EXTENSIONS OF JADE AND JXTA

FOR IMPLEMENTING A DISTRIBUTED SYSTEM

by

Edward Kuan-Hua Chen

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

School of Engineering Science

© Edward Kuan-Hua Chen 2005
SIMON FRASER UNIVERSITY

Spring 2005

All rights reserved. This work may not be reproduced in whole or in part,
by photocopy or other means, without the permission of the author.

APPROVAL

NAME:
DEGREE:

TITLE OF THESIS:

EXAMINING COMMITTEE

Chair:

Date Approved:

Edward Kuan-Hua Chen

Master of Applied Science

Extensions of JADE and JXTA for Implementing a

Distributed System

John Jones
Professor, School of Engineering Science

William A. Gruver
Academic Supervisor
Professor, School of Engineering Science

Dorian Sabaz

Technical Supervisor

Chief Technology Officer
Intelligent Robotics Corporation

Shaohong Wu
External Examiner
National Research Council

April 8, 2004

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright 1s declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project or
extended essay 1o users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on its own behalf

or for one of its users.

The author has further granted permission to Stimon Fraser University to keep or
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying of this work
for scholarly purposes may be granted by either the author or the Dean of

Graduate Studies.

It 1s understood that copying or publication of this work for financial gain shall
not be allowed without the author’s written permission.

Permmission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming part of this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the

Simon Fraser University Archive.

W. A.C. Bennett Library
Simon Fraser Unjversity
Bumaby, BC, Canada

ABSTRACT

Distributed systems offer a useful approach for resolving critical networking limitations
that result from the use of centralized topologies. Currently available distributed

software platforms, however, have limitations that can limit their usefulness.

This thesis examines the architectures of two distributed software platforms, JADE and
JXTA, and compares their strengths and weaknesses. It is shown that JADE is a superior
platform in terms of efficiency and latency, mainly due to the partially centralized
approach of its Agent Management System. On the other hand, the decentralized
management system and unrestricted scalability of JXTA has the advantage that it is not

critically dependent on any node.

ACKNOWLEDGEMENTS

I would like to thank William A. Gruver and Dorian Sabaz for their guidance and support
throughout the course of this thesis. I am grateful for their continuous and unwavering

support.

I would also like to thank John Jones of the School of Engineering Science, Simon Fraser

University, and Shaohong Wu of the National Research Council of Canada.

iv

CONTENTS

ADPIOVAL ..corerrnriniisrinsssiessnansnsarsrssssssesaesasssssnsssssssissssssssatsssassssassasssssassasassnsassssssasesssasnss ii
ADSTFACE.ccciciiirnreiiiiiiciniressessissennsssnssssssnsasssssssasssssanssasssanssesssssessssansssassessssnnsssannan weee il
ACKDOWIEAZEINENILSccoverererrsrsaisaneransansnmssesnsassesssssessesansssssssassassssssnesstssssssssssnensassssssconsans iv
Contents........ teetesssstesssesssanssnsssattessnateasteetettseeetesestessties bteatesnateattasaesssenstersasaensts v
List Of FIGUTES...cccucccuinreirnnensensansessnesanessensacsansssesassnssnassnsnses cressessnesesennsenissnsnrosase viii
LISt OF TADIES «...uveeeveeeecrrrersnersanesssssssesssssssssasssssssasssasmssnmsssnsssssassssssssssssnsssnessansssnsssassssaasons X
GLOSSATY ccerioreiscnnicansnssssisessessscsasascsnesssessessaesnssssnsssessassnesssessesssssnsssnsasssssstsassassassassnssntastans Xi
1 INtrOAUCHION....ccveerererecsererssssnsssanesssssesssssnessanesssssesssasassasassnsssasessasassassansessessnsssstnsnnas 1
1.1 Limitations of Centralized NEtWOIKSc..cecierreirireninenenieieiencreesie e 1
1.1.1 SCAlADILILY couveeieereienieeeee et sttt 2
1.1.2 Fault TOIETANCEccveeeeerieiiienteeeece e ettt be s 3
1.1.3 Security and PriVaCYccoveevereneiiiiiiciciciii ettt 4
L.1.4 COMNECHIVILY.c.vivieieiereeeeeeteeteeteere e teit ettt e se et n e e eseemeeseen e ae st asenen s sseasenseana 4
1.1.5 InSTastructure COSt ... uemiueeeeiiieeeeieeeiteeiee et ceree sttt e see e s eneessas s st eas s e bee e 6

1.2 DiStributed SYSLEIMS.ooveeveerieereeieeeeeeeieeeteeer e et stenesre e ersess e ereseeaeneas 7
1.2.1 Distributed System Privacy and SECUIItYccccccoueermimmniminiiniiiincereeenas 8
1.2.2 Distributed System Fault TOIErancecccocooviiiiriininiinieniieennenenens 8
1.2.3 Distributed System Scalabilityccccocoiriirmimimininiiiese 9
1.2.4 Distributed System CONNECHIVILYc.ccuevuevuiiiiniirniiniininnsieeenetenenee e 10
1.2.5 Distributed System Infrastructure Costccooooiiiiieiieneneens 10
1.2.6 Implementation ISSUEScccccciiiiiiiiiniiiiiiiiir e 11

1.3 Distributed Computing Models and Architectures................ceeveninniinncinincns 13
1.3.1 Common Object Request Broker Architecture (CORBA)ccoiiiiiecicns 14
1.3.2 Distributed Component Object Model (DCOM)........ccooovriininiiiinininncincns 14
1.3.3 Remote Method Invocation (RMI)ccccoeviiiiiiiiiiiniiiieiine e 14
1.3.4 Distributed Application Development...........ccooievieiiniiiiniennenrincee 16

1.4 OVETVIEW ..ot eee e e et e e e s eaar e e e e e abtee e emees e e s bs s s e banesosaneaaease s e e absseassbaenaranas 17
1,41 ODBJECHIVE...couiieiiiiieiecie ettt 17
1.4.2 OULINE coevieieeeeeeeeeieecee ettt e e et te e estes e s etar e ee st r e e beesesan e s s bntaessnee s anees 17

2 Distributed Software Platforms..........ccceceevveennueinnnaas 19
2.1 JADE OVEIVIEW ..ottt ettt st e n e ettt 21
2.1.1 JADE Agent Platform.........cccccoeviiiiiiiiiiiiiiiiieee e 22
2.1.2 JADE Software Architecture and Behaviours........c...occoooeimiiiiiinininnnnnns 26
2.1.3 Issues for JADE as a Distributed Systemcc.ccocceveerniniiiiniiiiniiiicienien, 30

2.2 TXTA et reest et teee s ase s st b et e e e e s s a S e e s s bR s s e e e e a R e e e e ke a e e e s anen 32
2.2.1 JXTA ProtOCOIScoueveerererreiriieeieiiecrenesresasenesscssescsnessessnessssssassessssesaasnens 33

2.2.2 JXTAPIAIOM c.oooonniiiiiieceieeeertecte et 37
223 JIXTA COMMUNICALION.ceeeerereerenerereentenseecrseesstenieesaeesseessnsssessssnsssasnensaneens 40
2.2.4 Issues for JXTA as a Distributed SYStemcocoeviviiimniiiniiininnnininneene 45
2.3 Differences between JADE and JXTA in Distributed Systems............cc.coeeeininee 47
3 JADE/ JXTA Extensions for Improved Distributed Systems.......cccocvvcceceeeren. 49
3.1 Virtual Wireless ENVITONMENt........ccoereevirmneiriiieiniininiensnisresesessnssesasnnnes 49
3.2 JADE Architecture EXteNSIOnccoieuiieiicenieniiriiiniiictiicnreiin sttt 52
3.2.1 Wireless Agent Communication Channel (WACC).........oooiiiiicncnenn 53
3.2.2 Global Directory Facilitator (GDF)......c.cccoeeiiiiiiiiiiiiiii e 54
3.2.3 Global Agent Management System (GAMS)......cccocoiiiiineens 55
3.3 JADE Software Architecture OVETVIEWccccooeriiiiiiiiiiiiiiicii i 56
3.3.1 Broadcast AGENLccooiiiiieeiiniiiiciiirire e 57
3.3.2 RECEIVET AZENT ..ccuiiruiiiriiiiiiiiicieicre ettt sttt 57
3.3.3 SENAEr AZENLcouveriieieiiereeicentie et ee st ettt s be 59
3.4 JXTA Architecture EXteNSIONcoociiiieieincniiecie et 60
3.4.1 Wireless Peer Pipes (WPP).....occoeiiiiiiiiiii e 61
3.4.2 Global Peer Monitoring (GPM)........cccovurveeriiniiiiiiiininnieecietenecenees 62
3.4.3 Global Peer Administration (GPA)ccccoivivimiiniiin e 63
3.5 JXTA Software Architecture OVEIVIEWccccovciiiiuiiiiiiiiininie e 65
3.5.1 PipeComm() Class........cccorimmmermiiiiiiiiiriesiee ettt 65
3.5.2 PeerROULE() ClaSSocuiiiiiiiicieicii ittt 66
3.5.3 PipeSender() Class and PipeListener() Class ... 67

4 JADE/JXTA software extension implementation............cmvcereicsncsisacsncenscssanse 69
4.1 JADE Implementation........coceoeiiiineecnuiuiimiinieeiecsrness e et 69
4.1.1 Broadcast Agent Implementationccocueeeuimmiiiiiereniiei e 71
4.1.2 Receiver Agent Implementation. ... e 74
4.1.3 Sender Agent Implementationcoccccvvuiieiiniiiiniicie e 78
4.2 JXTA Implementation..........coccorrimeniieiiiiiiicieienie et st et 84
4.2.1 Class PipeLiStENer()c.occovvuveeeiuicueriniecineeneeineeirectessese e 85
4.2.2 Class PipeSender Implementation..........c..ccueoriiiiiiiiniennicnnncccnccecnes 88
4.2.3 Class PipeComm()ccooevuininiivimieniiieieneesiesientes sttt 90
4.2.4 Class PeerROULE()ccouuuiiiiooriiiiiiitiiecinte et ettt 93
4.2.5 Class PeerDisplay()ccccoeumeeeeeminiiiociiiiieitieeieie ettt 94

5 Platform ANalYSiS...ceeeeiiciccicrccninecscncesssssneacssnneenssesssscsssasnevssssnnes 96
5.1 Qualitative ANALYSIS c.co.eeeiverririiieiteiniie ettt et 96
5.1.1 Platforms Scalability........ccoooimiiiiriiririeiee e 96
5.1.2 Interoperabilityocoooiiiiiiiiii e 98
5.1.3 Messaging ArchiteCturecoccoeveeeierciiiiniiiiieie et 100
5.1.4 Platform Complexitycccccvmmiiiiiiniiini e 101
5.1.5 PrOtOCOIS ...ccciieieiietee ettt ettt st 102
5.1.6 Agent MISrationc..ccouoiiiiiiiiiiiiiiieec et 106
5.2 Quantitative ANALYSISceevvereecrienenrincriieriinreetesteee sttt et 108
5.2.1 TSt SEIUP c.uveeevieiirieetecie ettt e e et e 109

vi

5.2.2 Multiple Agent-Pairs on Same HOst.........ccocooiiiiiiiiiiiiiiieceeeni, 109

5.2.3 Multiple Agent-Pairs on Different Host......c..ccoeiiieiiiiiiinnnnicicee, 112
5.2.4 Multiple Message Size COMPATISONc.eeervverreerrereeerreienrereererneseereensenes 113
5.2.5 Quantitative Result DiSCUSSION......ccccceiruiiriieriiiiieinieeetceet e 114

5.3 Summary, Concluding Remarks and Future Research...........cccoceeneninnnice. 115
5.3.1 SUIMIMATY ...eiitiiieiiiiiciite ettt ettt e st e st e e s oo e sbe e esaenanes 115
5.3.2 Concluding Remarksccccooiverieceniinmniinieicnieieeeeeeeneeee e 121
5.3.3 Future ResS€arch.........ccccoiiiiiiiiiiiiiicicteere e e 122

0 ReEfEIeNCES....cciiiiiiiintiiiinitiiieceeneenensnntecseeessesssesssessssessassssessasssasssessessesssssssssneans 123
APPEIAIX A cocuanreenniiicininiinnseecsssnessssnessssrsssaresssncsssssessssssssssssssssssssasssssssssssssssnessasssssaness 125
APPENAIX B .cnnnniitiiiiiiiiiitiiiitinneneitestsssaarsastsssssstssssassssessssssssssssssasessssnns 157

vii

LIST OF FIGURES

Figure 1. Traditional Client-Server TOpologyccecovverieiririiiiirieee et 1
Figure 2. Catastrophic System Failure...........ccocoociiiiiniiiiniiiie e 3
Figure 3. Wireless Local Area Network (LAN)cccooveiiiiiiiiiiiicieiecceeee e 5
Figure 4. Single-Point vs Multi-Point Communicationcccceceereererieenveeeeieenieennen 5
Figure 5: Distributed Systerm TOPOLOZY....ceevvueriiiieieiieiieiee et svesse e 9
Figure 6. Wireless Micro-Routers in Automated Utility Reading [1].....ccccoovevieiiiiennnns 12
Figure 7. JADE COMPONENLSccuermeuiieiereeteieteieiieernteseeeeassenteseenessensessensessensansenessesnan 2]
Figure 8. FIPA Communication Frameworkcccccoviveiiiieiiiieneniirerieieeeeic e 22
Figure 9. JADE Intra-Platform Message Delivery [12]........ccccooiiviieiiniieciennenineieeeens 24
Figure 10. JADE Inter-Platform Message Delivery [12]........cccoooiiiiiiiiiiiiiiniins 25
Figure 11. Jade Agents and Software Packages Interactions...........c.cccecveeveeiinncnnceenne 27
Figure 12. Jade Software Packages INteractions............c..cceerieerireierieeieesiesieeancenennenees 27
Figure 13. JADE Behaviour Class Hierarchy [17]ccccoooeroiriinininecieceecenccieen 29
Figure 14. JXTA Protocols Sequence Diagram...............cccooiniiiminiiiiiiinciiic 36
Figure 15. JXTA Platform Architecture [6]..........coccoreriiiiiniiriiiiecneeceeiee e 37
Figure 16. JXTA Rendezvous Peer Search [20]cccooceeiieiiiiiniiiiiici e 41
Figure 17: JXTA Router Peer [20].....ccoviiirmiiiiiirinieicece et e 42
Figure 18: JXTA Gateway Peer [20]ccooiiiieeeeeiee ettt 43
Figure 19. Roaming Node with Intelligent Link at T=TO...........ccccoiveivinnninicccecnen. 50
Figure 20. Roaming Node with Intelligent Link AT T=T1 ..o 50
Figure 21. JADE 1n Virtual Wireless Environmentccccoooeverereenecineencneesencnneenes 52
Figure 22. Wireless Agent Communication channel in Agent Platform.......................... 53
Figure 23. Global Directory Facilitator in Agent Platform.............cccccoceivniiiinnnne. 54
Figure 24. Global Agent Management System in Agent Platform.........c.co.occcooiininnn. 55
Figure 25. Modified JADE Framework for an Improved DS...........c..cccocviinninn. 56
Figure 26. JXTA Core Layer and COMPONENLScccceeveeveiereriereerereesenenseneseasennsaneens 61
Figure 27. JXTA Extension: Wireless Peer PIPe.......cocccoociiiiiiiiiiienienineeeeeie e 62

viii

Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.

JXTA Extension: Global Peer Monitoring.............c.c.cccoveeeeveeeecreesieeecieasneennenn. 63
JXTA Extension: Global Peer Administration............cc.ceeeeveeniuiescrsceraneanennn. 63
Modified JXTA Framework for an Improved DS.............cccooiiniiinnincs 64
FIPA Communication Framework [5].......cccccveriiiiniiniineniieneecneccseeenee 69
Extensions of JADE Agent Model ..., 70
Broadcast Agent Interaction with JADE Software Packages..........c..coceeueueenn. 71
Receiver Agent Interaction with JADE Software Packages..........c.ccooeeccnnnce. 78
Simplified User INterfacecooovieieierieeeieeeecee e 78
Sender Agent and JADE Software Packages Interactionsccccooevvvuenunee 83
Modified JXTA Framework for an Improved DS..............ccooeiiiiiiiiniene. 84
Interactions between PipeListener() and JXTA Protocols........cccceeeveurenennenn. 88
Interactions between PipeSender() and JXTA Protocolsccceccevvvecrerrnnnnnes 90
Interactions between PipeComm() and JXTA Protocols........cceceverveencnnnnnne. 93
JADE in Virtual Wireless Environment...........c....ocoeeeiierienenicnreecceceeeenenn 98
Jade Software Packages INteractions...........cccecevuveevenerercenenenineceeeeeene 103
JXTA Protocols Sequence Diagram...........cooceveviiiiiiiveiinnenceninniinniieenen 105
Interactions between PipeComm() and JXTA Protocols.........cccocueveenucenenee. 106
Local Area Network Test Environmentccccccccveeviiciiiiiiiniinnreneenniecennen. 109
Standard JADE Agents in Single Host, Different Containers [19] 110
Standard JADE Agents in Single Host, Same Container {19]...................... 110
Variable Agent-Pair on Same Host Comparison [19]............c.oociiiiinnn 111
Variable Agent-Pair on Different Host Comparison [19]ccccccoiivennnnnen. 112
Variable Message Size Comparison [19]oooeieiiiiincnnnnneecceeeee 113
Extensions of JADE Agent Modelcoccoviiniinniiniiiiececenineieene 118
Modified JXTA Framework for an Improved DS............ccociniinrivoninnnnns 118

ix

LIST OF TABLES

Table 1. Comparison of distributed computing teChNIQUEScoovririemrciniiiciiininiinns 15
Table 2. Distributed Software Platforms and Vendors ... 20
Table 3. JADE Behaviour Model Description...........cccoevueiiiiiiiiiiinieneiiieeeeerece 28
Table 4. Advantages and Advantages of JADE in a Distributed Systemc...... 31
Table 5. JXTA Protocols and DeSCriptions...........ccoeiiiiminiimiiierciiiesie e 34
Table 6. JXTA Core Layer Concept DeSCrIption........cccovviiiieimirieniieeentenneesieieeieeieee 38
Table 7. Advantages and Disadvantages of JXTA in a Distributed System.................... 46
Table 8. Comparison of JADE and JXTA in Distributed Systemc.coocceniinncn 48
Table 9. Message Types Supported by Receiver Agent........coooieiiicoiniiinin 58
Table 10. Message Types Supported PipeListener Class ..o 68
Table 11. Message Headers and DeSCIIPtIonSooouieuiiienieiinininncncccecnee 75
Table 12. Class Display() Method DeSCrIPLion.........ccoueuiivirieienininicneninens s 79
Table 13. Class] _Node Method DeSCIIPHIONcoooeiiuieiiniiririiiieecer e 82
Table 14. Message Headers and DeSCIIPLIONScoooiiieieiiintenieiniriiiiccns i 87
Table 15. Class PipeComm () Method Descriptioncooveiieianmniciciiinincen 92
Table 16. Class Display() Method DeSCrIPtion..........ovuieiiniriiciinrniniece s 95
Table 17. JADE Software Package DesCriptionccoooeeeceeniiniinieicniieiiciicnn 102
Table 18. JXTA Protocols and DesCriptions...........coceeieuririrneeniinieneniiienicnes 104
Table 19. Comparison of JADE and JXTA in Distributed Systemc.cccceoeennnen. 107
Table 20. Advantages and Disadvantages of JADE in a Distributed System................. 116
Table 21. Advantages and Disadvantages of JXTA in a Distributed System................. 117

GLOSSARY

ACC

ACL

AMS

API

DF

FIPA

GAMS

GDF

GPA

GPM

HTTP

1P

JADE

JVM

JIXTA

LAN

OMG

ORB

RMI

RTT

Agent Communication Channel
Agent Communication Language
Agent Management System
Application Program Interface
Directory Facilitator

Foundation for Intelligent Physical Agents
Global Agent Management System
Global Directory Facilitator

Global Peer Administration

Global Peer Monitoring

HyperText Transfer Protocol
Internet Protocol

Java Agent DEvelopment framework

Java Virtual Machine

Juxtapose Project begun by Sun Microsystems

Local Area Network
Object Management Group
Object Request Broker
Remote Method Invocation

Round Trip Time

xi

SDK
SFU
VNET
WACC
WDS

WPP

(Java) Standard Development Kit

Simon Fraser University

Virtual Network Project

Wireless Agent Communication Channel
Wireless Distributed System

Wireless Peer Pipes

xii

1 INTRODUCTION

1.1 Limitations of Centralized Networks

With the explosive growth of networks, there exists a critical need to deliver information
in a robust and efficient manner. Although applications such as the Internet were built on
the vision of a completely decentralized network that allowed unlimited scalability [14],

the reality is that most systems today are still built on the client-server concept.

In a centralized system, all functions and information are contained within a server with
clients connecting directly to the server to send and receive information, as illustrated in

Figure 1.

Figure 1. Traditional Client-Server Topology

Typically there are three key requirements for a central server: large data storage,
significant processing power, and continuous reliable communication between the server
and its clients [24]. Most applications, file and database servers systems are implemented

with this kind of centralized topology [8].

However, as the network continues to grow, this traditional topology is inadequate to
meet the demand of its users. The heavy emphasis on a central server places an undue
burden on the network. As a centralized network expands, issues of scalability, fault-

tolerance, security and infrastructure cost will hinder its growth.

1.1.1 Scalability

Centralized topologies are useful when the number of clients is unlikely to increase
significantly. A server only has a finite processing capacity before a request is either lost
or rejected. Since a server can only accommodate a fixed number of clients at a given
time, it will need to allocate resources that would otherwise remain idle to accommodate
the “bursty” nature of network traffic. Network resources are not utilized to their full

potentials, thus creating areas of network congestion while other resources are idle [8].

1.1.2 Fault Tolerance

All critical data and information is stored at a central location, the server. The success or
failure of the entire system is critically dependent on the reliable and consistent operation

of the server.

As 1llustrated in Figure 2, the failure of a central server will have a catastrophic effect on
the entire network. All exchanges of information between the server and client will stop.
In practise, secondary servers are usually in place to avoid a complete shutdown. They

are usually redundant systems that remain idle the majority of time.

FIGURE 2. CATASTROPHIC SYSTEM FAILURE

A robust system should not have a single-point of failure that will have a catastrophic

consequence on the system.

1.1.3 Security and Privacy

Since all critical data is stored at a central server, the privacy of all clients may be at risk
when the security is compromised. By gaining access to the server alone, individuals are
able to access information of the entire system, including information private to each

client such as credit card numbers, bank accounts and medical files.

1.1.4 Connectivity

Currently, centralized topologies are usually implemented by wireline for which fibre-
optic cables, twisted pairs and coaxial cable are the most commonly used medium. Users
usually do not have the physical capacity to roam freely within the network and are
limited by the physical topology of this infrastructure. The need for wireless
connectivity has resulted in the standardization of the wireless protocol, IEEE 802.11.
Users are now able to roam freely within a wireless LAN by communicating with access

points in the LAN and no longer physically constrained to their desks.

Although the establishment of the IEEE 802.11 standard is a step in the right direction, its
implementation is generally sbased on a centralized topology . In a typical wireless LAN
environment, illustrated in Figure 3, clients utilize access points in networks to connect
with other clients. Information is first sent from a sender to the Access Point and is then
forwarded to the receiver. This approach still retains deficiencies of centralized systems,

e.g., the failure of access points will have a catastrophic effect on the overall network.

Access Point
AN AN

‘e

FIGURE 3. WIRELESS LOCAL AREA NETWORK (LAN)

The 802.11 standard does allow a form of distributed connectivity, called Ad-Hoc Mode.
However, it only provides point-to-point communication, rather than multi-point-to-

multi-point communication, as illustrated in Figure 4.

FIGURE 4. SINGLE-POINT V§ MULTI-POINT COMMUNICATION

We would like to combine the IEEE 802.11 standard with the functionality of a

distributed system environment. Many issues in the wireline centralized approach can be

resolved using a decentralized architecture. The resulting system would be the basis of a

distributed system that functions in a wireline or wireless environment.

1.1.5 Infrastructure Cost

The expansion of a wireline network has always been partially limited by the cost of
additional infrastructures. Fibre optics cables are often used to interconnect two locations
and the material and labour cost of switches and routers has restricted the growth of
network in rural areas. Also, the time required to complete such an expansion can hinder

the growth of the network.

1.2 Distributed Systems

In the last section we saw that a client-server topology has limitations in the areas of
scalability, security, connectivity and infrastructure cost. This topology is unable to keep
pace with the explosive growth of modern networks. Another approach that has been

gaining interest is a Distributed Topology.

A Distributed System is a network topology that decentralizes the system so that no node
has a greater central role than any other node. This topology fulfills the need for a
robust, open-ended and highly scalable system by eliminating the central server and
efficiently utilizes network resources [8]. Network resources are allocated across the

network to alleviate computational bottlenecks within a single node or network area.

The Internet is an example of a Distributed System. Initially the Internet was designed to
be a robust system with unrestricted scalability [13]. In reality, however, it is still reliant
on localized web servers for database and file storage. Also, heavy emphasis is placed on
routers that interconnect multiple networks. If the servers and routers fail, the LAN will
be unable to communicate with other networks on the Internet. Issues related to a

centralized topology are still prevalent with the current Internet.

In a fully distributed system, all nodes on the network are of equal significance, the

failure of one node should not have a catastrophic effect on any other node on the

network. A fully Distributed System has the potential to enhance system efficiency,

reliability, extensibility and flexibility {8].

Some of the characteristics and advantages of Distributed Systems are now discussed.

1.2.1 Distributed System Privacy and Security

Unlike a centralized system, a distributed system lacks a central server for storage of
critical information. The information is spread among nodes and is retrieved only at the
demand of the requesting node. When the security of any node is compromised, the

breach is localized and has no detrimental effect.

In addition, a message sent between nodes can be packetized to enhance security. It can
be broken down into multiple data-packets, each containing a portion of the original
message. The different data-packets can be sent through different paths to reach their
destination. The receiver node will then re-arrange the packets to obtain the original
information. This method ensures that no node except the receiver has complete access

to the message, but can only route it onto the receiver.

1.2.2 Distributed System Fault Tolerance

Centralized systems have a single-point of failure. Centralized topologies are dependent
on reliable performance of the servers and the consistent operation of communications

between the servers and their clients. When a failure does occur to a server, all activities

within the network cease. However, when a node fails in a distributed environment,
information is simply routed around the failed node and continues its path to the receiver
node. The distributed system will maintain its functionalities as long as there is an

alternate path available.

1.2.3 Distributed System Scalability

Unlike a centralized system that utilizes a central server to process incoming data from all

clients, nodes in a fully distributed system communicate directly among themselves.

FIGURE 5: DISTRIBUTED SYSTEM TOPOLOGY

Requests for information and the actual transfer of information are performed locally
between individual nodes. This eliminates the need for a powerful server and thus
provides enhanced scalability as opposed to a client-server topology. Additional nodes

are able to freely join the network without incurring computational burden on the system.

Each additional node that joins is also an additional resource for the network to utilize to

ensure that the overall network remains efficient and robust.

1.2.4 Distributed System Connectivity

Nodes themselves may sometimes act as relays between two nodes if the sender and the
receiver nodes cannot communicate directly. Different transmission paths can be formed
from the sender to the receiver, thus ensuring the robustness of the distributed system in
the event of the failure of a node. Nodes cooperate and collaborate with neighbour nodes
to decide the most efficient path for message transmission. Nodes will use routing
algorithms to direct traffic away from congested areas of the network and improve

overall network efficiency robustness.

1.2.5 Distributed System Infrastructure Cost

In a wireless Distributed System, nodes communicate through wireless protocols. There
are no fibre optics to implement and the amount of time and labour needed is far less
when compared to a wireline system. Nodes are no longer physically limited to a
geographic location; they are now able to roam freely within the boundaries of the

wireless LAN.

10

1.2.6 Implementation Issues

A wireless application that utilizes a Distributed System is Automated Meter Reading.
There is a need for utility companies to avoid the slow and expensive manual process of
meter reading by automatically monitoring and acquiring utility meter from each

customer location in real time.

A solution to this problem has been proposed by Sabaz, et al. [26]. In Figure 6,
Intelligent Wireless MicroRouters are located at each house and these devices self
organize to form a distributed network. Due to the overlapping coverage of the devices,
meter data can be passed from one device to another, thus eliminating the need for a
dedicated RF system or wireline system. Each Intelligent Wireless MicroRouter can only
communicate with others in their area of coverage, and distributed intelligence software
enable multiple Intelligent Wireless MicroRouters to perform negotiations that determine

the best path for sending information to the collectors, as shown in Figure 6.

11

————
e ——— AL

-

“!" "Vﬁ‘h\\i ‘h\‘
v »
v rd l~ .
’,-"""f“\‘. '4' % \
| Area Of Coverage Of Each MlcroRouggs k’ ! ~f pY y
- o . ‘ \
- s s !
!
4
£

“'_-—w‘l_
-
, ’
/ 7
4 H e
’ 1
I
!
1
1]
}
\ ™
| A .
3 p
.
\
e |
¥
. - ¥
Possible Paths Of Information Flow: . iy 1 / <
.A<=>B B 5 N ’ g
u, . 4 , ‘4‘ :"
-A<=>C S N L
.Be=>C ™ _ﬂ,‘.“’_______,/

FIGURE 6. INTELLIGENT WIRELESS MICROROUTERS FOR AUTOMATED METER READING [1]

12

1.3 Distributed Computing Models and Architectures

Although considerable research has been devoted to the transformation of client-server

topologies into a distributed topology, there remain many unresolved issues.

Traditionally, applications were designed for a single host operating within a single-
address space utilizing a single operating system [14]. With the increasing growth of
networks, applications now have to interact with other components on the network in a
dynamic yet robust way [14]. However, there still exist fundamental issues with the

implementation of distributed application programming environments:

Address Space: Techniques to explicitly distinguish between local and remote

objects and to handle remote interactions.

Network Dimension: Handling of variance in hardware, software and operating

systems within the network

Programming-related: Handling of variance in programming language

implementation

Infrastructure-related: Distributed architectures defining their own protocols for
processing method parameter and return values, e.g., IIOP for CORBA, JRMP

for RMI and ORPC for DCOM.

Source: Bellifemine, et al.[12]

13

Distributed computing architectures have been developed over the years to handle

these distributed computing issues. Three architectures are briefly described and

compared in the following subsections.

1.3.1 Common Object Request Broker Architecture (CORBA)

CORBA is an architecture and specification for creating, distributing, and managing
distributed program objects in a network. CORBA allows programs at different locations
and developed by different vendors to communicate in a network through its “interface
broker.” CORBA was developed by OMG (Object Management Group) and is

sanctioned by both ISO and X/Open as the standard architecture for distributed objects.

1.3.2 Distributed Component Object Model (DCOM)

DCOM is a protocol that enables software components to communicate directly over a
network in a reliable, secure, and efficient manner. Previously called "Network OLE,"
DCOM is designed for use across multiple network transports, including Internet
protocols such as HTTP. DCOM is based on the Open Software Foundation DCE-RPC
specification, and operates with both Java applets and Microsoft ActiveX components

through its use of the Component Object Model (COM).

1.3.3 Remote Method Invocation (RMI)

RMIl is a set of protocols that enable Java objects to communicate remotely with other

Java objects. RMI is a relatively simple protocol, but unlike more complex protocols such

14

as CORBA and DCOM, it works only with Java objects. CORBA and DCOM are

designed to support objects created in any language.

Table 1 briefly compares these three distributed computing techniques with respect to the

issues described above.

Table 1. Comparison of distributed computing techniques

CORBA DCOM RMI
Address Space Issue No explicit distinction No explicit distinction No explicit distinction
(Calling remote hosts) | from local and remote from local and remote from local and remote

objects | obfects objects
Network Dimension ORB layer handles data | ORPC layer handles No conversion
Issue (Variance in and call format data and call format necessary. Strictly
soft/hardware and OS) | conversions conversions JVM-JVM
communication
-_Programming %hms with inter- Uses C. C++ and VB ac || Uses Java and is a Java- |

Language Related compatibility prdgramming language || o java solution.
Issues 7 ' Objects explicitly

categorized as local or
remote

Infrastructure Related
Issues

Strong dependence on
Internet Inter Orb

Protocol (IIOP)

Strong ldependence on
ORPC

Strong dependence on
JRMP

Source: Li[15]

However, neither of the currently available distributed applications provide a complete
solution. There is a need for a better distributed architecture to function better, not just in
wireline networks, but especially in wireless distributed systems. This is particularly
vital as current and future networking implementations will require a distributed wireless

system environment.

15

1.3.4 Distributed Application Development

Although there is much interest in distributed system applications, the complexity of

building them has hindered development.

Many organizations are developing distributed software platforms to facilitate the
development of distributed topologies. The platforms hide some of the intricacies of a
distributed environment and allow developers to concentrate their efforts on the higher-
level design of the system, rather than the low level communication transport. Examples

of distributed software platforms include JADE [3], FIPA-OS [6], JXTA [4] and JACK

[7].

16

1.4 Overview

1.4.1 Objective

This thesis will discuss the architecture and extensions needed for two distributed
software platforms, JADE and JXTA, to facilitate the development of distributed systems.
We shall examine the architectural characteristics of both platforms, outlining their
strengths and weaknesses. Then we shall examine the architectural extensions needed to
improve the current platform. Quantitative and qualitative results will be given for both

platforms.

1.4.2 OQutline

Chapter 1 provides a brief overview of this thesis and suggests potential flaws in current
centralized networks. It also provides a brief introduction to distributed systems and their

advantages.

Chapter 2 briefly outlines the distributed software platforms available today and
describes in detail the architecture of JADE and JXTA that are modeled in this thesis to

facilitate the development of distributed systems.

Chapter 3 discusses the different architectural extensions required by each platform for
an improved Distributed System. Conceptual details are presented along with an outline

of the implementation approach.

17

Chapter 4 provides an analysis of the extensions implemented for the two software

platforms. Example software listings and classes are presented.

Chapter 5 provides the qualitative and quantitative analysis of the JADE and JXTA
platforms with the proposed extensions. A summary of this research is provided with

directions for future research.

18

2 DISTRIBUTED SOFTWARE PLATFORMS

Centralized architectures are inherently more focused on simplicity, rather than on
scalability and robustness, whereas a distributed system depends on a network that is
scalable, robust and relatively inexpensive to maintain. However, the complexity of
software implementation for a distributed system is greater than that for a centralized
system. As the number of nodes within a distributed system increases, the inherent
combinatorial nature of the network becomes exponentially more complex. Current
distributed computing techniques do not provide a complete solution to handle distributed

computing issues.

Presently, the potential strength that a distributed system may offer has focused research
attention to develop software platforms that facilitate the implementation of a distributed
system over a wireline network. Table 2 illustrates some of the distributed software

platforms and their vendors.

19

TABLE 2. DISTRIBUTED SOFTWARE PLATFORMS AND VENDORS

Software Platform Vendor
JADE [3] Telecom Italia
JXTA [4] Sun MicroSystems Inc
FIPA-OS [7] Nortel Networks
JACK [6] Agent Oriented Software Group
Grasshopper [22] GMD FOKUS
Zeus [23] BT Intelligent Agent Research
Agent Development Kit [24] MADKIT Project

In this thesis, we concentrate on Java Agent Development Framework (JADE) and

JXTA.. Both platforms are based upon Java, taking advantage of the native utility for

interoperability. JADE and JXTA are built to handle infrastructure issues. Protocols and

classes are abstracted to provide software developers with ease in implementing a
distributed system. The platforms serve as middleware that deals with communication
transport and message encoding. Software developers can therefore concentrate on the
development of complex models and reasoning that constitute the distributed system,
rather than on the low-level communication protocols.

Because of these features [12] [15] [17] and their research and commercial interest,

JADE and JXTA were chosen for this thesis.

20

2.1 JADE Overview

JADE is an open source software platform developed by Telecom Italia Labs

implemented in the Java language to simplify the development of a distributed system. It

1s in compliance with the Foundation for Intelligent Physical Agent (FIPA) specifications

to ensure standard compliance through a set of system services and agents. FIPA is an

international non-profit organization established in 1996 to produce standards for the

interoperation of agents and agent-based systems [5].

JADE is composed of two core components: a platform that allows developers to create

FIPA-compliant agent-based systems, and a Java package to develop software agents for

inter-platform and intra-platform communication between agents, as illustrated in Figure

7

JADE

FIPA-Compliant
Platform

Java Software
Packages

FIGURE 7. JADE COMPONENTS

21

2.1.1 JADE Agent Platform

JADE’s communication system is based upon FIPA standards. There are three agents
that must be present in a FIPA compliant agent platform, as illustrated in Figure 8 and

described as follows:

Agent Directory Agent]
Hanagement| «-» | Facilitator|<—=|Communication
System Channel
A
1 4 H

INTERNAL PLATFORM MESSAGE TRANSPORT

FIGURE 8. FIPA COMMUNICATION FRAMEWORK

o Agent Management System (AMS): An agent responsible for managing
the operation of an Agent Platform (AP), such as the creation, deletion and
oversight of the migration of agent to and from the Agent Platform (AP)

e Directory Facilitator (DF): An agent that provides “yellow page” services
to other agents. It stores description of the agents and the services they
offer.

o Agent Communication Channel (ACC): An agent that uses the
information provided by the AMS to route messages between agents either
within the same platform or agents on other platforms.

Source: FIPA[S]

22

The AMS and DF are automatically created when the JADE platform is first launched.
The ACC allows message communication within and to/from different platforms (host

computers). Both the AMS and DF utilize the ACC for communication.

Each instantiation of JADE is termed a container. While multiple instantiations of JADE,
thus multiple containers, can exist on the same platform, there can be only a single main
container on which the DF and AMS reside. As a result, within a JADE network, there
can only be one DF and AMS. Agents residing on other platforms must rely on constant
and reliable communication with the main container for a complete JADE runtime

environment (8], as illustrated in Figure 9.

JADE uses various methods for message delivery between agents. If both the sender and
the receiver agents reside in the same container, JADE uses event passing for
communication. When the sender and the receiver reside in different containers but in
the same platform, JADE uses Remote Method Invocation (RMI). For agents residing in
different platforms, JADE uses Internal Message Transport Protocols (IMTP) such as

IIOP, HTTP and WAP.

Figure 9 and Figure 10 illustrate the message delivery between agents in different

SCenarios.

23

 JADE CONTAINER
[Loca mrtaee scrats]

JADE CONTAINER
| LOCAL SOFTWARS acEXTS]

e

]

TRTERRAL PLATPOMN WESSAGE TRARSIORT .

]

JADE CONTAINER
{LOCAL SOPYELLE ACESTS)

LETERNAL PLATPORE NESSAER TRARGPORY

JADE PLATFORM

L H (2 1
- # -
kny *%1
PO N
Eed) nug

JADE MAIN CONTAINER
fwcn SOPTeARE acens]

-
IRTERNAL PLATEORK NESSAGE TRANSPORT

JADE COMTAINER
[Locar sorramr acents)

..,
~.

u;j

i
i
l

H

H
i
i
H

INtRREAL FLATEORR ARGSAGE YRANSFORY

JADE CONTAINER
[Logar sorTusks acents!

INTHRESE. PLATRORR REEGIGE TRANSPORT

|

Figure 9. JADE Intra-Platform Message Delivery [12]

24

JADE PLATFORN

{

JADE PLATFORK

D R—

"JADE CONTA THER

JADE PLATFORK

JADE CONTATMER

-

[“JaDE CONTAINER

acc |

JADE PLATFORM

M)P HaIN
00"!“ BR

) ._Iur

[SRmasse—

JADB PLATPORN

JADE CONTAINER

[ace |

JADEB PLATPORM

JADR CONTATHER

[ace]

FIGURE 10. JADE INTER-PLATFORM MESSAGE DELIVERY [12]

25

2.1.2 JADE Software Architecture and Behaviours

Java was chosen by Telecom Italia Labs because of its many features geared towards
object-oriented programming in distributed heterogeneous environment including Object
Serialization, Reflection API and Remote Method Invocation (RMI) [17]. It provides
application programmers with ready-made functionality and abstract interfaces for

custom application dependent tasks [17].

JADE 1s composed of the following major software packages:

o Jade.core: Implements the kernel of the system. It includes the Agent
class that must be extended by application programmer. Behaviour class
hierarchy contained in the sub-package implements the logical tasks that
can be composed in various ways to achieve complex tasks.

o Jade.lang.acl: Provides Agent Communication Language according to
FIPA Standard Specifications.

e Jade.domain: Contains all Java class that represent Agent Management
System defined by FIPA standards

e Jade.gui: Contains generic classes useful to create GUIs

e Jade.mtp: Contains the Message Transport Protocol that should be
implemented to readily integrate with the JADE framework.

o Jade.proto: Provides classes to model standard FIPA interaction protocols
(fipa-request, fipa-query, fipa-contract-net)

Figure 11 illustrates the interactions between the different Jade software packages and the

AMS, DF and ACC.

26

[Jade core l E.dc..lm‘. -clJ [Jada. gwul [Jadc mty l

(graphics)
N
<<Agent>>
DF
[Jade.core l i Jadc. inox. act l [Ladwe, dommais l
~_ 1)
<<Agent>>
AMS
l Jade. core] { Jode. loax. acl | I Jade. mtp l
~ N\
’\ i 1
<< Agent>>
ACC

FIGURE 11. JADE AGENTS AND SOFTWARE PACKAGE INTERACTIONS

Figure 12 illustrates the dependencies between the different Jade software packages.

Jade core i

_—

Jade g ut Jade. mip
Jade, lncg, acl Jade, domals Jade. protn
feraphics}

T 1

FIGURE 12. JADE SOFTWARE PACKAGE INTERACTIONS

27

Internally, each JADE agent is composed of a single execution thread and all its tasks are

modelled and implemented as Behaviour objects, and implemented as a finite state

machine. Adding a Behaviour object is equivalent to spawning a new (cooperative)

execution thread within the agent [17]. Agent behaviours can therefore be described as a

Finite State Machine.

There are two main types of Behaviour: Simple and Composite. A Simple Behaviour

models a task that is not composed of subtasks while a Composite Behaviour models a

task that is a combination of smaller, subtasks. Table 3 illustrates a few of the Behaviour

models that are available.

TABLE 3. JADE BEHAVIOUR MODEL DESCRIPTION

Behaviour Description

One Shot e Tasks only performed once

e Agent returns to idle state immediately after completion of task

Cyclic e Task cycle repeats indefinitely

e Agent never return to idle state

Complex e Agent tasks model a Finite State Machine
e Each state dependent on current condition and previous state

e Apgent returns to idle when given condition and state are met

28

Figure 13 illustrates and briefly describes the Jade class behaviour hierarchy.

Beavor

Meces a cempisx b

astie ylat s

e WY §

CAMIACS A NUMDEr Sempozed of subapsts

cAemneriass

OreSrodensdor CyniBanysicur
MelssasKic
A5t MY el
rethad retans
ke
SSVBsRY by

SqaryBensay Fatezeravey

m Jccsmienavea; m

hocels 8 comcler sk Moce's 8 comgiey Bk Motels 3 compiey X

eameents o e kibes ahase suoixils e Mie Subtks e
amcded nasertly -

petamed 1 e chates of 3 t

Fhte Suze Machine

FIGURE 13. JADE BEHAVIOUR CLASS HIERARCHY [17]

29

2.1.3 Issues for JADE as a Distributed System

Some of the limitations of JADE that we will address in subsequent chapters are briefly

described here.

Message transport between agents in JADE is handled internally and users have no

knowledge and control of the exact path that the message is traversing.

Individual nodes in a Distributed System may not be able to directly communicate with
each other. They rely on intermediary nodes to relay their information across the
network. In a Wireless Distributed System application, wireless connectivity scenarios
(e.g., dynamic link failure/establishment) cannot be simulated. Extensions are required to

the current version of JADE to facilitate the simulation of a Distributed System.

A JADE application is dependent on the AMS and DF, which resides in the main
container. Critical functions such as agent creation, migration, deletion and yellow page
service cannot operate without the aid of AMS and DF. A complete JADE runtime
system is critically dependent on the constant and reliable communication between the
main and other containers. The failure of the main container will have a catastrophic

effect on the entire JADE system.

Nevertheless, JADE also has advantages over conventional distnibuted computing
techniques that facilitate the development of a distributed system. Table 4 lists some of

the advantages and disadvantages that result from utilizing JADE in a distributed system.

30

TABLE 4. ADVANTAGES AND ADVANTAGES OF JADE IN A DISTRIBUTED SYSTEM

Advantages:

Disadvantages

Open source, completely written in
JAVA and FIPA-compliant

Serves as middleware to deal with
communication transport and
message encoding

Concise and efficient software
architecture

All agent tasks modeled as
Behaviors objects for simple
implementation of complex tasks

Ability for agents to migrate from
container to container, regardless of
platform

Cannot define specific path to
receiving node

Critical dependence of AMS and
DF of the main container for
communication

Unable to simulate different
transmission scenarios

31

2.2 JXTA

JXTA was developed by Sun Microsystems to enable end users to build distributed
systems. It is a software framework that utilizes a set of protocols to support the
development of distributed applications. JXTA does not define a specific type of
application, but rather a standard for how the application should be created. Because the
protocols are not rigidly defined, their functionalities can be extended to satisfy uniquely

different applications [20]. The goal of JXTA is to achieve the following features:

® Operating System Independence
® Language Independence
® Provide services and infrastructures for distributed applications

Source: Li[15]

A JXTA application is able to incorporate a large number of potential participants in a
JXTA-enabled distributed application. Because the architecture lacks a central
management hierarchy, no failures of any client should result in a catastrophic failure of

the entire application.

Participants in a JXTA network are known as peers. They are software entities that are
similar to agents in JADE. Multiple peers can coexist on a single node, with each peer

able to perform tasks individually. However, unlike agents in JADE, peers in JXTA are

32

not FIPA-compliant and are not able to freely migrate. They are physically tied to the

node on which they reside.

JXTA is composed of a set of protocols and a JXTA platform. The protocols allow an
individual to easily produce a new JXTA application without extensive knowledge of the
underlying distributed domain. The JXTA platform utilizes the protocols for the
development of the distributed application and the different layers of abstractions behind

each application such as peer communication and peer management

2.2.1 JXTA Protocols

The JXTA protocols are used to enable nodes to discover, interact, and manage a
distributed application. The protocols abstract the implementation details, making the
task of creating a distributed application much easier and less sustained. The protocol
specification only describes how nodes communicate and interact; it does not restrict the

implementation of a distributed application [20].

The protocols are built to smoothly handle communication between different operating
systems, development languages and even exchanges between clients behind firewalls.
The peer is assumed by JXTA Protocol to be any type of device, from “the smallest

embedded device to the largest supercomputer cluster” [18].

33

The protocols have been specifically designed for “ad hoc, pervasive, and multi-hop

network computing”. By using the JXTA protocols, peers in a JXTA application can

cooperate to form “self-organized and self-configured peer groups independently of their

positions in the network (edges, firewalls), and without the need of a centralized

management infrastructure.” [20]

JXTA protocols are based on XML — a widespread language-independent and platform-

independent form of data representation.

Table 5 lists the JXTA protocols, their descriptions, and their functionalities within a

JXTA application.
TABLE 5. JXTA PROTOCOLS AND DESCRIPTIONS
JXTA Functionalities within Description
Protocol JXTA Application
Peer Discovery Resource Search Allows a peer to discover other peer

(PDP)

advertisements (peer, group, service, or
pipe).

The search mechanism used to locate
information. Can also find peers, peer
groups, and all other published
advertisements.

Peer Resolver

(PRP)

Generic Query Service

Allows a peer to send a search query to
another peer.

The resolver protocol is a basic
communications protocol that follows a
request/response format.

The resolver is used to support
communications in the JXTA protocols
like the discovery protocols. It is used by
other protocols to send messages/requests

34

to other peers

Peer Information | Monitoring Allows a peer to learn about the status of
another peer.
(PIP)
Rendezvous Message Propagation Responsible for propagating message
within JXTA groups.
(RVP)
Defines a base protocol for peers to send
and receive message within the group of
peers and to control how messages are
propagated.
Peer Membership | Security Allows a peer to join or leave a peer
group.
(PMP)
Supports the authentication and
authorization of peers into peer groups.
Provides security for peer group
Pipe Binding Addressable Messaging Used to create the physical pipe endpoint
to a physical peer
(PBP)
Communication path between one or
more peers
Connecting peers via the route(s) supplied
by the Peer Endpoint Protocols.
Peer Endpoint Message Routing Uses gateways between peers to create a
path that consists of one or more peers.
(PEP)

Utilizes the pipe binding protocol and its
the list of peers to create the route
between peers

Searches for gateways that allow the
barriers, such as firewalls and others, to
be traversed

Automatic protocol detection and
conversion to allow two peers with
different supporting protocols to
communicate

Source: Developer[20]

35

Figure 14 illustrates the interaction between the various JXTA protocols. All protocols
require the support of PEP to facilitate a path to the receiving peer. After a path has been
determined, PBP is used to create the physical pipe communication between two peers.
Finally, PRP is used to support generic query services that are basic to all peer

communication. The sequence of interactions is illustrated in Figure 14.

Peer Discovery Peer Endpoints Pipe Binding Peer Resolver

Peer Information

Rendezvous

FIGURE 14. JXTA PROTOCOL SEQUENCE DIAGRAM

36

2.2.2 JXTA Platform

The JXTA Platform is modeled after the standard operating system, where there are three

distinctive layers consisting of the Core, Services and Applications, as illustrated in

Figure 15.

JXTA Application Layer

4L

JXTA Service Layer

1L

JXTA Core Layer

[Peer Monitoring | [Peer Administration]| [Peer Pipes

FIGURE 15. JXTA PLATFORM ARCHITECTURE [6]

The JXTA Core layer provides the foundation of any distributed application. Its

components and functionalities are utilized by the Service layer. The Applications layer

in turn uses the Services layer to access the JXTA network and utilities [18].

37

2.2.2.1 JXTA Core Layer

The JXTA Core layer provides the basis of all JXTA applications. New entities such as

peers, peer groups, pipes and identifiers are created.

Table 6 lists the objects created in the Core layer and their involvement in the

development of a distributed application.

TABLE 6. JXTA CORE LAYER CONCEPT DESCRIPTION

Entity Name Description

Peer e An entity on the network that implements one or more JXTA protocols

¢ Rendezvous Peers support searches and store advertisements within the
JXTA group

Pee/Node Group e A collection of peers on the network with common interests or
objectives.

e A way to advertise specific services that are available only to group
members.

e Peers can join/resign from specific groups and be members in multiple
groups

e Membership authentication provides security for access to group with
specific services or information.

End Point ¢ An address of a peer that implements a dedicated pipe of communication
with another peer

e Multiple end-points provide communication with multiple peers

Pipes e A dedicated, virtual connection between two peers.

e Used as abstraction to hide the fact multiple peers may be used to relay
information to receiving peer.

e Several types of pipes available: Uni-directional Asynchronous,
Synchronous request/response, Bulk Transfer, Streaming, and Secure.

38

Advertisement e An XML document that describes a JXTA message, peer, peer group, or
service.

e Advertisements stored in local Rendezvous Peers to support
advertisement search within specific sub-section of a group

Identifiers e Globally unique IDs that specify a resource, not the physical network
address. Randomly generated to globally identify peers, peer groups,
pipes or advertisements.

Source: Wilson[18]

2.2.2.2 JXTA Service Layer

The JXTA Service Layer provides network services that could be incorporated into
different JXTA program. They include searching for resources on a peer, sharing
documents among peers and performing peer authentication. Each JXTA application can
only utilize a specific set of network services that are relevant to its application goals.
The Service Layer can include additional functionalities that are being built by either

open source developers working with JXTA or by the JXTA development team.

2.2.2.3 JXTA Application Layer

The Applications Layer builds on the resources of the service layer to provide end users
with a complete JXTA solution. Various services are collectively used to provide such a
solution. Instant messaging and file sharing are two of the most popular applications of

distributed systems. A User Interface is typically present for a JXTA Application.

39

2.2.3 JXTA Communication

In the JXTA environment, different types of peers are used to coherently manage requests

and communications. JXTA uses three types of peers to accomplish this task:

e Rendezvous peers are used to relay and search for requests,

e Router peers are used to implement the peer end-point protocol and establish a multi-
hop path to the receiving node

e Gateway peer are used to relay messages between peers.

2.2.3.1 JXTA Rendezvous Peer

The key purpose of a Rendezvous peer is to facilitate the searching of
advertisements beyond a peer’s local network. Rendezvous peers usually have more
resources than other peers and store a large amount of information about the peers
around them, such as their identifications and services [20]. If the information
requested cannot be found locally, the Rendezvous peer will act as a relay and

forward the request to other rendezvous peers around the network.

Figure 16 illustrates a typical search involving multiple Rendezvous peers. The

sequence of the search is as follows:

e Pecer 1 initiates search by querying local Peer 2 and 3 via IP Multicast
e If specified resource not found, local Rendezvous peer is searched.

e Ifthe rendezvous peer does not have the advertisement, successive
rendezvous peers are searched. Besides peers local to the querying peer,
only rendezvous peers are used.

40

Firewall

b

3.1.2.TCP Result(4, 5. 6. 7. 8)

P
Peer 2 @) l’ / / eer 8
% P 1 - Peer 4 Rendezvous
1.1P Mullicast eer ~—=~1 Known by Peer 1
4,567, Rendezvous

; Rosultd. 5.5.7.9) Knows about 5 8 8

¢ 1
¢
Peer 1 initiated 3.1.1:TCP Query 3.1.1.1.TCP Resul(5.6, 7)
advertisement discovery

Peer & Rendezvous
Rendezvous Known by Peer 4
Knows about6 & 7

VARN

Pger 6

Peer 7

FIGURE 16. JXTA RENDEZVOUS PEER SEARCH [20]

Any peer has the option of being a Rendezvous, though not required. The Rendezvous

peer can retain a cached copy of the results from previous searches. This feature

expedites future searches with requests similar to previous searches.

2.2.3.2 JXTA Router Peer

A Router peer is any peer in JXTA that supports the Peer Endpoint Protocol. The

protocol internally implements routing to determine the most efficient route to the

destination peer.

41

The request for a route starts with a peer initiating the request to the Router peer. The
Router peer first search the local network for the destination peer. If the peer is not found,
other Router peers are contacted until the destination peer is located. Previous requests

are also cached to expedite future requests

Figure 17 illustrates how a route is determined between two distant peers.

Note: Routers

i Peer
1.2:Reques! Peer 7 implement
route 1-8, 2-8, Gateway | | Endpoint Protocol

or 6-8

1.3:Request route
1-8, 2-8, or 6-8

= [=
e — n
/ Peer S r/

L Y, 12.4:Roule2, | Router
Router | 1.1:Request route 1-8, 52?“3 =

1 2.8, or6:8 A A
} M N
\ b .
A A
] [y »
Router cannot find Routet finds route between Router inds gateway at 7
a route 10 peers. 1 and gateway al 6 via its that can route to both 6 and
own gateway (2). Propagates 8. Returns route between
message to other routers 6,7, and B,
looking for route feom 1.2 of
6 to peer B.
Final Rou
Peer 1 % Peer B Peer 7 Peer 8
“Start Gotoway | | C2teway [T | Gateway (End)

FIGURE 17: JXTA ROUTER PEER [20]

42

2.2.3.3 JXTA Gateway Peer

A Gateway peer is used to relay messages, not request, between peers. It can also store

messages and wait for the receiving peer to collect the messages.

Gateway peers arise from the fact that different communication protocols are used by
different peers. Some peers may use TCP, while other may use IP. To support wireless
connectivity, the Wireless Application Protocol (WAP) is also needed [20]. Gateway

peers act as intermediaries between the different protocols and provide translation service.

Gateway peers are also used to go through common security barriers such as firewalls,
which filters nearly everything except HTTP. Figure 18 illustrates how a Gateway peer

is used to interface between Peer 1 and Peer 3.

Peerl TCP Pipe
Internet Poor 2
Gatewaz
Firewall

R . s e A A e EE G el GNP A LS SED SN N WL MNP Ghe TR WS s aus — e e - -

Local Area Network HTTP Pipe

Peer 3

FIGURE 18: JXTA GATEWAY PEER [20]

43

When the messages are sent from Peer 3 to Peer 1, they are first sent via TCP to peer.
The Gateway peer then holds the message until Peer 1 makes an HTTP request to retrieve

the data [20].

44

2.2.4 Issues for JXTA as a Distributed System

Some of the limitations of JXTA that we will address in subsequent chapters are briefly

described here.

Message transport between nodes in JXTA is handled internally and users have no
knowledge and control of the exact path that the message is traversing. JXTA uses the
End-point Routing Protocol (ERP) to systematically direct messages from the sender peer

to the receiving peer.

Individual nodes in a Distributed System may rely on intermediary nodes to relay their
information across the network In a Wireless Distributed System application, wireless
connectivity scenarios (e.g., dynamic link failure/establishment) cannot be simulated with

the current version of JXTA. Extensions of JXTA are required.

The XML message may reduce network efficiency. Its mandatory 256-bit peer ID and
path specifications imply that an “empty” message that has no application-specific
payload can easily reach 1 KB in size and thus affect the performance of the message
exchange. Also, the complex messaging architecture of JXTA that involves the XML
parser and several layers of abstraction will add significant overhead and affect the

efficiency of the messaging framework [19].

Rendezvous, Relays and Gateway peers are used in JXTA to cache routes and pass

messages/requests between peers. As the size of the network grows, the amount of

45

processing required by these nodes will grow exponentially, resulting in a degradation of

network efficiency.

Nevertheless, JXTA has advantages over conventional distributed computing techniques
that facilitate the development of a distributed system. Its protocols and the abstraction
of the underlying distributed domain allow developers to more easily develop distributed
systems. Also, caching of network information allows messages and requests to be
transported more efficiently. Table 7 lists some of the advantages and disadvantages of

utilizing JXTA in a distributed system.

TABLE 7. ADVANTAGES AND DISADVANTAGES OF JXTA IN A DISTRIBUTED SYSTEM

Advantages:

Disadvantages

No extensive knowledge of
underlying distributed domain

Support large number of potential
peers with no central management
system

Network resources distributed
among multiple machines

Automatic protocol translation for
communication between peers with
different protocols

Cached network information
reduces search time requests

Developers unaware of
mechanisms and path used for
message transport.

Sizeable XML messages, XML
parser and several layers of
abstraction may lead to network
inefficiency.

Dependence on specific types peers
for routing, messaging and requests
between peers.

Increased memory overhead by
caching network configuration for
every peer

46

2.3 Differences between JADE and JXTA in Distributed Systems

Both JADE and JXTA are designed with the goal of achieving a distributed system.
However, both platforms have issues that must be resolved before a distributed system

can be established.

In JADE, agents residing on remote containers are dependent on the AMS and the DF
that reside in the main containers. Although remote containers are contained on different
platforms than the main container, the remote container is critically dependent on the
agents of the main containers and their services. The failure of the main container would
also indicate the failure of the entire JADE network. JXTA, on the other hand, does not
employ remote containers. A JXTA peer cannot be subdivided and it resides on a single
host. Every host represents a JXTA peer and they communicate either directly or through
relay nodes with other peers. Failure of one peer will not have a catastrophic effect on

the overall system.

In JADE, agents are able to freely migrate from container to container, regardless of the
physical location of the platform on which the container resides. However, in JXTA, a
peer is represented by a physical host such as a hand-held device or a desktop computer.

Peers cannot migrate freely across the network. They are embedded within the hosts.

47

Another major difference between them is their respective message protocols. The

messaging architecture of JXTA when compared to JADE is complex. The use of XML

parsers and several layers of abstractions add significant overhead to the efficiency of the

network. The increased use of relay peers in JXTA can also lead to congestion and

degrade overall network performance.

Table 5 below illustrate some key differences between JADE and JXTA when utilized in

a distributed system.

TABLE 8. COMPARISON OF JADE AND JXTA IN DISTRIBUTED SYSTEM

JADE

JXTA

Messaging Architecture

Relatively simple. Uses IMTP for Inter-
platform and RMI for Intra-platform
communication

Uses XML parser and several layers
of abstraction. Pipes used for
communication. Significant overhead

Node/Peer Migration Agents able to freely move to different Peers are embedded within the host
containers they reside in
Distributiveness Limited by the main container. Remote Unrestricted scalability. Each peer is
containers dependent on main container. | uniquely identified and independent.
Platform Complexity Very manageable and coherent More sophisticated and steep learning
curve.
FIPA Compliance Yes No

48

3 JADE/JXTA EXTENSIONS FOR IMPROVED
DISTRIBUTED SYSTEMS

Both JXTA and JADE have limitations for implementing a distributed system. Both
JADE and JXTA lack the ability to simulate wireless connectivity conditions such as
dynamic link establishment/failures and data quality over multiple hops. Although the
use of Endpoint Routing Protocol in JXTA ensures messages are efficiently routed to
their destination, it does not specify the absolute path they must traverse. In JADE,
communication transport is also handled internally and no user-defined routing
mechanisms are available. Ideally, a true WDS should combine wireless protocols with
the functionality of a peer-to-peer collaborative system environment. This would enable
multi-hop capabilities to find distant nodes on the network without the need for a

centralized management system.

3.1 Virtual Wireless Environment

In current wireline networks, nodes are physically connected and information is
systematically routed from sender to recipient. However, in a WDS, each node is not
fully aware of the extent of the entire network and with whom it can communicate
directly. For example, suppose that we wish to model a wireless network consisting of 5
nodes using a wireline LAN. Individual nodes can only communicate with a set of

receiver nodes as predetermined by the wireless conditions. This set of receivers need

49

not be constant; they can be dynamically changed to model the wireless nature of a WDS,

such as user roaming.

In the wireless scenario illustrated in Figure 19, we suppose that Node A is a roaming

node. At¢=t) Node_ A has only Node_ B as its receiver.

FIGURE 19. ROAMING NODE WITH INTELLIGENT LINK AT T=T0

However, at t=t,, the sender (Node_ A) will be at a different location, as shown in Figure

20, and has different receivers (Node_D and Node_E).

FIGURE 20. ROAMING NODE WITH INTELLIGENT LINK AT T=T1

50

This situation models a roaming node where its linkages to other nodes are dynamically

changing.

We could also model other scenarios such as dynamic link congestion/failure by setting
the links between nodes to be deleted or created as a function of time. Such a scenario

can also be used to model the uncertainty of wireless transmission.

Timing and administrative overhead issues can also be modeled. We can calculate the

time required by messages to travel from one end of the network to another and the

effects of multiple messages. Stress test can be carried out to ensure that the system can

adequately perform under heavy traffic. We can also measure the effectiveness of

different routing algorithms and also peer-to-peer environments.

Currently, this type of distributed system is still mainly a research topic. Extensions are

required to current distributed systems to simulate a true distributed system.

51

3.2 JADE Architecture Extension

Fully distributed systems must not be dependent on any particular node. The key to
improved distributiveness in JADE is the elimination of the central influence of the main
container. Each host will be completely independent of other hosts and a failure of one

host will not a have catastrophic effect on the network.

FIGURE 21. JADE IN A VIRTUAL WIRELESS ENVIRONMENT

As illustrated in Figure 21, each host will become a main container and the use of remote

containers will be eliminated.

For example, in a wireless environment, nodes can only communicate directly with
neighbour nodes and thus are not aware of all available nodes on the network. Also,
specific message paths that transverse several intermediary nodes may be required to
relay messages. Finally, the added administrative overhead must be properly handled to

ensure a coherently managed Wireless Distributed System.

52

We can accomplish these tasks by extending the components in the established JADE
Agent Platform to include the Global Directory Facilitator (GDF), Wireless Agent

Communication Channel (WACC), and the Global Agent Management System (GAMS).

3.2.1 Wireless Agent Communication Channel (WACC)

In a wireless environment, nodes can only communicate directly with neighbour nodes.
Messages can only be sent directly to a list of available receivers as predetermined by a

user-defined scenario. This limitation is used to model the wireless nature of the WDS.

This feature is accomplished by extending the Agent Communication Channel (ACC) of

the JADE Agent Platform, as illustrated in Figure 22. The WACC is in constant

communication with the GDF for the current list of available nodes.

Wireless

Agent
Communication
Channel

s

Asent Directory Agent .
Hanagement <+ | Facilitator| <« | Communication
Syetem Channel
»
t t 3

INTERNAL PLATFORN MESSAGE TRANSPORT

FIGURE 22. WIRELESS AGENT COMMUNICATION CHANNEL IN AN AGENT PLATFORM

53

3.2.2 Global Directory Facilitator (GDF)

Unlike wireline networks for which all nodes are aware of the existence of all other nodes,
a wireless system is only aware of nodes within its signal range. When a new node
becomes available, that information must be made available to the network by

broadcasting its presence to neighbour nodes, which they broadcast to their neighbours.

This multi-hop functionality feature is incorporated into JADE by extending the DF to
include the GDF, as shown in Figure 23. The GDF is responsible for maintaining a
current list of all agents and their services. This extension enables a node to be aware of

both neighbour and distant nodes.

Global
Directory
Facilitator
Q.
dgent Directory Agent
Nanagement| «-» | Facilitator| <+ |Communication
Syetem Channel
% + 3
INTERNAL PLATFORM MESSAGE TRANSPORT

FIGURE 23. GLOBAL DIRECTORY FACILITATOR IN AN AGENT PLATFORM

54

3.2.3 Global Agent Management System (GAMS)

As illustrated in Figure 24, the GAMS extends the functionalities of the AMS to manage
the additional administrative overhead at the network level. It is also responsible for
providing agent management service for its respective node in the Wireless Distributed

System. Its tasks also include agent creation, migration, and retirement.

Global
Agent
Management
System

»

v

Agent Directory dgent
Hanagement] «-» | Facilitator| +—+|Communication
System Channel

t + 3
INTERNAL PLATFORN MESSAGE TRANSPORT

FIGURE 24. GLOBAL AGENT MANAGEMENT SYSTEM IN AN AGENT PLATFORM

The GAMS is in constant communication with the WACC and GDF to provide a complete

WDS environment from a wireline LAN.

55

Global ‘ > Wireless
Agent P Agent
Management gg?:::atlmy - Communication
System Facilitator Channel
’
Agent Directory Agent .
Nanagement|{ «— |Facilitator|+-»|Communication
System Channel
4
t 3

INTERKAL PLATFORM MESSAGE TRANSPORT

FIGURE 25. MODIFIED JADE FRAMEWORK

3.3 JADE Software Architecture Overview

Based on Figure 25, extensions are required of the JADE Agent Platform to implement
an improved Distributed System. In this thesis, the extensions are based on the use of

three distinct JADE agents -- Broadcast, Sender, Receiver -- that would operate even for

a wireless application.

e The Broadcast Agent handles broadcasted messages to/from other nodes and is

responsible for maintaining a current list of all nodes currently available on the

network.

e The Sender Agent provides management service for the respective node, and is

responsible for sending messages.

e The Receiver Agent receives messages from other nodes and internally determines

the subsequent nodes that the message should traverse.

3.3.1 Broadcast Agent

To incorporate multi-hop functionality into JADE, each node must know precisely which
other nodes are currently available. This task is accomplished by the Broadcast Agent. It

1s responsible for maintaining a current list of all nodes on the network.

When a node is initiated, the Broadcast Agent will first broadcast its existence to the
JADE network, after which it will loop indefinitely for a reply message. When a
message arrives, the Broadcast Agent writes the agent information contained in the
message to the GDF. Just before the node retires, an exit message is again broadcast to

the network to indicate its termination.

3.3.2 Receiver Agent

Similar to the Broadcast Agent, the Receiver Agent also waits indefinitely for a message
to arrive. Its main task is to process incoming messages and acts as an intermediary node
if necessary. Routing algorithms determines the path of the next node and messages are
routed accordingly. Table 8 lists the types of incoming messages that the Receiver Agent

currently supports.

57

TABLE 9. MESSAGE TYPES SUPPORTED BY THE RECEIVER AGENT

Message Type

Description

Administrative

Used to establish virtual connection with neighbour nodes.

Broadcast

Used to establish global directory of all nodes available on the network

Specific-Path

Used to route messages according to user-specified path

Update-Hop Message

Used to update global hop-list

Update-Hop-List-
Header

Used to update Global Directory Facilitator

58

3.3.3 Sender Agent

The Sender Agent is responsible for providing agent management service for its
respective node in the Wireless Distributed System. Its tasks also include agent creation,
migration, and retirement. It is also in charge of administrative overhead at the network

level.

The Sender Agent contains the entry point for the end user to operate a JADE node. A
simplified GUI displays all available nodes currently on the network to communicating
with a specific node through a user-defined routing method. Messages can be sent either

directly to the destination node, or routed through a number of predefined methods.

59

3.4 JXTA Architecture Extension

Unlike JADE, where containers residing on remote machines are dependent on the main
container on the host machine, each JXTA node is an independent entity that is not

reliant on any other network resources. Multiple peers can coexist on a single JXTA node.

The Rendezvous peer allows network resources to be discovered in a robust and efficient
manner. The Router peer plots a suitable path for the message to traverse, and the
Gateway peer systematically routes the message according to that path. The three peers
work in conjunction to coherently manage any JXTA application with unrestricted

scalability.

However, the extensive use of the three nodes limits its ability to fully simulate a fully
distributed system. The path taken by the Router node is accomplished automatically by
utilizing the End-Point Routing Protocol. The system developer is unaware of the

specific path and messages are routed automatically by the Gateway node.

To simulate a fully Distributed System, the system developer must be able to specify the
exact path that the message must traverse, and also the conditions of the links between
peers. Then, the system developer will be able to simulate wireless scenartos such as
dynamic link establish and user roaming. Different routing algorithms can then also be
implemented to test their efficiency and robustness under congestion. Also, the added
administrative overhead must be properly handled to ensure a coherently managed

Wireless Distributed Environment.

60

In this thesis, these tasks are accomplished by extending the components in the
established JXTA Core layer to include the Wireless Peer Pipes (WPP), Global Peer

Messaging (GPM), and the Global Peer Monitoring (GPM).

The JXTA Core layer and its components are shown in Figure 26 for reference.

JXTA Core Layer

Peer Monitoring] ,Peer Administration' [Peer Pipes

FIGURE 26. JXTA CORE LAYER AND COMPONENTS

3.4.1 Wireless Peer Pipes (WPP)

Similar to the Agent Communication Channel (4CC) in the JADE architecture, the Peer
Pipe is responsible for communication between peers. It must be extended to restrict
sending messages to neighbour peers. This extension is termed Wireless Peer Pipes, as
illustrated in Figure 27. The WPP is in constant communication with the GPM for the
current list of available peers and restricts sending messages to a list of predetermined

neighbour peers.

61

Yireless
Peer Pipes

+

JXTA Core Layer

Peer Monitoring | [Peer Administration| [Peer Pipes |

FIGURE 27. JXTA EXTENSION: WIRELESS PEER PIPE

3.4.2 Global Peer Monitoring (GPM)

Unlike wireline networks in which all nodes are aware of the existence of all other nodes,

a wireless system is only aware of nodes within its signal range. When a new node
becomes available, that information must be made available to the network by

broadcasting its presence to neighbour nodes..

This multi-hop functionality feature is incorporated into JXTA by extending the Peer
Monitoring to include the Global Peer Monitoring (GPM), as illustrated in Figure 28.
The GPM is responsible for maintaining a current list of all peers currently available in
the JXTA network. This extension, illustrated in Figure 28, enables each peer to be

aware of both neighbour and distant peers.

62

Global Peer
Honitoring

’

JXTA Core Layer

Peer HonitoringAJ lPeer Administration| [Peer Pipes

FIGURE 28. JXTA EXTENSION: GLOBAL PEER MONITORING

3.4.3 Global Peer Administration (GPA)

The GPA4, as illustrated in Figure 29, extends the functionalities of the Peer

Administration to manage the additional administrative overhead at the network level. It

is also responsible for providing peer management service for the respective peer.

Global Peer
Administration

4

JXTA Core|Layer

Peer Monitoring I [Peer Administration| [Peer Pipes

FIGURE 29. JXTA EXTENSION: GLOBAL PEER ADMINISTRATION

63

The GPA is in constant communication with the WPP and GPM to provide a complete

distributed environment from a wireline LAN in JXTA, as illustrated in Figure 30.

Global Peer Global Peer Vireless
Monitoring ** | Administration | © |Peer Pipes
4+ 4 4

JXTA Core|Layer

E’eer Monitoring | [Peer Administratim [Peer Pipes

FIGURE 30. MODIFIED JXTA FRAMEWORK FOR AN IMPROVED DS

3.5 JXTA Software Architecture Overview

As shown in Figure 30, extensions are required from the JXTA Core Layer for an
improved Distributed System. In this thesis, the extensions are accomplished by
implementing four distinct Java Classes: PipeListener(), PipeSender(), PipeComm(),

PeerRoute() that would operate even for wireless environments.

e PeerRoute() models the GPM. It handles broadcasted messages to/from other
nodes and is responsible for maintaining a current list of all nodes currently

available on the network.

e PipelListener() and PipeSender() are used to model the WPP. Together they send

and receive messages according to a user-defined scenarios.

e PipeComm() models the GPA. It is used to handle the added administrative
overhead and is used to initialize and supervise JXTA nodes. It also contains the

entry point for developers to operate JXTA nodes.

3.5.1 PipeComm() Class

The PipeComm() Class contains the entry point for the end user to operate a JXTA node.

It is also in charge of administrative overhead at the network level.

A simplified GUI gives the users the functionalities ranging from displaying all available
nodes currently on the network to communicating with a specific node through a user-

defined routing method. Messages can be sent either directly to the destination node, or

65

routed through a number of predefined methods, such as direct, specific path, or

maximum hops allowed.

3.5.2 PeerRoute() Class

The PeerRoute() Class is responsible for maintaining a current list of all nodes available
on the JXTA network. When the JXTA node is first initialized, it advertises its existence
to the network. This task is accomplished by:

e C(Create an input pipe

e Bind itself to that input pipe

e Publish the pipe advertisement so that other peers can obtain the
advertisement

Pipes are used extensively in JXTA as the core mechanism for message exchange
between JXTA peers. They provide a simple, unidirectional and asynchronous channel

of communication [20].

Using the JXTA Binding Protocol, a sender node will dynamically search for the pipe
advertisement belonging to this receiving node. When the advertisement is found, an

output pipe is created by the sender and the message is sent through the pipe.

Once initialized, the PeerRoute() Class is used to handle broadcast messages from other

nodes to maintain a current list of nodes.

66

3.5.3 PipeSender() Class and PipeListener() Class

The two classes work in conjunction to model the WPP and restrict the sending of

messages according to a user-defined scenario.

The PipeSender class creates a dedicated output pipe to the specified receiving peer and
sends messages on it. The class first asynchronously creates an output pipe with a
specified receiving peer. Once the end-points have been resolved (input pipe
advertisement found and output pipe successfully created), a message is created and sent

through the pipe.

The PipelListener class creates input pipes used to receive messages. A dedicated input
pipe is first created, and the receiving peer then binds itself to the input pipe. Finally, the
input pipe is advertised on the JXTA network so other peers are able to dynamically

discover the receiving peer.

Whenever a message arrives, the PipeListener class will be called asynchronously to
retrieve and parse the message. Table 10 lists the types of incoming messages that the

PipelListener() Class currently supports.

67

TABLE 10. MESSAGE TYPES SUPPORTED PIPELISTENER CLASS

Message Type

Description

Administrative

Used to establish virtual connection with neighbour nodes.

Broadcast Used to establish global directory of all nodes available on the network
Specific-Path Used to route messages according to user-specified path
Update-Hop Message Used to update global hop-list
Update-Hop-List- Used to update Global Directory Facilitator
Header

The PipeListener Class is also responsible for forwarding the messages onto the next

peer. The GPM is consulted to retrieve the list of available node and messages are routed

accordingly.

68

4 JADE/JXTA SOFTWARE EXTENSION
IMPLEMENTATION

Both JXTA and JADE are software platforms designed to facilitate the implementation of
a distributed system. However, they have limitations discussed in Chapters 2. With a
distributed system having the potential of becoming an efficient, robust, and scalable
system, the extensions discussed in Chapter 3 must be implemented. This chapter

discusses the software implementation details of the extensions put forth in Chapter 3.

4.1 JADE Implementation

The standard FIPA agent model utilized by JADE is shown again in Figure 31. The
model must be extended to fully simulate an improved distributed system, one that even

operates in a wireless environment.

m:;mnt gire‘]:tor{ > ém:'mication
213t -
Syetenm «F | Faciiitator Channel
4
t + H

INTERNAL PLATFORM MESSAGE TRANSPORT

FIGURE 31. FIPA COMMUNICATION FRAMEWORK [5]

69

The extensions are achieved by establishing three new subcomponents: Wireless Agent
Communication Channel (WACC), Global Directory Facilitator (GDF), and Global
Agent Management System (GAMS). These three subcomponents and their interactions

are shown in Figure 32.

Global M > | Wireless
Agent - Agent
Management g%?eb:tlny - Communication
System Facilitator Channel
7Y
Agent Directory Agent _
Kanagement| «-+ | Facilitator| «—+|Communication
Syetem Channel
7N
t i
INTERNAL PLATFORM MESSAGE TRANSPORT

FIGURE 32. EXTENSIONS OF A JADE AGENT MODEL

In this thesis, the extensions are accomplished by utilizing three distinct JADE agents;

Broadcast, Sender, Receiver agents that would work even for a wireless environment.

70

4.1.1 Broadcast Agent Implementation

The Broadcast Agent is responsible for dynamically maintaining a current list of all
nodes available on the network. After broadcasting its existence to the network, it waits
indefinitely for a broadcast message to arrive. The operations of the Broadcast Agent are

summarized as follows:

while (true)
{

// Set Java Multicast address and port for message reception
Multicast_setup();

// Wait indefinitely for broadcast message
Multicast_receive();

// P1ocess incoming message and write to GDF
Store_ GDF();

//Reply to Sender
reply();
}

The interactions between the Broadcast Agent and JADE software packages are

illustrated in Figure 33.

Jade.core Broadcast Class

1)

<< gent>>

Broadcast

FIGURE 33. BROADCAST AGENT INTERACTION WITH JADE SOFTWARE PACKAGES

;!

The Broadcast Class that makes up the Broadcast Agent implements the different

methods required to receive and process a broadcast message.

4.1.1.1 Multicast_setup Method

The multicast_setup method initializes the Java Multicast Address and local port for

message reception.

/"

// This function sets up the multicast address and joins the group
"

public MulticastSocket multicast_setup(String MULTICAST_ADDR, int MULTICAST_PORT) throws IOException
{

MulticastSocket multicastSocket = new MulticastSockett MULTICAST _PORT);
InetAddress inetAddress = InetAddress.getByName(MULTICAST_ADDR);
multicastSocket.joinGroup(inetAddress});

return multicastSocket;

)

4.1.1.2 Multicst_Receive Method

After the Multicast address and port has been setup, the multicast_receive method is
called and is blocked indefinitely until a message arrives. When a broadcast message
arrives, the method appropriately parses the message and returns the String component of

the message.

/"
// This function blocks indefinitely until 2 message is received on Multicast Port
/"
public String multicast_receive(MulticastSocket multicastSocket) throws [OException

{

byte [] temp = new byte [1024];
DatagramPacket datagramPacket = new DatagramPacket(temp, temp.length);

// infinitely stuck here until receive a packet
multicastSocket.receive(datagramPacket);
String message = new String(datagramPacket.getData(), 0, datagramPacket.getLength());

return message;

72

4.1.1.3 Multicast Setup Method

When the String component of the message is retrieved, the Broadcast Agent will store

the information so it can be used by the Sender and the Receiver Agents.

1
// This function writes the message to the specified file
1
public void store_GDF(String filename, String message) throws I0Exception
{

BufferedWriter buf Writer = new Buffered Writer(new FileWriter(filename, true));
bufWriter. write(message);

bufWrter.newLine();

bufWriter.close();

4.1.1.4 Reply Method

Finally, a reply message is created and sent to the original sender to inform the node of

the existence of this node.

1
// This function replies to the sender of the broadcast message
1/
public void reply(String message) throws IOException

int index = message.indexOf("/");
String node_name = message.substring(0,index);

InetAddress ownAddress = get_own_Inet();

String host_name = ownAddress.getHostName();
String msg = "Broadcast_Setup: ".concat(host_name);
send_msg(node_name, msg);

73

4.1.2 Receiver Agent Implementation

The Receiver Agent is used to process different types of incoming messages and relay
messages to appropriate nodes if necessary. Using the standard JADE message
receiving mechanism listed below, the Receiver Agent waits indefinitely until a message

arrives.

public void action()

{
ACLMessage msg = myAgent.receive();
if (msg = null) {
// Process the message
}

else {
block()
)

The block() method of the Behaviour Class removes the current Behaviour from the
agent pool. The current Behaviour is only interrupted when a message is received and
the blocked Behaviour is put back in the agent pool and can process the incoming

message. This mechanism will not waste CPU by idling for a message to arrive.

When a message does arrive, its String component is extracted and the message is
processed according to the type, identified by the message header. Currently there are six

message types Receiver Agent recognizes and they are listed in Table 11.

74

TABLE 11. MESSAGE HEADERS AND DESCRIPTIONS

Message Type

Message Header

Message Description

Administrative Message

Admin_Setup:

Used to establish virtual
connection with neighbours

Broadcast Message

Broadcast_Setup:

Used to establish Global Directory

Facilitator (GDF)
Multi Hop Message Multi Hop Message Header: Used to route packet according to
specified number of hops
Specific Message Specific Hop Message Header: Used to route packet according to
specified path
Update Hop Message Update_Hop_Message Header: Used to obtain hop information
Update Hop List Message Update Hop List Header: Used to update global hop list

The Receiver Agent will process each message differently depending on the Header that

the message contains.

4.1.2.1 Administrative Message

The Administrative Message Header is used to establish a virtual connection with a

specific node. Once a virtual connection is established, the current node will consider the

specified node as its neighbour node, thus enabling them to communicate directly. This

simulates that the two nodes that are within signal proximity in a wireless environment.

The Receiver Agent will use the ADMIN HEADER() method to extract the specified node

and stores the information as a neighbour node.

75

4.1.2.2 Broadcast Message

The Broadcast Message Header is used to handle incoming request from new nodes.
When a new node is on the network, a Broadcast Message will be sent to every node on
the network to notify them of its existence. When the Receivers Agent receives such a
message, it will use the BROADCAST HEADER() method to extract the name of the new

node and stores the information as a global node.

4.1.2.3 Multi Hop Message

The Multi Hop Message is used to send a message to a specific node on the network if the
node is less than a specified number of hops. When a Multi Hop Message is received, the
Receiver Agent will use the MULTI HOP_HEADER() to decrement the number of hops
outstanding in the message and relay the message to all of its neighbour nodes. When the
number of hops reaches zero, this implies that the node is not within the pre-set number

of hops, thus the message is discarded.

4.1.2.4 Specific Path Message

The Specific Path Message is used to send a message to a node through a predefined path.
When a Specific Path Message is received, the Receiver Agent uses the

SPECIFIC_HOP_HFEADER() method to re-direct the message to its next destination.

76

4.1.2.5 Update Hop Message

The Update Hop Message is used to update the number of hops each node is away from
the current node. When a Update Hop Message is received, the Receiver Agent uses the
UPDATE HOP_ HEADER() method to decrement the hop count contained within the
message and re-direct the message to every neighbour node. If the hop count is zero, a
special Update Hop List Message is created and is sent directly back to the originator of

this message.

4.1.2.6 Update Hop List Message

The Update Hop List Message is a special type of message used to update the Global Hop
List. The Receiver Agent uses the UPDATE HOP_LIST HEADER() method to update
its Global Hop List. The list stores all nodes on the network and the number of hops they
are away from the current node. This information is crucial in determining the best
routing method that should be used to transmit the message. Different wireless scenarios

can also be used based on this information.

The interactions between the Receiver Agent and JADE software packages are illustrated

in Figure 34.

77

Jade.core Jade. lang, acl Jade.mty

T 1

<<Agent>>

Receiver

FIGURE 34. RECEIVER AGENT INTERACTION WITH JADE SOFTWARE PACKAGES

4.1.3 Sender Agent Implementation

The Sender Agent contains the entry point for the end user to operate a JADE node. The
simplified user interface has functionalities ranging from displaying all available nodes
currently on the network to communicating with a specific node through a user-defined
routing method. Messages can be sent either directly to the destination node, or routed

through a number of predefined methods. Figure 35 illustrates the user interface.

Yeleone ta J-Het
fin Innovative fipproach ta Distributed Connunication.

P leace select one of the follouving optione:

Display Hast Conpute e and TP Add
isplay Ist-tier Mod sanected to Hos

ecific Mode
ction with a specific Hode

J é[¢ tence Lo eve
i) Update glohal hop list
> Exit

Pleare nake your celection:

FIGURE 35. USER INTERFACE

78

There are three classes within Sender Agent. They are Display(), J Node() and Route()

4.1.3.1 Class Display()

The Display() class is used to output critical system information onto the screen for the

end user. From this information the user can then make appropriate decision regarding

message routing and determine the state of the network. Table 12 lists the methods of

this class and their functionalities.

TABLE 12. CLASS DISPLAY() METHOD DESCRIPTION

Method Name

Method Description

Host _info()

Displays local host name and IP

Neighbour_nodes()

Display all nodes with virtual connection to current node

All_nodes()

Display all nodes on the JADE network

Hop_nodes()

Display all nodes at specified number of hops away from current
node

4.1.3.2 Class Route()

The Route() class implements the routing algorithms that the end users can choose to

send the message. Currently, there are three routing algorithms: Direct, Maximum Hop

and Specific Path.

79

e Direct Algorithm: Messages are directly sent to the receiving node, no message

header is needed. This simple algorithm is used to send messages directly to

neighbour nodes.

e Multi Hop Algorithm: Messages are sent to the specified node if the node is
within the maximum specified number of hops. A Multi Hop Header and
maximum hops information are attached to the message body so receiving nodes
can properly process and relay the information onto the next node. A message

sent by the Multi Hop Algorithm has the following format:

Multi Hop_Message Header: max_hop#dest_node$msg_body

e Specified Path Algorithm: Messages are sent to the specified node through a
path specified by the end user. A Specific Path Header and a series of relay nodes
specified by the user are attached to the message. A message sent by the

Specified Path Algorithm has the following format:

Specific_Path_Message Header: dest_1# dest_2# dest 3 $msg_body

This class can be expanded easily by future developers to implement additional routing

algorithms.

80

4.1.3.3 Class J Node()

The J Node() class contains the entry point for the end users and performs all
mnitializations before a JADE node is able to communicate with other nodes on the
network. The J Node() class is also responsible for setting virtual links with any node on
the network, broadcasting its existence onto the network and sending update hop

messages to update its global hop list.

e Virtual Connection: A JADE node is able to virtually connect with any other
node on the network to become neighbour nodes. Only neighbour nodes are
allowed to send messages directly, otherwise intermediary nodes are used to relay

messages. A request for virtual connection message has the following format:

Admin_Setup: host_name

When the receiving node accepts the request, the sender node is added to its list of
neighbour nodes. The two nodes have now become neighbours and is able to

communicate directly.

e Broadcasting Existence: A JADE node must make itself known to others on the
network. This is achieved by using the Java MulticastSocket Class to broadcast
to all JADE nodes listening at a predetermined port and address. Address
“230.0.01” and Port 7777 are used to receive Multicast messages on the JADE

network.

81

8 Update Hop Message: An Update Hop Message provides the node with the
number of hops all nodes on the network are away from the current node. This
information is crucial in determining the best routing method to be used and

provides users with the whereabouts of all nodes on the network.

An Update Hop Message has the following format:

Update_Hop_Message_Heder: original_sender#current_count#original_count

Table 13 summarizes the core methods used in J_Node() class to implements its

functionalities.
TABLE 13. CLASS] NODE METHOD DESCRIPTION
r Method Name] Method Description
1 initializel) Initializes- JADE nods
I main_menu() Entry point for end user. AIlowsdfor complete operation of JADE
node
establish_connection() Establish virtual connection with another JADE node
remote_setup() Remotely establish virtual connections between ANY two JADE
nodes
broadcast() Broadcastexistence onto JADE netwonk
update_hop_list() Dynamically update number of hops all nodes are away from
current JADE node

82

The interactions between the Receiver Agent and JADE software packages are illustrated

in Figure 36.

Jade. mity

Rouie Class

Jade laag. acl

Jadc, core

Pl

T~

\\//

<<Agent>>
Sender

Display Class

J_Node Class

FIGURE 36. SENDER AGENT AND JADE SOFTWARE PACKAGES INTERACTIONS

83

4.2 JXTA Implementation

Like JADE, the JXTA software platform has limitations that need to be addressed. The
extensions discussed in Chapter 3 must be implemented to achieve a better distributed

system.

Figure 37 again shows the extensions required to the JXTA Core Layer.

Global Peer Global Peer Yireless
Honitoring Administration Peer Pipes

+

JXTA Core|Layer

[ﬁeer Nonitoring | |Peer Administrationl {Peer Pipes

FIGURE 37. MODIFIED JXTA FRAMEWORK FOR AN IMPROVED DS

e The Global Peer Monitoring maintains a current list of all nodes currently
available on the network. It also handles broadcasted messages to/from other

nodes.

e The Wireless Peer Pipes extension is used to restrict the sending of message to

only nodes available according to the user-defined scenario.

e The Global Peer Administration extension is used to handle the added
administrative overhead. It also initializes and supervises the JXTA node. An
entry point is contained in the GPA to allow the developer to operate the JXTA

node.

In this research, the extensions are accomplished by implementing four distinct Java
Classes; PipeListener(), PipeSender(), PipeComm(), PeerRoute(). A fifth class,

PeerDisplay(), is used to output network information.

The PipelListener() and PipeSender() classes are used in conjunction to model the
Wireless Peer Pipe. The PipeComm() and the PeerRoute() classes are used to model the

Global Peer Administration and Global Peer Monitoring respectively.

4.2.1 Class Pipelistener()

The PipeListener() class creates input pipes used to receive messages. This task is
accomplished by:
e Create and bind to input pipe

e Register pipe and publish the pipe advertisement

e Wait indefinitely until an message arrives

4.2.1.1 Input Pipe Creation and Binding

The method bind_input_pipes() is called to create and bind the peer to an input pipe.
JXTA uses XML files as advertisements. The advertisement is first read then bound to

the node with the following command:

85

FileInputStream is = new FileInputStream(XML_filename);
pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement(MimeMediaType. XMLUTFS, is);

is.close();

pipeln[i] = pipe.createInputPipe(pipeAdv, this),

4.2.1.2 Pipe Registration and Advertising

After successfully creating and binding to the input pipe, the node must be registered as a

PipeMsgListener to receive messages. This allows the receiving node to infinitely wait

for a message to arrive, but would not block the CPU from performing other tasks.

When a message does arrive, a pipeMsgEvent is generated and interrupts the CPU from

its activities to process the message.

4.2.1.3 Message Reception and Processing

This pipeMsgEvent(PipeMsgEvent event) method is called asynchronously when a

message is received on the input. The receiving node then must properly process the

incoming message to obtain its String component. This is achieved with the use of the

following:

// grab the message from the event
msg = event.getMessage();
if (msg == null) {
return;

}

// get all the ressage elements
Message.Elementlterator enum = msg.getMessageElements();
if (fenum.hasNext()) {

return;

}

/I get the message element named SenderMessage
MessageElement msgElement = msg.getMessageElement(null, SenderMessage);
String received = msgElement.toString();

86

After the message has been correctly received, it will be processed to determine its type

and what further action, if any, should be taken. Identical to processing a message in

JADE, the types of messages are determined by the message header. Again, currently

there are six message types that the PipeListener class recognizes, as listed in Table 14.

TABLE 14. MESSAGE HEADERS AND DESCRIPTIONS

Message Type

Message Header

Message Description

Administrative Message

Admin_Setup:

Used to establish virtual
connection with neighbours

Broadcast Message Broadcast_Setup: Used to establish a global peer
directory
Multi Hop Message Multi Hop Message Header: Used to route packet according to
specified number of hops
Specific Message Specific Hop_Message Header: Used to route packet according to
specified path

Update Hop Message Update Hop Message Header: Used to obtain hop information
Update Hop List Message Update_Hop_List Header: Used to update global hop list

The mechanism of processing each message type is identical to its JADE counterpart.

Detailed descriptions of each message type can be found in Section 4.1.

The sequences of interactions between the PipeListener() class and JXTA protocols are

illustrated in Figure 38.

87

l PipeListener() Class | [Peer Discovery | | Peer Endpsints] [Pye Binding] [Peer Reselver
Peer Information I

FIGURE 38. INTERACTIONS BETWEEN PIPELISTENER() AND JXTA PROTOCOLS

4.2.2 Class PipeSender Implementation

The PipeSender class creates a dedicated output pipe to a specified receiving peer and

sends messages on it. This is accomplished by:

e Creating an output pipe with the specified receiving node.

e Triggering an event to send the message.

4.2.2.]1 Qutput Pipe Creation

The run() method is called to initialize an output pipe to a specific receiving peer. An
XML file is created and parsed as a pipe advertisement and the node attempts to create
and bind itself to the output pipe. The getRremoteAdvertisement method of the
Discovery Protocol attempts to locate the specified receiving peer. Once the receiving
node is located, the two end-points of the communication pipe will be resolved and a

dedicated pipe is now in place for communication.

88

FilelnputStream s = new FilelnputStream(dest_node);
pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement(MimeMediaType XMLUTEFS, is);
is.close();

// obtain receiving peer information

discovery.getRemote Advertisements(nuli, DiscoveryService. ADV, null, null, 1, null);
// create output pipe asynchronously

// Send out the first pipe resolve call

pipe.createOutputPipe(pipeAdv, this);

4.2.2.2 Message Sending

Messages placed on this dedicated pipe will asynchronously trigger an event and invoke
the pipeMsgEvent method. Similar to the PipeListener class, a dedicated output pipe will
not block the CPU from other activities. When a message is to be sent, a pipeMsgFEvent

1s generated and interrupts the CPU from its activities to process the message.

OutputPipe op = event.getOutputPipe();
Message msg = null;

try {
msg = new Message();
StringMessageElement sme = new StringMessageElement(SenderMessage, message , null);
msg.addMessageElement(null, sme),
op.send(msg);
} catch (IOException €) {
System.out.println(“failed to send message");
e.printStack Trace();
System.exit(-1);
)

op.close();

The sequences of interactions between the PipeSender() class and JXTA protocols are

illustrated in Figure 39.

89

| PipeSender() Class | [PeerDiscovery | [Pm:-a,.ou [Pipe Binding J Peer Resalver
| Peer Information I

—

FIGURE 39. INTERACTIONS BETWEEN PIPESENDER() AND JXTA PROTOCOLS

4.2.3 Class PipeComm()

The PipeComme() class contains the entry point for the end users and performs all
initializations and tasks that a JXTA node requires for communication. It utilizes the

PipeSender() Class and PipeListener() Class for message sending and reception.

The PipeComm() class is also responsible for setting virtual links with any node on the
network, advertising its existence onto the network and sending update hop messages to

update its global hop list.

- Initialization: By calling the initialization method, the node will obtain a valid
peer group ID, peer group name, as well as the name and ID of the current peer.
The peer ID is a randomly generated 256-byte number. By default all JXTA

peers belongs to the netpeergroup.

90

try {
1/ create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

catch (PeerGroupException €) {

/I could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();

System.exit(l);

!

Virtual Connection: A JXTA node is able to virtually connect with any other
node on the network. Only neighbour nodes are allowed to send messages
directly, otherwise intermediary nodes are used to relay messages. A request for

virtual connection message has the following format:

Admin_Setup: host_name

When the receiving node accept the request from the PipeListener() class, the
sender node is added to its list of neighbour nodes. The two nodes have now

become neighbours that are able to communicate directly.

Broadcasting Existence: A JXTA node must make itself known to others on the
network. This is achieved by publishing the node’s advertisement once the node
has been successfully created. Once published, other nodes on the JXTA network

are able to remotely locate this node.

try {

// publish this advertisement

//(send out to other peers and rendezvous peer)
discoSvc.remotePublish(adv, DiscoveryService. PEER);
System.out.printIn{"Peer published successfully.");

catch (Exception €) {
System.out.println("Error publishing peer advertisement");
¢.printStack Trace();

retumn; }

971

e Update Hop Message: An Update Hop Message provides the node with the

number of hops from the current node to all peers on the network. This

information is crucial in determining the best routing method and provides users

with the location of all nodes on the network.

An Update Hop Message has the following format:

Update_Hop_Message_Heder: original_sender#current_count#original_count

The following table summarizes the core methods used in PipeComm() class to

implement its functionalities.

TABLE 15. CLASS PIPECOMM () METHOD DESCRIPTION

Method Name

Method Description

Initialize()

Initializes JXTA node

Main_menu()

Entry point for end user. Allows for complete operation of JXTA
node

Establish_connection()

Establish virtual connection with another JXTA node

Remote_setup()

Remotely establish virtual connections between ANY two JXTA
nodes

broadcast()

Broadcast existence onto JXTA network

Update_hop_list()

Dynamically update number of hops all nodes are away from
current JXTA node

92

The sequences of interactions between the PipeComm() class and JXTA protocols are

illustrated in Figure 40.

PipeSender() Class

‘ PipeComom() Class PipeListener()Class [Peer Discovery | IF' Endpoints] [Prpe Binding] [Pecr Resotwer |
| Peer Information

FIGURE 40. INTERACTIONS BETWEEN PIPECOMM() AND JXTA PROTOCOLS

4.2.4 Class PeerRoute()

The PeerRoute() class implements the different routing algorithms that the end users can
choose to send the message. Again, there are three routing algorithms: Direct, Maximum

Hop and Specific Path.

e Direct Algorithm: Messages are directly sent to the receiving node, no message
header is needed. This algorithm is used to send messages directly to neighbour

nodes.

e Multi Hop Algorithm: Messages are sent to the specified node provided that the

node is within the maximum specified number of nodes. A Multi Hop Header

93

and maximum hops information are attached to the message body so that

receiving nodes can properly process and relay the information onto the next node.

A message sent by Multi Hop Algorithm has the following format:

Multi Hop Message Header: max_hop#dest_node$msg_body

e Specified Path Algorithm: Messages are sent to the specified node through a
path specified by the end user. A Specific Path Header and a series of relay nodes
specified by the user are attached to the message. A message sent by the

Specified Path Algorithm has the following format:

Specific_Path_Message Header: dest_13# dest_2# dest_3 $msg_body

This class can be expanded easily by future developers to implement additional routing

algorithms.

4.2.5 Class PeerDisplay()

The PeerDisplay() class is used to output critical system information to the screen for the
end user. From this information the user can then make appropriate decisions regarding
message routing and determine the state of the network. Table 16 lists the methods of

this class and their functionalities.

94

TABLE 16. CLASS DISPLAY() METHOD DESCRIPTION

Method Name Method Description
Host_info() Displays local host name and IP
Neighbour peers() Display all nodes with virtual connection to current node
All peers() Display all nodes on the JADE network
Hop_peers() Display all nodes at specified number of hops away from current

node

95

S PLATFORM ANALYSIS

5.1 Qualitative Analysis

The traditional centralized architectures are inherently more focused on simplicity than
on scalability and robustness. A distributed system requires the creation of a network
that is scalable, robust and inexpensive to maintain. However, the complexity of
software implementation of a distributed system is much greater than a centralized

system.

JADE and JXTA are distributed software platforms that facilitate the creation of
distributed networks by providing developers with ready-made protocols and software
platforms. Both platforms are built with a similar purpose, but contain key similarities

and differences in areas such as scalability, interoperability, and platform complexity.

5.1.1 Platforms Scalability

Both JADE-based and JXTA-based distributed systems are built for expansion. A key
advantage of a true distributed system over a conventional centralized system is the
unrestricted ability to expand and add new nodes. In a true Distributed System,
additional network resources are added and utilized by the network with the addition of

every node.

96

In JADE, agents residing on remote containers are dependent on the AMS and the DF
that resides in the main container. Remote containers are critically dependent on the
agents of the main containers and their services. The failure of the main container would
also indicate the failure of the entire JADE network. The state of a JADE network is

dependent on the continual operation of the host on which the main container resides.

JXTA on the other hand does not use remote containers. Failure of one node will not
have a catastrophic effect on the overall system. No JXTA node is critically dependent
on another JXTA node. However, the extensive use of Rendezvous peers that reside on a
JXTA node may result in bottlenecks in localized areas. If a network grows while the
number of Rendezvous peers remains constant, the amount of processing required by
these nodes will grow exponentially. Network latency and efficiency will also increase

significantly due to these strained peers.

The extensions implemented by this thesis for JADE eliminate the use of remote
container in JADE to provide better distributiveness. This eliminates the central
influence of the main container. Each host is completely independent of other hosts and
a failure of one host will not have a catastrophic effect on the network, as illustrated in

Figure 41.

97

FIGURE 41. JADE IN A VIRTUAL WIRELESS ENVIRONMENT

In JXTA, this extension is already embedded with the standard version. Each JXTA peer
is a unique entity that is not critically dependent on any other JXTA peer. Also, each
JXTA peer is also a Rendezvous peer to reduce latency and maximize efficiency on the

network.

5.1.2 Interoperability

A true distributed system should be designed to interoperate with all nodes on the
network, regardless of the distributed platform on which it was built. The
communication language and messaging format should be consistent to ensure

standardization among all nodes.

Although JADE is built to be a FIPA-compliant system that is aimed to be interoperable
with other FIPA-compliant platforms, issues such as degree of compliancy, addressing

method, and messaging architecture still exist among FIPA-compliant systems [16].

98

JADE agents cannot easily communicate with agents from other FIPA-compliant systems.
The FIPA specification leaves many issues as “implementation specific” that results in

non-compliancy between platforms [16].

JXTA on the other hand is not a FIPA-compliant platform and thus does not follow the
standardization set forth by FIPA. It is a standalone system without the ability to easily
integrate with other distributed platforms for interoperability. It is mainly a closed

network that functions only with other JXTA nodes.

In the standard version of JADE without extensions, agents from different JADE
networks are unaware of each other and thus unable to interact. They are closed
networks with no interactions between multiple main containers. The extensions
implemented in this thesis allow remote JADE nodes to join the existing JADE network
to create a vast yet robust and scalable JADE network. Nodes are able to dynamically

discover each other and are aware of all nodes currently available on the network.

Unfortunately, even with the extensions implemented by this project, both JADE and
JXTA remain relatively closed platforms that have very limited interoperability with
other software platforms. A JXTA peer cannot easily interact with a JADE node to
provide the same service to the network. It will be interesting to see the development of a
universal software gateway to interconnect multiple distributed networks built on

different software platform to interact in a distributed environment.

99

5.1.3 Messaging Architecture

The XML language is used extensively in JXTA. It is a widespread platform-
independent form of data representation [18]. It is used to represent advertisements,

messages and identifiers.

The XML message used may reduce network efficiency. Its mandatory 256-bit peer ID
and path specifications implies that an “empty” message that has no application-specific
payload can easily reach 1 KB in size and thus affecting the performance of the message
exchange. Also, the complex messaging architecture of JXTA that involves XML parser
and several layers of abstraction will add significant overhead and affect the efficiency of

the messaging framework [19].

In the FIPA-compliant JADE, Agent Communication Language (ACL) messages are
used for message representation. ACL is a language “with precisely defined syntax,
semantics and pragmatics that is the basis of the communication between independently
designed and developed agent platforms” [21]. An ACL message is an ASCII string

consisting of communicative act type and parameters [21].

The use of ACL messages greatly simplifies the communication between agents.
Messages are easily parsed and understood by the receiving agent. It is shown in Section
5.2 that the JADE messaging architecture is more efficient and robust when compared to

the JXTA messaging architecture.

100

5.1.4 Platform Complexity

The platform complexity and thus the learning curve of a JXTA system is much higher
than a JADE system. We found that in JADE, concepts and operations are easier to
understand and carry out than in a JXTA system. Less system configuration is needed to

operate a JADE system.

Because a JXTA system offers many customizable functions that a developer needs to
choose, this amounts to a great burden to people unfamiliar with JXTA to get started
initially. Also, the complex messaging architecture of JXTA that involves XML parser
and several layers of abstraction will add significant overhead and affect the efficiency of
the messaging framework [19]. Extensive use of Rendezvous peers will also create

bottlenecks within the network.

The extensions implemented by this project enabled every peer in JXTA to be a
Rendezvous peer. This will decrease latency since peers will no longer be required to
query neighbour peers for route or network information. The information is now cached
internally. Therefore, the failure of any peer should not have create partial failure of a

JXTA network.

101

5.1.5 Protocols

Both JADE and JXTA utilize Java-based software protocols and packages for the

development of a Distributed System.

5.1.5.1 JADE Software Packages

The JADE software packages give application programmers “ready-made functionality

and abstract interfaces for custom application dependent tasks” [17]. Table 17 briefly

describes the different JADE software packages.

TABLE 17. JADE SOFTWARE PACKAGE DESCRIPTION

Software Package

Description

Jade.core

Implements the kernel of the system. Includes the Agent class
that must be extended by application programmer. Behaviour
class hierarchy contained in the sub-package implements the
logical tasks that can be composed in various ways to achieve
complex tasks.

Jade.lang.acl

Provides Agent Communication Language according to FIPA
Standard Specifications.

Jade.domain Contains all Java class that represent Agent Management System
defined by FIPA standards
Jade.gui Contains generic classes useful to create GUIs
Jade.mtp Contains the Message Transport Protocol that should be
implemented to readily integrate with the JADE framework
Jade.proto Provides classes to model standard FIPA interaction protocols

(fipa-request, fipa-query, fipa-contract-net)

102

Figure 42 illustrates the dependencies between the various Jade software packages.

_—

Jade. luag, ac] Jsde. domaia Jade. gui Jede. mtp Jade.pro
feraphics)

L 1

FIGURE 42. JADE SOFTWARE PACKAGE INTERACTIONS

Jeade. corc

Figure 34 - 36 in Section 4.1 illustrates the interactions of the JADE extensions to the

standard JADE software packages.

5.1.5.2 JXTA Protocols

The JXTA protocols have been specifically designed for “ad hoc, pervasive, and multi-
hop network computing” [20]. By using the JXTA protocols, nodes in a JXTA
application can cooperate to form “self~organized and self-configured peer groups
independently of their positions in the network (edges, firewalls), and without the need of

a centralized management infrastructure.” [20]

Table 18 briefly describes the different JXTA software protocols.

103

TABLE 18. JXTA PROTOCOLS AND DESCRIPTIONS

JXTA Protocol

Description

Peer DiscoveryProtocol

Resource Search

Peer ResolverProtoco

Generic Query Service

Peer Information Protocol

Monitoring

Rendezvous Protocol

Message Propagation

Peer Membership Protocol Security
Pipe Binding Protocol Addressable Messaging
Peer Endpoint Protocol Message Routing

Source: Developer [20]

Figure 43 illustrates the sequences of interactions between the different JXTA software

protocols

104

Peer Discovery

Peer Information

Rendezvous

Peer Endpoints

Pipe Binding

Peer Resolver

FIGURE 43. JXTA PROTOCOL SEQUENCE DIAGRAM

The components of the JXTA Core Layer are extended to improve upon the existing

JXTA environment. The new classes necessary for the extensions and their interactions

to the JXTA protocols are illustrated in Figure 44.

105

Pipe Comm() Class | PipeListener() Class [Peer Discorery | [Peer Endpoints] [Pipe Binding I Peer Resolver
Peer Information

H__.

FIGURE 44. INTERACTIONS BETWEEN PIPECOMM() AND JXTA PROTOCOLS

5.1.6 Agent Migration

In the JADE system, all agents except the AMS and the DF are free to migrate to and
from different containers and platforms. This ability allows developers more freedom
and possibility when designing a Distributed System. Agents can move away from
congested areas and perform their tasks in areas where network is not constrained. The
JADE messaging architecture internally takes care of addressing issues and messages are

sent to the containers in which the receiving agent resides.

However, in a JXTA system, a peer is physically tied to the residing host (PC, PDA, cell-
phone). The host is free to move around a JXTA network (e.g., a wireless PDA), but the

software entity that resides within the host is unable to migrate from one host to another.

Table 19 illustrates some key differences between JADE and JXTA when utilized in a

distributed environment.

106

TABLE 19. COMPARISON OF JADE AND JXTA IN DISTRIBUTED-SYSTEM

T JADE |

JXTA

i Relatively simple. Uses IMTP for Inter-
platform and RMI for Intra-platform
communication

aging ATehitettd

Uses XML parser and several layers
of abstraction. Pipes used for
communication. Significant overhead

Nede/beer Migration

Asentsable to freely move to different

Besss argiembedded within the host

SBTIVEAES Limited by the main container. Remote

containers dependent on main container.

| Unrestricted scalability. Each peer i

uniquely identified and independent.

. More sophisticated and steep 1 ing
Blatform Egmplexity Very manageable and coherent C£6_50p sticatec and Stecp feamming
—} : 1 c
FIPA Compliance xﬁ .l 1 No
Interoperabilit FIPA-Compli m Ussbleto | Standalone system wiithout FIPAA
B ¥ comur?lcaptgav?lttgysger agents jon M}aney
different distributed system sofifware
I platforms . :

107

5.2 Quantitative Analysis

Although both JADE and JXTA are distributed software platforms aimed to facilitate the
creation of distributed systems, their respective performances in a distributed system may
vary significantly. This section briefly compares quantitatively scalability and

performance of both software platforms.

In a distributed system, nodes may be requested to act as relay nodes to forward messages
and requests onto the next node. The efficiency and latency involved in this multi-hop
transaction depends heavily on the node’s user-defined routing logic and system’s

hardware and software.

To ensure a fair comparison, it is assumed that the all nodes have identical routing logic
and system hardware and software. The added latency involved in a multi-hop
transaction will then only be platform dependent, since both JADE and JXTA are Java-

based and utilize the identical system setup

As a result, multi-hop latency across multiple nodes can be omitted when comparing the

two platforms quantitatively, since the two platforms will be subjected to identical lag.

108

5.2.1 Test Setup

In the following experiments, two hosts on a 100 Mbps LAN. The two hosts utilize

identical system hardware and software configuration, as illustrated in Figure 45.

100 HMbps

FIGURE 45. LOCAL AREA NETWORK TEST ENVIRONMENT

For each experiment, the Sender sends a payload to the Receiver, and the Receiver replies
with the identical message. The time between the sending of the initial message and the
reception of the reply message is defined as the Round Trip Time (RTT). The test is then

repeated 1000 times and the average time is used.

5.2.2 Multiple Agent-Pairs on Same Host

Scalability is a very important indication of the competency of a particular distributed
software platform. In this test, varying number of agent-pairs all residing on the same
host are used for the message exchange. The Sender agents exchange messages with

Receiver agents residing on the same host.

In the standard JADE without extensions, the agent-pairs residing on a single host could

either be in the same or different containers. However, in the extended JADE, the host

109

will only accommodate the main container, the use of remote containers is not allowed.

All agents residing on a single host will reside in the main container of the host.

The results of the standard JADE message exchanges are illustrated in Figure 46 and

Figure 47.

e .
’ Standard JADE Agents in One Host, Different
Containers

1
|
|
|
|
|
\
|
|
|

\

Round Trip Time (ms)
8 &
1

o

e 1 e B

0 2 4 6 8 10 12

Number of Agent Pairs

FIGURE 46. STANDARD JADE AGENTS IN SINGLE HOST, DIFFERENT CONTAINERS [19]

Standard JADE Agents in One host, Same Container "

v

NN
o O»

Py
[3, I =]
'

RTT Time (ms)
T

o

Number of Agent Pairs

FIGURE 47. STANDARD JADE AGENTS IN SINGLE HOST, SAME CONTAINER [19]

110

In Figure 48, the results of both the extended JADE and JXTA are presented when

multiple agent pairs residing on the same host (same container for JADE).

Multiple Agents on Same Host

°\

g 100

5 80 A

e
£ 60 / — —e— JADE
;? 40 —a— JXTA
T 20 / o T
=

Q

/4

50 100 150

o

Number of Agent Pairs

FIGURE 48. VARIABLE AGENT-PAIR ON SAME HOST COMPARISON [19]

From the results, we see that the R7T for JADE is very similar to Figure 47, which is
expected. All agents in the extended JADE reside in the main container, thus creating

the identical scenario to Figure 47.

When RTT of IXTA and JADE are compared, we see that the communication time rises
linearly with increasing number of agent-pairs. The rate of increase for a JXTA agent-

pair is significantly higher than that of a JADE agent-pair.

111

5.2.3 Multiple Agent-Pairs on Different Host

In this test, varying number of agent-pairs that reside on different hosts are used for the
message exchange. The Sender agents exchange messages with Receiver agents that
reside on the same host. This test will demonstrate the scalability of a particular
distributed software platform when the Sender agent and the Receiver agent do not reside

on the same host. The results are illustrated in Figure 49.

Multiple Agent Pairs on Different Host

_ 350]
£ 30 -

2 250 {— —

& 200 - [—e—unDe
2 150 | e
-

S 100

[]

¢ 0. . ——

Number of Agent Pairs

FIGURE 49. VARIABLE AGENT-PAIR ON DIFFERENT HOST COMPARISON {19]

From the results, we see that the communication time somewhat rises linearly with
increasing number of agent-pairs. Again, the rate of increase for a JXTA agent-pair is

significantly higher than that of a JADE agent-pair.

112

5.2.4 Multiple Message Size Comparison

Network efficiency under varying message load is also an important indication of the
competency of a particular software platform. In a Distributed System, nodes are
constantly exchanging messages and requests. The efficiency of the overall network

depends heavily on the minimization of latency between message exchanges.

In this scenario, a sender-receiver pair residing on different hosts is setup for the message

exchange of varying sizes. The results are illustrated in Figure 50.

Variable Message-Size Comparison

400
300 " —e— JADE

| / — —-— JXTA
100

0 20 40 60 80 100

Round Trip Time
(ms)
N
o
o

Size of Message (kb)

FIGURE 50. VARIABLE MESSAGE S1ZE COMPARISON [19]

From the results, we see that again the communication time rises linearly for a linear
increase in load for both platforms. However, the rates at which they rise differ

significantly.

113

5.2.5 Quantitative Result Discussion

As the results of the three tests suggest, JADE seems to be a better distributed software
platform when compared to JXTA under the specified conditions. In all three test
scenarios, the performance of JADE is significantly better than that of JXTA. Not only is
JADE more capable under varying message load, but it is also more efficient when the

receiving agents reside both on the same and on different hosts.

However, one important advantage that JXTA has over JADE is its unrestricted
scalability. The lack of a centralized management system enables a JXTA system to be
highly scalable. Although the extensive use of Rendezvous peers in JXTA may hinder
overall system performance, a JXTA network is built on the concept of unrestricted

scalability.

JADE on the other hand relies heavily on the centralized main container to handle
administrative issues for system expansion. Agents residing on remote containers rely
critically on the continual operation of the AMS and DF of the main container.
Scalability in JADE is “the ability to keep up good performance when the load is

increased’ [19].

Due to the JADE’s central main container, agents are efficiently located by querying the
AMS and the DF. In JXTA, extensive communication may be needed between querying
agents and multiple Rendezvous peers to locate the receiving agent before a

communication pipe can be established between the agent-pair. Also, the complex

114

messaging architecture of JXTA that involves XML parser and several layers of
abstraction adds significant overhead and affect the efficiency of the messaging

framework.

5.3 Summary, Concluding Remarks and Future Research

5.3.1 Summary

Distributed systems offer a useful approach for resolving critical networking limitations
that result from the use of centralized topologies. Scalability and fault-tolerance can be
increased by utilizing a distributed system, however, the complexity of a distributed

system grows exponentially as the number of nodes increase.

JADE and JXTA are distributed software platforms that facilitate the development of
distributed systems. Both are Java-based software that serve as middleware to provide
low-level communication transport and message encoding. Software developers can
therefore concentrate on the development of complex models and reasoning that

constitute the distributed system, rather than low-level communication.

This project examined the architectures of JADE and JXTA. We also noted their strength

and weaknesses in a distributed environment, as shown in Table 23 and Table 24.

115

Table 20. Advantages and Disadvantages of JADE in a Distributed System

Advantages:

Disadvantages

Open source, completely written in
JAVA and FIPA-compliant

Serves as middleware to deal with
communication transport and
message encoding

Concise and efficient software
architecture

All agent tasks modeled as
Behaviors objects for simple
implementation of complex tasks

Ability for agents to migrate from
container to container, regardless of
platform

Cannot define specific path to
receiving node

Dependence on the main container
for communication

Unable to simulate different
transmission scenarios

116

TABLE 21. ADVANTAGES AND DISADVANTAGES OF JXTA IN A DISTRIBUTED SYSTEM

Advantages: Disadvantages
e No extensive knowledge of e Developers unaware of
underlying distributed domain mechanisms and path used for

message transport.
e Support large number of potential

peers with no central management e Sizeable XML messages, XML
system parser and several layers of
abstraction may lead to network
e Network resources distributed inefficiency.

among multiple machines
e Dependence on specific types peers
e Automatic protocol translation for for routing, messaging and requests
communication between peers with between peers.
different protocols
e Increased memory overhead by

e (Cached network information caching network configuration for
reduces search time for service every peer
requests

Both JADE and JXTA have limitations in their current form. In JADE, the over-reliance
of the AMS and the DF of the main container restricts the scalability and the fault-
tolerance of a JADE system. Agents residing on remote containers are critically
dependent on the host on which the main container resides. In JXTA, although lacking a
centralized management system, the extensive use of Rendezvous peers limits the
efficiency of a JXTA system. Messages and requests are routed through Rendezvous
peers and a localized network failure may occur should Rendezvous peers fail. Also, the

use of XML message introduces large overhead into the JXTA messaging architecture.

117

This project then proposes extensions to the current JADE and JXTA. The JADE

extensions and their descriptions are shown in Figure 51.

Global) Witeless
Agent - Agent
Management Global e Communication
Syat Direclory Ch 1

ystem Facilitator anpe

t | '

Asent Directory Aseat
Banagament +—+ |BEaciiitator| «+—~|Commuaication
Syetem Channel

T 13
r INTERNAL PLATFORN KESSAGE TRARSPORT }

FIGURE 51. EXTENSIONS OF JADE AGENT MODEL

e The Broadcast Agent models the GDF and handles broadcasted messages to/from
other nodes. It is responsible for maintaining a current list of all nodes currently
available on the network.

e The Sender Agent models the GAMS and provides management service for the
respective node. It is also responsible for the sending of messages.

e The Receiver Agent models the WACC and receives messages from other nodes.

It internally determines the subsequent nodes that the message should traverse.

The JXTA extensions and their descriptions are shown in Figure 52.

Global Peer Global Peer Vireless

-+ -+

Monitoring Administration Peer Pipes

JXTA Core|Layer

[Peer Monitoring | |Peer Administration| [Peer Pipes]

FIGURE 52. MODIFIED JXTA FRAMEWORK FOR AN IMPROVED DS

118

e The Global Peer Monitoring maintains a current list of all nodes currently
available on the network. It also handles broadcasted messages to/from other

nodes.

e The Wireless Peer Pipes extension is used to restrict the sending of message to

only nodes available according to the user-defined scenario.

e The Global Peer Administration extension is used to handle the added
administrative overhead. It also initializes and supervises the JXTA node. An

entry point is contained in the GPA to allow developer to operate the JXTA node.

The extensions are accomplished by implementing four distinct Java Classes. The
PipelListener() and PipeSender() classes are used in conjunction to model the Wireless
Peer Pipe. The PipeComm() and the PeerRoute() classes are used to model the Global

Peer Administration and Global Peer Monitoring respectively.

When JXTA and JADE are compared quantitatively, we found that JADE seems to be a
better distributed software that is distributed in terms of performance and scalability. In
all three test scenarios, the performance of JADE is significantly better than that of JXTA.
Not only is JADE more efficient under varying message load, but it is also more efficient

when the receiving agents reside both on the same and on different hosts.

The main reason for the apparent superiority of JADE over JXTA is the extensive use of
the centralized management system by JADE. Agents are able to locate receiver agents

by querying the AMS of the main container. However, this characteristic is not

119

consistent with a standard distributed system: The system should not be critically

dependent on any specific node.

JXTA on the other hand, does not use a centralized management system and relies
heavily on Rendezvous peers scattered throughout the network to discover and route
messages and requests. Although longer latency for message exchanges when compared

with JADE, a JXTA system is not critically dependent on any node.

120

5.3.2 Concluding Remarks

Although JADE and JXTA are built with a common purpose, both have limitations in
their present form. Extensions are needed to both platforms to achieve improved

implementations of distributed systems.

Overall, we found that JADE outperformed JXTA both in terms of latency and scalability,
mainly due to its partially centralized approach. JADE is also easier to understand and to
deploy than JXTA. Numerous configurations and options are available in JXTA to

customize a unique distributed system, thus creating a daunting task for beginners.

Agents in JADE are able to freely migrate among the different containers and hosts,
while agents in JXTA are physically tied to the hardware that they reside on. This is an
important feature that JXTA is lacking and would increase the robustness and scalability

of a JXTA system.

We feel that both JADE and JXTA requires extensions to their existing architectures for
better distributed systems. This project outlined and implemented the extensions needed

for the improvements.

121

5.3.3 Future Research

Distributed networks represent a new and emerging technology. Although they appear
to alleviate networking constraints that result from a centralized topology, further

research is needed to deploy mature, robust and highly scalable distributed networks.

In this research, two distributed software agent platforms were analyzed and extensions
were outlined and implemented. Future validation of the results requires implementation
in a real-world environment where hundreds or perhaps thousands of nodes are
communicating using wireline and wireless in real time. A variety of system hardware
can be used as nodes in this real-world environment. We must also experiment with
different intelligent routing algorithms to maximize efficiency and minimize latency.
Network bottlenecks that result from the exponential growth of administrative overhead
must be analyzed and tests can be performed to evaluate the robustness of the network.

Gateways should also be developed to resolve interoperability between different software

platforms.

Although this thesis compared two distributed software agent platforms, other products
should be evaluated to ascertain their relative similarities and differences and compare
them for specific applications. Their relative performances in a distributed network

should also be quantitatively and qualitatively analyzed.

122

6 REFERENCES

[1] C.Ng, D. Sabaz, and W.A. Gruver, “Distributed algorithm simulator for wireless
peer-to-peer networks,” Proc. of the IEEE International Conference on Systems,
Man, and Cybernetics, The Hague, Netherlands, 2004.

[2] E. Chen, D. Sabaz, and W.A. Gruver, “JADE and wireless distributed
environments,” Proc. of the IEEE International Conference on Systems, Man, and
Cybernetics, The Hague, Netherlands, 2004.

[3] JADE, Java Agent Development Framework, http://jade.cselt.it
[4] JXTA, http://www .jxta.org/ accessed April 8, 2005

[S] Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org accessed
March 2, 2005

[6] FIPA-OS, http://www.nortelnetworks.com/ accessed April 8, 2005
[7] Agent Oriented Software Group, http://www.agentsoftware.com

[8] E. Cortese, F. Ouarta, and G. Vitaglione, “Scalability and performance of the
JADE message transport system,” Proc. of the AAMAS Workshop on AgentC(ities,
Bologna, Italy, July 2002

[9] Digital Equipment Corporation, “In Memoriam: J.C.R. Licklider 1915-1990,” SRC
Research Report 61, August 1990.

[10] L. Roberts, T. Merril "Toward a cooperative network of time-shared computers,"
Proc. of the Fall AFIPS Conference, Oct. 1966.

[11] V. Cerf and R. Kahn, "A protocol for packet network interconnection,” IEEE
Trans. on Communications Technology, Vol. COM-22, Number 5, May 1974 , pp.
627-641.

[12] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “JADE — A white paper,” EXP —
In Search Of Innovation, Volume 3, Number 3, Telecom Italia Labs, Turin, Italy,
2003.

[13] J.F.Kurose and K. W. Ross, Computer Networking, AW Education Group, USA,
2002.

(14] S.I. Kumaran, JINI Technology, An Overview, Upper Saddle River, NJ, USA, 2002

123

[15]

[16]

[17]

[18]

[19]

[25]

[26]

S. Li, JXTA Peer-to-Peer Computing with Java, Birmingham, UK, 2001

M. Laukkanen, Evaluation of FIPA-Compliant Agent Platforms, Master’s Thesis,

Department of Information Technology, Lappeenranta University of Technology,
Finland, 2002.

F. Bellifemine, G.Caire, T. Trucco, G. Rimassa, JADE s Programmer’s Guide,
Telecom Italia Labs, Turin, Italy, 2003

B. Wilson, Projects: JXTA Book, New Rider’s Publishing Co., USA, 2003

K. Burbeck, D. Garpe, and S. Nadjm-Tehrani, “Scale-up and performance studies
of three agent platforms,” Proc. of International Performance, Communication and
Computing Conference, Middleware Performance Workshop., Phoenix, AZ, USA,
pp. 857-863, Apr. 2004

The Developer, http://www.developer.com accessed March 23, 2005

FIPA 97 Specification, Spec 2, “Agent Communication Language,” Introduction to
Sequencing and Scheduling, Durham, USA, 1974.

GRASSHOPPER, http://www.fokus.gmd.de/ accessed October 25, 2004
ZEUS, http://www.labs.bt.com/projects/agents/zeus accessed September 3, 2004
Agent Development Kit, http://www.madkit.org/ accessed January 2, 2005

Garpe, D., Comparison of Three Agent Platforms — Performance, Scalability and
Security, Master’s Thesis, LITH-IDA-EX-03/070-SE, Department of Computer
and Information Science, Linkoping University, Sweden, 2003.

D. Sabaz, W. A. Gruver, and M. H. Smith, “Distributed systems with agents and
holons,” Proc. of the 2004 IEEE International Conference on Systems, Man, and
Cybernetics, The Hague, Netherlands, October 2004.

124

APPENDIX A

This Appendix contains sample code listing for the three JADE agents,
e Sender Agent
e Receiver Agent

e Broadcast Agent

125

_4/20/2005 3:08 PM

B i e i
3 // INCLUDED JADE FILES

I e it
5 package examples.receivers;

import jade.core.®;
¢ import jade.core.behaviours.*;
import jade.lang.acl.*;

import jade.domain.FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService;

import jade.domain.FIPAException;

F e e
// INCLUDED JAVA FILES

J e
import java.net.*;

import java.util.*;

import java.io.*;

import java.lang.Thread;

import java.lang.*;

public class AgentSender extends Agent |

protected void setup() {

/’/ __
// Registraticn with the DF

DFAgentDescription dfd = new DFAgentDescription();

ServiceDescription sd = new ServiceDescription();

sd.setType ("AgentSender");

sd.setName (getName ()) ;

sd.setOwnership ("Edward");

2 dfd.setName (getAID{());

44 dfd.addServices (sd) ;

41 try |

42 DFService.register (this,dfd);

43 } catch (FIPAException e) {

44 System.err.println(getLocalName()+" re "+e.getMd
4% doDelete () ;

46 }

47) e e e e —
48 String agent_name = this.getName ()

49 addBehaviour {new SimpleBehaviour(this) ({

private boolean finished = false;

//*************************lﬂk*iz*******i******&i***e***&***Q*-‘r\v********ﬁ***i*-k*t***-‘-*-k\b*t*

// Main Execution of the program
//********************************i***********i*******i*******i*******i*******i******wi**

public void action()

57 {

58 tryl

59 // MAIN USER INTERFACE GUI
60 console();

61 }catch (Excepticn e) {

€2 System.out.println(e);

£3 }

64 } // end action

65

€6 public boolean done () {

67 return finished;

£8 } // end done

€9 }); // end addbehavior

10 } // end setup

71

72 //***

126

. 4/20/2005 3:08 PM

AgentSender.java

-~
O

// Function Body
//t***"’***i**********k****‘k***i*'k*****i’***********i*******i*****‘******************t****ﬂ"k
public void console() throws IOException
{

boolean exitConsole = false;

char userlInput;

// Class used to display information onto screen
Display display = new Display():

// Class used to send messages using different routing methods
Route route = new Route();

// Class contains functions of a J Node
J_Node node = new J_Node{();

// System initialization function
node.initialize();

while (!exitConsole)
{
userInput = node.main menu();

switch (userInput)
{
/) e e e e e
case 'a':
display.host info();
break; -

/=

case 'b':
display.neighbour nodes () ;
break;

/=

case 'c':
display.all nodes{();
break;

case '4':

char choice = route.route menu();
switch(choice)

{

/) mmm e e
// Send the message directly to destination
[/ e e
case 'a':

route.direct ();

break;
/] e
// Send message according to specific Hops
/] e
case 'b':

route.multi hop();

break;
[/ mm e e
// Specify a path to destination
/] mmmmm
case 'c':

route.specific path();

break; -
default:

System.out.printin(”Invalid choice!!");

} // end switch

127

AgentSender.java

144
145 break;
B e it

case 'e':
node.establish_connection();
break;

case 'i':
node.direct_send();
break;

/e e e e o
case 'g':

node.remote setup();

break;

node.broadcast () ;
break;
/) T e e e e e
case 'i':
node.update hop list();
break; -

S e e e e e e
case 'j’':

node.hop_test();
break;

System.out.println("Exiting Good-Bye!!");
exitConsole = true;
System.exit (1) ;

break;

] e e
default:

System.out.println ("Invalid Entry!! Try again”™);

} // end switch
} // end while

} // end function console()

private class J_Node{
J_Node () { //Begin Constructor
// initialize all global variable in this class

} //BEnd Constructor

File myFile = new File("C:\\jadeM\bin\\jade\\neighbour list.txt");
myFile.delete();

[e e e
2 // This function initializes the JADE node, delete previous version of files, if any
2 UG S
P, public void initialize() throws IOException
208 {
20 /) m
2 // Delete previous version of neighbour, global and hop list.
2 F A et
2
2

128

_4/20/2005 3:08 PM

File myFile2 = new File("C:\\jade‘\bin\\jade\\glchal
myFile2.delete():

File myFile3 = new File("C:\\jade)\bin\\Jade\\hop list.txt"”);
myFile3.delete ()

File myFiled = new File("C:\\jadeM\bin\\jade\\te
myFiled.delete();

// Initialize global, neighbour, and hop list

String host = get_own_Inet().toString():
BufferedWriter bufWriter = new BufferedWriter(new FileWriter ("glckal iist.txt",

true))

// make everything lower case,
host = host.tolLowerCase();

just to be safe

bufWriter.write (host);
bufWriter.newLine ();
bufWriter.close();

bufWriter = new BufferedWriter (new FileWriter("neighbour iist.txt", true));
bufWriter.write(host);

bufWriter.newLine () ;

bufWriter.close();

bufWriter = new BufferedWriter (new FileWriter("hop list.txt", true));

int seperator = host.indexOf("/");
host = host.substring(0, seperator);
host = host.concat ("#5");

bufWriter.
.newLine () ;
bufWriter.

bufWriter

write (host):;

close();

bufWriter = new BufferedWriter (new FileWriter ("tem
bufWriter.write (host);
bufWriter.newLine () ;
bufWriter.close();
} // end initializel()

Chop list.tut", true));

/7
// This is the main menu of a J Node
/7
public char main_menu() throws IOException

{

char userlInput;

System.out.
System.out.
System.out.
System.out.
System.out.
System.out.

println ("
println ("
println("
println("
println("

println("An Innovative

")
")
")

")

J-Netin");

i to Distributed Communicaticn. ™);

System.out.println(" ");
System.out.println("Please select cne of the fcllowing options: ");
System.out.println("” ");
Svstem.out.println (" a) Display Host Computer Name and IP Add s");
System.out.println (" b} Displav lst-tier Nodes Connected to Host");
System.out.println(" c) Display ALL Nodes within J-Net");
System.out.println(" d) Send Message to Specific Node");

2 System.out.println(" e) Establish a Link Function with a specific Node");

279 System.out.println(” f) Adminstrater send (Direct Send)");

28 System.out.println (" g) Setup connection for other nodes ");

281 System.out.println(" h) Broadcast existence to everyone ");

282 System.out.println (" i) Update global hop iist ");

283 System.out.println (" j) Perform hop test!!! ");

234 System.out.println (" X) Exit");

285

129

AgentSender.java . 4/20/2005 3:08 PM

System.out.println(" "};

System.out.println(" ");

System.out.println(” ");

System.out.print ("Please make your selection: ");
try(

userInput = get_char();
return userInput;
}
catch{Exception e) {
out.printlin(e):;

}

// dummy return
return 'x';
} // end main_menu

// __
// This function is used to establish virtual connecticn with another J Node

F e i
// This function writes the Node into neighbour list.fxt

public void establish_connection() throws ICException

{

System.out.println("Enter name of node: “);

5tring node name = getstring():;

InetAddress IP_address = InetAddress.getByName(node_name);
String to_file = IP_address.toString();

// make everything lower case, just tc be safe
to file = to_file.toLowerCase(};

)) L Ll e L L e

tad

[SSIRIN
LO D -l

// check if content already exist
if {!content_exist("neighbour list.txt", to_file))

{

[SS)

// Open the neighbour list.txt file to write to

RufferedWriter bufWriter = new BufferedWriter(new FileWriter("ne
// wWrite to file

bufWriter.write(to file);

bufWriter.newLine () ;
bufWriter.close () :
System.out.println ("N

e L e e

: node: " + node name + " is written to neighbour list.t:
}

else

{

System.out.println("Node: " + node name + " already a neighbour");

}

// Send Admin_Setup: message to this new neighbour node so both on neighbour iist

33

337 InetAddress ownAddress = get own Inet{();

338 String host_name = ownAddress.getHostName({()’

339

340 String message = "Admin up: ".concat (host_name) ;

343 String total message = node_name.concat ("*".concat (message));

342

343 int seperator = total_message.indexQf ("*");

344

345 String to_node = total message.substring(0,seperator);

lde String to_message = total message.substring{seperator+l,total message.length());
247

348 send _msg({to_node, to_message);

349 } // end function

3590

351

352 J o m e s
353 // This function is used to send message DIRECTLY to another J Node

354 J) e e e
355 // This function writes the Node into neighbour list.txt

356 public void direct_send() throws IOException

130

AgentSender.java o S

System.out.println("Adminstrator Di
System.out.println("Enter Node na
String node_name = getstring();

System.out.println("Ernter message: ");
String message = getstring();

// actually send the message
send _msg (node_name, message);

T T RN SRS SR S

4/20/2005 3:08 PM

// This function is used to remotely establish virtual connecticn with two J Nodes

/// __

// This function writes the Ncde into neighbour list.txt
public void remote setup() throws IOException
{

for another node");

")

System.out.println("3etting up conr
System.out.printin("” r ist Node na
String first _node = getstring();

System.out.println("Enter 2nd Node name: ");
String second node = getstring();
String message = "Admin Setup: ".concat(first node);

send_msqg (second_node, message) ;

message = "Admin Setup: ".concat (second node) ;

send msg{first_node, message);
}
/‘/ __
// This function is broadcasts existence to every J_Ncde on network
F i e it i bt i
public void broadcast() throws IOException
{

System.out.println("Broadcasting J-Nat™);

int MULTICAST_PORT = 7777;

String MULTICAST_ADDR = "230.0.0.1";

try

{
// get own Host Information
//String host = InetAddress.getLocalHcst () .getHostName () ;
String host = get_own_Inet().toString();
byte([] temp host.getBytes();

InetAddress inetAddress = InetAddress.getByName (MULTICAST_ADDR);
DatagramPacket Out Packet = new DatagramPacket (temp, temp.length,

MulticastSocket multicastSocket = new MulticastSocket ():
multicastSocket.send(Out_ Packet);

}

catch (Exception exception)

{

exception.printStackTrace () ;

}
} // end broadcast ()

/= e

// This function is used to Update global hop list

T

public void update_hop_list () throws IOException
{ .

//sender_node#HOP_COUNT#PREVIOUS_ sender node#Original_hop_Count
System.out.println("Updating global hop list.... Please wait");

// update from 2 hops to 5 hops.... TO BE CHANGED!!!!ftlttittrtyiiy

String update hop header = "Update Hop Message_Header: “;

inetAddress,

MULT I(

131

AgentSender. java e

) 4/20/2005 3:08 PM
String host_name = get own Inet().toString();

int index = host_name.indexOf("/”);

host_name = host name.substring (0, index);
ing hop count; N
ing nei&hbour_name;
ing current line;
ing update_hop_message;

for (int i=2; i<06; i++)

{
fferedReader bufReader = new BufferedReader (new FileReader ("neighbour list.uxt")
hop count = String.valueOf(i);
update_hop message = host_name.concat ("#".concat (hop_count.concat ("4#")));
update_hop message = update hop header.concat (update_hop message);

// actually send the message to everyone on neighbor list, except itself
while((current_line = bufReader.readlLine()) !'= null)
{

index = current_line.indexOf ("/"};

neighbour name = current_line.substring (0, index)

// Don't send message to itseif, to add the NOT "!"
if ((neighbour name.equalsIgnoreCase (host_name)))
{
update hop message = update_hop_message.concat (neighbour name) ;
update_hop_message = update_hop_message.concat ("#".concat (hop_count));
send msg(neighbour_name, update_hop_message);
System.out.println(update hop message);
}
} // end while
bufReader.close();
}
} // end update_hop list

f] e e e e e e
7/

// This functicn is used to perform hop test

S e e
public void hop test() throws ICException

{

String max_hop;

.out.println(" ");
.out.println(” ");
System.out.println("Enter
System.out.println(" "):

cimum hops to test'):

// get input from user
max _hop = getstring();

// crganize the hop_test message
// Hop_Test_ Header: sent time#original sender#max_ hop

String Hop_Test Header = "Hop ' st _Header: ";
// Retrieve the number of milliseconds since 1/1/197C GMT
Date date = new Date();
long start milliseconds = date.getTime();
4 // convert to string
485 String start_time = String.valueOf(start _milliseconds):
429
490 // get host information
497 InetAddress ownAddress = get_own_Inet():
482 String host_name = ownAddress.getHostName () ;
493
404 // organize the hop_test message
495 // Hop_Test_Header: sent_time#max hop#original sender
196
497 String hop_test msg = Hop Test Header.concat (start_time);
198 hop_test_msg = hop_test_msg.ccncat ("#");

132

AgentSender.java 4/20/2005 3:08 PM

hop_test _msg = hop_test msg.concat (host name);
hop_test_msg = hop_test_msg.concat ("#");
hop test_msg = hop_test _msg.concat (max hop);

// get number of lst-tier neighbours
int neighbours = number of neighbours();
//int globals = number of glokals(};

// randomly send ocut fto a first-tier neighbour
Random X = new Random(); // default seed is fime in milliseconds
//Random # = new Random(long seed); // for reproducible testing

int random = x.nextInt(neighbours); // returns random int »= 0 and < n

// get destination node information
BufferedReader bufReader = new BufferedReader (new FileReader(

"

nel

// go to the line in the file
for(int i=0; i<random; i++)
{

bufReader.readLine() ;

}

String current_line = bufReader.readLine():;

int index = current line.indexOf ("/");

String dest node = current line.substring (0, index);
bufReader.close () ; -

// send the message out
send_msg (dest_node, hop_test _msq);

} // end hop test()

S e e
// This function returns the number of global nodes

// ___
private int number of globals() throws IOException

{

int count = 0;

BufferedReader bufReader = new BufferedReader (new FileReader("glcbal 1 LExtT)) g
while (bufReader.readLine() != null)
{

count++;

}
bufReader.close () ;

return count;

} // end function

e e e
// This function returns the number of neighbcurs this node is connected to

/) m e e e

private int number of neighbours{) throws IOException
{

int count = 0;
BufferedReader bufReader = new BufferedReader (new FileReader ("neighbour list.txt"));

while (bufReader.readLine(} != null)

{

count++;

}
bufReader.close () ;

return count;

} // end function

[mm e e
S€H // This is the JADE program that actually sends the message OUT
566 [—mm e e
567 public void send msg(String node_name, String message)
568 {
569 String responder = null;

4/20/2005 3:08 PM

AgentSender.java

String dest = null;

try //trying to open socket for data going out
{
dest = "http://".concat(node_name).concat (":7778/acs");
// Use String class manipulation to get responder address
int end_index = dest.lastIndexCf(":");
responder = "receivsr@".concat (node name).concat (":10%9/JADE") ;

// Setup JADE send variables to use JADE to send the message out
AID r = new AID();

r.setName (responder) ;
r.addAddresses (dest) ;

// create the ACL message and set specs, then send the msg according o
// the user defined address

ACLMessage msg = new ACLMessage (ACLMessage.INFORM) ;
msg.setSender (getAID());
msg.addReceiver(r);

msg.setContent (message) ;
send (msqg) ;

/7 finished = false;
}

catch(Exception e)

System.out.println ("JADE send failec

2 2y

// This function returns the InetAddress of the current host computer
J =R e
public InetAddress get_own_Inet () {

try //trying to set own ip-address

{
InetAddress ownlIP = InetAddress.getlLocalHost () ;
return ownlP;

}

catch(UnknownHostException e)

{
System.out.println(e);

}

return null;

}// end get_own_Inet{)

J e
// This functions returns the character input from the user

private char get_char() throws IOException

{

InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();

return s.charAt(0);

} // end get char ()

it e
// This function returns the entire line of String
private String getstring() throws IOException
{
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine():;
return s;

134

AgentSender.java

SR

a4 } // end getString(j

042

043 [e e e e
Ba4 // This functions checks if incoming content already exist in file

545

846 private boolean content exist(String filename, String content) throws ICException

{
boolean exist = false;
String current line;

BufferedReader bufReader = new BufferedReader (new FileReader(filename));

while((current line = bufReader.readLine()) != null)

{
if (current line.equalsIgnoreCase (content))

{
exist = true;
bufReader.close() ;
return exist;

}
return exist;
} // end function content exist(}

} // end class J_Node
/] e e e e

/**i“k****‘k****************"d*‘k*i’**'k*i"k*x*******x*i‘***‘k*****ﬁi“k*r**)(i*'k*i\'*i‘**\\"k*i’**'k*i"k***i"k****

his class defines the various routing algorithms te be used fo route the packet o destinatics
d g v ok de W g de sk ke sk sk Fe sk ek e S e e e de ke ke o e b e e e de e ek ke ke s Tk Y etk gk e sk ke ke ke ke e W ok sk % gk e e ok sk e ke S ke ko gk e ok ke W ek e ke b e e ek b gk ke ke e W R e v

private class Route({

Route(){ //Begin Constructor

// initialize all global variable in this class

} //End Constructor

F e e oo e e e bt
// This function sends message through JZDE directly to destinaticn

/] T e e e e
public char route_menu{) throws IOExceptiocn

{

char userInput;

System.out.println(" ");
System.out.println(" ");
System.out.println("Croose how you like to send the
System.out.println{" ");

System.out.println(” a)
System.out.println(” D}
System.out.println (" c)
System.out.println("” ");
System.out.println(” ");

System.out.print ("Pleass

ke your selecticn: ");

try{
userInput = get char();
return userInput;

<
N

& {a

- }
TCH catch (Exception e){

7c¢e System.out.println(e);
707 }

708

709 // dummy return

710 return 'x‘';

71t } // end route_menu

135

AgentSender.java . 4/20/2005 3:08 PM

el e
// This function sends message through JADE directly to destination
i et e i b

public void direct() throws IOExcepticn

{

System.out.println ("Enter Node name:
String node name = getstring();

System.out.println("Enter message: "),
String message = getstring();
// actually send the message
send_msg(node name, message);

/

22 e

// This function sends message to a ncde up to user-defined MAX HOPS

S e e e e
public void multi hop() throws IOCException

{

String Multi Hop Header = "Multi Hop Message Header: ";
String Multi Hop Message;
String message;
String dest _node;

String MAX_HOP;

String node_name;

$ System.out.println("Enter destination");
74 dest node = getstring():;

System.out.println("Enter message");
message = getstring();

System.out.println("Enter Maximum numker of hops allowed”);
MAX HOP = getstring();

// Muitl Hop Message Header: 3#destinationS$msg body
Multi Hop Message = Multi Hop Header.concat (MAX HOP.concat ("#”.concat (dest_node.concat

System.out.println("multi hop message: " + Multi Hop_Message);

String current_line;

// get own host name

7 InetAddress ownAddress = get_own_Inet();
158 String host name = ownAddress.getHostName ();
759
760 // check if destination is already a neighbour node
FEl int front = Multi Hop_ Message.indexOf ("#");
762 int back = Multi Hop_Message.indexOf ("$");

// if already in neighbour list
if(content_exist(“neighbour_list.txt", Multi Hop_ Message.substring(front+l, back)))
{
// Extract the message
message = Multi Hop Message.substring(back+l, Multi Hop_Message.length());
send_msg (Multi_ Hop Message.substring(front+l, back), message);
}

// send to everyone on neighbour iist

2 else
3 {
it 4 // actually send the message to everyone on neighbor list
778 BufferedReader bufReader = new BufferedReader (new FileReader ("rneighbour list.txt")
776
717 while((current_line = bufReader.readLine()) != null)
778 {
779 int index = current_line.indexOf ("/");
780 node_name = current_line.substring(0, index);
731
782 // Don't send message to itself

136

AgentSender.java _4/20/2005 3:08 PM

3 if (! (node_name.equalsIgnoreCase (host_name)))
74 {

send_msqg(node_name, Multi Hop_Message).
}
}
} // end else

} // end route multi hop()

[e e e e
public void specific path() throws IOException
{

String Specific_Path Header = "Specific Path Me:
ring message;
ring next node;
String temp header = " *;
String Specific Path Message;
char another;
int back;

boolean next = true;

System.out.println("E
message = getstring();

cr message");

// Specific_Path Message Header: #next destination#next next destination$msg body
while(next)
{

System.out.println("Enter Next Node foxr routing”);

next node = getstring();

temp_header = temp_ header.concat ("#".concat (next_node));

System.out.println("Atztach ancther Hop?? Y oon N")g
another = get char():

if (another == 'N' || another == '»n")
{
next = false;
}
} // end while

Specific_Path Message = Specific_Path Header.concat (temp_ header.concat ("$".concat (mess:

//System.out.println("Specific Path Message + Specific Path Message);
// Extract out the lst hop as destination for this send

int last = Specific Path Message.lastIndexOf ("#");

int front = Specific_Path Message.indexOf("#");

if (last == front)
{

back = Specific_Path Message.indexOf ("$", front+l);
}
else
{

back = Specific_Path_Message.indexof("#", front+l);
}

String node_name = Specific_Path Message.substring(front+l, back);

// if 1st path is already a neighbour node
if(content_exist(”neighbou:mlist.txt", node name))
{
int msg_start = Specific_Path Message.indexOf ("s$");
Specific_Path_Message = Specific Path_Message.substring(msg_start+l, Specific_Path
}
// actually send the message
send_msg (node_name, Specific_Path Message):
} // end route_specific path{)

137

AgentSender.java L e ,, _4/20/2005 3:08 PM
// This functions checks if incoming content already exist in file
/) m e e
private boolean content exist(String filename, String content) throws ICExcepticn
{
boolean exist = false;
String current line;
BufferedReader bufReader = new BufferedReader (new FileReader (filename));
while((current_line = bufReader.readlLine()) != null)
{
if (current_line.startsWith (content))
{
exist = true;
bufReader.close () ;
return exist;
}
}
return exist;
}
f) s e e e e
// This function returns the InetAddress of the current host computer
/) e e e
public InetAddress get_own Inet () {
try //trying to set own ip-address

{
InetAddress ownIP = InetAddress.getLocalHost ()
return ownlpP;

}

catch (UnknownHostException e)

{
System.out.println(e);

}

return null;

S BN O RN

public void send msg(String node_name, String message)

{

String responder = null;
String dest = null;

try //trying to open socket for data going out

{

dest = "http://".concat {node name).concat(":77%8/acc");

// Use String class manipulation to get responder address

int end_index = dest.lastIndexOf (":");

responder = "receiver@".concat (node_name).concat (":1099/JADLE");

// 5
/i S
// S

ystem.out.println("responder: " + respcnder);
ystem.out.println("dest: " + dest};
ystem.out.println("message " + message);

// Setup JADE send variables to use JADE to send the message out
AID r = new AID();

r.setName (responder) ;
r.addAddresses (dest) ;

// create the ACL message and set specs, then send the msg acccocrding to
// the user defined address

ACLMessage msg = new ACLMessage (ACLMessage.INFORM) ;
msg.setSender (getAID());
msg.addReceiver (r);

msg.setContent (message) ;
send (msg) ;

138

AgentSender.java

4/20/2005 3:08 PM

finished = false;
}
catch(Exception e)
{
System.out.println("JADE send falled");
}

} // end function send msg

F et e il
// This functicon returns the entire line of String
private String getstring() throws ICException
{
InputStreamReader isr = new InputStreamReader (System.in);
RufferedReader br = new BufferedReader (isr);
String s = br.readLine{();
return s;

} // end getString()

/] S e e e oo
// This functions returns the character input from the user
private char get_char() throws IOException
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLine();
return s.charAt{Q);

} // end get_char ()

} // end class Route
} // end class AgentSender

/***'k*1'\'***'i'*-k*i{*****'k**********************)\"k*x***\'v***k****i‘**********k'***+***i-***~‘vi‘-k*

This class defines the variocus display functions to output information to screen
’r********i‘*i‘*************************v‘r*************************’ki—********x*******/

class Display({
Display(){ //Begin Constructor

// initialize all global variable in this class
} //End Constructor

the etAddress of the current host computer

public InetAddress get_own_ Inet () {

try //trying to set own ip-address
{

InetAddress ownlP = InetAddress.getLocalBHost():

388 return ownlP;

389 }

299 catch(UnknownHostException e)
591 (

oz System.out.println(e);
$93 }

G94 return null;

San }// end get own Inet ()

139

it e e
// This function dispiays host information

[m T e e e
public void host _info () {

tAddress ownAddress = get_own_Inet();
i host_name = ownAddress.getHostName ();
host_IP = ownAddress.getHostAddress ()i

out.println("” ");
.out.println(’)

{

(Inftormaticon™);
m.out.println(” ")

(

(

.out.println(’
.out.println

2y is: " + host_name);
" + host IP);

iformation

// This function dispiays all neighbour node
/’/ __
public void neighbour nodes () throws IQExcepticn

{

try({

_4/20/2005 3:08 PM

BufferedReader bufReader = new BufferedReader (new FiloReader("neighboa:wlist.txt”)

5tring current_line;

2s")

System.out.println("oisplaying all lst
System.out.println({" ");

while {((current _line = bufReader.readLine()) != null)

int index = current line.indexOf ("/");

System.out.println("a
out.println{("I
r.out.println{” ");

" + current_line.substring (0, index)):;

}
}catch{Exception e) {
System.out.println("N¢ nodes are currently connected”);

}
} // end display neighbour nodes{)

/e e oo
// This function displays infcrmation cn all ncdes
B et
// This function display ALL nodes currently available on J-Net
public void all _nodes() throws ICException
{
System.out.println ("o3
System.out.println("

Wodes within J-Net");

try(
String current_line;
int count=1l;

" + current_line.substring(index+l,current_line.length

BufferedReader bufReader = new BufferedReader (new FileReader ("glokal iist.txt™));

while((current_line = bufReader.readLine()) != null)

{

int index = current line.indexOf ("/"):

System.out.println("Name: " + current line.substring (0, index));

System.out.println("IP: " + current line.substring(index+l,current line.length

System.out.println(" ");
count++;
}
System.out.println("Tctal of " + (count-l) + " nodes are available on J-Net"):
System.out.println (" ");
}catch (Exception e) {
System.out.println("No nodes on J-Net");
}

AgentSender.java 4/20/2005 3:08 PM

} // end all nodes ()}

} // end class Display

141

AgentReceiver.java

I B et
% // INCLUDED JAVA FILES
4 f) e e e ———————————————————— e

% package examples.receivers;

7 import java.util.*;

% import java.io.*;

% import java.net.*;
import java.lang.*;
.lang.Thread;

// INCLUBDED JADE FILES
jade.core.*;

jade.core.behaviours. *;

jade.lang.acl.ACLMessage;

jade.domain.FIPAAgentManagement. ServiceDescription;
jade.domain.FIPARgentManagement . DFAgentDescription;

jade.domain.DFService;

jade.domain.FIPAException;

public class AgentReceiver extends Agent {

3N NS

class WaitPingAndReplyBehaviour extends SimpleBehaviour {
private boolean finished = false;
public WaitPingAndReplyBehaviour (Agent a) {

super (a);

}

public void action() {

final String admin_header = "Admin Se A // header
final String broadcast_header = "Bfoadpust_Seir A // header
final String multi hop header = "Mu : // header
final String specific_path header - > “; // header
final String update_hop_header = "Upcate Hop ; // header
final String update_hop_list header = "Update Hop List " // header
final String Hop_Test Header = "Hop_ Test Header: "; // header
final String End_Hop_Test Header = "End Hop Test Header: "; // header

// wait here until a msg is received, since this is a one-behaviour function.
ACLMessage msg = myAgent.receive();//blockingReceive(};

if (msg != null)
{

try

{

// retrieve the message
String content = msg.getContent();

// class to handle incoming messages

6l Receive receive = new Receive();

61

6; // R R R BN RS R R R R R R R R R R R R R R E R R R R E R R R R R R R RS NENEEEEEEEEERENEREEEEE RS
63 // RESPONDING TO REMOTE REQUEST CONNECTION BY ADMINISTRATOR

b; // dedkd g sk de sk dk ko k ko k ok ko kK Kk ko ok ko kok ok e ko Aotk sk ok sk ke ko do ok vk ke ko ok ko ke ok ok kv ok ek e ke ke ke
65 // test if message is adminstrative message

66 // store into neighbour list if not already exists

67 if (content.startsWith(admin_header))

68 {

69 receive.ADMIN HEADER (content) ;

70 } // end if(admin_header)

71

7z // kokkkkk khkdkhkkkhkhkxdhkhkhkhkhkhkdkhkhkhkhkhkdhhkhkkdhhkhkhhkhhkhkhkhkhhkhkhkhkhkdkhkhkhkhkhkhkhhkhkhkwrhkdhkkkhkxk

used
used
used -
used
used 1
to wr.
used
used

142

AgentReceiver.java

73

7
5/

2 AL

*/

S I _4/20/2005 3:36 PM

// REPLYING TO BROADCASTING MESSAGES
// Jek kK ok ok kg ok ok ok ko ok ok ke k k S ko ok ke ok ek ok ke ok ke ke ke ok k ke ke ke ok ok ok e e ek Wk ok ke ko ok ok ok ok ke ok ok
else if(content.startsWith (broadcast header))

{
receive.BROADCAST_HEADER (content);
} // end if(broadcast header)

// B R R R A R R R R R R R R A L AR T AR R I R S
// Relay message to destination {(Multi hop;
// Fhkhkkkkwhkkhk kv hhkhkkhkhk*rhhohhkhkhrohhrhdhhehhkFrrhdkrhbhdrahhbhFhkd bk hvhkhrk*khkh
// test if message is broadcast message header
// store into global list
else if (content.startsWith(multi_hop header))
{
receive.MULTI_HOP_HEADER(content);
}

/’/ dhkhkhkhkhkdhkkhkhkhkhkhk ko khk* bk ok hkhhkrkhkrkkrkohhbhkhkvhhkkhhdhkvhhrdrhhkchhkrxdxx

// Update Hop List message

// dek ke ok k ke ek Kk kook ok ke ke ke ks ok gk g ke kv ke ke gk e sk ok ek e e ke ke bk W A e ke ¥ ik ek ok ke ok ke e e ke

else if(content.startsWith(update hop header))
{
receive.UPDATE_HOP HEADER (content):

} // end else if

I// khhk*hk A Ak k kb rhhkkkhk kb Fh bk kb kb r bk kb khrhhkdrakhbhbFd ks ok hhhxhhkhkkh ook k* ok &bk

// Update hop List.txt
// e ke ke ok e ke ek ok e ke ke ke ke e sk ok ek e e ke e ok ok ke ke Sk sk e ok ek ke ok kR ok ok Kk ok ok ok ke k ok k ok k& ke ok
else if(content.startsWith(update hop list header))
{
receive.UPDATE_HOP LIST(content);
} // end else if

// de ke ke e gk ek sk ke ok s sk b ke ek sk ek ok ke ok ok ke ek ek e gk vk ke e gk ke ke ke gk e ok e ek e e e ok ke ke ke R ok ke ok ok

// Hop Test Header
// ***_\:****Tk_****'k*****************i"k******k***"(i“k*t***\'f***i’***ii’**i’***
else if(content.startsWith(Hop Test Header))
{
receive.HOP_TEST HEADER (content);
}

// dohhkdk ko kk kv A hr kb dkwhkhkkrkhkk vk bk kkk*hhkhkdhbh kv kb rdhdhdhhkdhrhkkxhkkdhkxdkk

// End Hop Test Header {Get time difference)
// *******:****;*k*****\'v***********i*******k***+i~******—"t~k*************
else if(content.startsWith(End Hop Test_ Header))
{
receive.END_HOP_TEST_HEADER (content);
}

// No header, so must be message received
else
{
System.out.println ("RECEIVED: " + content);
}

// Kok ok ek ok dedk ok ok ok ek ok dok ok Wk kR ok ok ok ok ok ok ok ok Rk ok ok ok ok ok ok gk ok ok ok ok ko ke ok ok ok
// Send to JAVA program
_int Jade_Java port = 4801;

byte[] temp = new byte[1024];

temp = content.getBytes(); // convert to byte array

// Actually send the packet out
DatagramPacket data out packet = new DatagramPacket {temp, temp.length, ownIP, Ji
DatagramSocket Out_socket = new DatagramSocket();

Out_socket.send(data out packet):;
J] E kK kK ok ko ke ke kK Rk ko Rk K ok Kk Kk Kk Rk kK kK ok ok ok K ok ok K K K kK

}
catch(Exception e)

143

AgentReceiver.java . 4/20/2005 3:36 PM

144 {
145 System.out.println{e);

}

/+
// create a reply message to the Sender Agent
ACLMessage reply = msg.createReply():

// set message type

reply.setPerformative (ACLMessage. INFORM) ;
// set content

reply.setContent {"ACK: Message Recelved"):

send{reply};*/

} // end if msg!=null

16

16 else

162 {

163 block();

16¢ }

168 } // end action

166

14 public boolean done() {

16 return finished;

15 }

1

1] e e
1 // This functions checks if incoming content already exist in file

1 /) e e e e
1 private boolean content_exist (String filename, String content) throws ICException

17 {

boolean exist = false;
77 String current line;

Fed 3 i
o

BufferedReader bufReader = new BufferedReader (new FileReader (filename)) ;

1

1 while(({current line = bufReader.readLine()) != null)
18 {

15 if (current_line.startsWith (content))

15 {

185 exist = true;

18 bufReader.close () ;

187 return exist;

188 }

184 }

130 return exist;

181 }

18

153 } //End class WaitPingAndReplyBehaviour

184

1385

1886 protected void setup() {

187

198 // Registration with the DF

1389 DFAgentDescription dfd = new DFAgentDescription();
200 ServiceDescription sd = new ServiceDescription();
2 sd.setType ("AgentReceiver");

sd.setName (getName()) ;
sd.setOwnership ("Edward");
//sd.addOntologies ("FingAgent™) ;

235 dfd.setName (getAID());

2C6 dfd.addServices (sd) ;

2071 try {

208 DFService.register (this,dfd);

209 } catch (FIPAException e) ({

210 System.err.println(getLocalName()+" registration with DF unsucceeded. Reason: "+e.getMe:
211 doDelete() ;

212 }

213

214 WaitPingAndReplyBehaviour PingBehaviour = new WaitPingAndReplyBehaviour (this);

AgentReceiver.java . 4/20/2005 3:36 PM

addBehaviour (PingBehaviour) ;
}
private class Receive{
Receive () { //Begin Constructor

// initialize all global variable in this class
} //End Constructor

2 e T

227 // This function returns the InetAddress ¢f the current hest computer

27 2

22¢ public InetAddress get_own_Inet () {

53

23 try //trying to set own ip-address

2 {

233 InetAddress ownlP = InetAddress.getLocalHost ();

234 return ownlIP;

235 }

236 catch (UnknownHostException e)

237 {

238 System.out.println(e);

239 }

240 return null;

241 }// end get_own Inet{)
J] e e e e e e
// This function process ADMIN SETUP messages (sets up connection with specificed neighbour
/) e

public void ADMIN HEADER(String content) throws IOException
{

int index = content.indexOf(":");
int length = content.length():;
String node_to add = content.substring(index+2, length);
InetAddress IP_Addr = InetAddress.getByName (node to add):;
String tofile = IP_Addr.toString();

// make everything lower case, just tc be safe

tofile = tofile.toLowerCase():;

if (! (content_exist("neighbour list.tx:t", tofile)))
{
// Cpen the neighbour list.txt file to write to
BufferedWriter bufWriter = new BufferedWriter(new FileWriter("neighbour_ list.txt”,
// write to file
bufWriter.write(tofile);
bufWriter.newLine () ;
bufWriter.close(};

266 System.out.println("Ncde: " + tofile + " is added remctely by Administrator);

2067 }

268

269 }

270

271 [m e e e
272 // This function process BRCADCAST_ SETUP messages (handles brcadcast messages, writes to gl«
273 S e e e
274 public void BROADCAST_HEADER (String content) throws IOExcepticn

275 {

27¢

277 int index = content.indexOf(":");

278 int length = content.length{);

279

280 String node_to_add = content.substring(index+2, length);

281 InetAddress IP Addr = InetAddress.getByName (node_to_add):

282 String tofile = IP_Addr.toString();

283 // make everything lower case, just to be safe

284 tofile = tofile.toLowerCase();

285

2846
287
288
289
230
291
252
293

IR RENENN

o W L

_4/20/2005 3:36 PM

// check if content already exist
if (! (content_exist("glcbal list.txt", tofile}))

{

// Open the neighbour list.txt file to write to
BufferedWriter bufWriter = new BufferedWriter(new FileWriter ("gichal iisf.uxt"”, trus

// write to file
bufWriter.write(tofile);
bufWriter.newLine () ;
bufWriter.close():
System.out.println("Nod=: " + tofile + " is written to 3

/] m o e e
// This function process MULTI HOP HEADER messages {user-defined maximum hopsj

[e oo e e e e oo
public void MULTI_HOP_HEADER(String content) throws ICException

{

/*
Check if dest node is a neighbour node, if is, send directly
if not, decrement hop count and send to all neighbour node
if hop_count==0, discard (send msg failed??)

*/

// Extract destination node tc see if neighbour node

int front = content.indexOf("#");
int back = content.indexOf ("$");
int index;

String dest_node = content.substring(front+l, back):
ing new_content; // new content of message, sent tc ali neighbour no
tring multi_hop header = "Multi Hop Message Header: "; // header used to route packet

[s]

// if already in neighbour list, send directly

if (content_exist("neighbour list.fxt™, dest node))

{
// Multi Hop Message Header: 3#destination$msg_body
// Extract the message and send to destination
String msg_node = content.substring(back+l, content.length{());
send_msg (dest_node, msg_node);

}

// decrement Hop count and send to all neighbour

else

{
// extract hop count
// Multi Hop Message header: 3#destination$msg_body
int start = content.indexOf(":");
String hop = content.substring(start+2, front);
int temp hop = Integer.parselnt (hop);
temp_hop--;
hop = String.valueOf (temp hop);

// get own host name

InetAddress ownAddress = get_own_Inet();
String host_name = ownAddress.getHostName();
// make everything lower case, just to be safe
host_name = host_name.toLowerCase();

// go through neighbour list and send to all neighbours
if (temp_hop>0)
{

content = content.substring(front, content.length()):;

new_content = multi_hop_ header.concat (hop.concat (content));
System.out.println("new content: " + new_content);

// actually send the message to everyone on neighbor list
BufferedReader bufReader = new BufferedReader (new FileReader ("neighbour list.tx
String current_line;

146

AgentReceiver.java

421
427
423
424
425
426
427

while ((current_line = bufReader.readLine()) !'= null)
{

index = current_line.indexOf ("/");
String to_node = current line.substring(0, index);

1f (! (to _node.equalsIgnoreCase (host_name)))
{
send msg(to node, new_content);
}
}
bufReader.close () ;
} // end if (hop!=)
} // end else
} // end function

J]
// This function process MULTI HOP messages (decrement hops and send to others)

J o e e e
public void UPDATE_HOP HEADER(String content) throws IOException

{

//sender node#HCP_COUNT#PREVIOUS_sender ncde#Original hop Count

final String update hop list header = "Update Hop List Header: "; // header to writ
int first = content.indexOf ("#");

int second = content.indexOf ("#", first+l);

int end = content.lastIndexOf ("#");

// convert to INT
int hop_count = Integer.parselnt (content.substring(first+l, second));

String final hop_count=null;
String original sender:;
String current line;

String new_hop count;

// get current host name

String local host = get_own Inet().toString();
int host index = local host.indexOf ("/"):;

local host = local host.substring(0,host_index);

if (hop_count>0)
{

hop_count = hop count-1;
}

if (hop_count==0)
{

// end of hop reached, send back to sender with hop info

//Update Hop List Header: current node#original hop count

int space = content.indexOf (" ");

String update_hop list = update_hop list_header.concat (local_host});
update _hop list = update_hop_list.concat(content.substring{end, content.length/{

original_sender = content.substring(space+l, first);
System.out.println("original: " + original_sender);
System.out.println("update hop list: " + update hop_ list);
send msg(original sender, update hop list);

else

// Update Hop Message Header: sender node#HOP_COUNT#PREVIOUS sender node#Origin:

//Replace the hop count and send to everyone on the list, except to itself
new_hop_count = String.valueOf (hop_count);

System.out.println("hop count: " + hop_count);

// get message header

147

AgentReceiver. java) ‘ ~4/20/2005 3:36 PM

String temp_content = content.substring(0,first);

// attach new hop count
temp_content = temp_content.concat ("%#".concat (new_hop count));

// get original hop count
temp content = temp_content.concat(Content.substring(second, content.length()))

// send to everyone on neighbour iist with new hop count
BufferedReader bufReader = new Buffe¢redReader (new FileReader ("reighbour list.ix

// actually send the message to everycne on neighbor list, except itself AND pr«
3tring previous_sender = content.substring(second+l,end);

while((current_line = bufReader.readline(})) != null)
{
host index = current_line.indexOf("/");
String neighbour_name = current line.substring(0,host index);

// Don't send message to itself
if (! (neighbour name.equalsIgnoreCase(local_host)))// il ! (neighbour name.eq
{
System.out.println("Resend: " + neighbour name + " " + temp content);
send_msg (neighbour_name, temp_content):;
}
} // end while
bufReader.close();
} // end else
} // end UPDATE HOP HEADER

/e
// This function process MULTI_HOP messages {decrement hops and send to others)

A i T T
public void UPDATE HOP_LIST(5tring content) throws IQException

{

System.out.println(“rewrite: + content);

// array used to hole hop list count

3tring[] hop_list = new 3tring ({500];
//Update Hop List Header: end node#original hop cecunt
int space = content.indexOf (" "):

int seperator = content.indexOf ("#");

3tring end node = content.substring(space+l, seperator);
String final count = content.substring(seperator+l, content.length());

// loop through hop list to record hop info, only take the info with ieast hops!!
BufferedReader bufReader = new BufferedReader(new FileReader ("hop list.txt"));

//copy file into hop list array, then delete file
String current_line;
int counter = 1;
while((current_line = bufReader.readLline()) != null)
{

hop_list[counter] = current_line;

counter++;
} // end while

// delete the file

bufReader.close():

File myFile = new File("C:\\jadel\\bin\\jadel\\hop list.txt");
myFile.delete(); n

counter = 1;

String node_in_ file;
String old node count;
String replacement;
String node_name_in_file:;
String received_node;

9 SO = Y N ST S QS o
s N

8
[Ny}

o
W W WO WS O

a

>
-~

int message_count;

148

AgentReceiver.java _ o 4/20/2005 3:36 PM

¢

499 int array_count;
boolean node_exist = false;

int sept;
while(hop_list{counter] != null)
{
node_in file = hop_list(counter];
sept = node_in_file.indexOf ("#");
node_name_in_file = node_in_file.substring(0,sept);

// if node exist
if(end node.equalsIgnoreCase(node name_in file}))

{

node_exist = true;
// get node count from string array (File)
array count = Integer.parselnt(node_in file.substring(sept+l, node in file.leng"

// get node count from message
message_count = Integer.parselnt (content.substring(seperator+l, content.length

// replace array if hop is now smaller
if (message count < array_count)
{
replacement = node_in_file.substring (0, sept+l);
replacement = replacement.concat (String.valueOf (message_count));
hop list[counter]) = replacement;
System.out.println("UPDATED HOP LIST: " + replacement);
}
} // end if

counter++;
} // end while

// new node, write to file
if (!node_exist)
{

hop list[counter++] = content.substring(space+l, content.length());
}

// open up new hop list file and write
BufferedWriter bufWriter = new BufferedWriter(new FileWriter("hop list.txt", true));

int i=1;

while({ i<counter)

{
bufWriter.write(hop list[i]);
bufWriter.newLine();
i++;

}

bufWriter.close();

} // end UPDATE HOP LIST

/e
// This function process HOP_TEST_HEADER messages (decrement hops and randomly send to othe

/) o
public void HOP_TEST_HEADER(String content) throws IOException
{

// Hop_Test Header: sent time#original sender#max_hop

// extract hop count and decrement and randomly send to peers again

int last = content.lastIndexOf ("#");

String max_hop = content.substring(last+l, content.length(});

int new_max = (Integer.parselnt(max_hop)) - 1;

max_hop = String.valueOf (new_max);

// construct the new message with decremented max_hop
String temp = content.substring(0,last+1);
String hop_test msg = temp.concat (max_hop);

// System.out.println("hop_test: " + hop test msg);

g, e nn

149

AgentReceiver.java 4/20/2005 3:36 PM

// randomly send to neighbours again

if (new_max > 0)

{
// get number of lst-tier neighbours
int neighbours = number of neighbours():
//int globals = number of globals();

// randomiy send ocut fo a first-tier neighbour
Random x = new Random(); // default seed is time in millisecoconds

int random = x.nextInt (neighbours); // returns random int >= 0§ and < n

// get destination node information
BufferedReader bufReader = new BufferedReader (new FileResader ("neighbounr list.ixt"))

// go to the line in the file
for(int i=0; i<random; i++)
{

bufReader.readLine () ;

}

String current_line = bufReader.readLine();

int index = current_line.indexOf ("/");

String dest_node = current line.substring(0,index);
bufReader.close{}); -

// send the message out
send_msqg (dest_node, hop_ test msg);

}
// reached the end, send back to original sender
else

{

[A JEalro

int index = content.indexOf (“#");
String End_Hop Test_Msg = content.substring(C, index);

o

3 End Hop Test Msg = "End ".concat (End Hop Test Msgq);
(1 String dest_node = content.substring(index+l, last);

send msg(dest_node, End_Hop Test Msg);
//System.out.println{"dest node: " + dest_node);
//System.cut.println{"End Hop_ Test Msg: " + End Hop Test Msg);

}
} // end HOP TEST HEADER

GV Y Y Y Y Y

o

om

/) T e e e
// This function process END HOP TEST HEADER messages (outputs time spend and analysis)

J) e e
public void END HOP_TEST HEADER(String content) throws IOException

{

o

™

62 int index = content.indexOf (":");

[

6235 String orig_time = content.substring(index+2, content.length{)};

624 long start_time = Long.parselong(orig time);

625

626 // Retrieve the number of milliseconds since 1/1/1970 GMT

627 Date date = new Date();

628 long end time = date.getTime();

629

630 long elasped_time = end_time - start time;

€31

& System.out.println("Total elasped time is: " + elasped_time + "milliseconds");
€2

©3¢

635 } // end END HOP_TEST HEADER

636

637

€38

639) e e
640 // This function returns the number of neighbours this node is connected to

150

AgentReceiver.java)] 4/20/2005 3:36 PM

brivate int mumber of meighbours(throws IoExesption

{ int count = 0;
BufferedReader bufReader = new BufferedReader (new FileReader("neighbour list.txt"));
while (bufReader.readLine(} != null)
{ count++;

}
bufReader.close();

return count;

} // end functicn
i e i
// This function returns the number of global nodes

e e e

private int number of globals() throws IOException
{

& int count = 0;

[BufferedReader bufReader = new BufferedReader (new FileReader("global list.txt"));
€6

6673 while (bufReader.readLine () != null)

£64 {

565 count++;

)

}
bufReader.close();

o
v O O
X~

> o ¢

return count;

& } // end function

& L e
& // This functions checks if incoming content already exist in file

[/e e e e e e e~

fo)

o

{

o™

booclean exist = false;
String current line;

o

[

BufferedReader bufReader = new BufferedReader (new FileReader(filename));

SEeN

o
jaed

»
o

while((current line = bufReader.readLine()) != null)

{

M

[a)

if (current_line.startsWith{content))

& {
& exist = true;
& bufReader.close () ;
687 return exist;
€88 }
)

}

return exist;

8
8

[RN e oY

9
3 /S S e o e e m e — i —
35 // This is the JADE program that actually sends the message OUT
596 e e
697 public void send msg(String node name, String message)
£98 {
©59 String responder = null;
700 String dest = null;

el

Gz try //trying to open socket for data going out
763 {
7064
705 dest = "http://".concat (node_name) .concat (":7778/acc");
706 // Use String class manipulation to get responder address
767 int end index = dest.lastIndexOf(":");
708 responder = "receiver@".concat (node_name) .concat(":1099/JADE");
709
710 // Setup JADE send variables to use JADE to send the message out
711 AID r = new AID{():;

151

4/20/2005 3:36

AgentReceiver.java L o S

r.setName (responder) ;
r.addAddresses (dest) ;

// create the ACL message and set specs, then send the msg according to
// the user defined address

ACLMessage msg = new ACLMessage (ACLMessage.INFORM) ;
msqg.setSender (getAID());
msg.addReceiver(r);

msqg.setContent (message) ;
send (msg) ;

finished = faise;
}
catch(Exception e)

{

System.out.println (" JALE send

}

} // end send msg()
} // end class Receive

}//end class AgentReceiver

PM

152

Broadcast _receive.java

it
3 // INCLUDED JAVA FILES
B e it b

5 package examples.receivers;

7 import java.net.*;

% import java.util.*;

% import java.io.*;

14 import J .lang.Thread;

JADE FILES

import .core.*;

import jade.core.behaviours.*;

import jade.lang.acl.ACLMessage;

import jade.domain,FIPAAgentManagement.ServiceDescription;
import jade.domain.FIPAAgentManagement.DFAgentDescription;
import jade.domain.DFService:

import jade.domain.FIPAException;

public class Broadcast_receive extends Agent {

3 class WaitPingAndReplyBehaviour extends SimpleBehaviour {
) private boolean finished = false;
public WaitPingAndReplyBehaviour (Agent a) {
super(a);
}
public void action() {
// empty function, never gets here

} // end action
public boolean done() {
return finished:;

} //End class WaitPingAndReplyBehaviour

42 protected void setup() {

try
{

Broadcast broadcast = new Broadcast():

// Loop forever and receive host information from clients.
// the received messages.
while (true)

{

MulticastSocket multicastSocket = new MulticastSocket():;
multicastSocket = broadcast.multicast_setup("230.0.0.1", 7777);

// blocks here indefinitely until a message is received
String message = broadcast.receive (multicastSocket) ;

// determine if node already exists in global list.txt
if (! (broadcast.content_exist ("glokbal list.txt", message)))
{
// write to global list file
broadcast.write("global list.txt”, message);
}

// Create an reply to tell the new Node that this current node is ON
broadcast.reply(message) ;

} // end while
}

catch (Exception exception)

153

Broadcast_receive.java 4/20/2005 3:37 PM

{

3

74 exception.printStackTrace();

75 }

76

77 [e e e e
78 // REGISTRATION WITH DIRECTORY FACILITATOR (DF)

[e e

DFAgentDescription dfd = new DFAgentDescription();

ServiceDescription sd = new ServiceDescription();

sd.setType ("Broadcast_receive Agent");

sd.setName (getName (}) ;

sd.setOwnership ("Edward");

//sd.addOntolcgies ("PingAgent");

2 dfd.setName (getAID()) ;

) dfd.addservices(sd);

a¥ed try {

&9 DFService.register (this, dfd);

§, } catch (FIPAException e) {
System.err.println{getLocalName()+" registraticon with DF unsucceeded. Reason: "+e.gqe
doDelete();

G

}

WaitPingAndReplyBehaviour PingBehaviour = new WaitPingAndReplyBehaviour (this});
addBehaviour (PingBehaviour);

/] = e

} // END SETUP

//}//end class Broadcast receive

private class Broadcast(
Broadcast () { //Begin Constructor
// initialize all global variable in this class

} //End Constructor

[/ mm e e e e e
// This function sets up the multicast address and joins the group
[e e e e e e

public MulticastSocket multicast_setup(String MULTICAST_ADDR, int MULTICAST_PORT) throws It

MulticastSocket multicastSocket = new MulticastSocket (MULTICAST_ PORT);
InetAddress inetAddress = InetAddress.getByName (MULTICAST_ADDR) ;
multicastSocket.joinGroup (inetAddress);

return multicastSocket;

/e

// This function blocks indefinitely until a message is received con Multicast Port

I

public String receive(MulticastSocket multicastSocket) throws IOException

{

byte [] temp = new byte [1024];

e e e e el sl el el ol el e el el

33 DatagramPacket datagramPacket = new DatagramPacket (temp, temp.length});
34
35 // infinitely stuck here until receive a packet
36 multicastSocket.receive (datagramPacket) ;
37 String message = new String(datagramPacket.getData(), 0, datagramPacket.getLength()};
38
139 return message;
140 }
141
142 /) e e e e -
143 // This function replies to the sender of the broadcast message

154

Broadcast_receive.java 4/20/2005 3:37 PM

144 /] s e e e e e
145 public void reply(String message) throws IOException

14¢€ {

147 int index = message.indexOf("/");

148 3tring node_name = message.substring (0, index);

InetAddress ownAddress = get own_Inet();
tring host_name = ownAddress.getHostName () ;
String msg = "Broadcast Setup: ".concat(host name);

send_msg (node name, msg):

S

T
// This functions actually sends the message out to destinaticn ncde

//
private void send_msg(String node name, String message)
{

[e]
ol 3tring responder = null;
67 3tring dest = null;
(5% try
o4 {
65 dest = "httwr://".concat (node name) .concat (":7?778/acc");
o8 // Use String class manipulation to get responder address
& int end_index = dest.lastIndexOf(":");
5% responder = "receiver@".concat(node_name).concat(“:lO99/JADE");
59
70 System.out.println("responder: " + responder);
L System.out.println("dest: " + dest};

// Setup JADE send variables to use JADE to send the message cut
AID r = new AID();

r.setName (responder) ;
r.addAddresses (dest) ;

// create the ACL message and set specs, then send the msg according to
// the user defined address

ACLMessage msg = new ACLMessage (ACLMessage.INFORM) ;

msg.setSender (getAID());

msg.addReceiver (r) ;

e e N el el s i e e e sl el el
d 3w T o IS IK¢
o L3 -

msg.setContent (message});

send (msgqg) ;

}
catch (Excepticn e)
{

System.out.println ("JADE send failed"):;
}

} // end functicn

/) s e e e
// This function writes the message to the specified file
F B e
public void write(String filename, String message) throws IOException
{
BufferedWriter bufWriter = new BufferedWriter(new FileWriter (filename, true));
bufWriter.write (message);
bufWriter.newLine () ;
bufWriter.close();

System.out.println("New node: " + message + " written fto " + filename);
}
207 /e e o
208 // This function returns the InetAddress of the current host computer
210 funiic Tnethddress get owm InecO T
1
gii try //trying to set own ip-address
312 (InetAddress ownIP = InetAddress.getLocalHost();

155

Broadcast FE?EEY?;jEVa

NN NN

NN NNNNRN

N
NN DA et
03 AG OO

4/20/2005 3:37 PM

return ownlP;
}
catch(UnknownHostException e)
{
System.out.println(e);
}
return null;
}// end get own Inet()

/e e e e e e e
// This functions checks if incoming content already exist in file
/e e e -
public boolean content exist(String filename, String content) throws IOException
{

boolean exist = false;

String current_line;

BufferedReader bufReader = new BufferedReader (new FileReader (filename));

while((current_line = bufReader.readLine()) != null)
{
if (current_line.equalsIgnoreCase{content))
{
exist = true;
bufReader.close();
return exist;
}
}
return exist;

}

} // end class Breocadcast

}//end class Broadcast receive

156

APPENDIX B

This appendix contains the sample code listing for extending the JXTA distributed
software platform.

157

.._.4/20/2005 3:38 PM

2 S e e e
3 // INCLUDE JAVA FILES

L B i e
S import java.io.FileInputStream;

6 import java.util.Date;

? import java.util.Enumeration;

8 import java.io.FileWriter;

import java.io.IOException;
import java.net.*;

import java.util.*;

import java.io.*;

import java.lang.Thread;
import java.lang.*;

import java.util.Enumeration;

// DISCOVERY FILES

import net.jxta.discovery.DiscoveryEvent;
import net.jxta.discovery.DiscoveryListener;
import net.jxta.discovery.DiscoveryService;
import net.jxta.protocol.DiscoveryResponseMsg;
import net.jxta.protocol.PeerAdvertisement;

import net.jxta.endpoint.StringMessageElement;

// RENDEZVQUS FILES

import net.jxta.rendezvous.RendezvousEvent;
import net.jxta.rendezvous.RendezvousListener;
import net.jxta.rendezvous.RendezVousService;

// DOCUMENT FILES

import net.jxta.document.StructuredTextDocument;
import net.Jjxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;

// ENDPCINT FILES

import net.jxta.endpoint.Message;

43 import net.jxta.endpoint.MessageElement;

import net.jxta.endpoint.Message.ElementIferator;

e // PEERGROUP FILES

47 import net.jxta.exception.PeerGroupException;
48 import net.jxta.peergroup.PeerGroup;

49 import net.jxta.peergroup.PeerGroupFactory:
50 import net.jxta.impl.peergroup.StdPeerGroup;
@1

52 // PIPE FILES

53 import net.jxta.pipe.InputPipe;

54 import net.jxta.pipe.PipeMsgEvent;

55 import net.jxta.pipe.PipeMsgListener;

56 import net.jxta.pipe.PipeService;

57 import net.jxta.pipe.OutputPipe;

58 import net.jxta.pipe.OutputPipeEvent;

59

import net.jxta.pipe.OutputPipelistener;
import net.jxta.protocol.PipeAdvertisement;

R

@ (3RS

62 // ID FILES

€3 import net.jxta.id.ID;

€4 import net.jxta.id.IDFactory;

65

€6 // MISC

67 import net.jxta.impl.endpoint.WireFormatMessage;

68 import net.jxta.impl.endpoint.WireFormatMessageFactory;

69 import net.jxta.util.CountingQutputStream;

70 import net.jxta.util.DevNullOutputStream;

O B e e i ittt

72 // END INCLUDE FILES

158

PipeComm.java

-

e}

.....

/*

Have an array of PipeAdv[] and using a while loop, bind all .XML

remove linel of XML file
match array position with irms-client##

-~ still broadcest the .XML file to everyone on the list

clientl goes online, sends to everyone, including client?2
- when client? wants to send to clientl,

bind to it

- broadcast --> also send back own .XML file

*/

public class PipeComm

{

JIITELTIIT7 770077077777 07777777777710777777707770/777777778777277/7777/
// GLOBAL VARIABLES //
L17717770 077777177 717777777777777277707077777777/7777777777707777777

public static void main (String[]) args) throws IOExcepticn{

PeerGroup netPeerGroup = null;
boolean exitConsole = false;
char userlInput;

Inetiddress ownlIP = InetAddress.getLocalHost():;
String host_name = ownIP.getHostName () ;

L1717 07 0700770770777 7 0700777777777 774777707177777777077787777777777/77/
// DELETE PREVIOUS FILES //
1770707077707 7077/477777
delete previous();

J1707087 00077777777 77777777777477777707777777777777770777777777777/777

FI11780717707777700777777777777777777777777777777777777771777777777

// CREATE THE DEFAULT JXTA NETPEERGROUP //
JI1771 71007777777 77777777777777777777777777777777077777777777/77/77/777
try {
// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creaticn failure™);
e.printStackTrace () ;
Svstem.exit (1) ;

}

1117747077777 170777777777777777777727777777777777777777777777777777
// GENERATE PIPE ADVERTISMENT AND BROADCAST TO EVERYONE /7
117777777777 77777777777777777477777777777777777777777/07777777777777
generatePipeAdv (netPeerGroup) ;

IILLP0L7177 7007770777777 7070707077770770707770707077177777777¢77777

JI17077 770707777770 7777077777777777777777777777777/77777777777777/77777
// INITIALIZE LISTENER/SENDER TO READY TO RECEIVING AND SENDING //
L1177 077 0077777777717 700707777777 77777777777777777777777777777777777
Pipelistener listener = new Pipelistener():

PipeExample example = new PipeExample();

listener.peergroup (netPeerGroup, example);

example.peergroup (netPeerGroup) ;

// start the listener

listener.run();

LITTITTIT 7777777777070 777770777770070717177707777771777777/7/7

_4/20/2005 3:38 PM

(also in array) that is not N

checks directory for clientl.xml, if its exist

159

PipeComm.java . 4/20/2005 3:38 PM

144 LI 7T E000077777777707777 17117707777 7177707717771777777111777

145 // READ IN ALL .XML FILES IN THIS DIRECTORY AND SEND FOR BINDING

14€ 1117770700777 007777077770 07777777777777077777707777777777707777777F
7 File homedir = new File("C:\\jxta devguidel\pipeservice");
//File homedir = new File(System.getProperty{"user.home"));
String(] XML_filename = homedir.list(new FilenameFilter({() ({
public boolean accept(File d, String name) { return name.endsWith (".XML");
}
1)
for(int i=0; i< XML_filename.length; i++)
{
System.out.println(XML_filename[i]);
}
// bind to all input pipes
listener.bind_input_pipe (XML _filename);
FITITEIITTEL P07 70T EP 0770270707800 0 710 i i irifirirfir?irrrr/

LIFLTIIII T E0 0077007770770 7 0707007777707 70077777170778707070777
// MAIN EXECUTION OF THE MENU SYSTEM /7
J1TIPILTII 0000000007000 0 0007700700000 8 0707770770000 107777777

while(!exitConsole)

{

userInput = main menuf{);

switch (userInput)
{
// send to specific ncde
case 'a':
send (example) ;

break;

// display &ll peers
case 'D':

display all():
break;

// display all neighbour peers
case 'c':
display neighbour peers();
break; -

// Add a neighbour peer
case 'd':

add _neighbour_peer (example, host_name);
break;

// Add a neighbour peer
case 'e':

send multi hop (example);
break; a -

// Update hop peer
case 'f':
update_hop_peer (example);

break;
// exit
case 'x':

System.exit (0);
break;

default:
System.out.println("Error input!!"):
break;
} // end switch
)

} // end main

public static void send(PipeExample example) throws IOException

160

PipeComm.java ._4/20/2005 3:38 PM

215 |

216 System,out.println(“Enter peer name: ");

2 String node name = getstring():

2 System.out.println("Enter message: ");
String message = dgetstring():

example.set message (message);

LFe I

String file path = "C:\\jxta _devq de\\pipeservice\\".concat (node name);
file path = file_path.concat (".XML");
File myFile = new File(file path);

// only attempt to send when a valid node
if (myFile.exists())
{
example.send_name (node name);
example.run{);
}
else
{
System.out.println ("INVALID NODE ~- DOES NOT EXIST");
}

} // end send(}

public static void display_all() throws IOException
{

File homedir = new File("C:\\jxta_ devguide\\pipeservi)i

//File homedir = new File(System.getProperty{"user.home"));

String[] XML filename = homedir.list(new FilenameFilter() ({
public boolean accept(File d, String name) { return name.endsWith(".¥ML");
}

V)i

Uy

<

System.out.println("");
System.out.println("Aiil P

2

14

for(int i=0; i< XML_filename.length; i++)

2 {
53 String temp = XML _filename([i].substring(O, XML_filename[i].indexOf("."));
54 System.out.println("Peger " + i + ": " + temp);
255 }
25¢ 1}
257
2BR) e e e e e e TS m S m— s oo
259 public static void display_neighbour peers() throws IOException
260 {
261 try(

BufferedReader bufReader = new BufferedReader (new FileReader("neighbo
String current line;

System.out.println("pisplaying ali 1lst neighbour peer");
System_ Out -println(u n) ;

int i=0;

while{ (current line = bufReader.readLine()) != null)

{
System.out.println ("Neighbour Peers§" + 1 + " " + current_line);
i++;

}
}catch (Exception e) (
System.out.println ("o nodes are currently connected");

}

} // end display_neighbour nodes{)

public static void add_neighbour peer (PipeExample Sender, String host_name) throws IOException
{

System.out.println("Enter name of peer: ");

String peer_name = getstring{);

161

PipeComm. java _.4720/2005 3:38 PM

n8e String file path = "C:\\ixta devguide\\pipeservice\\".concat (peer_ name);
! file path = file path.concat (".¥XML");
File myFile = new File(file_path):

oo

// check if content already exist and is a valid peer
if ((!'content exist("neighbour peer.txi”™, peer_name)) && (myFile.exists()})
{
// Open the neighkour peer.txt file to write to
BufferedWriter bufWriter = new BufferedWriter (new FileWriter("neighbou:ﬂpeer.txt",
// write to file
bufWriter.write(peer name);
bufWriter.newlLine () ;
bufWriter.close();
System.out.println("New peer: " + peer name + " is written tce neighbour peer.txt")

LIIIILIIL T T 7700771777077 07 7777777070777 7 7000070777770 77777777777777777

// NOW SEND THIS INFORMATION TO THE OTHER PEER FOR SETUP AS WELL /7
JI1IP111771 7077177077077 707707707777707777777177777707777777777777770717771777
String message = "ADMIN SETUP: ".concat(host name);

Sender.set message (message);
Sender.sena_name(peer_name);
Sender.run();

}

else

{
}

System.out.println("Peexr: "™ + peer name + " is not & valid paer");

} /7 end function

public static void send_multi hop(PipeExample Sender) throws IOException

{

String Multi Hop Header =
String Multi Hop Message;
String message;

String dest_peer;

String MAX HOP;

OP MESSRGE HEADER: ";

System.out.println("Enter destinaticn peer");
dest_peer = getstring();

if (peer_exist (dest peer))

{
System.out.println("Enter messaga”);
message = getstring();

System.out.println ("Enter Maximum rnumber of hops allowed"):
MAX HOP = getstring():

// Muliti Hop Message Header: 3#destinationsmsg_body
Multi Hop Message = Multi_Hop_ Header.concat (MAX_HOP.concat ("#".concat (dest_peer.concat

System.out.println("malti_ hop message: " + Multi_ Hop Message);

// check if destination is already a neighbour node
int front = Multi Hop_ Message.indexOf ("#");
int back = Multi Hop_ Message.indexOf ("$"):

// if already in neighbour list
if (content_exist ("neighbour peer.txt"”, Multi Hop_Message.substring(front+l, back)))
{
message = Multi Hop Message.substring(back+l, Multi_Hop Message.length());
Sender.set_message (message) ;
Sender.send_name (dest peer);
Sender.run{(); B
// Extract the message
}
else

{

// actually send the message to everyone on neighbor list

162

PipeCom.java B o - 7 ~ 4/20/2005 3:37875’!

g L el Ll L Lad fad L Td fad !
[oR] Qo -

ed O U

o]

289

} g
for]

427

BufferedReader bufReader = new BufferedReader (new FileReader ("neighbour peer.txt")
String current line; -
InetAddress ownlIP = InetAddress.getLocalHost():;

String host_name = ownIP.getHostName();

while((current line = bufReader.readLine()) != null)
{
// Don't send message to itself
if (! (current line.startsWith(host name)))
{
Sender.set message (Multi Hop Message):
Sender.send_name (current_ line);
Sender. run(),
}
} // end while
} // end else

} // end if
else

{
System.out.println("INVALID PEER NAME");

}

} // end function

public static void update_hop peer(PipeExample Sender) throws IOException

{

//Update_Hop Message Header: sender node#HOP COUNT #PRVVIOUS sender node#Original hop
System.out.println("Updating gicbai hop peer.... Please wait"):

// update from 2 hops to 5 hops.... TO BE CHANGED!!!!!!rtityntrrryt!
String UPDATE HOP_HEADER = JATE_HOP MESSAGE HEADER: "

wiip
%

InetAddress ownlP = InetAddress.getLocalHost():;
String host_name = ownIP.getHostName () ;

String hop count;

String neighbour name;
String current line;
String UPDATE HOP_ MESSAGE;

for (int i=1; i<2; i++)
{

~
~
-
.
n
o g

op count

hop count = String.valueOf (i);
UPDATE HOP_MESSAGE = host name.concat ("#".concat (hop_count.concat ("#")));
UPDATE _ " HOP MESSAGE = UPDATE _HOP_HEADER.concat {UPDATE_HOP_MESSAGE) ;

// actually send the message to everyone on neighbor list
BufferedReader bufReader = new BufferedReader {(new FileReader ("neighbour peer.txt").

while((current line = bufReader.readlLine()) != null)
{
// Don't send message to itself
if (! (current_line.startsWith (host_name)))
{
if (current_line.endsWith ("#"))

{

UPDATE_HOP_MESSAGE UPDATE_HOP_MESSAGE. concat (hop_count) ;

}

else

{
UPDATE_HOP MESSAGE
UPDATE_HOP_ MESSAGE

UPDATE_HOP_MESSAGE. substring (0, UPDATE HOP_MESSAGE
UPDATE HOP MESSAGE concat (hop_count) ;

}
System.out.println(UPDATE_HOP_MESSAGE);
Sender.set_message (UPDATE_HOP_MESSAGE) ;
Sender.send name (current_line);
Sender.run{();

163

PipeComm. java . 4/20/2005 3:38 PM

} // end while
bufReader.close();
} // end for
} // end function

public static char main_menu() throws IOException
{

char userInput:

System.out.println(" ");

3ystem.out.println{" ");

System.out.println(" o JX
System.out.println("An Innovative to Dis i Communigcation. ");
System.out.println(" ");

System.out.println("Plieass select cne ¢f the following opiiocns: ");
System.out.println(" ");

System.out.println (" a) Send"™);

System.out.println(" >} Dispaly ALL !

System.out.println (" c) Dispaly ALL neighbour pears");
System.out.println(" 3} Add neighbour peers");
System.out.println(" 2) Send by Multi-Hop");
System.out.println(" f) Update HOP 1ist"):

System.out.println (" ¥} Exig")s;

System.out.println(" ");

3ystem.out.println(" ");

System.out.println (" ");

System.out.print ("Flease make your selection: ");

tryf

userInput = get_char();
return userInput;
}
catch (Exception e) {
System.out.println(e);
}

// dummy return
return 'x';

} // end main_menu

// Generate a pipe advertisement
public static void generatePipeAdv{PeerGroup netPeerGroup) throws ICExcepticn
{
DiscoveryService discovery = netPeerGroup.getDiscoveryService();
// Create a new Pipe Advertisement object instance.
PipeAdvertisement pipeAdv =
(PipeAdvertisement) AdvertisementFactory.newAdvertisement (
PipeAdvertisement.getAdvertisementType());
// Create a unicast Pipe Advertisement.
pipeAdv.setName ("IRMS CCMMUNICATION PIPE"):;
pipeAdv.setPipelID((ID) IDFactory.newPipelD(netPeerGroup.getPeerGroupID())):
pipeAdv.setType (PipeService.UnicastType) ;

// Save the document into the public folder
// discovery.publish{pipeAdv, DiscoveryService.ADV)};
// discovery.remotePublish(pipeAdv, DiscoveryService.ADV);

writePipeAdv (pipeAdv) ;

92)
493
494 /) mmmm e
495 // Write the advertisement to file, and broadcast to everybody
4926 private static void writePipeAdv (PipeAdvertisement pipeAdv)
497 {
498 // Create an XML formatted version of the Pipe Advertisement.

le4

PipeComm.java 4/20/2005 3:38 PM

try

// get local host name

InetAddress ownlP = InetAddress.getLocalHost():
5tring host_name = ownIP.getHostName();

host name = host name.concat (".AML");

FileWriter file = new FileWriter (host name):
MimeMediaType mimeType = new MimeMediaType ("tLext/xml");
StructuredTextDocument document =

(StructuredTextDocument) pipeAdv.getDocument (mimeType) ;

// Cutput the XML for the advertisement to the file.
document .sendToWriter (file);
file.close();
broadcast () ;
}
catch (Exception e)

{

e.printStackTrace();

et e Tt
public static void broadcast ()
{

int MULTICAST_PORT = 7777;

String MULTICAST_ADDR = "230.G.0.1";

String current line = "";

String broadcast_file = "";

try

{
// get local host name
InetZddress ownlP = InetAddress.getLocalHost();
String host file = ownIP.getHostName ();
broadcast _file = host file.concat("4");
host_file = host file.concat (".XML");

BufferedReader bufReader = new BufferedReader (new FileReader (host_file));

while((current_ line = bufReader.readLine()) != null)

{

broadcast _file = broadcast file.concat (current line);
broadcast_file = broadcast file.concat("4");
}

bufReader.close () ;

byte[] temp = broadcast file.getBytes();
InethAddress inetAddress = InetAddress.getByName (MULTICAST ADDR) ;
DatagramPacket Out_Packet = new DatagramPacket (temp, temp.length, inetAddress, MULTICAST
MulticastSocket multicastSocket = new MulticastSocket ():;
multicastSocket.send (Out_Packet) ;
}
catch (Exception exception)
{
exception.printStackTrace () ;

}
} // end broadcast

public static boolean peer_exist(String peer name)

{
tring file_path = "C:\\ixta devguidel\pipeservice\\".concat (peer_name);
file path = file path.concat(".XML");
File myFile = new File(file path);

if (myFile.exists())
{
return true;

}

165

PipeComm. java

{

7/

// This functions checks if incoming content already exist in file

/f
// This functions returns the character input from the user

else
{

return false;

public static void delete previous() throws IOQExcepticn
{
// get all *.XML files within directory
File homedir2 = new File("C:\\jixta devguide\\pipeservice
//File homedir = new File(System.getProperty{"user.home"));
String[] XML filename2 = homedir2.list (new FiienameFiiter({() ({
public boolean accept(File d, String name) { return name.endsWith (".¥ML");
}
}Yy i
for (int i=0; i< XML_filename2.length; i++)

{

System.out.println(XML_filename2[i]);
File delete_file = new File(XML_ filename2(i]);
delete_file.delete();

}

InetAddress ownIP = InetAddress.getLocalHost();
String host_name = ownIP.getHostName ();

File myFile = new File("C:\\jxta devguide\\PipeServicel\nelghbour pe
myFile.delete(); -

File myFile2 = new File("C:\\jxta devguide\\PipeService\\hop pser.txi");
myFile2.delete();

BufferedWriter bufWriter = new BufferedWriter(new FileWriter ("neighbour pesr.int”,
bufWriter.write (host name);

bufWriter.newLine(};

bufWriter.close();

r.txt", true)

BufferedWriter bufWriter?2 = new BufferedWriter(new FileWriter("hop e
String host = host_name.concat ("#5");

bufWriter2.write(host);

bufWriter2.newLine ();

bufWriter2.close();

} // end function

public static boolean content exist (String filename, String content} throws IOException

boolean exist = false;
String current line;

BufferedReader bufReader = new BufferedReader (new FileReader(filename)};

while((current_line = bufReader.readLine()) != null)
{
if (current line.equalsIgnoreCase (content)}
{
exist = true;
bufReader.close();
return exist;
}
}

return exist;
// end function content_exist ()

public static char get_char() throws IOException
{

. 4/20/2005 3:38

R

true

)i

166

. 4/20/2005 3:38 PM
InputStreamReader isr = new InputStreamReader (System.in);

BufferedReader br = new BufferedReader (isr);

String s = br.readLine();

return s.charAt (0);

} // end get char(}

// This function returns the entire line of 3tring
public static String getstring{() throws ICExceptiocn
{
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader (isr);
String s = br.readLline();
return s;

} // end getString()

} // end class PipeComm

class Pipelistener implements PipeMsgListener {

static PeerGroup netPeerGroup = null;
private final static String SenderMessage =

String([] hop_peer = new 3tring [100];

private PipeService pipe;

private PipeAdvertisement pipeAdv;

private InputPipe pipeInl = null;

private InputPipe pipeIn2 = null;

InputPipe pipeIn[] = new InputPipe(20];//ull;

PipeExample Sender = new PipeExample(); // get netPeerGroup from MAIN

public void peergroup (PeerGroup group, PipeExample example)
netPeerGroup = group;

pipe = netPeerGroup.getPipeService ()
Sender = example;

/* System.cut.println{"Reading in pipexample.adv");
try |
FileInputStream is = new FileInputStream{"era-pjS57gq%emaoct.xXML");
pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement (MimeMediaType.:

is.close();
} catch {(Exception e) {
System.out.println("failed to read/parse pipe advertisement");
e.printStackTrace()} ;
System.exit (-1};
}
*/
}
// bind to specified input pipe

public void bind_input pipe(String(] XML filename) throws IOException
{

InetAddress ownIP = InetAddress.getLocalHost()};
String host_name = ownIP.getHostName();

for(int i=0; i< XML filename.length; i++)
{

Pce try{
707 pipe = netPeerGroup.getPipeService():
708 System.out.printin("Reading in " + XML filename(i]);
TCe9
10 if(XML_filename[i].startsWith(host_name))

R

ot

{

167

PipeComm.java . 4/20/2005 3:38 PM

FileInputStream is = new FilelInputStream(XML filename(i]);
pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement (MimeMediaT:
is.close{();

pipeIn([i) = pipe.createInputPipe(pipeAdv, this);
System.out.println("written");

} catch (Exception e) {
em.out.println("failed to
e.printStackTrace();
System.exit(-1);

ifparese pipe advertisement™);

}

} // end kind input pipe

public static void printMessageStats (Message msg, boolean verbose) |
try |
CountingQOutputStream cnt;
ElementIteratcr it = msg.getMessageElements(};

System.out.println("-—----—--——--—--——~ Begin Message--—--——~-~-—~—mmomma ety
WireFormatMessage serialed = WireFormatMessageFactory.toWire(
nsg,
new MimeMediaType ("applicatien/x-jxta-msg”), (Mime
System.out.println("Message Size :" + serialed.getBytelength{());
while (it.hasNext()) {
MessageElement el = (MessageElement) it.next();

String eName = el.getElementName();

cnt = new CountingQutputStream(new DevNullOutputStream()):;
el .sendToStream(cnt) ;

long size = cnt.getBytesWritten():

System.out.println("Element " + eName + " : " + size);
if (verbose) (
System.out.println (" ["+el+"}]");
}
}
System.out.println("----~=---=r——---——~ End Messa

} catch (Exception e) (
e.printStackTrace () ;

}
/**

* wait for msgs
*

>/
public void run() {

try |
// the following creates the inputpipe, and registers "“this"
// as the PipeMsgListener, when a message arrives pipeMsgEvent is called
System.out.println("Creating input pipe"):
// pipeln = pipe.createlnputFipe{pipeAdv, this);
} catch (Exception e) {
return;
}
// if (pipeIn == null) {
// System.out.println{" cannot open InputPipe");
/7 System.exit (-1);
/7)

4 System.out.println("Waiting for msgs on input pipe");
S }
76
777
TR Vi
779 * By implementing PipeMsglistener, define this method to deal with
7390 * messages as they arrive
781 v/
782

PipeComm. java

733
P

7/

/*

*/

[

L

NN
Lk N3 >

(705 73S S S S5 PR Ao T35 PR PR S
g IR L 5
Lo

o
B h oA
o

[SoJE IV, N

[2 73 S35 VRN]
UGt &

0 N) b

public void pipeMsgEvent (PipeMsgEvent event) {

String ADMIN_HEADER = "ADMIN SE "
String MULTI_HOP_HEADER = "MULTI_ HOP 2T
String UPDATE_HOP_HEADER = "UPDATE HOF DER: “;

String UPDATE HOP_LIST HEADER = "USLATE H

EADER: "; // header to

Message msg=null;
try {

// grab the message from the event

msg = event.getMessage():;

if (msg == null) {

return;
}
printMessageStats (msg, true);

} catch (Exception e) {

e.printStackTrace();

return;

}

// get all the message e€lements
Message.ElementIterator enum =
if (!enum.hasNext({)) {

return;

msg.getMessageElements () ;

}

// get the message element named SenderMessage
MessageElement msgElement = msg.getMessageElement (null, SenderMessage)
String received = msgElement.toString();
// Get message
if (msgElement.toString(} == nuil) |
System.ocut.println("null msg received")};
} else {
System.out.printin("Message receivad: "+ msgElement.toString(};;

}

//ADMIN RECEIVED, SETUP NEIGHBOUR LIST
if (received.startsWith (ADMIN_ HEADER))
{

try{

4/20/2005 3:38 PM

write final he

received = received.substring(received.indexOf (":")+2, received.length());

bocolean exist = content exist("neighbour peer.txt", received);
if (lexist)
{

BufferedWriter bufWriter = new BufferedWriter(new FileWriter ("neighbour pe

// write to file
bufWriter.write(received) ;
bufWriter.newline () :
bufWriter.close() ;
System.out.println("Pesr: " + received +
} // end if
} // end try
catch (Exception exception)

{

excepticn.printStackTrace():

}
} // end if

// MULTI HOP MESSAGE RECEIVED, DECREMENT COUNT AND FORWARD
else if(received.startsWith(MULTI_HOP_HEADER))
{

/*
Check if dest node is a neighbour node, if yes, send directly
if not, decrement hop count and send to all neighbour ncde
if hop_count==0, discard (send msg failed??)
*/
// Extract destination node to see if neighbour node
tryf{

int front = received.indexQf ("#");
int back = received.indexOf ("$");

is added remotely

by Administra-

169

. 4/20/2005 3:38 PM

// if already in neighbour list, send directly
if(content_exist ("neighbour pesr.f=t", received.substring(front+l, back)))
{

// Multi_Hop Message Header: 3#destination$msg body

// Extract the message and send to destination

String temp = received.substring(back+l, received.length());

Sender.set message(temp);

Sender.send name (received.substring(front+1l, back));

Sender.run();

//send msg(content.substringi{front+l, back}, temp);
System.out.println("to neighbour: " + received.substring(front+l, back));

o olins}

e s)

}

X

// decrement Hop count and send to all neighbour
else

{

ool

) O T

// extract hop count

// Muiti Hop Message header: 2fidestinationSmsg_body
int start = received.indexOf(":");
3ftring hop = received.substring(start+2, front);

// decrement hop count

int temp_hop = Integer.parselnt (hop);
temp hop--;

hop = String.valueOf (temp hop):;

InetAddress ownIP = InetZddress.getLocalHost();
3tring host_name = ownlIP.getHostName () ;

// make everything lower case, just tc be safe
host_name = host name.toLowerCase();

// go through neighbour list and send tc all neighbours
if (temp_hop>0)
{

received = received.substring(front, received.length());

// make new MULTI HOP String
String NEW MULTI HOP MESSAGE = MULTI_HOP_HEADER.concat (hop.concat (rece
System.out.println("new received: " + NEW_MULTI_HOP MESSAGE);
// actually send the message to everyone cn neighbor list
BufferedReader bufReader = new BufferedReader (new FileReader ("neighbhou:
String current_line;

// don't send tc itself

while((current_line = bufReader.readLine()) != null)
{
// Don't send message to itself
if (! (current_line.startsWith(host_name)))
{
Sender.set_message (NEW_MULTI_HOP_MESSAGE) ;
Sender.send_name (current_line);
Sender.run{);
} //end if
} // end while
bufReader.close();
} // end if (temp hop>0)
} // end else
} // end try
catch (Exception exception)
{

exception.printStackTrace():

17 }

18 } // end else if

19

20 // Jd % d kK ok de ok e g Kok sk ok ke dk s ke ok ke ke e ke sk ke gk ke e ok ke ok ke ok ok ko dk e e e ok ek ke ok kb ke ok ke gk ke ke ok ke ok ok ke ke R ok ke
921 // Update Hop List message
G522 [/ xRk KRR R KKK ek kK ok Kk ke ko ek ok ok ok ok ok ok ke ke ok k Kk k ok ok ok ok Kk ok ok ok
923 // test if message is to update hop list
924 else if(received.startsWith(UPDATE_HOP_HEADER))

170

PipeComm. java __4/20/2005 3:38 PM

925 {

try({

//sender _node#HOP COUNT#PREVIOUS_ sender node#Original_ hop Count
int first = received.indexOf (“#");

int second = received.indexOf ("#", first+l);

int end = received.lastIndexOQOf ("4");
// convert to INT
int hop_count = Integer.parselnt(received.substring(first+l, second));

3tring final _hop_count="";
ring original_sender;
ring current_line:
ring new_hop count;

// get current host name
. InetAddress ownIP = InetAddress.getLocalHost ():;
2 S3tring host name = ownIP.getHostName();

if (hop count>0)
{

Wy W

hop _count = hop_count-1;

[NeN RN NI IAUPIN AN

}

VRN
BN
X

e
E=N
e

// hop count==0!1titlrtrretrpr vt
if(hop:count==0)
{
// end of hop reached, send back to sender with hop infa

//Update Hop List Header: current node#original hop count

int space = received.indexOf (" ");
String UPDATE_HOP_LIST_MESSAGE = UPDATE HOP LIST_HEADER.concat (host_name);
UPDATE HOP_LIST MESSAGE = UPDATE_HOP LIST_MESSAGE.concat(received.substring (en

original sender = received.substring(space+l, first):;
System.oﬁt.println("or%ﬂinal: " + original_ sender) ;
System.out.println("sPDATE HCP LIST MESSAGE: " + UPDATE HOP LIST MESSAGE);
// send tc original sender TO BE MODIFIED!'!!!!!!!

Sender.set message {(UPDATE HOP LIST MESSAGE);
Sender.send name (original sender);

Sender.run{});

}

// end of hop NOT reached, send out
else
{
// Update Hop_ Message_ Header: sender node#HOP_COUNT#PREVIOUS sender node#Original)

//Replace the hop count and send to everyone on the list, except to itself
new_hop_count = String.valueOf (hop count):
System.out.println("hep count: " + hop count):

// get message header
String temp_content = received.substring(0,first);

// attach new hop_count
temp_content = temp_content.concat ("#".concat (new_hop count));

// get original hop count
temp _content = temp_content.concat (received.substring(second, received.length()));

// send to everyone on neighbour list with new hop count
BufferedReader bufReader = new BufferedReader (new FileReader ("neighbour peer.txt")

Sa9 // actually send the message to everyone on neighbor list, except itself AND previ
S9d String previous_sender = received.substring(second+l,end);

841

§92 while((current_line = bufReader.readLine()) != null)

ga3 {

594 // Don't send message to itself

595 if (! (current_line.startsWith(host name)) && ! (current_line.equalsIgnoreCa

171

_4/20/2005 3:38 PM

Sender.set message(temp_content);
Sender.send name{current_line);
Sender.runf();
} //end if
} // end while
bufReader.close () ;
} // end else

} // end try

catch (Exception exception)

{

exception.printStackTrace();

}
} // end else if

/‘/ K ohod kok ek v ok k ko k ok chk Wk b ok ok ok Yok ok ke Wk k% ok sk W ok e ke ok ke ke ke ke v ok kb e ke kW ke ke b ke ok ke o ke b

// Update Hop List message

// t**t**v;‘v*-k—:****-"****‘k‘k‘k"'i*k*i***#'k'kﬁt*******i***%***t*****’k*i‘*i—-)(v&-k*

// Update hop list.txt, get only the shortest hops away

else if(received.startsWith(UPDATE HOP_ LIST_HEADER))

{

try{
System.out.println("rewrite:

+ received) ;

//Upcdate Hop List Header: enc node#original hop count

int space = received.indexQf (¥ ");
-2 int seperator = received.indexOf ("#");
Y 3tring end node = received.substring(space+l, seperator);
8 5tring final count = received.substring(seperator+l, received.length());
26

// loop through hop list to record hop info, only take the info with least hops!!
BufferedReader bufReader = new BufferedReader (new FileReader ("hop peer.txi™));

et B ped ed

//copy file into hop list array, then delete file
String current line;

int counter = 1;
while((current line = bufReader.readLine()) != null)
{

hop_peer(counter]) = current line;

counter++;

} // end while

// delete the file

bufReader.close();

File myFile = new File("C:\\jxta devguidei\Pipe: ice\\nop . yi
myFile.delete();

Pt e e b Rt jed) b3 R0 0 el ber pn
Ny o e D O

counter = 1;

String node_in_file;
String old node_count;
5tring replacement;
5tring node name_in file;
String received_node;

int message_count;
int array_count;
boolean node exist = false;

int sept;
while(hop_peer[counter] != null}
{
node in_file = hop peer[counter];
sept = node_in_file.indexOf ("#");
node_name_in_file = node_in_file.substring(0, sept):

// if node exist

1064 if(end_node.equalsIgnoreCase(node_name_in file})
1065 {
1066 node_exist = true;

172

PipeComm.java 4720/2005 3:38 PM

// get node count from string array (File)
array count = Integer.parselnt(node_in_file.substring(sept+l, node

// get node count from message
message _count = Integer.parselnt{received.substring(seperator+l, r«

// replace array if hop is now smaller
if (message count < array count)

{

replacement = node_in file.substring(0, sept+l);
replacement = replacement.concat(String.valueOf (message count)
hop peer[counter] = replacement;

System.out.println("UPDATED hop p + replacement);

}
} // end if

counter++;
} // end while

if (!node_exist)
{

hop_peer[counter++] = received.substring (space+l, received.length()):
}

// open up new hop_list file and write
BufferedWriter bufWriter = new BufferedWriter(new FileWriter("hop peer.txt’

int i=1;

while(i<counter)
{

N Ty T

bufWriter.write (hop peerl[i]):
bufWriter.newlLine () ;
1++;

ek et el et

}
bufWriter.close();
} // end try

catch (Excepticn exception)

{

e i
P T e s B o

P e

exception.printStackTrace () ;
}

= e b e

f et e e

} // end else if

ot

11
1
1l
1
1.
1
1. J) T e e —
1

else

{

System.out.println("RECEIVED: " + received);
}
}// end function
F e e bl

1137 // This functions checks if incoming content already exist in file

173

PipeComm.java . , o i . 4/20/2005 3:38 PM

[XoIRv]

public static boolean content_exist(String filename, String content) throws IOException
{

ot e b

el £y

boolean exist = false;
String current_line;

L N

1
1z
]
L
1
1
1

;_\.:.x;_\;:;xu-w.

BufferedReader bufReader = new BufferedReader(new FileReader(filename));

4

while((current line = bufReader.readLine()) != null)
{
if (current_line.equalsIgnoreCase(content))
{
exist = true;
bufReader.close () ;
return exist;
}
}
return exist;
} // end function content exist(}

} // end class

class PipeExample implements
Runnable,
OutputPipelistener,
RendezvousLlistener {

P2 el bt ped ped B ped R R

static PeerGroup netPeerGroup = null;
private final static String SenderMessage =
private PipeService pipe;

private DiscoveryService discovery;

private PipeAdvertisement pipeAdv;

private RendezVousService rendezvous;
3tring message = "";

)t et et

FENE

ot

el bt et

5tring dest _node;

et e

public void set_message(3tring msg)

{

[ORra—

message = msg;

}

public void send name (String name)

{

o
[P

dest_node = name;

ARt

}

public void peergroup (PeerGroup group)
{
netPeerGroup = group:;
// get the pipe service, and discovery
pipe = netPeerGroup.getPipeServicel();
discovery = netPeerGroup.getDiscoveryService():

et b bt d pd b ped R e d et

}
Jxx

* the thread which creates (resclves) the output pipe
* and sends a message once it's resolved

»/

et o e ped ped e

s

et

public synchronized void run{() {
1 try {
12¢1
12C2 dest_node = dest _node.concat (“.XKML"};
12G3 System out. prlntln("Readlﬂg in " + dest_node);
1204 FileInputStream is = new FlleInputStream(dest_node);
1205 pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement (MimeMediaType.:
120¢ is.close();
1207
1208 // this step helps when running standalone (local sub-net without any redezvous se:

174

PipeComm.java _ 472072005 3:38 PM

discovery.getRemoteAdvertisements(null, DiscoveryService.ADV, null, null, 1, null)
// create output pipe with asynchronously

// Send out the first pipe resolve call

System.out.println({"Attempting to create a CutputPipe");

pipe.createOutputPipe (pipeAdv, this);

/* // send out a second pipe resclution after we connect
// to a rendezvous
i1f {!rendezvous.isConnectedToRendezVous()) |
System.out.println("Waiting for Rendezvous Connection"j;
try |
walt {);

System.out.println("Connected to Rendezvous, attempting to create a Output:
pipe.createCutputPipe (pipeAdv, thisj;
} catch (InterruptedExceptiocn e} {
// got cur notification
}
b/
} catch (IOExcepticn e) {
System.out.println(“Cutputlipe creation failure");
e.printStackTrace();
System.exit (-1);

/*r

* by implementing OutputFipeListener we must define this methoed which
* 1s called when the output pipe is created

*

*@param event event cobject from which to get output pipe object

>/
public void outputPipeEvent (OutputPipeEvent event) {

System.ocut.println{” Got an output ripe event");
OutputPipe op = event.getOutputPipe();
Message msg = null;

try {
System.out.println("Sending message");
msg = new Message();
Date date = new Date(System.currentTimeMillis());
StringMessageElement sme = new StringMessageElement (SenderMessage, message , null)
msg.addMessageElement (null, sme);
op.send{msqg) ;

} catch (IOException e) {
System.out.println(“failed to send messaqge");
e.printStackTrace () ;
System.exit (-1);

}
op.close();
System.out.println("message sent”);
}
/*i
* rendezvousEvent the rendezvous event
*
*@param even rendezvousEvent
*/
public synchronized void rendezvousEvent (RendezvousEvent event) {
if (event.getType() == event.RDVCONNECT) {
notify (),
}
}

175

