
ROUTING ALGORITHMS FOR RING NETWORKS 

Yong Wang 

BSc., Peking University, 1999 

A THESIS S U B M I T T E D  IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS F O R  T H E  D E G R E E  O F  

MASTER OF SCIENCE 

in the School 

of 

Computing Science 

@ Yong Wang 2003 

SIMON FRASER UNIVERSITY 

July 2003 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: Yong Wang 

Degree: Master of Science 

Title of thesis: Routing Algorithms for Ring Networks 

Examining Committee: Dr. Petra Berenbrink 

Chair 

Dr. Qian-ping Gu 

Senior Supervisor 

Date Approved: 

Dr. h e p h  G. Peters 

Supervisor 

Dr. Arthur L. Liestman 

SFU Examiner 



SIMON FRASER UNIVERSITY 

PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser University the right to lend my thesis, 
project and extended essay (the title of which is shown below) to 
users of the Simon Fraser University Library, and to make partial or 
single copies only for such users or in response to a request from the 
library of any other university, or other educational institution, on its 
own behalf or for one of its users. I further agree that permission for 
multiple copying of this work for scholarly purposes may be granted 
by me or the Dean of Graduate Studies. It is understood that 
copying or publication of this work for financial gain shall not be 
allowed without my written permission. 

Title of Thesis/Project/Extended Essay: 

- -- 

Routing Algorithms for Ring Networks 

Author: 
(signature 

Yong Wang 

(name) 



Abstract 

In this thesis, we study routing problems on ring networks. The ring is a popular topology 

for communication networks and has attracted much research attention. 

A communication application on a ring network can be regarded as a set of connection 

requests, each of which is represented by a set of nodes to be connected in the ring network. 

To implement a communication application, we need to develop a routing algorithm to find 

a path connecting all the nodes involved in each connection request. One of the most impor- 

tant optimization problems for the communication on ring networks is to develop a routing 

algorithm such that the maximum congestion (i.e., the maximum number of paths that use 

any single link in the ring) is minimized. This problem can be formulated as the Minimum 

Congestion Hypergraph Embedding in a Cycle (MCHEC) problem with a set of connection 

requests represented by a hypergraph. A special case of the MCHEC problem, in which each 

connection request involves exactly two nodes, is known as the Minimum Congestion Graph 

Embedding in a Cycle problem. A more general case, in which connection requests may 

have non-uniform bandwidth requirements, is known as the Minimum Congestion Weighted 

Hypergraph Embedding in a Cycle problem. The Minimum Congestion Graph Embedding 

in a Cycle problem is solvable in polynomial time, and the other problems are NP-hard. 

In this thesis, we focus on the MCHEC problem and propose efficient algorithms in three 

categories. In the first category is a 1.8-approximation algorithm that improves the previous 

2-approximation algorithms. In the second category is an algorithm that computes optimal 

solutions for the MCHEC problem. This algorithm runs in polynomial time for subproblems 

with constant maximum congestions, and is more efficient in terms of the time complexity 

than the previous algorithm that solves the same problem. The third category contains two 

heuristic approaches. According to our simulation results, both heuristics have lower time 

complexities and better practical performance than a well known heuristic. 
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Chapter 1 

Introduction 

We study routing problems on ring networks in this thesis. In a ring network, a set of 

network nodes are connected together by a set of links as a cycle, and every node plays the 

same role. This node-symmetry simplifies the design of network algorithms such as routing 

and path coloring. Moreover, a ring is a 2-connected topology. There exist two distinct 

paths between any pair of nodes in a ring network, so it remains connected even in the 

presence of any single node or link failure. Taking account of these advantages over other 

network configurations, the ring topology is widely used in communication networks and 

has attracted much attention as a research subject [l, 2, 3, 4, 5, 6, 7, 81. 

A communication application on a ring network can be regarded as a set of connection 

requests, each of which is represented by a set of nodes to  be connected in the ring network. 

To implement a communication application, we need to develop a routing algorithm to find 

a path connecting all the nodes involved in each connection request. Researchers studied 

routing problems on ring networks either as directed connection requests on directed ring 

networks [5] or as undirected connection requests on undirected ring networks [4]. In the 

former case, a ring network is modeled as a symmet r i c  digraph with two directed links in 

two opposite directions between every pair of adjacent nodes. In the latter case, a ring 

network is modeled as an undirected graph with one undirected link between every pair of 

adjacent nodes. In some practical ring networks such as optical rings, current technologies 

do not support the bi-directional use of a link, so two opposite-directed optical fibers are 

usually used to connect each pair of adjacent nodes. Therefore, the directed model is more 

appropriate to  describe such ring networks. However, the undirected model is commonly 

used in studying communication problems because it is simple and appropriate for modeling 
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two-way communications. Results derived from the undirected model can often be easily 

extended to practical ring networks with directed communication links. In this thesis, the 

discussion is based on the undirected model. As a part of the future work, we will extend 

the results of this thesis to the directed model. 

We assume that all the links in a ring network have the same capacity, which is also 

referred to as the capacity of the ring. The cost of a ring network depends on its capacity. 

Therefore, an important optimization problem arises in designing routing algorithms for ring 

networks: Given a set of connection requests, develop a routing algorithm to find a path in 

the ring for each connection request such that the required ring capacity to satisfy all the 

connection requests is minimized. If we define the congestion of a link to be the number of 

paths containing the link and the maximum congestion of a ring to  be the maximum number 

of paths containing any single link of the ring, then the required ring capacity is equal to 

the maximum congestion on the ring network. 

A communication application consisting of m connection requests on a ring network with 

n nodes can be described by a hypergraph with m hyperedges and n nodes. Each hyperedge 

in the hypergraph represents a connection request among its nodes. Figure l . l (a)  shows 

a hypergraph that corresponds to four connection requests { O , l ,  21, {0,4,5), {3,4,5), and 

{3,5) on node set {0,1,2,3,4,5).  Since routing a set of connection requests on a ring net- 

work can be regarded as embedding corresponding hyperedges as paths in a cycle, Ganley 

and Cohoon [9] formulated the above routing problem on ring networks as the Minimum 

Congestion Hypergraph Embedding in  a Cycle (MCHEC) problem: Embed hyperedges of 

a hypergraph as paths in a cycle such that the maximum congestion is minimized. Fig- 

ure l . l (b)  and (c) give embeddings with maximum congestion 3 and maximum congestion 

2 respectively for the hypergraph in Figure l . l (a) .  A special case of the MCHEC prob- 

lem, in which each connection request involves exactly two nodes, is in fact the Minimum 

Congestion Graph Embedding i n  a Cycle problem. The Minimum Congestion Graph Em- 

bedding in a Cycle problem has been proved to be solvable in polynomial time by Frank 

et al. [3]. However, the MCHEC problem is known to be NP-complete [9]. Ganley and 

Cohoon [9] gave a 3-approximation algorithm for the MCHEC problem. The approximation 

ratio was improved to 2 based on different approaches [lo, 11, 121. Gonzalez [lo] proposed 

two 2-approximation algorithms for the MCHEC problem. One algorithm formulated the 

MCHEC problem as an Integer Program, and the other transformed the MCHEC problem to 

the Minimum Congestion Graph Embedding in a Cycle problem. Carpenter et al. [ll] gave 
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(a)Connection nquerl set (b)Embedding wilh Max congestion = 3 (c)Embcdding with Max congestion = 2 (opt~mal) 

Figure 1.1: Hypergraph embedding in a cycle 

a simple 2-approximation algorithm called Clockwise Embedding. Lee and Ho [12] developed 

a greedy algorithm named Longest Adjacent Path Removing that has an approximation ra- 

tio of 2 as well. Ganley and Cohoon [9] also proposed an ~ ( ( m n ) ~ * + l )  time algorithm to  

compute optimal solutions for the MCHEC problem, where L* is the maximum congestion, 

m is the number of hyperedges, and n is the number of nodes in the hypergraph. This a lge  

rithm runs in polynomial time for the subproblem with constant maximum congestion L*. 

In addition, some heuristic algorithms have been proposed to achieve good performance in 

practice. Among them, the Iterated Maximum Independent Set (IMIS) heuristic presented 

by Ganley and Cohoon 1131 is very well known. 

For the MCHEC problem discussed above, we assume that the connection requests have 

a uniform bandwidth requirement, so the congestion of each link in a cycle can be simplified 

to be the number of paths using the link. A more general case, in which the connection 

requests may have non-uniform bandwidth requirements, was formulated by Lee and Ho [12] 

as the Minimum Congestion Weighted Hypergraph Embedding in a Cycle problem: Embed 

the weighted hyperedges of a hypergraph as weighted paths in a cycle such that the maximum 

congestion (i.e., the maximum total weight of paths using any single link in the cycle) is 

minimized. Lee and Ho proved the Minimum Congestion Weighted Hypergraph Embedding 

in a Cycle problem is NP-complete and gave two 2-approximation algorithms 1121. Again 

for a special case in which each connection request involves exactly two nodes, the Minimum 

Congestion Weighted Hypergraph Embedding in a Cycle problem is in fact the Minimum 

Congestion Weighted Graph Embedding in a Cycle problem. The Minimum Congestion 



CHAPTER 1. INTRODUCTION 4 

Weighted Graph Embedding in a Cycle problem is proved to be NP-complete as well by 

Cosares and Iraj [14]. The approximation algorithms has been proposed in [14, 7, 151. 

In this thesis, we concentrate on the MCHEC problem. The MCHEC problem has appli- 

cations not only in network communications, but also in parallel computing and electronic 

design automation [3, 13, 16, 17, 18, 191. In parallel computing, the processors of a parallel 

computer can be represented by the nodes of a hypergraph; a group of processors, which 

are required to communicate with one another, can be represented by a hyperedge in the 

hypergraph. A solution to the MCHEC problem gives a routing path for each communica- 

tion group. In electronic design, among applications is the moat routing. An instance of 

the moat routing consists of two concentric rectangles, which represent a core circuit area 

and input/output pads respectively, and a set of nets whose pins lie on either or both of the 

perimeters of the two rectangles. The routing of each net will be placed between the two 

rectangles. The goal is to implement the routing for the set of nets such that the width of 

the circular channel between the two rectangles is minimized. 

We propose algorithms for the MCHEC problem in three categories: the approximation 

algorithm, the algorithm for optimal solutions, and the heuristic approach. In the first 

category is a 1.8-approximation algorithm that improves the best known 2-approximation 

algorithms. Our algorithm starts from the Clockwise Embedding, and then the algorithm 

tries to re-embed some hyperedges to reduce the maximum congestion. Let L be the max- 

imum congestion of the Clockwise Embedding and L* be the maximum congestion of an 

optimal embedding. If our algorithm can re-embed Ic hyperedges to get an embedding with 

maximum congestion L - Ic, the approximation ratio of the algorithm is (L - Ic)/L*. Since 

rL/2] 5 L* [ l l ] ,  the approximation ratio of our algorithm is at most 2(L - Ic)/L. This gives 

a good approximation ratio if Ic is large. If Ic is small, we shall prove a new lower bound on 

L*. As shown later, the approximation ratio of the algorithm increases from 1 to 1.8 as Ic 

decreases from L/2 to L/lO, the ratio decreases from 1.8 to 1.5 as Ic decreases from L/10 

to 0, and the ratio is 1.8 in the worst case. Our algorithm has the optimal O(mn) time for 

the hypergraph with m hyperedges and n nodes. 

In the second category is an ~ ( ( J m n ) ~ ' )  time algorithm to compute optimal solutions 

for the MCHEC problem, where L* is the maximum congestion, m is the number of hy- 

peredges, and n is the number of nodes in the hypergraph. This algorithm improves the 

~ ( ( m n ) ~ * + ' )  time algorithm given by Ganley and Cohoon [9], and runs in polynomial time 
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for the subproblem with constant maximum congestion L*. The ~ ( ( m n ) ~ * + l )  time algo- 

rithm uses the fact that every link in a cycle has a congestion at most L* in any optimal 

embedding. An arbitrary link i in the cycle is chosen, and an optimal embedding is sought 

by enumerating all the "good" embeddings that incur a congestion of at most L* on link 

i. An important observation is that the fewer "good" embeddings, the more efficient the 

algorithm. So in our algorithm, instead of considering only one link i7 we think of two links 

in the cycle and merely check those "good" embeddings that incur congestions of at most L* 

on both of the two links. Therefore, our algorithm reduces the number of checked "good" 

embeddings further, and thus improves the efficiency of the algorithm. 

The third category contains two heuristics. One heuristic uses a greedy strategy, and 

the other tries to evenly distribute congestions on all the links in a cycle. Both heuristics 

run in O(mn) time, which improves the 0(m(mn)2)  time Iterated Maximum Independent 

Set heuristic proposed by Ganley and Cohoon [13] for the hypergraph with m hyperedges 

and n nodes. In addition, our heuristics achieve much better performance than the Iterated 

Maximum Independent Set heuristic in practice according to our simulation results. 

This thesis is organized as follows. In chapter 2, we introduce basic concepts and no- 

tation. In chapter 3, the previous work about the MCHEC problem is surveyed. Chapter 

4 gives our improved algorithms for the MCHEC problem in three categories. In the last 

chapter, we present possible research directions for the future work. 



Chapter 2 

Preliminaries 

2.1 Approximation algorithm and approximation ratio 

For any NP-hard optimization problem, there is no polynomial time algorithm to compute an 

optimal solution unless P = NP. So much effort has been put into developing polynomial 

time algorithms to find near-optimal solutions whose values are close to the value of an 

optimal solution. We call such a near-optimal solution an approximate solution, and an 

algorithm that produces approximate solutions an approximation algorithm. The following 

formal definitions of the approximate solution, approximation algorithm, and approximation 

ratio are from the book by Cormen et al. [20]. 

Definition 2.1.1 [20] (Approximate Solution) For a n  optimization problem n, a feasible 

solution with the value close t o  the value of a n  optimal solution i s  a n  approximate solution 

of  n. 
Definition 2.1.2 [20] (Approximation Algorithm) For a n  optimization problem n, a poly- 

nomial t ime  algorithm that generates approximate solutions i s  a n  approximation algorithm 

of  n. 
Any algorithm that produces approximate solutions for problem n can be called an ap- 

proximation algorithm. How to  evaluate approximation algorithms is important. Generally 

speaking, good approximation algorithms should be efficient (polynomial time) and produce 

solutions with values as close to the optimum as possible. Concept approximation ratio [20] 

is widely used to  evaluate approximation algorithms. In what follows, we assume that a 

solution always has a positive value. 
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Definition 2.1.3 [20] (Approximation Ratio) An approximation algorithm A for an opti- 

mization problem n has an approximation ratio of p(n) if for any instance of n with size n, 

the value C of any approximate solution produced by the approximation algorithm satisfies 

where C*  is the value of an optimal solution. 

This definition applies for both maximization and minimization problems. For a maxi- 

mization problem, 0 < C < C*, and C*/C gives the approximation ratio. For a minimization 

problem, 0 < C* 5 C ,  and C/C* gives the approximation ratio. Therefore, the approxi- 

mation ratio of an approximation algorithm is at least 1, and the approximation ratio of 

an optimal algorithm is exactly 1. An approximation algorithm with a large approximation 

ratio may return a solution that is much worse than an optimal solution. Reducing the 

approximation ratio as close to 1 as possible is a major goal of developing approximation 

algorithms. 

2.2 Notation and terminology 

A cycle C of n nodes is an undirected graph with node set {i 1 0 < i < n - 1). There is a 

link between nodes i and j if i = j f 1, where (and in what follows) the arithmetic involving 

nodes is performed implicitly using the modulo n operation. The link from node i to node 

i + 1 is labeled as link i (see Figure 1.1). In what follows, without loss of generality, we 

assume that n nodes and n links of C are labeled from 0 to n - 1 in the clockwise direction 

as shown in Figure l . l (b )  and (c). 

A hypergraph H(V, EH)  of n nodes and m hyperedges is a hypergraph with node set 

V = {i I 0 5 i 5 n - 1) and hyperedge set EH = {el, ez, . . . ,em),  where each hyperedge ei is 

a subset of V with ni (ni 2 2) nodes. As a special case, a graph G(V, E) is a hypergraph with 

each hyperedge consisting of exactly two nodes (i.e., ni = 2 for every ei in graph G(V, E)).  

For a hypergraph H(V, EH), let {vi, vi, . . . , vhi) be the sorted set of nodes contained in 

hyperedge ei (i.e., vf < vi < . . . < vh,). For 1 < i < m, a connecting path (or c-path) Pi 

in C for hyperedge ei is a path in C such that all the nodes in ei are connected by Pi. An 

adjacent path (or a-path) in C for hyperedge ei is a path in C from node vj to node 

(1 5 j 5 ni) in the clockwise direction, where u:,+~ = ui. An embedding of hypergraph 
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H ( V ,  E H )  in cycle C is a set of c-paths in C such that there is exactly one c-path in the 

set for each hyperedge. A hyperedge ei with ni nodes has exactly ni a-paths in C ,  and any 

ni - 1 a-paths together form a path in C to connect all the ni nodes in ei. Thus any ni - 1 

a-paths constitute a c-path Pi for hyperedge ei. Given an embedding of a hypergraph, the 

congestion of each link in C is the number of c-paths that contain the link. More precisely, 

we define the MCHEC problem as follows: Given a hypergraph and a cycle on the same 

node set, embed the hyperedges as c-paths in the cycle such that the maximum congestion 

(i.e., the maximum number of c-paths using any single link in the cycle) over all the links in 

the cycle is minimized. Figure l . l (b ,  c) gives two feasible embeddings for the hypergraph in 

Figure l . l (a)  on the cycle with node set {0,1,2,3,4,5). The optimal embedding may not 

be unique, and Figure 2.l(c) is one of such embeddings. 

A segment of cycle C is a connected subgraph of C. In what follows, we use segment (p, q) 

to denote the segment of C that includes nodes p ,p  + 1 , .  . . , q. Cycle C is cut into two 

segments by removing any two links i and j ,  and we call the two links i and j a cut (i, j )  

of C.  A hyperedge is separated by a cut if there is at  least one node of the hyperedge in 

each of the two segments. For example, if we choose links 0 and 3 as a cut of the cycle in 

Figure 1.1, hyperedges el = {0,1,2), es = {3,4,5), and e4 = (3 ,s )  are separated by cut 

(0,3); hyperedge ea = {0,4,5) is not separated by cut (0,3). It is observed that the c-path 

for a separated hyperedge in any embedding must contain at least one of the two links in the 

cut. Therefore, if we use N (i, j) to denote the number of hyperedges separated by cut (i, j ) ,  

then max{v) is a lower bound on the maximum congestion of an optimal embedding. 
a ,.7 
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Related work on the MCHEC 

problem 

3.1 A special case: Minimum Congestion Graph Embedding 

in a Cycle 

Frank et al. [3] proved the following theorem for the Minimum Congestion Graph Embedding 

in a Cycle problem: 

Theorem 3.1.1 (31 T h e  M i n i m u m  Congestion Graph Embedding in a Cycle problem can 

be solved optimally i n  polynomial t ime.  

Schrijver et al. [7] developed an 0(mn2) time optimal algorithm for the graph with m edges 

and n nodes. 

3.2 Minimum Congestion Hypergraph Embedding in a Cycle 

(MCHEC) 

As a general case of the Minimum Congestion Graph Embedding in a Cycle problem, the 

MCHEC problem deals with the situation in which each connection request may involve more 

than two nodes. The MCHEC problem is more complicated than the Minimum Congestion 

Graph Embedding in a Cycle problem, and has been proved to be NP-complete by Ganley 
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and Cohoon [9]. They first transformed the MCHEC problem to the following Cycle Cover 

by Multiple Choice Paths (CCMCP) problem: Given the same problem instance as the 

MCHEC problem, find a path in the cycle for each hyperedge to connect two nodes in the 

hyperedge without spanning any other node in the same hyperedge, such that the minimum 

congestion over all the links in the cycle is maximized. For any solution of the CCMCP 

problem, we can easily transform it to  a solution of the MCHEC problem by setting each 

path in the solution of the CCMCP problem to be the complement of the path. Therefore, 

if the CCMCP problem is NP-complete, so is the MCHEC problem. To prove the NP- 

completeness of the CCMCP problem, Ganley and Cohoon constructed a polynomial time 

transformation from a known NP-complete problem Numerical Matching with Target Sums 

(NMTS) [21] to  the CCMCP problem. We refer to Ganley and Cohoon [9] for a detailed 

proof of the following theorem. 

Theorem 3.2.1 [9] The MCHEC problem is NP-complete. 

3.2.2 Approximation algorithms 

1. A simple 3-approximation algorithm 

Recall that any two links in a cycle C form a cut of C. Ganley and Cohoon [9] presented 

a simple algorithm for the MCHEC problem as follows: Choose an arbitrary cut ( 2 ,  j) 

consisting of links i and j .  Let S denote the set of hyperedges that are separated 

by cut (i, j), and S denote the set of hyperedges that are not separated by cut ( i ,  j).  

Embed every hyperedge in s within the segment containing its nodes, and embed the 

hyperedges in S arbitrarily. This algorithm has an approximation ratio of 3 and runs 

in O(mn) time for the hypergraph with m hyperedges and n nodes. 

2. A 2-approximation algorithm based on Linear Programming 

Gonzalez formulated the MCHEC problem as an Integer Program [lo]. As is well 

known, solving an Integer Program is NP-hard, however, a Linear Program is solvable 

in polynomial time. Gonzales transformed the Integer Program to a corresponding 

Linear Program by performing the LP Relaxation, and then obtained an approximate 

solution of the Integer Program by rounding off the solution of the Linear Program. 

This algorithm has an approximation ratio of 2. However, the running time of the 

algorithm is dominated by the part computing Linear Program, which has a high time 

complexity. 
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3. A 2-approximation algorithm based on the Minimum Congestion Graph Embedding i n  

a Cycle problem 

As an alternative to the above Linear Programming (LP)  based approximation algo- 

rithm, Gonzales proposed a LP-Free algorithm with a lower time complexity [lo]. 

Recall that the Minimum Congestion Graph Embedding in a Cycle problem can be 

solved optimally in polynomial time [3]. The LP-Free algorithm transformed any 

instance of the MCHEC problem to a corresponding instance of the Minimum Con- 

gestion Graph Embedding in a Cycle problem. Once an optimal embedding of the 

Minimum Congestion Graph Embedding in a Cycle problem is obtained, it is then 

transformed back to an approximate solution of the original MCHEC problem. 

The LP-Free algorithm has an approximation ratio of 2 as well. For the hypergraph 

with m hyperedges and n nodes, the time complexity is 0(mn3),  which is dominated 

by the time complexity of the optimal algorithm for the Minimum Congestion Graph 

Embedding in a Cycle problem. 

4. A 2-approximation algorithm based o n  the Clockwise Embedding 

Carpenter et al. proposed a very simple approximation algorithm named Clockwise 

Embedding [ l l ] .  The idea is to embed each hyperedge as a path from its lowest 

numbered node to its highest numbered node in the clockwise direction. Figure 3.1 

shows an example of the Clockwise Embedding. For hyperedge e l  = {0,1,2), the 

lowest numbered node is 0 and the highest numbered node is 2. So e l  is embedded 

as the path from node 0 to node 2 in C in the clockwise direction. The other three 

hyperedges are embedded similarly. In the Clockwise Embedding, no c-paths contain 

the highest numbered link, which is link 5 in Figure 3.1. 

The Clockwise Embedding is also a 2-approximation algorithm. Since our improved 

approximation algorithm will be based on the Clockwise Embedding, we state the 

complete proof by Carpenter et al. [ll] for the following theorem. 

Theorem 3.2.2 (111 The approximation ratio of the Clockwise Embedding i s  2. 

Proof: Recall that N ( i ,  j )  denotes the number of hyperedges separated by cut (i ,  j )  of 

a cycle C,  and max{w} is a lower bound on the maximum congestion of an optimal 
1,3 

embedding. Let l ( i )  be the congestion of any link i in C in the Clockwise Embedding. 



CHAPTER 3. RELATED WORK ON THE MCHEC PROBLEM 

(b)Clockwise Embedding 

Figure 3.1: Clockwise Embedding 

Let L = max{l(i)), and s be a link with maximum congestion L in the Clockwise 
z 

Embedding. Since no c-paths contain link n - 1 (i.e., the highest numbered link in 

C) ,  all the hyperedges whose c-paths contain link s in the Clockwise Embedding are 

separated by cut (s, n - 1). Therefore, L = N(s,  n - 1) 5 2 * rqax{v} 5 2L*, that 
z >3 

is, the maximum congestion of the Clockwise Embedding is bounded above by twice 

that of an optimal embedding. 0 

The Clockwise Embedding runs in O(mn) time for the hypergraph with m hyperedges 

and n nodes. 

5. A 2-approxzmation algorithm based on the Longest Adjacent Path Removing 

Lee and Ho proposed a simple approximation algorithm called Longest Adjacent Path 

Removing [12]. Every hyperedge ei with ni nodes has ni a-paths in cycle C. Any ni - 1 

a-paths together constitute a c-path of hyperedge ei. Therefore, if any one of the ni 

a-paths is removed, the rest ni - 1 a-paths form a feasible embedding for hyperedge 

ei. The Longest Adjacent Path Removing algorithm simply deletes the longest a-path 

for each hyperedge. 

The Longest Adjacent Path Removing has an approximation ratio of 2. It runs in 

O(mn) time for the hypergraph with m hyperedges and n nodes. 



CHAPTER 3. RELATED W O R K  ON THE MCHEC PROBLEM 

3.2.3 An algorithm for optimal solutions 

For any fixed integer Ic and hypergraph with m hyperedges and n nodes, Ganley and Co- 

hoon proposed an algorithm to compute solutions for the MCHEC problem with maximum 

congestion at most k, or to determine that such solutions do not exist in ~ ( ( m n )  k+l )  time. 

Their algorithm was stated as follows: Choose an arbitrary link i in cycle C. For every 

subset S of hyperedges with IS1 5 k, check all the possible embeddings such that link i is 

used by all the hyperedges in S ,  and link i is not used by any hyperedge that is not in S. 

In the worst case, each hyperedge in S has n - 1 possible embeddings that use link i ,  and 

each hyperedge that is not in S has only one unique embedding that does not use link i. 

Therefore in the worst case, the total number of checked embeddings is 

Embedding the hyperedges requires another O(mn) time, so the algorithm runs in ~ ( ( m n )  k+l)  

time. This algorithm can be used to construct an optimal algorithm running in O((mn) L*+l)  

time for the MCHEC problem, where L* is the maximum congestion. For the subproblem 

with constant maximum congestion L*, the optimal algorithm runs in polynomial time. 

3.2.4 A heuristic 

Ganley and Cohoon proposed a heuristic approach called Iterated Maximum Independent 

Set (IMIS) [13]. They claimed that the heuristic performed very well in empirical studies. 

In a hypergraph with m hyperedges and n nodes, each hyperedge ei consisting of ni 

sorted nodes {vf, vi, . . . , vki) has ni possible c-paths (only those consisting of exactly ni - 1 

a-paths are considered). Each of these ni c-paths can be considered as an arc in cycle C. 

Notice that if ni > 2, all the arcs from the same hyperedge ei are pairwise intersecting. 

For all the arcs from all the hyperedges, construct a circular arc graph Gca, in which each 

node represents an arc and there is an edge between two nodes if the two corresponding 

arcs intersect in the cycle. 

Compute a maximum independent set (MIS) for Gca in 0((mn)2)  time using the algo- 

rithm proposed by Gupta et al. [22]. Since all the arcs from a hyperedge with ni > 2 are 

pairwise intersecting, the MIS can contain at  most one arc from each hyperedge. If the MIS 

contains both arcs from a hyperedge with ni = 2, the size of the MIS must be 2, so an 

MIS that does not contain two arcs from the same hyperedge can be found exhaustively in 
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0 ( m 2 )  time. Thus, computing an MIS that contains at most one arc from each hyperedge 

can be done in ~ ( ( m n ) ~ )  time. Once an MIS is obtained, each hyperedge, for which there is 

an arc in the MIS, is embedded according to that arc. Remove all the arcs in G,, that are 

from the embedded hyperedge, and repeat the same process until no arcs remain in G,,. 

An MIS is computed in ~ ( ( m n ) ~ )  time for each round, and at most m  rounds are 

required in the worst case. So the heuristic runs in ~ ( m ( m n ) ~ )  time. 



Chapter 4 

Efficient algorithms for the 

MCHEC problem 

In this chapter, we develop new algorithms for the MCHEC problem in three categories. In 

the first category is a 1.8-approximation algorithm that improves the previous 2-approximation 

algorithms [lo, 11, 121. In the second category is an ~ ( ( J m n ) ~ * )  time algorithm to compute 

optimal solutions for the MCHEC problem, where L* is the maximum congestion, m is the 

number of hyperedges, and n is the number of nodes in the hypergraph. This algorithm im- 

proves the previous ~ ( ( m n ) ~ ' + ' )  time algorithm [9]. The third one contains two heuristics. 

Both of our heuristics not only have lower time complexities, but also beat the performance 

of the Iterated Maximum Independent Set heuristic [13] according to our simulation results. 

4.1 A 1.8-approximation algorithm 

4.1.1 Algorithm 

In this section, we give a 1.8-approximation algorithm for the MCHEC problem. The basic 

idea of our algorithm is as follows: The algorithm starts from the Clockwise Embedding, 

and then re-embeds some hyperedges to reduce the maximum congestion of the Clockwise 

Embedding. Recall that L is the maximum congestion of the Clockwise Embedding and 

L* is the maximum congestion of an optimal embedding. If our algorithm can re-embed k 

hyperedges to get an embedding with maximum congestion L - k, the approximation ratio of 

the algorithm is ( L -  k ) /L* .  Since [L/21 5 L* (i.e., [L/21 is a lower bound on the maximum 
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congestion of an optimal embedding) [ll], the approximation ratio of our algorithm is at 

most 2(L - k)/L. If k is large, 2(L - k)/L gives a good approximation ratio. If k is small, we 

shall prove a new lower bound on L* in order to achieve a good approximation as well. As 

shown later, the approximation ratio of our algorithm increases from 1 to 1.8 as k decreases 

from L/2 to L/10, and then decreases from 1.8 to 1.5 as k decreases from L/10 to 0. That 

is, the approximation ratio of our algorithm is always bounded above by 1.8. Furthermore, 

our algorithm has the optimal O(mn) time for the hypergraph with m hyperedges and n 

nodes. 

Re-embedding hyperedges decreases congestions on some links in cycle C, however, con- 

gestions on some other links could be increased as well. That is, re-embedding k hyperedges 

decreases the maximum congestion of the Clockwise Embedding by at most k. In our al- 

gorithm, we re-embed k hyperedges only when the re-embedding decreases the maximum 

congestion by exactly k. Thus our algorithm can re-embed at most LL/2J hyperedges (i.e., 

0 5 k 5 LL/2J), since [L/21 is a lower bound on the maximum congestion of an optimal em- 

bedding. To guarantee that re-embedding k hyperedges decreases the maximum congestion 

of the Clockwise Embedding by exactly k, we introduce the following terms. 

Recall that l(i) is the congestion of any link i in the Clockwise Embedding. For an integer 

k in the range 1 5 k 5 [L/2J, let gk be the lowest numbered link with l(gk) 2 L - 2k + 1, 

and hk be the highest numbered link with l(hk) > L - 2k + 1. Thus 0 5 gk 5 hk < n - 1. 

For the example shown in Figure 4.1, n = 10, L = 4, g2 = 0, h2 = 7, gl = 2, and hl = 6. 

We call a hyperedge a re-embedding candidate with respect to k (or candidate w.r.t. k) if 

the hyperedge has a node in segment (0, gk),  has a node in segment (hk + 1, n - l), and has 

no node in segment (gk + 1, hk).  Let xk be the number of candidates w.r.t. k. In Figure 

4.1, x2 = 0, x1 = 1, and hyperedge { O , 1 ,  8) is a candidate w.r.t. k = 1. In our algorithm, 

we re-embed k hyperedges only when xk, the number of candidates w.r.t. k, is greater 

than or equal to k. We re-embed any k out of the xk candidates such that the c-path for 

each of the k candidates does not contain any link i in the range gk 5 i < hk (see Figure 

4.2). Therefore, re-embedding k candidates w.r.t. k decreases the maximum congestion by 

exactly k in our algorithm. 

The definitions of gk, hk, and the candidate w.r.t. k imply that gk+l I gk, hk+l 2 hk, 

and any candidate w.r.t. k + 1 is also a candidate w.r.t. k (i.e., xk+l 5 xk) ,  where k is in the 

range 1 5 k < LLI2J. TO re-embed as many hyperedges as possible, our algorithm checks 

whether xk > k is true starting from k = [L/2J. If it is true, our algorithm re-embeds 
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c-path for (O,1,8] 
/ 

Figure 4.1: Re-embedding candidate 

any k out of the xk candidates to decrease the maximum congestion by k. Otherwise, our 

algorithm decreases k by one and repeats. Eventually, our algorithm terminates with k 

hyperedges re-embedded, where k is one of the values in (0, 1, . . . , LL/2]). 

The outline of our algorithm is as follows: We start with the Clockwise Embedding, and 

then we try to re-embed k candidates w.r.t. k to decrease the maximum congestion of the 

Clockwise Embedding by k. The re-embedding process starts from k = LL/2]. If xk 2 k 

then we re-embed k or k + 1 candidates and the algorithm terminates. Otherwise, k is 

decreased by one and the re-embedding process is repeated. As shown later, the algorithm 

has an approximation ratio of 1.8 except for a few special cases of fixed L. Although the 

~ ( ( r n n ) ~ * + ' )  time algorithm in [9] or the ~ ( ( J m n ) ~ ' )  time algorithm given in section 4.2 

can be used to find optimal embeddings for the special cases, the time complexity is high in 

practice. We give a subroutine to handle those special cases. The subroutine is efficient and 

guarantees an approximation ratio of 1.8 for the special cases. Our algorithm and subroutine 

are given in Figure 4.3. 
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Figure 4.2: C-paths for the candidate w.r.t. k = 1 in the Clockwise Embedding and after 
the re-embedding. 

4.1.2 Analysis 

Algorithm REmbedding terminates with k or k + 1 hyperedges re-embedded, where k is 

one of the values in (0, 1, . . . , LL/21). Let Lk denote the maximum congestion achieved by 

our algorithm. The following lemma holds for Lk: 

Lemma 4.1.1 Lk = L - k or Lk = L - k - 1. 

Proof: When algorithm REmbedding terminates without calling Subroutine Special-Cases, 

either k candidates w.r.t. k are re-embedded, or k + 1 candidates w.r.t. k, including at least 

one candidate w.r.t. k + 1, are re-embedded. After a candidate w.r.t. k is re-embedded, the 

congestion of each link i with g k  < i 5 hk is decreased by one and the congestion of each 

link i with i < gk or i > hk is increased by at most one. 

Assume that k candidates w.r.t. k are re-embedded. For each link i with g k  5 i < hk,  the 

congestion of link i after the re-embedding is l(i) - k 5 L - k. For each link i with i < g k  or 

i > hk,  the congestion of link i after the re-embedding is at most I (i) + k 5 L - 2k+ k = L - k. 

So after the re-embedding, maximum congestion Lk is L - k. 
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Procedure REmbedding 
Input: A hypergraph on the same node set of the cycle. 
Output: An embedding of the hypergraph in the cycle. 
begin 

1. Perform the Clockwise Embedding for the hypergraph. 
Let L denote the maximum congestion of the Clockwise Embedding. 

2. Find links gk and hk, and compute xk for k = 1,2, ..., LL12J. 
xk is defined to be 0 for k = LL/2J + 1 and k = 0. 

3. k := LLI2J. 
while k 2 1 do 

if (xk > k) then goto step 4 
else k := k - 1. 

4. I f ~ ~ > k + l a n d x ~ + ~ > _  1 then 
re-embed k + 1 arbitrary candidates w.r.t. k including 
at least one candidate w.r.t. k + 1 

else 
if ((L = 2 or L = 4) and k = 0) or (L = 12 and k = 1) then 

call Subroutine SpecialLCases 
else re-embed k arbitrary candidates w.r.t. k. 

end. 

Subroutine Special-Cases 
Input The Clockwise Embedding of the hypergraph. 
Output An embedding of the hypergraph in the cycle. 
begin 
/* Let s be a link with maximum congestion L in the Clockwise Embedding, 

E be the set of hyperedges whose c-paths contain link s in the Clockwise Embedding, 
and Pi be the c-path for ei E E that does not contain link s. */ 
If (L = 2 or L = 4) and k = 0 then 

for every ei E E do 
if re-embedding ei as Pi reduces L by one then 

re-embed ei as Pi and return 
else / *  L = 12 and k = 1 */ 

for every pair ei, ej E E do 
if re-embedding ei as Pi and ej as Pj reduces L by two then 

re-embed ei as Pi and ej as Pj and return 
re-embed an arbitrary candidate w.r.t. k = 1. 

Return 
end. 

Figure 4.3: Embedding algorithm for the MCHEC problem. 
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Assume that k+  1 candidates w.r.t. k are re-embedded. For each link i with gk 5 i 5 hk, 

the congestion of link i after the re-embedding is l(i) - (k  + 1) 5 L - k - 1. For each link 

i with i < gktl or i > hktl, the congestion of link i after the re-embedding is at most 

l(i) + (k + 1) 5 L - 2(k + 1) + (k + 1) = L - k - 1. For each link i with gk+l 5 i < gk or 

hktl 2 i > hk, since the k + 1 re-embedded candidates include at least one candidate w.r.t. 

k + 1, the congestion of link i after the re-embedding is at  most l(i) - 1 + k 5 L - 2k - 1 + k = 

L - k - 1. So after the re-embedding, maximum congestion Lk is L - k - 1. 

Assume that Subroutine Special-Cases is executed. For k = 0, Lk = L - 1 or Lk = L. 

Fork = 1, Lk = L -  2 or L - 1. 0 

According to the above lemma, the approximation ratio of our algorithm is (L- k)/L* or 

(L - k - l) /L*. If the algorithm terminates with a large k, we use rL/21 as a lower bound on 

L* and get an approximation ratio of (L - k)/ rL/21 or (L - k- 1)/ rL/21. This suggests that 

when terminating with a large k, our algorithm has a good approximation ratio. However, 

if the algorithm terminates with a small k, for example, k = 0, then the approximation ratio 

given by Lk/ [L/2] is 2, which is no better than the Clockwise Embedding. In the following, 

we shall prove that if the algorithm terminates with a small k, then a new lower bound that 

is better than [L/21 can be found. Using this better lower bound, our algorithm has a good 

approximation ratio as well when k is small. Lower bound rL/21 is obtained by using a cut 

consisting of two links in the cycle. The new lower bound involves three links. 

To derive the new lower bound, we need some new notation. Let x, y and z be any three 

distinct links in the cycle. Without loss of generality, we assume that 0 5 x < y < z 5 n- 1. 

We define four disjoint subsets of hyperedges as follows: 

W : the set of hyperedges such that each hyperedge has a node in segment (z + 1, x), a node 

in segment (x + 1, y), and a node in segment (y + 1,z);  

X : the set of hyperedges such that each hyperedge has a node in segment (z + 1, x), has 

NO node in segment (x + 1, y), and has a node in segment (y + 1, z); 

Y : the set of hyperedges such that each hyperedge has a node in segment (z + 1, x), a node 

in segment (x + 1, y), and has NO node in segment (y + 1, z) ; 

Z : the set of hyperedges such that each hyperedge has NO node in segment (z + 1, x), has 

a node in segment (x + 1, y), and a node in segment (y + 1, z). 
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c-path for (0,1,8) 

Figure 4.4: Lower bound involving three links x,  y, and z 

For the example shown in Figure 4.4, if we assume that x = 2, y = 6, and z = 9, then 

hyperedge {1,4,7} belongs to set W, hyperedge (0, l ,8}  belongs to set X, hyperedge {2,3,4} 

belongs to set Y, and hyperedge {3,5,7} belongs to set Z.  

The intuition for proving the new lower bound involving three links is as follows: When 

algorithm REmbedding terminates with some small Ic, for the two corresponding links gk, 

hk and the highest numbered link n - 1, we get four disjoint subsets of hyperedges W, X ,  Y, 

and Z as defined above. The congestion of link gk (resp. hk) in the Clockwise Embedding is 

l(gk) > L - 2k + 1 (resp. l(hk) 2 L - 2k + 1). So when Ic is small, l(gk) (resp. l(hk)) is large. 

A hyperedge whose c-path contains link gk (resp. hk) in the Clockwise Embedding belongs 

to one of the sets W, X ,  and Y (resp. W, X ,  and Z),  that is, l(gk) = IWI + 1x1 + IYI (resp. 

l(hk) = IWI+IXI +IZI). Therefore, when Ic is small, IWI + [ X I +  IYI (resp. IWI +IXI+ 121) 

is large. Based on the above observations, a new lower bound can be obtained when Ic is 

small. The following lemma gives the new lower bound: 

Lemma 4.1.2 For any three links x, y and z with 0 5 x < y < z 5 n - 1 in the cycle, 
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Proof: Let I denote an arbitrary embedding, and lI(i) denote the congestion on link i in 

embedding I. We have 

L* > min{max{l~(x), ~ I ( Y ) ,  Ir(z))). 
I 

Let T = lI (x) + 11 (y) + lI(z). Notice that in any embedding I, the c-path for any hyperedge 

in W must contain at least two of links x, y, and z. Therefore, each hyperedge in W 

contributes at least 2 to T in any embedding I .  Similarly, the c-path for any hyperedge 

in X ,  Y, or Z must contain at least one of links x, y, and z in any embedding I ,  so each 

hyperedge in X ,  Y, or Z contributes at least 1 to T. 

Based on the above analysis, it is concluded that in any embedding I, 

So in any embedding I ,  

0 

It is worth pointing out that there exist hypergraphs for which the lower bound derived 

above is equal to the maximum congestion of an optimal embedding (i.e., the lower bound 

derived above is tight). An example of such hypergraphs is as follows: Let x, y, and z be 

three distinct links with x < y < z in the cycle. We construct a hypergraph H(V,  Eh)  with 

Eh = W U X U Y U Z. Each hyperedge in set X (resp. Y, Z)  has nodes only in segment 

(y + 1, z + 1) (resp. (z + 1, x + I ) ,  (x + 1, y + I)) .  W consists of hyperedges in three disjoint 

subsets W,, Wy and W,. Every hyperedge in W, (resp. Wy, W,) does not contain any node 

in segment (z + 2, x) (resp. (x + 2, y), (y + 2,z)). The sizes of sets W,, Wy and W, are 

defined as 
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Let I be an embedding for H ( V ,  Eh) such that the c-path for a hyperedge in W:, does not 

contain link j ,  where j = x, y, z; the c-path for a hyperedge in X (resp. Y, 2)  does not 

contain x or y (resp. y or z ,  z or x). For any link i with y + 1 5 i 5 z, 

Similarly, for any link i with z + 1 5 i 5 x, 

and for any link i with x + 1 5 i 5 y, 

The proof for the 3-link lower bound can be easily extended to obtain lower bounds that 

involve more links. In this thesis, we only deal with the 3-link lower bound. Using the 3-link 

lower bound, we prove the following theorem: 

Theorem 4.1.1 The approximation ratio of algorithm REmbedding is bounded above by 

1.8. 

Proof: 

According to Lemma 4.1.2, 

holds for three links g, h, and n - 1 with 0 5 g < h < n - 1. 

Since l(g) = IWI + 1x1 + IYI and l(h) = (WI + 1x1 + 121, we have 

Therefore, 

Notice that for links gk and hk,  if gk = hk then gk is the unique link with maximum 

congestion L. From the definition of xk, we have xk = L when gk = hk. 

Assume that algorithm Rxmbedding terminates with maximum congestion Lk.  The 

rest of the proof is divided into two cases: 
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Case 1: Lk = L - k - 1. 

Taking g = gk t l  and h = hktl in inequality (4.1), we have 1x1 = xk+l. Since the 

algorithm terminates with maximum congestion Lk, we have xktl 5 k < LL/2J, which 

implies that gk+l < hk+l. Since l (gk+1) > L - 2(k + 1) + 1 and l (hk+l) > L - 2(k + 1) + 1, 

Therefore, an upper bound on the approximation ratio of the algorithm is 

Since [L/21 is also a lower bound on L*, 

So the approximation ratio of the algorithm is bounded above by 

Function ( L  - k - l ) / [ L / 2 1  is decreasing in k and function 3 ( L  - k - 1)/ (2L - 5k - 2) is 

increasing in k. For k > [L/ lOJ,  ( L  - k - l ) / [ L / 2 ]  5 1.8; for k < [L/lOj - 1, 3 (L  - k - 
1)/ (2L - 5k - 2) 5 1.8. 

Case 2: Lk = L - k.  

In this case, either xk = k or xk+l = 0. 

Assume that xk = k.  Taking g = gk  and h = hk in inequality (4.1), then 1x1 = xk = k 

and gk < hk.  Since l ( g k )  > L - 2k + 1 and l (hk )  > L - 2k + 1, 

The approximation ratio of the algorithm is bounded above by 
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For k > rL/101, ( L  - k ) / [ L / 2 1  5 1.8; for k < [L/101 - 1, 3 ( L  - k ) / ( 2 L  - 5k + 2)  5 1.8. 

Assume that xk+l = 0. So 

The approximation ratio of the algorithm is bounded above by 

L - k 3 ( L  - k )  
mini- 

[ L / 2 ]  ' 2L  - 4k - 2 1. 

For k > [ L / 1 0 ] ,  ( L  - k ) / [ L / 2 ]  5 1.8; for k 5 [L /10]  - 1,  3 ( L  - k ) / ( 2 L  - 4k - 2 )  5 1.8, 

except for the following three special cases: 

( 1 )  L = 2 and k = 0 ,  

( 2 )  L = 4 and k = 0 ,  and 

( 3 ) L  = 12 and Ic = 1. 

we shall prove that L k / L *  < 1.8 holds for ( I ) ,  ( 2 ) ,  and ( 3 )  in the following. 

Recall that s  is a link with maximum congestion L in the Clockwise Embedding, E 

is the set of hyperedges whose c-paths contain link s  in the Clockwise Embedding, and Pi 

is the c-path that does not contain link s  for each ei E E. Let Iopt be an optimal embedding. 

Case ( 1 )  can be divided into two sub-cases according to subroutine Special-Cases. Sub- 

case (1.1) is that one hyperedge ei E E is re-embedded as Pi. So Lk  = L - 1 = 1,  which 

implies that L k / L *  = 1. Sub-case (1.2) is that re-embedding any hyperedge in E does not 

decrease the maximum congestion. So no hyperedge is re-embedded and L k  = L = 2. We 

shall prove that 2 is a lower bound on L* for sub-case (1.2),  which implies that L k / L *  = 1. 

If any one of the following three conditions holds, then L* > 2. 

Condition 1: There exists one hyperedge in E whose c-path in IWt contains both links 

s  and n -  1. 

Notice that every hyperedge in E is separated by cut ( s , n  - 1) .  So the c-path for 

any ei E E in any embedding must contain at least one of links s  and n - 1. If the 

condition 1 holds, then the sum of congestions on links s and n - 1 in IWt is at least 

3,  which implies that L* > 2. 
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Condition 2: There exist more than one hyperedges in E whose c-paths contain link 

s (or link n  - 1) in Iopt. 

This condition directly implies that L* 2 2. 

Condition 3: There exists one hyperedge that is not in E and whose c-path in Iopt is 

not the same as that in the Clockwise Embedding. 

For each hyperedge that is not in El if it is not embedded in IWt as in the Clockwise 

Embedding, its c-path must contain both links s and n - 1 in Iopt.  Therefore, the sum 

of congestions on links s and n - 1 in IOpt is at least 4, which implies that L* > 2. 

Therefore, we can assume that none of the above three conditions holds. So the Clock- 

wise Embedding can be transformed to Iopt by merely re-embedding one ei E E as Pi. 

L* = 1 means that re-embedding ei as Pi decreases the maximum congestion of the Clock- 

wise Embedding by one, which is a contradiction to the situation of sub-case (1 .2 ) .  Thus 

L* 2 2, that is, L k / L *  = 1. 

Case ( 2 )  can also be divided into two sub-cases according to subroutine Special-Cases. 

Sub-case (2 .1)  is that one hyperedge ei E E is re-embedded as Pi. So Lk = L - 1 = 3, 

which implies that L k / L *  5 L k / [ L / 2 ]  = 1.5 < 1.8. Sub-case (2 .2)  is that re-embedding 

any hyperedge in E does not decrease the maximum congestion. So no hyperedge is re- 

embedded and Lk = L = 4. We shall prove that L* > 3 for sub-case (2 .2 ) ,  which implies 

that Lk/L*  5 1: < 1.8. 

If any one of the following three conditions holds, then L* > 3.  

Condition 1: There exists one hyperedge in E whose c-path in IWt contains both links 

s and n -  1. 

Notice that every hyperedge in E is separated by cut (s, n - 1) .  So the c-path for 

any ei E E in any embedding must contain at least one of links s and n - 1. If the 

condition 1 holds, then the sum of congestions on links s and n - 1 in IWt is at least 

5, which implies that L* 2 3. 

Condition 2: There exist more than two hyperedges in E whose c-paths contain link 

s (or link n  - 1) in IWt.  

This condition directly implies that L* 2 3. 
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Condition 3: There exists one hyperedge that is not in E and whose c-path in Iopt is 

not the same as that in the Clockwise Embedding. 

For each hyperedge that is not in E, if it is not embedded in IWt as in the Clockwise 

Embedding, its c-path must contain both links s and n - 1 in Iopt. Therefore, the sum 

of congestions on links s and n - 1 in Iopt is at least 6, which implies that L* 2 3. 

Therefore, we can assume that none of the above three conditions holds. So the Clock- 

wise Embedding can be transformed to Iopt by merely re-embedding two eis E E as P,!s. 

L* = 2 means that re-embedding any one of these two e:s as Pi decreases the maximum 

congestion of the Clockwise Embedding by one, which is a contradiction to the situation of 

sub-case (2.2). Thus L* 2 3, that is, Lk/L* < 1i < 1.8. 

There are two sub-cases for case (3) as well. Sub-case (3.1) is that two hyperedges 

ei, ej E E are re-embedded as Pi and Pj. So Lk = L - 2 = 10, which implies that Lk/L*  5 
Lk / [L /2 ]  = 1: < 1.8. Sub-case (3.2) is that re-embedding any two hyperedges in E does 

not decrease the maximum congestion by two. In this sub-case, only one candidate w.r.t. 

k = 1 is re-embedded in subroutine Special-Cases and Lk = 11. We shall prove that L* > 7 

for sub-case (Xi'), which implies that Lk/L*  5 1: < 1.8. 

If any one of the following three conditions holds, then L* 2 7. 

Condition 1: There exists one hyperedge in E whose c-path in Iopt contains both links 

s and n -  1. 

Notice that every hyperedge in E is separated by cut ( s ,n  - 1). So the c-path for 

any ei E E in any embedding must contain at least one of links s and n - 1. If the 

condition 1 holds, then the sum of congestions on links s and n - 1 in IWt is at least 

13, which implies that L* 2 7. 

Condition 2: There exist more than six hyperedges in E whose c-paths contain link s 

(or link n - 1) in IWt. 

This condition directly implies that L* 2 7. 

Condition 3: There exists one hyperedge that is not in E and whose c-path in Iopt is 

not the same as that in the Clockwise Embedding. 
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For each hyperedge that is not in El  if it is not embedded in Iopt as in the Clockwise 

Embedding, its c-path must contain both links s and n - 1 in Iopt. Therefore, the sum 

of congestions on links s and n - 1 in Iopt is at least 14, which implies that L* > 7. 

Therefore, we can assume that none of the above three conditions holds. So the Clock- 

wise Embedding can be transformed to Iopt by merely reembedding six eis E E as Pis. 

L* = 6  means that reembedding any k(k  5 6)  of these six hyperedges e i s  as Pls decreases 

the maximum congestion of the Clockwise Embedding by k.  This is true especially for 

k  = 2, which is a contradiction to the situation of sub-case (3.2). Thus L* > 7, that is, 

Lk/L* 5 14 < 1.8. 0 

Step 1 of algorithm REmbedding takes O ( m n )  time for the hypergraph with m hy- 

peredges and n nodes. Since L = O ( m ) ,  steps 2 and 4 can be done in O ( m n )  time and 

step 3 can be done in O ( m )  time. Subroutine Special-Cases takes O ( n )  time. Therefore, 

the time complexity of algorithm REmbedding is O(mn) .  Notice that O ( m n )  is also the 

optimal time to embed m hyperedges in the cycle with n nodes. The reason is as follows: 

For each hyperedge ei with ni nodes, it takes R(ni )  time to find any feasible embedding 

(i.e., construct a c-path) for ei since a c-path for ei consists of at least ni - 1 a-paths. From 

the fact that ni can be R(n )  and there are m hyperedges in the hypergraph, we conclude 

that it takes Q(mn)  time to embed the hypergraph with m hyperedges and n nodes. 

4.2 An algorithm for optimal solutions 

Ganley and Cohoon [9] proposed an O((mn)L*+l )  time algorithm to compute optimal so- 

lutions for the MCHEC problem, where L* is the maximum congestion, m is the number 

of hyperedges, and n is the number of nodes in the hypergraph. Their algorithm runs in 

polynomial time for the subproblem with constant maximum congestion L*. In this section, 

we present an  fin)^') time algorithm that solves the same problem. 

First, for any fixed integer k  and a hypergraph with m hyperedges and n nodes, we 

present an algorithm that computes a solution for the MCHEC problem with maximum 

congestion at most k ,  or determines that such a solution does not exist in  fin)^) 
time. The intuition of this algorithm is as follows: To avoid checking all the possible 

O(nm)  embeddings for the hypergraph with m hyperedges and n nodes, the algorithm in [9] 

arbitrarily selects a link in the cycle, and only checks the embeddings in which the congestion 
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on the selected link is at most Ic .  Using this constraint, the algorithm need check ~ ( ( m n )  k, 

instead of O(nm)  embeddings. Therefore, if we consider two links in the cycle, there will be 

two constraints for congestions on both links. Thus the number of checked embeddings can 

be reduced further. 

Recall that L is the maximum congestion and s is a link with maximum congestion L in 

the Clockwise Embedding. Link n- 1 is the highest number link in the cycle. Our algorithm 

considers these two links s and n - 1. Let X be the set of hyperedges whose c-paths contain 

link s in the Clockwise Embedding, and Y be the set of hyperedges whose c-paths do not 

contain link s in the Clockwise Embedding. So IX I = L, and I Y I = m - I X I = m - L, where 

m is the total number of hyperedges. There are two key observations: 

0 Observation 1: Any c-path except the one in the Clockwise Embedding for each 

hyperedge in set X must contain link n - 1, and may contain link s. 

Observation 2: Any c-path except the one in the Clockwise Embedding for each 

hyperedge in set Y must contain both links s and n - 1. 

Let Iopt be an optimal embedding and l I o p ,  ( i )  be the congestion on any link i in Iopt. 

In the Clockwise Embedding, assume that t(t 5 m )  hyperedges are not embedded as in 

Iopt, and assume that the other m - t hyperedges are embedded as in Iopt. Among these t 

hyperedges that are not embedded as in Iopt, let x(x 5 t )  hyperedges are from set X, and 

the other y = t - x hyperedges are from set Y. 

Due to the above two observations, 

and 

then 

Thus 

x + y < k  and L + y - x < k .  
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So if we start with the Clockwise Embedding, t hyperedges need to be re-embedded to 

obtain optimal embedding IWt. Among these t hyperedges, x hyperedges are from set XI 
and y hyperedges are from set Y. Based on the above analysis, the number of possibilities 

to select t hyperedges to re-embed is: 

Each of these t selected hyperedges has O ( n )  possible embeddings, so the total number 

of checked embeddings in our algorithm is  fin)^). 
Our  fin)^) time algorithm can be stated formally as follows: For each set S of 

hyperedges with IS1 5 k, in which y(y  5 $) hyperedges belong to set Y and x ( x  = IS1 - y)  

hyperedges belong to set X, each hyperedge in S is embedded differently from the Clockwise 

Embedding. Each hyperedge that is not in S is embedded in the same way as the Clockwise 

Embedding. After checking all the possible embeddings, the algorithm either computes a 

solution with maximum congestion at most k, or determines that such a solution does not 

exist in ~ ( ( J m n ) ~ )  time. 

Recall that L is the maximum congestion of the Clockwise Embedding, and the Clockwise 

Embedding is a 2-approximation algorithm. So maximum congestion L* of an optimal em- 

bedding must be at least rL/21. Using the above ~ ( ( J m n ) ~ )  time algorithm, we construct 

an algorithm to compute optimal solutions for the MCHEC problem as follows: Starting 

from k = rL/21, the algorithm checks whether there exists a solution with maximum con- 

gestion at most k. If so, the algorithm terminates; otherwise, k is increased by one and the 

checking is repeated. The time complexity of the optimal algorithm is 

For the subproblem with constant maximum congestion L *, the optimal algorithm runs in 

polynomial time. 

4.3 Heuristics 

Ganley and Cohoon [13] proposed the Iterated Maximum Independent Set (IMIS) heuristic, 

which runs in 0(m(mn)2) time for the hypergraph with m hyperedges and n nodes. In 

this section, we propose two heuristics for the MCHEC problem. Both of our heuristics not 
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Procedure HZRemoving 
Input: A hypergraph on the same node set of the cycle. 
Output: An embedding of the hypergraph in the cycle. 
begin 

1. Embed each hyperedge ei as a c-path P,( consisting of all its a-paths. 
The heaviest zone is defined to be the set of all the links in the cycle. 

2. For each hyperedge ei do 
delete the a-path that has the longest spanning in the heaviest zone from P: 
(If there is a tie, delete the longer one to  break the tie. 
If still tied, arbitrarily delete one to break the tie); 
update the congestion on each link and set the new heaviest zone; 

end. 

Figure 4.5: Heaviest Zone Removing heuristic 

only have a lower time complexity of O(mn),  but also beat the performance of the Iterated 

Maximum Independent Set heuristic according to  our simulation results. 

4.3.1 Heuristic 1: Heaviest Zone Removing 

Recall that each hyperedge ei with ni nodes has exactly ni adjacent paths (a-paths) in the 

cycle. Let P: denote a connecting path (c-path) for e ,  in which all the ni a-paths are present 

(i.e., P,( is a circuit). Notice that any n, - 1 a-paths of e,  form a feasible embedding (i.e., 

a c-path) for e,. Therefore, we can construct a feasible embedding for each ei by deleting 

exactly one a-path from P,(. The Longest Adjacent Path Removing algorithm proposed 

by Lee and Ho [12] uses a greedy strategy that always deletes the longest a-path for each 

hyperedge. Thus, their strategy is actually based on the local information of each hyperedge. 

To achieve better performance, our heuristic chooses one a-path to  delete based on global 

information. We define the heaviest zone to be the set of links in the cycle with the maximum 

congestion. Our heuristic deletes the a-path that has the longest spanning in the heaviest 

zone for each hyperedge. The heuristic is given in Figure 4.5. 

Figure 4.6 gives an example to illustrate the Heaviest Zone Removing heuristic. Initially, 

every hyperedge is embedded as a circuit and the heaviest zone is the whole cycle (see 

Figure 4.6(1)). We process hyperedges in an arbitrary order. For hyperedge {3,5), we 

delete the a-path from node 5 to node 3, which spans 4 links in the heaviest zone (see 
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Hyperedges 

(2)Embedding for hyperedge {3,5)  

/ 

"----+ 
(4)Embedding for hyperedge {3 ,4 ,5)  

(3)Embedding for hyperedge {O,4, 5 )  

/ 

"----a 
(5)Embedding for hyperedge (0, 1 , 2 )  

Figure 4.6: An example of Heaviest Zone Removing 
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Figure 4.6(2)). After updating the congestion of each link, the new heaviest zone consists 

of link 3 and link 4. For hyperedge {0,4,5), both the a-path from node 4 to node 5 and 

the a-path from node 0 to node 4 have the longest spanning in the heaviest zone, but the 

a-path from node 0 to node 4 is longer, so we choose it to break the tie (see Figure 4.6(3)). 

After updating the congestion on each link, the new heaviest zone only includes link 4. We 

embed the other two hyperedges similarly. The embedding for all the hyperedges is given 

in Figure 4.6(5). 

4.3.2 Heuristic 2: Spin Routing 

The objective of the MCHEC problem is to minimize the maximum congestion over all the 

links in the cycle, so an intuitive idea is to evenly distribute congestions on all the links in 

the cycle. The following Spin Routing heuristic is developed based on this idea. Initially, 

Spin Routing chooses an arbitrary node as the start node (wlog, we assume that node 0 is 

the initial start node). An embedding candidate is defined to be a hyperedge that contains 

the start node. Assume that ei is such an embedding candidate consisting of sorted nodes 

{vi, vi, . . . , vft,), and node vj is the start node. The Spin Routing embeds ei in the cycle as 

a c-path from vj to vj-l in the clockwise direction, and set node vj-l to be the new start 

node. An embedding candidate that contains the new start point is re-embedded, and the 

start point is updated. The process is repeated until all the hyperedges are processed. The 

heuristic is given in Figure 4.7. 

Figure 4.8 gives an example to illustrate the Spin Routing heuristic. Initially, node 

0 is selected as the start node, and both hyperedges { O , l ,  2) and {0,4,5) are embedding 

candidates. However, if we embed them in the clockwise direction starting from start node 

0, hyperedge { O , l ,  2) has shorter spanning in the cycle. So we embed hyperedge {O,1,2) 

as shown in Figure 4.8(1). The end point of the embedded path is node 2, which is set as 

the new start node. There is no un-embedded hyperedge containing start node 2, so we 

choose next node 3 in the cycle as the new start node, and then both hyperedges {3,5) and 

{3,4,5) are embedding candidates. These two hyperedges have spanning with the same 

length as well, so we can choose any one to embed. Hyperedge {3,4,5) is chosen as shown 

in Figure 4.8(2). The process is repeated until all the hyperedges have been embedded. The 

embedding for all the hyperedges is shown in Figure 4.8(4). 
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Procedure SpinRouting 
Input: A hypergraph on the same node set of the cycle. 
Output: An embedding of the hypergraph in the cycle. 
begin 

1. Without loss of generality, choose node 0 as the start node. 
2. While there exist un-embedded hyperedges do 

if there exists the embedding candidate then 
embed the candidate as a c-path in the clockwise direction starting from the start node 
(If there is a tie, embed the one whose c-path has shorter spanning in the 
cycle to break the tie. If still tied, arbitrarily embed one to break the tie); 
set the end point of the newly embedded path as the start point. 

else 
set the node that is next to the current start node in the clockwise 
direction to be the start point. 

end. 

Figure 4.7: Spin Routing heuristic 

4.4 Simulation results and conclusions 

4.4.1 Simulation results 

In this section, we present simulation results for the Clockwise Embedding [ll], the Longest 

Adjacent Path Removing [12], our 1.8-approximation algorithm, the Iterated Maximum 

Independent Set heuristic [13], our Heaviest Zone Removing heuristic, and our Spin Routing 

heuristic. All the simulations use randomly generated hypergraphs. We assume that the 

size of each hyperedge is smaller than a pre-specified threshold. Below this threshold, a 

hyperedge can be in any size (2  2) with the same probability. This is based on the fact 

that each connection request usually involves only a few nodes in the network. We also 

assume that there is a pre-specified threshold for the total number of hyperedges in which 

a node is present. Below this threshold, a node can appear in any number of hyperedges 

with the same probability. This is based on the fact that a node can only be involved in a 

few connection requests simultaneously due to the node capacity. 

We run simulations on both sparse and dense  hypergraphs. In sparse hypergraphs, the 

number of hyperedges m is relatively small compared with the number of nodes n in the 

cycle. As shown in Table 4.1 and Table 4.3, the number of nodes n in the cycle is 100, 
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Hyperedges 

( 3 )  (4) 

Figure 4.8: An example of Spin Routing 
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and the number of hyperedges rn is in the range from &n = 5 up to n = 100. In dense 

hypergraphs, the number of hyperedges m is relatively large compared with the number of 

nodes n in the cycle. As shown in Table 4.2 and Table 4.4, the number of nodes n in the 

cycle is 30, and the number of hyperedges m is in the range from n = 30 up to  n2 = 900. 

We run simulations on cycles and hypergraphs with different sizes as well, and results from 

other simulations present similar characteristics. We only give four tables in this thesis. 

Table 4.1: Practical performance of our 1.8-approximation algorithm on the cycle with 
n = 100 nodes 

Table 4.1 shows the practical performance of our 1.8-approximation algorithm in terms 

of the maximum congestion. The cycle has n = 100 nodes. The first column m is the number 

of hyperedges, which is in the range from &n = 5 up to n = 100. The second column LB 

is a lower bound on the optimal maximum congestion. We compute this lower bound by 

choosing the larger one of the Zlink lower bound and 3-link lower bound. The third column 

L is the maximum congestion of the Clockwise Embedding. The fourth column Lk is the 
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Table 4.2: Practical performance of our 1.8-approximation algorithm on the cycle with 
n = 30 nodes 
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Table 4.3: Performance comparison on the cycle with n = 100 nodes 
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Table 4.4: Performance comparison on the cycle with n = 30 nodes 
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maximum congestion of our 1.8-approximation algorithm. The fifth column L k / L B  is the 

ratio to evaluate the practical performance of our 1,Sapproximation algorithm, The last 
column ( L  - L k ) / L  gives the ratio to  measure how much our 1.8-approximation algorithm 

decreases the maximum congestion of the Clockwise Embedding. In this simulation, the 

size of each hyperedge is restricted to  the range from 2 to 7, and each node can be present 

in at  most 7 hyperedges. Results show that the practical performance of our algorithm is 

even better than the guaranteed approximation ratio 1.8, and our algorithm decreases the 

maximum congestion of the Clockwise Embedding by about 10 percent in practice. 

Table 4.2 shows the practical performance of our 1.8-approximation algorithm for the 

cycle with n = 30 nodes. The number of hyperedges m is in the range from n = 30 

up to  n2 = 900. In this simulation, the size of each hyperedge is restricted to the range 

from 2 to  7 as well. Since the number of hyperedges is large, we assume that each node 

is present in at  most % hyperedges, which guarantees that there are sufficient nodes to 

construct m hyperedges. Results show that the practical performance of our algorithm 

remains almost the same as that on the sparse hypergraph presented in Table 4.1, and 

our algorithm decreases the maximum congestion of the Clockwise Embedding by about 10 

percent as well. 

Table 4.3 shows a comparison of maximum congestions obtained by various algorithms. 

The cycle has n = 100 nodes. The number of hyperedges m is in the range from $n = 5 

up to n = 100. The first four columns are the same as those in Table 4.1. The fifth, 

sixth, seventh and eighth columns are maximum congestion LLAR of the Longest Adjacent 

Path Removing algorithm, L H Z R  of our Heaviest Zone Removing heuristic, LSR of our 

Spin Routing heuristic, and L I M I s  of the Iterated Maximum Independent Set heuristic 

respectively. In this simulation, the size of each hyperedge is restricted to the range from 

2 to  7, and each node can be present in at  most 7 hyperedges. Results show that our 

Heaviest Zone Removing heuristic has the best performance, which is very close to the 

lower bound. The maximum congestion of the Longest Adjacent Path Removing algorithm 

is slightly higher. Next is our Spin Routing heuristic. Our 1.8-approximation algorithm and 

the Iterated Maximum Independent Set heuristic are almost in the same level. Lastly, the 

Clockwise Embedding has the worst performance. 

Table 4.4 shows a comparison of maximum congestions obtained by various algorithms 

for the cycle with n = 30 nodes. The number of hyperedges m is in the range from n = 30 

up to n2 = 900. In this simulation, the size of each hyperedge is restricted to the range from 



CHAPTER 4. EFFICIENT ALGORITHMS FOR THE MCHEC PROBLEM 4 1 

2 to 7 as well. Since the number of hyperedges is large, we assume that each node is present 

in at most hyperedges, which guarantees that there are sufficient nodes to construct 

m hyperedges. Results show that as the hypergraph becoming denser, our Spin Routing 

heuristic performs better than the Heaviest Zone Removing heuristic, and both of these two 

heuristics are slightly better than the Longest Adjacent Path Removing algorithm. The 

other algorithms remain the same performance ranks as those in Table 4.3. 

4.4.2 Conclusions 

In theory, our 1.8-approximation algorithm gives the best approximation ratio among all the 

approximation algorithms. It runs in optimal time complexity O(mn) as well. In practice, 

our 1.8-approximation algorithm gives even better performance, and decreases the maxi- 

mum congestion of the Clockwise Embedding by about 10 percent. The 2-approximation 

algorithm Longest Adjacent Path Removing performs better than our 1.8-approximation 

algorithm according to simulation results, however, there does exist the worst case in which 

the maximum congestion obtained by the Longest Adjacent Path Removing is exactly twice 

of the optimal maximum congestion. 

Our two heuristics have very good practical performance, and also run in optimal time 

complexity O(mn). For sparse hypergraphs, our Heaviest Zone Removing heuristic beats 

all the other algorithms. For dense hypergraphs, our Spin Routing heuristic has the best 

performance. The maximum congestion achieved by either heuristic is very close to the 

lower bound. 



Chapter 5 

Discussion and future work 

In this thesis, we discussed routing problems on ring networks. Especially for the MCHEC 

problem, we proposed our own improved algorithms. In the future, we will continue our 

research in the following several aspects. 

5.1 Further improvement on the algorithms for the MCHEC 

problem 

In section 4, we gave a 1.8-approximation algorithm for the MCHEC problem. We proved 

a 3-link lower bound, which guarantees that our algorithm has a good approximation ratio 

even when the number of re-embedded hyperedges is small. The proof for the 3-link lower 

bound can be easily extended to obtain lower bounds involving more links. So a very 

straightforward idea for future research is to consider a 4-link lower bound, and then an 

open problem is how to design an algorithm to take advantage of the 4-link lower bound. 

Currently we are considering to use one of the links with the maximum congestion in the 

Clockwise Embedding, and the other three links used by the 3-link lower bound. 

We also proposed an algorithm to compute optimal solutions for the MCHEC problem. 

Our algorithm runs in  fin)^') time. As we have mentioned in section 4, if more links 

are considered, there will be more constraints. Thus the number of checked embeddings, 

which dominates the time complexity of the algorithm, can be reduced further. So an open 

problem is to develop a more efficient polynomial time algorithm for subproblems with 

constant maximum congestions. 
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In addition, we intend to extend our results of the undirected model to the directed 

model. In the undirected model, each link in the cycle is used for bi-direction. Traffic can 
go back and forth along bidirectional links, and thus full connectivity is realized within each 

connection request. However, some networks such as optical networks do not support the 

technology of bidirectional use of links, and usually a pair of opposite-directed links are 

used between two adjacent nodes. So as an alternative, the directed model is proposed to 

study such networks. In the directed model, the cycle is considered as a symmetric digraph 

and each connection request is treated as an ordered node set. For unicast applications, 

each connection request consists of one source and one destination. A routing algorithm 

is required to find a directed path in the cycle from the source to the destination for each 

connection request. For more complicated communication applications such as multicast, 

each connection request consists of one source and several destinations. A routing algorithm 

is required to find a directed pseudo path in the cycle from the source to all the destinations, 

where the pseudo path for each connection request can be either a path in a single direction 

with the source as the start point of the path, or two joint paths in two opposite directions 

with the source as the start point of both paths. As to the MCHEC problem, since an 

embedding for the undirected model realizes full connectivity among nodes of each hyper- 

edge, it is obvious that a solution for the undirected model provides a feasible embedding 

for the directed model as well. However, for every pair of opposite-directed links along each 

routing path in the cycle, only the link in either the clockwise or counterclockwise direction 

is used. This independent use of the two opposite-directed links provides more flexibility for 

designing routing algorithms. Trivially, any a-approximation(a > 1) algorithm for the undi- 

rected MCHEC problem is at least a 2a-approximation algorithm for the directed MCHEC 

problem, but this may not be a good approximation algorithm. How to design algorithms 

to achieve better approximation ratios is open. We will work on efficient algorithms for 

multicast and full connective routing requests among multiple nodes on directed cycles. 

5.2 Minimum Congestion Weighted Hypergraph Embedding 

in a Cycle 

We define the size of a connection request to be the amount of the bandwidth requirement 

of the connection request. A set of connection requests with non-uniform sizes can be 

described by a weighted hypergraph. The hyperedges with different weights in the weighted 
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hypergraph represent the connection requests with non-uniform sizes. Therefore, a more 

general case of the MCHEC problem, in which connection requests may have non-uniform 

sizes, is formulated by Lee and Ho [12] as the Minimum Congestion Weighted Hypergraph 

Embedding in a Cycle problem: Given a weighted hypergraph and a cycle on the same node 

set, embed the weighted hyperedges as weighted paths in the cycle such that the maximum 

congestion (i.e., the maximum total weight of paths using any single link in the cycle) over 

all the links in the cycle is minimized. A special case, in which each connection request 

involves exactly two nodes, can be formulated as the Minimum Congestion Weighted Graph 

Embedding in a Cycle problem. 

5.2.1 Related work 

1. A special case: Minimum Congestion Weighted Graph Embedding in a Cycle 

(a) NP-completeness 

The Minimum Congestion Weighted Graph Embedding in a Cycle problem is also 

well known as the Ring Loading problem [7, 141. The Ring Loading problem is 

NP-complete, and various reductions from the Partition problem [21] have been 

constructed to prove its NP-completeness in [7, 14, 121. 

Theorem 5.2.1 [7, 14, 121 The Ring Loading problem is NP-complete. 

(b) Approximation algorithms 

i. 2-approximation algorithms 

Among the 2-approximation algorithms for the MCHEC problem, the Clock- 

wise Embedding [ll] and the Longest Adjacent Path Removing [12] can also 

be used to solve the Ring Loading problem with the same approximation 

ratio. In fact, the Clockwise Embedding belongs to a class of routing algo- 

rithms, which is called Edge Avoidance Routing by Cosares and Saniee 1141. 

In the Edge Avoidance Routing, all the connection requests are routed in 

the way to avoid containing a pre-specified link of the ring. For example, the 

highest numbered link n - 1 in the ring is always avoided in the Clockwise 

Embedding. 

Furthermore, the Edge Avoidance Routing and the Longest Adjacent Path 

Removing belong to a more general class of routing algorithms, which is 
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called Weight-based Routing in [14]. The Weight-based Routing is defined 

as follows: Assign a non-negative weight for each link in the ring, and then 

route each connection request in the way that used links have minimum 

total weight. For example, the Edge Avoidance Routing is the Weight-based 

Routing in which the avoided link is assigned weight 1, and all the other 

links have weight 0; the Longest Adjacent Path Removing is the Weight- 

based Routing in which each link in the ring is assigned the same weight. A 

stronger result is proved in [14]: Any Weight-based Routing algorithm is a 

2-approximation algorithm for the Ring Loading problem. 

ii. An algorithm with solutions bounded above by Optimum + id,,, 

Schrijver, Seymour, and Winkler [7] proposed an efficient algorithm with so- 

lutions exceeding the optimum by at most id,,,, where d,,, is the size of 

the largest connection request. In their paper, Schrijver et al. considered 

a relaxed version of the Ring Loading problem in which every connection 

request can be split in an arbitrary way to route in both clockwise and 

counterclockwise directions. They solved the relaxed Ring Loading prob- 

lem optimally, and then proved that after unsplitting the split connection 

requests by some strategies, the maximum congestion increase by at most 

:dm,,. Notice that the optimal maximum congestion of the relaxed Ring 

Loading problem is a lower bound on the optimal maximum congestion of 

the Ring Loading problem, therefore, the maximum congestion obtained by 

their algorithm is bounded above by Optimum + id,,,. 

iii. A polynomial time approximation scheme 

Khanna [15] gave a polynomial time approximation scheme based on the 

above Optimum + :dm,, algorithm. The basic idea is that for any prob- 

lem instance in which the size of the largest connection request is at most 
2e.Optimum , a (1 + 6)-approximation algorithm can be obtained using the 

approach in [7]. 

According to whether the size of a connection request is greater than 2 e ' 0 p ~ m u m  , 
Khanna divided a set of connection requests into two disjoint subsets Shigh 

and Slow. For the connection requests in set Slow, a routing with the max- 

imum congestion bounded by (1 + e) . Optimum can be obtained by the 

algorithm in [7]. For the connection requests in set Shigh, all the possible 
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routings are checked, and each possible routing is combined with the rout- 

ing of set Slow. So a (1 + E )  . Optimum solution for the whole connection 

request set can be achieved eventually. For any fixed e > 0, Khanna's (1 + e)- 
3(1+lln) 

approximation algorithm runs in 0 ( t n 7 + ~ )  time. 

(c) Variants of the Ring Loading problem 

In the Ring Loading problem discussed above, it is assumed that no connection 

requests can be split. However, in some systems, a connection request can be split 

into two parts, with one part being routed in the clockwise direction and the other 

part being routed in the counterclockwise direction. If either of the two parts can 

have an arbitrary size, we refer to the Ring Loading problem as the Ring Loading 

Problem With splitting (RLP W); if both of the two parts must have integral sizes, 

we refer to the Ring Loading problem as the Ring Loading Problem With Integral 

splitting (RLP WI). The RLPW can be solved in polynomial time, but the RLPWI 

is proved to be NP-hard. Optimal algorithms for the RLPW and approximation 

algorithms for the RLPWI have been proposed in [7, 23, 24, 25, 261. 

In addition, some research has also been done for the directed case of the Ring 

Loading problem. Wan and Yang [27] proved that the problem is NP-complete as 

well, and proposed several approximation algorithms to  solve the directed Ring 

Loading problem. 

2. Minimum Congestion Weighted Hypergraph Embedding in a Cycle 

(a) NP-completeness 

Since the MCHEC problem is a subproblem of the Minimum Congestion Weighted 

Hypergraph Embedding in a Cycle problem, and the MCHEC problem is NP- 

complete, the following theorem holds: 

Theorem 5.2.2 (121 The Minimum Congestion Weighted Hypergraph Embed- 

ding in a Cycle problem is NP-complete. 

(b) Approximation algorithms 

Among the 2-approximation algorithms for the MCHEC problem, the Clockwise 

Embedding [ll] and the Longest Adjacent Path Removing 1121 can also be used 

to solve the Minimum Congestion Weighted Hypergraph Embedding in a Cycle 

problem. Either of them has an approximation ratio of 2. 
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5.2.2 Future research 

For the Minimum Congestion Weighted Hypergraph Embedding in a Cycle problem, so far 

the best known approximation algorithms have the same approximation ratio of 2 [ll, 121. 

How to develop approximation algorithms with a better approximation ratio is an open 

problem. 

As a special case of the Minimum Congestion Weighted Hypergraph Embedding in a 

Cycle problem, the Ring Loading problem has attracted much attention. The Optimum + 
id,,, algorithm [7] is proper for instances in which dm,, is not much bigger than the sizes of 

other connection requests, otherwise, the algorithm can't guarantee a good approximation 

ratio. The polynomial time approximation scheme [15] guarantees a good approximation 

ratio but runs with a high time complexity. In addition to these two results, all the other 

algorithms have approximation ratio at least 2. So a possible improvement is to develop 

algorithms running with relatively lower time complexities and better approximation ratios 

than 2. 

5.3 Path Coloring problem 

The Path Coloring problem is another important research issue. The problem is defined as 

follows: Given a set of connection requests, assign a path and a color to each connection 

request such that two connection requests receive different colors if their paths share a link 

in the network, and the objective is to minimize the number of used colors. 

A popular application is the Wavelength Division Multiplexing (WDM) optical network, 

in which the available bandwidth on each optical fiber is partitioned into a certain number 

of channels, each at a different wavelength. In WDM optical networks, each wavelength can 

carry a separate stream of data. Due to the signal interference, any two paths that share 

an optical fiber must be assigned different wavelengths. 

5.3.1 Related work 

Previous research on the Path Coloring problem in ring networks can be categorized into 

the following directions. 
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1. Path Coloring with pre-specified routing 

Once routing is fixed, the Path Coloring problem in ring networks is actually the 

Circular Arc Graph Coloring problem, which has attracted much attention in the 

graph theory area. Garey et al. [28] showed that the problem is NP-hard. Tucker [29] 

gave an algorithm using at most 2L colors, where L is the maximum congestion on 

the ring. Tucker also conjectured that a Circular Arc Graph can be colored using at 

most 3w/2 colors, where w is the Clique number of the Circular Arc Graph. Hsu and 

Shih [30] gave an algorithm using at most 5w/3 colors. Karapetian [31] proved Tucker's 

conjecture that a Circular Arc Graph can be colored using at most 3w/2 colors. A 

randomized coloring algorithm that achieves approximation ratio 1 + l /e  + o(1) with 

a high probability was given by Kumar [32], where e = 2.718 is the base of natural 

logarithm. For the particular case of the Proper Circular Arc Graph, the coloring 

problem is solvable in polynomial time [33, 34, 351. 

There are also some work on the on-line version of the Circular Arc Graph Coloring. 

According to whether arrived paths can be released after some finite amount of time, 

there are incremental dynamic cases and purely dynamic cases. Slusarek [36] presented 

an algorithm that uses at most 3L - 2 colors for the incremental case, where L is the 

maximum congestion on the ring. Kierstead and Trotter [37] showed that 3L - 2 is 

also a lower bound for the incremental case. Gerstel et al. 1381 studied the purely 

dynamic case, and presented an upper bound of L + L . [log2 nl and a lower bound of 

0.5L . ([log2 nj  + I), where n is the number of nodes in the ring. 

2. Path Coloring without pre-specified routing 

In this case, the routing of connection requests is not fixed, and the objective is to 

route all the connection requests on the ring while using as few colors as possible. 

If all the connection requests have a uniform bandwidth requirement, the problem is 

called Routing and Path Coloring problem and proved to be NP-complete by Erlebach 

and Jansen [39]. Raghavan and Upfal [4] presented a 2-approximation algorithm for 

the undirected model. Mihail, Kaklamanis, and Rao [5] developed a 2-approximation 

algorithm for the directed model using a similar idea. It seems that nobody can beat 

the 2-approximation algorithm until Kumar 1321 proposed a randomized approxima- 

tion algorithm for the undirected model achieving approximation ratio 1.5+ 1/2e+o(l) 
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with a high probability, where e = 2.718 is the base of natural logarithm. Cheng [40] 

presented an algorithm with approximation ratio 2 - max{4/n, 1/(50 log n)). 

If connection requests have non-uniform bandwidth requirements, the problem is called 

Demand Routing and Slotting Problem (DRSP) and proved to be NP-complete by 

Carpenter et al. [41]. They also gave a 2-approximation algorithm for the DRSP 

by combining the Edge Avoidance Routing and the optimal Interval Graph Coloring 

algorithm presented by Golumbic [42]. Carpenter et al. also proved a stronger result 

that any Weight-based Routing followed by a basic coloring algorithm proposed by 

Tucker 1291 is a 2-approximation algorithm for the DRSP. 

3. Path Coloring with blocking allowed 

In the above two models, it is assumed that all the connection requests must be sat- 

isfied and the objective is to minimize the number of used colors. Some researchers 

considered the Path Coloring problem from a different view: Given a fixed number of 

colors, assign paths and colors to the connection requests to satisfy as many connec- 

tion requests as possible, that is, the objective is to minimize the number of blocked 

connection requests. In a very recent paper, Christos, Aris, and Stathis 1431 pre- 

sented a $approximation algorithm for the undirected model and a &-approximation 

algorithm for the directed model. 

Also, another research direction is to consider a random distribution of the connection 

requests and compute blocking probabilities [44, 45, 461. 

4. Path Coloring with multi-fiber in WDM networks 

This model arises when a WDM optical network is allowed to use multiple parallel 

fibers. There are two approaches to study this problem. One is that the number of 

available wavelengths on each optical fiber is fixed, and the objective is to minimize 

the total number of used optical fibers in the network. This problem is formulated as 

the Path Multicoloring problem by Christos, Aris, and Stathis [47]. They presented 

algorithms for chains, rings, and stars. For ring networks, no matter whether routing 

is pre-specified or not, the problem is NP-complete. A 2-approximation algorithm was 

given in [47] for each case. 

The other approach is that the number of parallel optical fibers between any pair of 
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adjacent nodes is fixed, and the objective is to minimize the total number of used wave- 

lengths. This problem is studied by Li and Simha [48], and Margara and Simon [49]. 

They proved independently that for pre-specified routing and a ring network with 

k parallel optical fibers, . O P T  is an upper bound on OPT,  which denotes the 

optimal number of used wavelengths. 

5 .  Path Coloring with wavelength conversion in WDM networks 

With the development of optical technologies, wavelength converters are deployed 

more and more widely in WDM optical networks. Using wavelength converters, we 

can significantly reduce the number of used wavelengths. However, the price of the 

wavelength converter is also an important factor for consideration. The previous work 

in this direction includes minimizing the number of wavelengths with full wavelength 

conversion or limited conversion, placing wavelength converters to make an optimal 

utilization, etc. 

5.3.2 Future research 

Although much work has been done, there are still many open problems for various Path 

Coloring problems in ring networks. Among all these problems, we think the following ones 

are worth investigating mostly. 

First, the famous Zapproximation algorithms for the Routing and Path Coloring on ring 

networks proposed in [4, 51 have been mentioned by many researchers, and it seems difficult 

to beat their results. As pointed out by Cheng [40], once we can design a routing algo- 

rithm to minimize the total number of pairwise intersected paths optimally, then using the 

!-approximation algorithm proposed by Karapetian [31], we can achieve a z-approximation 

algorithm for the Routing and Path Coloring problem. But whether there exists such a poly- 

nomial time routing algorithm is still unknown. Second, the on-line version of the Routing 

and Path Coloring problem is also an interesting research direction. To our knowledge, 

the best approximation ratio is achieved by simply combining the Edge Avoidance Routing 

with the on-line Interval Graph Coloring algorithm presented in [41]. Third, there are also 

many open problems for further exploration in the multi-fiber model, wavelength conversion 

allowed model, and blocking allowed model. 
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