
PARSIMONY WITH GENERAL CHARACTER EVOLUTION

by

Chenchen Zhu

B.Sc., Shanghai TongJi University, 1995

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Chenchen Zhu 2003

SIMON FRASER UNIVERSITY

June 2003

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Chenchen Zhu

Master of Science

Parsimony With General Character Evolution

Examining Committee: Dr. Binay Bhattacharya

Chair

Dr. Arvind Gupta, Senior Supervisor,

School of Computing Science, SFU

Dr. Ladislav Stacho, Supervisor,

Department of Mathematics, SFU

Dr. Felix Breden, Associate Professor,

Department of Biological Sciences, SFU

External Examiner

Date Approved:

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project and extended essay (the title of which is shown below) to
users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its
own behalf or for one of its users. I further agree that permission for
multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be
allowed without my written permission.

Title of Thesis/Project/Extended Essay

Parsimony with General Character Evolution

Author:
(signature)

Zhu Chenchen

(name)

Abstract

The questions of how to test hypotheses of character evolution, and incorporate character evolution

into phylogenetic analysis are considered in this thesis. When a character transformation series is

not linear, it is usually decoded into a set of binary characters by various binary coding methods. The

disadvantages of such an approach have been discussed extensively in the literature. We propose a

new approach together with the corresponding parsimony criteria for working with nonlinear trans-

formation series. In particular, assuming a rooted character state tree is used to model the character

evolution, the classical smallphylogenyproblem is extended by given not only the phylogenetic tree

but also a character tree. Our techniques are based on finding tree minor embeddings of labeled

trees. Three generalizations of tree minor are defined: rooted tree minor, relax-minor andpseudo-

minor. Two new metrics, bag cost and arc cost, are also introduced as the target scoring functions

of the problem. The bag cost is analogous to unweighted parsimony while the arc cost is analogous

to weighted parsimony, that is, it allows a cost for each state transition. We show that the problem

of finding minimum bag cost under relax-minor is NP-hard, however the problems of finding mini-

mum pseudo-minor bag cost and minimum pseudo-minor arc cost can both be solved in linear time.

Our algorithm for minimum pseudo-minor arc cost yields the same output for any character tree and

phylogenetic tree as Sankoff's algorithm since a character tree can be transformed to a cost matrix.

However our algorithm runs in linear time as opposed to the quadratic running time of Sankoff's.

One application of our algorithms is the evaluation of multiple phylogenetic trees for a same set

of species with the given character trees. Another application would be to test hypotheses for the

evolution of a multistate character based on the given phylogenetic tree.

Acknowledgments

To my supervisors Arvind Gupta, Ladislav Stacho thank you for sharing your knowledge and ideas,

for offering the financial support, and for all the countless hours you contributed which make this

thesis possible. A big big thank you to Jano Manuch for the significant amount of time and effort

he spent on helping with the thesis writing and proofreading. Special thanks to Felix Breden for

being my external examiner. Your interest and advices are encouraging and valuable. My deepest

appreciation goes to my dear family for their unconditional love and always being there for me.

Contents

Approval ii

Abstract iii

Acknowledgments iv

List of Tables vii

List of Figures viii

1 Introduction 1
. 1.1 Phylogeny problem 1

. 1.2 History of character trees 2

. 1.3 Stratophenetics 4

. 1.4 Parsimony with general character evolution 4

. 1.5 Thesis overview 5

2 Background and Definitions 8
. 2.1 Preliminary definition 8

. 2.2 Small phylogeny problem 9

. 2.3 Previous work 9

. 2.4 Fitch's algorithm 10

. 2.5 Sankoff's algorithm 11

3 Parsimony With General Character Evolution 14

. 3.1 Minors and their relaxations 15

. 3.2 Two metrics for parsimony with general character evolution 27

4 Complexity Results 28

5 Algorithms 33

. 5.1 Minimum pseudo-minor arc cost 33

. 5.1.1 Proof of correctness 34

5.1.2 Example . 38

. 5.2 Minimum pseudo-minor bag cost 38

. 5.2.1 Proof of correctness 41

5.2.2 Example . 44

. 5.3 The decision problem of H ST, (G, p) when p # E 45

. 5.3.1 The algorithm 45

. 5.3.2 Proof of correctness 49

. 5.3.3 Examples 54

6 Applications and Experiments 58

. 6.1 Testing hypotheses of character evolution 58

. 6.2 Phylogenetic tree inference 62

7 Conclusions and Open Problems 70

Bibliography 72

List of Tables

3.1 Properties of rooted.minor. relax-minor and pseudo-minor 26

6.1 The character states of seven species . 59

6.2 acost and bcost of two phylogenetic trees (GI . pl) and (G2. p2) on HI. Hz and H3 . 59

6.3 acost and bcost of the phylogenetic tree (Figure 6.2) on five character trees (Fig-

ure6.3) . 63

. 6.4 Families and character state matrix 64

6.5 acost and bcost of three phylogenetic trees of anura (GI . PI). (Gz. pz)and (Gz. p2)

. on HI. H2 and H3 64

vii

List of Figures

2.1 An example of Fitch's Algorithm for a 4-species binary phylogenetic tree
2.2 An example of Sankoff's Algorithm for a 4-species binary phylogenetic tree

3.1 Five types of inconsistencies . Solid lines indicate direct derivation. dash lines indi-

cate transitive derivation .
3.2 Differences between scattering (defined by Lipscomb) and separation . (a) is Lip-

scomb's example of scattering where two species in state b are not adjacent to each

other . With (b) as (G. p) and (c) as H. we show that separation occurs in (c) which

is the (G.p. 1). although Lipscomb considers (b) without scattering
3.3 Dash lines from vertices x. y. x'. y' E V(G) to vertex v E V (H) illustrate the

function 1 . The bag-set B; consists of two shadowed areas in G. i.e. c(B;) = 2 .
Every vertex in the bag-set B; has the same image v in H

3.4 Three possible relationships between two different vertices v and u in the same bag .
3.5 An example of 1 E M(H. G. p) .
3.6 An example of a. b E V(H) with a 4 b has a corresponding path ul -+ 713 in G

. withl(u1) = aandl(v3) = b

3.7 Transitivity cannot occur for any 1 E M (H . G. p)
3.8 Addition cannot occur for any 1 E M(H. G. p) .
3.9 Inversion cannot occur for any 1 E M (H . G. p) .
3.10 Relax-minor .
3.1 1 H is a relax-minor of (G. p) in which addition. transitivity and separation occur . . .
3.12 Smooth function .
3.13 H is a relax-minor of (G.p). but not rooted-minor since the bag number of b E v(H)

m u s t > l .
3.14 H is a relax-minor of (G. p). but not pseudo-minor since c + b in H

...
Vll l

3.15 H is a pseudo-minor of (GI p). but neither rooted-minor nor relax-minor since it's

impossible for any labeling function 1 to have both r((a. c). I) = 1 and r((cl d) . 1) = 1 . 25

3.16 H is a pseudo-minor of (G. p) in which transitivity. separation and negligence occur . 26

. Construct rooted trees Hr and Gr from unrooted trees H and G 29

Construction H and G from Y and Z . 30

(a): the arc cost of the path u -+ v in G. is infinite; (b): There exist two paths from

. Z = LCA(l(u). l1(u)) to s 35

Decompose tree G into k sub-tree G I . G 2 , . Gk 36

GY . 36

(a) shows d(ll(vi). l (vi)) = d(l ' (g) . l(vi))-d(l1(g). ll(ui)) and (b) shows d (l l (g) . l (vi)) 2
d (l (g) . l (v i)) . 37

. An input of H and (GI p) to Algorithm 5.1 39

. . . (Glpl I) where 1 is output by Algorithm 5.1 given H and (GI p) in Figure 5.5 39

Construct G1 and G2 from G . 42

Comparing N1 and MI using Mi . (a) and (b) shows (G I . pl . 1) with the bag cost

MI and (G I . p i l 1') with the bag cost Nl respectively. and (c) shows (G I . pi) as an

. input to Algorithm 5.2 with the potienal bag cost Mi 43

Three different cases for the labels of vi. vj and vk 44

. 5.10 AninputofHand(G,p)toAlgorithm5.2. 45

5.1 1 The example (G. pl 1) where 1 is output by Algorithm 5.2 given H and (GI p) in

Figure 5.10. 46

. 5.12 A single branch path of length > 1 in G and its corresponding path in H 47

. 5.13 ~ 1 . ~ 2 z k i n G , 50

5.14 Two examples of a path P in G is a single branch path. but its corresponding path P'

in H is not . The left example shows a P beginning with a vertex with two children.

while the right example shows a P beginning with the root of G (v3 = g) which has

only one child. and therefore the corresponding P' begins at the root of H (a=h)

. although 1 (us) = c after third step of Algorithm 5.3. 52

5.15 Two examples of PI in H is a longer single branch path than P in G is. The first

example shows a P beginning with a vertex with more than one child, while the

second example shows a P beginning with the root of G (us = g) which has only

one child, and therefore the corresponding PI begins at the root of H (a = h)

. although l(vs) = d after third step of Algorithm 5.3.

. 5.16 The input H and (G,p) to Algorithm 5.3 in example 1.

. 5.17 The input H and (G, p) to Algorithm 5.3 in example 2.

. 5.18 The input H and (G,p) to Algorithm 5.3 inexample 3.

. 5.19 The input of H and (G,p) to Algorithm 5.3 in example 4.

. 5.20 The input of H and (G, p) to Algorithm 5.3 in example 5.

6.1 Testing character trees when there are multiple phylogenetic trees. (GI, pl) and

(G2, p2) are two phylogenetic trees. The capital letter beside each leaf stands for the

species it represents. The character state of each leaf species is shown in Table 6.1.

H1,H2, and H3 are three character trees for the same character. Both character trees

and phylogenetic trees in this example are taken from [Lip92].
6.2 The phylogenetic tree of Pelecaniform. The number beside each leaf represents the

. . state of the behavior character that the leaf species is in. Taken from [MKG96].

6.3 The character trees of pre-take-off behavior. (a) is van Tets' hypothesis, (b) and (c)

are the two alternative hypotheses listed in [MKG96]. (d) and (e) are our hypothesis

which turn out to have better scores than (a).
6.4 (GI ,pl): the phylogenetic tree of Anura inferred from morphological data [KF69].

. 6.5 (G2, p2): the phylogenetic tree of Anura in Tree of Life.

6.6 (G3, p3): the phylogenetic tree of Anura inferred from molecular data [JMHM95].

6.7 Three character trees. H1 is for the character of Pectoral girdle with three states as

well. They are arciferal - G, transitional - g, and firmisternal - g'. Hz is for the

character of ribs with four states. They are free in both subadults and adults - B, free

in subadults, fised in adults - b, fised in both subadults and adults - b', and lost in

both subadults and adults - b*. H3 is for the character of vertebral ossification with

three states. They are ectochordal - C, stegochordal - c', and holochorda - c. Taken

from [Ing67] and [KF69]. 69

Chapter 1

Introduction

1.1 Phylogeny problem

Discovering patterns of evolution is receiving increasing attention amongst biologists, geologists,

ecologists, and, most recently computer scientists. Traditionally, the approach to constructing phy-

logenies, or trees of life was through the study of fossil records. New techniques include constructing

the best fit for a set of characters from matrices of characters, maximum likelihood constructions,

and pair-wise distance constructions which assume a certain rate of mutation [FM67] [SN87] [Fe181].

This virtual explosion of techniques and algorithms has lead to the publication of many new phylo-

genies which can often be contradictory. Statistical approaches have been developed to assess their

quality and closeness of their fit to the given data [SI89] [YTM94].

Recently, constructing phylogenetic trees using molecular data has achieved considerable promi-

nence. One approach is to consider the character matrix for a set of extant species and set of charac-

ters for these species. This matrix gives the state of each character for each species. The problem is

to construct a phylogenetic tree under an underlying parsimony assumption. Specifically, the inter-

nal nodes of the tree correspond to possibly hypothetical (extinct) species each labeled by a vector of

character states. Parsimony dictates that the number of state changes for each character is minimized

(here we count all state changes in moving from the root to the leaves).

The problem of constructing a phylogenetic tree from the character matrix, the large phy-

logeny problem, is NP-complete even when each character is binary (i.e. can take on only two

values) [FL82] [DS86]. With the stronger assumption that the internal structure of the tree is known,

the small phylogeny problem, there are polynomial time algorithms both for the case of uniform

cost of each state change [Fit711 and non-uniform cost [San75].

CHAPTER 1. INTRODUCTION

In this thesis, we further investigate the small phylogeny problem where partial information of

the evolutionary order of a multistate character is also given. In particular, we consider the case that

such evolutionary order is represented as a rooted tree, called character tree. In what follows, we

will review the history of character tree and explain the motivations of our work.

1.2 History of character trees

A character phylogeny [Hen661 or a character transformation series [Hen66], or character state

tree [Far701 of a multistate character is a hypothesis that specifies which states of the character

evolve directly into which other states. As explained by Mickevich [Mic82], to determine the char-

acter transformation series, both the character state polarity and character state order need to be

known. The character order only describes which states are intermediate, but does not specify

evolutionary direction. However character polarity explains which state is plesiomorphic or ances-

tral. Character polarity can be determined by using the outgroup comparison, parsimony analy-

sis [Far821 [Fit711 [Mic82], fossil and stratigraphic data or ontogenetic criteria. To determine the

character state order, various methods have been utilized. One direction is to impose a rule on how

the character evolved. Examples include Haeckel's biogenetic law, Cope's rule and Bergrnann's Rule

in Morphocline analysis, Ontogenetic analysis. (See [MW90] for a review). The other direction is

to maximize congruence among characters such as non-additive analysis [Fit711 or transformation

series analysis (TSA) which runs in an iterative procedure [Mic82]. The congruence of a character

with others in a phylogenetic tree means that species with similar states should be adjacent to each

other.

In this thesis, we are not primarily concerned with transformation series inference. Instead, we

focus on the methods of testing character transformation series and furthermore utilize it to study

the relationships among the species possessing the character. Different approaches such as non-

additive analysis, TSA and Morphocline analysis usually disagree on the transformation series for

the same character because they are based on different optimization assumptions [Lip92]. Therefore,

Lipscomb suggests that the transformation series should be viewed as a hierarchy of homologies,

and then the methods phylogeneticists used to postulate and test homology should be used to test

transformation series. In their method, the congruence of a transformation series with the other

characters is used to test its support and as a means for choosing among several alternative transfor-

mation series for the same character. She is mainly concerned with the non-congruence caused by

scattering and hierarchical discordance [ML91]. Scattering refers to the phenomenon that similar

CHAPTER 1 . INTRODUCTION

states in different species are non-homologous with the result that a state appears in two or more

species that are not adjacent on a phylogenetic tree. On the other hand, hierarchical discordance

happens when the states that occur adjacently on the tree have a median state (or states) between

them in the transformation series. It indicates that the order of the states in the transformation series

is in conflict with the phylogenetic tree. The implementation of non-congruence detecting is easy

when hypothesized transformation series is linearly ordered, but quite complicated and questionable

when it is not linear. In the latter case, a character state tree needs to be recoded into multiple binary

characters using additive binary coding [Far701 [CS65] since many program packages require linear

variables (e.g. Hennig86, NTSYS, PAUP, PHYLIP). As Lipscomb mentioned, the recoding makes

it more difficult to detect hierarchical discordance [Lip92].

It is not the first time that the disadvantage of recoding multistate characters is addressed. Mick-

evich already gave attention to this issue as early as 1982. He noted that "When data are restricted to

distinct two state characters, the depth of cladistics as a theoretical approach is severely restricted.

Such an approach clearly ignores evidence presented by multistate characters." [Mic82]. We also

found the same issue when a known character transformation series need to be incorporated in the

study of the phylogeny of species. In 198 1, Brooks [Bro8 11 proposed the idea of using the phylo-

genetic tree of parasites as a character state tree to study the phylogeny of their hosts by assigning

each host a multistate code associated with the parasite they harbor. A few years later, O'Grady

and Deets [OD871 presented much more detailed illustration on the implementation of Brooks's

proposal together with the coding schema for multistate characters. Their implementation requires

the phylogeny of parasites to be transferred into a matrix by method, for example additive binary

coding, redundant linear coding and nonredundant linear coding [OD87]. Again, a character tree are

represented as binary characters.

Although it is common that multistate characters are disassembled into suites of binary charac-

ters for the purposes of analysis by existing methods in practice, more and more problematic results

are now recognized [JAHS97] [OD871 [PM90]. Ogue and Mickevich demonstrated the inherent

pitfalls of such practice in [PM90]. They showed that the disadvantages of representing multistate

character as independent binary characters include the creation of artificial homoplasy, the obscuring

relationships between species due to an arbitrary division of multiple states into two or more binary

characters, and the ignorance of synapomorphic evidence offered by multistate transformation. Later

Maddison showed that such disassembling may introduce inapplicable characters to some specific

species, and then those character states must be treated as missing data [Mad93]. Therefore having

a method of comparing character tree directly with phylogenetic tree of species without being coded

CHAPTER 1. INTRODUCTION

into binary characters is highly desirable as is the corresponding parsimony criterion.

1.3 Stratophenetics

There is considerable debate in the scientific community about the value of stratophenetics (the

use of fossil records) in constructing phylogenies. In 1998, Nature held an on-line debate between

many of the top paleontologists and geneticists to examine exactly this question [(mo98]. While it

is the case that fossil records degrade over time, it is not so clear that they are less reliable. Almost

every dating method exhibits similar behavior. Furthermore, in many cases fossil data is remarkably

reliable and stands up to rigorous statistical analysis [MJBHOO]. In particular, these tests show that

the reliability of fossil data is uniformly consistent although partial information is lost over time.

There are two main types of information derived from stratophenetics. First, the age and duration

of fossils can be determined by dating the sedimentary rock in which the fossil is found. Second,

certain characters of the underlying species can be determined from the nature of the fossil itself.

Molecular techniques also yield similar information. By performing alignment and assuming a

certain rate of mutation, the evolutionary distance between species can be inferred while sequencing

yields character state information.

A number of authors have suggested that phylogenetic trees incorporating fossil data may yield

significantly better evolutionary trees (see for example [BenOl]). The emphasis is on determining

consistency between trees constructed under both techniques with the result a "better" phylogeny.

However, the problem of incorporating both fossil and molecular data has not been addressed. Here

we present one such approach which we call parsimony with general character evolution.

1.4 Parsimony with general character evolution

Our starting point is to consider a set of character states whose transformation series (i.e. a partial

ordering on the evolution of these states) is known. A natural representation of this information is a

Hasse diagram. Since the phylogenetic information we consider is represented as a rooted tree, we

will assume that the character state tree also occurs as a rooted tree.

The problem can be summarized as follows: We are given a character tree representing an evo-

lution of some character. The vertices of the character tree represent states of this character. We are

also given a set of species each taking on one state of the character and must find a parsimonious

phylogenetic tree consistent with the character tree. If the internal structure of the phylogenetic tree

CHAPTER 1 . INTRODUCTION 5

is not given, then for one character, it is trivial to construct a phylogenetic tree congruent with the

character tree. However the problem is NP-complete for a general set of characters. Instead we con-

sider the smallphylogeny problem in which the internal structure of the phylogenetic tree is known.

Since a transformation series is tested against a phylogenetic tree constructed from other characters,

the small phylogeny problem also models Lipscomb's problem of testing transformation series. Re-

garding to the process of the character tree, we avoid the binary coding, and keep the original form

of rooted tree. Thus not only the logical dependence and hierarchy between states are kept, which

will be otherwise lost after a character tree is converted a set of binary characters [JAHS97], but also

a lot of space can be saved since the binary coding matrix for all but the simplest trees can be quite

large [OD87].

Our techniques are based on finding graph minor embeddings of labeled trees. Graph minors

are generalizations of isomorphisms in which a vertex of the source graph is mapped to a connected

component of the target graph preserving the adjacency relation of the source graph. Tree minors

are the basis of the seminal work of Robertson and Seymour who used them to prove Wagner's

conjecture [RS86] and the flavor of their techniques is camed forward here. We define three gener-

alizations of graph minors, rooted tree minor, relax-minor andpseudo-minor which reflect structures

arising in phylogenetic trees.

We will investigate the small parsimony problem under two different optimality criteria. In

the first, the subgraph of the phylogenetic tree induced by a particular state has as few connected

components as possible. It also reflects the non-congruence of scattering mentioned in [ML91]

because less components implies less scattering. In the second, we allow a cost for state transitions

(represented as edge costs in the phylogenetic tree) and look for trees that minimize the sum of

these arc costs. Similarly, it reflects to the non-congruence of hierarchical discordance mentioned

in [ML91] with less arc costs implying less hierarchical discordance. In both cases we find linear

time algorithms for these problems. Finally, we show that certain variations of these problems (even

when the internal structure of the phylogenetic tree is known) are NP-hard.

1.5 Thesis overview

In Chapter 2, we describe the standard parsimony optimization criteria and algorithms for small

phylogeny problem. In particular, we describe Fitch's algorithm for unweighted parsimony and

Sankoff's algorithm for weighted parsimony. Both algorithms are a basis for our results.

In Chapter 3, we introduce our version of the small phylogeny problem. This is also based on

CHAPTER I . RVTRODUCTION

parsimony, but assumes a rooted character state tree is given, called character tree. Extending from

two kinds of non-congruences considered by Lipscomb, we distinguish five inconsistencies between

character tree and phylogenetic tree which are separation, transitivity, inversion, addition and negli-

gence. Separation and transitivity corresponds to Lipscomb's scattering and hierarchical discordance

respectively. Moreover, Lipscomb limits the scattering on the level of leave species, however sep-

aration extends it to also include the internal hypothetical ancestral species. Hence separation can

detect the scattering invisible on leaves. Inversion follows from Camin and Sokal's assumption that

evolution is irreversible. Addition indicates that the order of the states in the transformation series

conflict with the cladogram but not caused by transitivity. Finally negligence indicates that the order

of the states in the transformation series is not reflected on the phylogenetic tree. Our goal to the

small phylogeny problem is then to label the phylogenetic tree so as to minimize inconsistencies,

with the character tree. This approach is modeled on the tree minor structure. Extending the notion

of tree minor, we define the rooted-minor as both phylogenetic tree and character trees are rooted.

To allow for inconsistencies, two relaxations of rooted-minor, relax-minor and pseudo-minor,

are defined. We introduce two new cost functions, bag cost and arc cost , corresponding to the

unweighted and weighted parsimony respectively. Using these in our scoring functions, with relax-

minor and pseudo-minor yields the problems under study in this thesis.

Chapter 4 shows two NP-complete results, namely that the decision problem of rooted-minors

is NP-complete when the leaves of the host tree are not prelabeled, and the problem of finding

minimum relax-minor bag cost is also NP-hard irrespective of leaf labels.

In Chapter 5, we give linear time algorithms for the small phylogeny problems for both minimum

pseudo-minor bag cost and minimum pseudo-minor arc cost. We contrast our algorithm for finding

the labeling with minimum pseudo-minor arc cost with Sankoff's algorithm, which outputs the same

labeling with the minimum arc cost since a cost matrix can be transfered from a character tree easily.

For this limited case, our algorithm yields a linear time speeding. We also present a linear time

algorithm for the decision problem of rooted-minor when the leaves of the host tree are prelabeled.

Our method can be applied to both character evolution analysis and phylogenetic tree inference.

Chapter 6 describes three experiments we conducted on the data sets from previous work. In first

experiment, following Lipscomb's idea of testing character trees while there are multiple phyloge-

netic trees [Lip92], we perform the test based on her data, and show that our metrics detect the same

worst character tree as what she found. Second experiment is to test the hypothesis of the evolution

of behavioral characters proposed by van Tets [vT65] on a best estimate phylogenetic tree of pele-

caniforms followed the work of [MKG96]. It turns out that van Tets's hypothesis does not have the

CHAPTER 1. INTRODUCTION 7

best score compared with other alternative hypothesis under our metric. The last experiment aims

to compare several phylogenetic trees of anura, which are independently constructed from different

data source such as morphological data and molecular data [KF69] [FC93] [JMHM95], using three

character trees from [a 6 9 1 and [Ing67]. The one constructed from molecular data is found to be

mostly inconsistent with character trees.

We conclude in Chapter 7 with some summary remarks and open problems.

Chapter 2

Background and Definitions

2.1 Preliminary definition

Let G = (V (G) , A(G)) be a directed tree with vertex set V (G) and arc set A(G). The symbol

(u , v) will represent the arc from u to v.

Given two vertices u and v of G, if there is a directed path of length 2 1 from u to v, then we

say u is an ancestor of v and v is an descendant of u; this is denoted by u 4 v, and the unique path

from u to v in G is denoted by u + v. In particular if (u , v) E A(G), then we say that u is the

parent of v and v is the child of u. If u f: v and v f: u, then we say u and v are incomparable; this

is denoted by u oo v.

A rooted tree is a directed tree with a unique vertex called root having no parent, and every other

vertex having exactly one parent. The degree of a vertex u E V (G) is the number of children it has.

The degree of G is the maximum degree of all of its vertices. The height of G is the length of the

longest path from the root to a leaf. For each internal vertex u E V (G) , let G, denote the sub-tree

of G rooted at u. The set of all leaves in G is denoted by L(G).

Definition 1. A vertex u is the least common ancestor of vl ,212, . . . , vk, written

u = LCA(vl, vz, ..., vk) , if u 4 vj for j = 1,2,. . . , k, and for any other vertex u' so that

u1 4 9 for j = 1,2,. . . , k, we also have u' 4 u.

Definition 2. Given two vertices u and v of G, if u 4 v, then the distance d(u, v) from u to v is the

number of arcs on the path (u, . . . , v) in G; otherwise d(u, v) = m.

CHAPTER 2. BACKGROUND AND DEFINITIONS

2.2 Small phylogeny problem

Given a rooted tree G and a finite set C together with a function p := L(G) -+ C U { E) , where C

is called the set of all possible states of a character, and E $! C , we say that a function 1 on V (G)

is p-constrained if either for every u E L(G), we have p(u) = E , or for every u E L(G), we have

p(u) # E and 1(u) = p(u). Since for a given phylogenetic tree in the small parsimony problem,

the character state of the species represented by the leaves are given, we will mainly consider p for

which p(u) # E for every u E L(G). However to better study the complexity of the underlying

problems, we allow p = E .

The pair (G, p) is called a phylogenetic tree if leaves of G represent a set of extant species,

internal vertices of G represent hypothetical ancestors, and for each leaf u E L(G) the character of

the species v is in the state p(v). A triple (G,p, I) is a fully labeledphylogenetic tree if (G,p) is a

phylogenetic tree and 1 : V (G) -t C is a p-constrained labeling.

Given phylogenetic tree (G,p) , the classical small phylogeny problem asks to find a labeling 1

such that (G,p, 1) is a fully labeled phylogenetic tree and a certain score function (involving 1) is

minimized. Note that the labeling 1 determines the state of the character for each species in G; i.e.

as a result we assume that l (v) E C is the character state of the species v E V (G) .

2.3 Previous work

Parsimony provides one approach to the small phylogeny problem. There are various types of par-

simony criteria in which transformations between character states may be constrained. They differ

primarily in their optimality criteria, the weighting of the transformations permitted, and in the actual

algorithms utilized to find the minimal cost for the given phylogenetic tree. However they all assume

that each character develop independently. In this chapter, we will review five most commonly used

parsimony criteria and explain two implementations.

Wagner parsimony was based upon the work of Wagner(l96 1) and formalized by Frarris(l970) [Far70].

The states of a character are measured on an interval scale, i.e. a transformation fiom one state to

another must pass through all intermediate ordered states which are presumably known. For exam-

ple, if C = {a, b , c, d) and the order of four states is a, b, c and d , then a transformation fiom a to b

would be one step, fiom a to c two steps, and from a to d three steps. However free reversibility of

states is allowed, e.g. a transformation fiom c to a is permissable and has the same steps as the one

fiom a to c.

CHAPTER 2. BACKGROUND AND DEFINITIONS

Fitch parsimony (Fitch 1971) [Fit711 is a generalized version of Wagner parsimony by allowing

unordered states. Once again free reversibility is allowed and transformation from any state to any

other state has constant cost. In the above Wagner parsimony example, a transformation from a to

b, from b to a, from a to c, from c to a, from a to d and from d to a would all take one step.

Both Wagner and Fitch parsimony allow free reversibility of states, but there are situations in

which character states may be constrained in such a way that certain transformations are considered

either highly unlikely or impossible. Dollo parsimony (Fams 1977) [Far771 was introduced to

accommodate those evolutionary scenarios. It is especially usefil for restriction sites data where

a site is difficult to gain but easy to lose, therefore the two transformations have to be weighted

accordingly. However Dollo parsimony requires the state polarity to be prespecified.

Camin-Sokal parsimony (Carnin and Sokal 1965) [CS65] assumes evolution is irreversible, i.e.

once a state has been acquired it may never be lost. A priori knowledge about state evolution is

required.

Finally generalized parsimony [SO901 [SC83] assigns a cost to every possible transformation

of states, often represented as a k * k matrix M, where k = (C(and Mij represents the cost of the

transformation from state i to state j. All the above parsimony criteria can be treated as special cases

of a generalized parsimony since the matrix can be weighted to correspond to Fitch, Wagner, Dollo

and Camin-Sokal parsimony.

Each of the above five optimization criteria has its own implementation when applied to the

small phylogeny problem. In what follows, we present Fitch's algorithm for Fitch's parsimony

and Sankoff's algorithm for generalized parsimony. Our techniques borrow heavily from them.

Originally, both algorithms consider characters separately and assume the given phylogenetic tree is

a binary tree. In this thesis, both algorithms are generalized to also accept trees that are not binary.

2.4 Fitch's algorithm

Fitch's Algorithm is used to find the minimum number of state changes for the given phylogenetic

tree.

Input: A phylogenetic tree (G ,p) with degree 6, and a single character with a state set C of k

possible values.

Output: A labeling I such that (G,p , I) is a full labeled phylogenetic tree with the minimum

number of state changes.

Description: There are two steps. In the first step, the tree is traversed in postorder to assign a set

CHAPTER 2. BACKGROUND AND DEFINITIONS 1 1

of possible states S, A to each vertex v E V(G) . If v is a leaf, then let S, := {p(v)) . Otherwise,

let u1, U Z , . . . , uj be v's children where j is the degree of v (j < 6). If S,, n S,, . . . n Suj # 0 then

S, := S,, n S,, .. . n S,,, else S, := S,, u S,, ... u SUj.

In the second step, the tree is traversed in preorder to assign values of I to each internal vertex

v E V(G) . Let u be the parent of v. If 1(u) E S,, then I(v) is assigned 1 (u) . Otherwise the algorithm

arbitrarily assigns any t E S, to l (v) (including the root). Finally the total number of state changes

equals the total number of union operations in the first step.

Complexity: For each vertex v E V(G) , it takes O(lc 6) time to compute S, in the first step, and

again O(k) time to computer 1 (v) in second step. Therefore the total running time is O(IV(G)I. k.6).

When G is a binary tree, then the running time is O((V(G) / . k).

Example:
Figure 2.1 shows an example ran Fitch's algorithm on a four species binary phylogenetic tree

and a character with a states set C = {a , c,g) . (a) is the input phylogenetic tree (G,p), (b) is the

intermediate result after first step, and (c) is the full labeled tree (G, p, 1) after the second step. The

asterisks in (b) mark the vertices where S, n S,,, = 0. The minimum state changes of this tree is

two.

Figure 2.1 : An example of Fitch's Algorithm for a bspecies binary phylogenetic tree.

2.5 Sankoff's algorithm

Sankoffs algorithm [SC83] is a generalization of Fitch's algorithm that allows different costs for

transformations between different states.

CHAPTER 2. BACKGROUND AND DEFINITIONS 12

Input: A phylogenetic tree (G, p) with degree 6, and a k * k cost matrix M for a single character

with a state set C of k possible values.

Output: A labeling 1 such that (G,p, 1) is a full labeled phylogenetic tree with minimum cost

of state changes.

Description: There are two steps. In the first step, the tree is traversed in postorder. For each

vertex v E V(G) and each state t E C, compute a quantity St(v) which is the minimum cost of the

subtree G, when I(v) = t . If v is a leaf, then St(v) := 0 for t = p(v), and St (v) := oc fort # p(v).

Otherwise St(v) = C(minxEc{Mtx + Sx(ul)} + . . . + minyEc{Mty + Sy(uj)) where 211,. . . , u j

are children of v (j I 6).

In the second step, the tree is traversed in preorder to determine the value of 1 for internal

vertices v E V(G). If v is the root, then l(v) := argmintEc St(v). Otherwise, let u be v's parent,

l(v) := argminx,c(M~~,~x + Sx(v)). It is easy to see that the minimum cost of G is mint,c St(g)

where g is the root of G.

Complexity: For each vertex v E V(G), it takes O(k . 6) steps to compute l(v), so the total

running time is O(I V(G) I . k .6). Again if G is a binary tree, then the running time is 0 (I V(G) / . k).

Example:

Figure 2.2 shows an example ran Sankoff's algorithm on a four species binary phylogenetic tree

and a cost matrix on a character with the states set C = { a , c, g}. In Figure 2.2, (a) is the input

phylogenetic tree (G,p), (b) is the cost matrix, (c) is the intermediate result after the first step, and

(d) is the full labeled tree (G,p, 1) after the second step. In (c), three cells besides each vertex

v E V(G) show S,(v), S,(v) and S,(v) from the left to right respectively. The minimum cost of

this tree is two and the root of G can be labeled as either c or g with the same cost.

CHAPTER 2. BACKGROUND AND DEFINITIONS

(a) @) (4 (a

Figure 2.2: An example of Sankoff's Algorithm for a 4-species binary phylogenetic tree.

Chapter 3

Parsimony With General Character

Evolution

For C the set of states of a character, we assume that partial information about the evolution of the

states is known and is represented as a rooted tree. For two vertices a and b of the tree, a 4 b, if and

only if the state b is derived from the state a.

Given two rooted trees, the character tree H and the phylogenetic tree (G, p) , we must find a

labeling 1 such that (G,p, 1) will be a fully labeled phylogenetic tree such that for all two states

a, b E C the following two conditions are satisfied.

(i) If a 4 b, then for every pair of vertices u, v E V (G) with L(v) = a and l(u) = b, u # v ;

(ii) If a w b, then for every pair of vertices u, v E V (G) with l (v) = a and L(u) = b, u w v.

Extending from Lipscomb's two non-incongruences, one can distinguish five types of inconsis-

tencies between the evolutionary order of species given by (G, p , I) with the order of states given by

H. (see Figure 3.1 .)

Definition 3. The following are five types of inconsistencies between the evolutionary order of

species given by (G, p, 1) and the order of states given by H:

0 A transitivity occurs if for some a, b E V (H) a 3 b, (a, b) @ A(H) , and for some (u , v) E

A(G), 1 (u) = a and l(v) = b.

0 An addition occurs if for some a, b E V (H) u w b, but for some u, v E V (G) with l (u) = a

and l(v) = b either u 4 v or v 3 u.

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOL UTION 15

A separation occurs if there exist three vertices u, V, w E V (G) SO that 1 (u) = 1 (w) # 1 (v)

andu + wand v 4 u andv 4 w.

An inversion occurs if for some a, b E V (H) a 4 b and for some u, v E V (G) SO that

1 (u) = b and 1 (v) = a, u 4 v.

A negligence occurs if for some (a, b) E A(H) there is no (u, v) E A(G) with 1(u) = a and

l (v) = b.

Separation and transitivity correspond to Lipscomb's scattering and hierarchical discordance

respectively. However, separation is more general than scattering as it applies to all nodes, not

just leaves. Specifically, scattering is the non-adjacent, multiple occurrence of the same state in

species on a phylogenetic tree. Lipscomb believes separation is independent of the character tree,

and therefore only considers separation at the leaves. Figure 3.2 (a) illustrates scattering where

two species in state b are not adjacent. However, the occurrence of separation is dependent on the

character tree. In Figure 3.2 (b), we show a separation in (G, p, I) which is not a scattering. Thus

separation is a more powerful concept than scattering as it can detect potential scattering invisible

to the phylogenetic tree itself.

In constructing phylogenetic trees, all five inconsistencies should ideally not occur. It is not

difficult to see that conditions (i) and (ii) prevent inversions and additions, respectively. If the other

three inconsistencies also did not occur then the tree H would be a rooted-minor of the tree G

(Formal definition of rooted-minor as well as all its modifications mentioned below are given in

the next section.) We will see however, that deciding whether H is a rooted-minor of G is an

NP-complete problem.

To allow for some natural inconsistencies, we generalize the notion of rooted-minor.In particular,

if H is a relax-minor of G, then inversions and negligences are disallowed, and if H is a pseudo-

minor of G, then inversions and additions are disallowed. In Chapter 4 and Chapter 5 , we prove that

deciding whether H is a relax-minor of G is an NP-complete problem, but deciding whether H is a

pseudo-minor of G can be done in polynomial time.

3.1 Minors and their relaxations

Let H and G be two trees. We say that H is a minor of G, if H is isomorphic to a tree obtained

from G by contracting edges. The corresponding decision problem (to decide whether H is a minor

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Inversion Transitivity

Addition Separation

Negligence

Figure 3.1: Five types of inconsistencies. Solid lines indicate direct derivation, dash lines indicate
transitive derivation.

of G) is intractable, see [MR92]. Since both the character tree and the phylogenetic tree are rooted

trees and, moreover, the phylogenetic tree has leaves prelabeled, the concept of minor does not quite

model our problem. In what follows, we define three modifications of the minor concept. In these

modifications we assume trees are rooted and leaves of the host graph are prelabeled.

Definition 4. Given two rooted trees H and G, let 1 : V(G) -+ V(H) be a function. Let v E V(H),

the set of components in the sub-graph B: induced by vertices of G in 1-l(v) is called the bag-set

of v induced by 1. Any particular component of Bh is referred to as a bag of v; see Figure 3.3. The

number of components C(B;) of B: is the number of bags of v induced by 1.

Definition 5. Given two rooted tree H , (G, p) and a p-constrained functions 1 : V(G) 4 V(H), if

for an arc (a, b) E A(H), there exists (u, v) E A(G) such that l(u) = a , l(v) = b, we say (a, b) is

realized by 1 on (u, v). Furthermore let r((a, b), 1) denote the number of arcs in A(G) that realize

b , b) by 1.

Definition 6. Given two rooted trees H and (G,p), let M (H , G , p) be the set of all p-constrained

functions 1 : V(G) 4 V(H) satisfying the following two conditions:

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.2: Differences between scattering (defined by Lipscomb) and separation. (a) is Lipscomb's
example of scattering where two species in state b are not adjacent to each other. With (b) as
(G, p) and (c) as H, we show that separation occurs in (c) which is the (G, p, I) , although Lipscomb
considers (b) without scattering.

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.3: Dash lines from vertices x , y, x', y' E V (G) to vertex v E V (H) illustrate the functiox
1. The bag-set ~h consists of two shadowed areas in G, i.e. C (B ~) = 2. Every vertex in the bag-se
B, has the same image v in H.

Figure 3.4: Three possible relationships between two different vertices v and u in the same bag.

(1) For each vertex a E V (H) , we have C(B;) = 1.

(2) For each arc (a, b) E A (H) , r ((a , b), 1) > 1.

We say that H is a rooted-minor of (G,p) , denoted by H I,, (G y p) , if M (H , G ,p) # 0.

Figure 3.5 shows an example of 1 E M (H , G, p) where p # E .

It is not hard to see that the corresponding decision problem-Rooted minor problem-is in-

tractable when p = 6 (the details of the proof are in Chapter 4). Conversely, the rooted minor

problem is in polynomial time if p # E (the details of the algorithm are in Chapter 5). Now let 1
us consider the small phylogeny problem where H is the character tree and (G,p) is the phyloge-

netic tree. We will verify that none of the five inconsistencies will occur when H I,, (G,p) , i.e.

M (H , GI P) # 0.

Lemma 1. Given two rooted trees H and (GI p). For any 1 E M (H I G , p) and,for any two dzgerent

vertices a, b E V (H) with a 3 b, there exists two vertices u , v E V (G) such that 1(u) = a, l (v) = b

and there is a directed path of length 2 d(a, b) from u to v .

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.5: An example of 1 E M (H , G , p) .

Prooj If (a , b) E A (H) , this follows from (2) of Definition 6 and we have d(u , v) = d(a, b).

Thus, suppose (a , b) $! A (H) . Then there must be a directed path from a to b in H , say

(X I , x2,23, . . . , 2,) with x1 = a and x , = b. According to (2) of Definition 6, for every arc

(x i , xi+l) E A (H) (i = 1 , . . . , n - l) , there exists an arc (ui , vi) E A (G) such that l(u,) = xi and

l (v i) = xi+l. In order to find a path from u1 to vn-1, it is enough to find a path from vi to ui+l for

e a c h i = 1 ,2 , . . . , n - 2 .

Since 1 (v i) = 1 (ui+l) = xi+l, according to (1) of Definition 6, vi and ui+l belong to the same

bag ~ i ~ + , . If vi = ui+l, then there is a trivial path of length 0 joining vi and ui+b Otherwise,

either vi 4 ui+l or ui+l 4 vi or vi + ui+l; see Figure 3.4. Since G is a rooted tree, i.e. every

vertex in G has only one parent, and since ui is the parent of vi, the only possibility remaining is

vi + ui+l. It follows that there must be a path from vi to ui+l in G . Thus, a path from ul to vn-1

can be constructed by going through the arc (u i , v i) to vi, following the path vi + Ui+l to Ui+l for

each i = 1 ,2 , . . . , n - 2, until we reach the arc (u ~ - ~ , vnP1) . See Figure 3.6 for an example of

n = 4. Furthermore, the length of the path u1 + vn-1 is at least d(a, b) which is attained when

vi =ui+l f o r a l l i = 1 , 2 , . . . , n - 2 .

0

Theorem 1. Given two rooted trees H and (G,p) . I f H I,, (G , p) , then none of thejve inconsis-

tencies will occur for any 1 E M (H , G,p) .

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.6: An example of a, b E V(H) with a 4 b has a corresponding path ul 4 in G with
l(u1) = a and L(v3) = b.

ProoJ: Since any 1 E M (H , G, p) satisfies (1) and (2) of Definition 6, both separation and negli-

gence cannot occur. Next we prove that the theorem is also true for the remaining three inconsisten-

cies.

0 If transitivity occurs, there must exist two vertices a, b E V(H) so that a 4 b, (a, b) 6 A(H),
and for some (u, v) E A(G), l(u) = a and l(v) = b. On the other hand, according to

Lemma 1, there exists two vertices u' and v' such that 1(d) = a, l(vl) = b, and there is a

path P = u' -+ v1 of length 2 d(a, b) > 1 from u' to v'; see Figure 3.7. Since v and v' are

in the same bag B:, if v # v', then either v 4 v' or v' 4 v or v + v'. Since u is the parent

of v, we can exclude the cases v' 4 v, and v + v', because they both imply the existence of a

parent(# u) of v. Similarly v' has a parent on the path P and hence we cannot have v 4 v' as

well. Therefore v = v'.

Figure 3.7: Transitivity cannot occur for any 1 E M (H , G, p) .

Furthermore, u and u' are also in the same bag B:. If u = u', then there exist two paths

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION 21

from u to v in G, one is the arc (u , u) , and the other is the path u' -+ u of length > 1. This

contradicts the fact that G is a tree. Therefore we suppose u # u'. If u 4 u', then there are

two paths joining u and u; if u' 4 u, then there are two paths joining u' and u; and if u' + u,

then there are two paths joining LCA(u, u') and u. Therefore transitivity can not occur for

any 1 E M (H , G , p) .

a If addition occurs, there must exist two vertices a, b E V (H) so that a + b, and for some

u , v E V (G) with l (u) = a and l (u) = b either u 4 u or v 4 u . Without loss of generality,

we assume that u 4 v. Let c = LCA(a , b). Applying Lemma 1 to vertices c and a, there

exist two vertices w and u f such that 1 (w) = c, l (u f) = a, and there is a path w -+ u' from w

to u'. Similarly applying Lemma 1 to vertices c and b, there exist two vertices w' and v' such

that 1(wt) = c, l (v t) = b, and there is a path wf + v' from w' to v'; see Figure 3.8.

Clearly, u and u' are in the same bag B:. If u # u', since u' has a parent on the path w -t u',

we can exclude the cases u' 4 u , and u' + u. Thus u 4 u f if u # u'. v and u' are also in the

same bag B:. If v # u', since u has a parent on the path u -t v and u' has a parent on the path

wf + v f , any of the three relationships between v and v' is impossible. Therefore u = v'.

With respect to w and w f , which are also in the same bag B:, both w = w' and w # w' are

possible. If w = w' or w < w', then there are two paths joining w and u; if w' < w, then

there are two paths joining w' and v; and if w + w, then there are two paths joining v and

LCA(w, w'). This contradicts the fact that G is a tree and so addition cannot occur for any

Figure 3.8: Addition cannot occur for any 1 E M (H , G , p).

a If inversion occurs, there must exist two vertices a, b E V (H) SO that a 4 b, and for some

u , v E V (G) with 1(u) = a and l (u) = b, and there is a path u + u. On the other hand, by

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION 22

Lemma 1, there exist two vertices u' and v' such that 1 (u') = a, 1 (v') = b, and there is a path

u' -+ v' from u' to vl; see Figure 3.9. Since v and v' are in the same bag B:, if v # v', then

v' 4 v because v' has a parent on the path u' -+ v'. u and u' are also in the same bag B:,

if u # u', then u 4 u' because u has a parent on the path v -+ u. However, irrespective of

whether u = u' or u -: u', we can always find a loop going through u, u', v' and v. Therefore

inversion cannot occur for any 1 E M (H , G, p) .

Figure 3.9: Inversion cannot occur for any I E M (H , G, p).

Thus we exclude the possibility for any five inconsistencies to occur for any 1 E M (H , G, p) .

0

However in practice, some of the five inconsistencies may happen which means H $,, (G, p) .

Hence we consider relaxations of rooted-minors in the following way.

Definition 7. Given two rooted trees H and (G,p), let R(H, G, p) be the set of all p-constrained

functions 1 : V (G) -t V (H) satisfying the following two conditions:

(1) For each arc (a, b) E A(H) , r ((a , b) , 1) 2 1.

(2) If for some u, v E V (G) u -: v, then l (v) + I(u) in H.

We say that H is a relax-minor of (G, p) if R(H, G, p) # 0.

See Figure 3.10 for a specific example of relax-minor where (I-'(a) / = 2,11-I (b) I = 2.

Note 1. Given two rooted trees H and (G,p), any 1 E R(H, G,p) is surjective and maps the root

of G to the root of H, i.e. l (g) = h. (g and h are used to denote the roots of G and H respectively

hereafter.) Furthermore, for every v E V (H) c(B;) 2 1. If there exists an 1 E R(H, G,p) such that

c(B;) = 1 for every v E V (H) , then H I,, G.

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.10: Relax-minor

In terms of the inconsistency between H and (G,p) , it is not difficult to see that (1) and (2)

of Definition 7 prevent negligence and inversion. However, transitivity, addition, and separation

may occur. Figure 3.11 shows an example of an H which is a relax-minor of (G ,p) , but there are

two separations (because C (B ;) = 2 and C(B;) = 2), a transitivity on the arc (u5, 212) (because

1 (us) 4 l(u2) and (1 (us) , 1 (~ 2)) @ A(H)) , and an addition on the arc (us , us) E A(G) (because

ug 4 u3 and 1 (u s) + 1 (~ 2)) .

Figure 3.11: H is a relax-minor of (G , p) in which addition, transitivity and separation occur.

However, the problem of deciding whether H is a relax-minor of G remains intractable in both

cases, p = E and p # E ; see Chapter 4.

Therefore we will consider another relaxation of the concept of rooted-minor, called pseudo-

minor.

Definition 8. Let H and G be directed trees. A function 1 : V (G) -, V (H) is smooth if for every

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION 24

arc (u, v) E A(G), there is a directed path from l (u) to 1 (TI) in H ; see Figure 3.12. Note that a single

vertex is considered as a directed path of length 0.

Figure 3.12: Smooth hnction

Definition 9. Given two rooted trees H and (G, p) , let Q(H, G, p) be the set of all smooth p-

constrained functions I : V (G) -, V (H) . We say that H is apseudo-minor of G if Q(H, G,p) # 0.

Since 1 is a smooth fkction, (2) of Definition 7 is satisfied; hence pseudo-minor extends the

notion of relax-minor. Note that rooted-minor implies both relax-minor and pseudo-minor, but

relax-minor and pseudo-minor are incomparable; see Figure 3.13, 3.14 and 3.15 for examples.

Similarly, it is easy to see that the concept of smooth function prevents inversion and addi-

tion when H is a pseudo-minor of (G,p), but transitivity, separation, and negligence may occur.

Figure 3.16 shows an example of an H which is a pseudo-minor of (G,y) , but there is a sepa-

ration (because C(B;) = 2), a transitivity on the arc (us, v3) E A(G) (because l (~ ~) < l (~ ~)

and (l(vs) , l (vg)) $ A(H)), and a negligence on the arc (a , b) E A (H) (because there is no arc

(u,v)inA(G) such that l (u) = a and l (v) = b).

If p = E, then it is not difficult to see that any H is a pseudo-minor of any G (just map every

vertex of G to the root of H). If p # E, then the problem of deciding whether H is a pseudo-minor

of G can be solved in polynomial time. In our approach to small phylogeny problem, we define two

natural metrics and will search for feasible labellings that minimize these two metrics.

The following table summarizes the occurrence of the five inconsistencies in rooted-minor,

relax-minor, and pseudo-minor respectively.

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.13: H is a relax-minor of (G , p), but not rooted-minor since the bag number of b E v (H)
must > 1.

Figure 3.14: H is a relax-minor of (G ,p) , but not pseudo-minor since c + b in H.

Figure 3.15: H is a pseudo-minor of (G,p) , but neither rooted-minor nor relax-minor since it's
impossible for any labeling function 1 to have both r ((a , c), 1) = 1 and r ((c , d), 1) = 1.

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

Figure 3.16: H is a pseudo-minor of (G, p) in which transitivity, separation and negligence occur.

I rooted-minor I relax-minor I pseudo-minor
inversion 1 N

(addition 1
I I I

N
transitivity
separation

Table 3.1 : Properties of rooted-minor, relax-minor and pseudo-minor

N

I

negligence I I

N
Y

N
N

N

Y N

Y
Y
N

Y
Y

CHAPTER 3. PARSIMONY WITH GENERAL CHARACTER EVOLUTION

3.2 Two metrics for parsimony with general character evolution

The two standard parsimony criteria for measuring the quality of I correspond to the unweighted and

the weighted cost. The unweighted parsimony assumes a constant cost for every state change, while

the weighted parsimony treats the different state changes differently by taking the cost of each state

change into consideration. In our approach, we define two metrics to reflect these two criteria, bag

cost for unweighted and arc cost for weighted.

Definition 10. Given two rooted trees H and G together with a labeling 1 : V (G) -+ V (H) , the

bag cost of 1 is bcost(H, G , I) := C C(B;).
VEV(H)

Definition 11. Given two rooted trees H and G together with a labeling 1 : V (G) -t V (H) , the arc

cost of 1 is acost(H, G , I) := C d(l(u) , l (v)) .
(u,v)€A(G)

It is not hard to see that bag cost expresses the number of state changes, i.e. the number of state

changes is the bag cost minus 1, and the arc cost weights each state change by the distance between

the two states. Furthermore, bag cost and arc cost are also measures of scattering and hierarchical

discordance, since a bag cost bigger than (V (H) I implies the occurrence of scattering, and an arc

cost bigger than IA(H)I indicates the occurrence of hierarchical discordance. Therefore, we will

measure the quality of relax-minor and pseudo-minor mappings in terms of their bag cost and arc

cost, respectively. For this purpose, we define the three problems. Given a character tree H and a

phylogenetic tree (G , p).

Problem 1. Minimum relax-minor bag cost. Find a labeling I E R (H , G , p) such that the bag cost

of I is rbcost(H, G , p) := min{bcost(H, G , 1 ') 1 I' E R (H , G , p)) .

Problem 2. minimum pseudo-minor bag cost. Find a labeling 1 E Q (H , G, p) such that the bag cost

of 1 is qbcost(H, G , p) := min{bcost(H, G , 1') I 1' E Q (H , G , p)) .

Problem 3. minimum pseudo-minor arc cost. Find a labeling 1 E Q (H , G , p) such that the arc cost

of 1 is qacost(H, G ,p) := min{acost(H, G , 1 ') (I' E Q (H , G ,p)) .

Note that for the relax-minor mapping the distance function d might be unbounded and therefore

the arc cost measure makes sense only for pseudo-minor mappings.

In the remainder of this thesis, we study the complexity of these three problems. We show that

Problem 1 is NP-complete, and both Problem 2 and Problem 3 can be solved in polynomial time.

Chapter 4

Complexity Results

Theorem 2. [MR92] Given two unrooted tree H and G. It is NP-complete to decide whether H is

minor of G . We call this the unrooted tree minorproblem

Theorem 3. Given two rooted trees H and (G,p). It is NP-complete to decide whether H is a

rooted-minor of (G, p) when p = E. We call this the rooted tree minor problem.

Proof: We show that the unrooted tree minor problem can be reduced to the rooted tree minor

problem.

Let H and G be an instance of unrooted tree minor problem. We construct new rooted trees H'

and Gr as follows:

Let HL be a rooted tree obtained from H by choosing an arbitraty vertex u E V(H) to be the

root of HL. For each vertex vi of G (i = 1,2, . . . , IV(G)(), let Gii be a rooted tree obtained from

G by choosing wi to be the root of G:%.

Define H' to be a rooted tree with root a (a differs from any vertex of H or G) where a has

children u, p2, . . . , p,, and HG is the sub-tree rooted at u; see Figure 4.1 (a). Define G' to be a

rooted tree with root y (y differs from any vertex of H or G) where y has children vl, w2,. . . , v,
(n = IV(G) I), and GLi is the sub-tree rooted at vi for i = 1, . . . , n; see Figure 4.1 (b).

Claim 1. H is a minor of G rfHT is a rooted-minor of G'.

Proof: If H is a minor of G, suppose vi E V(G) (1 5 i 5 n) is in the bag-set of u E V(H), then

HL is a rooted-minor of G',,. Without loss of generality, assume i = 1. Now let the bag-set of a be

{y)., and the bag-set of P2, . . . ,on be {G;,), . . . , {G',,) respectively. Thus, just defined mapping

shows that HT is a rooted-minor of G'.

CHAPTER 4. COMPLEXITY RESULTS

Figure 4.1: Construct rooted trees H' and G' from unrooted trees H and G.

On the other hand, if H' is a rooted-minor of GT, consider the bag-set B1 of cr and the bag-set

Bz of u. Because cr and y are degree n vertices, B2 must be contained in GLi for some i (1 5 i 5 n).

Then HL is a rooted-minor of GG, and it follows that H is a minor of G. 0

Now, Claim 1 together with Theorem 2 proves the NP-completeness of the rooted tree minor

problem. 0

Theorem 4. It is NP-hard to solve Problem I when p = E.

Proof: The proof is based on a reduction from the rooted tree minor problem. Suppose there is a

polynomial-time algorithm A that can find 1 such that bcost(H, G, 1) = rbcost(H, G, p). We can

decide whether H <,, G simply by comparing bcost(H, G, 1) with IV(H)/ .

If they are equal, according to (1) of Definition 7, we have C(B;) = 1 for every a E V(H). This

implies 1 E M (H , G, p), and therefore H ST, G.

If bcost(H, G, 1) > IV(H)I, then H cannot be a rooted-minor of G, since H ST, G contradicts

the assumption that bcost(H, G, 1) > IV(H) 1 . Thus, H I,, G if and only if bcost(H, G, 1) =

IV(H)I. According to Theorem 3, it is NP-complete to decide whether H IT, G when p = e, so

it must be NP-hard to find a labeling 1 E R(H, G, p) such that bcost(H, G, 1) = rbcost(H, G, p)

when p = E . 0

Theorem 5. It is NP-hard to solve Problem I when p # e.

Proof: The proof is also based on the reduction from the rooted tree minor problem. However since

an input to Problem 1 has p # e in this theorem, an input to rooted tree minor problem cannot be

directly used as an input to Problem 1 as we did in the proof of Theorem 4. Therefore we need the

CHAPTER 4. COMPLEXITY RESULTS 30

following input construction process. Assume that two rooted trees Y and (2, q) (with q = E) are

given as an input to the rooted tree minor problem. We construct the corresponding input, H and

(G , p), to the Problem 1 as follows.

Initially, we set G to be a copy of 2 , i.e. G := 2 , and then for each leaf vi E L (Z) , we add

a pair of two new vertices v: and v: to G with v: joined to vi and v: joined to the root g. Thus,

IV(G) I = IV(Z)(+ 2 . 1 L (Z) I . Similarly we set H to be a copy of Y , i.e. H := G, and then for

each leaf vi E L (Z) , we add a new vertex wi to H with wi joined to the root h. Thus, IV(H)I =

IV(Y) I + 1 L (Z) I. Finally, we define the prelabels p of leaves in G as p(vi) := p(v:) := wi.

So far, we defined H and (G , p) fiom Y and Z ; see Figure 4.2.

Figure 4.2: Construction H and G from Y and Z

Next, we will prove the following two claims dealing with properties of H and G.

Claim 2. For every 1 E R (H , G,p), bcost(H, G , 1) 2 IV(Y)I + 2 . IL(Z)(

Proof: Since p(vi) := p(v:) := wi, and since vl, v: are separated by the root g which has to be

labeled as the root of H according to Note 1, it is not hard to see that for any feasible I, C (B ~ ,) 2 2

for each wi, i = 1, . . . , 1L(Z) 1 . Moreover, C(B;) 2 1 for any other vertex a E V (H) according to

(1) of Definition 7. The number of such vertices is IV(Y) (.

Therefore we have that bcost (H , G , 1) 2 IV(Y) I + 2 . I L (Z) 1. 0

Claim 3. There exists a labeling 1 E R (H , G ,p) such that bcost(H, G , 1) = IV(Y)I + 2 (L(Z)I i f

and only ifY I,, Z.

CHAPTER 4. COMPLEXITY RESULTS 3 1

Proof: We first suppose Y <,, Z. Then there exists a labeling 1' : V (Z) + V (Y) satisfying the

following three properties:

2. For each arc (a, b) E A(H) , r ((a , b), 1) >_ 1.

3. If there is a path from u to v in Z , then there is no path from l l (v) to l l (u) in Y .

To finish the proof in this direction, we construct a labeling 1 : V (G) + V (H) E R(H, G,p)

such that bcost(H, G , I) = J V (Y) I + 2 I L (Z) I . We define 1 as follows.

For each vertex v E V (G) that is also originally in Z , let l (v) := l l (v) , and for each pair of v,'

and vl (i = 1,2,. . . , IL(Z)I), let l(v:) := l (vr) := wi.

Therefore, C(B;) = 1, for each vertex a E V (H) that is also originally in Y , because of the

above property 1; and c(B;) = 2, for each vertex a E V (H) that is not originally in Y (these

vertices are essentially all the wi).

Moreover, by the above property 2 and 3, we also have 1 E R(H, G, p). So we have bcost(H, G, I) =

IV(Y) I + 2 1 L (Z) 1 , as required.

We second suppose that for some 1 E R(H, G) , bcost(H, G , I) = I V (Y) I + 2 I L (Z) 1. Based on

the proof of Claim 2, for any such 1, C(B;) 2 1, for each vertex a E V (H) that is also originally

in Y , and the total number of such vertices is IV(Y)I; C(B;) > 2, for each vertex a E V (H) that

is not originally in Y, and the total number of such vertices is (L(Z)I . Therefore for our labeling

1 , c(B;) = 1, for each vertex a E V (H) that is also originally in Y ; c(B;) = 2, for each vertex

a E V (H) that is not originally in Y.

Hence, we conclude that there is exactly one bag for each vertex a E V (H) that is also originally

in Y, and therefore Y I,, Z . Indeed, we can define 1' : V (Z) + V (Y) as l l (v) := l (v) for each

vertex a E V (Y) , and such labeling 1' satisfies the above three properties. The claim is proved.

Finally with respect to Claim 3, we can prove the NP-hardness of Problem 1 by contradiction.

Given Y and (2, q) (with q = E) as an input of the rooted tree minor problem, we construct the

corresponding input H and (G,p) of Problem 1 using the steps listed in Theorem 5. Suppose there

exists a polynomial algorithm A that can find a labeling 1 E R (H , G ,p) with bcost(H,G, I) =

rbcost(H, G,p) . Then we can decide if Y ST, Z simply by comparing bcost(H, G, I) with

IV(Y)I + 2 IL(Z)I. If they are equal, then Y I,, Z , otherwise Y cannot be the rooted-minor

of Z. However according to Theorem 3, it is NP-complete to decide whether Y I,, Z , so such an

algorithm A cannot exist.

CHAPTER 4. COMPLEXITY RESULTS

Chapter 5

Algorithms

5.1 Minimum pseudo-minor arc cost

The following is the algorithm for Problem 3.

Input: A character tree H and a phylogenetic tree (G:p).

Output: A labeling 1 E Q(H, G,p) such that acost(H, G, 1) = qacost(H, G,p).

Description: As an initialization, the algorithm assigns l(u) := p(u) for every u E L(G). Then

it traverses the tree G inpost-order to assign l(u) := LCA({l(v)l (u , v) E A(G))) for every internal

vertex u E V (G) . Note that l(u) is well defined, since all children of u already have their 1 value

defined before u is visited. Computation of LCA in the tree H can be done in constant time after

a preprocessing on H which also takes linear time, see [HT84]. The preprocessing algorithm can

easily be modified so that even computation of d(a, b) takes constant time for any given a, b E V (H)

with a 4 b. This tree preprocessing is performed on H in Line 1 of Algorithm 5.1.

The cost of each arc (u , v) is calculated as the distance between 1 (u) and 1 (v). Finally the total

arc cost of 1 is the sum of the cost of every arc in G.

Pseudo code:

Algorithm 5.1 Minimum-Pseudo-Minor-Arc-Cost(H,G,p)
1 preprocess H (build auxiliary trees) to speed up the computation of LCA ;

D initialization

2 sete:=O;

3 for each vertex u E V (G) do

4 if u is a leaf then

5 set 1 (u) := p(u);

CHAPTER 5. ALGORITHMS

6 else

7 set 1(u) := null;
D assigning labels and calculating arc cost

8 traverse the tree G in post-order, for each internal vertex u E V(G), do

9 set 1(u) := LCA(l(v)I(u, v) E A(G));

10 for each child v of u
11 set e := e + d(l(u), l (v));

D output result

12 output labeling function 1 and cost e;

Complexity: The preprocessing on H takes O(IV(H)J) time. Afier the tree preprocessing, it is

possible to determine both LCA and the distances of any pair of nodes in constant time. Computing

the LCA of 6 nodes can be reduced to successive 0(log2 6) iterations of the LCA for two nodes.

Therefore, for each internal vertex u E V (G) , it takes log2 6 time to compute l (u) . The total running

time for the labeling is O(IV(G) I . loga 6 + IV(H) 1) . In particular if G is a binary tree, then the time

complexity is O(IV(G)I + IV(H)I).

5.1.1 Proof of correctness

Lemma 2. For any labeling 1' E Q(H, G,p), and any internal vertex u E V (G) , either l l (u) =

LCA(p(v)Iv E L(Gu)) or l l (u) 4 LCA(p(v)lv E L(G,)).

Proof: Let X := {p(v)(v E L(G,)) and q := LCA(X). We will prove the lemma by excluding

the cases of q 4 ll(u) and q + l l (u) .

Suppose q 4 l l(u). Since q is the least common ancestor of X , there must exist an s E X

such that either s 4 ll(u) or s + l l (u) , otherwise q would not be the least common ancestor of X.

Let v be the leaf with p(v) = s. Either s 4 ll(u) or s + l l (u) , there is at least one arc (x , y) on

the path u -+ v such that d(l l (x) , l l (y)) = m; see Figure 5.1 (a). It contradicts the definition of

pseudo-minor, therefore l l (u) $ Q(H, G, p).

Suppose q + l l (u) . b's E X , if s 4 ll(u), the q 4 l l(u) since either q 4 s or q = s, it

contradicts the assumption that q + l l (u); on the contrary, if l l (u) 4 S, then there are two paths

from z to s where z = LCA(q, l l (u)) ; one is through l l (u) , and the other is through q since l (u) 4 s.

This contradicts the fact that H is a tree; see Figure 5.1 (b). Therefore the only possibility is that

s + l l (u) b's E X . Again it causes at least one arc (x , y) on the path u -+ v @(v) = s) such that

d(l f (x) , l l (y)) = m, so l l (u) $ Q(H, G,p) if q + l l (u) .

Thus any other labeling 1' E Q(H, G,p) must satisfy either l l (u) = q or l l (u) 4 q for any

CHAPTER 5. ALGORITHMS

Figure 5.1: (a): the arc cost of the path u -4 u in G, is infinite; (b): There exist two paths from
Z = LCA(l(u), l f (u)) to s.

internal vertex u E V (G) . 0

Since for the labeling 1 returned by Algorithm 5.1, l (u) = LCA({l(u)l(u, u) E A(G))) =

LCA(p(u)lv E L(G,)), we have the following corollary.

Corollary 1. For any other labeling 1' E Q(H, G,p), and any internal vertex u E V (G) , l l(u) =

1 (u) or I' (u) 4 1 (u) where 1 is the labeling returned by Algorithm 5.1.

Theorem 6. Algorithm 5.1 returns a unique labeling 1 E Q(H, G,p) such that acost(H, G, 1) =

qacost(H, G, p).

Proof: There is a directed path from 1(u) to l(u) in H for each arc (u , v) E A(G) because 1 (u) is the

least common ancestor of the labels of its children, i.e. either 1(u) 4 l(u) or 1(u) = l (v) . In other

words, 1 is a smooth fimction. Moreover, 1 is obviously p-constrained according to the initialization

of the algorithm. Therefore 1 E Q(H, G, p).

We prove acost(H, G, 1) = qacost(H, G, p) and the uniqueness of 1 by induction on the height

t of tree G.

In case t = 1, the theorem is obvious, because there is only one vertex, say u, and for any other

labeling 1' E Q(H, G,p) , l f (u) = 1(u) = p(u). The arc cost of such labeling is 0. Suppose that the

theorem is true for all trees of height t < n. We prove it is also true for trees of height t = n.

Consider a rooted tree G with height t = n. Let ul, v2, .., uk be the children of the root g of G.

We decompose G into k sub-tree; see Figure 5.2. Let Gi, i = 1,2, . . . , k, be the sub-tree of G rooted

at the vertex vi. Let pi be the prelabeling of leaves of Gi that is compatible with the prelabeling p of

G, i.e. for all i = 1,2, . . . , k, we set pi(u) = p(v) for all v E L(Gi).

Now we run Algorithm 5.1 on (H , G,p). Let 1 and c be the labeling hnction and arc cost

returned by the algorithm. Next we run Algorithm 5.1 on (H , Gi,pi). Let c, be the returned arc

CHAPTER 5. ALGORITHMS

Figure 5.2: Decompose tree G into Ic sub-tree G I , G2, . . . , Gk.

cost. Note that every internal vertex v E V (G i) will be assigned the same label as the label it gets

when running Algorithm 5.1 on (H , G , p) because the children vertices of v are not changed and so

does the least common ancestor of their labels.

It is easy to observe that c = Ci(ci+d(l (g) , l (v i))) . By induction we have c, = qacost(H, Gi , pi).

We will prove that c is the minimum cost by proving that any other labeling 1' E Q (H , G , p) will

produce more cost.

Let c' = acost(H, G , l ') , ci = acost (H , Gi , l1IV(Gi)). It is also true that c' = Ci (c i +
d(Lf(g), l'(vi)).

Now for each i = 1 , 2 , . . . , Ic , let GY be the tree obtained from Gi by joining a new leaf wi to

the root vi of Gi. Let py denote the leaf labeling of GY, where pY(v) := p(v) for all leaves v E Gi

except that py(wi) := l l (vi) . In Figure 5.3, GY on the right side has the labeling compatible to 1'

while the left one has the labeling returned by Algorithm 5.1.

Figure 5.3: GY

Note that every internal vertex u E V (G Y) except vi will get the same label by running Algo-

rithm 5. l on (H , G y , pY) and (H , Gi , pi) because the children vertices of u are not changed and so

CHAPTER 5. ALGORITHMS

Figure 5.4: (a) shows d(ll(vi), l (vi)) = d(ll(g), l (vi)) - d (l ' (g) , l1(vi)) and (b) shows

d(l'(g)l L(vi)) 2 d(l(g)l L(vi))

does the least common ancestor of their labels. As for vi, its label is ll(vi) in GY while it is l (vi)

in Gi. It is because G r has an extra leaf wi with py(wi) = l1(vi), and either l l(vi) 3 l(vi) or

l l(vi) = l(vi) by Corollary 1.

Let cy be the arc cost returned by Algorithm 5.1 on input (H , G y , py). If vi is a leaf, then

CY = d(ll(vi), l t (vi)) = 0 = ci. Otherwise c? 2 q + d(ll(vi), l (v i)) since vi has at least one child

in Gi, say X , and d(ll(vi), l (~)) = d(l f(vi) , l (vi)) + d (l (~ i) , l (~)) .

On the other hand, 1' remains a feasible labeling of GY, i.e. 1' E Q (H , GY, p?), with the edge

cost ci, since the cost on the arc (vi, w) is O.See the right G r of Figure 5.3.

Since GY is the tree with the height less than n, according to induction, we have

Besides, we have l l(vi) 4 l(vi) or l1(vi) = 1 (vi), l 1 (g) 4 1 (g) or l ' (g) = l (g) by Corollary 1. In

addition, g is the root implies that l ' (g) 4 ll(vi). Therefore it is also true that

(See Figure 5.4).

CHAPTER 5. ALGOIUTHMS

Substituting (5.2) and (5.3) into (5.1) gives the following:

Hence, c = x i (c i + d(l (g) , l (v i))) is the minimum arc cost compared to any other labeling

1' E & (H , G , P) .

0

Theorem 7. For any character tree H andphylogeny tree (G , p), Sunkoff's algorithm outputs the

same labeling as Algorithm 5.1 does.

Proof: As an input to Sankoff's algorithm, the cost matrix M can be generated from H by let-

ting Mij := d(i , j) for i , j E V (H) according to Definition 2. Let 1' be the labeling produced by

Sankoff's algorithm given (G , p) and M as input. Since for each arc (u , v) E V (G) , d (l l (u) , l l (v)) #
m which means there is a path from l l (u) to l l (v) in H , otherwise d(l l (u) , l l (v)) = m and then

acost(H, G , 1') = m. Therefore 1' E Q (H , G,p) . According to Theorem 6,11 = 1. 0

However, Algorithm 5.1 has better performance, since it runs in linear time O(IV(G) I . logz 6 +
IV(H) I), compared to Sankoff's algorithm which runs in time O (I V (G) I . 6 . I V (H) I).

5.1.2 Example

Given the character tree H and phylogenetic tree (G I p) as presented in Figure 5.5, Algorithm 5.1

outputs the labeling as showed in Figure 5.6. The labels of the leaves vl,vz,v3,v4 and v5 remains

the same as their predefined values. The algorithm visited the internal vertices in the order of v6,

v7, v8 and us. It sets l (v6) := LCA(l (v l) , l (v z)) = LCA(c, d) = b, l(v7) := LCA(l(v4), 1(v5)) =

LCA(c, e) = a, l (v8) := LCA(l (v6) , l (v3)) = LCA(b, e) = a and l (v 9) := LCA(1(v7), 1(v8)) =

LCA(a, a) = a. The minimum arc cost of (G, p) is seven.

5.2 Minimum pseudo-minor bag cost

The following is the algorithm for Problem 2.

CHAPTER 5. ALGORITHMS

H (G, P)

Figure 5.5: An input of H and (G,p) to Algorithm 5.1

Figure 5.6: (G,p, 1) where 1 is output by Algorithm 5.1 given H and (G,P) in Figure 5.5

CHAPTER 5. ALGORITHMS

Input: A character tree H and a phylogenetic tree (G, p).

Output: A labeling 1 E Q(H, G, p) such that bcost(H, G; 1) = qbcost(H, G, p) .

Description: As an initialization, for every u E L(G), let 1(u) := p(u); For each vertex

u E V (G) , we will set x(u) := 1 if 1(u) appears as a leaf label in G,, and x(u) := 0 otherwise.

Initially, x(u) := 1 if u is a leaf, and x(u) := 0 otherwise. The algorithm then works in two

stages. In the first stage, the tree G is traversed in post-order: For each internal vertex u E V (G) ,

let 1(u) := LCA({l(u)l(u, u) E A(G))) . (This again requires a linear time preprocessing on H

as described in previous algorithm.) If there exists some child u of u such that 1(u) = 1(u) and

x(u) = 1, then x(u) := 1, else we do not update the value of x (v) .

In the second stage, the tree G is traversed inpre-order to update the value of 1 for some internal

vertices u E V (G) (except the root g) as follows: If x(u) = 0, then 1(u) := l (u f) where u' is the

parent of u.

Finally, the number of bags, which initially is set to (V (G)) , is calculated by subtracting the total

number of arcs (u , u) E A(G) with 1 (u) = 1 (u) .

Pseudo code:

Algorithm 5.2 Minimum-Pseudo-Minor-Bag-Cost(H,G,p)
1 preprocess H (build auxiliary trees) to speed up the computation of LCA ;

D initialization

2 for each vertex u E V(G) do
3 if u is a leaf then

4 set 1(u) := p(u);
5 set x(u) := 1;

6 else

7 set 1(u) := null;
8 set x(u) := 0;

9 Set b := (V(G)I;
D,first stage

10 traverse the tree in post-order, for each internal vertex u E V(G) do
1 1 s e t l (u) : = L C A (1 (u) ~ (u , u) ~ A (G)) ;

12 for each child u of u

13 if 1(u) = 1(u) and x(v) = 1 then do
14 set x(u) := 1;

D second stage

15 traverse the tree in pre-order, for the internal vertex u E V(G) do

16 if u # g and x(u) = 0 then do

CHAPTER 5. ALGORITHMS

17 set 1 (u) = 1 (u') where u' is the parent of u;
18 for each arc e = (u, v) in G

19 if 1 (u) = 1 (v) then do

20 set b := b - 1;

D output result

21 output labeling function 1 and bag cost b

Complexity: It takes O(IV(H)I) to preprocess H. For each node u E V (G) , in first stage, it

takes 0(log2 6) time to compute l (u) and x(u) ; in second stage, it takes O(1) time to update l (u) .

Therefore the labeling takes O(IV(G) I * log, 6 + IV(H) I) steps. In particular if G is a binary tree,

then the time complexity is O(IV(G)(+ IV(H)I).

5.2.1 Proof of correctness

Theorem 8. Algorithm 5.2 returns a labeling 1 E Q(H, G, p) such that bcost(H, G , 1) = qbcost(H, G,p) .

Proof: 1 is obviously p-constrained according to the initialization of the algorithm. Moreover, for

every arc (u , v) E A(G) , there is a directed path from l (u) to l (v) in H since l (u) is either the least

common ancestor or common ancestor of the labels of its children, i.e. l (u) 4 1 (v) , so 1 is a smooth

function. Therefore 1 E Q(H, G , p).

We prove bcost(H, G; 1) = qbcost(H, G ,p) by induction on the number of vertices of G. Thus

let n = IV(G)I.

In case n = 1, it is obviously true, bcost(H, G , 1) = 1. Suppose the theorem is true when

IV(G)I < n. We want to prove that it is also true when IV(G)I = n. We will distinguish two cases:

Consider the case when there exists an arc (v l , v2) in G such that Algorithm 5.2 gives dif-

ferent labels to vl and v2, i.e. l (v l) # l(v2) and v2 is not a leaf. In this case l(v2) =

LCA({p(w)lw E L(Gv2))) and 1(v2) E {p(w)lw E L(Gv2)) since otherwise l(v2) = l(v1).

Let G1 and G2 be two components of G - e so that vl is in GI and v2 is in G2. In what

follows, we will run the Algorithm 5.2 on inputs G1 and G2 together with H, respectively. In

order to do this, we need to perform the following: We add a new leaf 4 into G I and join it

to the vertex vl , i.e. vl will be its parent. Let pl,and p2 denote the prelabeling functions of

leaves of G1 and G2 respectively, defined as follows. For G2, each leaf keeps the same label

as in G, i.e. p2(v) = p(v) for all v E L(G2). Likewise each leaf except vh of G1 has the

same label as in G, i.e.pl(v) = p(v) for all v E L(G1) except v;, let pl(vh) := l (v2); see

Figure 5.7.

CHAPTER 5. ALGORITHMS

Figure 5.7: Construct G1 and G2 from G

Note that each internal vertex in G1 will be assigned the same label by running Algorithm 5.2

on input (H , G I , pl) and on input (H , G , p) since pl (vi) = 1(v2). The same holds for each

internal vertex in G2 .

Let MI be the bag cost returned by Algorithm 5.2 on input (H , G1 , P I) , M2 be the bag cost

returned by Algorithm 5.2 on input (H , G2,p2), and M be the bag cost returned by Algo-

rithm 5.2 on input (H , G ,p) , respectively. It is not hard to see that M = M1 + M2 - l .

Now consider any other labeling 1' E Q (H , G,p) . Let 1; and 1; be the restrictions of 1' to

sub-tree G1 and G2, respectively. Let pi, and pi denote the prelabeling functions of leaves of

G1 and Gz, respectively, so that for all vertices v E L(G2) pb(v) = p2(v), and for all vertices

v E L(G1) pi (v) = pl (v) except p;(v;) = l'(v2). According to the proof of Lemma 2, either

l1(v2) = 1(v2) or l f (v2) 4 1(v2) since l(vz) = LCA(p(w)lw E L(G,,)).

Let N1 = bcost(H, G I , l i) , N2 = bcost(H, G2 , la), and N = bcost(H, G , l'), then N =

Ni + N2 - 1. We will prove that NI + N2 2 MI + M2 in either case when 11(v2) = 1(v2) or

L1(v2) 3 l(v2).

By induction, N2 > M2 since pk = pa. However Nl and hill cannot be compared directly

since pl and pi may have different value for the vertex va. Let Mi be the bag cost returned

by running Algorithm 5.2 on input (H , G i , pi) , Nl > Mi by induction. We will compare N1

and M1 through Mi; see Figure 5.8.

When l f (v2) = l (v z) , we have M1 = Mi since pl and pi have the exact same leaf labels.

Besides, N1 > Mi and N2 2 M2 by induction. Therefore we have Nl + N2 > MI + M2.

Now suppose l f (v2) 4 1(v2). We first claim that Nl >_ Mi > MI - 1. This follows from the

fact that the labeling 1; returned by Algorithm 5.2 on input (H , G1 ,p i) is a feasible internal

labeling of (G I , p l) , i.e. l y E Q(H, G I , pl). It is because the leaf labels defined by pi and pl

CHAPTER 5. ALGORITHMS

Figure 5.8: Comparing Nl and MI using Mi. (a) and (b) shows (G I , pl , 1) with the bag cost MI and
(Gl ,p i , 1') with the bag cost Nl respectively, and (c) shows (G1,pi) as an input to Algorithm 5.2
with the potienal bag cost Mi.

are the same except for v;, and pi(v;) = l f (v2) 4 pl(va) = l (v2) . The total bag number of

such labeling on (G I , p l) is at most Mi + 1 which attains when ll'(vl) = l '(vi) # 1 (v i) , i.e.

bcost(H, G I , 1:') 5 Mi + 1. Moreover, by induction, we have bcost(H, G I , 11) 2 M I , so

Mi + 1 2 M I . Since N1 2 Mi , N1 2 Mi 2 MI - 1, i.e. N1 2 M1 - 1.

We second claim that N2 > M2 + 1. Indeed, we can construct a internal labeling 1; E

Q (H , G2,p2) from 1;. The only change we need to make is to replace the internal labels b

such that b 4 1 (v2) with 1(v2) Since all the leaf labels in G2 are either 1 (v2) or the descendants

of 1(v2), the resulting labeling 1; E Q (H , G2, p2). The number of bags 1; produces is at most

N2 - 1, i.e. bcost(H, G 2 , 1;) 5 N2 - 1. Moreover, by induction, we have bcost(H, G2 , 1;) 2
M2, therefore N2 - 1 > M2, i.e. N2 2 M2 + 1.

Therefore, with Nl 2 MI - 1 and N2 > M2 + 1, we have Nl + N2 2 MI + M2. Since

N = Nl + N2 - 1 and M = M1 + M2 - 1, so N 2 M which means the bag cost of 1 is the

minimum.

a Now suppose every arc (v l , v2) in G with v2 is not a leaf satisfies l(v1) = l (v2) , in other

words, all the internal vertices of G get the same label by Algorithm 5.2. For any two leaves

vi and vj with the same parent vk (See Figure 5.9), there are three different cases for their

labels.

- First, if l (vi) = l (v j) , then Algorithm 5.2 will assign l (vk) := l (vi) , so these tree

vertices will be in the same bag.

- Second, if l(vi) 4 (v j) , then Algorithm 5.2 will assign l (vk) := l(vi). Therefore these

CHAPTER 5. ALGORITHMS

Figure 5.9: Three different cases for the labels of vi, vj and vk

three vertices will contribute two bags. However, with two leaves with different labels,

any other labeling must contribute by at least two bags. The case when l (v j) + (v i) is

similar.

- Third, if l(vi) # l (v j) , then Algorithm 5.2 will assign l (vk) := LCA(l(ui), l (v j)) , so

these three vertices will contribute three bags. Since l (v i) , l (v j) are incomparable, any

labeling 1' E Q(H, G,p) must produce three bags on these three vertices otherwise

either d(l f (vk) , l f (v i)) or d(l f (vk) , l f (v j)) will be infinite.

We conclude that 1 given by Algorithm 5.2 gives smallest possible bag cost.

5.2.2 Example

Given the character tree H and phylogenetic tree (G,p) as presented in Figure 5.10, Algorithm 5.2

outputs the labeling as showed in Figure 5.1 1. The tree on the left side shows the intermediate

result after the first stage of the algorithm where values of 1 and x for each internal vertex in G are

set. The tree on the right side shows the final labeling 1 after the second stage. The labels of the

leaves vl,v2,v3,vq and vs remain the same as their predefined labels. In the first stage, for vertex v6,

knowing that l (v6) = LCA(l(ul), l(v2)) = LCA(b, d) = b appears as a leaf label in G,,, x(v6) is

assigned 1. All the other internal vertices have 0 as x value. In the second stage, for v8 and v7, since

x(v8) = 0 and x(v7) = 0, SO the algorithm updates l (vs) := l (vg) and 1(v7) := l (vg); for v6, since

x(v6) = 1,l (V 6) is not updated. The minimum bag cost of the given (G,p) is six.

CHAPTER 5. ALGORTTHMS

Figure 5.10: An input of H and (G,p) to Algorithm 5.2

5.3 The decision problem of H ST, (G, p) when p # E

Definition 12. A path P = u --+ v in a rooted tree G is called a single branch path if every inner

vertex of the path has only one child, and u, v either both have more than one child or otherwise u

must be the root of G with only one child, and v must be a leaf. Moreover for any labeling function

I , P has a corresponding path P' = l (u) -, l (v) in H .

For example, an arc with two end vertices both having more than one child is a single branch

path of length 1. Figure 5.12 shows a more general example of a single branch path uk -+ vl in G

of length > 1 having a correponding path l (vk) -+ 1 (v l) in H .

5.3.1 The algorithm

The following is the algorithm for the decision problem of rooted minor when p # E.

Input: Two rooted trees H and (G,p).

Output: YESNO to if H I,, (G,p).

Description: The algorithm works by trying to build a labeling 1 E M (H , G,p) and meanwhile

keeps track of r((a , b), I) for each (a, b) E A(H) . If such 1 is found to be impossible to exist at any

point, the algorithm outputs NO. There are five steps in total.

In the first step, the algorithm checks whether there exists a vertex a E L (H) such that for every

u E L(G) p(u) # a. If such a is found, then the algorithm outputs NO.

CHAPTER 5. ALGORITHMS

x(v1) = 1 x(vz) = 1

First stage Second stage

Figure 5.1 1: The example (G,p, 1) where 1 is output by Algorithm 5.2 given H and (Gyp) in Fig-
ure 5.10.

The second step is to initialize a labeling 1 such that 1(u) := p(u) for every u E L(G). We also

initialize r ((a , b), I) := 0 for each (a, b) E A(H)

In the third step, G is traversed G in post-order to do the following. For every internal vertex

u E V(G), we assign l(u) := LCA((1 (v)I(u, v) E A(G))). (This again requires a linear time

preprocessing on H as described in previous algorithm.) Moreover, if u has more than one child,

then for each child v of u such that 1 (u) # l(v) and v is either a leaf or a internal vertex with more

than one child, we check whether (1(u), l(v)) E A(H). If the answer is no, then the algorithm

outputs NO, else r ((1 (u), 1 (v)), I) is increased by one.

In the fourth step, the (G, p, I) is examined for some special cases. We look for the longest single

branch path P in (G, p, I) of length at least two, say P = (vk, .. . ,212, v1) (Note that I(vi) = 1 (vl)

for i = 2 , 3 , . . . , Ic - 1 on the path P.). If P satisfies one of the following three conditions (See

Theorem 9 for justification),

2. vk # g and I(v1) = I(vk).

CHAPTER 5. ALGORITHMS

Figure 5.12: A single branch path of length > 1 in G and its corresponding path in H .

3. vk = g and l (v l) = l (v k) = h.

we just mark P as processed and continue to process the next unprocessed longest single branch

path, since the labels of vi (i = 2,3 , . . . , k - 1) cannot be updated any more. Otherwise, if none of

the above three conditions is satisfied, let PI = (w,), ..., w l) be the corresponding path of P in H.

m is the length of PI where wl := l (v l) and w, depends on vk. If vk # g then w, := l (v k) else

w, := h according to Note 1. By comparing P and PI, the algorithm will decide if it is possible

to realize every arc of PI on P. If PI is not a single branch path, then the algorithm outputs NO

since it is impossible to realize PI on P. If PI is longer than P then the algorithm outputs NO as

well for the same reason. Otherwise, P and P' are both single branch paths, and P is either as long

as PI or longer than PI. Therefore it is possible to realize every arc of PI on P. We accomplish

this by updating the labels of vi (i = 2 to k) as follows: l (v k) := w , , l (~ ~ - ~) := ~ , - ~ , l (v ~ - ~) :=

w,-a,. . . , 1 (~ ~ - , + ~) := w1. If P is longer than PI, then the labels of vertices v l , . . . , uk-, on P

remain unchanged. At mean time, we keep updating r ((a , b), 1) for every arc (a , b) of PI. Finally,

we mark P as processed and continue to find the next unprocessed longest single branch path until

all such paths are processed.

At the end, if there exists any (a , b) 6 A (H) such that r ((a , b) , 1) > 1, then the algorithm

outputs NO, otherwise outputs Yes, i.e. H <,, (G,p) .

Pseudo code:

Algorithm 5.3 Rooted-Minor-Decision(H,G,p)
1 preprocess H (build auxiliary trees) to speed up the computation of LCA ;

b Step I : Checking ifthere is any leaf of H not appearing as a leaflabel in G

CHAPTER 5. ALGORITHMS

2 for each leaf v E L (H) do

3 setq(v) := 0

4 for each leaf u E L(G) do

5 set Q (P (~)) := ~ (P (U)) + 1
6 for each leaf v E L (H) do

7 if q(v) = 0 then do

8 output NO

D Step 2: Initializing the labeling 1 and r

9 for each internal vertex u E V (G) do

10 setl(u):=null

11 for each leaf u L(G) do

12 set l (u):=p(u)

13 for each edge (a, b) E A (H) do

14 set ~ ((a , b), 1) := 0

D Step 3: Starting to assign labels to internal vertices

15 traverse the tree G inpost-order, for every internal vertex u E V (G) do

set l (u) := LCA(l(v)I (u , v) E A(G));

if u has more than one child then do

for each child v of u such that l (u) # l(v) and v is either a leaf or has more than one child

do

if (1 (u), l (v)) $! A (H) then do

output NO

else

set ~ ((l (u) , l (u)) , ~) := T ((~ (U) , ~ V)) , 1) + 1
b Step 4: Checking single branch paths

find the longest unprocessed single branch path P = (vk, ..., vz, v l) of length at least two in G

if P does not exist then do

goto line 43

if (l(vk), l(v1)) E A (H) or

vk # g and 1 (v l) = 1 (v k) or

vk = g and 1 (v l) = l(vk) = h then do

mark P as processed and goto line 23

else

if vk = g then do

set P' := (w,, ..., w1) as a path in H where w, = h and wl = 1 (v l)

else do

set P' := (w,, ..., w l) as a path in H where w, = l (vk) and wl = l (v l)

CHAPTER 5. ALGORITHMS

3 3 for each vertex a on the path P' in H do

34 if a has more than one child then do

3 5 output NO
36 if P' is longer than P then do

3 7 output NO

38 for i = 1 to m do

39 set l(uk-i+l) := wrn-i+l
40 for i = m to 2 do

41 set r((wi, wi-I) , 1) := r((wi, wiPl) , 1) + 1

42 mark P as processed and goto line 23

L> Step 5: Checking if there is any arc in H being realized more than once by I

43 for each edge (a , 6) E A(H) do

44 if r((a, 6)) > 1 then do

45 output NO

D Coming to a conclusion that H i,, (G, p)

46 output YES

5.3.2 Proof of correctness

Lemma 3. Given two rooted tree H and (G,p) , if H I,, (G, P) , then for any 1' E M (H , G; P),

and for any vertex w E V(G) with at least two children,

l l (w) = LCA(p(v)lv E L(G,)).

Proof: Let q = LCA(p(v) (v E L(G,)). According to Lemma 2, either l ' (w) = q or l l (w) 4 q.

Therefore we only need to prove that l l (w) 4 q is not true. It can proved by the induction on the

height t of G,.

When t = 2 , let v l , vz, . . . , vk denote the set of Ic children of w. There are two cases: q =

p (v l) = p(vz) = . . . = p(vk) or q 4 p(vi) for some vi (1 < i 5 Ic). In first case, if l l (w) 4 q, then

C(B;) > 1 since l l (v i) = p(vi) for i = 1,2, . . . , Ic, therefore separation occurs. In second case,

if l l (w) 4 q, then transitivity happens since l l (w) 4 q and q 4 p(vi) imply l l (w) 4 p(vi). Thus

l l (w) = q in both cases.

Suppose the lemma is true when t < n. We prove it is also true when t = n. Again let

v l , 7.12,. . . , vk denote Ic children of w, respectively. Let zi be the first descendant of vi which has

more than one child or is a leaf; see Figure 5.13. In particular, if vi has more than one child, then

zi := vi. Thus each zi (i = 1,2 , . . . I c) is either a internal vertex with more than one child or a leaf.

If ri has more than one child, by induction, we have l l (z i) = LCA(p(v)lv E L (G ,)) . It implies

CHAPTER 5. ALGORITHMS 50

that either q = l l (z i) or q 4 l l (z i) . Otherwise zi is a leaf, and then l l (z i) = p(zi) which also implies

either q = l l (z i) or q 4 l l(zi) .

Now assuming l l (w) 4 q, there must exist a vertex ai on the path w -+ zi such that l l(ai) = q

no matter q = l l(zi) or q 4 l l (z i) since 1' E M (H , G ,p) . In particular, ai = zi if l l (z i) = q.

However, we have c (~ f ;) > 1, therefore separation occurs. Thus l l (w) = q.

Figure 5.13: z l , z z , . . . ,zk in G,.

Theorem 9. Algorithm 5.3 outputs YESifand only i f H s,, ((2 , ~) .

Proot Let 1 be the labeling build by Algorithm 5.3.

We first prove that if Algorithm 5.3 outputs YES, then H I,, (G, p), i.e. 1 E M (H , G , p).

If Algorithm 5.3 outputs YES, then 1 must satisfy two attributes. First, for each arc (u , v) E

A(G) , (l (u) , l (v)) E A (H) . This is guaranteed by the first, third, fourth steps of Algorithm 5.3.

Second, for every arc (a , b) E A (H) , r ((a , b), 1) = 1 which is guaranteed by fifth step. It is obvious

that the second attribute of 1 implies (2) of Definition 6. Moreover (1) of Definition 6 is implied by

both attributes. Therefore 1 E M (H , G,p) .

Next we prove that if Algorithm 5.3 outputs NO, then M (H , G , p) = 0, i.e. no other labeling

function exists to satisfy (1) and (2) of Definition 6. We distinguish five situations under which

Algorithm 5.3 outputs NO. Please note that before line 37, for every internal vertex v E V (G) ,

l (v) = LCA(p(v)Jv E L(G,)). This fact will be used frequently in the following proof.

0 The algorithm outputs NO in Line 8 because there exists a vertex b E L (H) such that p(u) # b

for every u E L(G) . Let a be the parent of b in H. For any other labeling 1' E M (H , G , P) ,

there must exist an arc (u , v) E A (G) such that l l (u) = a, l l (v) = b. Since v is not a leaf in

G, and b is a leaf in H , and l l (w) # b for every vertex w in L(G,), addition must occur in 1'.

CHAPTER 5. ALGORITHMS 5 1

It contradicts the assumption that 1' E h l (H , G, p). Therefore if the algorithm outputs NO at

the line 8, M (H , G , p) = 0.

a The algorithm outputs NO in Line 20 because there exists an internal vertex u such that u has

more than one child and for some child v (either a leaf or a internal vertex with more than

one child) of u , (l (u) , l (v))) # A(H) . For any other labeling I' E M (H , G ,p) , since u has

more than one child, l l (u) = 1(u) according to Lemma 3. As to v , if it is a leaf, we have

l l (v) = l (v) = p(v); otherwise it is a internal vertex with more than one child, and we also

have l l (v) = l (v) according to Lemma 3. However l l (u) = l (u) together with l l (v) = l (v)

imply that (l l (u) , l l (v))) # A (H) which contradicts the assumption that 1' E M (H , G, p).

Therefore no such 1' can possibly exist, i.e. if the algorithm outputs NO in Line 20, then

M (H , G , p) = 0.

0 The algorithm outputs NO in Line 35 because P = (vk1 . . . ,712, v l) in G is a single branch

path, but its corresponding path P' = (w,, ..., w2, wl) in H is not. Since 111 is either a leaf

or a vertex with more than one child, l l (v l) = l (v l) for any labeling 1' E M (H , G,p) . If vk

is also a vertex with more than one child, then l l (vk) = l (uk) as well, otherwise vk must be

a root with only one child which means l l (vk) = h. Thus 1 and 1' correspond P in G to the

same path P' in H according to Line 30 and Line 32 of the algorithm. However when P' is

not a single branch path, either negligence or separation or transitivity will happen no matter

how the labels of vk , vk-1, . . . , v2 are updated. Figure 5.14 shows two examples.

In the left example, a single branch path P = (713, v2, v1) in G with both end points having

more than one child has a corresponding path P' = (a , 6 , c) in H by I. P' is not a single

branch. Since l l (v l) = l (v l) and l1(v3) = l(v3) for any 1' E M (H , G ,p) , so the corre-

sponding path of P induced by I' is the same as PI. However we argue that such 1' cannot

exist no matter how vz is labeled. In particular, suppose 11(v2) = b, although (a , 6) E A (H)

and (b, c) E A (H) are realized, it is impossible to realized (6 , d) E A (H) on the path P.

Even if (6 , d) is realized in some other part of G, then we have C (B ;) > 1. Thus either

r ((6 , d) , 1') = 0 or C (B ;) > 1 when 11(v2) = 6. Suppose 11(v2) = c, then transitivity happens

obviously.

The right example shows another specific example where a single branch path P = (us, v2, v l)

with 713 being the root in G with only one child. Any I' E M (H , G , p) corresponds P in G to

the path PI = (a , 6 , c) in H since 11(u3) = h and l l (v l) = c. P' is not a single branch path.

Similarly, such 1' cannot exist no matter how v2 is labeled. In particular, if l l (vz) = 6, then

CHAPTER 5. ALGORITHMS 52

(h , b) E A(H) and (b, c) E A(H) are realized, but it is impossible to realized (b, d) E A(H)

on the path P.

Figure 5.14: Two examples of a path P in G is a single branch path, but its corresponding path
PI in H is not. The left example shows a P beginning with a vertex with two children, while the
right example shows a P beginning with the root of G (v3 = g) which has only one child, and
therefore the corresponding PI begins at the root of H (a=h) although l(v3) = c after third step of
Algorithm 5.3.

Therefore if the algorithm outputs NO in Line 35, any labeling 1' E M (H, G,p) cannot

possibly exist, i.e. M (H , G, p) = 0.

Note that, so far it is easy to see why the algorithm does nothing except marking P as pro-

cessed when P satisfies any of the following three conditions in Line 26:

- 1 (vk) # 1 (v l) and (1 (vk) , 1 (2 1 1)) E A(H). Since 1 (vk) # 1 (v l) , vk must be a vertex with

more than one child. According to Lemma 3, l l (vk) = l(vk) for any 1' E M(H, G,p).

Similarly, either vl is a leaf or vl is a vertex with more than one child, so ll(vl) = l(v1).

Because (l (vk) , l (v l)) E A(H), no change should be made to the labels of the internal

vertices on P.

- vk # g and l (v l) = 1 (vk) . Since vk is not the root of G, vk must be the vertex with more

than one child. Therefore for any 1' E M(H, G,p) , we have l l (vk) = l (vk) , and also

l l (v l) = l (v l) . Again no change should be made to the labels of the internal vertices on

P.

- vk = g and 1 (v l) = l (vk) = h. It is clear that l l (vl) = 1 (v l) for any 1' E M (H, G,p).

Since vk is the root of G, l l(vk) = h, i.e. l l (vk) = l (vk) , therefore again no change need

CHAPTER 5. ALGORITHMS

to be made in this case.

The algorithm outputs NO in Line 37 because P' is longer than P. Similarly it is true that for

any labeling I' E M (H , G,p), 1 and 1' designate the same corresponding path P' in H of P

in G. However such 1' cannot exist since either negligence or separation or transitivity must

occur when P' is longer than P. Figure 5.15 shows two examples. The left example shows

that 1 corresponds the path P = (us, v2, v l) in G to the path P' = (a, b, c, d) in H . They are

both single branch paths, but P' is longer than P. For any 1' E M (H , G, p), 1' (us) = 1 (us)

and l '(vl) = l(v1) since u3 and vl are both vertices with more than one child. Therefore

the corresponding path of P induced by 1' is the same as P'. However such 1' cannot exist

since transitivity always occurs no matter l f (v2) = b or l f (v2) = c. The right example shows

a similar example where us is the root g with one child and P' = (a, b, c, d) where a = h.

Again transitivity always occurs no matter l f (v2) = b or l1(v2) = c. Therefore the algorithm

outputs NO in Line 37, no 1' E M(H, G, p) can possibly exist, i.e. M (H , G,p) = 0.

Figure 5.15: Two examples of P' in H is a longer single branch path than P in G is. The first exam-
ple shows a P beginning with a vertex with more than one child, while the second example shows a
P beginning with the root of G (us = g) which has only one child, and therefore the corresponding
P' begins at the root of H (a = h) although l (vs) = d after third step of Algorithm 5.3.

The algorithm outputs NO in Line 45 because there is at least one arc (a, b) E A(H) being

realized more than once. Let (u l , v l) and (u2, v2) be the two arcs in G such than l (u l) =

1 (u2) = a and 1 (vl) = 1 (v2) = b.

Let PI be the longest single branch path containing the arc (u l , v l) . We claim that for any

CHAPTER 5. ALGORITHMS 54

1' E M (H , G , p) , there must be some arc (x, y) on Pl such that l 1 (z) = a and l ' (y) = b. We

differentiate four cases.

First, if both u1 and vl have more than one child or ul has more than one child and vl is a leaf,

then PI = (u l , v l) . In this case, for any 1' E M (H , G,p) , l l (u l) = l(u1) and l l (v l) = l(v1).

Thus the claim is true.

Second, if ul has more than one child and vl is an internal vertex with one child, then PI =

ul -+ a1 where a1 is the first descendant of vl with more than one child or a leaf. Let

Pi = a --, l (z l) in H be the corresponding path of P. Recall that we update l (v l) from the

value l (q) to b in Line 39 because (a , b) is an arc on PI. Therefore the claim must be true

since l l (u l) = l (u l) and l l (z l) = l (z l) , otherwise transitivity will happen.

Third, if ul is an internal vertex with one child and vl either has more than one child or is a

leaf, then PI = a1 -+ vl where a1 is the first ancestor of u1 with more than one child or the

root g with one child. Again we update l (u l) from the value 1 (v l) to a in Line 39 is because

(a , b) is an arc on the corresponding path Pi = l (a l) b in H. Therefore the claim must be

true since l l (v l) = l (v l) and l l (z l) = l (al) , otherwise transitivity will happen.

Finally when it comes to the case that ul and vl are both the internal vertices with one child,

then Pl = zl -+ 22 where zl is the first ancestor of u1 with more than one child or the root g

with one child, and a2 is the first descendant of vl with more than one child or a leaf. Again

we update l (v l) from the value 1 (2 2) to b, 1 (u l) from the value l (z2) to a in Line 39 is because

(a , b) is an arc on the corresponding path Pi = l (z l) -+ l(a2) in H . Therefore the claim must

true since l l (z l) = l (a l) and 11(z2) = 1(a2), otherwise transitivity will happen.

Likewise let P2 be the longest single branch path containing the arc (u2, v2). We can claim

that for any 1' E M (H , G ,p) , there must be some arc (x , y) on P2 such that l l (x) = a and

l l (y) = b. Thus any 1' will have r (a , b, 1') = 2 if ~ (a , b, 1) = 2, so such I' can not exist.

In conclusion, we prove that M (H , G ,p) = 0 whenever Algorithm 5.3 outputs NO. The proves of

both directions are completed. 0

5.3.3 Examples

Example 1: Algorithm 5.3 outputs NO in Line 8.

Given the character tree H and phylogenetic tree (G,p) as presented in Figure 5.16, Algo-

rithm 5.3 outputs NO in Line 8 since it finds e E L (H) does not appear as a leaf label in (G ,p) .

CHAPTER 5. ALGORITHMS

Figure 5.16: The input H and (G , p) to Algorithm 5.3 in example 1.

Example 2: Algorithm 5.3 output NO in Line 20.

Given the character tree H and phylogenetic tree (G , p) as presented in Figure 5.17, Algo-

rithm 5.3 assigns the labels to vertices the same way algorithm 5.1 does except that it checks whether

(l (u) , l (v)) @ A (H) for each internal vertices with more than one child. In this example, v6 past the

check since both (l(V6), l(u1)) E A (H) and (l (us) , l (v z)) E A (H) . However the algorithm outputs

NO after u7 is checked, because (l(u7), l (v4)) = (a , c) $! A (H) .

Example 3: Algorithm 5.3 outputs NO in Line 35.

Given the character tree H and phylogenetic tree (G , p) as presented in Figure 5.18, Algo-

rithm 5.3 outputs NO in Line 35 while checking the path P = vg -+ v7 of length 2. Since vg is the

root of G and 1 (us) is not the root of H, the corresponding path Pi in H is a -+ b. Obviously P' is

not a single branch path, although (h , e) and (e, b) can both be realized by updating l (v g) := a and

l (vs) := e , there is no way to realize (e , f) .

Example 4: Algorithm 5.3 output NO in Line 37.

Given the character tree H and phylogenetic tree (G , p) as presented in Figure 5.19, Algo-

rithm 5.3 outputs NO in Line 37 while checking the path P = vs -+ u7 which is also an arc. Since

us is the root of G and l (vs) is not the root of H , the corresponding path P' in H is a i b. Obvi-

ously P' is longer than P, so there is no way to realize both (h , e) and (e, b) on the path P with the

length of 1.

Example 5: Algorithm 5.3 output YES.

Given the character tree H and phylogenetic tree (G , p) as presented in Figure 5.20, Algo-

rithm 5.3 outputs YES at the end.

CHAPTER 5. ALGORlTHMS

H (G, P)

Figure 5.17: The input H and (G,p) to Algorithm 5.3 in example 2.

H (G, P)

Figure 5.18: The input H and (G, p) to Algorithm 5.3 in example 3.

CHAPTER 5. ALGORITHMS

Figure 5.19: The input of H and (G, p) to Algorithm 5.3 in example 4.

Figure 5.20: The input of H and (G,p) to Algorithm 5.3 in example 5.

Chapter 6

Applications and Experiments

The possible applications of our approach include hypothesis testing of character evolution when a

phylogenetic tree is given, and the phylogeny inference when certain character trees are available. In

particular, we performed two experiments for hypothesis testing, and one experiment for alternative

phylogenetic trees evaluation.

6.1 Testing hypotheses of character evolution

To investigate the evolution of a character, the character should be mapped onto a phylogenetic

tree that is constructed independently from other characters. This approach maybe very useful in

scenarios where hypothesis of character evolution must be validated.

The first experiment follows from Lipscomb's idea of testing transformation series when there

are multiple trees [Lip92]. She believes that if two or more transformation series are proposed for

a multistate character and these alternative character state trees result in different cladograms, all

transformations should be tested with the congruence criterion (scattering and hierarchical discor-

dance) on all of the trees. She gives an example of such case in Figure 13 of [Lip921 where three

transformation series of a character are proposed and two phylogenetic trees obtained from these

character transforamtion series. There are seven species involved. The character states of these

species are showed in Table 6.1.

In her test, transformation series 1 (Figure 6.1 HI) is found to be congruent with both phyloge-

netic trees (Figure 6.1, (GI, pl) and (G2, p2)), transformation series 2 (Figure 6.1 Hz) is congruent

with only one phylogenetic tree, and transformation series 3 (Figure 6.1 H3) conflicts with both

phylogenetic trees. H3 is therefore eliminated since it is not congruent with both phylogenetic trees.

CHAPTER 6. APPLICATIONS AND EXPERIMENTS 59

In our approach, bag cost and arc cost are two metrics to detect separation and transitivity re-

spectively, and furthermore separation and transitivity correspond to Lipscomb's concepts of scat-

tering and hierarchical discordance. In order to check whether our metrics will eliminate the same

transformation series, we ran Algorithm 5.1 and Algorithm 5.2 on two phylogenetic trees and three

character trees, see Table 6.2 for the output arc costs and bag costs. Under our metrics, the minimum

pseudo-minor bag cost of each pair of character tree and phylogenetic tree is the same, but they do

have different minimum pseudo-minor arc cost. H1 has the least arc cost 5, which equals to IA(H)I,

on both (GI, pl) and (G2, p2). It is consistent with Lipscomb's analysis that no hierarchical discor-

dance detected in H1 and either G1 or G2. H3 requires the highest arc cost 9 on both (GI, pl) and

(G2,p2), in other words, the highest hierarchical discordance. Thus, H3 will also be eliminated by

our metrics detecting the same worst tree as Lipscomb.

Species I OUT I A I B I C I D I E I F
State I a I f l f l e l b l c l d

Table 6.1 : The character states of seven species.

Table 6.2: acost and bcost of two phylogenetic trees (Gl,pl) and (G2,p2) on HI, H2 and H3.

The second experiment was run on the data set from [vT65] and [MKG96] which is a con-

tinuation work of [vT65]. The problem of whether behavioral characters could be used to provide

accurate estimates of phylogenies was investigated in [MKG96]. Their research was conducted

on a behavioral data set for the pelecaniforms based upon van Tets's classic comparative study of

these species's social behavior [vT65]. They show that it is possible to investigate the homology

of the behavioral characters by mapping the distribution of the characters to best-estimate phyloge-

netic trees. Once specific example they give is to test the hypotheses about the derivation of male

advertising displays proposed by van Tets ([vT65]) based on a best-estimate phylogenetic trees of

CHAPTER 6. APPLICATIONS AND EXPERTMENTS

Figure 6.1 : Testing character trees when there are multiple phylogenetic trees. (G I , p l) and (G 2 , p2)
are two phylogenetic trees. The capital letter beside each leaf stands for the species it represents.
The character state of each leaf species is shown in Table 6.1. H1,H2 , and H3 are three character
trees for the same character. Both character trees and phylogenetic trees in this example are taken
from [Lip92].

CHAPTER 6. APPLICATIONS AND EXPERlMENTS 61

pelecaniforms. In our experiment, we further conducted the same hypothesis test using our met-

rics. The goodness of the hypothesis is measured in terms of both minimum pseudo-minor arc cost

and minimum pseudo-minor bag cost. In addition to three existing hypothesis from [vT65] and

[MKG96] ([MKG96], Figure 6), we took another two alternative character trees into consideration.

The best estimate behavioral tree ([MKG96],Figure 3) is used as (G,p); see Figure 6.2, it

is a combination of three phylogenetic trees constructed independently by Cracrafi (1985), Sibley

& Anhlquist (1990) and Siegel-Causey (1988) based on the morphological and genetic data. The

character being tested is pre-take-off behavior with 7 states:

(0) general intentional movement

(1) pre-take-off display of the gannets

(2) sky-pointing display of the boobies

(3) slow rate wing-waving display of the great cormorant

(4) rapid flutter wing-waving of pelagic shag

(5) throwback of European shag and

(6) wing-waving display of the darter.

The state of species is shown in the phylogenetic tree (Figure 6.2) beside each leaf. Five alternative

character trees are listed in Figure 6.3. We ran Algorithm 5.1 and Algorithm 5.2 on (G,p) and each

of the five character trees. The results are listed in Table 6.4.

Character tree (b) and (c) have the best score under our metric. However, it has been justified

in [MKG96] that (b) and (c) are not plausible in a biological sense. Thus they agree with van Tets

on (a). However, in our experiment, two additional alternative trees (d) and (e) are found to have

better score than (a). They are actually much closer to the phylogenetic tree than (a) according to

the criteria used by Michevich [Mic82]. One difference between (a) and (d) is that state 0 evolves

to 1, and 1 to 2 in (a), but 0 evolves into both 1 and 2 in (b). It is implied in (a) that species in state

1 is closer to species in state 0 than species in state 2. This is not true since species in state 1 and 2

, for example S.sula and Mserrator, are equally close to species in state 0 in the phylogenetic tree;

see Figure 6.2. In contrast, (d) reflects the fact implied by the phylogenetic tree that species in state

1 and 2 are equally close to species in state 0. The other difference between (a) and (d) is that 3

evolves into both 4 and 5 in a, but it is the state 4 that evolves into both 3 and 5 in d. Obviously

having 4 evolves into 3 and 5 gives most parsimonious result.

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

:e of Pelecaniform. The number besid Figure 6.2: The phylogenetic tre e each leaf represents the state
of the behavior character that the leaf species is in. Taken from [MKG96].

6.2 Phylogenetic tree inference

Contrasting to testing hypotheses of character evolution, another application of our approach is to

evaluate the alternative phylogenetic trees constructed independently with different method or data

sets, assuming a character state tree is known for some character that species share.

We investigate the phylogenetic trees for a family of twelve anura species. Three phylogenetic

trees constructed independently with different data sources are considered. First tree, (G I , pl) , is

published by Kluge in [KF69]; see Figure 6.4. Second tree, (Gz ,pz) , is published by Ford and

Cannatella in [FC93], and acknowledged in the Tree of Life project [Tre03]; see Figure 6.5. Both

trees are inferred from morphological characters. However, third tree, (G3,p3) , is inferred from

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

I H I acost I bcost I

Table 6.3: acost and bcost of the phylogenetic tree (Figure 6.2) on five character trees (Figure 6.3).

molecular data [JMHM95]; see Figure 6.6. GI, G2 and Gg mainly differ in the position of Pelobati-

dae on the tree. G1 suggests that the common ancestor of Pelobatidae and PipidaeIRhinophrynidae

is also an ancestor of Bufonidae/Atelopodidae/Leptodaectylidae/Hylidae and

Ranidae/Rhacophoridae/Microhylidae. However G2 implies the opposite point of view. G3 SUB-

gests that the common ancestor of Pelobatidae and PipidaeIRhinophrynidae is also the ancestor of

Ascaphidae/Discoglossidae, while GI and G2 both suggests that the common ancestor of Ascaphi-

dae and Discoglossidae is the ancestor of Pelobatidae and Pipidae~Rhinophrynidae.

The goodness of these three trees are evaluated based on three multistate characters that anura

share. The three characters are ribs with four states, vertebral ossification with three states, and pec-

toral girdle with three states, respectively. The character trees are taken from [Ing67] and [KF69];

see Figure 6.7. We run Algorithm 5.1 and Algorithm 5.2 on each pair of phylogenetic tree and

character trees. Table 6.5 shows the running results in terms of minimum pseudo-minor arc cost and

minimum pseudo-minor bag cost. (GI, pl) has the best score over three phylogenetic trees. It is not

surprising since the characters we use in our test are also the part of data Kluge applied to construct

(GI, pl). (G3,p3) was constructed solely based on the DNA and RNA sequences, therefore it does

not reflect the morphological characters well and has the highest total arc cost and bag cost.

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

Pipidae 1 g 1 b I c ' l

Species
Ascaphidae
Discoelossidae

-
Rhinoohrvnidae 1 G I b * I C l . - I I I

Pelobatidae G 1 b' I c' I

Characters 1
G
G

I I I

Hylidae G I b ' I c I

2
B
B

Bufonidae
Atelooodidae

3
C
c'

1 Microhylidae 1 g' I b' I c I

G

R

Ranidae

Table 6.4: Families and character state matrix.

g ' / b ' (c

I (G 1 i ~ l) / (G2i~2) I (G 3 i ~ 3)

1 acost (bcost I acost I bcost I acost I bcost

b'
b'

Rhaco~horidae I P' I b ' l c

c
c

Table 6.5: acost and bcost of three phylogenetic trees of anura (G1,pl), (G2,p2)and (Gzlp2) on
HI, Hz and H3.

H3 1 4
Total: 1 10

5
13

4
11

5
14

4
12

5
15

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

Figure 6.3: The character trees of pre-take-off behavior. (a) is van Tets' hypothesis, (b) and (c) are
the two alternative hypotheses listed in [MKG96]. (d) and (e) are our hypothesis which turn out to
have better scores than (a).

R
ha

co
ph

or
id

ae

M
ic

ro
hy

li
da

e

H
yl

id
ae

L
ep

to
da

ec
ty

li
da

e

A
te

lo
po

di
da

e

B
uf

on
id

ae

P
el

ob
at

id
ae

R
hi

no
ph

ry
ni

da
e

P
ip

id
ae

D
is

co
gl

os
si

da
e

A
sc

ap
hi

da
e

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

Figure 6.5: (G2, pa): the phylogenetic tree of Anura in Tree of Life.

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

Figure 6.6: (G 3 ! ~ 3) : the phylogenetic tree of Anura inferred from molecular data [JMHM95].

CHAPTER 6. APPLICATIONS AND EXPERIMENTS

Figure 6.7: Three character trees. HI is for the character of Pectoral girdle with three states as well.
They are arciferal - G, transitional - g, and firmisternal - g'. H2 is for the character of ribs with four
states. They are free in both subadults and adults - B, free in subadults, fused in adults - b, fused in
both subadults and adults - b', and lost in both subadults and adults - b*. H3 is for the character of
vertebral ossification with three states. They are ectochordal - C, stegochordal - c', and holochorda
- c. Taken from [Ing67] and [KF69].

Chapter 7

Conclusions and Open Problems

In this thesis, we have considered the problem of testing alternative transformation series of a mul-

tistate character and the issue of constructing phylogenetic trees incorporating character evolution.

Since there are many problems induced by coding a multistate character to binary character such

as loss of logical dependency between states and the requirement of extra big space, we propose a

new approach to work with multistate characters which does not require recoding, and therefore is

free of the disadvantages of binary coding. In particular, we extend the small phylogeny problem by

assuming a character state tree of a particular character is also given. Five inconsistencies defined

between character tree and phylogenetic tree are used as the optimization criteria. When none of the

five inconsistencies is allowed, we have shown the problem is essentially rooted tree minor which is

NP-hard.

In practice inconsistencies do occur. To handle those that arise most often, we introduced two

relaxations of rooted minors. Relax minors allow addition and separation while pseudo minors

allow transitivity and separation. Extending from Lipscomb's definition of non congruences between

characters, we introduced two new metrics, bag cost and arc cost as the target scoring functions of

the problem. From the structure of relax-minor and pseudo-minor and these two score functions,

we defined three versions of the extended small phylogeny problem. The minimum relax-minor

bag cost was shown to be a NP-hard, but both minimum pseudo-minor bag cost and minimum

pseudo-minor arc cost have linear time solutions. Since bag cost and arc cost are consistent with

Lipscomb's criterion of non congruences between characters, our linear time solutions can also

solve her problem of testing transformation series. Based on the experiment conducted with her

data, we found that our methods detected the same worst case hypotheses. Another way to utilize

our algorithms is to evaluate alternative phylogenetic trees of a same set of species using available

CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS

character trees.

Our algorithms are all based on modeling character evolution by rooted trees. A more realistic

scenario is to allow a representation by a general Hasse diagram. Two open problems are to char-

acterize the complexity of these problems and to find approximation algorithms for those that are

NP-hard.

Bibliography

[BenOl]

[BFCOO]

[Bro8 11

[CS65]

[Doy921

[DS86]

M. J. Benton. Finding the tree of life: matching phylogenetic trees to the fossil record
through the 20th century. Proceedings of the Royal Society of London (B), 268:2123-
2130,2001.

M. A. Bender and M. Farach-Colton. The lca problem revisited. Latin American Theo-
retical INformatics, 2000.

D. R. Brooks. Hennig's parasitological method: A proposed solution. Systematic Zool-
ogy, 30:229-249, 1981.

J. H. Camin and R. R. Sokal. A method for deducing branching sequences in phylogeny.
Evolution, 19:3 1 1-326, 1965.

J. J. Doyle. Gene trees and species trees: Molecular systematics as one-character tax-
onomy. Systematic Botany, 17: 144163, 1992.

W. I. E. DAY and D. SANKOFF. Computational complexity of infemng phylogenies
by compatibility. Systematic Zoology, 35:224229, 1986.

[EOWF91] D. R. Brooks E. 0. Wiley, D. Siegel-Causey and V. A. Funk. The Complete Cladist,
A primer of Phylogenetic Procedures, volume 4: Tree Building and Optimization. The
University of Kansas, Museum of Natural History, 199 1.

J. S. Farris. Methods for computing Wagner trees. Systematic Zoology, 19:83-92, 1970.

J . S. Fams. Phylogenetic analysis under dollo's law. Systematic Zoology, 26:77-88,
1977.

J. S. Farris. Outgroups and parsimony. Zoology, 31 :3 14320, 1982.

L. S. Ford and D. C. Cannatella. The major clades of frogs. Herpetological Monogra-
phy, 7 : 9 4 l l 7 , 1993.

J . Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood approach.
Journal of Molecular Evolution, 17:368-376, 1981.

W. M. Fitch. Toward defining the course of evolution: Minimum change for a specific
tree topology. Systematic Zoology, 20:4064 16, 197 1.

BIBLIOGRAPHY 73

[FL82] L. R. Foulds and R. L.Graham. The steiner problem in phylogeny is np-complete.
Advances In Applied mathematics, 3:4349, 1982.

[FM67] W. M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science, 155:279-
284, 1967.

[Hen661 W. Hennig. Phylogenetic Systematics. University of Illinois Press, 1966.

[HT84] D. Hare1 and R. Tajan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13:338-355, 1984.

[Ing67] R. F. Inger. The development of a phylogeny of frogs. Evolution, 2 1 :369-384, 1967.

[JAHS97] C. E. Hughes J. A. Hawkins and R. W. Scotland. Primary homology assessment, char-
acters and character states. Cladistics, 13:275-283, 1997.

[JMHM95] S. B. Hedges J. M. Hay, I. Ruvinsky and L. R. Maxson. Phylogenetic relationships of
amphibian families inferred from dna sequences of mitochondria1 12s and 16s riboso-
mal ma genes. Molecular Biology of Evolution, 12:928-937, 1995.

[KF69] A. K. Kluge and J. S. Farris. Quantitative phyletics and the evolution of anurans. Sys-
tematic Zooloy, 18: 1-32, 1969.

[Lip921 D. L. Lipscomb. Parsimony, homology and the analysis of multistate characters. Cladis-
tics, 8:45-65, 1992.

[Mad931 W. P. Maddison. Missing data versus missing characters in phylogenetic analysis. Sys-
tematic Biology, 42:576-58 1, 1993.

[Mic82] M. F. Mickevich. Transformation series analysis. Systematic Zoology, 31:461478,
1982.

[MJBHOO] M. A. Willis M. J. Benton and R. Hitchin. Quality of the fossil record through time.
Nature, 403:534-537, 2000.

[MKG96] H. G. Spencer M. Kennedy and R. D. Gray. Hop, step and gape: do the social displays
of the pelecaniformes reflect phylogeny? Animal Behaviour, 5 1 :273-29 1, 1996.

[ML91] M. F. Mickevich and D. L. Lipscomb. Parsimony and the choice between different
transformations for the same character set. Cladistics, 7: 1 1 1-1 39, 199 1.

[(mo98] A. Smith (moderator). Is the fossil record adequate. Nature on-line debates, 1998.

[MR92] J. Matousek and R.Thomas. On the complexity of finding iso- and other morphisms for
partial k-trees. Journal ofAlgorithms, 108:343-364, 1992.

[MSSdOl] 0. Madsen M. J. Stanhope M. S. Springer, E. C. Teeling and W. W. de Jong. Integrated
fossil and molecular data reconstruct bat echolocation. Proc. Natl. Acad. Sci. USA,
98:6241-6246, 2001.

BIBLIOGRAPHY 74

M. F. Mickevich and S. Weller. Evolutionary character analysis: Tracing character
change on a cladogram. Cladistics, 6: 137-1 70, 1990.

R. T. O'Grady and G.B. Deets. Coding mulitistate characters, with special reference to
the use of parasites as characters of their hosts. Systematic Zoology, 36:268-279, 1987.

M. Pogue and M. F. Michevich. Character definitons and character state delineations:
the bete noire of phylogenetics. Cladistics, 6:365-369, 1990.

N. Robertson and P. D. Seymour. Graph minors ii. algorithmic aspects of tree-width.
Journal of Algorithms, 7:309-322, 1986.

D. D. Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Math-
ematics, 28:3542, 1975.

D. Sankoff and R. Cedergren. Simultaneous comparisons of three or more sequences
related by a tree, in D. Sunkoff and J. Kruskal (eds), Time Warp, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison. Addison Wesley,
Reading Mass, 1983.

N. Saitou and T. Imanishi. Relative efficiencies of the fitch-margoliash, maximum par-
simony, maximum likelihood, minimum-evolution, and neighbor-joining methods of
phylogenetic tree construction in obtaining the correct tree. Journal of Molecular Evo-
lution, 6:5 14525, 1989.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4:406-425, 1987.

D. L. Swofford and G. J. Olsen. Phylogeny reconstruction. Molecular Systematics,
1990.

E. Sober. Reconstructing the past: parsimony, evolution, and inference. MIT Press,
Cambridge, MA, 1988.

Tree of life web project. http://tolweb.org/, April, 2003.

G. F. van Tets. A comparative study of some social communication patterns in the
pelecaniformes. Ornithology Monograph, 2: 1-88, 1965.

N. Takezaki Y. Tateno and M.Nei. Relative efficiencies of the maximum-likelihood,
neighbor-joining and maximum-parsimony methods when substitution rate varies with
site. Journal of Molecular Evolution, 11:261-277, 1994.

