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Abstract 

In this thesis I examine the quantum mechanics of a satellite rotating about a fixed 

axis with gravitational gradient torques, and compare it to the classical expectation 

values and probability distributions. 

The differences between quantum and classical expectation values scale as a power 

law in ti, so Hyperion's expectation values should be classical . The quantum prob- 

ability distributions require either environmental interactions or coarse graining to 

appear classical. Both methods lead to quantum classical differences that are laws in 

ti, so the two effects are similar but not equivalent. Hence environmental interactions 

are not required to  explain Hyperion's classical lirnit. 

I also examine the Floquet states of the system and show that their average dis- 

tribution is the classical distribution for late times, and extend this model into 3D in 

both quantum and classical mechanics. However, I find that the classical limit of 3D 

quantum rotations cannot be numerically investigated presently. 
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Chapter 1 

Introduction 

Quantum mechanics is a more fundamental theory than classical mechanics, and so it 

should emerge in an asymptotic limit of the deeper theory. However argument persists 

about how the transition between the two theories occurs, and what criteria need to  

be met for it to do so. 

This question is more important than ever because of the progress in the field of 

quantum computing, where the distinction between quantum and classical informa- 

tion can lead to  an exponential speed up of certain algorithms. To understand the 

distinction between the two, we must come to grips with questions of what makes 

quantum mechanics different from classical mechanics, and how classical mechanics 

emerges out of it. 

This question is particularly troublesome in chaotic systems because their greater 

sensitivity could conceivably amplify small quantum effects and cause them to  grow 

to a macroscopic scale. This sensitivity can also cause different versions of the corre- 

spondence principle predict different experimental results [19, 181. 

The correspondence principle states that  every aspect of physical reality can be 

expressed in quantum mechanics if it is to  be considered more fundamental than 

classical mechanics. The two versions of the correspondence principle that will be 

addressed here are the Liouville and the Ehrenfest correspondences. The Ehrenfest 

correspondence states that in the classical limit quantum mechanics will correspond to  

single particle Newtonian mechanics. The Liouville correspondence on the other hand, 

assumes that in the classical limit the quantum probability distribution corresponds 

to  the classical probability distribution given by the Liouville equation. 

For chaotic systems the Ehrenfest correspondence will innevitably breakdown, but 



the Liouville correspondence can still be valid after the Ehrenfest criteria breaks down 

[9]. The Liouville criteria is more robust than the Ehrenfest criteria, and is a better 

measure for determining when quantum mechanics corresponds to classical mechanics. 

The distinction between the two is important in light of the claims by W.H. Zurek, 

that the classical limit of chaotic systems occurs because of environmental interactions 

[47, 46, 261. As a particular example, he cites the chaotic rotation of Hyperion (one 

of the moons of Saturn) and claims that after 20 years Hyperion will be in a grossly 

non-classical superposition of states. He then states that environmental interactions 

are the only way to limit the growth of these quantum differences, and as a result the 

classical limit of Hyperion is a direct consequence of these interactions. 

Although his argument fails to distinguish the Liouville and Ehrenfest breaktimes, 

there is reason to suspect that environmental effects could have an impact on the 

classical limit of chaotic systems. However we do not know the scale on which these 

presumably large quantum-classical differences would occur. So more work is needed 

in order to understand the classical limit of Hyperion, and to  understand if environ- 

mental effects are needed to understand classicality. 

There are other reasons to examine Hyperion's quantum rotation: the quantum 

mechanics of a satellite's chaotic rotation in a gravitational field has never been stud- 

ied. Interesting quantum effects can emerge in classically chaotic systems, such as 

localization [21, 391 or fractal-like properties [5] which are unique to the model. Hype- 

rion may exhibit these or other undiscovered quantum effects, so studying Hyperion's 

quantum mechanical rotation is interesting in and of itself. 

In this thesis I will present a model of Hyperion's rotation, and compare the 

probability distributions and average angular momenta predicted by both quantum 

and classical mechanics. This analysis is repeated with environmental effects included, 

in order to determine what role, if any, they have in the classical limit. From previous 

work we know that the Ehrenfest correspondence has a very limited range of validity, 

so this work will not discuss the origin of single particle trajectories. 

Before I present the model and my results, it is useful to review some material that 

will be used repeatedly in this thesis. I will review chaos in both classical and quantum 

mechanics, and discuss the Wigner representation of Quantum mechanics and the 

associated Husimi distribution. I will also discuss the correspondence principle, and 

give a brief discussion of decoherence and a short summary of Zurek's argument that 

Hyperion's classical appearance is due to decoherence. 



1.1 Chaos in Classical and Quantum Mechanics 

1.1.1 Chaos in Classical Mechanics 

Chaos is a very interesting phenomenon that  causes systems with chaos to be quali- 

tatively different from those without it. Understanding these features is essential to 

understanding Zurek's claims about Hyperion, as well as to understand the quantum 

classical differences in Hyperion's chaotic tumbling. In this section I will discuss how 

chaos arises in classical dynamics, and how its signatures can be deduced from the 

distributions in quantum mechanics. 

A classical system is chaotic if nearby trajectories separate exponentially with 

time, whereas nearby non-chaotic trajectories separate a t  most like a power law. To 

examine the origin of this separation, it is most convenient to look a t  chaos in systems 

with stroboscopic maps of the form 

To see how exponential separation can arise, I will examine what the map does to 

two nearby trajectories. Let the distance between these two trajectories d(n) = 

X I  (n) - xz(n) be small then, 

The Lyapunov exponents for a mapping, measure how nearby trajectories seperate 

in time along a reference direction. Negative Lyapunov exponents correspond to 

contraction of the trajectories in the direction in question, whereas positive exponents 

represent expansion. In Hamiltonian systems, the sum of these exponents must be 0 

to ensure that area is preserved. The largest of these Lyapunov exponent is given by 

X = lim lim 
t+m d(O)+O t 

This expression produces the largest Lyapunov exponent because 



The maximum Lyapunov exponent is the typical rate that two nearby trajectories 

seperate at,  meaning that d( t )  % d(0) exp At. Hence X is the typical rate a t  which 

experimental (or numerical) errors will propegate in a chaotic system. Because exper- 

imental or numerical errors will eventually become significant and prevent accurate 

predictions, this behavior is called chaos, and X > 0 is a necessary and sufficient 

condition for classical chaos. 

This theoretical expression for the Lyapunov exponent is never used in practice 

since d(t)  grows exponentially and so the perturbed trajectory will only be near the 

reference trajectory for a short period of time. The growth of these differences causes 

the linearization approximation to breakdown very quickly. This problem can be 

corrected by periodically rescaling the differences [33]. The numerical method I use 

to calculate Lyapunov exponents is described in appendix C. 

Classical mechanics is not solely comprised of single particle trajectories. We can 

also talk about the evolution of ensembles of trajectories or equivalently classical 

probability densities. This is known as Liouville dynamics and the time evolution is 

given by the Liouville equation, 

Here p(p, q) is the probability density of finding a particle with momentum p and 

position q. 

The Liouville equation has two interesting properties that are worth mentioning. 

The first of these is that area of p(p, q) is preserved under time evolution, and the 

second is that even for a chaotic Hamiltonian, adjacent probability distributions do 

not separate exponentially. These two properties are important, and will be used 

in the following section to show that quantum mechanics is conceptually closer to 

Liouville dynamics than Newtonian mechanics. 

1.1.2 Signs of Chaos in Quantum Mechanics 

In quantum mechanics a different criteria is needed for chaos since state vectors do 

not exponentially separate, in fact they do not separate at all. To see this, consider 

the projection of the state I$) onto the state I$') 



As a result of unitarity of time evolution, the overlap of two quantum states remains 

the same over time and states do not separate like classical trajectories do. However 

the overlap of classical probability densities also is time independent, suggesting that 

quantum mechanics has more in common with Liouville dynamics than with single 

particle trajectories. To show this consider the overlap between two density functions, 

Assuming A is non-zero then plp2 may be renormalized to  a probability distribution 

p3. Because of the linearity of the Liouville equation this renormalization will not 

change the solution. Since the Liouville equation preserves the area of the density 

function, the overlap of the two classical states is preserved if non-zero. If on the 

other hand the overlap is 0 then let p3 = q, then since the area of p3 is preserved, 

pl can never overlap p2. Since the overlap of 2 classical distributions is also constant 

as time evolves, the evolution of a state vector has more in common with Liouville 

than Newtonian dynamics. 

Although state vectors do not separate in quantum mechanics, other features 

can betray the presence of chaos. One well known feature of quantum chaos is level 

repulsion and the fidelity of the system to random matrix theory. Level repulsion is an 

effect that causes two adjacent energy levels to avoid each other as the Hamiltonian 

is perturbed in an attempt to make the levels degenerate. The system's ability to 

resist this crossing is dependent on the number of free parameters permitted by the 

Hamiltonian's symmetry class [31]. 

Random matrix theory assumes that the Hamiltonian for chaotic systems is com- 

plicated, and that the eigenvalues and vectors found for chaotic systems should be 

similar to those found for Hermitian matrices with Gaussian random elements [31]. 

Random matrix theory cannot predict the individual eigenvalues or vectors for a 

given Hamiltonian, but it can predict the statistics of ensembles of eigenvectors and 

eigenvalues for purely chaotic systems. These statistics depend on the degree of level 

repulsion, which as mentioned above, depends on the symmetry class of the Hamilto- 

nian. 

The symmetry class of a Hamiltonian is determined by the group of canonical 

transformations that will retain the eigenvalues, hermiticity and symmetries of the 

matrix. These transformations will belong to certain subgroups of the group of N x N 

unitary matrices U(N),  where N is the dimension of the Hilbert space. It  can be 



shown easily that Hamiltonians which are invariant under time reversal will have 

canonical transformations that belong to O ( N )  or the group of orthogonal matrices 

[31]. For spin 112 particles under certain conditions another class called symplectic 

transformations are canonical. If a Hamiltonian's canonical transformations are not 

members of either of these subgroups, then the canonical transformations are referred 

to as unitary. 

The degree of level repulsion for matrices of each of these three symmetry classes 

varies with the number of parameters available to resist a level crossing. Based on 

the different degrees of level repulsion for these 3 classes of Hamiltonians, random 

matrix theory predicts that the spacing between adjacent energy 

according to  [31] 

(~7r/2)  e-s2"/4 orthogonal 

( 3 2 ~ ~ / 7 r ~ ) e - ~ ~ ~ / "  unitary 

(218~4/367r3)e-64s2/9" symplectic 

levels is distributed 

(1.9) 

Here S is the spacing between energy levels in units where the mean energy level 

spacing is 1. 

These predictions of random matrix theory apply to chaotic Hamiltonians, but not 

to regular systems because of the extra constraints that integrability imposes. It  can 

be shown using torus quantization that integrable systems do not typically exhibit 

level repulsion, which causes the level spacings to have a Poissonian distribution. 

There are exceptions to  this rule, most notably the harmonic oscillator. However 

most integrable systems exhibit Poissonian level spacing 1241. 

Eigenstates for purely chaotic Hamiltonians, tend to be wider in position and mo- 

mentum than their non-chaotic brethren. This is reasonable because the classically 

accessible phase space is far wider for chaotic, than for regular systems. Hence if we 

were to represent a minimum uncertainty state with non-chaotic and chaotic eigen- 

states, it would require more chaotic eigenstates to represent it than if we were to use 

non-chaotic eigenstates. 

Since each eigenstate has its own eigenfrequency, a minimum uncertainty state will 

be represented by a large number of eigenfrequencies. Quantum mechanics is inher- 

ently periodic because of these eigenfrequencies, although the period may approach 

infinity in the classical limit. The recursion time is given by the smallest non-zero t 

that satisfies wlt = w2t = . . . = wNt  modulo 27r, where wi refers to the eigenfrequency 

of the i 'th eigenstate. As the number of eigenfrequencies increases, the recursion time 



will also tend to increase. Hence the more eigenfrequencies needed to represent a state 

the longer the quantum recursion time will be, and so the recursion times should be 

longer for chaotic systems than for non-chaotic ones. 

Although it may take a long time for a complete recursion to occur, if the accu- 

mulated phase of some but not all eigenstates are equivalent modulo 2n, then there 

will be a partial recursion of the QC differences. Since minimum uncertainty states 

in non-chaotic systems are composed of fewer eigenstates, these partial recurrences 

will be far more common and lead to  differences in expectation values that are visi- 

bly periodic. For chaotic systems on the other hand no such periodicity is typically 

observed. For some chaotic systems, such as the kicked rotor, the QC differences are 

periodic. However these exceptions again are not typical, and the lack of recursion in 

chaotic systems is one of the more striking and unambiguous signatures of chaos. 

The Schrodinger equation also tends to be less stable in regions that are classically 

chaotic than in regions that are non-chaotic. A small perturbation to  the Hamiltonian 

for a non-chaotic initial state results in a small perturbation to the solution, however in 

chaotic regions of phase space these small perturbations can result in rapid separation 

of the solutions [20, 241. 

Although all these characteristics are common to many chaotic systems, there 

is no single criteria that applies universally to all quantum systems to  indicate the 

presence of chaos. Quantum chaos should not be seen only as a field of study that 

tries to find signitures of classical chaos in quantum mechanics, but rather it is a 

field that investigates the interesting and sometimes unique properties of quantum 

mechanics that arise for complicated Hamiltonians. 

1.2 Quantum Classical Differences and The Clas- 

sical Limit 

In this section I will discuss the differences between quantum and classical mechanics, 

and the different measures that are used to determine when classical mechanics is 

asymptotically valid. To compare them, I must invoke some form of the correspon- 

dence principle, since different versions have different ways of measuring classicality. 

One version of the correspondence principle is the Ehrenfest correspondence, which 

assumes that the classical limit is reached if the centroid of the wave function obeys 

Newton's equations. This will only be true so long as the wave function is narrow. 



This correspondence is thought to  be too restrictive, because quantum mechanics 

typically corresponds to an ensemble of trajectories rather than a single one [9, 191. 

Although restrictive, I will examine the Ehrenfest correspondence because it is 

used as support for Zurek's claim that Hyperion requires environmental interaction 

to  reach the classical limit. To derive Ehrenfest's theorem, consider the expectation 

values of the Heisenberg equations of motion 

F (q) is the force operator defined through F (q) = [H, p] . By Taylor expanding F (q) 

about the centroid and taking expectation values one obtains 

Hence the centroid of a sufficiently narrow state will obey Newton's equations. Har- 

monic oscillators serve as a unique example of a system that always obeys Ehrenfest's 

theorem, since the correction terms will be 0 regardless of the width of the state. 

Other states will only correspond to  a single trajectory until the Ehrenfest breaktime. 

For chaotic systems this breaktime is remarkably short. Let us assume that the 

Ehrenfest correspondence breaks down when Aq = L where L is some fixed length. 

A narrow state's width as a function of time will be on the order of Aq(t) z Aq(0)ext 

where X is the Lyapunov exponent, and Aq(0) is the width of the initial state in 

position. Using the uncertainty principle Aq(0) E Ap(O)/tL. Using these results we 

find that the Ehrenfest breaktime occurs a t  

Here A. = Ap(O)L, which is typically assumed to on the order of a system action 

such as total angular momentum. The above equation varies extremely slowly with 

fi/Ao, which must be extraordinarily small for the Ehrenfest breaktime to  occur on 

an unobservably long timescale. In the absence of chaos, this time is typically on the 

order of the age of the universe [16]. 

The Ehrenfest correspondence is insufficient to  describe the transition between 

quantum and classical mechanics. Firstly the Ehrenfest breaktime has little t o  do 



with quantum mechanics, since h only appears in the width of the initial state and not 

in the dynamics. Consequently, if I consider a classical probability distribution with 

((q - ( q ) ) 2 )  K h then I will find the same breaktime even though quantum mechanics 

is not used in the time evolution [9]. Also the Ehrenfest breaktime typically occurs 

before the quantum probability distributions deviate from those of a similar classical 

ensemble [18, 81, hence the Ehrenfest correspondence is too restrictive to measure the 

transition between quantum and classical mechanics. 

If instead I suppose that quantum mechanics corresponds to an ensemble of clas- 

sical trajectories, then the correspondence principle will hold as long as the quantum 

and classical probability distributions are approximately the same. This is known as 

the Liouville correspondence and the time it breaks down at is called the Liouville 

breaktime. Although the Ehrenfest breaktime is inevitable in chaotic systems, it has 

been observed in some chaotic systems [7, 191 that the Liouville breaktime does not 

occur. 

For some systems the classical distributions do not emerge in a pointwise sense 

out of quantum mechanics, but require some averaging process to do so. The two 

most common justifications for smoothing out these quantum classical differences 

are coarse graining and decoherence. The proponents of coarse graining claim that 

quantum effects typically occur on a scale that is too fine to experimentally resolve. 

This view has been adopted by Ballentine [5, 31, Takahashi 1411, and Casati and 

Cherikov [12]. 

Others believe that the classical probability distribution is reached by interaction 

with the environment, which diffuses the probability distributions and tends to elim- 

inate quantum effects. This view is supported by work by Zurek and Paz [47], Habib 

[26], Pattanayak Sundaram and Greenbaum [36] and Kolovsky [29]. The debate about 

which of these two mechanisms provides the correct explanation for the emergence of 

classicality continues, and this work will try to clarify the differences between the two 

views. 



1.3 Wigner and Husimi Distributions 

1.3.1 Wigner Function 

In classical mechanics I can construct a phase space distribution p(p, q) that gives the 

probability of finding the system in the square (p, p + dp), (q, q + dq), and satisfies 

J p(p, q)dp = Pc(q) , J p(p, q)dq = Pc(p) where P,(q) , Pc(p) are the marginal classical 

position and momentum probability distributions. In quantum mechanics we do not 

have a quantum phase space probability density equivalent to the Liouville density. 

However we can construct a quasi-probability density called the Wigner function that 

is deceptively similar to the Liouville density. 

The Wigner function pw (p, q) is an intermediate between position and momentum 

representation containing information about both, and is defined through either of 

the following equations 

Like the classical probability density, J pw(p, q)dp = P(q),  J pw(p, q)dq = P(p). 

Although analogous to the classical probability distribution, it is not equivalent 

because the Wigner function can take on negative values and does not generally have 

a probability interpretation. In fact from a theorem due to Hudson [27], Gaussian 

states are the only pure states that have a non-negative Wigner function. So we 

must either restrict the classically permitted states to a small set of mixed states, or 

concede that the Wigner function is only a quasi-probability distribution that does 

not have an equivalent classical quantity. 

Despite its lack of a probability interpretation, the divergence of pw(p, q) from 

p(p, q) is used to estimate the breakdown of classical behavior in quantum systems 

[47, 361 because of the similarity of pw(p, q)'s time evolution to the Liouville equation 

[dl , 

Eq. (1.14) is the Liouville equation with quantum correction terms added. These 

corrections are collectively known as Moyal terms. If the initial Wigner function is 



the initial classical probability density, then pw(p, q) will no longer follow the Liouville 

equation when these Moyal terms become comparable to  the Poisson bracket, allowing 

us to estimate when the Liouville breaktime occurs. 

1.3.2 Husimi Distribution 

This lack of a probability interpretation is a major defect of the Wigner function, but 

if the negativity of the distribution can be removed by integrating over position or 

momentum then we must ask ourselves if it is possible to find another way to remove 

this negativity? It  turns out that a modest amount of Gaussian smoothing also makes 

the Wigner function non-negative. This smoothed Wigner function is known as the 

Husimi distribution which is defined as 

It  is not clear in this form that the Husimi distribution will yield a non-negative 

probability density. However it will because pH(p, q) gives the probability of finding 

a state I$) in a minimum uncertainty coherent state centered a t  {p, q). I will denote 

this state Jp, q). Since the Wigner function of a Gaussian is also a Gaussian, the 

Gaussian used to smooth the distribution can be expressed as the Wigner transform 

of Ip, q) and as such Eq. (1.15) can be re-written as 



Using orthogonality [4], the above expression may be simplified considerably to 

1 
PH (4, P) = 1 (v. P I $ )  l 2  (1.17) 

This shows that the Husimi distribution is proportional to the probability of finding 

the system in the minimum uncertainty state Jq, p ) .  Because the Hussimi distribution 

does not allow a measurement that defies the uncertainty principle and because it is 

non-negative, it is more natural to compare to the Liouville density to pH(p, q) than 

to pw(p, q). This comparison is only valid in the classical limit, since this Gaussian 

smoothing may significantly alter the probability distributions if f i  is not significantly 

smaller than a typical system action. 

1.4 Decoherence 

In open systems quantum effects are particularly susceptible to dissipation due to  

environmental interactions. Decoherence is a quantum effect that occurs in these 

systems where the environment causes off-diagonal elements of the density matrix 

to  rapidly decay, and causes the Wigner function to be predominantly non-negative 

[43, 261. This decay tends to be very rapid, causing interference patterns to quickly 

vanish. Because environmental interactions cause these interference patterns to lose 

phase coherence and decay, this decay process is known as decoherence. 

I will not be able to do justice to the field of open quantum systems and decoher- 

ence here, but we will endeavor to review the basic principles so that the reader can 

get an idea of how we expect quantum mechanics in open systems to  behave. This is 

important to put our work into context, so that we can contrast decoherence effects 

with what we find by coarse graining the probability distributions. 

In an open system the Hamiltonian can be broken into three parts, 

H = Hsys + Henv + Hint (1.18) 

Where Hsys is the system Hamiltonian, Henv is the Hamiltonian for the environment, 

and Hint is the interaction potential between the system and its surroundings. 



The environment is typically modeled by a thermal field composed of an infinite 

number of Harmonic oscillator modes [43, 2, 441. I t  is assumed that the observer has 

the ability to prepare the system in any manner desired but the environment is not 

under their control. Because the environment is randomly prepared for each measure- 

ment, the observed distributions will be an average over all possible environmental 

interactions. After reducing the Hilbert space by tracing over all environmental vari- 

ables, the reduced Wigner function of the system obeys [43] 

Here y is the damping coefficient and D is the momentum diffusion parameter. D is 

the parameter relevant to decoherence, and y is often neglected because the damping 

timescale is far longer than the timescale decoherence occurs on. This master equation 

is very similar to the classical Fokker Planck equation for Brownian motion [14], and so 

the thermal effects should diffuse pw in a fashion analogous to the Gaussian smoothing 

used to construct the Hussimi distribution. This has been observed in other systems to 

result in a predominantly non-negative Wigner function [26], and eliminate fine scale 

behavior that causes pw(p, q )  to deviate from the classical density p(p, q ) .  Subsequent 

work by Habib et. al. [25] suggests that decoherence will not remove all the negative 

regions in the Wigner function, so environmental interactions will not cause it to  have 

a probability interpretation. 

Most studies of decoherence involve Schrodinger's cat states, which correspond 

to two separated coherent states with an interference pattern between them. The 

Wigner function for these states is [4] 

Here 2d is the separation between the Gaussian wave packets, A q  and Ap are their 

widths in position and momentum respectively. This Wigner function can be divided 

into two pieces pw = p + pint where p is the phase space density of the two Gaussian 

states, and pint is the interference pattern between the two. As d l h  increases the 

interference pattern will increase in frequency, leading to very rapid interference terms 

for macroscopic separations. For macroscopic values of d these rapid oscillations in 

pint are more susceptible to smoothing than the broad Gaussians in p, suggesting 



that the environment will selectively eliminate quantum effects and leave the classical 

structure largely intact. 

If classicality is reached through decoherence, the quantum effects must dissipate 

on a timescale that is far shorter than the classical timescale. The decoherence time 

scale is referred to  in the literature as the decoherence time or T2. The decoherence 

times typically depend on the system Hamiltonian, so the timescales mentioned in [43] 

will not apply to our work. Strunz et. al. [40] suggest that when decoherence is faster 

than the system timescale or even the environmental timescale, the decoherence times 

are independent of the system potential. This occurs because if the system timescale 

is slow compared to the decoherence timescale, then the system Hamiltonian will be 

approximately constant during the short decoherence time. This approximation leads 

to three different decoherence times for Schrodinger's cat states with two Gaussians 

separated in both position and momentum. 

These three time scales are denoted r?, T I ,  rFP. The timescale rd& refers to the 

decoherence time for two coherent states separated only in position, TI is the deco- 

herence time for two states separated only in momentum, and rfP is the decoherence 

time for states that are equally separated in both position and momentum. These 

vary with h and the separations as follows 

Here M is the mass of the system that interacts with the environment. B represents 

the set of environmental variables {Bi). The environment is often a thermal field, so 

{Bi) usually represents a set of photon number operators. {ql, pl), {q2, pz) are the 

coordinates of the centroids of the two coherent states. For a general Schrodingers 

cat state, the separation between the two Gaussians can be arbitrary. This means 

that any of these 3 timescales can be the dominant one, since a particular value of 

(ql - q2 1 ,  Ipl - p2 I can always be chosen to  make any of these timescales the fastest. 

The utility of Schrodingers cat states in studies of decoherence is twofold. First, 

they are composed of Gaussians which can be dealt with using path integrals. Second, 



the interference patterns generated by these two states are mono-chromatic. This 

allows us to  look a t  how the environment eliminates single frequency quantum classical 

differences. This is not typical for most systems, since there are typically a large 

number of frequencies present. So we cannot expect there to be a unique decoherence 

timescale even in the limit of very rapid decoherence. 

For Hyperion these decoherence timescales for macroscopic separations are incred- 

ibly short because of the mass of the satellite is so large, but since these times are 

derived only for Schrodinger's cat states they may not be generic. But it stands to 

reason that since there is nothing unique about the interference patterns in these 

states, the decoherence times for generic interference patterns also should also obey 

a power law in li. 

1.5 Liouville Breaktimes For Chaotic Systems 

1.5.1 Liouville Breaktime Without Thermal Effects 

In 1998 Zurek et a1 suggested that the Liouville breaktime for chaotic systems is dra- 

matically shorter than the Liouville breaktime for integrable ones [46]. It is important 

to review this argument, since if it was ironclad then there would be no question that 

thermal effects are needed to understand why Hyperion appears classical. So here I 

will summarize Zurek's argument, and show that we may not need decoherence to 

understand why classicality emerges. 

His estimate was made by determining how long it would take a classical phase 

space distribution to fold its self sufficiently for the Moyal terms in Eq. (1.14) to 

become non-negligible. From Eq. (1.14), the nth Moyal term is proportional to 
2 n f l v  a z n f l  w h2n L aZZn+l apZn+4 . Hence the quantum corrections depend on two factors: the scale of 

the structure of the probability distribution in momentum and the scale in position 
a2n w 

that the potential is non-linear. Using these ideas of scale, z x-"V and + z 

[aPlp2". Here ap is the scale in momentum over which pw exhibits structure, and the 

length scale associated with potential non-linearities is X. This means that the Moyal 

corrections are on the order of 

The classical terms in the Moyal expansion are given by the Poisson bracket {H, p(p, q)) = 



dpHdqp- dqHapp = [Xup]-'. This characteristic scale can be factored out of the clas- 

sical and quantum terms, and so the Moyal corrections are proportional to ( t i l ~ , ~ ) ~ ~ .  

Because the Liouville equation is area preserving, as the distribution spreads it 

must also become narrower. This narrowing will cause the momentum to vary over a 

fine scale as time proceeds, and so up will diminish as time advances. Hence up(t) FZ 

up(0) e-" where X is the largest Lyapunov exponent, and so F;. [up(0)]-I eAt . Thus 

the time it takes for the first quantum correction to  be non-negligible is 

Here up(0) measures the variance of the initial quantum state in momentum, and x 
measures the non-linearity of the potential. 

This breaktime is similar to  the Ehrenfest prediction in Eq. (1.12), and as a result 

the Ehrenfest estimate was used to calculate the Liouville breaktime for Hyperion [46]. 

To find the Ehrenfest time the characteristic action was purposefully over estimated 

as the orbital energy multiplied by the period: A. = 2.8 x 109Js. From this the 

Ehrenfest breaktime was calculated to  be approximately 20 years and it was assumed 

that the Liouville breaktime is comparable. 

This characteristic action is an overestimate since the chaotic behavior is in the 

rotation of the body, not its orbit. However because the breaktime is proportional 

to ln(Ao/ti), even if A. is incorrect by a factor of 100 the breaktime will vary by less 

than a year. Hence the value of the action is less important to this estimate than the 

fact that r b  varies as ln(l/ti). 

1.5.2 Thermal Effects 

This breaktime occurs because the probability distribution will continue to fold its self 

until the Moyal terms become comparable to the Poisson bracket. However thermal 

effects will create a minimum scale on which the Wigner function can vary in mo- 

mentum. Pattanayak et a1 [35, 341 argue that this scale is formed by two competing 

processes in chaotic open systems, namely the narrowing of the density function that 

chaos causes and diffusion due to the environment. This spreading does not signifi- 

cantly effect the expansion along the eigenvectors corresponding to positive Lyapunov 

exponents, but it opposes the narrowing along the directions of the negative Lyapunov 

exponents. From considerations of entropy production rates of these two processes, 



they will counteract each other when = & where D is the momentum diffusion 

parameter. Hence the Moyal terms in Eq. (1.12) can never become large, and so they 

should not exhibit the runaway growth predicted in the absence of decoherence. This 

claim is reinforced by numerical studies by Zurek and Pattanayak [26, 361. 

According to this argument, decoherence should suppress quantum-classical differ- 

ences, but it is not clear what these differences are, or whether they need suppression. 

Even if these differences are large, if most of them occur on a fine scale, then deco- 

herence may only be destroying interference patterns that are too difficult to observe. 

Hence Zurek's argument does not conclusively show that Hyperion needs environ- 

mental interactions to appear classical. This means that the validity of his claims 

can only be tested by invoking a model for Hyperion, and seeing whether or not the 

quantum-classical differences should be observable for the satellite in the absence of 

environmental interactions. 

Outline 

This thesis will proceed as follows, Chapter 2 describes the model for Hyperion's 

rotation in 1 dimension. It also contains the classical equations of motion, the corre- 

sponding Schrodinger equation, and the equations for the initial classical and quantum 

states. 

Chapter 3 and Chapter 4 examine how the differences between quantum and clas- 

sical mechanics vary as the classical limit is approached, for both regular and chaotic 

states. The differences in expectation values and for probability distributions are 

considered in the limit as ti -+ 0. The fractal behavior of the quantum probability 

distribution is also addressed. 

Chapter 5 shows how environmental effects are handled in this work, as well as 

how they affect QC differences in the classical limit. The differences in probability 

distributions, with and without environmental interactions are also examined through 

Fourier analysis to determine whether decoherence is a form of coarse graining. 

Chapter 6 examines the structure of quasi-energy or Floquet states for Hyperion. 

The scaling of participation numbers for minimum uncertainty states is considered as 

h -+ 0, and the structure of Floquet states is used to explain the differences noted in 

Chapter 3. Finally the spacing of quasi-energy levels for regular and chaotic systems 

is also examined. 



Chapter 7 investigates the 3D rotation of Hyperion. A set of quaternionic coordi- 

nates are introduced to  examine the tumbling of the satellite. The classical equations 

of motion are presented, and estimates are made of Hyperion's Lyapunov exponent. A 

foray is made into the 3D quantum mechanics, and it is shown that the 3D quantum 

calculation is too difficult to get sufficiently far into the classical limit to be meaning- 

fully contrasted with the classical result. Finally an  estimate of how long Hyperion's 

rotation can remain 1D due to  quantum uncertainty is made. 



Chapter 2 

Model 

Our model of Hyperion's rotation was first suggested in 1988 by Wisdom [45]. It 

assumes that Hyperion travels in an elliptical orbit about Saturn, and that its orbit is 

independent of its rotation. However since Hyperion is an extended object, Saturn's 

gravitational field is not constant over its volume. For a body without a symmetric 

mass distribution, the variation in the gravitational field can lead to a net torque. To 

lowest order in a multipole expansion of the mass distribution, this torque depends 

on the quadrupole moments of the mass distribution, and for simplicity we neglect all 

higher order moments. 

It should be noted that this configuration is attitude unstable, and so small incli- 

nations of I3 towards the plane of the orbit will tend to grow. However this simplifying 

assumption makes the quantum mechanical computations feasible. 

The coordinate system is shown in Fig. 2.1. The space-fixed x-axis is along the 

semi-major axis of the orbital ellipse, and the z-axis is perpendicular to the orbital 

plane. The angle 8 denotes the position of the satellite in the orbit. The axis of the 

smallest moment of inertia ( I I ) ,  makes an angle 4 with respect to the x-axis, hence the 

angle between the body axis of II and the radius vector ?is 4 - 0. The largest moment 

of inertia I3 is parallel to the z-axis. The canonical coordinates for this system are 

the angular momentum and the orientation of the satellite {L,, 4) .  
The coupling of the gravitational field to the satellite is obtained by a Taylor 

expansion of the potential about the satellite's center of mass, 



Figure 2.1: Position of satellelite spinning about the z-axis perpendicular to ith orbital 

plane. 8 denotes the position of the satellite on the orbit, and $ is the orientation of 

the satellite with respect to the semi-major axis of the orbit. 

Here xi refers to  the distance along the i'th space-fixed axis from the center of mass 

of the satellite. 

a2v 
(2.2) 

Here m is the mass of the gravitational source (Saturn), and r is the distance from 

the source to the satellite. The first order term in Eq. (2.1) vanishes because the 

expansion is about the center of mass, and the second order term is related to the 

moments of inertia tensor, 

Using Kepler's third law, which states GM/a3 = 47r2/T2, the Hamiltonian becomes 

Here T is the orbital period, a is the length of the semi-major axis of the orbit, L, 
is the angular momentum about the z-axis, I3 = I,, is the moment of inertia for 

rotations in the orbital plane, and r(t) and 8(t) are the orbital coordinates of the 

satellite, which are functions of the period T and the eccentricity e. These functions 

are found by numerically integrating the equations of motion for the center of mass, 

using the code provided in [l 11 . 



Figure 2.2: Plot of l / [ r ( ~ ) ] ~  vs T for different values of e. This shows that in the high 

eccentricity limit, the potential energy approaches a delta function in time as e t I .  

In the limit of high eccentricity, the satellite will spend most of its time far away 

from the planet and only a very brief period of time close to it. This tendency can 

be seen in figure 2.2. Since the gravitational gradient potential is proportional to 

l/[r(7)I3, in the limit as e -t I ,  the model approaches a delta kicked rotor. The 

connection between our model and the kicked rotor is important, because it is one of 

the most studied models in quantum chaos and its features may appear in the rotation 

of bodies with highly eccentric orbits such as comets. However from the Fig. 2.2, for 

Hyperion's eccentricity e = 0.1, l/[r(?)I3 does not resemble a delta function and so 

we expect little similarity between our results for Hyperion and the kicked rotor. 

2.1 Classical Equation Of Motion 

It  is convenient to  express the equation of motion in terms of dimensionless variables. 

We introduce the anisotropy parameter, 



a dimensionless t i ~ n e  (in units of the orbital period), 

and a dimensionless angular momentum J, in terms of the dimensional angular mo- 

mentum L, 

To estimate a for Hyperion, we use the observed lengths of its principle axes (410 

f 10, 260 f 10, 220 f 10 km, see [42]), and assume that it is an ellipsoid of uniform 

mass density. Hence 

Here ri is half the length of the i th principle axis of the ellipsoid. The other moments 

of inertia are obtained by cyclically permuting the indices. Substituting Eq. (2.8) 
into Eq. (2.5) yields 

Hence a = 0.43 f 0.04. In this work we used a slightly larger value, a = 0.5, because 

it leads to a more purely chaotic motion, whereas for a = 0.43, e = 0.1 there are large 

regular islands embedded in the chaotic sea. We wish to compare chaotic motions 

with regular motions, and the differences would be obscured by a mixed phase space. 

Following Wisdom [45], we obtain the equation of motion (in dimensionless vari- 

ables) to  be 

2.2 Quantum Mechanics 

The quantum mechanics will be solved by integrating the Schrodinger equation in 

angular momentum representation. The state vector is written as 



with Im) being an angular momentum eigenstate. The matrix elements of the Hamil- 

tonian are 

Using (2.12) and (2.11), the matrix equation (ml H I $ )  = ih(ml$ I$) becomes 

In addition to the dimensionless parameters T and a, we now introduce a dimen- 

sionless h parameter, 

hT p = -  
I3 

The dimensionless Schrodinger equation then becomes 

A peculiar feature of Eq. (2.15) is that the coefficient c, depends only on cm+2 

and c,-p, therefore the even c, cannot interact with odd c,. This coupling arises 

from the invariance of the Hamiltonian under rotations by n. But octapole and other 

odd moments are not invariant under rotations by n ,  so this symmetry is an artifact 

of the model. 

2.3 Initial State 

The initial quantum state is chosen to be a Gaussian in angular momentum, 



Here Dm is a dimensionless angular momentum, Jo is the average of the dimen- 

sionless angular momentum in the state, b is its standard deviation, and qho is the 

central angle of the initial state. These parameters will be varied to ensure that the 

initial states are in regions of phase space that are either purely chaotic or purely 

regular. 

In principle, the sum is from m = -oo to +m, but in practice it is restricted to 

a range {-K . . - K). The value of K must be chosen so that this range includes all 

of the values of J,  that have significant amplitudes in the time-dependent state. By 

examining phase-space diagrams for the classical distributions, we find that I J,( < 20 

for all time, and so K = 20/P is sufficient to contain the quantum distribution. 

The initial classical probability distributions are chosen so that they match the 

angular momentum and angular distributions for the initial quantum state. Because 

the initial state is a minimum uncertainty state with fixed width in angular momen- 

tum, its width in angle is proportional to P. Thus P (dimensionless h) enters into the 

classical calculation to ensure that the initial quantum and classical states correspond 

to each other. 

As p -+ 0 the initial state's width in momentum is fixed, but its width in position 

vanishes. Because the state's width in momentum doesn't vanish in the classical 

limit, the state can not be interpreted as a single particle trajectory. As a result this 

work examines the Liouville rather than the Ehrenfest correspondence, and I will not 

discuss how single particle trajectories appear in the classical limit. 



Chapter 3 

Results for a Non-Chaotic State 

The classical limit of the quantum tumbling of a satellite will now be examined for 

a non-chaotic state, to determine whether there is a qualitative difference between 

chaotic and non-chaotic systems in their approach to classicality. 

Non-chaotic motion is ensured by choosing a circular orbit: e = 0, r ( r )  = a,  

O ( T )  = 2 7 ~ .  The time dependence in Eq. (2.10) can be transformed away by the 

substitution @ = $ - 2.rr7, yielding an integrable equation of mot'ion, 

Fixed points for this equat'ion occur a t  the angles = 0 , ; )  .rr, F. These fixed points 

describe motions in which Hyperion presents the same face to Saturn at all times. 

The stable fixed points correspond to the smallest moment. of inertia point'ing towards 

Saturn. 

The initial state was chosen to be far from the unstable fixed point. It  is centered 

at Jo = 4, wit'h a standard deviation in J, of o = $& (see Fig. 3.1), and a central 

angle equal to  zero. 

3.1 QC Differences in (J,) 

The classical probability distributions are found by time evolving a finite ensemble 

of systems, using Eq. (2.10). The distributions of J, and $ are found by randomly 

choosing the angular momentum and orientation of each member of the ensemble 

from probability distributions in Jz and 4 that correspond to the initial quantum 



Figure 3.1: Poincare Section for e = 0, cu = 0.5. Black circle denotes a typical initial 

state. 

state. For notational simplicity I will define A(J,) to be the difference between the 

quantum and classical expectation values in angular momentum. 

The finiteness of the ensemble leads to statistical errors, which may be reduced by 

increasing its size. The standard deviation of the fluctuations in the mean is 

Here n is the number of members in the ensemble, a is their standard deviation of 

the distribution. Any difference between the computed mean values of the quantum 

and the classical variables is not significant unless it is larger than a,. Ensembles of 

10' to  2 x 10' particles were used to ensure that A(J,) is greater than a,, and the 

tolerance of the integrator routine was chosen so that decreasing the tolerance by a 

factor of 10 did not significantly change the results. 

As ,B -+ 0 A(J,) becomes smaller, and thus a larger ensemble is needed to reduce 

the statistical errors below that level. Hence different ensemble sizes were used for 

different values of /3 in Fig. 3.2. The ensemble sizes were chosen so that a, = 

(2 x 7 x 2 x for P = {0.0125,0.05,0.5). 

Ensembles were evolved for several values of P ,  ranging from /3 = 0.5 to  /3 = 0.002. 



Figure 3.2: A(J,) vs T ,  for several ,#, with e = 0, a = 0.5. For ,# = {0.0125,0.05,0.5) 

the statistical errors are u, = (2 x 7 x 2 x lop3). The black lines show 

the values of these statistical errors. 

Figure 3.3: A(J,) for P = 0.0125, with e = 0, a = 0.5, a, = 0.7 x 1W3 

2 7 



Figure 3.4: Scaling of A(J,) with ,8 for early times, with e = 0, a = 0.5. This shows 

that A(J,) is proportional to  P2. 

For ,O < 0.01 A(J,) is far smaller than a, for any computationally feasible ensemble 

sizes, so no data will be presented for p < 0.01. 

A plot of A(J,) versus time is shown in Fig. 3.2. In this and similar figures, 

any value of A(J,) smaller than a, should be ignored, since they are dominated 

by statistical errors. A(J,) oscillates on the scale of the driving force, and only the 

envelope of these oscillations is of intererest. From figure 3.2, it is apparent that at 

early times the envelope of the A(J,) grows as r2. For longer times the envelope of 

the QC differences is oscillatory, as can be seen in Fig. 3.3. Such recurrences are 

typical for non-chaotic systems [24]. Fig. 3.4 shows that, for fixed times, the QC 

differences in (J,) scale as p2. 
This result has been observed in other systems. In [8] Ballentine and McRae 

perform a moment expansion of the Liouville equation and the Heisenberg equat,ion 

of motion for a particle. They find that t'he differences between the equations of 

motion of the centroids are proportional to ti2 for some two dimensional systems. 

As a specific example of they examine Henon-Heiles potential, and that A(J,) scales 

as ti2, and the QC differences were found to  increase as a polynomial in time for 

regular states. This potential is quite different from ours since it is two dimensional, 

in addition it is autonomous as opposed to our driven system. 

Despite these differences, this work shows that the QC differences for our model of 



Figure 3.5: Quantum and classical probability distributions for T = 2,20 with e = 0, 

a = 0.5 

Hyperion are typical for narrow regular states. This is important because we want to  

determine how the classical limit is reached in this model, and determine if we must 

introduce any new concepts to understand the classical limit of chaotic states. 

3.2 QC Differences in Distributions 

The differences in (J,) alone are insufficient to  fully describe the differences between 

quantum and classical systems because two different probability distributions can have 

the same mean but different variances and higher moments. We shall now examine 

the differences between probability distributions, and how they scale with P. 
Since the angular momentum distributions are discrete, one can regard them as 

vectors, and measure the difference between the quantum and classical probability 

vectors by the 1-norm, defined as  

lqm - C E I I  = C IPcl(m) - Pqm(m)l 
m 

(3.3) 

Each probability distribution is normalized so that Em P ( m )  = 1. Alternatively, one 

can define a probability density, which is normalized so that J p ( h m ) d ( h m )  = 1. 

Then the 1-norm of the probability densities takes the form 



Figure 3.6: Scaling of Iqm - dll [Eq. (3.3)] with time and ,B for the nonchaotic state 

(e = 0, a = 0.5). Each classical ensemble has 1,000,000 members. 

These two forms are equivalent because P(iim) = P(iim)/ii, and the additional factor 

of ii is cancelled by the factor of ii in the integral. 

The probability distributions can be seen in figure 3.5, where it is obvious that 

the quantum probability distribution is approximately the classical probability distri- 

bution with interference patterns superimposed upon it. As is typical for quantum 

interference patterns, their frequencies were found to  scale linearly with ,B (as seen in 

Fig. 3.7. So in the classical limit these interference patterns will occur over a very 

fine scale. 

Fig. 3.6 shows that the l-norm of the QC differences in the probability distri- 

butions do not tend to zero as ,B -+ 0. These two probability distributions do not 

approach each other in a pointwise sense, since it is impossible to  choose a value of 

,B that will make the differences in probability density a t  any given point arbitrarily 

small. This lack of pointwise convergence of the quantum probability distributions 

to the classical limit has also been observed for other systems, such as a particle in 

a box and the kicked rotor [5]. In these one-dimensional driven system, the quantum 

probability distributions develop a fractal-like structure, and only the smooth back- 

ground converges to the classical probability distribution. We will show in section 5.3 

that a similar result holds for Hyperion. 

In summary, we found that for a regular state, the QC differences in the expecta- 



Figure 3.7: Quantum angular momentum probability densities for two different values 

of p. This shows that the width of quantum interference patterns is approximately 

linear p. 

tion values were proportional t o  P2. Since the value of ,B for Hyperion is on the order 

of these differences will be negligibly small for such a massive body. Although 

the differences in the expectation values will be small if Hyperion is prepared in a 

regular state, the probability distributions will not converge pointwise to the classical 

limit. From fig. 3.5, these differences should occur on a much finer scale than the 

classical structure. Hence the classical distribution is a coarse grained version of the 

quantum probability distribution. 



Chapter 4 

Results for a Chaotic State 

In this section the rotation of a satellite is investigated for a chaotic initial state. The 

previous value of a = 0.5 is used, but now the eccentricity is taken to be Hyperion's 

value of e = 0.1. 

The results in this chapter should be contrasted to those of the previous section, 

where we found that the differences in (J,) were proportional to P2, and grew like a 

power law in time before eventually recurring. We also found that the probability dis- 

tributions did not converge to the classical limit pointwise, but do so after smoothing 

the probability distribution over a width proportional to P. Here we will do similar 

analysis to see if the QC differences for chaotic states are as large as Zurek conjectures. 

The initial state is centered a t  dimensionless angular momentum Jo = 10, with a 

standard deviation of a = 0.5, and a central angle = 0. This state is in the chaotic 

sea, far away from any regular torii, as can be seen in Figure 4.1. The maximum 

Lyapunov exponent for the chaotic sea is X = 0.85. 

4.1 Differences in ( J z )  

This state was evolved for several periods of the driving force, and the differences 

between the quantum and classical results were computed. In Fig. 4.2 the QC dif- 

ferences in (J,)  are initially dominated by statistical errors, which are approximately 

a, = 2 x The QC differences in (J,) grow exponentially with time until they 

saturate a t  T = 6. This saturation occurs when the classical trajectories ergodically 

fill the chaotic sea. For T > 20 the classical ensemble saturates at (J,) = 8.2. The 
quantum value of (J,) also saturates a t  approximately the same value, but with ir- 



Figure 4.1: Poincare Section for a chaotic state, a = 0.5, e = 0.1. The black circle 

denotes a typical initial state, with J, = 10 and 6 = 0.5 

Figure 4.2: QC differences in (J,) vs T for a chaotic state, a = 0.5, e = 0.1. For 

= (1 x 3 x 8 x the statistical errors are a, = (1.4 x 1.4 x 
2.2 x lop4). The black lines show the values of these statistical errors. 



Figure 4.3: QC differences in (J,) vs P, for a chaotic state before saturation is reached, 

showing a P2 dependence. 

regular fluctuations superimposed. This suggests that the QC differences here are 

dominated by quantum fluctuations once the probability distributions have saturated 

the chaotic sea. 

This behavior has been noted in other chaotic systems, including two coupled spins 

[18] and for two coupled rotors [7]. So the cessation of exponential growth of the QC 

differences is not unique to this model of Hyperion. 

4.1.1 QC Differences in ( J z )  for Early Times 

To determine how the QC differences in average momentum scale with P, we varied 

p with 7 fixed at the times of the peaks in Fig. 4.2. As a notational convenience, 

we will label these QC differences by A(J , )  . From Fig. 4.3 it can be seen that 

the QC differences in (J,) scale as P2; the same scaling as was found for the non- 

chaotic states. This P2 scaling agrees with the results predicted in [8]. The classical 

ensemble sizes were chosen so that a, = (1.6 x 1.6 x 2.2 x for 

,B = (1 x 3 x 8 x 

In the initial growth region of Fig. 4.2,the QC differences in (J,) vary with time 

as 

I ( J z ) &  - (J,)G I 0; e2.9T (4.1) 



for T = 2 - . .5.5. The exponent in Eq. (4.1) appears to be independent of the value 

of p. The exponent is greater than 2X, implying that the QC differences grow a t  a 

rate that is greater than the classical Lyapunov exponent. Because the growth occurs 

over a short interval in time, the differences might grow as a powerlaw with a large 

exponent rather than exponentially. However the exponential growth assumption 

agrees with the results of [8, 61, so it is more reasonable to  assert that the differences 

grow exponentially in time rather than as a power law. 

The exponential growth eventually saturates a t  T FZ 6. This cessation of exponen- 

tial growth of the QC differences in (J,) is relevant to  Zurek's argument [46] that,  

absent decoherence, the QC differences for Hyperion should reach macroscopic size 

within about 20 years. That  argument implicitly assumes that the QC differences will 

continue to  grow exponentially forever. However, we will find below that this is not 

the case. 

4.1.2 QC Differences in ( J z )  for the Saturation Regime 

The maximum QC differences occurs in the saturation regime. If these differences 

converge to 0 as ,D -+ 0 then the classical limit will be reached for all times, and there 

will be no break time beyond which QC correspondence fails. 

At the beginning of the saturation region (Fig. 4.2), A(J , )  reaches a maximum, 

before decaying to a saturation level, about which it fluctuates irregularly. Because 

of this fluctuation in the saturation regime, we calculate the time average of the QC 

differences. Here A(J , )  was averaged over the interval T = 20 . -100. In Figure 4.5, 

these averaged QC differences tend to scale as p2I3. 

The peak QC differences also show a similar scaling with ,O (see Fig. 4.4), for 

sufficiently small P:  
max A (J,)  oc p2I3 (4.2) 

This scaling also was found for the maximum QC differences in a model of coupled 

pendulums [7], so it might be generic for chaotic systems in the saturation regime. 

QC Differences in Probability Distributions 

The convergence of the quantum expectation values to the classical result is needed for 

the classical limit to  be reached. However convergence of these values is not a sufficient 



Figure 4.4: Maximum QC differences in (J,)  versus P for a chaotic state. e = 0.1, 

a = 0.5. This suggests that the maximum A(J , )  scales as p2/3k0.03. 

Figure 4.5: QC differences in (J , ) ,  averaged over T from 20 to 100. Initial state is 

in the chaotic sea. e = 0.1, a = 0.5. This suggests that A(J,) cc p213*0.01 in the 

saturation regime. 



condition for the classical limit to be reached. It is possible for two probability 

distributions to have the same expectation value, while having inequivalent variances 

and higher moments. The entire moment hierarchy is composed within the probability 

distributions, so the convergence of the probability distributions to the classical limit 

is a stronger condition than the convergence of expectation value. 

Zurek suggested that the QC differences in the probability distributions will be 

much larger for chaotic systems than for their non-chaotic brethren. We found in 

Chapter 3, that the probability distributions in the absence of chaos did not reach the 

classical limit. So we will investigate the differences in the same manner to determine 

if the chaotic probability distribution converges to the classical limit, and if there is 

a qualitative difference between the two results. 

Figure 4.6: Quantum probability density for T = 40.0, ,O = 0.002 

The probability distributions contain much more information than do the averages 

of observables. These probability distributions are shown in Figures 4.6 and 4.7. 

From these figures we see that at the finest possible scale the quantum probability 

distribution bears little resemblance to the classical probability distribution, however 

the quantum distribution appears to be much more classical when viewed on a coarser 

scale. 



Figure 4.7: Quantum and classical probability densities for T = 40.0, P = 0.002. Both 

quantum and classical densities are convolved with a triangular filter of width 0.25 in 

We use the quantity (qm - dll (defined in Eq. (3.3)) as a measure of the QC 

differences in the probabilities. As can be seen from Fig. 4.8, Iqm - dll increases 

with time before saturating, and fails to converge to 0 as P -+ 0. Since pointwise 

convergence does not occur, neither for the chaotic nor for the non-chaotic states, this 

lack of pointwise convergence is not a result of chaos, but is more generic. 

Most of the QC differences in the probabilities occur on a very fine scale, and a 

modest amount of smoothing is sufficient to cause the quantum probability distribu- 

tions to better approximate the classical results. Fig. 4.7 shows that the differences 

between the two distributions are dramatically reduced by smoothing them over a 

small width. This smoothing process is discussed and compared to  environmental 

interactions in greater detail in section 5.3. 

To summarize the results of this section, for early times the QC differences in 

(J,) scale as P2, and increase exponentially with time. The exponential growth ceases 

when the probability distributions saturate the chaotic sea. Both the maximum values 

and the saturation levels of the QC differences were found to scale as p2I3. A small 

amount of smoothing can dramatically reduce the QC differences in the probability 

distributions, since most of the differences come from very fine scale structures in the 



Figure 4.8: Iqm - dll vs time for different values of P, for a chaotic state, e = 0.1 

quantum probability distributions. 

4.3 Fractal Probability Distributions 

In classical mechanics the smooth initial state becomes more and more complex as 

time proceeds, as the distribution folds its self in phase space. At any finite time 

the probability distribution will be smooth except at a finite number of points which 

are associated with folding. However in quantum mechanics, large oscillations may 

occur on a fine scale. These fine-scale oscillations increase in frequency as /3 + 0, and 

may lead to a fractal probability distribution in this limit [5] even at finite times. 

A fractal curve is characterized by having a non-integer capacity dimension, which 

is a measure of the number of elements required to form a finite cover of the set in the 

limit as the size of the elements goes to zero [28]. This dimension is formally defined 

for a set as, 

where N ( E )  is the minimum number of sets of size E needed to cover the set whose 

dimension we want to find. The parameter E is a measure of the resolution on which 



Box of Size E 

Figure 4.9: Diagram of boxes of size T = 2 forming a finite cover of a graph. 

we are viewing the set. Any feature that has an area smaller than c2 will not be 

resolved until we examine a curve a t  a finer resolution. 

The quantum angular momentum distribution P ( m )  takes on only integcr valucs 

of nz. We can construct a lower resolution version of the sequence P ( m )  by using the 

subsequence P( i r ) ,  where i is an integer and r is the resolution of the distribution. 

Here r plays the role of 6 in t8he definition of the capacity dimension given above. So 

to  estimate the capacity dimension, we need to  count the number of boxes of side 

length r needed to  cover the probability distribution as  r + 0. This process is shown 

in Figure 4.9. 

To estimate thc numbcr of boxes needed to cover the graph, we must first estimate 

the area that  needs t o  be covered and then divide it by the area of the elements in the 

set. The area needed to cover the adjacent points P( i r )  and P ( w + T )  is approximately 

IP(ir + r )  - P(ir) lr .  So the area needed to cover the whole graph is approxirnatelv 

r  C, IP(ir + r )  - P( i r )  I. Hence the number of sets needed is approximately this area 

divided by r" which is the area of a box. Hence N ( r )  is approximately 



Figure 4.10: Log Log plot of Vertical length of quantum probability distribution versus 

resolution for p = 0.002, and r = 10.5 

Using this approximation the capacity dimension is approximately 

Where L(r )  is defined to  be Ei IP(ir + r )  - P(2r) I. Hence the capacity dimension can 

be estimated from the slope of L(r )  vs r on a log-log plot as r + 0. This allows us a 

convenient way to  estimate the capacity dimension for a quantum angular momentum 

distribution. 

Fig. 4.10 shows that the slope is -1 when the curve reaches maximum complexity 

at T = 10.5, implying that the capacity dimension for the curve is 2. From Fig. 

4.8, the probability distribution reaches its maximum complexity a t  r = 5. Hence 

the probability distribution should have fractal characteristics for all T > 5 .  Thus the 

limit of the quantum probability distribution is a space-filling curve. For a non-chaotic 

initial state, the quantum probability distribution exhibited no such fractal behavior. 

However it is possible that insufficient time was given for non-chaotic initial state to 

reach its maximum complexity. 



The fractal behavior of the quantum distribution does not arise from the fact that 

the even parity states do not interact with the odd ones (as noted in section 2.2), 

which is an artifact of the model. If every even numbered element in the distribution 

was correlated to the nearest even numbers, then the value of the vertical distance 

between points should vary far more significantly from r= l  to r=2 than from r=2 to 

r=4. Since this does not occur in Figure 4.10, one is left with the conclusion that the 

fractal behavior does not arise from the even-even, odd-odd coupling induced in this 

model. 

The most important result that follows from the fractal like behavior in the sat- 

uration regime, is that smoothing will be especially effective a t  reducing Iqm - dll 

since the majority of the QC differences will occur on a very fine scale. Hence environ- 

mental effects on the satellite may be sufficient to cause the probability distributions 

to approach the classical limit in a pointwise sense. 



Chapter 5 

Environmental effects on Hyperion 

Interaction with the environment leads to decoherence and dissipation. Decoherence 

is a quantum effect which causes interference patterns to decay. The time scale upon 

which this happens is model dependent, and for some systems there is no single 

decoherence timescale [2]. Strunz et al. [40] suggest that for the rapid decoherence 

expected in macroscopic bodies, the decay time varies as a small power of h, and is 

not sensitive to the system Hamiltonian. 

Dissipation is a classical effect which results in diffusive spreading of the probability 

distributions. Often, the timescale for dissipation is much longer than the timescale 

for decoherence, and dissipation is insensitive to  h, unlike decoherence. But both 

effects are present together, and it is not always easy to separate them. 

The effect of the environment on a quantum system is often treated by a master 

equation that has non-unitary time evolution. Because an initially pure state can 

evolve into a mixed state, it is necessary to compute the density matrix, which requires 

much greater storage than does the computation of a state vector. The requirements 

for storage and computation time scale like K 2 ,  where K is the number of basis vectors 

needed to store a state vector. 

An alternative method is to  perform n evolutions of the Schrodinger equation, 

Eq. (2.15), with a different realization of a random potential added for each run. 
Averaging the probability distributions that result from the each of the n runs is 

physically equivalent to tracing over the environmental variables. The advantage of 

this method is that the computational resources for each run scale as K ,  rather than 

K 2  for the master equation. On the other hand, to achieve good accuracy, a large 

number of realizations of the random potential must be considered, in order to reduce 



Figure 5.1: Variation of (J,)  with T with and without the random potential with 

a / K h  = 0.024, T, = 0.01. (chaotic state, ,O = 0.05) 

the statistical errors in the quantum calculation. However the number of realizations 

of the random potential that was needed to get sufficient accuracy was considerably 

less than K, so this method was much more computationally efficient than integrating 

the master equation. 

A stochastic potential is used, in both the quantum and classical mechanics, to  

model the effect of the environment on the rotor. The simplest stochastic potential 

that yields a random torque is, 

Here R(t) is a correlated random function of zero mean and unit variance, If, is 

the amplitude of the random potential, and rC is its correlation time. A correlated 

random function is used because the fluctuations in the environment do not occur 

instantly, but rather they occur and decay on some time scale 7,. The correlated 

random sequence R(t) can be constructed from an uncorrelated sequence, as is shown 

in Appendix A. The results are not sensitive to the exact form of Eq. (5.1), and 

qualitatively similar results were obtained when cos(q5) was replaced by cos(2q5). As is 

shown in Appendices B and C, the effects of the environment are expected to depend 

mainly on the product a2r,, rather than on the two parameters separately. Therefore 

we label the results by the momentum diffusion parameter, D = a2rc/6, which is 



Figure 5.2: Variation of Iqm - dll with r for different numbers n of realizations of 

the random potential with a/Vch = 0.012, rc = 0.01. (chaotic state) 

derived in Appendix E. 

The environmental perturbation should be much weaker than the tidal force on the 

satellite. Hence we compare the interaction potential Eq. (5.1) to  the amplitude of 

the tidal potential, made dimensionless by dividing by 13/T2, which is approximately 

Xh = 3 d 7 r 2 a ,  or Vch z 21 for a = 0.5. In all cases reported in this thesis, the 

environmental perturbation was so weak as to have no significant effect on the classical 

results, so its only significant effect is to produce decoherence in the quantum results. 

The same parameters as in the previous chaotic case were used, a = 0.5 and e = 0.1. 

Many realizations of the random potential were computed, and the results aver- 

aged, to get an accurate measure of the effects of the environment. We used 500 

realizations to obtain results that are not strongly affected by statistical errors. Fig. 

5.1 shows the QC differences in (J,), with and without the random environmental 

potential. The environment has no significant effect a t  early times, but in the satura- 

tion regime the QC differences are reduced. Since the primary effect of environmental 

decoherence is to destroy fine-scale structures in the probability distributions, which 

do not affect averages like (J,), this result may seem surprising. 

In fact, a typical trace of (J,) versus time for a single realization of the random 

potential will look very much like that from a run without the random potential 

(Fig. 5.1). But as time progresses, the oscillations in (J,) for different realizations 



Figure 5.3: Iqm - dll vs T for ,B = 0.05, for varying D = a2rC/6. 

Figure 5.4: Iqm - dll vs T for varying ,B, with rC = 0.01 and a/Vch = 0.012, for a 

chaotic state. 



(a) Quantum with environment (b) Classical withlwithout 
environment 

0 . 0 8 , I ~ ~ ~ ~ ~ ~ ~ r ~  

Figure 5.5: Quantum and Classical probability distributions at  r = 40, with P = 

0.0125, a/Vch = 0.012, and rc = 0.01 for the chaotic state. In (b) the solid lines denote 

the results with the environment, and squares without the environment, showing that 

the classical probability distribution is not significantly affected by environmental 

effects. 

of the random potential tend to get out of phase with each other, and the decreased 

amplitudes of the QC differences in Fig. 5.1 are due to the averaging over the many 

different realizations of the random potential. 

In Fig. 5.2, 100 realizations of the interaction potential were sufficient to find the 

maximum QC differences in lqm - dll . However, 700 realizations of the interaction 

potential were insufficient to resolve the QC differences in Iqm - dll (Eq. (3.3)) 
in the saturation regime, and so for computational reasons, these will be estimated 

rather than directly computed. The variation of these differences with and the 

environmental parameters can be seen in Figs. 5.3 and 5.4. 

These figures show that for early times, decoherence does not substantially reduce 

the QC differences. When we vary D with P fixed, the QC differences are initially 

insensitive to decoherence. In the saturation regime decoherence becomes much more 

powerful, and these differences tend to decay exponentially. A similar result is seen 

for reducing P with D held fixed. 

It can be seen in Fig. 5.5 that, with the inclusion of the environmental perturba- 



Figure 5.6: Decay times r d  of Iqm - c1 vs the correlation time T, of the perturbing 

environment, with ,f3 = 0.05, a/VCh = 0.012 in the saturation regime (a: = 0.5, e = 

0.1). The line shows the classical decay time for two different probability distributions. 

tion, the quantum probability distribution is much closer to  the classical distribution 

than without the environment (compare Fig. 4.6). This agrees with our intuition 

that environmental interactions will smooth out the finescale quantum interference 

patterns that appear in the saturation regime. 

Environmental Effects in the Saturation Regime 

In the saturation regime, the QC differences in Iqm - cll ( E q .  (3.3)) appear to decay 

exponentially from their maximum value to a saturation level (see Fig. 5.3 and 5.4). 

The rate of this decay is a diffusion time, and is not the decoherence time, as will be 

shown shortly. From Fig. 5.6 it is clear that,  for sufficiently large values of T,, the 

decay time r d  no longer depends on T,, but settles a t  ~d M 5.6. For sufficiently large 

a and sufficiently small P,  the decay time was found to  also have approximately this 

same limit. 

To test whether this decay rate is governed by quantum mechanics, we compared 

two classical ensembles with different initial values of Jo, Jo = 10 and Jo = 11, and 



Figure 5.7: 1 norm of the difference between two classical ensembles, one with (J,) = 

10, the other (J , )  = 11. p = 0.05, a / X h  = 0.012, T, = 0.01 

Figure 5.8: Iqm - dll vs n-lI2 at  T = 40. n is the number of realizations of the 

random potential. (a/VCh = 0.012, T, = 0.01 for the chaotic state). The statistical 

errors in the ensemble, unlike the statistical errors from the noise, do not diminish as 

n + m. This causes a non-zero intercept for both these graphs. 



Figure 5.9: Maximum values of (qm - ell, vs p2/D. The points labeled P, a ,  and rC 

represent data sets where p, a ,  and rC were varied with the other two parameters held 

constant. This plot shows that lqm - dll cr (p2/~);*O.O1. 

computed the 1-norm of the difference between them as a function of time. Fig. 

5.7 shows that these initially different classical ensembles converge a t  a rate given by 

rd = 5.6. So, apparently, this time scale measures how quickly the differences between 

two different distributions decrease as they both grow to fill the chaotic sea. 

It  is not clear from Fig. 5.3 and 5.4 whether the QC differences in the probability 

distributions eventually decrease to zero or reach a non-zero long-time limit. In Fig. 

5.8 the long-time saturation level of (qm - dll is plotted as a function of the number 

n of realizations of the random potential. In the limit n + CQ the QC differences 

approach a small value that appears to be slightly positive. However that extrapolated 

limit is substantially smaller than the typical statistical errors for ensemble sizes of 

lo6 to 2 x lo6, and so is not significantly different from zero. 



5.2 Scaling of the Maximum QC Differences 

The maximum value of Iqm - clIl for the quantum and classical probability distri- 

butions must depend on the three parameters P,a, and 7,. However, in agreement 

with arguments presented by Pattanayak et al. [36], the data was found to collapse 

onto a single curve parameterized by J = P2/D (Fig. 5.9). From a least squares fit of 

Iqm - clll vs J,  the scaling relationship was found to be 

This scaling as h1I3 was also found for a coupled rotor model without decoher- 

ence [7]. This result suggests that the @'I3 scaling found here might be generic for 

systems with more than one degree of freedom, and also suggests that the pointwise 

convergence of the quantum probability distribution to the classical distribution may 

occur because of other interacting degrees of freedom (not necessarily an external 

environment). 

5.3 Effects of Decoherence vs Smoothing 

In the previous section we showed that although the expectation values converged 

to the classical result as ,fl + 0, the probability distributions did not. Decoherence 

was found to cause the probability distributions to approach the classical result as 

predicted by Zurek. However if decoherence is necessary to understand the classical 

limit, then no other physically motivated process should be able to coax the classical 

probability distributions out of the quantum results. 

Here we will show that the coarse graining or smoothing of these distributions will 

make them appear classical. This process is physically justified since for macroscopic 

systems, measuring their angular momentum to a resolution of h is well beyond the 

means of any measuring apparatus. If we assume that a measuring apparatus can 

only measure angular momentum to  a resolution of A,, then the observed probability 

distributions will be the quantum distributions smoothed over a range A, in angular 

momentum. 

Consider the smoothed probability distribution P,(q) which is found by the fol- 

lowing convolution 



Figure 5.10: Amplitude of Fourier transform of the QC differences in probability 

distributions for chaotic state with P = 0.002, fp represents the scale of QC differences 

in the probability distributions and is units of l/J, 

Here F(q) is a filter function that represents the imperfect detection of an aparatus. 

The effects of smoothing are more transparent in Fourier space than in momentum 

space, and using the convolution theorem the smoothed probability distribution is 

P d f P )  = P ( f P ) F ( f P )  (5.4) 

Where P(fp), and F(fp) are the Fourier transforms of the momentum probability 

distributions and the filter function respectively. A high fp represents differences that 

occur over a very fine scale in momentum. 

The effect that smoothing has on the differences in the probability distributions can 

also be easily understood using the convolution theorem. Since the Fourier transform 

is a linear operation, the Fourier transform of the smoothed QC differences will just 

be the Fourier transform of these differences multiplied by the Fourier transform of 

the filter function. This allows us to  gain a much better understanding of what the 

filter does to the spectral components of the differences than we could get from just 

looking a t  them in momentum space. 



Figure 5.11: Spectrum of QC differences for P = 0.05 for cases without smoothing or 

decoherence, and smoothing or decoherence alone. fp is the scale in momentum of 

QC differences and is proportional to 1/J, .  

5.3.1 Smoothed Results for Hyperion 

Here we will examine the effects of smoothing the quantum and classical probability 

distributions so that the effects of smoothing may be compared to decoherence. As 

mentioned earlier, the effectiveness of smoothing varies depending on the scale of the 

QC differences. So to see if smoothing will be effective in inducing classicality, we 

must examine how the spectral components of the QC differences vary with time. 

From Fig. 5.10, the scale of oscillations in the momentum probability distribution 

varies with time. When the differences in (J,)  are largest, the differences in the 

probability distributions occur mostly a t  low fp. However in the saturation regime 

they are roughly evenly spread throughout the spectrum. Since the differences in the 

momentum probability distributions occur on a finer scale a t  7 = 15 than a t  7 = 4.8, 

smoothing will be much more effective a t  late times than for earlier times. 

As seen in Fig. 5.11, convoluting the probability distributions with a triangular 

filter of half width A, = 0.5 dramatically reduces the high frequency QC differences 

between them, but it does not substantially reduce differences which occur on a scale 

in momentum that is wider than the filter. Decoherence on the other hand reduces 



Figure 5.12: Jqm - cl l l  versus (PlA,)' for different values of A, and P.  The differences 

in the probability distribution are found to obey Iqm - clIl oc (p/A,)0.44*0.02 

differences that occur a t  any scale in momentum. 

If we focus on the saturation regime, then we find that (qm - cl I I  obeys a powerlaw 

in @/A,) when smoothing is considered. This shows that smoothing can also dramat- 

ically reduce the differences in the saturation regime, and shows that the probability 

distributions in the saturation regime approach the classical limit as ,B -+ 0 with A, 

fixed. 

However a t  any time a filter can be constructed to make the QC differences similar 

to those of decoherence. In Fig 5.5, they were made very small by an amount of 

thermal noise that was too weak to diffuse the classical distribution. So if a small 

amount of decoherence can be simulated by applying an appropriate filter, then this 

filter also must have a negligible effect on the classical probability distribution. 

This is impossible because of the properties of Fourier transforms. The width 

of the Fourier transform of a function obeys an uncertainty relation of the form 

A f (q)A f (lc) 2 1, where f (lc) is the Fourier transform of f (q). From this relation, to 

reduce QC differences with frequencies less than 0.25 in Fig. 5.11 we must take A, to 

be greater than 4. By comparing to Fig. 5.5 this smoothing scale is on the order of 

the width of the probability distribution. So it is impossible to construct a filter that 



Figure 5.13: Smoothed quantum and classical probability distributions for different 

width smoothing filters for different values of P.  The dashed line denotes the smoothed 

classical probability distribution, the solid line is the smoothed quantum distribution. 



has the same effects as decoherence, since the corresponding filter will unrealistically 

spread the distribution. 

Again this phenomenon is not unexpected since coarse graining is performed by 

convolution rather than averaging over a number of random evolutions. This causes 

decoherence to become stronger with time, whereas coarse graining does not, and so 

the two cannot be equivalent. This suggests that the two are different, but highly 

relevant factors in explaining the classical limit of quantum systems. 

5.4 Summary 

In summary, the environmental perturbations dramatically reduce the fine scale struc- 

ture in the quantum distributions. The measure of the QC differences, (qm - clll , 
was found to initially increase with r in a form similar to the results in Sec. 4. After 

reaching a maximum value, Iqm - cl I l  then decreased exponentially with time. The 

decay time was found to be a classical diffusion time, and not a decoherence time. The 

maximum QC differences were found to scale as ( , B 2 / ~ ) l l 6 ,  where D is the momentum 

diffusion parameter. 

The Classical Limit of Hyperion 

5.5.1 QC Differences Without Environment 

Having calculated the QC differences for the chaotic rotation of a tidally driven satel- 

lite, and determined how they scale with the relevant parameters, we shall now use 

this information to estimate the magnitude of quantum effects on Hyperion. In partic- 

ular, we shall assess Zurek's claim [47, 461 that environmental decoherence is needed 

to ensure its classical behavior. We first examine the magnitude of the QC differences 

for Hyperion if the effect of the environment is ignored. 

First we must determine the dimensionless parameter ,B = y. Using Hyperion's 

mean density of p = 1.49 ~ m - ~ ,  and treating it as an ellipsoid with moments of inertia 

I3 > I2 > 11, then I3 = 2.1 x lo2' kg m2. Using the value of h = 1.05 x 10-34Js and 

the orbital period T = 1.8 x 106s then yields 



According to  Eq. (4.2), the maximum QC differences in (J,) are proportional to 

p2I3. Hence the maximum QC difference in the dimensionless angular momentum, 

(J,), for Hyperion should be approximately 5 x SO there should be no observ- 

able difference between the quantum and classical averages of angular momentum for 

Hyperion. 

This result contradicts Zurek's claim that,  if decoherence is ignored, there should 

be a break time of no more than 20 years, beyond which the QC differences would be- 

come macroscopic. As was pointed out in section 1.2, if that break time is interpreted 

as the limit of the Ehrenfest regime, then it does not mark the end of the classical 

domain. But in [47] a break time of a similar order of magnitude was estimated for 

the end of the Liouville regime. Both of those estimates were based on an exponential 

growth of the QC differences that occur in a chaotic state. Now the deviations from 

Ehrenfest's theorem do, indeed, grow exponentially until they reach the size of the 

system, as is needed for Zurek's argument to succeed. But, as was shown in Sec. 

4.1.2, the exponential growth of the differences between quantum state averages and 

classical ensemble averages will saturate before those differences reach the size of the 

system, and the saturation value scales with a small power of h. Hence, for the actual 

(small) value of h, the QC differences in the Liouville regime can remain small for all 

time, and there is no effective break time for the regime of classicality. 

The differences in (J,) become vanishingly small in the classical limit, but this 

does not imply that  the full quantum probability distribution converges to the clas- 

sical limit. We know that the quantum probability distribution will not converge to 

the classical distribution in a pointwise fashion. But we can ask what resolution is 

needed for a detector to be able to discriminate between these two distributions. Let 

us suppose that two probability distributions are practically indistinguishable when 

Iqm - dll < 0.01. Using scaling result in Fig. 5.12, we find that a resolution A, 
of 1 part in 10-60rad/s is needed to resolve the two probability distributions. This 

suggests that it would be practically impossible to observe the quantum effects in the 

probability distributions, even without invoking environmental decoherence. 

5.5.2 Environmental Effects on Hyperion 

There are many environmental perturbations that can affect the satellite: random 

motion of the particles within the satellite, random collisions with interplanetary 

dust, and random light fluctuations from the sun, to  name a few. We shall consider 



the random collisions with dust particles as an  example. 

To do this we treat the interplanetary dust as a dilute gas, and Hyperion as a 

sphere rotating about a fixed axis under the influence of random motion of the fluid. 

The dimensional momentum diffusion parameter is [14] 

Using Eq. (E.4), the dimensionless momentum diffusion parameter D is 

Here T is the temperature, k is Boltzmann's constant, Rh is the radius of Hyperion, 

and q is the kinetic viscosity of the dust fluid, which, following [37], is calculated to 

be 

Here v is the rms velocity of the dust particles, m is their mass, n is their number 

density, and L = l/n7rr2 is their mean-free-path, and r is the radius of a dust particle. 

The properties of interplanetary dust was measured by the Voyager space probes. 

The average number density of particles near Saturn is n = 4 x lo-* [23]. The 

average mass of the dust grains is estimated to be m = 10-log, and their radius is 

about r = m. The temperature in the vicinity of Saturn is about 7 = 135K 

[111 
Using Eq. (5.8), treating Hyperion as a sphere of radius Rh = 150 km, and using 

= 1.8 x Paas for the kinetic viscosity, we estimate the dimensionless angular 

momentum diffusion parameter to be D = 6.4 x Even such a small value is 

sufficient to  reduce (qm - dll substantially. Using Eq. (5.2), the order of magnitude 

of (qm - dll for Hyperion is found to  be Jqm - dll = 10-lo. This implies that 

the classical and quantum probability distributions will almost exactly agree for a 

large body such as Hyperion. Without the influence of the environment, the value 

of (qm - dll due t o  the very fine-scale differences between the quantum and classical 

probability distributions might be of order unity. But,  of course, these differences 

would be impossible to  resolve, because they exist on such a very fine scale. So the 

effect of decoherence is t o  destroy a fine structure that  would be unobservable anyhow. 



5.6 Summary 

The regular and chaotic dynamics of a satellite rotating under the influence of tidal 

forces was examined, with application to the motion of Hyperion. Quantum and clas- 

sical mechanics were compared for both types of initial state, and the scaling with h of 

the quantum-classical (QC) differences was determined. The effect of the environment 

was modeled, and its effect on the QC differences was estimated, so as to determine 

whether environmental decoherence is needed to account for the classical behavior of a 

macroscopic object like Hyperion. Two measures of the differences between quantum 

and classical mechanics were examined: the QC difference in the average angular mo- 

mentum, A ( J , )  , and the differences between the probability distributions, Iqm - cl l l  
(Eq. (3.3)). 

For early times, the QC differences in (J , )  grow in time as r2 for the non-chaotic 

state, and as e2." for the chaotic state. At longer times, the QC differences saturate 

for the chaoric state, but oscillate quasi-periodically for the non-chaotic state. The 

magnitude of the QC differences scale as P2 (dimensionless h) a t  early times, for 

both the chaotic and non-chaotic states. This P2 scaling persists for all times for the 

non-chaotic state. But the QC differences that occurs in the saturation regime of the 

chaotic state scale as ,B2I3. A similar scaling has also been observed for a model of 

two coupled rotors [7],  so this result is not peculair to the particular model studied 

in this paper. 

The value of the dimensionless ii for Hyperion is P = 9.3 x for which the 

p2I3 scaling relation predicts a maximum value for the QC difference in (J,)  to be 

5 x Therefore, there is no need to invoke environmental decoherence to explain 

the classical behavior of (J,)  for a macroscopic object like Hyperion. 

Although the differences between the quantum and classical averages of observ- 

ables become very small in the macroscopic limit, this need not be true for the differ- 

ences between quantum and classical probability distributions. Indeed, the quantum 

probability distributions do not converge pointwise to the classical probability dis- 

tributions, for either the non-chaotic or the chaotic states. A modest amount of 

smoothing of the quantum distribution reveals that it is made up of an extremely 

fine-scale oscillation superimposed upon a smooth background, and its is that smooth 

background that converges to the classical distribution. Similar behavior has been 

found for other one-dimensional systems [5]. This smoothing can be regarded as an 

inevitable consequence of the finite resolving power of the measuring apparatus. Alter- 



natively, it may be impossible to observe the fine structure because of environmental 

decoherence. At the macroscopic scale of Hyperion, the primary effect of decoherence 

is to destroy a fine structure that is anyhow much finer than could ever be resolved 

by measurement. 

When the environment was included, the results were found to follow a scaling 

relationship proposed by [36]: the maximum distance between the classical and the 

quantum probability distributions is proportional to (P'/D)'/~. Here D is the mo- 

mentum diffusion parameter (see Appendix E). This suggests that the quantum 

probability distributions will approach the classical distributions pointwise as P -+ 0, 

provided that D is non-zero. With environmental perturbations included, the QC 

differences in the probability distributions scaled as Jqm - cl l l  oc A similar 

scaling was also found for two autonomous coupled rotors [7]. This suggests that 

pointwise convergence of the quantum probability distribution to the classical value 

may be typical for systems with more than one degree of freedom, and the lack of 

such convergence for systems with only one degree of freedom may be pathological. 

The role of the environment, in the model of this paper, is then to cure this pathology 

by supplying more degrees of freedom. 

Taking D to  be the momentum diffusion parameter for rotation of Hyperion due 

to collisions with the interplanetary dust around Saturn, we find (estimated from Eq. 

(5.2)) that the maximum of (qm - elll that Hyperion should exhibit should be of 

order 10-lo. Thus decoherence would cause the quamtum probability distribution to 

converge to the classical distribution in essentially a pointwise fashion. 

Coarse graining (due to the finite resolution power of the measurement apparatus) 

will also decrease the QC differences in the probability distributions. In the saturation 

regime, the measure (qm - elll of that difference was found to be proportional to 

(p/A,)0.44, where A, is the width of the smoothing filter. This shows that decoherence 

and smoothing have similar effects. But they are not exactly equivalent, since their 

effects scale with somewhat different values of P. 

In conclusion, we find that,  for all practical purposes, the quantum theory of 

the chaotic tumbling motion of Hyperion will agree with the classical theory, even 

without taking account of the effect of the environment. Decoherence aids in reducing 

the quantum-classical differences, but it is not correct to  assert that envoronmental 

decoherence is the root cause of the appearence of the classical world. 



Chapter 6 

Floquet States 

Energy eigenstates do not exist in time dependent systems. However for systems with 

periodic potentials the eigenstates of the discrete time evolution operator can provide 

similar insights. The discrete time evolution operator, called the Floquet operator, is 

simply ~ ( 0 ,  T), where T is the period of the potential. 

The state vector for a system can be found a t  t = n T  by multiplying the initial 

state by the Floquet operator n times. This discrete time evolution operator cannot 

be deduced analytically this model of Hyperion our model when e # 0, but its matrix 

elements can be found numerically via 

Here Unm is a matrix element of the Floquet operator, and Im) and In) are angular 

momentum eigenstates. Any eigenvector of Eq. (6.1) satisfies 

6, is called the eigenphase or quasi-energy of the Floquet state IF,). 

In this chapter the properties of Hyperion's Floquet states are investigated, to de- 

termine whether chaotic states have different localization properties than non-chaotic 

ones. I will also show that individual Floquet states give little information about the 

classical limit, but ensembles of them do. 



b) Floquet state in chaotic sea a) Floquet state outside of chaotic sea 

Figure 6.1: Floquet states for J=400 (a  = 0.5, e = 0.1, ,d = 0.05) 

6.1 Localization Properties of Floquet States for 

Hyperion 

Localization is an interesting phenomenon that occurs in some chaotic systems, and in 

this section we will examine if it occurs in our model. An eigenfunction is localized if it 

is primarily located in a restricted range in position or momentum. This phenomenon 

is particularly interesting because localization can occur in the chaotic sea, causing 

eigenstates to be much narrower than the microcanonical probability distribution 

would imply. 

This was first observed in Anderson localization [I], where a disordered potential 

causes the eigenstates to decay exponentially in position about a site, as opposed 

to the Bloch functions which fill all space. More recently it was shown that the 

quantum kicked rotor is algebraically equivalent to Anderson localization [21], hence 

rotor's momentum eigenfunctions are also exponentially localized. This localization 

also occurs in the chaotic sea, and so these states can have widths there can be 

narrower than the microcanonical distribution would predict. 

The kicked top, on the other hand, does not exhibit localization in the chaotic sea 

[24]. Its eigenstates tend to be spread over the entire accessible phase space, as the 

microcanonical distribution would predict. More importantly, eigenstates centered 



Figure 6.2: Participation numbers (n,) for minimum uncertainty Gaussian state cen- 

tered at  q5 = 0 and J, = -20 - - .  20 for J=800 ( P  = 0 . 0 2 5 , ~  = 0.5, e = 0.1),  measured 

in the basis of Floquet states. 

Figure 6.3: Poincare Section for a = 0.5, e = 0.1, zoomed in to  show th 

in np actually corresponds to  a small regular island (see Fig. 4.1). 

.at the a 



in non-chaotic regions of phase space are dramatically narrower than their chaotic 

brethren. In Haake's work [24], these widths were measured by the number of eigen- 

states needed to represent a minimum uncertainty state in a regular or chaotic part of 

phase space, and he found these numbers were proportional to and Ti-', for reg- 

ular or chaotic states respectively. Since the size of the Hilbert space of the kicked top 

increases as Ti-', the chaotic states will have constant width in the classical limit, but 

the regular states will have vanishing width even though their participation numbers 

increase. 

Here we will carry out a similar analysis, to  see if, like the kicked top the widths 

of the eigenstates differ radically between regular and chaotic eigenstates, or if the 

chaotic Floquet states are localized like the kicked rotor's. To measure the number of 

Floquet states needed to represent a state we use the participation number n, which 

is defined by 

Here an are the coefficients of the Floquet states used to represent the minimum 

uncertainty state, and I$) is given by 

The values of q50, Jo can be chosen to  center this state in any location in phase space, 

and because we know this function's width in phase space, we will be able to center it in 

a chaotic region of the Poincare section. By knowing that a state is regular or chaotic, 

we will be able to determine if the eigenstates that compose it are localized. This 

will allow us to  determine if, like the kicked top, there is a difference in localization 

between regular Floquet states and chaotic Floquet states. 

To show this I found np for a sequence of minimum uncertainty states along the 

line q5 = 0 from J, = -20 . -20. From Fig. 4.1, this line passes through both chaotic 

and regular regions of phase space, and so we will be able to determine whether there 

is a localization difference if n, changes abruptly as we move from a regular to a 

chaotic region. 

The localization differences between chaotic and non-chaotic Floquet states can 

be seen in figure 6.2. By comparing this figure to Fig. 4.1 it is clear that n, is greater 

in chaotic regions than in non-chaotic regions. The abnormally low participation 



Figure 6.4: Participation number (n,) measured in angular momentum basis, averaged 

over 100 chaotic and non-chaotic minimum uncertainty states vs P 

numbers a t  J, z -0.5 corresponds to  a small regular island that is hard to  see in Fig. 

4.1 but can be seen more clearly in Fig. 6.3. 

To see if this agrees with Haake's work, we must examine how n, varies with P. 
From Fig. 6.2 the participation ratio does not assume a constant value for chaotic 

states, but is subject to  fluctuations. These fluctuations can be reduced by averaging 

n, for a large number of states, leaving a better estimate of the characteristic value 

of n, for regular or chaotic states. 

Figure 6.4 shows that regular and chaotic Floquet states have different localization 

behavior as P + 0. To reduce the fluctuations in n,, its value was averaged for 100 

eigenstates for each p considered. For chaotic Floquet states n, is proportional to  

P-l, implying that the widths of the Floquet states remain constant as P + 0 for this 

model. For non-chaotic Floquet states n, is proportional to  implying that they 

are localized. These proportionalities were also noted for the kicked top in non-chaotic 

and chaotic states [24], suggesting that they may be typical for regular and chaotic 

systems. 

Distributions in the Saturation Regime 

Floquet states are the states that remain the same after evolving over one period of 

the potential. In classical mechanics the only probability distributions that remain 



constant as time progresses are the distribution that fills the chaotic sea and uniform 

distributions on the regular torii. So if the classical limit is reached, then the Floquet 

states must resemble the classical distribution in the saturation regime. In this section 

I will show how the classical probability distribution is encoded within Hyperion's 

Floquet states, and show why the expectation values converge to the classical limit 

in the saturation regime despite large quantum fluctuations. 

We know from Fig. 6.1 and Fig. 5.5, that the probability distributions of individual 

Floquet states do not correspond to  classical probability distributions in the saturation 

regime. However ensembles of Floquet states might do so. By combining the chaotic 

Floquet states with uniform weight, the resulting probability distribution does not 

appear to  be qualitatively different from the quantum probability distribution in the 

saturation regime seen in figure 4.6. So the classical probability distribution does not 

emerge out of a uniform combination of these states. 

Figure 6.5: Average of all 533 chaotic Floquet probability distributions (denoted PaVg) 

for a = 0.5, e = 0.1, ,8 = 0.025, 1068 non-chaotic Floquet states were omitted. 



There is more than one way to construct this combination, since the relative 

phases of the Floquet states are arbitrary. Another way to see if ensembles of chaotic 

Floquet states contain the classical probability distribution, is through the probability 

distribution Pavg(m) = ~r I (mlFi) 12/N. That is to  say, the classical probability 

distribution for the chaotic sea might be stored in the average of all N chaotic Floquet 

probability distributions. 

This is exactly what we find in Fig. 6.5, where the classical probability distribution 

a t  t = 40 is recovered by averaging the momentum distributions of a sufficient number 

of chaotic Floquet states. This suggests that single Floquet probability distributions 

do not correspond to the classical distribution in the saturation regime, but their 

average does. 

6.2.1 Randomness of the QC Differences 

In the previous section we observed that when we average the chaotic Floquet prob- 

ability distributions in the saturation regime, we find the classical result. This by its 

self is an interesting result, but we can also use it to explain why the QC differences 

in (J , )  are small for Hyperion in the saturation regime, even though the differences 

in Iqm - clll are large. This may appear to be a conspiracy a t  first, since the large 

differences in the probability distributions must somehow cancel each other out in 

order for the expectation values to correspond to the classical result. This section 

shows that the quantum fluctuations about the classical probability distribution in 

the saturation regime are quasi-random, and will average to  0 in the classical limit. 

To show the random nature of the QC differences, consider a wave function $(k) = 

C, cnFn (k),  where F, (k) = (klF,) is the Floquet wavefunction in angular momentum 

representation. Then the angular momentum probability distribution for this state 

at r = N T  is 

Here q5, is the eigenphase of the state IF,). To eliminate the imaginary part of 

the above equation, the complex values will be expressed in polar form: c,F,(k) = 

~ , ( k ) e ~ ' " ( ~ ) .  With this substitution Eq. (6.5) becomes 



The first term in this expansion of the probability distribution is a weighted sum 

of the Floquet probability distributions. Because the Floquet states are delocalized 

in the chaotic sea, we expect cn to  be approximately l /Nc,  where Nc is the number 

of chaotic Floquet states. This is reinforced by Figure 6.2, where we found that 

the participation numbers for chaotic Floquet states are approximately 550 which 

is approximately the number of chaotic eigenstates present there. This agrees with 

the assumption that cn = l /Nc, and so the first term in the expansion should be 

Hyperion's classical probability distribution. 

The remaining terms are the quantum interference patterns that constitute the 

QC differences. For sufficiently large N ,  the quantity 

N (4, - 4,) + @,(lc) - @, (lc) modulo 27r typically forms a quasi-random sequence that 

uniformly fills the interval [0,27r). It will not uniformly fill this interval if (4, - 4,) 
divides 27r, but according to random matrix theory, the distribution of eigenphases 

should not have a preference for multiples of 7r over any other number, hence it will 

be exceedingly unlikely that (4, - 4,) divides 27r. This rare occurrence will be 

neglected, and so the resulting probability distribution should be the classical result 

with quasi-random quantum fluctuations. 

The probability distribution can then be written as P(lc) = Pc(lc) + Pr(lc), where 

Pc(k) is the classical probability distribution and Pr(k) are quasi-random QC dif- 

ferences. We can easily show that Pr(k) will have, on average, no effect on the 

expectation values in the classical limit. We begin by writting Pr(k) as 

Here rnm (k) = cos(N (4, - 4,) + an (lc) - @,(k)) which is for sufficiently large N is a 

random function in n and m with mean 0. This is important because this renders the 

choice of initial phase of cn irrelevant, since time evolution will eventually randomize 

it. 

Random matrix theory suggests that the joint probability distribution of Fn(k) = 

(IclF,) should be uniform on the surface of a 2K+l  dimensional hypersphere of unit 



radius [24]. Because the distribution does not depend on the phase, the phases of 

F,(k) = (IclF,) should be uniformly distributed in [O ,27~) .  The distribution of these 

phases for Hyperion's Floquet states appears to agree with this assumption. Hence, 

according to random matrix theory, rnm should be a random function in n, m and Ic 

for large N .  

To see how these differences behave in the classical limit, I will consider the effect 

of P r ( k )  on (J , )  as the size of the Hilbert space, K, goes to oo, 

lim I (IcPr(k))l  = lim 
K-tcc K-tcc 

K 

C C e k ~ ( k ) R m ( k ) r n m ( k )  
m n>m 2K + I ,=-K 

lim 
K-tcc 

Here ? ( k )  = Em En,,rnm(k). By the central limit theorem, i ( k )  should have a 

Gaussian distribution for large K, but should still have the same mean value of 0. 

c c C k r n m ( " 1  
m n>m 2K + 1 ,=A, 

= lim 
K - t m  

Hence, 

2 
k i ( k )  

2 K + 1  k=-K 

This shows that (J , )  will approach the classical limit if the average of the Flo- 

quet probability distributions is the classical probability distribution in the saturation 

regime, and if the system agrees a t  least qualitatively with RMT. Hence it is no co- 

incidence that the large quantum fluctuations in the saturation regime have no effect 

on (J,)  in the classical limit of Hyperion. 

6.3 Quasi-Energy Statistics 

In this section we will see to what extent this system is faithful to random matrix 

theory ( R M T )  by comparing the quasi-energy spacing distributions to the theoret- 

ically predicted values. This might prove important for subsequent analysis, which 

may seek to understand the QC differences that we have observed in terms of R M T .  

In section 1.1 I discussed the energy level spacing statistics for time indepen- 

dent Hamiltonians. These statistics are given for members of Gaussian ensembles of 



random Hermitian matrices, which are ensembles of matrices whose elements have a 

Gaussian distribution. It  can be shown [24], that these elements must have a Gaussian 

distribution so that the eigenvalues remain invariant under infinitesimal orthogonal 

transformations. 

For time dependent systems, the random matrices in question are Floquet opera- 

tors, which are unitary as opposed to the Hermitian matrices considered earlier. These 

random matrices are said to belong to Dyson's circular ensemble, so called because 

its eigenvalues lie on the unit circle [30]. 

Although these unitary matrices are quite different from the Gaussian ensembles 

of Hermitian matrices considered earlier, it turns out that the same level spacing 

statistics apply as the dimension of the matrix increases [24]. So the eigenphase 

spacing statistics depend on the symmetry class of the Hamiltonian in just the same 

manner as do the energy level spacings. The only modification that must be made to 

these distributions, is that they are now in units of the mean eigenphase spacing S, 

rather than the mean energy level spacing. Dyson's circular ensemble predicts that if 

we have N eigenvectors then the mean spacing is 2 r l N  hence, 

For systems with a mixed phase space, eigenstates can be centered either in a 

chaotic or a regular part of phase space. From RMT the eigenphase spacing distribu- 

tion for chaotic eigenstates should have a Wigner distribution, whereas regular states 

should have a Poissonian eigenphase distribution. Since there are both regular and 

chaotic eigenvectors here, the spacing distribution should be a mix between a Poisson 

and a Wigner distribution. 

Since we are more interested in Hyperion's chaotic rotation than its non-chaotic 

rotation, we will find the eigenphase statistics for only the chaotic Floquet states, to 

see if they agree with the Wigner distribution predicted by RMT. 

To determine whether a Floquet state is chaotic or not, I used the participation 

number. Since we know that the chaotic states are wider than non-chaotic states, 

we can easily determine whether the state is chaotic. For ,O = 0.025, states that are 

composed of more than 120 angular momentum states are chaotic. 

The level distribution statistics for chaotic and non-chaotic states is given in 

figure 6.6. The level distribution for the integrable system agrees with the RMT 

prediction of a Poisson distribution. Our model of Hyperion obeys time reversal 
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Figure 6.6: a )  Quasi-energy spacing for regular phase space (e = 0, a = 0.5, ,B = 

0.0125, 3201 quasi-energies included) b) Quasi-energy spacing for mixed phase space 

(e = 0.1, a = 0.5, ,B = 0.025, 561 out of 1601 quasi-energies included, selection 

criteria: n, > 120 

symmetry. RMT then predicts that the level spacing statistics should be given by 

P(S) =  ST/^)^-^^^/^. 
Even after discarding any non-chaotic eigenvectors, the level distribution appears 

to be in between a Poisson distribution and the Wigner distribution. This is not 

surprising since RMT assumes that the values of matrix elements are randomly dis- 

tributed. For a system with a divided phase space, there must be some ordering of 

these elements in order to ensure that the phase space remains divided. So we do not 

expect the eigenphase spacing to  perfectly correspond to the predictions of random 

matrix theory because the Floquet operator for this system may not be random [24]. 

To conclude, random matrix theory does not perfectly predict the eigenphase spac- 

ing distribution for this model of Hyperion. This is not surprising because the phase 

space is mixed, and we typically expect the eigenphase distribution to be somewhere 

between the level spacing statistics for regular systems and chaotic systems. So if 

random matrix theory is to be used as a tool to understand this system, it should be 

used qualitatively. 



Chapter 7 

3D Motion Of Hyperion 

In the previous chapters we examined the 1D rotation of an asymmetric satellite 

whose CM is in an elliptical orbit around a planet. Here we will extend this work 

to the more general case of 3D rotations. This extention is non-trivial because of 

problems in both the quantum and classical mechanics. When Euler angles are used, 

problems occur in the coordinate system at  the pole. These problems cause the angles 

that parameterize trajectories that pass near the pole to change very rapidly, which 

can potentially make numerical integration unstable. In the quantum mechanics, 

one is faced with problems in finding the matrix elements of the potential as well 

as computational problems posed by the fact that the size of the Hilbert space is 

proportional to pP3. 
In this chapter I will address these problems through introducing a singularity-free 

parameterization of the rotation matrix, and present the recursion relations needed 

to find the matrix elements of the potential in angular momentum representation. I 

will also perform stability analysis to verify that any 1D rotation in the chaotic sea is 

unstable, estimate the Lyapunov exponent for Hyperion's 3D rotation, and use this to 

estimate how long the 1D rotation can remain stable in the chaotic sea. The quantum 

mechanics is left unexplored because it is too computationally expensive to solve, but 

the the theory is developed sufficiently so that it could be investigated when sufficient 

computing power becomes available. 



7.1 Classical 3D Rotation 

7.1.1 Euler Parameters 

There is a well known problem with describing the orientation of a body by Euler 

angles. For any set of Euler angles there always is a point where the parameterization 

of the orientation is not unique. This problem is similiar to the problem of the 

longitude a t  the north pole, which is undefined. This problem with Euler angles a t  

the pole can be understood through the rotation matrix which is given below 

cos~cos~cos11,-sindsin11, cos~cos8s in11,+s in~cos$~ -cosdsin8 

R =  ( -sin~cos8cos11,-cos~sin11, -sin~cos8sin11,+cos~cos11, sin4sin8 (7.1) 
sin 8 cos 11, sin 0 sin 11, cos e 

This can be written more compactly as the matrix product Rz(II,)Ry(0)Rz(q5), 

where R, corresponds to rotation about the z-axis etc. It  is clear that when 0 = 0, 

R, becomes the identity which commutes with the other two rotation matrices. The 

net rotation then is q5 + II, about the z-axis. Hence there are an infinite number of 

angles q5 and II, which describe the same rotation, and so Euler angles are ambiguous 

when 6' = 0. In addition, for trajectories passing close to this singular point, q5 and II, 

can vary rapidly even though the rotation matrix describing the orientation does not 

change significantly. This implies that the tolerance on a numerical integrator will be 

severely tested for these trajectories. 

These singular points are clearly problematic, but since they are artifacts of the 

coordinate system they can be removed by choosing a better parameterization of the 

rotation. There are other coordinates that do not have singular points, such as the 

complex valued Cayley Klein parameters [22], and an algebraically equivalent set of 

quaternions called Euler parameters. Here we will restrict our attention to these 

parameters, which are defined through the SO(3) rotation matrix: 

In contrast to the Euler angle representation of the matrix, there are no trigonometric 

functions present. Instead of trig functions, a set of 4 parameters Bi are used. To 



guarantee that the matrix will rotate the coordinate system and not stretch it, the 

following constraint must be imposed 

where BT = [Bo, B1, B2, B3]. Unlike the Euler angles, any set of 4 Euler parameters 

corresponds to a unique SO(3) rotation matrix. This can be seen by considering a 

particular rotation matrix R and finding the particular B that corresponds to that 

matrix. By setting the elements of R equal to those of Eq. (7.2) we obtain a set 

of 6 linearly independant quadratic equations. These equations, combined with the 

constraint BTB = 1, are sufficient to find a unique representation of R in terms of B. 

By solving the system of equations, we obtain the following solutions for B in terms 

of the elements of the rotation matrix [lo] 

Here sign(B1) = 1, sign(B2) = sign(R12), sign(B3) = sign(R13). Although any set of 

Euler angles may be converted into Euler parameters using Eq. (7.4), the converse is 

not necessarily true. For example Euler angles have more than one representation for 

the pole, thus it is impossible to uniquely convert Euler parameters to Euler angles 

there. 

7.1.2 Derivation of Equation of Motion 

The dynamics of rotating bodies using the Euler parameters is derived elegantly in a 

paper by Harold J .  Morton Jr.  [32] from the Euler equations for rigid body rotation. 

Here I will present a brief summary of the derivation of these equations of motion for 

a rigid body. 

To begin we need to  find the composition rule for rotations using Euler parameters. 

Assume the set of angles B' give the orientation of the frame Fl with respect to the 

frame F, and B" gives the orientation of the frame F2 with respect to Fl. Then the 

rotation matrix R(B) that transforms F into F2 directly can be directly found by the 

relation 



This equation can be algebraically solved for B using Eq. (7.4)' but rather than 

giving the resulting expressions, it is more convenient to  write the solution in terms 

of a matrix product 

Here Q is a rotation matrix of the form 

This matrix Q and a related matrix S are extremely convenient to use because of 

their algebraic properties. The most relevant of these are 

S is similar to the matrix Q but with the lower right 3 x 3 block transposed 

We will now turn our attention to relating the time derivatives of the Euler param- 

eters to  angular velocities. If wi can be written in terms of B, then we can substitute 

this into Euler's equations for rigid body motion to find the equation of motion for 

B. To do this we consider a time dependant infinitesimal rotation parameterized by 



By finding the Euler parameters using 7.4 that correspond to the rotation matrix 

R (B(~ ) ) ,  and differentiating the result with respect to t we obtain 

Here a is the angular velocity of the rotation, promoted to a 4 vector of the form 

gT = [0, wl, w2, w3]. This relation allows us to write angular velocities in terms of p. 
Or equivalently we can use Eq. (7.8) to solve for LJ, 

To make the connection to Euler's equations, we must convert this to an angular 

momentum, which can easily be done by 

Here I is the moment of inertia tensor promoted to 4 dimensions. This tensor can be 

expressed in a principle axis body fixed frame as 

The value of Io,o is largely irrelevant to the dynamics, since wo is 0. It cannot be given 

a value of 0, because then the matrix would not be invertible. This is a mathematical 

technicality because the inverse of this matrix is needed in order to find the equations 

of motion using this approach. Hence Io,o can be given any non-zero value without 

altering the dynamics. 

From Eq. (7.13), the time derivative of the angular momentum is 

This differential equation must be equivalent to Euler's equation, which in terms 

of these matrices reads 

Where M is the torque promoted to a $-vector of the form [0, TI, T2, T3]. This choice 

of Mo = 0 is justified because Lo = 0 for all time. Using Eq. (7.11) and Eq. (7.6) 

this expression can be converted into 



a E  - = Q(B)Q~(B)  - s~(B)s(B) + M (7.17) 
at 

Equating Eq. (7.15) to Eq. (7.17) and solving for B yields the Lagrange equations 

of motion (A pair of sign errors are present in Morton's paper 1321 and they are 

corrected here). 

Here the K's are: 

Here wi is the angular velocity about the body fixed i-axis, and Mi represents the 

torque about that axis. The similarity to Euler's equations in Eq. (7.19) is striking, 

but not surprising considering since they are used as a starting point for the derivation 

of the Lagrange equations. 

The torque as a function of BBiV(B) can be found using the Lagrangian or Hamil- 

tonian formalism. This process is fairly lengthy [32], and for brevity we will omit the 

details of this derivation and provide the result, 

Using this method, the rotation of any body in 3 dimensions can be calculated, 

and the resulting B can be converted back into angular velocities if desired using Eq. 

(7.11). 

7.1.3 Potential Energy in Euler Parameters 

Here we will express the potential energy of Hyperion in terms of the Euler parameters. 

For this model of Hyperion, the potential depends on the moments of inertia. These 



moments of inertia depend in turn on the orientation of the body, causing the potential 

energy to  be a function of these parameters. This function is, 

We can find these elements of the moment of inertia tensor by rotation using 

I(B) = R ( B ) I ~ R - ~ ( B ) .  The potential can then be found by substituting I(B) into 

Eq. (7.21). Thus we obtain 

Here A = I2 - Ill C = Il + I2 - 213, and y is the orientation of the satellite's cm with 

respect to the space fixed x-axis. 

This potential is more general than the one derived in section 2, so it should 

reduce to 2.4 when the rotations are ID. From Eq. (7.2) it can be seen that Bo = 

cos($/2), B1 = 0, B2 = 0, B3 = sin($/2) describes a 1D rotation about the z-axis, and 

as expected this substitution results in the potential becoming 

37r2 v = -(I 
T 

2 - 11) C O S ( ~ $  - 20) (7.23) 

This is the potential for ID rotations that was found in chapter 2, verifying that 

this potential reduces to the correct limit for 1D rotations. With the potential written 

in terms of B we have all the tools we need to derive the equations of motion for the 

system. 

7.1.4 Test of 3D Integrator 

A pair of tests were performed to ensure that the classical integrator for 3D rotations 

is working properly. The first test was to see if the integrator agrees with the plots 



of force free rotation presented in Morton's paper [32]. The initial conditions used to 

generate these plots were 

( I l ,  Iz, 13) = (400,307.808385,200) 

B(0) = [1,0,0,0] 

w'(0) = [0.866025404,0, -11 

Fig. 7.1 appears to be identical to the one presented in Morton's paper, suggesting 

that the integrator behaves correctly in the absense of torque. 

Figure 7.1: Plot of angular velocities versus time for force free rotor, performed to 

compare against the results in [32] 

We will now show the program gives the 1D result in the correct limit when torque 

is included. It was verified to produce them by choosing the initial orientation to be 

gT = [Bo, O,0, B3], which forces the rotation to be ID. An ensemble of trajectories 

were chosen from the chaotic initial state used in chapter 4, and the Euler angles 

generated from this state were converted to Euler parameters using Eq. (7.20) (The 

branch $J = 0 was arbitrarily chosen for the 1D rotation). The ensemble averages are 

compared in Fig. 7.2 where it is found that the differences are smaller than statistical 

errors in (J,), which using A(J,) = a / n  are at most 0.05. 

These tests show that our 3D integrator code correctly replicates the results found 

earlier for ID  rotation, as well as Morton's published results. This suggests that 



Figure 7.2: a)Plot of angular velocities versus time for Hyperion (a  = 0.5, e = 0, 

Jo = 10, a = 0.5) for both 1D and 3D cases. b) Plot of differences between 3D and 

ID calculations 40,000 trajectories in ensemble. 

the code is working properly, and so we can proceed with some confidence that the 

numerical results presented later are correct. 

Stability of 1D rotation 

In Wisdom's paper, it was stated without proof [45] that a small perturbation away 

from 1D rotation will result in Hyperion tipping into 3D rotation for any chaotic 

trajectory. This section will verify this claim by showing that the chaotic sea contains 

regions of azimuthal instability, causing the entire chaotic sea to be unstable. 

An orientation is azimuthally stable if a small rotation of I3 away from the z-axis, 

will result in the satellite precessing slowly about that axis (see Fig. 7.3), and unstable 

if these small perturbations cause I3 to tip into the plane of the orbit. 

The form of this perturbation will vary depending on the choice of coordinates. 

Although this perturbation is described conveniently in Euler angles as 0 + 0 + 60, 

this perturbation is about a singular point in Euler angles, so stability analysis cannot 

be performed. We can remove this singularity by performing the analysis using the 

Euler parameters, B, presented in the previous section. So these parameters are the 

natural way to see if 3D rotations are azimuthally stable. 



Figure 7.3: Diagram of the type of perturbation considered for azimuthal stability. I3 

is rotated down towards the orbital plane P, and it is called azimuthally stable if it 

precesses about I,, as a function of time. 

1D rotation can be parameterized in Euler parameters as, 

J, is the dimensionless angular velocity, or equivalently the angular momentum 

used, in the previous chapters. In order to get 3D rotations we will have to  perturb B1 

or B2, so we will consider small perturbations in B1 and B2 of the form {B1, B2) -+ 
{B1 + E ,  B2 + E). For a sufficiently small value of 6 these perturbations will not 

substantially affect the constraint BTB = 1, and so we can hold Bo, B3 constant as 

we perturb B1, B2. 

The rotation will be stable under small perturbations in B1, B2 if the following 

criteria holds [13]: 



Figure 7.4: Regions of stability for 1D rotation a t  T = 0 for hyperion's approximate 

rnoment,~ of inertia: I I  = 0.49, I2 = 0.92, I3 = 1 superimposed on the 1D poincare 

section. The solid black regions represent areas where the rota,tion is a,zimuthally 

unstable. 

S~bs t~ i tu t ing  the Hamiltonian for 3D rotation into this formula yields 

@ = 4 - "{(t) is the orientation of the satellite in the co-rotating fra.me, A = I2 - 11, 

C = Il + I2 - 213. r ( t )  is the distance between the satellite and the planet, and a is 

the semi-ma-jor axis of the orbit. The regions of stability were found by plotting t,his 

function a t  T = 0 when r = a. The strategy behind this is simple. Since a chaotic 

trajectory will eventmlly pass through any open disk in the chaotic sea, it will be 

azimuthally unstable if there is any overlap between the chaotic sea and an uristable 

region. 

Figure 7.4 shows the regions of instability for the satellite superimposed on Hype- 

rion's Poincare section, the black regions are regions of instabili t ,~ and the non-black 



regions are stable. These two regions overlap and hence Hyperion's 1D rotation is 

unstable. 

This analysis shows Hyperion cannot be expected to  exhibit 1D rotation, since 

even the most subtle interactions would cause it to tip from a 1D orbit after billions 

of years of chaotic evolution. This is in agreement with the claims made by Wisdom 

[45]. However this orientation, is classically possible, and if care is taken to prepare 

it in an upright orientation and if we neglect quantum mechanics and environmental 

interactions, it would remain in that configuration indefinitely. An estimate of the 

maximum time that  Hyperion can exhibit 1D rotation due to quantum effects will be 

presented in section 7.5.1. 

7.3 3D Quantum Mechanics 

In this section I will discuss the quantum mechanics of Hyperion's rotation in 3D. 

The quantum mechanics of angular momentum is a complicated topic, and aspects 

of it are beyond the scope of most standard text books. A more advanced treatment 

is given in books by Biedenharn and Louck [lo], and Khersonskii et al. [15]. This 

section is devoted to discussing the issues that arise in finding the matrix elements of 

the Hamiltonian. 

7.3.1 Kinetic Energy in Angular Momentum Basis 

In this section we will find the matrix elements of the kinetic part of the Hamiltonian 

in angular momentum representation. These eigenstates are denoted by I J, m, m'), 

and are defined by the following relations: 

Here j, is the space fixed angular momentum about the z-axis, j2 = j: + j; + j: 
is the total angular momentum squared, and 3- is the angular momentum about the 

body fixed 3-axis. This can be written more conveniently as 



i 

These eigenstates form a convenient basis for the kinetic part of the Hamiltonian, 

which can be written as 

The commutation properties of body fixed angular momentum operators is differ- 

ent than for space fixed operators [4, 101. The body fixed operators satisfy 

This result has the opposite sign to the space fixed result. The reversal of sign leads 

to a different form for the raising and lowering operators for body fixed angular 

momentum [lo] 

(31  + i&) l J ,m,ml )  = h J ( J + ~ I ) ( J  - m l +  l ) l J , m , m l -  1) (7.34) 

Using these ladder opperators, the matrix elements of the kinetic part of the Hamil- 

tonian are 



h2mI2 
(J, m,  mrI HI J', mrr, m"') = - 

h2 
6m~~l,ml + -(I/Il - 1/13) 

2 13  8 

h2 
-(l/Il 2 + l / I~)( j  + m W ) ( j  + m"' + 1)6ml,mlu + (J, m,  m ' 1 ~ 1  J, mrr, m"') 

7.3.2 Matrix Elements of 3D Potential 

Our derivation of the matrix elements of the potential is similar in spirit to the 

derivation in chapter 2. We will use the position (angle) representation of the angular 

momentum states, and use orthogonality relations to find the matrix elements. To do 

this we must find these angular momentum states in position representation. 

Since the potential is diagonal in position representation, it is easiest to find these 

matrix elements by converting the angular momentum states to position representa- 

tion and then invert the process. This conversion can be performed using 

Here D;,,, ($ ,O,  d) = (J, m,  mrllR($, 8, d) 1 J, ml,  m"). The body fixed quantum 

number m" is irrelevant here because the body fixed angular momentum is invariant 

under rotations, and therefore the matrix elements of R do not depend on it. 

These matrix elements can be simplified using 

The function dL,,,(O) has many useful algebraic properties, but most importantly 

$ Jt d;,,, (8)d:,,, (0) sin(8)dO = 6j,k6m,n6ml,nl. This orthoganality relation will prove 

invaluable in deriving the Schrodinger equation in angular momentum representation. 

From Eq. (7.36) the matrix elements of the potential are 



(J, m,  r n ' l ~ l  J, m", m"') = 

The potential energy V can be written in terms of Euler angles as 

Here A = I2 - Il and B = I3 - (Il + 12)/2, and y is the position of the satellite in its 

orbit (previously labeled 8). 

The trigonometric functions in Eq. (7.39) are proportional to cos(24) and cos(2$). 

So the 4, $ integrals in Eq. (7.38) are trivial, and are 0 unless m" = m, m" = m f 2 

and m"' = ml,m"' = m' f 2. 

The exact form of these matrix elements is defered to appendix F, since they are 

cumbersome and do not provide deep insight into the classical limit. Instead we will 

examine the selection rules to see whether the quantum calculation is feasible using 

the computers we have available. From the selection rules that arise from the $,$ 
dependence, all but 9 possible couplings are elliminated. Now we will examine the 8 

dependance to find the remaining selection rules. 

Once $,$ have been integrated out, the matrix elements depend on cos(8) and 

cos(28), which can be converted to c0s(8)~,  requiring the following integrals to be 

performed: 

R 

d;,,. ( ~ ) d ~ ~ ~ , ~ ~ ~ ~  (8) cos2 0 sin 8dO 



These can be done using the recursion relation [15] 

To deal with cos2 8, the above recursion relation will be applied twice. This implies 

that each quantum state I J, m, m'), couples to the corresponding states with total 

angular momentum J f 2, J f 1, J .  As a result the 8 dependence of the potential 

alone causes (J, m, m') to couple to 5 other states. The 4 and dependence causes 

it to couple to 9 other angular momentum states. An additional 5 possible couplings 

to states with other total angular momentum occur due to the 8 dependence of the 

potential. Hence the total number of states that a basis vector is coupled to is: 

5 x 9 = 45. These matrix elements can be generated using the Maple code in Appendix 

F. 

7.4 SU(2) Coherent States 

7.4.1 Initial Quantum State 

To compare the classical and quantum mechanics for our model of Hyperion, we must 

have equivalent initial states. Here I will introduce the SU(2) coherent states as 

an initial state, and an analogous classical state, so that the classical and quantum 

mechanics of Hyperion can be compared. 

The SU(2) coherent states are minimum uncertainty states in which the angular 

momentum is as focused in one direction as quantum mechanics will permit. The 

simplest of these states is 1 J, J, J ) .  This state maximizes the angular momentum in 

the z-direction, and because 3z~ J, J, J) = L) J, J, J) the orientation is as close to 8 = 0 

as is possible. 

There is nothing special about the z-axis, and analogous coherent states can be 

created that have their angular momentum pointing in any direction. These coherent 

states will be denoted (J, 4, 8), defined as 



Any SU(2) coherent state can be found by rotating I J, J, J ) .  This state in angular 

momentum representation is, 

( J1l mll m l l l R ( $ ,  0, O)IJ, J, J) = ~ J / , J D ~ ~ , J ( ~ ,  0, 0) (7.44) 

The initial quantum state can then be efficiently found using recursion relations [lo]. 

7.4.2 Classical Initial State 

There is a problem in comparing quantum to classical mechanics for 3D rotations, 

because it is impossible to construct a classical state that replicates all the moments 

of a quantum state (except as the size of the Hilbert space, K -+ oo) [17]. Therefore I 

will choose the classical distributions to match the low order moments of the quantum 

distribution. 

As we saw previously, any SU(2) coherent can be constructed by rotating the state 

(J, J, J ) .  Hence if we can find a classical distribution that is analogous to  I J, J, J), the 

analogue of the other coherent states can be found by rotating this distribution. 

As the classical analogue of the state IJ, J, J), we choose the distribution 

This satisfies the quantum relations (J,) = PJ ,  (J2) = P2J(J+ I), and (J,) = (J,) = 

0. 

The angular distribution will be chosen to  match the quantum angular probability 

distribution. The form of the wave function for I J, J, J) [lo], is 

Hence the distribution of $, q5 is uniform on the interval [O, 2 ~ ) ,  and the distribution 

in 0 is given by 7.46. The classical trajectories are randomly generated from these 

probability distributions. 

Random trajectories for the analogue of the coherent state (J, 4,O) can be gener- 

ated by rotating the angular momentum vectors generated from the analogue of the 

state 1 J, J, J) and the orientations can similarly be found by solving 

R(@,  O', $') = R(q5,0, O)R(q50, 00, $0). The angles {@, O', $') parameterize the tra- 

jectory taken from the classical analogue of I J, 6, 0), and (40, 00, $0) are the angles 

describing the trajectory randomly chosen from the analogue of 1 J, J ,  J ) .  



The classical integrator is written in terms of Euler parameters, so the Euler angles 

must be converted into Euler angles. This conversion from angular momentum to B 
an be performed easily using Eq. (7.6), and the orientation can also be found in 

:rms of B using Eq. (7.4). 

' .5  Lyapunov Exponents and Breaktime for 3D 

Rotation 

3 

si 

0 

To characterize the phase space, the classical ensembles corresponding to 100 

D motions of bodies are difficult to visualize, because the phase space is 6 dimen- 

ional. We cannot use a poincare section to  see the chaotic and the non-chaotic regions 

f phase space, so a different approach must be used. 

oherent states on the sphere I J1 = 10 (here J is in units of 13/T) were sampled, and 

he average Lyapunov exponent was found for each of these states. These Lyapunov 

xponents determine whether a state is chaotic or regular. This provides us some 

ltuition about the structure of phase space for this system, even though we cannot 

eadily visualize it. 

It was found that for a = 0.43 (where a = (I2 - 11)/13), that all of the states in 

uestion had an average Lyapunov exponent of X = 2.0 in units of the orbital period. 

'his also shows that the sphere I JI = 10 lies within a chaotic sea, but it tells little 

lse about the structure of phase space. 

This calculation took 3 weeks to  complete, using 10 nodes on the Bugaboo cluster, 

nd so it was deemed t o  be impractical to continue the search to characterize more of 

he phase space. However this does give an estimate for the Lyapunov exponent for 

[yperion's 3D rotation, which can be used to estimate how long Hyperion can rotate 

erpendicular to  the orbital plane before the uncertainty principle predicts it should 

ip. 

'.5.1 Breaktime for 1D Rotation 

LS mentioned in section 7.2, the 1D rotation for Hyperion is azimuthally unstable 

t places in the chaotic sea. Thus if the width of the state becomes too large in 8 

he rotation will no longer obey the 1D approximation. This tipping is inevitable 

ince chaos causes the width in 0 to increase exponentially with time, and an estimate 



similar to the Ehrenfest breaktime can be made to find the typical length of time this 

ID assumption is valid for. To do this the initial width of the coherent state (J, J, J) 

is estimated, using the following asymptotic relation [38]. 

The quantum number J is approximately L,/h where L, is a typical value of the 

angular momentum in the z-direction. This equation is valid for all values of 0 (IE 

0 E [0, T)) in the limit of large J .  From Eq. (7.47) the width of the distribution in 

angle is approximately A0 = 4%. This width should increase exponentially a t  

a rate given by the Lyapunov exponent, and if we assume that the rotation will no 

longer be one dimensional when A0 = 0.01, then 

Using a characteristic action L, = 1013/T in Eq. (7.48), ti = P13/T = 9 x 

10-5813/T, and X = 2 yields a breaktime of t lD  m 32 = 2.1 years, which is well 

after saturation occurs. Since the I D  approximation to  Hyperion's motion is valid 

over the timescales in question where dynamically interesting behavior occurs, then 

the previous results are meaningful since they are used primarily to estimate how 

Hyperion would behave for short times if its rotation were perpendicular to the orbital 

plane. 

7.6 Feasibility Of the Quantum Calculation 

Hyperion's classical probability distributions can be found using the computers cur- 

rently available. However the quantum analogs cannot be found because of the num- 

ber of operations grows too rapidly with the size of the Hilbert space for existing 

computers to approximate the classical limit. 

The majority of the operations in a numerical integral occur in function evalu- 

ations, so by counting the number of number of operations that must be made per 

call for 3D rotation and dividing this by the number of operations needed for the 1D 

program we will be able to  estimate the ratio between the computing times for the 

two algorithms. 

From the selection rules found in section 7.3.2, the number of operations required 

for the 3D algorithm is proportional to 45(2K + whereas the complexity of the 



I D  case is approximately 3(2K + 1). The maximum value of K used in the 1D case 

was K = 25000. In the 3D case, the quantum number which produces this degree of 

complexity is K = 12. This would allow a purely quantum mechanical calculation, but 

not one that would likely reveal any classical behavior. To obtain the classical limit 

we would need J > 100 which would require approximately 1000 times the computing 

power we currently have available, which is a Pentium 4, 2.7 GHz computer. Hence the 

quantum calculation was not done, and a t  present it is not possible to  meaningfully 

compare quantum and classical mechanics for Hyperion's rotation in 3D. 

7.7 Summary 

In this section we have examined the motion of Hyperion using Euler parameters. The 

equations of motion were found to reduce to  the 1D case in the limit B1 = B2 = 0. By 

analyzing the stability of Hyperion's rotation using Euler parameters, we have shown 

(in agreement with Wisdom [45]), that the 1D rotation will be unstable in the chaotic 

sea. The chaotic tumbling of Hyperion was found to have a Lyapunov exponent of 

2.0 inverse orbital periods, which is approximately Hyperion's observed value [45]. 

The instability of Hyperion's orbit suggests that ,  from quantum uncertainty, it 

can only exhibit a 1D rotation for approximately 4.2 years, but since the dynamics 

we are interested in occurs over a shorter period in time than this, the 1D rotation of 

Hyperion is reasonable to  consider. 

The quantum mechanics proved to be too computationally demanding to carry 

sufficiently far towards the classical limit to  meaningfully compare to  classical mechan- 

ics. Because the number of operations in the numerical integration of the Schrodinger 

equation scales as K3, it is not feasible to carry out the calculation to K > 12 since 

a 1000 fold increase in power would be required to calculate K = 100. 



Chapter 8 

Summary 

In this thesis I examined the quantum mechanics of the rotation of an asymmet- 

ric satellite in a gravitational field. Particular emphasis was placed on the one- 

dimensional rotation of the satellite, which occurs when its rotational axis is perpen- 

dicular to the orbital plane. The quantum mechanics of this rotation was compared 

to the classical mechanics, and the effects that the environment has on the quantum 

classical differences was also considered. Finally the structure of the Floquet states of 

this system was discussed, and the model was extended to include three dimensional 

rotation. This chapter reviews the important results covered in the previous chapters, 

and discuss how Hyperion reaches the classical limit. 

8.1 QC differences for Regular and Chaotic Mo- 

tion 

For regular motion, the QC differences in (J,)  are proportional to [hT/I3I2, where T 

is the orbital period and I3 is the moment of inertia for rotations about the z-axis. 

These differences grow as t2 before reaching a maximum value. After this maximum 

value these differences are quasi-periodic in time. Because the differences in (J , )  are 

proportional to [hT/I3I2, these QC differences for Hyperion would be negligible if its 

rotation were not chaotic. 

The probability distributions do not approach the classical limit in a pointwise 

sense for regular motion. However, the distributions appear to be the classical result 

with quantum oscillations superimposed on them. The amplitude of these oscillations 



does not diminish as [hT/13] -+ 0, but they occur over a much finer scale than the 

classical distribution and they will not be noticeable in the classical limit. 

For chaotic motion, the QC differences in (J,)  are proportional to P2 for early 

times but unlike the regular case, grow exponentially in time until the differences 

saturate. The level that these differences saturate a t  is proportional to  [ ~ T / I ~ ] ~ / ~ .  

This suggests that the classical limit of (J,)  should be reached for Hyperion even 

without environmental effects. 

The probability distributions for a chaotic initial state do not resemble the classical 

probability distributions, despite the fact that the quantum expectation values will 

be nearly in agreement with the classical result. The differences between these dis- 

tributions tend to  be quasi-random, and occur on such a fine scale that they become 

very difficult to  resolve in the classical limit. 

Although there are qualitative differences between the chaotic and non-chaotic 

cases, their results are similar. The expectation values for both cases converge to 

the classical limit. In addition neither of their probability distributions converge to 

the classical limit without either environmental effects or imperfect detectors. So 

although the results for the two systems are qualitatively different, the classical limit 

is reached in a similar manner for both regular and chaotic states. 

Effects of Coarse Graining and Decoherence 

Coarse graining and environmental effects have a similar effect on the QC differences 

in the angular momentum probability distributions. The probability distributions 

were coarse-grained by convoluting them with a triangular filter function, which rep- 

resents the resolution of a detector. Assuming the detector can measure features of 

a size A,, the integrated differences in the probability distributions are proportional 

to (hT/[13A,])0.44. From this relationship I found that the detector must have a res- 

olution of a t  least rad/s in order to notice a substantial difference between the 

quantum and classical probability distributions. Hence for all practical purposes, Hy- 

perion's probability distribution will appear classical even without the environment. 

Environmental effects were modeled by random interactions between Hyperion 

and the space dust surrounding Saturn. The maximum values of the integrated QC 

differences in the probability distribution are proportional to (FL~/[DI~]) ' /~ ,  where D 

is the momentum diffusion parameter. The smoothing that the environment performs 



on the momentum probability distribution is proportional to n, so this power law 

depends on a similar composite parameter to the composite parameter for coarse 

graining. Using this relationship, I find that even the dilute interplanetary gas around 

Saturn is sufficient to reduce the integrated QC differences from 0.7 to lo-''. 

Either decoherence or coarse graining can explain the classical appearance of Hy- 

perion. Because either of these effects can explain the classical appearance of the 

Satellite, it is wrong to think of the classical limit of Hyperion as only a result of 

environmental interactions, as claimed by Zurek [46, 471. 

Some might argue that  fundamentally, the quantum differences are suppressed by 

the environment and so classical physics is in some sense a result of environmental 

influences. However because these differences are so small as to be irrelevant, we 

do need to include environmental effects to understand the classical appearance of 

macroscopic chaotic bodies even if they do eliminate these effects. 

Floquet States and 3D Rotation 

In chapter 6 I investigate the structure of the Floquet states for this system. For 

this model of Hyperion, the chaotic Floquet states are not localized. This means 

that a state in the chaotic sea will be composed of more Floquet states than a non- 

chaotic state, and allows us to distinguish between a regular and chaotic region of 

phase space by comparing the number of Floquet states in the two regions. Also 

the classical probability distribution in the late time limit can be found by averaging 

the quantum angular momentum distributions. This also explains why the classical 

expectation values are reached in the saturation regime even though large quantum 

fluctuations are present. 

Finally in chapter 7, I extend the model into 3D. The classical mechanics of 3D 

rotations can be efficiently solved using a set of quaternionic coordinates called Euler 

parameters [32]. By using these coordinates I find that 1D rotation in the chaotic sea 

is azimuthally unstable. In addition it was found that the Lyapunov exponent for 3D 

rotation is approximately 2 orbital periods. Using this I find that the 1D rotation of 

Hyperion can only persist for 4.2 years, before quantum uncertainty will cause it to 

tip. 

The QC differences were not compared for 3D rotation because the computing re- 

sources needed to numerically integrate the Schrodinger equation are far beyond what 



is currently available. Fortunately 3D rotation is not as interesting as 1D rotation, 

because in 3D rotation the extra degrees of freedom will create an effect similar to 

decoherence. Hence one dimensional rotations should be more pathological than 3D 

rotations for Hyperion, and since the one-dimensional rotations reach the classical 

limit without decoherence, the 3D rotations should do so as well. 

This work does leave many questions unanswered, such as why the average of the 

Floquet probability distributions is the classical probability distribution and why the 

QC differences follow the power laws that I have found here. Perhaps a random matrix 

theory treatment of QC differences could help explain the origin of these differences, 

but a t  present I see no way to justify them. However this work does lay to rest 

any questions about the classical limit of Hyperion, and the debate about the role 

of decoherence in chaotic systems should be relegated to mesoscopic bodies where 

decoherence undoubtedly can have a profound influence [39]. 

There is a question of which of these effects will dominate for mesoscopic bod- 

ies. Unfortunately we have only shown that environmental effects are not needed to 

understand the classical limit of Hyperion, and we cannot say that in general the 

classical limit is reached without environmental effects. However if this system is typ- 

ical, then chaotic mesoscopic systems could seem classical because of environmental 

interactions, difficulties in resolving interference patterns, or a combination between 

these two effects. 



Appendix A 

Integrator Test For Schrodinger 
Equation 

In this appendix I will show that the routine that finds the numerical solution to 

the Schrodinger equation behaves correctly. This is done by finding an eigenfunction 

of the Schrodinger equation when the satellite has a circular orbit. When e = 0 

the time dependance of the Hamiltonian can be removed by examining the system 

in a co-rotating frame, allowing energy eigenfunctions to  be calculated. Since these 

eigenfunctions are stationary in the co-rotating frame, they should rotate but retain 

the same form in the fixed frame. By finding these eigenfunctions numerically, and 

by verifying that the integrated result rotates appropriately in position representation 

we can check to see if the integrator is working properly. 

To find the Eigenvalue equation and the appropriate boundary conditions, we will 

transform the Schrodinger equation to  remove the time dependence. The Schrodinger 

equation in position representation is 

The transformation to the co-rotat'ing frame is performed through: 

This transformation may be applied to a wave function through 141 



o..... 
Figure A.l:  Plot of Eigenfunction(E = -14.75) for Eq. (A.4) in fixed frame 

Performing this transformation on the wave function yields the following eigenvalue 

equation 

Eq. (A.4) is the Mathieu equation, and its solutions are eigenfunctions in the co- 

rotating frame. Since the eigenfunctions are fixed in the rotating frame then they will 

rotate in the fixed frame. Mathieu functions are well known, but  there is no simple 

closed form for these functions, so it is more convenient to  numerically solve for the 

eigenfunction. 

Although periodic boundary conditions apply in the fixed frame, they do not apply 

in the co-rotating frame. To transform from the boundary conditions from the fixed to 

the co-rotating frame, Eq. (A.3) must be applied to  the boundary conditions resulting 

in 

Using this boundary condition, and /3 = 0.08, the lowest eigenvalue for Eq. (A.4) 

was found using Matlab to be E = -14.75. This wavefunction was then transformed 



back into the fixed frame, and then converted to angular momentum representation via 

a fast fourier transform. The wavefunction was then integrated in angular momentum 

representation, and periodically transformed back into angular representation and 

compared to the original wave function. 

In Fig. A . l  it can be seen that the Mathieu function is rotated by .rr at  T = 0.5 as 

expected, confirming that the quantum integrator is working properly. 



Appendix B 

Scaling Parameter for QC 

Differences 

The QC differences for an arbitrary quantum system depend on the Hamiltonian, 

and for chaotic systems it is difficult to predict these differences at late times. Pat- 

tanayak et al. [36] showed that when environmental interactions are included, the QC 

differences will eventually become a function of J, where J = haXbDc and a,  b, c are 

real numbers. This scaling relationship is very useful because it states that the QC 
differences are not a function of all of the system and environmental parameters, but 

rather is a function of only the composite parameter J. 

The argument here is similar to the one presented in [46]. It is assumed that the 

differences between quantum and classical mechanics arise when the Moyal terms in 

the time evolution of the Wigner function are non-negligible. For a chaotic system 

the probability distribution will vary over a progressively finer scale in momentum 

as it fills the accessible phase space. Then after sufficient time the fine structure in 

the quantum distriubtion will settle to an equilibrium scale in momentum given by 

[35, 361 

Since each of the moyal terms in Eq. (1.14) are m h2n8~n+1~(x)8,Zn+1pw, the first 

term in the Moyal expansion is 



Here n is included because the first non-zero Moyal term may not necessarily be oc h2. 

If the probability distribution has reached the equilibrium scale given by Eq. (B.l),  

then if the state still has minimal uncertainty, the state's variation in position should 

be proportional to m. To find the dependance of the composite parameter [ on h 

and D to lowest order on x, the characteristic variation of d;V(x) m sin(x) is needed. 

Expanding the potential about any given xo to lowest order will not give a measure 

of the characteristic variation of sin(x), since in the chaotic sea since xo can take on 

any value. So expanding sin(x) about an arbitrary point xo, and averaging over xo 

will give a better estimate of the characteristic variation of sin(x). 

To second order sin(x) expanded about an arbitrary point is: 

- 112 sin (xo) (x - q12 + O ((x - 

(B.3) 

Averaging this equation over xo = 0 - 27r and dropping all but the lowest order term 

yields: 

Inserting Eq. (B.4) into Eq. (B.2) yields: 

This shows that for sufficiently late times, the QC differences for our model of 

Hyperion should depend on a single parameter h 2 / 0 .  



Appendix C 

Calculation of Lyapunov Exponents 

Attention must be given to the method used to calculate Lyapunov exponents since 

if the program to find them is not written carefully it will yield a poor estimate of A. 

This appendix is devoted to explaining how Lyapunov exponents were calculated in 

this work. The maximum Lyapunov exponent is defined as [28], 

Here d is the distance between the two nearby trajectories XI ,  x2. This formula can 

be rewritten in a more convenient form by considering the distance only at discrete 

times t = kr, 

As mentioned in the introduction, this formula alone will not accurately produce 

the Lyapunov exponent because the distance between the two trajectories will increase 

until they no longer exponentially seperate. As a result the distance between them 

must be occaisonally rescaled to ensure that d does not become too large [33]. Rescal- 

ing will reduce the distance between the trajectories x l  and 2 2  without changing the 

direction of the distance vector. This was done by the following rescaling, 



d was rescaled whenever IZ1 - Z21 is greater than The values used here were 

arbitrarily chosen to be values that yielded good results for the Lyapunov exponent. 

In Eq. (C.2) for the Lyapunov exponent it is hard to see how to incorporate this 

rescaling, so for our purposes Eq. ((3.3) is far easier to implement. 

In Eq. (C.3) there are three quantities that have to be kept in memory, ~ ( z T ) ,  

d([i - l]r, and xi=, ln (a). After calculating the j th  term in this sum if 

rescaling is found to be needed, then d ( j r )  is rescaled according to Eq. (C.4). This 

rescaled d is then used in the calculation of the next term and not in the current 

term, becuase doing so would artificially reduce the Lyapunov exponent. 

x1 is chosen to be somewhere in the chaotic sea. Its location is irrelevant because 

X should be constant over the entire chaotic sea. x2 was chosen to be a distance of 

1 x from X I ,  and the Lyapunov exponent was found by performing the sum in 

Eq. ((2.3) and rescaling the distance as needed. The value of T chosen was the orbital 

period of Hyperion or T = 1 in the dimensionless units of chapter 2. 

Lyapunov exponents for Hamiltonian systems are also notoriously difficult to cal- 

culate because the partial sums in Eq. (C.3) fluctuate and converge very slowly to the 

maximum Lyapunov exponent. The Lyapunov exponent may be constant for a long 

time before suddenly falling off to a smaller value. To reduce these problems Ic was 

chosen to be 50,000 which appeared to be more than sufficient to cause the Lyapunov 

exponent to converge. 

The Lyapunov exponents were calculated for the 3D rotation using a slightly mod- 

ified version of the code used to calculate the 1D Lyapunov exponents. It was modified 

to work with a set of 4 Euler parameters and their derivatives rather than 4 and 4. 
Also since the Euler parameters must satisfy 1 ~ 1  = 1. The perturbed angles must al- 

ways satisfy this constraint, and the previous and the rescaling proceedure mentioned 

previously will not necessarily yield a set of valid Euler parameters. To correct this 

problem Eq. (C.3) was used and then the resulting vector was renormalized through 

For computational reasons the maximum value of k for the 3D rotation was reduced 

to 10,000 but the program would stop at 5000 if the sum appeared to have converged. 

Increasing k to 50,000 did not substantially change the results for a test run considered. 



Appendix D 

Generat ion of Correlated Random 

Numbers 

To describe the effect of environmental perturbations, we require a sequence of corre- 

lated random numbers. Random number generators for uncorrelated random variates 

are comnionly available, but algorithms for generating a correlated sequence are not 

common. We show here how to generate a random sequence having a controled 

amount of correlation from a standard sequence of independently distributed random 

numbers. Let {ri} be such a sequence, with zero mean and unit variance. 

To generate a correlated sequence {Ri) from the uncorrelated sequence, we simply 

form linear combination as follows: 

Ri+l = cRi + (1 - ~ ) r ; + ~  (D.3) 

where c is a chosen constant and R1 - r l .  It  follows from Eq. (D.3) that  

From this result, we can calculate the degree of correlation in our new sequence. 

Taking i > j ,  and using Eq. (D.4) and Eq. (D.2), we obtain 



Eq. (D.5) can be simplified using Eq. (D.2). Performing the resulting geometric 

sums then yields 

For j >> I Eq. (D.6) becomes: 

This discrete sequence must now be converted into a function of time. Each Ri 
refers to the correlated random function at time ti .  Taking the time interval between 

the random numbers to  be At, then it is appropriate to define a correlation time 

r, = -At/ ln(c) for the correlated random function, for which we have 



Appendix E 

Moment urn Diffusion Parameter 

The momentum diffusion parameter (D) is needed the calculate the effect of the 

environment on the system [43, 2, 401. In particular, the form of D is needed to show 

that the scaling result in [36] applies also to our model. 

Consider the random potential of the form V = Vo cos($). The random torque 

is then F = VoR(t) sin($). Here R(t) is a correlated random function, as defined in 

Appendix A. From this, we can find the momentum diffusion parameter through the 

relation 

The integral of the torque over time yield the angular momentum, hence the variance 

of the angular momentum under this random torque is given by 

V; t t 
(s2 (t)) = 1 dt'dtf'(R(t')R(t")) 

The quantity s( t)  is the standard deviation of the angular momentum for a random 

walk under the influence of Eq. (5.1), and a is the standard deviation of the random 

potential. For t >> tc we have 



Using E.1 and choosing the value c = 112, we obtain momentum diffusion constant 

In the body of this paper, we use a dimensionless momentum diffusion parameter 

D. The relation between 

where 7, is defined to  be 

these two quantities is 

T~ = t c /T ,  and a = VOT2/13. 



Appendix F 

Maple Code for Matrix Elements 
of the Potential 

This maple code generates the matrix elements for the potential energy of Hyperion for 3D 

rotation in angular momentum representation. The output is the non-zero elements of 

< J ,m,ml(V(J1,mll ,m"l  >. 
> restart: 
> with(lina1g) : 

Here we define the rotation matrix in terms of Euler angles. The terms ct, st refer to cos(8), sin(8). 

They are left in this form in order to prevent them from being included in trig functions during 

simplification. 

> mom:=matrix([[I~1J0,0]J~0,~~2,0],C0,0,1~311~: 

> Rzl :=matrix( [[cos(phi) ,sin(phi) ,0l, 1-sin(phi) ,cos(phi) ,ol [o,o, 111 : 

> ~ ~ : = m a t r i x ( [ ~ c t , O , - s t ~ , ~ O , 1 , O I , ~ s t , O , ~ t ~ ~ ~ :  

> ~z2:=matrix( [ [cos (psi), sin(psi) ,01 1-sin(psi), COS(PS~) ,ol, Lo, 0 111 ) : 

> rot:=multiply(Rzl,Ry,Rz2): 

The above defines the rotation matrix in terms of the 3 Euler angles (phi,theta,psi) and gamma 

which is the orientation of the center of mass, the subsequent code finds the moments of inertia in 

terms of these angles. To do this we must define the orientation of the center of mass. This 

orientation is denoted y and to prevent them from being included in trig functions we will use the 

variables, sg = sin(y), cg = cos(y). 
> rm:=matrix([[cg,sg,Ol,C-sg,cg,Ol,CO,O,1ll): 
> ans : =multiply (transpose (rm) , (rot) ,mom, transpose (rot) , (rm) ) : 

Now we will find the potential in terms of cos(2 phi) etc, in order to  easily find the non-zero matrix 

elements of the potential given in (7.211 



> V: =simplify (Gm/r'3/2* (-2*ans[1, Il+ans [2,21 +ans C3.31) ) : 
> sl : =cos (phi) -2=combine (cos (phi) -2, trig) : 
> s2: =cos(psi)^2=combine(cos (ps i )  -2, t r i g )  : 
> s3:=sin(psi)~2=combine(sin(psi)-2,trig): 

> s4:=sin(phi)^2=combine(sin(phi)^2,trig): 
> V2:=subs(sl,s2,s3,~4,V): 

> sl:=sin(phi)=sin(2*phi)/cos(phi)/2: 
> s2:=sin(psi)=sin(2*psi)/cos(psi)/2: 
> V3 :=subs (s 1, s2 ,V2) : 

V3 now contains the potential in terms of sin(2q5),cos(2q5),sin(2$~),cos(2$~). These define a new set 

of substitutions using the orthoganality properties of the trig functions, 
> sl:=cos(2*phi)=(dC2,O]+d[-2,0])/2: 
> s2: =sin(2*phi)=(d[Z,Ol -d[-2,0] )/2/I : 
> s3:=cos(2*psi)=(d[0,2]+d[O,-2])/2: 
> s4: =sin(2*psi)=(d[O ,2] -d[0 ,-2])/2/I: 

Here d[2,0] denotes 6,,m1+2 and d[0,2] denotes 6,1,,~11+~. We will now apply these orthoganality 

relations to find the matrix C[n,m] which contains the coefficients of the terms d[n,O]*d[O,m]. 

> al:=simplify(subs(sl,s2,s3,s4,V3)): 

> C[2,21 :=coeff (coeff (al,d[2,0]) ,d[O,2]): 

> C[2,-21:=coeff(coeff(al,d[2,01),d[O,-21): 
> c[-2,2]:=coeff (coeff (al.dC-2,0]),d[O,2]): 
C[-2,-21 :=coeff (coeff (al,d[-2,0]) ,d[O,-21): 

The above terms are the terms do not give C[O,nj,c[m,O], to get these we will eliminate the double 

coupling terms from our ex ression allowin us to find the sin le coupling terms. 
> ared : =simplif (al-C b, 21 *d [2,01 *d70,21 -C [2, -21 *d 8,01 *d [O , -21 -C [-2, -21 

Finally we will eliminate these single coupling terms from our expression, and the remaining 
term will be C[O,O] or the coefficient that measures the self coupling of a state vector. 

The orthoganality properties of the trig functions in phi, psi have been used. Now we will use 

recursion relationships in Eq. (7.42) to  find the matrix elements of the Hamiltonian. 

Here we will convert sin into cosine, because it is easier to use recursion relationships for cosine 

than for sin. 



Now we will use the rotation matrix elements recursion relations t o  find the matrix elements of 

cos(28) and c o ~ ( 2 8 ) ~ .  We will denote the krocecker delta functions dJ ,  J' + 1 as dj[l] in the 

subsequent work. 
> cttemp:=sqrt((~-2-m'2)*(~-2-m1-2))/~/(2*~+l)*dj[-l]+m*nl/J/(J+1)*dj[0 

> ]+sqrt (((J+l) -2-m'2)*((~+1)-2-ml-2))/(J+1)/(2*J+1)*dj [I] : 

> cttemp2:=subs(J=J-1,dj [-l]=dj [-21 ,dj [O]=dj [-I] ,dj [1l=dj LO1 ,cttemp) : 

> cttemp3:=subs(J=J+l,dj [-1]=dj [o] ,dj [O]=dj [l] ,dj [1]=dj [21 ,cttemp): 

cos2 contains the matrix elements of ws(28). Now we will make these orthoganality substitutions 

to effectively integrate out the remaining theta dependence of the components C[n,m]. 
> C4[O,O] :=simplify (C2[0,0] -coeff (C2[O,O], ct)*ct-coeff (c~[o,o], ct-2) *ct 
> -2) *dj [0] +coef f (C2[O,O] ,ct)*ct+coeff (C2[0,0] ,ct-2) *cte2: 
> ~4 [o, 21 :=simplify (~2[0,2] -coeff (C2[0,2] , ct)*ct-coef f (~2[0,2] , ct+2)*ct- 
> 2)*dj [O]+coeff (C2[0,2] ,ct)*ct+coeff (C2[0,2] ,ct-2)*ctn2: 
> C~[O, -21 :=simplify (c~[o,-21-coeff (~2[0, -21, ct) *ct-coef f (c2[0, -21 ,ctA2) 
> *ct-2)*dj LO] +coeff (C2[0, -21 ,ct)*ct+coeff ( 2 0  2 , ctA2)*ct-2: 
> C4 [2,0] : =simplify (C2 [2,0] -coef f (C2 [2,0] , ct) *ct-coef f (C2[2,0], ct-2) *ct- 
> 2)*dj [O]+coeff (C2[2,0] ,ct)*ct+coeff (~2[2,0] ,ct-2)*cte2: 
> C4 [2, -21 :=simplify (~2[2,-21 -coef f ( ~ 2  [2, -21 , ct)*ct-coef f (C2 [2, -21 , ctA2) 
> *cte2) *dj [0] +coef f (C2[2,-21 ,ct)*ct+coeff C 2 2 , -  ,ctA2) *cta2: 
> C4[2,2] :=simplify(C2[2,2] -coeff (C2[2,2] ,ct)*ct-coef f (~2[2,21 ,ct-2)*ct- 
> 2)*dj [O]+coeff (C2[2,2] ,ct)*ct+coeff (~2[2,2] ,ct-2)*ct-2: 
> ~4[-2.01 :=simplify(C2[-2.01-coeff (C2C-2,0] , ct) *ct-coeff (C2[-2,0] ,cte2) 
> *cta2)*dj [O]+coef f (C2[-2,0] ,ct)*ct+coeff 2 - 2  ,ct-2)*cte2: 
> C4 [-2, -21 :=simplify ( ~ 2  [-2 ,-21 -coef f (C2 [-2, -21 , ct) *ct-coef f (C2 [-2, -21 , c 
> t-2)*cta2)*dj [O]+coeff (C2[-2,-21 ,ct)*ct+coeff (~2[-2,-21 ,ct-2)*ct-2: 
> C4 [-2,2] :=simplify (C2[-2,2] -coeff (C2[-2,2] , ct) *ct-coef f (C2[-2,2] , ct-2) 
> *cte2)*dj [O]+coeff (C2[-2,2] ,ct)*ct+coeff 2 - 2  ,cta2)*ct-2: 



Now that all the integrals are performed, I will re-arrange the components in a more transparent 

form. The matrix C[i j,k] will contain the coefficients of ~ [ i  jJ4dj[k]. 
> C[O,O,OI :=coeff (C3[O,Ol ,dj [Ol): 
> c[~,O,l]:=coeff (C3[O,Ol ,dj[ll): 
> ~[0,0,2]:=coeff (C3[O,Ol ,dj[23>: 
> C[O,O,-11:=coeff (c3[0,Ol ,dj[-11): 

> C[O,O,-21 :=coeff (C3CO,O] ,dj[-21): 
> c[o,-2,0] :=coeff (C3[0,-21 ,dj[0]): 
> c[O,-2,1] :=coeff(C3[0,-21 ,djCll): 
> C[o,-2.21 :=coeff(C3[0,-21 ,dj[21) : 
> C[O,-2,-l]:=coeff(C3[0,-2],dj[-I]): 
> CC0,-2,-21 :=coeff (C3C0,-21 ,dj C-21): 
> ~[0,2,0] :=coeff (~3[0,2] ,dj LO]): 

> ~~0,2,1I:=coeff(C3~0,2~,dj~l~): 
> C[0,2,2] :=coeff ( c ~ C O , ~ ]  ,dj [2l) : 
> cC0.2,-l]:=coeff (C3[0,2] ,dj[-11): 

> c[o,~,-2]:=coeff(C3[0,21,dj[-21): 
> ~[2,0,0]:=coeff (C3[2,O] ,dj[Ol): 
> ~[2,0,l]:=coeff(C3[2,O],dj[l]): 
> C[2,0,2] :=coeff (C3[2,O] ,dj[21): 
> C[2,0,-11 :=coeff (C3[2,0] ,dj [-I]) : 
> ~[2,0,-21 :=coeff (C3C2.01 ,dj 1-23): 

> C[2,-2,Ol :=coeff (C3[2,-21 ,djCOI): 
> C[2,-2,1] :=coeff(C3[2,-21 ,dj[ll): 
> ~[2,-2,2]:=coeff(C3[2,-21,dj[2]): 
> ~[2,-2,-l]:=coeff (C3[2,-21 ,dj [-I]): 
> C[2,-2,-21 :=coeff (C3[2,-21 ,dj [-21): 

> C[2,2,0] :=coeff (C3[2,23,dj LO]): 
> C[2,2,1]:=coeff(C3[2,2],dj[l]): 
> C[2,2,2] :=coeff (C3[2,2] ,dj[21): 

> ~[2,2,-l]:=coeff(C3[2,2],dj[-11): 
> ~[2,2,-2]:=coeff(C3[2,2],dj[-23>: 



Here C[kl,k2,k3]=<J+k3,m+kl,m'Sk2~V[J,m,m'>, and c2g in these represents cos(2gamma(t)) 

which is the orientation of Hyperion's center of mass from the space fixed x-axis. 
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