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Abstract 

The area of facility location has applications in a wide range of topics such as op- 

erations research, urban planning, telecommunications, VLSI circuit design, robot 

motion, supply chain management, etc. We study three facility location problems in 

the presence of obstacles. The obstacles are disjoint, rectangular and axis-parallel. 

The distance between any two points in the plane is measured in Li geodesic metric, 

i.e., the shortest path in rectilinear metric avoiding obstacles. 

In this thesis we study three seemingly unrelated problems. We identify com- 

monalities between these problems and improve upon the existing results by using 

geometric techniques. 

In the 1-median problem, we are given m obstacles and n source points in the 

plane, and the objective is to find a point t in the plane such that the sum of its 

distances to all the n points is minimized. We present efficient algorithms to solve 

the 1-median problem based on the relative orders of n and m. 

In the shop floor layout problem, we are given a layout consisting of several de- 

mand facilities and a single supply facility. The supply facility serves each of the 

demand facilities through an 1/0 point or "door" on each of the demand facilities. 

The optimal placement of the supply facility and the doors on the demand facilities 

is vital in order to minimize the total transportation costs between them. We study 

three different versions of this problem: (i) the supply facility is a fixed point and its 

location is known, (ii) the supply facility is a point and can lie anywhere in the given 

iii 



layout, and (iii) the supply facility is a point and can lie anywhere within a given 

convex rectilinear region. In this thesis, we present efficient algorithms to solve the 

above versions of the shop-floor layout problem. 

Finally, we study the clustering problem. The objective is to  partition a given set 

of data points into clusters such that data points within the same cluster are "similar". 

We measure the similarity between data points in terms of distance functions. In this 

thesis, we present an efficient implementation of the iterative Ic-median clustering 

algorithm. 
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"Obstacles are those frightful things you see when you fail to focus on your goals" 

- Henry Ford 
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CHAPTER 1. INTRODUCTION 

1.1 A note on Facility Location Problems 

Facility location has been an intriguing and attractive field of study for many re- 

searchers for decades. This is not surprisingly so. The problems of facility location 

find applications in a wide range of real-life applications. Operations research, urban 

planning, telecommunications [I 11, VLSI circuit design [25, 281, robot motion [26, 51, 

supply chain management [I 11, etc are only some of the areas that borrow techniques 

and concepts from the field of facility location to achieve their goals. 

So what is facility location? 

Despite the amount of work and effort that goes into facility location, the objective 

of such a problem is in fact quite simple. We are given several facilities or resources 

which are to be utilized by a set of clients. The goal is to place these resources in 

an optimal fashion such that the total cost involved for the clients to access these 

resources is minimized. The cost can be measured in terms of minimum/maximum 

distance, monetary gain, etc and depends on the application under consideration. 

Simply put, facility location is a resource allocation optimization problem. 

Consider a classic application of facility location: urban planning. It is often re- 

quired to place certain facilities in and around the city, keeping in mind the access 

criteria to these facilities. For example, a fire station in the downtown area should 

ideally be located such that the travel time to any of its service locations is the same, 

i.e., at the center of its service area. The quality of solutions to such facility location 

problems are usually measured in terms of a travel metric, and the goal is to optimally 

place the given facilities so as to minimize the distances travelled or material trans- 

portation costs involved. Depending on the application, a suitable metric is chosen 

to calculate the distances. Euclidean and Manhattan are the two common distance 

metrics used. 

When tackling real-life facility location problems, it is commonly seen that some 
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restrictions apply on how and where facilities can be placed in a given region or space. 

The presence of obstacles results in forbidden regions where the facilities cannot be 

placed. The obstacles also pose a barrier to travel. These obstacles could appear in 

the form of rivers, lakes, parks, buildings, airports, etc. In such cases, it is imperative 

that the distance function be modified to acknowledge the presence of these obstacles 

when calculating distances between points in the space. Some applications where such 

a problem may arise are: 

0 Motion planning in the field of robotics where a robot tries to find its way 

through a maze of obstacles. 

0 Urban planning where the goal is to place services or facilities such as mail 

boxes, fire stations, etc. A typical obstacle could be a golf course inside which 

a mail box cannot be placed. 

In an industrial plant where a supply unit needs to be placed to service requests 

from demand facilities. In this case, the demand facilities pose as obstacles and 

travel cannot occur through these obstacles. 

0 In the design of VLSI circuits. 

Drezner and Hamacher [ll] present many facility location problems and the un- 

derlying theory behind solving them. 

Concepts from computational geometry provide efficient algorithms and elegant 

data structures to solve problems arising in facility location. For instance, Preparata 

and Shamos [29] used the properties of the convex hull to produce an algorithm to 

solve the "smallest enclosing circle of a set of points" problem in O(n1ogn) time, 

where n is the number of points in the set. The Voronoi diagram, which is one of the 

fundamental structures described in computational geometry, has been repeatedly 

used to solve many facility location problems such as the "nearest neighbor query 

problem for the rectilinear metric in the presence of obstacles" [9]. 
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In this thesis, we study three facility location problems: (i) the rectilinear 1-median 

problem as described by Choi et. al. [8], (ii) the "shop floor layout problem" as de- 

scribed by Wang et. al. [35], and (iii) the iterative k-median clustering problem in 

the presence of obstacles [33, 361. 

The three problems mentioned above are facility location problems. Apart from 

this commonality, these problems share a strong relationship with each other in terms 

of our work and objectives. We started our research studying the clustering problem 

in the presence of obstacles. We realized that the k-means clustering approach falters 

in the presence of obstacles as it can place facilities (cluster centres) in forbidden re- 

gions, such a .  in the interior of an obstacle. This led us to pursue a different approach, 

and we started studying the 1-median problem in the presence of obstacles. Not only 

could we use the 1-median technique for our clustering pr'ocess, but we were also able 

to improve the currently published algorithms solving the 1-median problem. As we 

will see later, the shop floor layout problem is very similar to the 1-median problem 

in the presence of obstacles. The objective of both these problems is to minimize 

sum of distances from a central point to other points in the region. We consider our 

obstacles to be axis parallel rectangular objects that occupy space and are a barrier to  

travel. We use the obstacle avoiding (geodesic) rectilinear (or Manhattan) L1 metric 

to  compute distances between pairs of points in the region. 

The first problem we study is the rectilinear 1-median problem in the presence of 

obstacles. Here we are given n source points in the plane and a set of m rectangular 

obstacles. As before, these obstacles pose as barriers to travel and are axis-parallel. 

The objective is to find a point p such that the sum of the geodesic distances from 

each source point to p is minimized. The point p is called the 1-median point. This 

problem has been studied by Choi et. al. [8] who gave an O(n(n+m) logm) algorithm 

to locate a 1-median point. In this thesis, we present an O(n(n + m)) time algorithm 

for locating a 1-median point. We further improve the running time to O(mn log n) 

under the assumption that the number of source points is much larger than the num- 

ber of obstacles in the plane, i.e., n >> m. Also, our algorithm requires linear storage 
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space, which is an improvement over the O(mn) storage space requirement for the 

algorithm in [a]. 

Next we study the shop floor layout problem introduced in [35]. We are given a 

central supply facility and several demand facilities in the 2-D plane. The facilities 

are rectangular in shape and of finite size. They also pose as barriers to  travel in 

the layout. The supply facility acts as a server of goods or resources to the demand 

facilities. The goods can be received by a demand facility at an I/O point or "door", 

which is placed somewhere on its perimeter. A door is also placed on the perimeter of 

the supply facility from where the goods are to be dispatched. Several versions of this 

problem have been studied. For instance, the supply facility can be a fixed point in 

the plane (also known as a supply point). In this case, the door to the supply facility 

would be the point itself. In another' version, the location of the supply facility is 

unknown, and is computed as part of the solution set. Yet another version requires 

the supply facility to lie within a given convex rectilinear region, and the optimal 

location inside this region also needs to  be determined. 

Given the problem definition, the goal is to find an I/O point on the supply facility 

and an I/O point on each of the demand facilities. These I/O points need to  located 

such that the total cost of transportation from the supply facility to  the demand fa- 

cilities is minimized, i.e., the sum of the distances from the I/O point of the supply 

facility to the I/O points of the demand facilities is minimum. The facilities are a 

barrier to travel and any travel path cannot intersect the interior region of a facility, 

but the paths are allowed to  run along the perimeters of the facilities. We assume 

that the facilities are rectangular objects which are axis-parallel, i.e., their sides are 

parallel to the X and Y axes. All distances are measured using the rectilinear metric. 

We consider the different versions of this problem, and provide algorithms which have 

significantly better running times than those described by Wang et. al. 1351. 

Finally we examine the clustering problem. We are given a set of n data points, a 
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set of m disjoint, rectangular, axis-parallel obstacles, a value Ic and an objective func- 

tion. The goal is to partition the set of data points into k disjoint clusters, such that 

the objective function is minimized. Each cluster is represented by a cluster centre 

and all points in a cluster are closer to its cluster centre that to any other cluster 

centre. The distances are measured using the geodesic rectilinear metric. 

This thesis is organized as follows. The rest of this chapter discusses the prelim- 

inaries, which contains several definitions and results that we use through the rest 

of the study to solve the above problems. In chapter 2, we discuss the rectilinear 1- 

median problem and present algorithms to solve the same. In chapter 3, we discuss in 

detail the shop floor layout problem and present algorithms to solve different versions 

of the problem. Chapter 4 examines the iterative k-median clustering problem, and 

an efficient algorithm'is presented to solve this problem in the presence of obstacles. 

In chapter 5, we present our conclusions and discuss possible future work in the area. 

Choice of Metric 

In this thesis, we calculate distances between points using geodesic (obstacle avoiding) 

Manhattan metric, which is also known as the rectilinear metric. Even in the absence 

of obstacles, there is no exact algorithm for the 1-median problem in the plane when 

distances are computed using the Euclidean metric. This is due to the presence of 

square roots in the Euclidean metric, which could be irrational numbers [3]. Thus, 

there is no published result on the k-median problem for points in the plane. In 

contrast, objective functions that comprise of Manhat tan distances are easier to solve. 

1.2 Preliminaries 

Given the Euclidean space R2, which have co-ordinate axes X and Y, a point p in the 

space is denoted by (p,,p,), where p, is the X-coordinate and p, is the Y-coordinate. 
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We define the distance between any two points p and q,  p, q E R2, as the L1 or Man- 

hattan distance between them, i.e., Ilp - q( (  = Ipx - qx( + Ip, - q,l. 

Also given are rn obstacles (in 2-D) denoted by 0 = {01, 02, 03, . . . , Om), such 

that none of the obstacles intersect each other. The obstacles are rectangular and 

axis-parallel, i.e., their sides are parallel to the X and Y axes. We define the border 

of any region Q E R2 as the boundary of that region, denoted by B(Q). Thus the bor- 

der of an obstacle 0, is its perimeter. We also define the free space 3 to be the region 

in R2 minus the set of obstacles 0, plus the border of each of the obstacles in 0, i.e., 

3 = R2 - (J {Oi - B(Oi) 1 Oi E 0). We consider only rectilinear paths between the 

points. A rectilinear path is a chain of axis-parallel segments lying in the free space F. 

Note that the borders of the obstacles of 0 are included in the free space and thus a 

rectilinear path can consists of segments in B(Oi), Oi E 0. The length of such a path 

is the sum of the lengths of its segments. The shortest rectilinear path between two 

points p and q (p, q E 3) can now be defined as the rectilinear path having minimum 

length, amongst geodesic rectilinear possible paths between p and q, and its length is 

denoted by d(p, q). We define the x-distance between the points p and q as the sum 

of the lengths of the segments of the path from p to q that are parallel to the X-axis, 

denoted by d,(p, q). The y-distance between p and q is similarly defined. We denote 

the topleft, topright, bottom-left and bottom-right corners of an obstacle Oi E 0 
by tl(O,), tr(Oi), bl(Oi) and br(0i) respectively. 

We denote a path P by a sequence of end points of its segments, i.e., P = 

PO, PI, . . . pk, such that the coordinates of pi and pi+l differ in exactly one coordi- 

nate (X or Y). In other words, any two consecutive points in the path have either 

the same x-coordinate value or the same y-coordinate value. A path is said to be 

X-monotone (or Y-monotone) if the coordinates of its points continually increase or 

decrease in the X-direction (resp., Y-direction) . An X-monotone (resp., Y-monotone) 

path has all of its horizontal (resp., vertical) segments directed either rightwards or 

leftwards(resp., either upwards or downwards). A path that is both X-monotone and 

Y-monotone is called an XY-monotone path, also known as a stair-case path. The 
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length of a stair-case path is simply the L1 distance between the two end points p and 

91 i.e.1 d(P, 9 )  = IPX - 9x1 + lp, - %I. 

Figure 1.1: Example of a XY-monotone, rectilinear path. 

In figure 1.1, the path from point p to the point q is rectilinear, and is monotone 

in both, the X and Y directions, i.e., it is XY-monotone. Notice that the path can 

run along the perimeter of some of the obstacles. 

We now present some important properties of rectilinear paths between points which 

are used extensively later. 

Property 1.2.1. [4] Given two points p and q (p, q E F), the shortest path between 

them has t o  be either X-monotone or Y-monotone (or both). 

Property 1.2.2. [4] Given two points p and q ( p , q  E F), if there exists an  X -  

monotone path and a Y-monotone path between them,  then there also exists a n  X Y -  

monotone path between them. 

Property 1.2.3. [4] If there exists a n  XY-monotone path between two points p and 

q ,  then that path i s  the shortest path between p and q. Further, any  other shortest 

path between p and q has t o  be XY-monotone.  
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Definition 1. We define an +x(+y) path P = (po,pl , .  . . pk) starting at  a point p as 

follows. Starting from the point p, the path moves in the +x-direction, i.e., the first 

segment (po, pl)  of the path P is a horizontal line segment with y = y(p). The path 

continues to move in the +x-direction until it hits an obstacle Oi E 0. The path then 

moves along the edge of the obstacle Oi in the +y-direction till it reaches the top-left 

corner of Oi, after which it starts to move in the +x-direction again. This continues 

until the last segment of the path ( ~ ~ - ~ , p ~ ) ,  which goes to infinity. +x(-y), -x(+y) 

and -x(- y) paths are similarly defined. 

As seen in figure 1.2, the paths defined above divide the free space F into four 

separate regions, Fp(,), Fp(-,I, Fp(,) and FP(-,). Fp(,) is the region of F that is en- 

closed by the xy and the x(-y) paths. 

The division of the plane into the four regions with respect to  p as mentioned above 

imposes some properties on the distance measurements between p and the regions. 

The shortest path between p and any point inside Fp(,) and Fp(-,) is non-y-monotone, 

i.e., the path is x-monotone but not y-monotone. The shortest path between p and 

any point inside 3p(y) and FP(-,) is either xy-monotone or just y-monotone. Analo- 

gously, we can create regions by drawing y(+x), y(-x), -y(+x) and -y(-x) paths so that 

the shortest path between p and any point inside FP(,) and FP(-,) is non-x-monotone, 

and the shortest path between p and any point inside Fp(,) and Fp(-,) is xy-monotone 

or just x-monotone (see figure 1.3). 

Lemma 1.2.1. [30] Given a point p and the obstacle set 0, the free space F can 

be divided into the four regions as described above in O(n log n) time and using O(n) 

space. 

Lemma 1.2.2. [8] Given two points p and q on a line segment L lying in the free 

space F ,  and another point s E F ,  then (2) d, (s, p) = d, (s, q), if L is a vertical line, 

and (zz) d, (s, p) = d, (s, q), zf L is a horizontal line. 

Figure 1.4 illustrates lemma 1.2.2 when L is a vertical line. Points p and q lie on 

L. The x-distance from s to  p is equal to the x-distance from s to  q, irrespective of 
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. ---------  
-. ....................... 

- z ( - u )  path 

Figure 1.2: Partitioning of the free space into four regions - creating non-y-monotone 
regions with respect to a point. 

: ............. I .._.: 
I : ;u (+z )  path 
: I  ( 

I : : I  : 

:& . :  - 2). . pa th . . . !  , .......... -u(+z) P 

Figure 1.3: Partitioning of the free space into four regions - creating non-x-monotone 
regions with respect to a point. 
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where p and q lie on L. 

Figure 1.4: A diagram supporting lemma 1.2.2 

1.3 Summary 

We have presented several definitions and properties that we will use to solve the 

problems described in the subsequent chapters. In each chapter we provide a brief 

overview of the problem, followed by new and efficient algorithms which improve upon 

the previously published results. At the end of each chapter we provide a detailed 

analysis of our algorithms. 
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CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 

Background and Problem Definition 

The 1-median problem has been studied extensively and has applications in a wide 

range of areas, particularly in facility location [8, 15, 7, 201. Given n source points in 

the plane and a set of m disjoint rectangular axis-parallel obstacles (as described in 

section 1.2), the goal of the 1-median problem is to find a point t that minimizes the 

distance function below: 

where si is the ith source point and t is the median point such that t lies in the free 

space described by the plane and the obstacles (refer to section 1.2). The distances are 

geodesic and are measured using the rectilinear metric, as discussed in the previous 

chapter. 

Before we proceed, we provide a brief history of the 1-median problem. Given the 1- 

dimensional case and no obstacles, the 1-median can be computed in linear time [lo]. 

The same problem in the plane (2-Dimensions) can be split into two 1-Dimensional 

problems and solved again in time linear to the number of source points [15]. Chepoi 

and Dragan [7] studied the problem of computing a median point in a simple rectilin- 

ear polygon and presented an O(p + n logp) algorithm to solve this problem (p is the 

number of vertices of the polygon, and n is the number of source points lying inside 

the polygon). 

Larson and Li [23] were amongst the first to study facility location problems in the 

presence of obstacles. They present an algorithm to find the shortest rectilinear 

path between origin-destination points in the presence of obstacles. With the help of 

these results, Larson and Sadiq [22] studied the general p-median problem in a two- 

dimensional Euclidean space in the presence of barriers. Kusakari and Nishizeki [20] 

presented an algorithm to find all 1-median points. This algorithm is output sensitive 

and runs in O((k + m) log m) time, where k is the number of polygonal vertices of the 
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region found and m is the number of axis-parallel rectangular obstacles in the plane. 

The number of source points n does not affect the running time of the algorithm since 

the authors have assumed the value of n to be a constant. The storage space required 

for their algorithm is O(k + m). If it is assumed that n is not constant, then their 

algorithm requires O((k + nm) log nm + n2m) time. Choi et. al. [8] also worked on 

this problem and have presented an O(n(n + m) logm) time algorithm to find the 

1-median point. They explain how to compute the median set (the set of all 1-median 

points) in O(n(n + m) log m + k) time, where k is the complexity of the median set. 

The 1-median set is a collection of rectilinear polygons, where line segments and in- 

dividual points are degenerate cases of polygons. For example, it is possible that all 

points on a given line segment are 1-median points for a given set of source points. 

Other facility location problems have also been studied in the presence of obsta- 

cles. Moshe, Katz and Mitchell [4] present an O(mnlog (m + n)) time algorithm to 

construct a data structure of size O(mn) that can report the farthest point to a query 

point in O(1og (m + n)) time, where n is the number of source points and m is the 

number of obstacles in the plane. For the same setup, they also study the 1-center 

problem, where the objective is to find a point in the plane that minimizes the maxi- 

mum distance to  the n points. They present an O(mn log (m + n)) time algorithm to 

find the 1-center point. 

In this chapter, we present an efficient algorithm for the 1-median problem in the 

presence of obstacles. For a given set of n source points and m rectangular, axis- 

parallel obstacles, our algorithm runs in O(n(n + m)) time, and improves the current 

best published result of O(n(n + m) log m) in [8]. We further improve this running 

time to 0 (nm log n), motivated by the fact that in most cases n >> m. We also reduce 

the storage space requirement of 0 (mn) for the algorithm in [8] to 0 (m + n)  (linear) 

space. 
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2.2 Proposed Algorithm 

We denote the set of n source points by S = isl, ~ 2 , .  . . , s,) and the set of m dis- 

joint, axis-parallel rectangular obstacles in the plane by O = (01, 02, . . . ,Om).  The 

obstacles and source points fall in a given rectangular region R in the 2-D plane. As 

discussed in section 1.2, we denote the length of the shortest obstacle-avoiding recti- 

linear distance between two points p and q in the free space by d(p ,  q ) .  We preprocess 

the given data in the following manner. We maintain four sorted lists for the set of 

obstacles. The first list stores the obstacles sorted by the left edges, the second stores 

the obstacles sorted by the right edges, and the third and fourth lists store obstacles 

sorted by the top and bottom edges respectively. Similarly, we also maintain sorted 

lists for the set of source points that store the points sorted by the x-coordinate and 

by the y-coordinate. . 

Our l-median algorithm starts by generating horizontal and vertical line decompo- 

sitions of the given input data. The edges of each obstacle are extended until they 

hit another obstacle or the boundary of the region R. We draw a horizontal line 

and a vertical line through each source point s E S in a similar manner. The set of 

horizontal line segments created is denoted by H, and the set of vertical line segments 

created is denoted by V. We present a detailed description of how the horizontal and 

vertical line decompositions are computed in the next section. 

Lemma 2.2.1. [8] There exists an  intersection point among the O(m + n)2 intersec- 

tion points created by the horizontal and vertical line segments i n  H and V respectively, 

which is the optimal location for the 1-median. 

According to lemma 2.2.1, the l-median point lies on the intersection of the hori- 

zontal and vertical line segments in H and V respectively. By definition, the l-median 

point is the one amongst these intersection points that has minimum total distance 

to the n source points in S. Let hi and vj denote the horizontal and vertical line seg- 

ments respectively that intersect to create an intersection point p. The distance from 
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Figure 2.1: Preprocessing performed for the 1-median problem. 

p to any source point s is the sum of the x-distance and y-distance from p to s. Thus 

the total distance from p to all the source points is the sum of all the x-distances and 

y-distances. Also, the total x-distance from the source points to p is the same as total 

x-distance to any other point on the vertical line segment vj (lemma 1.2.2). Similarly, 

the total y-distance from the source points to p is the same as the total y-distance from 

the source points to any other point on the horizontal line segment hi. Thus, knowing 

the total y-distances from the source points to all the horizontal line segments and the 

total x-distances from the source points to all the vertical line segments, we can find 

the total distance from any intersection point to all the source points in constant time. 

The 1-median algorithm can be formally described as follows: 

Algorithm 1-median 

Input: A set of source points S, a set of obstacles 0. 

Output: A 1-median point of the set S. 
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Step 1: Compute the horizontal line decomposition (HLD) and the vertical line 

decomposition (VLD) of the given input data. 

Step 2: (i) Find the x-distances from the source points in S to  the line segments 

in V. 

(ii) Find the y-distances from the source points in S to the line segments 

in H. 

Step 3: Find the intersection point, among all intersection points created by the 

line segments in H and V, that has minimum sum of x-distance 

and y-distance. 

2.2.1 Finding Horizontal and Vertical Line Decompositions 

We now present the technique used to obtain the HLD and the VLD. We use the 

sorted lists of obstacles and source points described in the beginning of this section. 

To compute the vertical line decomposition, we sweep a vertical line L that starts from 

the left edge of the region R and stops when it hits (i) the left edge of an obstacle, (ii) 

the right edge of an obstacle, or (iii) a source point. The sweep-line maintains a list of 

"active" obstacles, i.e., those whose left edge has been encountered but right edge has 

not yet been encountered. On encountering the left and right edges of an obstacle, 

we extend these edges in the +y and -y directions until they hit another obstacle or 

the boundary of the region R. When the line L encounters a source point, we shoot 

two rays out of the source point in +y and -y directions until the rays hit either an 

obstacle or the boundary of R. The obstacles lying directly above and directly below 

a source point or another obstacle can be determined using a list of active rectangles 

maintained with the sweep-line. A balanced binary tree (such as a red-black tree [lo], 

AVL tree [lo], splay tree [32]) can be used to maintain this active list in sorted order, 

and the VLD can be computed in O((m + n) logm) time. We obtain the horizontal 
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line decomposition in a similar manner in O((m + n)  log m) time by sweeping a hori- 

zontal line starting from the top edge of the region R. These procedures create 2m+n 
horizontal line segments and 2m + n vertical line segments in the region R. Let the 

set of horizontal line segments created be denoted by H = {hl, h2, .  . . , hzm+,} and let 

the set of vertical line segments created be denoted by V = {vl, 212,. . . , vZmSn}. See 

figure 2.1 for illustrations. 

2.2.2 Finding Distances From Source Points to Line Seg- 

ments in H and V 

We now present Step 2 of our 1-median algorithm which again 'uses a sweep-line tech- 

nique to calculate the total x-distances (y-distances) from the source points in S to 

each vertical line segment (horizontal line segment) in V (H). Our algorithm con- 

siders each source point s € S at  a time and computes its x-distance (y-distance) 

contribution to all the vertical (horizontal) line segments created in Step 1 of the 

1-median algorithm. 

We explain how to calculate the y-distance from a source point s to all the hori- 

zontal line segments in H using a vertical sweep-line L. The same procedure can be 

applied to calculate the x-distances from s to the vertical line segments in V using a 

horizontal sweep-line. We denote by ytotal(h) the total y-distance to the horizontal 

line segment h E H from all the source points processed so far by our algorithm. 

Algorithm Find y-distances(currentp) 

Input: Source Point currentp, set of source points S, set of obstacles 0, set of hori- 

zontal line segments H. 

Output: y-distance contribution of currentp to all h E H. 

Step 1: Initialize a vertical sweep-line L passing through currentp. 
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Step 2: Sweep L in the +x direction, stopping at  the two events mentioned below: 

(a) /* L passes through a source point s */. 
Compute the y-distance of the horizontal line segment h, passing through 

s from the source point currentp and add this contribution to ytotal(h,). 

(b) /*  L coincides with the left edge of an obstacle o E 0 */. 
Compute the y-distance of the horizontal line segments passing through 

the top and bottom edges (denoted by hi and hj respectively) of o from 

the source point currentp and add this y-distance contribution of 

currentp to ytotal(hi) and ytotal(hj). 

Step 3: Sweep the line L (starting from currentp) in the -x direction, stopping a t  

the two events mentioned below: 

(a) /* L passes through a source point s */. 
Compute the y-distance of the horizontal line segment h, passing through 

s from the source point currentp and add this contribution to ytotal(h,). 

(b) /* L coincides with the right edge of an obstacle o E 0 */. 
Compute the y-distance of the horizontal line segments passing through 

the top and bottom edges (denoted by hi and hj respectively) of o from 

the source point currentp and add this y-distance contribution of 

currentp to ytotal (hi) and ytotal (hj). 

Repeating the three steps described above for all the source points in S, we can cal- 

culate the total y-distance from all the source points to each of the horizontal line 

segments in H. We now present a detailed description of how the two events in Step 

2 of the above algorithm are handled. 
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Event  (a): The sweepline hits a source point s during the forward sweep. 

Let the vertical line passing through s be denoted by v, and the horizontal line pass- 

ing through s be denoted by h,. h, either intersects the vertical line passing through 

currentp or hits an obstacle that lies to the left of s (but to the right of currentp). 

In the first case, the y-distance from currentp to s is simply the y-constituent of the 

Manhattan distance between the two points, i.e. 

We know that the y-distance from the point currentp to s is the same as the y-distance 

from currentp to any point on the horizontal line segment passing through s, i.e. h,. 

Thus, 

ytotal (h,) = ytotal (h,) + d, (currentp, s) 

i.e., the contribution of currentp to h, has been added to the total y-distance of h,. 

In the second case, suppose the line h, hits an obstacle o. This obstacle has already 

been encountered by the sweep-line L. Thus the shortest distances from currentp to 

the corner vertices of o, i.e. tl (o), tr(o), bl(o) and br(o) have already been calculated. 

Suppose that h, intersects the right edge of o at  a point q (see figure 2.2). The shortest 

path from currentp to q passes through either tr(o) or br(o). Thus, 

d, ( c ~ r r e n t p ,  q) = min{d, (currentp, t r  (0)) + d, (tr(o), q) , 

d,(currentp, br(o)) + d, (br  (0) , q) ). 

:. d, (currentp, q) = min{(d, (currentp, tr(o)) + Itr(o), - q, I ) ,  
(dy(currentp1 br(0)) + Ibr(o), - qy I)). 

Since s and q lie on the same horizontal line h,, 

d, (currentp, s )  = d,(currentp, q). 
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Thus, 

ytotal (h,) = ytotal (h,) + d,(currentp, s). 

When computing the y-distance from a point p, the vertical sweep-line stops at O(n) 

source points. Since the HLD has already been computed earlier, we can determine in 

constant time the end points of the horizontal line h passing through a source point s. 

If h intersects the vertical line passing through p then the y-distance between s and 

p can also be computed in constant time by taking the difference of the y-coordinate 

values of s and p. If the line h hits an obstacle o, we need to consider the y-distances 

stored at  the right corners of o. This requires constant time also. Thus for each 

source point we require 0 ( n )  time to determine its y-distances to other source points. 

Therefore, the running time of this event for all source points is 0 (n2) .  

Event (b): The sweep-line L hits the left edge of an obstacle o. Let h: and hz be 

the horizontal lines passing through the top and bottom edges of o respectively. Each 

of these horizontal lines either intersects .the vertical line passing through currentp 

or hits an obstacle lying to the left of o (but to the right of currentp). Thus, the 

y-distances to the two horizontal lines h: and h: can be computed in the same way as 

explained for the horizontal line passing through a source point. We also record the 

y-distances to the corner vertices of o in the variables y(tl(o)), y(tr(o)), y(bl(o)) and 

y(br(o)) (which store the y-distance from p to the top-left, topright, bottom-left and 

bottom-right corners of obstacle o respectively). 

The running time for the case of obstacles is similar to that of source points, since 

obstacles are treated as two separate source points. There are O(m) obstacles, and 

all distance computations are done in constant time. Thus for all source points the 

total time required is O(nm). 

To illustrate, consider figure 2.2. Obstacle O1 creates two horizontal edges, namely 

hl(O1) and h2(01). Both these edges intersect the vertical edge passing through 

currentp. Thus the y-distances to these two edges can be easily calculated by taking 
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Figure 2.2: Illustration of the 1-median algorithm. 

the absolute difference of the y-coordinates between each edge and currentp. The 

y-distance to the edge hl(O1) is the same as the y-distance to the top corner points of 

0 1 .  The y-distances to the edges of 0 2  can be similarly calculated. Now consider the 

source point s2. The horizontal edge h(s2)  hits the obstacle 0 2  on the left at point q. 

We have already calculated the distances from currentp to the corners of this obsta- 

cle. The y-distance from currentp to q can now be easily calculated by considering 

the two paths, i.e. one that comes from the top-right corner of 0 2  and the other 

that comes from the bottom-right of O2 corner and choosing the one which minimizes 

the total distance. The distance from currentp to q is the same as the distance from 

currentp to the horizontal line h(s2)  and also to the source point s2. Suppose that the 

obstacles O1,.  . . , O4 have already been processed by the sweep-line, i.e., we know the 

distances from currentp to the corners of each of these obstacles. For the obstacle 05, 

its two horizontal edges, h1(05)  and h 2 ( 0 5 )  hit the obstacles O3 and O4 respectively. 

The distance to each of these edges can be computed as explained for the edge h(s2) .  

The method outlined above computes the shortest y-distances from the source points 

to the horizontal line segments that originate from the obstacles that lie to the right 

of the source point under consideration. The x-distances from the source points to 
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the vertical line segments in V can be computed in a similar fashion using horizontal 

sweep lines. 

Lemma 2.2.2. Given  a source point p, the  y-distance f rom p t o  all l ine segments  in 

H and the  x-distance t o  all l ine segments  in V can be computed in O(m + n) (linear) 

t ime .  

2.2.3 Finding the 1-median point 

We have calculated the total distances from the source points to  the horizontal and 

vertical line segments in H and V respectively. As seen in fig. 2.3, the horizontal 

and vertical segments created intersect each other and according to  lemma 2.2.1, the 

median point of the source points lies on one such intersection point. For any given 

intersection point p,  the total distance from p to all the source points can be easily 

calculated by considering the total y-distance stored at the horizontal segment passing 

through p and the total x-distance stored at the vertical segment passing through p,  

where h, and up are the horizontal and vertical segments passing through p respec- 

tively. Our goal is to find the intersection point that has the minimum total distance 

among all the intersection points. 

A brute force algorithm to find all the intersections and then to find an in- 

tersection with the minimum total distance i.e. the 1-median point would require 

O((n + m)2) time. Instead, we use a sweep-line technique to solve this problem in 

O((n + m) log (n + m)) time. We first sort the end points of the vertical line seg- 

ments in V and the horizontal segments in H by their y-coordinates. Each vertical 

line segment in V has a total x-distance value associated with it and each horizontal 

line segment in H has a total y-distance value associated with it (as described in 
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Figure 2.3: Intersection of segments in H and V. 

the previous section). A horizontal line L sweeps the plane from top to bottom. As 

the sweep-line moves, we maintain the set of "active" vertical line segments that are 

currently intersecting L. Once a vertical line segment stops intersecting L it becomes 

non-active. The line L also stops when it coincides with a horizontal line segment 

h E H. We choose the vertical line segment v from the active list that intersects h and 

has the minimum total x-distance. The intersection point of v and h is a candidate for 

the 1-median point. Such a candidate is created each time L stops a t  a horizontal line 

during the sweeping process and we pick the candidate with minimum total distance 

as the 1-median point of the set of source points S.  

Algorithm: Locate 1-median point 

Input: Set of horizontal line segments H, set of vertical line segments V 

Output: 1-median point of set of source points S. 

Step 1: Start with min-candidate set to null, min-candidate-value set to co, and 
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the horizontal sweepline L set at  y,. 

Step 2: Generate the event queue Q which contains the end points of line segments 

in V, and the line segments in H, all sorted by the values of their y-coordinates in 

decreasing order. 

Step 2: L stops at an event e : 

(a) /*  e is  the top of a vertical line segment v E V */ 
Add v to the set of active line segments denoted by Vactive. 

(b) /*  e is  the bottom of a vertical line segment v E V */ 
Delete v from the set of active line segments Vactive. 

(c) /* e is a horizontal line segment h E H */ 
(i) Determine line segments in Vactiue intersecting with h. 

(ii)Pick up the segment v E Vactive that has minimum value of total 

x-distance. 

( p  is the intersection point of h and v ) .  

(iii)If y-distance(h) + x-distance(v) I min-candidate-value then 

min-candidate = p 

min-candidate-value = y-distance(h) + x-distance(v) . 

Step 3: Output median-point = min-candidate 

median-distance = min-candidate-value. 

Implement at ion: 

We maintain information for the sweep-line procedure mentioned above using a bal- 

anced binary tree denoted by T. The leaf nodes of this tree store the active vertical 

line segments (in increasing order of x-coordinate value) currently intersecting L. 

Each leaf node contains a record which contains two pieces of information, (i) the 

x-coordinate of the vertical line segment represented by that node, and (ii) the total 



CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 26 

x-distance associated with the vertical line segment. An internal node i stores a record 

made up of the splitting value (to guide the search) and a link to the vertical segment 

that has the minimum total x-distance among all the children of i. Each node also 

stores a link to its parent node. 

When the line L hits the top of a vertical line segment, a new leaf node z is cre- 

ated and added at the appropriate location in the tree. The path from the node z to 

the root of T is updated to reflect changes (if any) caused by the addition of z (for 

example, z could represent a vertical line segment having minimum total x-distance) . 
Similarly, when L hits the bottom of a vertical line segment, the node corresponding 

to that line is deleted from the tree T and the tree is updated. When the line L and 

a horizontal line segment h E H coincide, we perform a 1-dimensional range query 

on the tree T using the x-coordinates (denoted by hxl and hx2) of the endpoints of h 

to  determine the vertical line segments intersecting h. The query on hZl gives a path 

pl from the root of the tree T to a leaf node l 1  and the query on hZ2 gives a path p2 

from the root of the tree T to  a leaf node 12. All the leaf nodes stored between ll and 

l2 represent the active vertical line segments intersecting h. To find the vertical line 

segment vmin with the minimum total x-distance, we simply traverse the paths from 

ll and l2 towards the root of T .  Let the internal node where these two paths meet 

be denoted by i. Each node hanging off the paths between i and ll and i and l2 (and 

lying within the region defined by these two paths) stores a pointer to the vertical line 

segment having minimum total x-distance among all of its children. We traverse from 

i to ll and 12,  examining each such internal node and picking the one which points to 

the leaf node whose vertical line has minimum x-distance. Denote this vertical line 

segment by urn,,. The intersection of vmin and h is a candidate point for the median 

point. Figure 2.4 illustrates the search for the 1-median point using balanced binary 

trees. The internal nodes hanging off the paths are shaded in grey. 

The binary tree created above stores information about the active vertical line seg- 

ments during the sweeping process. There are O(m + n) vertical line segments and 

thus the size of this binary tree is 0 (m + n) and the depth is O(1og (m + n)). The 
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sweep-line stops a t  three events, the two end points of a vertical line segments and 

when it coincides with a horizontal line. Thus there are a total of O(m + n) events. 

At the events corresponding to a vertical line segment, we either add or remove the 

line from the balanced binary tree, and each such operation requires O(1og (n  + m)) 

time. The vertical line segment with the minimum total x-distance can be found in 

O(1og (m + n))  time. For the events corresponding to the horizontal line segments, 

we perform two queries on the BST, each also requiring O(1og (n + m))  time. Once 

the candidates have been generated for each horizontal line, we can find the one 

the minimum total distance in O(n + rn) time. 

with 

root 

0 No\ 

' B 
, / -  \ni 

Figure 2.4: Searching for the 1-median point using balanced binary trees 
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Analysis 

In the previous section we described an algorithm to find the 1-median point of a 

set of n source points in the presence of m rectangular axis-parallel obstacles. We 

conclude by presenting an analysis of the running time of our algorithm. 

We first preprocess the given data, which involves the sorting of the obstacles and 

source points, and the creation of the horizontal and vertical line segments (the sets 

H and V). Since there are n source points and m obstacles, sorting operations can 

be performed O((n + m) log (n + m)) time. In section 2.2.1, we have seen that the 

HLD and VLD can be computed in O((n + m) logm) time. Section 2.2.2 shows how 

the distances from source points to the line segments in H and V can be computed in 

0 (n(n + m)) time. Finally, we have also seen in section 2.2.3 how to find the 1-median 

point in O((n + m) log (n + m)) time. 

Thus, the running time of our algorithm is 

O((n + m) log (n + m) + n(n + m) + (n + m) log (n + m)) - - Y 

Preprocessing time Finding I-distances and y -distances Finding 1 -median point 

The expression above is dominated by the time required to find the x-distances and 

y-distances to the vertical and horizontal line segments respectively and hence the 

running time is O(n(n + m)). 

In terms of storage space, the algorithm presented by Choi et. al. in [8] requires 

a total of O(mn) space. During the process of locating the 1-median point, the 

authors create a height-balanced binary search tree for each obstacle. Each tree 

stores information about the cuts created by the source points and other obstacles 

( "cuts" are equivalent to the line decompositions in the approach presented here). 

This requires a total of O(mn) storage space. In contrast, our algorithm requires only 

linear space. Only O(m + n) horizontal and vertical line segments are created by 

the HLD and VLD processes. Locating the 1-median point requires construction of 

a balanced binary tree which has linear storage requirement. Thus the storage space 
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requirement of the proposed algorithm is O(m + n). 

2.4 An Improved Algorithm 

In many real-life applications, it is often the case that the number of source points 

is much greater than the number of obstacles that lie in the plane, i.e., n >> m. For 

example, when a facility or service (such as a post office or police station) needs to be 

placed in a neighbourhood, the number of customers (houses or shops) far outnumber 

the number of obstacles lying in that neighbourhood. In cases where the relative 

orders of n and m exhibit such a relationship, we improve upon the running time of 

the previously mentioned 1-median algorithm by a factor of O ( k ) .  

The basic idea remains the same, i.e., the intersections of the vertical and horizontal 

line segments in H and V are the candidates for the 1-median point. In the previous 

algorithm, we considered each source point at  a time and computed its x-distance(y- 

distance) contribution to all the elements in V(H).  Instead, we now consider a group 

of points to calculate these contributions during the sweeping process. Consider the 

VLD shown in figure 2.5. The vertical line segments in V created by the left and 

right edges of obstacles partition the region into a number of rectangles. This set of 

rectangles created by the subset of line segments in V is denoted by rectv. Figure 2.5 

depicts the partitioning of the given region into rectangles. Each source point in S 

falls in one of these rectangles and each rectangle contains zero or more source points. 

Let the number of source points in ri be denoted by ni. We process rectangles one at  

a time and calculate the x-distance contribution of all the points contained inside to 

all the vertical line segments in V. Similarly, the HLD decomposes the input region 

R into another set of rectangles (we denote this set by rectH) , and the rectangles 

are processed one at  a time to calculate the y-distance contribution of all the points 

contained inside it to all the horizontal line segments in H. Locating the 1-median 

point from the candidates is then performed in the same manner as explained in sec- 

t ion 2.2.3 . 
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Algorithm: 1-median-Improved 

Input: Set of source points S, set of obstacles 0. 
Output: 1-median point of set of source points S. 

Step 1: Find HLD and VLD of the given input. 

Step 2: Determine the points lying in each rectangle. 

Step 3: For each rectangle r E rect", compute the x-distance contribution 

of all the source points in r to the line segments in V. 

Step 4: For each rectangle r E rectH, compute the y-distance contribution 

of all the source points in r to  the line segments in H. 

Step 5: Locate the 1-median point among all intersections of line segments in H 

and V. 

In order to determine which rectangles the source points belong to, we can use 

a sweep-line method similar to the one described in 2.2.1. The sweep-line maintains 

information about the currently active obstacles. Each source point belongs to ex- 

actly one rectangle, and this rectangle is bounded from above and below by the edges 

of specific obstacles. When the sweep-line hits a source point, the point can be pro- 

jected above and below to  determine the two obstacles it falls on. Knowing the two 

obstacles, we can determine which rectangle the point belongs to. This entire step 

can be executed in O((m + n) log m) time. 

2.4.1 Steps 3 and 4 : Computing Distances To Line Segments 

in H and V 

Step 1 and Step 5 of the above algorithm are performed in exactly the same man- 

ner as in the algorithm described in section 2.2 to find the 1-median point. Step 2 
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Figure 2.5: Division of the input region into rectangles 

is performed as explained in the previous paragraph. We therefore focus .on Step 3 

and Step 4 which calculate the distance contributions of the source points to the line 

segments in H and V. We describe the processing of the rectangles created by the 

VLD (i.e., calculation of x-distances to line segments in V). Rectangles created by 

HLD are processed in a similar manner. 

Let the set of rectangles created by the VLD (consider only vertical edges created 

by the obstacles) be denoted by rectv = {TI, 7-2, . . . , rl) (where I is O(m)). We ex- 

plain the procedure for one rectangle, say ri, and all the other rectangles are processed 

in the same fashion. Our objective is to compute the x-distance contribution of all 

the ni source points in ri to all the vertical line segments in V. We project all the 

source points in ri onto a horizontal line segment AB, whose end points A and B lie 

on the left and right edges of ri respectively. Denote the set of projected points by 

Si =< sl, 3 2 ,  ..., sni >. The set Si is sorted by the x-coordinate values of its elements. 

Note that moving these points in the y-direction within the rectangle does not change 
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their x-distance to any object (obstacle or source point). For each projected source 

point s j  E Si, we store two values: (i) the sum of the x-distances from each projected 

source point to the left of s j  (including sj) to the point A (denoted by dA(j)) ,  and 

(ii) the sum of the x-distances from each projected source point lying to the right of 

s j  (including sj) to the point B (denoted by dB(j)). Thus, 

d~ ( j )  = C dx (sz, B) 
z = j  

Thus, dA(ni) denotes the sum of the x-distances of all the source points in Si to A 

and the value is stored with the projected source point s,,. Similarly, dB(l)  denotes 

the sum of the x-distances of all the source points in Si to B.  Clearly, this can be 

computed in O(ni) time. 

Next, we compute the shortest distance from the point A to each vertical line segment 

v E V and store this value with v. Similarly, we also store at  v the shortest distance 

from B to v. We are now ready to compute the x-distance contributions of the source 

points in Si to the vertical line segments in V. For each vertical line segment v E V 

we know its x-distance to the points A and B,  denoted by dx(A, v) and dx(B, v) re- 

spectively. We also know the length of the line segment AB. Compute the point smid 

on the line segment AB such that the x-distance from smid to v via A is equal to the 

x-distance from smid to v via B ,  i.e., 

It is easy to see that all projected source points in Si on the left of smid have shortest 

distance to v through A, and all projected source points in Si on the right of smid have 

shortest distance to v through B. It may happen that smid lies to the left of sl ,  in 

which case all source points have shortest x-distance to v through B,  or smid lies to the 

right of sni in which case all source points have shortest path to v through A. Let the 

first projected source point to the immediate left of smid be sj and the first projected 
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right point to the immediate right of smid be sj+l. Note that if smid coincides with 

a projected source point in Si then the length of the shortest path from that source 

point to the vertical line segment v via A is the same as that of the shortest path 

via B. In this case, we assume that the shortest path goes via A and let sj be the 

source point that coincides with Smid. The point s,id can be found in O(logni) time 

by performing a binary search on the set Si. The x-distance contribution of the source 

points lying in ri to the vertical line segments in V can now be computed as follows: 

d&, v )  = ( j  * d ( 4  4 )  + d ~ ( j )  + ((ni - j )  * d(B,  v ) )  + d ~ ( j  + 1) 
ses, 

This x-distance contribution of the source points in Ti to v can be added to the 

total x-distance contribution from all source points in all rectangles. 

Figure 2.6: Processing rectangle ri for improved 1-median problem 

Each source point of Si also makes x-distance contributions to the vertical line 

segments created by all other source points of Si. Since we have already computed 
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the values dA(j)  and dB(j) ,  j = 1, . . . , ni, we can compute in constant time the x- 

distance contributions of all source points in Si to the vertical line segment of a given 

source point of Si. Consider a projected source point sj E Si. To compute the x- 

distance contributions from all projected source points lying to the right and left of 

s j  to the vertical line segment vj created by sj ,  we use the expression 

For the rectangles created by the HLD, the same process can be applied to calculate 

the y-distance contributions of source points to the horizontal line segments in H. The 

intersections of the line segments in H and V are the candidates for the 1-median 

point, and this point can be located using the balanced binay tree procedure used in 

the previous 1-median algorithm (see section 2.2.3). 

2.4.2 Analysis 

In this section we present an analysis of the running time of the improved 1-median 

algorithm presented above. The steps to generate the HLD and the VLD remain 

the same, thus there is no change in the running time for these steps. Also, once 

the distances have been calculated, the location of the 1-median point is also per- 

formed in the same manner as in the previous 1-median algorithm. Thus, the only 

difference lies in the calculation of the distances to the line segments in H and V. 

This step dominated the running time of the 1-median algorithm described previously. 

The m obstacles create O(m) line segments in V that divide the region R into O(m) 

rectangles. Considering each rectangle Ti at a time, we first determine (in constant 

time) two points A and B on the left and right edges of ri. There are ni source points 

of S that lie inside the rectangle Ti. For each vertical line segment in V, we find its 

shortest x-distance from the two points A and B. Section 2.2.2 explains how we can 

calculate the x-distance from a point to all vertical line segments in O(m + n) time. 

We then calculate the values dA(j)  and dB(j)  ( j  = 1, . . . , ni), which can easily be 
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done in time linear to the number of points, i.e. O(ni). For each vertical line seg- 

ment, we then find the two consecutive points in Si between which the point smid lies 

in O(1og ni) time. Thus, the entire process of calculating the x-distance contributions 

to the vertical line segments for one rectangle takes O((m + n) + ni + (m + n) log ni) 

time. The y-distance contributions to  the horizontal line segments for a rectangle 

can be calculated similarly with the same complexity. Hence for O(m) rectangles the 

running time is 

= 0(m2 log n + mn log n) 

Since n >> m the running time of our improved 1-median algorithm is O(mn log n). 

Figure 2.7: Computing the set of 1-medians 

2.4.3 Computing the 1-median set 

The 1-median set is defined as a collection of rectilinear polygons such that all the 

points lying inside these polygons are 1-median points of the given source points. Line 

segments and individual points are considered as degenerate cases of the polygons. 

Our 1-median algorithm described above can be used to determine the 1-median set of 

the source points in S. Consider figure 2.7, the horizontal line L intersects the active 

vertical segments at  vl, vz, .., 217. Suppose our 1-median algorithm reports that the 

points v3, v4 and v5 have the minimum sum of x and y distances (i.e. these points are 

1-median points), then the line segment (v3, v5) is an element of the median set and 



CHAPTER 2. THE CONSTRAINED 1 -MEDIAN PROBLEM 36 

any point lying on this segment is a median point. This information can be gathered 

during the sweep process used to determine the intersection point with minimum total 

sum of distances. The rectangular region enclosed by the points (vq, v5, v8, v9) is also 

part of the median set if v8 and vg are also median points. The complexity of the 

1-median algorithm to find the 1-median set is O(mn logn+ k), where k is the number 

of elements found in the 1-median set. 

2.5 Conclusion 

In this chapter we presented two algorithms that solve the 1-median problem for 

a set of source points in the presence of obstacles based on the relative orders of 

n(number of source points) and m(number of obstacles). Distances were calculated 

using the rectilinear L1 metric. The first algorithm presented has a'running time of 

O(n(n  + m)), which improves the current best published time of O(n(n + m) log n) 

presented in [8]. If we know that the number of source points is significantly higher 

than the number of obstacles (which is commonly the case in many facility location 

applications), then we can further improve the algorithm to run in O(mn log n) time. 

The storage space requirement for our algorithm is linear, i.e. 0 (m + n) as compared 

to  the O(mn) storage space used by the algorithm presented by Choi et. al. [8]. We 

believe that the methods described in this chapter can also be used to improve other 

similar facility location problems, such as the farthest neighbor problem as described 

in [4]. We also use these methods in the subsequent chapters to solve the shop-floor 

layout problem and the constrained clustering problem. 



Chapter 3 

The Shop Floor Layout Problem 
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3.1 Background and Problem Definition 

Facility location plays an important role in the development of transportation net- 

works where goods need to be transported between various sites. Typically, the loca- 

tions of the demand facilities are known, and the objective is to determine the optimal 

location of one or more supply facilities that provide services to the demand facilities. 

This "optimally1' placed supply facility minimizes the overall transportation cost of 

the network. In (151, the authors tackle such facility location problems, but assume 

that the facilities are points in the network and hence are not obstacles hindering 

travel. For many such applications, it is the case that the supply and demand facil- 

ities are considerably large in size. Consider a factory, where the raw materials are 

stored in a huge warehouse, and there are several independent production units that 

periodically require the raw materials to be delivered to them from the warehouse. 

Warehouses and production units usually occupy large space. The regions occupied 

by these facilities pose a barrier to travel and the distances have to be measured dif- 

ferently from the case where the facilities were points in the network. 

The shop floor layout problem was introduced and studied by Wang et. al. in [35]. 

The layout is defined as a rectangular region in the plane. We are given several 

demand facilities which lie within the boundaries of a layout. D = {dl, d2 . . . , d,) 

denotes the set of demand facilities. Also given is a supply facility S that can lie 

anywhere in the layout, except in the interior of a demand facility. The demand fa- 

cilities are a barrier to travel. Distance measurements and travel paths are calculated 

as described in section 1.2. The objective is to find the best placement for the supply 

facility in the layout, and one optimal I/O point on each of the facilities (both supply 

and demand). The I/O points can be thought of as doors on the facilities through 

which the exchange of goods takes place. 

Given the above set-up, we need to find a solution that minimizes the total transporta- 

tion cost associated with the layout. Each rectangular demand facility di is a 4-tuple 

(xi, Yi ,  uil ui), i = 1,2 ,  . . . , n, where ui and Ui are the width and height of di respectively. 
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The top-left (tl(di)), topright (tr(di)),  bottom-left (bl(di)) and bottom-right (br(di)) 

vertices of di are (xi, yi), (xi +u;, y;), (x;, yi + V i ) ,  (x; +ui, yi + v;). Similarly, let the four 

vertices of the supply facility S be (xo, yo), (xo + 210, yo), (xo, YO + uo) , (50 + 210, YO + uo) . 
The goal is to find a point po on supply facility S, and based on the location of pol we 

need to find a point pi on each demand facility di such that Cy=l d(po, di) is minimized 

for all possible po E S, where d(po, di) is the length of the shortest rectilinear path 

from po to demand facility di. Point pi on the perimeter of di is the point that mini- 

mizes the distance from po to that demand facility. The solution set {po,pl, . . . , p,) 

that satisfies the above function is the "optimal" solution and the I/O points are said 

to be optimally located. 

Savas et. al. [31] study a similar problem, but assume that the I /O points or doors 

of the demand facilities are fixed and known as part of the input. The prescribed lo- 

cations of the 110 points may not be optimal, and can result in extra transportation 

costs. Wang et. al. [35] addressed this issue in the shop-floor layout problem and 

assumed that the locations of the 110 points are unknown. They provide algorithms 

for several versions of this problem. In the first version, the supply facility is a fixed 

point in the layout. To obtain a solution to the problem one has to find the optimal 

I/O points on each of the demand facilities. The second version is an extension of 

the first, in which the supply facility is a point but its location is unknown. Thus the 

optimal location of the supply facility needs to be computed before the I/O points on 

the demand facilities can be determined. In the third version the optimal location of 

the supply point is restricted within a given convex rectilinear region. 

In this chapter, we study the three versions of the shop-floor layout problem as de- 

scribed above. For each of the versions we present new algorithms that significantly 

improve the running times in [35]. 
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Supply Facility as a Fixed Point 

In the first version of the shop floor layout problem, the location of the supply facil- 

ity is given as an input to  the problem, and the goal is to find one I/O point pi on 

the perimeter of each demand facility di E D such that Cy=, d(po,pi) is minimized. 

po = (xo, yo) is the given location of the supply point and pi = (xi, yi) , i = 1, . . . , n ,  

is the location of the I/O point that lies on B(di) (the perimeter of demand facility 

di, as described in section 1.2). 

In 1351, the authors present an algorithm that creates a network of nodes that are L1 

visible. Two points A and B are said to be L1 visible if there exists an xy-monotone 

path between them (for definition of xy-monotone path refer to section 1.2). The 

nodes in this network represent the given supply point and the candidate 110 points 

for the demand facilities. The time required to generate this network is 0 ( n 2 ) ,  since 

there are O(n) nodes in the network and each pair has to be checked for L1 visibility. 

The authors then apply Dijkstra's algorithm on the network to find a solution to the 

problem by generating the shortest paths between the nodes representing the source 

point and the candidate I/O points. This algorithm requires 0 ( n 4 )  total running 

time, where n in the number of demand facilities (rectangles) in the layout. 

In the remainder of this section, we present a simpler and elegant algorithm that 

solves the shop floor layout problem with the supply facility as a fixed point in O(n)  

time after a preprocessing of the input, a step that requires O(n1ogn) time. The 

algorithm starts by computing the horizontal and vertical line decompositions of the 

layout. A detailed explanation of how the decompositions are computed is provided 

in section 2.2.1. This generates a set of horizontal line segments H, and a set of ver- 

tical line segments V. We then generate candidate 110 points for each of the demand 

facilities in the following manner. Consider each line segment h E H and v E V. h 

and v have end points on the borders of demand facilities or on the border of the 

layout. If such an end point falls on the border of a demand facility di, then the 

location of the end point is a candidate 110 point for facility di and is added to its 
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list of candidates. The corner vertices of di are also added to its candidate list. Note 

that each intersection point of the horizontal line segments in H and the vertical line 

segments in V lying on a demand facility is a candidate I/O point for that demand 

facility. Figure 3.1 shows a shop floor layout with eight demand facilities and a fixed 

supply point po. It also depicts the HLD and VLD of the layout along with the can- 

didate I/O points of the demand facilities (marked by 'x'). 

Lemma 3.2.1. [35/ T h e  above technique generates all possible candidate 1/0 points 

which  are optimally  located. 

The proof for the above lemma can be found in the paper by Wang et.  al. [35] 

Lemma 3.2.2. Given n demand facilities, t he  total number  of  candidate 1/0 points 

generated i s  always O(n). 

Proof: The HLD and the VLD of the layout are computed by extending the four 

edges of each demand facility, and by drawing a horizontal and a vertical line through 

po. Both end points of each such extended line terminate either a t  the layout border 

or on a demand facility. Thus, each extended line creates at  the most two candidate 

I/O points on some demand facilities. Each demand facility has four extended edges 

(two horizontal and two vertical), and can create at the most eight candidate 110 

points on other demand facilities. Similarly, the supply point creates a t  the most 

four candidate I/O points. The corners of each demand facility are also considered as 

candidate points. Thus the maximum number of candidate I/O points is 8 n  + 4n + 4 

= 12n + 4. 

Once the candidate I/O points are known, our algorithm computes the y-distance 

from the supply point po to  each line segment h E H, and the x-distance from po to 

each vertical line segment v E V. Section 2.2.2 provides details about the computa- 

tion of distances from a source point to  lines in H and V. Consider a candidate 110 

point pi for demand facility di. As mentioned earlier, this candidate is an intersection 
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point of some h E H and some v E V. The total distance from po to pi is the sum 

of the y-distance and x-distance from po to h and v respectively. In this manner, we 

compute the distance from po to each candidate 1/0 point of di and choose the one 

that has shortest distance. This procedure is repeated for all demand facilities. 

Figure 3.1: Shop Floor Layout Problem with fixed supply point and demand facilities. 

Algorithm: SFL-FixedSupplyPoint 

Input: Layout: Supply point po, set of demand facilities D. 

Output: Optimal 1/0 points of demand facilities. 

Step 1: Compute horizontal line decomposition (HLD) of the given layout. 

Compute vertical line decomposition (VLD) of the given layout. 

Step 2: /* Determining the candidate I/O points for  the demand facilities in D */. 

(i) For each line segment I in H u V: 
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{Let el and e2 be end points of 1). 

If ej (j=1,2) lies on the border of a demand facility di, add ej 
to list Ci of candidate I/O points of di. 

(ii) For each demand facility di add its corner vertices to its list Ci of 
candidate I/O points. 

Step 3: For each h E H, compute y-distance from po to h and for each v E V, 

compute x-distance from po to v. 

Step 4: /* Find optimal 1/0 point for each demand facilitl~ di */ 

(i) For each candidate in Ci determine its distance from po. 

(ii) Select the candidate point, say pi, with the minimum total distance. 

(iii) Set pi to be the optimal I/O point of di with respect to po. 

3.2.1 Analysis of Algorithm 

In this section, we analyze our algorithm which finds the I/O points of the demand 

facilities given a fixed supply point po. The first step of this algorithm computes the 

HLD and the VLD of the given layout. We use the procedure described in section 

2.2.1 to accomplish this. The running time associated with this step is O(n logn). In 

Step 2, in order to determine the candidate I/O points for the demand facilities, we 

examine the end points of each line segment in HUV. Step 3 computes the x-distances 

from the point po to the elements of V, and the y-distances from the point po to the 

elements of H. Section 2.2.2 explains how this can be performed in time linear to the 

number of elements in H and V, i.e O(n) time. In Step 4, we examine the candidate 

I/O points of each demand facility and determine the optimal candidate. Since the 

number of candidates is O(n) over all demand facilities (Lemma 3.2.2), this step takes 

linear time. 
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Thus, the running time of the shop floor layout problem with a fixed supply point 

is dominated by the time required to compute the HLD and the VLD of the given 

layout, and is O(nlogn),  where n is the number of demand facilities in the layout. 

This is a significant improvement over the 0 ( n 4 )  algorithm of Wang et. al. [35]. 

Theorem 3.2.1. T h e  shop floor layout problem where the supply facility i s  a fixed 

point can be solved in O(n  log n)  t ime.  

3.3 Location of Supply Point is Unknown 

So far we assumed that the location of the supply point po is fixed and is part of the 

input to the problem. This section examines a variation of the shop floor layout prob- 

lem where the location of the supply point is unknown. Once the optimal location of 

the supply point in the layout is determined, the I/O points of the demand facilities 

can be computed as described in the previous section. We present an algorithm that 

solves this problem and significantly improves the running time of the algorithm de- 

scribed by Wang et. al. in [35]. 

In the previous chapter, we studied the 1-median problem where the objective was to 

find a 1-median point in the region such that the sum of distances from the point to 

a set of source points is minimized. 

Lemma 3.3.1. T h e  solution t o  the above described shop floor layout problem where 

the supply point i s  t o  be placed optimally and the 1/0 points of  the demand facilities 

are to  be determined is  equivalent to  the solution of the 1-median problem where the 

1/0 points are the source points and the supply point i s  the corresponding 1-median. 

The 1-median point is the location that has minimum total distance to all the 

source points in the region. The solution to the above shop floor layout problem is to 
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locate an "optimal" point for the supply facility and then determine the 1 / 0  points 

on the demand facilities such that the sum of distances from the supply point to the 

1 / 0  points is minimized. The supply point is therefore the 1-median point of the 1 / 0  

points. 

Lemma 3.3.2. The y-distance from a horizontal line hl to another horizontal line ha 

can be determined by computing the y-distance from any point p on hl to the line ha. 

The x-distance between two vertical lines can be computed similarly. 

This lemma is a simple extension of lemma 1.2.2. Let p and q be any two points 

lying on h l ,  and r and s be any two points lying on ha. By lemma 1.2.2, 

Also, 

It follows from (3.1) and (3.4) that 

We now discuss our algorithm to solve the shop floor layout problem when the 

location of the supply facility is unknown. Given a layout consisting of n demand 

facilities, the algorithm starts by computing the horizontal line decomposition and 

the vertical line decomposition. This procedure creates two sets of line segments H 

and V. Lemma 3.3.1 implies that the intersection points of lines in H and V are the 

candidates for optimal placement of the supply point. 

Next we find all the candidate 1 / 0  points of the demand facilities. These are the 
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end-points of the lines in H and V, and the corners of the demand facilities. We then 

consider each line h E H, and find the sum of its shortest y-distance to each demand 

facility d E D. In order to know the shortest y-distance from h to a demand facility 

d, we need to know the y-distance from h to each of the candidate I/O points on d 

(only those caused by horizontal line segments in H) .  This is the same as knowing the 

y-distance from h to the horizontal lines causing candidate I/O points on d. In section 

2.2.2 we examined how y-distances from a point are computed to the horizontal line 

segments in H. Using the same algorithm, we find the shortest y-distance from h to 

each demand facility d. Similarly, for each v E V we also find the sum of its shortest 

x-distance to  each of the demand facility d E D. 

Among all the intersection points created by the line segments in H and V, we are 

interested in determining the intersection point p of two 'lines h and v that has min- 

imum sum of x-distance at  v and y-distance a t  h. This is the optimal location for 

the supply point po. We use the sweep-line method described in section 2.2.3 that 

maintains a balanced binary tree to determine the point po. Once po is determined, 

we find the I/O points of the demand facilities using the algorithm described in the 

previous section for a fixed supply point. 

Algorithm: SFL-SupplyPoint Unknown 

Input: Layout: Set of demand facilities D. 

Output: Location of optimal supply point pol optimal 110 points of demand facili- 

ties. 

Step 1: (i) Compute horizontal line decomposition (HLD) of the layout. 

(ii) Compute vertical line decomposition (VLD) of the layout. 

Step 2: Determine the candidate I/O points of the demand facilities. 

Step 3: (i)For each h E H find the sum of shortest y-distance to each demand 

facility d E D. 
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(ii) For each v E V find the sum of shortest x-distance to each demand 

facility d E D. 

Step 4: Find the optimal location of supply point po. 

Step 5: Use algorithm SFL-FixedSupplyPoint to find I/O points on demand 

facilities given po as the supply point. 

3.3.1 Analysis 

As in the previous algorithm, the HLD and VLD can be computed in O(n log n) time 

using the method described in 2.2.1. Also, the candidate 110 points can be deter- 

mined in O(n) time. In Step 3, we consider each horizontal(vertica1) line segment 

and compute its shortest y-distance(x-distance) to all the demand facilities. For each 

line segment this procedure takes O(n) time (refer to section 2.2 and its analysis for 

details). Hence the running time for Step 3 is 0 (n2) .  In Step 4, the optimal location 

of the supply point is determined in O(n1ogn) time using the method described in 

2.2.3. Step 5 fixes the location of the supply point po to the intersection point found 

in Step 4 and calls algorithm SFL-FixedSupplyPoint, which runs in O(n) time. 

Thus, our algorithm that solves the above version of the shop floor layout problem 

runs in 0(n2)  time, which is a substantial improvement over the 0 (n6 )  algorithm of 

Wang et. al. [35]. 

Theorem 3.3.1. The  shop poor layout problem, where the supply facility i s  a point 

whose location in the layout i s  not  known, can be solved in 0(n2)  t ime.  
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3.4 Location of Supply Point Restricted to a Given 

Convex Region 

In the previous sections, the supply facility was a point lying anywhere in the feasible 

region of the layout. The location of the supply point was either known or its optimal 

location had to be determined. If the supply point is constrained to lie within a 

given convex region, we can easily handle this requirement in Step 5 of the previous 

algorithm during the plane sweep process to find the optimal intersection point. We 

only consider those intersection points that lie inside the constrained region. The 

given constrained region can be a simple rectangle as seen in figure 3.2 or in a more 

complicated convex rectilinear polygon such as the one seen in figure 3.3. 

Figure 3.2: Shop Layout Problem - Locating supply point in a given rectangular 
region. 

Theorem 3.4.1. The shop floor layout problem, where the supply facility is a point 

whose location i n  the layout is not known and is constrained to lie i n  a given convex 

rectilinear region, can be solved in O(mn)  time, where the number of horizontal and 
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Figure 3.3: Convex rectilinear polygon containing the supply point 

vertical ine  segments intersectzng the convex rectilinear region is O(m) and m << n. 

3.5 Conclusions 

In this chapter we studied the shop floor layout problem first introduced by Wang 

et. al. [35]. The layout consisted of several rectangular demand facilities that were 

axis-parallel. All distances within the layout were calculated using the rectilinear L1 

metric. In the first version of the SFL problem, we were given a fixed supply point 

and the goal was to determine the optimal 1 /0  points for the demand facilities. We 

presented an O(n1ogn) time algorithm to solve this problem, which is a significant 

improvement over the 0 ( n 4 )  algorithm in [35]. In the second version, we were required 

to determine the optimal location of the supply point, and find the corresponding 1/0 

points of the demand facilities. We solved this problem in 0 (n2)  time, compared to 

the 0(n6) algorithm in [35]. Finally, by making a small change to the algorithms 
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above, we solved the problem when the supply point is constrained to lie in a given 

convex region without blowing up the complexity. 
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4.1 Introduction 

The clustering problem has been studied extensively in many different areas such as 

facility location, data mining, computational statistics, AI, pattern recognition, and 

most recently in the field of computational molecular biology. Clustering is the pro- 

cess of partitioning a given set of points into disjoint clusters in a way that similar 

points are placed in the same cluster. The similarity between points can be measured 

using any metric, e.g., EuclideanIManhattan distance function. The goal is to find a 

"good" cluster, i.e. one that minimizes the objective function given the metric being 

used. 

In facility location, a service provider (such as a postal service or a bank) may want to 

place a number of service centres (mail boxes or ATM machines) in a given geograph- 

ical region of customers, with the objective that these centres be located conveniently 

for all customers [17]. A clustering algorithm can be applied to group the customers 

into sub-regions or clusters, and the service centres can be placed optimally in each 

cluster. Clustering also has applications in data mining [14], such as identifying a 

group of policy holders of an insurance company that have a high claim cost. Molec- 

ular biologists use clustering techniques to divide genes into groups based on their 

expression patterns. This can help in identifying the roles and functions of various 

genes. 

Based on the application involved, many different methods such as BIRCH [37], DB- 

SCAN, ISODATA [18], CLARA, CLARANS, COECLARANS [17], AUTOCLUST+ [13], 

etc. have been used to solve the clustering problem. One of the most common tech- 

nique used is the k-means method [19], where the number of clusters to  be formed 

is given by an input parameter k. Given n data points in d-dimensional space and 

a value k, the goal is to find k clusters such that a given objective function is min- 

imized. The k-means clustering algorithm is an iterative process which begins with 

the selection of a set of k cluster centres. Each data point is assigned to the cluster 

centre that is closest to it, such that the mean squared distance from each data point 
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to its centre is minimized. Once all the data points have been assigned to their clos- 

est cluster centres, a new set of cluster centres is computed by taking the mean of 

the data points in each cluster. This data point assignment to a cluster and cluster 

centre updating process is repeated until the total mean squared distance cannot be 

minimized further. Instead of minimizing the mean of the squared distances, we can 

minimize the sum of the distances from the data points to their respective cluster 

centres. In this case, the updated cluster centre is the median of the data points 

assigned to that cluster. Although this iterative algorithm yields a locally optimal 

solution and does not guarantee an optimal result, it is the algorithm of choice for 

the practitioners in fields such as data mining and statistical analysis because of its 

simplicity and flexibility. This algorithm can also be applied as a solution purifier to 

another algorithm to reduce distortion. 

4.1.1 Formal Definitions 

Clustering: Given a set S of n objects (or data points), a positive integer k, and 

a distance function df : S x S -+ 92, the objective of the clustering problem is 

t o  partition the set S into k disjoint clusters {C1, C2, ...., Ck), such that the sum 

of the distances of the points to their respective cluster centres is minimized, i.e., 

DIST = c:=, disp(Ci, repi) is minimized. 

The representative (or cluster centre) repi of a cluster Ci is normally chosen to be 

the centroid of all the points in that cluster. disp(Ci, repi) = CPEG df (p, repi) is the 

displacement of Cil i.e., the sum of the distances of each point in that cluster to the 

cluster centre. If repi is calculated as the centroid of the points lying inside cluster Ci 

then the problem is known as the k-means clustering problem. If repi is calculated as 

the 1-median of the points lying inside Ci, then the problem is known as the k-median 

clustering problem. 

Iterative Clustering: Each iteration in an iterative clustering algorithm can be 
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divided into two steps, cluster assignment and cluster updating. Let Ci,t denote the 

ith cluster in iteration t ,  and let rep,,t denote the cluster centre of Gilt in iteration t. 
DISTt is the total displacement over all clusters in iteration t 

1. Cluster Assignment : In iteration t ,  assign each data object x E S to a cluster 

CiTt, such that is the closest to x among all cluster centres repj,t-l V j = 

I , . . . $ .  

2. Cluster Updating : Recompute repiIt, the cluster centre for cluster Gilt V i = 

1, . . . , k. Also compute DIST,. 

The algorithm performs the above two steps at  each iteration and stops when DISTtA1- 

DISTt 5 S , where S is a. predefined value. Note that initially the k cluster centres 

are chosen randomly from the set S of data objects (or the centres can be chosen 

using heuristics based on density of points, k-farthest points, etc). 

It is easy to see that a naive implementation of the iterative clustering method results 

in a running time of O(tnk), where t is the number of iterations required to  reach 

the local minima. It is assumed that the distance function is computable in constant 

time. Several implementations of the k-means algorithm exist which improve the over- 

all running time of the algorithm. The papers [2], [19] use kd-trees to provide efficient 

implementations. However, no such efficient implementation method is known for the 

iterative k-median clustering. 

4.1.2 Presence of Obstacles 

So far we have discussed the clustering algorithms and their implementations in the 

absence of obstacles. In case of many real-life applications, it is possible that there are 

physical entities (or obstacles) that pose as barriers to travel. These obstacles are part 

of the input to the clustering problem and need to be considered when calculating 
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distances to assign the data points to the appropriate centres. 

Some work has been done previously to address the presence of obstacles in the 

clustering problem. The COD-CLARANS algorithm by Tung et. al. [33] uses a parti- 

tioning based clustering method where the number of clusters to be formed is known 

apriori. It uses the CLARANS algorithm [27] which builds a visibility graph in order 

to compute the shortest distance between the data points in the presence of obstacles. 

The construction of this visibility graph is computationally expensive, and adds to  

the overall complexity of the algorithm. In [13], the authors use the Delaunay data 

structure to cluster a set of data points. The distances between points are measured 

in terms of the lengths of the edges between the points in the delaunay triangulation. 

Also, the number of clusters cannot be specified beforehand. Zai'ane and Lee [36] 

use a variation of the DBSCAN algorithm called the DBCluC method, which is a 

density-based clustering algorithm. 

In the remainder of this chapter, we discuss an efficient implementation of the it- 

erative k-median algorithm that clusters the given set of data points in the presence 

of obstacles. The number of clusters to  be formed is given by the input parameter 

k. In k-means clustering the new cluster centres are the centroid of the data points 

in the corresponding clusters. This method of updating the centres does not work in 

the presence of obstacles as it can result in some centres being placed in inaccessible 

regions, such as the inside of an obstacle. As illustrated in figure 4.1, the centroid of 

the data points around the golf-course happens to fall inside the golf-course, and this 

is unacceptable if our goal is to place a facility, say a mail-box. For this reason, we 

compute the 1-median of the data points in a given cluster to update its centre (as 

discussed in Chapter 2 of this thesis). This will guarantee that the updated centre 

lies outside the boundaries of the obstacles. Also, it should be noted that the Eu- 

clidean and Manhattan distance functions give an inaccurate measure of the distance 

between the data points and the cluster centres as the paths between these points 

could intersect obstacles in the region (as in the case of the data points and cluster 
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centre around the housing block). In order to overcome this problem, we use recti- 

linear geodesic distances in the presence of obstacles. Also, we assume the obstacles 

are axis-parallel rectangles. As we will see later in this chapter, these two relaxations 

allow us to implement the iterative constrained k-median algorithm efficiently. 

Dala points 
X Cllukrecnms 

. 6 

Figure 4.1: Effects of the presence of obstacles on the clustering problem 

4.2 Our Algorithm 

Let S = isl, ~ 2 , .  . . , s,) denote a set of n data points lying in a region R of the 2-D 

plane and let O = (01, 0 2 ,  . . . , om) denote the set of rn disjoint axis-parallel rectangu- 

lar obstacles also lying in R. Note that the data points cannot lie in the interior of 

the obstacles. Also given is the value k, which denotes the number of clusters to be 

formed by the clustering algorithm. We present the iterative k-median clustering 

algori thm, which is similar to the iterative k-means algorithm. The two phases again 

are the cluster assignment and the cluster update (as discussed in 4.1.1). The goal is 

to create k clusters {Cl, C2,. . . , Ck) such that each data point belongs to  exactly one 
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of these Ic clusters. We explain one iteration of this algorithm. For the first iteration 

we start with Ic initial cluster centres which are generated either randomly or using 

some heuristics. Let the set of initial centres be denoted by {repl, repzl . .  . , repk). 

The iterative Ic-median algorithm first computes the horizontal and vertical line 

decomposition (HLD and VLD) using only the obstacles in the region (i.e. the data 

points are not considered while constructing HLD and VLD). Details of how to com- 

pute the HLD and VLD can be found in section 2.2.1. As mentioned earlier, the 

clustering process comprises of two phases: (i) the cluster assignment phase where 

the data points are assigned to the closest cluster centre, and (ii) cluster update phase 

where the cluster centres are updated based on the assignments made in the previous 

phase. We now examine each of these phases in detail in the subsequent sections. 

4.2.1 Cluster Assignment Phase 

The objective is to assign each of the n data points in S to the cluster centre that is 

closest to it. Property 1.2.1 states that the shortest path between any cluster centre 

and any data point is either x-monotone (but not y-monotone) or y-monotone (but 

not x-monotone), or xy-monotone. A point p is non-y-monotone to a point q if the 

shortest path from p to q is x-monotone but not y-monotone. Similarly, a point p is 

non-x-monotone to a point q if the shortest path from p to q is y-monotone but not 

x-monotone. 

For each data point p E S we find the closest cluster centre that is non-x-monotone, 

the closest cluster centre that is non-y-monotone and the closest centre that is xy- 

monotone. We then assign p to the closest of these three centres. We now divide this 

phase into three parts, i.e. (i) finding closest non-x-monotone cluster centres of the 

data points, (ii) finding closest non-y-monotone cluster centres for data points, and 

(iii) finding closest xy-monotone cluster centres for data points. 
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The iterative k-median clustering algorithm is formally described below: 

Algorithm: ClusterAssignmentPhase 

Input: Set of data points S = {sl, s 2 ,  .. , s,), set of cluster centres {repl, rep2, .. , repk), 

set of obstacles O = {ol, 02, .., 0,). 

Output: Set of clusters {C1, C2, .., C k ) .  

Step 1: Compute the HLD and the VLD of the set of obstacles. 

Step 2: For each data point s E S do 

(a) Determine the closest non-x-monotone cluster centre, rep,. 

(b) Determine the closest non-y-monotone cluster centre, rep,. 

(c) Determine the closest xy-monotone cluster centre, ,rep,,. 

(d) Assign s to the cluster represented by the cluster centre among rep,, 

rep, and rep,, that is closest to s. 

We now present a detailed description for each step of the above algorithm. Step 

1 can be performed as described in previous chapters. 

4.2.1.1 Step 2(a,b): Finding closest non-x-monotone centres 

We explain the procedure to find the closest non-x-monotone cluster centres for the 

data points in S. The same method can be applied to find the closest non-y-monotone 

centres for the data points. As seen in fig.4.2, all the data points shown (depicted by 

shaded dots) are non-x-monotone with respect to  the cluster centres shown (marked 

by an 'X7). 

During each iteration of the clustering algorithm, the set of cluster centres 

repl, repz, . . . , repk are known (computed in the previous iteration). For each cluster 

centre repi, i = 1,. . . , k, we draw y(+x) and y(-x) paths starting at  repi (see section 

1.2 for definitions of such paths). All the points in the region defined by these two 

paths of a cluster centre are non-x-monotone to that centre. For each cluster centre 
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we use the technique described in section 2.2 to find the distance to all the obstacles 

that fall in the region defined by these two paths. At each corner vertex of the ob- 

stacles, we store the cluster centre that is closest to that vertex and the distance to 

the corresponding cluster centre. Figure 4.2 shows the y(+x) and y(-x) paths of the 

three cluster centres r e p l ,  rep2 and rep3 ,  represented by the dotted vertical lines. 

Once all the cluster centres have been processed in this manner, we assign each data 

Figure 4.2:  Finding non-x-monotone cluster centres for data point 

point p E S by projecting p downwards to the first obstacle it hits. As seen in figure 

4.2 ,  point p has been projected onto the obstacle 03. Let q be the projection of p 

on 03. We have already computed the cluster centres that are closest to the corner 

vertices of 03. By comparing the distances of the two cluster centres stored at  the 

top-left and topright corners of O3 (the same cluster centre could be closest to both 

these corner vertices), we can determine the cluster centre repi  that is closer to q 

(and hence to p)  and the distance of q to repi .  Note that if a data point p does not 

project onto any obstacle, then it implies that there is no cluster centre below p that 
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is non-x-monotone to it. 

Similarly, by drawing -y(-x) and -y(+x) paths from the cluster centre, we can de- 

termine the data points below the cluster centre that are non-x-monotone to it. We 

repeat the entire procedure for all cluster centres to determine the points that are 

non-x-monotone, and for each data point we determine the closest non-x-monotone 

cluster centre. 

Thus, in order to determine the closest non-x-monotone (non-y-monotone) cluster 

centres of data points, we consider each cluster centre and determine the region con- 

taining the data points that are non-x-monotone (non-y-monotone) to it. Knowing 

the HLD(VLD), these regions can be determined in O(m) time per cluster centre. 

Thus for all k cluster centres this takes O(km) time. Projecting each data point onto 

an obstacle to determine the closest non-x-monotone (non-y-monotone) cluster centre 

takes constant time if the HLD and VLD of the data points and obstacles is known. 

Computing projections for all data points thus requires O(n) time. 

4.2.1.2 Step 2(c) : Finding closest xy-monotone centres 

We now explain the procedure to find the closest xy-monotone cluster centre for the 

data points. Consider the horizontal lines in the set H created by the horizontal line 

decomposition performed earlier. These lines divide the entire region into a number of 

slabs (see figure 4.3). Let the set of slabs be denoted by SL = { d l ,  s12. .  .). The total 

number of slabs created is O(m), since there are m obstacles. Each slab contains data 

points from S, and a data point belongs to exactly one slab. Let the number of data 

points in slab sli be ni. To find the closest xy-monotone centres of data points, we 

process slabs one a t  a time. A slab may or may not contain cluster centres. For each 

data point in the slab, we first find the closest xy-monotone cluster centre outside the 

slab (both above and below the slab). It is then compared with the closest cluster 

centre lying inside the slab (if such a cluster centre exists) to determine the actual 
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closest xy-monotone cluster centre. 

Figure 4.3: Generating slabs in the region containing data points and obstacles 

Finding closest cluster centre lying above/below the slab 
Consider a slab sl E SL. We denote the top-left, top-right, bottom-left and bottom- 

right corners of sl by tl (sl), t r(sl) ,  bl(s1) and br(s1) respectively. The left and right 

edges of sl are parts of the edges of obstacles or the boundary in the given region. All 

cluster centres that lie to the left and right, respectively, of these obstacles are not 

xy-monotone to the data points in sl and have been considered in the procedure for 

non-x-monotone and non-y-monotone cluster centres. For example, in figure 4.4, the 

cluster centres rep1 and rep2 are not xy-monotone to the data points in the highlighted 

slab and thus are not considered in this procedure. We find these non-xy-monotone 

cluster centres for slab s l  in the following manner. From the top-left corner of slab 

s l  we construct the -x(+y) path, and from the bottom-left corner of sl we construct 

the -x(-y) path. The entire region enclosed by these .paths is not xy-monotone to the 

data points lying in sl. Similarly, we construct +x(+y) and +x(-y) paths from the 
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top-right and bottom right corners of sl, and the region enclosed by these paths is 

not xy-monotone to the data points in sl. The definitions of these paths can be found 
in section 1.2. As we already know the set H (constructed by the HLD) containing 

horizontal lines passing through the top and bottom edges of obstacles, we can com- 

pute these paths in O ( m )  time. Each cluster centre can be tested to determine if it 

lies inside the region defined by these paths by simply projecting the centre in the 

+y and -y directions. If the projected centre hits the paths in both directions, then 

it lies inside the non-xy-monotone region. 

All cluster centres (not lying inside the slab sl) that are xy-monotone to a t  least 

some of the data points in sl are to be considered. We partition the lower edge of 

sl into smaller segments using the technique described below. Each such segment is 

closest to one cluster centre lying below sl and thus by projecting a data point inside 

sl onto the lower edge we can determine which cluster centre lying below the slab is 

closest to that data point. The same procedure is applied to the upper edge of sl and 

for a data point p we can thus determine the closest cluster centre below it and the 

closest cluster centre above it ,  and then choose the minimum among the two to be 

the closest cluster centre to p lying outside sl. 

To divide the lower edge of sl (denoted by le(s1)) into smaller segments, we need 

to  know the shortest distances from the cluster centres lying below sl to le(s1). See 

figure 4.4. Some cluster centres are xy-monotone to all the data points in sl (such 

as rep3), and some cluster centres are xy-monotone to only a few of the points in sl 

(such as rep4). For each cluster centre we maintain its distance to le(s1) and depict 

the distance function using the graph representation shown in figure 4.8. For a cluster 

centre that is xy-monotone to all the data points in sl (for example rep3), the distance 

function is a vertical line going upwards representing the distance to le(s1) and then 

a 45" line for movement in the (+x)-direction and a 135" line for movement in the (- 

~)-direction. The lower envelope of all the distance functions (highlighted in fig. 4.8) 

divides the edge le(s1) into segments or intervals (Io, 11), (Il, I$, ... . If we project a 

data point from sl onto the lower edge le(s1) and it falls in the interval ( I I ,  I z ) ,  then 
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Figure 4.4:  Finding closest xy-monotone cluster centres for data points 

we know that it is closest to the cluster centre rep5 .  For a cluster centre that is not 

xy-monotone to all the data points in sl (such as rep4 in 4 . 4 ) ,  we can determine the 

region containing those data points that do not need to be considered for this cluster 

centre and assign a value of infinity to the distance function corresponding to that 

region for the cluster centre. Thus the distance function representing the region of 

data points in sl that are not xy-monotone to rep4 does not contribute to the lower 

envelope of the overall distance function. In figure 4 . 4 ,  the data points that lie in 

the shaded region are not xy-monotone to rep4  and thus do not contribute to the 

distance function (or have a distance of infinity to r e p 4 ) .  But the data points lying in 

the unshaded region are xy-monotone to rep4 and thus rep4  is a candidate for closest 

cluster centre to these points. 

Computing the distance functions 
We now provide a detailed description of how the distance functions are calculated. 

We borrow the idea of calculating distance functions from Kusakari and Nishizeki 
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citekusakari. Consider a cluster centre rep. As before, we can easily determine the 

non-xy-monotone and xy-monotone regions above rep by drawing y(+x) and y(-x) 

paths from rep. These two paths of rep follow a common route until they hit an 

obstacle. All data points lying inside the slabs that intersect this common route are 

xy-monotone to rep. The slabs that intersect the rest of the paths may have some 

data points that are not xy-monotone with respect to rep. If a slab sl intersects the 

y(-x) path of rep at  a point A, then the distance function for slab sl (with respect to 

rep) is a 135' degree line starting at  A. Similarly, if a slab sl intersects the y (+x) path 

of rep at  a point B, then the distance function for slab sl (with respect to rep) is a 45' 

degree line starting at  B. We need not consider slabs that lie entirely in the region 

defined by the two paths (since all points inside such a slab are not xy-monotone to 

rep). For all the other slabs above rep not encountered by the two paths, all data 

points lying inside are xy-monotone to rep. If such a slab lies to the right of rep, then 

the distance function is represented by a 45' line starting at  the bottom left corner 

of that slab. Similarly, if the slab lies to the left of rep, then the distance function is 

represented by a 135' line starting a t  the bottom right corner of that slab. We use 

figures 4.5 and 4.6 to explain by example. 

In figure 4.5, rep4 is the cluster centre under consideration. slabl lies on the route 

common to both, the y(-x) and y(+x) paths of rep4. Thus all the data points in 

slabl are xy-monotone to repd. The corresponding distance function is shown in 4.6. 

Now consider slab2 in figure 4.6. The slab intersects the y(-x) path of rep4 a t  A. 

Only those points in slab2 that lie to the left of A are xy-monotone to rep4. Thus, 

the distance function for slab2 is a 135' line starting a t  A. This is depicted in fig- 

ure 4.6. Similarly, slab3 in figure 4.5 intersects the y(+x) path of rep4 at  B .  Only 

those points in slab3 that lie to the right of B are xy-monotone to rep4. Thus, the 

distance function for slaba is a 45' line starting a t  B. This is also depicted in figure 4.6. 

Using the procedure described above, we can compute the distance functions for 

each of the cluster centres to the slabs. The y(+x) and y(-x) paths can be constructed 

on O(m) time per cluster centre, since the HLD and VLD are already known. The 
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Figure 4.5: Computing distance functions for slabs to a cluster centre 

Figure 4.6: Graphical representation of the distance functions to slabs from rep4 
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only drawback of this method is that it requires O(km) storage space over all slabs, 

since we store information regarding the paths of each cluster centre with the slabs. 

In order to avoid this storage space complexity, we approach this problem in a sys- 

tematic manner as follows. Suppose we start from the lowest slab in the region. As 

we move up, we encounter horizontal lines from H. Each such horizontal line h was 

created due to an obstacle. If h was created by the lower edge of an obstacle o, then 

the current slab is divided into two new slabs lying on either side of o. If h was created 

by the top edge of o, then two slabs on either side of o are merged to form a bigger 

slab above o. Consider figure 4.7. The lower edge of obstacle 05 divides slabl into 

slabz and slab3 lying to the left and right of 05. Also, the upper edge of ol causes 

slab4 and slab5 to merge into a bigger slab slabs lying above ol. 

Thus, we can process each slab at  a time and discard the path intersection and 

distance function information regarding the slab after we have finished processing it. 

We then move to the next slab and determine the information required to process 

that slab. 

Finding the lower envelope of the distance functions 
The lower envelope of the distance functions can be computed using a divide and 

conquer technique. The 45' and 135' rays are considered as individual line segments. 

Thus we are given O(k) line segments (since there are k cluster centres and each can 

contribute one 45" line segment and one 135" line segment to the distance functions). 

The x-coordinates of the lower end point of a line segment is referred to as the x-value 

of that line segment. The line segments are first sorted based on their x-values. We 

then divide the set of line segments into two half sets based on x-value of the line 

segment in the middle of the set, and recurse on each of the two sets. The lower 

envelope of each subset can be represented by a polygonal x-monotone chain. The 

lower envelopes of two adjacent subsets are then merged together by finding the inter- 

section points of their respective envelopes. Using the leftmost segment of the right 

subset, we can determine in logarithmic time (using binary search) the point where 

the segment intersects the envelope of the left subset. All points to the right of this 
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Figure 4.7: Calculating distance functions systematically 

intersection point in the left subset can now be discarded, and the chains are merged. 

In this manner, we can merge the solutions of the subsets to obtain the lower enve- 

lope of the line segments. The lower envelope can thus be computed in O(k log k) time. 

Finding closest cluster centre lying inside the slab 

For all data points lying inside a slab, we have discussed how we can find the closest 

xy-monotone cluster centres lying above and below the slab. We also need to con- 

sider the cluster centres (if any) lying inside the slab as candidates for the closest 

xy-monotone centres to the data points. Note that the region defined by the slab is 

an unconstrained region, i.e. all cluster centres inside a given slab are xy-monotone 

to all the data points inside that slab. We use the properties of the Voronoi diagram 

to achieve our goal here. Given the cluster centres inside a slab, we can construct 

a Voronoi diagram such that the region defined by the slab is partitioned into cells 

where each cell contains exactly one cluster centre. All data points lying inside a given 

cell are closest to the cluster centre of that cell, than to the cluster centres of any 



CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM 

diata 
to 

l e ( s 1  

Figure 4.8: Graph representing distance functions of cluster centres to lower edge of 
slab sl 

other cells. The Voronoi diagram for L1 metric can be constructed using a divide and 

conquer approach in O(ki log ki) time [24], where ki is the number of cluster centres in 

the given slab. Also, we can query the Voronoi data structure to determine which cell 

a given data point belongs to in O(log ki) time. Thus, for a given slab this procedure 

requires a total of O(ki log ki + ni log ki) time, where ni is the number of data points 

lying inside the slab. Figure 4.9 shows the Voronoi diagram of a slab containing seven 

cluster centres. 

We have explained how to find the closest xy-monotone cluster centres lying be- 

low data points in a given slab. The same technique can be used to  find the closest 

xy-monotone cluster centres lying above the slab. We also determine the closest xy- 

monotone cluster centre lying within the slab. For each data point we choose the 

closer of the above three cluster centres to be the closest xy-monotone cluster cen- 

tre. We then assign the data point to the cluster centre that is closest to it (from 

the closest non-x-monotone centre, the closest non- y-monotone cent re and the closest 

xy-monotone centre). 
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Figure 4.9: Voronoi representation of a slab with cluster centres 

Let us analyze the time required to determine the closest xy-monotone cluster cen- 

tre to the data points. For the slabs not containing cluster centres, we consider each 

slab and find the regions that are not xy-monotone to the slab (and hence to the data 

points lying inside the slab). Since we know the HLD (VLD), this process requires 

O(m) time to determine the region, plus O(k) time to test whether the cluster centres 

fall inside the region. Thus, for all slabs this procedure requires O(m(m + k)) time 

(as there are O(m) slabs). Calculating the distance functions for a slab takes O(km) 

time. The lower envelope of the distance functions for a slab is obtained in O(k log k) 

time. Thus, over all slabs, this step requires O(m(km + k log k)) time. Finally, for 

each slab containing cluster centres, we create Voronoi diagrams of the cluster centres 

and determine which cell each data point lies in. Over all slabs, this step requires 

O(k1og k + n log k) time (as each data point and cluster centre lies exactly in one 

slab). Therefore, the entire cluster assignment phase takes 0 (km2)  time. 

4.2.2 Cluster Updating Phase 

Once all the data points have been assigned to their respective closest cluster centres, 

we update the cluster centre repj of each cluster Cj,  j = 1,. . . , k, by computing the 

1-median point of all the data points assigned to that cluster. We use the procedures 

described in chapter 2 to compute the 1-median of a set of points. 
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The cluster assignment and cluster updating phases are repeated until the solution 

cannot be improved further (as in the case of the algorithm defined in section 4.1.1). 

4.3 Analysis 

We analyze the running time of one iteration of the k-median clustering algorithm 

described above. From section 2.2.1, we know that the HLD and the VLD of the 

obstacles can be generated in O(m1ogm) time. In section 4.2.1.1 we have seen how 

the closest non-x-monotone cluster centres for the data points can be computed in 

O(km + n) time. We can also compute the closest non-y-monotone cluster centres for 

the data points in O(km + n) time. 

Section 4.2.1.2 shows how the closest xy-monotone cluster centres (lying outside 

the slab) of the data points in a given slab can be computed in O(km + k log k) time. 

Thus for all slabs this procedure requires O(m(km + k log k)) time. The closest clus- 

ter centres lying inside the slabs can be determined in O(k log Ic + n log Ic) time using 

Voronoi diagrams. 

We require a total of O(n) time to determine the closest of the three cluster cen- 

tres (non-x-monotone, non-y-monotone, xy-monotone) for all data points. We update 

each cluster centres by computing the 1-median of the points assigned to the clusters. 

For the clustering process it is common that the number of data points is much more 

than the number of obstacles or cluster centres, i.e., k << n and m << n. Therefore we 

use the algorithm described in section 2.4 of chapter 2 which runs in O(mn log n) time. 

The running time (per iteration) of our algorithm is 0 (km2 + mnlogn). The 

algorithm described above requires linear storage space, i.e., O(m + n),  to hold infor- 

mation about the data points, clusters and obstacles. 
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4.4 Conclusion 

In this chapter, we have presented an efficient implementation of the k-median a lge  

rithm which uses the techniques described in chapter 2 to compute distances between 

the data points and the cluster centres. Unlike most clustering algorithms, our algo- 

rithm works under the presence of obstacles in the region and can quickly recompute 

the new cluster centres after every iteration using the 1-median algorithm presented 

in sect ion 2.4. The iterative k-median clustering algorithm requires a total running 

time of O(mn log n + km2) per iteration. 
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Conclusions and Future Work 
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5.1 Summary 

We conclude this thesis with a brief summary of our accomplishments. We study three 

facility location problems in the presence of obstacles: (i) the 1-median problem, (ii) 

the shop floor layout problem, and (iii) the iterative k-median clustering problem. 

For all the algorithms presented in this thesis, we assume that the obstacles are 

axis-parallel rectangular objects that occupy space and pose as barriers to travel. Dis- 

tances are computed using the L1 geodesic metric. 

Chapter 1 provides a brief introduction to facility location in the presence of ob- 

stacles and the preliminaries. 

In chapter 2, we study the 1-median problem. An algorithm is presented to solve 

the 1-median problem, and this algorithm improves upon the running time of the algo- 

rithm presented by Choi et. al. [8]. The running time of our algorithm is O(n(n+ m)), 

where n is the number of points and m is the number of obstacles. A modified al- 

gorithm is presented for the case where the number of points is considerably larger 

than the number of obstacles. This modified algorithm runs in O(mn logn) time. Our 

algorithm also has a reduced storage space requirement of O(m + n) ,  as compared to 

the O(mn) requirement of the algorithm presented in [8]. 

Chapter 3 presents the shop floor layout problem as introduced by Wang et. al. 

in [35]. Chapter 1 establishes important results that are used to improve known re- 

sults for several versions of the shop floor layout problem. For the case where the 

supply facility is a fixed point, we present an O(n1ogn) time algorithm which is a 

major improvement over the 0 ( n 4 )  algorithm in [35]. We present 0 ( n 2 )  algorithms 

if the location of the supply facility is unknown, or if the supply facility lies inside a 

pre-specified convex region. The algorithms in [35] for the same require 0 (n6 )  time. 

Chapter 4 provides a brief introduction to the clustering problem, and examines 
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the iterative k-median approach for clustering in the presence of obstacles. Very few 

algorithms are known under this setting. In this chapter we use the results established 

in chapter 2. Each iteration of our clustering algorithm runs in O(mn1ogn + km2) 

time. The use of the 1-median algorithm to update the cluster centre ensures that 

the updated centre lies in the feasible region of the plane (i.e. not inside any of the 

obstacles). 

Future Work 

We believe that the techniques used in this thesis can be exploited to improve algo- 

rithms for other facility location problems in the presence of obstacles. For example, 

the farthest neighbors and center point problems discussed by Ben-Moshe et. al. in [4] 

have properties similar to the problems we have studied. Other improvements can 

include considering arbitrarily oriented obstacles, general shapes of obstacles, etc. 

It would be interesting to reduce the running time of the 1-median algorithm 

mentioned in chapter 2. Considering each source point and computing its distance 

contributions to the other source points and obstacles leads to a quadratic time al- 

gorithm. If the distance contributions of the source points can be updated from the 

distances calculated for a previous source point, it may be possible to attain a sub- 

quadratic algorithm to solve the 1-median algorithm. Another interesting problem is 

the general p-median problem in the presence of obstacles when p 2 2. 

In the shop floor layout problem, we considered having only one supply facility for 

all the demand facilities. This problem can be extended to consider the location of 

more than one supply facility. Also, there can be more than one I/O point on each 

demand facility to receive goods from different supply facilities. When the location 

of the supply facility is not known, our algorithm runs in quadratic 0 ( n 2 )  time. We 

believe that it is possible to improve the running time of this algorithm using some 
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distance updating mechanisms. We note that improving the running time of the 1- 

median algorithm in chapter 2 will be key to solving this shop floor layout problem 

more efficiently. 
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