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Abstract 

The questions of how to test hypotheses of character evolution, and incorporate character evolution 

into phylogenetic analysis are considered in this thesis. When a character transformation series is 

not linear, it is usually decoded into a set of binary characters by various binary coding methods. The 

disadvantages of such an approach have been discussed extensively in the literature. We propose a 

new approach together with the corresponding parsimony criteria for working with nonlinear trans- 

formation series. In particular, assuming a rooted character state tree is used to model the character 

evolution, the classical smallphylogenyproblem is extended by given not only the phylogenetic tree 

but also a character tree. Our techniques are based on finding tree minor embeddings of labeled 

trees. Three generalizations of tree minor are defined: rooted tree minor, relax-minor andpseudo- 

minor. Two new metrics, bag cost and arc cost, are also introduced as the target scoring functions 

of the problem. The bag cost is analogous to unweighted parsimony while the arc cost is analogous 

to weighted parsimony, that is, it allows a cost for each state transition. We show that the problem 

of finding minimum bag cost under relax-minor is NP-hard, however the problems of finding mini- 

mum pseudo-minor bag cost and minimum pseudo-minor arc cost can both be solved in linear time. 

Our algorithm for minimum pseudo-minor arc cost yields the same output for any character tree and 

phylogenetic tree as Sankoff's algorithm since a character tree can be transformed to a cost matrix. 

However our algorithm runs in linear time as opposed to the quadratic running time of Sankoff's. 

One application of our algorithms is the evaluation of multiple phylogenetic trees for a same set 

of species with the given character trees. Another application would be to test hypotheses for the 

evolution of a multistate character based on the given phylogenetic tree. 
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Chapter 1 

Introduction 

1.1 Phylogeny problem 

Discovering patterns of evolution is receiving increasing attention amongst biologists, geologists, 

ecologists, and, most recently computer scientists. Traditionally, the approach to constructing phy- 

logenies, or trees of life was through the study of fossil records. New techniques include constructing 

the best fit for a set of characters from matrices of characters, maximum likelihood constructions, 

and pair-wise distance constructions which assume a certain rate of mutation [FM67] [SN87] [Fe181]. 

This virtual explosion of techniques and algorithms has lead to the publication of many new phylo- 

genies which can often be contradictory. Statistical approaches have been developed to assess their 

quality and closeness of their fit to the given data [SI89] [YTM94]. 

Recently, constructing phylogenetic trees using molecular data has achieved considerable promi- 

nence. One approach is to consider the character matrix for a set of extant species and set of charac- 

ters for these species. This matrix gives the state of each character for each species. The problem is 

to construct a phylogenetic tree under an underlying parsimony assumption. Specifically, the inter- 

nal nodes of the tree correspond to possibly hypothetical (extinct) species each labeled by a vector of 

character states. Parsimony dictates that the number of state changes for each character is minimized 

(here we count all state changes in moving from the root to the leaves). 

The problem of constructing a phylogenetic tree from the character matrix, the large phy- 

logeny problem, is NP-complete even when each character is binary (i.e. can take on only two 

values) [FL82] [DS86]. With the stronger assumption that the internal structure of the tree is known, 

the small phylogeny problem, there are polynomial time algorithms both for the case of uniform 

cost of each state change [Fit711 and non-uniform cost [San75]. 
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In this thesis, we further investigate the small phylogeny problem where partial information of 

the evolutionary order of a multistate character is also given. In particular, we consider the case that 

such evolutionary order is represented as a rooted tree, called character tree. In what follows, we 

will review the history of character tree and explain the motivations of our work. 

1.2 History of character trees 

A character phylogeny [Hen661 or a character transformation series [Hen66], or character state 

tree [Far701 of a multistate character is a hypothesis that specifies which states of the character 

evolve directly into which other states. As explained by Mickevich [Mic82], to determine the char- 

acter transformation series, both the character state polarity and character state order need to be 

known. The character order only describes which states are intermediate, but does not specify 

evolutionary direction. However character polarity explains which state is plesiomorphic or ances- 

tral. Character polarity can be determined by using the outgroup comparison, parsimony analy- 

sis [Far821 [Fit711 [Mic82], fossil and stratigraphic data or ontogenetic criteria. To determine the 

character state order, various methods have been utilized. One direction is to impose a rule on how 

the character evolved. Examples include Haeckel's biogenetic law, Cope's rule and Bergrnann's Rule 

in Morphocline analysis, Ontogenetic analysis. (See [MW90] for a review). The other direction is 

to maximize congruence among characters such as non-additive analysis [Fit711 or transformation 

series analysis (TSA) which runs in an iterative procedure [Mic82]. The congruence of a character 

with others in a phylogenetic tree means that species with similar states should be adjacent to each 

other. 

In this thesis, we are not primarily concerned with transformation series inference. Instead, we 

focus on the methods of testing character transformation series and furthermore utilize it to study 

the relationships among the species possessing the character. Different approaches such as non- 

additive analysis, TSA and Morphocline analysis usually disagree on the transformation series for 

the same character because they are based on different optimization assumptions [Lip92]. Therefore, 

Lipscomb suggests that the transformation series should be viewed as a hierarchy of homologies, 

and then the methods phylogeneticists used to postulate and test homology should be used to test 

transformation series. In their method, the congruence of a transformation series with the other 

characters is used to test its support and as a means for choosing among several alternative transfor- 

mation series for the same character. She is mainly concerned with the non-congruence caused by 

scattering and hierarchical discordance [ML91]. Scattering refers to the phenomenon that similar 
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states in different species are non-homologous with the result that a state appears in two or more 

species that are not adjacent on a phylogenetic tree. On the other hand, hierarchical discordance 

happens when the states that occur adjacently on the tree have a median state (or states) between 

them in the transformation series. It indicates that the order of the states in the transformation series 

is in conflict with the phylogenetic tree. The implementation of non-congruence detecting is easy 

when hypothesized transformation series is linearly ordered, but quite complicated and questionable 

when it is not linear. In the latter case, a character state tree needs to be recoded into multiple binary 

characters using additive binary coding [Far701 [CS65] since many program packages require linear 

variables (e.g. Hennig86, NTSYS, PAUP, PHYLIP). As Lipscomb mentioned, the recoding makes 

it more difficult to detect hierarchical discordance [Lip92]. 

It is not the first time that the disadvantage of recoding multistate characters is addressed. Mick- 

evich already gave attention to this issue as early as 1982. He noted that "When data are restricted to 

distinct two state characters, the depth of cladistics as a theoretical approach is severely restricted. 

Such an approach clearly ignores evidence presented by multistate characters." [Mic82]. We also 

found the same issue when a known character transformation series need to be incorporated in the 

study of the phylogeny of species. In 198 1, Brooks [Bro8 11 proposed the idea of using the phylo- 

genetic tree of parasites as a character state tree to study the phylogeny of their hosts by assigning 

each host a multistate code associated with the parasite they harbor. A few years later, O'Grady 

and Deets [OD871 presented much more detailed illustration on the implementation of Brooks's 

proposal together with the coding schema for multistate characters. Their implementation requires 

the phylogeny of parasites to be transferred into a matrix by method, for example additive binary 

coding, redundant linear coding and nonredundant linear coding [OD87]. Again, a character tree are 

represented as binary characters. 

Although it is common that multistate characters are disassembled into suites of binary charac- 

ters for the purposes of analysis by existing methods in practice, more and more problematic results 

are now recognized [JAHS97] [OD871 [PM90]. Ogue and Mickevich demonstrated the inherent 

pitfalls of such practice in [PM90]. They showed that the disadvantages of representing multistate 

character as independent binary characters include the creation of artificial homoplasy, the obscuring 

relationships between species due to an arbitrary division of multiple states into two or more binary 

characters, and the ignorance of synapomorphic evidence offered by multistate transformation. Later 

Maddison showed that such disassembling may introduce inapplicable characters to some specific 

species, and then those character states must be treated as missing data [Mad93]. Therefore having 

a method of comparing character tree directly with phylogenetic tree of species without being coded 
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into binary characters is highly desirable as is the corresponding parsimony criterion. 

1.3 Stratophenetics 

There is considerable debate in the scientific community about the value of stratophenetics (the 

use of fossil records) in constructing phylogenies. In 1998, Nature held an on-line debate between 

many of the top paleontologists and geneticists to examine exactly this question [(mo98]. While it 

is the case that fossil records degrade over time, it is not so clear that they are less reliable. Almost 

every dating method exhibits similar behavior. Furthermore, in many cases fossil data is remarkably 

reliable and stands up to rigorous statistical analysis [MJBHOO]. In particular, these tests show that 

the reliability of fossil data is uniformly consistent although partial information is lost over time. 

There are two main types of information derived from stratophenetics. First, the age and duration 

of fossils can be determined by dating the sedimentary rock in which the fossil is found. Second, 

certain characters of the underlying species can be determined from the nature of the fossil itself. 

Molecular techniques also yield similar information. By performing alignment and assuming a 

certain rate of mutation, the evolutionary distance between species can be inferred while sequencing 

yields character state information. 

A number of authors have suggested that phylogenetic trees incorporating fossil data may yield 

significantly better evolutionary trees (see for example [BenOl]). The emphasis is on determining 

consistency between trees constructed under both techniques with the result a "better" phylogeny. 

However, the problem of incorporating both fossil and molecular data has not been addressed. Here 

we present one such approach which we call parsimony with general character evolution. 

1.4 Parsimony with general character evolution 

Our starting point is to consider a set of character states whose transformation series (i.e. a partial 

ordering on the evolution of these states) is known. A natural representation of this information is a 

Hasse diagram. Since the phylogenetic information we consider is represented as a rooted tree, we 

will assume that the character state tree also occurs as a rooted tree. 

The problem can be summarized as follows: We are given a character tree representing an evo- 

lution of some character. The vertices of the character tree represent states of this character. We are 

also given a set of species each taking on one state of the character and must find a parsimonious 

phylogenetic tree consistent with the character tree. If the internal structure of the phylogenetic tree 



CHAPTER 1 .  INTRODUCTION 5 

is not given, then for one character, it is trivial to construct a phylogenetic tree congruent with the 

character tree. However the problem is NP-complete for a general set of characters. Instead we con- 

sider the smallphylogeny problem in which the internal structure of the phylogenetic tree is known. 

Since a transformation series is tested against a phylogenetic tree constructed from other characters, 

the small phylogeny problem also models Lipscomb's problem of testing transformation series. Re- 

garding to the process of the character tree, we avoid the binary coding, and keep the original form 

of rooted tree. Thus not only the logical dependence and hierarchy between states are kept, which 

will be otherwise lost after a character tree is converted a set of binary characters [JAHS97], but also 

a lot of space can be saved since the binary coding matrix for all but the simplest trees can be quite 

large [OD87]. 

Our techniques are based on finding graph minor embeddings of labeled trees. Graph minors 

are generalizations of isomorphisms in which a vertex of the source graph is mapped to a connected 

component of the target graph preserving the adjacency relation of the source graph. Tree minors 

are the basis of the seminal work of Robertson and Seymour who used them to prove Wagner's 

conjecture [RS86] and the flavor of their techniques is camed forward here. We define three gener- 

alizations of graph minors, rooted tree minor, relax-minor andpseudo-minor which reflect structures 

arising in phylogenetic trees. 

We will investigate the small parsimony problem under two different optimality criteria. In 

the first, the subgraph of the phylogenetic tree induced by a particular state has as few connected 

components as possible. It also reflects the non-congruence of scattering mentioned in [ML91] 

because less components implies less scattering. In the second, we allow a cost for state transitions 

(represented as edge costs in the phylogenetic tree) and look for trees that minimize the sum of 

these arc costs. Similarly, it reflects to the non-congruence of hierarchical discordance mentioned 

in [ML91] with less arc costs implying less hierarchical discordance. In both cases we find linear 

time algorithms for these problems. Finally, we show that certain variations of these problems (even 

when the internal structure of the phylogenetic tree is known) are NP-hard. 

1.5 Thesis overview 

In Chapter 2, we describe the standard parsimony optimization criteria and algorithms for small 

phylogeny problem. In particular, we describe Fitch's algorithm for unweighted parsimony and 

Sankoff's algorithm for weighted parsimony. Both algorithms are a basis for our results. 

In Chapter 3, we introduce our version of the small phylogeny problem. This is also based on 
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parsimony, but assumes a rooted character state tree is given, called character tree. Extending from 

two kinds of non-congruences considered by Lipscomb, we distinguish five inconsistencies between 

character tree and phylogenetic tree which are separation, transitivity, inversion, addition and negli- 

gence. Separation and transitivity corresponds to Lipscomb's scattering and hierarchical discordance 

respectively. Moreover, Lipscomb limits the scattering on the level of leave species, however sep- 

aration extends it to also include the internal hypothetical ancestral species. Hence separation can 

detect the scattering invisible on leaves. Inversion follows from Camin and Sokal's assumption that 

evolution is irreversible. Addition indicates that the order of the states in the transformation series 

conflict with the cladogram but not caused by transitivity. Finally negligence indicates that the order 

of the states in the transformation series is not reflected on the phylogenetic tree. Our goal to the 

small phylogeny problem is then to label the phylogenetic tree so as to minimize inconsistencies, 

with the character tree. This approach is modeled on the tree minor structure. Extending the notion 

of tree minor, we define the rooted-minor as both phylogenetic tree and character trees are rooted. 

To allow for inconsistencies, two relaxations of rooted-minor, relax-minor and pseudo-minor, 

are defined. We introduce two new cost functions, bag cost and arc cost , corresponding to the 

unweighted and weighted parsimony respectively. Using these in our scoring functions, with relax- 

minor and pseudo-minor yields the problems under study in this thesis. 

Chapter 4 shows two NP-complete results, namely that the decision problem of rooted-minors 

is NP-complete when the leaves of the host tree are not prelabeled, and the problem of finding 

minimum relax-minor bag cost is also NP-hard irrespective of leaf labels. 

In Chapter 5, we give linear time algorithms for the small phylogeny problems for both minimum 

pseudo-minor bag cost and minimum pseudo-minor arc cost. We contrast our algorithm for finding 

the labeling with minimum pseudo-minor arc cost with Sankoff's algorithm, which outputs the same 

labeling with the minimum arc cost since a cost matrix can be transfered from a character tree easily. 

For this limited case, our algorithm yields a linear time speeding. We also present a linear time 

algorithm for the decision problem of rooted-minor when the leaves of the host tree are prelabeled. 

Our method can be applied to both character evolution analysis and phylogenetic tree inference. 

Chapter 6 describes three experiments we conducted on the data sets from previous work. In first 

experiment, following Lipscomb's idea of testing character trees while there are multiple phyloge- 

netic trees [Lip92], we perform the test based on her data, and show that our metrics detect the same 

worst character tree as what she found. Second experiment is to test the hypothesis of the evolution 

of behavioral characters proposed by van Tets [vT65] on a best estimate phylogenetic tree of pele- 

caniforms followed the work of [MKG96]. It turns out that van Tets's hypothesis does not have the 
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best score compared with other alternative hypothesis under our metric. The last experiment aims 

to compare several phylogenetic trees of anura, which are independently constructed from different 

data source such as morphological data and molecular data [KF69] [FC93] [JMHM95], using three 

character trees from [ a 6 9 1  and [Ing67]. The one constructed from molecular data is found to be 

mostly inconsistent with character trees. 

We conclude in Chapter 7 with some summary remarks and open problems. 



Chapter 2 

Background and Definitions 

2.1 Preliminary definition 

Let G = (V (G) ,  A(G)) be a directed tree with vertex set V ( G )  and arc set A(G). The symbol 

(u ,  v )  will represent the arc from u to v. 

Given two vertices u and v of G, if there is a directed path of length 2 1 from u to v, then we 

say u is an ancestor of v and v is an descendant of u; this is denoted by u 4 v, and the unique path 

from u to v in G is denoted by u + v. In particular if (u ,  v )  E A(G), then we say that u is the 

parent of v and v is the child of u. If u f: v and v f: u, then we say u and v are incomparable; this 

is denoted by u oo v. 

A rooted tree is a directed tree with a unique vertex called root having no parent, and every other 

vertex having exactly one parent. The degree of a vertex u E V (G) is the number of children it has. 

The degree of G is the maximum degree of all of its vertices. The height of G is the length of the 

longest path from the root to a leaf. For each internal vertex u E V ( G ) ,  let G, denote the sub-tree 

of G rooted at u. The set of all leaves in G is denoted by L(G). 

Definition 1. A vertex u is the least common ancestor of vl ,212, . . . , vk, written 

u = LCA(vl, vz, ..., vk) ,  if u 4 vj for j = 1,2,. . . , k, and for any other vertex u' so that 

u1 4 9 for j = 1,2,. . . , k, we also have u' 4 u. 

Definition 2. Given two vertices u and v of G, if u 4 v, then the distance d(u, v )  from u to v is the 

number of arcs on the path (u,  . . . , v)  in G; otherwise d(u, v )  = m. 
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2.2 Small phylogeny problem 

Given a rooted tree G and a finite set C together with a function p := L(G) -+ C U { E ) ,  where C 

is called the set of all possible states of a character, and E $! C ,  we say that a function 1 on V ( G )  

is p-constrained if either for every u E L(G),  we have p(u) = E ,  or for every u E L(G),  we have 

p(u) # E and 1(u) = p(u). Since for a given phylogenetic tree in the small parsimony problem, 

the character state of the species represented by the leaves are given, we will mainly consider p for 

which p(u) # E for every u E L(G). However to better study the complexity of the underlying 

problems, we allow p = E .  

The pair (G,  p )  is called a phylogenetic tree if leaves of G represent a set of extant species, 

internal vertices of G represent hypothetical ancestors, and for each leaf u E L(G) the character of 

the species v is in the state p(v). A triple (G,p,  I )  is a fully labeledphylogenetic tree if (G,p) is a 

phylogenetic tree and 1 : V ( G )  -t C is a p-constrained labeling. 

Given phylogenetic tree (G,p) ,  the classical small phylogeny problem asks to find a labeling 1 

such that (G,p,  1 )  is a fully labeled phylogenetic tree and a certain score function (involving 1) is 

minimized. Note that the labeling 1 determines the state of the character for each species in G; i.e. 

as a result we assume that l (v)  E C is the character state of the species v E V ( G ) .  

2.3 Previous work 

Parsimony provides one approach to the small phylogeny problem. There are various types of par- 

simony criteria in which transformations between character states may be constrained. They differ 

primarily in their optimality criteria, the weighting of the transformations permitted, and in the actual 

algorithms utilized to find the minimal cost for the given phylogenetic tree. However they all assume 

that each character develop independently. In this chapter, we will review five most commonly used 

parsimony criteria and explain two implementations. 

Wagner parsimony was based upon the work of Wagner(l96 1) and formalized by Frarris(l970) [Far70]. 

The states of a character are measured on an interval scale, i.e. a transformation fiom one state to 

another must pass through all intermediate ordered states which are presumably known. For exam- 

ple, if C = {a,  b ,  c, d)  and the order of four states is a, b, c and d ,  then a transformation fiom a to b 

would be one step, fiom a to c two steps, and from a to d three steps. However free reversibility of 

states is allowed, e.g. a transformation fiom c to a is permissable and has the same steps as the one 

fiom a to c. 
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Fitch parsimony (Fitch 1971) [Fit711 is a generalized version of Wagner parsimony by allowing 

unordered states. Once again free reversibility is allowed and transformation from any state to any 

other state has constant cost. In the above Wagner parsimony example, a transformation from a to 

b, from b to a,  from a to c, from c to a, from a to d and from d to a would all take one step. 

Both Wagner and Fitch parsimony allow free reversibility of states, but there are situations in 

which character states may be constrained in such a way that certain transformations are considered 

either highly unlikely or impossible. Dollo parsimony (Fams 1977) [Far771 was introduced to 

accommodate those evolutionary scenarios. It is especially usefil for restriction sites data where 

a site is difficult to gain but easy to lose, therefore the two transformations have to be weighted 

accordingly. However Dollo parsimony requires the state polarity to be prespecified. 

Camin-Sokal parsimony (Carnin and Sokal 1965) [CS65] assumes evolution is irreversible, i.e. 

once a state has been acquired it may never be lost. A priori knowledge about state evolution is 

required. 

Finally generalized parsimony [SO901 [SC83] assigns a cost to every possible transformation 

of states, often represented as a k * k matrix M, where k = (C( and Mij represents the cost of the 

transformation from state i to state j. All the above parsimony criteria can be treated as special cases 

of a generalized parsimony since the matrix can be weighted to correspond to Fitch, Wagner, Dollo 

and Camin-Sokal parsimony. 

Each of the above five optimization criteria has its own implementation when applied to the 

small phylogeny problem. In what follows, we present Fitch's algorithm for Fitch's parsimony 

and Sankoff's algorithm for generalized parsimony. Our techniques borrow heavily from them. 

Originally, both algorithms consider characters separately and assume the given phylogenetic tree is 

a binary tree. In this thesis, both algorithms are generalized to also accept trees that are not binary. 

2.4 Fitch's algorithm 

Fitch's Algorithm is used to find the minimum number of state changes for the given phylogenetic 

tree. 

Input: A phylogenetic tree (G ,p )  with degree 6, and a single character with a state set C of k 

possible values. 

Output: A labeling I such that (G,p ,  I )  is a full labeled phylogenetic tree with the minimum 

number of state changes. 

Description: There are two steps. In the first step, the tree is traversed in postorder to assign a set 
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of possible states S, A to each vertex v  E V(G) .  If v is a leaf, then let S, := {p(v)) .  Otherwise, 

let u1, U Z ,  . . . , uj be v's children where j is the degree of v (j < 6). If S,, n S,, . . . n Suj # 0 then 

S, := S,, n S,, .. . n S,,, else S, := S,, u S,, ... u SUj. 

In the second step, the tree is traversed in preorder to assign values of I to each internal vertex 

v E V(G) .  Let u  be the parent of v. If 1(u) E S,, then I(v) is assigned 1 (u) .  Otherwise the algorithm 

arbitrarily assigns any t E S, to l (v)  (including the root). Finally the total number of state changes 

equals the total number of union operations in the first step. 

Complexity: For each vertex v  E V(G) ,  it takes O(lc 6) time to compute S, in the first step, and 

again O(k)  time to computer 1 (v )  in second step. Therefore the total running time is O(IV(G)I. k.6). 

When G is a binary tree, then the running time is O((V(G) /  . k).  

Example: 
Figure 2.1 shows an example ran Fitch's algorithm on a four species binary phylogenetic tree 

and a character with a states set C = {a ,  c,g) .  (a) is the input phylogenetic tree (G,p),  (b) is the 

intermediate result after first step, and (c) is the full labeled tree (G, p, 1 )  after the second step. The 

asterisks in (b) mark the vertices where S, n S,,, = 0. The minimum state changes of this tree is 

two. 

Figure 2.1 : An example of Fitch's Algorithm for a bspecies binary phylogenetic tree. 

2.5 Sankoff's algorithm 

Sankoffs algorithm [SC83] is a generalization of Fitch's algorithm that allows different costs for 

transformations between different states. 
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Input: A phylogenetic tree (G, p) with degree 6, and a k * k cost matrix M for a single character 

with a state set C of k possible values. 

Output: A labeling 1 such that (G,p, 1) is a full labeled phylogenetic tree with minimum cost 

of state changes. 

Description: There are two steps. In the first step, the tree is traversed in postorder. For each 

vertex v E V(G) and each state t E C, compute a quantity St(v) which is the minimum cost of the 

subtree G, when I(v) = t .  If v is a leaf, then St(v) := 0 for t = p(v), and St (v) := oc fort # p(v). 

Otherwise St(v) = C(minxEc{Mtx + Sx(ul)} + . . . + minyEc{Mty + Sy(uj)) where 211,. . . , u j  

are children of v (j I 6). 

In the second step, the tree is traversed in preorder to determine the value of 1 for internal 

vertices v E V(G). If v is the root, then l(v) := argmintEc St(v). Otherwise, let u be v's parent, 

l(v) := argminx,c(M~~,~x + Sx(v)). It is easy to see that the minimum cost of G is mint,c St(g) 

where g is the root of G. 

Complexity: For each vertex v E V(G), it takes O(k . 6) steps to compute l(v), so the total 

running time is O(I V(G) I . k .6). Again if G is a binary tree, then the running time is 0 (I V(G) / . k). 

Example: 

Figure 2.2 shows an example ran Sankoff's algorithm on a four species binary phylogenetic tree 

and a cost matrix on a character with the states set C = { a ,  c, g}. In Figure 2.2, (a) is the input 

phylogenetic tree (G,p),  (b) is the cost matrix, (c) is the intermediate result after the first step, and 

(d) is the full labeled tree (G,p, 1) after the second step. In (c), three cells besides each vertex 

v E V(G) show S,(v), S,(v) and S,(v) from the left to right respectively. The minimum cost of 

this tree is two and the root of G can be labeled as either c or g with the same cost. 
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(a) @) (4 (a 

Figure 2.2: An example of Sankoff's Algorithm for a 4-species binary phylogenetic tree. 



Chapter 3 

Parsimony With General Character 

Evolution 

For C the set of states of a character, we assume that partial information about the evolution of the 

states is known and is represented as a rooted tree. For two vertices a and b of the tree, a 4 b, if and 

only if the state b is derived from the state a. 

Given two rooted trees, the character tree H and the phylogenetic tree (G, p ) ,  we must find a 

labeling 1 such that (G,p, 1 )  will be a fully labeled phylogenetic tree such that for all two states 

a, b E C the following two conditions are satisfied. 

(i) If a 4 b, then for every pair of vertices u, v E V ( G )  with L(v) = a and l(u) = b, u # v ;  

(ii) If a w b, then for every pair of vertices u,  v E V ( G )  with l (v)  = a and L(u) = b, u w v. 

Extending from Lipscomb's two non-incongruences, one can distinguish five types of inconsis- 

tencies between the evolutionary order of species given by (G,  p ,  I )  with the order of states given by 

H. (see Figure 3.1 .) 

Definition 3. The following are five types of inconsistencies between the evolutionary order of 

species given by (G, p, 1 )  and the order of states given by H: 

0 A transitivity occurs if for some a, b E V ( H )  a 3 b, (a, b )  @ A(H) ,  and for some (u ,  v )  E 

A(G), 1 (u )  = a and l(v) = b. 

0 An addition occurs if for some a, b E V ( H )  u w b, but for some u, v E V ( G )  with l (u)  = a 

and l(v) = b either u 4 v or v 3 u. 
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A separation occurs if there exist three vertices u, V, w E V ( G )  SO that 1 ( u )  = 1 (w) # 1 ( v )  

andu  + wand v  4 u andv 4 w. 

An inversion occurs if for some a, b E V ( H )  a  4 b and for some u, v  E V ( G )  SO that 

1 (u) = b and 1 ( v )  = a, u  4 v. 

A negligence occurs if for some (a, b)  E A(H) there is no (u,  v) E A(G) with 1(u) = a  and 

l (v)  = b. 

Separation and transitivity correspond to Lipscomb's scattering and hierarchical discordance 

respectively. However, separation is more general than scattering as it applies to all nodes, not 

just leaves. Specifically, scattering is the non-adjacent, multiple occurrence of the same state in 

species on a phylogenetic tree. Lipscomb believes separation is independent of the character tree, 

and therefore only considers separation at the leaves. Figure 3.2 (a) illustrates scattering where 

two species in state b are not adjacent. However, the occurrence of separation is dependent on the 

character tree. In Figure 3.2 (b), we show a separation in (G, p, I )  which is not a scattering. Thus 

separation is a more powerful concept than scattering as it can detect potential scattering invisible 

to the phylogenetic tree itself. 

In constructing phylogenetic trees, all five inconsistencies should ideally not occur. It is not 

difficult to see that conditions (i) and (ii) prevent inversions and additions, respectively. If the other 

three inconsistencies also did not occur then the tree H would be a rooted-minor of the tree G  

(Formal definition of rooted-minor as well as all its modifications mentioned below are given in 

the next section.) We will see however, that deciding whether H is a rooted-minor of G  is an 

NP-complete problem. 

To allow for some natural inconsistencies, we generalize the notion of rooted-minor.In particular, 

if H  is a relax-minor of G, then inversions and negligences are disallowed, and if H  is a pseudo- 

minor of G, then inversions and additions are disallowed. In Chapter 4 and Chapter 5 ,  we prove that 

deciding whether H is a relax-minor of G is an NP-complete problem, but deciding whether H is a 

pseudo-minor of G can be done in polynomial time. 

3.1 Minors and their relaxations 

Let H and G  be two trees. We say that H is a minor of G, if H  is isomorphic to a tree obtained 

from G by contracting edges. The corresponding decision problem (to decide whether H is a minor 
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Inversion Transitivity 

Addition Separation 

Negligence 

Figure 3.1: Five types of inconsistencies. Solid lines indicate direct derivation, dash lines indicate 
transitive derivation. 

of G) is intractable, see [MR92]. Since both the character tree and the phylogenetic tree are rooted 

trees and, moreover, the phylogenetic tree has leaves prelabeled, the concept of minor does not quite 

model our problem. In what follows, we define three modifications of the minor concept. In these 

modifications we assume trees are rooted and leaves of the host graph are prelabeled. 

Definition 4. Given two rooted trees H and G, let 1 : V(G) -+ V(H) be a function. Let v E V(H), 

the set of components in the sub-graph B: induced by vertices of G in 1-l(v) is called the bag-set 

of v induced by 1. Any particular component of Bh is referred to as a bag of v; see Figure 3.3. The 

number of components C(B;) of B: is the number of bags of v induced by 1. 

Definition 5. Given two rooted tree H ,  (G, p) and a p-constrained functions 1 : V(G) 4 V(H), if 

for an arc (a, b) E A(H), there exists (u, v) E A(G) such that l(u) = a ,  l(v) = b, we say (a, b) is 

realized by 1 on (u, v). Furthermore let r((a,  b), 1) denote the number of arcs in A(G) that realize 

b , b )  by 1. 

Definition 6. Given two rooted trees H and (G,p),  let M ( H ,  G , p )  be the set of all p-constrained 

functions 1 : V(G) 4 V(H)  satisfying the following two conditions: 
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Figure 3.2: Differences between scattering (defined by Lipscomb) and separation. (a) is Lipscomb's 
example of scattering where two species in state b are not adjacent to each other. With (b) as 
(G, p)  and (c) as H, we show that separation occurs in (c) which is the (G, p,  I ) ,  although Lipscomb 
considers (b) without scattering. 
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Figure 3.3: Dash lines from vertices x ,  y, x', y' E V ( G )  to vertex v  E V ( H )  illustrate the functiox 
1. The bag-set ~h consists of two shadowed areas in G, i.e. C ( B ~ )  = 2. Every vertex in the bag-se 
B, has the same image v in H. 

Figure 3.4: Three possible relationships between two different vertices v  and u in the same bag. 

(1) For each vertex a E V ( H ) ,  we have C(B;) = 1. 

(2) For each arc (a,  b) E A ( H ) ,  r ( ( a ,  b),  1 )  > 1. 

We say that H is a rooted-minor of (G,p) ,  denoted by H I,, ( G y p ) ,  if M ( H ,  G ,p )  # 0. 

Figure 3.5 shows an example of 1 E M ( H ,  G, p) where p # E .  

It is not hard to see that the corresponding decision problem-Rooted minor problem-is in- 

tractable when p = 6 (the details of the proof are in Chapter 4). Conversely, the rooted minor 

problem is in polynomial time if p # E (the details of the algorithm are in Chapter 5). Now let 1 
us consider the small phylogeny problem where H is the character tree and (G,p)  is the phyloge- 

netic tree. We will verify that none of the five inconsistencies will occur when H I,, (G,p) ,  i.e. 

M ( H ,  GI P )  # 0. 

Lemma 1. Given two rooted trees H and (GI  p). For any 1 E M ( H I  G ,  p) and,for any two dzgerent 

vertices a, b  E V ( H )  with a  3 b, there exists two vertices u ,  v E V ( G )  such that 1(u) = a, l ( v )  = b 

and there is a directed path of length 2 d(a, b) from u to v . 
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Figure 3.5: An example of 1 E M ( H ,  G , p ) .  

Prooj If (a ,  b) E A ( H ) ,  this follows from (2) of Definition 6 and we have d(u ,  v )  = d(a,  b). 

Thus, suppose (a ,  b) $! A ( H ) .  Then there must be a directed path from a  to b in H ,  say 

( X I ,  x2,23, . . . , 2,) with x1 = a  and x ,  = b. According to (2)  of Definition 6, for every arc 

( x i ,  xi+l) E A ( H )  (i = 1 , .  . . , n - l ) ,  there exists an arc (ui ,  vi) E A ( G )  such that l(u,)  = xi and 

l (v i )  = xi+l. In order to find a path from u1 to vn-1, it is enough to find a path from vi to ui+l for 

e a c h i =  1 ,2 , . . .  , n - 2 .  

Since 1 (v i )  = 1 (ui+l) = xi+l, according to (1) of Definition 6, vi and ui+l belong to the same 

bag ~ i ~ + ,  . If vi = ui+l, then there is a trivial path of length 0 joining vi and ui+b Otherwise, 

either vi 4 ui+l or ui+l 4 vi or vi + ui+l; see Figure 3.4. Since G is a rooted tree, i.e. every 

vertex in G has only one parent, and since ui is the parent of vi, the only possibility remaining is 

vi + ui+l. It follows that there must be a path from vi to ui+l in G .  Thus, a path from ul to vn-1 

can be constructed by going through the arc (u i ,  v i )  to vi, following the path vi + Ui+l to Ui+l for 

each i = 1 ,2 , .  . . , n - 2, until we reach the arc ( u ~ - ~ ,  vnP1) .  See Figure 3.6 for an example of 

n = 4. Furthermore, the length of the path u1 + vn-1 is at least d(a,  b) which is attained when 

vi =ui+l f o r a l l i =  1 , 2 , . . .  , n - 2 .  

0 

Theorem 1. Given two rooted trees H and (G,p) .  I f H  I,, ( G , p ) ,  then none of thejve inconsis- 

tencies will occur for any 1 E M ( H ,  G,p) .  
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Figure 3.6: An example of a, b E V(H) with a 4 b has a corresponding path ul 4 in G with 
l(u1) = a and L(v3) = b. 

ProoJ: Since any 1 E M ( H ,  G, p) satisfies (1) and (2) of Definition 6,  both separation and negli- 

gence cannot occur. Next we prove that the theorem is also true for the remaining three inconsisten- 

cies. 

0 If transitivity occurs, there must exist two vertices a, b E V(H) so that a 4 b, (a, b) 6 A(H), 
and for some (u, v) E A(G), l(u) = a and l(v) = b. On the other hand, according to 

Lemma 1, there exists two vertices u' and v' such that 1(d) = a, l(vl) = b, and there is a 

path P = u' -+ v1 of length 2 d(a, b) > 1 from u' to v'; see Figure 3.7. Since v and v' are 

in the same bag B:, if v # v', then either v 4 v' or v' 4 v or v + v'. Since u is the parent 

of v, we can exclude the cases v' 4 v, and v + v', because they both imply the existence of a 

parent(# u) of v. Similarly v' has a parent on the path P and hence we cannot have v 4 v' as 

well. Therefore v = v'. 

Figure 3.7: Transitivity cannot occur for any 1 E M ( H ,  G, p) .  

Furthermore, u and u' are also in the same bag B:. If u = u', then there exist two paths 
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from u to v in G,  one is the arc (u ,  u ) ,  and the other is the path u' -+ u of length > 1. This 

contradicts the fact that G is a tree. Therefore we suppose u # u'. If u 4 u', then there are 

two paths joining u and u; if u' 4 u, then there are two paths joining u' and u; and if u' + u, 

then there are two paths joining LCA(u, u') and u. Therefore transitivity can not occur for 

any 1 E M ( H , G , p ) .  

a If addition occurs, there must exist two vertices a,  b E V ( H )  so that a + b, and for some 

u ,  v E V ( G )  with l (u )  = a and l (u)  = b either u 4 u or v 4 u .  Without loss of generality, 

we assume that u 4 v. Let c = LCA(a ,  b). Applying Lemma 1 to vertices c and a, there 

exist two vertices w and u f  such that 1 ( w )  = c, l ( u f )  = a, and there is a path w -+ u' from w 

to u'. Similarly applying Lemma 1 to vertices c and b, there exist two vertices w' and v' such 

that 1(wt) = c, l (v t)  = b, and there is a path wf  + v' from w' to v'; see Figure 3.8. 

Clearly, u and u' are in the same bag B:. If u # u', since u' has a parent on the path w -t u', 

we can exclude the cases u' 4 u ,  and u' + u. Thus u 4 u f  if u # u'. v and u' are also in the 

same bag B:. If v # u', since u has a parent on the path u -t v and u' has a parent on the path 

wf  + v f ,  any of the three relationships between v and v' is impossible. Therefore u = v'. 

With respect to w and w f ,  which are also in the same bag B:, both w = w' and w # w' are 

possible. If w = w' or w < w', then there are two paths joining w and u; if w' < w,  then 

there are two paths joining w' and v; and if w + w, then there are two paths joining v and 

LCA(w, w'). This contradicts the fact that G is a tree and so addition cannot occur for any 

Figure 3.8: Addition cannot occur for any 1 E M ( H ,  G ,  p). 

a If inversion occurs, there must exist two vertices a,  b E V ( H )  SO that a 4 b, and for some 

u ,  v E V ( G )  with 1(u) = a and l (u )  = b, and there is a path u + u. On the other hand, by 
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Lemma 1, there exist two vertices u' and v' such that 1 (u') = a, 1 (v') = b, and there is a path 

u' -+ v' from u' to vl; see Figure 3.9. Since v  and v' are in the same bag B:, if v  # v', then 

v' 4 v  because v' has a parent on the path u' -+ v'. u  and u' are also in the same bag B:, 

if u # u', then u 4 u' because u has a parent on the path v  -+ u. However, irrespective of 

whether u = u' or u -: u', we can always find a loop going through u, u', v' and v. Therefore 

inversion cannot occur for any 1 E M ( H ,  G, p) .  

Figure 3.9: Inversion cannot occur for any I E M ( H ,  G, p). 

Thus we exclude the possibility for any five inconsistencies to occur for any 1 E M ( H ,  G, p) .  

0 

However in practice, some of the five inconsistencies may happen which means H $,, (G, p) .  

Hence we consider relaxations of rooted-minors in the following way. 

Definition 7. Given two rooted trees H and (G,p),  let R(H,  G,  p )  be the set of all p-constrained 

functions 1 : V ( G )  -t V ( H )  satisfying the following two conditions: 

(1) For each arc (a, b)  E A(H) ,  r ( (a ,  b ) ,  1 )  2 1. 

(2) If for some u, v  E V ( G )  u  -: v, then l ( v )  + I(u) in H.  

We say that H is a relax-minor of (G, p )  if R(H,  G, p) # 0. 

See Figure 3.10 for a specific example of relax-minor where (I-'(a) / = 2,11-I (b) I = 2. 

Note 1. Given two rooted trees H and (G,p),  any 1 E R(H,  G,p)  is surjective and maps the root 

of G to the root of H, i.e. l ( g )  = h. ( g  and h are used to denote the roots of G and H respectively 

hereafter.) Furthermore, for every v  E V ( H )  c(B;) 2 1. If there exists an 1 E R(H,  G,p)  such that 

c(B;) = 1 for every v  E V ( H ) ,  then H I,, G. 
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Figure 3.10: Relax-minor 

In terms of the inconsistency between H and (G,p) ,  it is not difficult to see that (1) and (2) 

of Definition 7 prevent negligence and inversion. However, transitivity, addition, and separation 

may occur. Figure 3.11 shows an example of an H which is a relax-minor of (G ,p ) ,  but there are 

two separations (because C ( B ; )  = 2 and C(B;) = 2), a transitivity on the arc (u5, 212) (because 

1 (us)  4 l(u2) and ( 1  (us ) ,  1 ( ~ 2 ) )  @ A(H) ) ,  and an addition on the arc (us ,  us)  E A(G)  (because 

ug 4 u3 and 1 ( u s )  + 1 ( ~ 2 ) ) .  

Figure 3.11: H is a relax-minor of (G ,  p) in which addition, transitivity and separation occur. 

However, the problem of deciding whether H is a relax-minor of G remains intractable in both 

cases, p = E and p # E ;  see Chapter 4. 

Therefore we will consider another relaxation of the concept of rooted-minor, called pseudo- 

minor. 

Definition 8. Let H and G be directed trees. A function 1 : V ( G )  -, V ( H )  is smooth if for every 
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arc (u,  v )  E A(G), there is a directed path from l (u)  to 1 (TI) in H ;  see Figure 3.12. Note that a single 

vertex is considered as a directed path of length 0. 

Figure 3.12: Smooth hnction 

Definition 9. Given two rooted trees H and (G, p ) ,  let Q(H,  G, p )  be the set of all smooth p- 

constrained functions I : V ( G )  -, V ( H ) .  We say that H is apseudo-minor of G if Q(H, G,p) # 0. 

Since 1 is a smooth fkction, (2) of Definition 7 is satisfied; hence pseudo-minor extends the 

notion of relax-minor. Note that rooted-minor implies both relax-minor and pseudo-minor, but 

relax-minor and pseudo-minor are incomparable; see Figure 3.13, 3.14 and 3.15 for examples. 

Similarly, it is easy to see that the concept of smooth function prevents inversion and addi- 

tion when H is a pseudo-minor of (G,p),  but transitivity, separation, and negligence may occur. 

Figure 3.16 shows an example of an H which is a pseudo-minor of (G,y) ,  but there is a sepa- 

ration (because C(B;)  = 2), a transitivity on the arc (us, v3) E A(G) (because l ( ~ ~ )  < l ( ~ ~ )  

and ( l(vs) ,  l ( vg) )  $ A(H)),  and a negligence on the arc (a ,  b )  E A ( H )  (because there is no arc 

(u,v)inA(G) such that l (u )  = a and l (v)  = b). 

If p = E,  then it is not difficult to see that any H is a pseudo-minor of any G (just map every 

vertex of G to the root of H). If p # E, then the problem of deciding whether H is a pseudo-minor 

of G can be solved in polynomial time. In our approach to small phylogeny problem, we define two 

natural metrics and will search for feasible labellings that minimize these two metrics. 

The following table summarizes the occurrence of the five inconsistencies in rooted-minor, 

relax-minor, and pseudo-minor respectively. 
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Figure 3.13: H is a relax-minor of (G ,  p), but not rooted-minor since the bag number of b E v ( H )  
must > 1. 

Figure 3.14: H is a relax-minor of (G ,p ) ,  but not pseudo-minor since c + b in H. 

Figure 3.15: H is a pseudo-minor of (G,p) ,  but neither rooted-minor nor relax-minor since it's 
impossible for any labeling function 1 to have both r ( (a ,  c), 1 )  = 1 and r ( ( c ,  d), 1 )  = 1. 
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Figure 3.16: H is a pseudo-minor of (G, p) in which transitivity, separation and negligence occur. 

I rooted-minor I relax-minor I pseudo-minor 
inversion 1 N 

( addition 1 
I I I 

N 
transitivity 
separation 

Table 3.1 : Properties of rooted-minor, relax-minor and pseudo-minor 
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I 
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N 
N 
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3.2 Two metrics for parsimony with general character evolution 

The two standard parsimony criteria for measuring the quality of I correspond to the unweighted and 

the weighted cost. The unweighted parsimony assumes a constant cost for every state change, while 

the weighted parsimony treats the different state changes differently by taking the cost of each state 

change into consideration. In our approach, we define two metrics to reflect these two criteria, bag 

cost for unweighted and arc cost for weighted. 

Definition 10. Given two rooted trees H and G together with a labeling 1 : V ( G )  -+ V ( H ) ,  the 

bag cost of 1 is bcost(H, G ,  I )  := C C(B;). 
VEV(H) 

Definition 11. Given two rooted trees H and G together with a labeling 1 : V ( G )  -t V ( H ) ,  the arc 

cost of 1 is acost(H, G ,  I )  := C d(l(u) ,  l (v ) ) .  
(u,v)€A(G) 

It is not hard to see that bag cost expresses the number of state changes, i.e. the number of state 

changes is the bag cost minus 1, and the arc cost weights each state change by the distance between 

the two states. Furthermore, bag cost and arc cost are also measures of scattering and hierarchical 

discordance, since a bag cost bigger than ( V ( H )  I implies the occurrence of scattering, and an arc 

cost bigger than IA(H)I indicates the occurrence of hierarchical discordance. Therefore, we will 

measure the quality of relax-minor and pseudo-minor mappings in terms of their bag cost and arc 

cost, respectively. For this purpose, we define the three problems. Given a character tree H and a 

phylogenetic tree ( G ,  p). 

Problem 1. Minimum relax-minor bag cost. Find a labeling I E R ( H ,  G ,  p) such that the bag cost 

of I is rbcost(H, G , p )  := min{bcost(H, G ,  1 ' )  1 I' E R ( H ,  G , p ) ) .  

Problem 2. minimum pseudo-minor bag cost. Find a labeling 1 E Q ( H ,  G, p )  such that the bag cost 

of 1 is qbcost(H, G , p )  := min{bcost(H, G ,  1') I 1' E Q ( H ,  G ,  p)) .  

Problem 3. minimum pseudo-minor arc cost. Find a labeling 1 E Q ( H ,  G ,  p) such that the arc cost 

of 1 is qacost(H, G ,p )  := min{acost(H, G ,  1 ' )  ( I' E Q ( H ,  G ,p ) ) .  

Note that for the relax-minor mapping the distance function d might be unbounded and therefore 

the arc cost measure makes sense only for pseudo-minor mappings. 

In the remainder of this thesis, we study the complexity of these three problems. We show that 

Problem 1 is NP-complete, and both Problem 2 and Problem 3 can be solved in polynomial time. 
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Complexity Results 

Theorem 2. [MR92] Given two unrooted tree H and G. It is NP-complete to decide whether H is 

minor of G . We call this the unrooted tree minorproblem 

Theorem 3. Given two rooted trees H and (G,p). It is NP-complete to decide whether H is a 

rooted-minor of (G, p) when p = E.  We call this the rooted tree minor problem. 

Proof: We show that the unrooted tree minor problem can be reduced to the rooted tree minor 

problem. 

Let H and G be an instance of unrooted tree minor problem. We construct new rooted trees H' 

and Gr as follows: 

Let HL be a rooted tree obtained from H by choosing an arbitraty vertex u E V(H) to be the 

root of HL. For each vertex vi of G (i = 1,2, . . . , IV(G)(), let Gii be a rooted tree obtained from 

G by choosing wi to be the root of G:%. 

Define H' to be a rooted tree with root a (a differs from any vertex of H or G) where a has 

children u, p2, . . . , p,, and HG is the sub-tree rooted at u; see Figure 4.1 (a). Define G' to be a 

rooted tree with root y (y differs from any vertex of H or G) where y has children vl, w2,. . . , v, 
(n = IV(G) I), and GLi is the sub-tree rooted at vi for i = 1, . . . , n; see Figure 4.1 (b). 

Claim 1. H is a minor of G rfHT is a rooted-minor of G'. 

Proof: If H is a minor of G, suppose vi E V(G) (1 5 i 5 n) is in the bag-set of u E V(H), then 

HL is a rooted-minor of G',,. Without loss of generality, assume i = 1. Now let the bag-set of a be 

{y)., and the bag-set of P2, . . . ,on be {G;,), . . . , {G',, ) respectively. Thus, just defined mapping 

shows that HT is a rooted-minor of G'. 
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Figure 4.1: Construct rooted trees H' and G' from unrooted trees H and G. 

On the other hand, if H' is a rooted-minor of GT, consider the bag-set B1 of cr and the bag-set 

Bz of u. Because cr and y are degree n vertices, B2 must be contained in GLi for some i (1 5 i 5 n). 

Then HL is a rooted-minor of GG, and it follows that H is a minor of G. 0 

Now, Claim 1 together with Theorem 2 proves the NP-completeness of the rooted tree minor 

problem. 0 

Theorem 4. It is NP-hard to solve Problem I when p = E. 

Proof: The proof is based on a reduction from the rooted tree minor problem. Suppose there is a 

polynomial-time algorithm A that can find 1 such that bcost(H, G, 1) = rbcost(H, G, p). We can 

decide whether H <,, G simply by comparing bcost(H, G,  1) with IV(H)/ .  

If they are equal, according to (1) of Definition 7, we have C(B;) = 1 for every a E V(H). This 

implies 1 E M ( H ,  G, p), and therefore H ST, G. 

If bcost(H, G,  1) > IV(H)I, then H cannot be a rooted-minor of G, since H ST, G contradicts 

the assumption that bcost(H, G, 1) > IV(H) 1 .  Thus, H I,, G if and only if bcost(H, G,  1) = 

IV(H)I. According to Theorem 3, it is NP-complete to decide whether H IT, G when p = e, so 

it must be NP-hard to find a labeling 1 E R(H,  G, p)  such that bcost(H, G, 1) = rbcost(H, G, p) 

when p = E .  0 

Theorem 5. It is NP-hard to solve Problem I when p # e. 

Proof: The proof is also based on the reduction from the rooted tree minor problem. However since 

an input to Problem 1 has p # e in this theorem, an input to rooted tree minor problem cannot be 

directly used as an input to Problem 1 as we did in the proof of Theorem 4. Therefore we need the 
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following input construction process. Assume that two rooted trees Y and (2, q) (with q = E )  are 

given as an input to the rooted tree minor problem. We construct the corresponding input, H and 

(G ,  p), to the Problem 1 as follows. 

Initially, we set G to be a copy of 2 ,  i.e. G := 2 ,  and then for each leaf vi E L ( Z ) ,  we add 

a pair of two new vertices v: and v: to G with v: joined to vi and v: joined to the root g. Thus, 

IV(G) I = IV(Z)(  + 2 . 1 L ( Z )  I .  Similarly we set H to be a copy of Y ,  i.e. H := G, and then for 

each leaf vi E L ( Z ) ,  we add a new vertex wi to H with wi joined to the root h. Thus, IV(H)I = 

IV(Y)  I + 1 L ( Z )  I. Finally, we define the prelabels p of leaves in G as p(vi) := p(v:) := wi. 

So far, we defined H and (G ,  p)  fiom Y and Z ;  see Figure 4.2. 

Figure 4.2: Construction H and G from Y and Z 

Next, we will prove the following two claims dealing with properties of H and G. 

Claim 2. For every 1 E R ( H ,  G,p), bcost(H, G ,  1 )  2 IV(Y)I + 2 . IL(Z)(  

Proof: Since p(vi) := p(v:) := wi, and since vl, v: are separated by the root g which has to be 

labeled as the root of H according to Note 1, it is not hard to see that for any feasible I, C ( B ~ , )  2 2 

for each wi, i = 1, . . . , 1L(Z) 1 .  Moreover, C(B;) 2 1 for any other vertex a E V ( H )  according to 

( 1 )  of Definition 7. The number of such vertices is IV(Y) ( .  

Therefore we have that bcost ( H ,  G ,  1 )  2 IV(Y)  I + 2 . I L ( Z )  1. 0 

Claim 3. There exists a labeling 1 E R ( H ,  G ,p )  such that bcost(H, G ,  1 )  = IV(Y)I + 2 (L(Z)I i f  

and only ifY I,, Z.  
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Proof: We first suppose Y <,, Z. Then there exists a labeling 1' : V ( Z )  + V ( Y )  satisfying the 

following three properties: 

2. For each arc (a, b) E A(H) ,  r ( (a ,  b), 1 )  >_ 1. 

3. If there is a path from u to v in Z ,  then there is no path from l l (v)  to l l (u)  in Y .  

To finish the proof in this direction, we construct a labeling 1 : V ( G )  + V ( H )  E R(H,  G,p)  

such that bcost(H, G ,  I )  = J V ( Y )  I + 2 I L ( Z )  I .  We define 1 as follows. 

For each vertex v E V ( G )  that is also originally in Z ,  let l (v)  := l l (v) ,  and for each pair of v,' 

and vl (i = 1,2,. . . , IL(Z)I), let l(v:) := l (vr)  := wi. 

Therefore, C(B;) = 1, for each vertex a E V ( H )  that is also originally in Y ,  because of the 

above property 1; and c(B;) = 2, for each vertex a E V ( H )  that is not originally in Y (these 

vertices are essentially all the wi). 

Moreover, by the above property 2 and 3, we also have 1 E R(H,  G,  p). So we have bcost(H, G, I )  = 

IV(Y) I + 2 1 L ( Z )  1 ,  as required. 

We second suppose that for some 1 E R(H,  G) ,  bcost(H, G ,  I )  = I V ( Y )  I + 2 I L ( Z )  1. Based on 

the proof of Claim 2, for any such 1, C(B; )  2 1, for each vertex a E V ( H )  that is also originally 

in Y ,  and the total number of such vertices is IV(Y)I; C(B;)  > 2, for each vertex a E V ( H )  that 

is not originally in Y, and the total number of such vertices is (L(Z)I .  Therefore for our labeling 

1 ,  c(B;) = 1, for each vertex a E V ( H )  that is also originally in Y ;  c(B;) = 2, for each vertex 

a E V ( H )  that is not originally in Y. 

Hence, we conclude that there is exactly one bag for each vertex a E V ( H )  that is also originally 

in Y, and therefore Y I,, Z .  Indeed, we can define 1' : V ( Z )  + V ( Y )  as l l (v)  := l (v)  for each 

vertex a E V ( Y ) ,  and such labeling 1' satisfies the above three properties. The claim is proved. 

Finally with respect to Claim 3, we can prove the NP-hardness of Problem 1 by contradiction. 

Given Y and (2, q) (with q = E )  as an input of the rooted tree minor problem, we construct the 

corresponding input H and (G,p) of Problem 1 using the steps listed in Theorem 5. Suppose there 

exists a polynomial algorithm A that can find a labeling 1 E R ( H ,  G ,p)  with bcost(H,G, I )  = 

rbcost(H, G,p) .  Then we can decide if Y ST, Z simply by comparing bcost(H, G, I )  with 

IV(Y)I + 2 IL(Z)I. If they are equal, then Y I,, Z ,  otherwise Y cannot be the rooted-minor 

of Z. However according to Theorem 3, it is NP-complete to decide whether Y I,, Z ,  so such an 

algorithm A cannot exist. 
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Chapter 5 

Algorithms 

5.1 Minimum pseudo-minor arc cost 

The following is the algorithm for Problem 3. 

Input: A character tree H and a phylogenetic tree (G:p). 

Output: A labeling 1 E Q(H, G,p) such that acost(H, G, 1 )  = qacost(H, G,p).  

Description: As an initialization, the algorithm assigns l(u) := p(u) for every u E L(G). Then 

it traverses the tree G inpost-order to assign l(u) := LCA({l(v)l (u ,  v )  E A(G)))  for every internal 

vertex u E V ( G ) .  Note that l(u) is well defined, since all children of u already have their 1 value 

defined before u is visited. Computation of LCA in the tree H can be done in constant time after 

a preprocessing on H which also takes linear time, see [HT84]. The preprocessing algorithm can 

easily be modified so that even computation of d(a, b )  takes constant time for any given a, b E V ( H )  

with a 4 b. This tree preprocessing is performed on H in Line 1 of Algorithm 5.1. 

The cost of each arc (u ,  v )  is calculated as the distance between 1 ( u )  and 1 (v). Finally the total 

arc cost of 1 is the sum of the cost of every arc in G. 

Pseudo code: 

Algorithm 5.1 Minimum-Pseudo-Minor-Arc-Cost(H,G,p) 
1 preprocess H (build auxiliary trees) to speed up the computation of LCA ; 

D initialization 

2 sete:=O; 

3 for each vertex u E V ( G )  do 

4 if u is a leaf then 

5 set 1 (u) := p(u); 



CHAPTER 5. ALGORITHMS 

6 else 

7 set 1(u) := null; 
D assigning labels and calculating arc cost 

8 traverse the tree G in post-order, for each internal vertex u E V(G),  do 

9 set 1(u) := LCA(l(v)I(u, v)  E A(G));  

10 for each child v of u 
11 set e := e + d(l(u), l (v));  

D output result 

12 output labeling function 1 and cost e; 

Complexity: The preprocessing on H takes O(IV(H)J)  time. Afier the tree preprocessing, it is 

possible to determine both LCA and the distances of any pair of nodes in constant time. Computing 

the LCA of 6 nodes can be reduced to successive 0(log2 6) iterations of the LCA for two nodes. 

Therefore, for each internal vertex u E V ( G ) ,  it takes log2 6 time to compute l (u) .  The total running 

time for the labeling is O(IV(G) I . loga 6 + IV(H) 1 ) .  In particular if G is a binary tree, then the time 

complexity is O(IV(G)I + IV(H)I). 

5.1.1 Proof of correctness 

Lemma 2. For any labeling 1' E Q(H,  G,p),  and any internal vertex u E V ( G ) ,  either l l (u)  = 

LCA(p(v)Iv E L(Gu))  or l l (u)  4 LCA(p(v)lv E L(G,)). 

Proof: Let X := {p(v)(v  E L(G,)) and q := LCA(X).  We will prove the lemma by excluding 

the cases of q 4 ll(u) and q + l l (u) .  

Suppose q 4 l l(u).  Since q is the least common ancestor of X ,  there must exist an s E X 

such that either s 4 ll(u) or s + l l (u) ,  otherwise q would not be the least common ancestor of X. 

Let v be the leaf with p(v) = s. Either s 4 ll(u) or s + l l (u) ,  there is at least one arc ( x ,  y) on 

the path u -+ v such that d( l l (x) ,  l l ( y ) )  = m; see Figure 5.1 (a). It contradicts the definition of 

pseudo-minor, therefore l l (u)  $ Q(H, G, p). 

Suppose q + l l (u) .  b's E X ,  if s 4 ll(u),  the q 4 l l(u) since either q 4 s or q = s, it 

contradicts the assumption that q + l l (u);  on the contrary, if l l (u)  4 S, then there are two paths 

from z to s where z = LCA(q, l l (u)) ;  one is through l l (u) ,  and the other is through q since l (u)  4 s. 

This contradicts the fact that H is a tree; see Figure 5.1 (b). Therefore the only possibility is that 

s + l l (u)  b's E X .  Again it causes at least one arc ( x ,  y )  on the path u -+ v @(v)  = s) such that 

d( l f (x) ,  l l ( y ) )  = m, so l l (u)  $ Q(H, G,p)  if q + l l (u) .  

Thus any other labeling 1' E Q(H,  G,p) must satisfy either l l (u)  = q or l l (u)  4 q for any 
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Figure 5.1: (a): the arc cost of the path u -4 u in G, is infinite; (b): There exist two paths from 
Z = LCA(l(u), l f ( u ) )  to s. 

internal vertex u E V ( G ) .  0 

Since for the labeling 1 returned by Algorithm 5.1, l (u)  = LCA({l(u)l(u, u) E A(G)))  = 

LCA(p(u)lv E L(G,)), we have the following corollary. 

Corollary 1. For any other labeling 1' E Q(H,  G,p), and any internal vertex u E V ( G ) ,  l l(u) = 

1 ( u )  or I' ( u )  4 1 ( u )  where 1 is the labeling returned by Algorithm 5.1. 

Theorem 6. Algorithm 5.1 returns a unique labeling 1 E Q(H,  G,p)  such that acost(H, G,  1 )  = 

qacost(H, G,  p). 

Proof: There is a directed path from 1(u) to l(u) in H for each arc (u ,  v )  E A(G) because 1 (u)  is the 

least common ancestor of the labels of its children, i.e. either 1(u) 4 l(u) or 1(u) = l (v) .  In other 

words, 1 is a smooth fimction. Moreover, 1 is obviously p-constrained according to the initialization 

of the algorithm. Therefore 1 E Q(H,  G, p). 

We prove acost(H, G,  1 )  = qacost(H, G, p) and the uniqueness of 1 by induction on the height 

t of tree G. 

In case t = 1, the theorem is obvious, because there is only one vertex, say u, and for any other 

labeling 1' E Q(H,  G,p) ,  l f (u )  = 1(u) = p(u). The arc cost of such labeling is 0. Suppose that the 

theorem is true for all trees of height t < n. We prove it is also true for trees of height t = n. 

Consider a rooted tree G with height t = n. Let ul, v2, .., uk be the children of the root g of G. 

We decompose G into k sub-tree; see Figure 5.2. Let Gi, i = 1,2, . . . , k, be the sub-tree of G rooted 

at the vertex vi. Let pi be the prelabeling of leaves of Gi that is compatible with the prelabeling p of 

G, i.e. for all i = 1,2, . . . , k, we set pi(u) = p(v) for all v E L(Gi). 

Now we run Algorithm 5.1 on ( H ,  G,p). Let 1 and c be the labeling hnction and arc cost 

returned by the algorithm. Next we run Algorithm 5.1 on ( H ,  Gi,pi). Let c, be the returned arc 
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Figure 5.2: Decompose tree G into Ic sub-tree G I ,  G2, . . . , Gk.  

cost. Note that every internal vertex v E V ( G i )  will be assigned the same label as the label it gets 

when running Algorithm 5.1 on ( H ,  G ,  p) because the children vertices of v are not changed and so 

does the least common ancestor of their labels. 

It is easy to observe that c = Ci(ci+d(l (g) ,  l (v i ) ) ) .  By induction we have c, = qacost(H, Gi ,  pi). 

We will prove that c is the minimum cost by proving that any other labeling 1' E Q ( H ,  G , p )  will 

produce more cost. 

Let c' = acost(H, G ,  l ' ) ,  ci = acost ( H ,  Gi ,  l1IV(Gi)). It is also true that c' = Ci (c i  + 
d(Lf(g), l'(vi)). 

Now for each i = 1 , 2 , .  . . , Ic ,  let GY be the tree obtained from Gi by joining a new leaf wi to 

the root vi of Gi. Let py denote the leaf labeling of GY, where pY(v) := p(v) for all leaves v E Gi 

except that py(wi) := l l (vi) .  In Figure 5.3, GY on the right side has the labeling compatible to 1' 

while the left one has the labeling returned by Algorithm 5.1. 

Figure 5.3: GY 

Note that every internal vertex u E V ( G Y )  except vi will get the same label by running Algo- 

rithm 5. l on ( H ,  G y  , pY) and ( H ,  Gi ,  pi) because the children vertices of u are not changed and so 
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Figure 5.4: (a) shows d(ll(vi),  l (vi))  = d(ll(g),  l (vi))  - d ( l ' ( g ) ,  l1(vi)) and (b) shows 

d(l'(g)l L(vi)) 2 d(l(g)l L(vi)) 

does the least common ancestor of their labels. As for vi, its label is ll(vi) in GY while it is l (vi)  

in Gi. It is because G r  has an extra leaf wi with py(wi) = l1(vi), and either l l(vi) 3 l(vi) or 

l l(vi) = l(vi) by Corollary 1. 

Let cy be the arc cost returned by Algorithm 5.1 on input ( H ,  G y ,  py). If vi is a leaf, then 

CY = d(ll(vi),  l t (vi))  = 0 = ci. Otherwise c? 2 q + d(ll(vi),  l (v i ) )  since vi has at least one child 

in Gi, say X ,  and d(ll(vi),  l ( ~ ) )  = d(l f(vi) ,  l (vi))  + d ( l ( ~ i ) ,  l ( ~ ) ) .  

On the other hand, 1' remains a feasible labeling of GY, i.e. 1' E Q ( H ,  GY, p?), with the edge 

cost ci, since the cost on the arc (vi, w) is O.See the right G r  of Figure 5.3. 

Since GY is the tree with the height less than n, according to induction, we have 

Besides, we have l l(vi) 4 l(vi) or l1(vi) = 1 (vi),  l 1 ( g )  4 1 ( g )  or l ' ( g )  = l ( g )  by Corollary 1. In 

addition, g is the root implies that l ' ( g )  4 ll(vi). Therefore it is also true that 

(See Figure 5.4). 
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Substituting (5.2) and (5.3) into (5.1) gives the following: 

Hence, c = x i ( c i  + d( l (g ) ,  l ( v i ) ) )  is the minimum arc cost compared to any other labeling 

1' E & ( H ,  G ,  P ) .  

0 

Theorem 7. For any character tree H andphylogeny tree ( G ,  p), Sunkoff's algorithm outputs the 

same labeling as Algorithm 5.1 does. 

Proof: As an input to Sankoff's algorithm, the cost matrix M can be generated from H by let- 

ting Mij := d( i ,  j )  for i ,  j  E V ( H )  according to Definition 2. Let 1' be the labeling produced by 

Sankoff's algorithm given ( G ,  p) and M as input. Since for each arc ( u ,  v )  E V ( G ) ,  d ( l l (u ) ,  l l ( v ) )  # 
m which means there is a path from l l (u)  to l l (v)  in H ,  otherwise d( l l (u ) ,  l l ( v ) )  = m and then 

acost(H, G ,  1') = m. Therefore 1' E Q ( H ,  G,p) .  According to Theorem 6,11 = 1. 0 

However, Algorithm 5.1 has better performance, since it runs in linear time O(IV(G)  I . logz 6 + 
IV(H)  I), compared to Sankoff's algorithm which runs in time O ( I V ( G )  I . 6 . I V ( H )  I). 

5.1.2 Example 

Given the character tree H and phylogenetic tree ( G I  p) as presented in Figure 5.5, Algorithm 5.1 

outputs the labeling as showed in Figure 5.6. The labels of the leaves vl,vz,v3,v4 and v5 remains 

the same as their predefined values. The algorithm visited the internal vertices in the order of v6, 

v7, v8 and us. It sets l ( v6)  := LCA( l (v l ) ,  l ( v z ) )  = LCA(c,  d )  = b, l(v7) := LCA(l(v4),  1(v5)) = 

LCA(c, e )  = a, l ( v8)  := LCA( l (v6) ,  l (v3))  = LCA(b, e )  = a and l ( v 9 )  := LCA(1(v7), 1(v8)) = 

LCA(a, a )  = a. The minimum arc cost of (G, p) is seven. 

5.2 Minimum pseudo-minor bag cost 

The following is the algorithm for Problem 2. 
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H (G, P )  

Figure 5.5: An input of H and (G,p)  to Algorithm 5.1 

Figure 5.6: (G,p,  1) where 1 is output by Algorithm 5.1 given H and (G,P) in Figure 5.5 
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Input: A character tree H and a phylogenetic tree (G,  p). 

Output: A labeling 1 E Q(H,  G,  p )  such that bcost(H, G;  1 )  = qbcost(H, G, p) .  

Description: As an initialization, for every u E L(G),  let 1(u) := p(u); For each vertex 

u E V ( G ) ,  we will set x(u)  := 1 if 1(u) appears as a leaf label in G,, and x(u)  := 0 otherwise. 

Initially, x(u)  := 1 if u is a leaf, and x(u)  := 0 otherwise. The algorithm then works in two 

stages. In the first stage, the tree G is traversed in post-order: For each internal vertex u E V ( G ) ,  

let 1(u) := LCA({l(u)l(u, u) E A(G)) ) .  (This again requires a linear time preprocessing on H 

as described in previous algorithm.) If there exists some child u of u such that 1(u) = 1(u) and 

x(u) = 1, then x(u)  := 1, else we do not update the value of x ( v ) .  

In the second stage, the tree G is traversed inpre-order to update the value of 1 for some internal 

vertices u E V ( G )  (except the root g) as follows: If x(u) = 0, then 1(u) := l ( u f )  where u' is the 

parent of u. 

Finally, the number of bags, which initially is set to ( V ( G ) ) ,  is calculated by subtracting the total 

number of arcs (u ,  u)  E A(G) with 1 ( u )  = 1 (u)  . 

Pseudo code: 

Algorithm 5.2 Minimum-Pseudo-Minor-Bag-Cost(H,G,p) 
1 preprocess H (build auxiliary trees) to speed up the computation of LCA ; 

D initialization 

2 for each vertex u E V(G)  do 
3 if u is a leaf then 

4 set 1(u) := p(u); 
5 set x(u) := 1; 

6 else 

7 set 1(u) := null; 
8 set x(u) := 0; 

9 Set b := (V(G)I; 
D,first stage 

10 traverse the tree in post-order, for each internal vertex u E V(G) do 
1 1  s e t l ( u ) : = L C A ( 1 ( u ) ~ ( u , u ) ~ A ( G ) ) ;  

12 for each child u of u 

13 if 1(u) = 1(u) and x(v) = 1 then do 
14 set x(u) := 1; 

D second stage 

15 traverse the tree in pre-order, for the internal vertex u E V(G) do 

16 if u # g and x(u) = 0 then do 
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17 set 1 (u)  = 1 (u') where u' is the parent of u; 
18 for each arc e = (u,  v) in G 

19 if 1 (u )  = 1 ( v )  then do 

20 set b := b - 1; 

D output result 

21 output labeling function 1 and bag cost b 

Complexity: It takes O(IV(H)I)  to preprocess H.  For each node u E V ( G ) ,  in first stage, it 

takes 0(log2 6) time to compute l (u)  and x(u) ;  in second stage, it takes O(1)  time to update l (u) .  

Therefore the labeling takes O(IV(G) I * log, 6 + IV(H) I )  steps. In particular if G is a binary tree, 

then the time complexity is O(IV(G)( + IV(H)I). 

5.2.1 Proof of correctness 

Theorem 8. Algorithm 5.2 returns a labeling 1 E Q(H,  G,  p) such that bcost(H, G ,  1 )  = qbcost(H, G,p) .  

Proof: 1 is obviously p-constrained according to the initialization of the algorithm. Moreover, for 

every arc (u ,  v )  E A(G) ,  there is a directed path from l (u)  to l ( v )  in H since l (u)  is either the least 

common ancestor or common ancestor of the labels of its children, i.e. l (u)  4 1 ( v ) ,  so 1 is a smooth 

function. Therefore 1 E Q(H,  G ,  p). 

We prove bcost(H, G; 1 )  = qbcost(H, G ,p )  by induction on the number of vertices of G. Thus 

let n = IV(G)I. 

In case n = 1, it is obviously true, bcost(H, G ,  1 )  = 1. Suppose the theorem is true when 

IV(G)I < n. We want to prove that it is also true when IV(G)I = n. We will distinguish two cases: 

Consider the case when there exists an arc ( v l ,  v2) in G such that Algorithm 5.2 gives dif- 

ferent labels to vl and v2, i.e. l ( v l )  # l(v2) and v2 is not a leaf. In this case l(v2) = 

LCA({p(w)lw E L(Gv2)) )  and 1(v2) E {p(w)lw E L(Gv2))  since otherwise l(v2) = l(v1). 

Let G1 and G2 be two components of G - e so that vl is in GI  and v2 is in G2. In what 

follows, we will run the Algorithm 5.2 on inputs G1 and G2 together with H,  respectively. In 

order to do this, we need to perform the following: We add a new leaf 4 into G I  and join it 

to the vertex vl ,  i.e. vl will be its parent. Let pl,and p2 denote the prelabeling functions of 

leaves of G1 and G2 respectively, defined as follows. For G2,  each leaf keeps the same label 

as in G, i.e. p2(v) = p(v) for all v E L(G2).  Likewise each leaf except vh of G1 has the 

same label as in G, i.e.pl(v) = p(v) for all v E L(G1)  except v;, let pl(vh) := l (v2);  see 

Figure 5.7. 
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Figure 5.7: Construct G1 and G2 from G 

Note that each internal vertex in G1 will be assigned the same label by running Algorithm 5.2 

on input ( H ,  G I ,  pl) and on input ( H ,  G ,  p) since pl (vi  ) = 1(v2). The same holds for each 

internal vertex in G2 . 

Let MI be the bag cost returned by Algorithm 5.2 on input ( H ,  G1 , P I ) ,  M2 be the bag cost 

returned by Algorithm 5.2 on input ( H ,  G2,p2), and M be the bag cost returned by Algo- 

rithm 5.2 on input ( H ,  G ,p ) ,  respectively. It is not hard to see that M = M1 + M2 - l .  

Now consider any other labeling 1' E Q ( H ,  G,p) .  Let 1; and 1; be the restrictions of 1' to 

sub-tree G1 and G2, respectively. Let pi, and pi denote the prelabeling functions of leaves of 

G1 and Gz, respectively, so that for all vertices v E L(G2) pb(v) = p2(v), and for all vertices 

v E L(G1)  pi ( v )  = pl (v)  except p;(v;) = l'(v2). According to the proof of Lemma 2, either 

l1(v2) = 1(v2) or l f ( v2 )  4 1(v2) since l(vz) = LCA(p(w)lw E L(G,,)). 

Let N1 = bcost(H, G I ,  l i ) ,  N2 = bcost(H, G2 ,  la), and N = bcost(H, G ,  l'), then N = 

Ni + N2 - 1. We will prove that NI  + N2 2 MI + M2 in either case when 11(v2) = 1(v2) or 

L1(v2) 3 l(v2). 

By induction, N2 > M2 since pk = pa. However Nl and hill cannot be compared directly 

since pl and pi may have different value for the vertex va. Let Mi be the bag cost returned 

by running Algorithm 5.2 on input ( H ,  G i ,  pi) ,  Nl > Mi by induction. We will compare N1 

and M1 through Mi; see Figure 5.8. 

When l f ( v2 )  = l ( v z ) ,  we have M1 = Mi since pl and pi have the exact same leaf labels. 

Besides, N1 > Mi and N2 2 M2 by induction. Therefore we have Nl + N2 > MI + M2. 

Now suppose l f ( v2 )  4 1(v2). We first claim that Nl >_ Mi > MI - 1. This follows from the 

fact that the labeling 1; returned by Algorithm 5.2 on input ( H ,  G1 ,p i )  is a feasible internal 

labeling of ( G I ,  p l ) ,  i.e. l y  E Q(H,  G I ,  pl). It is because the leaf labels defined by pi and pl 
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Figure 5.8: Comparing Nl and MI using Mi. (a) and (b) shows ( G I ,  pl , 1 )  with the bag cost MI and 
(Gl ,p i ,  1') with the bag cost Nl respectively, and ( c )  shows (G1,pi)  as an input to Algorithm 5.2 
with the potienal bag cost Mi. 

are the same except for v;, and pi(v;) = l f (v2)  4 pl(va) = l (v2) .  The total bag number of 

such labeling on ( G I ,  p l )  is at most Mi + 1 which attains when ll'(vl) = l '(vi) # 1 ( v i ) ,  i.e. 

bcost(H, G I ,  1:') 5 Mi + 1. Moreover, by induction, we have bcost(H, G I ,  11) 2 M I ,  so 

Mi + 1 2 M I .  Since N1 2 Mi ,  N1 2 Mi 2 MI - 1, i.e. N1 2 M1 - 1. 

We second claim that N2 > M2 + 1. Indeed, we can construct a internal labeling 1; E 

Q ( H ,  G2,p2) from 1;. The only change we need to make is to replace the internal labels b 

such that b 4 1 (v2)  with 1(v2)  Since all the leaf labels in G2 are either 1 ( v2)  or the descendants 

of 1(v2), the resulting labeling 1; E Q ( H ,  G2, p2).  The number of bags 1; produces is at most 

N2 - 1, i.e. bcost(H, G 2 ,  1;) 5 N2 - 1. Moreover, by induction, we have bcost(H, G2 ,  1;) 2 
M2, therefore N2 - 1 > M2, i.e. N2 2 M2 + 1. 

Therefore, with Nl 2 MI - 1 and N2 > M2 + 1, we have Nl + N2 2 MI + M2. Since 

N = Nl + N2 - 1 and M = M1 + M2 - 1, so N 2 M which means the bag cost of 1 is the 

minimum. 

a Now suppose every arc ( v l ,  v2)  in G with v2 is not a leaf satisfies l(v1) = l (v2) ,  in other 

words, all the internal vertices of G get the same label by Algorithm 5.2. For any two leaves 

vi and vj with the same parent vk (See Figure 5.9), there are three different cases for their 

labels. 

- First, if l (vi)  = l ( v j ) ,  then Algorithm 5.2 will assign l ( vk )  := l (vi) ,  so these tree 

vertices will be in the same bag. 

- Second, if l(vi) 4 ( v j ) ,  then Algorithm 5.2 will assign l ( vk )  := l(vi).  Therefore these 
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Figure 5.9: Three different cases for the labels of vi, vj and vk 

three vertices will contribute two bags. However, with two leaves with different labels, 

any other labeling must contribute by at least two bags. The case when l ( v j )  + (v i )  is 

similar. 

- Third, if l(vi) # l ( v j ) ,  then Algorithm 5.2 will assign l (vk)  := LCA(l(ui), l ( v j ) ) ,  so 

these three vertices will contribute three bags. Since l (v i ) ,  l ( v j )  are incomparable, any 

labeling 1' E Q(H,  G,p)  must produce three bags on these three vertices otherwise 

either d( l f (vk) ,  l f ( v i ) )  or d( l f (vk) ,  l f ( v j ) )  will be infinite. 

We conclude that 1 given by Algorithm 5.2 gives smallest possible bag cost. 

5.2.2 Example 

Given the character tree H and phylogenetic tree (G,p)  as presented in Figure 5.10, Algorithm 5.2 

outputs the labeling as showed in Figure 5.1 1. The tree on the left side shows the intermediate 

result after the first stage of the algorithm where values of 1 and x  for each internal vertex in G are 

set. The tree on the right side shows the final labeling 1 after the second stage. The labels of the 

leaves vl,v2,v3,vq and vs remain the same as their predefined labels. In the first stage, for vertex v6, 

knowing that l (v6) = LCA(l(ul), l(v2)) = LCA(b, d) = b appears as a leaf label in G,,, x(v6) is 

assigned 1. All the other internal vertices have 0 as x  value. In the second stage, for v8 and v7, since 

x(v8) = 0 and x(v7) = 0, SO the algorithm updates l (vs)  := l (vg)  and 1(v7) := l (vg);  for v6, since 

x(v6) = 1,l ( V 6 )  is not updated. The minimum bag cost of the given (G,p)  is six. 
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Figure 5.10: An input of H and (G,p)  to Algorithm 5.2 

5.3 The decision problem of H ST, (G,  p) when p # E 

Definition 12. A path P = u --+ v in a rooted tree G is called a single branch path if every inner 

vertex of the path has only one child, and u, v either both have more than one child or otherwise u 

must be the root of G with only one child, and v must be a leaf. Moreover for any labeling function 

I ,  P has a corresponding path P' = l (u)  -, l (v)  in H .  

For example, an arc with two end vertices both having more than one child is a single branch 

path of length 1. Figure 5.12 shows a more general example of a single branch path uk -+ vl in G 

of length > 1 having a correponding path l (vk)  -+ 1 ( v l )  in H .  

5.3.1 The algorithm 

The following is the algorithm for the decision problem of rooted minor when p # E.  

Input: Two rooted trees H and (G,p). 

Output: YESNO to if H I,, (G,p).  

Description: The algorithm works by trying to build a labeling 1 E M ( H ,  G,p) and meanwhile 

keeps track of r((a ,  b), I )  for each (a, b) E A(H) .  If such 1 is found to be impossible to exist at any 

point, the algorithm outputs NO. There are five steps in total. 

In the first step, the algorithm checks whether there exists a vertex a E L ( H )  such that for every 

u E L(G) p(u) # a. If such a is found, then the algorithm outputs NO. 
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x(v1) = 1 x(vz) = 1 

First stage Second stage 

Figure 5.1 1: The example (G,p, 1) where 1 is output by Algorithm 5.2 given H and (Gyp) in Fig- 
ure 5.10. 

The second step is to initialize a labeling 1 such that 1(u) := p(u) for every u E L(G). We also 

initialize r ( ( a ,  b), I) := 0 for each (a, b) E A(H) 

In the third step, G is traversed G in post-order to do the following. For every internal vertex 

u E V(G), we assign l(u) := LCA((1 (v)I(u, v) E A(G))). (This again requires a linear time 

preprocessing on H as described in previous algorithm.) Moreover, if u has more than one child, 

then for each child v of u such that 1 (u) # l(v) and v is either a leaf or a internal vertex with more 

than one child, we check whether (1(u), l(v)) E A(H). If the answer is no, then the algorithm 

outputs NO, else r ( ( 1  (u), 1 (v)), I) is increased by one. 

In the fourth step, the (G, p, I) is examined for some special cases. We look for the longest single 

branch path P in (G, p, I) of length at least two, say P = (vk, .. . ,212, v1) (Note that I(vi) = 1 (vl ) 

for i = 2 , 3 , .  . . , Ic - 1 on the path P. ). If P satisfies one of the following three conditions (See 

Theorem 9 for justification), 

2. vk # g and I(v1) = I(vk). 
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Figure 5.12: A single branch path of length > 1 in G and its corresponding path in H .  

3. vk = g and l ( v l )  = l ( v k )  = h. 

we just mark P as processed and continue to process the next unprocessed longest single branch 

path, since the labels of vi (i = 2,3 ,  . . . , k - 1) cannot be updated any more. Otherwise, if none of 

the above three conditions is satisfied, let PI = (w,), ..., w l )  be the corresponding path of P in H.  

m is the length of PI where wl := l ( v l )  and w, depends on vk. If vk # g then w, := l ( v k )  else 

w, := h according to Note 1. By comparing P and PI, the algorithm will decide if it is possible 

to realize every arc of PI on P. If PI is not a single branch path, then the algorithm outputs NO 

since it is impossible to realize PI on P. If PI is longer than P then the algorithm outputs NO as 

well for the same reason. Otherwise, P and P' are both single branch paths, and P is either as long 

as PI or longer than PI. Therefore it is possible to realize every arc of PI on P. We accomplish 

this by updating the labels of vi (i = 2 to k) as follows: l ( v k )  := w , , l ( ~ ~ - ~ )  := ~ , - ~ , l ( v ~ - ~ )  := 

w,-a,. . . , 1 ( ~ ~ - , + ~ )  := w1. If P is longer than PI, then the labels of vertices v l , .  . . , uk-, on P 

remain unchanged. At mean time, we keep updating r ( (a ,  b),  1 )  for every arc (a ,  b) of PI. Finally, 

we mark P as processed and continue to find the next unprocessed longest single branch path until 

all such paths are processed. 

At the end, if there exists any (a ,  b) 6 A ( H )  such that r ( ( a ,  b) ,  1 )  > 1, then the algorithm 

outputs NO, otherwise outputs Yes, i.e. H <,, (G,p) .  

Pseudo code: 

Algorithm 5.3 Rooted-Minor-Decision(H,G,p) 
1 preprocess H (build auxiliary trees) to speed up the computation of LCA ; 

b Step I :  Checking ifthere is any leaf of H not appearing as a leaflabel in G 
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2 for each leaf v E L ( H )  do 

3 setq(v) := 0 

4 for each leaf u E L(G) do 

5 set Q ( P ( ~ ) )  := ~ ( P ( U ) )  + 1 
6 for each leaf v E L ( H )  do 

7 if q(v) = 0 then do 

8 output NO 

D Step 2: Initializing the labeling 1 and r 

9 for each internal vertex u E V ( G )  do 

10 setl(u):=null  

11 for each leaf u L(G) do 

12 set l (u):=p(u)  

13 for each edge (a,  b) E A ( H )  do 

14 set ~ ( ( a ,  b), 1 )  := 0 

D Step 3: Starting to assign labels to internal vertices 

15 traverse the tree G inpost-order, for every internal vertex u E V ( G )  do 

set l (u )  := LCA(l(v)I (u ,  v )  E A(G));  

if u has more than one child then do 

for each child v of u such that l (u)  # l(v) and v is either a leaf or has more than one child 

do 

if ( 1  (u), l ( v ) )  $! A ( H )  then do 

output NO 

else 

set ~ ( ( l ( u ) , l ( u ) ) , ~ )  := T ( ( ~ ( U ) , ~ V ) ) ,  1 )  + 1 
b Step 4: Checking single branch paths 

find the longest unprocessed single branch path P = (vk, ..., vz, v l )  of length at least two in G 

if P does not exist then do 

goto line 43 

if (l(vk),  l(v1)) E A ( H )  or 

vk # g and 1 ( v l )  = 1 ( v k )  or 

vk = g and 1 ( v l )  = l(vk) = h then do 

mark P as processed and goto line 23 

else 

if vk = g then do 

set P' := (w,, ..., w1) as a path in H where w, = h and wl = 1 ( v l )  

else do 

set P' := (w,, ..., w l )  as a path in H where w, = l ( vk )  and wl = l ( v l )  
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3 3 for each vertex a on the path P' in H do 

34 if a has more than one child then do 

3 5 output NO 
36 if P' is longer than P then do 

3 7 output NO 

38 for i = 1 to m do 

39 set l(uk-i+l) := wrn-i+l 
40 for i = m to 2 do 

41 set r((wi,  wi-I) ,  1) := r((wi,  wiPl) ,  1 )  + 1 

42 mark P as processed and goto line 23 

L> Step 5: Checking if there is any arc in H being realized more than once by I 

43 for each edge (a ,  6 )  E A(H)  do 

44 if r((a, 6 ) )  > 1 then do 

45 output NO 

D Coming to a conclusion that H i,, (G, p)  

46 output YES 

5.3.2 Proof of correctness 

Lemma 3. Given two rooted tree H and (G,p) ,  if H I,, (G, P ) ,  then for any 1' E M ( H ,  G;  P),  

and for any vertex w E V(G)  with at least two children, 

l l (w)  = LCA(p(v)lv E L(G,)). 

Proof: Let q = LCA(p(v) (v  E L(G,)). According to Lemma 2, either l ' (w) = q or l l (w)  4 q. 

Therefore we only need to prove that l l (w)  4 q is not true. It can proved by the induction on the 

height t of G,. 

When t = 2 , let v l ,  vz, . . . , vk denote the set of Ic children of w. There are two cases: q = 

p (v l )  = p(vz) = . . . = p(vk) or q 4 p(vi) for some vi (1  < i 5 Ic).  In first case, if l l (w)  4 q, then 

C(B;) > 1 since l l (v i )  = p(vi) for i = 1,2, . . . , Ic,  therefore separation occurs. In second case, 

if l l (w)  4 q, then transitivity happens since l l (w)  4 q and q 4 p(vi) imply l l (w)  4 p(vi). Thus 

l l (w)  = q in both cases. 

Suppose the lemma is true when t < n. We prove it is also true when t = n. Again let 

v l ,  7.12,. . . , vk denote Ic children of w, respectively. Let zi be the first descendant of vi which has 

more than one child or is a leaf; see Figure 5.13. In particular, if vi has more than one child, then 

zi := vi. Thus each zi (i = 1,2 , .  . . I c )  is either a internal vertex with more than one child or a leaf. 

If ri has more than one child, by induction, we have l l (z i )  = LCA(p(v)lv E L ( G , ) ) .  It implies 
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that either q = l l (z i )  or q 4 l l (z i ) .  Otherwise zi is a leaf, and then l l ( z i )  = p(zi) which also implies 

either q = l l (z i )  or q 4 l l(zi) .  

Now assuming l l (w)  4 q, there must exist a vertex ai on the path w -+ zi such that l l(ai) = q 

no matter q = l l(zi)  or q 4 l l (z i )  since 1' E M ( H ,  G ,p ) .  In particular, ai = zi if l l (z i )  = q. 

However, we have c ( ~ f ; )  > 1, therefore separation occurs. Thus l l (w)  = q. 

Figure 5.13: z l , z z , . . .  ,zk in G,. 

Theorem 9. Algorithm 5.3 outputs YESifand only i f H  s,, ( ( 2 , ~ ) .  

Proot Let 1 be the labeling build by Algorithm 5.3. 

We first prove that if Algorithm 5.3 outputs YES, then H I,, (G,  p), i.e. 1 E M ( H ,  G ,  p). 

If Algorithm 5.3 outputs YES, then 1 must satisfy two attributes. First, for each arc (u ,  v )  E 

A(G) ,  ( l ( u ) ,  l ( v ) )  E A ( H ) .  This is guaranteed by the first, third, fourth steps of Algorithm 5.3. 

Second, for every arc (a ,  b) E A ( H ) ,  r ( (a ,  b),  1 )  = 1 which is guaranteed by fifth step. It is obvious 

that the second attribute of 1 implies (2) of Definition 6. Moreover (1) of Definition 6 is implied by 

both attributes. Therefore 1 E M ( H ,  G,p) .  

Next we prove that if Algorithm 5.3 outputs NO, then M ( H ,  G , p )  = 0, i.e. no other labeling 

function exists to satisfy (1) and (2) of Definition 6. We distinguish five situations under which 

Algorithm 5.3 outputs NO. Please note that before line 37, for every internal vertex v E V ( G ) ,  

l ( v )  = LCA(p(v)Jv  E L(G,)). This fact will be used frequently in the following proof. 

0 The algorithm outputs NO in Line 8 because there exists a vertex b E L ( H )  such that p(u) # b 

for every u E L(G) .  Let a be the parent of b in H. For any other labeling 1' E M ( H ,  G , P ) ,  

there must exist an arc (u ,  v) E A ( G )  such that l l ( u )  = a,  l l ( v )  = b. Since v is not a leaf in 

G,  and b is a leaf in H ,  and l l (w) # b for every vertex w in L(G,), addition must occur in 1'. 
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It contradicts the assumption that 1' E h l ( H ,  G,  p). Therefore if the algorithm outputs NO at 

the line 8, M ( H ,  G ,  p) = 0. 

a The algorithm outputs NO in Line 20 because there exists an internal vertex u such that u has 

more than one child and for some child v  (either a leaf or a internal vertex with more than 

one child) of u ,  ( l ( u ) ,  l ( v ) ) )  # A(H) .  For any other labeling I' E M ( H ,  G ,p ) ,  since u has 

more than one child, l l (u)  = 1(u) according to Lemma 3. As to v ,  if it is a leaf, we have 

l l (v)  = l ( v )  = p(v);  otherwise it is a internal vertex with more than one child, and we also 

have l l (v )  = l ( v )  according to Lemma 3. However l l (u )  = l ( u )  together with l l ( v )  = l ( v )  

imply that ( l l (u ) ,  l l ( v ) ) )  # A ( H )  which contradicts the assumption that 1' E M ( H ,  G, p). 

Therefore no such 1' can possibly exist, i.e. if the algorithm outputs NO in Line 20, then 

M ( H ,  G ,  p) = 0. 

0 The algorithm outputs NO in Line 35 because P = ( vk1  . . . ,712, v l )  in G is a single branch 

path, but its corresponding path P' = (w,, ..., w2, wl)  in H is not. Since 111 is either a leaf 

or a vertex with more than one child, l l ( v l )  = l ( v l )  for any labeling 1' E M ( H ,  G,p) .  If vk 

is also a vertex with more than one child, then l l (vk)  = l (uk)  as well, otherwise vk must be 

a root with only one child which means l l (vk)  = h. Thus 1 and 1' correspond P in G to the 

same path P' in H according to Line 30 and Line 32 of the algorithm. However when P' is 

not a single branch path, either negligence or separation or transitivity will happen no matter 

how the labels of vk ,  vk-1, . . . , v2 are updated. Figure 5.14 shows two examples. 

In the left example, a single branch path P = (713, v2, v1) in G with both end points having 

more than one child has a corresponding path P' = (a ,  6 ,  c )  in H by I. P' is not a single 

branch. Since l l (v l )  = l ( v l )  and l1(v3) = l(v3) for any 1' E M ( H ,  G ,p ) ,  so the corre- 

sponding path of P induced by I' is the same as PI. However we argue that such 1' cannot 

exist no matter how vz is labeled. In particular, suppose 11(v2) = b, although (a ,  6 )  E A ( H )  

and (b, c) E A ( H )  are realized, it is impossible to realized ( 6 ,  d) E A ( H )  on the path P.  

Even if ( 6 ,  d )  is realized in some other part of G,  then we have C ( B ; )  > 1. Thus either 

r ( (6 ,  d ) ,  1')  = 0 or C ( B ; )  > 1 when 11(v2) = 6. Suppose 11(v2) = c, then transitivity happens 

obviously. 

The right example shows another specific example where a single branch path P = (us, v2, v l )  

with 713 being the root in G with only one child. Any I' E M ( H ,  G ,  p )  corresponds P in G to 

the path PI = (a ,  6 ,  c )  in H since 11(u3) = h and l l ( v l )  = c. P' is not a single branch path. 

Similarly, such 1' cannot exist no matter how v2 is labeled. In particular, if l l (vz )  = 6, then 
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(h ,  b) E A(H)  and (b, c) E A(H) are realized, but it is impossible to realized (b, d) E A(H) 

on the path P. 

Figure 5.14: Two examples of a path P in G is a single branch path, but its corresponding path 
PI in H is not. The left example shows a P beginning with a vertex with two children, while the 
right example shows a P beginning with the root of G (v3 = g )  which has only one child, and 
therefore the corresponding PI begins at the root of H (a=h) although l(v3) = c after third step of 
Algorithm 5.3. 

Therefore if the algorithm outputs NO in Line 35, any labeling 1' E M (H,  G,p) cannot 

possibly exist, i.e. M ( H ,  G, p) = 0. 

Note that, so far it is easy to see why the algorithm does nothing except marking P as pro- 

cessed when P satisfies any of the following three conditions in Line 26: 

- 1 ( vk )  # 1 ( v l )  and ( 1  ( vk ) ,  1 ( 2 1 1 ) )  E A(H).  Since 1 (vk) # 1 ( v l ) ,  vk must be a vertex with 

more than one child. According to Lemma 3, l l (vk)  = l(vk) for any 1' E M(H,  G,p). 

Similarly, either vl is a leaf or vl is a vertex with more than one child, so ll(vl) = l(v1). 

Because ( l (vk) ,  l ( v l ) )  E A(H),  no change should be made to the labels of the internal 

vertices on P. 

- vk # g and l ( v l )  = 1 (vk) .  Since vk is not the root of G, vk must be the vertex with more 

than one child. Therefore for any 1' E M(H,  G,p) ,  we have l l (vk)  = l ( vk ) ,  and also 

l l (v l )  = l (v l )  . Again no change should be made to the labels of the internal vertices on 

P. 

- vk = g and 1 ( v l )  = l (vk)  = h. It is clear that l l (vl)  = 1 ( v l )  for any 1' E M (H,  G,p). 

Since vk is the root of G, l l(vk) = h, i.e. l l (vk) = l (vk) ,  therefore again no change need 
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to be made in this case. 

The algorithm outputs NO in Line 37 because P' is longer than P. Similarly it is true that for 

any labeling I' E M ( H ,  G,p),  1 and 1' designate the same corresponding path P' in H of P 

in G. However such 1' cannot exist since either negligence or separation or transitivity must 

occur when P' is longer than P. Figure 5.15 shows two examples. The left example shows 

that 1 corresponds the path P = (us, v2, v l )  in G to the path P' = (a,  b, c, d )  in H .  They are 

both single branch paths, but P' is longer than P. For any 1' E M ( H ,  G, p), 1' (us) = 1 (us) 

and l '(vl) = l(v1) since u3 and vl are both vertices with more than one child. Therefore 

the corresponding path of P induced by 1' is the same as P'. However such 1' cannot exist 

since transitivity always occurs no matter l f (v2)  = b or l f (v2)  = c. The right example shows 

a similar example where us is the root g with one child and P' = (a,  b, c, d )  where a = h. 

Again transitivity always occurs no matter l f (v2) = b or l1(v2) = c. Therefore the algorithm 

outputs NO in Line 37, no 1' E M(H,  G, p )  can possibly exist, i.e. M ( H ,  G,p) = 0. 

Figure 5.15: Two examples of P' in H is a longer single branch path than P in G is. The first exam- 
ple shows a P beginning with a vertex with more than one child, while the second example shows a 
P beginning with the root of G (us = g )  which has only one child, and therefore the corresponding 
P' begins at the root of H (a = h) although l (vs)  = d after third step of Algorithm 5.3. 

The algorithm outputs NO in Line 45 because there is at least one arc (a, b) E A(H)  being 

realized more than once. Let (u l ,  v l )  and (u2,  v2) be the two arcs in G such than l (u l )  = 

1 (u2)  = a and 1 (vl ) = 1 (v2) = b. 

Let PI be the longest single branch path containing the arc ( u l ,  v l ) .  We claim that for any 
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1' E M ( H ,  G , p ) ,  there must be some arc (x, y )  on Pl such that l 1 ( z )  = a  and l ' ( y )  = b. We 

differentiate four cases. 

First, if both u1 and vl have more than one child or ul has more than one child and vl is a leaf, 

then PI = ( u l , v l ) .  In this case, for any 1' E M ( H ,  G,p) ,  l l (u l )  = l(u1) and l l (v l )  = l(v1). 

Thus the claim is true. 

Second, if ul has more than one child and vl is an internal vertex with one child, then PI = 

ul -+ a1 where a1 is the first descendant of vl with more than one child or a leaf. Let 

Pi = a  --, l ( z l )  in H be the corresponding path of P. Recall that we update l ( v l )  from the 

value l ( q )  to b  in Line 39 because (a ,  b) is an arc on PI. Therefore the claim must be true 

since l l ( u l )  = l ( u l )  and l l ( z l )  = l ( z l ) ,  otherwise transitivity will happen. 

Third, if ul is an internal vertex with one child and vl either has more than one child or is a 

leaf, then PI = a1 -+ vl where a1 is the first ancestor of u1 with more than one child or the 

root g with one child. Again we update l ( u l )  from the value 1 ( v l )  to a  in Line 39 is because 

(a ,  b) is an arc on the corresponding path Pi = l (a l )  b  in H.  Therefore the claim must be 

true since l l (v l )  = l ( v l )  and l l ( z l )  = l (al) ,  otherwise transitivity will happen. 

Finally when it comes to the case that ul and vl are both the internal vertices with one child, 

then Pl = zl -+ 22  where zl is the first ancestor of u1 with more than one child or the root g 

with one child, and a2 is the first descendant of vl with more than one child or a leaf. Again 

we update l ( v l )  from the value 1 ( 2 2 )  to b, 1 ( u l )  from the value l ( z2)  to a  in Line 39 is because 

(a ,  b) is an arc on the corresponding path Pi = l ( z l )  -+ l(a2) in H .  Therefore the claim must 

true since l l ( z l )  = l (a l )  and 11(z2) = 1(a2), otherwise transitivity will happen. 

Likewise let P2 be the longest single branch path containing the arc (u2, v2). We can claim 

that for any 1' E M ( H ,  G ,p ) ,  there must be some arc ( x ,  y) on P2 such that l l ( x )  = a  and 

l l (y )  = b. Thus any 1' will have r (a ,  b, 1') = 2 if ~ ( a ,  b, 1 )  = 2, so such I' can not exist. 

In conclusion, we prove that M ( H ,  G ,p )  = 0 whenever Algorithm 5.3 outputs NO. The proves of 

both directions are completed. 0 

5.3.3 Examples 

Example 1: Algorithm 5.3 outputs NO in Line 8. 

Given the character tree H and phylogenetic tree (G,p)  as presented in Figure 5.16, Algo- 

rithm 5.3 outputs NO in Line 8 since it finds e E L ( H )  does not appear as a leaf label in (G ,p ) .  
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Figure 5.16: The input H and ( G , p )  to Algorithm 5.3 in example 1. 

Example 2: Algorithm 5.3 output NO in Line 20. 

Given the character tree H and phylogenetic tree ( G , p )  as presented in Figure 5.17, Algo- 

rithm 5.3 assigns the labels to vertices the same way algorithm 5.1 does except that it checks whether 

( l ( u ) ,  l ( v ) )  @ A ( H )  for each internal vertices with more than one child. In this example, v6 past the 

check since both (l(V6),  l(u1)) E A ( H )  and ( l (us) ,  l ( v z ) )  E A ( H ) .  However the algorithm outputs 

NO after u7 is checked, because (l(u7),  l (v4))  = (a ,  c )  $! A ( H ) .  

Example 3: Algorithm 5.3 outputs NO in Line 35. 

Given the character tree H and phylogenetic tree ( G , p )  as presented in Figure 5.18, Algo- 

rithm 5.3 outputs NO in Line 35 while checking the path P = vg -+ v7 of length 2. Since vg is the 

root of G and 1 (us)  is not the root of H, the corresponding path Pi in H is a -+ b. Obviously P' is 

not a single branch path, although ( h ,  e)  and (e, b)  can both be realized by updating l ( v g )  := a and 

l (vs)  := e  , there is no way to realize (e ,  f ) .  

Example 4: Algorithm 5.3 output NO in Line 37. 

Given the character tree H and phylogenetic tree ( G , p )  as presented in Figure 5.19, Algo- 

rithm 5.3 outputs NO in Line 37 while checking the path P = vs -+ u7 which is also an arc. Since 

us is the root of G and l ( vs )  is not the root of H ,  the corresponding path P' in H is a i b. Obvi- 

ously P' is longer than P,  so there is no way to realize both ( h ,  e )  and (e, b) on the path P with the 

length of 1. 

Example 5: Algorithm 5.3 output YES. 

Given the character tree H and phylogenetic tree ( G , p )  as presented in Figure 5.20, Algo- 

rithm 5.3 outputs YES at the end. 
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H (G, P) 

Figure 5.17: The input H and (G,p) to Algorithm 5.3 in example 2. 

H (G, P) 

Figure 5.18: The input H and (G, p) to Algorithm 5.3 in example 3. 
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Figure 5.19: The input of H and (G, p) to Algorithm 5.3 in example 4. 

Figure 5.20: The input of H and (G,p) to Algorithm 5.3 in example 5. 



Chapter 6 

Applications and Experiments 

The possible applications of our approach include hypothesis testing of character evolution when a 

phylogenetic tree is given, and the phylogeny inference when certain character trees are available. In 

particular, we performed two experiments for hypothesis testing, and one experiment for alternative 

phylogenetic trees evaluation. 

6.1 Testing hypotheses of character evolution 

To investigate the evolution of a character, the character should be mapped onto a phylogenetic 

tree that is constructed independently from other characters. This approach maybe very useful in 

scenarios where hypothesis of character evolution must be validated. 

The first experiment follows from Lipscomb's idea of testing transformation series when there 

are multiple trees [Lip92]. She believes that if two or more transformation series are proposed for 

a multistate character and these alternative character state trees result in different cladograms, all 

transformations should be tested with the congruence criterion (scattering and hierarchical discor- 

dance) on all of the trees. She gives an example of such case in Figure 13 of [Lip921 where three 

transformation series of a character are proposed and two phylogenetic trees obtained from these 

character transforamtion series. There are seven species involved. The character states of these 

species are showed in Table 6.1. 

In her test, transformation series 1 (Figure 6.1 HI )  is found to be congruent with both phyloge- 

netic trees (Figure 6.1, (GI,  pl) and (G2, p2)), transformation series 2 (Figure 6.1 Hz) is congruent 

with only one phylogenetic tree, and transformation series 3 (Figure 6.1 H3) conflicts with both 

phylogenetic trees. H3 is therefore eliminated since it is not congruent with both phylogenetic trees. 
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In our approach, bag cost and arc cost are two metrics to detect separation and transitivity re- 

spectively, and furthermore separation and transitivity correspond to Lipscomb's concepts of scat- 

tering and hierarchical discordance. In order to check whether our metrics will eliminate the same 

transformation series, we ran Algorithm 5.1 and Algorithm 5.2 on two phylogenetic trees and three 

character trees, see Table 6.2 for the output arc costs and bag costs. Under our metrics, the minimum 

pseudo-minor bag cost of each pair of character tree and phylogenetic tree is the same, but they do 

have different minimum pseudo-minor arc cost. H1 has the least arc cost 5, which equals to IA(H)I, 

on both (GI, pl)  and (G2, p2). It is consistent with Lipscomb's analysis that no hierarchical discor- 

dance detected in H1 and either G1 or G2. H3 requires the highest arc cost 9 on both (GI, pl) and 

(G2,p2), in other words, the highest hierarchical discordance. Thus, H3 will also be eliminated by 

our metrics detecting the same worst tree as Lipscomb. 

Species I OUT I A I B I C I D I E I F 
State I a I f l f l e l b l c l d  

Table 6.1 : The character states of seven species. 

Table 6.2: acost and bcost of two phylogenetic trees (Gl,pl)  and (G2,p2) on HI, H2 and H3. 

The second experiment was run on the data set from [vT65] and [MKG96] which is a con- 

tinuation work of [vT65]. The problem of whether behavioral characters could be used to provide 

accurate estimates of phylogenies was investigated in [MKG96]. Their research was conducted 

on a behavioral data set for the pelecaniforms based upon van Tets's classic comparative study of 

these species's social behavior [vT65]. They show that it is possible to investigate the homology 

of the behavioral characters by mapping the distribution of the characters to best-estimate phyloge- 

netic trees. Once specific example they give is to test the hypotheses about the derivation of male 

advertising displays proposed by van Tets ( [vT65]) based on a best-estimate phylogenetic trees of 
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Figure 6.1 : Testing character trees when there are multiple phylogenetic trees. ( G I ,  p l )  and ( G 2 ,  p2) 
are two phylogenetic trees. The capital letter beside each leaf stands for the species it represents. 
The character state of each leaf species is shown in Table 6.1. H1,H2 ,  and H3 are three character 
trees for the same character. Both character trees and phylogenetic trees in this example are taken 
from [Lip92]. 
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pelecaniforms. In our experiment, we further conducted the same hypothesis test using our met- 

rics. The goodness of the hypothesis is measured in terms of both minimum pseudo-minor arc cost 

and minimum pseudo-minor bag cost. In addition to three existing hypothesis from [vT65] and 

[MKG96] ( [MKG96], Figure 6), we took another two alternative character trees into consideration. 

The best estimate behavioral tree ( [MKG96],Figure 3) is used as (G,p); see Figure 6.2, it 

is a combination of three phylogenetic trees constructed independently by Cracrafi (1985), Sibley 

& Anhlquist (1990) and Siegel-Causey (1988) based on the morphological and genetic data. The 

character being tested is pre-take-off behavior with 7 states: 

(0) general intentional movement 

(1) pre-take-off display of the gannets 

(2) sky-pointing display of the boobies 

(3) slow rate wing-waving display of the great cormorant 

(4) rapid flutter wing-waving of pelagic shag 

(5) throwback of European shag and 

(6) wing-waving display of the darter. 

The state of species is shown in the phylogenetic tree (Figure 6.2) beside each leaf. Five alternative 

character trees are listed in Figure 6.3. We ran Algorithm 5.1 and Algorithm 5.2 on (G,p) and each 

of the five character trees. The results are listed in Table 6.4. 

Character tree (b) and (c) have the best score under our metric. However, it has been justified 

in [MKG96] that (b) and (c) are not plausible in a biological sense. Thus they agree with van Tets 

on (a). However, in our experiment, two additional alternative trees (d) and (e) are found to have 

better score than (a). They are actually much closer to the phylogenetic tree than (a) according to 

the criteria used by Michevich [Mic82]. One difference between (a) and (d) is that state 0 evolves 

to 1, and 1 to 2 in (a), but 0 evolves into both 1 and 2 in (b). It is implied in (a) that species in state 

1 is closer to species in state 0 than species in state 2. This is not true since species in state 1 and 2 

, for example S.sula and Mserrator, are equally close to species in state 0 in the phylogenetic tree; 

see Figure 6.2. In contrast, (d) reflects the fact implied by the phylogenetic tree that species in state 

1 and 2 are equally close to species in state 0. The other difference between (a) and (d) is that 3 

evolves into both 4 and 5 in a, but it is the state 4 that evolves into both 3 and 5 in d. Obviously 

having 4 evolves into 3 and 5 gives most parsimonious result. 
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:e of Pelecaniform. The number besid Figure 6.2: The phylogenetic tre e each leaf represents the state 
of the behavior character that the leaf species is in. Taken from [MKG96]. 

6.2 Phylogenetic tree inference 

Contrasting to testing hypotheses of character evolution, another application of our approach is to 

evaluate the alternative phylogenetic trees constructed independently with different method or data 

sets, assuming a character state tree is known for some character that species share. 

We investigate the phylogenetic trees for a family of twelve anura species. Three phylogenetic 

trees constructed independently with different data sources are considered. First tree, ( G I ,  pl) ,  is 

published by Kluge in [KF69]; see Figure 6.4. Second tree, (Gz ,pz) ,  is published by Ford and 

Cannatella in [FC93], and acknowledged in the Tree of Life project [Tre03]; see Figure 6.5. Both 

trees are inferred from morphological characters. However, third tree, (G3,p3) ,  is inferred from 
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I H I acost I bcost I 

Table 6.3: acost and bcost of the phylogenetic tree (Figure 6.2) on five character trees (Figure 6.3). 

molecular data [JMHM95]; see Figure 6.6. GI, G2 and Gg mainly differ in the position of Pelobati- 

dae on the tree. G1 suggests that the common ancestor of Pelobatidae and PipidaeIRhinophrynidae 

is also an ancestor of Bufonidae/Atelopodidae/Leptodaectylidae/Hylidae and 

Ranidae/Rhacophoridae/Microhylidae. However G2 implies the opposite point of view. G3 SUB- 

gests that the common ancestor of Pelobatidae and PipidaeIRhinophrynidae is also the ancestor of 

Ascaphidae/Discoglossidae, while GI and G2 both suggests that the common ancestor of Ascaphi- 

dae and Discoglossidae is the ancestor of Pelobatidae and Pipidae~Rhinophrynidae. 

The goodness of these three trees are evaluated based on three multistate characters that anura 

share. The three characters are ribs with four states, vertebral ossification with three states, and pec- 

toral girdle with three states, respectively. The character trees are taken from [Ing67] and [KF69]; 

see Figure 6.7. We run Algorithm 5.1 and Algorithm 5.2 on each pair of phylogenetic tree and 

character trees. Table 6.5 shows the running results in terms of minimum pseudo-minor arc cost and 

minimum pseudo-minor bag cost. (GI, pl) has the best score over three phylogenetic trees. It is not 

surprising since the characters we use in our test are also the part of data Kluge applied to construct 

(GI, pl). (G3,p3) was constructed solely based on the DNA and RNA sequences, therefore it does 

not reflect the morphological characters well and has the highest total arc cost and bag cost. 
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Pipidae 1 g 1 b I c ' l  

Species 
Ascaphidae 
Discoelossidae 

- 
Rhinoohrvnidae 1 G I b * I C l  . - I I I 

Pelobatidae G 1 b' I c' I 

Characters 1 
G 
G 

I I I 

Hylidae G I b ' I c I  

2 
B 
B 

Bufonidae 
Atelooodidae 

3 
C 
c' 

1 Microhylidae 1 g' I b' I c I 

G 

R 

Ranidae 

Table 6.4: Families and character state matrix. 

g ' / b ' ( c  

I ( G 1 i ~ l )  / (G2i~2)  I ( G 3 i ~ 3 )  

1 acost ( bcost I acost I bcost I acost I bcost 

b' 
b' 

Rhaco~horidae I P' I b ' l c  

c 
c 

Table 6.5: acost and bcost of three phylogenetic trees of anura (G1,pl), (G2,p2)and (Gzlp2) on 
HI, Hz and H3. 

H3 1 4 
Total: 1 10 

5 
13 

4 
11 

5 
14 

4 
12 

5 
15 



CHAPTER 6. APPLICATIONS AND EXPERIMENTS 

Figure 6.3: The character trees of pre-take-off behavior. (a) is van Tets' hypothesis, (b) and (c) are 
the two alternative hypotheses listed in [MKG96]. (d) and (e) are our hypothesis which turn out to 
have better scores than (a). 
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Figure 6.5: (G2,  pa):  the phylogenetic tree of Anura in Tree of Life. 



CHAPTER 6. APPLICATIONS AND EXPERIMENTS 

Figure 6.6: ( G 3 ! ~ 3 ) :  the phylogenetic tree of Anura inferred from molecular data [JMHM95]. 
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Figure 6.7: Three character trees. HI is for the character of Pectoral girdle with three states as well. 
They are arciferal - G, transitional - g, and firmisternal - g'. H2 is for the character of ribs with four 
states. They are free in both subadults and adults - B, free in subadults, fused in adults - b, fused in 
both subadults and adults - b', and lost in both subadults and adults - b*. H3 is for the character of 
vertebral ossification with three states. They are ectochordal - C, stegochordal - c', and holochorda 
- c. Taken from [Ing67] and [KF69]. 



Chapter 7 

Conclusions and Open Problems 

In this thesis, we have considered the problem of testing alternative transformation series of a mul- 

tistate character and the issue of constructing phylogenetic trees incorporating character evolution. 

Since there are many problems induced by coding a multistate character to binary character such 

as loss of logical dependency between states and the requirement of extra big space, we propose a 

new approach to work with multistate characters which does not require recoding, and therefore is 

free of the disadvantages of binary coding. In particular, we extend the small phylogeny problem by 

assuming a character state tree of a particular character is also given. Five inconsistencies defined 

between character tree and phylogenetic tree are used as the optimization criteria. When none of the 

five inconsistencies is allowed, we have shown the problem is essentially rooted tree minor which is 

NP-hard. 

In practice inconsistencies do occur. To handle those that arise most often, we introduced two 

relaxations of rooted minors. Relax minors allow addition and separation while pseudo minors 

allow transitivity and separation. Extending from Lipscomb's definition of non congruences between 

characters, we introduced two new metrics, bag cost and arc cost as the target scoring functions of 

the problem. From the structure of relax-minor and pseudo-minor and these two score functions, 

we defined three versions of the extended small phylogeny problem. The minimum relax-minor 

bag cost was shown to be a NP-hard, but both minimum pseudo-minor bag cost and minimum 

pseudo-minor arc cost have linear time solutions. Since bag cost and arc cost are consistent with 

Lipscomb's criterion of non congruences between characters, our linear time solutions can also 

solve her problem of testing transformation series. Based on the experiment conducted with her 

data, we found that our methods detected the same worst case hypotheses. Another way to utilize 

our algorithms is to evaluate alternative phylogenetic trees of a same set of species using available 
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character trees. 

Our algorithms are all based on modeling character evolution by rooted trees. A more realistic 

scenario is to allow a representation by a general Hasse diagram. Two open problems are to char- 

acterize the complexity of these problems and to find approximation algorithms for those that are 

NP-hard. 
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