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Abstract 

RNA structure is an important field of study. Predicting structure can overcome many of 

the issues with physical structure determination. 

Structure prediction can be simplified as an energy minimization problem. Common 

optimization techniques are the DPA and the GA. 

RnaPredict is a GA used for RNA secondary structure prediction using energy min- 

imization and is evolved from Dr. Wiese's lab. Selection, recombination, mutation, and 

elitism are used to optimize the candidate structures in a population. Candidate solutions 

get closer to the global energy optimum with each generation. 

This thesis focuses on the addition of a hydrogen bond model and two stacking energy 

models, and studies their relative merits. It also studies different types of encoding used in 

the GA. 

The prediction accuracy is compared with known structures, the Nussinov DPA predic- 

tions and the mfold DPA predictions. RnaPredict is able to predict more accurate structures 

than Nussinov and performs similarly to mfold. 
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"Go west, young man" 
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Chapter 1 

Introduction 

The field of computational RNA secondary structure prediction has a short but active 

history. The first important work was done in the field of dynamic programming algorithms 

(DPAs). The pioneering work in this domain was done by Nussinov in 1978 [4] with the 

introduction of her algorithm used to maximize the number of base pairs in a structure. 

Zuker [5, 6, 7, 8, 9, 101 later introduced another DPA that optimizes the free energy of 

structures using a thermodynamic model. The development of mfold is still active today [lo] 

and has become the benchmark for computational RNA secondary structure prediction. A 

variant of mfold is RNAStructure written by Mathews [ll]. This variant ports mfold from 

C for Unix to C++ for the Microsoft Windows platform, adding a graphical user interface 

(GUI). Another DPA for secondary structure prediction was developed by Hofacker [12]. 

This package is called Vienna and includes three kinds of DPAs. The first gives a single 

structure with optimal free energy, similar to  Zuker's mfold. The second calculates the base 

pair probabilities in the thermodynamic ensemble using a partition function [13, 141, and 

the third can generate all suboptimal structures within a given energy range of the optimal 

energy [15, 161. Nussinov and mfold will be discussed in more detail in Chapters 8 and 9, 

respectively. 

Kinetic folding has also had some success in structure prediction. Kinetic folding simu- 

lates stochastic folding of RNA sequences. The algorithm models the formation, dissociation, 

and shifting of individual base pairs. KinFold is a software implementation from Flamm et 

al. [17, 181. 
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The class of methods yielding the highest degree of accuracy in predicting RNA sec- 

ondary structures is comparative methods. These methods make use of more than one phy- 

logenetically related sequences and try to  find folding patterns between them [19, 201. Cur- 

rent implementations based on the Sankoff algorithm are Foldalign [21, 221, Dynalign [23], 

and PRilcomp [24]. One implementation that combines energy minimization and compar- 

ative sequence analysis is Dynalign. PMcomp includes sequence alignment with maximal 

pairing. A comprehensive review of comparative RNA structure prediction approaches can 

be found in [25]. 

More recently, population based approaches have been developed. Evolutionary algo- 

rithms (EAs) have been used since the mid-1990s in this domain. The early successful 

applications of EAs were those of van Batenburg [26, 271, Shapiro [28], and Benedetti [29]. 

Early developments include simulating folding pathways [30] via genetic algorithms (GAS), 

implementation of a massively parallel version [31, 321, and the introduction of an anneal- 

ing mutation operator [33]. This thesis builds on this research and the research conducted 

in Dr. Wiese's lab. These developments include a permutation based GA, called RnaPre- 

dict [I], studies of selection, crossover operators, and representation issues [34, 35, 361. A 

study of thermodynamic models was also done [37]. RnaPredict was also parallelized [38, 391 

improving on the serial version. GAS will be discussed in more detail in Chapter 5. 

1.1 Research question 

The research question for this project is the secondary structure prediction of RNA molecules 

using only the primary sequence as input. The research incorporates three new thermody- 

namic models into RnaPredict [34] and demonstrates the high prediction accuracies due to 

the improved models. 

There are numerous objectives in this thesis. The first goal is to further establish the ben- 

efits of using permutation encoding over binary encoding in the domain of RNA secondary 

structure prediction. The relative merits of the different binary and permutation crossover 

operators are discussed. Also, the relative merits of two selection strategies, Standard Se- 

lection (STDS) and Keep-Best Reproduction (KBR), are investigated. Various different 

crossover and mutation rate combinations were tested to find optimal settings. 

Different thermodynamic models were implemented and tested. One additional hydrogen 

bond model as well as two stacking energy models were integrated into RnaPredict. The 
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relative merit of these four different thermodynamic models was determined. 

RnaPredict generates candidate low energy structures for comparison to the natural 

fold. The accuracy of these predictions is investigated along with a comparison to other 

prediction methods such as the Nussinov DPA and the mfold DPA. 

1.2 Thesis breakdown 

This thesis is divided in multiple chapters. RNA will be discussed in further detail in 

Chapter 2. Chapter 3 will detail the four thermodynamic models included in RnaPredict 

while Chapter 4 shows how this energy relates to structure prediction accuracy. Chapter 5 

introduces RnaPredict, a GA for RNA secondary structure prediction. Chapter 6 describes 

how the GA parameters were optimized. Chapter 7 compares the structures predicted by 

RnaPredict to known structures, while Chapters 8 and 9 compare the predicted structures 

to those generated by the Nussinov DPA and the mfold DPA. 



Chapter 2 

Ribonucleic acid 

RNA [40] is an important biological molecule, that is, one of the building blocks in living 

cells. Simply, RNA is a linear polymer of ribose sugar rings linked together by phosphate 

groups. Each one of these sugar rings has one of four different basic nitrogenous functional 

groups attached. These four groups are adenine, cytosine, guanine, and uracil (A, C, G, and 

U). The polymer formed is composed of a particular sequence of these four building blocks. 

2.1 Nucleot ides 

Upon closer inspection, a single nucleotide can be broken down into two parts. There is a 

part, common to all nucleotides, which is the sugar-phosphate backbone; the other part is 

called the base. A nucleotide without a phosphate group is called a nucleoside. 

The base and ribose sugars of the nucleotides are heterocyclic compounds. These com- 

pounds are formed of carbon, nitrogen, oxygen, and hydrogen atoms. 

The bases' structure themselves have another classification. Adenine and guanine are 

bases that  contain two rings in their structure and are called purines. The other two bases 

contain only one ring in their structure and are called pyridines. 

2.2 RNA strands 

Nucleotide monomer units link together to form a polymer. The atoms on the nucleotides 

are numbered following standard chemical conventions. The linking is made between the 

oxygen on the 5'-phosphate and the 3'-hydroxyl on the ribose sugar, where the prime (I) is 



CHAPTER 2. RIBONUCLEIC ACID 5 

used to distinguish the numbering from the at.oms of the nitrogenous base. These covalent 

bonds are formed through a phosphodiest,er linkage. The polymer formed is a long chain 

that can be either less than fifty nucleotides, called oligonucleotide, or counting up to many 

thousands of nucleotides, called polynucleotides. The length is affected by the class and 

functionality of the RNA strand. Strands also have a directionality. During their synthesis, 

elongation proceeds in the 5' -+ 3' direction at  a rate of 50-100 bases per second. By 

definition, the 5' end lacks a nucleotide at  the 5' position and the 3' end lacks a nucleotide 

at  the 3' position. 

2.3 Function of RNA 

RNA molecules serve a key role in the translation of the information encoded in DNA 

in the synthesis of protein. RNA has three main functions that are involved in protein 

synthesis. First, the genes encoded by the DNA are copied to messenger RNA (mRNA) in 

the cell nucleus in a process called transcription. These mRNA strands are sent to the cell 

ribosome acting as messengers from the nucleus. The ribosomes are composed of ribosomal 

RNA (rRNA) and protein molecules. In the ribosome, the mRNA is read and amino acids 

sequences are assembled to form protein material according to the information on the mRNA 

strand. When protein synthesis occurs at  the ribosome, the amino acids are found to be 

bonded to a molecule of transfer RNA (tRNA) which forms a complex shape so that it 

bonds to a specific amino acid and has an exposed anticodon (reverse of the RNA triplet 

for that amino acid). In the ribosome, each mRNA t,riplet is matched to the opposite tRNA 

anticodon, one triplet at a time as each amino acid bonds to the one before it, creating a 

polypeptide. 

The genetic code maps sequences of three nucleotide bases, called codon, into amino acids 

that form the building blocks of protein polymer chains. Some important considerations 

relating to encoding RNA into amino acids are directionality, the size of a codon, relationship 

between codons, and the reading frame. First, RNA strands have a rigid mapping to amino 

acids. The 5' of RNA is mapped to the amino end of polypeptide while the 3' end corresponds 

to the carboxy end. The hypothesis that triplets were the basis of coding for amino acid 

came from the idea that three nucleotide sequences could potentially code for 64 different 

amino acids while 20+ are now known. 

A particular nucleotide can only be part of a single codon, that is, the sequence is read 
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three nucleotides at a time. Once a triplet is read, the reading window is shifted ahead 

by a full triplet. A direct consequence of this is that single nucleotide mutation cannot 

affect more than one amino acid. Lastly, prot.eins are encoded and their chain lengths are 

controlled by very specific codons. In the comp1et.e set of available codons, a few are reserved 

for starting (start-codons) and stopping (stop-codons) the amino acid sequence. 

Other than its involvement with protein synthesis, RNA have been found to act as a 

catalyst for some biochemical reactions [41]. An early review article [42] describes some of 

these catalyst roles: 

"A number of RNA enzymes (ribozymes) are known to exist in nature, and these 

serve as a starting point from which to begin an evolutionary search for novel 

catalysts. It  has been possible, for example, to  convert an RNA enzyme that 

cleaves single-stranded RNA to an RNA enzyme that cleaves single-stranded 

DNA. It has also been possible to evolve RNA metalloenzymes that have novel 

metal dependence. It remains to be seen to what extent the range of RNA-based 

catalytic function can be expanded. If nature provides any indication, it is that 

the catalytic prowess of RNA is rather limited. After all, proteins carry out 

most of the catalytic functions in biological organisms. RNA has been shown 

to  catalyze phosphoester transfer reactions, phosphoester hydrolysis, aminoacyl 

ester hydrolysis and peptide bond formation. Considering the functional groups 

that exist within RNA and the ability of RNA to  adopt a well-defined tertiary 

structure, a member of other catalytic functions seem feasible. Nonetheless, 

proteins are more versatile catalysts, containing twenty dissimilar amino acid 

components rather than the four similar nucleotide components of RNA." 

A second review can be found in [43]. The review discusses how RNase P is involved in 

tRNA maturation and that self-splicing introns are involved in mRNA maturation. 

2.4 RNA structure 

In the cell, RNA usually exists as a single strand. A strand is fairly flexible and tends 

to fold back onto itself where intra-molecular hydrogen bonds can form between certain 

base pairs [41]. The strongest interactions form between pairs that are characterized as 

complementary. In RNA, adenine is complementary to  uracil where two hydrogen bonds 
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can form between them and cytosine is complementary to guanine where three hydrogen 

bonds can form. These types of pairs are called Watson-Crick pairs. Another important 

pair can form between guanine and uracil called a GU wobble pair containing two hydrogen 

bonds. Watson-Crick and GU pairs form a group called canonical base pairs. Other weaker 

interactions are allowed between many different combinations of base pairs. 

2.4.1 Primary structure 

RNA structure has three representations. Each of these is used for different abstractions of 

the true structure. First, the primary structure describes the sequence and is written as a 

textual string using the letters A, C, G, and U to  denote adenine, cytosine, guanine and 

uracil. By convention, the string is always written with the 5' end at  the left to the 3' end 

a t  the right, that is, in the 5' -+ 3' direction. This type of representation only describes the 

sequence. Separating sequence from structure can be useful when looking for patterns in 

the sequence. 

A common type of experiment on sequences is called a sequence alignment. Briefly, 

sequence alignment concerns itself with the relationship between RNA sequences. The idea 

is to try to align different, but related sequences, by adding and removing gaps. The purpose 

is to  correlate sequence and function across genomes. 

2.4.2 Secondary structure 

When an RNA strand folds onto itself, it forms hydrogen bonds between certain base pairs. 

Each nucleotide usually has the possibility of being paired with a maximum of one other 

nucleotide by base pairing. In this process intra-molecular hydrogen bonds form between 

certain bases. The most stable pairs form between GC, AU, and GU and their mirrors, 

CG, UA, and UG. Their stability also makes them the most common pairs. These pairs are 

called canonical base pairs. The collective listing of the paired bases in an RNA molecule 

is what is called the secondary structure. 

Using base pairing rules allow for enumeration of all the pairs that have the potential 

to  form. Due to the combinatorial nature of the problem, the challenge is to  predict which 

ones will form to  yield the natural fold. 

Another property of secondary structure is that  pairs tend to form in groups yielding 

higher order structure. Common RNA substructures are hairpin loops, internal loops and 
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bulges, mu1t.i-branch loops, and dangling ends. Forming adjacent. pairs tends t,o increase t,he 

stability. These stacked pairs are also called stems, or helices. Formally, stacked pairs exist 

when two or more base pairs 

exist such that the ends of the pairs are ad,jacent, forming a helical structure. In this 

equation, n is an integer taking values from 1 to  m. m is used to restrict a minimum length 

of the nucleotide sequence connecting the helix ensuring a valid helix. Since a base pair does 

not form in isolation, these rules can be useful to  find all possible helices and use these to  

form the secondary structure. For the purposes of this research, a helix is considered only 

if it contains, a t  the very least, three adjacent canonical base pairs t,o form a stack, and 

the loop connecting the stacked pairs must be no shorter than three nucleotides in length 

as shown in Figure 2.1. Using these simple rules it is now easy to  compute the set H of 

all possible helices. A valid secondary structure is the subset S of H containing all helices 

that make up the actual structure. Since a single nucleotide can only pair with a t  most 

one other nucleotide in a structure, the helices must not overlap. This problem is highly 

combinatorial as there are 2IHI subsets of W .  

U '  : A 'G : 3 or more nucleotides 
I f 

G - u : 3 or more pairs 
I I 

Figure 2.1: Each helix found by the helix generation algorithm must have a t  least three 
stacked pairs and the number of nucleotides connecting the stacked pair must be no shorter 
than three. Fig. taken from [I], page 175, permission granted by authors. 
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2.4.3 Tertiary structure 

Tertiary structure refers t,o the interactions of secondary structure elements in an RNA 

molecule in 3D space. In t.his representation, each atom has a fixed coordinate in 3D space. 

Examples of common interactions in tertiary structure are pseudoknots, kissing hairpins, 

and bulge contacts. These structures form the true three-dimensional structure of an RNA 

molecule. 

2.5 Determining structure 

It  is widely believed that the function of a biomolecule is largely dictated by its structure. 

The ultimate goal of structure prediction is to obtain the three dimensional structure of 

biomolecules through computation. In medicine, accurate structural knowledge would be 

the key to creating new lead compounds which would eventually be developed into more 

effective drugs. Structure-based drug design hay received much attention recently. This type 

of research is done by increasing the understanding of molecular recognition on active sites 

in large biomolecules such as RNA and proteins. An experiment that is commonly done once 

structural information is known is flexible ligand docking [44]. Docking is a quantitative 

optimization technique that attempts to orient a small ligand to bind to an active site on a 

large biomolecule. This affects the biomolecule by either enhancing or reducing its function. 

A hypothesis is that the secondary structure and tertiary structure form independently, 

but in sequence, of each other. The reasoning is that the thermodynamics of formation of the 

former are much more important than that of the latter. Separating these two enables us to  

treat them independently. It is also thought that in order for the tertiary structure to form, 

the secondary structural elements must form first as tertiary structure can be represented 

by interactions between secondary structure elements. 

The ideas expressed in the previous section make a convenient and usable plan for 

structure prediction. By separating the ideas of primary, secondary, and tertiary structure, 

they can be solved independently. Solving the primary structure is a trivial task. Using an 

automated sequencer has enabled scientists to determine the primary structure with little 

or no user assistance. The pioneering work to make sequencing possible was done by Holley 

et al. [45]. 
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2.5.1 Physical methods for determining structure 

A simple method for solving the three dimensional structure of RNA has been elusive. 

Some existing methods have been applied to the domain of RNA and proteins. The two 

most important methods are NMR and X-ray crystallography. 

NMR 

Nuclear Magnetic Resonance [46, 471 (NMR) is an indirect method of structural elucidation. 

An experiment proceeds as follows: A sample is placed in a static external magnetic field. 

An antenna is used to irradiate the sample with radio waves. Different frequencies are 

absorbed by the sample's atomic nuclei in different chemical environments. Each nucleus 

absorbs radiation, and then re-emits it. A detector antenna records this energy. 

Running an NMR experiment is quite involved. The required equipment is expensive. A 

purified sample must be available. The experiment can last several hours, often scheduled 

to run overnight. The resulting spectra are complex and must be analyzed by highly skilled 

specialists before any structural information is deduced. 

X-ray crystallography 

Crystallography [48] is a direct method for structure determination. The technique involves 

studying the pattern produced by the diffraction of X-rays through a closely spaced lattice 

of atoms in a crystal. The recorded diffraction patterns are analyzed to  reveal the structure 

of the molecule. A common problem in using this method is that not all organic molecules 

crystallize easily, and therefore, cannot be used in this type of analysis. 

A criticism of these two methods is that the environment to which the RNA molecule 

is subjected to  for physical structure determination may not give the natural fold. For 

instance, in NMR, the RNA molecules being studied are exposed to a different solution 

as well as a different ambient temperature. In X-ray crystallography, the RNA molecules 

must take a particular conformation to allow for precipitation and crystallization. This 

conformation may not accurately represent the natural fold. 

2.5.2 Energy minimization for predicting structure 

RNA, like all molecules, must comply to  the laws of thermodynamics. An assumption is that 

the natural fold is a low energy structure. Another assumption is that the contributions 
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of RNA secondary structure components, such as stems and loops, are independent and 

additive. 

The search space of RNA secondary structure prediction is very large. Although enumer- 

ating and studying every possible structure for a sequence would solve the folding problem, 

it is not feasible. One alternative is to use creative searching techniques for energy mini- 

mization with a thermodynamic model. 

RNA thermodynamics and energy minimization are discussed further in Chapters 3, 4, 

and 5. 

2.6 Chapter summary 

This chapter has introduced RNA. An RNA molecule consists of a sequence of nucleotides 

where each base has the ability to interact with one other base through hydrogen bonding 

forming pairs. RNA plays a central role in protein synthesis, but has also been found to 

have some catalytic properties. Its structure can be abstracted by three levels of complexity: 

primary, secondary, and tertiary structure. Each abstraction is more complex than the 

former. 

RNA secondary structure can be elucidated using physical methods such as NMR and 

X-ray crystallography. The difficulties associated with these methods provide a rationale for 

attempting to predict the structure of RNA. The most common method used for structure 

predicting is through energy minimization. 

For the purpose of the helix generation in structure prediction, this thesis defines a helix 

as a stack of three or more base pairs connected by three or more nucleotides. By finding 

which combination of base pairs, and helices, form stable structures, it may be possible to 

find structures similar to the natural fold. 



Chapter 3 

Thermodynamics of RNA 

secondary structure 

Most prediction methods for RNA secondary structure use free energy as their metric. 

Simply, free energy (AG) is energy which is available to do useful work. Differences in free 

energy, in a reaction or a conformation change, provide information on process spontaneity. 

A negative free energy difference in a reaction favors the products and is spontaneous in 

that direction while a positive free energy difference favors the reactants. Free energy is 

often represented as a function of enthalpy A H  (the amount of energy possessed by a 

thermodynamic system for transfer between itself and the environment), temperature T 

(a measure of the average kinetic energy in a system), and entropy A S  (the quantitative 

measure of the relative disorder of a system). 

AG A H  - T A S  (3.1) 

It is important to note that differences in free energy between two structures will also 

dictate the relative amounts a t  equilibrium. 

K is the system's equilibrium constant: 

where C1 and C2 represent the concentration of two different structures in equilibrium in 

a system, R is the gas constant, and T is the absolute temperature of the system. The 

equation simply shows that the concentration ratio in an equilibrium varies exponentially 
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with free energy. The ratio follows an exponential curve where small differences in free 

energy have large effects on the relative concentration between two conformations. 

This is important for RNA because its energy surface is not simple or smooth. The 

resulting surface looks very rough with many local extrema. Changing a few base pairs 

can greatly impact the overall secondary structure elements. Therefore, special optimiza- 

tion techniques using good thermodynamic parameters are needed for secondary structure 

prediction. 

Secondary ~truct~ural  elements, and the sequence that form them, account for the bulk of 

the structure's free energy. Because RNA secondary structure is simply a list of base pairs, 

evaluating structures can be done by using different thermodynamic rules on these base 

pairs or sets of adjacent base pairs. Each structural element is independent of each other in 

the way the parameters are described, giving them an additive property. The summation 

of the individual contributions gives the total free energy of a structure [49]. The current 

models are not perfect since there is uncertainty in thermodynamic models. The models are 

incomplete and are built on noisy data. Some models are too simple and do not capture all 

of the free energy contributions. Other problems with current models is that they lack the 

parameters to  correctly model some substructures. The uncertainty in the thermodynamic 

models translates to uncertainty in the free energy evaluation of the structures. This is why 

it is believed that the real structure is often a suboptimal one [50, 51, 521. 

3.1 Hydrogen bond models 

The simplest way to implement a hydrogen bond model is to assign a free energy change to 

the formation of single base pairs. 

3.1.1 The Major model 

According to [34], the energy value attributed to each base pairs can be made proportional 

to the approximate relative strength of the canonical base pairs. 

aG(GC) = -3 kcal/mol 

aG(AU) = -2 kcal/mol 

aG(GU) = -1 kcal/mol 

(all at  37 "C) 
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The basis for this choice of thermodynamic model comes from the fact that the GC pair 

has three hydrogen bonds, the AU pair has two hydrogen bonds, and the wobble pair GU 

has much weaker bonding than the AU pair [34]. 

According to [34], the difference in free energy can be calculated as follows: 

Here, e(ri, rj) denotes the free energy AG contribution between the ith and jth nucleotide 

from the formation of a base pair. 

3.1.2 The Mathews model 

A second model is based on the same principle of attributing energy contribution to indi- 

vidual base pairs. However, instead of using the approximate proportional stability of the 

base pairs, the number of hydrogen bonds is used. 

AG'(GC) = -3 kcal/mol 

AG'(AU) = -2 kcal/mol 

AG(GU) = -2 kcal/mol 

(all at 37 "C) 

Similarly, the basis for this choice of thermodynamic model comes from the fact that 

the GC pair has three hydrogen bonds, the AU pair has two hydrogen bonds, and the GU 

wobble pair also has two hydrogen bonds. 

Again, to calculate a structure's free energy, the free energy contribution (loss) from 

each base pair is summed [53]. 

3.1.3 Limitat ions and rat ionale for hydrogen bond models 

These last two models were designed with the idea that thermodynamic properties of RNA 

secondary structure are based on the identity of each individual base pair. This is a rea- 

sonable approximation because each base pair decreases the amount of free energy in the 

structure. Also, these rules assume that the decrease in free energy depends only on the 

identity of the base pairs. This type of model is very plausible, but it fails to adequately 

model other intra-molecular energy contributions, such as stacking energies, loop strain, and 

sterics. 
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3.2 Stacking-energy models 

Free energy of formation has been determined for many duplexes. Duplexes are two strands 

of RNA containing some stacked base pairs. One process [54] by which the energy can 

be determined is described below. First, the duplex of interest is synthesized [55] in the 

lab. This is usually done using standard solid-state chemistry techniques. Simply put, 

each strand is built on a polymer support, such as a small bead. Once the first nucleotide is 

attached, each subsequent nucleotide can only attach on the uncovered extremity. This way, 

the sequence identity can easily be controlled. When the desired sequence is synthesized, the 

strand is removed from the polymer-nucleotide junction. Its identity is then confirmed by 

NMR and its purity is confirmed by high pressure liquid chromatography (HPLC). HPLC is 

a standard chemistry technique used to separate mixtures. A mixture is passed in a stream 

of solvent (mobile phase) through some material. The components of the mixture interact 

with the surface of the material through adsorption. The components of the mixture have a 

different adsorptions and therefore different separation rate. Usually, the separation is large 

enough to detect the number of components in the mixture and their amounts. 

Once the component is isolated and purified, the thermodyna~nic parameter can be de- 

termined. Chemical substances have specific frequencies where they absorb electromagnetic 

radiation. The amount of radiation is related to concentration of a chemical substance. 

Using a spectrophotorneter, by changing the temperature and monitoring the absorbance, 

the curve of absorbance vs. temperature can be plotted. From this curve, the energy needed 

to break the base pairs (often termed melting) can be determined. From this energy, the 

free energy loss of base pair formation can be calculated. 

Using data from many duplexes, it is possible to derive thermodynamic parameters for 

adjacent base pairs by solving sets of equations. Thermodynamic parameters have been 

determined in this way (and other more sophisticated ways) for almost all possible adjacent 

bases over the years [53]. The next sections will describe two thermodynamic models that 

make use of these parameters. 

3.2.1 Individual Nearest-Neighbor model (INN) 

In 1974, it was hypothesized that the contribution of each base pair in a helix contributes 

to the stability of that helix and depends on its nearest neighbors [49]. The paper describes 

that the enthalpy of a GC base pair will be different if it is next to an AU base pair than if 
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Figure 3.1 : The 10 Watson-Crick nearest-neighbors. 

it is next to a UA base pair. The initial study only considered Watson-Crick base pairs, ie.: 

GC and AU. With only these two pairs, there are only 16 possible base pair adjacencies, 

or doublets. Due to  rotational symmetry, only 10 of these are unique. These are listed in 

Figure 3.1. The free energy of these 10 nearest-neighbors were determined at 25OC. 

The formation of a double-stranded helix can be thought of as a concentration dependent 

formation of the first base pair (initiation), followed by a closing of subsequent base pairs 

(propagation). The first pair involves hydrogen bonding only. The subsequent pairs add to 

this their stacking interactions. The free energy of each subsequent pair involves free energy 

changes which depend on sequence. Propagation is independent of concentration since it is 

a local intra-molecular reaction. 

The author [49] warns that this data only contains parameters for Watson-Crick pairs, 

and does not discuss GU base pairs. He also warns that this data was generated from very 

similar strands. Further studies would most likely modify the parameter values. 

In 1986, the 10 Watson-Crick nearest-neighbor thermodynamic parameters were re- 

measured at 37OC [56]. This temperature should more closely model physiological con- 

ditions. Calculating the free energy of a strand using the INN model is straightforward. 

Here is an example for the predicted free energy change of helix formation for 
5'GGCC3' 

3lCCGG5' 

Using the values from the table provided in the article, this becomes: 

The nearest-neighbor terms are generated by looking at the duplex through a window 

that is two base pairs wide from left to right. In this example, there is a term for 
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followed by a term for 

followed by a term for 

The last term, 

is the same as 

except for being rotated by 180". The initiation term is a constant used to account for 

the loss of entropy, AS, during initial pairing between the two first bases. Entropy is lost 

because the reaction goes from two strands to  a single duplex creating a more ordered system. 

Equation 3.1 reminds us that this is unfavorable with respect to stability; the entropy change 

is negative, adding a positive value to  the free energy. The last term corrects for symmetry. 

This self complementary strand shows two-fold rotational symmetry. Again, for reasons of 

entropy, this destabilizes the strand. The symmetry term has a lesser effect than initiation 

but must be counted nonetheless. 

The parameters described in [56] do not represent a complete set for use in structure 

prediction. Canonical base pairs also include GU pairs. Numerous examples of terminal 

GU pairs are found at the end of helical regions and its stacking energy was found to be 

approximately equal to a terminal AU pair. Other parameters determined around the same 
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time were those of unpaired terminal nucleotides, terminal mismatches, and parameters for 

internal GU pairs [56, 571. 

In 1991, 11 nearesbneighbor interactions involving GU mismatches were derived from 

new and existing thermodynamic data [58]. The sequences included both isolated and ad- 

jacent GU mismatches. An anomaly was discovered where the thermodynamics of 

sequences are different from those of 

sequences. However, the most surprising result showed that the nearest-neighbor 

in the middle of a helix in the contexts of 

and 

destabilize the helix. However, addition of the same 



CHAPTER 3. THERMODYNAMICS OF RNA SECONDARY STRUCTURE 19 

in the middle of 

increases the stability. 

The authors of 1581 describe this as a non-nearest-neighbor effect. Whereas the nearest- 

neighbor 

is always stabilizing independent of context, the 

is dependent on context and adds corrections to previously determined parameters 1561. In 

this particular situation special parameters are needed to account for this anomaly [53] .  

It was also found that there is a very weak stabilizing effect from 

mismatches [59]. However, since this nearest-neighbor does not contain canonical base pairs, 

its effects will be ignored. 

A survey on stacking energies was presented in 1995 [60]. Calculations for free energy 

determination of different strands are presented in a straightforward fashion using nearest- 

neighbor parameters at  37OC. The following can be used as a guide for an implementation 

of the INN model. 

The article 1601 describes how to calculate the free energy of duplexes, and terminal 

mismatches. For the non-self-complementary duplex 
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the calculation is described by: 

For a self-complementary duplex such as 

5'GGAUCC 

3'CCUAGG ' 
AGZ7 is calculated the same way but requires the addition of AGg7 sym for symmetry. 

These last two equations follow the same rules as equation 3.4. 

5' GGAUCCA 
For 3' terminal unpaired nucleotides such as a mismatch term is added. 

3'ACCUAGG 
In this case: 

AGg7 = AGi7(Core duplex) + 2AGg7 
CA 

G 

For a helix containing a 5' terminal unpaired nucleotide such as 
5'AGGAUCC 

3' CCUAGGA 

AGg7 = AGi7(Core duplex) + 2AG& 
AG 

C 
(3-9) 

Terminal mismatches are handled by using parameters for the mismatches. The method 
5'AGGAUCCA 

is again the same for the example of 
3'ACCUAGGA 

C A 
AGg7 = AGg7(Core duplex) + 2AGg7 

GA 

In 1997, a fairly large study of internal mismatches (2 x 2 internal loops) was performed. 

Stabilities were confirmed for GU mismatches [61]. However, some stability has been found 

in other less common mismatches, UU, CC, GA, AC, etc. Since these are not canonical base 

pairs and do not increase stability significantly, they have been ignored in this research. 



CHAPTER 3. THERMODYNAA/IICS OF R N A  SECONDARY STRUCTURE 2 1 

3.2.2 Individual Nearest-Neighbor Hydrogen Bond model (INN-HB) 

It was noticed that duplexes with the same nearest neighbors but different terminal ends 

consistently have different stabilities. The duplex with one more terminal GC pair and one 

less terminal AU pair is always more stable. The reason is that switching a GC pair to an 

AU pair in base composition decreases the number of hydrogen bonds in the duplex by one. 

To account for this difference, the INN-HB model [62] also includes a term for terminal 

AU pairs and t~herefore for the base composition of the sequence. 

The improved thermodynamic parameters were derived from a study of 90 duplexes 

of short RNA strands containing only Watson-Crick base pairs. In the INN model, the 

initiation parameter for duplexes with at  least one GC base pair were determined, but the 

initiation parameter for duplexes with only AU base pairs was not determined. It has been 

shown that the initiation term is dependent on the identities of the two terminal base pairs. 

The article [62] not only provides more accurate parameters but also provides a penalty 

term for each terminal AU pair. 

The general equation used to calculate the free energy change of duplex formation can 

be written in INN-HB as the following: 

Each AGS(NN) term is the free energy contribution of the j th  nearest neighbor with 

nj occurrences in the sequence. The m t e r r n - ~ u  and AGierm-AU terms are the number of 

terminal AU pairs and the associated free energy parameter, respectively. The AGFnit term 

is the free energy of initiation. 

The only change from the INN model is the addition of a mterm-AUAGierm-AU penalty 

when terminal AU pairs exist in a helix. Using the data tables provided by the thermody- 

namic model of nearest-neighbor parameters, calculating the stability of a helix is straight- 

forward. 
5'ACGAGCSt 

For a non-self-complementary duplex such as 
SfUGCUCG5' 



CHAPTER 3. THERAdODYNAAfICS OF RNA SECONDARY STRUCTURE 22 

GC 5'A 
AG& + 1 x AG;, 

CG 3'U 

For a self-complementary duplex such as 
5'UGGCCA3' 

3'ACCGGU5' 

Terminal GU pairs are treated the same way as terminal AU pairs in the INN-HB model 

because they also have two hydrogen bonds. 

3.3 Other models 

I t  was found that no nearest-neighbor model could be exact since there was as rnuch as a 

6% difference between the free energy changes for formation of RNA duplexes with identical 

nearest neighbors and ident(ica1 ends [55]. These results indicate that a nearest-neighbor 

model is good but not perfect for the prediction of helix stability. These errors cannot be 

removed because they are an inherent flaw of the model itself. 

Some models make use of next-nearest-neighbor models. One of these models is the 

R-Y model. This model attributes special stability to sequences with patterns of continuous 

stacking. References for these models are found in [55]. 

3.4 Other common RNA substructures 

RNA thermodynamics has been studied for more than simple helices. It is possible to 

create a much more cornplex thermodynamic model capable of modelling bulges [63, 64, 

651, internal loops [66], (single mismatch [67, 681, tandem mismatches [59, 61, 691 and 

other internal loops [70, 71, 72]), hairpin loops [73, 74, 75, 76, 771 (tri-loops [78], tetra- 

loops [79, 80, 81, 82, 83, 84, 85, 861, and larger loops [87]), multi-branch Loops [88, 891, 

pseudoknots [90, 91, 921, and coaxial stacking [93, 94, 95, 961. A summary of these models 

can be found in [8], [60], and [53]. This research investigates how accurately we can predict 

RNA secondary structure by using only stacking energies. 
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3.5 Chapter summary 

A concise description of RNA thermodynamics was provided in this chapter. Free energy 

can be used to  predict which structures are most likely to  be found in the natural fold. 

Two hydrogen bond models were described: Major and Mathews. These models as- 

sociate free energy contributions to each base pair in a structure. The strength of the 

interaction is dependent on the identiby of the base pair. Hydrogen bond models are sim- 

plistic and do not model stacking energies. To address this shortcoming, nearest-neighbor 

models, INN and INN-HB, were developed. These models associate free energy contribu- 

tions to tandem pairs. The bulk of the free energy of a structure is a sum of the individual 

contributions. 



Chapter 4 

Energy minimization for RNA 

structure prediction 

4.1 Sequences tested 

Various sequences of different lengths taken from the Comparative RNA Website [97] are 

tested with RnaPredict. These are Sulfolobus acidocaldarius (1494 nt), Homo sapiens (954 

nt) , Xenopus laevis (945 nt) , Drosophila virilis (784 nt) , Caenorhabditis elegans (697 nt) , 
Acanthamoeba grif ini  (556 nt), Hildenbrandia rubra (543 nt), Aureoumbra lagunensis (468 

nt), Haloarcula marismortui (122 nt), Arthrobacter globiformis (123 nt), and Saccharomyces 

cerevisiae (1 18 nt). These sequences were chosen as they represent different sequence lengths 

and come from various genomes of organisms that are exposed to a range of physiological con- 

ditions. Because all the results follow similar trends, only the results for five sequences will 

be discussed in detail. These are Xenopus laevis (Table 4.1), Drosophila virilis (Table 4.2), 

Hildenbrandia rubra (Table 4.3), Haloarcula marismortui (Table 4.4), and Saccharomyces 

cerevisiae (Table 4.5). Data tables for additional sequences are found in Appendix A. 

4.2 Correlation between free energy and correct base pairs 

The starting premise in this research is that there is a strong relationship between free 

energy of a structure and the accuracy of the prediction. It is expected that the lower the 

free energy of a predicted structure, the more correct base pairs will be present. To establish 

the correlation between free energy and accuracy in predicting base pairs, an experiment was 
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Table 4.1: Xenopus laevis details 
Filename d.16.m.X.laevis.bpseq 
Organism Xenopus laevis 
Accession Number M27605 
Class 16s rRNA 
Length 945 nucleotides 
# of BPS in known structure 251 
# of non-canonical base pairs 22 

Table 4.2: Drosophila virilis details 
Filename d.16.m.D.virilis.bpseq 
Organism Drosophila virilis 
Accession Number X05914 
Class 16s rRNA 
Length 784 nucleotides 
# of BPS in known structure 233 
# of non-canonical base pairs 11 

Table 4.3: Hildenbrandia rubra details 
Filename b.Il.e.H.rubra.l.C1.SSU.1506.bpsec 
Organism Hildenbrandia rubra 
Accession Number L19345 
Class Group I intron, 16s rRNA 
Length 543 nucleotides 
# of BPS in known structure 138 
# of non-canonical base pairs 1 
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Table 4.4: Haloarcula marismortui details 
Filename d.5.a.H.mari~mort~ui.bpseq 
Organism Haloarcula marismortui 
Accession Number AF034620 
Class 5 s  rRNA 
Length 122 nucleotides 
# of BPS in known structure 38 
# of non-canonical base pairs 4 

Table 4.5: Saccharomyces cerevisiae details 
Filename d.5.e.S.cerevisiae.bpseq 
Organism Saccharomyces cerevisiae 
Accession Number X67579 
Class 5s  rRNA 
Length 118 nucleot ides 
# of BPS in known structure 37 
# of non-canonical base pairs 2 

set up. Four different thermodynamic models were tested with RnaPredict (GA details in 

Chapter 5). For each sequence, 7010 structures were generated by running RnaPredict with 

the parameters shown in Table 4.6. For each of the 701 generations (0-700), the 10 lowest 

energy structures are examined. These parameters were chosen to maximize diversity, yet 

making as much progress toward low energy structures as possible (GA parameters explained 

in Chapter 5). 

Figures 4.1, 4.2, and 4.3 shows correlation graphs for Xenopus laevis, Saccharomyces 

cerevisiae, and Caenorhabditis elegans, respectively. The graphs plot the free energy of 10 

structures per generation for 701 generations for a total of 7010 structures. Figures 4.1 and 

4.2 show a high correlation where a change in energy corresponds to  a change in the number 

of correctly predicted base pairs. 

The correlation coefficients for additional sequences were tabulated in Table A.l  on 

page 133. Figure 4.3 demonstrates imperfections within thermodynamic models. This graph 

shows very little correlation between free energy and the number of correctly predicted base 

pairs making INN-HB inadequate for predicting Caenorhabditis elegans structures. 
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Figure 4.2: The figure shows a correlation graph for Saccharomyces cerevisiae using INN- 
HB. The graph plots the free energy of 10 structures per generation for 701 generations for 
a total of 7010 structures. The correlation for this sequence was evaluated at p = -0.98. 
Note: There are numerous duplicate structures in the population. 
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Figure 4.3: The figure shows a correlation graph for Caenorhabditis elegans using INN-HB.  
The graph plots the free energy of 10 structures per generation for 701 generations for a 
total of 7010 structures. The correlation for this sequence was evaluated a t  p = -0.26. 
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Generations 
Crossover Operators 

P C  

pm 
Replacement 
Structures per generation 
Elitism 
Thermodynamic Models 

Allow pseudoknots 

700 
CX 
0.8 
0.8 
STDS 
10 
0 
INN, INN-HB, Major, 
Mathews 
No 

Table 4.7 shows the results of the correlation between free energy of the 7010 gener- 

ated structures for each parameter set and their prediction accuracy. The table shows each 

sequence along with the correlation coefficient for each thermodynamic model. The cor- 

relation coefficient is defined as a quantity that gives the quality of a least squares fitting 

to the original data [98]. For instance, in the first row, Saccharomyces cerevisiae shows a 

correlation coefficient close to -1 with INN-HB. This value shows that the lower the free 

energy of a structure of this sequence is, the higher number of correctly predicted base pairs 

are in the structure. 

Table 4.7: The correlation between the free energy of structures and the number of correctly 
predicted base pairs. 

Sequence INNHB INN MAJOR MATHEWS 
S. cerevisiae -0.98 -0.96 -0.15 -0.78 
X. laevis -0.96 -0.90 -0.78 -0.58 
H. mbra -0.94 -0.87 0.36 -0.71 
D. virilis -0.93 -0.50 -0.18 -0.71 
H. marismortui -0.74 -0.86 -0.56 -0.30 

The data in the table shows that INN-HB yields the best correlation for all sequences 

except Haloarcula marismortui. In the latter case, INN shows a higher correlation. This data 

shows that stacking energy models consistently outperform hydrogen bond energy models 
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for these five sequences. For this reason, only the results from the stacking energy models, 

INN-HB and INN, will be discussed in detail in this document. 

4.3 Chapter summary 

Energy minimization is a valid method for prediction of secondary structures of RNA. In this 

chapter, the relative merit of the four different thermodynamic models was determined. This 

was done using a GA to generate structures to be evaluated by each model and comparing 

them to the known structure. Plots of free energy and number of correctly predicted base 

pairs were generated for each combination of sequence and thermodynamic model. 

The plots give an indication on each model's ability to assess the stability of structures. 

Through the computation of correlation coefficients, i t  was shown that for most sequences, 

the stacking energy models, INN and INN-HB outperformed the hydrogen bond model. Fur- 

thermore, many sequences showed a strong correlation between free energy and the number 

of correctly predicted pairs with the stacking energy models. For the next experiments, INN 

and INN-HB will be used exclusively. 



Chapter 5 

A GA for RNA secondary 

structure prediction 

A GA [99] is a stepwise non-deterministic algorithm that follows an evolutionary model 

mimicking natural evolution. I t  returns a number of probable solutions at each generation. 

In the RNA domain, a GA has the goal of finding a set of low-energy structures. At 

every generation in the algorithm, it is hoped that the population will contain lower energy 

structures than during the previous generation. By letting the algorithm run, it is expected 

that the population converges to low energy structures. The pseudo-code for a standard 

generational GA is given in Figure 5.1. 

5.1 General genetic algorithm 

Essentially, each generation has three key steps. 

1. Random changes in the population are introduced via mutations. This step is used to 

avoid premature genetic convergence in the population. Randomly mutating a part of 

a solution tends to  maintain genetic diversity within the population. Energy minimiza- 

tion problems can be represented by an N-dimensional hyper-surface. Using mutation 

helps probing different parts of the energy hyper-surface and avoids converging in local 

minima. 

2. A combination of the parts that make up two parent solutions are chosen to make new 

children solutions. This is called crossover. Crossover is important to  the algorithm 
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Initialize random population of chromosomes; 
Evaluate the chromosomes in the population; 
while stopping criteria is not reached 

for half of the members of a population 
select 2 parent chromosomes; 

apply crossover operator (PC); 
apply mutation operator (P,); 
evaluate the new chromosomes; 
propagation strategy; 
elitism; 

insert them into next generation; 
e n d  for 
update stopping criteria; 

e n d  while 

Figure 5.1: The algorithm is based on a standard generational GA. The stopping criteria is 
the number of generations [2]. 

since all solutions (member of the population) have parts that are favorable and others 

that  are unfavorable. If a crossover is done between two of these members, it is possible 

that  all favorable parts are incorporated into one solution and all unfavorable parts go 

into the other. Different types of crossover operators exist. Each one of them exhibits 

its own properties and heuristic. 

3. The algorithm selects a new set of solutions from the old solutions. The choice is made 

from scoring each solution against a fitness function. This criterion selects more good 

solutions than bad ones which improves the overall population. All members of the 

population are evaluated against a fitness function and are ranked. It is the task of 

the GA to choose good solutions and reject others based on their scores. This way, 

the GA's solutions converge. Selection can act on parents, the old population, and the 

new population. It can be local (within a sub-population) or global (within the entire 

population). More details on mutation, crossover, and selection can be found in [loo]. 

These steps can be repeated for a pre-determined number of generations, a pre-determined 

amount of time, or until the population converges, that is until the population's average 

diversity reaches a threshold value. 

In summary, GAS are stochastic and non-deterministic. The initial population of solu- 

tions is generated randomly before the algorithm begins. At the mutation stage, random 
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parts of the solution are changed. When two parents are combined during the crossover, ran- 

dom parts of two solutions are exchanged. Lastly, to generate the new population for the 

next generation, solutions are chosen randomly where more favorable solutions are given 

more probability of being chosen. In this type of random algorithm, it is impossible to 

determine how the next step will be carried out. 

In RNA secondary structure prediction, the algorithm tries to find low energy, stable 

structures. These are the structures that are most likely to be found naturally. Thermo- 

dynamic models associate changes in free energy to the formation of RNA substructures. 

In order to  calculate the difference in free energy, the free energy contribution (loss) from 

each substructure is summed. Although it is expected that the lowest energy structure is 

the natural fold, it is not always so. Very often, external interactions such as solvent effects 

affect the resulting structure. Furthermore, the observed structure may not be the one with 

minimum free energy [50, 51, 521. DPAs are at a disadvantage since they traditionally yield 

only one optimal structure. Since GA results yield a population of candidate solutions, it 

is possible to investigate not only the minimum free energy structure found but also other 

low energy structures that may be closer to the natural fold. 

5.2 GAS for RNA secondary structure prediction 

GAS were applied to the field of RNA secondary structure prediction starting in the early 

1990s [28]. Since then, there have been many advances in RNA secondary structure predic- 

tion using GAS. 

This type of algorithm was seen as being a very good candidate for deployment on 

massively parallel supercomputers. Shapiro and Navetta [28] implemented simple operators 

to test the viability of the GA technique. The parallel computer could compute as many 

as 16384 RNA secondary structures at each generation on as many processors. This first 

implementation performed well when compared to previous DPA techniques. 

The group went on to  modify the algorithm by introducing an annealing mutation oper- 

ator [33]. This operator controls the probability of mutation by decreasing it linearly at  each 

generation. This new annealing mutation operator decreases the time needed for the GA to 

converge and produce better results. Van Batenburg et al. [26, 301 proposed a modification 

that allowed for simulation of the folding pathway. The premise was that RNA secondary 

structure was influenced by kinetic processes. A method used to simulate kinetic folding 
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was to restrict folding to a small part of the strand where this part's size was increased after 

each iteration. By using this method, they simulated folding of the RNA strand during 

synthesis. This also helps probe local energy minima. The implementation was done in 

APL using bit-strings to represent the genotype [27]. Results showed structures that were 

more consistent with phylogenetic data than with previous minimum energy solutions. 

Around the same time, Benedetti and Morosetti [29] also compared the accuracy of a 

GA against known RNA structures with the objective of finding optimal and suboptimal 

(free energy) structures that were similar. They noted that the shortcomings using the 

GA were not due to  the algorithm itself but rather to the inadequate understanding of the 

thermodynamic models that influence folding. 

Recently, Shapiro also modified his GA to study folding pathways [31, 1011 using a 

massively parallel genetic algorithm. 

A completely different approach was taken by Chen et al. [102]. Their method involves 

using a GA with a thermodynamic fitness function on each sequence of a related set until 

a certain level of stability is reached. Then, for each structure, a measure reflecting the 

conservation of structural features among sequences is calculated. Next, a GA is run on the 

structures where the fitness criterion is the measure of conservation of structural features. 

The resulting structures are ranked according to a measure of conservation. 

Dr. Wiese's lab designed a permutation-based GA, called RnaPredict [I]. Algorithm 

behavior studies on the influence of selection, crossover operators, and representation is- 

sues [34,35,36] were also performed. A study comparing hydrogen bond and stacking energy 

thermodynamic models was also done [37]. The quality of the results was compared to the 

quality of the results from the Nussinov DPA [2]. RnaPredict was also parallelized [38, 391 

improving on the serial version. 

5.3 Design of RnaPredict 

RnaPredict was originally designed by Dr. Wiese [I]. This GA for RNA secondary struc- 

ture prediction is a standard generational GA allowing different representations, selection 

strategies, crossover, mutation, and elitism. The initial implementation was done in C while 

using some C++ features. This thesis describes the new iteration of RnaPredict which is a 

complete C++ reimplementation improving on all original features and adding many more. 

The following sections will detail how the GA was designed. 
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5.3.1 Representation 

Traditionally, GAS are implemented using bit-strings to represent the structures in the 

population. Alternatively, a permutation-based encoding scheme can be used. There are 

several advantages to  this approach. Both representations are discussed in more detail 

below. 

Binary 

RNA structures can be encoded in bit-strings. A bit-string has a length IHI where H is 

the set of all possible helices within the helix generation model and each bit represents 

the presence (1) or absence (0) of a particular helix in a structure. Some helices can be 

mutually exclusive making a structure infeasible and thus, a repair mechanism is used to 

ensure only valid structures exist in the population. The repair mechanism works by reading 

the bit-string from left to right and changing as many bits to 0 as required to create a feasible 

structure. Also, because structures contain relatively few helices, the binary GA can spend a 

considerable amount of computational resources creating and searching infeasible structures. 

Permutat ion 

RNA structures can also be encoded with integer permutations. A permutation has a length 

IH(, similarly to binary bit-strings, but each integer corresponds to a candidate stem loop. 

The random population is created by generating a random permutation for each structure. 

The permutation encoding proposes valid structures by reading the string from left to 

right, adding all stems that are compatible with stems that have already been added. By 

doing this, the algorithm avoids needing a repair algorithm saving on computation time and 

only creates and searches feasible solutions. Using this technique allows any permutation 

to decode to a valid structure. 

Another advantage of using permutation encoding over binary encoding is that permu- 

tation crossover operators allow the GA to preserve or promote absolute position or relative 

order of genes. As will be shown, absolute positioning is found to have an impact on the 

GAS permutation-based results. 
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5.3.2 Selection strategies 

Selection strategies are used to control breeding and survival. The operators affect which 

structures are chosen for recombination and also affect which are passed on to the next 

generation. Several selection strategies exist, such as standard, tournament, keep-best re- 

production, and others. Here, we will discuss two of these: standard selection and keep-best 

reproduction. 

S t a n d a r d  Selection (STDS) 

STDS is described as roulette-wheel selection 11031. Each individual is given a pie-shaped 

slice of a wheel proportional to its fitness as compared to the sum of the fitness of all the 

members of the population. The roulette wheel is spun and an individual is chosen if the 

wheel stops on its slice. This way, highly fit individuals have a much higher chance of being 

chosen [34]. 

Keep-Best Reproduc t ion  ( K B R )  

The KBR operator [104, 105, 106, 1071 first selects two parents via roulette wheel selection. 

After crossover and mutation, the best parent and best child are passed on to  the next 

generation from a rank-based selection. 

5.3.3 Binary crossover operators 

Binary crossover operators are quite straightforward and easy to  implement. Since they 

operate on single bits, or groups of bits, their execution is efficient on a computer. 1-Point, 

N-Point, and Uniform crossover operators are discussed here. 

1-Point Crossover 

The simplest binary crossover operator is the 1-Point crossover operator. This crossover 

operator cuts the two parents a t  the same, hut random, position and swaps the contents of 

one of the segments between the parents. An example is shown below. 

Suppose two parents: 
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First, a crosspoint must be chosen randomly. Suppose the crosspoint is randomly chosen 

at  position 5 .  

Simply, the left hand side of the children stay the same while the right hand side is swapped 

between parent A' and B' (or "crossed over"). 

N-Point Crossover 

The N-Point crossover is simply an extension of the 1-Point crossover with N randomly 

chosen cross-points. The parents are segmented N times and each subsequent segment is 

swapped between parents. Suppose the parents from the previous example are recombined. 

Suppose two crossover points are chosen sectioning each child in three segments. 

This time, every alternate segment is swapped. In this case, only the second segment is 

swapped. 

Uniform Crossover 

The third most common binary crossover operator is the Uniform crossover operator. In 

this case, each bit is chosen either from parent A or B by flipping a fair coin. 
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Since this is a random crossover operator, there are numerous possibilities. An example 

is the following: 

In this example, the bits at  posit,ions 1 and 6 were changed in both parents. For the 

remaining posit,ions, the coin flip returned "no-exchange." 

5.3.4 Permutation crossover operators 

The use of binary GAS can cause many problems in a domain like RNA secondary structure. 

Generating structures using a bit-string to represent the loops gives the possibility of creating 

infeasible structures. To avoid spending computation time on repairing infeasible structures, 

it is a good idea to keep track of the order of stem loop additions. A solution to this problem 

is adapting permutation operators from the travelling salesman problem (TSP) domain. 

A lot of research has gone into the development of permutation-based crossover op- 

erators in the TSP domain. For example, Order Crossover (OX) [108], Order Crossover 

#2 (0x2)  [109], Partially Matched Crossover (PMX) [110], Cycle Crossover (CX) [111], 

Edge Recombination Crossover (SYMERC) [112], and Asymmetric Edge Recombination 

Crossover (ASERC) [113]. 

Order Crossover (OX) 

To discuss the OX operator, we start with two parents, A and B. 

The substrings are swapped from one of the parents that will be designated as the donor. 

The substring is chosen randomly. In this example, the substring 0 6 3 of the donor A is 

chosen. This substring will be mapped into the receiver B. 

First, the substring 0 6 3 is swapped out and replaced with 9 1 3. Since a total of 10 distinct 

elements must be maintained, the elements of the receptor that were included in the new 

substring must be deleted. These deleted elements are represented by ?'s for placeholders. 
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To preserve the relat,ive order of the receiver, the elements are promoted leaving the middle 

section intact. 

At this point, t,he segment from the donor A is added to B to take the place of the ? giving 

the final permutation string. 

Similarly, 

The advantage of the OX is that the relative order is preserved but not so much absolute 

position. This property makes this type of permutation operator useful in the TSP domain 

since the city of origin (t,he first digit in the solution) is not necessarily important. In the 

RNA folding domain, a previously added stem loop influences subsequent additions. This 

type of crossover would not be a good candidate and success applying it to the RNA folding 

domain would be the result of chance. 

Cycle Crossover (CX) 

The key idea in this crossover operator is that every entry in the offspring retains a position 

found in one of the two parents. An example demonstrates how this operator works. 

Again, start with two parent permutation strings, A and B. 

To create an offspring, choose a parent and start. In this example, A is chosen first. The 

first position in the offspring is set to 8. 

Since the 8 in A has been chosen as the first element, the 2 in B is no longer available to be 

placed in the first position of the child solution. The 2 must then be taken from it's position 

in A to satisfy the operator's rules. 
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The 6 from B is now inaccessible so it must be added from its position in A. 

The 1 from B is now inaccessible so it. must added from its position in A. 

The 4 from B is now inaccessible so it must added from its position in A. 

Since the 8 has already been added in the first step, it does not need to  be added again. A 

cycle has been completed. 

Next, copy all the remaining elements from parent B to  the offspring in the same positions 

as the original parent B. 

Similarly, 

Cycle crossover works in such a way that the absolute position of each element in the 

child has come from one of the parents. This property makes it a viable candidate for the 

RNA folding domain, since the most important stem loops tend to cluster at  the first few 

positions of a good solution. I t  is reaonable to assume that an operator of this kind would 

not produce any bad solutions from two good solutions. 

Partially Matched Crossover (PMX) 

A second crossover operator that was designed for order based problems such as the TSP is 

the PMX operator. An example is presented below: 

Again, two parents, A and B, are used. 
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This time, the elements in t,he crossover section between the two parents are swapped. In 

t.his example, the substrings 0 6 3 of A and 9 1. 3 of B are chosen. 

First, swap 9 & 0, 1 & 6, and 3 & 3 in both parents to create new child A'. Since each 

element can only appear once in the final solution, any duplicates are replaced by ?'s. 

In the first permutation 9 1 was added in the middle section. Because of this, 0 6 had 

to be swapped out. Adding 9 1 creates duplicates in A. Originally, in A, they were in the 

order of 1 9 (position 3 and position 8). The original B + A was 9 + 0 and 1 + 6. In order 

to keep the original order and follow PMX's rules, A must replace the original position of 

the 1 with 6 and the original position of the 9 with 0. 

This yields the following permutation. 

Similarly, 

The advantage of PMX is that some ordering from each parent is preserved, and no infeasible 

solutions are generated. It also has the advantage of preserving many absolute positions 

from each parent. Using PMX in the RNA domain could prove useful since there is some 

absolute positioning maintained. 

Order Crossover #2 ( 0 x 2 )  

OX2 is a variation of OX. In this operator, a random number of positions are maintained 

from one parent while the others are copied from the other parent maintaining the same 

ordering. An example is used to  discuss the operator. The same two parents are chosen. 



CHAPTER 5. A GA FOR RNA SEC0NDAR.Y STR.UCTURE PREDICTION 43 

First, a random number of indices are chosen. These indices will have their genes passed on 

directly to the child at  the same position. In this case, indices 2, 5 and 9 are chosen from 

A to be passed on to the child as shown in the order vector, 0. 

0 = 2 5 9  

A 7 = - 7 - - 6 - - - 5 -  

Next, the remaining elements are taken from B maintaining their relative order. 

Similarly, 

B 7  = 2 8 7 1 0 6 3 4 9 5  

This operator has two properties. First, it keeps the absolute position of some genes 

from the first parent. Then, it keeps the partial ordering from the second parent. This 

operator should work well within the RNA prediction domain since both these properties 

are beneficial. 

Edge Recombination Crossover (ERC, or SYMERC) 

Edge Recombination Operator (SYMERC) was originally developed by Whitley et al. for 

the TSP domain. In this domain, the operator creates offspring that only contain edges 

from the two parent tours but may invert their direction. 

An example from the TSP domain is used to explain the operator. Note that a smaller 

permutation will be used to  illustrate how the operator works. This is simply done to  reduce 

the size of the tables. The SYMERC operator is described as follows [112]: 

1. Construct an edge table. An edge table stores all the connections from two parents 

that lead into and out of a city. A row in the edge table has a minimum of two entries 

and a maximum of four entries. Suppose the two parents: 

Example from Figure 5.2: 

2: 1 3 5 6  

The edges 2-1, 2-3, 2-5, and 2-6 exist in the parents. 
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Figure 5 .2:  SYMERC edge table 

2. Randomly choose an initial element from one of the two parents. This is the current 

city. 

3. Remove all occurrences of the current city from t,he edge table. 

4. If the current city has no more cities in its edge list, go to step 6. 

5 .  Determine which of the cities in the edge list of the current city has the smallest edge 

list. This now becomes the current city. In the case of a tie, randomly choose a city 

to become the current city. Loop back to step 3. 

6. There are no more cities in current city's edge list. Stop. 

Although the above description defines the operator using terms associated to the TSP 

domain, the operator itself is domain independent. The operator knows only about per- 

mutations and can be applied to any domain where candidate solutions can be encoded as 

permutations. 

Using the rules listed above, an example of crossover follows: 

The first city is chosen randomly between from A or B. In this case the first city from 

B is chosen. The '2' entry is deleted from the edge table. 

In row 2  of Figure 5.3, the smallest edge list from the remaining elements is found. In 

this case, rows, 1, 3, 5, 6 all have 2 elements and one must be chosen randomly. In this case, 

5 is chosen randomly and then deleted in the edge table. 
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5 : 

Figure 5.3: SYMERC edge table 

Figure 5.4: SYMERC edge table 

In row 5 of Figure 5.4, there are two entries to chose from. Since, the edge lists from 

both row 4 and G of length 1, the tie is broken randomly. In this case, 4 is chosen and 

deleted from the edge table. 

Figure 5.5: SYMERC edge table 

Row 4 in Figure 5.5 only has one element left so it is automatically chosen. This element 

is 3 and it is deleted in rows 1 and 4. 

Again, row 3 in Figure 5.6 has only one element so it is automatically chosen. This 

element is 1 and it is deleted in rows 2, 3, and 6. 
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[ 
6 : 

Figure 5.6: SYMERC edge table 

Figure 5.7: SYMERC edge table 

Figure 5.7 has only one element left in row 1 so it is added to complete the permutation. 

This element, 6, is deleted in rows 1, 2, and 5 to create an empty table. 

B' is done similarly. 

In a modified version of SYMERC, the operator offers a mechanism to preserve common 

subsequences between the two parents. These are denoted as negative entries. There are 

three cases for an edge list: 

1. There are four elements in the list. None can be negative. There are no common 

subsequences. 

2. The list contains three elements. One element is negative representing the beginning 

of a common subsequence. 

3. There are two elements in the list. Both are negative. This represents the internal 

part of a subsequence. 

The modified [I141 version of SYMERC gives priority to the negative entries which only 

affects case 2. 
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Asymmetric Edge Recombination Crossover (ASERC) 

The Asymmetric Edge Recombination crossover operator (ASERC) was developed by Wiese 

et al. [113]. It follows the general scheme of SYMERC but not only preserves the edges but 

also the direction of these edges. Also, ASERC automatically preserves common subse- 

quences. 

ASERC resembles SYMERC: An edge table is constructed in a similar fashion as in 

SYMERC. However, only elements that have incoming edges from the current element are 

represented. Because of this, an edge list contains at most 2 elements. Suppose parents A 

and B: 

Figure 5.8: ASERC edge table 

Example from Figure 5.8: 

2: 3 6  

The edges 2-3 and 2-6 exist in the parents. To recombine two parents, a scheme similar 

to SYMERC is used. 

An example of crossover using ASERC follows: 

The first element is chosen randomly from either A or B. In this case, 1 is chosen from 

A and is deleted from the edge table. 

A ' = l - - - - -  

Next, row 2 and row 3 from Figure 5.9 are considered but row 3 is chosen because its 

edge list is shorter. The entry '3' is removed from the table. 

A 7 = 1 3 - - - -  

Only one entry, 4, remains in row 3 of Figure 5.10. It is chosen and removed from the 

edge table. 
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Figure 

2: 3 6 

5: 6 2 

.9: ASERC edge table 

Figure 5.10: ASERC edge table 

A ' = 1 3 4 - - -  

Row 4 is next with a single element, 5. It is chosen and deleted from the edge table in 

Figure 5.11. 

A ' = 1 3 4 5 - -  

Row 5 in Figure 5.12 contains two elements, 6, and 2. Row 6 has an empty edge and is 

chosen and deleted from the table. 

A ' = 1 3 4 5 6 -  

Only one element remains in Figure 5.13 and it is added to complete the permutation. 

It is deleted from Figure 5.13 giving an empty edge table. 

A ' = 1 3 4 5 6 2  

B' is done similarly. 

The two ERC permutation crossover operat,ors do not yield good results in the domain 

of RNA secondary structure prediction. A property of these operators is that they preserve 

adjacencies. Adjacencies imply that relative ordering will be maintained in the children 

permutations. However, in the RNA domain, relative ordering is only of minor importance 

and absolute positions are much more important. 
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Figure 5.11: ASERC edge table 

Figure 5.12: ASERC edge table 

5.3.5 Mutation 

To maintain diversity in the population, a mutation operator is used. The representation 

affects the choice of mutation operator. 

Binary 

The mutation operator finds a random index in the bit-string and flips the bit. If the new 

bit-string is unfeasible, then the algorithm will repair it by removing all conflicting helices 

reading the bit-string from left to  right. The new structure's free energy is then re-evaluated. 

Permutation 

For the permutation encoding, mutation occurs by randomly selecting two positions in a 

permutation and swapping their content. Next., the free energy of the corresponding new 

structure is re-evaluated. 

5.3.6 Elitism 

The elitism operator is used to pass on the fittest individuals to the next generation. The 

number of individuals is chosen a t  runtime. 1-elitism is often used to always keep the fittest 

individual and avoids backsliding to higher energy structures [115]. 
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Figure 5.13: ASERC edge table 

5.4 Computational complexity 

Computational complexity is defined as the amount of resources required by an algorithm 

to  solve a given problem. Commonly, these resources are time and space. Time complexity 

describes the number of steps an algorithm takes to solve an instance of the problem. This is 

usually defined as a function of the size of the input. Similarly, space complexity is defined 

as the amount of memory required by an algorithm to  solve a problem. For the current 

discussion, only time complexity will be considered. 

The time complexity of a deterministic algorithm is usually trivial to determine. For 

example, the time complexities of popular RNA secondary structure folding algorithms are 

listed: 

KinFold (O(n3)) [17] 

mfold (O(n3)) [5] 

Sankoff ( ~ ( n ~ ~ ) )  [19] 

The previous uses Big 0 notation. This mathematical notation is used to describe the 

asymptotic behavior of functions. In this example, the number of steps required for KinFold 

to  fold a sequence grows in the order of the n3, where la is the length of the input sequence. 

mfold computation time grows similarly. The Sankoff algorithm has two inputs, the length 

of the sequences, n, and the number of sequences, N and thus, these two variables influence 

the number of steps required for computation. The Sankoff algorithm computation time 

increase exponentially with the number of sequences and linearly with the length of the 

sequences making it a very expensive algortithm. 

For stochastic algorithms, the computational complexity can be more challenging to 

derive. In fact, GA-hardness is difficult to analyze and may not yet be formally defined [116]. 
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A GA is essentially a set of sub-algorit.hms cooperating with a higher purpose. RnaPre- 

dict can be broken down into t,he following pieces: base pair generation, helix generation, 

random population generation, helix evaluation, selection, crossover, mutation, and elitism. 

The difficulty of complexity analysis comes from the fact that each of these algorithms has 

its own input which is dependent on the size of another input. For instance, it is esti- 

mated that the number of possible structures from an input of n nucleotides is larger than 

1.P [117], and the number of possible structures in RnaPredict is 21HI where H is the set 

of all possible helices [37]. 

A breakdown of some of the sub-algorithms in RnaPredict and their inputs is defined: 

Sequence length - n nucleotides 

0 Number of possible base pairs - m 

0 Number of possible helices - o 

0 Size of a helix - p base pairs 

The difficulty comes from relating these input variables. Investigating a few sub-algorithms 

can give some insight on computational complexity. Finding all the possible base pairs grows 

in 0(n2) from trying to  make pairs between all combinations of bases. The helix generation 

algorithm tries to  extend each of the possible base pairs into stacks making the algorithm 

grow in 0(m2).  It is easy to see that the size of m is largely influenced by the output of the 

base pair generation algorithm and therefore the size of n. 

Computing the free energy of a particular helix is dependent on the size of that helix and 

therefore grows in O(p) .  For most of the crossover operators used, the number of steps used 

to  perform crossover grows in O(o),  where o is the length of the bit-string/permutation. 

Decoding is done using a greedy operator reading the bit-string/permutation from left to  

right and therefore also has a time complexity of O(o).  

Calculating the time complexity of RnaPredict requires finding relationships between all 

the variables listed above making this a difficult task. I t  may be sufficient to  say however 

that the search space has an exponential relationship with sequence length. 
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5.5 Implementation of RnaPredict 

The original implementation of RnaPredict was done by Dr. Wiese with the help of some 

research assistants. There were two code bases. The first code-base was a permutation GA 

implementation in C using some C++ constructs totalling 2658 lines including comments. 

The binary GA was done similarly with a total of 1996 lines of code. 

The re-implementation of RnaPredict was done by a small group of researchers. It was 

deemed necessary to  rethink the design of the GA to make it more intuitive and maintain- 

able. The code was written in a cleaner fashion adhering to a universal coding standard. 

I t  was also important to redesign RnaPredict to allow easy addition of new features. The 

implementation was done in object oriented C++ with heavy use of system calls to the 

standard Unix libraries and the C++ Standard Template Library (STL). The target plat- 

form for the code is Linux using the GNU C++ compiler (G++), but care was taken to 

code with portability in mind. The code-base used to generate the results for this thesis 

totals 18287 lines of code including comments. In this code, only the original code for the 

ERC crossover operators was included and then optimized for efficiency and adherence to 

the coding standard. The rest was written from scratch using the literature as a guide. 

Andrew Hendriks and Edward Glen contributed largely to the design and the imple- 

mentation of key modules. My contributions were 9472 lines of code, Andrew Hendriks 

contributed 5039 lines of code and Edward Glen added 3788. My main contributions in- 

cluded the command line parser, the permutation encoding and crossover operators, the 

front-end used to launch the GA, the GA const,ants, the output formatter used to write re- 

sults to file, the RNA constants, and the thermodynamic models. Also, we have contributed 

to  each other's modules. 

Figure 5.14 shows a high-level Unified Modeling Language (UML) diagram of our initial 

redesign of RnaPredict. The diagram shows how RnaPredict was designed with low coupling 

between classes and high cohesion. Furthermore, RnaPredict was designed to  be composed 

of four major abstractions: Controller, Domain, Representation and GA Mechanics. This 

allows for greater flexibility when writing code. For instance, most code related to RNA is 

found in the Domain abstraction while code related to the encoding (crossover and mutation) 

is found in the GA Mechanics abstraction. System calls for reading and writing data are 

found in Controller. Lastly, the GA's population is controlled by GA Mechanics. 

If there is ever a need to adapt the current code-base to another domain, most of the 



Figure 5.14: This figure shows the UML design used to guide implementation of RnaPredict. 
The highlights are low coupling between classes and high cohesion within classes. 
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code could be reused and only the Domain abstraction would need to be rewritten. 

5.5.1 Source code management 

Source code for the current incarnation of RnaPredict was written by Andrew Hendriks, 

Edward Glen, and Alain Deschenes, but was logically based on a previous implementation 

in C and C++. Concurrent Version System (CVS) was used to manage source code devel- 

opment. This system allowed the developers to collaborate more effectively and keep each 

developer's code synchronized with the latest source tree. CVS also allowed the developers 

to  work on the same classes and even the same files. Using the very detailed code specifica- 

tions, as long as two developers did not modify the same line before synchronizing with the 

main tree, conflicts were avoided. 

5.6 Testing RnaPredict 

Because of the use of an object oriented paradigm, it is possible to test each class before 

integration into RnaPredict as a whole. Each class has its own test driver where class in- 

stances can be tested thoroughly. Furthermore, the use of assert statements was encouraged. 

Assert statements are used to help catch logic errors quickly and effectively. Simply put, 

these are boolean statements where conditions can be tested a t  any point in the code. For 

instance, these statements can be useful to  verify the integrity of the data before or after a 

function call. Asserts can require complex computations and tend to slow the execution of 

the code. For production code, a compiler switch to disable these statements was used for 

maximum performance. 

RnaPredict repeats large sections of code for each generation. Unoptimized code can 

have adverse effects on runtime performance but these are sometimes challenging to find. 

Code profiling detected these bottlenecks and guided the optimization efforts. 

5.6.1 Cluster computing 

With the number of parameters that can be changed in RnaPredict, testing can become 

computationally expensive. To make matters worse, a single run typically takes a few hours 

but can easily reach many days for long sequences. For a sequence of approximately 1000 nt, 

a single run can take as much as ten hours using ASERC, but takes only fifteen minutes for a 
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I-Point run with 700 generations. In order to obtain a large set of results in a timely manner, 

it is essential to make simultaneous use of as many computers as possible. Distributing the 

processes manually is a time-consuming and inefficient solution. 

Recently, there have been advances in distributed computing and clustering using com- 

modity hardware. One of these clustering technologies is MOSIX [118]. From the MOSIX 

site: 

"MOSIX is a software package that can make a cluster of x86 based Linux servers 

and workstations (nodes) run almost like an SMP. The main advantages are 

simplicity of use and near optimal performance, e.g., when you create processes, 

MOSIX will assign (and if necessary reassign) your processes automatically and 

transparently to the best possible nodes, to maximize the performance. 

The core of MOSIX are adaptive management algorithms that monitor and re- 

spond to the resource requirements of all the processes vs. the available, cluster- 

wide resources. 

The algorithms of MOSIX are decentralized, each node is both a master for 

processes that were created locally and a server for processes that migrated 

from other nodes. The MOSIX algorithms are geared for maximal performance, 

overhead-free scalability and ease-of-use." 

An open source effort to develop an alternative to the proprietary MOSIX package, 

called OpenMosix has been developed. Most of the results generated during the course 

of this research were generated using OpenMosix after switching from MOSIX early on. 

OpenMosix quickly showed high maturity, excellent stability, and a large developer and 

user base. 

For this research, the data was generated using a 128 node OpenMosix Linux Cluster. 

This cluster is composed of standard (patched with OpenMosix kernel patches) Redhat 

Linux 8.0 nodes on a Gigabit network. 
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5.7 Data storage and analysis 

5.7.1 Scripting 

To make the experiments more manageable, a series of scripts were developed to automate 

process assignment to nodes, to verify the progress of each run, to get computer information 

on a node, to generate parameters automatically, to sort the nodes by performance, and to 

sort the runs by the resulting minimum free eriergy structure. A description of the various 

scripts follows: 

bpseq2ct.sh: The known structures available at the Comparative RNA Website are in a 

format called BPSeq. This format resembles the CT format but lacks some information. 

This script converts from the BPSeq format to the CT format. 

checkprogress.sh: While RnaPredict is running, there is no easy way to check how much 

progress is made and how long the runs still have before they finish. This script, mostly 

authored by Edward Glen, parses the result file estimating the amount of time left along 

with a percentage bar graph. 

clean-results.sh: The results from an experiment are stored in a directory tree in the file 

system. The tree is structured as follows. First, a directory entry is created for each se- 

quence. Within each sequence directory, a subdirectory is created for each parameter set. 

Within a parameter set directory, the lowest energy structure file at the end of the run 

along with the averaged GA statistics and graph, and comparison data is found along with 

directories for each random seed. Within each random seed directory, the structure file at 

the end of the run is found along with the GA statistics, the graph, and the results of the 

comparison to the known structure. When testing data generation and analysis scripts, it is 

sometimes necessary to clean this directory tree. Cleaning the tree removes all files except 

those generated by RnaPredict. 

collate-results.sh: This script was primarily written by Edward Glen. It calculates the 

mean and standard deviation of the energy of the structures in the population for all ran- 

dom seeds for a particular run. It also determines which single structure has the lowest 

energy at the end of the runs. 
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compare-ct.sh: This script compares a predicted structure to the known structure. It re- 

port's the number of correctly predicted base pairs. 

convertspace2underscore.sh: Working with directories containing spaces can be difficult in 

the Unix-like operating system. This script substitutes all spaces, in each directory, with 

underscores. 

ct2sequence.sh: This script takes a BPSeq or CT file and extracts the RNA sequence. 

fix-graph-1ayers.sh: When graphing with GnuPlot, the grid-lines appear behind the graph. 

This script brings the grid-lines to  the front where they should be. 

generategraphs.sh: This script goes through each run in an experiment and graphs the 

GA's statistics in GnuPlot. A call to the script to bring the grid-lines to  the front was 

added. 

graphstd.sh: This script graphs the GA statistics in GnuPlot. It correctly determines the 

number of generations and the range of energy values required as well as the optimal ranges 

for axes. A small internal script was added so graphs would be outputted in shades of gray, 

ready for publication. 

mosixrun-nops.sh: This script is used to  manage the runs on the cluster. It tries to send 

one process per node and attempts to send new runs as older runs terminate. This has the 

effect of keeping the cluster running a t  full load for as long as there are still runs in the queue. 

dna2rna.sh: Some sequences are only available as DNA sequences. These sequences must be 

translated to  RNA. This script translates a DNA sequence, to RNA, strips all white-space 

characters, and converts the sequence to  uppercase characters. 

restart-run.sh: The computer cluster and OpenMosix software have rare, but random un- 

explainable instability issues. When this happens, some runs are terminated prematurely. 

This script can be used to re-start the run without having to  remember the command used 
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to invoke it. 

5.7.2 Java programs 

jRnaCompare.jar: jRnaCompare is a command-line front-end for the jViz.Rna package that 

allows to compare RNA structures quickly. It takes three arguments: the known struct,ure 

ct file, a file containing a list of predicted structure files, and a file containing a list of output 

files where the statistics are written for each comparison. 

5.8 Chapter summary 

This chapter described how a generational GA using mutation and crossover could be used 

to  predict the secondary structure of RNA. A lit,erature review described how GAS have 

evolved in this domain. 

RnaPredict is introduced as a GA able to  use both binary and permutation encoding to  

predict t,he secondary structure of RNA. Global (STDS) and local (KBR) selection strategies 

are described to show how they could be beneficial in controlling the convergence velocity 

of t,he GA. Permutation crossover operators (CX, OX, 0 x 2 ,  PMX, ASERC, and SYMERC) 

and binary crossover operators (1-Point, N-Point, and Uniform) are det,ailed showing their 

st,rengths and weaknesses in this domain. In this domain, permutation encoding using CX 

and OX2 is expected to be beneficial due to the property of maint,aining absolute positions. 

Mutation operators were designed t,o be used with their respective encodings. Elitism is 

used to ensure the best individual survives after each generation. 

Programming practices used by the three developers, Alain DeschGnes, Edward Glen and 

Andrew Hendriks, are described. The C++ source code was managed using CVS. Assert 

statements as well as unit tests were used to  minimize the number of errors in the code. 

Due t,o the stochastic nature of GAS, RnaPredict was run on a Linux load balancing 

OpenMosix cluster. This cluster allowed 128 single runs to be done simultaneously mapping 

one process to each of the 128 nodes. 

A large set of BASH scripts and a java program was written to facilitate cluster man- 

agement, file conversion, and data analysis. 



Chapter 6 

Optimization of GA parameters 

An extensive set of runs was done to determine optimal settings in the GA (Table 6.1). In 

all, nine crossover operators were tested. CX, 0 x 2 ,  PMX, OX, ASERC, and SYMERC, 

were used with permutation encoding and 1-Point, 2-Point, and Uniform, were used with 

binary encoding. Both binary encoding with mutation alone and permutation encoding 

with mutation alone were also run as control experiments. Two selection strategies, STDS 

and KBR, were tested. For comparison of the relative merits of parameter choices, only 

INN-HB was used for the thermodynamic model. It is assumed that  the thermodynamic 

model would not affect the GA7s general convergence behavior by a large margin. Each 

experiment was tested with 30 random seeds to  ensure statistically significant results. 

6.1 GA parameters 

Table 6.1 lists the parameters tested. The graphs in this chapter will track the lowest free 

energy structure after averaging 30 randomly seeded runs. The results in these experiments 

were found to be similar across different sequences. 

6.2 Convergence behaviour 

Figure 6.1 shows a typical experiment for Hildenbrandia rubra. The lighter outer envelope 

of the plot represents the extremities of each generation (members with maximum and 

minimum energies). The darker inner envelope shows the mean free energy of the population 

with standard deviation. This particular graph is an experiment of 30 averaged runs for 
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Table 6.1: Genetic algorithm paramet.ers 
Pop. Size 700 
Generations 700 
Crossover 0perat.ors CX, 0 x 2 ,  PMX, OX, 

ASERC, SYMERC, 
Permutation with no 
crossover, 1-Point, 2-Point, 
U-niform, and Binary with 
no crossover 

PC 0.7 
Pm 0.B 
Selection S'TDS, KBR 
Elitism 1 
Thermodynamic Models INN-HB 
Random seeds 30 
Allow pseudoknots No 

700 generations. The graph, for the first. 225 generations, shows a rapid decrease in the 

average free energy of the population. After this point, the graph's slope increases slowly 

but there is still a strong tendency for lower energy structures at  each generation even 

after 700 generations while there is still high diversity in the population shown by the large 

standard deviation. 

6.3 Relative merit of crossover operators 

Crossover operators are used to recombine two parents to  obtain two children. Three binary 

crossover operators are used with binary encoding: 1-Point, 2-Point and Uniform crossover 

operators. There are also six permutation crossover operators to be used with permutation 

encoding: CX, PMX, OX, 0 x 2 ,  SYMERC, and ASERC. The following discusses the relative 

merits of encoding and crossover operators. 

6.3.1 Binary 

1-Point, ZPoint, and Uniform crossover were used for binary encoding. A fourth binary 

encoding result was added without crossover but with mutation alone. 
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Figure 6.2: This graph compares the behavior of the different binary crossover operators 
with Hzldenbrandia rubra using STDS. The graph follows the lowest energy structure from 
an average of 30 random seeds. 
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Figure 6.2 compares the behavior of the binary crossover operators. Starting with the 

same random population, the graph shows the average lowest free energy structure for 700 

generations. Markers are placed at every 50 generations to make the interpretation easier. 

The graph shows that the best crossover operator is the 2-point crossover operator. In 

the first 50 generations, the slope of the graph is steep and RnaPredict finds lower energy 

structures at each generation of the GA. After 50 generations, the slope increases slightly but 

is still quite steep. At generation 300, the slope increases slightly again but the GA is still 

quite aggressive in finding lower energy structures at each generation. RnaPredict continues 

to find lower energy structures even a t  the last. generation. The 1-Point crossover operator 

ranks in second place and also performs well finding low energy structures. The binary 

experiment with no crossover was placed in the graph as a control showing the benefits of 

mutation alone. The worst crossover operator, Uniform, shows slow progress even after 700 

generat ions. 

Figure 6.3 compares the behavior of the same crossover operators with KBR instead 

of STDS. Starting with the same population, the graph shows that 1-Point and 2-Point 

perform equally. These two curves are very aggressive in finding low energy structures until 

generation 100. After this point, the graph levels off making no further progress. The same 

is seen with Uniform and mutation alone where they level off at a higher free energy after 

100 and 200 generations, respectively. 

The results from the binary crossover operators show that both 1-Point and 2-Point 

crossover operators outperform Uniform crossover and mutation alone. This can be ex- 

plained from the fact that the cut-and-paste ].-Point and 2-Point crossover operators are 

able to  transmit building blocks to  the next generation. I t  is possible, however, that Uni- 

form crossover functions more like random mutation where most of the progress toward 

lower energy structures is done by selection. These results are consistent across different 

sequences. 

6.3.2 Permutation 

The relative merits of permutation crossover operators were also studied. The results are 

shown in Figure 6.4. The results show that both OX2 and CX are clearly superior under 

these parameter settings. Both are very aggressive in finding lower energy structures in the 

first 200 generations. Beyond this point, both crossover operators continue to  make progress 

with OX2 finding the lowest energy structures after 700 generations. 
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PMX and mutation alone make steady progress and show similar results throughout, the 

700 generations. Meanwhile, OX, ASERC, and SYMERC make very lit,tle progress with 

these settings and yield inferior results than mutation alone. 

With KBR (Figure 6.5), the crossover operators are more competitive. This time, CX 

manages to edge out OX2 by a small margin after 700 generations. Although OX2 takes an 

early lead toward low energy structures, PhlX manages to yield similar results by making 

steady progress throughout the 700 generations. Next, mutation alone and OX show similar 

results with mutation alone getting a slight edge. The two ERC operators perform equally 

well but relatively poorly with SYMERC taking a slight lead over ASERC in the last few 

generations. 

CX and OX2 are the overall best permutation crossover operators in this domain. This 

can be partially explained due to the fact that these operators transmit absolute position of 

genes in recombination. In contrast, operators t,hat would be more successful in the TSP do- 

main, such as the ERC operators, transmit adjacencies, relative ordering, and subsequences 

since tours can be shifted to  accommodate any starting city. These results are consistent 

across different sequences. 

6.3.3 Binary vs. permutation 

Figure 6.6 shows the relative merits of the encoding by comparing the best three permutation 

crossover operators, 0 x 2 ,  CX, and PMX with the three binary crossover operators, 1-Point, 

2-Point, and Uniform using STDS. 

The graphs clearly show that under these settings permutation encoding performs better 

than binary encoding with OX2 and CX giving the lowest energy structures. Next, 1-Point 

and 2-Point yield results that are better than PMX under these conditions. However, 

Figure 6.5 did show that PMX gave excellent results with KBR equalling those of OX2 

under those conditions. 

In this domain, it can be concluded that permutation encoding yields superior results 

than binary encoding and the best crossover operators are 0 x 2 ,  CX, and PMX. These 

results were found to be consistent across different sequences. 



CHAPTER 6. OPTIMIZATION O F  GA PARAMETERS 

Figure 6.4: This graph compares the behavior of the different permutation crossover oper- 
ators with Hildenbrandia rubra using STDS. The graph follows the lowest energy structure 
from an average of 30 random seeds. 
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Figure 6.5: This graph compares the behavior of the different permutation crossover oper- 
ators with Hildenbrandia m b r a  using KBR. The graph follows the lowest energy structure 
from an average of 30 random seeds. 
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Figure 6.6: This graph compares the behavior of the top three permutation crossover oper- 
ators and top three binary crossover operators with Hildenbrandia rubra using STDS. The 
graph follows the lowest energy structure from an average of 30 random seeds. 
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6.3.4 Selection 

Lastly, selection strategies are compared with the top permutation crossover operators. 

Figure 6.7 shows the comparison of 0 x 2 ,  CX, and PMX with both STDS and KBR under 

the same conditions. 

The graph shows that in the first 50 generations, KBR is very aggressive a t  finding low 

energy structures. However, KBR has the property of increased convergence velocity. This 

rapid convergence removes a lot of the diversity in the population, rendering it more difficult 

to  make progress in subsequent generations. 

The CX and OX2 experiment show that at approximately generation 150, STDS im- 

proves on their KBR counterparts. Maintaining diversity throughout the 700 generations 

allows these STDS experiments to improve by recombination of different permutations. 

The PMX crossover operator, on the other hand, benefits greatly from the added selec- 

tion pressure of KBR. Without KBR, PMX makes the slowest progress toward lower energy 

structures compared to  all other experiments in this graph. However, with KBR enabled, 

PMX yields similar results to OX2 after 700 generations. 

KBR is beneficial in the short term making fast progress toward lower energy structure 

in the early generations, but STDS is beneficial in the long run by maintaining diversity 

in the population for successful recombination. However, STDS seems to be only beneficial 

with more aggressive crossover operators such as CX and 0 x 2 .  

6.3.5 Crossover and mutation rates 

To determine the optimal parameter settings for RnaPredict, many runs were done using 

different selection strategies, crossover rates, and mutation rates using 0 x 2 ,  CX, and PMX 

crossover operators. 

Table 6.2 shows all the parameters tested with the OX2 crossover operator. Since the 

convergence behaviour should not be affected by the thermodynamic model, all experiments 

were performed using INN-HB. In this table, the first column represents the free energy of 

the lowest energy structure found for a particular parameter setting. The second column 

shows the selection strategy, STDS or KBR. The third column shows the crossover operator 

used. The fourth and fifth columns shows the crossover and mutation rates, while the last 

column shows the thermodynamic model used. 

The results from Table 6.2 show that STDS outperforms KBR when coupled with high 



CHAPTER 6. OPTIMIZATION OF GA PARAMETERS 

Figure 6.7: This graph compares the behavior of the top three permutation crossover oper- 
ators with Hzldenbrandia rubra using STDS and KBR. The graph follows the lowest energy 
structure from an average of 30 random seeds. 
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crossover and mutation rates. The next block of experiments shows that KBR also needs 

high crossover and mutation rates to  be successful in finding low energy structures. Lastly, 

using low crossover rates with low mutation rates fails to perform well in finding low energy 

structures with this crossover operator. OX2 is a very aggressive crossover operator. High 

crossover rate is required to evolve the population to  lower energy structures. Recombi- 

nation with OX2 transmits a large number of genes maintaining absolute positions while 

maintaining relative positions for remaining genes. To ensure progress, a high mutation rate 

must be used to  maintain diversity. 

Table 6.3 shows similar behaviour with the CX crossover operator. Again, high crossover 

and mutation rates with STDS yield the best results followed by high rates with KBR. Again, 

low crossover and mutation rates perform poorly regardless of the choice between STDS and 

KBR. 

The CX operator maintains absolute positions after recombination. A high rate of 

crossover is required to make progress to lower energy structures. Crossover allows to 

transmit good building blocks to the next generation. CX maintains absolute positions for 

many genes. In order to avoid too rapid a convtxgence in the population, the mutation rate 

must be high to increase diversity. 

The third crossover operator tested was PMX and the results are shown in Table 6.4. 

This table shows a different trend. The results show that KBR experiments yield lower 

energy structures with high crossover and mutation rates. Even more interesting is that 

for high crossover and mutation rates with STDS, RnaPredict performs poorly yielding the 

highest energy structures. 

PMX does not maintain absolute positions as OX2 and CX do. Because of this, PMX 

requires a high crossover and mutation rate but also requires KBR to increase selection 

pressure. KBR helps by avoiding the propagation of the worst individual by keeping the 

best parent and the best child after crossover. 

The data in these three tables show that high crossover and mutation rates yield the 

best results in most cases. With these three operators, only PMX differs by yielding high 

energy structures with high crossover rates and high mutation rates with STDS. This was 

also found to be consistent across different sequences. 

To make the results more manageable, a set of uniform parameter settings were chosen 

for all experiments. A crossover rate, PC, of 0.7 and a mutation rate, P,, of 0.8 is chosen for 

all experiments. These parameters adequately represent a high crossover rate and a high 
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Table 6.2: Parameter settings tested with Homo Sapiens sequence using OX2 
AG (kcal/mol) Selection Crossover PC Pm Model 
-269.88 STDS 

STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
KBR 
STDS 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
KBR 
STDS 
KBR 
KBR 
STDS 
KBR 
STDS 
STDS 
KBR 
STDS 

INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
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Table 6.3: Parameter settings tested wit,h Homo Sapiens sequence using CX 
AG (kcal/mol) Selection Crossover PC Pm Model 
-268.34 STDS CX 0.8 0.8 INNHB 

STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
STDS 
KBR 
STDS 
KBR 
KBR 
KBR 
STDS 
KBR 
KBR 
KBR 
KBR 
STDS 
KBR 
KBR 
KBR 
STDS 
STDS 
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Table 6.4: Parameter settings t,ested with Homo Sapiens sequence using PMX 
AG (kcal/mol) Selection Crossover PC Pm Model 
-254.16 KBR PMX 0.8 0.9 INNHB 
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mutation rate since no single parameter set was found to be best overall 

6.4 Pseudoknots 

A simple pseudoknot is defined as two pairs of bases, (i, j) and (i', j') such that i < i' < j < 
j'. Figure 6.8 illustrates this mathematical definition. 

Figure 6.8: A graphical illustration of a simple pseudoknot. 

Initially, the decoder would try to  add as many helices as possible by reading the permu- 

tation from left to  right or by adding all helices from the 1 bits in bit-strings. Adding helices 

without taking the resulting structure into account can add many pseudoknots. Pseudoknots 

are RNA sub-structures and an example is shown in Figure 6.9. 

Too many pseudoknots were predicted with the original GA design and no thermody- 

namic penalties are currently implemented. Fortunately, pseudoknots occur infrequently in 

nature due to their low stability by comparison to  regular stacked pairs. 

To increase prediction accuracies, the formation of pseudoknots was disabled. This 

was done by disallowing pseudoknots to  be constructed by the decoder which decodes the 

permutation/bit-string (genotype) to produce the final structure (phenotype). 

6.5 Chapter summary 

This chapter provides a rationale for the parameters chosen for the GA. Encoding, crossover 

operators and selection strategies were systematically varied. The results suggest that per- 

mutation encoding outperforms binary encoding. OX2 and CX coupled with STDS found 

lower energy structures more often than any other crossover operator and selection strategy 

combination. However, PMX requires to be coupled with KBR to  increase the selection 

pressure. By systematically varying PC and P,, it was found that high rates were favorable. 
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Figure 6.9: A diagram representing a pseudoknot. In this diagram, the hairpin loop has 
bases paired to  it from a different part of the RNA sequence. Although pseudoknots do 
occur in real structures, their frequency is very low. Disallowing their formation improved 
the results dramatically. Figure taken from [3], page S323, permission granted by authors. 

Without a proper model for pseudoknots, these were over-predicted by the GA. Dis- 

allowing pseudoknot formation in the decoder improved results. This decision may also 

allow a fairer comparison to  other methods such as Nussinov and mfold DPAs since these 

algorithms cannot predict pseudoknots. 



Chapter 7 

Comparison to known structures 

The quality of structure prediction is related to the similarity of the predicted structures 

to the known structures. The more "similar" the predicted structure is to the natural 

fold, the higher the accuracy. One particular quantitative metric to measure similarity 

counts the number of correctly predicted base pairs. The larger the number of base pairs 

correctly predicted, the higher the quality of the structure. However, a large number of 

correctly predict,ed base pairs does not ensure that all the substructures, such as hairpin 

loops, bulges, and internal loops, will be correctly predicted. 

The results are presented here for five sequences. Tests were done using various pa- 

rameters. The discussion is focused on the lowest energy structures found using CX, 0 x 2 ,  

and PMX. The structures with the highest number of correctly predicted base pairs found 

with these parameter sets are also discussed. The generated structures will be compared to 

known structures. Assessing the quality of RnaPredict's results is done through quantitative 

measurement of the number of correctly predicted base pairs. A qualitative comparison is 

done by visually inspecting where predicted and known structures overlap, and determining 

which substructures are correctly predicted. False positive predictions are also considered. 

These are base pairs that are predicted but are not found in the known structure. 

The parameters used are listed in Table 7.1. 

7.1 Xenopus laevis - 945 nt 

The longest sequence discussed in detail is a 945 nucleotide Xenopus laevis sequence. 

Figure 7.1 shows a typical experiment for Xenopus laevis. The lighter outer envelope 
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Table 7.1: Genetic algorithm parameters 
Pop. Size 700 
Generations 
Crossover Operators 
PC 
pm 
Selection 
Elitism 
Thermodynamic Models 
Random seeds 
Allow pseudoknots 

700 
CX, 0 x 2 ,  PMX 
0.7 
0.8 
STDS, KBR 
1. 
INN, INN-HB 
30 
No 

of the plot represents the extremities of each generation (members with maximum and 

minimum energies). The darker inner envelope shows the mean free energy of the population 

with standard deviation. This particu1a.r graph is an experiment of 30 averaged runs for 

700 generations. The graph, for the first 300 generations, shows a rapid decrease in the 

average free energy of the population. After this point, the graph's slope increases slowly 

but there is still a strong tendency for lower energy structures at each generation even after 

700 generations. 

Table 7.2: Results of comparison with known Xenopus laevis structure grouped by ther- 
modynamic model. The known struct,ure contains 251 base pairs. Each row represents an 
experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-272.22 238.8 62.9 25.0 OX2 STDS INNHB 
-270.94 239.6 57.7 23.0 CX STDS INNHB 
-254.31 233.2 49.8 19.9 OX2 KBR INNHB 
-253.17 232.2 48.7 19.4 CX KBR INNHB 
-250.81 231.8 46.9 18.7 PMX KBR INNHB 
-210.76 218.3 30.0 12.0 PMX STDS INNHB 
-264.3 240.4 62.9 25.1 CX STDS INN 
-261.7 239.9 61.4 24.5 OX2 STDS INN 
-249.1 236.1 49.0 19.5 OX2 KBR INN 
-247.7 233.6 42.9 17.1 CX KBR INN 
-242.7 232.9 45.1 18.0 PMX KBR INN 
-202.9 216.6 24.1 9.6 PMX STDS INN 
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Table 7.2 describes the results from RnaPredict after 700 generations. The first column 

shows the free energy of the average lowest energy structure from the given parameter set. 

In this case, it is an average of the lowest free energy structure for 30 random seeds after 700 

generations within the given parameter set. The second column presents the average number 

of predicted base pairs from the lowest free energy structures. This average comes from 30 

runs, each with a different random seed, after 700 generations. The third column lists the 

number of correctly predicted base pairs in the average predicted structure, while the fourth 

column shows the percentage of correctly predicted base pairs. The fifth column displays 

which crossover operator was used. The sixth column shows whet,her STDS or KBR was 

used, while the last column presents the chosen thermodynamic model. Each row represents 

a different crossover operator, selection strategy, or thermodynamic model. Since the free 

energy metric is incompatible between different thermodynamic models, the experiments 

have been grouped by the chosen model. Within each thermodynamic model group, the 

experiments are sorted by average minimum free energy structure after 700 generations. 

Each row with bold entries shows the parameter set that correctly predicted the highest 

number of pairs within the thermodynamic model. 

To recap, Table 7.2 lists results from 360 individual runs. Each row consists of an 

experiments consisting of 30 averaged runs. 

Table 7.2 shows that  both INN-HB and INN perform similarly with INN being slightly 

better by finding more correct base pairs with its lowest energy structures. Within both 

thermodynamic models, the lowest energy structures were also the ones found to  contain the 

highest number of known base pairs. With both models, CX and OX2 using STDS yielded 

the best results, finding lower energy structures more often than any other parameter set. 

The overall best experiment was found using the CX operator with STDS and INN. On 

average, this experiment predicted a structure with 25.1% of the known base pairs present. 

In second place was the OX2 experiment with STDS with INNHB predicting 25.0% of the 

correct base pairs on average. 

Table 7.3 shows the single lowest free energy structure found with each crossover o p  

erator/thermodynamic model combination. The first column shows the lowest free energy 

structure found within the given parameter set. The second column shows the number of 

times a structure of same energy was found within t,he 30 seeds. The third column shows the 

generation number at which this structure was found. If the structure is found more than 

once, then the average generation number of all 30 seeds, in which this structure is found, 
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Table 7.3: Best results of comparison with known Xenopus laevis st,ructure grouped by 
thermodynamic model. The known structure contains 251 base pairs. Best single run 
ranked by free energy. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (W 
-291.82 1 678 255 77 30.7 OX2 STDS INNHB 
-285.75 1 665 250 8 2 32.7 CX STDS INNHB 
-282.23 1 572 245 72 28.7 OX2 KBR INNHB 
-272.95 1 523 253 5 7 22.7 CX KBR INNHB 
-271.45 1 612 235 6 1 24.3 PMX KBR INNHB 
-240.44 1 633 237 36 14.3 PMX STDS INNHB 
-279.8 1 599 251 75 29.9 CX STDS INN 
-277.3 1 618 253 75 29.9 OX2 STDS INN 
-267.1 1 516 249 51 20.3 CX KBR INN 
-263.9 1 579 248 58 23.1 PMX KBR INN 
-262.4 1 660 236 44 17.5 OX2 KBR INN 
-230.4 1 656 220 3 5 13.9 PMX STDS INN 

is reported. The fourth column shows the number of predicted base pairs in the structure. 

The fifth lists the number of correctly predicted base pairs while the sixth column shows the 

percentage of known base pairs that were correctly predicted. The final three columns show 

the crossover operator, the selection strategy, and thermodynamic model, respectively. 

The results show that the OX2 crossover operator was able to find the single lowest en- 

ergy structure with STDS and INN-HB. This structure had a free energy of -291.82 kcal/mol 

and was found by a single random seed after 678 generations. The predicted structure con- 

tained 255 base pairs which overlapped with 30.7% of the known structure. However, a 

structure was found with INN-HB that contained an even higher number of base pairs, but 

had a slightly higher free energy. This structure was predicted with the CX crossover oper- 

ator using STDS aRer 665 generations. The predicted structure contained 250 base pairs. 

The correct base pairs accounted for 32.7% of the known structure. 

With the INN model, the single lowest energy structure was found with a single random 

seed after 599 generations. This run made use of the CX crossover operator and STDS. 

The structures energy was evaluated a t  -279.8 lscal/mol and contained 29.9% of the known 

base pairs. In this case, the best INN predicted structure was less accurate than the best 
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INN-HB predicted structure. 

Every experiment finds a lowest energy structure after 700 generations from a single 

run. Most often, runs with different. random seeds find different st,ructures. Table 7.4 

shows the structure with the highest number of correct base pairs regardless of free energy. 

This struct,ure is still a low energy structure since it is the lowest energy structure found 

wit,h RnaPredict after 700 generat,ion using a particular single random seed. Out of all 

the st,ructures predict,ed (12 experiments, 30 runs per experiment, tot,al 360 runs) aft,er 700 

generat,ions, a single run wit,h t,he CX crossover operator, STDS and INN was found with 

more correct base pairs than any run listred above. This run predicted 37.1% of the known 

structure with a free energy of -267.8 kcal/mol. This predicted structure is a considerable 

improvement. over the one with highest number of correctly predicted base pairs in Table 7.3. 

This structure is not listed in Table 7.3 because it is of higher energy than the lowest energy 

structure found with the same parameter set. 

Table 7.4: Single run wit,h highest. number of correctly predicted base pairs of Xenopus 
laevis, regardless of free energy grouped by thermodynamic model. The known st,ructure 
contains 251 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol ) (%) 
-282.50 1 665 25 1 9 1 36.3 OX2 STDS INNHB 
-277.95 1 660 242 83 33.1 CX STDS INNHB 
-273.11 1 632 239 85 33.9 OX2 KBR INNHB 
-269.88 1 639 236 83 33.1 CX KBR INNHB 
-268.73 1 550 238 74 29.5 PMX KBR INNHB 
-212.49 1 571 212 56 22.3 PMX STDS INNHB 
-267.8 1 6 76 240 93 37.1 CX STDS INN 
-264.8 1 566 245 84 33.5 OX2 STDS INN 
-262.1 1 685 255 77 30.7 PMX KBR INN 
-259.7 1 376 242 73 29.1 OX2 KBR INN 
-249.7 1 68 1 236 6 1 24.3 CX KBR INN 
-210.9 1 672 223 50 19.9 PMX STDS INN 

Consistent with the results of Section 4.2, Table 7.2, 7.3, and 7.4 show that lower energy 

structures contained a higher number of correctly predicted base pairs. Also, consistent with 

results in Chapter 6, runs using OX2 and CX combined with STDS were able to  predict 
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lower energy structures than any other parameter set. RnaPredict was able to predict as 

much as 37.1% of the known base pairs in the best case. This result is encouraging as it 

shows that RnaPredict. functions well as a sea,rch engine. As is demonstrated in the next 

sections, in most cases, the improvements and overall quality of the results increases when 

shorter sequences are considered. 

7.2 Drosophila virilis - 784 nt 

Table 7.5 shows that with both INN-HB and INN, the crossover operator able to predict 

the lowest free energy structures on average was 0 x 2 .  With STDS and INN-HB, t.he 

OX2 experiment predicted an average structure where 12.7% of the known base pairs were 

correctly predicted. The second best result in terms of lowest energy was found with the CX 

crossover operator using STDS. This experiment improved on the OX2 result by predicting 

a structure with 13.1% of the known base pairs. 

With INN, the experiment finding the lowest free energy structure also used OX2 and 

STDS. This experiment was able to predict structures with 239.2 base pairs and correctly 

predicted 16.5% of the base pairs in the known structure on average. This result improves 

on the best result found with INN-HB. Better yet, an experiment using the CX crossover 

operator, was able to  predict 18.8% of the known base pairs correctly from its average 

structure containing 239.4 base pairs, but with a slightly higher free energy. 

Each experiment finds a single lowest energy structure as shown in Table 7.6. The 

overall lowest energy structure was found with one random seed with OX2 and STDS using 

INN-HB. This run only managed to correctly predict 4.7% of the known base pairs with a 

structure of -197.03 kcal/mol after 663 generations. However, a run using PMX and STDS 

was able to better this result by predicting a structure with 9.9% of the known base pairs 

after 667 generations. This new structure had a free energy of -158.55 kcal/mol. Even if 

this structure is significantly higher in free energy when evaluated by the INN-HB model, it 

is able to predict almost twice as many base pairs correctly than the overall lowest energy 

structure. 

The overall lowest energy structure found with INN was from a run using the OX2 

crossover operator with STDS after 672 generations. The structure found had a free energy 

of -173.4 kcal/mol and was able to predict 16.7% of the known base pairs. As with INN-HB, 

a structure with higher free energy turned out to be more accurate than the lowest energy 
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Table 7.5: Results of comparison with known Drosophila virilis stmcture grouped by ther- 
modynamic model. The known structure contains 233 base pairs. Each row  represent,^ an 
experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-177.75 239.5 29.6 12.7 OX2 STDS INNHB 
-175.77 241.3 30.4 13.1 CX STDS INNHB 
-165.94 234.6 28.0 12.0 OX2 KBR INNHB 
-160.43 230.1 22.2 9.5 CX KBR INNHB 
-157.40 231.2 21.9 9.4 PMX KBR INNHB 
-138.89 221.6 18.1 7.8 PMX STDS INNHB 
-159.53 239.2 38.4 16.5 OX2 STDS INN 
-157.68 239.4 43.7 18.8 CX STDS INN 
-145.47 232.5 33.3 14.3 OX2 KBR INN 
-144.80 233.7 33.6 14.4 CX KBR INN 
-139.90 230.4 28.9 12.4 PMX KBR INN 
-120.79 222.7 21.8 9.4 PMX STDS INN 

Table 7.6: Best results of comparison with known Drosophila virilis structure grouped by 
thermodynamic model. The known structure contains 233 base pairs. Best single run ranked 
by free energy. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) . , 

-197.03 1 663 250 11 4.7 OX2 STDS INNHB 
-190.76 1 610 243 18 7.7 CX STDS INNHB 
-188.80 1 224 242 17 7.3 OX2 KBR INNHB 
-175.36 1 555 226 19 8.2 CX KBR INNHB 
-171.33 1 417 235 16 6.9 PMX KBR INNHB 
-158.55 1 667 227 2 3 9.9 PMX STDS INNHB 
-173.4 1 672 245 39 16.7 OX2 STDS INN 
-171.3 1 675 241 58 24.9 CX STDS INN 
-165.9 1 639 244 34 14.6 CX KBR INN 
-159.8 1 590 243 26 11.2 OX2 KBR INN 
-154.9 1 635 225 50 21.5 PMX KBR INN 
-143.5 1 628 229 34 14.6 PMX STDS INN 
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structure. In this case a structure found with the CX crossover operator and STDS, after 

675 generations, contained 24.9% of the known base pairs. This is a large improvement over 

the  lowest energy structure found with INN as well as the  most accurate structure found 

with INN-HB. 

After verifying each of the thirty randomly seeded runs with RnaPredict, one structure 

per parameter set was found to  contain more correct base pairs. These results are listed 

in Table 7.7. The structure with the highest number of correctly predicted base pairs was 

found with 0 x 2 ,  STDS, and INN-HB. I t  had a higher free energy than the overall lowest 

free energy structure found a t  -176.68 kcal/mol. However, as many as 27.9% of the known 

base pairs were found in this structure. 

Table 7.7: Single run with highest number of correctly predicted base pairs of Drosophila 
virilis, regardless of free energy grouped by thermodynamic model. The known structure 
contains 233 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%I 
-176.68 1 689 242 65 27.9 OX2 STDS INNHB 
-171.48 1 633 236 53 22.7 CX STDS INNHB 
-170.02 1 446 233 52 22.3 OX2 KBR INNHB 
-162.68 1 634 238 49 21.0 CX KBR INNHB 
-153.22 1 684 223 47 20.2 PMX KBR INNHB 
-143.94 1 659 225 42 18.0 PMX STDS INNHB 
-161.8 1 575 232 62 26.6 CX STDS INN 
-158.8 1 696 247 60 25.8 OX2 STDS INN 
-152.5 2 576 238 61 26.2 OX2 KBR INN 
-144.4 1 643 230 62 26.6 CX KBR INN 
-141.9 1 553 233 52 22.3 PMX KBR INN 
-119.9 2 525 224 41 17.6 PMX STDS INN 

The results for Xenopus laevis were better than with Drosophila virilis and as shown in 

Table 7.4, RnaPredict was able t o  predict 36.3% of the correct base pairs with 0 x 2 ,  STDS, 

and INN-HB. These results still indicate tha t  the  RnaPredict is a good search engine by 

finding low energy structures, but,  it is possible that  t he  Drosophila virilis may not be a 

good candidate sequence as compared to  Xenopus laevis. For instance, Table 4.7 lists a 

correlation coefficient of -0.50 with INN. Thus, the poor prediction seems more related to  
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a poor correlation between free energy and the number of correct base pairs than a problem 

with the GA search engine. 

7.3 Hildenbrandia rubra - 543 nt 

Table 7.8 shows that the OX2 crossover operator with STDS was able to predict structures 

closest to the known structure on average using both thermodynamic models. With both 

models, the lowest energy structure was also the one with the highest number of predicted 

base pairs. 

Table 7.8: Results of comparison with known Hildenbrandia rubra structure grouped by 
thermodynamic model. The known structure contains 138 base pairs. Each row represents 
an experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-215.86 160.1 48.4 35.1 OX2 STDS INNHB 
-210.72 157.3 43.0 31.2 CX STDS INNHB 
-201.84 156.2 39.4 28.5 CX KBR INNHB 
-198.48 153.9 33.6 24.3 OX2 KBR INNHB 
-198.07 154.5 31.0 22.5 PMX KBR INNHB 
-175.36 149.1 22.3 16.2 PMX STDS INNHB 
-198.5 160.7 47.1 34.1 OX2 STDS INN 
-195.3 159.3 39.8 28.8 CX STDS INN 
-183.5 155.3 30.4 22.0 OX2 KBR INN 
-182.8 154.9 30.1 21.8 PMX KBR INN 
-181.7 155.2 29.4 21.3 CX KBR INN 
-160.0 147.9 19.8 14.3 PMX STDS INN 

With INN-HB, the average highest number of correctly predicted base pairs was 35.1%. 

Using the INN model, RnaPredict was able to correctly predict 34.1% of the known base 

pairs. With this sequence, INN-HB was able to slightly outperform the INN model by 

correctly predicting 1% more base pairs. 

Table 7.9 shows the single lowest free energy structure found after running RnaPredict 

for a maximum of 700 generations. The overall lowest energy structure, with INN-HB, 

was found using the OX2 crossover operator and STDS after 658 generations with a single 

random seed. This structure had a free energy of -224.66 kcal/mol with 44.9% of the known 

base pairs correctly predicted. 
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Table 7.9: Best results of comparison with known Hzldenbrandia rubra structure grouped 
by thermodynamic model. The known structure contains 138 base pairs. Best single run 
ranked by free energy. 
AG Freq. Gens  P r e d .  Corr .  Corr.  Cross. Sel. Model  
(kcal / BPS BPS BPS 
mol) (%I 
-224.66 1 658 164 62 44.9 OX2 STDS INNHB 
-222.40 1 63 1 165 38 27.5 CX STDS INNHB 
-216.76 1 684 161 52 37.7 CX KBR INNHB 
-215.37 1 417 157 5 1 37.0 OX2 KBR INNHB 
-210.71 1 690 161 42 30.4 PMX KBR INNHB 
-201.82 1 543 159 52 37.7 PMX STDS INNHB 
-209.9 1 553 169 61 44.2 OX2 STDS INN 
-208.0 1 443 170 49 35.5 CX STDS INN 
-201.6 1 678 165 42 30.4 PMX KBR INN 
-200.9 1 416 162 62 44.9 CX KBR INN 
-194.2 1 637 157 49 35.5 OX2 KBR INN 
-175.3 1 367 153 24 17.4 PMX STDS INN 

With the INN thermodynamic model, the single lowest energy structure was again found 

using the OX2 crossover operator and STDS after 553 generations. The structure was 

evaluated to a free energy of -209.9 kcal/mol and correctly predicting 44.2% of the known 

structures' base pairs. However, the lowest energy structure found with the CX operator 

and KBR was 9 kcal/mol higher in energy but predicted 44.9% of the known base pairs 

correctly after running for 416 generations. This particular run slightly outperforms the 

lowest free energy structure found with the INN model. 

RnaPredict was able to find 57.2% of the known base pairs with a single randomly seeded 

run using 0 x 2 ,  STDS, and the INN model as listed in Table 7.10. This structure contained 

a total of 161 base pairs and a free energy of -176.7 kcal/mol. This result shows a rather 

impressive improvement on the overall lowest free energy structure found in Table 7.9. This 

structure does not appear in Table 7.9 because it was found with a run using a different 

random seed than the one that found the lowest energy structure. 

The results for this structure show excellent results where RnaPredict can predict more 

than half of the known base pairs correctly. This is an excellent improvements on the 

Drosophzla virilis sequence. Lower energy structures for the most part consistently contained 
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Table 7.10: Single run with highest number of correctly predicted base pairs of Hzldenbrandia 
rubra, regardless of free energy grouped by thermodynamic model. The known structure 
contains 138 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%I 
-219.51 1 649 163 7 1 51.4 OX2 STDS INNHB 
-210.50 1 536 165 58 42.0 CX STDS INNHB 
-209.40 1 615 153 66 47.8 CX KBR INNHB 
-201.82 1 543 159 52 37.7 PMX STDS INNHB 
-200.65 1 663 158 50 36.2 PMX KBR INNHB 
-196.84 1 176 154 62 44.9 OX2 KBR INNHB 
-201.7 1 629 161 79 57.2 OX2 STDS INN 
-200.9 1 416 162 62 44.9 CX KBR INN 
-200.1 1 420 158 73 52.9 CX STDS INN 
-194.0 1 275 158 57 41.3 OX2 KBR INN 
-177.8 1 594 144 56 40.6 PMX KBR INN 
-168.3 1 521 153 41 29.7 PMX STDS INN 

more known base pairs with both INN-HB and INN thermodynamic models. This shows 

that RnaPredict with both stacking energy models works well as a search engine for low 

energy structures containing a large number of correct base pairs. 

7.4 Haloarcula marismortui - 122 nt 

Table 7.11 shows the average results for the Haloarcula marismortui sequence. With the 

INN-HB model, two crossover operators were able to find the same structures on average. 

The OX2 and PMX crossover operators, with STDS, were used in these experiments. These 

lowest energy structures were also the structures with the highest number of correctly pre- 

dicted base pairs. The average structure was evaluated at  a free energy of -54.94 kcal/mol 

and contained 42.1% of the known base pairs. 

With INN, three crossover operators performed equally to the INN-HB experiments 

when using STDS. These structures with 42.1% accuracy were found with CX, OX2 and 

PMX. The structures found were evaluated with a free energy of -52.8 kcal/mol. These 

structures were also the ones with the highest number of correctly predicted base pairs with 
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Table 7.11: Results of comparison with known Haloarcula marismortui structure grouped 
by thermodynamic model. The known structure contains 38 base pairs. Each row represents 
an experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ m o l )  BPS BPS BPS (%) 
-54.94 33.0 16.0 42.1 OX2 STDS INNHB 
-54.94 33.0 16.0 42.1 PMX STDS INNHB 
-54.93 33.1 15.3 40.4 CX STDS INNHB 
-54.92 33.3 14.3 37.7 OX2 KBR INNHB 
-54.91 33.7 12.7 33.3 CX KBR INNHB 
-54.86 33.6 12.7 33.4 PMX KBR INNHB 
-52.8 30.0 16.0 42.1 CX STDS INN 
-52.8 30.0 16.0 42.1 OX2 STDS INN 
-52.8 30 .O 16.0 42.1 PMX STDS INN 
-52.7 30.0 15.3 40.4 OX2 KBR INN 
-52.7 30.5 15.0 39.5 PMX KBR INN 
-52.5 31.0 14.0 36.8 CX KBR INN 

With this sequence, INN-HB and INN performed equally well on average. Table 7.12 

shows the lowest free energy structures found with each parameter set. The results show that 

each and every parameter set was able to find the same minimal free energy structure within 

its respective thermodynamic model. With INN-HB, the structure found had a free energy 

of -54.94 kcal/mol. This structure contained 42.1% of the known base pairs. Although 

each run was able to find this structure, only OX2 and PMX, both using STDS, found it 

with all 30 random seeds. With 0 x 2 ,  the structure was found within 27.8 generations, on 

average. CX (STDS), OX2 (KBR), CX (KBR) and PMX (KBR) found the structure 28, 

25, 19, and 18 times, respectively. 

With INN, the lowest free energy structure found was -52.8 kcal/mol. This structure 

also contained 42.1% of the known base pairs. This structure was found with all 30 random 

seeds for the three crossover operators with STDS. The structure was found with as few as 

26.6 generations on average with 0 x 2 .  With KBR, 0 x 2 ,  PMX, and CX found the structure 

28, 27, and 24 times, respectively. 

Most runs found the same structure within each thermodynamic model, but there were 

a few runs that found structures with higher free energy. One of these was found using a 

single random seed with PMX, KBR, and INN-HB. It contained more correct base pairs 
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Table 7.12: Best results of comparison with known Haloarcula marismortui structure 
grouped by thermodynamic model. The known structure contains 38 base pairs. Best. 
single run ranked by free energy. 
AG F'req. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%I 
-54.94 30 27.8 33 16 42.1 OX2 STDS INNHB 
-54.94 30 76.6 33 16 42.1 PMX STDS INNHB 
-54.94 28 35.5 33 16 42.1 CX STDS INNHB 
-54.94 25 83.7 33 16 42.1 OX2 KBR INNHB 
-54.94 19 75.6 33 16 42.1 CX KBR INNHB 
-54.94 18 66.3 33 16 42.1 PMX KBR INNHB 
-52.8 30 26.6 30 16 42.1 OX2 STDS INN 
-52.8 30 45.5 30 16 42.1 PMX STDS INN 
-52.8 30 53.3 30 16 42.1 CX STDS INN 
-52.8 28 87.8 30 16 42.1 OX2 KBR INN 
-52.8 27 73.1 30 16 42.1 PMX KBR INN 
-52.8 24 98.9 30 16 42.1 CX KBR INN 

than any structure listed in Table 7.12. This structure, highlighted in Table 7.13, had a free 

energy of -53.51 kcal/mol and contained 71.1% of the known base pairs. This predicted 

structure is a dramatic improvment with only a slightly higher free energy than the lowest 

energy structure found with INN-HB. 

7.4.1 Graphical comparison 

Comparing structures using quantitative measures, such as the number of correctly pre- 

dicted base pairs, is useful, but comparing the overlap qualitatively can strengthen the 

interpretation of the results. Particularly, a qualitative graphical comparison can identify 

regions of high structural similarity between two structures, even if the quantitative overlap 

of base pairs in those regions is low. This happens in some cases such as when there is a 

shift in base pairs caused by a bulge that may be present in one structure and absent in the 

other. 

Figure 7.2 shows a typical comparison between two structures of the same sequence. 

The figure shows how two Haloarcula marismortui structures overlap. The known structure 

is represented by the light grey bonds while the predicted structure is represented by dark 
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Figure 7.2: This is the overall single best structure found with RnaPredict without allowing 
pseudoknots for the 122 nucleotide sequence of Haloarcula marismortui. The known struc- 
ture is depicted by the light grey bonds, the predicted structure is shown by the dark grey 
bond, while the overlap is shown by the black bonds. The predicted structure consists of 
six helices. This was found with a single PMX random seed using KBR and INN-HB. 
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Table 7.13: Single run with highest number of correctly predicted base pairs of Haloar- 
cula marismortui, regardless of free energy grouped by thermodynamic model. The known 
structure contains 38 base pairs. 
AG Freq. Gens Pred.  Corr .  Corr.  Cross. Sel. Model  
(kcal / BPS B P S  B P S  
mol) (%I 
-54.94 30 27.8 33 16 42.1 OX2 STDS INNHB 
-54.94 30 76.6 33 16 42.1 PMX STDS INNHB 
-54.94 28 35.5 33 16 42.1 CX STDS INNHB 
-54.94 20 75.6 33 16 42.1 CX KBR INNHB 
-54.94 25 83.7 33 16 42.1 OX2 KBR INNHB 
-53.51 1 20.0 30 2 7 71.1 PMX KBR INNHB 
-52.8 30 26.6 30 16 42.1 OX2 STDS INN 
-52.8 30 45.5 30 16 42.1 PMX STDS INN 
-52.8 30 53.3 30 16 42.1 CX STDS INN 
-52.8 27 73.1 30 16 42.1 PMX KBR INN 
-52.8 28 87.8 30 16 42.1 OX2 KBR INN 
-52.8 24 98.9 30 16 42.1 CX KBR INN 

grey bonds. Where the known and the predicted structures overlap, the bonds are colored 

black. 

Figure 7.2 shows the known structure and the overall best single structure generated by 

RnaPredict. This particular structure appears in Table 7.13 and was found with a single 

PMX run using KBR but was not the lowest energy structure. The lowest energy structure 

listed in Table 7.12 only contained 42.1% of the known base pairs but this new structure was 

of higher free energy. The agreement between the predicted and known structures is high 

with base pair overlap of 71.1%. Looking at  the known structure more closely, interesting 

features are noted. First, the known structure contains non-canonical base pairs. The 

branch on the right shows two adjacent UU base pairs at  its base. In the middle of the same 

branch, there is a GA pair. Also, near the middle section of the branch on the left, there is 

a CU pair. Since these pairs cannot be predicted by the helix generation model, they could 

be removed for the sake of a fairer comparison with the predicted structure. Removing 

these three pairs changes the structure considerably. The helix generation model does not 

allow helices shorter than three adjacent base pairs. With this in mind, the model could not 

predict the two base pairs forming the hairpin loop in the rightmost branch. With the same 
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reasoning, the removal of the GA pair in the middle of the same branch would not allow the 

adjacent AU pair to form. The base pairs AU and CG adjacent to the non-canonical CU 

pair would also not form. Also, at the root of the left branch, there is a bulge that could 

not be predicted since the GC stack at  the base of the branch could not form with only a 

length of two. 

Removing these eleven base pairs, which could not have been predicted by RnaPredict, 

from the known structure, leaves a total of 27 base pairs, which were all correctly predicted. 

At a higher level, many similarities between the known structure (Figure 7.3) and the 

best predicted structure (Figure 7.4) are found. Both structures are composed of two hairpin 

loops, three internal loops, two dangling ends, one internal loop with three branches, and 

two internal loops with two branches. These findings show that RnaPredict is successful in 

correctly predicting the secondary structure of :RNA molecules. 

7.5 Saccharomyces cerevisiae .- 118 nt 

Table 7.14 shows the average results with the shortest sequence. The results show that with 

INN-WB, all parameter settings yielded the same result. The structure found had a free 

energy of -57.52 kcal/mol. This structure contained 89.2% of the known base pairs. With 

INN, a different structure was predicted with a free energy of -52.9 kcal/mol and contained 

75.7% of the known base pairs. 

Table 7.15 shows that all 30 seeds from each parameter setting were able to find the 

lowest energy structure within their respective thermodynamic model. Hence, the absolute 

lowest free energy structure found was the same as the aforementioned averaged free energy 

structure from Table 7.14. Since all 30 seeds for each parameter set found the same structure, 

Table 7.15 and Table 7.16 are equivalent. 

7.5.1 Graphical omparison 

As in the case of Haloarcula marismortui, interesting conclusions can be made by looking a t  

qualitative, graphical comparisons between the most accurate predicted structure and the 

known structure. 

The comparison between the structure with the highest number of correct base pairs 

and the known structure is seen in Figure 7.5. This figure shows that RnaPredict is able 

to predict as many as 89.2% of the known base pairs correctly but also correctly predicts 
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Figure 7.3: This is the known structure of Haloarcula marismortui. The base pairs are 
depicted by the light grey bonds. The structure consists of six helices. 
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Figure 7.4: This is the overall single best structure found with RnaPredict without allowing 
pseudoknots for the 122 nucleotide sequence of Haloarcula marismortui. The predicted 
structure is shown by the dark grey bonds. The structure consists of six helices. This was 
found with a single PMX random seed using K13R and INN-HB. 
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Table 7.14: Results of comparison with known Saccharomyces cerevisiae structure grouped 
by thermodynamic model. The known structure contains 37 base pairs. Each row represents 
an experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-57.52 39 3 3 89.2 CX KBR INNHB 
-57.52 39 33 89.2 OX2 KBR INNHB 
-57.52 39 33 89.2 PMX KBR INNHB 
-57.52 39 33 89.2 CX STDS INNHB 
-57.52 39 33 89.2 OX2 STDS INNHB 
-57.52 39 3 3 89.2 PMX STDS INNHB 
-52.9 40 33 75.7 OX2 KBR INN 
-52.9 40 3 3 75.7 PMX KBR INN 
-52.9 40 33 75.7 CX KBR INN 
-52.9 40 3 3 75.7 CX STDS INN 
-52.9 40 3 3 75.7 OX2 STDS INN 
-52.9 40 3 3 75.7 PMX STDS INN 

Table 7.15: Best results of comparison with known Saccharomyces cerevisiae structure 
grouped by thermodynamic model. The known st,ructure contains 37 base pairs. Best 
single run ranked by free energy. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-57.52 30 4.7 39 33 89.2 OX2 KBR INNHB 
-57.52 30 5.0 39 33 89.2 CX KBR INNHB 
-57.52 30 6.1 39 3 3 89.2 CX STDS INNHB 
-57.52 30 6.6 39 3 3 89.2 OX2 STDS INNHB 
-57.52 30 8.4 39 33 89.2 PMX KBR INNHB 
-57.52 30 9.2 39 33 89.2 PMX STDS INNHB 
-52.9 30 5.7 40 3 3 75.7 OX2 KBR INN 
-52.9 30 6.8 40 33 75.7 OX2 STDS INN 
-52.9 30 7.0 40 33 75.7 CX STDS INN 
-52.9 30 10.2 40 3 3 75.7 CX KBR INN 
-52.9 30 11.2 40 3 3 75.7 PMX STDS INN 
-52.9 30 15.4 40 33 75.7 PMX KBR INN 
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Figure 7.5: The above shows a comparison between the known and the highest number 
of correctly predicted base pairs using RnaPredict. The predicted base pairs are coloured 
in dark grey, the known are coloured in light grey, and the overlap is coloured in black. 
RnaPredict was able to predict 89.2% of the known Saccharomyces cerevisiae base pairs. 
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Table 7.16: Single run with highest number of correctly predicted base pairs of Saccha- 
romyces cerevisiae, regardless of free energy grouped by thermodynamic model. The known 
structure contains 37 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-57.52 30 4.7 39 33 89.2 OX2 KBR INNHB 
-57.52 30 5.0 39 33 89.2 CX KBR INNHB 
-57.52 30 6.1 39 33 89.2 CX STDS INNHB 
-57.52 30 6.6 39 33 89.2 OX2 STDS INNHB 
-57.52 30 8.4 39 33 89.2 PMX KBR INNHB 
-57.52 30 9.2 39 33 89.2 PMX STDS INNHB 
-52.9 30 5.7 40 28 75.7 OX2 KBR INN 
-52.9 30 6.8 40 28 75.7 OX2 STDS INN 
-52.9 30 7.0 40 2 8 75.7 CX STDS INN 
-52.9 30 10.2 40 28 75.7 CX KBR INN 
-52.9 30 11.2 40 2 8 75.7 PMX STDS INN 
-52.9 30 15.4 40 2 8 75.7 PMX KBR INN 

most of the known structure's substructures correctly. The known structure contains three 

branches and two internal loops. The predicted structure contains all these substructures 

with minor modifications due to the constraints in the helix generation algorithm. 

RnaPredict's helix generation algorit,hm is bound by three rules: a helix must contain at  

least three stacked pairs, a helix must be connected by at least three nucleotides, and base 

pairs must be composed of GC, AU, or GU. Looking at  the known structure in Figure 7.5 

shows that there are two base pairs that the model cannot predict. The branch on the left 

hand side shows two CU base pairs in the known structure. For a fairer comparison, these 

could be removed. Removing the first CU base pair also removes the ability of the CU-AU- 

CG stack to  form since the model does not allow for a helix of length two. If this helix, 

along with the second CU pair, is removed, RnaPredict has effectively correctly predicted 

100% of the known base pairs. This lends further support to the notion that the GA search 

engine is very effective in identifying real structural elements, but is limited by the current 

helix generation model. 

To aid in visually comparing the structures, the known (Figure 7.6) and the best struc- 

ture (Figure 7.7) are also presented individually. 
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Figure 7.6: This is the known structure of Saccharomyces cerevisiae. The known base pairs 
are shown in light grey bonds. 
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Figure 7.7: The above shows the structure with the highest number of correct base pairs with 
Saccharomyces cerevisiae. The dark grey base pairs correspond to the predicted structure. 
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The results for Saccharomyces cerevisiae are better than for any other sequence, includ- 

ing Haloarcula marismortui which is of similar length. One of the reason for t,his is the 

small number of non-canonical base pairs in Saccharomyces cerevisiae. Also, t.his sequence 

has very few base pairs that  cannot be predict.ed by the current helix generation model. 

7.6 Chapter summary 

In this chapter, RnaPredict has shown its potential in finding low energy structure within 

a relatively small number of generations. For the most part, low energy structures contain 

more base pairs than high energy structures giving credibility to t,he thermodynamic models. 

With both INN-HB and INN, low energy structures contained a high number of base pairs. It 

was also found that, for the most part, the shorter the sequence, the higher the percentage of 

correctly predicted base pairs found. This can be attributed to  the fact that short sequences 

have a smaller search space. Also, longer sequences may have required more generations 

t o  achieve better convergence. Another reason for the trend is that the thermodynamic 

parameters themselves were generated using short duplexes and may have a bias for short 

sequences with no provision for long range interactions. 

For all cases, RnaPredict was able to  improve on a random population by reducing the 

free energy of the population and increasing the number of correct base pairs making it an 

effective search engine. 

Data for additional sequences can be found in Appendix A. 



Chapter 8 

Comparison to the Nussinov DPA 

The Nussinov DPA [4] attempts to find structures with the maximum number of possible 

base pairs. The algorithm works by recursively calculating the optimal structure by finding 

the maximum number of base pairs in subsequences until the complete structure contains 

the largest number of base pairs. 

Normally, the Nussinov DPA tries to maximize the number of base pairs in a structure 

regardless of the type. A simple modification [2] was added to the DPA allowing to set 

weights corresponding to the relative free energy or the relative number of hydrogen bonds 

in the base pairs. 

In this research, the values were set to emulate the Major model from Section 3.1.1 by 

setting the weights for GC:AU:GU to 3:2:1. These weights reflect the relative stability of 

the base pairs. 

A second set of weights were used to emulate the Mathews control model and is described 

in Section 3.1.2. In this model, the weights were set to 3:2:2 corresponding to the number 

of hydrogen bonds in GC, AU, and GU. 

8.1 Xenopus laevis - 945 nt 

Table 8.1 shows the results when using the Nussinov DPA. The results show that the maxi- 

mum number of possible base pairs with this sequence within a single structure is 341. This 

structure contains 12.0% of the known base pairs. Changing the weights to be proportional 

to the number of hydrogen bonds in each base pair, 3:2:2, for GC, AU, and GU, respec- 

tively, the algorithm predicts a structure with 339 base pairs which contain 15.6% of the 
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real st,ructure. Lastly, changing the weights to 3:2:1 to approximate the stability of the base 

pairs of GC, AU, and GU, respectively, predicted a structure with 333 base pairs where 

18.7% of the real structure was correctly predicted. 

Table 8.1: Xenopus laevis, Nussinov results. Number of known base pairs is 251. 

GC:AU:GU Pred ic ted  Correct ly  Correct ly  
Weights  B P  Predic ted  Pred ic ted  

BP (%) 
1:l : l  341 30 12.0 
3:2:2 339 3 9 15.6 
3:2:1 333 47 18.7 

Recalling RnaPredict's results from Table '7.2 shows that RnaPredict's average lowest 

energy structure found with OX2 and STDS contained 240.4 base pairs. This structure, 

found with INN, contained 25.1% of the known base pairs making this result far better than 

the best Nussinov result. Another structure found with INN-HB was almost as accurate with 

238.8 base pairs containing 25.0% of those in t,he known structure. Both these structures 

contain far more correctly predicted base pairs than any Nussinov results. 

8.2 Drosophila virilis - 784 nt 

Table 8.2 shows the results when using the Nussinov DPA. The results show that the max- 

imum number of possible base pairs with this sequence within a single structure is 320. 

This structure contains 12.4% of the known base pairs. Changing the weights to 3:2:2, for 

GC, AU, and GU, respectively, the algorithm predicts a structure with 319 base pairs that 

contain 9.9% of the natural fold. Lastly, changing the weights to 3:2:1 for GC, AU, and GU, 

respectively, predicted a structure with 309 base pairs where 9.0% of the real structure was 

correctly predicted. 

Looking back at Table 7.5 shows that with INN-HB, the crossover operator able to 

predict the lowest free energy structures on average was OX2 with STDS. This experiment 

predicted an average structure containing 239.5 base pairs where 12.7% of the base pairs 

were correctly predicted. This result is better than the best result found with the Nussinov 

algorithm which correctly predicted 12.4% of the known structure. Moreover, the Nussinov 

DPA is prone to overprediction of base pairs (i.e.: it predicts many false positive base pairs 
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Table 8.2: Drosophila virilis, Nussinov results. Number of known base pairs is 233. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1: l : l  320 29 12.4 
3:2:2 319 23 9.9 
3:2:1 309 2 1 9.0 

that are not found in the natural fold). Another experiment with CX and STDS was able 

to improve on this result predicting a structure with 13.1% of the known base pairs with a 

structure only containing 241.3 base pairs on average. 

With INN, the experiment finding the lowest free energy structure was also found with 

0x2. This experiment was able to  predict structures with 239.2 base pairs and correctly 

predicted 16.5% of the base pairs in the known. structure on average. This result improves 

on the best result found with INN-HB. It also predicts more base pairs correctly than any 

Nussinov result. Better yet, an experiment using the CX crossover operator, was able to 

predict 18.8% of the known base pairs correctly from its average structure containing 239.4 

base pairs, but with a slightly higher free energy. 

8.3 Hildenbrandia rubra - 543 nt 

The Nussinov results shown in Table 8.3 give us the upper bound on the number of base 

pairs possible in this sequence at 213 base pairs. This structure contains 5.0% of those found 

in the real structure. Changing the weights to be proportional to the number of hydrogen 

bonds in each base pair predicts a structure with 211 base pairs where 22.5% of the base 

pairs in the real structure are correctly predicted. Changing the weight for GU pairs to 1, 

because of its weaker stability, reduces the number of predicted base pairs to 205 but is still 

contains 22.5% of the known base pairs. 

Recalling results from Table 7.8 show that the lowest energy structure contained, on 

average, 160.1 base pairs and 35.1% of the known base pairs. This structure contained 

far more correctly predicted base pairs making this result far superior to  any Nussinov 

prediction. 



CHAPTER 8. COMPARISON TO THE NUSSINOV DPA 105 

Table 8.3: Hildenbrandia rubra, Nussinov results. Number of known base pairs is 138. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1:l:l  213 7 5.0 
3:2:2 211 31 22.5 
3:2: 1 205 3 1 22.5 

8.4 Haloarcula marismortui - 122 nt 

Table 8.4 shows the results of the Nussinov DPA with Haloarcula marismortui. The results 

show that the maximum number of base pairs possible with this sequence is 45 base pairs. 

This structure contained 21.1% of the known base pairs. Changing the weights to 3:2:2, for 

GC, AU, and GU, respectively, yielded a less accurate prediction with a structure containing 

44 base pairs with 10.5% of the known structure correctly predicted. Lastly, changing the 

weights to 3:2:1 for GC, AU, and GU, respectively gave the same result as in the 3:2:2 case. 

Table 8.4: Haloarcula marismortui, Nussinov results. Number of known base pairs is 38. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%I 
1: l : l  45 8 21.1 
3:2:2 44 4 10.5 
3:2:1 44 4 10.5 

Looking at the average results from Table 7.11 shows that the lowest energy structures 

were found with the OX2 and PMX crossover operators with STDS and INN-HB. These 

predicted structures contained 33 base pairs and 42.1% of the known base pairs. CX, OX2 

and PMX performed equally well with INN and STDS but found a structure containing 

fewer base pairs, 30. This reduces the number of false positive predictions. In both INN- 

HB and INN, RnaPredict outperforms the Nussinov DPA and the number of false positives 

found with RnaPredict is far less than the number found with any Nussinov results. 
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8.5 Saccharomyces cerevisiae - 118 nt 

Table 8.5 shows the results when using the Nussinov DPA. The results show that the maxi- 

mum number of base pairs possible with this sequence is 45. Base pair maximization alone 

predicts 75.7% of the known base pairs correctly. This structure is shown in Figure 8.1. 

Changing the weights to be proportional to  the number of hydrogen bonds in each base 

pair, 3:2:2, for GC, AU, and GU, respectively, the algorithm predicts a different structure 

also containing 45 base pairs which coincides with 75.7% of the base pairs in the real struc- 

ture. Lastly, changing the weights to 3:2:1 to a,pproximate the stability of the base pairs of 

GC, AU, and GU, respectively, predicted a structure with 44 base pairs with only 24.3% 

correct. 

Table 8.5: Saccharomyces cerevisiae, Nussinov results. Number of known base pairs is 37. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

IB P (%I 
1:l : l  45 28 75.7 
3:2:2 45 28 75.7 
3:2: 1 44 9 24.3 

Table 7.14 demonstrates that, with INN-HB, all experiments of RnaPredict were able to 

predict a structure that contained 39 base pairs and correctly predicted 89.2% of the known 

base pairs. 

To give further evidence of the quality of RnaPredict's prediction, it can be compared 

to the structure generated by the Nussinov DPA. The structure generated by the Nussinov 

DPA is shown in Figure 8.1. This structure contained 75.7% of the known structure's base 

pairs. 

A second diagram (Figure 8.2) shows which base pairs from Nussinov prediction, using 

base pair maximization, overlapped with the known structure. Figure 8.2 shows only the 

predicted structure (light grey) and highlights the bonds that overlap (black) to  ease inter- 

pretation. This diagram should be compared to Figure 7.5 where 89.2% of the base pairs 

were correctly predicted. Although the number of base pairs correctly predicted is high 

for both prediction methods, there are very obvious differences between the two structures. 

The predicted Nussinov DPA structure in Figure 8.1 contains three major branches similar 
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Figure 8.1: The above shows the structure predicted with the Nussinov DPA base pair 
maximization (1:l:l).  The light grey base pairs correspond to  the predicted structure. In 
this case, the Nussinov algorithm was able to predict 75.7% of the known base pairs. 
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to the real structure. However, upon closer inspection, the predicted structure fails to rec- 

ognize the multi-branch loop connecting the three branches. Also, the predicted structure 

does not contain the internal loop in the right branch. Instead, the over-prediction causes 

two hairpin loops to replace the internal loop from the known structure. The branch on 

the left hand side is again correctly predicted until the position where the internal loop is 

supposed to  start. After this point, the Nussinov DPA predicts three hairpin loops where 

the known structure only contains one. 

A comparison of Figure 7.5 and 8.2 demonstrates clearly that RnaPredict is able to pre- 

dict the known structure more accurately than the Nussinov DPA. Qualitatively, RnaPre- 

dict's structure resembles the known structure much more than the Nussinov's DPA struc- 

ture. 

8.6 Over-prediction of base pairs 

Table 8.6 shows the number of false positive base pairs predicted by RnaPredict and the 

Nussinov DPA. The data in the table was drawn from the single best Nussinov prediction 

and the best experiment from RnaPredict for each sequence. The first column gives the 

name of the sequence. The second shows the weights used for the DPA. The third column 

shows the number of false positive base pairs predicted by the Nussinov DPA and the fourth 

column shows the number of false positive base pairs predicted by RnaPredict. The next two 

columns show the number of correctly predicted base pairs for both Nussinov and RnaPre- 

dict. The last column shows which crossover operator/selection strategy/thermodynamic 

model combination was used to find the structure that  predicted the largest number of 

known base pairs on average. 

For all sequences, RnaPredict correctly predicted more base pairs while predicting less 

false positives. These results indicate that  RnaPredict is better at  predicting secondary 

structures of RNA than the Nussinov DPA. Results for additional sequences can be found 

in Table A.38, on page 153. 

Table 8.7 shows a comparison between the single structure with the lowest free energy 

found with RnaPredict and the Nussinov prediction with the highest number of known base 

pairs. Again, for all runs, RnaPredict's structures contain more known base pairs and less 

false predictions than those predicted with Nussinov. Results for additional sequences can 

be found in Table A.39, on page 154. 
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Figure 8.2: The above shows the comparison of the structure predicted with maximal num- 
ber of base pairs using the Nussinov DPA and the known structure. The light grey base 
pairs correspond to  the predicted structure, while the black ones correspond to the correctly 
predicted base pairs. The known base pairs were omitted to make the comparison easier. 
In this case, the Nussinov algorithm was able to' predict 75.7% of the known base pairs. 
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Table 8.6: Comparison between the number of false predictions between best results with 
the Nussinov DPA and the best experiment with RnaPredict 
Sequence GC:AU:GUDPA GA over- DPA GA GA 

Weights over- pred. Corr. Corr. Cross.- 
pred. BPS BPS Se1.- 

Model 
X. laevis 3:2:1 286 177.4 47 62.9 CX- 

STDS- 
INN 

D. virilis 1:l:l 291 195.6 29 43.7 CX- 
STDS- 
INN 

H. rubra 3:2:1 174 111.6 31 48.4 0x2- 
STDS- 
INNHB 

H. maris- 1:l:l 37 14.0 8 16.0 0x2- 
mortui  STDS- 

INN 
S. cere- 1:l:l 17 6.0 28 33.0 CX- 
visiae STDS- 

INNHB 
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Table 8.7: Comparison between the number of false predictions between best results with 
the Nussinov DPA and the single lowest energy runs with RnaPredict 
Sequence GC: AU:GUDPA GA over- DPA GA GA 

Weights over- pred. Corr. Corr. Cross.- 
pred. BPS BPS Se1.- 

Model 
X .  laevis 3:2:1 286 178 47 77 0 x 2 -  

STDS- 
INNHB 

D. virilis 1:l:l 291 206 29 39 0 x 2 -  
STDS- 
INN 

H. rubra 3:2:1 174 102 31 62 0 x 2 -  
STDS- 
INNHB 

H. maris- 1:l:l 37 14 8 16 0 x 2 -  
mortui STDS- 

INN 
S. cere- 1:l : l  17 6 28 33 0 x 2 -  
visiae STDS- 

INNHB 
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Table 8.8 compares the structure with the highest number of correct base pairs predicted 

by the Nussinov DPA with the single best structure in terms correct base pairs predicted 

by RnaPredict. The results show that RnaPredict outperforms Nussinov by a large margin 

for each and every structure. With Hildenbrandia rubra, RnaPredict predicts twice as many 

correct base pairs than Nussinov while predicting less than half of the false positive base 

pa,irs. With Haloarcula marismortui, the difference is even la,rger. RnaPredict correctly 

predicts a structure with three times as many known base pairs and more than 12 times 

less false positive base pairs. Results for additional sequences can be found in Table A.40, 

on page 155. 

Table 8.8: Comparison between the number of false predictions between best results with 
the Nussinov DPA and the runs predicting the highest number of known base pairs with 
RnaPredict 
Sequence GC:AU:GUDPA GA over- DPA GA GA 

Weights over- pred. Corr. Corr. Cross.- 
pred. BPS BPS SeL- 

Model 
X. laevis 3:2:1 286 147 47 93 CX- 

STDS- 
INN 

D. virilis 1:l:l  291 177 29 65 0 x 2 -  
STDS- 
INNHB 

H. rubra 3:2:1 174 82 3 1 79 0x2-  
S T D S  
INN 

H. maris- 1:1:1 3 7 3 8 27 PMX- 
mortui KBR- 

INNHB 
S. cere- 1:l : l  17 6 28 33 0 x 2 -  
visiae STDS- 

INNHB 
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8.7 Chapter summary 

The results show that in all cases RnaPredict outperformed the DPA by predicting more base 

pairs correctly. Furthermore, RnaPredict consistently predicted far less false positive base 

pairs than the DPA. It is worth noting that for Haloarcula marismortui and Saccharomyces 

cerevisiae, RnaPredict results were found repeatedly by more than one parameter setting 

for the chosen thermodynamic model. 

Similarly to RnaPredict, the Nussinov D1'A fares better with short sequences. Like 

RnaPredict, the Nussinov DPA does not model non-canonical base pairs. Larger structures 

tend to have more non-canonical base pairs making accurate prediction difficult. Also, 

DPAs cannot model pseudoknots easily. Again, larger structures usually contain a few 

pseudoknots. 

Another reason why RnaPredict found more correct base pairs than the Nussinov DPA is 

that Nussinov uses base pair maximization. Although it is true that real structures contain 

a large number of base pairs, they do not conta.in the maximum number of base pairs. Both 

the type of base pair and its local environment affect its formation. 

Data for additional sequences can be found. in Appendix A. 



Chapter 9 

Comparison to the mfold DPA 

mfold  [5, 6, 7 ,  8, 9, 101 is a DPA applied to the prediction of secondary structures of RNA. 

The software uses a complex thermodynamic model for free energy evaluation of structures. 

The DPA, along with this model, attempts to find the minimum energy structure. Advances 

in the algorithm also allow to find sub-optimal structures which are important since the 

natural fold does not always correspond to the global minimum [50, 51, 521. 

The current most complete nearest-neighbor thermodynamic model is in mfold.  The 

mfold  package consists of a group of programs that are written in Fortran, C, and C++ 

tied together with BASH and Per1 scripts. The original version was designed to run in 

the Unix environment. The software was also ported to C++ targeted for the Microsoft 

Windows platform under the name RNAStructure [Ill.  The latter implementation offers a 

point-and-click interface. 

mfold uses standard INN-HB parameters [62], but adds modeling for common RNA 

substructures. These include stacking energies, terminal mismatch staxking energies (hair- 

pin loops), terminal mismatch stacking energies (interior loops), single mismatch energies, 

1 x 2 interior loop energies, tandem mismatch energies, single base stacking energies, loop 

destabilizing energies, tetra-loops, tri-loops, and other miscellaneous energies. 

After generating structures, mfold re-evaluates structures with a more complete ther- 

modynamic model using its e f n 2  helper application. This software adds a more accurate 

model of multi-branch loops among other improvements. 

To generate the mfold  results presented here, the mfold  web server version 3.1 was used. 

Default settings were used. One noteworthy setting is the percentage of sub-optimality. 

This percentage allows to  control the number of structures predicted by mfold.  In this 
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experiment, the value was set to return the 5% lowest energy structures. This corresponds 

to approximately 20 struct.ures for a 1000 nt sequence. 

9.1 Xenopus laevis - 945 nt  

The longest sequence presented here is Xenopus laevis. The results are presented in Ta- 

ble 9.1. Each row in the table represents a single predicted structure. The first column is the 

free energy optimized by mfold. The second column gives the free energy of the predicted 

structure after being re-evaluated by efn2. The third column shows the number of predicted 

base pairs in the structure. The fourth column shows the number of correctly predicted base 

pairs, while the last column shows the percentage of known ba,se pairs correctly predicted. 

For Xenopus laevis, the results show that the lowest energy structure has a free energy of 

-250.6 kcal/mol. This predicted structure contained 249 base pairs, where 92 were correct. 

This corresponds to  36.7% of the known structure. The lowest energy structure found with 

efn2 had a free energy of -223.49 kcal/mol. Interestingly, the accuracy of this structure 

was less than that of the structure predicted with the internal, and less accurate, mfold 

thermodynamic model. This structure contained 246 base pairs where 86 were correctly 

predicted. The percentage of known base pairs correctly predicted was 34.3%. 

Last,ly, scanning for the structure with highest accuracy, a structure is found with 45.0% 

of the known base pairs correctly predicted. This structure is ranked fifth in terms of free 

energy when evaluated with mfold's internal energy model. This structure would normally 

not be found without the presence of a known structure for comparison. 

RnaPredict was not able to perform as well as the mfold DPA in the best average case. 

The best average structure was found with RnaPredict only contained 25.1% of the known 

base pairs with CX, STDS, and INN. However, the overall lowest energy structure with 

INN-HB came close to the mfold prediction because it contained 32.7% of the known base 

pairs. 

9.2 Drosophila virilis - 784 nt  

Table 9.2 shows the results obtained for Drosophila virilis with mfold. The first row of the 

table shows the minimum free energy structure found. This structure has a free energy of 

-146.3 kcal/mol and contained 236 base pairs. 15.9% of the known base pairs were correctly 
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Table 9.1: Xenopus lnevis, mfold results. Number of known base pairs is 251. 

mfold AG efn2 AG Predicted BP Correctly % Correctly 
(kcal/mol) (kcal/mol) Predicted BP Predicted 
-250.6 -222.85 249 92 36.7 
-249.6 -219.75 25 1 71 28.3 
-248.8 -219.63 24 1 97 38.6 
-248.6 -218.69 246 84 33.5 
-248.0 -216.51 245 113 45.0 
-248.0 -213.01 242 100 39.8 
-247.8 -210.87 24 1 84 33.5 
-247.4 -209.26 243 74 29.5 
-247.2 -218.30 246 79 31.5 
-247.1 -215.70 244 76 30.3 
-246.7 -211.01 238 69 27.5 
-246.5 -221.02 244 88 35.1 
-246.5 -214.62 245 68 27.1 
-246.3 -223.07 248 101 40.2 
-245.3 -214.07 250 103 41.0 
-245.0 -217.38 248 62 24.7 
-244.7 -215.17 243 80 31.9 
-244.3 -223.49 246 86 34.3 
-243.7 -213.42 237 73 29.1 
-243.6 -205.90 242 9 1 36.3 
-242.5 -202.27 25 1 8 1 32.3 
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predicted. 

The structure with the lowest free energy, with efn2 was found to have a free energy of 

-131.55 kcal/mol. This structure contained 254 base pairs and included 14.2% of the base 

pairs in the natural fold. This new structure act,ually predicted less correct base pairs than 

the optimal structure predicted with the internal mfold thermodynamic model. 

Scanning the table for the highest number of correctly predicted base pairs yields a tie 

of two structures ranked 19th and 22nd in free energy. These structures greatly improve 

the last results with 35.2% of the known base pairs correctly predicted. However, in a real 

experiment, these structures could not have been found because of the lack of a known 

structure as a basis for comparison. 

Comparing with the results from Table 7.5 shows that RnaPredict was able to predict 

16.5% of the known base pairs on average using 0 x 2 ,  STDS, and INN. This was the lowest 

average free energy structure found with INN. Better yet, the experiment with the high- 

est number of correctly predicted base pairs on average was found using CX, STDS and 

INN. This experiment managed to find 18.8% of the known base pairs on average, but was 

1.85 kcal/mol higher in energy than the lowest energy st.ructure, on average. 

The single runs from Table 7.6 show that the single lowest energy structures were found 

with 0 x 2 ,  STDS, and INN. This structure correctly predicted 16.7% of the known base 

pairs. Similar to the average result, a structure found using with CX, STDS and INN with 

2.1 kcal/mol higher in energy contained 24.9% of the known base pairs. 

The lowest free energy structure found with mfold's internal thermodynamic model 

contained fewer correct base pairs at  15.9% overlap. The efn2 model found even fewer base 

pairs at  14.2% overlap. 

It is interesting to  note that even with mfold, the results for this sequence were not 

as good as those for the longer Xenopus laevis sequence. Again, this gives evidence that 

Drosophila virilis may be a difficult sequence for the thermodynamic models in both RnaPre- 

dict and mfold. 

9.3 Hildenbrandia rubra - 543 nt 

Table 9.3 shows the mfold results for Hzldenbrandia rubra. The optimal energy structure 

found with mfold had a free energy of -204.9 kcal/mol. This structure contained 176 base 

pairs including 35.5% of the base pairs found in the known structure. The structure with 
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Table 9.2: Drosophila virilis, mfold results. Number of known base pairs is 233. 

mfold AG efn2 AG Predicted B P  Correctly % Correctly 
(kcal/mol) (kcal/mol) Predicted B P  Predicted 
-146.3 -124.43 236 37 15.9 
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the lowest free energy according to the efn2 had a free energy of -199.63 kcal/mol. This 

structure was less accurate than the former wit.h 171 base pairs predicted and 27.5% of the 

known ones correct,ly predicted. 

mfold predicted another structure with more correct base pair but with a higher free 

energy than those listed above. This structure ranked 25th in free energy and contained 167 

base pairs. This structure greatly improved on t,he accuracy from the low energy structure 

with 60.1% of the known base pairs correctly predicted. 

Table 7.8 shows that the structure with average lowest energy found with the INN-HB 

model has similar accuracy than the lowest energy structure found with mfold. The average 

structure was found with 0 x 2 ,  STDS and INN-HB. It contained 160.1 base pairs where 

35.1% of the known base pairs were correctly predicted. Looking at  the lowest energy 

structure found by a single random seed shows that RnaPredict was able to predict even 

more base pairs correctly. A single run using the same parameters predicted a structure with 

164 base pairs with 44.9% of these found in the known structure. In this case, RnaPredict 

was able to predict more correct base pairs than mfold when looking at low energy structures. 

9.4 Haloarcula marismortui - 122 nt 

Table 9.4 shows the mfold results for Haloarcula marismortui. This sequence is quite short 

and thus has a much smaller search space and very few structures possible within 5% of 

the lowest energy structure. In this case, only one structure was found with mfold. The 

structure found contained 34 base pairs where 76.3% overlapped with the known structure. 

Table 7.11 shows that, on average, RnaPredict was not able to improve on this result. 

With 0 x 2 ,  PMX with STDS and INN-HB, RnaPredict was able to predict a structure with 

42.1% of the known base pairs with all 30 random seeds. With INN, RnaPredict was able 

to predict a different structure with similar accuracy with CX, 0 x 2 ,  and PMX using STDS, 

again, with all 30 random seeds. It is not clear why RnaPredict's average performance was 

so low in comparison with mfold, however RnaPredict was able to find a best structure with 

71.1% base pair overlap getting closer to the mfold result. 
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Table 9.3: Hildenbrandia rubra, mfold results. Number of known base pairs is 138. 

mfo ld  AG e f n 2  AG Predicted BP Correctly % Correctly 
(kcal/mol) (kcal/mol) Predicted B P  Predicted 
-204.9 -199.11 176 49 35.5 

Table 9.4: Haloarcula marismortui, mfold results. Number of known base pairs is 38. 

m f o l d  AG e f n 2  AG Predicted B P  Correctly % Correctly 
(kcal/mol) (kcal/mol) Predicted BP Predicted 
-59.5 -56.44 34 29 76.3 
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9.5 Saccharomyces cereuisiae - 118 nt 

The mfold results for the shortest sequence, Saccharomyces cerevisiae, are listed in Table 9.5. 

Again, due to  the  smaller search space, only two structures were found. The first row shows 

the optimal structure found with mfold contained as many as 89.2% of the known base pairs 

in its 41 base pair structure. The lowest energy structure evaluated with efn2 contained 42 

base pairs and 75.7% of the base pairs in the natural fold. 

Table 9.5: Saccharomyces cerevisiae, mfold results. Number of known base pairs is 37 

mfold AG efn2 AG P r e d i c t e d  BP Correct ly  % Correct ly  
(kcal/mol) (kcal/mol)  P red ic ted  BP Pred ic ted  
-53.5 -50.70 41 3 3 89.2 
-53.0 -50.76 42 28 75.7 

On average, RnaPredict was able to  match the prediction of mfold with all random 

seeds for each crossover operator and selection strategy with INN-HB. Again, this structure 

contained 39 base pairs which included 89.2% of the base pairs in the known structure. 

9.5.1 Graphical comparison 

Both mfold and RnaPredict were able t o  predict 89.2% of the base pairs correctly, but with 

different structures. Figure 9.1 shows the overlap of these two structures. 

The figure shows only the  overlap between the two structures (black hydrogen bonds) 

and the base pairs predicted by mfold not present in RnaPredictls prediction (grey hydrogen 

bonds). The figure shows that  both RnaPredict and mfold predicted a structure with 89.2% 

of the known base pairs. However, mfold predicted two more base pairs that  were not part 

of the natural fold. 

9.6 Over-prediction of base pairs 

Table 9.6 shows the number of false-positive base pairs predicted by RnaPredict and the 

mfold DPA. The data in the  table was drawn from the lowest energy structure prediction 

with mfold's internal thermodynamic model and the overall lowest energy structure from 

RnaPredict for each sequence. The first column gives the sequence. The second and third 
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Figure 9.1: The above shows the comparison of the most accurate structure predicted with 
RnaPredict and the most accurate mfold predicted structure. The black base pairs show 
the overlap between the two structures and the grey base pairs correspond to the extra base 
pairs predicted by mfold. The known base pairs were not added to make the comparison 
easier. Both structures contained 89.2% of the known base pairs but the mfold structure 
adds two extra false-positive predictions. 
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columns show the number of false-positive base pairs predicted with the mfold DPA and 

RnaPredict, respectively. The fourth and fiftb columns show the number of known base 

pairs correctly predicted with this structure by mfold and RnaPredict. The last column 

shows which crossover operator/selection strategy/thermodynamic model combination was 

used to find the structure with the lowest overall energy. Data for additional sequences can 

be found in Table A.41, on page 156. 

Table 9.6: Comparison between the number of false predictions between lowest energy 
structure found with the mfold DPA and the overall lowest energy single RnaPredict runs 
Sequence DPA over- GA over- DPA Corr. GA Corr. GA Cross.- 

pred. pred. BPS B Ps SeL-Model 
X. laevis 157 178 92 77 0x2-STDS- 

INNHB 
D. virilis 199 206 3.7 39 0x2-STDS- 

INN 
H. rubra 127 102 49 62 0x2-STDS- 

INNHB 
H. maris- 5 14 29 16 0x2-STDS- 
mortui INN 
S. cerevisiae 8 6 33 33 0x2-STDS- 

INNHB 

The results show that RnaPredict outperformed the DPA by predicting more base pairs 

correctly with two sequences, Drosophila virilis and Hildenbrandia rubra. RnaPredict also 

performed as well as the DPA with the shortest sequence, Saccharomyces cerevisiae. Further- 

more, RnaPredict predicted less false-positive base pairs with two sequences, Hildenbrandia 

rubra and Saccharomyces cerevisiae. 

The final comparison will be between the overall highest number of correct base pairs 

predicted by both mfold and RnaPredict, regardless of energy. Table 9.7 shows the same 

format as Table 9.6. The results show that although mfold is able to predict more base 

pairs correctly in four sequences (Xenopus laevis, Drosophila virilis, Hildenbrandia rubra, 

and Haloarcula marismortui), RnaPredict predicts less false-positives in three sequences 

(Hildenbrandia rubra, Haloarcula marismortui, and Saccharomyces cerevisiae). Data for 

other sequences can be found in Table A.42, on page 157. 
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Table 9.7: Comparison between the number of false predictions between best structure with 
the mfold DPA and the overall best single structure found with RnaPredict 
Sequence DPA over- GA over- DPA Corr. GA Corr. GA Cross.- 

pred. pred. BPS BPS Se1.-Model 
X. laevis 132 147 113 93 CX-STDS- 

INN 
D. virilis 170 177 82 6 5 OX%-STDS- 

INNHB 
H. rubra 84 82 83 79 0x2-STDS- 

INN 
H. maris- 5 3 29 27 PMX-KBR- 
mortui INNHB 
S. cerevisiae 8 6 33 33 0x2-STDS- 

INNHB 

9.7 Chapter summary 

The mfold DPA performs better than the Nussinov DPA by using a complex thermodynamic 

model and optimizing free energy instead of maximizing the number of possible base pairs. 

This method predicted far more correct base pairs for each sequence studied. 

Predicted structures for short sequences had a better overlap than those from longer 

sequences. Again, non-canonical base pairs, pseudoknots and long range intermolecular 

interactions can not be modeled with the current mfold DPA. 

RnaPredict performed very well predicting more correct base pairs with the Drosophila 

virilis and Hildenbrandia rubra sequences than mfold when comparing lowest energy struc- 

tures (Table 9.6) while keeping false predictions low. RnaPredict also predicted as many 

correct base pairs with Saccharomyces cerevisiae. 

In the best case, RnaPredict predicted as many correct base pairs as mfold with the Sac- 

charomyces cerevisiae sequence while predicting less false-positive base pairs. RnaPredict 

also predicted less false-positive base pairs than mfold for Hildenbrandia rubra, Haloarcula 

marismortui, and Saccharomyces cerevisiae. Data for additional sequences can be found in 

Appendix A. 

These results are quite encouraging showing that a GA with a simplistic thermodynamic 

model performs as well as a mature DPA with a complex thermodynamic model. 
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Conclusion 

This document discusses the research done developing a GA for RNA secondary structure 

prediction through energy minimization. The current version is a complete redesign and 

reimplementation, in object-oriented C++, inspired from a previously version written in 

Dr. Wiese's lab. The focus of the work presented here was the implementation of three new 

thermodynamic models. One of these models, Mathews, was a hydrogen bond model which 

associates free energy changes to single base pairs. The other two models were stacking 

energy models, INN and INN-HB, attributing free energy changes to tandem base pairs. 

Several objectives were met during the course of this research. Optimized GA settings 

for RnaPredict were determined to improve prediction of low energy structure. Different 

crossover and mutation rate combinations were systematically examined to determine opti- 

mal settings. Selection techniques, STDS and KBR, were also tested with various crossover 

rates. Encoding, binary and permutation, was studied along with corresponding crossover 

operators. The quality of the predicted structures was compared to known structures and 

to those generated by the Nussinov DPA and the mfold DPA. 

A typical run on a Pentium 4 2.6 GHz computer with 1.5 GB of RAM running Linux 2.4 

for a 1000 nucleotide sequence can run for 10 hours with the slowest operator, ASERC, to 15 

minutes for the fastest operator, 1-Point. For such a sequence, the RnaPredict application 

can consume as much as 500 Mb of memory. 

Eleven sequences were tested: Sulfolobus acidocaldarius (1494 nt), Homo sapiens (954 

nt), Xenopus laevis (945 nt), Drosophila virilis (784 nt), Caenorhabditis elegans (697 nt), 

Acanthamoeba gri f ini  (556 nt), Hildenbrandia rubra (543 nt), Aureoumbra lagunensis (468 

nt), Haloarcula marismortui (122 nt), Arthrobacter globifomis (123 nt), and Saccharomyces 
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cerevisiae (118 nt). Of these sequences, five were discussed in detail: Xenopus laevis, 

Drosophila virilis, Hildenbrandia rubra, Haloa.rcula marismortui, and Saccharomyces ce.re- 

visiae. Data for the remaining sequences can be found in Appendix A. 

The results show that while sampling struct,ures in the search space, a strong correlation 

was found between the structures' free energy and the number of correct base pairs predicted 

with stacking energy models such as INN and INN-HB. For the sequences discussed in detail 

in this document, the correlation coefficient was very close to -1, especially with INN-HB. 

These results showed clearly that the stacking energy models outperform the hydrogen bond 

models. 

Next, different encodings, selection strategies, crossover operators, crossover rates, and 

mutation rates were tested. With both selection strategies, permutation encoding found 

lower energy structures more often than binary encoding. OX2 and CX were found to yield 

lower energy structures than with any other crossover operator when coupled with STDS, 

high crossover rates, and high mutation rates. With PMX, lower energy structures were 

found with KBR with high crossover rates and high mutation rates as compared to those 

found with PMX and STDS using the same crossover and mutation rates. However, these 

PMX experiments did not perform as well as the best OX2 and CX runs. To make the 

results uniform, a crossover rate of 0.7 was coupled with a mutation rate of 0.8 for all runs 

in subsequent experiments. 

Once the thermodynamic models were partially validated through the computation of 

the correlation coefficient and the behavior of the GA parameter settings were controlled, 

experiments were done on real structures in the hope to find the natural fold. 

RnaPredict was able to  partially predict the structure of large sequences. For instance, 

with Xenopus laevis, the highest number of base pairs found by a single run was 37.1% with 

CX, STDS, and INN-HB. These results were greatly improved with Hildenbrandia rubra, 

where 57.2% of the base pairs were correctly predicted by a single run using 0 x 2 ,  STDS, and 

INN. For the shortest sequence, Saccharomyces cerevisiae, RnaPredict was able to predict 

as many as 89.2% of the correct base pairs. This turned out to be the theoretical maximum 

that the helix generation model allows. Effectively, it can be said that RnaPredict found 

100% of the correct structure within the constraints of its internal model and therefore 

represents a very effective search engine. 

When comparing with the Nussinov DPA, RnaPredict found more correct base pairs for 

every sequence tested. Furthermore, RnaPredict predicts far fewer false positive base pairs 
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for every sequence. These results show that RnaPredict efficiently searches the conforma- 

tional space and does not simply predict structures that only have a large amount of base 

pairs. 

When comparing with the mfold DPA, RnaPredict performed competitively. A direct 

comparison of the lowest free energy structure found with mfold and the lowest free energy 

structure found with RnaPredict shows that mfold was able to predict more base pairs 

correctly for two sequence, Xenopus laevis and Haloarcula marismortui, while RnaPredict 

predicted more correct base pairs with two sequences, Drosophila virilis and Hildenbrandia 

rubra, and predicted equally as many base pairs with Saccharomyces cerevisiae. RnaPredict 

predicted less false positive base pairs with Saccharomyces cerevisiae and Hildenbrandia 

rubra than mfold. 

Lastly, the structures with the highest number of base pairs correctly predicted with 

both mfold and RnaPredict, regardless of energy, were compared. The results show that 

both RnaPredict and mfold were able to  predict equally as many base pairs correctly with 

Saccharomyces cerevisiae. Also, RnaPredict predicted less false positive base pairs than 

mfold with the following sequences, Hildenbrandia rubra, Haloarcula marismortui, and Sac- 

charomyces cerevisiae. 

In modelling RNA secondary structure with RnaPredict, the following assumptions are 

made. It uses a simplistic, but strict, helix generation model where helices can contain no less 

than three adjacent base pairs and must be connected by three or more nucleotides. Also, 

the free energy of the structures is computed using a simplistic thermodynamic model that  

approximates the free energy by only modelling adjacent base pairs. The decoder disabled 

the formation of pseudoknots to  create simpler structures. With all these constraints and 

limitations, the results are still very significant and demonstrate the usefulness of EAs in 

the field of secondary structure prediction of RNA. 

10.1 Future work 

This document describes the advances made during the course of this research. Various 

other improvements are possible and could dramatically improve the results of the GA. 
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10.1.1 Non-canonical base pairs 

The inclusion of non-canonical base pairs would allow RnaPredict to predict structures 

more accurat.ely. Most structures contain some non-canonical base pairs. The problem with 

predicting these base pairs is that it is difficult to determine which base pairs will form. It 

is possible that a base pair of a particular identity form in one structure but not in another. 

Preliminary research can be found in [119, 120, 1211 

10.1.2 Modelling common RNA substructures 

Another goal is to explicitly model common RNA substructures. The current thermody- 

namic models model stacks only. Stacks occur when a set of adjacent base pairs form. The 

presence of these stacks forms higher order substructures such as loops and bulges. Differ- 

ent substructures have different energy contributions to a structure. Free energy parameters 

have been devised to model these contributions. A review [53] provides a good starting point 

to incorporate substructure modelling into RnaPredict. 

With a complete thermodynamic model such as the one in efn2, it would be possible to 

compare the results, obtained by RnaPredict, fairly and directly with those from mfold. 

10.1.3 Optimizing code 

The current implementation of RnaPredict has some performance issues. Some code sections 

have been identified as bottlenecks making the algorithm run slowly and consume large 

amounts of memory. Most of the code has been written following specifications directly 

from the literature with little or no optimization. 

Algorithm performance could be easily improved by formally profiling the code, and 

optimizing the problem code sections. A goo8d place to start would be optimizing the 

crossover operators as these are executed repeatedly during a run consuming a large part of 

the algorithm's runtime. 

10.1.4 Fitness scaling 

RnaPredict uses STDS, or roulette-wheel selection [103], to select individuals from the 

population to undergo crossover and mutation. The implementation of STDS in RnaPredict 

is done by giving a pie-shaped slice of a roulettcwheel proportional to  its absolute fitness. 

The wheel is spun and an individual is chosen if the  wheel stops on its slice. 
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10.1.6 Modelling pseudoknots 

A GA is able to predict pseudo knot,^, but for the experiments presented here, the formation 

of pseudoknots was disabled in t.he decoder. This was done because RnaPredict cannot. 

currently model the free energy cont,ribution of pseudoknots and allowed too many of them 

to form. Most large structures contain one or more pseudoknots. Allowing pseudoknots to 

form and modelling them properly would improve the accuracy of prediction of structures. 

Thermodynamic parameters for pseudoknots exist. They can be found in [go], [91], and [92]. 

DPAs, like Nussinov and mfold, have great difficulty generating structures with pseudo- 

knots due to their inherent design. Modelling pseudoknots with RnaPredict would be quite 

advantageous. Wit,h proper parameters, it should be possible to  improve prediction beyond 

what is possible with mfold. 

RNAML 

A problem that arises often with computer applications is the large number of different 

formats used to describe data. Even with something as simple as a secondary structure of 

RNA, there are numerous formats available. 

RnaPredict has used the Connectivity Table (CT) file format [lo] for output of all 

structures. CT has been the standard file for~nat used to represent secondary structures 

of RNA. It has been the preferred format used by mfold for output. However, the CT file 

format has various slightly different implementations making it difficult to write a robust 

universal parser. 

The main source of known structures used in this research came from the CRW website 

which uses the Base Pair Sequence (BPSeq) format, a modified CT format. This format 

simply removes redundant columns found in the CT file format. 

Another class of formats that exists is the Dot Bracket Notation (DBN) file format. This 

originated from the simple idea of encoding RNA secondary structures using two strings. 

The first string is the primary sequence while the second encodes for the secondary structure 

using '(' to  indicate a bound nucleotide on the 5'-end, ')' for a bound nucleotide on the 3'- 

end and a ':' for an unpaired nucleotide. A modified DBN format [I231 uses '[' and '1' to  

represent pseudoknots. 

Most visualization applications are able to read the CT file format. Inclusion of the CT 

file format to RnaPredict was the most natural design decision. The format was chosen to 
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make RnaPredict interoperate with the largest number of external applications. 

RNAML [I241 has been proposed as a standard file format for communicating RNA 

strucbural data. RNAML complies with extensible Markup Language (XML) which is a 

widely accepted syntax standard. The format can be used to represent structural informa- 

tion for the primary, secondary, and tertiary structure of RNA. It can describe base pairs, 

base triples, and pseudoknots. Because of the nature of XML, RNAML can be extended to 

describe different types of data. 

RNAML has numerous advantages. An R,NAML file can be used to model a single 

structure or any number of structures. Such a feature could be useful to  generate more 

cohesive data where the RNAML could contain all of the data from a particular run. 

Implementing a robust parser for RNAML should be a trivial exercise using any language 

with XML programming toolkits. Outputting RNAML structures is also a simple task. The 

RNAML format uses a logical structure without the constraints of delimiter-separated value 

(DSV) formats. Simply ensuring the logical rules are met is enough to generate a valid 

structure. 

10.1.7 Seeding the random population 

The random population is generated by RnaPredict in the first generation. In the usual 

case, the GA finds lower energy structures with each generation. To improve the convergence 

velocity and generate higher quality structures, the GA's random population could be seeded 

with lower energy structures. 

mfold  can be used to  generate a large number of low energy in a short amount of 

time. The structures generated by mfold can be used to  seed the random population thus 

potentially improving the results from RnaPredict. 

10.1.8 Other improvements 

A GA is a stochastic algorithm using a wide variety of parameters to  control it. The results of 

the GA could be improved by testing different population sizes and number of generations. 

Currently, the population size was set to 700 for all experiments. This was chosen as a 

reasonable number, but no other sizes have been tested. It is possible that changing the 

size could influence the results. 

The number of generations was set to 700 for most sequences. It was noticed that 
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different sequence lengths require different numbers of generations for the population to 

converge. For a short sequence like Saccharomyces cerevisiae, less than ten generations are 

required while experiments using long sequences can keep making progress for thousands of 

generations. 

All experiments reported in this thesis ran with 1-elitism. However, earlier work [34] 

suggests that under some circumstances KBR without elitism outperformed KBR with 1- 

elitism. More experiments could be done to determine whet-her KBR without elitism could 

improve on the results presented here. 

Different crossover operators should be implemented and tested. Many operators exist in 

the literature, such as OX3 [125], MPX [126], MXl [127], and MX2 [127]. The improvements 

could yield better results or higher performance. 



Appendix A 

Data for other seauences 

This appendix contains the data tables for the sequences that were not discussed in detail 

throughout the main chapters. 

A. 1 Correlation data 

Here is the correlation data for all the sequences studied. 

Table A. l :  The correlation between the free energy of st,ructures and the number of correctly 
predicted base pairs. 

Sequence INNHB INN MAJOR MATHEWS 
S. cerevisiae -0.98 -0.96 -0.15 -0.78 
X. laevis -0.96 -O.!JO -0.78 -0.58 
H. rubra -0.94 -0.87 0.36 -0.71 
S. acidocaldarius -0.93 -0.88 -0.26 -0.76 
D. virilis -0.93 -0.50 -0.18 -0.71 
H. sapiens -0.81 -0.77 -0.29 0.20 
A. lagunensis -0.76 -0.77 -0.31 -0.78 
A. globifomis -0.76 -0.88 -0.83 -0.72 
H. marismortui -0.74 -0.86 -0.56 -0.30 
A. gri f ini  -0.74 -0.$4 -0.70 -0.36 
C. eleqans -0.26 -0.74 0.08 -0.80 
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A.2 Sulfolobus acidocaldarius - 1494 nt 

Table A.2: Sulfolobus acidocaldarius details 
Filename d. 16.a.S.acidocaldarius.bpseq 
Organism Sulfolobus acidocaldarius 
Accession Number Dl4876 
Class 16s  rRNA 
Length 1494 nucleotides 
# of BPS in known structure 468 
# of non-canonical base pairs 22 

Tab ~ le  A.3: Results of comparison with known Sulfolobus acidocaldarius struct,ure grouped by 
thermodynamic model. The  known structure contains 468 base pairs. Each row represents 
an  experiment consisting of 30 averaged runs. 
AG Pred. Corr. Corr. Cross. Sel. Model 
(kcal/mol) BPS BPS BPS (%) 
-658.28 427.0 89.2 19.1 CX STDSa INNHB 

OX2 
OX2 
CX 
PMX 
PMX 
CX 
OX2 
OX2 
PMX 
CX 
PMX 

STDS 
KBR 
KBR 
KBR 
STDS 
STDS 
STDS 
KBR 
KBR 
KBR 
STDS 

INNHB 
INNHB 
INNHB 
INNHB 
INNHB 
INN 
INN 
INN 
INN 
INN 
INN 

aAll STDS runs were extended t o  1400 generations to improve convergence 



APPENDIX A. DATA FOR OTHER SEQUENCES 135 

Table A.4: Best results of comparison with known Sulfolobus acidocaldarius structure 
grouped by thermodynamic model. The known structure contains 468 base pairs. Best 
single run ranked by free energy. 
AG F'req. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%I 
-691.24 1 1286 439 131 28.0 CX STDSa INNHB 
-687.51 1 1391 44 1 115 24.6 OX2 STDS INNHB 
-653.97 1 678 42 1 85 18.2 OX2 KBR INNHB 
-646.96 1 693 414 114 24.4 CX KBR INNHB 
-630.49 1 640 426 71 15.2 PMX KBR INNHB 
-537.83 1 1395 385 45 9.6 PMX STDS INNHB 
-652.5 1 1254 435 105 22.4 CX STDS INN 
-652.1 1 1368 441 138 29.5 OX2 STDS INN 
-644.7 1 692 430 93 19.9 PMX KBR INN 
-612.7 1 697 416 89 19.0 OX2 KBR INN 
-610.0 1 674 427 72 15.4 CX KBR INN 
-523.7 1 1380 398 5 1 10.9 PMX STDS INN 

"All STDS runs were extended to 1400 generations to improve convergence 

Table A.5: Single run with highest number of correctly predicted base pairs of Sulfolobus 
acidocaldam'us, regardless of free energy grouped by thermodynamic model. The known 
structure contains 468 base pairs. 
AG F'req. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-691.24 1 1286 439 131 28.0 CX STDSa INNHB 
-682.97 1 1367 439 131 28.0 OX2 STDS INNHB 
-646.96 1 693 414 114 24.4 CX KBR INNHB 
-635.38 1 698 419 99 21.2 OX2 KBR INNHB 
-615.72 1 626 408 88 18.8 PMX KBR INNHB 
-523.51 1 1393 399 66 14.1 PMX STDS INNHB 
-652.1 1 1368 44 1 138 29.5 OX2 STDS INN 
-633.4 1 1385 432 144 30.8 CX STDS INN 
-595.7 1 583 413 107 22.9 OX2 KBR INN 
-584.5 1 689 416 110 23.5 PMX KBR INN 
-516.5 1 674 427 80 17.1 CX KBR INN 
-516.5 1 1237 393 69 14.7 PMX STDS INN 

aAll STDS runs were extended to 1400 generations to improve convergence 
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Table A.6: Sulfolobus acidocaldarius, Nussinov results. Number of known base pairs is 468. 

GC:AU:GU Predicted Correctly Correctly 
BP Weights Predicted Predicted 

:B P (%I 
1 : l : l  584 187 39.9 
3:2:1 570 143 30.5 
3:2:2 582 187 39.9 

Table A.7: Sulfolobus acidocaldarius, mfold results. Number of known base pairs is 468. 

mfold AG efn2 AG (kcal Predicted BP Correctly % Correctly 
(kcal / mol) / mol) Predicted BP Predicted 
-822.9 -781.20 494 26 1 55.8 
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A.3 Homo sapiens - 954 nt 

Table A.8: Homo sapiens details 
Filename d.16.m.H.sapiens.bpseq 
Organism Homo sapiens 
Accession Number J01415 
Class 16s  rRNA 
Length 954 nucleotides 
# of BPS in known structure 266 
# of non-canonical base pairs 30 

Table A.9: Results of comparison with known Homo sapiens structure grouped by ther- 
modynamic model. The known structure contains 266 base pairs. Each row represents an 
experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-273.10 238.7 47.9 18.0 CX STDSa INNHB 
-272.06 238.7 48.1 18.1 OX2 STDS INNHB 
-256.66 232.4 37.0 13.9 CX KBR INNHB 
-254.40 232.4 36.3 13.6 OX2 KBR INNHB 
-253.69 232.2 35.3 13.3 PMX KBR INNHB 
-222.60 223.3 28.6 10.7 PMX STDS INNHB 
-267.4 243.3 45.7 17.2 OX2 STDS INN 
-260.3 239.9 46.5 17.5 CX STDS INN 
-250.7 238.0 35.6 13.4 OX2 KBR INN 
-248.2 236.2 33.4 12.6 CX KBR INN 
-245.7 234.4 35.3 13.3 PMX KBR INN 
-215.9 226.6 26.1 9.8 PMX STDS INN 

- --- 

aAll STDS runs were extended to 1000 generations to improve convergence 
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Table A.10: Best results of comparison with known Homo sapiens structure grouped by 
thermodynamic model. The known structure contains 266 base pairs. Best single run 
ranked by free energy. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-289.10 1 98 1 245 72 27.1 OX2 STDSa INNHB 
-288.29 1 997 25 1 74 27.8 CX STDS INNHB 
-280.28 1 613 244 24 9.0 PMX KBR INNHB 
-275.68 1 473 239 50 18.8 OX2 KBR INNHB 
-271.13 1 654 237 64 24.1 CX KBR INNHB 
-249.70 1 89 1 236 34 12.8 PMX STDS INNHB 
-276.2 1 996 253 65 24.43 OX2 STDS INN 
-275.1 1 696 238 50 18.79 OX2 KBR INN 
-274.7 1 909 244 59 22.18 CX STDS INN 
-266.7 1 624 244 35 13.15 CX KBR INN 
-261.1 1 554 241 42 15.78 PMX KBR INN 
-231.9 1 863 236 19 7.14 PMX STDS INN 

aAll STDS runs were extended t o  1000 generations t o  improve convergence 

Table A. l l :  Single run with highest number of correctly predicted base pairs of Homo 
sapiens, regardless of free energy grouped by thermodynamic model. The known structure 
contains 266 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-282.89 1 891 236 78 29.3 CX STDSa INNHB 
-280.42 1 963 250 89 33.5 OX2 STDS INNHB 
-271.13 1 654 237 64 24.1 CX KBR INNHB 
-257.36 1 608 233 7 1 26.7 OX2 KBR INNHB 
-255.31 1 623 23 1 67 25.2 PMX KBR INNHB 
-230.14 1 993 241 60 22.6 PMX STDS INNHB 
-275.4 1 999 248 70 26.3 OX2 STDS INN 
-263.6 1 939 248 82 30.8 CX STDS INN 
-254.2 1 234 240 57 21.4 PMX KBR INN 
-252.6 2 500 238 64 24.1 OX2 KBR INN 
-248.5 1 671 232 59 22.2 CX KBR INN 
-225.7 1 993 229 50 18.8 PMX STDS INN 

aAll STDS runs were extended t o  1000 generations t o  improve convergence 
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Table A.12: Homo sapiens, Nussinov results. Number of known base pairs is 266. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 

Table A.13: Homo sapiens, mfold results. Number of known base pairs is 266. 

mfold AG efn2 AG (kcal Predicted BP Correctly % Correctly 
(kcal / mol) / mol) Predicted BP Predicted 
-250.9 -217.20 258 9 5 35.7 
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A.4 Caenorhabditis elegans - 697 nt 

Table A.14: Caenorhabditis elegans details 
Filename d.16.m.C.elegans.bpseq 
Organism Caenorhabditis elegans 
Accession Number X54252 

I Class 16s rRNA 
Length 697 nucleotides 
# of BPS in known structure 189 

I # of non-canonical base pairs 23 

Table A.15: Results of comparison with known Caenorhabditis elegans structure grouped by 
thermodynamic model. The known structure contains 189 base pairs. Each row represents 
a n  experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-166.14 207.8 27.3 14.5 OX2 STDS INNHB 
-163.49 204.1 25.3 13.4 CX STDS INNHB 
-155.30 200.7 22.8 12.1 OX2 KBR INNHB 
-151.28 202.1 21.2 11.2 CX KBR INNHB 
-150.84 199.8 22.4 11.8 PMX KBR INNHB 
-131.28 192.3 16.3 8.6 PMX STDS INNHB 
-147.3 203.3 30.9 16.4 OX2 STDS INN 
-147.1 201.1 30.2 16.0 CX STDS INN 
-134.8 197.2 22.1 11.7 OX2 KBR INN 
-133.7 196.7 21.1 11.2 PMX KBR INN 
-132.8 194.3 23.4 12.4 CX KBR INN 
-116.1 190.6 19.6 10.4 PMX STDS INN 
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Table A.16: Best results of comparison wibh known Caenorhabditis elegans structure 
grouped by thermodynamic model. The known structure contains 189 base pairs. Best 
single run ranked by free energy. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-179.20 1 673 212 3 7 19.6 OX2 STDS INNHB 
-175.23 1 151 206 30 15.9 OX2 KBR INNHB 
-174.11 1 520 223 17 9.0 CX STDS INNHB 
-173.40 1 662 212 20 10.6 PMX KBR INNHB 
-163.32 1 537 198 10 5.3 CX KBR INNHB 
-154.96 1 687 211 27 14.3 PMX STDS INNHB 
-161.6 1 597 204 34 18.0 OX2 STDS INN 
-157.8 1 447 208 35 18.5 CX STDS INN 
-147.3 1 462 199 27 14.2 OX2 KBR INN 
-146.0 1 646 197 3 5 18.5 PMX KBR INN 
-144.3 1 666 200 15 7.9 CX KBR INN 
-134.3 1 672 199 28 14.8 PMX STDS INN 

Table A.17: Single run with highest number of correctly predicted base pairs of Caenorhabdi- 
t i s  elegans, regardless of free energy grouped by thermodynamic model. The known structure 
contains 189 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS B Ps  
mol) (%I 
-164.58 1 609 202 38 20.1 OX2 STDS INNHB 
-162.61 1 649 203 40 21.2 CX STDS INNHB 
-161.78 1 598 203 49 25.9 CX KBR INNHB 
-150.96 1 606 . 199 43 22.8 PMX KBR INNHB 
-143.12 1 526 216 4 1 21.7 OX2 KBR INNHB 
-125.89 1 654 192 42 22.2 PMX STDS INNHB 
-156.7 1 656 202 55 29.1 OX2 STDS INN 
-153.7 1 56 1 209 57 30.2 CX STDS INN 
-144.3 1 666 200 15 7.9 CX KBR INN 
-128.8 1 517 201 44 23.3 OX2 KBR INN 
-126.2 1 542 185 39 20.6 PMX KBR INN 
-125.4 1 695 191 39 20.6 PMX STDS INN 
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Table A.18: Caenorhabditis elegans, Nussinov results. Number of known base pairs is 189. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 

Table A.19: Caenorhabditis elegans, mfold results. Number of known base pairs is 189. 

mfold AG efn2 AG (kcal Predicted BP Correctly % Correctly 
(kcal / mol) / mol) Predicted BP Predicted 
-142.1 -125.22 217 40 21.2 
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A.5 Acanthamoeba grifini - 556 nt 

Table A.20: Acanthamoeba grifini details 
Filename b.11.e.A.griffini. l.Cl.SSU.516.bpseq 
Organism Acanthamoeba grifini 
Accession Number U012540 
Class Group I intron, 16s rRNA 
Length 556 nucleotides 
# of BPS in known structure 131 
# of non-canonical base pairs 1 

Table A.21: Results of comparison with known Acanthamoeba grifini structure grouped by 
thermodynamic model. The known structure contains 131 base pairs. Each row represents 
an experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS ('3%) 
-195.47 160.2 44.0 33.6 OX2 STDS INNHB 
-192.52 158.3 42.2 32.2 CX STDS INNHB 
-184.52 156.9 35.5 27.1 PMX KBR INNHB 
-183.27 156.7 33.5 25.6 CX KBR INNHB 
-183.12 155.5 34.1 26.1 OX2 KBR INNHB 
-162.23 149.1 25.8 19.7 PMX STDS INNHB 
-180.8 164.7 45.2 34.5 OX2 STDS INN 
-179.4 163.3 44.1 33.7 CX STD S INN 
-170.6 160.8 34.9 26.7 OX2 KBR INN 
-169.5 159.9 34.2 26.1 PMX KBR INN 
-166.7 157.7 34.3 26.2 CX KBR INN 
-149.8 150.7 20.3 15.5 PMX STDS INN 
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Table A.22: Best results of comparison with known Acanthamoeba grifini structure grouped 
by thermodynamic model. The known structure contains 131 base pairs. Best single run 
ranked by free energy. 
AG F'req. Gens Pred.  Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS  BPS  
mol) (%) 
-205.31 1 422 159 47 35.9 CX STDS INNHB 
-203.01 1 616 158 42 32.1 OX2 STDS INNHB 
-200.14 1 322 157 38 29.0 OX2 KBR INNHB 
-198.19 1 549 155 43 32.8 PMX KBR INNHB 
-196.47 1 187 16 1 59 45.0 CX KBR INNHB 
-184.53 1 696 168 38 29.0 PMX STDS INNHB 
-190.2 1 453 167 5 1 38.9 CX STDS INN 
-189.6 1 417 167 43 32.8 OX2 STDS INN 
-187.9 1 529 161 36 27.5 OX2 KBR INN 
-183.6 1 380 169 54 41.2 PMX KBR INN 
-181.0 1 608 165 30 22.9 CX KBR INN 
-168.0 1 385 164 3 1 23.7 PMX STDS INN 

Table A.23: Single run with highest number of correctly predicted base pairs of Acan- 
thamoeba grifini, regardless of free energy grouped by thermodynamic model. The known 
structure contains 131 base pairs. 
AG F'req. Gens Pred.  Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS  
mol ) (%) 
-197.15 1 658 161 81 61.8 OX2 STDS INNHB 

CX STDS INNHB 
PMX KBR INNHB 
CX KBR INNHB 
OX2 KBR INNHB 
PMX STDS INNHB 
CX STDS INN 
OX2 KBR INN 
OX2 STDS INN 
CX KBR INN 
PMX KBR INN 
PMX STDS INN 
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Table A.24: Acanthamoeba grzfini, Nussinov results. Number of known base pairs is 131. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%I 
1:l:l 215 40 30.5 
3:2:1 208 37 28.2 
3:2:2 214 48 36.6 

Table A.25: Acanthamoeba grzfini ,  mfold results. Number of known base pairs is 131. 

mfold AG efn2 AG (kcal Predicted BP Correctly % Correctly 
(kcal / mol) / mol) Predicted BP Predicted 
-193.0 -179.03 172 67 51.1 
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A.6 Arthrobacter globiformis - 123 nt 

Table A.26: Arthrobacter globiformis details 
Filename d.5.b.A.globiformis. 1 .bpseq 

I Organism Arthrobacter globiformis 
Accession Number MI6173 
Class 5s  rRNA 
Length 123 nucleotides 
# of BPS in known structure 39 
# of non-canonical base pairs 5 

Table A.27: Results of comparison with known Arthrobacter globiformis structure grouped 
by thermodynamic model. The known structure contains 39 base pairs. Each row represents 
an experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-56.94 38.0 17.0 43.6 OX2 STDS INNHB 
-56.94 38.0 17.0 43.6 CX STDS INNHB 
-56.94 38.0 17.0 43.6 OX2 KBR INNHB 
-56.94 38.0 17.0 43.6 CX KBR INNHB 
-56.94 38.0 17.0 43.6 PMX KBR INNHB 
-56.94 38.0 17.0 43.6 PMX STDS INNHB 
-54.8 38.0 17.0 43.6 OX2 STDS INN 
-54.8 38.0 17.0 43.6 CX STDS INN 
-54.8 38.0 17.0 43.6 OX2 KBR INN 
-54.8 38.0 17.0 43.6 PMX KBR INN 
-54.8 38.0 17.0 43.6 CX KBR INN 
-54.8 38.0 17.0 43.6 PMX STDS INN 
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Table A.28: Best results of comparison with known Arthrobacter globzformis structure 
grouped by thermodynamic model. The known structure contains 39 base pairs. Best 
single run ranked by free energy. 
AG Freq. Gens Pred. Corr.. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-56.94 30 22.2 38.0 17.0 43.6 CX KBR INNHB 
-56.94 30 22.4 38.0 17.0 43.6 CX STDS INNHB 
-56.94 30 23.0 38.0 17.0 43.6 OX2 STDS INNHB 
-56.94 30 30.5 38.0 17.0 43.6 OX2 KBR INNHB 
-56.94 30 37.1 38.0 17.0 43.6 PMX KBR INNHB 
-56.94 30 38.5 38.0 17.0 43.6 PMX STDS INNHB 
-54.8 30 26.3 38.0 17.0 43.6 CX STDS INN 
-54.8 30 29.9 38.0 17.0 43.6 OX2 STDS INN 
-54.8 30 41.2 38.0 17.0 43.6 CX KBR INN 
-54.8 30 46.9 38.0 17.0 43.6 OX2 KBR INN 
-54.8 30 49.4 38.0 17.0 43.6 PMX KBR INN 
-54.8 30 68.6 38.0 17.0 43.6 PMX STDS INN 

Table A.29: Single run with highest number of correctly predicted base pairs of Arthrobac- 
t e r  globzformis, regardless of free energy grouped by thermodynamic model. The known 
structure contains 39 base pairs. 
AG Freq. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-56.94 30 22.4 38.0 17.0 43.6 CX STDS INNHB 
-56.94 30 23.0 38.0 17.0 43.6 OX2 STDS INNHB 
-56.94 30 30.5 38.0 17.0 43.6 OX2 KBR INNHB 
-56.94 30 37.1 38.0 17.0 43.6 PMX KBR INNHB 
-56.94 30 38.5 38.0 17.0 43.6 PMX STDS INNHB 
-54.80 30 41.2 38.0 17.0 43.6 CX KBR INNHB 
-54.8 30 26.33 38.00 17.0 43.6 CX STDS INN 
-54.8 30 29.90 38.00 17.0 43.6 OX2 STDS INN 
-54.8 30 41.23 38.00 17.0 43.6 CX KBR INN 
-54.8 30 46.90 38.00 17.0 43.6 OX2 KBR INN 
-54.8 30 49.43 38.00 17.0 43.6 PMX KBR INN 
-54.8 30 68.63 38.00 17.0 43.6 PMX STDS INN 
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Table A.30: Arthrobacter globiformis, Nussinov results. Number of known base pairs is 39. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%) 
1: l : l  46 14 35.8 
3:2:1 44 9 23.0 
3:2:2 46 14 35.8 

Table A.31: Arthrobacter globiformis, mfold results. Number of known base pairs is 39. 

mfold AG efn2 AG (kcal Predicted BP Correctly % Correctly 
(kcal / mol) / mol) Predicted BP Predicted 
-52.2 -46.07 37 15 38.5 
-50.1 -47.01 35 15 38.5 
-49.7 -47.78 37 25 64.1 
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A.7 Aureoumbra lagunensis - 468 nt 

Table A.32: Aureoumbra lagunensis details 
Filename b.Il.e.A.lagunensis.C1.SSU.516.bpseq 
Organism Aureoumbra lagunensis 
Accession Number U40258 
Class Group I intron, 16s rRNA 
Length 468 nucleotides 
# of BPS in known structure 113 
# of non-canonical base   airs 4 

Table A.33: Results of comparison with known Aureoumbra lagunensis structure grouped by 
thermodynamic model. The known structure contains 113 base pairs. Each row represents 
an  experiment consisting of 30 averaged runs. 
AG (kcal Pred. Corr. Corr. Cross. Sel. Model 
/ mol) BPS BPS BPS (%) 
-174.09 127.2 41.5 36.7 OX2 STDS INNHB 
-171.52 125.7 41.0 36.3 CX STDS INNHB 
-164.18 124.7 33.6 29.7 PMX KBR INNHB 
-163.36 123.8 34.0 30.1 OX2 KBR INNHB 
-160.81 122.2 32.9 29.1 CX KBR INNHB 
-149.24 120.0 25.3 22.4 PMX STDS INNHB 
-170.4 129.6 47.1 41.7 OX2 STDS INN 
-166.0 128.1 38.9 34.5 CX STDS INN 
-157.5 124.9 33.6 29.7 PMX KBR INN 
-157.5 126.4 29.2 25.8 OX2 KBR INN 
-156.1 124.0 27.2 24.1 CX KBR INN 
-142.5 120.5 21.6 19.1 PMX STDS INN 
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Table A.34: Best results of comparison with known Aureoumbra lagunensis structure 
grouped by thermodynamic model. The known st,ructure contains 113 base pairs. Best 
single run ranked by free energy. 
AG F'req. Gens Pred. Corr.. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%) 
-181.78 1 460 133 53 46.9 OX2 STDS INNHB 
-180.21 1 503 131 64 56.6 OX2 KBR INNHB 
-179.45 1 230 133 53 46.9 CX KBR INNHB 
-178.92 1 534 134 58 51.3 CX STDS INNHB 
-177.40 1 690 137 4 1 36.3 PMX KBR INNHB 
-165.62 1 698 121 49 43.4 PMX STDS INNHB 
-178.5 1 3 74 131 59 52.2 OX2 STDS INN 
-178.4 1 322 135 53 46.9 CX STDS INN 
-177.8 1 358 136 60 53.1 CX KBR INN 
-175.8 1 439 127 49 43.4 PMX KBR INN 
-167.9 1 464 135 65 57.5 OX2 KBR INN 
-157.0 1 605 121 43 38.1 PMX STDS INN 

Table A.35: Single run with highest number of correctly predicted base pairs of Aureoum- 
bra lagunensis, regardless of free energy grouped by thermodynamic model. The known 
structure contains 113 base pairs. 
AG F'req. Gens Pred. Corr. Corr. Cross. Sel. Model 
(kcal / BPS BPS BPS 
mol) (%I 
-180.34 1 629 130 64 56.6 OX2 STDS INNHB 
-180.21 1 503 131 64 56.6 OX2 KBR INNHB 
-178.31 1 513 131 68 60.2 CX STDS INNHB 
-170.32 1 690 126 55 48.7 PMX KBR INNHB 
-168.93 1 630 128 59 52.2 CX KBR INNHB 
-163.03 1 597 126 51 45.1 PMX STDS INNHB 
-177.8 1 358 136 60 53.1 CX KBR INN 
-175.8 1 422 136 60 53.1 CX STDS INN 
-174.6 1 537 131 66 58.4 OX2 STDS INN 
-168.0 1 573 130 65 57.5 PMX KBR INN 
-167.9 1 464 135 65 57.5 OX2 KBR INN 
-147.8 1 559 124 5 1 45.1 PMX STDS INN 
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Table A.36: Aureoumbra lagunensis, Nussinov results. Number of known base pairs is 113. 

GC:AU:GU Predicted Correctly Correctly 
Weights BP Predicted Predicted 

BP (%I 
1:l:l 173 27 23.8 
3:2:1 168 9 7.9 
3:2:2 172 :30 26.5 

Table A.37: Aureoumbra lagunensis, mfold results. Number of known base pairs is 113. 

mfold AG efn2 AG (kcal Predicted BP Correctly % Correctly 
(kcal / mol) / mol) Predicted BP Predicted 
-160.1 -142.35 128 60 53.1 
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A.8 Over-prediction of base pairs 

This section will compare t,he number of false positive base pairs predicted by RnaPredict, 

Nussinov, and mfold for all eleven sequences. 
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Table A.38: Comparison between the number of false predictions between best results with 
the Nussinov DPA and the best average runs with RnaPredict 
Sequence GC:AU:GUDPA G A  over- DPA G A  G A  

Weights 

S. acido- 3:2:2 
caldarius 

H. sapiens 1:l:l  

C. elegans 3:2:2 

A. globi- 1:l:l  
formis 

A. la- 3:2:2 
gunensis 

X.  laevis 3:2:1 

H. rubra 3:2:1 

H. maris- 1:l:l 
mortui 

S. cere- 1:l : l  
visiae 

over- pred. Corr. Corr. Cross.- 

-- 

pred. 

395 335.6 

309 190.6 

28 1 172.4 

166 119.5 

32 21.0 

142 82.5 

286 177.4 

29 1 195.6 

174 111.6 

37 14.0 

17 6.0 

BPS BPS Se1.- 
Model 

187 92.0 CX- 
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
CX- 
STDS- 
INN 
CX- 
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
CX- 
STDS- 
INNHB 
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Table A.39: Comparison between the number of false predictions between best results with 
the Nussinov DPA and the single lowest energy runs with RnaPredict 
Sequence GC:AU:GUDPA GA over- DPA GA GA 

Weights over- pred. Corr. Corr. Cross.- 
pred. BPS BPS Se1.- 

Model 
S. acido- 3:2:2 395 308 187 131 CX- 
caldarius 

H. sapiens 1:l : l  

C. elegans 3:2:2 

A. globi- 1:l : l  
formis 

A. la- 3:2:2 
gunensis 

X. laeuis 3:2:1 

H. rubra 3:2:1 

H. maris- 1:l:l  
mortui 

S. cere- 1:l:l 
uisiae 

STDS- 
INNHB 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INNHB 
CX- 
STDS- 
INN 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
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Table A.40: Comparison between the number of false predictions bebween best results with 
the Nussinov DPA and the runs predicting the highest number of known base pairs with 
RnaPredict 
Sequence GC:AU:GUDPA GA over- DPA GA GA 

Weights over- pred. Corr. Corr. Cross.- 
pred. BPS BPS Se1.- 

Model 
S. acido- 3:2:2 395 288 187 144 CX- 
caldarius 

H. sapiens 

C. elegans 

A. gr i f in i  

A. globi- 
formis 

A. la- 
gunensis 

X.  laevis 

D. virilis 

H. rubra 

H. maris-  
mor tu i  

S. cere- 
visiae 

STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
CX- 
STDS- 
INNHB 
CX- 
STDS- 
INNHB 
CX- 
STDS- 
INN 
0 x 2 -  
STDS- 
INNHB 
0 x 2 -  
STDS- 
INN 
PMX- 
KBR- 
INNHB 
0 x 2 -  
STDS- 
INNHB 
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Table A.41: Comparison between the number of false predictions between lowest energy 
structure found with the mfold DPA and the overall lowest energy single RnaPredict runs 
Sequence DPA over- GA over- DPA Corr. GA Corr. GA Cross.- 

pred. pred. BPS BPS Se1.-Model 
S. acidocal- 233 308 261 131 CX-STDS- 
darius 
H. sapiens 

C. elegans 

A. globi- 
formis 
A. lagunen- 
sis 
X.  laevis 

H. rubra 

H. maris-  
mortui  
S. cerevisiae 

INNHB 
0x2-STDS- 
INNHB 
0x2-STDS- 
INNHB 
CX-STDS- 
INN 
0x2-STDS- 
INN 
0x2-STDS- 
INN 
0x2-STDS- 
INNHB 
0x2-STDS- 
INN 
0x2-STDS- 
INNHB 
0x2-STDS- 
INN 
0x2-STDS- 
INNHB 
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Table A.42: Comparison between the number of false predictions between best structure 
with the mfold DPA and the overall best single structure found with RnaPredict 
Sequence DPA over- GA over- DPA Corr. GA Corr. GA Cross.- 

pred. pred. BPS BPS Se1.-Model 
S. acidocal- 225 288 271 144 CX-STDS- 
darius INN 
H. sapiens 163 161 95 89 0x2-STDS- 

INNHB 
C. elegans 177 147 40 55 0x2-STDS- 

INN 
A. grifini 79 80 95 8 1 0x2-STDS- 

INNHB 
A.  globi- 12 2 1 25 17 CX-STDS- 
formis INNHB 
A.  lagunen- 59 63 74 68 CX-STDS- 
sis INNHB 
X. laevis 132 147 113 93 CX-STDS- 

INN 
D. virilis 170 177 82 65 0x2-STDS- 

INNHB 
H. rubra 84 82 83 79 0x2-STDS- 

INN 
H. maris- 5 3 29 2 7 PMX-KBR- 
mortui INNHB 
S. cerevisiae 8 6 33 33 0x2-STDS- 

INNHB 
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