
FACILITY LOCATION IN THE PRESENCE OF

RECTANGULAR OBSTACLES

Rizwan M.H. Merchant

B.C.S. University of Pune, 1998

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in the School

of

Computing Science

@ Rizwan M.H. Merchant 2003

SIMON FRASER UNIVERSITY

May 2003

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Rizwan M.H. Merchant

Master of Science

Facility Location in the Presence of Rectangular Ob-

stacles.

Examining Committee: Dr. Ke Wang

Chair

Date Approved:

Dr. Binay OBhattacharya, Senior Supervisor

Dr. Ramesh Krishnamurti, Supervisor.

Dr. Daya Ram Gaur, External Examiner.

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project and extended essay (the title of which is shown below) to
users of the Simon Fraser University 'Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its
own behalf or for one of its users. I further agree that permission for
multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be
allowed without my written permission.

Title of ThesisProjectExtended Essay

Facility Location in the Presence of Rectangular Obstacles

Author:
(sGature)

(name)

9
\ MA^ , a003 .

(date)

Abstract

The area of facility location has applications in a wide range of topics such as op-

erations research, urban planning, telecommunications, VLSI circuit design, robot

motion, supply chain management, etc. We study three facility location problems in

the presence of obstacles. The obstacles are disjoint, rectangular and axis-parallel.

The distance between any two points in the plane is measured in Li geodesic metric,

i.e., the shortest path in rectilinear metric avoiding obstacles.

In this thesis we study three seemingly unrelated problems. We identify com-

monalities between these problems and improve upon the existing results by using

geometric techniques.

In the 1-median problem, we are given m obstacles and n source points in the

plane, and the objective is to find a point t in the plane such that the sum of its

distances to all the n points is minimized. We present efficient algorithms to solve

the 1-median problem based on the relative orders of n and m.

In the shop floor layout problem, we are given a layout consisting of several de-

mand facilities and a single supply facility. The supply facility serves each of the

demand facilities through an 1/0 point or "door" on each of the demand facilities.

The optimal placement of the supply facility and the doors on the demand facilities

is vital in order to minimize the total transportation costs between them. We study

three different versions of this problem: (i) the supply facility is a fixed point and its

location is known, (ii) the supply facility is a point and can lie anywhere in the given

iii

layout, and (iii) the supply facility is a point and can lie anywhere within a given

convex rectilinear region. In this thesis, we present efficient algorithms to solve the

above versions of the shop-floor layout problem.

Finally, we study the clustering problem. The objective is to partition a given set

of data points into clusters such that data points within the same cluster are "similar".

We measure the similarity between data points in terms of distance functions. In this

thesis, we present an efficient implementation of the iterative Ic-median clustering

algorithm.

Acknowledgments

It is a pleasure to take this opportunity to extend my gratitude to the people without

whom this work would be impossible. Firstly, I would like to thank my mentor and

supervisor, Dr.Binay Bhattacharya, for his continuous guidance and support. Despite

the many, many questions he showed tremendous patience and provided me with in-

valuable teachings and direction. I am extremely glad to have decided to work with

Binay and am indebted to him. I am thankful to my colleague and friend, Robert,

who was always willing to share his knowledge and ideas during the entire course of

my research.

On a personal note, I feel that all accomplishments would be incomplete if I did

not mention my parents, who have made and continue to make innumerable sacrifices

to ensure that their children are provided with every opportunity to prosper. I thank

them deeply for the love, encouragement and support they have always shown. If I

could do for them even a fraction of what they have done for me, I would consider

myself successful. To Rahael, who has been my greatest source of motivation - thanks

for always being there to instill in me hope and optimism when I needed it the most.

I would like to mention Hussein, who has been such a good friend and room-mate for

the last seven years. I am also grateful to my close friend Vineet for helping me out

in times of utmost need. Finally, I would like to thank all my family and friends for

their support and encouragement.

To my parents. . .

"Obstacles are those frightful things you see when you fail to focus on your goals"

- Henry Ford

vii

Contents

. .
Approval 11

Abstract iii

Acknowledgments v

Dedication vi

Quotation vii

List of Figures x

1 Introduction 1

1.1 A note on Facility Location Problems 2

1.2 Preliminaries . 6

1.3 Summary , 11

2 The Constrained 1-Median Problem 12

2.1 Background and Problem Definition 13

2.2 Proposed Algorithm . 15

2.2.1 Finding Horizontal and Vertical Line Decompositions 17

2.2.2 Finding Distances From Source Points to Line Segments in H

a n d V . 18

2.2.3 Finding the 1-median point 23

2.3 Analysis . 28

viii

. 2.4 An Improved Algorithm 29

2.4.1 Steps 3 a n d 4 : Computing DistancesTo Linesegments in H
a n d V . 30

. 2.4.2 Analysis 34

2.4.3 Computing the 1-median set 35

. 2.5 Conclusion 36

3 The Shop Floor Layout Problem 37

3.1 Background and Problem Definition 38

3.2 Supply Facility as a Fixed Point . 40

. 3.2.1 Analysis of Algorithm 43

. 3.3 Location of Supply Point is Unknown 44

. 3.3.1 Analysis 47

3.4 Location of Supply Point Restricted to a Given Convex Region 48

. 3.5 Conclusions 49

4 The Constrained Clustering Problem

. 4.1 Introduction

. 4.1.1 Formal Definitions

4.1.2 Presence of Obstacles
. 4.2 Our Algorithm

4.2.1 Cluster Assignment Phase . .
4.2.2 Cluster Updating Phase . . .

4.3 Analysis
. 4.4 Conclusion

5 Conclusions and Future Work 72

. 5.1 Summary 73

. 5.2 Future Work 74

List of Figures

Example of a XY.monotone. rectilinear path
Partitioning of the free space into four regions . creating non-y-monotone

. regions with respect to a point

Partitioning of the free space into four regions . creating non-x-monotone

. regions with respect to a point

. A diagram supporting lemma 1.2.2

Preprocessing performed for the 1-median problem

. Illustration of the 1-median algorithm

. Intersection of segments in H and V

Searching for the 1-median point using balanced binary trees
Division of the input region into rectangles
Processing rectangle ri for improved 1-median problem

. Computing the set of 1-medians

Shop Floor Layout Problem with fixed supply point and demand facilities . 42

Shop Layout Problem . Locating supply point in a given rectangular

region . 48

. Convex rectilinear polygon containing the supply point 49

. Effects of the presence of obstacles on the clustering problem 56

. Finding non-x-monotone cluster centres for data point 59

Generating slabs in the region containing data points and obstacles . 61

. Finding closest xy-monotone cluster centres for data points 63

. 4.5 Computing distance functions for slabs to a cluster centre 65

4. 6 Graphical representation of the distance functions to slabs from rep4 65
4.7 Calculating distance functions systematically 67

4.8 Graph representing distance functions of cluster centres to lower edge

of slab sl . 68

4.9 Voronoi representation of a slab with cluster centres 69

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION

1.1 A note on Facility Location Problems

Facility location has been an intriguing and attractive field of study for many re-

searchers for decades. This is not surprisingly so. The problems of facility location

find applications in a wide range of real-life applications. Operations research, urban

planning, telecommunications [I 11, VLSI circuit design [25, 281, robot motion [26, 51,

supply chain management [I 11, etc are only some of the areas that borrow techniques

and concepts from the field of facility location to achieve their goals.

So what is facility location?

Despite the amount of work and effort that goes into facility location, the objective

of such a problem is in fact quite simple. We are given several facilities or resources

which are to be utilized by a set of clients. The goal is to place these resources in

an optimal fashion such that the total cost involved for the clients to access these

resources is minimized. The cost can be measured in terms of minimum/maximum

distance, monetary gain, etc and depends on the application under consideration.

Simply put, facility location is a resource allocation optimization problem.

Consider a classic application of facility location: urban planning. It is often re-

quired to place certain facilities in and around the city, keeping in mind the access

criteria to these facilities. For example, a fire station in the downtown area should

ideally be located such that the travel time to any of its service locations is the same,

i.e., at the center of its service area. The quality of solutions to such facility location

problems are usually measured in terms of a travel metric, and the goal is to optimally

place the given facilities so as to minimize the distances travelled or material trans-

portation costs involved. Depending on the application, a suitable metric is chosen

to calculate the distances. Euclidean and Manhattan are the two common distance

metrics used.

When tackling real-life facility location problems, it is commonly seen that some

CHAPTER 1. INTRODUCTION

restrictions apply on how and where facilities can be placed in a given region or space.

The presence of obstacles results in forbidden regions where the facilities cannot be

placed. The obstacles also pose a barrier to travel. These obstacles could appear in

the form of rivers, lakes, parks, buildings, airports, etc. In such cases, it is imperative

that the distance function be modified to acknowledge the presence of these obstacles

when calculating distances between points in the space. Some applications where such

a problem may arise are:

0 Motion planning in the field of robotics where a robot tries to find its way

through a maze of obstacles.

0 Urban planning where the goal is to place services or facilities such as mail

boxes, fire stations, etc. A typical obstacle could be a golf course inside which

a mail box cannot be placed.

In an industrial plant where a supply unit needs to be placed to service requests

from demand facilities. In this case, the demand facilities pose as obstacles and

travel cannot occur through these obstacles.

0 In the design of VLSI circuits.

Drezner and Hamacher [ll] present many facility location problems and the un-

derlying theory behind solving them.

Concepts from computational geometry provide efficient algorithms and elegant

data structures to solve problems arising in facility location. For instance, Preparata

and Shamos [29] used the properties of the convex hull to produce an algorithm to

solve the "smallest enclosing circle of a set of points" problem in O(n1ogn) time,

where n is the number of points in the set. The Voronoi diagram, which is one of the

fundamental structures described in computational geometry, has been repeatedly

used to solve many facility location problems such as the "nearest neighbor query

problem for the rectilinear metric in the presence of obstacles" [9].

CHAPTER 1. INTRODUCTION 4

In this thesis, we study three facility location problems: (i) the rectilinear 1-median

problem as described by Choi et. al. [8], (ii) the "shop floor layout problem" as de-

scribed by Wang et. al. [35], and (iii) the iterative k-median clustering problem in

the presence of obstacles [33, 361.

The three problems mentioned above are facility location problems. Apart from

this commonality, these problems share a strong relationship with each other in terms

of our work and objectives. We started our research studying the clustering problem

in the presence of obstacles. We realized that the k-means clustering approach falters

in the presence of obstacles as it can place facilities (cluster centres) in forbidden re-

gions, such a . in the interior of an obstacle. This led us to pursue a different approach,

and we started studying the 1-median problem in the presence of obstacles. Not only

could we use the 1-median technique for our clustering pr'ocess, but we were also able

to improve the currently published algorithms solving the 1-median problem. As we

will see later, the shop floor layout problem is very similar to the 1-median problem

in the presence of obstacles. The objective of both these problems is to minimize

sum of distances from a central point to other points in the region. We consider our

obstacles to be axis parallel rectangular objects that occupy space and are a barrier to

travel. We use the obstacle avoiding (geodesic) rectilinear (or Manhattan) L1 metric

to compute distances between pairs of points in the region.

The first problem we study is the rectilinear 1-median problem in the presence of

obstacles. Here we are given n source points in the plane and a set of m rectangular

obstacles. As before, these obstacles pose as barriers to travel and are axis-parallel.

The objective is to find a point p such that the sum of the geodesic distances from

each source point to p is minimized. The point p is called the 1-median point. This

problem has been studied by Choi et. al. [8] who gave an O(n(n+m) logm) algorithm

to locate a 1-median point. In this thesis, we present an O(n(n + m)) time algorithm

for locating a 1-median point. We further improve the running time to O(mn log n)

under the assumption that the number of source points is much larger than the num-

ber of obstacles in the plane, i.e., n >> m. Also, our algorithm requires linear storage

CHAPTER 1. INTRODUCTION

space, which is an improvement over the O(mn) storage space requirement for the

algorithm in [a].

Next we study the shop floor layout problem introduced in [35]. We are given a

central supply facility and several demand facilities in the 2-D plane. The facilities

are rectangular in shape and of finite size. They also pose as barriers to travel in

the layout. The supply facility acts as a server of goods or resources to the demand

facilities. The goods can be received by a demand facility at an I/O point or "door",

which is placed somewhere on its perimeter. A door is also placed on the perimeter of

the supply facility from where the goods are to be dispatched. Several versions of this

problem have been studied. For instance, the supply facility can be a fixed point in

the plane (also known as a supply point). In this case, the door to the supply facility

would be the point itself. In another' version, the location of the supply facility is

unknown, and is computed as part of the solution set. Yet another version requires

the supply facility to lie within a given convex rectilinear region, and the optimal

location inside this region also needs to be determined.

Given the problem definition, the goal is to find an I/O point on the supply facility

and an I/O point on each of the demand facilities. These I/O points need to located

such that the total cost of transportation from the supply facility to the demand fa-

cilities is minimized, i.e., the sum of the distances from the I/O point of the supply

facility to the I/O points of the demand facilities is minimum. The facilities are a

barrier to travel and any travel path cannot intersect the interior region of a facility,

but the paths are allowed to run along the perimeters of the facilities. We assume

that the facilities are rectangular objects which are axis-parallel, i.e., their sides are

parallel to the X and Y axes. All distances are measured using the rectilinear metric.

We consider the different versions of this problem, and provide algorithms which have

significantly better running times than those described by Wang et. al. 1351.

Finally we examine the clustering problem. We are given a set of n data points, a

CHAPTER 1. INTRODUCTION 6

set of m disjoint, rectangular, axis-parallel obstacles, a value Ic and an objective func-

tion. The goal is to partition the set of data points into k disjoint clusters, such that

the objective function is minimized. Each cluster is represented by a cluster centre

and all points in a cluster are closer to its cluster centre that to any other cluster

centre. The distances are measured using the geodesic rectilinear metric.

This thesis is organized as follows. The rest of this chapter discusses the prelim-

inaries, which contains several definitions and results that we use through the rest

of the study to solve the above problems. In chapter 2, we discuss the rectilinear 1-

median problem and present algorithms to solve the same. In chapter 3, we discuss in

detail the shop floor layout problem and present algorithms to solve different versions

of the problem. Chapter 4 examines the iterative k-median clustering problem, and

an efficient algorithm'is presented to solve this problem in the presence of obstacles.

In chapter 5, we present our conclusions and discuss possible future work in the area.

Choice of Metric

In this thesis, we calculate distances between points using geodesic (obstacle avoiding)

Manhattan metric, which is also known as the rectilinear metric. Even in the absence

of obstacles, there is no exact algorithm for the 1-median problem in the plane when

distances are computed using the Euclidean metric. This is due to the presence of

square roots in the Euclidean metric, which could be irrational numbers [3]. Thus,

there is no published result on the k-median problem for points in the plane. In

contrast, objective functions that comprise of Manhat tan distances are easier to solve.

1.2 Preliminaries

Given the Euclidean space R2, which have co-ordinate axes X and Y, a point p in the

space is denoted by (p,,p,), where p, is the X-coordinate and p, is the Y-coordinate.

CHAPTER 1. INTRODUCTION

We define the distance between any two points p and q, p, q E R2, as the L1 or Man-

hattan distance between them, i.e., Ilp - q((= Ipx - qx(+ Ip, - q,l.

Also given are rn obstacles (in 2-D) denoted by 0 = {01, 02, 03, . . . , Om), such

that none of the obstacles intersect each other. The obstacles are rectangular and

axis-parallel, i.e., their sides are parallel to the X and Y axes. We define the border

of any region Q E R2 as the boundary of that region, denoted by B(Q). Thus the bor-

der of an obstacle 0, is its perimeter. We also define the free space 3 to be the region

in R2 minus the set of obstacles 0, plus the border of each of the obstacles in 0, i.e.,

3 = R2 - (J {Oi - B(Oi) 1 Oi E 0). We consider only rectilinear paths between the

points. A rectilinear path is a chain of axis-parallel segments lying in the free space F.

Note that the borders of the obstacles of 0 are included in the free space and thus a

rectilinear path can consists of segments in B(Oi), Oi E 0. The length of such a path

is the sum of the lengths of its segments. The shortest rectilinear path between two

points p and q (p, q E 3) can now be defined as the rectilinear path having minimum

length, amongst geodesic rectilinear possible paths between p and q, and its length is

denoted by d(p, q). We define the x-distance between the points p and q as the sum

of the lengths of the segments of the path from p to q that are parallel to the X-axis,

denoted by d,(p, q). The y-distance between p and q is similarly defined. We denote

the topleft, topright, bottom-left and bottom-right corners of an obstacle Oi E 0
by tl(O,), tr(Oi), bl(Oi) and br(0i) respectively.

We denote a path P by a sequence of end points of its segments, i.e., P =

PO, PI, . . . pk, such that the coordinates of pi and pi+l differ in exactly one coordi-

nate (X or Y). In other words, any two consecutive points in the path have either

the same x-coordinate value or the same y-coordinate value. A path is said to be

X-monotone (or Y-monotone) if the coordinates of its points continually increase or

decrease in the X-direction (resp., Y-direction) . An X-monotone (resp., Y-monotone)

path has all of its horizontal (resp., vertical) segments directed either rightwards or

leftwards(resp., either upwards or downwards). A path that is both X-monotone and

Y-monotone is called an XY-monotone path, also known as a stair-case path. The

CHAPTER 1. INTRODUCTION 8

length of a stair-case path is simply the L1 distance between the two end points p and

91 i.e.1 d(P, 9) = IPX - 9x1 + lp, - %I.

Figure 1.1: Example of a XY-monotone, rectilinear path.

In figure 1.1, the path from point p to the point q is rectilinear, and is monotone

in both, the X and Y directions, i.e., it is XY-monotone. Notice that the path can

run along the perimeter of some of the obstacles.

We now present some important properties of rectilinear paths between points which

are used extensively later.

Property 1.2.1. [4] Given two points p and q (p, q E F), the shortest path between

them has t o be either X-monotone or Y-monotone (or both).

Property 1.2.2. [4] Given two points p and q (p , q E F), if there exists an X -

monotone path and a Y-monotone path between them, then there also exists a n X Y -

monotone path between them.

Property 1.2.3. [4] If there exists a n XY-monotone path between two points p and

q , then that path i s the shortest path between p and q. Further, any other shortest

path between p and q has t o be XY-monotone.

CHAPTER 1. INTRODUCTION 9

Definition 1. We define an +x(+y) path P = (po,pl , . . . pk) starting at a point p as

follows. Starting from the point p, the path moves in the +x-direction, i.e., the first

segment (po, pl) of the path P is a horizontal line segment with y = y(p). The path

continues to move in the +x-direction until it hits an obstacle Oi E 0. The path then

moves along the edge of the obstacle Oi in the +y-direction till it reaches the top-left

corner of Oi, after which it starts to move in the +x-direction again. This continues

until the last segment of the path (~ ~ - ~ , p ~) , which goes to infinity. +x(-y), -x(+y)

and -x(- y) paths are similarly defined.

As seen in figure 1.2, the paths defined above divide the free space F into four

separate regions, Fp(,), Fp(-,I, Fp(,) and FP(-,). Fp(,) is the region of F that is en-

closed by the xy and the x(-y) paths.

The division of the plane into the four regions with respect to p as mentioned above

imposes some properties on the distance measurements between p and the regions.

The shortest path between p and any point inside Fp(,) and Fp(-,) is non-y-monotone,

i.e., the path is x-monotone but not y-monotone. The shortest path between p and

any point inside 3p(y) and FP(-,) is either xy-monotone or just y-monotone. Analo-

gously, we can create regions by drawing y(+x), y(-x), -y(+x) and -y(-x) paths so that

the shortest path between p and any point inside FP(,) and FP(-,) is non-x-monotone,

and the shortest path between p and any point inside Fp(,) and Fp(-,) is xy-monotone

or just x-monotone (see figure 1.3).

Lemma 1.2.1. [30] Given a point p and the obstacle set 0, the free space F can

be divided into the four regions as described above in O(n log n) time and using O(n)

space.

Lemma 1.2.2. [8] Given two points p and q on a line segment L lying in the free

space F , and another point s E F , then (2) d, (s, p) = d, (s, q), if L is a vertical line,

and (zz) d, (s, p) = d, (s, q), zf L is a horizontal line.

Figure 1.4 illustrates lemma 1.2.2 when L is a vertical line. Points p and q lie on

L. The x-distance from s to p is equal to the x-distance from s to q, irrespective of

CHAPTER 1. INTRODUCTION

. ---------
-.

- z (- u) path

Figure 1.2: Partitioning of the free space into four regions - creating non-y-monotone
regions with respect to a point.

: I .._.:
I : ;u (+z) path
: I (

I : : I :

:& . : - 2). . pa th . . . ! , -u(+z) P

Figure 1.3: Partitioning of the free space into four regions - creating non-x-monotone
regions with respect to a point.

CHAPTER 1. INTRODUCTION

where p and q lie on L.

Figure 1.4: A diagram supporting lemma 1.2.2

1.3 Summary

We have presented several definitions and properties that we will use to solve the

problems described in the subsequent chapters. In each chapter we provide a brief

overview of the problem, followed by new and efficient algorithms which improve upon

the previously published results. At the end of each chapter we provide a detailed

analysis of our algorithms.

Chapter 2

The Constrained 1-Median

Problem

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM

Background and Problem Definition

The 1-median problem has been studied extensively and has applications in a wide

range of areas, particularly in facility location [8, 15, 7, 201. Given n source points in

the plane and a set of m disjoint rectangular axis-parallel obstacles (as described in

section 1.2), the goal of the 1-median problem is to find a point t that minimizes the

distance function below:

where si is the ith source point and t is the median point such that t lies in the free

space described by the plane and the obstacles (refer to section 1.2). The distances are

geodesic and are measured using the rectilinear metric, as discussed in the previous

chapter.

Before we proceed, we provide a brief history of the 1-median problem. Given the 1-

dimensional case and no obstacles, the 1-median can be computed in linear time [lo].

The same problem in the plane (2-Dimensions) can be split into two 1-Dimensional

problems and solved again in time linear to the number of source points [15]. Chepoi

and Dragan [7] studied the problem of computing a median point in a simple rectilin-

ear polygon and presented an O(p + n logp) algorithm to solve this problem (p is the

number of vertices of the polygon, and n is the number of source points lying inside

the polygon).

Larson and Li [23] were amongst the first to study facility location problems in the

presence of obstacles. They present an algorithm to find the shortest rectilinear

path between origin-destination points in the presence of obstacles. With the help of

these results, Larson and Sadiq [22] studied the general p-median problem in a two-

dimensional Euclidean space in the presence of barriers. Kusakari and Nishizeki [20]

presented an algorithm to find all 1-median points. This algorithm is output sensitive

and runs in O((k + m) log m) time, where k is the number of polygonal vertices of the

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 14

region found and m is the number of axis-parallel rectangular obstacles in the plane.

The number of source points n does not affect the running time of the algorithm since

the authors have assumed the value of n to be a constant. The storage space required

for their algorithm is O(k + m). If it is assumed that n is not constant, then their

algorithm requires O((k + nm) log nm + n2m) time. Choi et. al. [8] also worked on

this problem and have presented an O(n(n + m) logm) time algorithm to find the

1-median point. They explain how to compute the median set (the set of all 1-median

points) in O(n(n + m) log m + k) time, where k is the complexity of the median set.

The 1-median set is a collection of rectilinear polygons, where line segments and in-

dividual points are degenerate cases of polygons. For example, it is possible that all

points on a given line segment are 1-median points for a given set of source points.

Other facility location problems have also been studied in the presence of obsta-

cles. Moshe, Katz and Mitchell [4] present an O(mnlog (m + n)) time algorithm to

construct a data structure of size O(mn) that can report the farthest point to a query

point in O(1og (m + n)) time, where n is the number of source points and m is the

number of obstacles in the plane. For the same setup, they also study the 1-center

problem, where the objective is to find a point in the plane that minimizes the maxi-

mum distance to the n points. They present an O(mn log (m + n)) time algorithm to

find the 1-center point.

In this chapter, we present an efficient algorithm for the 1-median problem in the

presence of obstacles. For a given set of n source points and m rectangular, axis-

parallel obstacles, our algorithm runs in O(n(n + m)) time, and improves the current

best published result of O(n(n + m) log m) in [8]. We further improve this running

time to 0 (nm log n), motivated by the fact that in most cases n >> m. We also reduce

the storage space requirement of 0 (mn) for the algorithm in [8] to 0 (m + n) (linear)

space.

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM

2.2 Proposed Algorithm

We denote the set of n source points by S = isl, ~ 2 , . . . , s,) and the set of m dis-

joint, axis-parallel rectangular obstacles in the plane by O = (01, 02, . . . ,Om). The

obstacles and source points fall in a given rectangular region R in the 2-D plane. As

discussed in section 1.2, we denote the length of the shortest obstacle-avoiding recti-

linear distance between two points p and q in the free space by d(p , q) . We preprocess

the given data in the following manner. We maintain four sorted lists for the set of

obstacles. The first list stores the obstacles sorted by the left edges, the second stores

the obstacles sorted by the right edges, and the third and fourth lists store obstacles

sorted by the top and bottom edges respectively. Similarly, we also maintain sorted

lists for the set of source points that store the points sorted by the x-coordinate and

by the y-coordinate. .

Our l-median algorithm starts by generating horizontal and vertical line decompo-

sitions of the given input data. The edges of each obstacle are extended until they

hit another obstacle or the boundary of the region R. We draw a horizontal line

and a vertical line through each source point s E S in a similar manner. The set of

horizontal line segments created is denoted by H, and the set of vertical line segments

created is denoted by V. We present a detailed description of how the horizontal and

vertical line decompositions are computed in the next section.

Lemma 2.2.1. [8] There exists an intersection point among the O(m + n)2 intersec-

tion points created by the horizontal and vertical line segments i n H and V respectively,

which is the optimal location for the 1-median.

According to lemma 2.2.1, the l-median point lies on the intersection of the hori-

zontal and vertical line segments in H and V respectively. By definition, the l-median

point is the one amongst these intersection points that has minimum total distance

to the n source points in S. Let hi and vj denote the horizontal and vertical line seg-

ments respectively that intersect to create an intersection point p. The distance from

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM

Figure 2.1: Preprocessing performed for the 1-median problem.

p to any source point s is the sum of the x-distance and y-distance from p to s. Thus

the total distance from p to all the source points is the sum of all the x-distances and

y-distances. Also, the total x-distance from the source points to p is the same as total

x-distance to any other point on the vertical line segment vj (lemma 1.2.2). Similarly,

the total y-distance from the source points to p is the same as the total y-distance from

the source points to any other point on the horizontal line segment hi. Thus, knowing

the total y-distances from the source points to all the horizontal line segments and the

total x-distances from the source points to all the vertical line segments, we can find

the total distance from any intersection point to all the source points in constant time.

The 1-median algorithm can be formally described as follows:

Algorithm 1-median

Input: A set of source points S, a set of obstacles 0.

Output: A 1-median point of the set S.

CHAPTER 2. THE CONSTRAINED 1 -MEDIAN PROBLEM

Step 1: Compute the horizontal line decomposition (HLD) and the vertical line

decomposition (VLD) of the given input data.

Step 2: (i) Find the x-distances from the source points in S to the line segments

in V.

(ii) Find the y-distances from the source points in S to the line segments

in H.

Step 3: Find the intersection point, among all intersection points created by the

line segments in H and V, that has minimum sum of x-distance

and y-distance.

2.2.1 Finding Horizontal and Vertical Line Decompositions

We now present the technique used to obtain the HLD and the VLD. We use the

sorted lists of obstacles and source points described in the beginning of this section.

To compute the vertical line decomposition, we sweep a vertical line L that starts from

the left edge of the region R and stops when it hits (i) the left edge of an obstacle, (ii)

the right edge of an obstacle, or (iii) a source point. The sweep-line maintains a list of

"active" obstacles, i.e., those whose left edge has been encountered but right edge has

not yet been encountered. On encountering the left and right edges of an obstacle,

we extend these edges in the +y and -y directions until they hit another obstacle or

the boundary of the region R. When the line L encounters a source point, we shoot

two rays out of the source point in +y and -y directions until the rays hit either an

obstacle or the boundary of R. The obstacles lying directly above and directly below

a source point or another obstacle can be determined using a list of active rectangles

maintained with the sweep-line. A balanced binary tree (such as a red-black tree [lo],

AVL tree [lo], splay tree [32]) can be used to maintain this active list in sorted order,

and the VLD can be computed in O((m + n) logm) time. We obtain the horizontal

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 18

line decomposition in a similar manner in O((m + n) log m) time by sweeping a hori-

zontal line starting from the top edge of the region R. These procedures create 2m+n
horizontal line segments and 2m + n vertical line segments in the region R. Let the

set of horizontal line segments created be denoted by H = {hl, h2, . . . , hzm+,} and let

the set of vertical line segments created be denoted by V = {vl, 212,. . . , vZmSn}. See

figure 2.1 for illustrations.

2.2.2 Finding Distances From Source Points to Line Seg-

ments in H and V

We now present Step 2 of our 1-median algorithm which again 'uses a sweep-line tech-

nique to calculate the total x-distances (y-distances) from the source points in S to

each vertical line segment (horizontal line segment) in V (H). Our algorithm con-

siders each source point s € S at a time and computes its x-distance (y-distance)

contribution to all the vertical (horizontal) line segments created in Step 1 of the

1-median algorithm.

We explain how to calculate the y-distance from a source point s to all the hori-

zontal line segments in H using a vertical sweep-line L. The same procedure can be

applied to calculate the x-distances from s to the vertical line segments in V using a

horizontal sweep-line. We denote by ytotal(h) the total y-distance to the horizontal

line segment h E H from all the source points processed so far by our algorithm.

Algorithm Find y-distances(currentp)

Input: Source Point currentp, set of source points S, set of obstacles 0, set of hori-

zontal line segments H.

Output: y-distance contribution of currentp to all h E H.

Step 1: Initialize a vertical sweep-line L passing through currentp.

CHAPTER 2. THE CONSTRAINED 1-MEDIAN PROBLEM 19

Step 2: Sweep L in the +x direction, stopping at the two events mentioned below:

(a) /* L passes through a source point s */.
Compute the y-distance of the horizontal line segment h, passing through

s from the source point currentp and add this contribution to ytotal(h,).

(b) /* L coincides with the left edge of an obstacle o E 0 */.
Compute the y-distance of the horizontal line segments passing through

the top and bottom edges (denoted by hi and hj respectively) of o from

the source point currentp and add this y-distance contribution of

currentp to ytotal(hi) and ytotal(hj).

Step 3: Sweep the line L (starting from currentp) in the -x direction, stopping a t

the two events mentioned below:

(a) /* L passes through a source point s */.
Compute the y-distance of the horizontal line segment h, passing through

s from the source point currentp and add this contribution to ytotal(h,).

(b) /* L coincides with the right edge of an obstacle o E 0 */.
Compute the y-distance of the horizontal line segments passing through

the top and bottom edges (denoted by hi and hj respectively) of o from

the source point currentp and add this y-distance contribution of

currentp to ytotal (hi) and ytotal (hj).

Repeating the three steps described above for all the source points in S, we can cal-

culate the total y-distance from all the source points to each of the horizontal line

segments in H. We now present a detailed description of how the two events in Step

2 of the above algorithm are handled.

CHAPTER 2. THE CONSTRAINED I-MEDIA N PROBLEM

Event (a): The sweepline hits a source point s during the forward sweep.

Let the vertical line passing through s be denoted by v, and the horizontal line pass-

ing through s be denoted by h,. h, either intersects the vertical line passing through

currentp or hits an obstacle that lies to the left of s (but to the right of currentp).

In the first case, the y-distance from currentp to s is simply the y-constituent of the

Manhattan distance between the two points, i.e.

We know that the y-distance from the point currentp to s is the same as the y-distance

from currentp to any point on the horizontal line segment passing through s, i.e. h,.

Thus,

ytotal (h,) = ytotal (h,) + d, (currentp, s)

i.e., the contribution of currentp to h, has been added to the total y-distance of h,.

In the second case, suppose the line h, hits an obstacle o. This obstacle has already

been encountered by the sweep-line L. Thus the shortest distances from currentp to

the corner vertices of o, i.e. tl (o), tr(o), bl(o) and br(o) have already been calculated.

Suppose that h, intersects the right edge of o at a point q (see figure 2.2). The shortest

path from currentp to q passes through either tr(o) or br(o). Thus,

d, (c ~ r r e n t p , q) = min{d, (currentp, t r (0)) + d, (tr(o), q) ,

d,(currentp, br(o)) + d, (br (0) , q)).

:. d, (currentp, q) = min{(d, (currentp, tr(o)) + Itr(o), - q, I) ,
(dy(currentp1 br(0)) + Ibr(o), - qy I)).

Since s and q lie on the same horizontal line h,,

d, (currentp, s) = d,(currentp, q).

CHAPTER 2. THE CONSTRAINED 1 -MEDIAN PROBLEM

Thus,

ytotal (h,) = ytotal (h,) + d,(currentp, s).

When computing the y-distance from a point p, the vertical sweep-line stops at O(n)

source points. Since the HLD has already been computed earlier, we can determine in

constant time the end points of the horizontal line h passing through a source point s.

If h intersects the vertical line passing through p then the y-distance between s and

p can also be computed in constant time by taking the difference of the y-coordinate

values of s and p. If the line h hits an obstacle o, we need to consider the y-distances

stored at the right corners of o. This requires constant time also. Thus for each

source point we require 0 (n) time to determine its y-distances to other source points.

Therefore, the running time of this event for all source points is 0 (n2) .

Event (b): The sweep-line L hits the left edge of an obstacle o. Let h: and hz be

the horizontal lines passing through the top and bottom edges of o respectively. Each

of these horizontal lines either intersects .the vertical line passing through currentp

or hits an obstacle lying to the left of o (but to the right of currentp). Thus, the

y-distances to the two horizontal lines h: and h: can be computed in the same way as

explained for the horizontal line passing through a source point. We also record the

y-distances to the corner vertices of o in the variables y(tl(o)), y(tr(o)), y(bl(o)) and

y(br(o)) (which store the y-distance from p to the top-left, topright, bottom-left and

bottom-right corners of obstacle o respectively).

The running time for the case of obstacles is similar to that of source points, since

obstacles are treated as two separate source points. There are O(m) obstacles, and

all distance computations are done in constant time. Thus for all source points the

total time required is O(nm).

To illustrate, consider figure 2.2. Obstacle O1 creates two horizontal edges, namely

hl(O1) and h2(01). Both these edges intersect the vertical edge passing through

currentp. Thus the y-distances to these two edges can be easily calculated by taking

CHAPTER 2. THE CONSTRAINED 1-MEDIAN PROBLEM

Figure 2.2: Illustration of the 1-median algorithm.

the absolute difference of the y-coordinates between each edge and currentp. The

y-distance to the edge hl(O1) is the same as the y-distance to the top corner points of

0 1 . The y-distances to the edges of 0 2 can be similarly calculated. Now consider the

source point s2. The horizontal edge h(s2) hits the obstacle 0 2 on the left at point q.

We have already calculated the distances from currentp to the corners of this obsta-

cle. The y-distance from currentp to q can now be easily calculated by considering

the two paths, i.e. one that comes from the top-right corner of 0 2 and the other

that comes from the bottom-right of O2 corner and choosing the one which minimizes

the total distance. The distance from currentp to q is the same as the distance from

currentp to the horizontal line h(s2) and also to the source point s2. Suppose that the

obstacles O1,. . . , O4 have already been processed by the sweep-line, i.e., we know the

distances from currentp to the corners of each of these obstacles. For the obstacle 05,

its two horizontal edges, h1(05) and h 2 (0 5) hit the obstacles O3 and O4 respectively.

The distance to each of these edges can be computed as explained for the edge h(s2) .

The method outlined above computes the shortest y-distances from the source points

to the horizontal line segments that originate from the obstacles that lie to the right

of the source point under consideration. The x-distances from the source points to

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 23

the vertical line segments in V can be computed in a similar fashion using horizontal

sweep lines.

Lemma 2.2.2. Given a source point p, the y-distance f rom p t o all l ine segments in

H and the x-distance t o all l ine segments in V can be computed in O(m + n) (linear)

t ime .

2.2.3 Finding the 1-median point

We have calculated the total distances from the source points to the horizontal and

vertical line segments in H and V respectively. As seen in fig. 2.3, the horizontal

and vertical segments created intersect each other and according to lemma 2.2.1, the

median point of the source points lies on one such intersection point. For any given

intersection point p, the total distance from p to all the source points can be easily

calculated by considering the total y-distance stored at the horizontal segment passing

through p and the total x-distance stored at the vertical segment passing through p,

where h, and up are the horizontal and vertical segments passing through p respec-

tively. Our goal is to find the intersection point that has the minimum total distance

among all the intersection points.

A brute force algorithm to find all the intersections and then to find an in-

tersection with the minimum total distance i.e. the 1-median point would require

O((n + m)2) time. Instead, we use a sweep-line technique to solve this problem in

O((n + m) log (n + m)) time. We first sort the end points of the vertical line seg-

ments in V and the horizontal segments in H by their y-coordinates. Each vertical

line segment in V has a total x-distance value associated with it and each horizontal

line segment in H has a total y-distance value associated with it (as described in

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM

Figure 2.3: Intersection of segments in H and V.

the previous section). A horizontal line L sweeps the plane from top to bottom. As

the sweep-line moves, we maintain the set of "active" vertical line segments that are

currently intersecting L. Once a vertical line segment stops intersecting L it becomes

non-active. The line L also stops when it coincides with a horizontal line segment

h E H. We choose the vertical line segment v from the active list that intersects h and

has the minimum total x-distance. The intersection point of v and h is a candidate for

the 1-median point. Such a candidate is created each time L stops a t a horizontal line

during the sweeping process and we pick the candidate with minimum total distance

as the 1-median point of the set of source points S.

Algorithm: Locate 1-median point

Input: Set of horizontal line segments H, set of vertical line segments V

Output: 1-median point of set of source points S.

Step 1: Start with min-candidate set to null, min-candidate-value set to co, and

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM

the horizontal sweepline L set at y,.

Step 2: Generate the event queue Q which contains the end points of line segments

in V, and the line segments in H, all sorted by the values of their y-coordinates in

decreasing order.

Step 2: L stops at an event e :

(a) /* e is the top of a vertical line segment v E V */
Add v to the set of active line segments denoted by Vactive.

(b) /* e is the bottom of a vertical line segment v E V */
Delete v from the set of active line segments Vactive.

(c) /* e is a horizontal line segment h E H */
(i) Determine line segments in Vactiue intersecting with h.

(ii)Pick up the segment v E Vactive that has minimum value of total

x-distance.

(p is the intersection point of h and v) .

(iii)If y-distance(h) + x-distance(v) I min-candidate-value then

min-candidate = p

min-candidate-value = y-distance(h) + x-distance(v) .

Step 3: Output median-point = min-candidate

median-distance = min-candidate-value.

Implement at ion:

We maintain information for the sweep-line procedure mentioned above using a bal-

anced binary tree denoted by T. The leaf nodes of this tree store the active vertical

line segments (in increasing order of x-coordinate value) currently intersecting L.

Each leaf node contains a record which contains two pieces of information, (i) the

x-coordinate of the vertical line segment represented by that node, and (ii) the total

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 26

x-distance associated with the vertical line segment. An internal node i stores a record

made up of the splitting value (to guide the search) and a link to the vertical segment

that has the minimum total x-distance among all the children of i. Each node also

stores a link to its parent node.

When the line L hits the top of a vertical line segment, a new leaf node z is cre-

ated and added at the appropriate location in the tree. The path from the node z to

the root of T is updated to reflect changes (if any) caused by the addition of z (for

example, z could represent a vertical line segment having minimum total x-distance) .
Similarly, when L hits the bottom of a vertical line segment, the node corresponding

to that line is deleted from the tree T and the tree is updated. When the line L and

a horizontal line segment h E H coincide, we perform a 1-dimensional range query

on the tree T using the x-coordinates (denoted by hxl and hx2) of the endpoints of h

to determine the vertical line segments intersecting h. The query on hZl gives a path

pl from the root of the tree T to a leaf node l 1 and the query on hZ2 gives a path p2

from the root of the tree T to a leaf node 12. All the leaf nodes stored between ll and

l2 represent the active vertical line segments intersecting h. To find the vertical line

segment vmin with the minimum total x-distance, we simply traverse the paths from

ll and l2 towards the root of T . Let the internal node where these two paths meet

be denoted by i. Each node hanging off the paths between i and ll and i and l2 (and

lying within the region defined by these two paths) stores a pointer to the vertical line

segment having minimum total x-distance among all of its children. We traverse from

i to ll and 12, examining each such internal node and picking the one which points to

the leaf node whose vertical line has minimum x-distance. Denote this vertical line

segment by urn,,. The intersection of vmin and h is a candidate point for the median

point. Figure 2.4 illustrates the search for the 1-median point using balanced binary

trees. The internal nodes hanging off the paths are shaded in grey.

The binary tree created above stores information about the active vertical line seg-

ments during the sweeping process. There are O(m + n) vertical line segments and

thus the size of this binary tree is 0 (m + n) and the depth is O(1og (m + n)). The

CHAPTER 2. THE CONSTRAINED 1-MEDIAN PROBLEM 2 7

sweep-line stops a t three events, the two end points of a vertical line segments and

when it coincides with a horizontal line. Thus there are a total of O(m + n) events.

At the events corresponding to a vertical line segment, we either add or remove the

line from the balanced binary tree, and each such operation requires O(1og (n + m))

time. The vertical line segment with the minimum total x-distance can be found in

O(1og (m + n)) time. For the events corresponding to the horizontal line segments,

we perform two queries on the BST, each also requiring O(1og (n + m)) time. Once

the candidates have been generated for each horizontal line, we can find the one

the minimum total distance in O(n + rn) time.

with

root

0 No\

' B
, / - \ni

Figure 2.4: Searching for the 1-median point using balanced binary trees

CHAPTER 2. THE CONSTRAINED 1-MEDIAN PROBLEM

Analysis

In the previous section we described an algorithm to find the 1-median point of a

set of n source points in the presence of m rectangular axis-parallel obstacles. We

conclude by presenting an analysis of the running time of our algorithm.

We first preprocess the given data, which involves the sorting of the obstacles and

source points, and the creation of the horizontal and vertical line segments (the sets

H and V). Since there are n source points and m obstacles, sorting operations can

be performed O((n + m) log (n + m)) time. In section 2.2.1, we have seen that the

HLD and VLD can be computed in O((n + m) logm) time. Section 2.2.2 shows how

the distances from source points to the line segments in H and V can be computed in

0 (n(n + m)) time. Finally, we have also seen in section 2.2.3 how to find the 1-median

point in O((n + m) log (n + m)) time.

Thus, the running time of our algorithm is

O((n + m) log (n + m) + n(n + m) + (n + m) log (n + m)) - - Y

Preprocessing time Finding I-distances and y -distances Finding 1 -median point

The expression above is dominated by the time required to find the x-distances and

y-distances to the vertical and horizontal line segments respectively and hence the

running time is O(n(n + m)).

In terms of storage space, the algorithm presented by Choi et. al. in [8] requires

a total of O(mn) space. During the process of locating the 1-median point, the

authors create a height-balanced binary search tree for each obstacle. Each tree

stores information about the cuts created by the source points and other obstacles

("cuts" are equivalent to the line decompositions in the approach presented here).

This requires a total of O(mn) storage space. In contrast, our algorithm requires only

linear space. Only O(m + n) horizontal and vertical line segments are created by

the HLD and VLD processes. Locating the 1-median point requires construction of

a balanced binary tree which has linear storage requirement. Thus the storage space

CHAPTER 2. THE CONSTRAINED 1 -MEDIAN PROBLEM

requirement of the proposed algorithm is O(m + n).

2.4 An Improved Algorithm

In many real-life applications, it is often the case that the number of source points

is much greater than the number of obstacles that lie in the plane, i.e., n >> m. For

example, when a facility or service (such as a post office or police station) needs to be

placed in a neighbourhood, the number of customers (houses or shops) far outnumber

the number of obstacles lying in that neighbourhood. In cases where the relative

orders of n and m exhibit such a relationship, we improve upon the running time of

the previously mentioned 1-median algorithm by a factor of O (k) .

The basic idea remains the same, i.e., the intersections of the vertical and horizontal

line segments in H and V are the candidates for the 1-median point. In the previous

algorithm, we considered each source point at a time and computed its x-distance(y-

distance) contribution to all the elements in V(H). Instead, we now consider a group

of points to calculate these contributions during the sweeping process. Consider the

VLD shown in figure 2.5. The vertical line segments in V created by the left and

right edges of obstacles partition the region into a number of rectangles. This set of

rectangles created by the subset of line segments in V is denoted by rectv. Figure 2.5

depicts the partitioning of the given region into rectangles. Each source point in S

falls in one of these rectangles and each rectangle contains zero or more source points.

Let the number of source points in ri be denoted by ni. We process rectangles one at

a time and calculate the x-distance contribution of all the points contained inside to

all the vertical line segments in V. Similarly, the HLD decomposes the input region

R into another set of rectangles (we denote this set by rectH) , and the rectangles

are processed one at a time to calculate the y-distance contribution of all the points

contained inside it to all the horizontal line segments in H. Locating the 1-median

point from the candidates is then performed in the same manner as explained in sec-

t ion 2.2.3 .

CHAPTER 2. THE CONSTRAINED 1 -MEDIAN PROBLEM

Algorithm: 1-median-Improved

Input: Set of source points S, set of obstacles 0.
Output: 1-median point of set of source points S.

Step 1: Find HLD and VLD of the given input.

Step 2: Determine the points lying in each rectangle.

Step 3: For each rectangle r E rect", compute the x-distance contribution

of all the source points in r to the line segments in V.

Step 4: For each rectangle r E rectH, compute the y-distance contribution

of all the source points in r to the line segments in H.

Step 5: Locate the 1-median point among all intersections of line segments in H

and V.

In order to determine which rectangles the source points belong to, we can use

a sweep-line method similar to the one described in 2.2.1. The sweep-line maintains

information about the currently active obstacles. Each source point belongs to ex-

actly one rectangle, and this rectangle is bounded from above and below by the edges

of specific obstacles. When the sweep-line hits a source point, the point can be pro-

jected above and below to determine the two obstacles it falls on. Knowing the two

obstacles, we can determine which rectangle the point belongs to. This entire step

can be executed in O((m + n) log m) time.

2.4.1 Steps 3 and 4 : Computing Distances To Line Segments

in H and V

Step 1 and Step 5 of the above algorithm are performed in exactly the same man-

ner as in the algorithm described in section 2.2 to find the 1-median point. Step 2

CHAPTER 2. THE CONSTRAINED 1-MEDIAN PROBLEM

Figure 2.5: Division of the input region into rectangles

is performed as explained in the previous paragraph. We therefore focus .on Step 3

and Step 4 which calculate the distance contributions of the source points to the line

segments in H and V. We describe the processing of the rectangles created by the

VLD (i.e., calculation of x-distances to line segments in V). Rectangles created by

HLD are processed in a similar manner.

Let the set of rectangles created by the VLD (consider only vertical edges created

by the obstacles) be denoted by rectv = {TI, 7-2, . . . , rl) (where I is O(m)). We ex-

plain the procedure for one rectangle, say ri, and all the other rectangles are processed

in the same fashion. Our objective is to compute the x-distance contribution of all

the ni source points in ri to all the vertical line segments in V. We project all the

source points in ri onto a horizontal line segment AB, whose end points A and B lie

on the left and right edges of ri respectively. Denote the set of projected points by

Si =< sl, 3 2 , ..., sni >. The set Si is sorted by the x-coordinate values of its elements.

Note that moving these points in the y-direction within the rectangle does not change

CHAPTER 2. THE CONSTRAINED 1-MEDIAN PROBLEM 3 2

their x-distance to any object (obstacle or source point). For each projected source

point s j E Si, we store two values: (i) the sum of the x-distances from each projected

source point to the left of s j (including sj) to the point A (denoted by dA(j)) , and

(ii) the sum of the x-distances from each projected source point lying to the right of

s j (including sj) to the point B (denoted by dB(j)). Thus,

d~ (j) = C dx (sz, B)
z = j

Thus, dA(ni) denotes the sum of the x-distances of all the source points in Si to A

and the value is stored with the projected source point s,,. Similarly, dB(l) denotes

the sum of the x-distances of all the source points in Si to B. Clearly, this can be

computed in O(ni) time.

Next, we compute the shortest distance from the point A to each vertical line segment

v E V and store this value with v. Similarly, we also store at v the shortest distance

from B to v. We are now ready to compute the x-distance contributions of the source

points in Si to the vertical line segments in V. For each vertical line segment v E V

we know its x-distance to the points A and B, denoted by dx(A, v) and dx(B, v) re-

spectively. We also know the length of the line segment AB. Compute the point smid

on the line segment AB such that the x-distance from smid to v via A is equal to the

x-distance from smid to v via B , i.e.,

It is easy to see that all projected source points in Si on the left of smid have shortest

distance to v through A, and all projected source points in Si on the right of smid have

shortest distance to v through B. It may happen that smid lies to the left of sl , in

which case all source points have shortest x-distance to v through B, or smid lies to the

right of sni in which case all source points have shortest path to v through A. Let the

first projected source point to the immediate left of smid be sj and the first projected

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 33

right point to the immediate right of smid be sj+l. Note that if smid coincides with

a projected source point in Si then the length of the shortest path from that source

point to the vertical line segment v via A is the same as that of the shortest path

via B. In this case, we assume that the shortest path goes via A and let sj be the

source point that coincides with Smid. The point s,id can be found in O(logni) time

by performing a binary search on the set Si. The x-distance contribution of the source

points lying in ri to the vertical line segments in V can now be computed as follows:

d&, v) = (j * d (4 4) + d ~ (j) + ((ni - j) * d(B, v)) + d ~ (j + 1)
ses,

This x-distance contribution of the source points in Ti to v can be added to the

total x-distance contribution from all source points in all rectangles.

Figure 2.6: Processing rectangle ri for improved 1-median problem

Each source point of Si also makes x-distance contributions to the vertical line

segments created by all other source points of Si. Since we have already computed

CHAPTER 2. THE CONSTRAINED I -MEDIAN PROBLEM 34

the values dA(j) and dB(j) , j = 1, . . . , ni, we can compute in constant time the x-

distance contributions of all source points in Si to the vertical line segment of a given

source point of Si. Consider a projected source point sj E Si. To compute the x-

distance contributions from all projected source points lying to the right and left of

s j to the vertical line segment vj created by sj , we use the expression

For the rectangles created by the HLD, the same process can be applied to calculate

the y-distance contributions of source points to the horizontal line segments in H. The

intersections of the line segments in H and V are the candidates for the 1-median

point, and this point can be located using the balanced binay tree procedure used in

the previous 1-median algorithm (see section 2.2.3).

2.4.2 Analysis

In this section we present an analysis of the running time of the improved 1-median

algorithm presented above. The steps to generate the HLD and the VLD remain

the same, thus there is no change in the running time for these steps. Also, once

the distances have been calculated, the location of the 1-median point is also per-

formed in the same manner as in the previous 1-median algorithm. Thus, the only

difference lies in the calculation of the distances to the line segments in H and V.

This step dominated the running time of the 1-median algorithm described previously.

The m obstacles create O(m) line segments in V that divide the region R into O(m)

rectangles. Considering each rectangle Ti at a time, we first determine (in constant

time) two points A and B on the left and right edges of ri. There are ni source points

of S that lie inside the rectangle Ti. For each vertical line segment in V, we find its

shortest x-distance from the two points A and B. Section 2.2.2 explains how we can

calculate the x-distance from a point to all vertical line segments in O(m + n) time.

We then calculate the values dA(j) and dB(j) (j = 1, . . . , ni), which can easily be

CHAPTER 2. THE CONSTRAINED I-MEDIAN PROBLEM 3 5

done in time linear to the number of points, i.e. O(ni). For each vertical line seg-

ment, we then find the two consecutive points in Si between which the point smid lies

in O(1og ni) time. Thus, the entire process of calculating the x-distance contributions

to the vertical line segments for one rectangle takes O((m + n) + ni + (m + n) log ni)

time. The y-distance contributions to the horizontal line segments for a rectangle

can be calculated similarly with the same complexity. Hence for O(m) rectangles the

running time is

= 0(m2 log n + mn log n)

Since n >> m the running time of our improved 1-median algorithm is O(mn log n).

Figure 2.7: Computing the set of 1-medians

2.4.3 Computing the 1-median set

The 1-median set is defined as a collection of rectilinear polygons such that all the

points lying inside these polygons are 1-median points of the given source points. Line

segments and individual points are considered as degenerate cases of the polygons.

Our 1-median algorithm described above can be used to determine the 1-median set of

the source points in S. Consider figure 2.7, the horizontal line L intersects the active

vertical segments at vl, vz, .., 217. Suppose our 1-median algorithm reports that the

points v3, v4 and v5 have the minimum sum of x and y distances (i.e. these points are

1-median points), then the line segment (v3, v5) is an element of the median set and

CHAPTER 2. THE CONSTRAINED 1 -MEDIAN PROBLEM 36

any point lying on this segment is a median point. This information can be gathered

during the sweep process used to determine the intersection point with minimum total

sum of distances. The rectangular region enclosed by the points (vq, v5, v8, v9) is also

part of the median set if v8 and vg are also median points. The complexity of the

1-median algorithm to find the 1-median set is O(mn logn+ k), where k is the number

of elements found in the 1-median set.

2.5 Conclusion

In this chapter we presented two algorithms that solve the 1-median problem for

a set of source points in the presence of obstacles based on the relative orders of

n(number of source points) and m(number of obstacles). Distances were calculated

using the rectilinear L1 metric. The first algorithm presented has a'running time of

O(n(n + m)), which improves the current best published time of O(n(n + m) log n)

presented in [8]. If we know that the number of source points is significantly higher

than the number of obstacles (which is commonly the case in many facility location

applications), then we can further improve the algorithm to run in O(mn log n) time.

The storage space requirement for our algorithm is linear, i.e. 0 (m + n) as compared

to the O(mn) storage space used by the algorithm presented by Choi et. al. [8]. We

believe that the methods described in this chapter can also be used to improve other

similar facility location problems, such as the farthest neighbor problem as described

in [4]. We also use these methods in the subsequent chapters to solve the shop-floor

layout problem and the constrained clustering problem.

Chapter 3

The Shop Floor Layout Problem

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM

3.1 Background and Problem Definition

Facility location plays an important role in the development of transportation net-

works where goods need to be transported between various sites. Typically, the loca-

tions of the demand facilities are known, and the objective is to determine the optimal

location of one or more supply facilities that provide services to the demand facilities.

This "optimally1' placed supply facility minimizes the overall transportation cost of

the network. In (151, the authors tackle such facility location problems, but assume

that the facilities are points in the network and hence are not obstacles hindering

travel. For many such applications, it is the case that the supply and demand facil-

ities are considerably large in size. Consider a factory, where the raw materials are

stored in a huge warehouse, and there are several independent production units that

periodically require the raw materials to be delivered to them from the warehouse.

Warehouses and production units usually occupy large space. The regions occupied

by these facilities pose a barrier to travel and the distances have to be measured dif-

ferently from the case where the facilities were points in the network.

The shop floor layout problem was introduced and studied by Wang et. al. in [35].

The layout is defined as a rectangular region in the plane. We are given several

demand facilities which lie within the boundaries of a layout. D = {dl, d2 . . . , d,)

denotes the set of demand facilities. Also given is a supply facility S that can lie

anywhere in the layout, except in the interior of a demand facility. The demand fa-

cilities are a barrier to travel. Distance measurements and travel paths are calculated

as described in section 1.2. The objective is to find the best placement for the supply

facility in the layout, and one optimal I/O point on each of the facilities (both supply

and demand). The I/O points can be thought of as doors on the facilities through

which the exchange of goods takes place.

Given the above set-up, we need to find a solution that minimizes the total transporta-

tion cost associated with the layout. Each rectangular demand facility di is a 4-tuple

(xi, Yi , uil ui), i = 1,2 , . . . , n, where ui and Ui are the width and height of di respectively.

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 39

The top-left (tl(di)), topright (tr(di)), bottom-left (bl(di)) and bottom-right (br(di))

vertices of di are (xi, yi), (xi +u;, y;), (x;, yi + V i) , (x; +ui, yi + v;). Similarly, let the four

vertices of the supply facility S be (xo, yo), (xo + 210, yo), (xo, YO + uo) , (50 + 210, YO + uo) .
The goal is to find a point po on supply facility S, and based on the location of pol we

need to find a point pi on each demand facility di such that Cy=l d(po, di) is minimized

for all possible po E S, where d(po, di) is the length of the shortest rectilinear path

from po to demand facility di. Point pi on the perimeter of di is the point that mini-

mizes the distance from po to that demand facility. The solution set {po,pl, . . . , p,)

that satisfies the above function is the "optimal" solution and the I/O points are said

to be optimally located.

Savas et. al. [31] study a similar problem, but assume that the I /O points or doors

of the demand facilities are fixed and known as part of the input. The prescribed lo-

cations of the 110 points may not be optimal, and can result in extra transportation

costs. Wang et. al. [35] addressed this issue in the shop-floor layout problem and

assumed that the locations of the 110 points are unknown. They provide algorithms

for several versions of this problem. In the first version, the supply facility is a fixed

point in the layout. To obtain a solution to the problem one has to find the optimal

I/O points on each of the demand facilities. The second version is an extension of

the first, in which the supply facility is a point but its location is unknown. Thus the

optimal location of the supply facility needs to be computed before the I/O points on

the demand facilities can be determined. In the third version the optimal location of

the supply point is restricted within a given convex rectilinear region.

In this chapter, we study the three versions of the shop-floor layout problem as de-

scribed above. For each of the versions we present new algorithms that significantly

improve the running times in [35].

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM

Supply Facility as a Fixed Point

In the first version of the shop floor layout problem, the location of the supply facil-

ity is given as an input to the problem, and the goal is to find one I/O point pi on

the perimeter of each demand facility di E D such that Cy=, d(po,pi) is minimized.

po = (xo, yo) is the given location of the supply point and pi = (xi, yi) , i = 1, . . . , n ,

is the location of the I/O point that lies on B(di) (the perimeter of demand facility

di, as described in section 1.2).

In 1351, the authors present an algorithm that creates a network of nodes that are L1

visible. Two points A and B are said to be L1 visible if there exists an xy-monotone

path between them (for definition of xy-monotone path refer to section 1.2). The

nodes in this network represent the given supply point and the candidate 110 points

for the demand facilities. The time required to generate this network is 0 (n 2) , since

there are O(n) nodes in the network and each pair has to be checked for L1 visibility.

The authors then apply Dijkstra's algorithm on the network to find a solution to the

problem by generating the shortest paths between the nodes representing the source

point and the candidate I/O points. This algorithm requires 0 (n 4) total running

time, where n in the number of demand facilities (rectangles) in the layout.

In the remainder of this section, we present a simpler and elegant algorithm that

solves the shop floor layout problem with the supply facility as a fixed point in O(n)

time after a preprocessing of the input, a step that requires O(n1ogn) time. The

algorithm starts by computing the horizontal and vertical line decompositions of the

layout. A detailed explanation of how the decompositions are computed is provided

in section 2.2.1. This generates a set of horizontal line segments H, and a set of ver-

tical line segments V. We then generate candidate 110 points for each of the demand

facilities in the following manner. Consider each line segment h E H and v E V. h

and v have end points on the borders of demand facilities or on the border of the

layout. If such an end point falls on the border of a demand facility di, then the

location of the end point is a candidate 110 point for facility di and is added to its

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 41

list of candidates. The corner vertices of di are also added to its candidate list. Note

that each intersection point of the horizontal line segments in H and the vertical line

segments in V lying on a demand facility is a candidate I/O point for that demand

facility. Figure 3.1 shows a shop floor layout with eight demand facilities and a fixed

supply point po. It also depicts the HLD and VLD of the layout along with the can-

didate I/O points of the demand facilities (marked by 'x').

Lemma 3.2.1. [35/ T h e above technique generates all possible candidate 1/0 points

which are optimally located.

The proof for the above lemma can be found in the paper by Wang et. al. [35]

Lemma 3.2.2. Given n demand facilities, t he total number of candidate 1/0 points

generated i s always O(n).

Proof: The HLD and the VLD of the layout are computed by extending the four

edges of each demand facility, and by drawing a horizontal and a vertical line through

po. Both end points of each such extended line terminate either a t the layout border

or on a demand facility. Thus, each extended line creates at the most two candidate

I/O points on some demand facilities. Each demand facility has four extended edges

(two horizontal and two vertical), and can create at the most eight candidate 110

points on other demand facilities. Similarly, the supply point creates a t the most

four candidate I/O points. The corners of each demand facility are also considered as

candidate points. Thus the maximum number of candidate I/O points is 8 n + 4n + 4

= 12n + 4.

Once the candidate I/O points are known, our algorithm computes the y-distance

from the supply point po to each line segment h E H, and the x-distance from po to

each vertical line segment v E V. Section 2.2.2 provides details about the computa-

tion of distances from a source point to lines in H and V. Consider a candidate 110

point pi for demand facility di. As mentioned earlier, this candidate is an intersection

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 42

point of some h E H and some v E V. The total distance from po to pi is the sum

of the y-distance and x-distance from po to h and v respectively. In this manner, we

compute the distance from po to each candidate 1/0 point of di and choose the one

that has shortest distance. This procedure is repeated for all demand facilities.

Figure 3.1: Shop Floor Layout Problem with fixed supply point and demand facilities.

Algorithm: SFL-FixedSupplyPoint

Input: Layout: Supply point po, set of demand facilities D.

Output: Optimal 1/0 points of demand facilities.

Step 1: Compute horizontal line decomposition (HLD) of the given layout.

Compute vertical line decomposition (VLD) of the given layout.

Step 2: /* Determining the candidate I/O points for the demand facilities in D */.

(i) For each line segment I in H u V:

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM

{Let el and e2 be end points of 1).

If ej (j=1,2) lies on the border of a demand facility di, add ej
to list Ci of candidate I/O points of di.

(ii) For each demand facility di add its corner vertices to its list Ci of
candidate I/O points.

Step 3: For each h E H, compute y-distance from po to h and for each v E V,

compute x-distance from po to v.

Step 4: /* Find optimal 1/0 point for each demand facilitl~ di */

(i) For each candidate in Ci determine its distance from po.

(ii) Select the candidate point, say pi, with the minimum total distance.

(iii) Set pi to be the optimal I/O point of di with respect to po.

3.2.1 Analysis of Algorithm

In this section, we analyze our algorithm which finds the I/O points of the demand

facilities given a fixed supply point po. The first step of this algorithm computes the

HLD and the VLD of the given layout. We use the procedure described in section

2.2.1 to accomplish this. The running time associated with this step is O(n logn). In

Step 2, in order to determine the candidate I/O points for the demand facilities, we

examine the end points of each line segment in HUV. Step 3 computes the x-distances

from the point po to the elements of V, and the y-distances from the point po to the

elements of H. Section 2.2.2 explains how this can be performed in time linear to the

number of elements in H and V, i.e O(n) time. In Step 4, we examine the candidate

I/O points of each demand facility and determine the optimal candidate. Since the

number of candidates is O(n) over all demand facilities (Lemma 3.2.2), this step takes

linear time.

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 44

Thus, the running time of the shop floor layout problem with a fixed supply point

is dominated by the time required to compute the HLD and the VLD of the given

layout, and is O(nlogn), where n is the number of demand facilities in the layout.

This is a significant improvement over the 0 (n 4) algorithm of Wang et. al. [35].

Theorem 3.2.1. T h e shop floor layout problem where the supply facility i s a fixed

point can be solved in O(n log n) t ime.

3.3 Location of Supply Point is Unknown

So far we assumed that the location of the supply point po is fixed and is part of the

input to the problem. This section examines a variation of the shop floor layout prob-

lem where the location of the supply point is unknown. Once the optimal location of

the supply point in the layout is determined, the I/O points of the demand facilities

can be computed as described in the previous section. We present an algorithm that

solves this problem and significantly improves the running time of the algorithm de-

scribed by Wang et. al. in [35].

In the previous chapter, we studied the 1-median problem where the objective was to

find a 1-median point in the region such that the sum of distances from the point to

a set of source points is minimized.

Lemma 3.3.1. T h e solution t o the above described shop floor layout problem where

the supply point i s t o be placed optimally and the 1/0 points of the demand facilities

are to be determined is equivalent to the solution of the 1-median problem where the

1/0 points are the source points and the supply point i s the corresponding 1-median.

The 1-median point is the location that has minimum total distance to all the

source points in the region. The solution to the above shop floor layout problem is to

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 45

locate an "optimal" point for the supply facility and then determine the 1 / 0 points

on the demand facilities such that the sum of distances from the supply point to the

1 / 0 points is minimized. The supply point is therefore the 1-median point of the 1 / 0

points.

Lemma 3.3.2. The y-distance from a horizontal line hl to another horizontal line ha

can be determined by computing the y-distance from any point p on hl to the line ha.

The x-distance between two vertical lines can be computed similarly.

This lemma is a simple extension of lemma 1.2.2. Let p and q be any two points

lying on h l , and r and s be any two points lying on ha. By lemma 1.2.2,

Also,

It follows from (3.1) and (3.4) that

We now discuss our algorithm to solve the shop floor layout problem when the

location of the supply facility is unknown. Given a layout consisting of n demand

facilities, the algorithm starts by computing the horizontal line decomposition and

the vertical line decomposition. This procedure creates two sets of line segments H

and V. Lemma 3.3.1 implies that the intersection points of lines in H and V are the

candidates for optimal placement of the supply point.

Next we find all the candidate 1 / 0 points of the demand facilities. These are the

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 46

end-points of the lines in H and V, and the corners of the demand facilities. We then

consider each line h E H, and find the sum of its shortest y-distance to each demand

facility d E D. In order to know the shortest y-distance from h to a demand facility

d, we need to know the y-distance from h to each of the candidate I/O points on d

(only those caused by horizontal line segments in H) . This is the same as knowing the

y-distance from h to the horizontal lines causing candidate I/O points on d. In section

2.2.2 we examined how y-distances from a point are computed to the horizontal line

segments in H. Using the same algorithm, we find the shortest y-distance from h to

each demand facility d. Similarly, for each v E V we also find the sum of its shortest

x-distance to each of the demand facility d E D.

Among all the intersection points created by the line segments in H and V, we are

interested in determining the intersection point p of two 'lines h and v that has min-

imum sum of x-distance at v and y-distance a t h. This is the optimal location for

the supply point po. We use the sweep-line method described in section 2.2.3 that

maintains a balanced binary tree to determine the point po. Once po is determined,

we find the I/O points of the demand facilities using the algorithm described in the

previous section for a fixed supply point.

Algorithm: SFL-SupplyPoint Unknown

Input: Layout: Set of demand facilities D.

Output: Location of optimal supply point pol optimal 110 points of demand facili-

ties.

Step 1: (i) Compute horizontal line decomposition (HLD) of the layout.

(ii) Compute vertical line decomposition (VLD) of the layout.

Step 2: Determine the candidate I/O points of the demand facilities.

Step 3: (i)For each h E H find the sum of shortest y-distance to each demand

facility d E D.

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM

(ii) For each v E V find the sum of shortest x-distance to each demand

facility d E D.

Step 4: Find the optimal location of supply point po.

Step 5: Use algorithm SFL-FixedSupplyPoint to find I/O points on demand

facilities given po as the supply point.

3.3.1 Analysis

As in the previous algorithm, the HLD and VLD can be computed in O(n log n) time

using the method described in 2.2.1. Also, the candidate 110 points can be deter-

mined in O(n) time. In Step 3, we consider each horizontal(vertica1) line segment

and compute its shortest y-distance(x-distance) to all the demand facilities. For each

line segment this procedure takes O(n) time (refer to section 2.2 and its analysis for

details). Hence the running time for Step 3 is 0 (n2) . In Step 4, the optimal location

of the supply point is determined in O(n1ogn) time using the method described in

2.2.3. Step 5 fixes the location of the supply point po to the intersection point found

in Step 4 and calls algorithm SFL-FixedSupplyPoint, which runs in O(n) time.

Thus, our algorithm that solves the above version of the shop floor layout problem

runs in 0(n2) time, which is a substantial improvement over the 0 (n6) algorithm of

Wang et. al. [35].

Theorem 3.3.1. The shop poor layout problem, where the supply facility i s a point

whose location in the layout i s not known, can be solved in 0(n2) t ime.

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 48

3.4 Location of Supply Point Restricted to a Given

Convex Region

In the previous sections, the supply facility was a point lying anywhere in the feasible

region of the layout. The location of the supply point was either known or its optimal

location had to be determined. If the supply point is constrained to lie within a

given convex region, we can easily handle this requirement in Step 5 of the previous

algorithm during the plane sweep process to find the optimal intersection point. We

only consider those intersection points that lie inside the constrained region. The

given constrained region can be a simple rectangle as seen in figure 3.2 or in a more

complicated convex rectilinear polygon such as the one seen in figure 3.3.

Figure 3.2: Shop Layout Problem - Locating supply point in a given rectangular
region.

Theorem 3.4.1. The shop floor layout problem, where the supply facility is a point

whose location i n the layout is not known and is constrained to lie i n a given convex

rectilinear region, can be solved in O(mn) time, where the number of horizontal and

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM

Figure 3.3: Convex rectilinear polygon containing the supply point

vertical ine segments intersectzng the convex rectilinear region is O(m) and m << n.

3.5 Conclusions

In this chapter we studied the shop floor layout problem first introduced by Wang

et. al. [35]. The layout consisted of several rectangular demand facilities that were

axis-parallel. All distances within the layout were calculated using the rectilinear L1

metric. In the first version of the SFL problem, we were given a fixed supply point

and the goal was to determine the optimal 1 /0 points for the demand facilities. We

presented an O(n1ogn) time algorithm to solve this problem, which is a significant

improvement over the 0 (n 4) algorithm in [35]. In the second version, we were required

to determine the optimal location of the supply point, and find the corresponding 1/0

points of the demand facilities. We solved this problem in 0 (n2) time, compared to

the 0(n6) algorithm in [35]. Finally, by making a small change to the algorithms

CHAPTER 3. THE SHOP FLOOR LAYOUT PROBLEM 50

above, we solved the problem when the supply point is constrained to lie in a given

convex region without blowing up the complexity.

Chapter 4

The Constrained Clustering

Problem

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

4.1 Introduction

The clustering problem has been studied extensively in many different areas such as

facility location, data mining, computational statistics, AI, pattern recognition, and

most recently in the field of computational molecular biology. Clustering is the pro-

cess of partitioning a given set of points into disjoint clusters in a way that similar

points are placed in the same cluster. The similarity between points can be measured

using any metric, e.g., EuclideanIManhattan distance function. The goal is to find a

"good" cluster, i.e. one that minimizes the objective function given the metric being

used.

In facility location, a service provider (such as a postal service or a bank) may want to

place a number of service centres (mail boxes or ATM machines) in a given geograph-

ical region of customers, with the objective that these centres be located conveniently

for all customers [17]. A clustering algorithm can be applied to group the customers

into sub-regions or clusters, and the service centres can be placed optimally in each

cluster. Clustering also has applications in data mining [14], such as identifying a

group of policy holders of an insurance company that have a high claim cost. Molec-

ular biologists use clustering techniques to divide genes into groups based on their

expression patterns. This can help in identifying the roles and functions of various

genes.

Based on the application involved, many different methods such as BIRCH [37], DB-

SCAN, ISODATA [18], CLARA, CLARANS, COECLARANS [17], AUTOCLUST+ [13],

etc. have been used to solve the clustering problem. One of the most common tech-

nique used is the k-means method [19], where the number of clusters to be formed

is given by an input parameter k. Given n data points in d-dimensional space and

a value k, the goal is to find k clusters such that a given objective function is min-

imized. The k-means clustering algorithm is an iterative process which begins with

the selection of a set of k cluster centres. Each data point is assigned to the cluster

centre that is closest to it, such that the mean squared distance from each data point

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

to its centre is minimized. Once all the data points have been assigned to their clos-

est cluster centres, a new set of cluster centres is computed by taking the mean of

the data points in each cluster. This data point assignment to a cluster and cluster

centre updating process is repeated until the total mean squared distance cannot be

minimized further. Instead of minimizing the mean of the squared distances, we can

minimize the sum of the distances from the data points to their respective cluster

centres. In this case, the updated cluster centre is the median of the data points

assigned to that cluster. Although this iterative algorithm yields a locally optimal

solution and does not guarantee an optimal result, it is the algorithm of choice for

the practitioners in fields such as data mining and statistical analysis because of its

simplicity and flexibility. This algorithm can also be applied as a solution purifier to

another algorithm to reduce distortion.

4.1.1 Formal Definitions

Clustering: Given a set S of n objects (or data points), a positive integer k, and

a distance function df : S x S -+ 92, the objective of the clustering problem is

t o partition the set S into k disjoint clusters {C1, C2,, Ck), such that the sum

of the distances of the points to their respective cluster centres is minimized, i.e.,

DIST = c:=, disp(Ci, repi) is minimized.

The representative (or cluster centre) repi of a cluster Ci is normally chosen to be

the centroid of all the points in that cluster. disp(Ci, repi) = CPEG df (p, repi) is the

displacement of Cil i.e., the sum of the distances of each point in that cluster to the

cluster centre. If repi is calculated as the centroid of the points lying inside cluster Ci

then the problem is known as the k-means clustering problem. If repi is calculated as

the 1-median of the points lying inside Ci, then the problem is known as the k-median

clustering problem.

Iterative Clustering: Each iteration in an iterative clustering algorithm can be

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

divided into two steps, cluster assignment and cluster updating. Let Ci,t denote the

ith cluster in iteration t , and let rep,,t denote the cluster centre of Gilt in iteration t.
DISTt is the total displacement over all clusters in iteration t

1. Cluster Assignment : In iteration t , assign each data object x E S to a cluster

CiTt, such that is the closest to x among all cluster centres repj,t-l V j =

I , . . . $.

2. Cluster Updating : Recompute repiIt, the cluster centre for cluster Gilt V i =

1, . . . , k. Also compute DIST,.

The algorithm performs the above two steps at each iteration and stops when DISTtA1-

DISTt 5 S , where S is a. predefined value. Note that initially the k cluster centres

are chosen randomly from the set S of data objects (or the centres can be chosen

using heuristics based on density of points, k-farthest points, etc).

It is easy to see that a naive implementation of the iterative clustering method results

in a running time of O(tnk), where t is the number of iterations required to reach

the local minima. It is assumed that the distance function is computable in constant

time. Several implementations of the k-means algorithm exist which improve the over-

all running time of the algorithm. The papers [2], [19] use kd-trees to provide efficient

implementations. However, no such efficient implementation method is known for the

iterative k-median clustering.

4.1.2 Presence of Obstacles

So far we have discussed the clustering algorithms and their implementations in the

absence of obstacles. In case of many real-life applications, it is possible that there are

physical entities (or obstacles) that pose as barriers to travel. These obstacles are part

of the input to the clustering problem and need to be considered when calculating

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

distances to assign the data points to the appropriate centres.

Some work has been done previously to address the presence of obstacles in the

clustering problem. The COD-CLARANS algorithm by Tung et. al. [33] uses a parti-

tioning based clustering method where the number of clusters to be formed is known

apriori. It uses the CLARANS algorithm [27] which builds a visibility graph in order

to compute the shortest distance between the data points in the presence of obstacles.

The construction of this visibility graph is computationally expensive, and adds to

the overall complexity of the algorithm. In [13], the authors use the Delaunay data

structure to cluster a set of data points. The distances between points are measured

in terms of the lengths of the edges between the points in the delaunay triangulation.

Also, the number of clusters cannot be specified beforehand. Zai'ane and Lee [36]

use a variation of the DBSCAN algorithm called the DBCluC method, which is a

density-based clustering algorithm.

In the remainder of this chapter, we discuss an efficient implementation of the it-

erative k-median algorithm that clusters the given set of data points in the presence

of obstacles. The number of clusters to be formed is given by the input parameter

k. In k-means clustering the new cluster centres are the centroid of the data points

in the corresponding clusters. This method of updating the centres does not work in

the presence of obstacles as it can result in some centres being placed in inaccessible

regions, such as the inside of an obstacle. As illustrated in figure 4.1, the centroid of

the data points around the golf-course happens to fall inside the golf-course, and this

is unacceptable if our goal is to place a facility, say a mail-box. For this reason, we

compute the 1-median of the data points in a given cluster to update its centre (as

discussed in Chapter 2 of this thesis). This will guarantee that the updated centre

lies outside the boundaries of the obstacles. Also, it should be noted that the Eu-

clidean and Manhattan distance functions give an inaccurate measure of the distance

between the data points and the cluster centres as the paths between these points

could intersect obstacles in the region (as in the case of the data points and cluster

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM 56

centre around the housing block). In order to overcome this problem, we use recti-

linear geodesic distances in the presence of obstacles. Also, we assume the obstacles

are axis-parallel rectangles. As we will see later in this chapter, these two relaxations

allow us to implement the iterative constrained k-median algorithm efficiently.

Dala points
X Cllukrecnms

. 6

Figure 4.1: Effects of the presence of obstacles on the clustering problem

4.2 Our Algorithm

Let S = isl, ~ 2 , . . . , s,) denote a set of n data points lying in a region R of the 2-D

plane and let O = (01, 0 2 , . . . , om) denote the set of rn disjoint axis-parallel rectangu-

lar obstacles also lying in R. Note that the data points cannot lie in the interior of

the obstacles. Also given is the value k, which denotes the number of clusters to be

formed by the clustering algorithm. We present the iterative k-median clustering

algori thm, which is similar to the iterative k-means algorithm. The two phases again

are the cluster assignment and the cluster update (as discussed in 4.1.1). The goal is

to create k clusters {Cl, C2,. . . , Ck) such that each data point belongs to exactly one

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM 5 7

of these Ic clusters. We explain one iteration of this algorithm. For the first iteration

we start with Ic initial cluster centres which are generated either randomly or using

some heuristics. Let the set of initial centres be denoted by {repl, repzl . . . , repk).

The iterative Ic-median algorithm first computes the horizontal and vertical line

decomposition (HLD and VLD) using only the obstacles in the region (i.e. the data

points are not considered while constructing HLD and VLD). Details of how to com-

pute the HLD and VLD can be found in section 2.2.1. As mentioned earlier, the

clustering process comprises of two phases: (i) the cluster assignment phase where

the data points are assigned to the closest cluster centre, and (ii) cluster update phase

where the cluster centres are updated based on the assignments made in the previous

phase. We now examine each of these phases in detail in the subsequent sections.

4.2.1 Cluster Assignment Phase

The objective is to assign each of the n data points in S to the cluster centre that is

closest to it. Property 1.2.1 states that the shortest path between any cluster centre

and any data point is either x-monotone (but not y-monotone) or y-monotone (but

not x-monotone), or xy-monotone. A point p is non-y-monotone to a point q if the

shortest path from p to q is x-monotone but not y-monotone. Similarly, a point p is

non-x-monotone to a point q if the shortest path from p to q is y-monotone but not

x-monotone.

For each data point p E S we find the closest cluster centre that is non-x-monotone,

the closest cluster centre that is non-y-monotone and the closest centre that is xy-

monotone. We then assign p to the closest of these three centres. We now divide this

phase into three parts, i.e. (i) finding closest non-x-monotone cluster centres of the

data points, (ii) finding closest non-y-monotone cluster centres for data points, and

(iii) finding closest xy-monotone cluster centres for data points.

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

The iterative k-median clustering algorithm is formally described below:

Algorithm: ClusterAssignmentPhase

Input: Set of data points S = {sl, s 2 , .. , s,), set of cluster centres {repl, rep2, .. , repk),

set of obstacles O = {ol, 02, .., 0,).

Output: Set of clusters {C1, C2, .., C k) .

Step 1: Compute the HLD and the VLD of the set of obstacles.

Step 2: For each data point s E S do

(a) Determine the closest non-x-monotone cluster centre, rep,.

(b) Determine the closest non-y-monotone cluster centre, rep,.

(c) Determine the closest xy-monotone cluster centre, ,rep,,.

(d) Assign s to the cluster represented by the cluster centre among rep,,

rep, and rep,, that is closest to s.

We now present a detailed description for each step of the above algorithm. Step

1 can be performed as described in previous chapters.

4.2.1.1 Step 2(a,b): Finding closest non-x-monotone centres

We explain the procedure to find the closest non-x-monotone cluster centres for the

data points in S. The same method can be applied to find the closest non-y-monotone

centres for the data points. As seen in fig.4.2, all the data points shown (depicted by

shaded dots) are non-x-monotone with respect to the cluster centres shown (marked

by an 'X7).

During each iteration of the clustering algorithm, the set of cluster centres

repl, repz, . . . , repk are known (computed in the previous iteration). For each cluster

centre repi, i = 1,. . . , k, we draw y(+x) and y(-x) paths starting at repi (see section

1.2 for definitions of such paths). All the points in the region defined by these two

paths of a cluster centre are non-x-monotone to that centre. For each cluster centre

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM 59

we use the technique described in section 2.2 to find the distance to all the obstacles

that fall in the region defined by these two paths. At each corner vertex of the ob-

stacles, we store the cluster centre that is closest to that vertex and the distance to

the corresponding cluster centre. Figure 4.2 shows the y(+x) and y(-x) paths of the

three cluster centres r e p l , rep2 and rep3 , represented by the dotted vertical lines.

Once all the cluster centres have been processed in this manner, we assign each data

Figure 4.2: Finding non-x-monotone cluster centres for data point

point p E S by projecting p downwards to the first obstacle it hits. As seen in figure

4.2 , point p has been projected onto the obstacle 03. Let q be the projection of p

on 03. We have already computed the cluster centres that are closest to the corner

vertices of 03. By comparing the distances of the two cluster centres stored at the

top-left and topright corners of O3 (the same cluster centre could be closest to both

these corner vertices), we can determine the cluster centre repi that is closer to q

(and hence to p) and the distance of q to repi . Note that if a data point p does not

project onto any obstacle, then it implies that there is no cluster centre below p that

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

is non-x-monotone to it.

Similarly, by drawing -y(-x) and -y(+x) paths from the cluster centre, we can de-

termine the data points below the cluster centre that are non-x-monotone to it. We

repeat the entire procedure for all cluster centres to determine the points that are

non-x-monotone, and for each data point we determine the closest non-x-monotone

cluster centre.

Thus, in order to determine the closest non-x-monotone (non-y-monotone) cluster

centres of data points, we consider each cluster centre and determine the region con-

taining the data points that are non-x-monotone (non-y-monotone) to it. Knowing

the HLD(VLD), these regions can be determined in O(m) time per cluster centre.

Thus for all k cluster centres this takes O(km) time. Projecting each data point onto

an obstacle to determine the closest non-x-monotone (non-y-monotone) cluster centre

takes constant time if the HLD and VLD of the data points and obstacles is known.

Computing projections for all data points thus requires O(n) time.

4.2.1.2 Step 2(c) : Finding closest xy-monotone centres

We now explain the procedure to find the closest xy-monotone cluster centre for the

data points. Consider the horizontal lines in the set H created by the horizontal line

decomposition performed earlier. These lines divide the entire region into a number of

slabs (see figure 4.3). Let the set of slabs be denoted by SL = { d l , s12. . .). The total

number of slabs created is O(m), since there are m obstacles. Each slab contains data

points from S, and a data point belongs to exactly one slab. Let the number of data

points in slab sli be ni. To find the closest xy-monotone centres of data points, we

process slabs one a t a time. A slab may or may not contain cluster centres. For each

data point in the slab, we first find the closest xy-monotone cluster centre outside the

slab (both above and below the slab). It is then compared with the closest cluster

centre lying inside the slab (if such a cluster centre exists) to determine the actual

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

closest xy-monotone cluster centre.

Figure 4.3: Generating slabs in the region containing data points and obstacles

Finding closest cluster centre lying above/below the slab
Consider a slab sl E SL. We denote the top-left, top-right, bottom-left and bottom-

right corners of sl by tl (sl), t r(sl) , bl(s1) and br(s1) respectively. The left and right

edges of sl are parts of the edges of obstacles or the boundary in the given region. All

cluster centres that lie to the left and right, respectively, of these obstacles are not

xy-monotone to the data points in sl and have been considered in the procedure for

non-x-monotone and non-y-monotone cluster centres. For example, in figure 4.4, the

cluster centres rep1 and rep2 are not xy-monotone to the data points in the highlighted

slab and thus are not considered in this procedure. We find these non-xy-monotone

cluster centres for slab s l in the following manner. From the top-left corner of slab

s l we construct the -x(+y) path, and from the bottom-left corner of sl we construct

the -x(-y) path. The entire region enclosed by these .paths is not xy-monotone to the

data points lying in sl. Similarly, we construct +x(+y) and +x(-y) paths from the

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM 62

top-right and bottom right corners of sl, and the region enclosed by these paths is

not xy-monotone to the data points in sl. The definitions of these paths can be found
in section 1.2. As we already know the set H (constructed by the HLD) containing

horizontal lines passing through the top and bottom edges of obstacles, we can com-

pute these paths in O (m) time. Each cluster centre can be tested to determine if it

lies inside the region defined by these paths by simply projecting the centre in the

+y and -y directions. If the projected centre hits the paths in both directions, then

it lies inside the non-xy-monotone region.

All cluster centres (not lying inside the slab sl) that are xy-monotone to a t least

some of the data points in sl are to be considered. We partition the lower edge of

sl into smaller segments using the technique described below. Each such segment is

closest to one cluster centre lying below sl and thus by projecting a data point inside

sl onto the lower edge we can determine which cluster centre lying below the slab is

closest to that data point. The same procedure is applied to the upper edge of sl and

for a data point p we can thus determine the closest cluster centre below it and the

closest cluster centre above it , and then choose the minimum among the two to be

the closest cluster centre to p lying outside sl.

To divide the lower edge of sl (denoted by le(s1)) into smaller segments, we need

to know the shortest distances from the cluster centres lying below sl to le(s1). See

figure 4.4. Some cluster centres are xy-monotone to all the data points in sl (such

as rep3), and some cluster centres are xy-monotone to only a few of the points in sl

(such as rep4). For each cluster centre we maintain its distance to le(s1) and depict

the distance function using the graph representation shown in figure 4.8. For a cluster

centre that is xy-monotone to all the data points in sl (for example rep3), the distance

function is a vertical line going upwards representing the distance to le(s1) and then

a 45" line for movement in the (+x)-direction and a 135" line for movement in the (-

~)-direction. The lower envelope of all the distance functions (highlighted in fig. 4.8)

divides the edge le(s1) into segments or intervals (Io, 11), (Il, I$, If we project a

data point from sl onto the lower edge le(s1) and it falls in the interval (I I , I z) , then

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

Figure 4.4: Finding closest xy-monotone cluster centres for data points

we know that it is closest to the cluster centre rep5 . For a cluster centre that is not

xy-monotone to all the data points in sl (such as rep4 in 4 . 4) , we can determine the

region containing those data points that do not need to be considered for this cluster

centre and assign a value of infinity to the distance function corresponding to that

region for the cluster centre. Thus the distance function representing the region of

data points in sl that are not xy-monotone to rep4 does not contribute to the lower

envelope of the overall distance function. In figure 4 . 4 , the data points that lie in

the shaded region are not xy-monotone to rep4 and thus do not contribute to the

distance function (or have a distance of infinity to r e p 4) . But the data points lying in

the unshaded region are xy-monotone to rep4 and thus rep4 is a candidate for closest

cluster centre to these points.

Computing the distance functions
We now provide a detailed description of how the distance functions are calculated.

We borrow the idea of calculating distance functions from Kusakari and Nishizeki

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM 64

citekusakari. Consider a cluster centre rep. As before, we can easily determine the

non-xy-monotone and xy-monotone regions above rep by drawing y(+x) and y(-x)

paths from rep. These two paths of rep follow a common route until they hit an

obstacle. All data points lying inside the slabs that intersect this common route are

xy-monotone to rep. The slabs that intersect the rest of the paths may have some

data points that are not xy-monotone with respect to rep. If a slab sl intersects the

y(-x) path of rep at a point A, then the distance function for slab sl (with respect to

rep) is a 135' degree line starting at A. Similarly, if a slab sl intersects the y (+x) path

of rep at a point B, then the distance function for slab sl (with respect to rep) is a 45'

degree line starting at B. We need not consider slabs that lie entirely in the region

defined by the two paths (since all points inside such a slab are not xy-monotone to

rep). For all the other slabs above rep not encountered by the two paths, all data

points lying inside are xy-monotone to rep. If such a slab lies to the right of rep, then

the distance function is represented by a 45' line starting at the bottom left corner

of that slab. Similarly, if the slab lies to the left of rep, then the distance function is

represented by a 135' line starting a t the bottom right corner of that slab. We use

figures 4.5 and 4.6 to explain by example.

In figure 4.5, rep4 is the cluster centre under consideration. slabl lies on the route

common to both, the y(-x) and y(+x) paths of rep4. Thus all the data points in

slabl are xy-monotone to repd. The corresponding distance function is shown in 4.6.

Now consider slab2 in figure 4.6. The slab intersects the y(-x) path of rep4 a t A.

Only those points in slab2 that lie to the left of A are xy-monotone to rep4. Thus,

the distance function for slab2 is a 135' line starting a t A. This is depicted in fig-

ure 4.6. Similarly, slab3 in figure 4.5 intersects the y(+x) path of rep4 at B . Only

those points in slab3 that lie to the right of B are xy-monotone to rep4. Thus, the

distance function for slaba is a 45' line starting a t B. This is also depicted in figure 4.6.

Using the procedure described above, we can compute the distance functions for

each of the cluster centres to the slabs. The y(+x) and y(-x) paths can be constructed

on O(m) time per cluster centre, since the HLD and VLD are already known. The

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

Figure 4.5: Computing distance functions for slabs to a cluster centre

Figure 4.6: Graphical representation of the distance functions to slabs from rep4

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

only drawback of this method is that it requires O(km) storage space over all slabs,

since we store information regarding the paths of each cluster centre with the slabs.

In order to avoid this storage space complexity, we approach this problem in a sys-

tematic manner as follows. Suppose we start from the lowest slab in the region. As

we move up, we encounter horizontal lines from H. Each such horizontal line h was

created due to an obstacle. If h was created by the lower edge of an obstacle o, then

the current slab is divided into two new slabs lying on either side of o. If h was created

by the top edge of o, then two slabs on either side of o are merged to form a bigger

slab above o. Consider figure 4.7. The lower edge of obstacle 05 divides slabl into

slabz and slab3 lying to the left and right of 05. Also, the upper edge of ol causes

slab4 and slab5 to merge into a bigger slab slabs lying above ol.

Thus, we can process each slab at a time and discard the path intersection and

distance function information regarding the slab after we have finished processing it.

We then move to the next slab and determine the information required to process

that slab.

Finding the lower envelope of the distance functions
The lower envelope of the distance functions can be computed using a divide and

conquer technique. The 45' and 135' rays are considered as individual line segments.

Thus we are given O(k) line segments (since there are k cluster centres and each can

contribute one 45" line segment and one 135" line segment to the distance functions).

The x-coordinates of the lower end point of a line segment is referred to as the x-value

of that line segment. The line segments are first sorted based on their x-values. We

then divide the set of line segments into two half sets based on x-value of the line

segment in the middle of the set, and recurse on each of the two sets. The lower

envelope of each subset can be represented by a polygonal x-monotone chain. The

lower envelopes of two adjacent subsets are then merged together by finding the inter-

section points of their respective envelopes. Using the leftmost segment of the right

subset, we can determine in logarithmic time (using binary search) the point where

the segment intersects the envelope of the left subset. All points to the right of this

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

Figure 4.7: Calculating distance functions systematically

intersection point in the left subset can now be discarded, and the chains are merged.

In this manner, we can merge the solutions of the subsets to obtain the lower enve-

lope of the line segments. The lower envelope can thus be computed in O(k log k) time.

Finding closest cluster centre lying inside the slab

For all data points lying inside a slab, we have discussed how we can find the closest

xy-monotone cluster centres lying above and below the slab. We also need to con-

sider the cluster centres (if any) lying inside the slab as candidates for the closest

xy-monotone centres to the data points. Note that the region defined by the slab is

an unconstrained region, i.e. all cluster centres inside a given slab are xy-monotone

to all the data points inside that slab. We use the properties of the Voronoi diagram

to achieve our goal here. Given the cluster centres inside a slab, we can construct

a Voronoi diagram such that the region defined by the slab is partitioned into cells

where each cell contains exactly one cluster centre. All data points lying inside a given

cell are closest to the cluster centre of that cell, than to the cluster centres of any

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

diata
to

l e (s 1

Figure 4.8: Graph representing distance functions of cluster centres to lower edge of
slab sl

other cells. The Voronoi diagram for L1 metric can be constructed using a divide and

conquer approach in O(ki log ki) time [24], where ki is the number of cluster centres in

the given slab. Also, we can query the Voronoi data structure to determine which cell

a given data point belongs to in O(log ki) time. Thus, for a given slab this procedure

requires a total of O(ki log ki + ni log ki) time, where ni is the number of data points

lying inside the slab. Figure 4.9 shows the Voronoi diagram of a slab containing seven

cluster centres.

We have explained how to find the closest xy-monotone cluster centres lying be-

low data points in a given slab. The same technique can be used to find the closest

xy-monotone cluster centres lying above the slab. We also determine the closest xy-

monotone cluster centre lying within the slab. For each data point we choose the

closer of the above three cluster centres to be the closest xy-monotone cluster cen-

tre. We then assign the data point to the cluster centre that is closest to it (from

the closest non-x-monotone centre, the closest non- y-monotone cent re and the closest

xy-monotone centre).

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

Figure 4.9: Voronoi representation of a slab with cluster centres

Let us analyze the time required to determine the closest xy-monotone cluster cen-

tre to the data points. For the slabs not containing cluster centres, we consider each

slab and find the regions that are not xy-monotone to the slab (and hence to the data

points lying inside the slab). Since we know the HLD (VLD), this process requires

O(m) time to determine the region, plus O(k) time to test whether the cluster centres

fall inside the region. Thus, for all slabs this procedure requires O(m(m + k)) time

(as there are O(m) slabs). Calculating the distance functions for a slab takes O(km)

time. The lower envelope of the distance functions for a slab is obtained in O(k log k)

time. Thus, over all slabs, this step requires O(m(km + k log k)) time. Finally, for

each slab containing cluster centres, we create Voronoi diagrams of the cluster centres

and determine which cell each data point lies in. Over all slabs, this step requires

O(k1og k + n log k) time (as each data point and cluster centre lies exactly in one

slab). Therefore, the entire cluster assignment phase takes 0 (km2) time.

4.2.2 Cluster Updating Phase

Once all the data points have been assigned to their respective closest cluster centres,

we update the cluster centre repj of each cluster Cj, j = 1,. . . , k, by computing the

1-median point of all the data points assigned to that cluster. We use the procedures

described in chapter 2 to compute the 1-median of a set of points.

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

The cluster assignment and cluster updating phases are repeated until the solution

cannot be improved further (as in the case of the algorithm defined in section 4.1.1).

4.3 Analysis

We analyze the running time of one iteration of the k-median clustering algorithm

described above. From section 2.2.1, we know that the HLD and the VLD of the

obstacles can be generated in O(m1ogm) time. In section 4.2.1.1 we have seen how

the closest non-x-monotone cluster centres for the data points can be computed in

O(km + n) time. We can also compute the closest non-y-monotone cluster centres for

the data points in O(km + n) time.

Section 4.2.1.2 shows how the closest xy-monotone cluster centres (lying outside

the slab) of the data points in a given slab can be computed in O(km + k log k) time.

Thus for all slabs this procedure requires O(m(km + k log k)) time. The closest clus-

ter centres lying inside the slabs can be determined in O(k log Ic + n log Ic) time using

Voronoi diagrams.

We require a total of O(n) time to determine the closest of the three cluster cen-

tres (non-x-monotone, non-y-monotone, xy-monotone) for all data points. We update

each cluster centres by computing the 1-median of the points assigned to the clusters.

For the clustering process it is common that the number of data points is much more

than the number of obstacles or cluster centres, i.e., k << n and m << n. Therefore we

use the algorithm described in section 2.4 of chapter 2 which runs in O(mn log n) time.

The running time (per iteration) of our algorithm is 0 (km2 + mnlogn). The

algorithm described above requires linear storage space, i.e., O(m + n), to hold infor-

mation about the data points, clusters and obstacles.

CHAPTER 4. THE CONSTRAINED CLUSTERING PROBLEM

4.4 Conclusion

In this chapter, we have presented an efficient implementation of the k-median a lge

rithm which uses the techniques described in chapter 2 to compute distances between

the data points and the cluster centres. Unlike most clustering algorithms, our algo-

rithm works under the presence of obstacles in the region and can quickly recompute

the new cluster centres after every iteration using the 1-median algorithm presented

in sect ion 2.4. The iterative k-median clustering algorithm requires a total running

time of O(mn log n + km2) per iteration.

Chapter 5

Conclusions and Future Work

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Summary

We conclude this thesis with a brief summary of our accomplishments. We study three

facility location problems in the presence of obstacles: (i) the 1-median problem, (ii)

the shop floor layout problem, and (iii) the iterative k-median clustering problem.

For all the algorithms presented in this thesis, we assume that the obstacles are

axis-parallel rectangular objects that occupy space and pose as barriers to travel. Dis-

tances are computed using the L1 geodesic metric.

Chapter 1 provides a brief introduction to facility location in the presence of ob-

stacles and the preliminaries.

In chapter 2, we study the 1-median problem. An algorithm is presented to solve

the 1-median problem, and this algorithm improves upon the running time of the algo-

rithm presented by Choi et. al. [8]. The running time of our algorithm is O(n(n+ m)),

where n is the number of points and m is the number of obstacles. A modified al-

gorithm is presented for the case where the number of points is considerably larger

than the number of obstacles. This modified algorithm runs in O(mn logn) time. Our

algorithm also has a reduced storage space requirement of O(m + n) , as compared to

the O(mn) requirement of the algorithm presented in [8].

Chapter 3 presents the shop floor layout problem as introduced by Wang et. al.

in [35]. Chapter 1 establishes important results that are used to improve known re-

sults for several versions of the shop floor layout problem. For the case where the

supply facility is a fixed point, we present an O(n1ogn) time algorithm which is a

major improvement over the 0 (n 4) algorithm in [35]. We present 0 (n 2) algorithms

if the location of the supply facility is unknown, or if the supply facility lies inside a

pre-specified convex region. The algorithms in [35] for the same require 0 (n6) time.

Chapter 4 provides a brief introduction to the clustering problem, and examines

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 74

the iterative k-median approach for clustering in the presence of obstacles. Very few

algorithms are known under this setting. In this chapter we use the results established

in chapter 2. Each iteration of our clustering algorithm runs in O(mn1ogn + km2)

time. The use of the 1-median algorithm to update the cluster centre ensures that

the updated centre lies in the feasible region of the plane (i.e. not inside any of the

obstacles).

Future Work

We believe that the techniques used in this thesis can be exploited to improve algo-

rithms for other facility location problems in the presence of obstacles. For example,

the farthest neighbors and center point problems discussed by Ben-Moshe et. al. in [4]

have properties similar to the problems we have studied. Other improvements can

include considering arbitrarily oriented obstacles, general shapes of obstacles, etc.

It would be interesting to reduce the running time of the 1-median algorithm

mentioned in chapter 2. Considering each source point and computing its distance

contributions to the other source points and obstacles leads to a quadratic time al-

gorithm. If the distance contributions of the source points can be updated from the

distances calculated for a previous source point, it may be possible to attain a sub-

quadratic algorithm to solve the 1-median algorithm. Another interesting problem is

the general p-median problem in the presence of obstacles when p 2 2.

In the shop floor layout problem, we considered having only one supply facility for

all the demand facilities. This problem can be extended to consider the location of

more than one supply facility. Also, there can be more than one I/O point on each

demand facility to receive goods from different supply facilities. When the location

of the supply facility is not known, our algorithm runs in quadratic 0 (n 2) time. We

believe that it is possible to improve the running time of this algorithm using some

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 75

distance updating mechanisms. We note that improving the running time of the 1-

median algorithm in chapter 2 will be key to solving this shop floor layout problem

more efficiently.

Bibliography

[I] A. Aggarwal, M. Klawe, S. Moran, P. Shor and R. Wilber, "Geometric Applica-

tions of a Matrix Searching Algorithm", Algorithmica, 2, 195-208, 1987.

[2] K. Alsabti, S. Ranka and V. Singh, "An Efficient K-Means Clustering Algo-

rithm", IPPS: 11th International Parallel Processing Symposium, IEEE Com-

puter Society Press, 1998.

[3] C. Bajaj, "The algebraic degree of geometric optimization problems", Discrete

and Computational Geomety, 3, 177-191, 1988.

[4] B. Ben-Moshe, M.J. Katz and J.S.B. Mitchell, "Farthest neighbors and center

points in the presence of rectangular obstacles", Symposium on Computational

Geomety, 164-171, 2001.

[5] J. Borenstein, H.R. Everett and L. Feng, " 'Where am I?' Sensors and Methods

for Mobile Robot Positioning", Technical Report, University of Michigan, 1996.

[6] P. Bradley, K.P. Bennett and A. Demiriz, "Constrained K-means Clustering",

Microsoft Research Technical Report 2000-65, May 2000.

[7] V. Chepoi and F. Dragan, "Computing a Median Point of a Simple Rectilinear

Polygon", Information Processing Letters, 49, 281-285, 1994.

[8] J . Choi, C. Shin and S. Kim, "Computing Weighted Rectilinear Median and

Center Set in the Presence of Obstacles", ISAAC, Lecture Notes of Computer

Science, Springer-Verlag, 1533, 29-38, 1998.

BIBLIOGRAPHY 77

[9] K.L. Clarkson, S. Kapoor and P.M. Vaidya, "Rectilinear shortest paths through

polygonal obstacles in O(n(10gn)~) time", Proceedings of the 3rd Annual ACM

Symposium on Computational Geometry, 251-257, 1987.

[lo] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms, The

M.I.T. Press, Cambridge, 1997.

[ll] Z. Drezner, H. W. Hamacher, Facility Location - Applications and Theory,

Springer-Verlag, 2002.

[12] C. Eldershaw and M. Hegland, "Cluster Analysis using Tkiangulation", Compu-

tational Techniques and Applications, World Scientific, 201-208, 1997.

[13] V. Estivill-Castro and I. Lee, "AUTOCLUST+: Automatic Clustering of Point-

Data Sets in the Presence of Obstacles", ~ e m ~ o r a l , Spatial, and Spatio- Temporal

Data Mining, 133-146, 2000.

[14] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, Advances

in Knowledge Discovery and Data Mining, The M.I.T. Press, Cambridge, MA,

02142, 2000.

[15] R.L. Francis and J.A. White, Facility Layout and Location - An Analytical Ap-

proach, prentice Hall, Englewood Cliffs, NJ, 1974.

[16] S. Guha and I. Suzuki, "Proximity Problems and the Voronoi Diagram an a

Rectilinear Plane with Rectangular Obstacles" , FSTTCS, 218-227, 1993.

[17] J.F. Hou, Clustering with Obstacle Entities, M.Sc. Thesis, Simon Fraser Univer-

sity, 1999.

[18] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Prentice Hall, En-

glewood Cliffs, N.J., 1988.

[19] T. Kanungo, D.M. Mount, N.S. Netanyahu, C. Piatko, R. Silverman and A. Y.

Wu, "An efficient k-means clustering algorithm: Analysis and implementation",

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 2002.

BIBLIOGRAPHY 78

[20] Y. Kusakari and T. Nishizeki, "An algorithm for finding a region with the mini-

mum total L1-distance from prescribed terminals", Proc. of ISAAC '97, Lecture

Notes in Computer Science 1350, 324-333, 1997.

(211 R.C. Larson and A.R. Odoni, Urban Operations Research, Prentice-Hall, N.J.,

1981.

[22] R.C. Larson and G. Sadiq, "Facility Locations with the Manhattan metric in the

presence of barriers to travel", Operations Research, 31, 652-669, 1983.

[23] R.C. Larson and V.O.K. Li, "Finding Minimum Rectilinear Distance paths in

the Presence of Barriers", Networks, 11, 285-304, 1981.

[24] D.T. Lee, "Two-Dimensional Voronoi Diagrams in the L,-Metric" , Journal of the

ACM (JACM), 27, 604 - 618, Oct 1980.

[25] T. Lengauer, Combinatorial algorithms for integrated circuit layout, John Wiley

& Sons, Inc., New York, NY, 1990.

[26] J.J. Leonard and H.F. Durrant-Whyte, "Mobile robot localization by tracking

geometric beacons", IEEE Trans. Robotics and Automation, 7(3), 376-382, June

1991.

[27] R.T. Ng and J. Han, "CLARANS: A Method for Clustering Objects for Spatial

Data Mining", IEEE Transactions on Knowledge and Data Engineering, 14(5),

1003-1016, 2002.

[28] T. Ohtsuki, Layout Design and Verification, New York: Elsevier, 1986.

[29] F.P. Preparata and M. Shamos, Computational Geometry - An Introduction,

Springer-Verlag, 1985.

[30] P. J. de Rezende, D.T. Lee and Y.F. Wu, "Rectilinear shortest paths in the pres-

ence of rectangular barriers", Discrete and Computational Geometry, 4, 41-53,

1989.

BIBLIOGRAPHY 79

[31] S. Savas, R. Batta and R. Nagi, "Finite-Size Facility Placement in the Presence

of Barriers to Rectilinear Travel", Operations Research, 50(6), 1018-1031, 2002.

[32] D.D. Sleator and R. E. Tarjan. "Self-adjusting binary search trees", Journal of

the ACM, 32(3), 652-86, 1985.

[33] A.K.H. Tung, J. Han, L.V.S. Lakshmanan and R. T.Ng, "Constraint-Based Clus-

tering in Large Databases", International Conference on Database Theory, 405-

419, 2001.

[34] A.K.H. T u g , J. Hou and J. Han, "Spatial Clustering in the Presence of Obsta-

cles", 17th International Conference on Data Engineering, 359, 2001.

[35] S.-J. Wang, J. Bhadury and R. Nagi, "Locating a Supply Facility and In-

put/Output 'Points in a Layout Problem", Location Science/Computers and Op-

erations Research, 29(6), 685-699, 2002.

[36] O.R. Zaiane and C.-H. Lee, "Clustering Spatial Data in the Presence of Ob-

stacles: A Density-Based Approach", International Database Engineering and

Applications Symposium (IDEAS'OZ) , July 2002.

[37] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: An Efficient Data Clustering

Method for Very Large Databases", SIGMOD Conference, 103-114, 1996.

