
EXTENSIONS OF JADE AND JXTA

FOR IMPLEMENTING A DISTRIBUTED SYSTEM

Edward Kuan-Hua Chen

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

School of Engineering Science

O Edward Kuan-Hua Chen 2005

SIMON FRASER UNIVERSITY

Spring 2005

All rights reserved. This work may not be reproduced in whole or in part,
by photocopy or other means, without the permission of the author.

APPROVAL

EXAMINING COMMITTEE

Chair:

Edward Kuan-Hua Chen

Master of Applied Science

Extensions of JADE and JXTA for Implementing a
Distributed System

John Jones
Professor, School of Engineering Science

William A. Gruver
Academic Supervisor
Professor, School of Engineering Science

Dorian Sabaz
Technical Supervisor
Chief Technology Officer
Intelligent Robotics Corporation

Shaohong Wu
External Examiner
National Research Council

Date Approved: April 8, 2004

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project o r
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, o r other educational institution, on its own behalf
or for one o f its users.

The author has further granted permission to Simon Fraser University to keep o r
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying o f this work
for scholarly purposes may be granted by either the author or the Dean o f
Graduate Studies.

I t is understood that copying or publication of this work for financial gain shall
not be allowed without the author's wrirten permission.

Permission for public performance, o r limited permission for private scholarly
use, o f any multimedia materials forming part o f this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy o f this work, retained in the
Simon Fraser University Archive.

W. A . C . Bennett Library
Simon Fraser University

Burnaby, BC, Canada

ABSTRACT

Distributed systems offer a useful approach for resolving critical networking limitations

that result from the use of centralized topologies. Currently available distributed

software platforms, however, have limitations that can limit their usefulness.

This thesis examines the architectures of two distributed software platforms, JADE and

JXTA, and compares their strengths and weaknesses. It is shown that JADE is a superior

platform in terms of efficiency and latency, mainly due to the partially centralized

approach of its Agent Management System. On the other hand, the decentralized

management system and unrestricted scalability of JXTA has the advantage that it is not

critically dependent on any node.

iii

ACKNOWLEDGEMENTS

I would like to thank William A. Gruver and Dorian Sabaz for their guidance and support

throughout the course of this thesis. I am grateful for their continuous and unwavering

support.

I would also like to thank John Jones of the School of Engineering Science, Simon Fraser

University, and Shaohong Wu of the National Research Council of Canada.

CONTENTS
. . .. Approval 11

... Abstract ... 111

.. Acknowledgements iv

Contents ... v

... List of Figures ... vlll

List of Tables ... x

Glossary .. xi

1 Introduction .. 1
... 1.1 Limitations of Centralized Networks 1

1.1.1 Scalability .. 2
1.1.2 Fault Tolerance .. 3
1.1.3 Security and Privacy .. 4 . .
1.1.4 Connectivity .. 4
1.1.5 Infrastructure Cost ... 6 . .

1.2 Distnbuted Systems .. 7
1.2.1 Distributed System Privacy and Security .. 8
1.2.2 Distributed System Fault Tolerance .. 8
1.2.3 Distributed System Scalability .. 9
1.2.4 Distributed System Connectivity ... 10

... 1.2.5 Distributed System Infrastructure Cost 10
... 1.2.6 Implementation Issues 11

1.3 Distributed Computing Models and Architectures .. 13
............................ 1.3.1 Common Object Request Broker Architecture (CORBA) 14

... 1.3.2 Distributed Component Object Model (DCOM) 14
.. 1.3.3 Remote Method Invocation (RMI) 14

... 1.3.4 Distributed Application Development 16
.. 1.4 Overview 17

1.4.1 Objective .. 17
1.4.2 Outline ... 17

2 Distributed Software Platforms .. 19
... 2.1 JADE Overview 21

2.1.1 JADE Agent Platform ... 22
... 2.1.2 JADE Software Architecture and Behaviours 26

2.1.3 Issues for JADE as a Distributed System .. 30
2.2 JXTA .. 32

2.2.1 JXTA Protocols ... 33

.. 2.2.2 JXTA Platform 37
2.2.3 JXTA Communication ... 40
2.2.4 Issues for JXTA as a Distributed System .. 45

........................... 2.3 Differences between JADE and JXTA in Distributed Systems 47

3 JADE/ JXTA Extensions for Improved Distributed Systems 49

3.1 Virtual Wireless Environment .. 49
3.2 JADE Architecture Extension ... 52

...................................... 3.2.1 Wireless Agent Communication Channel (WACC) 53
... 3.2.2 Global Directory Facilitator (GDF) 54

3.2.3 Global Agent Management System (GAMS) .. 55
... 3.3 JADE Software Architecture Overview 56

3.3.1 Broadcast Agent ... 57
.. 3.3.2 Receiver Agent 57

... 3.3.3 Sender Agent 59
.. 3.4 JXTA Architecture Extension 60
.. 3.4.1 Wireless Peer Pipes (WPP) 61

... 3.4.2 Global Peer Monitoring (GPM) 62
... 3.4.3 Global Peer Administration (GPA) 63
... 3.5 JXTA Software Architecture Overview 65

... 3.5.1 PipeComm() Class 65
.. 3.5.2 PeerRoute() Class 66

.. 3.5.3 Pipesender() Class and PipeListenerO Class 67

4 JADEIJXTA software extension implementation .. 69
4.1 JADE Implementation ... 69

.. 4.1 . 1 Broadcast Agent Implementation 71
.. 4.1.2 Receiver Agent Implementation 74

4.1.3 Sender Agent Implementation .. 78
4.2 JXTAImplementation ... 84

4.2.1 Class PipeListenerO ... 85
... 4.2.2 Class Pipesender Implementation 88

4.2.3 Class PipeCommO .. 90
4.2.4 Class PeerRouteO .. 93

... 4.2.5 Class PeerDisplayO 94

5 Platform Analysis .. 96
... 5.1 Qualitative Analysis 96 . .

5.1.1 Platforms Scalability .. 96
.. 5.1.2 Interoperability 98

... 5.1.3 Messaging Architecture 100
... 5.1.4 Platform Complexity 101

.. 5.1.5 Protocols 102
.. 5.1.6 Agent Migration 106
... 5.2 Quantitative Analysis 108

.. 5.2.1 Test Setup 109

5.2.2 Multiple Agent-Pairs on Same Host .. 109
5.2.3 Multiple Agent-Pairs on Different Host ... 112
5.2.4 Multiple Message Size Comparison .. 113
5.2.5 Quantitative Result Discussion ... 114

5.3 Summary, Concluding Remarks and Future Research 115
5.3.1 Summary .. 115
5.3.2 Concluding Remarks ... 121
5.3.3 Future Research .. 122

6 References ... 123

Appendix A .. 125

Appendix B .. 157

vii

LIST OF FIGURES

Figure 1 . Traditional Client-Server Topology .. 1

Figure 2 . Catastrophic System Failure ... 3

Figure 3 . Wireless Local Area Network (LAN) ... 5

Figure 4 . Single-Point vs Multi-Point Communication .. 5

Figure 5: Distributed System Topology ... 9

Figure 6 . Wireless Micro-Routers in Automated Utility Reading [I] 12

Figure 7 . JADE Components ... 21

Figure 8 . FIPA Communication Framework .. 22

Figure 9 . JADE Intra-Platform Message Delivery [12] ... 24

Figure 10 . JADE Inter-Platform Message Delivery [12] ... 25

Figure 1 1 . Jade Agents and Software Packages Interactions ... 27

Figure 12 . Jade Software Packages Interactions ... 27

Figure 13 . JADE Behaviour Class Hierarchy [17] .. 29

Figure 14 . JXTA Protocols Sequence Diagram ... 36

Figure 15 . JXTA Platform Architecture [6] .. 37

Figure 16 . JXTA Rendezvous Peer Search [20] ... 41

Figure 17: JXTA Router Peer [20] ... 42

Figure 18: JXTA Gateway Peer [20] ... 43

Figure 19 . Roaming Node with Intelligent Link at T=TO ... 50

Figure 20 . Roaming Node with Intelligent Link AT T=T1 .. 50

Figure 21 . JADE in Virtual Wireless Environment .. 52

Figure 22 . Wireless Agent Communication channel in Agent Platform 53

Figure 23 . Global Directory Facilitator in Agent Platform ... 54

Figure 24 . Global Agent Management System in Agent Platform 55

Figure 25 . Modified JADE Framework for an Improved DS ... 56

Figure 26 . JXTA Core Layer and Components .. 61

Figure 27 . JXTA Extension: Wireless Peer Pipe .. 62

viii

Figure 28 . JXTA Extension: Global Peer Monitoring .. 63

Figure 29 . JXTA Extension: Global Peer Administration .. 63

Figure 30 . Modified JXTA Framework for an Improved DS ... 64

Figure 3 1 . FIPA Communication Framework [5] ... 69

Figure 32 . Extensions of JADE Agent Model .. 70

Figure 33 . Broadcast Agent Interaction with JADE Software Packages 71

Figure 34 . Receiver Agent Interaction with JADE Software Packages 78

Figure 35 . Simplified User Interface .. 78

Figure 36 . Sender Agent and JADE Software Packages Interactions 83

Figure 37 . Modified JXTA Framework for an Improved DS ... 84

Figure 38 . Interactions between PipeListenerO and JXTA Protocols 88

Figure 39 . Interactions between Pipesender() and JXTA Protocols 90

Figure 40 . Interactions between PipeComm() and JXTA Protocols 93

Figure 41 . JADE in Virtual Wireless Environment ... 98

Figure 42 . Jade Software Packages Interactions .. 103

Figure 43 . JXTA Protocols Sequence Diagram ... 105

Figure 44 . Interactions between PipeComm() and JXTA Protocols 106

Figure 45 . Local Area Network Test Environment ... 109

Figure 46 . Standard JADE Agents in Single Host, Different Containers [19] 110

....................... Figure 47 . Standard JADE Agents in Single Host, Same Container [19] 110

Figure 48 . Variable Agent-Pair on Same Host Comparison [19] 111

Figure 49 . Variable Agent-Pair on Different Host Comparison [19] 112

Figure 50 . Variable Message Size Comparison [19] .. 113

Figure 5 1 . Extensions of JADE Agent Model ... 118

Figure 52 . Modified JXTA Framework for an Improved DS ... 118

LIST OF TABLES

Table 1 . Comparison of distributed computing techniques .. 15

.. Table 2 . Distributed Software Platforms and Vendors 20

Table 3 . JADE Behaviour Model Description .. 28

Table 4 . Advantages and Advantages of JADE in a Distributed System 31

Table 5 . JXTA Protocols and Descriptions ... 34

Table 6 . JXTA Core Layer Concept Description ... 38

Table 7 . Advantages and Disadvantages of JXTA in a Distributed System 46

Table 8 . Comparison of JADE and JXTA in Distributed System 48

.. Table 9 . Message Types Supported by Receiver Agent 58

Table 10 . Message Types Supported PipeListener Class ... 68

Table 1 1 . Message Headers and Descriptions .. 75

Table 12 . Class Display() Method Description .. 79

... Table 13 . Class J-Node Method Description 82

Table 14 . Message Headers and Descriptions .. 87

Table 15 . Class PipeComm () Method Description .. 92

Table 16 . Class Display() Method Description .. 95

... Table 17 . JADE Software Package Description 102

. Table 18 JXTA Protocols and Descriptions .. 104

. Table 19 Comparison of JADE and JXTA in Distributed System 107

Table 20 . Advantages and Disadvantages of JADE in a Distributed System 116

. Table 21 Advantages and Disadvantages of JXTA in a Distributed System 117

GLOSSARY

ACC

ACL

AMS

API

DF

FIP A

GAMS

GDF

GPA

GPM

HTTP

IP

JADE

JVM

JXTA

LAN

OMG

ORB

RMI

RTT

Agent Communication Channel

Agent Communication Language

Agent Management System

Application Program Interface

Directory Facilitator

Foundation for Intelligent Physical Agents

Global Agent Management System

Global Directory Facilitator

Global Peer Administration

Global Peer Monitoring

HyperText Transfer Protocol

Internet Protocol

Java Agent DEvelopment framework

Java Virtual Machine

Juxtapose Project begun by Sun Microsystems

Local Area Network

Object Management Group

Object Request Broker

Remote Method Invocation

Round Trip Time

SDK (Java) Standard Development Kit

SFU Simon Fraser University

VNET Virtual Network Project

WACC Wireless Agent Communication Channel

WDS Wireless Distributed System

WPP Wireless Peer Pipes

xii

1 INTRODUCTION

1.1 Limitations of Centralized Networks

With the explosive growth of networks, there exists a critical need to deliver information

in a robust and efficient manner. Although applications such as the Internet were built on

the vision of a completely decentralized network that allowed unlimited scalability [14],

the reality is that most systems today are still built on the client-server concept.

In a centralized system, all functions and information are contained within a server with

clients connecting directly to the server to send and receive information, as illustrated in

Figure 1.

Figure 1. Traditional Client-Server Topology

Typically there are three key requirements for a central server: large data storage,

significant processing power, and continuous reliable communication between the server

and its clients [24]. Most applications, file and database servers systems are implemented

with this kind of centralized topology [8].

However, as the network continues to grow, this traditional topology is inadequate to

meet the demand of its users. The heavy emphasis on a central server places an undue

burden on the network. As a centralized network expands, issues of scalability, fault-

tolerance, security and infrastructure cost will hinder its growth.

1.1.1 Scalability

Centralized topologies are useful when the number of clients is unlikely to increase

significantly. A server only has a finite processing capacity before a request is either lost

or rejected. Since a server can only accommodate a fixed number of clients at a given

time, it will need to allocate resources that would otherwise remain idle to accommodate

the "bursty" nature of network traffic. Network resources are not utilized to their full

potentials, thus creating areas of network congestion while other resources are idle [8].

1.1.2 Fault Tolerance

All critical data and information is stored at a central location, the server. The success or

failure of the entire system is critically dependent on the reliable and consistent operation

of the server.

As illustrated in Figure 2, the failure of a central server will have a catastrophic effect on

the entire network. All exchanges of information between the server and client will stop.

In practise, secondary servers are usually in place to avoid a complete shutdown. They

are usually redundant systems that remain idle the majority of time.

A robust system should not have a single-point of failure that will have a catastrophic

consequence on the system.

1.1.3 Security and Privacy

Since all critical data is stored at a central server, the privacy of all clients may be at risk

when the security is compromised. By gaining access to the server alone, individuals are

able to access information of the entire system, including information private to each

client such as credit card numbers, bank accounts and medical files.

1.1.4 Connectivity

Currently, centralized topologies are usually implemented by wireline for which fibre-

optic cables, twisted pairs and coaxial cable are the most commonly used medium. Users

usually do not have the physical capacity to roam freely within the network and are

limited by the physical topology of this infrastructure. The need for wireless

connectivity has resulted in the standardization of the wireless protocol, IEEE 802.1 1 .

Users are now able to roam freely within a wireless LAN by communicating with access

points in the LAN and no longer physically constrained to their desks.

Although the establishment of the IEEE 802.1 1 standard is a step in the right direction, its

implementation is generally sbased on a centralized topology . In a typical wireless LAN

environment, illustrated in Figure 3, clients utilize access points in networks to connect

with other clients. Information is first sent from a sender to the Access Point and is then

forwarded to the receiver. This approach still retains deficiencies of centralized systems,

e.g., the failure of access points will have a catastrophic effect on the overall network.

Act- Point

FIGURE 3. WIRELESS LOCAL AREA NETWORK (LAN)

The 802.1 1 standard does allow a form of distributed connectivity, called Ad-Hoc Mode.

However, it only provides point-to-point communication, rather than multi-point-to-

multi-point communication, as illustrated in Figure 4.

We would like to combine the IEEE 802.1 1 standard with the functionality of a

distributed system environment. Many issues in the wireline centralized approach can be

resolved using a decentralized architecture. The resulting system would be the basis of a

distributed system that functions in a wireline or wireless environment.

1.1.5 Infrastructure Cost

The expansion of a wireline network has always been partially limited by the cost of

additional infrastructures. Fibre optics cables are often used to interconnect two locations

and the material and labour cost of switches and routers has restricted the growth of

network in rural areas. Also, the time required to complete such an expansion can hinder

the growth of the network.

1.2 Distributed Systems

In the last section we saw that a client-server topology has limitations in the areas of

scalability, security, connectivity and infrastructure cost. This topology is unable to keep

pace with the explosive growth of modem networks. Another approach that has been

gaining interest is a Distributed Topology.

A Distributed System is a network topology that decentralizes the system so that no node

has a greater central role than any other node. This topology fulfills the need for a

robust, open-ended and highly scalable system by eliminating the central server and

efficiently utilizes network resources [8]. Network resources are allocated across the

network to alleviate computational bottlenecks within a single node or network area.

The Internet is an example of a Distributed System. Initially the Internet was designed to

be a robust system with unrestricted scalability [13]. In reality, however, it is still reliant

on localized web servers for database and file storage. Also, heavy emphasis is placed on

routers that interconnect multiple networks. If the servers and routers fail, the LAN will

be unable to communicate with other networks on the Internet. Issues related to a

centralized topology are still prevalent with the current Internet.

In a fully distributed system, all nodes on the network are of equal significance, the

failure of one node should not have a catastrophic effect on any other node on the

network. A fully Distributed System has the potential to enhance system efficiency,

reliability, extensibility and flexibility [8].

Some of the characteristics and advantages of Distributed Systems are now discussed.

1.2.1 Distributed System Privacy and Security

Unlike a centralized system, a distributed system lacks a central server for storage of

critical information. The information is spread among nodes and is retrieved only at the

demand of the requesting node. When the security of any node is compromised, the

breach is localized and has no detrimental effect.

In addition, a message sent between nodes can be packetized to enhance security. It can

be broken down into multiple data-packets, each containing a portion of the original

message. The different data-packets can be sent through different paths to reach their

destination. The receiver node will then re-arrange the packets to obtain the original

information. This method ensures that no node except the receiver has complete access

to the message, but can only route it onto the receiver.

1.2.2 Distributed System Fault Tolerance

Centralized systems have a single-point of failure. Centralized topologies are dependent

on reliable performance of the servers and the consistent operation of communications

between the servers and their clients. When a failure does occur to a server, all activities

within the network cease. However, when a node fails in a distributed environment,

information is simply routed around the failed node and continues its path to the receiver

node. The distributed system will maintain its functionalities as long as there is an

alternate path available.

1.2.3 Distributed System Scalability

Unlike a centralized system that utilizes a central server to process incoming data from all

clients, nodes in a fully distributed system communicate directly among themselves.

Requests for information and the actual transfer of information are performed locally

between individual nodes. This eliminates the need for a powerful server and thus

provides enhanced scalability as opposed to a client-server topology. Additional nodes

are able to freely join the network without incurring computational burden on the system.

Each additional node that joins is also an additional resource for the network to utilize to

ensure that the overall network remains efficient and robust.

1.2.4 Distributed System Connectivity

Nodes themselves may sometimes act as relays between two nodes if the sender and the

receiver nodes cannot communicate directly. Different transmission paths can be formed

from the sender to the receiver, thus ensuring the robustness of the distributed system in

the event of the failure of a node. Nodes cooperate and collaborate with neighbour nodes

to decide the most efficient path for message transmission. Nodes will use routing

algorithms to direct traffic away from congested areas of the network and improve

overall network efficiency robustness.

1.2.5 Distributed System Infrastructure Cost

In a wireless Distributed System, nodes communicate through wireless protocols. There

are no fibre optics to implement and the amount of time and labour needed is far less

when compared to a wireline system. Nodes are no longer physically limited to a

geographic location; they are now able to roam freely within the boundaries of the

wireless LAN.

1.2.6 Implementation Issues

A wireless application that utilizes a Distributed System is Automated Meter Reading.

There is a need for utility companies to avoid the slow and expensive manual process of

meter reading by automatically monitoring and acquiring utility meter from each

customer location in real time.

A solution to this problem has been proposed by Sabaz, et al. [26]. In Figure 6,

Intelligent Wireless MicroRouters are located at each house and these devices self

organize to form a distributed network. Due to the overlapping coverage of the devices,

meter data can be passed from one device to another, thus eliminating the need for a

dedicated RF system or wireline system. Each Intelligent Wireless MicroRouter can only

communicate with others in their area of coverage, and distributed intelligence software

enable multiple Intelligent Wireless MicroRouters to perform negotiations that determine

the best path for sending information to the collectors, as shown in Figure 6.

FIGURE 6. INTELLIGENT WIRELESS MICROROUTERS FOR AUTOMATED METER READING [I]

1.3 Distributed Computing Models and Architectures

Although considerable research has been devoted to the transformation of client-server

topologies into a distributed topology, there remain many unresolved issues.

Traditionally, applications were designed for a single host operating within a single-

address space utilizing a single operating system [14]. With the increasing growth of

networks, applications now have to interact with other components on the network in a

dynamic yet robust way [14]. However, there still exist fundamental issues with the

implementation of distributed application programming environments:

Address Space: Techniques to explicitly distinguish between local and remote

objects and to handle remote interactions.

Network Dimension: Handling of variance in hardware, software and operating

systems within the network

Programming-related: Handling of variance in programming language

implementation

Infrastructure-related: Distributed architectures defining their own protocols for

processing method parameter and return values, e.g., IIOP for CORBA, JRMP

for RMI and ORPC for DCOM.

Source: Bellifemine, et a1.[12]

Distributed computing architectures have been developed over the years to handle

these distributed computing issues. Three architectures are briefly described and

compared in the following subsections.

1.3.1 Common Object Request Broker Architecture (CORBA)

CORBA is an architecture and specification for creating, distributing, and managing

distributed program objects in a network. CORBA allows programs at different locations

and developed by different vendors to communicate in a network through its "interface

broker." CORBA was developed by OMG (Object Management Group) and is

sanctioned by both IS0 and XIOpen as the standard architecture for distributed objects.

1.3.2 Distributed Component Object Model (DCOM)

DCOM is a protocol that enables software components to communicate directly over a

network in a reliable, secure, and efficient manner. Previously called "Network OLE,"

DCOM is designed for use across multiple network transports, including Internet

protocols such as HTTP. DCOM is based on the Open S o b a r e Foundation DCE-RPC

specification, and operates with both Java applets and Microsoft ActiveX components

through its use of the Component Object Model (COM).

1.3.3 Remote Method Invocation (RMI)

RMI is a set of protocols that enable Java objects to communicate remotely with other

Java objects. RMI is a relatively simple protocol, but unlike more complex protocols such

as C O M A and DCOM, it works only with Java objects. C O M A and DCOM are

designed to support objects created in any language.

Table 1 briefly compares these three distributed computing techniques with respect to the

issues described above.

Table 1. Comparison of distributed computing techniques

Address Space Issue
(Calling remote hosts) r-T
Network Dimension
Issue (Variance in
softlhardware and OS)

Programming
Language Related
Issues

Infrastructure Related
Issues

objects objects

ORE3 compatibility programming language

ORE3 layer handles data
and call format
conversions

ORPC layer handles
data and call format
conversions

Internet Inter Orb
Protocol (IIOP) l ORPC

Strong dependence on

from local and remote
objects

Strong dependence on

No conversion
necessary. Strictly
JVM-JVM
communication

Uses Java and is a Java-
toJava solution.
Objects explicitly
categorized as local or
remote

Strong dependence on
JRMP

Source: Li[15]

However, neither of the currently available distributed applications provide a complete

solution. There is a need for a better distributed architecture to function better, not just in

wireline networks, but especially in wireless distributed systems. This is particularly

vital as current and future networking implementations will require a distributed wireless

system environment.

1.3.4 Distributed Application Development

Although there is much interest in distributed system applications, the complexity of

building them has hindered development.

Many organizations are developing distributed software platforms to facilitate the

development of distributed topologies. The platforms hide some of the intricacies of a

distributed environment and allow developers to concentrate their efforts on the higher-

level design of the system, rather than the low level communication transport. Examples

of distributed software platforms include JADE [3], FIPA-OS [6], JXTA [4] and JACK

PI .

1.4 Overview

1 A.1 Objective

This thesis will discuss the architecture and extensions needed for two distributed

software platforms, JADE and JXTA, to facilitate the development of distributed systems.

We shall examine the architectural characteristics of both platforms, outlining their

strengths and weaknesses. Then we shall examine the architectural extensions needed to

improve the current platform. Quantitative and qualitative results will be given for both

platforms.

1 A.2 Outline

Chapter 1 provides a brief overview of this thesis and suggests potential flaws in current

centralized networks. It also provides a brief introduction to distributed systems and their

advantages.

Chapter 2 briefly outlines the distributed software platforms available today and

describes in detail the architecture of JADE and JXTA that are modeled in this thesis to

facilitate the development of distributed systems.

Chapter 3 discusses the different architectural extensions required by each platform for

an improved Distributed System. Conceptual details are presented along with an outline

of the implementation approach.

Chapter 4 provides an analysis of the extensions implemented for the two software

platforms. Example software listings and classes are presented.

Chapter 5 provides the qualitative and quantitative analysis of the JADE and JXTA

platforms with the proposed extensions. A summary of this research is provided with

directions for future research.

2 DISTRIBUTED SOFTWARE PLATFORMS

Centralized architectures are inherently more focused on simplicity, rather than on

scalability and robustness, whereas a distributed system depends on a network that is

scalable, robust and relatively inexpensive to maintain. However, the complexity of

software implementation for a distributed system is greater than that for a centralized

system. As the number of nodes within a distributed system increases, the inherent

combinatorial nature of the network becomes exponentially more complex. Current

distributed computing techniques do not provide a complete solution to handle distributed

computing issues.

Presently, the potential strength that a distributed system may offer has focused research

attention to develop software platforms that facilitate the implementation of a distributed

system over a wireline network. Table 2 illustrates some of the distributed software

platforms and their vendors.

TABLE 2. DISTRIBUTED SOFTWARE PLATFORMS AND VENDORS

I Software Platform I Vendor I

L

JXTA [4] I Sun Microsystems Inc

JADE [3] Telecom Italia

FPA-OS [7] Nortel Networks

JACK [6]

I

Zeus [23] I BT Intelligent Agent Research

Agent Oriented Software Group

Grasshopper [22]

I

I Agent Development Kit [24] I MADKIT Project I

GMD FOKUS

In this thesis, we concentrate on Java Agent Development Framework (JADE) and

JXTA.. Both platforms are based upon Java, taking advantage of the native utility for

interoperability. JADE and JXTA are built to handle infrastructure issues. Protocols and

classes are abstracted to provide software developers with ease in implementing a

distributed system. The platforms serve as middleware that deals with communication

transport and message encoding. Software developers can therefore concentrate on the

development of complex models and reasoning that constitute the distributed system,

rather than on the low-level communication protocols.

Because of these features [12] [151 [171 and their research and commercial interest,

JADE and JXTA were chosen for this thesis.

2.1 JADEOverview

JADE is an open source software platform developed by Telecom Italia Labs

implemented in the Java language to simplify the development of a distributed system. It

is in compliance with the Foundation for Intelligent Physical Agent (FIPA) specifications

to ensure standard compliance through a set of system services and agents. FIPA is an

international non-profit organization established in 1996 to produce standards for the

interoperation of agents and agent-based systems [5] .

JADE is composed of two core components: a platform that allows developers to create

FIPA-compliant agent-based systems, and a Java package to develop software agents for

inter-platform and intra-platform communication between agents, as illustrated in Figure

7

JADE

FIGURE 7. JADE COMPONENTS

2.1.1 JADE Agent Platform

JADE'S communication system is based upon FIPA standards. There are three agents

that must be present in a FIPA compliant agent platform, as illustrated in Figure 8 and

described as follows:

IUTERIAL PLATFORM MESSAGE TRAUSPORT

Agent Management System (AMS): An agent responsible for managing
the operation of an Agent Platform (AP), such as the creation, deletion and
oversight of the migration of agent to and from the Agent Platform (AP)

Directory Facilitator (DF): An agent that provides "yellow page" services
to other agents. It stores description of the agents and the services they
offer.

Agent Communication Channel (ACC): An agent that uses the
information provided by the AMS to route messages between agents either
within the same platform or agents on other platforms.

Source: FIPA[5]

The AMS and DF are automatically created when the JADE platform is first launched.

The ACC allows message communication within and tolfiom different platforms (host

computers). Both the AMS and DF utilize the ACC for communication.

Each instantiation of JADE is termed a container. While multiple instantiations of JADE,

thus multiple containers, can exist on the same platform, there can be only a single main

container on which the DF and AMS reside. As a result, within a JADE network, there

can only be one DF and AMS. Agents residing on other platforms must rely on constant

and reliable communication with the main container for a complete JADE runtime

environment [8], as illustrated in Figure 9.

JADE uses various methods for message delivery between agents. If both the sender and

the receiver agents reside in the same container, JADE uses event passing for

communication. When the sender and the receiver reside in different containers but in

the same platform, JADE uses Remote Method Invocation (RMI). For agents residing in

different platforms, JADE uses Internal Message Transport Protocols (IMTP) such as

IIOP, HTTP and WAP.

Figure 9 and Figure 10 illustrate the message delivery between agents in different

scenarios.

JADE PLATFORM

JADE CMTAlIXR

Figure 9. JADE Intra-Platform Message Delivery [12]

I JADE COIITIITUEB {

FIGURE 10. JADE INTER-PLATFORM MESSAGE DELIVERY [121

2.1.2 JADE Software Architecture and Behaviours

Java was chosen by Telecom Italia Labs because of its many features geared towards

object-oriented programming in distributed heterogeneous environment including Object

Serialization, Reflection API and Remote Method Lnvocation (RMI) [17]. It provides

application programmers with ready-made functionality and abstract interfaces for

custom application dependent tasks [17].

JADE is composed of the following major software packages:

Jade.core: Implements the kernel of the system. It includes the Agent
class that must be extended by application programmer. Behaviour class
hierarchy contained in the sub-package implements the logical tasks that
can be composed in various ways to achieve complex tasks.

Jade.lang.ac1: Provides Agent Communication Language according to
FIPA Standard Specifications.

Jade.domain: Contains all Java class that represent Agent Management
System defined by FIPA standards

Jade.gui: Contains generic classes useful to create GUIs

Jademtp: Contains the Message Transport Protocol that should be
implemented to readily integrate with the JADE framework.

Jade.proto: Provides classes to model standard FIPA interaction protocols
@pa-request, $pa-query, fipa-contract-net)

Figure 11 illustrates the interactions between the different Jade software packages and the

AMS, DF and ACC.

1 AMS I

FIGURE 1 1. JADE AGENTS AND SOFTWARE PACKAGE INTERACTIONS

Figure 12 illustrates the dependencies between the different Jade software packages.

Internally, each JADE agent is composed of a single execution thread and all its tasks are

modelled and implemented as Behaviour objects, and implemented as a finite state

machine. Adding a Behaviour object is equivalent to spawning a new (cooperative)

execution thread within the agent [17]. Agent behaviours can therefore be described as a

Finite State Machine.

There are two main types of Behaviour: Simple and Composite. A Simple Behaviour

models a task that is not composed of subtasks while a Composite Behaviour models a

task that is a combination of smaller, subtasks. Table 3 illustrates a few of the Behaviour

models that are available.

TABLE 3. JADE BEHAVIOUR MODEL DESCRIPTION

I Agent returns to idle state immediately after completion of task

Behaviour
One Shot

Cyclic I Task cycle repeats indefinitely

Description
Tasks only performed once

I Agent never return to idle state

I Each state dependent on current condition and previous state

Complex

I Agent returns to idle when given condition and state are met

Agent tasks model a Finite State Machine

Figure 13 illustrates and briefly describes the Jade class behaviour hierarchy.

FIGURE 13. JADE BEHAVIOUR CLASS HIERARCHY [171

2.1.3 Issues for JADE as a Distributed System

Some of the limitations of JADE that we will address in subsequent chapters are briefly

described here.

Message transport between agents in JADE is handled internally and users have no

knowledge and control of the exact path that the message is traversing.

Individual nodes in a Distributed System may not be able to directly communicate with

each other. They rely on intermediary nodes to relay their information across the

network. In a Wireless Distributed System application, wireless connectivity scenarios

(e.g., dynamic link failure/establishment) cannot be simulated. Extensions are required to

the current version of JADE to facilitate the simulation of a Distributed System.

A J.ADE application is dependent on the AMS and DF, which resides in the main

container. Critical functions such as agent creation, migration, deletion and yellow page

service cannot operate without the aid of AMS and DF. A complete JADE runtime

system is critically dependent on the constant and reliable communication between the

main and other containers. The failure of the main container will have a catastrophic

effect on the entire JADE system.

Nevertheless, JADE also has advantages over conventional distributed computing

techniques that facilitate the development of a distributed system. Table 4 lists some of

the advantages and disadvantages that result from utilizing JADE in a distributed system.

TABLE 4. ADVANTAGES AND ADVANTAGES OF JADE IN A DISTRIBUTED SYSTEM

Advantages: I Disadvantages

Open source, completely written in
JAVA and FIPA-compliant

Concise and efficient software
architecture

Cannot define specific path to
receiving node

Serves as middleware to deal with
communication transport and
message encoding

Unable to simulate different
transmission scenarios

Critical dependence of AMS and
DF of the main container for
communication

All agent tasks modeled as
Behaviors objects for simple
implementation of complex tasks

Ability for agents to migrate from
container to container, regardless of
platform

2.2 JXTA

JXTA was developed by Sun Microsystems to enable end users to build distributed

systems. It is a software framework that utilizes a set of protocols to support the

development of distributed applications. JXTA does not define a specific type of

application, but rather a standard for how the application should be created. Because the

protocols are not rigidly defined, their functionalities can be extended to satisfy uniquely

different applications [20]. The goal of JXTA is to achieve the following features:

Operating System Independence

Language Independence

Provide services and infrastructures for distributed applications

Source: Li[l5]

A JXTA application is able to incorporate a large number of potential participants in a

JXTA-enabled distributed application. Because the architecture lacks a central

management hierarchy, no failures of any client should result in a catastrophic failure of

the entire application.

Participants in a JXTA network are known as peers. They are software entities that are

similar to agents in JADE. Multiple peers can coexist on a single node, with each peer

able to perform tasks individually. However, unlike agents in JADE, peers in JXTA are

not FIPA-compliant and are not able to freely migrate. They are physically tied to the

node on which they reside.

JXTA is composed of a set of protocols and a JXTA platform. The protocols allow an

individual to easily produce a new JXTA application without extensive knowledge of the

underlying distributed domain. The JXTA platform utilizes the protocols for the

development of the distributed application and the different layers of abstractions behind

each application such as peer communication and peer management

2.2.1 JXTA Protocols

The JXTA protocols are used to enable nodes to discover, interact, and manage a

distributed application. The protocols abstract the implementation details, making the

task of creating a distributed application much easier and less sustained. The protocol

specification only describes how nodes communicate and interact; it does not restrict the

implementation of a distributed application [20].

The protocols are built to smoothly handle communication between different operating

systems, development languages and even exchanges between clients behind firewalls.

The peer is assumed by JXTA Protocol to be any type of device, from "the smallest

embedded device to the largest supercomputer cluster" [18].

The protocols have been specifically designed for "ad hoc, pervasive, and multi-hop

network computing". By using the JXTA protocols, peers in a JXTA application can

cooperate to form "self-organized and self-configured peer groups independently of their

positions in the network (edges, jrewalls), and without the need of a centralized

management infrastructure. " [20]

JXTA protocols are based on XML - a widespread language-independent and platform-

independent form of data representation.

Table 5 lists the JXTA protocols, their descriptions, and their functionalities within a

JXTA application.

TABLE 5. JXTA PROTOCOLS AND DESCRIPTIONS

JXTA
Protocol

Peer Discovery

(PDP)

Peer Resolver

(P W

Functionalities within
JXTA Application

Resource Search

Generic Query Service

Description

Allows a peer to discover other peer
advertisements (peer, group, service, or
pipe>.

The search mechanism used to locate
information. Can also find peers, peer
groups, and all other published
advertisements.

Allows a peer to send a search query to
another peer.

The resolver protocol is a basic
communications protocol that follows a
requesthesponse format.

The resolver is used to support
communications in the JXTA protocols
like the discovery protocols. It is used by
other protocols to send messages/requests

Peer Information

(PIP)

Rendezvous

(R VP)

Peer Membership

PMP)

Monitoring

Message Propagation

to other peers

Allows a peer to learn about the status of
another peer.

Responsible for propagating message
within JXTA groups.

Defines a base protocol for peers to send
and receive message w i t h the group of
peers and to control how messages are
propagated.

Security Allows a peer to join or leave a peer
group.

Pipe Binding

(PBP)

Peer Endpoint

(PEP)

Addressable Messaging

Message Routing

Supports the authentication and
authorization of peers into peer groups.
Provides security for peer group

Used to create the physical pipe endpoint
to a physical peer

Communication path between one or
more peers

Connecting peers via the route(s) supplied
by the Peer Endpoint Protocols.

Uses gateways between peers to create a
path that consists of one or more peers.

Utilizes the pipe binding protocol and its
the list of peers to create the route
between peers

Searches for gateways that allow the
barriers, such as firewalls and others, to
be traversed

Automatic protocol detection and
conversion to allow two peers with
different supporting protocols to
communicate

Source: Developer[20]

Figure 14 illustrates the interaction between the various JXTA protocols. All protocols

require the support of PEP to facilitate a path to the receiving peer. After a path has been

determined, PBP is used to create the physical pipe communication between two peers.

Finally, PRP is used to support generic query services that are basic to all peer

communication. The sequence of interactions is illustrated in Figure 14.

I Peer Information (

I Rendezvous 1

FIGURE 14. JXTA PROTOCOL SEQUENCE DIAGRAM

2.2.2 JXTA Platform

The JXTA Platform is modeled after the standard operating system, where there are three

distinctive layers consisting of the Core, Services and Applications, as illustrated in

Figure 15.

I JXTA Application Layer I

JXTA Service Layer

JXTA Core Layer

I [peer Monitoring I]peer Administrationj (peer Pipes 1

FIGURE 15. JXTA PLATFORM ARCHITECTURE [6]

The JXTA Core layer provides the foundation of any distributed application. Its

components and hctionalities are utilized by the Service layer. The Applications layer

in turn uses the Services layer to access the JXTA network and utilities [18].

2.2.2.1 JXTA Core Layer

The JXTA Core layer provides the basis of all JXTA applications. New entities such as

peers, peer groups, pipes and identifiers are created.

Table 6 lists the objects created in the Core layer and their involvement in the

development of a distributed application.

TABLE 6. JXTA CORE LAYER CONCEPT DESCRIPTION

Description

An entity on the network that implements one or more JXTA protocols

Rendezvous Peers support searches and store advertisements within the
JXTA group

A collection of peers on the network with common interests or
objectives.

A way to advertise specific services that are available only to group
members.

Peers can joinhesign from specific groups and be members in multiple
groups

Membership authentication provides security for access to group with
specific services or information.

An address of a peer that implements a dedicated pipe of communication
with another peer

Multiple end-points provide communication with multiple peers

A dedicated, virtual connection between two peers.

Used as abstraction to hide the fact multiple peers may be used to relay
information to receiving peer.

Several types of pipes available: Uni-directional Asynchronous,
Synchronous requesthesponse, Bulk Transfer, Streaming, and Secure.

I Advertisement I An XML document that describes a JXTA message, peer, peer group, or I
I service.

I Advertisements stored in local Rendezvous Peers to support
advertisement search within specific sub-section of a group

Source: Wilson[l8]

Identifiers

2.2.2.2 JXTA Service Layer

Globally unique IDS that specify a resource, not the physical network
address. Randomly generated to globally identify peers, peer groups,
pipes or advertisements.

The JXTA Service Layer provides network services that could be incorporated into

different JXTA program. They include searching for resources on a peer, sharing

documents among peers and performing peer authentication. Each JXTA application can

only utilize a specific set of network services that are relevant to its application goals.

The Service Layer can include additional functionalities that are being built by either

open source developers working with JXTA or by the JXTA development team.

2.2.2.3 JXTA Application Layer

The Applications Layer builds on the resources of the service layer to provide end users

with a complete JXTA solution. Various services are collectively used to provide such a

solution. Instant messaging and file sharing are two of the most popular applications of

distributed systems. A User Interface is typically present for a JXTA Application.

2.2.3 JXTA Communication

In the JXTA environment, different types of peers are used to coherently manage requests

and communications. JXTA uses three types of peers to accomplish this task:

Rendezvous peers are used to relay and search for requests,

Router peers are used to implement the peer end-point protocol and establish a multi-

hop path to the receiving node

Gateway peer are used to relay messages between peers.

2.2.3.1 JXTA Rendezvous Peer

The key purpose of a Rendezvous peer is to facilitate the searching of

advertisements beyond a peer's local network. Rendezvous peers usually have more

resources than other peers and store a large amount of information about the peers

around them, such as their identifications and services [20]. If the information

requested cannot be found locally, the Rendezvous peer will act as a relay and

forward the request to other rendezvous peers around the network.

Figure 16 illustrates a typical search involving multiple Rendezvous peers. The

sequence of the search is as follows:

Peer 1 initiates search by querying local Peer 2 and 3 via IP Multicast

If specified resource not found, local Rendezvous peer is searched.

If the rendezvous peer does not have the advertisement, successive
rendezvous peers are searched. Besides peers local to the querying peer,
only rendezvous peers are used.

3.1.2:TCP Result(4,S. 6.7,8)

Knows about 5 8 8

i

3.1 .l:TCP Quety 3.1.1 .I :TCP Resutt(5,6.7)

- Rendervws 4
Rendernous Known by Peer 4

M - 1 6 8 7

Paw6 P#t 7 -

FIGURE 16. JXTA RENDEZVOUS PEER SEARCH [20]

Any peer has the option of being a Rendezvous, though not required. The Rendezvous

peer can retain a cached copy of the results from previous searches. This feature

expedites future searches with requests similar to previous searches.

2.2.3.2 JXTA Router Peer

A Router peer is any peer in JXTA that supports the Peer Endpoint Protocol. The

protocol internally implements routing to determine the most efficient route to the

destination peer.

The request for a route starts with a peer initiating the request to the Router peer. The

Router peer first search the local network for the destination peer. If the peer is not found,

other Router peers are contacted until the destination peer is located. Previous requests

are also cached to expedite future requests

Figure 17 illustrates how a route is determined between two distant peers.

(a route lo peers. 1

\
\
\

Routec rindf gateviay at 7
that cen foure b both 6 and

8. Rewns route betwecr
6.7, and 8. 1

eeet1 E Pea7
Start- A- ~-izz

- ,=-
FIGURE 17: JXTA ROUTER PEER [20]

2.2.3.3 JXTA Gateway Peer

A Gateway peer is used to relay messages, not request, between peers. It can also store

messages and wait for the receiving peer to collect the messages.

Gateway peers arise from the fact that different communication protocols are used by

different peers. Some peers may use TCP, while other may use IP. To support wireless

connectivity, the Wireless Application Protocol (WAP) is also needed [20]. Gateway

peers act as intermediaries between the different protocols and provide translation service.

Gateway peers are also used to go through common security barriers such as firewalls,

which filters nearly everything except HTTP. Figure 18 illustrates how a Gateway peer

is used to interface between Peer 1 and Peer 3.

Peer1 -

Internet Peer 2
P

Gateway
Firewall
--------------------_I_______________________I______________________-_I______________________

Local Area Network

FIGURE 18: JXTA GATEWAY PEER [20]

When the messages are sent from Peer 3 to Peer 1, they are first sent via TCP to peer.

The Gateway peer then holds the message until Peer 1 makes an HTTP request to retrieve

the data [20].

2.2.4 Issues for JXTA as a Distributed System

Some of the limitations of JXTA that we will address in subsequent chapters are briefly

described here.

Message transport between nodes in JXTA is handled internally and users have no

knowledge and control of the exact path that the message is traversing. JXTA uses the

End-point Routing Protocol (ERP) to systematically direct messages from the sender peer

to the receiving peer.

Individual nodes in a Distributed System may rely on intermediary nodes to relay their

information across the network In a Wireless Distributed System application, wireless

connectivity scenarios (e.g., dynamic link failure/establishment) cannot be simulated with

the current version of JXTA. Extensions of JXTA are required.

The XML message may reduce network efficiency. Its mandatory 256-bit peer ID and

path specifications imply that an "empty" message that has no application-specific

payload can easily reach 1 KB in size and thus affect the performance of the message

exchange. Also, the complex messaging architecture of JXTA that involves the XML

parser and several layers of abstraction will add significant overhead and affect the

efficiency of the messaging framework [19].

Rendezvous, Relays and Gateway peers are used in JXTA to cache routes and pass

messages/requests between peers. As the size of the network grows, the amount of

processing required by these nodes will grow exponentially, resulting in a degradation of

network efficiency.

Nevertheless, JXTA has advantages over conventional distributed computing techniques

that facilitate the development of a distributed system. Its protocols and the abstraction

of the underlying distributed domain allow developers to more easily develop distributed

systems. Also, caching of network information allows messages and requests to be

transported more efficiently. Table 7 lists some of the advantages and disadvantages of

utilizing JXTA in a distributed system.

TABLE 7. ADVANTAGES AND DISADVANTAGES OF JXTA IN A DISTRIBUTED SYSTEM

Advantages:

No extensive knowledge of
underlying distributed domain

Support large number of potential
peers with no central management
system

Network resources distributed
among multiple machines

Automatic protocol translation for
communication between peers with
different protocols

Cached network information
reduces search time requests

Disadvantages

Developers unaware of
mechanisms and path used for
message transport.

Sizeable XML messages, XML
parser and several layers of
abstraction may lead to network
inefficiency.

Dependence on specific types peers
for routing, messaging and requests
between peers.

Increased memory overhead by
caching network configuration for
every peer

2.3 Differences between JADE and JXTA in Distributed Systems

Both JADE and JXTA are designed with the goal of achieving a distributed system.

However, both platforms have issues that must be resolved before a distributed system

can be established.

In JADE, agents residing on remote containers are dependent on the AMS and the DF

that reside in the main containers. Although remote containers are contained on different

platforms than the main container, the remote container is critically dependent on the

agents of the main containers and their services. The failure of the main container would

also indicate the failure of the entire JADE network. JXTA, on the other hand, does not

employ remote containers. A JXTA peer cannot be subdivided and it resides on a single

host. Every host represents a JXTA peer and they communicate either directly or through

relay nodes with other peers. Failure of one peer will not have a catastrophic effect on

the overall system.

In JADE, agents are able to freely migrate from container to container, regardless of the

physical location of the platform on which the container resides. However, in JXTA, a

peer is represented by a physical host such as a hand-held device or a desktop computer.

Peers cannot migrate freely across the network. They are embedded within the hosts.

Another major difference between them is their respective message protocols. The

messaging architecture of JXTA when compared to JADE is complex. The use of XML

parsers and several layers of abstractions add significant overhead to the efficiency of the

network. The increased use of relay peers in JXTA can also lead to congestion and

degrade overall network performance.

Table 5 below illustrate some key differences between JADE and JXTA when utilized in

a distributed system.

Messaging Architecture

Nodelpeer Migration

Distributiveness

Platform Complexity

FIPA Compliance

)MPARISON OF JADE AND JXTA r~ DISTRIBUTED SYSTEM

JADE

Relatively simple. Uses IMTP for Inter-
platform and RMI for Intra-platform
communication

Agents able to freely move to different
containers

Limited by the main container. Remote
containers dependent on main container.

Very manageable and coherent

Yes

JXTA

Uses XML parser and several layers
of abstraction. Pipes used for
communication. Significant overhead

Peers are embedded within the host
they reside in

Unrestricted scalability. Each peer is
uniquely identified and independent.

More sophisticated and steep learning
curve.

No

3 JADE/ JXTA EXTENSIONS FOR IMPROVED
DISTRIBUTED SYSTEMS

Both JXTA and JADE have limitations for implementing a distributed system. Both

JADE and JXTA lack the ability to simulate wireless connectivity conditions such as

dynamic link establishment~failures and data quality over multiple hops. Although the

use of Endpoint Routing Protocol in JXTA ensures messages are efficiently routed to

their destination, it does not specify the absolute path they must traverse. In JADE,

communication transport is also handled internally and no user-defined routing

mechanisms are available. Ideally, a true WDS should combine wireless protocols with

the functionality of a peer-to-peer collaborative system environment. This would enable

multi-hop capabilities to find distant nodes on the network without the need for a

centralized management system.

3.1 Virtual Wireless Environment

In current wireline networks, nodes are physically connected and information is

systematically routed fiom sender to recipient. However, in a WDS, each node is not

h l ly aware of the extent of the entire network and with whom it can communicate

directly. For example, suppose that we wish to model a wireless network consisting of 5

nodes using a wireline LAN. Individual nodes can only communicate with a set of

receiver nodes as predetermined by the wireless conditions. This set of receivers need

not be constant; they can be dynamically changed to model the wireless nature of a WDS,

such as user roaming.

In the wireless scenario illustrated in Figure 19, we suppose that Node - A is a roaming

node. At t= to, Node - A has only Node - B as its receiver.

FIGURE 19. ROAMING NODE WITH INTELLIGENT LINK AT T=TO

However, at t=tl, the sender (Node-A) will be at a different location, as shown in Figure

20, and has different receivers (Node-D and Node-E).

This situation models a roaming node where its linkages to other nodes are dynamically

changing.

We could also model other scenarios such as dynamic link congestion/failure by setting

the links between nodes to be deleted or created as a function of time. Such a scenario

can also be used to model the uncertainty of wireless transmission.

Timing and administrative overhead issues can also be modeled. We can calculate the

time required by messages to travel from one end of the network to another and the

effects of multiple messages. Stress test can be carried out to ensure that the system can

adequately perform under heavy traffic. We can also measure the effectiveness of

different routing algorithms and also peer-to-peer environments.

Currently, this type of distributed system is still mainly a research topic. Extensions are

required to current distributed systems to simulate a true distributed system.

3.2 JADE Architecture Extension

Fully distributed systems must not be dependent on any particular node. The key to

improved distributiveness in JADE is the elimination of the central influence of the main

container. Each host will be completely independent of other hosts and a failure of one

host will not a have catastrophic effect on the network.

FIGURE 2 1. JADE IN A VIRTUAL WIRELESS ENVIRONMENT

As illustrated in Figure 2 1, each host will become a main container and the use of remote

containers will be eliminated.

For example, in a wireless environment, nodes can only communicate directly with

neighbour nodes and thus are not aware of all available nodes on the network. Also,

specific message paths that transverse several intermediary nodes may be required to

relay messages. Finally, the added administrative overhead must be properly handled to

ensure a coherently managed Wireless Distributed System.

We can accomplish these tasks by extending the components in the established JADE

Agent Platform to include the Global Directory Facilitator (GDF), Wireless Agent

Communication Channel (WACC), and the Global Agent Management System (GAMS).

3.2.1 Wireless Agent Communication Channel (WACC)

In a wireless environment, nodes can only communicate directly with neighbour nodes.

Messages can only be sent directly to a list of available receivers as predetermined by a

user-defined scenario. This limitation is used to model the wireless nature of the WDS.

This feature is accomplished by extending the Agent Communication Channel (ACC) of

the JADE Agent Platform, as illustrated in Figure 22. The WACC is in constant

communication with the GDF for the current list of available nodes.

Wireless
Agent
Communication
Channel

I IITERIAL PLATFORM MESSAGE TRAISPORT 1

FIGURE 22. WIRELESS AGENT COMMUNICATION CHANNEL IN AN AGENT PLATFORM

3.2.2 Global Directory Facilitator (GDF)

Unlike wireline networks for which all nodes are aware of the existence of all other nodes,

a wireless system is only aware of nodes within its signal range. When a new node

becomes available, that information must be made available to the network by

broadcasting its presence to neighbour nodes, which they broadcast to their neighbours.

This multi-hop functionality feature is incorporated into JADE by extending the D F to

include the GDF, as shown in Figure 23. The GDF is responsible for maintaining a

current list of all agents and their services. This extension enables a node to be aware of

both neighbour and distant nodes.

Global
Directory
Facilitator

IHTERl?AL PLATFORM MESSAGE TRANSPORT 1

3.2.3 Global Agent Management System (GAMS)

As illustrated in Figure 24, the GAMS extends the hnctionalities of the AMS to manage

the additional administrative overhead at the network level. It is also responsible for

providing agent management service for its respective node in the Wireless Distributed

System. Its tasks also include agent creation, migration, and retirement.

Global
Agent
Management
System

INTERIAL PLATPORH HESSAGE TRAMSPORT

The GAMS is in constant communication with the WACC and GDF to provide a complete

WDS environment from a wireline LAN.

Management Directory Communication
System Facilitator Channel

I I I B T E W A L PLATPORH llESSAGE TRAEPORT

FIGURE 25. MODIFIED JADE FRAMEWORK

3.3 JADE Software Architecture Overview

Based on Figure 25, extensions are required of the JADE Agent Platform to implement

an improved Distributed System. In this thesis, the extensions are based on the use of

three distinct JADE agents -- Broadcast, Sender, Receiver -- that would operate even for

a wireless application.

The Broadcast Agent handles broadcasted messages tolfrom other nodes and is

responsible for maintaining a current list of all nodes currently available on the

network.

The Sender Agent provides management service for the respective node, and is

responsible for sending messages.

The Receiver Agent receives messages from other nodes and internally determines

the subsequent nodes that the message should traverse.

3.3.1 Broadcast Agent

To incorporate multi-hop functionality into JADE, each node must know precisely which

other nodes are currently available. This task is accomplished by the Broadcast Agent. It

is responsible for maintaining a current list of all nodes on the network.

When a node is initiated, the Broadcast Agent will first broadcast its existence to the

JADE network, after which it will loop indefinitely for a reply message. When a

message arrives, the Broadcast Agent writes the agent information contained in the

message to the GDF. Just before the node retires, an exit message is again broadcast to

the network to indicate its termination.

3.3.2 Receiver Agent

Similar to the Broadcast Agent, the Receiver Agent also waits indefinitely for a message

to arrive. Its main task is to process incoming messages and acts as an intermediary node

if necessary. Routing algorithms determines the path of the next node and messages are

routed accordingly. Table 8 lists the types of incoming messages that the Receiver Agent

currently supports.

TABLE 9. MESSAGE TYPES SUPPORTED BY THE RECEIVER AGENT

Message Type I Description

Administrative 1 Used to establish virtual connection with neighbour nodes.

Broadcast

Update-Hop Message Used to update global hop-list

Used to establish global directory of all nodes available on the network

Specific- Path Used to route messages according to user-specified path

Update-Hop-List-
Header

Used to update Global Directory Facilitator

3.3.3 Sender Agent

The Sender Agent is responsible for providing agent management service for its

respective node in the Wireless Distributed System. Its tasks also include agent creation,

migration, and retirement. It is also in charge of administrative overhead at the network

level.

The Sender Agent contains the entry point for the end user to operate a JADE node. A

simplified GUI displays all available nodes currently on the network to communicating

with a specific node through a user-defined routing method. Messages can be sent either

directly to the destination node, or routed through a number of predefined methods.

3.4 JXTA Architecture Extension

Unlike JADE, where containers residing on remote machines are dependent on the main

container on the host machine, each JXTA node is an independent entity that is not

reliant on any other network resources. Multiple peers can coexist on a single JXTA node.

The Rendezvous peer allows network resources to be discovered in a robust and efficient

manner. The Router peer plots a suitable path for the message to traverse, and the

Gateway peer systematically routes the message according to that path. The three peers

work in conjunction to coherently manage any JXTA application with unrestricted

scalability.

However, the extensive use of the three nodes limits its ability to fully simulate a fully

distributed system. The path taken by the Router node is accomplished automatically by

utilizing the End-Point Routing Protocol. The system developer is unaware of the

specific path and messages are routed automatically by the Gateway node.

To simulate a fully Distributed System, the system developer must be able to specify the

exact path that the message must traverse, and also the conditions of the links between

peers. Then, the system developer will be able to simulate wireless scenarios such as

dynamic link establish and user roaming. Different routing algorithms can then also be

implemented to test their efficiency and robustness under congestion. Also, the added

administrative overhead must be properly handled to ensure a coherently managed

Wireless Distributed Environment.

In this thesis, these tasks are accomplished by extending the components in the

established JXTA Core layer to include the Wireless Peer Pipes (WPP), Global Peer

Messaging (GPM), and the Global Peer Monitoring (GPM).

The JXTA Core layer and its components are shown in Figure 26 for reference.

JXTA Core Layer
l~eer Honitoring I IPeer ~dministrationl l ~ e e r Pipes

FIGURE 26. JXTA CORE LAYER AND COMPONENTS

3.4.1 Wireless Peer Pipes (WPP)

Similar to the Agent Communication Channel (ACC) in the JADE architecture, the Peer

Pipe is responsible for communication between peers. It must be extended to restrict

sending messages to neighbour peers. This extension is termed Wireless Peer Pipes, as

illustrated in Figure 27. The WPP is in constant communication with the GPM for the

current list of available peers and restricts sending messages to a list of predetermined

neighbour peers.

Peer Pipes m

JXTA Core Layer
[Peer Honitoring I IPeer ~dministrationl l~eer Pipes 1

FIGURE 27. JXTA EXTENSION: WIRELESS PEER PIPE

3.4.2 Global Peer Monitoring (GPM)

Unlike wireline networks in which all nodes are aware of the existence of all other nodes,

a wireless system is only aware of nodes within its signal range. When a new node

becomes available, that information must be made available to the network by

broadcasting its presence to neighbour nodes..

This multi-hop hnctionality feature is incorporated into JXTA by extending the Peer

Monitoring to include the Global Peer Monitoring (GPM), as illustrated in Figure 28.

The GPM is responsible for maintaining a current list of all peers currently available in

the JXTA network. This extension, illustrated in Figure 28, enables each peer to be

aware of both neighbour and distant peers.

JXTA Core Layer

[peer Honitoring I [Peer ~dministration 1 l~eer Pipes

FIGURE 28. JXTA EXTENSION: GLOBAL PEER MONITORING

3.4.3 Global Peer Administration (GPA)

The GPA, as illustrated in Figure 29, extends the functionalities of the Peer

Administration to manage the additional administrative overhead at the network level. It

is also responsible for providing peer management service for the respective peer.

Global Peer
Administration

JXTA core l ~ a ~ e r
I [peer Monitoring I l~eer Administration] l~eer Pipes I I

FIGURE 29. JXTA EXTENSION: GLOBAL PEER ADM~NISTRATION

The GPA is in constant communication with the WPP and GPM to provide a complete

distributed environment from a wireline LAN in JXTA, as illustrated in Figure 30.

Honitoring Administration Peer Pipes

r l JXTA Core Layer I I-
l~eer Honitoring I l~eer ~dministrationl [peer Pipes I

FIGURE 30. MODIFIED JXTA FRAMEWORK FOR AN IMPROVED DS

3.5 JXTA Software Architecture Overview

As shown in Figure 30, extensions are required from the JXTA Core Layer for an

improved Distributed System. In this thesis, the extensions are accomplished by

implementing four distinct Java Classes: PipeListenei-0, PipeSendei-0, PipeComm0,

PeerRouteo that would operate even for wireless environments.

PeerRouteo models the GPM. It handles broadcasted messages tolfiom other

nodes and is responsible for maintaining a current list of all nodes currently

available on the network.

PipeListenei-0 and Pipesender0 are used to model the WPP. Together they send

and receive messages according to a user-defined scenarios.

PipeComm0 models the GPA. It is used to handle the added administrative

overhead and is used to initialize and supervise JXTA nodes. It also contains the

entry point for developers to operate JXTA nodes.

3.5.1 PipeCommO Class

The PipeComm0 Class contains the entry point for the end user to operate a JXTA node.

It is also in charge of administrative overhead at the network level.

A simplified GUI gives the users the fimctionalities ranging from displaying all available

nodes currently on the network to communicating with a specific node through a user-

defined routing method. Messages can be sent either directly to the destination node, or

routed through a number of predefined methods, such as direct, specific path, or

maximum hops allowed.

3.5.2 PeerRouteO Class

The PeerRouteO Class is responsible for maintaining a current list of all nodes available

on the JXTA network. When the JXTA node is first initialized, it advertises its existence

to the network. This task is accomplished by:

Create an input pipe

Bind itself to that input pipe

Publish the pipe advertisement so that other peers can obtain the
advertisement

Pipes are used extensively in JXTA as the core mechanism for message exchange

between JXTA peers. They provide a simple, unidirectional and asynchronous channel

of communication [20].

Using the JXTA Binding Protocol, a sender node will dynamically search for the pipe

advertisement belonging to this receiving node. When the advertisement is found, an

output pipe is created by the sender and the message is sent through the pipe.

Once initialized, the PeerRouteO Class is used to handle broadcast messages from other

nodes to maintain a current list of nodes.

3.5.3 Pipesender() Class and PipeListenerO Class

The two classes work in conjunction to model the WPP and restrict the sending of

messages according to a user-defined scenario.

The Pipesender class creates a dedicated output pipe to the specified receiving peer and

sends messages on it. The class first asynchronously creates an output pipe with a

specified receiving peer. Once the end-points have been resolved (input pipe

advertisement found and output pipe successfully created), a message is created and sent

through the pipe.

The PipeListener class creates input pipes used to receive messages. A dedicated input

pipe is first created, and the receiving peer then binds itself to the input pipe. Finally, the

input pipe is advertised on the JXTA network so other peers are able to dynamically

discover the receiving peer.

Whenever a message arrives, the PipeListener class will be called asynchronously to

retrieve and parse the message. Table 10 lists the types of incoming messages that the

PipeListenerO Class currently supports.

Message Type I Description

I

Broadcast Used to establish global directory of all nodes available on the network

Administrative Used to establish virtual connection with neighbour nodes.

Update-Hop Message 1 Used to update global hop-list

Specific-Path Used to route messages according to user-specified path

The PipeListener Class is also responsible for forwarding the messages onto the next

peer. The GPM is consulted to retrieve the list of available node and messages are routed

accordingly.

Update-Hop-List-
Header

Used to update Global Directory Facilitator

4 JADEIJXTA SOFTWARE EXTENSION
IMPLEMENTATION

Both JXTA and JADE are software platforms designed to facilitate the implementation of

a distributed system. However, they have limitations discussed in Chapters 2. With a

distributed system having the potential of becoming an efficient, robust, and scalable

system, the extensions discussed in Chapter 3 must be implemented. This chapter

discusses the software implementation details of the extensions put forth in Chapter 3.

4.1 JADE Implementation

The standard FIPA agent model utilized by JADE is shown again in Figure 3 1. The

model must be extended to h l ly simulate an improved distributed system, one that even

operates in a wireless environment.

FIGURE 3 1. FIPA COMMUNICATION FRAMEWORK [5]

The extensions are achieved by establishing three new subcomponents: Wireless Agent

Communication Channel (WACC), Global Directory Facilitator (GDF), and Global

Agent Management System (GAMS). These three subcomponents and their interactions

are shown in Figure 32.

Management Directory Communication
System Facilitator Channel

D i rectors

1 T
I I IWTERHAL PLATFORM MESSAGE TFtABSPORT

FIGURE 32. EXTENSIONS OF A JADE AGENT MODEL

In this thesis, the extensions are accomplished by utilizing three distinct JADE agents;

Broadcast, Sender, Receiver agents that would work even for a wireless environment.

4.1.1 Broadcast Agent Implementation

The Broadcast Agent is responsible for dynamically maintaining a current list of all

nodes available on the network. After broadcasting its existence to the network, it waits

indefinitely for a broadcast message to arrive. The operations of the Broadcast Agent are

summarized as follows:

while (true)
{

I/ Set Java Multicast address and port for message reception
Multicast-setup();

I/ Wait indefinitely for broadcast message
Multicast-receive();

I/ Process incoming message and write to GDF
Store-GDF();

//Reply to Sender
reply();

1

The interactions between the Broadcast Agent and JADE software packages are

illustrated in Figure 33.

Jade. core

1 Broadcast

FIGURE 33. BROADCAST AGENT INTERACTION WITH JADE SOFTWARE PACKAGES

The Broadcast Class that makes up the Broadcast Agent implements the different

methods required to receive and process a broadcast message.

4.1.1. I Multicast-setup Method

The multicast - setup method initializes the Java Multicast Address and local port for

message reception.

N This function sets up the multicast address and joins the group
// --- ---------- -- - -- ----- - - - - - ------- --- --- - - -- ------ - - ------- - --- ---- -- --------
public MulticastSocket multicast-setup(String MULTICAST-ADDR, int MULTICAST-PORT) throws IOException
f

MulticastSocket multicastSocket = new MulticastSocket(MULT1CAST-PORT);
InetAddress inetAddress = InetAddress.getByName(MULTICAST-ADDR);
multicastSocket.joinGroup(inetAddress);
return multicastSocket;

I

4.1.1.2 Multicst - Receive Method

After the Multicast address and port has been setup, the multicast-receive method is

called and is blocked indefinitely until a message arrives. When a broadcast message

arrives, the method appropriately parses the message and returns the String component of

the message.

public String multicast~receive(MulticastSocket multicastsocket) throws IOException

byte [I temp = new byte [I024];
DatagramPacket datagradacket = new Datagradacket(temp, temp.length);

// infinitely stuck here until receive a packet
multicastSocket.receive(datagramPacket);

String message = new String(datagradacket.getData(), 0, datagramPacket.getLength());

return message;
1

4.1.1.3 Multicast-Setup Method

When the String component of the message is retrieved, the Broadcast Agent will store

the information so it can be used by the Sender and the Receiver Agents.

// This function writes the message to the specified file
// ----------- - - ----- - ---- ----- - --- - - -- -- - - --- -- -- - - - -- - ------ - - - - - - - -- -- - ---- - - -
public void store-GDF(String filename, String message) throws lOException
{

BufferedWriter bufWriter = new BufferedWriter(new FileWriter(filename, true));
bufWriter.write(message);
bufWriter.newLine();
bufWriter.close();

1

4.1.1.4 Reply Method

Finally, a reply message is created and sent to the original sender to inform the node of

the existence of this node.

InetAddress ownAddress = get-own-Inet();
String host-name = ownAddress.getHostName();
String m g = "Broadcast-Setup: ".concat(host-name);
send-rnsg(node-name, msg);

1

4.1.2 Receiver Agent Implementation

The Receiver Agent is used to process different types of incoming messages and relay

messages to appropriate nodes if necessary. Using the standard JADE message

receiving mechanism listed below, the Receiver Agent waits indefinitely until a message

arrives.

public void action()
{

ACLMessage msg = myAgent.receive();
if (rnsg != null) {

N Process the message
1
else {
block()
I

I

The block() method of the Behaviour Class removes the current Behaviour from the

agent pool. The current Behaviour is only interrupted when a message is received and

the blocked Behaviour is put back in the agent pool and can process the incoming

message. This mechanism will not waste CPU by idling for a message to arrive.

When a message does arrive, its String component is extracted and the message is

processed according to the type, identified by the message header. Currently there are six

message types Receiver Agent recognizes and they are listed in Table 1 1.

TABLE 1 1. MESSAGE HEADERS AND DESCRIPTIONS

I Message Type I Message Header I Message Description I

I Administrative Message I Admin-Setup: I Used to establish virtual
connection with neighbours I

I Multi Hop Message I Multi-Hop-Message-Header: I Used to route packet according to
specified number of hops I

Broadcast Message Broadcas (-Setup:

Specific Message

Used to establish Global Directory
Facilitator (GDF)

Update Hop Message

The Receiver Agent will process each message differently depending on the Header that

the message contains.

Specific-Hop-Message-Header:

Update Hop List Message

4.1.2.1 Administrative Message

Used to route packet according to
specified path

Update-Hop-Message-Header:

The Administrative Message Header is used to establish a virtual connection with a

specific node. Once a virtual connection is established, the current node will consider the

specified node as its neighbour node, thus enabling them to communicate directly. This

simulates that the two nodes that are within signal proximity in a wireless environment.

Used to obtain hop information

Update-Hop-List-Header:

The Receiver Agent will use the ADMIN - HEADER0 method to extract the specified node

and stores the information as a neighbour node.

Used to update global hop list

4.1.2.2 Broadcast Message

The Broadcast Message Header is used to handle incoming request from new nodes.

When a new node is on the network, a Broadcast Message will be sent to every node on

the network to notify them of its existence. When the Receivers Agent receives such a

message, it will use the BROADCASTHEADER0 method to extract the name of the new

node and stores the information as a global node.

4.1.2.3 Multi Hop Message

The Multi Hop Message is used to send a message to a specific node on the network if the

node is less than a specified number of hops. When a Multi Hop Message is received, the

Receiver Agent will use the MULTI - HOP - HEADER0 to decrement the number of hops

outstanding in the message and relay the message to all of its neighbour nodes. When the

number of hops reaches zero, this implies that the node is not within the pre-set number

of hops, thus the message is discarded.

4.1.2.4 Speczfic Path Message

The Specific Path Message is used to send a message to a node through a predefined path.

When a Specific Path Message is received, the Receiver Agent uses the

SPECIFIC-HOP-HEADER0 method to re-direct the message to its next destination.

4.1.2.5 Update Hop Message

The Update Hop Message is used to update the number of hops each node is away from

the current node. When a Update Hop Message is received, the Receiver Agent uses the

UPDATE-HOP-HEADER0 method to decrement the hop count contained within the

message and re-direct the message to every neighbour node. If the hop count is zero, a

special Update Hop List Message is created and is sent directly back to the originator of

this message.

4.1.2.6 Update Hop List Message

The Update Hop List Message is a special type of message used to update the Global Hop

List. The Receiver Agent uses the UPDATE-HOP-LIST-HEADER0 method to update

its Global Hop List. The list stores all nodes on the network and the number of hops they

are away from the current node. This information is crucial in determining the best

routing method that should be used to transmit the message. Different wireless scenarios

can also be used based on this information.

The interactions between the Receiver Agent and JADE software packages are illustrated

in Figure 34.

I Receiver I

FIGURE 34. RECEIVER AGENT INTERACTION WITH JADE SOFTWARE PACKAGES

4.1.3 Sender Agent Implementation

The Sender Agent contains the entry point for the end user to operate a JADE node. The

simplified user interface has functionalities ranging from displaying all available nodes

currently on the network to communicating with a specific node through a user-defined

routing method. Messages can be sent either directly to the destination node, or routed

through a number of predefined methods. Figure 35 illustrates the user interface.

There are three classes within Sender Agent. They are Display(), J-Node() and Route()

4.1.3.1 Class Display()

The Display() class is used to output critical system information onto the screen for the

end user. From this information the user can then make appropriate decision regarding

message routing and determine the state of the network. Table 12 lists the methods of

this class and their functionalities.

I Method Name I Method Description

Host-info()

I I All-nodes() 1 Display all nodes on the JADE network

Displays local host name and IP

Neighbour-nodes() Display all nodes with virtual connection to current node

I node
Hop-nodes()

4.1.3.2 Class Route()

Display all nodes at specified number of hops away from current

'The Route() class implements the routing algorithms that the end users can choose to

send the message. Currently, there are three routing algorithms: Direct, Maximum Hop

and Specific Path.

Direct Algorithm: Messages are directly sent to the receiving node, no message

header is needed. This simple algorithm is used to send messages directly to

neighbour nodes.

Multi Hop Algorithm: Messages are sent to the specified node if the node is

within the maximum specified number of hops. A Multi Hop Header and

maximum hops information are attached to the message body so receiving nodes

can properly process and relay the information onto the next node. A message

sent by the Multi Hop Algorithm has the following format:

Specified Path Algorithm: Messages are sent to the specified node through a

path specified by the end user. A Specific Path Header and a series of relay nodes

specified by the user are attached to the message. A message sent by the

Specified Path Algorithm has the following format:

This class can be expanded easily by hture developers to implement additional routing

algorithms.

4.1.3.3 Class J-Node()

The J-Node() class contains the entry point for the end users and performs all

initializations before a JADE node is able to communicate with other nodes on the

network. The J-Node() class is also responsible for setting virtual links with any node on

the network, broadcasting its existence onto the network and sending update hop

messages to update its global hop list.

Virtual Connection: A JADE node is able to virtually connect with any other

node on the network to become neighbour nodes. Only neighbour nodes are

allowed to send messages directly, otherwise intermediary nodes are used to relay

messages. A request for virtual connection message has the following format:

Admin-Setup: host-name

When the receiving node accepts the request, the sender node is added to its list of

neighbour nodes. The two nodes have now become neighbours and is able to

communicate directly.

Broadcasting Existence: A JADE node must make itself known to others on the

network. This is achieved by using the Java MulticastSocket Class to broadcast

to all JADE nodes listening at a predetermined port and address. Address

"230.0.01 " and Port 7777 are used to receive Multicast messages on the JADE

network.

Update Hop Message: An Update Hop Message provides the node with the

number of hops all nodes on the network are away from the current node. This

information is crucial in determining the best routing method to be used and

provides users with the whereabouts of all nodes on the network.

An Update Hop Message has the following format:

Update-Hop-Message-Hedec original_sender#current-count#original_count

Table 13 summarizes the core methods used in J-Node() class to implements its

functionalities.

I Method Name I Method Description

I initialize() I Initializes JADE node

I I main-menu() 1 Entry point for end user. AIlows for complete operation of JADE

I node

establish-connection() Establish virtual connection with another JADE node

remote-setup() Remotely establish virtual connections between ANY two JADE
nodes

broadcast() Broadcast existence onto JADE network

update-hop-list() Dynamically update number of hops all nodes are away from
current JADE node

The interactions between the Receiver Agent and JADE software packages are illustrated

in Figure 36.

I Sender I

FIGURE 36. SENDER AGENT AND JADE SOFTWARE PACKAGES INTERACTIONS

4.2 JXTA Implementation

Like JADE, the JXTA software platform has limitations that need to be addressed. The

extensions discussed in Chapter 3 must be implemented to achieve a better distributed

system.

Figure 37 again shows the extensions required to the JXTA Core Layer.

1 1 ++ L~lobalPeer
1 +, lwireless 1

Administration Peer Pipes

peer Monitoring 1]peer ~dministration] \peer Pipes

FIGURE 37. MODIFIED JXTA FRAMEWORK FOR AN IMPROVED DS

The Global Peer Monitoring maintains a current list of all nodes currently

available on the network. It also handles broadcasted messages tolfiom other

nodes.

The Wireless Peer Pipes extension is used to restrict the sending of message to

only nodes available according to the user-defined scenario.

The Global Peer Administration extension is used to handle the added

administrative overhead. It also initializes and supervises the JXTA node. An

entry point is contained in the GPA to allow the developer to operate the JXTA

node.

In this research, the extensions are accomplished by implementing four distinct Java

Classes; PipeListenerO, PipeSenderO, PipeCommO, PeerRouteO. A fifth class,

PeerDisplayO, is used to output network information.

The PipeListenerO and Pipesender0 classes are used in conjunction to model the

Wireless Peer Pipe. The PipeComm0 and the PeerRouteO classes are used to model the

Global Peer Administration and Global Peer Monitoring respectively.

4.2.1 Class PipeListenerO

The PipeListenero class creates input pipes used to receive messages. This task is

accomplished by:

Create and bind to input pipe

Register pipe and publish the pipe advertisement

Wait indefinitely until an message arrives

4.2.1.1 Input Pipe Creation and Binding

The method bind - inputqipes() is called to create and bind the peer to an input pipe.

JXTA uses XML files as advertisements. The advertisement is first read then bound to

the node with the following command:

FilelnputStream is = new FileInputStream(XML-filename);
pipeAdv = (PipeAdvertisement) ~dvertisementFactory.newAdvertisement(MimeMediaT~pe.XMLUTF8, is);

is.close();
pipeIn[i] = pipe.createInputPipe(pipeAdv. this);

4.2.1.2 Pipe Registration and Advertising

After successfully creating and binding to the input pipe, the node must be registered as a

PipeMsgListener to receive messages. This allows the receiving node to infinitely wait

for a message to arrive, but would not block the CPU from performing other tasks.

When a message does arrive, a pipeMsgEvent is generated and interrupts the CPU from

its activities to process the message.

4.2.1.3 Message Reception and Processing

This pipeMsgEvent(PipeMsgEvent event) method is called asynchronously when a

message is received on the input. The receiving node then must properly process the

incoming message to obtain its String component. This is achieved with the use of the

following:

11 grab the message from the event
msg = event.getMessage();
if (msg = null) {

return;
I

I1 get all the message elements
Message.Elernentlterator enurn = msg.getMessageElements();
if (!enum.hasNext()) {

return;
I

I / get the message element named SenderMessage
MessageElement msgElement = msg.getMessageElement(null, SenderMessage);
String received = msgElement.toString();

After the message has been correctly received, it will be processed to determine its type

and what hrther action, if any, should be taken. Identical to processing a message in

JADE, the types of messages are determined by the message header. Again, currently

there are six message types that the PipeListener class recognizes, as listed in Table 14.

TABLE 14. MESSAGE HEADERS AND DESCRIPTIONS

I Message Type I I Message Description Message Header

I I 1 Broadcast Message I Broadcast-Setup: I Used to establish a global peer

Administrative Message Admin-Setup:

Multi Hop Message

I I

I Update Hop Message I Update-Hop-Message-Header: I Used to obtain hop information

Used to establish virtual
connection with neighbours

Specific Message

Multi-Hop-Message-Header:

The mechanism of processing each message type is identical to its JADE counterpart.

Detailed descriptions of each message type can be found in Section 4.1.

directory

Used to route packet according to
specified number of hops

Specific-Hop-Message-Header:

Update Hop List Message

The sequences of interactions between the PipeListener() class and JXTA protocols are

illustrated in Figure 38.

Used to route packet according to
specified path

Update-Hop-ListHeader: Used to update global hop list

FIGURE 38. ~NTERACTIONS BETWEEN PIPELISTENER() AND JXTA PROTOCOLS

4.2.2 Class PipeSender Implementation

The PipeSender class creates a dedicated output pipe to a specified receiving peer and

sends messages on it. This is accomplished by:

Creating an output pipe with the specified receiving node.

Triggering an event to send the message.

4.2.2.1 Output Pipe Creation

The run() method is called to initialize an output pipe to a specific receiving peer. An

XML file is created and parsed as a pipe advertisement and the node attempts to create

and bind itself to the output pipe. The getRremoteAdvertisement method of the

Discovery Protocol attempts to locate the specified receiving peer. Once the receiving

node is located, the two end-points of the communication pipe will be resolved and a

dedicated pipe is now in place for communication.

FilelnputStrearn is = new FilelnputStrearn(dest-node);
pipeAdv = (PipeAdvertisernent) AdvertisemmtFactory.newAdvertisement(MimeMediaType.XMLUTF8, is);
is.close();

I1 obtain receiving peer information
discovery.getRemoteAdvertisernents(null, DiscoveryService.ADV, null, null, I , null);
I1 create output pipe asynchronously
I1 Send out the first pipe resolve call
pipe.createOutputPipe(pipeAdv, this);

4.2.2.2 Message Sending

Messages placed on this dedicated pipe will asynchronously trigger an event and invoke

the pipeMsgEvent method. Similar to the PipeListener class, a dedicated output pipe will

not block the CPU from other activities. When a message is to be sent, apipeMsgEvent

is generated and interrupts the CPU from its activities to process the message.

Outputpipe op = evmt.getOutputPipe();
Message msg = null;

try {
rnsg = new Message();
StringMessageElernent srne = new StringMessageElernent(SenderMessage, message , null);
msg.addMessageElernent(null, me);
op.smd(msg);

) catch (IOException e) {
Systern.out.println("failed to send message");
e.printStackTrace();
Systemexit(-1);

1
op.close();

The sequences of interactions between the Pipesender0 class and JXTA protocols are

illustrated in Figure 39.

FIGURE 39. INTERACT~ONS BETWEEN PIPESENDER() AND JXTA PROTOCOLS

4.2.3 Class PipeCommo

The PipeComme() class contains the entry point for the end users and performs all

initializations and tasks that a JXTA node requires for communication. It utilizes the

Pipesender() Class and PipeListenerfl Class for message sending and reception.

The PipeComm() class is also responsible for setting virtual links with any node on the

network, advertising its existence onto the network and sending update hop messages to

update its global hop list.

Initialization: By calling the initialization method, the node will obtain a valid

peer group ID, peer group name, as well as the name and ID of the current peer.

The peer ID is a randomly generated 256-byte number. By default all JXTA

peers belongs to the netpeergroup.

try (
I/ create, and Start the default jxta NetPeerGroup

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

I
catch (PeerGroupException e) (
/I could not instantiate the group, print the stack and exit
Systern.out.println("fatal error : group creation failure");
e.printStackTrace();
Systern.exit(1);
I

Virtual Connection: A JXTA node is able to virtually connect with any other

node on the network. Only neighbour nodes are allowed to send messages

directly, otherwise intermediary nodes are used to relay messages. A request for

virtual connection message has the following format:

Admin-Setup: host-name

When the receiving node accept the request from the PipeListenerO class, the

sender node is added to its list of neighbour nodes. The two nodes have now

become neighbours that are able to communicate directly.

Broadcasting Existence: A JXTA node must make itself known to others on the

network. This is achieved by publishing the node's advertisement once the node

has been successfully created. Once published, other nodes on the JXTA network

are able to remotely locate this node.

I/ publish this advertisement
//(send out to other peers and rendezvous peer)
discoSvc.remotePublish(adv, DiscoveryService.PEER);
System.out.println("Peer published successfully.");

1
catch (Exception e) (

System.out.println("Error publishing peer advertisement");
e.printStackTrace();

return; }

Update Hop Message: An Update Hop Message provides the node with the

number of hops from the current node to all peers on the network. This

information is crucial in determining the best routing method and provides users

with the location of all nodes on the network.

An Update Hop Message has the following format:

Update-Hop-Message-Hedec original_sender#current_couni#original_count

The following table summarizes the core methods used in PipeCommO class to

implement its hnctionalities.

I Method Name I Method Description I

I 1 Maitmenu() I Entry point for end user. Allows for complete operation of JXTA

Initialize() Initializes JXTA node

I 1 Remote-setup() I Remotely establish virtual connections between ANY two JXTA

Establish-connection()

nodes

node

Establish virtual connection with another JXTA node

I I broadcast() Broadcast existence onto JXTA network I
Update-hop-list() Dynamically update number of hops all nodes are away from

current JXTA node

The sequences of interactions between the P@eComm() class and JXTA protocols are

illustrated in Figure 40.

FIGURE 40. INTERACTIONS BETWEEN PIPECOMM() AND JXTA PROTOCOLS

4.2.4 Class PeerRouteO

The PeerRouteO class implements the different routing algorithms that the end users can

choose to send the message. Again, there are three routing algorithms: Direct, Maximum

Hop and Spec$c Path.

Direct Algorithm: Messages are directly sent to the receiving node, no message

header is needed. This algorithm is used to send messages directly to neighbour

nodes.

Multi Hop Algorithm: Messages are sent to the specified node provided that the

node is within the maximum specified number of nodes. A Multi Hop Header

and maximum hops information are attached to the message body so that

receiving nodes can properly process and relay the information onto the next node.

A message sent by Multi Hop Algorithm has the following format:

Specified Path Algorithm: Messages are sent to the specified node through a

path specified by the end user. A Specific Path Header and a series of relay nodes

specified by the user are attached to the message. A message sent by the

Specified Path Algorithm has the following format:

Specific-Path-Message-Headec desc I# dest-2# dest_3 $msg-body

This class can be expanded easily by future developers to implement additional routing

algorithms.

4.2.5 Class PeerDisplayO

The PeerDisplay() class is used to output critical system information to the screen for the

end user. From this information the user can then make appropriate decisions regarding

message routing and determine the state of the network. Table 16 lists the methods of

this class and their functionalities.

I Method Name I Method Description

I

I Neighbourjeers() I Display all nodes with virtual connection to current node

Host-info() Displays local host name and IP

I I Hopjeers() I Display all nodes at specified number of hops away fiom current

Al l j ee r s0

I node

Display all nodes on the JADE network

5 PLATFORM ANALYSIS

5.1 Qualitative Analysis

The traditional centralized architectures are inherently more focused on simplicity than

on scalability and robustness. A distributed system requires the creation of a network

that is scalable, robust and inexpensive to maintain. However, the complexity of

software implementation of a distributed system is much greater than a centralized

system.

JADE and JXTA are distributed software platforms that facilitate the creation of

distributed networks by providing developers with ready-made protocols and software

platforms. Both platforms are built with a similar purpose, but contain key similarities

and differences in areas such as scalability, interoperability, and platform complexity.

5.1.1 Platforms Scalability

Both JADE-based and JXTA-based distributed systems are built for expansion. A key

advantage of a true distributed system over a conventional centralized system is the

unrestricted ability to expand and add new nodes. In a true Distributed System,

additional network resources are added and utilized by the network with the addition of

every node.

In JADE, agents residing on remote containers are dependent on the AMS and the DF

that resides in the main container. Remote containers are critically dependent on the

agents of the main containers and their services. The failure of the main container would

also indicate the failure of the entire JADE network. The state of a JADE network is

dependent on the continual operation of the host on which the main container resides.

JXTA on the other hand does not use remote containers. Failure of one node will not

have a catastrophic effect on the overall system. No JXTA node is critically dependent

on another JXTA node. However, the extensive use of Rendezvous peers that reside on a

JXTA node may result in bottlenecks in localized areas. If a network grows while the

number of Rendezvous peers remains constant, the amount of processing required by

these nodes will grow exponentially. Network latency and efficiency will also increase

significantly due to these strained peers.

The extensions implemented by this thesis for JADE eliminate the use of remote

container in JADE to provide better distributiveness. This eliminates the central

influence of the main container. Each host is completely independent of other hosts and

a failure of one host will not have a catastrophic effect on the network, as illustrated in

Figure 4 1.

FIGURE 41. JADE IN A VIRTUAL WIRELESS ENVIRONMENT

In JXTA, this extension is already embedded with the standard version. Each JXTA peer

is a unique entity that is not critically dependent on any other JXTA peer. Also, each

JXTA peer is also a Rendezvous peer to reduce latency and maximize efficiency on the

network.

5.1.2 Interoperability

A true distributed system should be designed to interoperate with all nodes on the

network, regardless of the distributed platform on which it was built. The

communication language and messaging format should be consistent to ensure

standardization among all nodes.

Although JADE is built to be a FIPA-compliant system that is aimed to be interoperable

with other FIPA-compliant platforms, issues such as degree of compliancy, addressing

method, and messaging architecture still exist among FIPA-compliant systems [16].

JADE agents cannot easily communicate with agents from other FIPA-compliant systems.

The FIPA specification leaves many issues as "implementation speczjic" that results in

non-compliancy between platforms [161.

JXTA on the other hand is not a FIPA-compliant platform and thus does not follow the

standardization set forth by FIPA. It is a standalone system without the ability to easily

integrate with other distributed platforms for interoperability. It is mainly a closed

network that functions only with other JXTA nodes.

In the standard version of JADE without extensions, agents from different JADE

networks are unaware of each other and thus unable to interact. They are closed

networks with no interactions between multiple main containers. The extensions

implemented in this thesis allow remote JADE nodes to join the existing JADE network

to create a vast yet robust and scalable JADE network. Nodes are able to dynamically

discover each other and are aware of all nodes currently available on the network.

Unfortunately, even with the extensions implemented by this project, both JADE and

JXTA remain relatively closed platforms that have very limited interoperability with

other software platforms. A JXTA peer cannot easily interact with a JADE node to

provide the same service to the network. It will be interesting to see the development of a

universal sofhvare gateway to interconnect multiple distributed networks built on

different software platform to interact in a distributed environment.

5.1.3 Messaging Architecture

The XML language is used extensively in JXTA. It is a widespread platform-

independent form of data representation [18]. It is used to represent advertisements,

messages and identifiers.

The XML message used may reduce network efficiency. Its mandatory 256-bit peer ID

and path specifications implies that an "empty" message that has no application-specific

payload can easily reach 1 KB in size and thus affecting the performance of the message

exchange. Also, the complex messaging architecture of JXTA that involves XML parser

and several layers of abstraction will add significant overhead and affect the efficiency of

the messaging framework [19].

In the FIPA-compliant JADE, Agent Communication Language (ACL) messages are

used for message representation. ACL is a language "with precisely defined syntax,

semantics andpragmatics that is the basis of the communication between independently

designed and developed agent platforms " [21]. An ACL message is an ASCII string

consisting of communicative act type and parameters [21].

The use of ACL messages greatly simplifies the communication between agents.

Messages are easily parsed and understood by the receiving agent. It is shown in Section

5.2 that the JADE messaging architecture is more efficient and robust when compared to

the JXTA messaging architecture.

5.1.4 Platform Complexity

The platform complexity and thus the learning curve of a JXTA system is much higher

than a JADE system. We found that in JADE, concepts and operations are easier to

understand and carry out than in a JXTA system. Less system configuration is needed to

operate a JADE system.

Because a JXTA system offers many customizable hnctions that a developer needs to

choose, this amounts to a great burden to people unfamiliar with JXTA to get started

initially. Also, the complex messaging architecture of JXTA that involves XML parser

and several layers of abstraction will add significant overhead and affect the efficiency of

the messaging framework [19]. Extensive use of Rendezvous peers will also create

bottlenecks within the network.

The extensions implemented by this project enabled every peer in JXTA to be a

Rendezvous peer. This will decrease latency since peers will no longer be required to

query neighbour peers for route or network information. The information is now cached

internally. Therefore, the failure of any peer should not have create partial failure of a

JXTA network.

5.1.5 Protocols

Both JADE and JXTA utilize Java-based sofhvare protocols and packages for the

development of a Distributed System.

5.1.5.1 JADE Software Packages

The JADE software packages give application programmers "ready-made functionality

and abstract interfaces for custom application dependent tasks " [171. Table 17 briefly

describes the different JADE software packages.

TABLE 17. JADE SOFTWARE PACKAGE DESCR~PT~ON

Software Package I Description I
Implements the kernel of the system. Includes the Agent class
that must be extended by application programmer. Behaviour
class hierarchy contained in the sub-package implements the
logical tasks that can be composed in various ways to achieve
complex tasks.

Jade.lang.ac1 Provides Agent Communication Language according to FlPA
Standard Specifications.

Jade.domain Contains all Java class that represent Agent Management System
defined by FIPA standards

Jade& Contains generic classes useful to create GUIs

Jade.mtp Contains the Message Transport Protocol that should be
implemented to readily integrate with the JADE framework

Jade.proto Provides classes to model standard FIPA interaction protocols
@pa-request, fipa-query, fipa-contract-net)

Figure 42 illustrates the dependencies between the various Jade software packages.

Figure 34 - 36 in Section 4.1 illustrates the interactions of the JADE extensions to the

standard JADE software packages.

5.1.5.2 JXTA Protocols

The JXTA protocols have been specifically designed for "ad hoc, pervasive, and multi-

hop network computing" [20]. By using the JXTA protocols, nodes in a JXTA

application can cooperate to form "self-organized and seljlconjigured peer groups

independently of their positions in the network (edges, Jirewalls), and without the need of

a centralized management infrastructure. " [20]

Table 18 briefly describes the different JXTA software protocols.

TABLE 18. JXTA PROTOCOLS AND DESCRIPTIONS

JXTA Protocol

Peer ResolverProtoco Generic Query Service

Description

Peer DiscoveryProtocol Resource Search

Rendezvous Protocol I Message Propagation

Peer Information Protocol Monitoring

Peer Membership Protocol

Peer Endpoint Protocol Message Routing

0 Security

Pipe Binding Protocol

I
Source: Developer [20

Addressable Messaging

Figure 43 illustrates the sequences of interactions between the different JXTA software

protocols

FIG~JRE 43. JXTA PROTOCOL SEQUENCE DIAGRAM

The components of the JXTA Core Layer are extended to improve upon the existing

JXTA environment. The new classes necessary for the extensions and their interactions

to the JXTA protocols are illustrated in Figure 44.

FIGURE 44. INTERACTIONS BETWEEN PIPECO

5.1.6 Agent Migration

AND JXTA PROTOCOLS

In the JADE system, all agents except the AMS and the DF are free to migrate to and

from different containers and platforms. This ability allows developers more freedom

and possibility when designing a Distributed System. Agents can move away from

congested areas and perform their tasks in areas where network is not constrained. The

JADE messaging architecture internally takes care of addressing issues and messages are

sent to the containers in which the receiving agent resides.

However, in a JXTA system, a peer is physically tied to the residing host (PC, PDA, cell-

phone). The host is free to move around a JXTA network (e.g., a wireless PDA), but the

software entity that resides within the host is unable to migrate from one host to another.

Table 19 illustrates some key differences between JADE and JXTA when utilized in a

distributed environment.

TABLE 19. COMPARISON OF JADE AND JXTA M DISTRIBUTED SYSTEM

Messaging Architecture I
NodelPeer Migration I
Distributiveness I
Platform Complexity I
FIPA Compliance

Interoperability I

JADE I JXTA

I

Agents able to freely move to different I Peers are embedded within the host

Relatively simple. Uses IMTP for Inter-
platform and RMI for Intra-platform
communication

containers (they reside in

Uses XML parser and several layers
of abstraction. Pipes used for
communication. Significant overhead

Limited by the main container. Remote 1 Unrestricted scalability. Each peer is
containers dependent on main container. I uniquely identified and independent.

I

Yes No

Very manageable and coherent

I

FIPA-Compliant system. Unable to I Standalone system without FIPA-

More sophisticated and steep learning
curve.

communicate with other agents on
different distributed system software
platforms

Compliancy

5.2 Quantitative Analysis

Although both JADE and JXTA are distributed software platforms aimed to facilitate the

creation of distributed systems, their respective performances in a distributed system may

vary significantly. This section briefly compares quantitatively scalability and

performance of both software platforms.

In a distributed system, nodes may be requested to act as relay nodes to forward messages

and requests onto the next node. The efficiency and latency involved in this multi-hop

transaction depends heavily on the node's user-defined routing logic and system's

hardware and software.

To ensure a fair comparison, it is assumed that the all nodes have identical routing logic

and system hardware and software. The added latency involved in a multi-hop

transaction will then only be platform dependent, since both JADE and JXTA are Java-

based and utilize the identical system setup

As a result, multi-hop latency across multiple nodes can be omitted when comparing the

two platforms quantitatively, since the two platforms will be subjected to identical lag.

5.2.1 Test Setup

In the following experiments, two hosts on a 100 Mbps LAN. The two hosts utilize

identical system hardware and software configuration, as illustrated in Figure 45.

100 Mbps

For each experiment, the Sender sends a payload to the Receiver, and the Receiver replies

with the identical message. The time between the sending of the initial message and the

reception of the reply message is defined as the Round Trip Time (RTT). The test is then

repeated 1000 times and the average time is used.

5.2.2 Multiple Agent-Pairs on Same Host

Scalability is a very important indication of the competency of a particular distributed

software platform. In this test, varying number of agent-pairs all residing on the same

host are used for the message exchange. The Sender agents exchange messages with

Receiver agents residing on the same host.

In the standard JADE without extensions, the agent-pairs residing on a single host could

either be in the same or different containers. However, in the extended JADE, the host

will only accommodate the main container, the use of remote containers is not allowed.

All agents residing on a single host will reside in the main container of the host.

The results of the standard JADE message exchanges are illustrated in Figure 46 and

Figure 47.

Standard JADE Agents in One Host, Different
Containers

0 2 4 6 8 10 12

Number of Agent Pairs

FIGURE 46. STANDARD JADE AGENTS IN SINGLE HOST, DIFFERENT CONTAINERS [19]

Standard JADEAgents in One host, Same Container

10

Number of Agent Pairs

FIGURE 47. STANDARD JADE AGENTS IN SINGLE HOST, SAME CONTAINER [19]

In Figure 48, the results of both the extended JADE and JXTA are presented when

multiple agent pairs residing on the same host (same container for JADE).

-- - - -. - - --

Multiple Agents on Same Host r --

0 50 100 150

Number of Agent Pairs

FIGURE 48. VARIABLE AGENT-PAIR ON SAME HOST COMPARISON [19]

From the results, we see that the RTT for JADE is very similar to Figure 47, which is

expected. All agents in the extended JADE reside in the main container, thus creating

the identical scenario to Figure 47.

When RTT of JXTA and JADE are compared, we see that the communication time rises

linearly with increasing number of agent-pairs. The rate of increase for a JXTA agent-

pair is significantly higher than that of a JADE agent-pair.

5.2.3 Multiple Agent-Pairs on Different Host

In this test, varying number of agent-pairs that reside on different hosts are used for the

message exchange. The Sender agents exchange messages with Receiver agents that

reside on the same host. This test will demonstrate the scalability of a particular

distributed software platform when the Sender agent and the Receiver agent do not reside

on the same host. The results are illustrated in Figure 49.

. .- - - -

Multiple Agent Pairs on Different Host

I I JXTA

0
I
r------

I 0 2 4 6 8 10

Number of Agent Pairs

From the results, we see that the communication time somewhat rises linearly with

increasing number of agent-pairs. Again, the rate of increase for a JXTA agent-pair is

significantly higher than that of a JADE agent-pair.

5.2.4 Multiple Message Size Comparison

Network efficiency under varying message load is also an important indication of the

competency of a particular software platform. In a Distributed System, nodes are

constantly exchanging messages and requests. The efficiency of the overall network

depends heavily on the minimization of latency between message exchanges.

In this scenario, a sender-receiver pair residing on different hosts is setup for the message

exchange of varying sizes. The results are illustrated in Figure 50.

Variable Message-Size Comparison

Size of Message (kb)

From the results, we see that again the communication time rises linearly for a linear

increase in load for both platforms. However, the rates at which they rise differ

significantly.

5.2.5 Quantitative Result Discussion

As the results of the three tests suggest, JADE seems to be a better distributed software

platform when compared to JXTA under the specified conditions. In all three test

scenarios, the performance of JADE is significantly better than that of JXTA. Not only is

JADE more capable under varying message load, but it is also more efficient when the

receiving agents reside both on the same and on different hosts.

However, one important advantage that JXTA has over JADE is its unrestricted

scalability. The lack of a centralized management system enables a JXTA system to be

highly scalable. Although the extensive use of Rendezvous peers in JXTA may hinder

overall system performance, a JXTA network is built on the concept of unrestricted

scalability.

JADE on the other hand relies heavily on the centralized main container to handle

administrative issues for system expansion. Agents residing on remote containers rely

critically on the continual operation of the AMS and DF of the main container.

Scalability in JADE is "the ability to keep up goodperformance when the load is

increased " [191.

Due to the JADE'S central main container, agents are efficiently located by querying the

AMS and the DF. In JXTA, extensive communication may be needed between querying

agents and multiple Rendezvous peers to locate the receiving agent before a

communication pipe can be established between the agent-pair. Also, the complex

messaging architecture of JXTA that involves XML parser and several layers of

abstraction adds significant overhead and affect the efficiency of the messaging

framework.

5.3 Summary, Concluding Remarks and Future Research

5.3.1 Summary

Distributed systems offer a useful approach for resolving critical networking limitations

that result from the use of centralized topologies. Scalability and fault-tolerance can be

increased by utilizing a distributed system, however, the complexity of a distributed

system grows exponentially as the number of nodes increase.

JADE and JXTA are distributed software platforms that facilitate the development of

distributed systems. Both are Java-based software that serve as middleware to provide

low-level communication transport and message encoding. Software developers can

therefore concentrate on the development of complex models and reasoning that

constitute the distributed system, rather than low-level communication.

This project examined the architectures of JADE and JXTA. We also noted their strength

and weaknesses in a distributed environment, as shown in Table 23 and Table 24.

Table 20. Advantages and Disadvantages of JADE in a Distributed System

Advantages:

- --

Open source, completely written in
JAVA and FIPA-compliant

Serves as middleware to deal with
communication transport and
message encoding

Concise and efficient software
architecture

All agent tasks modeled as
Behaviors objects for simple
implementation of complex tasks

Ability for agents to migrate fiom
container to container, regardless of
platform

Disadvantages

a Cannot define specific path to
receiving node

a Dependence on the main container
for communication

a Unable to simulate different
transmission scenarios

TABLE 21. ADVANTAGES AND DISADVANTAGES OF JXTA A DISTRIBUTED SYSTEM

Advantages:

No extensive knowledge of
underlying distributed domain

Support large number of potential
peers with no central management
system

Network resources distributed
among multiple machines

Automatic protocol translation for
communication between peers with
different protocols

Cached network information
reduces search time for service
requests

Disadvantages

Developers unaware of
mechanisms and path used for
message transport.

Sizeable XML messages, XML
parser and several layers of
abstraction may lead to network
inefficiency.

Dependence on specific types peers
for routing, messaging and requests
between peers.

Increased memory overhead by
caching network configuration for
every peer

Both JADE and JXTA have limitations in their current form. In JADE, the over-reliance

of the AMS and the DF of the main container restricts the scalability and the fault-

tolerance of a JADE system. Agents residing on remote containers are critically

dependent on the host on which the main container resides. In JXTA, although lacking a

centralized management system, the extensive use of Rendezvous peers limits the

efficiency of a JXTA system. Messages and requests are routed through Rendezvous

peers and a localized network failure may occur should Rendezvous peers fail. Also, the

use of XML message introduces large overhead into the JXTA messaging architecture.

This project then proposes extensions to the current JADE and JXTA. The JADE

extensions and their descriptions are shown in Figure 5 1

1 t I *- I G1Obal 1 - - I tZAunication 1
%Men

Directory
Facililato~ Chamel

FIGURE 5 1. EXTENSIONS OF JADE AGENT MODEL

The Broadcast Agent models the GDF and handles broadcasted messages tolfiom

other nodes. It is responsible for maintaining a current list of all nodes currently

available on the network.

The Sender Agent models the GAMS and provides management service for the

respective node. It is also responsible for the sending of messages.

The Receiver Agent models the WACC and receives messages from other nodes.

It internally determines the subsequent nodes that the message should traverse.

The JXTA extensions and their descriptions are shown in Figure 52.

llonitorins Administration Peer Pipes

JXTA Core ILayer
& & -

[peer llonitorins (/peer ddministrationl peer Pipes 1

FIGURE 52. MODIFIED JXTA FRAMEWORK FOR AN IMPROVED DS

The Global Peer Monitoring maintains a current list of all nodes currently

available on the network. It also handles broadcasted messages tolfrom other

nodes.

The Wireless Peer Pipes extension is used to restrict the sending of message to

only nodes available according to the user-defined scenario.

The Global Peer Administration extension is used to handle the added

administrative overhead. It also initializes and supervises the JXTA node. An

entry point is contained in the GPA to allow developer to operate the JXTA node.

The extensions are accomplished by implementing four distinct Java Classes. The

PipeListenerO and PipeSenderO classes are used in conjunction to model the Wireless

Peer Pipe. The PipeCommO and the PeerRouteO classes are used to model the Global

Peer Administration and Global Peer Monitoring respectively.

When JXTA and JADE are compared quantitatively, we found that JADE seems to be a

better distributed software that is distributed in terms of performance and scalability. In

all three test scenarios, the performance of JADE is significantly better than that of JXTA.

Not only is JADE more efficient under varying message load, but it is also more efficient

when the receiving agents reside both on the same and on different hosts.

The main reason for the apparent superiority of JADE over JXTA is the extensive use of

the centralized management system by JADE. Agents are able to locate receiver agents

by querying the AMS of the main container. However, this characteristic is not

consistent with a standard distributed system: The system should not be critically

dependent on any specific node.

JXTA on the other hand, does not use a centralized management system and relies

heavily on Rendezvous peers scattered throughout the network to discover and route

messages and requests. Although longer latency for message exchanges when compared

with JADE, a JXTA system is not critically dependent on any node.

5.3.2 Concluding Remarks

Although JADE and JXTA are built with a common purpose, both have limitations in

their present form. Extensions are needed to both platforms to achieve improved

implementations of distributed systems.

Overall, we found that JADE outperformed JXTA both in terms of latency and scalability,

mainly due to its partially centralized approach. JADE is also easier to understand and to

deploy than JXTA. Numerous configurations and options are available in JXTA to

customize a unique distributed system, thus creating a daunting task for beginners.

Agents in JADE are able to freely migrate among the different containers and hosts,

while agents in JXTA are physically tied to the hardware that they reside on. This is an

important feature that JXTA is lacking and would increase the robustness and scalability

of a JXTA system.

We feel that both JADE and JXTA requires extensions to their existing architectures for

better distributed systems. This project outlined and implemented the extensions needed

for the improvements.

5.3.3 Future Research

Distributed networks represent a new and emerging technology. Although they appear

to alleviate networking constraints that result from a centralized topology, further

research is needed to deploy mature, robust and highly scalable distributed networks.

In this research, two distributed software agent platforms were analyzed and extensions

were outlined and implemented. Future validation of the results requires implementation

in a real-world environment where hundreds or perhaps thousands of nodes are

communicating using wireline and wireless in real time. A variety of system hardware

can be used as nodes in this real-world environment. We must also experiment with

different intelligent routing algorithms to maximize efficiency and minimize latency.

Network bottlenecks that result from the exponential growth of administrative overhead

must be analyzed and tests can be performed to evaluate the robustness of the network.

Gateways should also be developed to resolve interoperability between different software

platforms.

Although this thesis compared two distributed software agent platforms, other products

should be evaluated to ascertain their relative similarities and differences and compare

them for specific applications. Their relative performances in a distributed network

should also be quantitatively and qualitatively analyzed.

REFERENCES

C. Ng, D. Sabaz, and W.A. Gruver, "Distributed algorithm simulator for wireless
peer-to-peer networks," Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, The Hague, Netherlands, 2004.

E. Chen, D. Sabaz, and W.A. Gruver, "JADE and wireless distributed
environments," Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, The Hague, Netherlands, 2004.

JADE, Java Agent Development Framework, http://jade.cselt.it

JXTA, http://www.jxtt.org/ accessed April 8,2005

Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org accessed
March 2,2005

FIPA-OS, http://www.nortelnetworks.com/ accessed April 8,2005

Agent Oriented Software Group, http://www.agentsoftware.com

E. Cortese, F. Ouarta, and G. Vitaglione, "Scalability and performance of the
JADE message transport system," Proc. of the AAMAS Workshop on AgentCities,
Bologna, Italy, July 2002

Digital Equipment Corporation, "In Memoriam: J.C.R. Licklider 191 5-1 990," SRC
Research Report 6 1, August 1990.

L. Roberts, T. Meml "Toward a cooperative network of time-shared computers,"
Proc. of the Fall AFIPS Conference, Oct. 1966.

V. Cerf and R. Kahn, "A protocol for packet network interconnection," IEEE
Trans. on Communications Technology, Vol. COM-22, Number 5, May 1974 , pp.
627-64 1.

F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, "JADE - A white paper," EXP -
In Search Of Innovation, Volume 3, Number 3, Telecom Italia Labs, Turin, Italy,
2003.

J. F. Kurose and K. W. Ross, Computer Networking, AW Education Group, USA,
2002.

S.I. Kumaran, JINI Technology, An Overview, Upper Saddle River, NJ, USA, 2002

[IS] S. Li, JXTA Peer-to-Peer Computing with Java, Birmingham, UK, 2001

[16] M. Laukkanen, Evaluation of FIPA-Compliant Agent Platforms, Master's Thesis,
Department of Information Technology, Lappeenranta University of Technology,
Finland, 2002.

[17] F. Bellifemine, G.Caire, T. Trucco, G. Rimassa, JADE'S Programmer S Guide,
Telecom Italia Labs, Turin, Italy, 2003

[18] B. Wilson, Projects: JXTA Book, New Rider's Publishing Co., USA, 2003

[19] K. Burbeck, D. Garpe, and S. Nadjm-Tehrani, "Scale-up and performance studies
of three agent platforms," Proc. of International Performance, Communication and
Computing Conference, Middleware Performance Workshop., Phoenix, AZ, USA,
pp. 857-863, Apr. 2004

[20] The Developer, http://www.developer.com accessed March 23,2005

[21] FIPA 97 Specification, Spec 2, "Agent Communication Language," Introduction to
Sequencing and Scheduling, Durham, USA, 1974.

[22] GRASSHOPPER, http://www.fokus.gmd.de/ accessed October 25,2004

[23] ZEUS, http://www.labs.bt.com/projects/agents/zeus accessed September 3,2004

[24] Agent Development Kit, http://www.madkit.org/ accessed January 2,2005

[25] Garpe, D., Comparison of Three Agent Platforms - Performance, Scalability and
Security, Master's Thesis, LiTH-IDA-EX-031070-SE, Department of Computer
and Information Science, Linkoping University, Sweden, 2003.

[26] D. Sabaz, W. A. Gruver, and M. H. Smith, "Distributed systems with agents and
holons," Proc. of the 2004 IEEE International Conference on Systems, Man, and
Cybernetics, The Hague, Netherlands, October 2004.

APPENDIX A

This Appendix contains sample code listing for the three JADE agents,

Sender Agent

Receiver Agent

Broadcast Agent

2 / / ..
. / / INCLUDED JADE FILES
4 / / ..
.5 package examp1es.receivers;
6
''7 import jade . core. ;
$ import jade.core.behaviours.*;
P import jade.lang.acl.*;

. ,\
., i.!

i: import jade.domain.FIPAAgentManagement.ServiceDescription;
2 import jade.domain.FIPAAgentManagement.DFAgentDescription;
. . Yi.2 import jade. domain. DFService;
. .
i import jade.domain.FIPAException;
.: '. .., .- . .

/ / IKCLIILIED JAVA FILES
/ / --
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.Thread;
import java.lang.*;

public class Agentsender extends Agent (

protected void setup() {

,'/ --
/ / Registratizn with the DF
DFAgentDescription dfd = new DFAgentDescriptionO;
ServiceDescription sd = new ServiceDescription();
sd.setType ("AgentSenderr') ;
sd. setName (getName ()) ;
sd. setownership (" E d i ~ a r d ") ;
dfd. setName (getAID ()) ;
dfd.addServices(sd);
try I

DFService. register (this, dfd) ;
) catch (FIPAException e) {

System.err.println(getLocalName()+" r-egi.s?rat.i.on with LrF ur:succeecird. R?as:;n: "+e.getMc
doDelete () ;

I

String agent-name = this.getName();
addBehaviour(new SimpleBehaviour(this) (
private boolean finished = false;

... ,\
' j L
53 / / i * i I I . * * * + * * i * * * f * * * + * * * * * * * + * * * * * * * - * . k * * * * * * * * + * * * * + * . k + * + * * - * ~ k * * * *

51 / / Main Execution of the program - - ,. .. / / * * * * * * * * i * * * * * * * * * * + * + * * * * * * t * * * * * * * * * + * * * * * * * * * * * * * * * * + * + * * + * * * * + + * * * * * * * + * + * * * * + * * . * ~ * * * * *

5 6 public void action ()
i ' 7 ..I i

5 9
t

" q
try I

., _ / / MAIN USER INTERFACE G U I
6 .'; console () ;
F : ..' .i)catch (Excepticn e) {
c. 2 SysteE.out .println (e) ;
6.. .- .: .> I
c, (1) / / end action
55
6 6 public boolean done () {
ij '7 return finished;
5 Ec) / / end done
E* 9)) ; / / end addbehavior
7 0) / / end setup
7 1
7 2 .

/ / Function Body
/ / * + * + - + k * r + * + - * + + * + + k * + + t * + + + ~ + k * ~ + + + ~ * + + + * + + ~ * + * * + + + * + + + * * * + - * + + * + + + * * * * + + ~ + * + + t * * + + ~ * k

public void console() throws I0Except:on
t

boolean exitconsole = false;
char userInput;

/ / Class i:sed to display information onto screen
Display display = new Display();

/ / Class csed tl:, senii messages using different routing methods
Route route = new Route();

/ / Class contains functions of a JNode
J Node node = new J-Node(); -

/ / System initialization function
node.initialize();

switch (userInput)
{

/ /
case ' a ' :

display.host-info();
break;

case '5' :
display-neighbour-nodes();

break;
/ /

case 'c':
display.al1-nodes();

break;

case '-1' :

char choice = route.route-menu();
switch (choice)
t

/ / ...
/ / Send the message directly to aestinatim
/ / ...
case ' a ' :

route.direct () ;
break;

/ / ...
/ / Send message according to specific Hops
/ / ...
case I b ' :

route .multi-hop () ;
break;

/ / ...
/ / Specify a path to destination
/ / ...
case 'c' :

route.specific-path();
break;

default:
System.out.println("Inva1id choice! ! ") ;

) / / end switch

break;

case ' e ' :
node.establish-connection();

break;

case ' f ' :
node. direct-send (1 ;

break;

/ /
case ' g ' :

node. remote-setup () ;
break;

/ /
case "- .. ' . -

node .broadcast () ;
break;
/ /
case ' i . ' :

node-update-hop-list();
break:

/ /
case ' j ' :

node. hop-test () ;
break;

case I:.: ' :

Systen. out .println ("E;>:Lti=g Gsod--Eye
exitconsole = true;
System.exit (1) ;

break;
/ / ..
default:
System.out .println ("lr.valici F,r.tr:;l I Try agai.nV')

) / / end switch
1 <,, n
1 '3 ;) / / end while
1.32
19.:) / / end function console()
i '?$
1 ..:A K, ., ..,
136 private class J-Node[
1, 3 '7

1 $?? J-Node()[//Begin Constructor
1 ;! 9
<. . , .,> , : ; , ,... ., . / / initialize all global variable in this class
.-, ,., -
.L. !l i .. .- ,.
..,. ?.; L) //End Constructor
?, . , .\
i :; .3

/ / ...
/ / This fclnction initializes the JADE node, delete previous version of files, if any
/ / ...
public void initialize() throws IOException

. .
/ / Delete previous version of neighbour, global and hop list.
/ / ---
File myFile = new File ("C: \ \ jade\\bin',\jade\\neighbour-1 ist . txt") ;
myFile. delete () ;

File myFile2 = new File (" S : \ \ j a O e \ , \ b i n \ , \ j a d r ~ \ , ~ ~ ~ ~ 1 o S s ~ 1 . list. txt") ;
myFile2 .delete () ;

File myFile3 = new Fiie ("C: \ \ , j ade / \ . b in \ \ j ade \ ,~~~hop list. t>:c") ;

myFile3.delete () ;

//-----------------------------
/ / Initialize global, neighbour, and hop iist
/ / -

String host = get-own-Inet().toString();
EufferedWriter bufwriter = new BufferedWriter(new FileWriter("globa1 iist.z:<t", true))

/ / make everything lower case, just to be safe
host = host. toLowerCase () ;

bufWriter.write (host) ;
bufWriter.newLine0;
bufwriter. close () ;

bufwriter = new BufferedWriter(new FileWriter("neighbour -. iist.txtW, true));
bufwriter. write (host) ;
bufWriter.newLine0;
bufwriter. close () ;

bufwriter = new BufferedMriter(new FileNriter("hop -. %isc.txt", true));
int seperator = host.indexOf("i");
host = host. substring (0, seperator) ;
host = host .concat ("$5") ;
bufWriter.write(host);
bufWriter.newLine();
bufwriter . close () ;

bufwriter = new BufferedWriter (new FileNriter ("ternp , -. hc.7 li.st.t:tW, true)) ;
bufwriter. write (host) ;
bufWriter.newLine0;
bufWriter.close();

) / / end initialize! j

/ / ...
/ / This is the main menu of a J - Node
/ / ...
public char main-menu() throws IOException
(

char userInput;

System.out.println (" ") ;
System.out.println(" ") ;
System.out .println (" ") ;
Systen;.out.println(" ") ;
System.o~t.println(" Welcome to J-Netin") ;
System. out. println ("An Inr,ovative Approac.'. to L7istribi:teci C:om:mnii:ati2n. ") ;
System.out.println(" ") ;
System.out.println("~~1.eas~ select m e of he fcllowing options: ") ;
System.out.println (" ") ;
System.out.println(" aj Display Host Computer Name and IP Acldr?;ssw);
System.out .println (" bj Display 1st-t.i.er W d e s Con~ected to Host");
System. out .print111 (" cj Display ALL Nodes within J-Net") ;
System.out.println(" d) Send Message to Specific Node");
System. out .println (" e) Establish a Link Function with a specific Node") ;
System-out .println(" f) Aclninstratcr send (Direct Send) ") ;
System.out.println(" g) Setup connection for other nodes ") ;
System.out.println(" h) Broadcast existence to everyone " 1 ;
System.out.println(" i) Update global hop list ") ;
System.out.println(" j) Perform hop test!!! ") ;
System.out .print111 (" x) Exit") ;

Agent Sender. jaaa

Systen.out.println(" ") ;
Syste-.out .println(" ") ;
.<ystez.out .println(" ") ;
Systez.out.print("FLerlse c a k e y o l ~ r 3eLection: ") ;

t r y (
userInput = get-char () ;
return userInput;

catch (Exceptisn e) (
Systex. out .println (e) ;

)

i / drmmy return
return ' x ' ;

} / / end main-menu

/ / ------------------------------------.--
i / This function is used to establish virEual connecticn with another J - Node
/ / ...
/ / This fimction writes the Node into neighbour list.txt
public void establish-connection0 throws 1~~i:ce~tion
I

System.out.println("Ezter mme of node: ") ;

String node - name = getstring();

InetAddress IP-address = InetAddress.getByName(node-name);

String to-file = IP-address.toString0;
/ / make everything lower case, just tc be safe
to - file = to-file. tolowercase () ;

/ / check if content already exist
if(!content - exist("neighbour list.txtU, to-file)) -
t

/ / Open the neighbour__list.txc file to write to
9sfferedWriter bufwriter = new BufferedWritar(new Fil--.Writer("-::iq?ib~ur -. l i s t . ? :
/ / write to file
bufWriter.write(to-file);
bufwriter . newline () ;
bufwriter . close () ;
System. out .println ("::e.: node: " + node-name + " is wr:j.tt?- ta =.?iqi-.boi;r . -. I.i.st. L:

/ / Send Adinin-Setup: message to this new neighbour node so both on neighbour-list

InetAddress ownAddress = get-own-InetO;
String host-name = ownAddress.getHostName0;

String message = "Admir: $.?cup: ". concat (host-name) ;
String total message = node name.concat("'".concat(message)) ; - -

int seperator = total-message.indexOf(""');

String to-node - total~message.substring(0,seperator);
String to-message = total~message.substring(seperator+l,total~message.length()) ;

send-msg(to-node, to-message);
1 / / end function

/ / ...
/ / This function is used to send message DIRECTLY to another J-Node
/ / ---
/ / This function writes the Node into neighbour-1ist.txt
public void direct-send() throws IOException

(
System. out .print111 ("~.C:L~.i~-~st.~at~~ 3i r a c t Send") ;
System.out.println("I.;rit.i?r Nodf naxe: ") ;
String node-name = getstring();

System. out .println ("F,r;t~?r zessaje: ") ;
String message = getstring();

/ / aczually send :he message
send msg(node-name, message); -

1

/ / ...
/ / This function is used to remotely establish virtual connection with two J -- Nodcs
/ / ...
/ / This f.inction writes the Node into neighhour--1ist.txt
public void remote-setup() throws IOExcepcion
(

Systcz..out.println(":;'.tting 1.112 connecrion for another node") ;
System. out. println ("Ektt?r 1st Node n6T.e: ") ;
String first-node = getstring();

Systez.out.println("Entc-r 2nd Node nae: ") ;
String second-node = getstring();

String message = "Admin Setup: ".concat(first-node);
send-msg(second-node, message);

message = "A'hin Setup: " . concat (second-node) ;
send-msg (first-node, message) ;

1

j / ...
/ / This function is broadcasts existence to every J-Nsde on network
/ / ...
public void broadcast() throws IOExceptior.
(

Systen.out.println("Eraad~:ast-L?~~j to J-Net");

int MULTICAST-PORT = 7777;
String MULTICAST-ADDR = "230.G.0.1";

try
(

i / get own Host Information
//String host = InetAddress.getLocalHcst().getHostName~);
String host = get-own-Inet().toString();
byte [1 temp = host. getBytes () ;

InetAddress inetAddress = InetAddress.getByName(MULT1CAST-ADDR);
Datagrampacket Out-Packet = new DatagramPacket(temp, temp.length, inetAddress, MULTI(
MulticastSocket multicastSocket = new MulticastSocket 0;
multicastSocket . send (OutmulticastSocket.sendo;Pa~ket) ;

1
catch (Exception exception)
(
exception.printStackTrace();

1
) / / end broadcast ()

/ / ...
/ / This function is used to Update global hop list
/ / ...
public void update-hop-list() throws IOException
{

//sender~node#HOP~COUNT#PREVIOUS~sender~node#Original~hop~Count
System.out.println("Updating global hop list Please wait");
/ / update from 2 hops to 5 hops TO BE CHANGED!!!!!!!!!!!!!!!!!!
String update-hop-header = "Update-Hop-Message-Header: ";

String host-name = get-own-Inet() .tostring(
int index = host-name. indexof (" / ") ;
host-name = host-name.substring(0,index

String hop-count;
String neighbour - name;
String current line;
String update-Lop-message;

for (int i=2; i<6; i++)
I

&:if feredReader bufReader = new Buff.~redReader (new FileRcader ("re.ig:^So:.:r List .:xt.")

hop count = String.valueOf(i);
update hop-message = host-name.concat("#".concat(hop~count.con~at~"~")~) ;
update-hop-message - = update-hop-header.concat(update~hop~message);

i / actually send zhe mssage to everysne cn neighbor list, except itself
while((current-line = bufReader.readLine()) != null)
{

index = current-line. indexof (" i ") ;
neighbour-name = current-line.substring(0,index);

/ / Don't send message to itself, to add the KOT " I "
if((neighbour~name.equalsIgnoreCase(host~name)))
t

update-hop-message = update-hop-message.concat(neighbour-name);
update-hop-message = update~hop~message.concat("~".concat(hop~count));
send-msg(neighbour-name, update-hop-message);
Systern.o~t.println(update~hop~message);

1
) / / end while
bufReader .close [) ;

1
) / / end update - hop -. list

i / This fcncticn is used jto perform hap test
/!' ---
public void hop-test() throws IOException
(

String max - hop;

Syst.em.out .println (" ") ;
System.out .println (" ") ;
System.out .println("Eriti~r maximum tiops to test") ;
Syst.ez..out .println (" ") ;

/ / get input from user
max-hop = getstring () ;

/ / organize the hop-test message
/ / Hop_Test-Header: sent_-time#original-sender#max-hop
String Hop - Test-Header = "Eop Test Headzr: ";

/ / Retrieve the number cf milliseccnds since i/1/197C GMT
Date date = new Date() ;
long start-milliseconds = date.getTime0;
/ / convert to string
String start - time = S~ring.valueOf(start~mi11iseconds);

/ / get host information
IcetAddress ownAddress = get-own-Inet();
String host-name = ownAddress.getHostName();

/ / organize the hop-test message
/ / Hop-TestHeader: sent-time#max-hop#original-sender

String hop test-msg = Hop-Test-Header.concat(start-time);
hop-test-mgg = hop-test-msg. concat ("C") ;

hop-test-msg = hop~ te s t~msg .conca t (hos t_name) ;
hop test msg = hop-test-msg.concat("t");
hopItest~msg = hop~test~msg.concat(max~hop);

/ / get n~nker of 1st-tier neighhoi:rs
int neighbours = number-of-neighbourso;
//int globals = number-of-globals !! ;

/ / randomly send cut Eo a first-tier neigkbour
P.and0-n x = new Random(); / / default seed is Cime in z~illi.ieconds
//Random i: = new Ranaom(1ong seec); i / for reproducible tcstiy~g

int random = x.nextInt(neighbours); / / returns random int >= O and < c

/ / go to the Line in the file
for (int i=O; i<random; it+)
{

bufReader.readLine0;
1

String current-line = bufReader.readLine0;
int index = current-line. indexof (" i ") ;
String dest-node = current-line.substring(0,index);
bufReader. close () ;

/ / send the message out
send-msg(dest-node, hop-test-msg);

) !/ end hop-test (i

j/ ...
/I This function returns the number of global nodes
j/ ...
private int number-of-global~() throws IOExceptior.
(

int count = 0;
BufferedReader bufReader = new BufferedReader (new FileRexier ("qlobal ?.i..;t. E:<t.")) ;

while (bufReader. readLine () != null)
(

count++;
}
bufReader. close () ;

return count;
} / / end function
/ / ...
/! This function returns the number of nelghbcurs this node is connected to
// ...
private int number-of-neighbourso throws IGExcep~io~n
(

int count = 0;
BufferedReader bufReader = new BuiferedReade~-(new FileRcader("neighbour

while (bufReader. readLine () != null)
I

count++;
}
bufReader . close () ;

/ / This is the JADE program that actually sends the message OUT
/ / ...
public void send-msg(String node-name, String message)
{

String responder = null;

String dest = null;

try //trying to open socket for data going out
(

dest = "ht:tp://".concat (node-name) . concat (":777S/acc") ;
/! Use String class manipulation to get responder address
int end-index = dest.lastIndexOf(":");
responder = "recciv+r@". concat (node - name) . concat (" : I C5!9 ? J A r . ! K W) ;

i ! Setup JADE send variables to usc JADE to send the message cut.
AID r = new AID();

/ / create the ACL message and set specs, then send the msg according to
i/ the user defined address

ACLMessage msg = new ACLMessage(ACLMessage.INF0RM);
msg.setSender(getAID0);
msg. addReceiver (r) ;

finished = false;
I
catch (Exce2tion e)
I

System. out .print111 ("iJP.I>E scnb failed") ;
1

public InetAddress get-own-InetO (

try
(

InetAddress ownIP = 1netAddress.getLocalHost~);
return ownIP;

1
c a t c h (U n k ~ o w n i i o s t Z x c e p t i ~ ~ e)
(

System. out .print111 (e) ;
I
return null;

) / / end get own Inet () - -

//trying to set own ip-acidress

/ /
/ / This functions returns the character input from the user
private char get-char () throws IOException
(

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s. charAt (0) ;

) / / end get-char0

/ /
/ / This function returns the entire line of String
private String getstring0 throws IOException
(

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String s = br.readLine();
return s;

1 / / end getstring i j

/ / ...
/ / This functions checks if insomins3 content already exist. in file

private boolean content-exist(Strin(3 filename, String content) throws IOException
{

boolean exist = false;
String current - line;

B:;ffcredReader bufReader = new BuffcredReader(new FileReader(fi1ename));

if(current-line.equaIsIgnoreCase(content))
{

exist = true;
bufReader. close () ;
return exist;

1
I
return exist;
/ / end fuxtion ccnte~t -. exist (i

/ * * ****+**i**+****i**t*+ * * + * * + n * * * i * ~ h t * * * * + * * t * + * - * i * ~ h + * * * ~ h i * * t * * * ki*.ht*+**-+ k+n+*.ki*-.k**+*.ki**+
This class defines the variolls rot:tin algorithms to he use?d to rcute the packet ro destinatici
* * i * * + * * * * - * * * * * * * i * * * * + + * i * - + + * + * * i * ~ h * * * * ~ h ~ * ~ k + * * * * ~ * ~ k t " + * * - * * + * + * * + * ~ h + * * * * + * h + * * * - * i * ~ ~ h t * + * * ~ * ~ * +

private class Route{

Route(){ //Begin ConstrucEor

j/ initialize all global variable in this class

} /iEnd Constructor

j/ ..
/ / This funct<on sends message through JADE directly to destinaticn
/ / ..
public char route-menu() throws IOException
{

char userInput;

System.out .println (" ") ;
System.out.println(" ") ;
System.out.println ("Crrcc.~se how you 1 i k e tc send t.-e messaye") ;
Systex.out.println(" ") ;
System.out.println(" .2! Send ;><rect.ly :o r:-.c ,c .Lti~.at . i : ;~") ;
System.out.println(" 12) Specify maximum ni.~=ber of HOPS allowed") ;
System.out.println(" c! Specify 2 specific 22th ta I~esLinarion");
System.out.println(" ") ;
Systex.out.println(" ") ;
System.out .print ("F~1.r;a.p.~~ : w k e your scl ection: ") ;

try{
userInput = get-char();
return userInput;

I
catch (Exception e) {

System.out .println (e) ;
I

/ / dummy return
return 'x';

] / / end route-menu

/ / ..
/ / This function sends message through JADE directly to destination
/ / ..
public void direct () throws IOException
(

System.out .print111 ("Eri2~r No,:ie na:ze: ") ;

String node-name = getstring();

Syst-em-out .print111 ("Eri~.?r xessagc: ") ;
String message = getstring();
/ / actually send the message
send-msg(node-name, message);

1

/ / ..
/ / This function sends message to a ncde up tc user-defined MAX HOFS
j / ..

public void multi-hop() throws IOException
{

String Multi-Hop-Header = "Xulti Hop N2ssage Header: ";
- -

String Multi-Hop-Message;
String message;
String dest-node;
String MAX-HOP;
String node-name;

System. out .println ("Enter destination") ;
dest-node = getstring();

System.out .println ("Enter messagz") ;
message = getstring();

/ / Multi Hop-Message-Header: 3#destination$msg_-body
~ u l t i - ~ o e ~ e s s a ~ e = Multi~Hop~Header.concat(MAX~HOP.concat("~".concat(dest~node.concat

System. out. println ("m:dt.i. . - hop - message: " t Multi-Hop-Message) ;

String current-line;

/ / get own host name
InetAddress ownAddress = get-own-Inet O;
String host-name = ownAddress.getHostName();

/ / check if destination is already a neighbour-node
int front = Multi-Hop-Message.indexOf("$");
int back = Multi-Hop-Message. indexof (" S ' ') ;

/ / if already in neighbour list
if(content-exist("neigh5o~r - list.txt.", Multi-Hop-Message.substring(frontt1, back)))
(

/ / Extract the message
message = Multi-Hop-Message.substring(backt1, Multi-Hop-Message.length());
send~msg(Multi~Hop~Message.substring(frontt1, back), message);

1
/ / send to everyone on nelghbour list
else
I

/ / actually send the message xo everyone on neighbor list
BufferedReader bufReader = new BufferedReader(new FileReader("r:eighbour - list.txtU)

while((current-line = bufReader.readLine0) != null)
{

int index = current-line. indexof (" / ") ;
node-name = current-line.substring(0,index);

/ / Don't send message to itself

136

send-msg(node-name, Multi-Hop-Message);
)

String Specific-Path-Header = "Spcsif ic P a t h Yessage Ee?k?r : ";
-

String message;
String next node; -
String temp header = " ";
String specific-path-~essage;
char another;
int back;

boolean next = true;

Systex.out .println (' 'E~i t r r r ,essaye") ;
message = getstring () ;

/ / Specific - Path .- Kessage - Header: #next - destinati~n#next -- next -- destinacionSmsg - body
while (next)
I

System.out .println (''Enr.c~: N e x t :Jade f o r ro:?t . ing") ;
next-node = getstring();
temp-header = temp-header . concat (" # " . concat (next-node)) ;

System.out .println (">.tt.~.zi: ,:norher Hop?'? Y or N u) ;
another = get-char();

6 if(another == ' N ' I I another == I n ')

6 :i, 9 I
R ;. :> next = false;
R :: 1. }
$;> 2) / / end while
$ 7 :.

6 2 L.: Specific-Path-Message = Specific~Path~Header.concat(temp~header.concat("S".concat(mess~
$2 5

s; G i / Extract our the 1s: hop as des2inatlon for this se-d
h' i 9 int last = Specific-Path-Message. 1astIndexOf ("+I") ;
6 ! '-(int front = Specific-Path-Message.indexOf("X");
6 5 -
8:!2 if (last == front)
R S 3
$54

I
back = Specific-Path-Message. indexof ("$ " , front+l) ;

6 1s 5: 1
6 3 6 else
d '3 '7 (

back = Specif ic-Path-Message. indexof (" # " , front+l) ;
1

(; 4 - 9 .i String node-name = Specific-Path-Message.substring(front+l, back);
$ 4 2
8 4 3 / / if 1st path is already a neighbour node
644 if (content-exist ("neigFi50ii>z -. list. txt", node-name))
6 4 5 I
i; 4 6 int msg-start = Specific-Path-Message.indexOf("~");
6 .I 7 Specific-Path-Message = Specific~Path~Message.substring(msg~start+l, Specific-Path-
8 .I 9)

1 4 9 / / actually send the message
850 send-msg(node-name, Specific-Path-Message);
851) / / end route-specific-path0
S C ^ 4 L

/ / This functions checks if incoming content already exist in file
/ / ...
private boolean content-exist(String filename, String content) throws IOException
{

boolean exist = false;
String current-line;

EufferedReader bufReader = new BufferedReader(new :ileRe3dcr(filename));

while((current-line = bufReader.readLine()) != null)
{

if(current-line.startsWith(content))
{

exist = true;
bufReader. close () ;
return exist;

1

return exist;
1
/ / ..
/ / This function returns the InetAddress of the cur-rent host ccmputer
/ / ..
public InetAddress get-own-Inet(){

try //trying to set own ip-address
{

InetAddress ownIP = 1netAddress.getLocalHost~);
return ownIP;

catch(UnkncwnHostExceptio~ e)
{

System. out .print111 (e) ;
1
return null;

) / / end get - own---Inet ()
/ / ...
/ / This is the JADE program that actually sends the message OUT
/ / ---

public void send-msg(Stri9g node-name, String message)
{

String responder = null;
Srring dest = null;

try //tryin7 LO open socket for *data gcing out
(

dest = "http: I / " . concat (node name) . concat (" :?T:5/accT') ;
/ / Use String class maniplation to get responder address
int end-index = dest.lastIndexOf(":");
responder = "receiver@". concat (node name) . concat (" : 10'19/JA1:1E") ; -

/ / Syst.em.out .println !"responder: " + responder) ;
/ / System.out.println("dest: " + dest:;
/ / System.out.println!"message " + message!;

/ / Setup JADE send variables to use JADE co send the message out
AID r = new AID() ;

r.setName(responder);
r. addiddresses (dest) ;

/ / create the ACL message and set specs, then send the msg acc~rding to
/ / the user defined address

ACLMessage msg = new ACLMessage(ACLMessage.INFOFU4);
msg.setSender(getAID());
msg.addReceiver(r);

" ';, r- ., L. .>
,, ..
7 , : O
,> ,. . .,
7,' 1

" '.I I; , z.. '.. ,. .. v ,: 9
933
4.:;
9 2
"', .:, .* ..I . .
<. .'$,I
3 .
,\ " .! :>
9:! 6 ,. .. ;+ .$'?

:> .., ., -,
429
:> '< ::
' 8 ' ., .i .:

,. I ,\

7 <4 L

9 4 .'$.
4 :; 4
9 :i 5
c 4 . a t 6
2 4 ',
9 :i p
9.; a
,~ ,- ,, - - . ,.,~!
,\ ,- \. - ,.,I i .

,> t: -
? > , A

,-, ;. .> / ., .'. ,.
Y 2 4
,> ...
7 s 5 ,. ,
,:: i 6
,~ ,: ..., ... , . , ., I

,~ I ,\ " .. *
.I .., . -
,\ ;:
..7 , " ,. ,. ,. - p,: , , :
,\ , _
7 !:, .!.
,\ ,. ?%

7 !-, '!
,\ ,. ,\

Y !: ;:

:> 6: . ., ..b !; " C ':' ..,
9 C,b
,~ ,. .-,
7 < , ;

96::
" C c : ., .., .. ,. -., ,.
Y : I.! - -., > " . . , i ,. -.; ,.
Y : L
,\ -., ., " ; -. , . .. ,. -.. .
y : T i

,. - 3 r. " : .I . ..:
4 ''7 6
,% .., . .. - . : I : : ,. .., ,\ - .,. , : . . ,. -.,
,: : 9
4 8 ;.>
,~ ... - -4 : ./ ., .:.

9 b 2
" 2 .:. * .., ... ,. ,.
7 ~5 4
,> r, ,. :: I? :>
(> ;, , ., 6
9 9 '7 ,. ,- ,,
Y d l
9 9 9
O G :- 2 2 ,.I

9 9 1
9 92
9 9 3
994
9 9 5

catch (Exception e)

1 /! cnd function send-msg

/ /
i l This fixction returns the entire line of String
private Srring getstring() throws IGExcepcion
(

InputStrcainReader isr = new InputStreamReader(System.in);
EuffereclReadcr br = new BufferedReader(isr);
Szring s = br.readLine();
return s;

/ /
/ / This fimctions returns the character iriput from the user
private char get-char() throws IGExceptio~
I

InputStreamReader isr = new InputStreamReader(System.in);
EufferedReader br = new EufferedReader(isr);
?+ring s = br. readline () ; .- L -
return s. charAt (0) ;

} / / end get - char (j

1 i! end class Roiite
} / / end clzss Agentsender

This class defines the various display functions to oiitput information to screen
* * i * * * i * * * i * * + * * * * i * * * * + + * . i * * * * * i * * * + * ~ * * " + * ~ h + * * * i + + * + * * + " * + * - * ~ k * " + * * Y * * + * + * . k * * * t /

class Display (

Display () (/jBegin Constructor

// initialize all global variable in this class
) !/End Censtructor

/ / ..
/ / This function returns the InetAddress of the ciirrent host computer
/ / ..
public InetAddress get-own-Inet()(

try //trying to set own ip-address
(

InetAddress ownIP = InetAddress.getLocalHost();
return ownIP;

catch(UnknownHostException e)
I

System.out.println(e);

return null;
) / / end get-own-Inet ()

InetAddress ownAddress = get-own-Inet();
Scring host name = ownAddress.getHostName 0;
String host11~ = ownAddress.getHostAddress~);

Syst.en.out .println (' I ") ;
Syst.ez.out .println ("31 .~n!ay iic;?t :.rAt..~r?-.+.t;. i . c 1 7 ' ') ;
System.out .println (" ") ;
Sy.st.cm.out .println ("Hozr: L:rnp.~Esr Is: " + host-name) ;
System.out .println ("Hc;zt 1; is: " + host-IP) ;

/ / ..
/ / This funct-ion dis~lays all neighbour nzde information
,'/ ..
public void neighbour - nodes() throws ZOException
I

try (
BufferedReader bufReader = new EufferedReader(new FilcReader("neig%o~:r 1.ist.txt")
SEring current-line;

while((current-line = bufReader.readLine0) ! = null)

int index = current - line.indexCf("/");

System.out .print111 ("P1mr: " + current-line. substring (0, index)) ;
System.out.println("IP: " + current-line.substring(index+l,current-line.length
Systez.out.println(" ") ;

}
}catch (Exception e) {

System. out. println (' ' :<z nodes a r e ccrrent1.y co-netted") ;

1

j / ..
i / This function displays infzrmation on all ~ o d e s
/ / ..
/ / This function display ALL nodes currently available on <-Net
public void all-nodes0 throws ICException
I

System. out .println (";isplaying .41..I.. Xodes withj.:, J-1'Jc.t") ;
System.out.println (" ") ;

try I
Siring current-line;
int count=l;
Buf feredReader bufReader = new Buff eredReader (new FileReader ("globa .L .- list. txt ")) ;

while((current-line = bufReader.readLine0) != null)
t

int index = current-line. indexof (' ' / ") ;

System. out. println ("P1ar.c: " + current-line. substring (0, index)) ;
System.out.println("IP: " + current-line.substring(index+l,current-line.length
Systen.out.println(" ") ;
count++;

1
Sy~tem.out.println(~~Tota1 of " + (count-1) + " nodes are available on :-Netw);
System.out .println (" ") ;

)catch (Exception e) {
System.out.println("No nodes on J-Net");

1

/ / ..
/ / INCLCJSED JAVA FILES
/ / ..
package examples.receivers;

import java.util.*;
import java.io.*;
import java.net.*;
import java.lang.*;
import java.lang.Thread;

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

public class AgentReceiver extends Agent I

class WaitPingAndReplyBehaviour extends SimpleBehaviour (

private boolean finished = false;

public WaitPingAndReplyBehaviour(Agent a) {
super (a) ;

1

public void action () (

final String
final String
final String
final String
final String
final String
final String
final String

/ / wait here

admin-header = "Admiz - Setup: " ; i /
broadcast-header = "8rosdzast - Setup: "; i /
multi-hop-header = "M?,:lti -- Hop -. Messacre Header: "; / /
specific-path-header = "Specific - Path Message_Header: "; / /
update-hop-header = "Update -- Hop - Xessags - Headex: "; / /
update-hop-list-header = "Update Eop List Header: "; / /
Hop-Test-Header = "Hop - Test. - Hesder : "; / /
End-Hop-Test-Header = "End .- Hop Test .- Eeaber: "; / /

header used
header used
header used
header used
header used 1

header to w r .
header used
header used

nntil a msg is received, since this is a one-behaviour function.
ACLMessage msg = my~gent. receive () ; //blockingReceive (: ;

if (msg != null)
I

t rY
(

/ / retrieve the message
String content = msg.getContent();

/ / class to handle incoming messages
Receive receive = new Receive();

/ / + * * * + * + * + * * + + i * * + * * * * * * * * * * + * * * * * * * + + * + * * * * + * ~ h * % + * * + * * * * + * ~ h ~ * ~ h + * * * i

/ / RESPONDING TO REMOTE REQUEST CONNECTION BY ADMINISTRATOR
/ / * * * * * * * * + * * * * * + * * * * * * * + * * * * * * * * * + * * * * * * * + * * * * * * " + * * * * * * * + * * + * * * * * * *
/ / test if message is adminstrative message
/ / store into neighbour-list if not already exists
if(content.startsWith(admin-header))
(

receive.ADMIN-HEADER(c0ntent);
) / / end if (admin-header)

/ / REPLYING TO BROADCASTING MESSAGES
/ / + + + * * * * * + * * * * * + * + + + - * * + * + + + . * + + * + * + - * h + " + * * - * * + n + + * * * * * n * * * Y * * * n + * *

else if(content.startsWith(broadcast-header))
(

receive-BROADCAST-HEADER(content1;
) / / end if (broadcast--header;

/ / + * * * + + + * + + + + + ~ h + * + * * * * + + i + + * * + + + * * * + Y * k + * + * ~ ~ * * * + r + * + * * - * + * * * + ~ * * * + + + +

/ / Reiay nessage to destinaticn !Xulti hop1
/ / * * + * + * + + + + * * * ~ k + + * ~ * f + ~ + * * + ~ i ~ ~ h + ~ + ~ ~ + ~ ~ h + + + ~ ~ ~ ~ ~ + ~ * * ~ h ~ ~ ~ + x * + * - + ~ + + + ~ *

/ / test if message is broadcast message header
/ / store into global list
else if (content. starts~ith (multi-hop-header))
I

receive.MULT1-HOP-HEADER(content);

/ / Update--Hop-List message / / + * + + * + * * + + + * * * + * * * + ~ * + * * + * * - * + + * + * * Y ~ + + * + + + * * h + * * + * - * h * * + + + - * + * * + + +

else if(content.startsWith(update-hop-header))
(

) / / end else if

/ / * * * + * * * * + * * * * * * * + * * Y * * * * * + * - i * t * * * * Y + * * * * * * 7 * * + * + * * Y * * + * * * * . * k + * + * *

/ / Update hop-List.txt
/ / * * * . + * + * * + + . * * * + + + * . * * * * + + + . * * * * * + * Y + h + n * + + Y * h + x * + * - * * + * + + * Y * k + n * + +

else if(content.startsWith(update-hop-list-header))
1

receive.UPDATE-HOP-LIST(content);
) / / end else if

else if(content.startsWith(Hop-Test-Header))
I

receive.HOP-TEST-HEADER(content);
1
/ / * * * * + * * * + + + ~ * * + * * + * . * * + * * * * Y + * + * + + * ~ * k * * * * * Y + * + " + * + ~ * * + * * + * - * * * * * + *

/ / End-Hop-Test-Header (Get time difference)
/ / + * * * * * + * * * * - * * * * * * * Y * * * * + + * Y + * + * + + * + * * + * * + * - * * * * * * * - * h + * * + + - * * * + * + *

else if(content.startsWith(End-Hop-Test-Header))
I

/ / No header, so nust be message received
else
(

System.out.println("RECEIVED: " t content);

/ / + * * * * * * * + * * * * + + * * * + Y * * + * + * * + * + + * + + + + * ~ * + * * * * - * * * + + *

/ / Send to JAVA program
int Jade-Java-port = 4801;
byte [1 temp = new byte [lo24] ;
temp = content.getBytes(); / / convert to byte array

/ / Actually send the packet out
Datagrampacket data-out-packet = new DatagramPacket(temp, temp.length, ownIP, Ji
Datagramsocket Out-socket = new DatagramSocketO;
Out~socket.send(data~outtpacket);
/ / + * * * * + + * * * * * * * + * + * * * * * * + * * * * * t * * + * + + + + * * + + + + * + * * + + * + *

/ +

/ / create a reply message to the Sender Agent
ACLMessage reply = msg-createReply!);

i / set message type
reply.set?erf~rmaci~~e(ACLMessage.~NFGRM!;
/ / set content
reply.setContent("ACK: Message Received");

send (reply'; ; * /

1 / / end if msg!=null
else
I

block () ;
)

) / / end action

public boolean done 0 (
return finished;

)

/ / ...
/ / This fnnctions checks if incoming content already exist in file
/ / ...
private boolean content-exist(String filename, String content) throws IGE~ception

boolean exist = false;
String current line; -

EufferedReader bufReader = new EufferedReader(new FileReader(fi1ename));

while((current-line = bufReader.readLine()) != null)
{

exist = true;
bufReader . close () ;
return exist;

1

return exist;
1

} //End class WaitPingAndReplyBehavio~r

protected void setup() (

/ / Registration with the DF
DF~gentDescription dfd = new DFAgentDescriptionO;
ServiceDescription sd = new ServiceDescriptionO;
sd. setType ("AgentReceiver") ;
sd. setName (getName ()) ;
sd. setownership ("Edward") ;
/ /sd. addontologies ("FingAgentt') ;
dfd. setName (getAID ()) ;
dfd. addservices (sd) ;
try t

DFService. register (this, dfd) ;
) catch (FIPAException e) {

System.err.println(getLocalName()+" registration with DF unsucceeded. Reason: "+e.getMe:
doDelete () ;

1

WaitPingAndReplyBehaviour PingBehaviour = new WaitPingAndReplyBehaviour(this);

add~ehaviour(~ingBehaviour);

1

private class Receive[

Receive()(//3egin Constructor

/ / initialize all ~lobal variable in this class
//Ecd Constructor

/ / ..
/ / This fanction returns :he Inetkddress cf the csrrent hcst computer
/ / ..
public InetAddress get-own-InetO [

t rY //trying to set own ip-address
{

InetAddress ownIP = InetAddress.getLocalHost();
return ownIP;

)
catch(UnknownHostException e)
(

System.out .println (e) ;
1
return null;

) / / end get-own-Inet!)

/ /
/ / This function process ADMIN - SETUP messages (sets up connection with specificed neighbocr
/ /
public void ADMIN-HEADER(String content) throws IOExce~tion
(

int index = content.indexOf(":");
int length = content.length();

String node-to-add = content. substring (index+2, length) ;
InetAddress IP-Addr = InetAddress.getByName(node-to-add);
SEring tofile = IP-Addr.toString();
/ / make everything lower case, just tc be safe
tofile = tofile.toLowerCase();

if (! (content-exist ("neighbcurZZ1ist. txt.", tofile)))

/ / Cpen the neighbour_-list.txt file to write to
BufferedWriter bufwriter = new BufferedWriter (new Filewriter ("neighbaur - list.. ti:tV,
/ / write to file
bufWriter.write(tofile);
bufwriter .newline () ;
bufwriter. close () ;
Systerr..out.println("N~d~:: " + tofile + " is added rcm;tely by Ailmir;i.stl-ator");

function process BROADCAST - SETUP messages (handles brcadcast messages, writes to g l ~
/ /
public void BROADCAST-HEADER(String content) throws IOException
1

int index = content.indexOf(":");
int length = content.length();

String node-to-add = content.~ubstring(index+2, length);
InetAddress IP-Addr = InetAddress.getByName(node-to-add);
String tofile = IP-Addr.toString();
/ / make everything lower case, just to be safe
tofile = tofile.toLowerCase();

/ / check if content already exist
if (! (content-exist ("globai_list. txt", tofile)))

{
/ / Open the neighbour-1ist.txt file to write to
EufferedWriter bufwriter = new BufferedWriter (new FileWriEer (":,-isba1 l i 3 t . r:-,t", true
/ / write to file
bufwriter-write (tof ile) ;
bufWriter.newLine0;
bufwriter. close () ;
System.out.println("?~c~de: " + tofile + " is written t::~ glc,ral lixt.txi");

1

/ /
/ / This fznction process MULTI - HOP - HEAEER messages (user-defiricd rr.a.uimum hops)
/ /
public void MULTI-HOP-HEADER(String content) throws
{

/ +

C:?eck if dest-node is a neighbour node, if
if noc, decrement hop count and send to all
if hop - count==0, discard (send msg failed??

* /
/ / Extract destination node tc see if neighbour

is, send direct
neighbour node

!

node

int front = content.indexOf("#");
int back = content.indexOf("S");
int index;

String dest-node = content.substring(front+l, back);
String new-content; / / new content of message, sent tc all neighhour nor
String multi-hop-header = "t.:uiEi - XO? Message-Xeal:ict!_: "; / / header used to rmte packet

/ / if already in neighbour list, send directly
if (content - exist ("neighsour - list. txt", dest-node))
f

/ / Multi Hop Wessage__Header: 3#destinationSmsg_body
/ / ~xtract tKe message and send tc destination
String msg-node = content.substring(back+l, content.length0);
send-msg(dest-node, msg-node);

1
/ / decrement Hop count and send to all neighbour
else
f

/ / extract hop count
/ / Multi-Hop-Message-header: 3#destinationSmsg_body
int start = content.indexOf(":");
String hop = content.~ubstring(start+2, front);
int temp-hop = Integer.parseInt(hop);
temp-hop--;
hop = String.valueOf(temp-hop);

/ / get own host-name
InetAddress ownAddress = get-own-InetO;
String host-name = ownAddress.getHostName0;
/ / make everything lower case, just to be safe
host-name = host-narne.toLowerCase();

/ / go through neighbour list and send to all seighbours
if (temp-hop>O)

content = content.substring(front, content.length());

new-content = rnulti~hop~header.concat(hop.concat(content)) ;
System.~ut.println(~~new~content: " + new-content);

/ / actually send the message to everyone on neighbor list
BufferedReader bufReader = new BufferedReader(new FileReader("neighbour-1ist.t~-
String current-line;

while((current-line = bufReader.readLine0) != null)

(
index = current-line. indexof (" i ") ;
Srring to-node = current-line.substring(0,index);

if(! (to node.equalsIgnoreCase(host~name))) -
{

send msg (to-node, new-content) ; -
1

)
bufReader. close () ;

} / / end if!hop!=j
) / / end else

) / / end function

. -

/ / This function process MULTI - HOP messages (decrement hops and send to others)
/ /
public void UPDATE-HOP-HEADER(String content) throws IOException

/ /sender-nodeHHCE-C:CtiPJT%PRE'r710US--s e n d - nsdeloriginal-hop-Count
final String update-hop-list-header = "ilpdatc: .- 2912 List - Header: "; / / header to writ<
int first = content.indexOf("i;");
int second = content.indexOf("#", first+l);
int end = content.lastIndexOf("H");

/ / convert to INT
int hop-count = Integer.parseInt(content.substring(first+l, second));

String final-hop-count=null;
String original-sender;
String current-line;
String new-hop-count;

/ / get current host name
String local host = get-own-Inet().toString();
int host-index = local~host.indexOf("/");
local-host = local~host.substring(O,host~index);

hop count = hop-count-1; -
)

/ / hop count==O!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (hopIcount==O)
(

/ / end of hop reached, send back to sender with hop info

//Update-Hop-List__Header: current - nodetoriginal-hop-count
int space = content.indexOf(" ") ;
String update-hop-list = u p d a t e ~ h o p ~ l i s t ~ h e a d e r . c o n c a t (l o c a l _ h o s t) ;
update - hop - list = update~hop~list.concat(content.substring(end, content.length(

original-sender = content.substring(space+l, first);
System. out-println ("01:igiriaI.: " + original-sender) ;
System.out.println("updi~,t'? hop list: " + update-hop-list);
/ / send to original sender-TO BE MODIFIED!! ! ! ! ! ! !
send-msg(origina1-sender, update-hop-list);

i
else
I

/ / Update-Hop-Message-Header: sender~node#HOP~COUNT#PREVIOUS~sender~node#Origini

//Replace the hop-count and send to everyone on the list, except to itself
new-hop-count = String.valueOf(hop~count);
System.out.println("t~op~count: " + hop-count);

/ / get message header

String temp-content = content.substring(0,first);

/ / attach new hop-court
temp - content = temp~content.concat("r:".concat(new~hop~count)) ;

/ / get original hop count
temp-content = temp~content.concat(content.substring(second, content.length()))

/ / send to everyone on neighbcur list wit" new hop - count
BufferedReader bufReader = new Biuf fcrcdrteader (new FileReader ("r-ci q?ns~r tx

/ / actually send the message to everycne on neighbor list, except itself AND prc
String previous - sender = content.substring(second+l,end);

while((current-line = bufReader.readLine0) != null)
(

host-index = current-line. indexof (" / ") ;
String neighbour-name = current-line.substring(0,host-index);

/ / Doc't send message to ~tself
~f (! (neighbour-name. equalsIgnoreCase (local-hot)) / I (neighbo..~r-name. eql
{

Systern.out.println("P,e~end: " + neighbour-name + " " + temp-content);
send-msg(neighbour-name, temp-content) ;

)
) / / end while
bufReader.close () ;

) / / end else
) / / end UPDATE-HOP__HEADER

/ /
/ / This function process MULTI - HOP messages (decrement hops and send to others)
/ /
public void UPDATE-HOP-LIST(String content) throws IOException
{

System.out.println("rewrite: " + content);

/ / array used to hole hop list cocnt
S~ring[] hop-list = new STring [500];
//Update-Hop-List-Header: end - noae#original-hcp-ccunt
int space = content.indexOf(" ") ;
int seperator = content.indexOf("$");

String end-node = content.substring(space+l, seperator);
String final-count = content.substring(seperator+l, content.length());

/ / loop through hop-list EO record hop info, cnly take the info with ieast hops!!
BufferedReader bufReader = new BufferedReader(new FileReader("hop - .list.txt"));

//copy file into hop-list array, then delete file
String current-line;
int counter = 1;
while((current-line = bufReader.readLine()) ! = null)
I

hop-list[counter] = current-line;
counter++;

) / / end while

counter = 1;
String node-in-file;
String old-node-count;
String replacement;
String node-name-in-file;
String received-node;

int message-count;

; 9 '.j
:, 0
.- ,. -
. , j l .
;. ,.
. I t . : :..

f, (.: :j
?. <-. 4 .> '.. 't
i '\ i .> , .>
. A .
-,I.,

.. ,. . >, ' ,

. ,>.. - .;,. . , \.. . ,.
:;%,'!
:. . ' ,
, .. \>

L, > . , .- .A.

1. ' . . . , .: !.
. . ..,
., . .>
: 1 . 1 / '1

. . . 8 i. ., . ., .. . ,
-; ;. ,
.. . ,, - , ., .

. . . - : >< . , ., .. . -. . ' 2 , . .- ,\ ,-.
-.,:: .., . . .,
L- ,./. .i .- ,> .> L. <.: .- - ..,
L, , ' ., .,
.;, 2 'I - ,i
2-< .)

:.. ,. *. d L K

:> 2 .!
52;
.. ,> .
::> /. $:!

.. , - > , : . 1 ..: ,;
c, ., 1 ., .,
L. 3 .., ., ,
.:, 2 :>
5 .? 1
C 7 C ~ .,,
2; 2 6
.. ., ..,
:.; 2 !

: 3 2 . , 2 .,
:, :5. 5:
c.,Jt: .., . ., . . . :> " . -
.. . .
%. ,. .., -1 . .
: ..
; C! .$

54 ,:
L ,I 5 -. -
54 i:.
r. ,. ..> .J .4 !

5 $1
j .] 5:
::. c, ' , ..,,
5 5 1,
I' 5 '? .; -? i..

553
5 '; .!
5 f? Fi
556

< ,. ., .? :
5 5 8
;. r, ,.,
.d,
,. .. . -.b'l - .,
:, r . ., C .i

Z~ ,- ., 0 4 .

c r ' , 0 .l
564
5 65
5 6 6
567

5 68
565j

int array-count;
boolean node-exist = false;

int sept;
while(hop-list[counter] != null)
(

node-in-file = hop-list[counter];
sept = node-in-file. indexof (" $ ") ;
node-name-in-file = node-in-file.substring(0,sept);

/ / if node exist
if(end~node.equalsIgnoreCase(node~nameein~file)~
{

node-exist = true;
i / get node_-ccunt from string array (File)
array-count = Integer.parseInt(node-innfile.substring(sept+l, node-in-file.leng.

/ / get node_,ccunt from message
message-count = Integer.parseInt(content.substring(seperator+l, content.length(

/ / replace array if hop is now smaller
if(message-count < array-count)
(

replacement = node-in-file.substring(O,sept+l);
replacement = replacement.concat(Stri?.q.va1ueOf(message~count)) ;
hop-list[counter] = replacement;
System.out .println ("UPDATEL> HO? . . LIST: " + replacement) ;

} / / end if

counter++;
} / / end while

i / new node, write to file
if(!node-exist)
(

hop-list[counter++l = content.substring(space+l, content.length());

/ / open up new hop-list file and write
EufferedWriter bufwriter = new BufferedWriter(new FileWriter("hop-iist.txiiiI true));

int i=l;
while(iccounter)

(
bufWriter.write (h0p~1ist [i]) ;
bufWriter.newLine();
i ++ ;

1
bufwriter. close () ;

} / / end UPDATE-HOP-LIST

/ /
/ / This function process HOP-TEST-HEADER F.essages (decrement hops and randomly send to othe.
/ /
public void HOP-TEST-HEADER(Scring content) throws IOException
(

/ / Hop-Test__Header: sent-time#original-sender8max-hop
/ / extract hop count and decrement and randomly send to peers again
int last = content.lastIndexOf("#");
String max-hop = content.substring(last+l, content.length());
int new-max = (Integer-parseInt (max-hop)) - 1;
max-hop = String.valueOf(new-max);

/ / construct the new message with decremented max-hop
String temp = content.substring(O,last+l);
String hop-test-msg = temp.concat(max-hop);

/ / System.out.println("hopPtest: " + hop-test-msg);

/ / randomly send to neighbours again
if (new-max > 0)
(

/ / gec nurrher of Ist-tier neighhocrs
int neighbours = number-of-neighbours();
//int qlobals = ncmber,-of-_globals (1 ;

/ / rar~dornly send cut to a first-tier zeighhour
Rando- x = new Random(); / / defazlt seed is time in -illiseccnds

int random = x.nextInt(neighbours); / / returns rando: in: >= 0 3x3 < n

/ / get destinatian node informatizn
EufferedReaaclr bufReader = new BufferedReader (new FileReader ("nci,giii-,c131- list.. t:.:tW))

/ / go to the line in the file
for(int i=O; i<random; i++)
(

bufReader . readline () ;
I

String current-line = bufReader.readLine0;
int index = current-line. indexof (" / ' ') ;
String dest-node = current-line.substring(0,index);
bufReader . close () ;

/ / send the message out
send-msg(dest-node, hop-test-msg);

1
/ / reached the end, send back to original sender
else
(

int index = content.indexOf("$");
String End-Hop-Test-Msg = content.substring(0,index);
End-Hop-Test-Msg = "Ezd_". concat (End-Hop-Test-Msg) ;

String dest-node = content.substring(index+l, last);

send-msg(dest-node, End - Hop-Test-Msg);
//System. out . println {"dest - node: " + dest-node) ;
//Spstem.out.println~"End - Hop - Test -. Msg: " + End - Hop - Test - Xsg!;

I
) / / end SOP-TEST-HEADER

/ /
/ / This function process END-HOP-TEST-HEADER messages (outputs time spend and analysis)
/ /
public void END-HOP-TEST-HEADER(String content) throws IOExceptioc
(

int index = content.indexOf(":");

String orig-time = content.~ubstring(index+2, content.length());
long start-time = Long.parseLong(orig-time);

/ / Retrieve the number of milliseconds since 1/1/1970 GMT
Date date = new CateO;
long end-time = date.getTime();

long elasped-time = end-time - start-time;

System.out.println("To~a.L elasped time is: " + elasped-time + "miilisezonds");

) / / end END-HOP-TEST-HEADER

/ / ...
/ / This function returns the number of neighbours this node is connected to

150

private int number-of-neighbourso throws IOException
I

int count = 0;
EufferedReader bufReader = new EufferedReadcr(new FllcReader("r.elg.-9o:r - 1-zt.txtn));

while (bufReader. readLine () != null)
I

count++;

bufReader.close0;

/ / This function returns the number of global nodes
/ / ...
private int number-of-global~(
t

int count = 0;
BufferedReader bufReader =

) throws IOZxception

while (bufReader. readLine ()
t

count++;

bufReader . close () ;

new EufferedReader (new FileReader ("global - I l s t . rxt.")) ;

!= null)

return count;
) / / end function
/ / ...
/ / This functions checks if incoming content already exist in file
/ / ...
private boolean content-exist(String filename, String content) throws 1OEi:cepzion
t

boolean exist = false;
String current-line;

EufferedReader bufReader = new BufferedReader(new FileReader(fi1ename));

while((current-line = bufReader.readLine()) != null)
t

exist = true;
bufReader . close () ;
return exist;

return exist;

/ / ...
/ / This is the JADE program that actually sends the message OUT
/ / ...
public void send-msg(String node - name, String message)
{

String responder = null;
String dest = null;

try //trying to open socket for data going out
{

dest = "littp: / / " .concat (node-name) .concat (" : 7778/accU) ;
/ / Use String class manipulation to get responder address
int end-index = dest.lastIndexOf(":");
responder = "receiver@". concat (node-name) . concat (":lEE1') ;

/ / Setup JADE send variables to use JADE to send the message out
AID r = new AID () ;

/ / create the ACL message and set specs, :hen send the rnsg according to
/ / the user defined address

ACLMessage msg = new ACLMessage(ACLMessage.INF0RM);
msg.setSender(getAID());
msg. addReceiver (r) ;

msg. setcontent (message) ;
send (rnsg) ;

finishcd = faise;
1
catch (E:ic-c.ption e)
I

Syste:.. out .println (" .l.31.1E send iai. i ed") ;
1

7 2 3 } / / end s e ~ d msg ()
', '>

--
3I
'? 2 U
: .. .) } / / end clzss Receive
7 ' 6
.., .> ..,
:,! }//end class AgenzReceiver

,> ?> : .> ::

import jade.core.*;
import jade.core.behaviours.*;
import jade.lang.ac1.ACLMessage;
import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService;
import jade.domain.FIPAException;

public class Broadcast-receive extends Agent (

class WaitPingAndReplyBehaviour extends SimpleBehaviour (
private boolean finished = false;
public WaitPingAndReplyBehaviour(Agent a) (

super (a) ;

public void action() (
/ / empty function, never gets here

) / / end acEion
public boolean done0 (

return finished;

} //End class W a i t P i n g A n d R e p l y B e h a v i o i > ~

protected void setup() {

try
(
Broadcast broadcast = new Broadcast();

/ / Loop forever and receive host information frem clients
/ / the received messages.
while (true)
(

MulticastSocket multicastSocket = new NulticastSocket();
multicastSocket = broadcast .multicast-setup (" 2 3 3 . i:. 9 . I", 7 7 7 7) ;

/ / blocks here indefinitely until a message is received
String message = broadcast.receive(mu1ticastSocket);

/ / determine if node already exists in glsbal-1ist.txt
if(! (broadcast.content-exist("g1obal - list.txt", message)))
I

/ / write to globa: list file
broadcast.write ("giohal-list. t:.:trr, message) ;

/ / Create an reply to tell the new Node that this current node is ON
broadcast.reply(message);

) / / end while

catch (Exception exception)

/ / REGISTXRTION WITH DIRECTORY FACILITATOR (SF)

DFAgentDescription dfd = new DFAgentDescriptionO;
ServiceDescription sd = new ServiceDescription();
sd. setType ("Broadcast recr.ive A q e - t ") ;
sd. setName (getName ()) 7
sd. setownership ("Sdw:rci") ;
//sd. addontolcgies ("PingAgent") ;
dfd. setName (getAID0) ;
dfd.addServices(sd);
try t

DFService. register (this, dfd) ;
) catch (FIPAException e) {

Syste~. err. println (getLocalName () +" 1:2gistration with [.IF ;:r.suicsedad. R;--sssn: "+e. g~
doDelete () ;

1

WaitPingAndReplyBehaviour PingBehaviour = new WaitPingAndReplyBehaviour(this);
addBehaviour(PingBehaviour);
/ / ..

) / / END SETUP

1G3 //)//end class Broadcast - receive
I (>.I
1 :: L,
1)?6 private class Broadcast(

Broadcast()(/iBegin Constructor

/ / initialize all global variable in chi.? class

) //End Constructor

/ / --
/ / This function sets up the multicast address and joins the group
/ / ..
public Multicastsocket multicast - setup(String MULTICAST-ADDR, int MULTICAST-PORT) throws Ic

t
MulticastSocket multicastSocket = new MulticastSocket(MULT1CAST-PORT);
InetAddress inetAddress = InetAddress.getByName(MULT1CAST-ADDR);
multicastSocket.joinGroup(inetAddress);

return multicastSocket;
I

/ / ..
/ / This function blocks indefinitely until a message is received cn Multicast Port
/ / ..
public String receive(Mu1ticastSocket multicastSocket) throws IOException

(
byte [I temp = new byte [1024];
DatagramPacket datagrampacket = new DatayramPacket(temp, temp.length);

/ / infinitely stuck here until receive a packet
multicastSocket.receive(datagramPacket);
String message = new String(datagramPacket.getData(), 0, datagramPacket.getLength());

return message;
1

/ / ..
/ / This function replies to the sender of the broadcast message

/ / ..
public void reply(String message) throws IOExccption

{
int index = message.indexOf("/");
String node-name = message.substring(0,index);

InetAddress ownAddress = get-own-Inet 0 ;
String host - name = ownAddress.getHostName0;
String msg = "5roadcast :stup: ".concat(host-name);
send-msg (node-name, msgi-;

1

/ / ...
/ / This functions actually sends the aessaqe cut to dest-ination ncde
/ / ...
private void sendmsg(String node-name, String message)
t

String responder = null;
String dest = null;
t rY
t

dest = "htzp:/;".concat(node name) . conca t (" :77?5~:3 .~ :c") ;
/ / Use String class maniplation to get responder address
int end-index = dest.lastIndexOf(":");
responder = "receiver@". concat (node-name) . concat (" : lCq':/,JADE'') ;

Systern.out.printl~,("responder: " + responder);
Systex.oucprintln ("des " + dest) ;

/ / Setup JADE send variables to use JADE to send rhe message out
AID r = new AID() ;

r. setName (responder) ;
r.addAddresses(dest);

/ / create the ACL message and set specs, then send the msg according to
/ / the user defined address
ACLMessage msg = new ACLMessage(ACLMessage.1NFORM);
msg.setSender(getAID());
msg.addReceiver(r);

msg.setContent(message);
send (msg) ;
I

catch (Exception e)
I

System.out .println ("JADE send failed") ;
)

) / / end function

/ / ..
/ / This function writes the message to the specified file
/ / ..
public void write(String filename, S~ring message) throws IOException

t
EufferedWriter bufwriter = new EufferedWriter(new FileWriter(filename, true));
bufWriter.write(message);
bufWriter.newLine();
bufwriter. close () ;
Syste.n.out.println("New node: " + message + " written <c " + filename);

)

/ / ..
/ / This function returns the InetAddress of the current host computer
/ / ..
public InetAddress get-own-Inet() (

//trying to set own ip-address

2 14 InetAddress ownIP = InetAddress.getLocalHost();

return ownIP;
1
catch(UnknownHostException e)
(

System.out.println(e);
1
return null;

) / i end get--own-Inet ()

/ / ...
/ / This fx~ctlons checks if incoming content already exist in file
/ / ...
public boolean content-exist(String filename, String content) throws IOException
{

boolean exist = false;
Scring current-line;

Euf feredReader bufReader = new BufferedReader (new FileReader (filename)) ;

while((current-line = bufReader.readLine0) != null)
{

if(current~line.equalsIgnoreCase(content~)
{

exist = true;
bufReader. close () ;
return exist;

1
1
return exist;

) / / end class Broadcast

}//end class Broadcast - receive

APPENDIX B

This appendix contains the sample code listing for extending the JXTA distributed
software platform.

//--
/ / INCL3DE JAVA FILES
//--

import java.io.File1nputSr.ream;
import java.util.Date;
import java.util.Enumeration;
import java. io. FiieWriter;
import java.io.IOEsception;
import java.net.*;
import java.util.*;
import java.io.*;
import java.lang.Thread;
import java.lang.*;

//--
/ / INCLUDE JXTA FILES
//--

import java.util.Enumeration;

/ / DISCCVERY FILES
import net.jxta.discovery.DiscoveryEvent;
import net.jxta.discovery.DiscoveryListener;
import net.jxta.discovery.DiscoveryService;
import net.jxta.protocol.DiscoveryResponseMsg;
import net.jxta.protocol.PeerAdvertisement;

import net.jxta.endpoint.StringMessageE1ement;

/ / RENDEZVOUS FILES
import net.jxta.rendezvous.RendezvousEvent;
import net.jxta.rendezvous.RendezvousListener;
import net.jxta.rendezvous.RendezVousService;

/ / DOCUMENT FILES
import net.jxta.document.StructuredTextDocument;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;

/ / ENDPCINT FILES
import net.jxta.endpoint.Message;
import net.jxta.endpoint.MessageE1ement;
import net.jxta.endpoint.Message.Element1ter.itor;

/ / PEERGROUP FILES
import net.jxta.exception.PeerGroupException;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.imp1.peergroup.StdPeerGroup;

/ / PIF'E FILES
import net.jxta.pipe.1nputPipe;
import net.jxta.pipe.PipeMsgEvent;
import net.jxta.pipe.PipeMsgListener;
import net.jxta.pipe.PipeService;
import net.jxta.pipe.OutputPipe;
import net.jxta.pipe.0utputPipeEvent;
import net.jxta.pipe.0utputPipeListener;
import net.jxta.protoco1.PipeAdvertisement;

/ / IE FILES
import net.jxta.id.ID;
import net.jxta.id.1DFactory;

/ / MISC
import net.jxta.imp1.endpoint.WireFormatMessage;
import net.jxta.imp1.endpoint.WireFormatMessageFactory;
import net.jxta.util.CountingOutputStream;
import net.jxta.util.DevNul10utputStream;

//--
/ / END INCLUDE FILES

PipeComm. 1 ava
- -- - -. - - - -- - - - - --

4/20/2005 3338 PM - - --- --

/ *
Have an arrzy of 2ipeAdv[l and using a while loop, bind all .XML (also in array) that is not NI
remove line1 cf .XML file
match array psition with irms-client##
- still broadcast. the .XML file to everyone on the list
- client1 goes ,2nline, sezds to everycnr, including clienZ2

- when client2 wants to send to clientl, checks directory for clientl.xm1, if its exist
bind Co it

- broadcast --:, also send Sack own .XML file

* /
public class PipeComm

!.A I> [
? . ..I i ., .:.

$! 2
,. ..
..I *. ., ..,

9 /3
:i r, ., ...
9 6
C! '.;

,- ,%

.:$ 5

4 9
1.00
1, I-: ?
\i .i.

1.02
1. c: 2, ., ...
1.94
1 <: r
2. ; ..)
I. !' 6
1, :; -* ,' !
].OI;:
1. u 9
1. 'i, r.;
I. 1. 1.
I. 'i. 2
1, 3 .:,
1. " 4
1 1.5
1. 2. 6
1 F -1
1. i . :
] 1."
1 l g .. L.

1. 2 0
1 2 ,
1 2 2
I. 2 ::,
1 2 4
12 5
120
I. 2 7
1. 2 F;

1.29
1 3 9
I. 3 i.
I. 32
1 3 3
1 2 lj
1.35
130
137
138
139
14 0
14 1
142
1.4 3

public static void main (String[] args) throws IOExcepticn{

PeerGroup netPeerGroup = null;
boolean exitconsole = false;
char userInput;

InetAddress ownIP = 1netAddress.getLocalHost~);
String host-name = ownIP.getHostName();

.
/ / DELETE PREVIOUS FILES / /
.
delete-previous () ;

.
/ / CREATE THE DEFAULT U-TA NETPEERGROUP / /
.

try {
/ / create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGrOup();

}
catch (PeerGroupException e) [

/ / could not instantiate the group, print the stack and exit
System.out.println("fata1 error : group creaticn fail~re");
e.printStackTrace0;
System-exit (1) ;

}

.
/ / GENERATE PIPE ADVERTISMENT AND BROADCAST TO EVERYONE / /
.
generatePipeAdv(netPeerGroup);
.

.
/ / INITIALIZE LISTENER/SENDER TO READY TO RECEIVING AND SENDING / /
.
PipeListener listener = new PipeListenerO;
PipeExample example = new PipeExample();
listener.peergroup(netPeerGroup, example);
example.peergroup(netPeerGroup);
/ / start the listener
listener.run() ;
.

.
/ / READ IN ALL .XML FILES IN THIS DIRECTORY AND SEND FOR BINDING
.
File homedir = new File("C:'*,\,jxta dcvguide\\pipeserv~ce") ;

//File homedir = new File (System.g~t~ropertyi"user.home")) ;
String[] XML-filename = homedir.list(new FilenameFilterO {
public boolean accept(Fi1e d, String name) (return name.endsWith(".XMI;");
)

f) ;
for(int i=O; i< XML-filename.length; i++)
t

/ / hind to all input pipes
1istener.bind input pipe(XML filename);
i / / / / / / / / / / / / 7 / / / / / T i / / / / / / / 7 / / / / / / / / i / / / / / i /

userInput = main-menu () ;

switch (userInput)
t

I. '.? 2 /! send to specific node
1. 7 3 case 'a':
1 -! !I send (example) ;
I. 7 5 break;
I. 7 6 ,. .; ..:

! i/ display all peers
1 -1 :: ,. : ..: case '5':
1. -.: 9 display-all () ;
1. b :; break;
. <, -
.J. <$.:.
182 i/ display all neighbour peers
1. 8 :3 case 'c':
1 8 4 display-neighbour-peers () ;
185 break;
18 6
1 2 '7 i/ Add a neigh~our peer
l8i: case 'd':
1 2 9 add-neighbour-peer(example, host-name);
I. 97 break;
19 1
192 / / Add a neighbour peer
1 '" .? d .- case 'e' :
1 .5 4 send-multi-hop (example) ;
135 break;
1.9%
I. 97 / / Update hop peer
198 case ' f ' :
1.99 update-hop-peer(example);
'> '' I
f- (I i) break;
,, ', - .<. L ! / / exit

case 'x':
2 0 3 System.exit (0) ;
2 c 4 break;
;: i; ::,
2 0 6
2 (; '7 default:
20" System.out .println ("Error input! ! ") ;

209 break;
210 1 / / end switch
211
212) / / end main
213
214 public static void send(PipeExamp1e example) throws IOException

1 6 0

? ? 5 '-A. (
I, .,
1. A 6 System. out.println ("Enter p e r n*-.c: ") ;
,, .! ?,

i .i. : String node-name = getstring();
,, .: ,.
i i r Syster.. out .println("Ente.r z.?ssace: ") ;
2 :i. 9 String message - getstring();
<\ ?, n
I_ i i!
.., ,.
Z: 1 I example.set-message(message);
*. ,.
2.. 2 2
.., ,. ,,
&. i: .- String file-path = "Z: \\jxta dt~or:r::.:.dc;\\~i.l:e:;j~~:~,;i~C:\\".~~n~at (node-name) ;
..\ <
a<. 1 4 file path = file-path. concat?". XMI..") ;
2 2: !: ~ile-my~ile = new File(file-path) ;

226
,, ,-, . .,
'i L. : / / only attempt to send when a valid node
r, ,., ,\

.::. , .: if (myFile-exists 0)
'7 ') C1
,. . I. ..
:> ~3 :; example.send-name(node-name);
*~ .',
.?!. ., .:. example. run (;
232)
2 3 ::. else
234
>; 2 :;

t
Syste~~out .println ("INT.:'.$LID NOLIE: - - GOZS NC)T EXIST") ;

236
.- ..., I

. :) / / end send (>
" .. <<. 3 :.:
239 public static void display-all () throws IOException
2.10 {
2 .I 1. File homedir = new File ("C: \ \ j x t a daL~guide \ . \p ipeserv ice l ') ;

2 4 2 //File homedir = new File(System.rJ~t~roperty("user.home"));
2 4 .1, String[] XML-filename = homedir. list (new FilenameFilter 0 (
2 .I 4 public boolean accept(Fi1e d, String name) (return name.endsWith(".XKL:");
245)
2 4 6)) ;
3 '1 ' j

2 .q :: System.out .println("") ;
'::.I 9 Syste-.out.println("Ali Peers av*il&bLe");
259
,, c :
,L .., i . for(int i=O; i< XML-filename.length; i++)

2 5 9 public static void display-neighbour-peers() throws IOExcepti~n
2 e, i;
" &- :

i
A ., 1. try (

Buf feredReader bufReader = new BufferedReader (new FileReader ("~eig>~So?:: peer. txt")

System.out.println(" ") ;
int i=O;

while((current line = bufReader.readLine0) != null) -

280
28i public static void add-neighbour-peer(PipeExamp1e Sender, String host-name) throws IOException
282 (
2 8 3 System.out.println("Enter name of peer: ") ;
284 String peer-name = getstring();
285

String filepath = "C: \ss \ ,<>: rn devguidc\,'\pipeservice',\''.concat (peer-name) ;
file path = file-path.concat?".XML");
~ile~rny~ile = new File(file - path) ;

/ / check if content already exist and is a valid peer
if ((!content - exist ("nei.gIhbour p e r . txt ", peer-name)) & & (myFile.exists ()))

f
/ / Open the neighbour pecr.txt file to write to
BufferedWriter bufwriter = new BufferedWriter (new FileWriter("neig+Lbo::r . - pecr.txt.",
/ / write to file
bufwriter .write (peer-name) ;
bufWriter.newLine();
bufwriter. close () ;
System.out .println (" 2 4 ~ ~ pr.er: " + peer-name + " i..: :;r;.tt?r. to 2eigkboi:r p e r . txt")

.
/ / NOW SEND THIS INFO3MAT;ON TO TEE OTHER FEE2 FOR SETUP AS W3LL / /
.
Srring message = "il.i))M SZr:'TIP: " . concat (host-name) ;
Sender.setmessage(message);
Sender.send-name(peerSender.send_nameo;name);
Sender. run () ;

else
I

System.out .println ("~'~t?.r: " + peer-name + " is nat a peer") ;
1

) / / end function

public static void send-multi-hop(PipeExamp1e Sender) throws IOException

System.out.println("Enter destiniition peer");
dest-peer = getstring();

if (peer-exist (dest-peer))
I

System.out .println ("Enfer ?:.essagen) ;
message = getstring();

/ / Multi-Hop--Message 5eacer: 3CdestinationSmsg-body
Multi-Hop-Message = ~ulti~~o~~~eader.concat(MAX~HOP.concat("#".concat(dest~peer.concat

Systerr..out.println("multi -. hop,-msssage: " + Multi-Hop-Message);

/ / check if destination is already a neighbour-node
int front = Multi-Hop-Message.indexOf("B");
int back = Multi-Hop-Message-indexof (" $ I 1) ;

/ / if already in neighbour list
if (content-exist ("~eigi-~bo~z .- peer. cxt", Multi-Hop-Message. substring (front+l, back)))
{

message = Multi-Hop-Message.substring(back+l, Multi-Hop-Message.length0);
Sender-set-message(message);
Sender.send-name(destSender.send_nameo;peer);
Sender. run () ;
/ / Extract the message

1
else
I

/ / actually send the message to everyone on neighbor list

RufferedReader bufReader = new BufferedReader(new FileReader("neigh5our peer.txtl')
String current-line;
InetAddress ownIP = InetAddress.getLocalHost();
String host-name = ownIP.getHostName();

while ((current-line = bufReader . readline ()) ! = null)
(

/ / Don't send message to itself
if(! (current-line.startsWith(host-name)))

(
Sender-set-message(M~1ti~Hop~Message);
Sender.send-name(current-line);
Sender. run () ;

1
1 / / end while

1 / / end else

3 7 9 I
380) / / end function
321

1532 public static void update-hop-peer(PipeExamp1e Sender) throws IOExcep2ion
323 {
",, 2 //rJpdate-Sop-Message iieader: sender~node#HOP~COI]NT#PREVIOUS~~sender~node#Origir-.al~~~:?op~Cc
:; 2 ::,

-
., ., Syst.ern.out .println ("llpdatizg glob& hop peer. . . . r.i.c&se wa!. t") ;

3 2 6
3 ij .7 / / update fron 2 hops to 5 hops TO BE CHANGED!!!!!!!!!!!!:!!!!!
j p L\ - ., ..: String UPDATE-HOP-HEADER = ":]"[?ATE -. -. EE""Zi-'7' a:,. . .J:, .- HE&I?E:R : " ;
:?a 9

Inet3.ddres.s ownIP = InetAddress.getLocalHost();
String host-name = ownIP.getHostName();

String hop count;
String neighbour-name;
String current line;
String UPDATE-HOP-MESSAGE;

35.F for (int i=l; i<2; i++)
.? 9 5 t
I:; 0 :: / / i is hop czunt
,.: !(. 7 . .* ..
4 ('2 hop count = String.valueOf(i);
4 i~ :3 UPDATE-HOP-MESSAGE = host-name. concat ("#". concat (hop-count . concat (" # "))) ;

,.; 0 4 UPDATE-HOP-MESSAGE = UPDATE-HOP-HEADER.concat(UPDATE-HOP-MESSAGE);
< I: 5

/ / actually send the message to everyzne on neighbor list
EufferedReader bufReader = new BufferedReader(new FileReader("neigh50::r - peer.txtV)

while((current-line = bufReader.readLine0) != null)
(

/ / Don't send message to itself
if(! (current-line.startsWith(h~st~name)))
(

UPDATE-HOP-MESSAGE = UPDATE~HOP~MESSAGE.concat(hop~count);
1
else
t

UPDATE-HOP MESSAGE = UPDATE-HOP-MESSAGE.~~~S~~~~~(O,UPDATE-HOP-MESSAGE
UPDATE - HOP-MESSAGE - = UPDATE~HOP~MESSAGE.concat(hop~count);

}
System.out.println(UPDATE HOP MESSAGE);
Sender. set-message (UPDATEIHOPIMESSAGE) ;
Sender.send-name(current-line);
Sender. run () ;

I

] / / end while
bufReader . close () ;

) //end for
) / / end function

public static char main-menu0 throws IOExcepzion
(

char userInput;

Systerr..out .println (" ") ;
System.out.println(" ") ;
Systen.out.println(" Welcome ,JXTA?,-") ;
Liystern. out . println ("A- In:-iov.? r i v e Appr:>sch to 1:)isx.i h; . :~ed ::om?:.i:n~.c:?ti.zr.:
Systex.out.println(" " 1 ;
System.out .println ("P:..ee?sS~
System.out .println (" ") ;
System. out .println (" s j
Syste-;.out .println(" b)
System.out.println(" c j
System.out .println (" d j
Systerr.. out .print111 (" e j
System.out.println (" f j
System.out .println (" xi

System.out.println(" ") ;
Bystem.out.println(" ") ;
System. out .println (" ") ; . :, . ;

JL ., : System.out.print ("Flease makt your selection: ") ;
2 ' . c . ., '.;
,; .:; 9 try I
,.I c, c,? userInput = get-char();
,; f , :L return userInput;
<.: c, 7
,.: q 2

1
. .., .: catch (Exception e) (
; ; ,;
..& .,, .* System.out.println(e);
.: i; ,:.; 1
,.I (, 6
,.I i , 'i / / dummy return
,.; c, 6 return 'x';
.i 69 . -., ,. 'i ; i i . .., -
Li : . ;) / / end rr.ain menu . .., ,. -
t.i ; /, . -., .\ .>: . ,'/ ...
A
' -.> r : 4 / / Generate a ~ i p e advertisement - -

public static void generatePipeAdv(PeerGr0up netPeerGroup) throws IOException
(

DiscoveryService discovery = netPeerGroup.getDiscoveryService~);
/ / Create a new Pipe Advertisenent object instance.
PipeAdvertisement pipeAdv =

(PipeAdvertisement) AdvertisementFactory.newAdvertisement(
PipeAdvertisement.getAdvertisementType());

/ / Create a unicast Pipe Advertisement.
pipeAdv. setName (" T R k E CCMMUXICASION PIPE") ;
pipeAdv.setPipeID((ID1 IDFactory.newPipeID(netPeerGroup.getPeerGroupID())) ;
pipeAdv.setType(PipeService.UnicastType);

/ / Save the document into the public folder
/ / discovery. publish (pipeAdv, DiscoveryService .ADV) ;

/ / discovery.remo~ePublisi-(pipeAdv, CiscoveryService.ADV);

495 / / Write the advertisement to file, and broadcast to everybody
496 private static void writePipeAdv(PipeAdvertisement pipeAdv)
4 97 (
4 58 / / Create an XML formatted version of the Pipe Advertisement.

i / get local "st-name
InetAddress ownIP = InetAddress.getLoca1Host~);
Sxring host-name = ownIP.getHostName0;
host - name = host-name. concat (" ,j\MLA1') ;

FileWriter file = new FileWriter(host-name);
MimeMediaType mimeType = new MimeMediaType (" tc?xt. ixl?~.ll') ;
StructuredTextDocument document =

(StructuredTextDocument) pipeAdv.getDocument (mimeType) ;

i! Out~ut the XMi for the advertisement to the file.
document. sendToWriter (file) ;
file.close0 ;
broadcast () ;

catch (Exception e)
I

e.printStackTrace () ;
)

public static void broadcast()
(

int MULTICAST-PORT = 7777;
String MULTICAST-ADDR = "230.0.3.1";
Stzing current line = "";
Strinq broadcast-f ile = "";

try
(

/ / get local host name
InetAddress own1pP= InetAddress.getLocalHost();
String host-file = ownIP.getHostName();
broadcast-file = host-file.concat("$");
host - file = host - file.concat (" .XML") ;

EufferedReader bufReader = new BufferedReader(new F i l e R e . a d e r (h o s t - f i l e)) ;

while((current-line = bufReader.readLine()) != null)
(

broadcast-file = broadcast~file.concat(current~line);
broadcast-f ile = broadcast-f ile. concat (" + ") ;

1
bufReader. close () ;

byte[] temp = broadcast-file.getBytes();
InetAddress inetAddress = InetAddress.getByName(MULT1CAST-ADDR);
DataqramPacket Out-Packet = new DataqramPacket(temp, temp.length, inetAddress, MULTICAST-
MulticastSocket multicastSocket = new MulticastSocket 0 ;
multicastSocket.send(Out~Packet);

1
catch (Excepticn exception)
(
exception.printStackTrace();

1

) / / and broadcast

public static boolean peer-exist(String peer-name)
(

String file-path = "C: \ \ . j>: ta de-b~guide\~\pipeser.~i~:e'~,'~~". concat (peer-name) ;
file-path = file-path.concat-(".xML");
File myFile = new File (file-path) ;

if (myFile.exists ())
(

return true;
1

else
t

return false;
)

1
/ / ...

public static void delete-previous() throws IOExceptizn
(

/ / get all *.XKL files within directory
File homedir2 = new File ("C: \,\jxta c:ie-J~u~.Ac':~,r.ipr:~c?rv~.~:i"') ;
//File holredir = new File (System. get~ropertY ("user. hommerqi) ;
String[] XML filename2 = homedir2.list(new FiienameFilterO (

public boolean-accept (~ile d, String name) { return name.endsWith (" . X?::.") ;
)

)) ;
for(int i=O; i< XML-filename2.length; i++)
t

System.out.println(XMLsystem.out.Printlno;fi1ename2[i]);
File delete-file = new File(XML_filename2[i]);
delete-file.delete();

InetAddress ownIP = InetAddre~s.getLocalHost~);
String host-name = ownIP.getHostName();

Euf feredxriter bufwriter = new BufferedWriter (new FileWriter ("neigr&oi:'r pcc-.r. :.:.:t ", truc
bufWri te r .wr i te (hos t_name) ;
bufWriter.newLine();
bufwriter-close () ;

EufferedWriter bufWriter2 = new Buff eredWriter (new FileWriter ("hop~-:;lr:i~:i:. t):::", true)) ;
String host = host-name.concat("#5");
bufWriter2 .write (host) ;
bufWriter2. newline () ;
bufWriterZ.close();

) / / end function

/ / ...
/ / This functions checks if incoming content already exist in file

public static boolean content-exist(Siring filename, String content) throws IOException
1

boolean exist = false;
String current-line;

BufferedReader bufReader = new BufferedReader(new FileReader(fi1ename));

while((current-line = bufReader.readLine0) != null)
t

if(current~line.equalsIgnoreCase(content~~
1

/ / ...
/ / This functions returns the character input from the user

public static char get-char0 throws IOException
t

InputStreamReader isr = new InputStreamReader(Sys~em.in);
BufferedReader br = new EufferedReader(isr);
String s = br.readLine();
return s. charAt (0) ;

/ / end get-char ()

/ / This function returns the entire line cf String
public static String getstring() throws IOException
{

InputStreamReader isr = new InputStreamReader(Sy.~tem.in);
EufferedReader br = new EuffcredReader(isr);
String s = br.readLine();
return s;

) / / end getstring!)

) / / end class PipeCozm

class PipeListener implements PipeMsgListener [

static PeerGroup netPeerGroup = null;
private final static String SenderMessage = "PipeLi~tensrMsg";

String[] hop-peer = new Srring [100];
private Pipeservice pipe;
private PipeAdvertisement pipeAdv;
private InputPipe pipeInl = null;
private InputPipe pipeIn2 = null;
InputPipe pipeIn[] = new InputPipe[20];//ull;
PipeExample Sender = new PipeExample(); / / get netPeerSroup from ?-WIN

public void peergroup(PeerGroup group, PipeExample example)
I

netPeerGroup = group;
pipe = netPeerGroup.getPipeService();
Sender = example;

/ * System-cut. println ("Reading in pipexample. adv") ;

try {
FileInputStream is = new FileInputStream("era-pj57qg3emaot.XML");
pipeAdv = (PipeAdvertisement) Advertisement Factory. newAdvertisement It4imeP4ediaType.:
is. close i) ;

) catch (Exception e) (
System.ouE.printlr.("failed to read/parse pipe advertisement");
e.printStackTrace () ;
System.exit(-1);

}
* /

1

/ / bind to specified inpuc pipe
public void bind-input-pipe(String[] XML-filename) throws IOException
(

InetAddress ownIP = Ine t .4ddress .ge tLoca lHos t~) ;
String host-name = ownIP.getHostName();

for(int i=O; i< XML - filename.length; i++)
I

try(:
pipe = netPeerGroup.getPipeService0;
System.out.println("Reading in " + XML-filename[i]);
if (XML-filename [i] . starts~ith (host-name))

I

FileInputStream is = new FileInputStream(XML-filename[i]);
pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement(MimeMediaT~
is.close0;

pipeIn[il = pipe.createInputPipe(pipeAdv, this);
System.out.println("written");

I
) catch (E:iceptio~ e) (. .

.Systcm.out.println("fai.l~i?d ?o i:.'-::c:;g+.r:tl p i ~ e advert.iserr~e::r") ;
e.printStackTrace();
Syster,.exit (-1) ;

1 / / end bine -, inpilt .- pipe

public static void printMessageStats(Message msg, boolean verbose) (

try t
CountingOutputStream cnt;
ElernentIteratzr it = msg.getMessageElements();
Systoq L:.. . out.println("------------------ 3ccri.- MesLr:i!3e ") .
WireFormatMessage serialed = ~ i r e ~ o r m a t ~ ~ s s a ~ e ~ a c t o r ~ . towire (

msg,
new MimeMediaType ("appiisatiori!x-jxta-msg") , (Mimc

Systez.out.println("Message Si.ze : " + serialed.getByteLength0);
while (it.hasNext0) (

MessageElement el = (MessageElement) it.next0;
String eName = el.getElementName();
cnt = new CountingOutputStream(new DevNullOutputStream()) ;
el.sendToStream(cnt);
long size = cnt.getBytesWritten();
Systen.out.println("E1e~~~:::t " + eName + " : " + size);
if (verbose) [

Systen:.out.println (I ' ["+el+"] ") ;

/ * *
* walt for msgs
C

* /

public void run 0 t

try t
/ / the foilowing creates the inputpipe, and registers "this"
/ / as the PipeMsgListener, when a message arrives pipeMsgEvenr is called
System-out .println (" C r e ~ t i ~ ~ i.npu= 3 i .p") ;

j / pipern = pipe.createInputPipeipipeAdv, this) ;
) catch (Exception e) [

return;
)

/ / if (pipern == null) [
/ / SysLem.out.println:" ca?.not ope? InputPipe");

/ / System.exit (-1) ;
/ / 1
Systern.out.println("Waiting for msgs on izput. ~ipe");

/ * *
* By implementing PipeMsgListener, define this method to deal with
* messages as they arrive
* /

public void pipeMsgEvent(PipeMsgEvent even t) {

Message msg=null;
try I

/ / ~ r a 5 the message from the event
msg = event.getMessage0;
if (msg == null) [

return;
)
printMessageStats (msg, true) ;

) catch (Exception e) [
e.printStackTrace();
return;

1

/ / get all the message elements
Message.Element1terator enum = msg.getMessageElements0;
if (! enum. hasNext ()) [

return;
1

/ / get the message element named SencerMessage
MessageElement msgElement = msg.getMessageElement(nul1, SenderMessage);
String received = msgElement.toString();
/ / Get message
if (msgzlement . tostring () == null) .:
System. out .println ("r~~dl msg received",: ;

) else {
System.out.println("Message receiv.26: "-t msgElement.toString()i;

//AI?MIN
if (rece
{

try

RECEIVED, SETUP NEIGHSOUR LIST
ived.startsWith(ADMINived.startsWitho)HEADER))

{
received = received.substring(received.indexOf(":")+2, received.length0) ;
boolean exist = content - exist("neighb3ur peer.Cxtu, received);
if (!exist)
t

BufferedWriter bufwriter = new Buffered'N'riter (new Fileiu 'r i ter("r:ei .g:?br~~:r p.21
/ / write to file
bufWriter.write(received);
bufWriter.newLine();
bufwriter. close () ;
System.out.println("Fear: " + received + " is added re-ot&y by Admi.~ii.itra-

) / / end if
) / / end try
catch (Exception except ion)
t

exception.printStackTrace0;
1

) / / end if

/ / MULTI HOP MESSAGE RECEIVED, DECREMENT COUNT AND FORWARD
else if(re~eived.StartSWith(MULT1-HOP-HEADER))
t
/ "

Check if dest-node is a neighbour node, if yes, send directly
if not, decrement hop count and send to all neighbour node
if hop-count==O, discard (send msg failed??)

* /
/ / Extract destination node to see if neighbour node

try(
int front = received.indexOf("#");
int back = received.indexOf("S");

/ / if already in neighbour list, send directly
if (content-exist ("r.eiqhk,o:;:- peer. t-:t ", received. substring (f ront+l, back)))

1
/ / Multi - Hop - Message - Yeader: 3#destinationSmsg_Pody

/ / Extract the message and secd to destination
String temp = received.substring(back+l, received.length0);
Sender.set-message(temp);
Sender.send-name(received.substring(front+l, back));
Sender. run () ;
//send -. msg (content .substring ; f r o n t + l , back; , temp) ;
System.out.println ("ts nelqhbcur: " + received.substring (front+l, back)) ;

1
/ / decrement Hop ccun:. and serd to all neighbour

else
{

/ / extract hop count
/ / Millti Eop Yessage keaber: 3 # d c : s t i n a t i c n S m s g ~ b o d j ,

int start = receTved.indexOf(":");
String hop = received.~ubstring(start+2, front);

/ / decrement hop count
int temp hop = 1nteger.parseInt(hop);
temp-hop1-;
hop = String.valueOf(temp - hop);

IcetAddress ownIP = Ixt3ddrcss.getLocalHost();
Scrlng host-name = ownIP.getHostNarne0;
;/ make everyzhing lowel case, ;ust ts be safe
host-name = host-name.toLowerCase();

/ / go through neighbour list and sena to all ceighbours
if (temp-hop>@)
(

received = received.substring(front, received.length0) ;

/ / make new MULTI-,HCF String
String NEW - MULTI - HOP - MESSAGE = MULTI~HOP~HEADER.concat(hop.concat(rece.
System. out .println ("new received: " + NEW-MULTI-HOP-MESSAGE) ;

/ / actually send the message to everyone sn neighbor list
EufferedReader bufReader = new Buf feredReader (new FileReader (":eighhou.
SCring current-line;

i / don't send to itself

while((current-line = bufReader.readLine0) != null)

/ / Don't send message to itself
if(! (current-line.startsWith(host-name)))
{

Sender.set message(NEW-MULTI-HOP-MESSAGE);
Sender.senaname(current-line);
Sender. run () ;

) //end if
) / / end while
bufReader. close () ;

) / / end if (temp_-hop>O)
) / / end else
) / / end try
catch (Excepticn exception)
{

exception.printStackTrace();
1

) / / end else if

/ / Update-Hop-List message
/ / .
/ / test if message is to update-hop-list
else if(received.startsWith(UPDATE-HOP-HEADER))

int first = received-indexof ("#"I;
int second = received.indexOf("8", first+l);
int end = received. lastIndex0f (" g ") ;
/ / convert to INT
int hop-count = Integer.parseInt(received.substring(first+l, second)) ;

.<:ring final hop count="";
3:rlng original-gender;
Szrlnq current-line;
Srrlnq new-hop-count;

i! 'Jet current host name
InetAd3ress ownIP = 1netAddress.getLocalHost~);
String host - name = ownIP.getHostName();

if (hop-count>O)
(

hop-count = hop-count-1
1

/ / hop count==g!!!!!!!!!!!!!!!!
if (hop~count==O)
{

/ / end of hop reached, send

,

! ! I ! !

back to sender with hop info

//Update-Hop-List-Header: ~ u r r e n t ~ n o d e # o r i g i n a 1 ~ h o p ~ ~ ~ c c u r 1 t
int space = received.indexOf(" ") ;

String UPDATE HOP LIST MESSAGE = UPDATE-HOP-LIST-HEADER.concat(hostOname);
UPDATE-HOP-LIST-MESSAGE = UPDATE-HOP-LIST-MESSAGE. concat (received. substring (en<

original-sender = received.substring(space+l, first);
System. out. println ("oriiijinal. : " + original-sender) ;
System. out .println ("iJpIjATE HOP 1,131 MESSAGE: " + UPDATE-HOP-LIST-MESSAGE);
/ / send tc original sender--TO BE M~IFIED! ! ! ! ! ! ! !
Sender.set~message(UPDATESender.set_message(UPDATE_HOP_LISTMESSAGHOPPLISTTMESSAGE);
Sender.send-name(0rigina1~sender);
Sender. run () ;

)

/ / end of hop NOT reached, send out
else
{

/ / Update-Hop-Message-Header: sender-node#HOP-COUN'i'ilPRE\rIOUSSsender . . nodeSOrigina1 -- I

//Replace the hop-count and send to everyone on the list, exce~t to itself
new-hop-count = String.valueOf(hop-count);
System.out.println("hcp-co:,:.nt: " + hop-count);

/ / get message header
Scring temp-content = received.substring(0,first);

i/ attach new hop-count
temp-content = temp~content.concat("#".concat(new~h~p~count)) ;

/ / get original hop count
temp-content = temp~content.concat(received.substring(second, received.length()));

/ / send to everyone on neighbcur list with new hop-_count
BufferedReader bufReader = new EufferedReader(new FileReader("nc.ighboi.:r -- peer.txtn)

/ / actually send the message to everyone on neighbor list, except itself AND previ(
String previous-sender = received.substring(second+l,end);

while((current-line = bufReader.readLine0) != null)
{

/ / Don't send message to itself
if(! (current-line.startsWith(host-name)) & & ! (current-1ine.equalsIgnoreCa:

I
Sender.set-message(tempSender.setmessageo;~~ntent);
Sender.send-name(current-line);
Sender. run () ;

) //e?.d if
} / / end while
bufReader. close () ;

) / / end else
) I / end try
catch (Exception exception)
{

exception.printStackTrace();
1
I

) / / end else if

,'/ * . k t * + * * r * * + * - k * * - * * + i + * * i * . h + i f * * i * * + f + * * + * * + i + * * i * . k + i * * k i * . k + * + t . * - * * +

/ / Jpdate_-Hop List message
/ / * . k C l t + * - * * + " + + * ' * * + t * * * i A . k + * + * * + * . k t * + * . k i * . k + * * * * i * . k + * + * * + * . k * * + t . k - * - . k +

/ / Update hop lisC.txt, get only Che shortest hops away
else if(received.startsWith(UPDATE-HOP-LIST-HEADER))
I
try{

Systex. out .println ("rewri.r.e: " + received) ;

//Up& te--Eop-Lis t-Header : end_-node#or iginal - hsp-ccunt
int space = received.indexOf(" ") ;
int seperator = received.indexOf("#");

.?:ring end-node = received.substring(space+l, seperator);
String final-count = received.substring(seperator+l, received.length());

//copy file into hop - list array, chen delete file
String current line;
int counter = T;
while((current-line = bufReader.readLine()) != null)
I

hop-peer[counter] = current-line;
counter++;

) / / end while

counter = 1;
String node-in-file;
String old-node-count;
String replacement;
S~ring node name-in-file;
String received-node;

int message-count;
int array-count;
boolean node-exist = false;

int sept;
while (hop-peer [counter] ! = null)
{

node-in-file = hop-peer[counter];
sept = node-in-file.index0f (" # ") ;
node-name-in-file = node-in-file.substring(0,sept);

/ / if node exist
if(end-node.equalsIgnoreCase(node-name-in-file))
{

node-exist = true;

PipeComm. j ava

i/ get node-count from string array (File)
array-count = Integer.parseInt(node~in~fi1eesubstring(sept+1, node-

/ / get node count from message
message - count = Int~ger.parseInt(received.substring(seperator+l, ra

/ / replace array if hap is now smaller
if(message-count < array-count)
{

replacement = node-in-file.substring(O,sept+l);
replacement = replacement.concat(Stri~q.va1ueOf(message~count)
hop-peer[counter] = replacement;
Systex. out. println ("5PDATEE hop peer: " + replacement) ;

I
1 i/ end if

counter++;
/ / end while

i / open up new hop list. file and write
EufferedWriter bufiriter = new EufferedWriter(new FileWrizer("hop - peel-.t.xt'

int i=l;

while (i<counter)
(

bufwriter-write (h ~ p ~ p e e r [i]) ;
bufWriter.newLine () ;
i++;

I

bufwriter. close () ;

] / / end try
catch (Exception exception)
(

exception.printStackTrace0;
I

] / / end else if

else
(

System. out .println ("P.ECEIVED: " + received) ;
I

1 / / end function

/ / ...
/ / This functions checks if incoming content already exist in file

public static boolean content-exist(String filename, String content) throws IOExccptisn
I

boolean exist = false;
SCring current-line;

EcffcredKeader bufReader = new autferedReader(new FileRcadcr(fi1ename));

while((current-line = bufReader.readLine()) != null)

1 / / end class

class PipeExample implements
Runnable,
OutputPipeListener,
RendezvousListener (

static PeerGroup netPeerGroup = null;
private final static String SenderMessage = "PipeLi3tenerMsg";
private Pipeservice pipe;
private DiscoveryService discovery;
private PipeAdvertisement pipeAdv;
private Rendezvousservice rendezvous;
String message = "";

String dest-node;

public void set-message(String msg)
t

message = msg;

public void send-name(String name)
t

dest-node = name;
1

public void peergroup(PeerGroup group)
I

netPeerGroup = group;
/ / get the pipe service, and discovery
pipe = netPeerGroup.getPipeService0;
discovery = netPeerGroup.getDiscoveryService~);

I

/ * i
* the thread which creates (resclves) the output pipe
* and sends a message once it's resslved
/

public synchronized void run() (

try I

dest-node = dest-node.concat(".i(ML");
System.out.println("Reading in " + dest-node);
FileInputStream is = new FileInputStream(dest-node);
pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement(MimeMediaT~e.~
is. close () ;

/ / this step helps when running standalone (local sub-net without any redezvous se'

discovery.getRemoteAdvertisements(nu11, DiscoveryService.ADV, null, null, 1, null)
/ / create output pipe with asynchronously
/! Send oat the first pipe resolve call
8ystem.out .println (' ' A t . t e r n p t . i ~ n q t~ crearc a 3utputPipe1') ;
pipe.createOutputPipe(pipeAdv, this);

/ * / / send out a second pipe resolztion after we connect
i/ to a rendezvous
if (! renaeevo::s. isConnectedToRenciezVoxs ()) (

System. out .print13 ("Waiting for Rendezvous Connection") ;
try 1

wait () ;
Syster>. out .printl! "C~nnccted to .?endezvoiis, atteEpting to create a Octput:
pipe. createOutputPipe (pipc:Ppc1-v', this) ;

) catch (;nterrup:edException e) (

/ / go: our nstification
1

} + /
) catch (IOException e) (

Systez.. out .println ("O:.:tp:.~:?-'ips i:::r:at: i..-r: fa_ i u x ? ") ;
e .printStackTrace () ;
Systerr..exit (-i) ;

1
1

* by implementing OutputFipeLisCener we must define this method which
* is called when the output pipe is created
*
*@param event event object fro3 which to get output pipe ohjec:
* /

public void outputPipeEvent(0utputPipeEvent event) (

Systern.out.println(" Got ar: octpu: gipe event.");
Outputpipe op = event.qetOutputPipe0;
Message msg = null;

try I
Systerr.. out. println ("Sendins message") ;
msg = new Message () ;
>- ~ d t e date = new Date(Systen.currentTimeMillis~)) ;

StringMessageElement sme = new StringMessageElement(SenderMessage, message , null)
msg.addMessageElement(null, sme);
op. send(msg1;

) catch (IOException e) (
System.out .println ("failed to sen.; rrtessaqe") ;
e. printStackTrace () ;
Bystem.exit (-1) ;

1
op.close0;
Systern.out.println("message sent");

1

/ * -
* rendezvousEvent the rendezvous event
*
+@param event rendezvousEvent
* /

public synchronized void rendezvousEvent(RendezvousEvent event) (
if (event. getType () == event .RDVCONNECT) (

notify 0 ;

