, 271, 

and more. 

1.2 RBF Collocation methods 

The history of using RBF in solving partial differential equations (PDEs) is relatively 

short. In 1990, Kansa [68, 691 pioneered the use of RBF for the numerical solution of 

the Navier-St okes equations of fluid flow. Applications of RBF-PDE arise commonly 

in various ordinary and partial differential equations. To name a few, they include 
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initial value problems [61], the nonlinear Burgers' equation [62], operator splitting- 

RBF [4], boundary layer problems [56, 771, surface wind field approximation [54], 

biphasic and triphasic models of mixtures [59, 601, the shallow water equation [58, 

106, 1101, and financial mathematics [63, 801. 

To introduce RBF collocation methods, we consider a PDE in the form of 

where d is the dimension, dS2 denotes the boundary of the domain R, C is the differ- 

ential operator that operates on the interior, and B is an operator that specifies the 

boundary conditions of Dirichlet, Neumann or mixed type . Both f and g are given 

functions mapping R! -+ IR. 

Using Kansa7s asymmetric multiquadric collocation method, similar to (I. I ) ,  the 

unknown PDE solution u is approximated by RBFs in the form 

where $k(x) = $()(x - xk ( I ) ,  and $ can be any radial basis function, p(.) E IT&-, is 

a polynomial of degree m - 1 or less, and ) (  . 1 1  indicates the Euclidean norm. Let 

{ (xj, uj) }El be the N collocation points in RuBR. We assume the collocation points 

are arranged in such a way that the first NI points and the last NB points are in R and 

on do, respectively. To solve for the N + m unknown coefficients A = [A1, . . . , ANIT 

and p(-) in (1.5), N + m linearly independent equations are needed. Ensuring that 

U(x) satisfies (1.4) a t  the collocation points results in a good approximation of the 

solution u. The first N equations are given by 

N 

C AkC&(xi) + @(x) = f (xi) for i = 1 , .  . . , NI, 
k=l 
N (1.6) 

x*B$~(x~)  + @(x) = 9(xi) for i = NI + 1 , .  . . , NI + NB. 
k=l 

The last m equations could be obtained by imposing some extra condition on p ( . )  
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Rewriting (1.6) in matrix form, we have 

and 
(Ac)ik = @(xi - xk),  for i = 1,. . . , NI, 

(AB)ik = B$(xi - xk), for i = NI + 1,. . . , NI + NB. 
(1.8) 

This method is often named the asymmetric collocation method. The matrix given 

by (1.7) and (1.8) is generally non-symmetric and full; this system of equations is 

known to be ill-conditioned when N or c becomes large. The symmetric collocation 

approach can be found in [34]. The idea is to modify the RBF basis in (1.5) using 

the differential operator L and B. Since higher order derivatives are employed in 

the numerical formulation, generally speaking, the symmetric method is less accurate 

than Kansa's method, and is therefore less popular. 

There is ample evidence that RBFs, especially MQ-RBFs, offer many computa- 

tional advantages over traditional methods. Some of the advantages of RBFs are 

their truly meshfree nature and their very high order rates of convergence, see Gol- 

berg, Chen, and Karrur [48], Cheng et al. [24], Fedoseyev [35]. That is, for small to 

moderate sized problems, RBFs often outperform traditional methods. In [46], Gol- 

berg and Chen observe competitive results of RBFs with 60 points versus the linear 

FEM with 71000 points. The main concern is whether RBFs can be computationally 

efficient with large scale, and geometrically complex problems. Thus, there is a re- 

luctance to  embrace this method because of the perceived problems associated with 

ill-conditioning and the operation counts associated with very wide or full matrices. 

The problem of ill-conditioned large systems of equations is not unique to RBFs. 

Compactly supported methods such as finite differences, finite elements, and finite 

volumes also suffer from ill-conditioning when the dimension of the system becomes 

very large. However, their ill conditioning grows slower than for global RBF. The 

problem of ill conditioning forces one to  use direct methods instead of iterative meth- 

ods to solve the resulting RBF-PDE matrix systems. With the Gaussian elimination 
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methods, the number of operations required is O ( N ~ ) .  Kansa and Hon [70] showed 

that a truncated MQ expansion yielding sparse matrices was capable of yielding very 

good accuracy in the solution of elliptic PDE problems, although direct methods were 

still used over each subdomain. 

If a domain is decomposed into many semi-independent subdomains containing 

Nk << N points, the condition number as well as the operation count in each sub- 

domain is considerably reduced. There are basically four ways to overcome the ill- 

conditioning problems, see Smith, Bj~rs tad,  and Gropp [96]: (i) preconditioning, 

(ii) domain decomposition methods (DDM) using overlapping or non-overlapping 

schemes, (iii) combinations of domain decomposition and preconditioning, and (iv) 

removal of singularities by Pad6-contour integration developed by Fornberg and co- 

workers 138, 40, 411. Hardy 1531 showed that very accurate results could be obtained 

without resorting to global expansions; Hardy and co-workers were the first to  use the 

domain decomposition method (DDM) in a variety of image reconstruction problems. 

In [55], Hon and Schaback provide counterexamples to show that a general proof 

of nonsingularity for unsymmetric collocation is impossible. However, their numerical 

evidences show that cases of singularity are rare. It takes more than 7000 random 

samples to  find a counterexample. The existence of singular counterexamples does 

not reject the importance of RBF collocation methods. One can slightly move one or 

a few data points, or change the value of the shape parameter, if near-singularity is 

detected. 

Franke and Schaback 1431 give the first theoretical foundation for RBFs with the 

error estimate, 

Then, in [44] they show that Ilu - U ( 1  < O ( h ~ - q / ~ ) ,  where p measures the regularity 

of the solution, q is even and denotes the order of the differential operator L. 
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1.3 About this thesis 

This dissertation deals with various aspects of using RBFs in scientific computing 

problems. 

We begin with a study of the quasi-interpolation problem. Instead of solving 

the interpolation equations, a quasi-interpolation procedure provides an approximate 

interpolation formula without solving any matrix system. In chapter 2, we propose 

a multilevel scheme for achieving better smoothness of an existing univariate quasi- 

interpolation scheme for MQ-RBF, and prove its convergence. Then we extend the 

scheme to  higher dimensions. We show that the technique of boundary padding can 

improve accuracy. The relationship between smoothness and derivative approximation 

is also studied. 

In chapter 3, we focus on the numerical solutions of boundary layer problems. We 

concentrate on the case where these layers occur near the boundary, although our 

method can be applied to problems with interior layers. One technique to deal with 

the increased resolution requirements in these layers is the use of domain transforma- 

tions. A coordinate stretching based transform allows one to  move collocation points 

into the layer, a requirement to  resolve the layer accurately. Previously such transfor- 

mations have been studied in the context of finite difference and spectral collocation 

methods. We use radial basis functions (RBF) to  solve the boundary value problem. 

Specifically, we present a collocation method based on multiquadric (MQ) functions 

with an integral formulation combined with a coordinate transformation. We find 

that our scheme is ultimately more accurate than a recently proposed adaptive MQ 

scheme. 

The advantages of radial basis functions also allow our scheme to  become adaptive 

relatively easily. We introduce a new error indicator function which accurately cap- 

tures the regions of the interval with insufficient resolution. This indicator is used to 

adaptively add data centres and collocation points. The method allows us to  resolve 

extremely thin layers accurately with fairly few basis functions. The adaptive scheme 

is very robust, and reaches high accuracy even when parameters in our coordinate 

stretching technique are not chosen optimally. 
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Our third research topic studies different preconditioning techniques for solving 

partial differential equations (PDEs) with radial basis functions collocation meth- 

ods. In chapter 3 we present a simple preconditioning scheme that is based upon 

constructing least-squares approximate cardinal basis functions (ACBFs) from lin- 

ear combinations of the RBF-PDE matrix elements. The ACBFs transform a badly 

conditioned linear system into one that is well conditioned, allowing us to solve for 

the expansion coefficients iteratively, so we can reconstruct the unknown solution ev- 

erywhere on the domain. Our preconditioner requires 0 ( m N 2 )  flops to  set up, and 

O(mN) storage locations, where m is a user defined parameter of order 10. For the 

two dimensional MQ-RBF basis with the shape parameter c N 1/n, the number of 

iterations required for convergence is of order 10 for large values of N ,  making this a 

very attractive approach computationally. 

The idea of the classical alternating Schwarz algorithm was first published by 

Schwarz [94] in 1870. The application of DDM includes finite difference methods, finite 

element methods, finite volume methods, and spectral methods for linear or nonlinear 

problems, and other applications. Readers should refer to the proceedings of the 

annual domain decomposition meetings for the most recent developments. Recently, 

as interest in RBFs increased, researchers began to combine the DDM with RBF 

methods. 

Hardy [53] was the first to use DDM on interpolation and approximation problems. 

In fact one of Hardy's most impressive discoveries was that excellent accuracy did 

not depend on global expansions. Kansa [69] used DDM on a hyperbolic problem; 

later Dubal [28] applied DDM with the MQ RBF to solve one-dimensional problems. 

Kansa and Hon [70] found that the fineness of the domain cuts had a big impact 

on the ill-conditioning problem and achieved better accuracy. Advances on coupling 

overlapping domain decomposition and RBF methods can be found in [107, 1111. 

RBF-PDE solution methods that incorporate the newly developed least-squares 

preconditioners permitting GMRES iteration, domain decomposition methods, a con- 

trolled degree of coefficient matrix sparsity, and fast multipole expansions under cer- 

tain circumstances can outperform traditional mesh-based methods that give rise to 

sparse matrices. The question is whether a more complex, very high or exponentially 
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convergent method requiring a much coarser discretization is more efficient than a 

very low order sparse scheme. A thorough study to  answer this question has yet to 

be undertaken. 

We couple the ACBF preconditioning technique with a domain decomposition 

method (DDM), namely, the classic alternating Schwarz algorithm. The truly mesh- 

free RBFs collocation methods allow the Schwarz algorithm to be applied to both 

matching and non-matching nodes without any modification. Our met hod allows the 

dimension of the matrix to be reduced and therefore allows the ACBFs preconditioner 

to work more efficiently. We experiment with different implementations of the ACBF- 

DDM scheme and provide numerical results for N > 10,000 nodes. Our algorithm 

not only helps reducing the overall work of solving RBF-PDE systems, but we also 

show that the ACBF-DDM method is more efficient than solving the global RBF-PDE 

problem with ACBFs preconditioning alone. In particular, efficiency can be improved 

by using more subdomains. 



Chapter 2 

On Quasi Interpolations 

2.1 Univariate Quasi-interpolat ion formula 

The standard formula for the interpolation of a function f E C1 : [a, b ]  t IR on 

scattered points and data {(xj, fj))T=o where 

has the form 

where 

and x(.) is an interpolation kernel, for all 0 5 k 5 n. 
In this chapter, we focus on the quasi-interpolation method. A weaker form of 

(2.2), known as quasi-interpolation, holds only for polynomials of degree d, i.e., 

for all 0 5 Ic 5 n. Beatson and Powell [I41 first proposed a quasi-interpolation formula 

where ~ ( x )  in (2.3) is a linear combination of the MQ defined in (1.3). Their formula 

requires derivative values of f at  endpoints, which is not convenient for practical 
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purposes. Wu and Schaback [I021 proposed another quasi-interpolation formula with 

modification at the endpoints. Given data { ( x j  , f j ) } L o ,  WU-Schabackls formula is 

where 

The interpolation kernel ai is chosen so that the quasi-interpolation formula (2.5) can 

exactly reproduce the constant and linear functions. 

The main advantage of this formula is that it does not require solving any linear 

system. Instead, the formula uses the given function values f j  at  xj as its coefficients. 

The drawback is that instead of c = O ( h ) ,  one needs to use a smaller shape parameter 

c in order to achieve quadratic convergence resulting in less smoothness. Therefore, we 

propose a scheme using the same basis (2.6) which allows a shape parameter c = O ( h ) .  

Moreover, we study the convergence rate of our proposed scheme. 

For the readers' convenience, we quote some of Wu-Schaback's theorems here 

without proofs. 

Theorem 2.1.1 [102, Theorem 21 If the data f ( x ~ ) ; = ~  stem from a convex (concave, 

linear) function, then the quasi-interpolant Lv f ( x )  as defined by (2.5) and (2.6) is a 

convex (concave, linear) function. 

Theorem 2.1.2 [102, Theorem 31 The quasi-interpolation Lv f ( x )  is  monotonicity 

preserving. 



CHAPTER 2. ON QUASI INTERPOLATIONS 14 

Theorem 2.1.3 [102, Theorem 4 & corollary] For f E C2[a, b] the quasi-interpolant 

Lv f (x) defined on  the points (2.1) satisfies an error estimate of type 

11 f - Lv f (x))I, 5 ~ l h ~  + K2ch + K ~ C ~  log h 

for h -+ 0 with suitable positive constants K1, K2, and K3 independent of h and c. 

The quasi-interpolant Lv f (x) can have 0 (h2 )  error only if at least 

c2 1 log cl = 0(h2) .  

Furthermore, Wu and Schaback concluded that no improvement towards 0 (h2 )  con- 

vergence is possible just by changes of end conditions or knot placements, provided 

that the aj for 2 5 j 5 n - 2 in (2.6) are used in the interior of the domain. 

2.1.1 The multilevel quasi-interpolation in 1-D 

Given a quasi-interpolation problem defined by (2.4) with d = 1 on scattered points 

(2.1), we will present a quasi MQ interpolation, denoted by LR in the form of (2.5) 

with the same basis as in (2.6) but using coefficients other than f j .  For any function 
n 

f E C1 : [a, b] -+ @ and data { (xj, fj})y=,, if we pick m = - and define an index 
2 

O = k(O) < k( l )  < . . . < k(m) = n ,  (2.7) 

we have another quasi-interpolation problem based on a smaller set of data, namely 

We denote by Lv(x,(j,} the quasi-interpolation Lv defined by (2.5) and (2.6) applied 

to data (2.8) on data points xk(j). Let the residual or error function after this coarse 

quasi-interpolation be 

•’(x) = f (4 - L ~ { x k ( j ) } f  (XI. (2.9) 

Using (2.9), we can define another quasi-interpolation problem on the original data 

points xj. The data being interpolated are 
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Since the function Lv{xk(j,~ f (x) is defined on IR and the function values f j  = f (xj) 

are known, the values Ej = &(xj) can be computed for all 0 5 j 5 n. 

Similarly, let LV{,,}E(x) be the quasi-interpolation applied to data (2.10) on the 

original points xj. We denote our new (level-1) quasi-MQ interpolation operator by 

Theorem 2.1.4 The quasi-interpolation LR preserve monotonicity. 

Proof: Applying theorem 2.1.2 proves the assertion. 

By rewriting (2.5) and (2.6), we get 

Note that it is cheaper to implement (2.12) instead of (2.5) to  evaluate the interpolant. 

An important work of Beatson and coworkers [8,9, 11, 131 is the fast matrix-vector 

product algorithm. If c is constant and 0 < c 5 h for all $, the cost of evaluating the 

MQ function a t  a large number of different evaluation points y through 

is O(1og n)  plus set-up cost using the fast multipole method for large n. This is much 

faster than the O(n) flop for direct evaluation of s(y). 

To have LR as efficient as Lv, we must use the same shape parameter c in both 

Lv{,,,,,} f (x) and Lo~xj}E(x). Doing so will avoid introduction of a new basis. As 
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Algorithm 1 Pseudo-code for quasi MQ interpolation CR. 
INPUT: x E IR?', f E K+' 

OUTPUT: X E K+' 

Find separating distance h = max (xi - 
l s i s n  

Pick a shape parameter c = O(h) 

Find coarse data X = (1 2)(x), F = (1 2)( f )  

Find coefficients X = Coef(F) 

Find error & = f - h t x } f  (x) 

Update coefficients X +-- Coef(&) + ( T  2)(X), 

indicated earlier, this results in an update of the undetermined coefficients for the 

n + 1 basis functions 

[ 4 1 , . . . , 4 n - l , 1 , ~ ] ,  (2.13) 

in (2.12). One may repeat this procedure to construct higher level schemes. We 

denote the level-2 scheme, with two updates in the undetermined coefficients, by LRn. 

This quasi M Q  interpolation will be studied numerically in Section 2.1.3. 

The pseudo-code of finding the undetermined coefficients of the quasi MQ inter- 

polation ,CR is given in algorithm 1 where (1 2) is any function that downsamples 

{xj}7='=, to {x~(~)};"=~ and ( T  2) upsamples the coefficients of Lntx,,,,} f (x), X E I F F ' ,  

to  the corresponding position with respect to (2.13). Coefficients of unused basis func- 

tions are zero. The function "Coef" maps the input data to  the coefficients defined by 

(2.12). Only minor modifications to the code of Wu-Schaback's formula are required. 

All steps in algorithm 1 cost O(n) flops except the step "find error" which costs 

n - O(1og n) flops to evaluate all the coefficients of the quasi-interpolation Ln(,,,,,, f 



CHAPTER 2. ON QUASI INTERPOLATIONS 17 

using the fast multipole methods. Thus the setup cost for LR is O(n1ogn). Once 

the coefficients are determined, one can always differentiate or integrate the functions 

(2.13) in order to approximate the derivative or the integral of f (x). 

2.1.2 The accuracy of the quasi-int erpolat ion LR 

Suppose a quasi-interpolation satisfies (2.4) for some d. Then the error bound for the 

approximation of a smooth L2-function g(x) is given by: 

where g(d+l) denotes the (d + l)st derivative of g and K(x) is a constant depending 

only on the interpolation kernel x used in (2.3). This concept is introduced by Strang 

and Fix [36]; also see [99] for more recent developments. 

In this section, we show that for f E C2[a, b] the quasi-interpolation LR defined by 

(2.11) enjoys a convergence rate faster than the existing method defined by (2.5) and 

(2.6), and it allows one to  use c = O(h). When both I f"(a)J and 1 f"(b)J << 1 1  f1I((,, the 

convergence rate of our method will increase, which is numerically verified in section 

2.1.3. We extend the proof of results in [102]. 

From (2.12), we can easily see that LD reproduces constant functions and linear 

functions exactly. Besides (2.14), theorem 2.1.3 suggests for a smooth L2-function 

f (x) , we have 

By (2.9), (2.11), and (2.15), we have 

where 

K(c, h) = Klh2 + k c h  + K3c2 log h, 
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c is the shape parameter of $j(x) defined by (1.3), and h2 denotes the maximum 

separating distance of the data points xk(j). Since we have h2 = 2h as we assume 

roughly half of the data points are used in the coarse quasi-interpolation, the terms 

0 (h2 )  are also O(h).  We use the notation O(h) instead of 0 (h2 )  throughout the 

section. Also, note that there exists a point x* E [a, b] such that 

I ( l 1  I = f *  - L V { ~ ~ ( ~ ) } ~ ) "  (x*) 1 . 
Since @j E CW, the function & E C2[a, b]. Replacing Lv by LVIxkcj,} in (2.12) and 

differentiating with respect to x twice we get 

where the index k ( j )  is defined by (2.7). By the symmetry of the MQ function 

&!(q) = $(x). Applying the Trapezoidal integration formula to  the summation in 

(2.17), we obtain 

Combining (2.17) and (2.18), we have 

We define a (x)  = sign( f"(x)), and we assume f is neither a constant nor a linear 

polynomial (i.e., f" is not identically equal to zero). 
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Case 2.1.1 General case 

In  the first case, we look at the integral i n  (2.19). Assume a(x*) = +l, and 

x* E ( a ,  b).  (There is no loss in  generality. I f  x* = a or x* = b ,  replace x* i n  (2.16) 

by z* f &, respectively. Then, E1'(x*) = E1'(z*) + O(&) . )  It is easy to  verify that 

# ' (x )  is a strictly positive decaying function, and for any shape parameter c,  

03 

= 1 V x E IR. 

For any x*,  the function ?$;*(q) becomes a nonnegative density function as c + 0.  

By  splitting the interval into ( q  - x*l < & and ( q  - x* I > &, One can show that 

Therefore, we get 

W e  conclude our results with the following theorem. 

Theorem 2.1.5 For f E C 2 [ a ,  b] the quasi-interpolant L R f  ( x )  converges to f ( x )  at 

a speed of 0 ( h 2 . 5  log h) under the !,-norm provided c = O ( h ) .  

Corollary 2.1 . I  If the data f ( ~ ~ ) j n = ~  stem from a strictly convex (strictly concave, 

linear) function, then the quasi-interpolant LR  f ( x )  is a strictly convex (strictly con- 

cave, linear) function for h small enough. 

Proof: The linear case is trivial as LD interpolates linear function exactly. Suppose 

f is strictly convex and is not linear. The results above not only hold for x*, but also 

for all x E [a, b]. Thus, by (2.20) 

which is also strictly positive provided h is small enough. Applying theorem 2.1.1 

proves the corollary. I 
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Case 2.1.2 Special case 

This case includes functions whose second derivative at both boundaries are signif- 

icantly smaller than their &-norm. Assume x* E ( a  + A, b - A). Again we assume 

a ( x * )  = +l. Then  the term B ( f )  can be rewritten as 

and becomes one of the higher order terms. Furthermore, the integral in (2.19) can 

now be estimated by splitting the interval into 17 - x*I < L and 17 - x*(  > L where 

fi 5 L < A; i.e., we have more room to obtain a tighter bound than (2.20). 

This claim seems to be counter-intuitive. The function f may  behave badly inside 

the domain, LR f converges to f faster than theorem 2.1.5 predicts as long as f U ( a )  

and fU(b )  are relatively small compared with 11 full,. Note that a higher convergence 

rate is  not equivalent to better accuracy. When  f is smooth, the error will be small i n  

general. This will be studied numerically in Section 2.1.3. 

On  the other hand, case 2.1.2 reflects the spectral convergence property of MQ. The 

condition o f f "  on  boundaries implies that the linear basis can approximate f relatively 

closely at boundaries. The convergence rate is then determined by the interior MQ 

basis. 

2.1.3 Numerical examples 

In this section, we compare the rate of convergence of our formula LCR with the one of 

the Wu-Schaback's formula Lv, and the level-2 scheme LRz. We present results for 

the functions listed in figure 2.1. Test functions are normalized so that their ranges are 

of 0 ( 1 ) .  We are interested in how the MQ shape parameter affects the convergence 

rate and the accuracy. Over 

both convergence rate, and errors for 2-l1 are reported graphically. For figure 2 to 

figure 7, we use the dot ( - ), the plus sign ( + ), and the cross ( x ) to  denote the 

LCv, LR, and LR2 quasi-interpolation, respectively. 
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Figure 2.1: Test functions for the new quasi MQ interpolation scheme. 

We compute the quasi-interpolants on [0, I] with equal spacing h = 2-lo and 

h = 2-". For both h's, all three quasi-interpolants are evaluated at  4096 points to 

compute errors. The &-norm error is taken to be the maximum absolute error at  the 

points of evaluation. The convergence rate in theorem 2.1.5 for these particular h's is 

2.36. 

In the last example, we compare the traditional MQ-RBF interpolation and our 

quasi-interpolation scheme on small number of points. 

Example 2.1.1 (General case) The first example demonstrates the result in theo- 

rem 2.1.5. We report the results for 
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and 

The first function has maximum second derivative inside the domain, I f:(b)) FZ O.gi'81I fF(I. 

For the second function we have ((fill, = f [ ( b ) .  Convergence rates and errors of the 

interpolants are in figure 2.2 and figure 2.3. 

The convergence rate of ,Cv is consistently below 2 except at the last tested ra- 

tio, c l h  = 0.1. This verifies theorem 2.1.3 that Lv converges quadratically only if 

c21 log cl = 0 ( h 2 ) .  Furthermore, its errors decrease monotonically. Using small c is 

a trade-08 of smoothness to  achieve accuracy. This behavior reflects the fact that Lv 

is constructed based on  the piecewise linear interpolation by 1x1. The errors of using 

Lv are a magnitude larger than the other two methods for all tests. For all tested 

functions, LD behaves similarly. 

The results of LR are promising. For both f l  and f 2 ,  the convergence rates reach 

0(h2.08) when c = 0.8h. Despite the slower than predicted converge rates, they are 

approximately quadratic for all tested c between O.lh to  4h.  

Lastly, the level-2 scheme, &2,  behaves similarly to LR. This suggests that the 

lower bound of LR2's convergence rate is the same as L R ;  i.e., theorem 2.1.5 applies 

to LR2 too. Note that the errors of LR2 are smaller than the errors of LR for c 2 2h. 

This behavior can be observed for all functions f E C 1 .  In  this case, one may  want 

to spend O ( n 1 o g n )  extra flops for an extra update to get a n  even higher degree of  

smoothness. 

Example 2.1.2 (Special case) I n  this example, we use 

f 3 ( x )  = exp (-216(x - 0 . 8 ) ~ ) ,  

and 

f4(x)  = arctan (100(x  - 0.3)) ,  

to  mimic  impulses and shocks, respectively. From what we have learned from case 

2.1.2 in section 2.1.2, although these functions have very rapid local behavior, their 

second derivatives are almost locally supported and are nearly zero at both boundaries. 

W e  numerically verify our claim. 
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The results are shown i n  figure 2.4 and figure 2.5. The maximum rates of conver- 

gence under the !,-norm are 2.80 and 3.02 occurring at c = 0.9h and c = 1.2h for f3 

and f4, respectively. Both tests clearly show a much faster convergence rate than for 

the .functions in example 2.1.1 when c > h. The min imum error occurs around c = h 

for both tests: they are c = .6h and c = 0.9h for f3 and f4, respectively. 

A s  in example 2.1.1, we see that the optimal c for LR2 is between 2.3h and 3h  in 

terms of the rate of convergence under the !,-norm. From the result for f4, we can 

see that LR2 is  capable of 0(h3.5) convergence under the !,-norm when c = 3h; see 

figure 2.5. 

Lastly, the derivative values at the boundaries do not aflect the convergence rate 

of LD. 

Example 2.1.3 (Efec t  of second derivative at boundaries) Again we exam- 

ine the claim in case 2.1.2 of section 2.1.2. The functions tested are 

and 

f 6 ( x )  = sin(slrx) + 0.1 cos(32slrx). 

Both functions are oscillating at the same frequency. W e  construct f 5  to  have vanish- 

ing second derivatives at the boundaries. 

As  suggested, the results are dramatically diflerent. The  behavior of La f6  is similar 

to the functions i n  example 2.1.1; whereas that of .LR f5 is  similar to the functions in 

example 2.1.2. In  terms of errors, the min imum 6.98 x for L R f 5  is also a 

magnitude smaller than the 3.09 x for LR f6.  

Example 2.1.4 (Comparing with traditional MQ) In  many practical applica- 

tions, there are only few experimental data available. I n  this example, we compare 

our quasi-interpolation schemes with the traditional MQ-RBF interpolation (with ap- 

pended constant) on a smaller set of data points applying to two smooth test functions 
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Figure 2.2: Rate of convergence and error for test function f i(x) = sin(4.5~) 

Figure 2.3: Rate of convergence and error for test function fi(x) = x9 
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Figure 2.4: Rate of convergence and error for test function f3(x) = 
exp (-216(x - 0.8)2) 

Figure 2.5: Rate of convergence and error for test function f4(x)  = 

arctan (100(x - 0.3)) 
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Figure 2.6: Rate of convergence and error for test function f5(x) = sin(7rx) + 
0.1 sin(327rx) 

cnl c/h 

Figure 2.7: Rate of convergence and error for test function f6(x) = sin(7rx) + 
0.1 cos(327rx) 
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Table 2.1: Maximum errors of our quasi-interpolation schemes and the traditional 
MQ-RBF applying to f l  with different number of data points. 

Table 2.2: Maximum errors of our quasi-interpolation schemes and the traditional 
MQ-RBF applying to f 2  with different number of data points. 

f l  and f 2  introduced in  example 2.1.1. The maximum errors are evaluated at 212 

equally spaced points, and the shape parameters used in  this example are c = h. 

W e  summarize the results i n  table 2.1 and table 2.2, for f l  and f i ,  respectively. In  

both tables, we underline the results of quasi-interpolations that outperform traditional 

MQ-RBF. From table 2.1 and table 2.2, Wu-Schaback's formula CD is less accurate 

than the traditional MQ-RBF for all n. When n = 23, we see that both the level-1 

and level-2 multilevel scheme C K  and the LR2 have errors of the same magnitude as 

the traditional MQ-RBF, and they are more accurate than traditional MQ-RBF when 

n = 57 and n = 113. Our multilevel quasi-interpolation scheme is a very attractive 

alternative to the traditional MQ-RBF not only in  terms of eficiency but also i n  terms 

of accuracy. 

2.1.4 Discussion 

For all examples in Section 2.1.3, c = h appears to be a good shape parameter for Cv. 

For all test functions, both convergence rates and errors are optimized for c between 

0.5h and 1.5h. The level-2 scheme is a good choice if one desires an even higher degree 
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of smoothness. Its shape parameter should be chosen between 2h to  3h. 

We remark that we used two fixed data points to estimate the convergence rate of 

our scheme with different ratio of clh. The convergence rates of LD in the 12-norm are 

consistently better than in the !,-norm. For example 2.1.1, we obtain a consistent 

C?(h2.5) convergence rate for 1.4h 5 c 5 4h for both functions. For the other functions 

in example 2.1.2 and example 2.1.3, faster than cubic convergence rates are obtained. 

2.2 Multidimensional Interpolation 

Because the methods are matrix-free and fast, quasi-interpolation in higher dimensions 

are even more attractive in practice. There are no shortage of engineering problems 

that can be solved once a robust multidimensional quasi-interpolation scheme is suc- 

cessfully developed. In this paper, we suggest a possible extension of the multilevel 

quasi-interpolation scheme using the dimension-splitting MQ (DSMQ) basis that is 

readily preformed on parallel computers. We show that the cost of finding the co- 

efficients for the DSMQ basis is 3dN on IR?, and the work of direct evaluation of 

the quasi-interpolant can be reduced from l l N 2  in 2D and 16N2 in 3D to  = 2N. A 

boundary padding technique is employed to improve accuracy. Examples in 2D and 

3D are both given. 

In [lo], a quasi-interpolation formula for thin-plate splines on a square was pro- 

posed by Beatson and Light. Moreover, Li, Ho and Chen [76] introduced various 

quasi-interpolations in high dimensional case using radial function. While one could 

develop a quasi-interpolation formula using the MQ basis on arbitrary finite subsets 

of IR?, it is much convenient to relax some of the conditions. In this section, we ex- 

tend the Wu-Schback [I021 univariate quasi-interpolation formula to  two dimension on 

rectangular grid. The extension to  3D or higher dimension is straightforward. Then 

a multilevel formulation will be given in section 2.3. 

Similar to  the case of Lagrange interpolation, one could consider the basis functions 

ai(x) in (2.6) of Wu-Schaback's formula (2.5) as the fundamental functions of the 
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Y X 

Figure 2.8: A dimension-splitting MQ (DSMQ) basis centered at  the origin. 

quasi-interpolation with MQ basis. Instead of the two dimensional MQ basis 

our two-dimensional quasi-interpolation scheme uses the dimension-splitting multi- 

quadric (DSMQ) basis, 

as  the interior basis. Figure 2.8 shows an example of a DSMQ. Readers are referred 

to Mayers et al. [88] for the studies the positive definiteness, product-sum, integrated 

product, and the integrated product-sum of the DS-RBF. 

Given data {xi, yj, Ej) for i = 0 , .  . . , n, and j = 0 , .  . . , rn. Let the 1D MQ basis 

in the y variable be 

~ L Y )  = J-', 
and define a set of basis functions or interpolation kernel by 
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Figure 

0 0 
Y X 

A fundamental functions of the 2-D quasi-MQ interpolation 

as in the univariate case appling to  the variable y. The (level-0) two dimensional 

quasi-interpolation formula is then given by 

where the function ai(x) is given by (2.6). Note that the product ai(x)Pj(y) for 

i = 2, .  . . , n - 2, and j = 2, . . . , m - 2 results in the DSMQ basis as defined in (2.21). 
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2.2.1 Implement at ion for parallel computations 

Using the DSMQ basis allows one to decouple problems in higher space dimensions 

into many one dimensional problems. In this section, we provide a cost analysis of 

finding coefficients of our quasi-interpolant, and a direct but faster way to evaluate 

the resulting quasi-interpolant. 

Finding coefficients of DSMQ 

Let the basis q5j(x) = J(x - xj)2 + c2 be the l D  MQ basis for 1 5 j 5 n - 1, coupled 

with polynomials, &(x) = 1 and &+l(x) = x. We first consider the univariate 

formula (2.12) as a changing basis from {ai) to {q5i), 

n n 

Then (2.12) can be expressed in matrix form as 

where F = [Fo, Fl, . . , FnIT and A = [Ao, X1, - . . , XnIT are column vectors of length 

n, := n + 1. The n, x n, matrix T,,, is given by 

where Dj  = l / (x j  - for 1 5 j 5 n, and Ej = -Dj - Dj-l  for 2 < j < n. 

The top part of T,,, is an upper-triangular banded-diagonal matrix. The last two 
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rows of T,,, has only four nonzero elements. By exploring the sparsity of T,,@ or 

considering To,, as a filter, finding all coefficients for {qhj) from F costs = 3nx flops. 

The benefit of using {$j} as the basis is that the evaluation of the quasi-interpolant 

is more efficient. 

To compute the basis transform in 2D, from {ai @pj) to { q 5 i ~ $ ~ ) ,  we consider 

the problem as n, one-dimensional problems of length n,, and n, one dimensional 

problems of length n,, where n, and ng are the total number of data points in the x- 

and y-direction, respectively. The cost of the basis transform is therefore nx(3n,) + 
n,(3nx) = 6nxn, = 6 N  in 2D, where N is the total number of data points. 

Suppose we store the function values Fij in a two dimensional array of size n, x n,, 

denoted by F .  Then we can rewrite the 2D formula (2.23) as 

where we define the set of ID DSMQ basis {$(y)) in the same way as the {qh(x)) but 

in the y-direction. To state (2.26) in word, each column of Fij is updated with the 

action of T,+, then each resulting row is updated with the action of Tp,$. Since 

the computations applied on each column of Fij, (or each row of (T,,,)Fij ) are 

independent of the other columns (or rows), the evaluation of the function values Fij 

if applicable, can be performed in parallel. The performance would be optimized if 

both n, and n, are multiples of the number of available processors. 

A similar argument can be applied to  3D if we store the function values Fijk in a 

3D array. It is easy to  verify that the cost of transform is 9N. 

Evaluating quasi-interpolant 

We provide details in two space dimension; the generalization to  higher dimension is 

again straightforward. Suppose the coefficients Xij for the DSMQ quasi-interpolation 

is found, 



CHAPTER 2. ON QUASI INTERPOLATIONS 33 

where Xij  = [(T,+) F (Tp,q)T]ij. To evaluate (2.27), for each data point (or for each 

i and j), one needs to evaluate $i(x) Qj(y) at  all data points (x, y) that costs 9 N  

flops; premultiplying Xij costs N flops; lastly, the cumulative sum requires another 

N additions to update. We estimate the cost of evaluating (2.27) to be l l N 2  in 2D, 

and 16N2 in 3D. In this section, we show that it is, in fact, cheaper than evaluating 

a 2D MQ expansion directly due to the special structure of our scheme. We reduce 

the evaluation cost from l l N 2  (2D) or 16N2 (3D) to 2N2. 

We introduce more notations: let aij, and Qij be the n, x n, matrices with the 

values of &(X)  and $j(Y) evaluated a t  all data points X ,  Y (stored also as n, x n, 

matrices). Let @ denotes the element-by-element multiplication operator on arrays 

of the same size. The quasi-interpolant 

rewritten as 

(2.27) evaluated a t  all data centers can be 

Since our scheme works on rectangular grid, both Qij and Qij are rank one matrices, 

Q . .  %.I = $ i ( ~ * )  - n; 
Qij = anZ . $ i ( ~ * ) ~ ,  

where 11, is a vector of all ones with the indicated length, x, = [xo, . . . , xnIT, and 

y* = [a,. . . , ymIT. Therefore, 

@ij @ Qij = ($i(x*) nzv) @ ( I n z  . $ i ( ~ * ) ~ )  = $i(x*) $ i ( ~ * ) ~ -  (2.29) 

Beatson's fast multipole method can be employed to evaluate the n, and n, 1D 

MQ basis functions, &(x) and $i(y) in the x- and y-direction, has an one-time set up 

cost of 4nx log n, + 4n, log n, flops. The details of the multipole method can be found 

in [8, 91. 

Computing the rank one matrix in (2.29) before multiplying Xij  would cost N = 

n,n, work for the scalar-matrix multiplication; instead, a scale-vector multiplication 

only costs min(n,, n,). For each inner iteration, we shall premultiply Xij with either 

the vector $i(x,) or $i(y,) as in (2.28) whichever is shorter in length, i.e., we compute 
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Algorithm 2 Pseudo-code for the 2D multilevel quasi DSMQ interpolation. 

INPUT: x E RnZ, y E El?,, F E lR!nz)x(nv) 

Find separating distance h = min max (xi - xi-1), max (yj - yj-1) 
l<i<nz I l j S n ,  

Pick a shape parameter c = O(h) 

Find coefficients X = Coef(Fy2), 

Find error •’ = F - L0[1121F(x, y) 

Update coefficients X t- Coef(•’) + (f  2) (A) ,  

either [xij &(x*)] . & ( Y * ) ~  or @i(x*) [Aij $i(y*)lT. Lastly, the work of updating the 

cumulative sum by this rank one matrix is 2N flops. 

The total cost of evaluating a 2D DSMQ quasi-interpolant is reduced to 

[4nx log n, + 4n, log n,] + N . [min(n,, n,) + 2N] = 2N2. 

By constructing a 3D array of values using three vectors of ID MQ, one can easily 

shows that the same cost estimate NN 2N2 also holds in 3D. 

2.3 Multilevel Interpolat ion 

The idea of multilevel scheme is common in numerical analysis that has been used in 

many areas of applied mathematics. For instance, multilevel schemes with compactly 

supported radial function can be found in [37, 231. Our extension to  multilevel is 
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similar to the univariate case given in the previous section. For the level-1 scheme, 

we first quasi-interpolate on (roughly) half of the data points of size (n,/2) x (n,/2), 

then compute the residual on all data points, and finally quasi-interpolate the residual 

to  update the corresponding coefficients of the quasi-interpolant. 

The pseudo-code of finding the undetermined coefficients of the multilevel quasi 

DSMQ interpolation is given in algorithm 2 where ( L  2) is any function that downsam- 

ples a given vector to about half of its original size by keeping every second element 

and (t 2) is the inverse of ( L  2) that upsamples by inserting zero coefficients between 

input elements. The function "Coef" maps the input data to the coefficients defined 

by (2.23). 

It is easy to verify that the level-0 scheme (2.23) reproduces constant and linear 

polynomials exactly. According to Strang and Fix [36], (2.23) will enjoy a quadratic 

convergence with respect to  h asymptotically. In fact, one could apply theorem 2.1.5 

dimension by dimension, and show that the level-1 quasi-interpolant CoF converges 

to F : + IR at a speed of O(d - h2.5 log h) provided c = O(h). Similar to the 

univariate case, the second partial derivative values of F at boundary will have an 

effect on the convergence rate. Therefore, the convergence rate of algorithm 2 will be 

affected by rotation in general cases. 

2.3.1 Boundary padding 

From (2.5), we see that the constant and linear polynomials are employed at the 

boundary and the point next to  the boundary. Information from XO, XI, x,-I, and 

x, are associated with these (appended) polynomials. It is reasonable to  extend the 

boundary outwards with some padding points so that the centers of the polynomial 

parts are pushed out of the region of interest. In fact, Hon 1571 removes the poly- 

nomial part in a quasi-interpolation formula completely by estimating the error of 

the truncated part. This extra degree of accuracy does not come freely: using more 

padding points means more work. But we are going to see that only a small amount 

of padding is necessary to  achieve the near-optimal accuracy. 

The function values of F at  the out of boundary padding points could be computed 
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using the formula of F, i.e., we solve the same quasi-interpolation problem on a slightly 

expanded domain, but evaluate the quasi-interpolant only on the original domain 

in which each data point will be associated with an infinite differentiable DSMQ 

basis. In practice, if a closed form of the function F is not available, some simple 

extrapolation scheme could be used to approximate those values. These techniques are 

being studied widely in different areas of image processing, for instance see [29, 30, 901. 

Since our scheme treats each dimension separately, one only need to  extrapolate the 

out of boundary values of F dimension by dimension. Complicated schemes are not 

necessary. We have seen that having a small second derivative helps speeding up the 

rate of convergence of the multilevel scheme. This suggests a linear extrapolation, that 

results in a small second (partial) derivative at  the new extended boundary, would be 

sufficient. 

Using the multilevel scheme allows one to use a larger shape parameter c while 

keeping a high convergence rate and high accuracy. The resulting approximations also 

enjoy higher degree of smoothness. Since the constant and linear polynomial parts 

in (2.23) vanish or reduce in order under differentiation, boundary padding is highly 

recommended when one needs to use quasi-interpolation to approximate derivative 

values. 

2.3.2 Numerical examples 

Since one cannot arbitrary reduce h (especially in higher dimensions), we focus on 

the accuracy and estimated convergence rate of our scheme in this section. We first 

give an example to study the convergence rate of our level-1 scheme in 2D for various 

ratio of c lh .  Then we look at  the residual functions of two different shape param- 

eters: small parameters results in better point-wise accuracy; whereas, large shape 

parameter results in higher degree of smoothness. Lastly, we show some results in 3D. 

The maximum errors (MAX) of all examples are taken to be the maximum absolute 

difference between the quasi-interpolant and the original function. 
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Example 1: Convergence rate. 

Firstly, we look at  the convergence behaviour for different c = O(h). We consider a 

2D function 

(x, Y) E 10, 112, (2.30) 

on the unit square. The function (2.30) has both maximum x and y second partial 

derivatives along the boundary: F,, obtains its maximum along y = 1 and Fyy is 

maximized a t  (x, y) = ( 0 , l )  and (1,l). 

The shape parameter of DSMQ is related directly to the univariate case: c = O(h), 

where h denotes the node spacing. 

We quasi-interpolate on 51 x 51 and 101 x 101 equally spaced data points to 

estimate the convergence rate (in figure 2.10), and report the [,-norm error measured 

on the fine spacings (in figure 2.11). In both figures, the direct application of formula 

(2.23) is denoted by level-0; and level-1 denotes one quasi-interpolation update on the 

residual. 

Except for the first tested c lh  ratio, the convergence rates of the level-1 scheme 

are all above 2 and seem to be increasing as clh increases. The maximum error of 

the level-1 scheme increases slower than that of the level-0 as the ratio c lh  increases; 

i.e., using the multilevel scheme can achieve a higher degree of smoothness. 

In general, the level-0 schemes in all dimensions output the coefficients for the 

DSMQ basis that depend only on the input function values of F, but are independent 

of the choice of shape parameters. Using our multilevel scheme, each computation 

of the residual function provides a feedback that reflect the influence of the chosen 

shape parameter. Thus, the level-1 scheme not only shows faster convergence, but 

also better accuracy. 

Example 2: Smoothness. 

From figure 2.10, the maximum errors of the level-1 scheme are 1.9 x and 5.1 x 
when c = h and c = 2h, respectively. Using a larger shape parameter results in less 

accurate solutions, but the larger shape parameter results in a quasi-interpolant with 
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Figure 2.10: Estimated convergence rate of the 2-D quasi interpolation, without 
boundary padding, on function (2.30) as a function of c/h.  

Figure 2.11: Maximum error corresponding to figure 2.10. 
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Table 2.3: Maximum error of the level-1 scheme with different amount of paddings. 

No. of padding 
MAX error 

higher order of smoothness. We show the residual functions of both cases in figure 

2.12 and figure 2.13. The residual function of c = h is very oscillatory, but that of 

c = 2h is significantly smoother as one expected. 

Example 3: Boundary padding. 

0 
3.59(-5) 

For the function F defined by (2.30), we look at the maximum error of the level-1 

scheme with different amount of paddings using 101 x 101 equally spaced data points. 

The shape parameters are kept constant for all cases, c = h. 

The values outside the original domain, a t  the out of boundary padding points, 

are computed using (2.30). 

The results are given in table 2.3. To obtain the benefit of boundary padding, one 

only needs to have one padding point in order to achieve the near-optimal accuracy. 

By having one padding point, the maximum error reduces by a factor of 3.5. 

Example 4: Approximating derivatives 

1 
1.02(-5) 

Our next example considers the following function 

whose second partial derivatives obtain a maximum in the interior. We extend the 

boundary outwards with 3 padding points, and study the convergence of the level-1 
a scheme LIF,  and its derivatives G L ~ F ,  & L ~ F ,  and & L ~ F .  

Figure 2.14 shows the convergence rates for all cases. With boundary padding, the 

convergence rate of L I F  increases slowly with the ratio clh,  and does not oscillate as 

in the case of no padding. 

If one differentiates the quasi-interpolation formula (2.23) once, the resulting for- 

mula can exactly reproduce constant functions but not all linear functions. Thus the 

2 
l O ( - 5 )  

3 
9.94(-6) 

4 
1.00(-5) 

5 
9.89(-6) 
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Y X 

Figure 2.12: Residual function of the level-1 scheme applying to (2.30) with c = h. 

Figure 2.13: Residual function of the level-1 scheme applying to (2.30) with c = 2h. 
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convergence rate of &,C1E, the &-derivative of the level-0 quasi-interpolant, is ex- 

pected to be linear according to [36]. The convergence rates of ~ L ~ F  and & L ~ F  
behave similarly. Both are very high when clh is small, and rapidly slows down as clh 

increases. Note that when c = h, both approximations 2 L l E  and &,C1F converge 

roughly at quadratic speed. 

In the case of no boundary padding, we consistently observe a superlinear conver- 

gence for E L ~ F  and &LIF.  Since the quasi-interpolation formula (2.23) reproduces 

all function values in IT:, it can only reproduce constant functions after a partial dif- 

ferentiation or a mixed differentiation. We therefore expect a drop of one order in the 

convergence rate. 

After differentiating the quasi-interpolation formula (2.23) twice with respect to x 

(or y), the new formula no longer preserves constant functions, we therefore observe 

almost no convergence in the approximation of &LIE, see figure 2.14. 

From figure 2.15, we see that the approximation of S L 1 F  depends only on the 

smoothness; we obtained a better approximation of $$L,F as the ratio c lh  increases. 

Example 5:  3D functions. 

Our last example shows some results in three dimension. We consider the following 

functions, 

2 2 2  F I ( x , Y , ~  = x Y 2 ,  

F2(x,y,z) = (x - 0.5)~sin(y)cos(z),  

F3 (x, y, Z) = sin (TX) sin ( ~ y )  sin (TZ), 

F4(x, y, Z) = sin (TXYZ). 

We quasi-interpolate using the level-0, level-1, and level-2 schemes on both N = 113 

and N = 233 equally spaced data points. Three boundary padding points are used 

for all tests. The results for N = 113 are listed in table 2.4. Our level-1 and level-2 

with N = 113 data points is sufficient to accurately approximate the slowly varying 

function Fl and F 2  for both values of c. Halving the data point spacing allows us to 
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Figure 2.14: Estimated convergence rate of the 2-D quasi interpolation, with 3 points 
boundary padding, on function (2.31) as a function of clh. 

clh 

Figure 2.15: Maximum error corresponding to  figure 2.14. 
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Table 2.4: Maximun error of 3D multilevel quasi-interpolants with c = h and c = 2h 
with N = 113 and 3 boundary padding points. 

Table 2.5: Maximun error of 3D multilevel quasi-interpolants with c = h and c = 2h 
with N = 233 and 3 boundary padding points. 

capture the other two functions F3 and F4 accurately. The results of N = 233 are 

shown in table 2.5. 

2.4 Chapter summary 

In this chapter we propose a multilevel univariate quasi multiquadric interpolation 

scheme. It is practical as it does not require derivative values of the function being 

interpolated. It has a higher degree of smoothness than the original one-level formula 

as it allows a shape parameter c = O(h). Our quasi interpolation costs O(n1ogn) 

flops to  set up. It preserves strict convexity and monotonicity. When c = O(h),  we 

prove the proposed scheme converges with a rate of 0(h2.5 log h). Furthermore, if 

both I f"(a) 1 ,  and I f  "(b) 1 are relatively small compared with 1 1  f u l l o o ,  the convergence 

rate will increase. We verify numerically that c = h is a good shape parameter to use 

for our method, hence we need not find the optimal parameter. For all test functions, 

both convergence speed and error are optimized for c between 0.5h and 1.5h. Our 

method can be generalized to a multilevel scheme; we include the numerical results for 
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the three-level scheme. The shape parameter of the three-level scheme can be chosen 

between 2h to 3h. 

We then propose a simple algorithm to extend the univariate formula to multi- 

dimensional using the dimension-splitting MQ basis. We show that the technique of 

boundary padding can improve accuracy, especially for the approximation of deriva- 

tives. the level-1 quasi-interpolant LDF converges to F : IR! t IR at  a speed of 

O(d . h2.5 log h) provided c = O(h).  The relationship between smoothness and deriva- 

tive approximation is also studied. In two dimension, our scheme can accurately 

approximate F ,  Fx, F, and F,,. 



Chapter 3 

On Boundary Layer Problems 

3.1 The Boundary Layer Problems 

We consider the singularly perturbated two-point boundary value problem (BVP) 

where E > 0 denotes a fixed (small) constant. In many applications (3.1) possesses 

boundary layers, i.e., regions of rapid change in the solution near the endpoints with 

widths o(1) as E -+ 0. When we solve (3.1) with a collocation method using roughly N 

collocation points, then, with a very small parameter E in (3.1), large N is required to 

obtain accurate solutions. For good resolution of the numerical solution at  least one 

of the collocation points must lie in the boundary layer. For example, if E << 1 and 

the problem possesses a boundary layer of width O(E), then on a uniform grid with 

O(N-' ) spacing between the points we would need N = O(E-l ), which is not practical 

in most cases. Therefore, most numerical methods use specially designed grids that 

contain more points in and around the (boundary) layer. For instance, Miller et al. 

[84] successfully developed an upwind and central difference scheme on a piecewise 

uniform mesh. Gartland [45] and Vulanovic [loo] suggested exponentially distributed 

grid points. All of these special meshes have a limitation: collocation points (or data 

centers) must not coincide numerically. 
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Integration is a smoothing operation in which the convergence rate is expected to 

accelerate in line with the convergence rate estimates of Madych and Nelson [78, 791. 

Mai-Duy and Tran-Cong [81, 821 obtained very impressive computational results with 

singly or doubly integrated MQ-RBFs that they cast as a minimization of the least- 

squares residual errors to  find the expansion coefficients of an RBF-PDE problem. The 

application of the volume integrated MQ-RBFs to the solution of PDEs has recently 

been investigated by Kansa et al. [71]. Since the derivatives of a solution to (3.1) 

change dramatically within a very narrow (boundary) layer, a better approximation 

to  the solution's derivatives will result in better accuracy. Instead of using MQs 

to  approximate u(x), the integral fornulat ion  uses MQs to  approximate the second 

derivative u"(x). Details are given in Section 3.3. 

Hon [56] suggested an adaptive technique using an "a posteriori" indicator based 

on the weak formulation of the governing equation to  add collocation points where 

necessary. The indicator Ii is given by 

for a BVP of the form (3.1), where u is the current numerical approximation to the 

solution, and 

An extra data point is added at  both mid-points of the intervals xi] and [xi, xiS1] 

if IIi - I,I 2 21, where I, and I, denote the mean and the standard deviation of these 

indicators Ii. We refer to  the original article for details. 

The present chapter combines the transformation technique used in [97] with the 

MQ integral formulation for solving problems with boundary layers. The proposed 

scheme does not suffer from the problem of data points coinciding, because the com- 

putational domain is on a fixed, well separated grid. Furthermore, the meshfree MQs 

allow a simple modification for one-sided boundary layer problems. Numerical com- 

parisons with Tang's and Trummer's PSC methods and Hon's adaptive MQ scheme 

given in Section 3.4 show that our proposed scheme can achieve better accuracy for 
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problems with very thin layers, and is applicable to various boundary value prob- 

lems. Next, we propose an error indicator in order to  modify our scheme to become 

adaptive. 

3.2 Transformations 

As mentioned in Section 3.1, at least one of the collocation points should lie in the 

boundary layer in order to resolve the layer. Tang and Trummer [97] introduced a 

sequence of variable transformations that guarantee that there are some collocation 

points within distance E from the boundaries f 1 even for E << 1 and moderately small 

values of N FZ 100. 

3.2.1 The transformed equations 

We transform the singularly perturbed linear BVP (3.1) via the variable transforma- 

tion x H ((x) into the new BVP 

where v is the transplant of u, v([) = u(x(t)).  Throughout the chapter we refer to 

x and [ as the problem variable and the computational variable, respectively. The 

transformed coefficients are given by 

where x = x(J). For computational efficiency the two quantities l/J1(x) and Jtl(x)/ [J1(x)I2 

ought to  be easy to calculate. 
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3.2.2 The iterated SINE-transform g, 

Without loss of generality we assume [a, b] = [-I, 11. For m 2 1 we consider the 

one-to-one mapping x(J) = gm(J) given by 

It is shown in [97] that for the Chebyshev points 6 = {cos( ja /N)}~, ,  

This indicates that the transformed BVP can handle extremely thin boundary layers 

with a fairly small number of collocation points. For m = 1, 2 and 3 (corresponding 

to  one, two and three SINE transformations), the distance between each boundary 

point and its nearest interior point is 0 (N-4) ,  O(N-') and O(N-16), respectively. 
N 

It is easy to show that for uniformly distributed collocation points Jj = {$ j - 1) j=o, 

the estimate becomes 

Although one may use the SINE-transformed points as collocation points for the 

original differential equation (3.1), the estimates (3.6) and (3.7) suggest that some of 

these points near the boundaries will numerically coincide after just a few transforms. 

For the transformations (3.5), the quantity l /Jf(x) is given by 

and Hm = J"(x)/[J'(x)]~ can be computed using the recursion 

The interested reader is referred to the original article for details. Note that the 

data centres in the computational variable J are well separated; on the other hand, in 
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Figure 3.1: Effect of SINE-transforms on regularly spaced data centre. 

the original problem variable x, data centres may coincide numerically. This does not 

appear to give rise to any numerical difficulty; in practice, our calculations have been 

successful even with "large" values of m, such as m = 7 (see Table 3.1 for the spacing 

of collocation points near the boundary). Once we pick the computational data points 

Jj, the problem variable xj  is given by (3.5). The x j  are only used when evaluating 

the transformation coefficients l/J1(x) and J"(x)/ [J1(x)] using (3.8) and (3.9). The 

numerical coincidence of xj  is reflected in the coefficients of the transformed BVP, P 

and Q in (3.3) and (3.4), but not in the collocation points and data centres in the 

computational domain. 

The transform defined by (3.5) maps [-1,1] onto [-1,1]. Each level of the trans- 

form pushes the data centres further away from the origin towards f 1, see figure 3.1. 

Note that the iterated SINE-transform g, also maps the intervals [-I, 01 and [0,1] 

onto themselves. Unlike the PSC method, the RBF method is "meshfree". If the sin- 

gularly perturbed BVP contains only one layer on the left (or right), we shall translate 

the problem domain to [-I, 0] (or [0, I], respectively). Unnecessary collocation points 

in the smooth region can be avoided without any modification to  the scheme itself. 
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3.3 The MQ-scheme and the Int-MQ-scheme 

For any given non-negative integer m, and for N distinct points 

a=E1 < E 2 <  < E N = b ,  

one can find the transformed BVP (3.3) as described in Section 3.2. 

3.3.1 Asymmetric multiquadrics collocation 

The basic idea of the MQ-scheme is to  approximate the unknown function v ( [ )  in the 

transformed BVP (3.3) with Hardy's MQ basis, 

where M is some positive integer, and & ( [ )  = \I(< - & ) 2  + C; is Hardy's MQ basis 

function. 

In (3.10) there are N+ M undetermined coefficients X j  and ye. Since the MQ basis 

function is continuously differentiable, the derivatives of v(E) can be approximated by 

differentiating the right hand side of (3.10) and using 

We choose M = 2 so that we have enough degrees of freedom in the numerical 

approximation v ( J )  to enforce all collocation and boundary conditions. Collocating 

the transformed BVP (3.3) a t  all N grid points provides N linear equations: 

for 1 5 j 5 N .  The remaining M = 2 equations are obtained by substituting (3.10) 

into the boundary conditions in (3.3). This yields 
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These N + M equations determine the N + M coefficients Xj and ye in (3.10), and 

therefore the solution v([) (or, equivalently, u(x)). The resulting matrix system is of 

the form 

3.3.2 Recasting the linear system in integral formulation 

The methodology of the integral formulation (Int-MQ-scheme) is similar, except we 

integrate the MQ basis functions twice to obtain the new basis functions 

whose derivatives are 

In other words, Hardy's MQ basis is used to  approximate vtt(J) instead of ~ ( 5 ) .  Since 

the basis employed here need more work to  evaluate than that in the MQ-scheme, the 

set up cost of the Int-MQ scheme is more expansive. The expansion of the unknown 

function v(J) is now of the form 
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We again pick M = 2 and apply the same collocation procedure as for the MQ-scheme. 

The resulting matrix system is of the form 

where eij = E Qy(Jj) + P(&) Qi (&) + Q(&) Gi (Jj), and ri = P(Ji) +Ji Q(ti).  The linear 

system (3.12) determines all unknown coefficients in (3.11). 

The shape parameter affects the performance of the Int-MQ-scheme. The Int-MQ- 

scheme obtains a better approximation to the solution by integrating twice. Consid- 

ering this approximation as an interpolation problem for v" suggests that the shape 

parameter should be chosen in the same fashion as in the previous section. We shall 

see in section 3.4 that despite relatively minor differences, a much improved numerical 

result can be achieved by the Int-MQ-scheme in comparison to  the MQ-scheme. 

3.4 Working with Int-MQ Scheme 

We use uniformly distributed data centres for all examples in this section, without 

any intention of optimizing the distribution of data centres (or collocation points). 

Although higher accuracy may be expected by increasing the value of the MQ shape 

parameter c,  or by using various values of c a t  different centres, a simple shape pa- 

rameter is used for testing purposes. We use the shape parameter cj = 0.815dj for 

the MQ basis (1.3), a constant shape parameter for uniformly distributed data cen- 

tres. For small E, solving the BVP directly on {xj) without using a transform appears 

hopeless. 

Currently, we do not have a way of finding the optimal value of m a-priori. Esti- 

mating the number of data points inside a boundary layer of width E provides, however, 

a fairly good guess for m. We choose m guided by the number of computational points 

in the interval (-1, gkl(e)]. The inverse of the SINE-transform, h, = g;l, is given 
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Table 3.1: Estimated distance between the boundary points and their nearest interior 
points for 2N - 1 regularly spaced data centres on [-I, 11 under m SINE-transforms. 

by the recursion 

Table 3.1 lists the estimated distance (using (3.7)) between the boundary points 

and their nearest interior points for 2N  - 1 regularly spaced data centres on [- 1,1] 

under m SINE-transforms. This allows us to estimate the number of necessary SINE- 

transforms; for example, we do not expect that one SINE-transform (m = 1) will 

successfully capture a boundary layer with 6 = lo-'. 

In all tables, do.dld2(e) represents the number d0.dld2 x 10". All codes are written 

in Matlab 6.0, and are executed in double precision arithmetic = 2.22 x 

10-16) on a 4 x 500MHz Alpha machine with 2GB RAM. The matrix equations (3.12) 

are solved by the Matlab built-in left matrix divide function. In this section we do 

not employ iterative techniques or preconditioning. Readers interested in aspects of 

efficiently solving linear systems of equations arising from radial basis functions are 

referred to Beatson [7 ] ,  chapter 4 of this thesis, and Mouat [85]. 

In our results we report the !,-norm error. The !,-norm error provides an ac- 

curate measure of how well the boundary layer is being captured numerically. In our 

examples, the la-norm errors are, in general, 2 - 3 orders of magnitude smaller than 

the !,-norm error due to  the fact that collocation points are densely distributed in 

the boundary layer where the errors of the numerical approximation are relatively 

large. 
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Figure 3.2: Numerical solution of (3.13) for Int-MQ-scheme with, E = N = 128, 
m = 3 ; - exact solution, o o o approximation. 

3.4.1 Numerical comparison of the MQ-schemes 

We compare the Int-MQ and MQ methods with SINE-transformations. Previous 

studies by other authors suggest the integral formulation can achieve better accuracy 

for various RBF-PDE problems. Our results show the Int-MQ-scheme to  be more 

accurate than the original MQ-scheme. 

The same shape parameters is used for both methods and all values of N. The 

BVP has variable coefficients and the solution develops one boundary layer on the 

left. The equation, whose domain is shifted to  [- 1, 01, is 

where f is chosen such that the function 

is an  exact solution of the differential equation (3.13). The boundary conditions are 

u(-1) = 0, u(0) = 0. Note that the "exact solution" (3.14) will satisfy these boundary 

conditions to machine precision for all values of E 5 0.3. The separation distance of 

the N problem variables xj on the shifted domain is equivalent to the distance for 

2N - 1 problems variables on [-I, 11. See table 3.1 for the estimated distance between 

the boundary points and their nearest interior points. 
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Figure 3.4: The &norm errors of the MQ-scheme (left) and the Int-MQ-scheme 
(right) to  (3.13), with different m SINE-transforms, and with E = 6 = lo-', and 
E = 10-12, as a function of N. 
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This is a difficult problem, since high resolution of the boundary layer is needed 

to capture the solution in the middle of the interval correctly. Figure 3.2 shows the 

solution for E = N = 128, and m = 3 SINE-transforms. The plot on the right is 

a magnification of the boundary layer. The SINE-transform moves more points into 

the boundary layer. We have a coarser grid spacing on the region where the solution 

is smooth. 

We solve (3.13) with both the MQ-scheme and the Int-MQ-scheme. Figure 3.3 

and figure 3.4 show the !,-norm and the 12-norm errors for E = E = lo-', and 

E = 10-12, respectively, with different values of m. The !,-norm errors in figure 3.3 

give a measure of how well our numerical solution approximate the exact solution in 

the boundary layer, whereas the 12-norm errors in figure 3.4 tell us about the accuracy 

at the interior smooth transition region. 

In general, more SINE-transforms are required for smaller E in order to capture 

the layer which gets thinner as E gets smaller. We also see that the Int-MQ-scheme 

captures the boundary layer more accurately than the MQ-scheme. For N = 512, the 

C, errors of the most accurate numerical solution (among all the tested m values) of 

the Int-MQ-scheme are 4.7489 x 1.2356 x and 4.9541 x for E = lop6, 

E = lo-', and E = 10-12, respectively. These errors occur when m = 4 for the Int- 

MQ-scheme. By contrast, the error of the MQ-scheme ceases to reduce and remains 

nearly constant a t  N 3 x as N increases, for all tested E .  

When we "under-transform," and have too few points in the boundary layer, the 

error will become large due to the undersampling in the boundary layer. On the other 

hand, when we "over-transform", and have too many points in the boundary layer, 

the errors will become large due to the undersampling in the smooth region. 

3.4.2 Numerical comparison with the PSC scheme 

The Chebyshev spectral collocation (pseudospectral) method using the transform in 

[97] yields very accurate approximations for moderately small E .  Its error, however, 

increases rapidly as E becomes smaller, see figure 3.5. When N = 256, the error of 

the numerical approximation can be as small as about 10-14, but it is around 
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Figure 3.5: &-norm error, with optimal m, to the quasi-linear BVP in Example 1 of 
[97], for N = 256, as a function of E .  

for E = 10-12. AS seen in section 3.4.1, the accuracy of the Int-MQ-scheme is not very 

sensitive to the magnitude of E when m is properly chosen. 

Although the Int-MQ-scheme may not be always as accurate as the PSC method, 

it is more flexible. Since there is no restriction on how we discretize the J variable, 

an adaptive technique can be easily employed directly with our scheme. Extra points 

can be added to the existing grids. Doing this with the PSC is certainly not straight- 

forward. Such flexibility plays an important role in developing an adaptive numerical 

scheme for time dependent BVPs whose solutions develop layers. 

3.4.3 Numerical comparison with Hon's adaptive scheme 

We consider the example found in [56]: 

The BVP has one boundary layer on the left; we apply the Int-MQ-scheme on a 

shifted version of (3.15). Table 3.2 lists the results of the adaptive scheme found in 
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Table 3.2: Numerical errors for (3.15) when 6 = lo-' 

Figure 3.6: Numerical solution to  (3.15) for E = lo-', N = 103 and m = 4 as a 
function of the computation variable J. 

[56], and our Int-MQ-scheme results for m = 3, and m = 4. Our method shows better 

accuracy for all N. More importantly, the numerical solution of the Int-MQ-scheme 

with m = 4 and N = 103 is more accurate than that of the adaptive scheme with 

all tested N ,  which go as high as N = 300. Furthermore, our computational cost is 

considerably less than for the adaptive scheme in [56], which requires solving a linear 

system in each iteration. 

Figure 3.6 shows the plot of the solution for 6 = lo-', N = 103 and m = 4 using 

the Int-MQ-scheme. Note that the plot is against the computational variable J. The 

boundary layer is stretched to -1 5 J 5 -0.7. From figure 3.7, we see that the 

maximum error occurs in the boundary layer, around J = -0.72. 

Number of Points 
Int-MQ, m = 3 
Int-MQ, m = 4 

Adaptive scheme 

300 

1.7(-5) 
5.7(-6) 

9.2(-4) 

103 

3.0(-2) 
1.0(-4) 

6.8(-1) 

185 
6.0(-5) 
1.7(-5) 

2.2(-2) 

50 

1 . - 1  
2.5(-2) 

2.3(+0) 

153 
1.2(-4) 
3.2(-5) 

5.4(-1) 

198 
5.4(-5) 
1.6(-4) 

6.0(-3) 

250 

2.5(-5) 
8.6(-6) 

1.4(-3) 
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Figure 3.7: Error function corresponding to  figure 3.6. 

Figure 3.8: Weak error corresponding to figure 3.6. 



CHAPTER 3. ON BOUNDARY LAYER PROBLEMS 61 

Since the Int-MQ basis functions are also C", the indicator (3.2) would apply. 

The weak error of the transformed BVP given by 

~vll + Pvl + Qv - F, 

is straightforward to  compute, see figure 3.8. The weak error is small on the interval 

[-0.9, 01. Comparing figure 3.7 and figure 3.8, we see that (3.2) does not appear to be a 

good indicator for the Int-MQ-scheme: the region of large weak error, -1 < J < -0.9, 

indicated by (3.2) does not match with the region of large error, -0.8 5 [ 5 -0.7. 

We are currently developing an indicator that is suitable for the Int-MQ-scheme. 

3.4.4 Discussion 

Numerical results show that the integral multiquadric (Int-MQ) formulation with 

transformations is a very promising method for (boundary) layer problems. Even 

our non-adaptive method shows higher accuracy than a recently proposed adaptive 

multiquadric scheme. Our method uses transformations to  allow a large number of 

collocation points in the thin boundary layer. 

It is well known that the order of approximation of a smooth function is reduced by 

the order of differentiation. Therefore, we achieve a better numerical approximation 

to  the solution by twice integrating the MQ basis functions. Our integral formulation 

appears to be superior to  other RBF methods. 

Although we only experimented with boundary layer problems, our scheme is 

capable of solving interior layer problems as well. Our method can solve this internal 

layer problem when combined with the overlapping domain decomposition method 

(DDM); see [12, 28, 70, 107, 1111 for recent developments. Without loss of generality, 

consider an internal layer problem defined on [- 1,1]. Locating the layer(s) exactly is 

usually the tough challenge. Suppose the position of the interior layer has been located 

approximately by some indicator. For simplicity, suppose there is one internal layer 

and it is located around x = L. We decompose the computational domain fl = [-I, 11 

into fll = [-I, L + w] and f12 = [L - w, 11, where w is the width of the overlapping 

region chosen wide enough to  cover the layer. The BVPs defined on fll and f12 are 

then shifted and solved by our method. 
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The flexibility of radial basis functions allows our method to become adaptive 

much easier than the spectral collocation method. The authors are continuing to  

study different indicators for the Int-MQ-scheme. A suitable indicator should add 

or redistribute data centres where necessary, but should also automatically apply 

transforms if and when needed. 

The Adaptive scheme 

In this section, we propose a new indicator that appears to work well with our scheme. 

We will use our indicator to  add points in the regions of the domain where the 

indicator is "large"; this region should correspond to the region where the (unknown) 

error in our solution is also large. To design such an indicator, we look at two of the 

main sources of error. Since the solution of the transformed BVP (3.3) still changes 

rapidly in the region corresponding to the boundary layer of the original BVP (3.1), 

the error is usually large and more data points are needed to  capture the solution, 

see figure 3.9. On the other hand, when the number of collocation points used in 

the approximation (1.5) is small on some region, it is common to observe oscillations, 

and therefore a large error, see figure 3.10. In both cases, we expect a close relation 

between the error and the second derivative values: rapid changes and oscillations 

result in a large value of the second derivative. Since all the derivatives of the MQ 

basis are globally defined, we could define an indicator using the second derivative 

value evaluated at  the midpoint of two nearby data points: 

One obvious problem with this indicator is that the sum of I!'' will grow without 

bound as N increases. A bounded version of (3.16) should mimic the integral of the 

third derivative of the numerical solution: 
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Figure 3.9: Since the solution changes rapidly in the boundary layer, the error is 
usually large in comparison to the error on the smooth region. 

Figure 3.10: When collocation points are not dense enough, the numerical solution 
oscillates in the smooth region. 
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Indicator 
1 O O O r  

Figure 3.11: The error function and the indictor function of an adaptive scheme using 
after a few iterations. The big bullets shown in the plots of the indicator are 

points that will be added in the next iteration. 

The second indicator works well when one starts with a sufficiently large number 

of data points, and lets the adaptive scheme run only for a small number of itera- 

tions. Proceeding with the adaptive iteration for a longer time using will lead to 

a situation as shown in figure 3.11: all new points will eventually be added near the 

boundary layer. From the plot of the error, we see that past iterations added most of 

the points to the boundary layer around 5 = k0.7, and the region in between. How- 

ever, only very few data points are located near the boundary of the interval [-I, l]. 

The undersampling near the boundary causes the numerical solution to oscillate, and 

therefore adversely affects the accuracy of the scheme. We fix this problem with a 

new indicator. 
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On the other hand, the second indicator is S U C C ~ S S ~ ~ ~  in adding points into 

the region with the largest error, namely the boundary layer. A robust adaptive 

scheme, however, should also have some control over the ratio between the maximum 

and minimum separating grid spacing. Hence, we modify (3.17) to  obtain our new 

indicator 

where k is the iteration counter for our adaptive scheme, and p(.) is any non-decreasing 

function. 

The indicator is a special case of (3.18) with p(k) - 1. For any constant 

p(k) > 1, a new balance or equilibrium between grid spacing and solution derivative 

will be achieved. Note that the actual values of each Ji is unimportant to  the scheme. 

It is the relative magnitude of Ji that controls the addition of new data points. The 

interesting case is when p(k) is an increasing function in k. The indicator Ji behaves 

similarly to  1j2) when k is small. However, the problem shown in figure 3.11 will 

be corrected as k gets large. Suppose ti - ti-l is large in comparison to  the other 

separation distance, the term ( & - & - l ) ~ ( ~ )  assigns a large values to  Ji and the adaptive 

scheme will add an extra point to  the midpoint of ti-l and ti. The adaptive scheme 

eventually captures the large grid spacing. Although a boundary layer problem usually 

has very large (third) derivative values near the layer, these values are considered to  

be fixed and finite. In the limit of k + oo, the adaptive scheme will always end up 

computing the solution on an equally spaced set of data points in exact arithmetic. In 

general, a rapidly growing p(k) will favor equally distributed grids; whereas a slowly 

increasing p(k) will tend to  add more points to  the boundary layer. For simplicity, all 

our computations in the next section use Ji with p(k) = k. 
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Table 3.3: Errors for a boundary layer problem with E = 10-la. Comparison of the 
non-adaptive method with N = 512 and adaptive method. 

3.5.1 Numerical results 

m 
4 
5 
6 
7 

Example 3.5.1 (Boundary layer problem) W e  first demonstrate the robustness 

of our adaptive scheme with the example found i n  (971. The B V P  with variable coef- 

ficients is given by 

Error: Adaptive 

where 

Error: Non-adaptive 
N 

407 
305 
257 
430 

is chosen such that the function 

is an exact solution of the B V P .  Boundary conditions are given by the values of the 

exact solution. This is not an easy test problem; besides exhibiting two boundary 

layers, i t  also features a turning point at x = 0 .  

W e  use the indicator J with p ( k )  = k to solve the B V P  with c = 10-la. The 

number m always refers to the number of SINE-transforms applied to obtain (3.3). 

The MQ shape parameter is set to c = 0.815hi, where hi is the minimum distance 

between the center Ji and its nearby centers. A n  extra point ( &  + Ji+1)/2 will be added 

to the set of data points if lIi - I,I 2 0 I,, where I, and I ,  denote the mean and the 

standard deviation of these indicators Ii. I n  our tests we use 0 = 0.5. The adaptive 

iteration starts with N = 40 data points and stops when the !a-norm difference of two 

consecutive solution is less than 6, with 6, = 

la -norm 
8.85e - 07 
3.05e-05 
9.30e - 05 
6.30e-04 

&-norm 
2.00e - 04 
1.54e-04 
2.24e - 04 
1.84e-04 

N 
512 
512 
512 
512 

la -norm 
1.15e - 05 
7.62e-06 
2.19e - 06 
8.12e-05 

l,-norm 
8.14e - 04 
6.09e-04 
1.56e - 03 
2.30e-03 



CHAPTER 3. ON BOUNDARY LAYER PROBLEMS 

E l i ,  e 
C - 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

38 points will be added to the next iteration 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

.- 
u 
C - j 8  -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

53 points will be added to the next iteration 

Figure 3.12: Errors and indicators J after 1 - 3 adaptive iterations with p(k)  = k, 
E = 10-l2 and m = 5 .  

L - I I I I I I I I I I 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

106 points will be added to the next iteration 
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

26 points will be added to the next iteration 
k = 5  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

42 points will be added to the next iteration 

- I I I I I I I I I I 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

31 points will be added to the next iteration 

Figure 3.13: Errors and indicators J after 4 - 6 adaptive iterations with p ( k )  = k ,  
E = 10-l2 and m = 5. 
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I n  figures 3.12 and 3.13 the exact error function and the indicator for all adaptive 

iterations with m = 5 are provided. The big bullets ( ) shown in  the plots of the 

indicator are points what will be added i n  the next adaptive iteration. Initially, at 

k = 1, the number of data points, N = 40, is too small for the boundary layer problem 

with such a thin layer. Our scheme refines the set of data points throughout the whole 

computational domain. For k = 2 and k = 3,  extra points are added only to the 

interior. A t  the fourth adaptive iteration, extra data points are added i n  the boundary 

layers, because of the large value of the third derivative, and near the origin, where 

relatively wide spacing of the data centres is causing an oscillation. The different 

behaviour of I ( ~ )  and J is obvious at the last two adaptive steps. Comparing to figure 

3.11, J will add points near the boundaries where the error is large. I n  all cases, our 

indicator correctly indicates the regions of large error. Details are shown in  table ??. 

Example 3.5.2 (Exponentially ill-condit ioning problem) Our next example con- 

sider the equation, 

with 

u ( -1 )  = 1, u ( 1 )  = 2, 

whose exact solution is 

This problem contains an eigenvalue of the order e-ll2', and is exponentially ill con- 

ditioned. A n  analysis of this problem can be found i n  (501. In  (741, the problem with 

E = 1/70 is solved with an adaptive methods; the obtained final error is 2.2 x un- 

der the e2-norm. W e  implement an extra stopping criteria, as safeguard, to  terminate 

the iteration and discard the newest numerical solution i f  divergence is detected. 

W e  solve the ill-conditioned problem (3.19) with our adaptive scheme for E = 1/70, 

E = and E = The scheme begins with 11 equally spaced points, and 8 = 0.5. 
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Table 3.4: Detail data of the adaptive iteration for E = 10-l2 with diflerent m. 

Iluk - ~ ~ - ~ ) 1 ~  
-- 

1.01e + 00 
1.37e + 00 
8.20e - 02 
1.34e - 03 
8.09e - 06 

Iluk-uk-1112 
-- 

6.98e - 01 
1.20e + 00 

4 
5 
6 

m = 6 / k  
1 
2 
3 
4 
5 
6 

m = 7 / k 
1 
2 
3 
4 

m = 4 / k 
1 
2 
3 
4 
5 
6 

m = 5 / k  

1 
2 
3 

Error i n  em-norm 
1.03e + 00 
1.68e + 00 
1.40e - 01 
3.47e - 03 
2.50e - 04 
2.00e - 04 

Error inem-norm 

8.43e - 01 
1.22e + 00 
4.88e - 02 

N 
40 
78 
154 
287 
366 
407 
N 
40 
78 
131 
237 
263 
305 

N 
40 
78 
115 
185 
206 
257 

N 
40 
78 
105 
161 

Error i n  e2-norm 
6.07e - 01 
1.18e + 00 
7.81e - 02 
1.57e - 03 
1.44e - 05 
1.15e - 05 

Error ine2-norm 

8.70e - 01 
1.04e + 00 
2.62e - 02 

9.42e - 04 
2.82e - 04 
1.54e - 04 

Error inem-norm 
1.22e + 00 
6.60e + 00 
2.51e - 01 
2.78e - 02 
4.38e - 04 
2.24e - 04 

Error i n  em-norm 
2.86e + 01 
6.78e + 00 
6.84e - 02 
5.40e - 01 

4.66e - 04 
1.12e - 05 
7.62e - 06 

Error ine2-norm 
1.38e + 00 
6.88e + 00 
1.56e - 01 
8.32e - 03 
3.04e - 05 
2.19e - 06 

Error i n  e2-norm 

3.54e + 01 
7.55e + 00 
1.23e - 02 
3.82e - 01 

2.66e - 02 
4.11e - 04 
3.63e - 06 

Iluk-uk-1112 
-- 

6.88e + 00 
8.06e + 00 
1.58e - 01 
7.44e - 03 
1.32e - 05 

IIuk - ~ ~ - ~ 1 1 ~  
-- 

3.00e + 01 
8.97e + 00 
3.67e - 01 
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Table 3.5: Performance of adaptive scheme on  an exponential ill-conditioning problem. 

Figure 3.14: Numerical solution (+) and 
exact solution (-) of (3.19) with m = 3 
and E = in the problem's variable. 

Figure 3.15: Numerical solution (+) and 
exact solution (-) of (3.19) with m = 3 
and E = i n  the transformed variable. 

The finial error is in the &-norm. Numerical solution of E = and m = 3 in 

the problem's variable x, and transformed variable 5 are shown in figures 3.14 and 

3.15. Figure 3.15 reveals the dificulty coming from the interior transition region. 

W e  summarize the results in table 3.5. Our adaptive scheme shows clear advantage 

over the method in [74] o n  this ill-conditioning problem i n  terms of accuracy and the 

ability to  solve problems with t iny E .  O n  the other hand, we emphasize that the method 

found in [74] could apply to a broader range of problems because of their domain 

decomposition feature; i.e., adaptive method in [74] can capture highly oscillatory 

region actually. 

Example 3.5.3 (Interior layer problem) Although the SINE-transforms are de- 

signed to work specifically on  solving boundary layer problems, our adaptive scheme 

could also be used to  solve interior layer problems by giving up the transform. W e  
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Figure 3.16: 103 refined data points o n  the solution of an  internal layer problem. 

solve the example in 1561 where the coeficients functions of (3.1) are given by 

and 

q ( x )  = -1 - 0 . 2 7 6 4 ( ~  - 0.5).  

The exact solution is chosen to  be 

and the right hand side function f ( x )  in (3.1) can be obtained from the exact solution. 

Without the help of coordinate stretching, our scheme is not  capable of dealing with 

extremely small boundary layers; here, we solve this internal layer problem with 6 = 

N o  SINE-transform, m = 0 ,  is applied. W e  start our adaptive scheme with 

21 data points and iteratively refine it to  103 data points after 6 iterations for the 

numerical solutions. The corresponding errors in the l,-norm and 12-norm are 5.84 x 

lop5 and 2.85 x respectively. 
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3.6 Chapter summary 

Singularly perturbed boundary value problems often have solutions with very thin 

layers in which the solution changes rapidly. This chapter concentrates on the case 

where these layers occur near the boundary, although our method can be applied to 

problems with interior layers. One technique to deal with the increased resolution 

requirements in these layers is the use of domain transformations. A coordinate 

stretching based transform allows one to move collocation points into the layer, a 

requirement to resolve the layer accurately. Previously such transformations have 

been studied in the context of finite difference and spectral collocation methods. In 

this paper we use radial basis functions (RBF) to  solve the boundary value problem. 

Specifically, we present a collocation method based on multiquadric (MQ) functions 

with an integral formulation combined with a coordinate transformation. We find 

that our scheme is ultimately more accurate than a recently proposed adaptive MQ 

scheme. The RBF scheme is also amenable to adaptivity. 

We then developed an adaptive scheme based on a multiquadric collocation method 

with a variable transform and integral formulation to solve boundary layer problems. 

Taking advantage of the truly meshfree nature of RBF methods we easily add extra 

data points where necessary. The differentiability of the MQ basis allows us to de- 

sign a suitable indicator using the derivative values of the numerical solution. The 

adaptive scheme makes the tuning of the parameter m (which controls the variable 

transformation) unnecessary, and therefore increases the robustness of our solution 

scheme. 



Chapter 4 

On Preconditioners and DDMs 

4.1 Preconditioner for RBFs Collocation Methods 

A major class of preconditioners for the RBF interpolation problem is the null space 

method, see [85, 951. Such a method relies on the fact that most popular RBFs are 

strictly conditionally positive definite of order m (SCPDm), see definition 1.1.2. The 

resulting preconditioners are of size ( N  -m)-by-(N -m). The preconditioned systems 

are positive definite and are commonly solved by the conjugate gradient method. 

Bozzini, Lenarduzzi, and Schaback [15] use increasing annihilation orders of B-splines 

to improve the decay rates thereby improving the convergence rates of multiquadrics 

and polyharmonic splines. However, this class of preconditioner cannot be extended 

to  the application of PDEs since the resulting RBF-PDE coefficient matrix does not 

enjoy the SCPD property. 

Another important preconditioning technique is the approximate cardinal basis 

function (ACBF) approach. In this approach, the preconditioner has the same dimen- 

sion as the original matrix. At a point xi, an ACBF is merely a linear combination of 

the neighboring RBFs. Beatson et al. [7] lower the computational cost of solving the 

RBF interpolation problem to  O ( N  log N)  operations. Faul improved the efficiency 

by combining the above ideas with Jacobi iteration and avoiding the unnecessary eval- 

uation of residuals, see [31, 331. Interested readers can find more studies of cardinal 
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functions of MQ by Buhmann and Micchelli [19], and Baxter [5]. 

Consider a PDE of the form (1.4), 

The unknown PDE solution u is approximated by RBFs as in (1.5) with p ( . )  = 0. To 

solve for the N unknown coefficients cu = [cul, . . . , aNIT, N linearly independent equa- 

tions are needed. These equations can be obtained by choosing N distinct collocation 

points X = {xl, . . . , xN) on both f l \  dfl and 80. We assume the points (centers) are 

arranged in such a way that the first NI points and the last NB points are in S2 \ dS2 

and 80, respectively. The centers xk used in (1.5) are often chosen as collocation 

points. Other strategies of choosing X were studied by Fornberg et al. [39]. Ensuring 

that U(x) satisfies (1.4) at the collocation points results in a good approximation of 

the solution u. The equations are 

N 

C akL@(xi - xk) = f(xi)  for xi c x n (n \ an), 
k=l 
N 

C akBq5(xi - xk) = g(xi) for xi c X n 80. 
k=1 

Rewriting (4.1) in matrix form, we have 

and 
(A~) ik  = L$(xi - xk), xi C (O \ aa)1 xk E X1 

(A~) ik  = B@(xi - xk) 1 xi C 80, Xk E X. 
(4.3) 

This method is often named the asymmetric collocation method. The symmetric 

collocation approach can be found in [34]. The matrix given by (4.2) and (4.3) is 

generally non-symmetric and full; this system of equations is known to  be very ill- 

conditioned when N or c becomes large. 

In this chapter we present a new preconditioner designed to  work on the asym- 

metric collocation method for various RBF-PDE applications. This preconditioner is 
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sufficiently general that it may be applied to elliptic, hyperbolic or parabolic PDEs 

in which RBFs are used as the spatial approximation scheme. Furthermore, the pre- 

conditioning technique is coupled with the domain decomposition method. 

4.2 The approximate cardinal basis function pre- 

conditioner 

Given a matrix system Aa  = b as in (4.2), we construct a left-hand preconditioner 

W,  then we solve the equivalent system 

WAa = Wb, (4.4) 

for the undetermined coefficients a. 

In this section, we introduce a preconditioner based on the least-squares con- 

struction of the approximate cardinal basis functions (ACBFs). An ideal ACBF is 

equivalent to  a delta-function, 6(xi) that is one at it center, xi, and zero everywhere 

else. In such a case, the matrix, WA, in (4.4) becomes the identity matrix, and a is its 

solution. However, the preconditioner would need to be exactly the matrix inverse. 

Since preconditioners should be inexpensive to  construct, we choose to  satisfy this 

cardinal condition in the least-squares sense. 

4.2.1 The left-hand preconditioner, W 

Let $I and $B denote the NI and NB MQ-RBFs whose center is in S1 and in dS2, 

respectively. Assume the differential operators L and I3 are continuous, or piece-wise 

continuous across different subdomains. The rows of A form a set of smooth basis 

functions in our spline space. From (4.3), they are given by 

{@i(~)lEl = { {L$I(x~ - 4121 u { W B ( X ~  - 4}Z} . (4.5) 

Each column of A has contributions from NB entries of and NI entries of ~ 2 4 ~ .  

It is very likely that such an arbitrary column will exhibit a jump discontinuity at  
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the boundary-interior interface. Therefore, we manipulate the rows of the RBF-PDE 

matrix A that is a discrete version of (4.5). 

The strategy for constructing the left-hand preconditioner W is as follows. For 

each center xi, select a small subset of centers or support of size m << N indicated by 

the index set 

such that we try to enforce the condition 

C wj@j (x) = & (x), for a11 x E X ,  
j E S i  

where &(x) is one a t  xi and zero elsewhere. The choice of this index set, Si, will be 

deferred to  a later discussion. Also, (4.7) yields N equations for m < N unknowns. 

If (4.7) is satisfied for all x E X ,  we obtain the inverse of A. Instead, we best-fit (4.7) 

in the least-squares sense. Let Bi be the m-by-N matrix formed by selecting m rows 

of A from the index set Si in (4.6), i.e., 

Then, we can rewrite (4.7) in matrix form 

where wT = [w!'), wj2), . . . , wjm)] are the non-zero elements of the i-th row of W,  

and ei is the i-th N-by-1 standard vector. Each center xi is associated with a row 

of the preconditioner W that approximates the i-th ACBF using m different rows of 

A. Since Bi has full rank m, Bi B' is a nonsingular m x m matrix. Thus, wi can be 

uniquely determined. 

Our preconditioner W will have wTP as its rows where P is the m-by-N permu- 

tation matrix that maps the elements of Wi from Si back to the corresponding global 
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index set of the i-th row of W, or 

We obtain the preconditioner W after solving N least-squares problems. Each row 

of W will operate on the correct rows of A and the preconditioned matrix WA will 

have the ACBFs as its rows. In general, W will not be constructed explicitly using 

(4.9).  Instead, each wi and Si are stored for later use which cost 2 m N  to store ( m N  

floating-point numbers for wi and m N  integers for Si). 
We designed the preconditioner W so that its construction is simple with relatively 

few operations. The preconditioner is applicable to the non-symmetric RBF-PDE ma- 

trix problem. Our studies focus upon MQ-RBFs. But the preconditioning techniques 

are general enough to be applied on other RBFs. These preconditioners do not make 

use of the far-field expansion and can be used on shape parameters that vary locally in 

the domain. Although our preconditioners are not intended for the interpolation prob- 

lem, they should have good performance for interpolation as well, as demonstrated 

later in the section. Unlike the null space methods, our preconditioning technique 

will transform the symmetric interpolation matrix to an non-symmetric matrix. In 

general, the eigenvalues of the preconditioned system will be in the complex plane. 

4.2.2 Solving the least-squares problems 

We consider an overdetermined linear system of the form (4.8).  The least-squares 

problem has a unique solution w that minimizes I~BT w - eil12. One solution method 

for a least-squares problem is to solve the corresponding local* normal equation (L- 

NE). Multiplying Bi from the left to (4.8) gives the normal equations, 

By symmetry, the computation of the normal matrix BiB? requires m 2 N  flops. Using 

Gaussian elimination to solve (4.10) requires m3/3 flops. The overall operation count 

'We reserve the term local- (or L-) to indicated that the method is employed in the construction 
of the preconditioner. 
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is -- m 2 N  + $m3 flops. This method is not always stable in the presence of round-off 

errors because the condition number of the normal matrix is twice as large as the 

original. 

The other popular methods are the QR factorization and the SVD method that 

solve (4.8) directly. Their overall costs are -- 2m2 N - $m3 flops and - 2m2 N + l l m 3  

flops, respectively. Lawson and Hanson [73] claim that for a fixed machine precision, 

a wider class of least-squares problems can be solved using the QR factorization. 

Trefethen and Bau [98, lecture 111 suggest that the QR factorization should be used 

for the typical problem, and that the SVD method should be used if the matrix Bi 

is nearly rank-deficient. The SVD approach can also be used to  solve rank-deficient 

least-squares problem, see [49, chapter 51. 

The construction of our preconditioner W requires solutions of N least-squares 

problems. Using any of the three above-mentioned methods would result in a set up 

cost of 0 ( m 2 N 2  + m3N) flops. The term 0 (m2N2)  greatly limits the size of support 

that we can use to construct the ACBFs. We show that the set up cost can be reduced 

to 0 ( m N 2  + m3N). 

Local-normal equation 

We first note that the m x m normal matrix BiB' E RmXm on the left of (4.10) is a 

submatrix of AAT, namely the (Si, Si) elements of AAT, i.e., 

We obtain a considerable amount of storage and computational savings by observ- 

ing that only O(mN)  elements of AAT are needed for all N normal matrices. We 

define the relevant elements of AAT to  be only those elements required in the con- 

struction of the normal matrix BiB' corresponding to  each Xi (the expensive 0 ( m 2 N )  

step). Referring to  (4.11), we see that the m x m elements of AAT correspond to  a par- 

ticular normal equation, BiBT. The union of all the relevant elements i = 1 , 2 , .  . . , N 
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Figure 4.1: Relevant elements ( N  3mN) of AAT necessary for the construction of all 
Bi B' matrices. 

is depicted in figure 4.1. Due to symmetry, only half of these relevant elements of 

AAT need to  be computed and stored. 

Since the cost of finding any element of AAT is O ( N )  flops, the set up of all normal 

equations costs 0 ( m N 2 )  flops. Then we solve all the N normal equations, each of size 

m-by-m (4.10), using L-NE to  find all rows of W with a cost 0 (m3)  flops per row. 

Note this step can be readily performed in parallel. The total cost of constructing W 

is therefore 0 ( m N 2 )  + 0 ( m 3 N )  flops. 

Suppose we evaluate all the relevant elements in the lower triangular portion of 

AAT. To find all relevant elements in the i-th column of AAT, we need a few more 

rows of A below row i. If storage is not a limiting factor, it is optional to store these 

rows for later use. Note that after we obtain all the relevant elements in i-th column 

of AAT, the i-th row of A will not be used again and can be deleted from memory. 

Furthermore, the vector on the right of (4.10) consists of the Si elements of the i-th 

Forming the right-hand vector does not require any extra computations. 



CHAPTER 4. ON PRECONDITIONERS AND DDMS 81 

A very important work of Beatson and coworkers [7, 8, 11, 131 is the fast RBF 

matrix-vector product algorithm. The set up cost is only O(N log N) flops. The 

evaluation of the MQ expansion a t  any x E Rd costs O ( N  log N)  flops, which is much 

faster than the 0 ( N 2 )  flops for direct matrix-vector multiplication. This algorithm is 

also applicable for the RBF-PDE matrix A and its transpose AT. This algorithm can 

be used to  reduce the cost of each iteration. 

(Optional) Local-QR and local-SVD 

In this section, we provide a more stable algorithm to  solve the least-squares prob- 

lem (4.8) based on local-QR factorization or local-SVD instead of solving the normal 

equations (4.10) with L-NE. The cost of constructing the preconditioner becomes 

~ ( m m ~ ' / ~  N2).  Similar to the L-NE approach, the main idea relies on recycling in- 

formation from the previous least-squares problem. 

We adopt the Lawson-Hanson-Chan algorithm for finding the SVD factorization 

of an N-by-m matrix M ,  see [98] for details. In phase one, we begin by computing 

the reduced QR factorization that requires 2m2N - 3m3 flops. Then, M = QR. 

In phase two, the Golub-Kahan bidiagonalization scheme is applied to  the resulting 

upper triangular matrix of the QR factorization, R = UCVT, that require i m 3  flops. 

The SVD factorization of M is given by (QU)CVT. 

Since the same special index set is used for all centers, we place the special points 

at  the beginning of all index sets Si defined by (4.6). Next, suppose that the QR 

factorization of B:, = Qi-lRi-l is known, and we want to  construct BT with minimal 

extra flops. Without loss of generality, we assume that the centers xi-, and xi are 

close together. 

We define a non-commutative operator 8 on the index set such that A 8 B  is the set 

difference of A and B, i.e., the elements that exist in set A but do not exist in the set B. 
To reuse the QR factorization of BE,, we need to remove the columns that correspond 

to  the index Si-, 8 Si and replace them with the new columns corresponding to  the 

Si 8 Si-, columns of AT. Assume that there are K1 = ISi 8 Si-1 1 columns that 

need to  be replaced, and K2 columns in B:, that need to  be reordered. Let P 
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Algorithm 3 Pseudo-code for local-QR and local-SVD. 

1. Reorder the last K2 columns of B z , ,  using the permutation matrix P, i.e., 

2. Compute the LU factorization with partial (or complete) pivoting of the m-by-m 
matrix, 

RiPIP  = PLLU. 
Then we have 

BT~P  = (Q,-~&:L)U. 

At this point, we obtain a new QR factorization of BLl whose first m - K1 
columns are in common with that of BT. 

3. Let Qi and Ri be the first m - K1 columns of Qi_l&:L and U, respectively. 

4. Continue the Gram-Schmidt orthogonalization process on the columns of AT 
indexed by Si 8 SiPl, and complete the QR factorization By = QiRi. 

5. (a) If L-QR is used to solve BT Wi = ei, we solve the upper-triangular system 
Riwi = QTei for wi. 

(b) If L-SVD is used, we first compute the SVD factorization of the m-bym 
matrix R, = UCVT. Then wi = VC-'UTQTei. 

denote the m-by-m permutation matrix that reorders the last K2 columns of Bzl so 

that the right-most K1 columns of BEIP are not reused by BT. In general we have 

K1 < K2 5 mb We outline the procedure thusly in algorithm 3. 

The computational effort involved in this procedure is dominated by step 3 and 

step 4. 

Due to the ordering of SiM1 and Si, we know that the matrices P, fi,, and L are all 

of the form [ ] , where 0 denotes the zero block matrix, X is the permutation 

matrix in both P and R,. X is a lower triangular matrix in L. The first m, columns 

of Qi that correspond to the special points remain unchanged. We only need to 

compute K2 - K1 columns of Qi-l&:L that are linear combinations of the K1 to 
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K2 - K1 columns of the matrix Qi in step 3. The cost of updating these orthonormal 

vectors of length N is N K1 (2K2 - K1) N flops. 
After step 3, we are K1 steps away from completing the QR factorization of BT. 

In step 3 the QR factorization is completed with another - 2(2m - K 1 )  K1 N  flops. 

All other steps of the algorithm require either 0 ( m 3 )  flops or less. 

To obtain an upper bound for the estimated flop count, we estimate K1 - m:I2 in 

two-dimensions, and pick the upper bound K2 = ml. Then the overall cost of solving 

one least-squares problem using local QR or local SVD is 

This estimate suggests that we should use more special points and fewer local points. 

A look-ahead algorithm for the ordering of the index set can further reduce the overall 

effort by minimizing K2. Both L-QR and L-SVD have the same 0(m3)  term in the 

overall cost estimate; but the constant of L-QR is smaller than L-SVD. We periodically 

restart the procedure presented above to  avoid the accumulation of round-off errorst. 

4.2.3 The Role of Special Points in the Construction of the 

Cardinal Basis Functions 

We adopted the strategy in [7, 851 for choosing the index set, Si. The subset is a 

combination of local and special points. We pick Si to  be the ml local nearest centers 

to  xi that can be done efficiently in O ( N  log N )  flops, and m, special points where 

ml + m ,  = m. 

The choice of special points is another important issue. In general we want the 

special points to  control the shapes and ensure the linear independence of all the 

ACBFs in the domain S2. When the nearest neighbor subset is unbalanced about xi, 

the least-squares ACBFs centered at  different points near the boundary points may 

become too similar in shape, have considerable overlap, and become considerably less 

linear independent without the presence of special points. Fig 4.2 (a) shows one such 

example. 

~QR-factorization could be used in step 2 instead of the LU-factorization; however, the cost of 
step 3 becomes O(m; N). 
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Assume that the centers have equal spacing, h. The ACBFs centered at xl = Oh 

and x2 = l h ,  respectively are similar in shape and have considerable overlap. Two or 

more nearly degenerate ACBFs typically result in one or more eigenvalues clustered 

around zero in the preconditioned matrix system. To solve this problem, we use the 

last point x~ = 1 as a special point, see Fig 4.2 (b). The shapes of the two modified 

ACBFs are much more distinct with smaller overlap, their peaks are closer to one, 

and they decay faster toward zero. 

We offer the following explanation why the special points have such an impor- 

tant influence. An ACBF can be constructed from a discrete Laplacian, see [7, 851. 

Consider the discrete second derivative in one dimension, using a three-point stencil 

scheme evaluated at  x l  and x2 of the same support, the two ACBFs will have exactly 

the same approximation, and are degenerate. 

Our situation is similar to this trivial case. When an unbalanced local neighbor- 

hood is used to construct the ACBF at xi, the resulting new ACBF is similar (although 

not exactly the same) to the nearby ACBFs a t  xi-1 and xi+l. Whenever two or more 

ACFBs are similar in shape and have considerable overlap, such a situation leads to 

ill-conditioning. 

We pick a set of universal special points that controls the distinctness of each 

ACBF for each xi in S2 U 80. A given center, xi, could be very near or could be one 

of the special points. But the remainder of the special points would be relatively far 

away and would help constructing a good approximation to an ACBF. Although we 

have focused our attention on the unit square, we can find special points on arbitrarily 

shaped domains in two and three dimensions. If S2 is convex, the first special point 

will be that center closest to the centroid of the domain. Pick centers on 80 that 

are furthest away from the centroid. Continue computing the distances between the 

existing special points and index the furthest boundary center as a special point if 

the candidate is not too close to  the existing special points. Then we start bisecting 

the distances between the pairs of candidate special points with the largest separation 

distances. We can continue this procedure to  obtain any desired number of special 

points. 

For example if the domain is contained in the unit square [O, 112, we want to  have at  



CHAPTER 4. ON PRECONDITIONERS AND DDMS 

Figure 4.2: Effects of special points: (a) 4 local centers; (b) 4 local centers + 1 special 
point. The solid and dashed line are the ABCFs centered at  xl and x2, respectively. 
The dots indicate the location of centers. 

least four special points that are chosen to  be the centers closest to  the four corners 

(0, O) ,  (0, I ) ,  (1, O),  and (1 , l )  respectively. If nine special points are desired, one 

would chose the centers that are closest to  centroid, (0.5,0.5) and the four corners. 

By bisecting the distances between special points that are furthest apart (i.e. the 

corners), we would find the following special points: (0.5, O),  (0.5, l), (0,O.5), (1,O. 5), 

(0.5,O.S). This will give a set of nine special points. 

If appended polynomials are used in the expansion of solution (1.5), we treat and 

refer to  the rows of polynomial as special. 

4.2.4 (Optional) The right-hand preconditioner , V 

Once the left-hand preconditioner W is found, one can apply a similar process to  the 

columns of WA to  construct a right-hand preconditioner V (WA)-l. We define 

Ci to  be the submatrix of the Si-th columns of WA. If the same subset Si used in 

the construction of W is re-used for every center, we avoid extra computation and 
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storage. For 

the corresponding least-squares problem is Ci vi = ei. The normal equations for each 

('1 V j 2 )  , v j m ) ~  are column of V is C,'Ci vi = CTei for i = 1 , .  . . , N where vi = [ui , , . . . 
the non-zero elements of the i-th column of V. Our right-hand preconditioner V will 

have Pu as its columns where P is again the same permutation matrix used in the 

construction of W ,  or 

( k )  vjk) if i = s j  for k = I , .  . . , m, 

0 otherwise. 

Similar to  W ,  the preconditioner V only has m nonzero elements in each column; 

the matrix-vector product of V can be performed in O(mN)  flops. The set up cost 

of V is more expensive. To solve its corresponding normal equations, we need to find 

CTCi that is a submatrix of (WA)T(WA). Each relevant element costs O(mN + N )  

flops to compute. The total set up cost is then 0 ( m 2 N 2 )  flops and the storage 

requirement remains O (mN2) locations. 

4.3 Working with ACBF Preconditioners 

4.3.1 Interpolation with various shape parameters 

Figure 4.3 shows the effectiveness of both preconditioners applied to the interpolation 

problem. We randomly generated 289 centers on [O, 112, see Figure 4.3 (a). Special 

points are denoted by the ( x )  and (*). The MQ shape parameters are chosen to be 

the minimum separation distance to the closest center, hmin, and this example is a 

variable shape parameter problem. 
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The small eigenvalues of A can be found in Figure 4.3 (b). First, we used 12 local 

points and 4 special points (all x ) .  All the complex eigenvalues of WA and WAV 

are plotted, see Figure 4.3 (c) and (d), respectively. After the application of W,  all 

the real parts of the eigenvalues clearly cluster around 1. When both preconditioners 

W and V are applied, we get an even better clustering about the real value of 1. 

This clustering of eigenvalues about one would allow any Krylov subspace iteration 

to converge quickly. 

Figure 4.3 (e) shows the eigenvalues distributions when 18 local points and 9 

special points (both x and *) are used. Using a larger support, m, results in a denser 

clustering about the real value of 1 as expected. The cost of computing W with this 

larger m = 18 + 9 is much lower than the cost of forming V in the previous case with 

m = 12 + 4. We conclude that the right-hand preconditioner V is not practical unless 

its set up cost can be reduced. 

4.3.2 RBF-PDE test problems 

In this section we will study the performance of our preconditioners applied to PDEs. 

All codes are written in Matlab 6.0 executed with double precision arithmetic (emachine = 

2.22 x 10-16) and executed on a 4 x 500MHz Alpha machine with 2GB RAM . The 

normal equations (4.10) are solved by the Matlab built in left matrix divide function. 

Although the condition number for the matrix A is not as informative here as for 

the symmetric case, it will be reported for completeness. We measure the performance 

in terms of the number of iterations required for GMRES (without restart) to converge 

within a tolerance. Both the mean square residual (MSR) errors 

and the maximum (MAX) errors 

are used to measure the accuracy of the numerical solution. In (4.12) and (4.13), 
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(a) Location of centers (b) Eigenvalues of A 

X RE 

(c) WA, m = 12 + 4 (d) WAV, m = 12 + 4 (e) WA, m = 18 + 9 

Figure 4.3: MQ-RBF interpolation: (a) 289 random centers on [O, 112 with c = hmin; 
(b) Eigenvalues (real) of A around the origin. All the complex eigenvalues of the 
preconditioned system: (c)WA, and (d) WAV are for m = 12 + 4, and (e)WA are 
for m = 18 + 9. 

U is the approximate solution and u is the exact solution. In all tables, do.dld2(e) 

represents the number do.dld2 x loe. 

We set up a boundary value problem for the Poisson equation in the unit square 

[o, 112, 

-7517r2 7rx 77rx 37ry 57ry 
v2u (x ,  y) = sin - sin - 

144 6 4 4 
sin - 

4 
sin - 

77r2 7rx 77rx 37ry 57ry +- cos-cos- 
6 4 

sin - 
4 

sin - 
12 4 

157r2 7rx 77rx 37ry 57ry +- sin - sin - 
8 6 4 

cos - 
4 

cos - 
4 '  
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Figure 4.4: (a) the left hand function f (x), and (b) the exact solution u(x) of our test 
problem. 

which has exact solution 

7lx 77lx 37ly 57ly 
u(x, y) = sin - sin - sin - 

6 4 4 4 
sin -. 

We assume Dirichlet boundary conditions on all sides of the unit square whose 

values are given by (4.15). Figures 4.4 (a) and (b) plot the right hand side function 

of (4.14) and the exact solution (4.15), respectively. 

4.3.3 Performance of the preconditioners for c = 1 0 
Regularly spaced data center distribution 

As an initial test, we solved (4.14) on equally spaced N = n x n centers where 

n = 8 j  + 1 for j = 2 , .  . . ,9 .  A constant shape parameter c = 1 is used in each case. 
dx 

We used the L-NE scheme to  construct the preconditioner W. For shape parameters 

in this size range, the L-SVD scheme is not necessary. Both the mrs and max errors 

are calculated by interpolating the solution onto a 81-by-81 grid and comparing the 

numerical solution with the exact solution. In this example, we used 50 local points 

and 9 special points for the construction of the preconditioners. We define itr, as 

the number of GMRES iterations required to achieve convergence within the specified 
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Table 4.1: Numerical results for a regularly spaced data center distribution for c = %, 
ml = 50, and m, = 9. 

tolerance, 1 x lop6. For all tested N's, the solution errors agree with each other 

to at  least 3 significant digits whether the system is solved by GMRES or Gaussian 

elimination. Only one set of errors is reported. The results are summarized in table 

4.1. 

As N increases so do the condition numbers of the A matrices. The condition 

numbers of the preconditioned systems are between 0(1) to O(10). Since the size of 

Si is kept constant, the set up cost remains constant at  0(N2) flops. On the other 

hand, a relatively small support is used to  approximate the ACBFs for larger N. 

The number of iterations required for GMRES to converge, itr,, and the condition 

number of preconditioned system slowly increase with increasing N. Although it is 

not remaining constant, we clearly see that smaller and smaller fractions of the N 

iterations are required as N increases. We plot the ratio of the estimated flops for 

GMRES to  converge over the flops required by direct method, G-GE, in figure 4.5. 

We see that the overall flop ratio of our scheme requiring 0(N2) flops to the G-GE 

scheme requiring 0(N3) flops is approaching 35.47 N-0.89. 

Iterations 
Actual 1 Relative 

Scattered data centers 

Errors 
MSR 11  MAX N 

Our preconditioners can work equally well on a scattered set of centers. The same 

computations are repeated on random sets of interior centers of total size 5329. The x- 

Condition Number 
A W A  
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Figure 4.5: The ratio of the estimated flops for GMRES to  converge over the flops 
required by direct method, G-GE. The ratio is approaching 35.47N-'.a' (dotted line) 
as N increases. 

and y-coordinates of the random interior centers were generated separately using the 

Matlab built-in rand function calls. We did not re-order the centers using any sorts, 

or enforce any pre-set minimum separation distance. The shape parameter is chosen 

to be the minimum separation distance to  the closest center. The minimum and 

maximum separation distances of the random centers are 1.73 x lo-' and 5.26 x 

respectively. The average separation distance is 6.47 x 

The condition numbers are 3.71 x lo7 and 1.50 x lo2 for the original and pre- 

conditioned matrices, respectively. GMRES takes 48 iterations to  converge for this 

problem. The MSR and MAX errors are 2.15 x and 5.81 x lop3, respectively. 

The condition numbers and number of iterations required for GMRES to  converge 

are larger than in the comparable regular center distribution case. This is likely due 

to  the fact that we did not enforce a bound on the minimum separation distance 

between the centers. Since the centers are placed randomly without any intention of 

optimization, the resulting solutions of random centers are also less accurate than in 

the regular case. 
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4.3.4 Range of workable MQ shape parameters 

Madych [79] has shown the convergence rate of MQ can be accelerated either by 

increasing c or decreasing h. For a fixed h or N ,  the errors decrease monotonically 

as c increases reaching a minimum a t  a critical value of c .  Using global Gaussian 

elimination (G-GE) , the system (4.2) will have different minimum errors depending 

upon whether the arithmetical operations are performed in single or double precision. 

Although double precision arithmetic permits one to use a much larger value of c ,  

the accumulation of round-off errors for increasing c eventually becomes so large that 

even double precision arithmetic cannot prevent numerical instabilities. Beyond this 

critical value, the solutions become unstable, and the errors rise dramatically. 

Fornberg and co-workers, [39, 40, 721 have demonstrated extra-ordinary conver- 

gence rates with the C" RBFs such as multiquadrics and Gaussians in the limit as 

c + GO. They show that such convergence is not possible with piecewise smooth 

RBFs such as thin plate splines and r2k+1 splines. Near the critical value of the shape 

parameter, they permit the shape parameter to  become complex, and find that branch 

points and removable poles cause singularities. They removed such singularities by 

using Cauchy-Pade contour integration. In [72], Larrson and Fornberg solved the 

Poisson equation achieving remarkable accuracy. Their MSR errors were on the order 

of 1 x lo-'' with relatively few data centers. 

Increasingly larger c for a fixed N 

We fix N = 1089 and m, = 9. We let the shape parameter vary c = fl for j E W 
and performed a numerical search for the shape parameter at  which the preconditioned 

GMRES fails to  converge within N iterations. We studied three cases: ml = 10, ml = 

30 and ml = 50. This study permits one to  determine whether our preconditioning 

technique is suitable for a given problem. We report the results graphically. All results 

can be categorized into two parts: (i) the smooth region for small values of c 5 c*, 

and (ii) the oscillatory region for large values of c > c* due to  round-off error, where c* 

depends on N and m in general. In this set of numerical experiments, preconditioners 

are constructed using the L-NE approach. 
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For all tested values of the shape parameter, we plot the condition numbers of the 

unpreconditioned matrix A and of the preconditioned matrices in figure 4.6 (a). The 

number of iterations required for the GMRES method to converge within tolerance are 

shown in figure 4.6 (b). For c = d w  and c = GMRES fails to  converge 

after N iterations or stagnates for m = 30 + 9 and m = 50 + 9. As we continue 

the numerical experiments, we find that for m = 10 + 9 GMRES fails to converge 

when c = - 1.23. The number of iterations required for GMRES to converge 

increase as c increases. The decreasing convergence rate with increasing c is caused 

by the increasing ill-conditioning of the normal equations (4. lo), in which case, the 

preconditioner W does not approximate the ACBF well due to  round-off errors. We 

show the condition number of the most ill-conditioned normal equation in figure 4.6 

(4. 
Brown and Walker [16] find that GMRES breaks down without determining a 

solution through rank deficiency, or determines a solution without break down, but 

breaks down a t  the next step due to  degeneracy of the Krylov subspace. 

When GMRES does converge, both the MSR and MAX errors agree with the 

corresponding results from G-GE. The critical shape parameters are c* - and 

c* -- for the m = 30 + 9 and 50 + 9 cases, respectively. After c*, the condition 

numbers of the preconditioned system no longer increase smoothly with c but oscillate 

instead. In the case of m = 10 + 9, the round-off errors do not have any effect on 

those results for all tested c. Taking accuracy and computational cost into account, 

for N = 1089, our preconditioning technique can efficiently solve (1.4) for c 5 
with - 0 . lN  GMRES iterations. 

As for the previous example, we compare the total flops for solving the linear 

system with the preconditioned GMRES and G-GE. The results are shown in figure 

4.7. Although using m = 50 + 9 allows GMRES to  converge quicker in comparison to 

the other support sizes, we see from figure 4.7 that it is m = 30 + 9 that gives the best 

overall performance in the measure of total cost. In this example, our preconditioned 

scheme requires less computational efforts than G-GE to  solve linear systems as long 

as GMRES converges. In particular, our preconditioning scheme requires less than 

18% of the effort required by G-GE to solve the RBF-PDE problem for c < 0.1. In 
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(a) Condition number 

C 

(c) Errors 

(b) Number of iterations 

C 

(d) rnaxi,l,,N cond(B,B;) 

Figure 4.6: (a) Condition numbers of the original RBF-PDE matrix for N = 1089 

and the preconditioned matrices as a function of c = &. (b) The corresponding 

number of iterations GMRES required to  converge within a lop6 tolerance. (c) The 
resulting MSR errors and MAX errors of the preconditioned RBF-PDE solutions with 
different constant shape parameters on a log-log scale. (d) The condition number of 
the most ill-conditioned normal equation in the construction of preconditioner. 



CHAPTER 4. ON PRECONDITIONERS AND DDMS 

Figure 4.7: Estimated ratio of flops for preconditioned GMRES to  converge over that 
the flops required by the direct method, G-GE. The preconditioned GMRES is more 
efficient than the direct method even when a larger number of iterations are required 
for the ill-conditioned matrices. 

the case of c < 0.05, using the support of size m = 10 + 9 and 30 + 9 one can solve 

the problem with a similar overall effort. 

Increasingly larger N for a fixed c 

Ill-conditioning will also arise if one uses a large number of knots, N. In this test, we 

ran the calculations at  a fixed c = 0.1, and solved (4.14) on equally spaced N = n x n 

centers where n = 8 j  + 1 for j E N until GMRES fails to  converge. The preconditioner 

W is constructed using 50, 30, or 10 local and 9 special points as in section 4.3.4. The 

condition numbers and the number of iterations for GMRES to  converge to  a 

tolerance are shown in figure 4.8 (a) and (b), respectively. Results are not shown if 

GMRES fails to converge. 

From the condition number of the most ill-conditioned normal equations in the 

construction of the preconditioner, see figure 4.8 (d), we see that if max cond(BiB?) > 
i=l..N 

0(1016), the L-NE approach does not perform as well as it should. Using a larger 
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support may result in slower convergence. If max cond(BiBT) > 0(1o2') the precon- 
i=l..N 

ditioner breaks down and GMRES does not converge. 
We know that L-SVD is more stable than L-NE when we are dealing with nearly 

rank-deficient least-squares problems. But, the set up cost of the preconditioner 

constructed using L-SVD is higher, see section 4.2.2. If L-SVD is used to solve the 

corresponding least-squares problems (4.10), GMRES only fails to converge when 

N = 4225 and m = 50 + 9. The relative ratio of overall costs using L-SVD is shown 

in figure 4.9 (b); that of L-NE is shown in figure 4.9 (a) for comparison. 

For a given problem, we can divide the shape parameter into three regions: 

1. Small c: our preconditioner has excellent performance using L-NE. 

2. Moderate c: L-NE starts to break down due the round-off errors. One should 

consider switching to L-SVD. 

3. Large c: Our preconditioning technique is no longer applicable. Other numerical 

techniques should be used instead; e.g. domain decomposition. 

4.3.5 Discussion 

We have developed an effective preconditioner scheme for the asymmetric collocation 

scheme in which radial basis functions (RBFs) are used to  solve partial differential 

equations (PDEs) problems. This method works well for elliptic, hyperbolic and 

parabolic PDEs and for the volume integral PDE formulation [71]. 

An ideal approximate cardinal basis function (ACBF) is equivalent to a delta 

function, &(xi) that is one at  it center, xi, and zero everywhere else. We start from 

the coefficient matrix, A, that is constructed from the PDE boundary condition and 

interior operators acting upon the RBFs. For each center xi, we select a set containing 

special points and local neighboring centers of size m << N. The inclusion of special 

points in this subset that ensures each ACBF is more distinct in shape. 

We find the set of weights wi at each center by solving each least-squares problem 

to  construct the global preconditioner W. The set of least-squares problems is solved 
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(a) Condition number (b) Number of iterations 
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Figure 4.8: (a) Condition numbers of the original RBF-PDE matrix for c = 0.1 and 
the preconditioned matrices as a function of N. (b) The corresponding number of 
GMRES iterations required to  converge within a tolerance. (c) The resulting 
MSR errors and MAX errors of the preconditioned RBF-PDE solutions with different 
constant shape parameters on a log-log scale. (d) The condition number of the most 
ill-conditioned normal equation used in the construction of the preconditioner. 
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Figure 4.9: Ratio of the estimated flops for preconditioned GMRES to converge over 
the flops required by the direct method, G-GE. The preconditioner W is constructed 
using (a) L-NE and (b) L-SVD. 

using either a local normal equation approach (L-NE), a local QR factorization (L- 

QR), or a local singular value decomposition (L-SVD) method. 

The preconditioner W is constructed from the sets of weights wi that transforms 

the elements of the RBF-PDE coefficient matrix A into ACBFs. The preconditioner W 

that acts as an approximation to  A-' clusters the real part of the complex eigenvalues 

of WA about 1 permitting the solution of the RBF expansion coefficients to  be solved 

by the very efficient GMRES iteration scheme. With the set of expansion coefficients 

determined, we reconstruct the numerical solution u over the domain, R. 

Our intent is to  be able to  obtain max and mean root square errors with our 

preconditioning scheme that are less than or equal to  the same errors obtained by 

global Gaussian elimination, but requiring far fewer flops. In its present form, our 

preconditioner represents a major breakthrough in the computational efficiency of 

the RBF-PDE method. However, we make the caveat that this computational effi- 

ciency holds as long as safe values of the shape parameter are used to  prevent severe 

ill-conditioning in both the global RBF-PDE coefficient matrix A and the normal 

equation matrices BiB' that are used to  construct the preconditioner W. 

The numerical solutions obtained from GMRES iteration on an elliptic PDE test 
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problem found in [24] are reported. We tested the ACBF method for various size 

problems and values of the MQ shape parameter c(N) for regularly spaced and scat- 

tered center distributions. We found that the shape parameter plays a very important 

role. 

We explain why the preconditioning technique fails to  work for large values of the 

shape parameters and N. The ACBFs become less independent when c or N increases 

as reflected in the condition number of A. When more local points are used, the normal 

equations used to  find W increases in rank and (4.10) becomes more ill-conditioned. 

Since the elements of the preconditioners cannot be found accurately using L-NE, the 

condition numbers of the preconditioned systems W A  start to oscillate with increasing 

c reflecting the effect of round-off errors. One possible way to solve the least-squares 

problems (4.8) is using L-SVD instead of the L-NE. Using L-SVD, the number of 

iterations and condition number increase smoothly as c or N increases. L-SVD yields 

more robust preconditioners when c is large. However, the number of operations 

required to  construct the preconditioner becomes ~ ? ( m m ~ ' / ~  N2)  flops. 

A large shape parameter is desired for faster convergence rates and higher ac- 

curacy according to  the theoretical studies of [79]. One way to  extend the use of 

our preconditioning technique to  solve the RBF-PDE systems with large c is to  use 

better-approximated ACBFs by using a larger m. As shown in section 4.3.4 and sec- 

tion 4.3.4, our preconditioner will eventually break down if one keeps increasing c or 

N. 

The other attractive possibility of using larger values of c and/or N is to  combine 

our preconditioner with the domain decomposition method (DDM), [12, 70, 75, 64, 

1111. DDM splits S2 into K overlapping or nonoverlapping subdomains, each of which 

contains Nk << N centers. The smaller dimension coefficient matrices are orders 

of magnitude better conditioned than the corresponding global coefficient matrix. 

Smith, Bjerrstad, and Gropp [96] present a nice overview of the techniques used for 

overlapping and nonoverlapping methods that are applicable in the efficient solution 

methods for PDE problems on parallel machines that are readily transferable to  RBF- 

PDE methods. 

The set up cost of our preconditioner is shown in section 4.2. For any fixed value of 
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m, the Bi is the m x N matrix formed by selecting m rows of A from the index set Si 

in (4.6). With DDM, the cost of constructing the preconditioners for each subdomain 

Rk containing Nk << N centers is cheaper than finding the preconditioners for the 

original problem in which all N centers are used. The global storage requirements 

remain the same. Since the search of a local neighborhood is performed only within 

each subdomain, i.e. a smaller set of centers, the search time is reduced. The set 

up for the construction of each ( B i ) k  is less than that of the global Bi's. In each 

subdomain, the set up cost now becomes 0 ( m 2 N i  + m3Nk) flops. 

With DDM, both the original and preconditioned systems on the subdomains are 

better conditioned when we are dealing with Nk < N centers instead of N centers. 

Furthermore, combining our preconditioning technique with DDM will permit the use 

of a larger shape parameter by increasing the m/N ratio on each subdomain keeping 

the number of flops within an economical limit. 

We acknowledge that our preconditioning scheme requires more development, but 

it still performs very efficiently with the caveat that we restrict the condition number 

of global coefficient matrix A by using safe values of c N hmin  Then the GMRES 

iteration scheme converges within O(10) iterations, see section 4.3.3. The current 

preconditioner is two to  three orders more efficient than global Gaussian elimination 

methods, and GMRES is N times more efficient than G-GE as N increases. 

For cases where the condition number of A is about 0(101•‹) to  0(1013) and 

1089 < N 5 1681, our preconditioning scheme only requires approximately 25% 

of the flops of the G-GE method. For highly ill-conditioned problems, see section 

4.3.4, the preconditioned GRMES is able to converge for A having a condition num- 

ber as high as 0(1015), but GMRES now requires about 80% of the number of flops 

compared to  G-GE. 

In the next investigation, we will combine overlapping domain decomposition 

methods (DDM) with the least-squares ACBF method. We obtained considerable ef- 

ficiency in our scheme by using the fast matrix-vector multiplication scheme of [7, 81. 

However, we intend to  obtain even better efficiencies when we implement the fast mul- 

tipole expansion method of Beatson and Newsam[l3] and combine our ACBF with 

domain decomposition similar to  work of Beatson, Light, and Billings [12]. Another 
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promising approach would be to  combine the ideas presented by Bozzini et al. [15]; by 

constraining the ACBFs to  have higher order vanishing moments, the ACBFs decay 

very rapidly obviating the need to  include the majority of the column elements of 

A. Such a combination is especially attractive for large-scale problems of engineering 

interest for the following reasons: 

No labor intensive mesh generation is required. 

The RBF-PDE collocation method is very simple to implement. 

The rate of convergence of MQ-RBF methods is exponential compared to the 

linear or quadratic convergence rates of the traditional methods. 

We will optimize the flop rates for the GMRES method using similar fast meth- 

ods as Beatson and co-workers. 

0 As the number of subdomain increase, the partitioned matrix Ak associated with 

each subdomain becomes better conditioned, permitting larger c values with the 

accompanying faster convergence and coarser discretization requirements. 

With the work load distributed among many processors, the turn-around time 

to finish a run diminishes, permitting a larger number of parametric studies to  

be completed. 

This DDM-ACBF approach can be very relevant when combined with Fornberg's 

method. We intend to  provide persons who are interested in using asymmetric RBF- 

PDE methods various options to  solve their problems. It is hoped that our work 

will dispel the perception that only finite difference, element, and volume methods 

are computationally efficient methods to  solve PDE problems in view of their slow 

convergence rates. 

Coupling with DDMs 

Suppose we partition the original domain S2 into two subdomains O1 and O2 such that 

Ol no2 # 0 and O1 U 0 2  = R. We employ the same notation as in Smith, B j~rs tad  and 
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Gropp [96]. The domains R, R1, and R2 are open and do not include their boundaries; 

let dfl, dR1, and df12 denotes their respective boundaries. The artificial boundary ri 
of Ri for i = 1,2 is defined to be the part of aili, the boundary of Ri, that is also 

interior to R. The rest of the boundary aRi\ri is referred to as the natural boundary. 

The classical alternating Schwarz algorithm is given by 

the numerical solution on the closure of the subdomain for n = 1,2,  . . . , where Up is i 
- 
Ri = Ri U aRi, i = 1 ,2  after n iterations. For each subdomain, the same PDE is 

solved in the interior Ri and on the natural boundary dRi\ri. A Dirichlet condition 

is imposed on the artificial boundary ri so that numerical solution on subdomain Ri 

matches the newest approximation on ri. The notation UTID denotes the values of 

U,I" restricted to  the domain D. 

Throughout the section, we use the notation Up to  indicate the approximate so- 

lution on subdomain Ri after n DDM iterations. Let ar to be the RBF coefficients 

corresponding to U?. vector a;. Lastly, the symbol A is reserved to the operator that 

computes the maximum difference between two vectors: AU? := 1 1  UF - uF-' II,, and 

A a r  := Ila; - ay-lll,. For simplicity, the superscript n will be omitted if it is clear 

from the context. 

4.4.1 Using GMRES with DDM 

The idea of the classical alternating Schwarz algorithm was first published by Schwarz 

[94] in 1870. The application of DDM includes for finite difference methods, finite 

element methods, finite volume methods, and spectral methods on linear or nonlinear 
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problems, and other applications. Readers should refer to  the proceedings of the an- 

nual domain decomposition meetings for the most recent developments. Recently, as 

the interest in RBFs became more attractive, researchers began to  combine the DDM 

with RBF methods. We combine the RBF methods and the ACBF preconditioning 

technique with DDM, denoted by ACBF-DDM in short. For an N x N matrix, the 

performance of the ACBF preconditioner depends on the condition of the matrix and 

the ratio between the size of support of the ACBF and of the matrix, m/N. For any 

fixed number of data points N in 0, each subdomain will have a smaller number of 

data points Ni < N. Hence, as the ratio m/Ni increases, so does the performance 

of the ACBF preconditioner. Combining the DDM with the ACBF preconditioner is 

therefore expected to outperform the DDM using direct solver methods. In section 

4.4.1, we studied different implementations of the ACBF-DDM scheme. Numerical 

results are reported in section 4.4.2. 

For testing purposes, we set up a boundary value problem for the Poisson equa- 

tion (4.14). We assume Dirichlet boundary conditions on all sides of the unit square 

whose values are given by (4.15). In this section, we apply the classical alternat- 

ing Schwarz algorithm on overlapping matching subdomains using GMRES with the 

ACBF preconditioner . 
The original domain 0 is spanned with 33 x 33 equally spaced knots that are, and 

other divided into four subdomains each of which contains 18 x 18 equally spaced 

knots with a uniform knot spacing, h = 1/32. The intersection region between adja- 

cent subdomains will contain varying numbers of overlapping knots denoted by w (in 

knots). The four subdomains are given by 

a, = { (x ,Y)  : x E (01 lP+wh),  Y E (01 lP+wh)) ,  

0 2  = { (2, Y)  : x E (1/2-wh, I ) ,  y E (0, 1/2+wh) ), 

a3 = { (x, Y) : x E (0, lP+wh),  Y E (1P-wh, 1) ), 
0 4  = { (x, y) : x E (1/2--wh, I ) ,  y E (1/2-wh, 1) ). 

In figure 4.10, we show the knot distributions of R1 and R4 with w = 1. The global 

matrix without preconditioning has a condition number of 0(106). Note that the 

RBF-PDE matrix is not symmetric, and the condition number is not as informative 
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Figure 4.10: Overlapping grid of R1 and Rq. 

as for the symmetric case. More importantly, using the ACBF preconditioning tech- 

nique reduces the number of GMRES iterations required to  converge from hundreds 

to tens of iterations. 

We use the MQ RBFs with a constant shape parameter c = 1/33. The ACBF 

preconditioners on each subdomain are constructed using a support size of m = 

10 + 93. The condition numbers of the subdomains' RBF-PDE matrices are of the 

order 0(105), and that of preconditioned matrices is 12. Efficiency is measured by 

the total number of GMRES iterations instead of the number of DDM iterations. The 

relation between r,, and is being studied. Furthermore, two update strategies 

of the function values on the artificial boundary are also studied experimentally. 

$10 local support and 9 special support 
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Algorithm 4 First ACBF-DDM algorithm - - 
Initialization: 

Tolerance: T 

DDM iteration: 

While Aai > T on some subdomains Ri 

For each subdomain Ri 

Solve PDE system (4.17) with GMRES 

Update Uj l r ,  on neighboring artificial boundary I'j 

EndFor 

EndWhile 

Relationship between T,, and T- 

The numerical implementation of the classical alternating Schwarz algorithm involves 

a user defined DDM tolerance, T-. The DDM iteration stops when the maximum 

changes of the numerical approximations on the artificial boundary AU? is less than 

T- on all subdomains Ri. When GMRES is used to solve each linear system in (4.17) 

instead of the direct method, a GMRES tolerance T- is necessary to control the 

stopping criteria of GMRES. 

One could obtain a simple algorithm by solving the linear systems in (4.17) using 

the preconditioned GMRES iteration scheme. In order to  accelerate convergence, the 

latest approximation of the unknown RBF coefficients ai on Ri should be used as the 

initial guess of the current GMRES iteration on Ri. 

Lemma 4.4.1 For any linear system @a = b, let 1 1 . 1 1  denote an arbitrary vector norm, 

K denote the condition number of @, and T > 0. If II6aII 5 T ,  then Il6bll 5 V K T ,  for 

some a > 0.  

Proof: By definition, 

The lemma follows by letting v = 1 1  bll/llall and replacing sup by an inequality. I 



CHAPTER 4. ON PRECONDITIONERS AND DDMS 106 

Although lemma 4.4.1 provides a relationship between T,, and 7-, information 

about the exact solution is necessary to  evaluate the constant p = 1 1  blllllall. Moreover, 

lemma 4.4.1 suggests that when the change in 1 1  bll is sufficiently small such that 

the initial guess of GMRES is within the desired tolerance, GMRES will return the 

initial guess without iterating. Therefore, the DDM iteration will have two equivalent 

consecutive approximations and will stop iterating. Thus, the role of T,, is less 

significant. 

We solve the test problem with different values of T = T,, = T ~ .  Our first 

stopping criterion depends on the values of RBF coefficients instead of the approx- 

imated value on the artificial boundary. Iteration will stop if Aal < T. In other 

words, the DDM iteration will stop when all RBF coefficients fail to be modified by 

an amount T. The maximum error on the artificial boundary among all subdomains is 

shown in figure 4.11 with different values of T as a function of total GMRES iterations 

required for convergence. For completeness, the number of DDM iterations required 

to  converge are 3, 7, 10, 18, and 27 for tolerances lop3, lop4, and lo-', 

respectively. 

As one would expect, using a smaller tolerance would achieve more accurate so- 

lutions after the DDM iteration cycle converges. On the other hand, using a smaller 

tolerance does require more GMRES iterations or more computational effort to achieve 

a certain prescribed accuracy. The question is to  find the best outcome with the least 

amount of computational effort. This reflects the fact that more GMRES iterations 

are necessary to  achieve a smaller tolerance. This observation leads us to develop the 

algorithms in the section 4.4.1. 

Algorithm-A and algorit hm-B 

From section 4.4.1, we see that an efficient algorithm should start with a relatively 

large value of TDm. As the approximation converges, a smaller tolerance is desired so 

that the errors continue to be reduced. 

Our first algorithm, algorithm-A, is outlined in algorithm 5 .  Algorithm-A re- 

cursively stores the newest approximation on all artificial boundaries before calling 
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Figure 4.11: Error behavior on the artificial boundary with different 7-. 

algorithm 4 with successively smaller tolerances. Since the function values on an arti- 

ficial boundary are updated after each completion of algorithm 4, the DDM iteration 

cannot terminate within the call of algorithm 4. 

We solve the test problem starting with 7- = We use a reducing factor 

of p = 10, and min7- = 10-12. The maximum differences of the most recent two 

consecutive function values on all artificial boundaries, llWi - UiJriII, is used as the 

measure of convergence. 

In figure 4.12, this measure of convergence is shown against the total number of 

flops after each inner for-loop in algorithm 5. 

Within each call of algorithm 4, the new approximation on the artificial boundaries 

is converging to another fixed point that differs from the stored value Wi. The measure 

of convergence of algorithm-A resembles an approximate step-function whose jumps 

occur after 7- is reduced in value. 

To smooth out the curve ( 1  Wi-UiIri 1 1 ,  we suggest algorithm-B in which the function 

values on an artificial boundary are updated immediately within algorithm 4 if the 

GMRES iterates on some subdomains, see algorithm 6. Furthermore, an if-condition 

is added to allow early termination. This modification permits the DDM iteration 
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Algorithm 5 Algorithm-A 
Initialization: 

DDM tolerance: TDm 

Initial GMRES tolerance: T,, 

Reducing factor for rm: p > 1 

Iteration: 

While IIWi - UilriII, > rDm on some subdomains Ri 

Store approximations on artificial boundaries: Wi t Ui l r i  
Call algorithm 4 with T = T,, 

7,, +- b m l ~  
EndWhile 

to terminate within algorithm 4 and hence avoid unnecessary GMRES iterations. 

Although the measure of convergence of algorithm-B still contains jumps, it does 

behave more similarly to  the direct solver version of DDM, see figure 4.12. It is clear 

from figure 4.12 that algorithm-B will allow the DDM iteration to terminate earlier 

for any give TDm. As an example, if T,, = 630 and 481 GMRES iterations are 

need for algorithm-A and algorithm-B to  converge, respectively. Their corresponding 

maximum errors are 2.441 x and 2.668 x If T,, = these values 

are 1144 and 2.427664 x for algorithm-A, and 1022 and 2.427552 x lop3 for 

algorithm-B, respectively. 

Finally, we want to mention that for both algorithm-A and algorithm-B, a mini- 

mum value of rm and a maximum number of iterations should be imposed to avoid 

an infinite loop. For simplicity, we skip the details in the initializations. Some vari- 

ables need to  be initialized correctly for the iteration to  start. Algorithm-B will be 

used for all the tests in the remainder of the chapter. 

Width of the overlapping region 

It is commonly known that increasing the width w of the overlapping region will speed 

up the DDM convergence rate. In this section, we will verify this behavior with the 
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Algorithm 6 Algorithm-B 
Initialization: 

DDM tolerance: 7- 

Initial GMRES tolerance: 7- 

Reducing factor for 7-: p > 1 

Iteration: 

While 1 1  Wi - Ui l r i  ( 1  03 > rDDM on some subdomains Ri 
While Aai > 7- on some subdomains Ri 

For each subdomain Ri 

Solve the PDE system (4.17) with GMRES 

Update U, lr, on neighboring artificial boundary rj  
EndFor 

If GMRES iterates on  some subdomains 

Store approximations on artificial boundaries: Wi t Uilri 

If J(Wi - UiIr, 1 1  < 7- on all subdomains Ri 

Break (DDM converged) 

End1 f 

Else (i.e., GMRES returns initial guess on  all subdomains) 

Break inner while-loop 

EndIf 

EndWhile 

EndWhile 
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Figure 4.12: Measure of convergence as a function of total flops. 

GMRES version of DDM. We solve the test problem with 1 to 7 knots overlapping 

in each direction, and with 7- = The total number of GMRES iterations 

required for convergence, total number of DDM iterations, and the smallest T- 

used in algorithm-B for different overlapping widths are listed in table 4.2. 

In terms of the number of DDM iterations, faster convergence is achieved with 

wider overlap. Also, we can see a trend of faster convergence in terms of the number 

of GMRES iterations required, see figure 4.13. Increasing the width of the overlap 

does not necessarily accelerate the convergence. Convergence also depends upon the 

smallest T- used in algorithm-B. In general, we see that if algorithm-B terminates 

with a larger T-, the total effort will be less. Furthermore, we also see an increase 

in accuracy as the overlapping width increases; from 2 to  7 overlapping knots per 

row or column. The maximum errors are 2.668 x lop3, 2.421 x 2.345 x 

2.223 x loV3, 2.149 x 2.062 x loV3, and 2.022 x respectively. 

4.4.2 Numerical examples 

In all the numerical examples in this section, we use algorithm-B with T- = 

and a GMRES tolerance reducing factor p = 10. We continue to study (4.14) as 
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Table 4.2: Convergence behavior with different overlapping widths with p = 10. 

NIB 
10 20 30 40 50 

Percentage of overlapping 

Figure 4.13: Total effort as a function of overlapping width, where N = 1089. 

an example of DDM with matching nodes. Next we consider a PDE with variable 

coefficients. Then we show the results of another example used by Smith et al. [96] 

with the basis function r5  for the non-matching case. 

Example 4.4.1 The MQ shape parameter for each run is c2 = l/Ntotal where Ntotal 

denotes the number of nodes in  the union of all subdomains' nodes. W e  concentrate 

Ntotal = 73 x 73 = 5329 and Ntotal = 109 x 109 = 11881. W e  partition the domain C2 

into 4,  9,  16, and 36 subdomains. The ACBF preconditioners are constructed using a 

support size of m = 10 + 9 as i n  the last section. The width of overlapping is around 

10% to the width of the subdomains. One disadvantage of the matching nodes method 

is that we are not able to pick arbitrarily the width of overlap. 

W e  terminate algorithm-B when T,, = and T,, = For both cases, the 

number of iterations required for algorithm-B to converge are shown in  table 4.3 and 
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table 4.4, respectively. The  average number of ( G M R E S )  iterations is  defined to be 

the average number of G M R E S  iterations required per DDM iteration per subdomain 

whose value is  also expressed as a factor of x. The  t e r m  x i s  the average number 

of nodes in all subdomain, and is  given by 

- 
Ni = 

1 
(No. of subdomains) - CNI,  

i 

which gets larger when more subdomains or wider overlappings are used. W h e n  more 

subdomains are used, the ratio m / N i  increases as the dimension of  each matrix de- 

creases, and we expect better performance of the A C B F  preconditioning technique o n  

each subdomain. The  average number of G M R E S  iterations required for convergence 

is  therefore reduced. I n  general, using more subdomains requires more iterations for 

both the DDM and the G M R E S  cycles to  achieve convergence. However, note that 

the matrix-vector product becomes cheaper as the size of the subdomain is  reduced; 

the total number of G M R E S  is not an absolute measure of the cost of algorithm-B. 

W e  summarize by figure 4.14: the ratio of estimate flops required for algorithm-B t o  

converge over the flops required by the direct method. The  overall cost estimate of 

algorithm-B consists of the set up of A C B F  preconditioners: m . C N: + m3 C N i ,  

plus the cost estimate of the matrix-vector multiplications in the G M R E S  iterations. 

The  cost of direct method is simply chosen to  be N 3 .  Using m = 50 + 9 ,  Ling and 

Kansa [?] obtained an  estimated flop ratio 35.47N-0.89 (that becomes 0.171 and 0.0084 

for Ntotal = 5329 and Ntotal = 11881, respectively) when applying the ACBF precondi- 

tioner directly for the global RBF-PDE matrix of (4.14). Figure 4.14 shows that our 

ACBF-DDM method is  even more attractive than using A C B F  without D D M  in all 

test cases. One could improve the efficiency of algorithm-B by using more subdomains. 

Hence, this trend appears to be very attractive for massively parallel computers. 

Example 4.4.2 Wi th  a similar set up as in example 4.4.1, we consider a P D E  with 

variable coefficients, 
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I Number o f  I Number o f  iterations 
N t t  I subdomains 

73 x 73 
73 x 73 

109 x 109 

Average 

17.5 = .0095Ni 
7.76 = .0092N, 
5.57 = .0115Z 
3.52 = .0132N, 
31.0 = .0076Ni 
13.7 = .0068N, 
11.4 = .0099N, 
6.09 = .0122N, 

Table 4.3: Number of iterations required by solving (4.14) using algorithm-B with 
T~~ = lop3 - on larae scale wroblems. d 

( Number of [ Number o f  iterations 

Table 4.4: Number of iterations obtained by solving (4.14) using algorithm-B with 
T~~ = on large scale problems. 

Ntotal 
73 x 73 
73 x 73 
73 x 73 
73 x 73 

for ( x ,  y) E [0, 112, where 

and 

f ( X I  Y) = -xe "-Y(1 - x)(3 - 2y) + 2y(l - y)(3x2 + y 2  - x - 2). 

109 x 109 (2,2) 10 1242 31.1 = .0076Ni 

subdomaih 

(2,2) 
(3,3) 
(4,4) 
(6, 6) 

The exact solution to  (4.1 7)  is  given by 

W e  report the convergence results in table 4.5 for T,,, = 

DDM 
8 

26 

4 3 
59 

GMRES 
530 
1808 
4123 
8379 

Average 

16.6 = .0090Ni 
7.73 = .0092x 
5.99 = .0124E 
3.94 = .0148% 
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Figure 4.14: The ratio of estimated flops required for algorithm-B to converge over 
the flops required by the direct method. 

Applying algorithm-B to a variable coeficients problem does not seems to aflect 

the convergence behavior i n  terms of the average GMRES iterations. For the case of 

( 6 , 6 )  subdomains, we see a relatively larger number of DDM and GMRES iterations 

are required for convergence compared to the first example. This may due to  the 

ineficient data communication between subdomains when too many subdomains are 

employed. 

Example 4.4.3 In  the last example, we consider the Poisson equation, 

where R is a nontrivial domain: a union of square and a circle centered at (2 ,2 ) ,  see 

figure 4.15 (LEFT).  W e  apply algorithm-B on two overlapping subdomains with non- 

matching nodes. Collocation points are placed irregularly throughout each subdomain. 

A n  example of collocation points placement is shown i n  figure 4.15 (RIGHT).  In  

general, the number of iterations required for convergence of the classical alternating 

Schwarz methods depends only on the geometric overlap, not the number of nodes or 

mesh refinement. W e  show that algorithm-B also shares a similar property. 
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iterations 
Average 

17.9 = .0097Ni 
9.59 = .0104x 
7.78 = .0141x 
4.80 = .0180N, 

32.1 = .0078Ni 
17.2 = , 0085x  
12.1 = .0105N, 
8.74 = .0152x 

Number 0. 

DDM ( G M R E S  NtOtal 

Table 4.5: Number of iterations obtained by solving (4.17) using algorithm-B with 
T,, = o n  large scale problems. 

73 x 73 (2 ,2 )  
73 x 73 (37 3) 
73 x 73 (4>4)  
73 x 73 (6 ,6 )  1 1233 

8306 
6 3  19826 

Number of 
subdomains 

Instead of the M Q  R B F ,  we use the basis function q5 = r5  to  solve the problem; 

the same problem is studied by Li and Hon (751. W e  use 50 local points, and 13 

and 9 special points o n  the square and circle, respectively, to construct the A C B F  

preconditioner. W e  pick T,, = Since the r5  basis function does not  have a 

parameter to  counter the ill conditioning effect with the increasing number of nodes, 

the condition of the RBF-PDE matrix increases rapidly with N .  

O n  two subdomains, our method can efficiently handle the problem with around 

1000 nodes o n  each subdomain despite the ill conditioning problem. W i t h  146 nodes o n  

the square and 144 nodes o n  the circle, the condition number reduces from C3(107) to  

the order of 1 o n  both subdomains. With  1099 nodes o n  the square and 1078 nodes o n  

the circle, the condition number increases to  0(1010) and the preconditioner only helps 

reducing it to  the order of 100. Table 4.6 shows that the number of DDM iterations 

performed within algorithm-B is roughly constant. However, the number of G M R E S  

iterations required for convergence increases as N ,  or the condition number, increases. 

O n  average, we need 6 to  31 G M R E S  iterations per subdomain per DDM iteration. 
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Figure 4.15: Random placement of collocation points on two subdomains that is a 
union of a square and a circle for the Poisson equation (4.18). 

4.4.3 Discussion 

We experimented with different implementations of the coupling of the approximate 

cardinal basis functions (ACBFs) preconditioning technique and the classic alternat- 

ing Schwarz algorithm [96, 941. The truly meshfree radial basis functions (RBFs) 

collocation methods allow the Schwarz algorithm to be applied on both matching and 

non-matching nodes without any modification. 

Using DDM allows the rank of each subdomain matrix to be reduced and therefore 

allows the ACBFs preconditioner to work more efficiently. 

Our algorithm not only helps reducing the overall computation effort of solving 

RBF-PDE systems, but we show it is more efficient than solving the global RBF- 

PDE problem with ACBFs preconditioning alone. In particular, the efficiency can be 

improved by using more subdomains. 

Because RBF methods possess higher order convergence rates than the standard 

methods, they require orders of magnitude less discretization. Also, as the spatial di- 

mension increases, the connectivity requirements increase the bandwidth of the sparse 
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Table 4.6: Number of iterations and maximum error obtained by algorithm-B with 
$I = r5 .  

No. of nodes 
Sauare Circle 

system of equations using traditional methods. Note that special preconditioning 

methods and domain decomposition are also used to  solve large PDE systems. 

To state categorically that the traditional methods giving rise to sparse systems 

will always be more efficient than RBF methods that give rise to  either broad-banded 

sparse or full systems remains an open question that is problem dependent. With the 

combination of the ACBF preconditioner scheme on multiple overlapping subdomains, 

we have demonstrated that we can achieve a significant reduction in the total number 

of flops to  solve a very large system of equations, especially when implemented on 

massively parallel computers. We believe additional reductions in the total number 

of flops required to achieve convergence can be achieved by combining the scheme 

presented here with fast multipole expansions, control of higher moments of the ACBF 

expansions, and a better understanding of conditions under which RBF expansions 

can be truncated as discussed by Hardy[53]. This section has not addressed every 

detail by which RBF-PDE solutions can be made very competitive, but has shown that 

the hybrid scheme combining the ACBF preconditioners with DDM has demonstrated 

that criticism of RBF methods as being too ill conditioned and too costly to implement 

is no longer valid. 

4.5 Chapter summary 

Max. error 
Sauare Circle 

Although meshless radial basis function (RBF) methods applied to partial differential 

equations (PDEs) are not only simple to implement and enjoy exponential convergence 

rates as compared to standard mesh-based schemes, the system of equations required 

No. of iteration 
DDM GMRES  I Averaae 
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to find the expansion coefficients are typically badly conditioned and expensive using 

the global Gaussian elimination (G-GE) method requiring 0 ( N 3 )  flops. 

We present a simple preconditioning scheme that is based upon constructing least- 

squares approximate cardinal basis functions (ACBFs) from linear combinations of 

the RBF-PDE matrix elements. The ACBFs transforms a badly conditioned linear 

system into one that is very well conditioned, allowing us to solve for the expansion 

coefficients iteratively so we can reconstruct the unknown solution everywhere on the 

domain. Our preconditioner requires 0 (mN2)  flops to set up, and O(mN) storage 

locations where m is a user define parameter of order 10. For the 2D MQ-RBF with 

the shape parameter c N I/@, the number of iterations required for convergence is of 

order 10 for large values of N,  making this a very attractive approach computationally. 

As the shape parameter increases, our preconditioner will eventually be affected 

by the ill conditioning and round-off errors, and thus becomes less effective. We 

tested our preconditioners on increasingly larger c and N. A more stable construction 

scheme is available with a higher set up cost. 

In this chapter, we also combine the RBF methods and the ACBF preconditioning 

technique with DDM, denoted by ACBF-DDM in short. For an N x N matrix, the 

performance of the ACBF preconditioner depends on the condition of the matrix and 

the ratio between the size of support of the ACBF and of the matrix, m/N. For any 

fixed number of data points N in R,  each subdomain will have a smaller number of 

data points Ni < N. Hence, as the ratio m/Ni increases, so does the performance 

of the ACBF preconditioner. Combining the DDM with the ACBF preconditioner is 

therefore expected to outperform the DDM using direct solver methods. In section 

4.4.1, we studied different implementations of the ACBF-DDM scheme. Numerical 

results are reported in section 4.4.2. 
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Future Studies 

Quasi-Interpolat ion 

The study of quasi-interpolation could play an important role when coupled with 

the method of fundamental solutions (MFS). For an inhomogeneous differential 

equation Cu = f ,  our quasi-interpolation scheme allows us to rewrite f in terms 

of the dimension-splitting (DSMQ) basis. Before applying MFS, one needs to  

transform the inhomogeneous equation to  a homogeneous one. 

After we obtain the quasi-interpolant for the right hand function f ,  the problem 

of finding a particular solution is transformed into a series of subproblems: 

solving Cu = DSMQ. This technique of finding a particular solution involves 

symbolic calculations which result in accurate and efficient algorithms. Similar 

technique is used by Golberg et al. [47] with Lagrange polynomials instead of 

DSMQ. They are able to find a particular solution for Poisson's equation or 

inhomogeneous Helmoholtz-type equation. We believe our quasi-interpolation 

formula could be used on similar problems for solving PDEs. 

Boundary Layer Problems 

We gave an example of solving interior layer problems with our RBF scheme; 

however, our method is not designed for such problem. Like most of the exist- 

ing schemes, we see that our scheme fails to capture small layer when dealing 

with interior layer problems. One of our goals is to  develop a new coordinate 
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condensing transform that allows us to handle interior layers as efficient as what 

we have now for the boundary layer problems. For example, the inverse of the 

SINE-transform could be a good choice. On the other hand, the exact location 

of the interior layer may not be trivial. A sophisticated adaptive scheme is 

required to capture an interior layer. 

We would like to extend our scheme to  two dimension. Two dimensional versions 

of the SINE-transform and indicator are necessary. In particular, extending the 

indicator, that used in our adaptive scheme which employs information from 

the third derivatives of the numerical approximation, is not trivial. 

ACBF Preconditioners 

For simplicity, assume our domain is R = [O, 112 and a total number of N 

regularly spaced centers is used to  discretize the domain. Let us consider one of 

the subdomains, Rk, used in the DDM. Suppose there are Nk centers in Rk = 

[a, a + L] x [b, b + L], and assume that the shape parameter c is fixed. A simple 

coordinate transformation (x, y) H (I - L a ,  - 'L b, maps to  flk = [O, 112. 

For fik, the corresponding normalized shape parameter 2; = c/L > c. F'rom the 

ratio of the area over the number of centers, we know 1/N = L2/Nk. Eliminating 

L, we can rewrite this relationship as 

Suppose, for a given problem, one desires to  use a shape parameter c = j / f i  

for some j > 1. The corresponding normalized shape parameter for fik is given 

by E = j/m by (5.1). We see that DDM helps solving the ill conditioning 

problem by reducing the rank of the matrices but not by reducing the shape 

parameter. 

One not only needs to  split the original data points into smaller sets as in the 

DDM, but the area/volume of the subdomains also needs to  be roughly the same 

as the original domain in order to  achieve benefits from both the reducing rank 

and the reducing shape parameter. A possible direction is to couple ACBF with 
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a multilevel (ML) scheme. The idea of ML allows one to deal with a smaller 

number of data points at  a time. Most importantly, these data points are still 

distributed throughout the original domain and thus have a smaller normalized 

shape parameter. ML is not new to RBF. Floater and Iske [32] use a ML interpo- 

lation method for scattered data. Narcowich et al. [89] provide some theoretical 

results about the Floater-Iske method. Iske and Levesley [67] proposed an ML 

scheme that relies on an adaptive domain decomposition strategy. Chen et al. 

[23] apply an ML scheme to  solve elliptic problems. 

There is still much room for researches into the theories and applications of 

RBFs. Our final goal is to provide a numerically efficient and stable scheme to  

solve the RBF-PDE problem with a large shape parameter and a large number 

of unknowns. 
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