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ABSTRACT

With an increasing number of bacterial genomes becoming available, we

are now able to investigate and quantify selected general trends in pathogenicity

shared across diverse pathogens which have been previously anecdotally

reported but have not yet been quantified on a larger scale. In addition, we can

perform more high-throughput approaches for the identification of virulence­

associated genes that represent possible therapeutic or prophylactic targets.

In this study, I systematically examined up to 267 pathogen and non­

pathogen genomes from diverse genera, and identified trends associated with a

curated data set of known bacterial virulence factors (VFs). I show, in support of

previous anecdotal statements, that genomic islands (clusters of genes of

probable horizontal origin) disproportionately do contain more VFs than the rest

of a given genome (p < 2.20E-16), supporting their important role in pathogen

evolution.

To gain insights into the types of genes that may playa more virulence­

specific role in pathogens, I also performed an analysis to identify pathogen­

associated genes (genes found predominately in pathogens across multiple

genera, but not found in non-pathogens). I found that disproportionately high

numbers of pathogen-associated VFs are "offensive" (involved in active invasion

of the host), such as certain types of toxins, as well as Type "' and Type IV
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secretion systems. Some of the pathogen-speci'fic genes identified have

apparently not yet been examined for their potential as vaccine components or

drug targets and merit further study.

As the first step in the initiation of more sophisticated analyses of trends in

virulence, I also developed a Virulence Gene Experiment Database (VGEDB)

that incorporates contextual information about virulence. This database is unique

in that entries are centered around describing a particular virulence gene

experiment, rather than a virulence gene. I used this database in part to

investigate a common BLAST-based approach for computationally identifying

VFs in genomic sequences. My analysis suggests that this common VF-

prediction method is very inaccurate.

This work in general provides the first large-scale, multi-genera,

quantitative data describing selected trends in bacterial virulence and provides

global insights regarding pathogen evolution and pathogen-associated traits of

primary importance in a pathogenic lifestyle.

Keywords: Bioinformatics; prokaryotes; genomics; virulence factors; pathogen­
associated; genomic islands; pathogenicity; bacteria; virulence;
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CHAPTER 1 INTRODUCTION

1.1 Infectious disease: a global burden

Infectious diseases are among the leading causes of mortality with an

estimated 15 million annual deaths worldwide (Morens et al. 2004). The

discovery and use of antibiotics in the 1940s and 1950s posed a milestone in

history, with major declines in mortality rates associated with certain bacterial

infections. However, along with the increasing use of antibiotics came the rapid

emergence of pathogens that are resistant to antibiotics (Binder et al. 1999),

which posed a major problem for disease treatment and therapy. Continuous

overuse of antibiotics over the decades has now led to a serious crisis, with an

increasing incidence of pathogens that are resistant to multiple antibiotics

(Morens et al. 2004), including multiply-resistant S. aureus strains resistant to

penicillin, methicillin, and vancomycin (Centers for Disease Control and

Prevention 2002) - one of the last remaining treatments available. Furthermore,

recent bioterrorist attacks, such as the anthrax attack in 2001 (Jernigan et al.

2002), has heightened public alarm about our vulnerability and susceptibility to

these diseases.

Further study of pathogens and their complex interactions with the host,

pathogen and environment can provide fundamental insights of pathogenic

mechanisms and traits that may aid in the development of new vaccines and



antimicrobials essential for combating the re-emerging threat of infectious

diseases of bacterial origin.

1.2 The concept of bacterial virulence

In 1890 Robert Koch devised a set of four scientific criteria, now known as

Koch's postulates, used to establish that a particular pathogen was the causative

agent of an infectious disease (Table 1.1). The first of these postulates states

that the pathogen should be isolated from all cases of the disease and not be

associated with healthy individuals. Secondly, the pathogen must be isolated

from the infected individual, and it should be able to be grown in pure culture.

Thirdly, the disease state should reoccur when the pathogen is used to infect a

healthy individual, and finally, the pathogen can again be isolated from this newly

infected individual. However, it was soon noted ,that these postulates cannot be

universally applied to all pathogens. For example, the virulence of some

pathogens can range in severity and therefore may not result in a similar disease

state in different individuals. Furthermore, some bacteria cannot easily be grown

in pure culture as they are difficult to grow under normal laboratory conditions.

Table 1.1 Koch's Postulates to determine if a pathogen is the causative agent of a
particular disease

1. The pathogen should be isolated from all cases of the disease, but absent
from healthy individuals

2. The pathogen must be isolated from the infected individual and grown in
pure culture

3. The disease state should reoccur when the pathogen is used to infect a
healthy individual

4. The pathogen can again be isolated from this newly infected individual
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Stanley Falkow attempted to add more rigor in the identification of

molecular factors involved in virulence, and in the late 1980's proposed

"Molecular Koch's Postulates" (Falkow 1988) to define a virulence factor (Table

1.2). There are many versions of these postulates, but they are basically

composed of the following three criteria: First, the virulence factor should be

present in all pathogenic strains and absent from any close non-pathogenic

relatives. Second, inactivation of the virulence factor gene should result in

attenuated virulence in an animal infection model. Lastly, complementation of the

inactivated gene with the functional one should re-establish virulence in the

animal model. Although these postulates serve well as guidelines, Falkow noted

that identifying virulence factors is becoming more complex, and that these

postulates have certain limitations and should not always be strictly followed

(Falkow 2004). For example, a particular virulence factor gene may be

responsible for virulence in some hosts but not others. Additionally, it is

increasingly difficult to clearly distinguish pathogenic and non-pathogenic

species.

Table 1.2 Molecular Koch's Postulates to determine that a given virulence factor gene
contributes to disease

1. The gene or phenotype should be associated with pathogenic strains and
absent from non-pathogenic strains

2. Inactivation of the gene should result in attenuated virulence in an
appropriate infection model

3. Complementation of the inactivated gene with the functional one should re­
establish virulence in the animal model

3



Through the years, we have gained a better understanding of the complex

nature of host-pathogen interactions. There is now an increasing appreciation

that infectious disease is a much more complex phenomenon, and is the result of

an interplay between the host, pathogen and environment. The virulence

outcome can depend on multiple factors including specific traits inherent to the

host and pathogen as well as the environmental niche. For example, the ability of

different hosts to eliminate the pathogen can vary significantly, from complete

clearance, to asymptomatic carrier states, to a more severe onset of the disease.

Some bacteria can colonize specific privileged sites in the body where conditions

are favourable for their growth and proliferation, but not other sites. Furthermore,

establishing infection is greatly mediated by specific factors, commonly called

virulence factors, which are utilized by a particular pathogen to cause disease.

The following section will discuss the definition of a virulence factor in more

detail.

1.3 The definition of a virulence factor

Virulence factors (VFs) have previously been defined as a "microbial

product that permits the pathogen to cause disease" (Casadevall et al. 1999). In

this context, the term VF is quite generic, and can be used to describe any factor

involved in virulence. VFs have a wide variety of roles in the disease process,

and their degree of virulence or damage to the host can vary widely. Some of the

major roles of VFs include: facilitate attachment or invasion of host cells, causing

direct damage to the host cell or surrounding tissue, evasion of host defences,

4



and gathering nutrients from the environment. Some VFs also playa role in

transport or regulation of other VFs.

It has also been noted that researchers often tend to distinguish between

'true virulence genes', 'virulence-associated genes', and 'virulence life-style

genes' to some degree (Wassenaar et al. 2001). In this case, 'true virulence

genes' are pathogen-specific (i.e. absent from nonpathogens) and are defined as

'gene products directly involved in interactions with the host and are directly

responsible for pathological damage'. There is also an increasing appreciation

that many classic VFs, originally thought to be pathogen-specific, are being found

in non-pathogens (Zhang et al. 2003), which re-iterates the fact that virulence

and VFs are quite complex. In fact, some have proposed that the term VF should

be used less and that they should instead be referred to instead as "host

interaction factors" (Holden et al. 2004).

In summary, VFs are complex factors, and their role and ability to cause

damage to the host varies widely. Nonetheless, certain VFs have been well

established, as we have a good understanding of the mechanistic role of some of

them in the disease process. Some of the major VF categories that are relevant

to this dissertation work are discussed in greater detail in the next section.

1.4 Virulence factors

Several stages in the infection process are mediated by bacterial VFs that

allow the pathogen to establish infection. When the pathogen first comes into

contact with its host, it requires specialized factors to infect and colonize its host.

5



Initial attachment usually involves adhesion factors that bind to the host cell

surface (section 1.4.1). Following attachment, some pathogens can invade host

cells or the underlying tissues in the body using invasins (section 1.4.2). Most

pathogenic bacteria also produce and secrete toxins (section 1.4.3), which can

cause damage to the host tissue, but whose actions are somehow beneficial to

the bacteria. They must also possess mechanisms to evade host immune

defenses once they have been detected (section 1.4.4), and obtain nutrients from

the environment that are essential for their growth and survival (section 1.4.5).

Additionally, bacteria possess various VF transport systems (section 1.4.6),

including specialized systems that directly inject factors into the host cells.

Finally, bacteria have evolved strategies to regulate the production of particular

VFs at different stages of infection (section 1.4.7).

For the purposes of this thesis, all factors that facilitate infection of the

bacteria will be collectively referred to as VFs. Table 1 provides a summary of the

major types of VFs, as well as some examples from well established pathogens.

In the following sections, I will describe these types of VFs in more detail, as well

as discuss the mechanism and function of selected VFs during infection. This is

not meant to represent a comprehensive list of all bacterial VFs, but only to

provide the basic concept of how these types of VFs can be utilized by a

pathogen and their relative contributions to the disease process.
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Table 1.3 Types of bacterial virulence factors

Type of virulence factor Example virulence factor and species

Adhesins Type 1 fimbriae (Salmonella typhimurium)

Flagella (Pseudomonas aeruginosa)

Type IV bundle-forming pili (enteropathogenic Escherichia
coli)

Intimin and Tir (enteropathogenic Escherichia coli)

Invasins SPI-1 encoded genes (Salmonella typhimurium)

Invasin (Yersinia enterolitica)

Toxins Cholera toxin (Vibrio cholerae)

Pertussis toxin (Bordetella pertussis)

Anthrax toxin (Bacillus anthracis)

Adenylate cyclase toxin (Bordetella pertussis)

Listeriolysin 0 (Listeria monocytogenes)

Hemolysin (Escherichia coli)

Evasion of host defences Alginate (Pseudomonas aeruginosa)

IgA1 protease (Neisseria gonorrhoeae)

Iron Uptake Enterobactin (Salmonella typhimurium)

Yersiniabactin (Yersinia pestis)

Transport of VFs Type III secretion system (Yersinia pestis)

Type IV secretion system (Agrobacterium tumefaciens)

Regulation of VFs Quorum sensing (Pseudomonas aeruginosa)

1.4.1 Adhesins

Adhesions mediate the initial interaction between a pathogen and its host.

Many structures on the surface of a bacterial cell have been shown to function in

adhesion in some way, although their primary role may not necessarily be in

adhesion. Different adhesions can preferentially bind to selected tissue cell types
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and cellular molecules. For example, enteropathogenic E. coli utilizes type IV

bundle-forming pili to mediate initial attachment to host epithelial cells (Tobe et

al. 2002). Additional adhesion proteins, intimin and Tir (translocated intimin

receptor), facilitate more intimate attachment (Jores et al. 2004). These two

proteins are encoded on the LEE (Locus of Enterocyte Effacement) pathogenicity

island, in addition to numerous effectors, and genes encoding a Type III

secretion system (T3SS; section 1.4.6). Tir is secreted into the host cell via the

T3SS, and mediates intimate attachment by binding to intimin on the bacterial

cell surface. At the same time, translocated effector proteins mediate actin

cytoskeletal rearrangements leading to formation of the pedestal-like structures

characteristic of E. coli infections (Jerse et al. 1990; Jerse et al. 1991).

1.4.2 Invasins

Invasins are factors that facilitate invasion of the pathogen into the host

cell or underlying tissues. They typically act by disrupting the host cell

cytoskeleton or signalling pathways, allowing entry of the bacteria into host cells

or dissemination throughout the body. For example, at least 13 secreted effectors

encoded in SPI-1 (Salmonella Pathogenicity Island-1) of Salmonella typhimurium

are involved in invasion, most of which function by disrupting host cell actin

cytoskeleton leading to membrane ruffling (Zhou et al. 2001). Effective invasion

of the pathogen typically allows for more suitable conditions for their growth and

survival.
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1.4.3 Toxins

Many bacterial pathogens produce and secrete exotoxins that are critical

for pathogenesis. The symptoms associated with an infectious disease can be a

direct result of the activity of the toxins. Such toxins are generally unique to

different pathogens and their toxicity can range in severity. For example, some

are cytotoxic on their own, and can directly cause death of the target cell. Others

may allow the pathogen to escape from host immune cells and enter a more

favorable environment.

Toxins (exotoxins) can be generally classified into three categories: Type

I: Bacterial superantigens, Type 1/: Membrane damaging toxins, and Type 1/1:

Intracellular acting toxins. Some toxins, however, do have multiple functions and

are therefore difficult to classify into one of these categories. A good example of

this is the anthrax toxin from Bacillus anthracis. The anthrax toxin is composed of

three components. Two of these components, the lethal factor and edema factor,

both act intracellularly like Type III toxins, while the third component, the

protective antigen, is more similar to Type II toxins, as it forms a pore that

facilitates delivery of the lethal factor and edema factor into the cell cytosol

(reviewed in (Ascenzi et al. 2002)). Nonetheless, this classification system

represents a good general system for classifying toxins that is loosely based on

their mechanism of action.

Since toxins became one focus of this thesis, in the sections below I will

give a brief summary of these three categories of toxins, as well as describe in

9



more detail selected toxins, their mechanism of action, and their role in

pathogenesis.

Type I toxins: Bacterial superantigens

Bacterial superantigens are an unusual type of bacterial toxin produced by

Staphylococcus aureus and Streptococcus pyogenes (Marrack et al. 1990).

These toxins are unique as they can directly bind to Major Histocompatibility

Complex class II (MHC class II) and T-cell receptors, stimulate a large number of

T-cells, and induce a massive inflammatory response (reviewed in (Herman et al.

1991)). In normal antigen presentation, the antigen is first digested by

macrophages into peptides, which are then presented in a complex with MHC

class II at the cell surface. These complexes are recognized by a small number

T-cells and stimulate their proliferation. Superantigens, however, skip the

digestion step as they can directly interact with MHC class II and T-cell receptors

and activate T-cells. The number of stimulated T-cells is much greater, resulting

in a much more profound inflammatory response and damage to surrounding

epithelial cells, which can lead to disease manifestations such as toxic shock in

the case of S. aureus infection (Kotzin et al. 1993).

Type II toxins: Membrane damaging toxins

There are generally two types of membrane damaging toxins: 1) toxins

that disrupt the integrity of host cell membranes, and 2) pore-forming toxins,

toxins that "punch holes" in the host cell membrane, The first class of toxins

generally exhibit an enzymatic activity that damages phospholipids in the host

10



cell membrane, leading to cell lysis. One example is Phospholipase C in Listeria

monocytogenes. The second type of membrane-damaging toxin, the pore­

forming toxins, comprises the majority of Type \I toxins. They function by forming

a pore or channel in the host cell membrane.

The Cholesterol Dependent Cytolysins (CDCs) comprise one family of

pore-forming toxins. They preferentially bind to cholesterol-rich membranes and

oligomerize to form large pores. These pores generally consist of 30-50 subunits

and range in diameter from 250-300A. To date, CDCs have been identified in 5

genera of pathogens: Clostridium, Streptococcus, Listeria, Bacillus, and

Arcanobacterium. Although the mechanism of pore-formation in these CDCs is

relatively similar, they are structurally distinct and seem to contribute to different

aspects of pathogenesis (reviewed in (Tweten 2005)). Listeriolysin 0 (LLO) is

one CDC found in the human pathogen Listeria monocytogenes. LLO has a

unique property that is not found in other non-listerial CDCs: its activity is pH­

dependent. This property enables Listeria to escape the host immune system

and establish infection. Geoffroy, et al showed that purified LLO is highly active in

acidic pH, and exhibits low activity in neutral pH (Geoffroy et al. 1987). This is

important for Listerial pathogenesis since during the course of infection, Listeria

are engulfed by phagosomes. The acidic environment of the phagosome triggers

LLO activity, which perforates the phagosome and allows the bacteria to escape

into the more neutral environment of the host cell cytosol where they can then

thrive and proliferate (Tweten 2005).
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Type III toxins: Intracellular toxins

Many bacterial pathogens possess toxins that act intracellularly in the host

cell. Some toxins function by altering or regulating synthesis of cyclic AMP (cyclic

adenosine monophosphate). cAMP is an important messenger required for many

metabolic and cellular processes, and its production is strictly regulated. Toxins

that alter cAMP production are therefore usually critical for the progression of a

bacterial infection.

Adenylate cyclase toxins are able to themselves catalyze the production of

cAMP. For example, the invasive adenylate cyclase toxin from Bordetella

pertussis is able to significantly disrupt the immune defense mechanism by

specifically targeting immune cells. cAMP accumulation in these cells

significantly reduces or halts their normal cellular function thereby weakening

immune defenses. A study by Confer et al., showed that phagocytic cells

incubated with Bordetella extracts exhibited increased accumulation of cAMP, as

well as reduced superoxide generation, chemotaxis, particle ingestion, and killing

capacity (Confer et al. 1982). In addition to adenylate cyclase from Bordetella,

three additional adenylate cyclase toxins have been identified: the edema factor

of B. anthracis, exoenzyme Y of Pseudomonas aeruginosa, and adenylate

cyclase in Yersinia pestis (reviewed in (Ahuja et al. 2004 )).

Some bacterial toxins utilize an ADP-ribosyltransferase (adenosine

diphosphate-ribosyltransferase) mechanism to increase intracellular cAMP

levels. For example, both pertussis toxin and cholera toxin ADP-ribosylate G

protein subunits leading to continual synthesis of cAMP from ATP (adenosine
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triphosphate) by cellular adenylyl cyclase (Cassel et al. 1978; Katada et al.

1982). This ultimately leads to symptoms like the massive diarrhea associated

with V: cholera infection and anaphylaxis associated with B. pertussis infection.

Additionally, diphtheria toxin from Corynebacterium diphtheria and exotoxin A

from P. aeruginosa utilize an ADP-ribosylation mechanism to inactivate

eukaryotic elongation factor 2 (functions in elongation of polypeptide chains) and

thereby causing death of the target cell (Collier 2001). Finally, exoenzymes S

and T from P. aeruginosa are bifunctional toxins that contain both ADP­

ribosyltransferase and GTPase-activitating domains (Barbieri et al. 2004). These

toxins act on different cellular targets and so likely contribute to different aspects

of pathogenesis. The specific cellular substrates inactivated by ADP-ribosylation

are not entirely known, however reports have found that the ADP­

ribosyltransferase domains are involved in antiphagocytosis, disruption of the

actin cytoskeleton, and cause apoptosis of host cells (Aktories et al. 2005;

Barbieri et al. 2004)

1.4.4 Evasion of host defences

Many bacteria have evolved mechanisms that evade the host's immune

system defences. Various mechanisms are used by pathogens to block different

stages in the host immune response. One strategy involves inactivation of

antibodies using antibody-specific proteases. The IgA1 protease of Neisseria

gonorrhoeae is one representative example of this (Pohlner et al. 1987). Certain

bacteria can also produce extracellular capsules or biofilms that prevent
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phagocytosis, such as the alginate biofilm produced by P. aeruginosa for

example (Simpson et al. 1988).

1.4.5 Iron uptake

Many bacteria have evolved mechanisms to uptake iron from their host

(for a review, see (Wooldridge et al. 1993). One method is by the production of

siderophores. Siderophores are compounds with a high affinity for iron, which

scavenge and remove iron from host proteins. Enterobactin, is a classic example

of one such siderophore that binds iron with a very high affinity (Pollack et al.

1970). Another strategy used is to secrete toxins that kill host cells and release

cellular contents, making iron more easily accessible and hence significantly

enhancing bacterial growth (Waalwijk et al. 1983).

1.4.6 Transport of virulence factors

To date, 7 different types of secretion systems (referred to as Type I-VII or

T1SS-T6SS) have been described that are associated with the transport of VFs

(Gerlach et al. 2007). These transport mechanisms can be generally divided into

two classes, those that secrete factors into extracellular space (for example,

Type I, II, and V), and those that directly inject VFs, or "effectors", into the target

cell upon contact (for example, Type III and IV).

T1SSs incorporate a Sec-independent process that delivers the protein

directly into the extracellular space in a single step. This is though to be the

simplest of systems, consisting of a multi-protein apparatus that includes an

ATPase-binding cassette transporters (Holland et al. 2005).
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T2SSs incorporate a two-step process: firstly, proteins are secreted into

the periplasm by the general secretory pathway, and secondly, they are further

transported into ext.racellular space via a protein complex containing secretin

(Johnson et al. 2006). The biogenesis of the T2SSs is thought to function in a

similar manner to that of type IV pili.

In T3SSs and T4SSs, effector proteins are injected directly into the target

cell cytosol through a needle-like complex referred to as an 'injectisome'. T4SSs

can also mediate conjugal transfer between bacteria. These systems are

discussed further in the sections below.

In T5SSs, also referred to as autotransporters or self-transporters,

proteins are secreted in two steps: first they are secreted across the inner

membrane into the periplasm via the Sec-dependent pathway, and second, they

utilize a self-transport mechanism that releases the protein outside of the cell

(Henderson et al. 2004).

The mechanisms of T6SSs have not yet been fully studied, however they

have been shown to secrete potential effector proteins via a host-cell contact

dependent mechanism (Pukatzki et al. 2006), Additionally, identified substrates

lack an N-terrninal signal sequence suggesting their secretion is Sec­

independent (Gerlach et al. 2007). T6SS have been identified in both V. cholera

and P. aeruginosa (Mougous et al. 2006; Pukatzki et al. 2006).

T7SSs have been relatively recently identified and its mechanism of

secretion is not fully understood. It appears to be distinct from other secretion

systems in that the secreted proteins seem to be dependent upon one another
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for effective secretion (Abdallah et al. 2007). T7SSs have been identified in a

variety of Gram-positive bacteria (reviewed in (Abdallah et al. 2007)), although

certain systems, such as that found in L. monocytogenes for example, have not

been shown to playa role in virulence (Way et al. 2005).

In the sections below, I will discuss in more detail the structure and

components of T3SSs and T4SSs, since these systems became a topic of focus

during this thesis study.

Type III secretion systems

A T3SS is a secretion apparatus utilized by many pathogenic bacteria to

inject VFs, called "effectors", directly into the cytosol of eukaryotic host cells

(Galan et al. 1999). These effectors can mimic or interfere with host cellular

signaling pathways, which is of some benefit for the pathogen. T3SSs have been

discovered in diverse Gram-negative pathogens of plants and animals (Hueck

1998), as well as commensal and symbiotic bacteria where they serve to

promote invasion or establish mutualistic association with their hosts (Dale et al.

2001; Dale et al. 2002; Pallen et al. 2007). Seven different families of Type III

secretion (T3S) injectisomes have been identified to date based on phylogenetic

analysis of their conserved proteins (Cornelis 2006). T3SS are distributed among

bacteria through mechanisms of horizontal gene transfer as they are often

associated with pathogenicity islands (Groisman et al. 1996).

A typical T3SS consists of a needle-like structure, the injectisome, and a

translocation pore (Figure 1.1). The injectisome needle has been described as a

"molecular syringe", where effector proteins are injected directly into the

16



cytoplasm of the target cell in one step. Secretion of certain effector proteins are

assisted by cytosolic chaperones (Mota et al. 2005). The injectisome needle

protrudes from the bacterial cell and is anchored to a complex of proteins forming

the basal body, a series of rings spanning the inner and outer membranes.

Several basal body proteins are homologous to flagella, suggesting an

evolutionary relationship between the two systems (Saier 2004). Finally at the tip

of the injectisome needle is a translocation pore that is inserted into the target

cell membrane, allowing VFs, or "effectors" to be injected directly into the cytosol

of the target cell.
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Figure 1.1 Structure of a T3SS.

A typical T3SS is composed of an injectisome and a translocation pore. The injectisome
consists of a needle-like structure anchored to a complex of proteins forming the basal
body. At the tip of the injectisome is the translocation pore, which penetrates the host
membrane allowing effectors to be directly secreted into the cytoplasm.
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The Ysc-Yop T3SS in Yersinia pestis, the causative agent of the black

plague, was the first system to be identified in the late 1980's. Researchers

noticed that when Yersinia are incubated in lo~ calcium concentrations, an array

of proteins were secreted, referred to as Yops, or Yersinia outer proteins

(Heesemann et al. 1986). These Yops were later identified as the virulence­

associated effector proteins that function by blocking phagocytosis and the host

pro-inflammatory response, and therefore allowing survival and rapid

dissemination of invading Yersinia, and for the extreme pathogenicity and fatality

rate associated with Yersinia infection (Cornel is 2002b).

The Ysc-Yop secretion system is now the most well studied T3SS, with

homologous systems also present in Vibrio spp., P. aeruginosa, Photorhabdus,

Bordetella and Aeromonas spp. (He et al. 2004). It encompasses more than 20

genes which make up the Ysc (Yop secretion) injectisome and effector Yops. To

date, six Yop effectors have been identified: YopH, YopE, YopT, YpkNYopO,

YopPlYopJ and YopM (Cornel is 2002a). Three genes (IcrV, yopB, and yopD)

form the translocation pore and are required for effective translocation of effector

proteins (Marenne et al. 2003; Neyt et al. 1999). Genes that encode parts of the

basal body include: YscC encoding secretin (the outer ring component), YscN an

ATPase, YscR-V (proteins in the basal body in contact with the cytoplasmic

membrane), YscJ and YscQ. Three genes (TyeA, LcrG, YopN/LcrE) have been

previously shown to playa regulatory role by blocking the secretion channel in

the absence of host cell contact (Cornel is et al. 2000), Finally, YopKIYopQ

regulates the size of the pore in the target membrane (Cornel is et al. 1998).
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Type IV secretion systems

T4SS are versatile systems used by a variety of bacteria. They can be

used for either conjugal transfer, i.e. to mediate the exchange of DNA between

cells, or similar to T3SSs, they can secrete VFs directly into the cytoplasm of the

target cell (Cascales et al. 2003). One of the most well studied systems is the

VirB/D4 system in Agrobacterium tumefaciens (Christie 1997). It is composed of

at least 12 proteins, VirB1-11 and VirD4, which mediates the transfer of T-DNA

and effector proteins (VirE2, VirE3, VirF, and VirD5) into host plant cells (Backert

et al. 2006). There are currently two working models for substrate translocation:

the "Channel model" and the "Piston model" (reviewed in (Cascales et al. 2003)).

T4SSs differ from T3SSs in that substrates may be first translocated into the

periplasm either by using the coupling protein (VirD4), the general secretory

pathway, or another pathway, and then subsequently secreted across the outer

membrane via the T4SS (Cascales et al. 2003). In T3SS, however, effector

translocation often occurs in a single step ((Mota et al. 2005); see above section

on T3SSs). The VF substrates function by disrupting normal cellular growth,

leading to production of tumors and crown gall disease. Similar T4SSs have

been described in B. pertussis, Helicobacter pylori, Brucella spp., Bartonella

spp., and Legionella pneumophila (Cascales et al. 2003).

1.4.7 Regulation of virulence factors

Bacteria possess multiple mechanisms to regulate the production of VFs

(for a review, see (Cotter et al. 2000)). Certain VFs may be required at particular

stages of infection, and so bacteria must possess mechanisms for coordinating
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expression of genes at certain times. Some regulatory systems function in

response to environmental stimuli: such as a change in pH, nutrient availability,

or population density. Quorum sensing is one example of ~ regulatory

mechanism that allows the bacteria to detect the density of the surrounding

population, and respond by regulating the expression of various genes. One such

example is the las and rhl systems in P. aeruginosa, which regulates the

production of multiple VFs and is critical for development of biofilms (Davies et al.

1998; Whiteley et al. 1999).

1.5 Genomic islands and virulence

Genomic islands (Gis) are defined as clusters of genes of potential

horizontal origin in a prokaryotic genome. They are commonly associated with

genes that provide some adaptive advantage for a microbe's particular lifestyle

(Hacker et al. 2000; Hentschel et al. 2001). Gis were first disovered in

uropathogenic Escherichia coli in late 1980s as large, unstable regions

containing virulence-associated genes, and hence coining of the term

"pathogenicity island" (PAl) (Hacker et al. 1990; Knapp et al. 1986). Since then,

PAis have been shown to encode numerous virulence-associated genes that are

important for the pathogen to survive and cause disease in its host: for example,

toxins, iron uptake, adhesions, and T3SSs (Boyd et al. 2002; Dobrindt et al.

2004; Finlay et al. 1997; Gal-Mor et al. 2006; Groisman et al. 1996; Hacker et al.

1997; Hacker et al. 2000; Schmidt et al. 2004; Wilson et al. 2003).

In addition to PAIs, several other similar elements with horizontal origins

exist that encode functions other than virulence that allow the microbe to adapt to
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and explore new niches. For instance, genes involved in nitrogen fixation and

interaction with plant hosts are encoded on "symbiosis islands" in Rhizobiaceae

spp., (Sullivan et al. 1998). Collectively, these genetic elements a.re referred to as

Gis. Although Gis seem to be identified more frequently in Gram-negative

bacteria, they are also present in Gram-positives and share similar structural

features of a typical GI discussed below (Dobrindt et al. 2004; Hacker et aL

2000).

All types of Gis are commonly associated with particular structural

features that distinguish them from the rest of the genome (for a review, see

(Hacker et al. 1997)). These features typically include the following: 1) sporadic

distribution among closely related species or strains; 2) abnormal G+C content

and codon usage compared to the rest of the genome; 3) associated with tRNA

loci; 4) large in size, ranging from 10-200kb; 5) flanked by direct repeats; 6)

associated with mobility genes; and 7) relatively unstable regions that are

spontaneously excised from the chromosome. A GI usually contains at least one

or a combination of these features suggesting the region has horizontal origins.

Although PAis have been noted on several occasions for their association

with VFs, no analysis has yet been reported that examines whether this trend is

systematically true across diverse lineages of pathogens, Such an analysis is

now possible, as we have access to high quality predictions of Gis (discussed

more in section 1.8.3) and high quality datasets of VFs (section 1.8.1).

Furthermore, a more global analysis quantifying the function of genes encoded in

islands can provide important insights into the evolution of pathogens.

22



1.6 Vaccines

The term vaccination was first used by Edward Jenner in 1796 when he

performed his now classic experiments involving the use of cowpox to immunize

against smallpox (Jenner 1800). Early advances in vaccine development were

also strongly influenced by the work of Louis Pasteur. In his early research of

chicken cholera, Pasteur showed that inoculation of the inactivated pathogen,

later known as P. multocida, into chickens rendered them immune to future

infection (Pasteur 1880). This principle of complete inactivation conferring

disease resistance permitted the development of many vaccines. For example,

some vaccines consist of inactivated toxins (toxoids), such as diphtheria and

tetanus vaccines (Plotkin 2005).

Early vaccine design generally involved conventional laboratory

approaches, where individual antigens were identified and tested for their ability

to induce an immune response. This process can require a significant amount of

labour and time, and cannot be easily applied to organisms that are difficult to

grow in the lab. Technological advances in molecular biology and sequencing of

complete genomes facilitated the development of variety of large-scale laboratory

and bioinformatics approaches to identify novel drug targets; in-vivo expression

technology, signature-tagged mutagenesis, and comparative genomics are only

a few examples of available technology (sections 1.7.2 and 1.8.2). These

approaches can simultaneously screen entire genomes for hundreds of potential

candidates.
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There is renewed interest in capitalizing on VFs that are pathogen-specific

as potential vaccine candidates (Russmann 2004). Additionally, VFs are also of

interest as they may be targets for antimicrobials or "anti-virulence" drugs, where

the microbe is essentially "disarmed" and evolves towards a less virulent form

(Gandon et al. 2003). It is also becoming clear that the traditional approach of

broad-spectrum antimicrobial development can select for antimicrobial

resistance. Therefore, there is a growing interest in complementing more

conventional drug discovery approaches with new approaches such as utilizing

pathogen-specific mechanisms and anti-virulence-based approaches.

1.7 Laboratory-based identification of virulence factors

Several experimental approaches are now used to discover VFs. Such

approaches are increasingly being implemented on a larger, genome-wide scale.

The following section provides a brief introduction to low-throughput techniques

used for VF discovery, as well as a closer look at increasingly popular high­

throughput approaches like signature-tagged mutagenesis (STM). Limitations

associated with these approaches are also discussed.

1.7.1 Low-throughput approaches

Cloning

One method involves cloning a virulence gene from a known pathogen

into an otherwise non-pathogen, which then expresses the virulence phenotype.

For example, E. coli K12, a non-pathogenic laboratory strain, does not typically

invade tissue culture cells. However, cloning of the inv locus of Yersinia
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pseudotuberculosis into E. coli was sufficient for E. coli to invade cultured HEp-2

cells (lsberg et al. 1987). However, this approach is limited because not all

cloned genes can be easily expressed in an avirulent host.

Transposon mutagenesis

In transposon mutagenesis, a given VF gene is inactivated by a

transposon insertion leading to reduced virulence in the mutant bacteria

compared to wild-type. Such experiments can be performed either in vitro or in

vivo. For example, mutants harbouring a transposon insertion mutation can

exhibit attenuated virulence in a mouse infection model (Portnoy et al. 1988), or

decreased survival in macrophages (Fields et al. 1986). However, there are two

limitations of this method where particular genes can be falsely identified as VFs.

Firstly, transposon insertion can sometimes result in polar effects of downstream

genes, and second, the transposon insertion may disrupt genes that are

essential for growth resulting in "auxotrophic" mutants. These limitations are

described in more detail in the limitations of laboratory based approaches section

below (section 1.7.3).

Transcriptional fusions

Transcriptional fusion is a method commonly used to identify VFs based

on their regulatory properties (Salyers et al. 2002). In one variation of this

approach, the target VF gene is fused to the gene, like phoA, encoding an easily

detectable enzyme (alkaline phosphatase, in this example). PhoA has a unique

property in that its activity is localization dependent, i.e. it is active only when
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localized to the membrane or is secreted. One can then use this technique to

screen for surface or secreted VF mutants with attenuated virulence in vivo. This

technique has been used to identify a toxin co-regulated pilus subunit, tcpA, in V.

cholera that is necessary for colonization in mice (Taylor et al. 1987).

1.7.2 High-throughput approaches

A variety of laboratory methods are used that enable high-throughput,

parallel screening for VFs. Some of the more common methods used include in

vivo expression technology (IVET), STM, and DNA microarrays. In this section, I

will describe a brief overview of these methods with particular focus on STM. I

will also discuss some recent technical adaptations and advances in STM

technology that have enhanced the overall versatility of this technique.

Signature tagged mutagenesis

STM is a negative selection method that identifies particular mutants with

attenuated virulence in vivo in a mixed mutant population. This is possible

because each mutant harbours its own unique DNA signature that allows for

identification of a particular VF gene. Hensel and colleagues were the first to use

STM to identify VFs in S. typhimurium in a murine model of typhoid fever (Hensel

et al. 1995). In this study, the signature tags are linked to transposons, and

consist of a unique 40 bp variable region flanked by 20 bp invariable regions

(used for amplification and labelling of tags by peR). Transposition of signature

tags into bacteria leads to a mixed pool of mutants referred to as the input pool.

Following infection of the mice with the input pool, the input pool is compared to

26



the output pool (mutants recovered after infection), and those mutants absent

from the output pool but present in the input pool are varients that have a

mutation in a gene that likely contributes virulence under these particular

infection conditions.

Since its initial use, STM has become increasingly popular and has been

used to identify over 1900 virulence and colonization factors in almost all major

human pathogenic bacteria (Saenz et al. 2005). Many innovative technical

adaptations have been described including comparative-based STM studies,

where P. aeruginosa mutants were used to infect both wild type and genetically

manipulated mice deficient in SP-A (surfactant protein A). Two mutants exhibited

differential clearance in these mice, indicating these genes may be involved in

resistance to SP-A mediated clearance in the mouse lung (Zhang et al. 2005).

STM is also extremely versatile, and in addition to bacteria, has been applied to

yeast, fungi, viruses, parasites, and mammalian cells (Mazurkiewicz et al. 2006).

In vivo expression technology

IVET as the name implies, identifies potential genes that must be

expressed for survival of the bacteria in an appropriate in vivo infection model.

This technique was first used by Mahan et a/., to identify S. typhimurium genes

expressed in a mouse infection model (Mahan et al. 1993). This approach is

based on the premise that purA, a purine biosynthesis gene, is essential for S.

typhimurium mutants to infect mice. In this study, they first used DNA fragments

from the Salmonella genome, and then ligated them to a promoterless purA-/acZ

gene combination. A fraction of the DNA fragments should hybridize such that a
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potential gene of interest and its associated promoter would ensure expression of

purA-lacZ genes. These fragments are then randomly inserted into a mutant

Salmonella strain that lacks a functional purA gene, and are subsequently used

to infect the mice. Any surviving strains isolated after infection must therefore

contain an active purA gene. These surviving strains are then plated and lacZ

expression is detected. Those colonies with positive LacZ expression in vivo, but

not in vitro, likely contain a DNA fragment required for in vivo infection and are

subsequently isolated for further study.

DNA Microarrays

Comparative microarray based approaches is another technique widely

used to identify virulence genes (Behr et al. 1999; Champion et al. 2005; Hotopp

et al. 2006; Snyder et al. 2006; Stabler et al. 2005). It is based on the principle

that genomic DNA unique to the pathogenic reference strain and absent from

closely related non-pathogens, likely contain genes associated with virulence.

One study compared virulent M. tuberculosis H37Rv with attenuated M. bovis

BCG (Bacillus Calmette-Guerin) strains (Behr et al. 1999). BCG strains are used

as live attenuated vaccines against M. tuberculosis infection. However, it is not

clear why these strains are attenuated. In this study, they found one region

encoding 9 open reading frames (ORFs) present in H37Rv but absent from all

tested BCG strains suggesting that deletion of this region in BCG strains may be

responsible for attenuated virulence. In addition to comparative analyses, several

methods exist utilizing microarray technology to identify VF genes, such as
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detection of genes expressed during in vivo infection for example (Boyce et al.

2004).

1.7.3 Strengths and limitations of laboratory based approaches

An advantage of low-throughput gene knockout experiments is that a VF

gene can be directly targeted for inactivation and tested on an individual basis.

Data from such low-throughput experiments is thought to be of the highest

quality, and such methods are the most reliable for identification of a given VF

gene. An advantage of high-througput approaches such as STM, IVET, and

identification in vivo expressed genes through DNA microarrays, is that because

they are screening for genes necessary for the bacteria to survive in a particular

host, potential VF genes are identified regardless of their function or role in

disease. An additional advantage it that many potential VFs are screened and/or

identified in parallel and hence these methods provide a rapid and in theory, a

more comprehensive set of VFs involved in infection of a particular host.

Additionally, with STM, a pool of individual mutants are screened simultaneously

in a single host and thus significantly reducing the cost and number of animals

involved in such laboratory experiments.

A disadvantage of the approaches that utilize transposon mutagenesis,

such as STM, is that in certain circumstances, genes can be falsely identified as

VFs. For example, bacteria with mutations in genes that are essential for growth

and survival, will likely exhibit attenuated virulence in vivo and therefore be

falsely identified. However, usually such auxotrophic mutants can be detected

early if tested for normal growth in vitro. Additionally, transposition in a gene may
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affect expression of downstream genes leading to polar effects. In other words, if

we consider two genes, gene A and B, gene A containing a transposon mutation

that has been identified as the VF, and gene B being downstream of gene A.

Gene B may in fact be the true VF, but transposon insertion upstream has

affected is normal function, leading to false identification of gene A. However,

these polar effects can be detected if all genes downstream of gene A (in the

same coding direction) are individually screened for attenuated virulence. In

other words, if individual knock-out mutants of genes downstream of gene A do

not exhibit reduced virulence compared to wild-type, but a knock-out of gene A

does, then it can be reasonably assumed that gene A is in fact the true VF.

IVET technology has two additional limitations: the first is that only genes

that are highly expressed during infection can be easily detected. If a gene is not

highly expressed, then it may not produce sufficient quantities of PurA required

for the pathogen to survive. Secondly, not all genes identified are essential for

infection, and when mutated and tested individually, do not show attenuated

virulence on their own possibly reflecting the co-operative and complex nature of

virulence.

Although several methods have been described that reduce the number of

falsely identified VFs in these screens, they are not always performed in practice.

It is especially difficult to test each individual gene in the high-throughput

screens, simply because hundreds of potential genes are identified in parallel. In

these cases, usually tests for data quality are either not performed at all or only

for a small subset of genes, which can be misleading for downstream analyses.
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Another limitation of laboratory approaches in general is that some

pathogens are difficult to grow under normal laboratory conditions. For example,

one metagenomic study revealed that many unculturable pathogens appear to be

involved in gum disease (Pennisi 2004). With the continuing increase of data

from metagenomic studies, it can be expected that an increasingly notable share

of the genomic data will come from unculturable organisms that cannot be easily

studied in the lab, making common molecular laboratory techniques impractical

or impossible to perform.

Finally, the laboratory methods discussed here all involve a significant

amount of labour and cost, especially if animals are involved in the experiment.

Therefore, at minimum we can significantly reduce the amount of time and

resources used, by complementing these laboratory approaches with additional

bioinformatics and computational approaches.

1.8 Bioinformatics analysis of virulence

1.8.1 Virulence factor databases

There are four databases currently available that contain information

about VFs (Table 1.4): 1) Virulence Factor Database (VFDB), 2) MvirDB from the

Lawrence Livermore National Laboratory, 3) PRINTS database of virulence

factors, and 4) Toxin and Virulence Factor database (TvFac).

VFDB (www.mgc.ac.cnNFs/; (Chen et al. 2005)) is specifically focused on

information about bacterial VFs and contains high quality, manually curated data.

The VFDB currently contains 402 VFs, 24 PAis, and over 2345 VF related genes
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from 24 different pathogen genera, including the most well known medically

important pathogens (statistics acquired in October 2007). Each VF entry is

accompanied by relevant primary literature articles, detailed descriptions of their

function and pathogenic mechanism, structural features, and links to protein

sequence information through NCBI. The VFDB also provides an intuitive

classification scheme that divides the VFs into categories based on their function.

Each VF is classified as "Offensive", "Defensive", "Nonspecific", or "Regulatory",

as well as additional sub-classifications like "Type III secretion system", or

"Toxin" for example (Appendix A). The VFDB has also recently incorporated

additional comparative genomics tools, such as the comparison of VF homologs

in multiple strains of the same genera to facilitate further comparative

pathogenomic studies.

MvirDB (http://mvirdb.llnl.gov/; (Zhou et al. 2007)) is the most

comprehensive of the databases. It combines protein, sequence, and annotation

data from 8 different publicly available databases including the following: 1) Tox­

Prot subset of toxins from the Swiss-Prot protein database (Jungo et al. 2005), 2)

SCORPION database of scorpion toxins (Srinivasan et al. 2002), 3) PRINTS

database of virulence factors (subset of the PRINTS protein fingerprint database

(Attwood et al. 2003)),4) VFDB (Chen et al. 2005), 5) TVFac Toxin and

Virulence Factor database (unpublished), 6) Islander database of genomic

islands (Mantri et al. 2004), 7) ARGO database of antibiotic resistance genes

(Scaria et al. 2005), and 8) VIDA database of animal viruses (Alba et al. 2001).

The database contains a total of 9095 genes from 1220 organisms and provides
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a user friendly web interface for easily browsing and searching a gene of interest.

In addition to VFs, MvirDB also contains information on antibiotic resistance

genes, genomic islands, viral proteins, and proteins from other organisms, such

as scorpion toxins. Although MvirDB provides the most comprehensive

datasource, it is not specifically focused on bacterial VFs. Furthermore, the data

is not manually checked for quality, making it difficult for more intricate,

qualitative studies of bacterial virulence.

PRINTS database of virulence factors (www.jenner.ac.uk/BacBix3/

PPprints.htm) provides a simple list of bacterial and non-bacterial VFs on a single

webpage. VFs are classified into one of 8 categories: "Adherence/Colonization

factors", "Invasions", "Cell surface factors", "Exotoxins", "Transporters",

"Siderophores", "Miscellaneous", and "Non-bacterial virulence factors". The

database currently contains over 170 VFs from 38 organisms and provides links

to the protein fingerprint data through PRINTS (Attwood et al. 2003) and

sequence information for each.

TvFac (www.tvfac.lanl.gov) from the Los Alamos National Laboratory

contains data on bacterial VFs and phage-related genes. VFs are classified into

one of 13 different functional categories and the user can browse or search

through these categories through the web interface. Information about a given

gene's role in virulence is limited and in an unstructured tree-text format. The

database contains 278 VFs and VF homologs from 15 different bacterial

pathogens. Links to protein, sequence, BLAST reports, and additional functional
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classification tools such as COG (Clusters of Orthologous Groups; (Tatusov et al.

1997)), are provided with each TvFac entry.

Of the four available databases, the VFDB seems to contain the most

high-quality dataset of VFs and related genes, based on a manual review of each

database. The VFDB has the biggest focus on manually curated data.

Additionally, their hierarchical VF classification schemes provides both a

structured means to functionally classify VFs and a valuable resource for further

bioinformatics analysis of trends in virulence, such as the characterization of VFs

in Gis (Chapter 2), and analysis of pathogen-associated genes (Chapter 3).

One common limitation of the databases listed above is that they do not

contain relevant information that appropriately reflects the contextual nature of a

VF. They are mainly focused on providing lists of VFs and do not provide

structured, contextual information about the experimental conditions under which

the genes in this database playa role in virulence. I therefore propose that new

databases are needed that are centered around a given experiment that

demonstrates that a gene is involved in virulence under particular conditions,

such as the development of the Virulence Gene Experiment Database (VGEDB;

Chapter 6). Only through the development of a database that contains such

detailed information can we really start to address fundamental questions

regarding more sophisticated patterns associated with virulence in pathogens.
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Table 1.4 Overview of the four virulence factor databases developed to date

Database Website No. of No. of Published Comments

I

Name virulence organisms
factor
entries

BACBIXI www.jenner.ac.uk/ 170 38 No Simple list of VFs on
PRINTS BacBix3/PPprints.htm

I

lone webpage. Links to
database of

I

PRINTS protein
virulence fingerprint data and
factors sequence information.

TVFac www.tvfac.lanl.gov 278 15 No Entries include genes
(Los Alamos predicted to be VFs,
National based on sequence
Laboratory similarity. Information
Toxins and about a gene's role in
Virulence virulence is limited and
Factor

I

in free-text format

I

Database) difficult to analyze.
Focus is on providing
gene and protein
sequence information.

VFDB: The www.mgc.ac.cnNFs/ 402 24 Yes, by Focus is on listing
Virulence Chen et al genes that are VFs.
Factor (Chen et al. Information about their
Database 2005) in role in virulence is in a

January free-text, unstructured
2005 format that is difficult to

analyze.

MvirDB http://mvirdb.llnl.gov/ 9059 1220 Yes, by Most comprehensive of
Zhou et al the four databases.

I

(Zhou et al.

I

Contains toxins, VFs

I

I

2007) in and antibiotic resistance

I

November genes from 8 different

I I

2006 publicly available
databases, but data not

I
analyzed for quality.

1.8.2 Computational identification of virulence factors

The currently available methods for computationally identifying VFs in a

genomic sequence are limited, and there is not one generally adopted approach

used. This is likely due to the considerable complexity of VFs, and the various

roles they play in pathogenesis for different pathogens.
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One common method for detecting VFs in genomic sequence involves a

BLAST similarity search to identify homologs of well-known VFs (usually a

dataset of known VFs from a single closely related pathogen species). This

approach has been previously used to identify a conserved T3SS in the

Chlamydia pneumonia genome (Kalman et al. 1999). Additonally, similarity

search has been combined with multiple other bioinformatics methods: for

example, subcellular localization prediction, presence of particular motifs

associated with VFs, and identification of sequence features associated with

antigenically varying proteins (Pizza et al. 2000; Wizemann et al. 2001).

Another method involves comparative-based genomics, where basically a

pathogen genome is compared to closely related non-pathogens, to identify

genes or regions that are unique to the pathogen and hence likely contribute to

virulence (Tang et al. 1998; Whittam et al. 2002; Zhang et al. 2006). This is

based on the fact that virulence genes are often found clustered together

corresponding to putative pathogenicity islands. Similar to the first method, these

comparative studies use either a BLAST or similar search tool to detect islands

specific to the pathogen. In these cases, genes in putative islands are identified

by their lack of a significant homolog in the non-pathogenic strain (Huynen et al.

1997; Perna et al. 2001). In one such study, they compared the genomes of E.

coli 0157:H7, a food-borne pathogenic strain isolated in Sakai, to the non­

pathogenic E. coli K12 strain. They reported 1632 genes specific to pathogenic

0157:H7, of which 131 were associated with virulence. These virulence­

associated genes included many well-known VFs, such as Intimin and genes
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encoding a T3SS located on the LEE (Locus of Enterocyte Effacement)

pathogenicity island (Hayashi et al. 2001).

Despite the fact that the methods mentioned above have been successful

in identifying known VFs, none have been fully developed into tools that can be

re-used or are generally applicable across multiple, diverse genera of pathogens.

There is not one method that is generally accepted for identifying VFs in a newly

sequenced genome. Genome centres such as the Sanger Centre and The

Institute for Genomic Research (TIGR) do not have any standard methodology

for the identification or annotation of VFs and their results are largely based on

more general protein functional categories (H. Tettelin, TIGR, personal

communication with F.S.L. Brinkman; Julian Parkhill, Sanger Centre, personal

communication with F.S.L. Brinkman). A more global analysis of genes that are

significantly pathogen-associated across multiple genera, such as described in

Chapter 3, is one approach that could be used to identify particular types of

genes that may be more virulence-associated.

Furthermore, to my knowledge, there has been no report to date that

measures the accuracy of these approaches. Such ad-hoc approaches threaten

to undermine the confidence of informatics to identify candidate VFs in newly

sequenced genomes. As the amount of genomic data continues to increase

exponentially, from metagenomic studies for example, propagation of errors in

accuracy will inevitably increase as well. I therefore propose that more

investigation of the accuracy of these approaches is needed (Chapter 7), and
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suggest improvements can be made through the development of high quality VF

datasets, such as the VGEDB (described in Chapter 6).

1.8.3 Computational prediction of genomic islands

As mentioned above, genomic islands (Gis) have been anecdotally noted

to disproportionately contain VFs (termed pathogenicity islands) and so GI

prediction is an important focus of most efforts to analyze the sequence of

pathogen genomes (reviewed in (Dobrindt et al. 2004; Finlay et al. 1997;

Hentschel et al. 2001; Schmidt et al. 2004)). There are two types of methods

commonly used for predicting Gis in genomic sequence: comparative genomics­

based approaches and sequence composition based approaches (Langille et al.

2008).

Comparative genomics approaches are in essence similar to those used

to identify VFs (section 1.8.2). The basic concept is that the genomic content of

one or more closely related genomes is compared, and clusters of genes unique

to one strain and absent from the other(s) likely correspond to putative Gis.

Some of the most popular methods available to compare genomic content are

through homology search tools, such as BLAST, or through DNA microarray

technology. Some examples of Gis detected with these methods are discussed

in sections 1.7.2 and 1.8.2. Currently, there is no published software tool

available that automatically predicts Gis based on a comparative analysis. This is

likely due to the difficulties involved in automatically choosing an appropriate

reference genome for comparison.
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Sequence composition based approaches are based on the premise that

phylogenetically related strains exhibit similar sequence composition that

constitutes their own genetic signature. Therefore, if a segment of the genome

has a signature that is different from the rest of the genome, this region may

have been horizontally acquired. Some of the more common measures of

sequence compositional bias are the measure of G+C content (%G+C), or

dinucleotide bias. Several software tools have been developed that use these, or

slight variations of these measurements to predict Gis (Hsiao et al. 2003; Merkl

2004; Yoon et al. 2005; Zhang et al. 2004). Additionally, a combination of atypical

composition with other structural features commonly associated with Gis

(described in section 1.5), such as mobility genes (transposases or integrases,

for example), is also used (Hsiao et al. 2005).

A disadvantage of comparative approaches is that at minimum two

genomes are required in the comparison, and often choosing an appropriate

reference genome can be quite difficult. For sequence compositional

approaches, however, no reference strain is required. On the other hand, one

advantage of comparative methods is that both recent and ancient Gis can be

detected depending on the genomes chosen for comparison. However, for

sequence-based methods, in some cases ancient Gis may not be easily detected

as they usually evolve overtime (ameliorate) to have a similar sequence

composition as the rest of the genome.

The accuracy of these methods to computationally predict Gis is difficult to

assess, since (as with all evolutonary features) Gis are inferred and so there are
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no definitively true positive or true negative G'I datasets. Despite this, there are

datasets of very probable Gis, based on manual literature research, that have

been well characterized and these have been used to test the accuracy of GI

predictors (Hsiao et al. 2005). In addition, recent research in the Brinkman Lab

has led to the development of datasets of probable Gis and non-Gis based on

comparative genomics analysis, which can then be used to evaluated sequence

composition based GI predictors (since the two GI identification methods are

independent; (Langille et al. unpublished)). Through these datasets, all available

GI prediction methods have recently had their accuracy tested. IslandPath­

DINUC (Hsiao et al. 2005) is the method that was found to have the highest

overall accuracy (Langille et al. unpublished). For this method, Gis are defined as

8 or more ORFs with dinucleotide bias. Alternatively, for the more

specific/precise analysis, Gis are defined as 8 or more ORFs with dinucleotide

bias plus the presence of one or more mobility genes (lslandPath-DIMOB

method). The availability of the GI predictions from these methods permits further

robust analyses of virulence trends, such as confirming anecdotal reports that

VFs are indeed associated with Gis (Chapter 2). Also, a more global analysis

quantifying the function of genes encoded in islands can also provide important

insights into the evolution of pathogens (Chapter 2).

1.9 Goal of the present research

At the onset of my project, there was an increasing appreciation that

virulence is a much more complex phenomenon than previously thought. As

more bacterial genomes became available, it was observed that many of the
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classic VFs, many of which were thought to be solely in pathogens, were also

found in non-pathogenic bacteria. In addition, there was increased interest in the

study of Gis (regions with potential horizontal orig~ns), as it was frequently

observed that VFs are often associated with these islands. However, these

trends, and others, have not yet been quantified on a large scale encompassing

multiple pathogens from diverse genera.

In this study, I used datasets of VFs from the most well known medically

important human pathogens as well as datasets of computationally predicted

Gis, and confirmed that in fact VFs are associated with these regions (Chapter

2). In addition, in a large-scale global analysis, I identified and investigated types

of genes that are solely pathogen-associated (Le. genes that are only found in

pathogens and not found in non-pathogens), and in multiple pathogen genera,

with the hypothesis that their role in the disease process is more virulence­

specific (Chapter 3). I found that particular types of VFs, such as toxins and

those involved in secretion of VFs are more pathogen-associated, and discuss

their current and potential use in vaccine development (Chapter 4 and Chapter

5). In addition, to initiate an attempt to deal with the complex nature of virulence, I

have developed the VGEDB, a resource that incorporates detailed information

about experimental conditions used to identify a given VF (Chapter 6). This

database differs from other VF databases in that it contains more contextual

information relevant to virulence conditions, and a given database entry is

centered around a virulence gene experiment, rather than a virulence gene. This

database can potentially enable more sophisticated analyses of virulence, and in
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this study I use it to investigate the accuracy of common BLAST-based

methodology for the identification of VFs in sequenced genomes (Chapter 7).

Overall, in my thesis work, I confirm and quantify previous anecdotally reported

observations in virulence, as well as provide more fundamental insights

regarding pathogenesis and virulence-associated genes that could aid in

development of new vaccines and therapeutics.
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CHAPTER 2
ESTIMATING THE PREVALENCE OF VIRULENCE
FACTORS AND PATHOGEN-ASSOCIATED GENES
INSIDE AND OUTSIDE OF GENOMIC ISLANDS

2.1 Introduction

With the number and diversity of bacterial genomes sequenced, we are

now able to investigate selected anecdotally reported observations in

pathogenicity and quantify them on a more global scale. For example, it has

been frequently noted that many virulence genes are associated with genomic

islands (Gis; clusters of genes of probable horizontal origin) (Boyd et al. 2002;

Dobrindt et al. 2004; Finlay et al. 1997; Groisman et al. 1996; Hentschel et al.

2001; Ochman et al. 2001; Schmidt et al. 2004; Shankar et al. 2002). In fact, the

first GIs identified harboured genes involved in virulence, and hence were called

"pathogenicity islands" (PAis) (Hacker et al. 1990). Since then many others have

frequently noted this apparent association (reviewed in (Boyd et al. 2002;

Dobrindt et al. 2004; Finlay et al. 1997; Groisman et al. 1996; Hacker et al. 1997;

Hacker et al. 2000; Ochman et al. 2001; Pallen et al. 2007; Schmidt et al. 2004)).

However, no analysis has yet been reported that examines whether this trend is

systematically true across diverse lineages of pathogens, using a method for

predicting Gis that is suitably accurate.

Such an analysis is now possible, as we have developed methods for high

quality predictions of Gis that have had their accuracy tested, plus we have
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access to additional datasets of known Gis (Hsiao et al. 2005; Langille et al.

unpublished). There is also a curated dataset of VFs available through the VFDB'

(Chen et al. 2005) which may be cross-referenced with current bacterial genome

datasets. Finally, availability of VF classification schemes, as well as my own

method for computationally identifying pathogen-associated VFs, allows us to

further characterize features of VFs that may be associated with GIs.

For this study, I used datasets of known VFs from the VFDB and predicted

GI datasets to quantify the occurance of VFs in Gis and non-Gis. Consistent with

previous anecdotal reports, I found that Gis do contain a significantly higher

proportion of VFs and pathogen-associated genes (genes found only in

pathogens; Chapter 3) compared to non-Gis (p < 2.20E-16). In addition, this

study provides quantitative evidence that certain types VFs are strongly

associated with Gis, including VFs that are more offensive, such as T3S, and

T4S system genes. The implications of these results on therapeutic development

and the evolution of pathogenicity are discussed.

2.2 Materials and methods

I obtained a dataset of 1819 VFs (28 well-known pathogens) from the

VFDB in 2005. The other available VF databases, such as the PRINTS database

(www.jenner.ac.uk/BacBix3/PPprints.htm), TvFac (www.tvfac.lanl.gov/), and

MvirDB (Zhou et al. 2007), (www.tvfac.lanl.gov/) were examined as well, but the

curated VFDB was found to be of the highest quality (see Table 1.4 and section

1.8.1). In collaboration with William Hsiao (Brinkman Lab), we quantified the

occurrence of VFs in Gis. We used a subset of 1227 VFs from 26 pathogens
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from the VFDB (representing 18 species and 15 genera) that had complete

genome sequences available and Gis predicted through IslandPath. Additionally,

we quantified the occurrence of both pathogen-associated genes (genes found

predominately in pathogens; described in Chapter 3) and "common" genes

(genes found in both pathogens and non-pathogens) in Gis.

To prevent circular logic where known PAis are defined by the presence of

VFs and VFs are therefore found predominately in PAis, Gis were defined based

on attributes that are independent of their VF gene content. I used two GI

prediction methods previously used for other analyses of Gis that were

determined to be effective methods for identifying Gis on a high-throughput

scale, and can be uniformly applied to all the pathogens studied (Hsiao et al.

2005). For my first analysis, a GI was defined as a region consisting of 8 or more

ORFs with dinucleotide bias (DINUC dataset; calculated as the frequency of

dinucleotides in a cluster of ORFs compared to the entire genome) as predicted

by IslandPath (Hsiao et al. 2003). This GI prediction method is noted for having

higher sensitivity. I also used a more stringent definition of a GI that requires the

GIs to contain both dinucleotide bias and one or more mobility genes (DIMOB

dataset), as this method is more precise/specific (Hsiao et al. 2005). Note that

since there are many more genes in general outside of Gis, than in Gis, for any

genome, it is important to examine proportions of VF genes inside and outside

islands, as a function of the total number of genes inside and outside of such GI

regions.
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I obtained the VFDB classification scheme along with the VF dataset from

the VFDB. Classification of VFs as "offensive", "defensive", "regulation" and

"nonspecific", were retrieved through the VFDB website and is shown in

Appendix A.

I calculated all statistics for over-representation of VFs in Gis by first

tabulating the number of VFs in Gis, total Gis, number of VFs in non-Gis, and

total non-Gis in a 2x2 contingency table and then using Chi-squared test with

Yates' correction for continuity (correction used on 2x2 contingency tables where

there is only one degree of freedom). For those categories with small values «

5), the Fisher's Exact Test was used instead. Similar statistical analyses were

done for functional classification of genes in islands, where the number of genes

in each VFDB category was used in the calculation. Since multiple categories are

examined in parallel, the Benjamini and Hochberg False Discovery Rate

correction for multiple testing was performed for all functional category analyses.

I considered p-values smaller than 0.05 to be significant. All statistics were

performed using the R statistics package.

2.3 Results

2.3.1 Genomic islands disproportionately contain more virulence factors
and pathogen-associated genes

Consistent with previous anecdotal reports, this analysis indicated that

Gis, as predicted using the IslandPath-DINUC method, do contain a significantly

higher proportion of VFs compared to non-Gis (p < 2.20E-16; Table 2.1). On

average for all pathogens studied, 4.5% of genes in predicted islands encode
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VFs, compared with 1.2% of genes outside of islands. This method of GI

prediction used has the highest overall accuracy of any GI prediction method

currently available (Hsiao et al. 2005; Langille et al. unpublished). I obtained

similar results using a more stringent definition of a GI that requires the Gis to

contain both dinucleotide bias and one or more mobility genes (Island Path-

OlMOS dataset; Table 2.2). This method is more precise/specific (Hsiao et al.

2005; Langille et al. unpublished). Regardless of which approach was used there

was clearly a significant bias in terms of more VFs being located in such

predicted GI regions.

Table 2.1 Proportions of VFs in Gis vs. outside of Gis - DINUC dataset (more sensitive
method)

VF Dataset Glsa Outside of Gis p-valueb

Number of Proportion of Number of Proportion of
VFs/Total genes in Gis VFslTotal genes in non-
number of that are VFs number of Gis that are

I

genes in Gls c (%) genes in non- VFs (%)
Glsc

VFDB 443/9801 4.5 784/67690 1.2 < 2.20E-16*

I Pathogen- 157/9301 1.7 163/63783 0.3 < 2.20E-16* I
associated
VFsd

"Common" 286/9357 3.1 621/64055 1.0 < 2.20E-16*
VFse

a Gis are defined as 8 or more consecutive ORFs with dinucleotide bias as predicted with
IslandPath (DINUC dataset).

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05).

C Total number of genes in GIs varies according to the number of genomes used that contain
pathogen-associated, "Common", or both types of VFs.

d Pathogen-associated VFs have homologs only in other pathogen genomes, at the similarity
cut-off used.

e "Common" VFs have homologs in both pathogens and non-pathogens, at the similarity cutoff
used.
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Table 2.2 Proportions of VFs in Gis VS. outside of Gis - OlMOS dataset (more specific
method).

VF Dataset Gls a Outside of Gis p-value"

Number of Proportion of Number of Proportion of
VFslTotal genes in Gis VFs/Total genes in non-

I

I numbe.r of that are VFs number of Gis that are
genes In (0/0) genes in non- VFs (0/0)
Gls c Glsc

VFDS 203/3395 6.0 1024/74096 1.4 < 2.20E-16*

Pathogen- 65/3287 2.0 255/69797 0.4 < 2.20E-16*
associated
VFsd

"Common" 138/3240 4.3 769/70172 1.1 < 2.20E-16*
w«

a Gis are defined as 8 or more consecutive ORFs with dinucleotide bias plus one or more
mobility genes as predicted by IslandPath (OlMOS dataset).

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05).

C Total number of genes in Gis varies according to the number of genomes used that contain
pathogen-associated, "Common", or both types of VFs.

d Pathogen-associated VFs have homologs only in other pathogen genomes, at the similarity
cut-off used.

e "Common" VFs have homologs in both pathogens and non-pathogens, at the similarity cutoff
used.

I also investigated the relationship between Gis and pathogen-associated

VFs, defined as VFs found predominately or only in pathogens (see Chapter 3). I

quantified the occurrence, in Gis, of pathogen-associated VFs and "common"

VFs (the latter are found in both pathogens and non-pathogens) and found that

regardless of the GI prediction criteria used (DINUC or OlMOS), both pathogen-

associated and "common" VFs are present in higher proportions in Gis than non-

Gis (DINUC dataset Table 2.1; OlMOS dataset Table 2.2).

In addition to the above analyses involving datasets of known VFs, I also

examined trends in the distribution of VF homologs in an expanded dataset of all

completely sequenced bacterial genomes available as of February 2006 (total
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267 genomes) so that I could investigate til is trend globally, and in non­

pathogens as well (in particular host-associated non-pathogens that contain VF

homologs). While this homology-based approach is not as robust as the above

analysis involving known VFs, VF homologs in pathogens were found to be

slightly more common inside islands versus non-islands (17.7% and 14.7%

respectively; p-value < 2.20E-16). However, notably, VF homologs in non­

pathogens (limited to non-pathogens that are associated with a host by

commensal or mutualistic associations), are equally found in islands and non­

islands (14.3% and 14.2% of island and non-island genes, respectively). Such

VF homologs in non-pathogens likely comprise genes not involved in virulence,

per se, but rather involved in "host interactions", while the VF homologs in

pathogens will include a mix of both host interaction factors as well as virulence

genes more directly involved in pathogenicity.

I also extended the above analysis of pathogen-associated VFs in Gis by

using the expanded genome dataset of all completely sequenced bacterial

genomes available as of February 2006 (total 267 genomes). Each gene in a

given genome was identified as pathogen-associated, non-pathogen-associated

(found predominately or only in non-pathogens), or "common", according to our

approach (see Chapter 3). I found that both pathogen-associated and non­

pathogen-associated genes occur more frequently in Gis than non-Gis (p <

2.20E-16 for both). This supports previous observations that species or family­

specific genes tend to be more commonly found in Gis reflecting a proposed

large, novel gene pool that is associated with GIs (Hsiao et al. 2005). Still, this
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does not detract from the earlier observation that VFs in general, including those

common to both pathogens and non-pathogens, are clearly disproportionately

associated with Gis.

2.3.2 Genomic islands disproportionately contain offensive virulence
factors, such as Type III secretion genes

To study whether specific types of VFs are more likely to be associated

with such probable horizontally transferred regions, I divided the VFs into classes

based on the VFDB classification scheme and examined the functional

categories of VFs in Gis versus non-GIs (with statistical corrections for multiple

testing). I found that genes over-represented in GIs are classified as T3SS and

T4SS - including their corresponding secreted effector proteins, as well as toxins,

proteases, adherence factors, iron uptake, antiphagocytosis factors, and

"Unclassified" genes (DINUC dataset; Table 2.3), where the "Unclassified" class

mostly contains VF-associated genes that have not been functionally

characterized according to the VFDB classification scheme. These results are

consistent with previous reports that T3SS and T4SS genes are closely

associated with PAis (Hacker et al. 2000). With the more precise/specific

IslandPath-DIMOB based GI detection method, the T3SS and T4SS genes are

not more significantly associated with Gis (Table 2.4). However, it should be

noted that such secretion systems may not have the types of mobile genes near

them that the DIMOB-based method detects.

It is also notable that, regardless of the GI detection method used, VFs

classified as "offensive" by the VFDB (i.e. VFs involved in active invasion of the
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host) are very significantly associated with islands (p < 2.20E-16) while most of

the "defensive" VFs (involved in passive defense/evasion of the host) have no

preferential association with Gis (DINUC dataset Table 2.3; DIMOB dataset

Table 2.4). There are no classes of VFs, according to the VFDB classification

system, which are more prevalent outside of Gis at a statistically significant level.
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Table 2.3 VFDB classification of VFs in Gis and non-Gis (DINUC dataset)

VFDB Classlflcatlon" Gis non-Gis p-valueb

VFs (#) Proportion of VFs (#) Proportion of
genes in genes in
Gls(%) non-Gis (%)

Type III secretion system" (0) 61 0.62 109 0.16 2.42E-15*

Type IV secretion system" (0) 35 0.36 15 0.02 3.63E-15*

Unclassified (NA) 185 1.89 158 0.23 7.26E-15*

Adherence (0) 59 0.60 138 0.20 4.69E-12*

Iron uptake (NS) 33 0.34 59 0.09 3.85E-10*

Antiphagocytosis (D) 23 0.23 66 0.10 1.84E-03*

Toxin (0) 18 0.18 53 0.08 9.65E-03*

Protease (D) 5 0.05 5 0.01 9.82E-03*

Type II secretion system (0) 6 0.06 15 0.02 2.27E-01

Magnesium uptake (NS) 1 0.01 0 0.00 4.17E-01

Invasion (0) 2 0.02 4 0.01 5.09E-01

Actin-based motility (0) 1 0.01 1 0.00 6.52E-01

IgA1 Protease (D) 1 0.01 2 0.00 8.47E-01

Mangenese uptake (NA) 0 0.00 1 0.00 1

Heat-shock protein (NA) 0 0.00 1 0.00 1

Complement resistance (NA) 0 0.00 1 0.00 1

Anti-proteolysis (D) 0 0.00 1 0.00 1

Plasminogen activator (NA) 0 0.00 3 0.00 1

Serum resistance (D) 0 0.00 3 0.00 1

Proinflammatory effect (NA) 0 0.00 2 0.00 1

Pigment (NA) 0 0.00 2 0.00 1

Immune evasion (NA) 0 0.00 2 0.00 1

Cellular metabolism (D) 0 0.00 9 0.01 1

Biosurfactant (NA) 0 0.00 2 0.00 1

Enzyme (NS) 0 0.00 8 0.01 1

Complement protease (D) 0 0.00 2 0.00 1

Cell wall (NA) 1 0.01 6 0.01 1

Motility (0) 3 0.03 31 0.05 1

Molecular mimicry (NA) 0 0.00 4 0.01 1

Endotoxin (NA) 3 0.03 29 0.04 1

Stress protein (D) 1 0.01 11 0.02 1
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VFDB Classificationa Gis non-Gis p-value"

VFs (#) Proportion of VFs (#) Proportion of
genes in genes in
Gls(%) non-Gis (%)

Exoenzyme (NS) 2 0.02 17 0.03 1

Regulation (R) 3 0.03 24 0.04 1

TOTAL 443 784

a VFs are defined as those genes curated as being VFs according to the VFDB. Only those VFs
in the VFDB where GI predictions were available from IslandPath were included in the
analysis. 0 =Offensive; D =Defensive; NS =Nonspecific; R =Regulation; NA =Not available.

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05).

C Includes Type III secretion system genes and Type III translocated proteins

d Includes Type IV secretion system genes and Type IV secretory proteins.
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Table 2.4 VFDB classification of VFs in Gis and non-Gis (DIMOB dataset)

VFDB Classlflcatlon" Gis non-Gis p-valueb

VFs (#) Proportion of VFs (#) Proportion of
genes in genes in non-
Gls(%) Gis (%)

Unclassified (NA) 120 3.7 223 0.3 3.63E-15*

Adherence (0) 46 1.4 151 0.2 7.26E-15*

Toxin (0) 12 0.4 59 0.1 1.25E-05*

Protease (0) 4 0.1 6 0.0 5.15E-03*
I

Iron uptake (NS) 10 0.3 82 0.1 3,50E-02*

I Actin-based motility (0) 1 0.0 1 0.0 4.71 E-01

Type IV secretion" (0) a 0.0 50 0.1 7.15E-01

Endotoxin (NA) 3 0.1 29 0.0 7.71E-01

Type III secretion" (0) 5 0.1 164 0.2 1

Type II secretion (0) a 0.0 21 0.0 1

Stress protein (0) a 0.0 12 0.0 1

Serum resistance (0) a 0.0 3 0.0 1

Regulation (R) 1 0.0 26 0.0 1

Proinflammatory effect (NA) a 0.0 2 0.0 1

Plasminogen activator (NA) a 0.0 3 0.0 1

Pigment (NA) a 0.0 2 0.0 1

Molecular mimicry (NA) a 0.0 4 0.0 1

Mangenese uptake (NA) a 0.0 1 0.0 1

Magnesium uptake (NS) a 0.0 1 0.0 1

Invasion (0) a 0.0 6 0.0 1

Motility (0) a 0.0 34 0.0 1

Immune evasion (NA) a 0.0 2 0.0 1

IgA1 Protease (0) a 0.0 3 0.0 1

Heat-shock protein (NA) a 0.0 1 0.0 1

Exoenzyme (NS) a 0.0 19 0.0 1

Enzyme (NS) a 0.0 8 0.0 1

Complement resistance (NA) a 0.0 1 0.0 1

Complement protease (0) a 0.0 2 0.0 1

I Cellular metabolism (0) a 0.0 9 0.0 1

Cell wall (NA) a 0.0 7 0.0 1

Antiphagocytosis (0) 4 0.1 85 0.1 1
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Biosurfactant (NA) 0 0.0 2 0.0 1

Anti-proteolysis (D) 0 0.0 1 0.0 1

Total 40 646

a VFs are defined as those genes curated as being VFs according to the VFDB. Only those VFs
in the VFDB where GI predictions were available from IslandPath were included in the
analysis. 0 =Offensive; 0 =Defensive; NS =Nonspecific: R =Regulation; NA =Not available.

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05).

C Includes Type III secretion system genes and Type III translocated proteins.

d Includes Type IV secretion system genes and Type IV secretory proteins.

2.4 Discussion

These results confirm previous anecdotal reports that VFs are in fact more

common in Gis than outside of Gis, which supports the important role of Gis in

pathogen evolution. I also present quantitative evidence that "offensive" VFs are

significantly associated with Gis (such as genes involved in T3S and T4S), as

well as 'Unclassified' genes. These results are consistent with previous reports

that T3SSs and T4SSs are closely associated with PAis (Hacker et al. 2000), as

well as previous reports that more novel genes are associated with Gis (Hsiao et

al. 2005). Furthermore, the majority of these associations hold true regardless of

whether we use a more sensitive or specific method for GI identification (with the

exception of T3S and T4S genes which were found to be significantly associated

with Gis according to the DINUC criteria of GI prediction but not the OlMOS

criteria) . Even though our method will not detect some Gis (i.e. those with the

same sequence composition) and so will tend to under-predict Gis, we never

observe a statistically significant association of VFs with regions outside of Gis

for any class of VFs.

55



Also of note, VF homologs form a higher proportion of genes in Gis for

pathogens, while in host-associated non-pathogens VF homologs (commonly

"host interaction factors") are notably more equally distributed in Gis versus non­

GI genomic regions. These observations suggest that pathogenicity, as opposed

to host interaction, is often a fairly recently developed phenomenon in a species

(on an evolutionary time scale detected by GI analysis). That is, we propose that

VFs that are more directly involved in virulence, with more "offensive" rather than

"defensive" actions, may be more associated with Gis (and therefore more

recently acquired) versus "host interaction factors" that are not pathogen-specific.

These observations support proposals that pathogenicity is often a fairly recently

developed phenomenon in a species and is frequently an evolutionary dead end

due to the difficulty of balancing the benefits of increased virulence with the

negatives associated with killing the host (Maurelli 2007).

Gis appear to provide a critical flexible mechanism for allowing increased,

invasive infection of their host. Several evolutionary models have been proposed

to explain how VFs are maintained on Gis, and these models are consistent with

the importance of Gis in pathogen evolution. Jeff Smith (Smith 2001) proposed

that in a pathogen population, there are a small number of "cheaters" that

themselves do not possess certain extracellularly-acting VFs but benefit from the

effect of these VFs released by the non-cheater strains. Without the VFs, the

cheater strains are metabolically more fit than the non-cheaters, and therefore

their number would increase in the population over time. However, cheaters, due

to the lack of VFs have decreased infectiousness, and Smith proposed that
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horizontal gene transfer is a possible mechanism to minimize "cheater" strains

and restore infectiousness in the pathogen population. As a result, certain VFs

are maintained on mobile elements, including Gis. It is worth noting that in our

PSORTb study, predicted extracellular proteins are over-represented in

pathogen-associated genes (see Chapter 3). In a second proposed model,

Sokurenko and colleagues adopted the classical source-sink model of population

genetics to describe virulence evolution (Sokurenko et al. 2006). For

opportunistic pathogens, the environmental reservoir represents a self­

sustainable source whereas the opportunistic infection represents a venture into

a sink. They proposed that acquisition of PAIs as a mechanism to facilitate

adaptation of the source to sink transition whereas the loss of PAIs accompanies

the sink to source transition. However, since possessing a PAl can significantly.

increase the pathogen's fitness in the sink, which in term increases the back flow

of PAl-possessing strains into the source population, VFs in PAis can be

maintained despite VFs negative fitness value in the environment. It is notable

that, in our study, many of the over-represented VFs in Gis are involved in active

invasion that harm the host in some way and there is no obvious functionality for

these VFs outside of the host environment. Maintaining these VFs on Gis, and

likely other horizontally acquired elements like phage and plasrnids, therefore

appears to provide important evolutionary flexibility for these pathogens.
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CHAPTER 3
CHARACTERIZATION OF PATHOGEN-ASSOCIATED
GENES

3.1 Introduction

Most bacterial VFs were originally thought to be associated only with

pathogens. However, as the number of genome sequences began to increase, it

became clear that many of the "classic" VFs were also encoded in the genomes

of non-pathogenic, commensal bacteria (Pallen et al. 2007; Snyder et al. 2006;

Zhang et al. 2003). Microarray analyses also supported this; for example, many

of the known virulence associated genes in pathogenic Neisseria spp., were also

found to be present in the closely-related non-pathogen Neisseria lactamica

(Snyder et al. 2006). There was an increasing understanding that virulence is a

much more complex phonomenon than previously thought, and reflects an

interplay between the host, pathogen, and environmental factors. It was also

suggested that the term "virulence factor" should be used less and instead they

should be more appropriately referred to as "host interaction factors" (Holden et

al. 2004). However, it is evident that certain types of genes, such as botulinum

toxin, are both necessary and sufficient to cause disease on their own (Shukla et

al. 2005). I therefore wished to examine to what degree there may be VFs that

are so critical for disease processes that their very presence is strongly

associated with disease, rather than simply host colonization/interaction.
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Now that there are many genome sequences available from both

pathogenic and non-pathogenic strains of diverse bacterial genera, I investigated

the degree in which there are classes of genes that may be pathogen-specific or

notably pathogen-associated. Previous analyses of pathogen-specific genes

have been limited to certain species or genera (for example, (Anisimova et al.

2007; Champion et al. 2005; Dozois et al. 2003; Hotopp et al. 2006; Snyder et al.

2006; Stabler et al. 2005)), but a more global analysis is now possible. While

such an analysis is still limited by the scope of bacterial genome sequences and

VFs currently available, any VFs observed to be present in pathogenic strains

from diverse bacterial genera, with no detectable homologs in non-pathogenic

strains of the same genera, are considered good candidates for being classified

as pathogen-associated. I set out to examine whether such genes could be

identified within a diverse bacterial genome dataset, and examined common

features of such genes, with the hypothesis that they may playa more virulence­

specific role in pathogens. Such genes also represent targets for possible novel

therapeutic strategies that interfere with pathogen-specific traits as previously

shown before (Hung et al. 2005; Russmann 2004).

In this study, I used whole genome datasets from diverse pathogens and

non-pathogens, to identify genes that are pathogen-specific or significantly

pathogen-associated, and then used various functional classification tools to

examine common features associated with such genes. I found that pathogen­

associated VFs are disproportionately "offensive", such as toxins and T3S and

T4S systems. This suggests that these types of genes may serve more
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virulence-specific roles in pathogens. Such genes also warrant further

investigation as they may represent targets for possible novel therapeutics.

3.2 Materials and methods

Each VF from the VFDB dataset (described in section 2.2) was identified

as pathogen-associated (found predominately in pathogens), or "common" (found

in both pathogens and non-pathogens) through a BLAST similarity search

against the deduced proteomes of 166 pathogenic and 101 non-pathogenic

sequenced prokaryotic genomes downloaded from the National Center for

Biotechnology Information (NCBI) FTP site in February 2006. An e-value cut-off

of 10-7 was used to exclude distant homologs. In an initial investigation, I

examined more and less stringent cut-offs of 10-12 and 10-5, and found that the

vast majority of trends analyzed still hold when these other cut-offs were

examined.

Pathogen, non-pathogen, or host-associated status for each genome was

obtained through TIGRs Microbial Genome Properties table (Haft et al. 2005)

(some manual curation for data quality and overall completeness was performed

on this dataset). I also identified each gene in the 267 sequenced genomes as

pathogen-associated, "common", or non-pathogen-associated (genes found

predominately in non-pathogens), in a similar manner as described above.

Complete lists of the pathogen-associated and "Common" genes identified for

each genome are available at the following website:

http://www.pathogenomics.sfu.ca/pathogen-associated/index.html. For the

purposes of these analyses, the term 'pathogen-associated' versus pathogen-
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specific is used to refer to those genes that may potentially have homologs in

nonpathogens, but the genome sequences of these particular nonpathogens are

not yet available and hence the genes was identified in pathogens only according

to this BLAST analysis. Conversely, pathogen-specific genes denote those 'true

virulence genes' that are specific to pathogens and absent from nonpathogens.

Additionally, to reduce redundancy and bias in this whole genome dataset

(multiple genome sequences from a particular genera or species), this analysis

was repeated using a subset of genomes with a minimum evolutionary distance

(substitutions/site) of 0.05 (based on phylogenetic analysis by (Ciccarelli et al.

2006)). For the analysis of pathogen-associated and "common" genes in multiple

genera, a gene is defined as in multiple genera if it was found in a minimum of 2

different genera according to the cut-off used. Genus information for each

organism was obtained from the NCBI taxonomy database (Wheeler et al. 2000).

Using genus information, I was able to identify genes found only in pathogens

and in multiple genera that had no homologs (according to our similarity cutoff) in

non-pathogens of the same genera.

VFDB functional classification of VFs as well as "offensive", "defensive",

etc, classifications are described in section 2.2. COG (Clusters of Orthologous

Groups) (Tatusov et al. 1997) assignments for each VF and predicted gene

product from each complete genome were performed using RPS-BLAST

(Reverse Position Specific Iterative-BLAST) against the COG database (obtained

from NCBI FTP); and the top BLAST hit below an e-value of 0.01 was chosen

(Altschul et al. 1990). If no hit was found with an e-value below 0.01, the gene
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was labelled 'Unclassified'. For those genes that had multiple COG

classifications, each COG would be counted to reflect the multiplicity nature of

COG classification. P~ORTb version 2 (Gardy et al. 2005) was used to predict

protein subcellular localization for all VFs and complete deduced proteomes used

in this analysis.

Over- or under-representation of particular functional classifications

(VFDB classification, COG, and PSORTb subcellular localization) of pathogen-

associated and "common" VFs from the VFDB were calculated by comparing the

number of pathogen-associated genes in a given category against "common"

genes in the same category. Statistics were calculated using the Chi-squared

Test with Yates' correction with corrections for multiple testing (described in

section 2.2). For statistics involving all sequenced genomes, I looked for over or

under-representation of a given functional category by first calculating the

percent of pathogen-associated or "common" genes in a given category for a

particular genome and then calculated the two-tailed paired r-test (pathogen-

associated and "common") using the values across all organisms.

3.3 Results

3.3.1 Pathogen-associated genes are disproportionately offensive
virulence factors, such as toxins and Type III and Type IV secretion
systems

VFs in the VFDB were identified as either pathogen-associated or

"common" to both pathogens and non-pathogens, and then used selected protein

functional classification tools to determine the distribution of functional classes for
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each. VFs were first classified into 33 different virulence-related categories using

the VFDB classification scheme (described in section 2.2). I found that pathogen­

associated VFs are disproportionately toxins and involved in T38 and T48 (Table

3.1). Conversely, "common" VFs are disproportionately involved in 'Iron uptake',

'Antiphagocytosis', 'Endotoxin', 'Motility', 'Regulation', and 'Protease' (Table 3.1).

The VFDB also classifies VFs as either 'offensive' or 'defensive'. VFs classified

as 'offensive' were found to be significantly disproportionately pathogen­

associated (p < 2.20E-16); while, "defensive" VFs were found to be common to

both pathogens and non-pathogens (p = 1.13E-08).
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Table 3.1 VFDB classification of pathogen-associated and "common" VFs from the
VFDB

VFDB Classification Pathogen- "Common" VFs p-valueb

associated VFs

# %a # .%a

Categories with a higher percentage of Pathogen-associated VFs

Toxin 66 12.67 34 2.62 7.26E-15*

Type "' secretion system 106 20.35 121 9.32 3.48E-09*

Type IV secretion system 32 6.14 18 1.39 5.56E-07*

Plasminogen activator 2 0.38 1 0.08 4.69E-01

Anti-proteolysis 1 0.19 0 0.00 5.91E-01

Actin-based motility 1 0.19 1 0.08 8.53E-01

Proinflammatory effect 1 0.19 1 0.08 9.00E-01

Exoenzyme 7 1.34 13 1.00 9.64E-01

Categories with a higher percentage of "Common" VFs

Iron uptake 5 0.96 93 7.16 1.79E-06*

Antiphagocytosis 7 1.34 87 6.70 3.53E-05*

Motility 1 0.19 33 2.54 1.03E-03*

Endotoxin 1 0.19 31 2.39 2.37E-03*

Regulation 2 0.38 29 2.23 1.72E-02*

Protease 0 0.00 15 1.16 3.15E-02*

Stress protein 0 0.00 12 0.92 7.92E-02

Cell wall 0 0.00 11 0.85 1.21E-01

Cellular metabolism 0 0.00 10 0.77 1.97E-01

Enzyme 0 0.00 8 0.62 2.91E-01

Invasion 2 0.38 14 1.08 5.80E-01

Type II secretion system 4 0.77 18 1.39 6.75E-01

Molecular mimicry 0 0.00 4 0.31 8.75E-01

Serum resistance 0 0.00 3 0.23 8.83E-01

IgA1 Protease 0 0.00 3 0.23 9.27E-01

Adherence 77 14.78 204 15.72 9.59E-01

Magnesium uptake 0 0.00 1 0.08 1

Pigment 0 0.00 2 0.15 1

Mangenese uptake 0 0.00 1 0.08 1

Unclassified 206 39.54 522 40.22 1

Immune evasion 0 0.00 2 0.15 1
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VFDB Classification Pathogen- "Common" VFs p-valueb

associated VFs

# °loa # %a

Heat-shock protein a 0.00 1 0.08 1

Complement resistance a o.oo 1 0.08 1

Biosurfactant a 0.00 2 0.15 1

Complement protease a 0.00 2 0.15 1

TOTAL 521 1298

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional
category.

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05).

I further classified pathogen-associated and "common" VFs using COG

(Clusters of Orthologous Groups; (Tatusov et al. 1997)). I included an additional

'Unclassified' COG category for those genes that do not belong to any COG - a

category that generally represents relatively novel genes that lack homologs

between species. The most notable significant difference in the distribution of

COG categories between pathogen-associated and "common" VFs was seen in

this 'Unclassified' category, where pathogen-associated VFs had a significantly

higher proportion of COG 'Unclassified' proteins compared to "common" VFs

(82.4% and 14.1% respectively; p = 5.72E-15; Table 3.2). I further confirmed that

significantly higher proportions of pathogen-associated genes belong to the

'Unclassified' class when compared to the "common" genes in the expanded

dataset containing 267 bacterial genomes (p < 5.50E-15; Table 3.3). Also,

pathogen-associated genes in a single genus are less well characterized than

those in multiple genera - 93% and 71.9% respectively are 'Unclassified' (p <

2.20E-16, two-tailed paired t-test). Based on these observations I propose that
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the lack of characterization of pathogen-associated genes may reflect the lack of

sequenced homologs available for such genes and the limitation of our

dependence on homologous annotation transfer to classify new genes.

Based on COG, I found that there is no significant difference between

pathogen-associated and non-pathogen-associated genes in terms of the

number of genes with no functional classification, suggesting that generic protein

functional classification schemes such as COG do not provide adequate

coverage for species-specific genes.
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Table 3.2 COG classification of pathogen-associated and "common" VFs (VFDB
dataset)

COG Functional Category Pathogen- "Common" VFs p-valueb

associated VFs

# °loa .# %a

Categories with a higher percentage of Pathogen-associated VFs

Unclassified 453 82.36 225 14.10 5.72E-15*

Categories with a higher or same percentage of "Common" VFs

Cell wall/membrane/envelope biogenesis 2 0.36 171 10.71 7.02E-07*

Inorganic ion transport and metabolism 1 0.18 71 4.45 9.82E-03*

Replication, recombination and repair 4 0.73 108 6.77 1.03E-02*

Carbohydrate transport and metabolism 0 0.00 43 2.69 2.54E-02*

Secondary metabolites biosynthesis, transport 1 0.18 56 3.51
and catabolism 3.53E-02*

Posttranslational modification, protein turnover, 0 0.00 33 2.07
chaperones 6.54E-02

Defense mechanisms 0 0.00 26 1.63 1.77E-01

Intracellular trafficking, secretion, and vesicular 29 5.27 295 18.48
transport 1.77E-01

Energy production and conversion 0 0.00 24 1.50 1.86E-01

Amino acid transport and metabolism 1 0.18 30 1.88 4.05E-01

Cell motility 26 4.73 230 14.41 5.81E-01

Transcription 9 1.64 94 5.89 5.91E-01

Coenzyme transport and metabolism 0 0.00 11 0.69 7.05E-01

Translation, ribosomal structure and biogenesis 0 0.00 4 0.25 1

Lipid transport and metabolism 0 0.00 10 0.63 1

Signal transduction mechanisms 6 1.09 54 3.38 1

RNA processing and modification 0 0.00 0 0.00 1

Function unknown 8 1.45 42 2.63 1

Nucleotide transport and metabolism 0 0.00 1 0.06 1

Nuclear structure 0 0.00 0 0.00 1

Extracellular structures 0 0.00 2 0.13 1

Cytoskeleton 0 0.00 0 0.00 1

Chromatin structure and dynamics 0 0.00 0 0.00 1

Cell cycle control, cell division, chromosome 1 0.18 9 0.56
partitioning 1

General function prediction only 9 1.64 57 3.57 1

TOTAL 550 1596

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional category.

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical significance (p­
value < 0.05)
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Table 3.3 COG classification of pathogen-associated and "common" genes (expanded
genome dataset - 267 complete genomes)

COG Functional Category Pathogen- "Common" p-value"
associated VFs
VFs (%)a elo)a

Categories with a higher percentage of Pathogen-associated VFs

Unclassified 89.3 8.5 5.50E-15*

Categories with a higher percentage of "Common" VFs

Secondary metabolites biosynthesis, transport
and catabolism 0.1 1.6 2.75E-16*

I

Intracellular trafficking, secretion, and vesicular
transport 0.9 2.4 2.89E-16*

Translation, ribosomal structure and biogenesis 0.4 8.2 3.06E-16*

Defense mechanisms 0.1 1.5 3.24E-16*

Cell cycle control, cell division, chromosome
partitioning 0.3 1.1 3.44E-16*

Signal transduction mechanisms 0.4 3.6 3.67E-16*

Replication, recombination and repair 0.7 6.4 3.93E-16*

Function unknown 2.2 7.2 4.23E-16*

Coenzyme transport and metabolism 0.2 4.1 4.58E-16*

Nucleotide transport and metabolism 0.1 2.8 5.00E-16*

Lipid transport and metabolism 0.2 3.2 5.50E-16*

Carbohydrate transport and metabolism 0.3 6.0 6.11E-16*

Cell wall/membrane/envelope biogenesis 0.7 5.2 6.88E-16*

Transcription 0.7 5.8 7.86E-16*

Posttranslational modification, protein turnover,
chaperones 0.3 3.8 9.17E-16*

Energy production and conversion 0.4 5.2 1.10E-15*

Amino acid transport and metabolism 0.3 7.5 1.38E-15*

Inorganic ion transport and metabolism 0.3 4.6 1.83E-15*

General function prediction only 1.3 9.8 2.75E-15*

Cell motility 0.5 1.5 6.14E-14*

Extracellular structures 0.0 0.0 1.55E-05*

RNA processing and modification 0.0 0.0 1.15E-02*

Chromatin structure and dynamics 0.0 0.0 1.17E-01

Cytoskeleton 0.0 0.0 8.34E-01

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional
category.

b Two-tailed paired t-test. Asterisks indicate statistical significance (p-value < 0.05)
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PSORTb v.2.0 (Gardy et al. 2005) was used to predict protein subcellular

localization of pathogen-associated and "common" gene products. I 'First

examined subcellular localization for VFs from the VFDB. I found that compared

to "common" VFs, pathogen-associated VFs in Gram-negative bacteria have

disproportionately higher "Unknown" localization (p =1.32E-15; Table 3.4), and

Gram-positive bacteria have disproportionately higher "Extracellular" localization

(p =8.25E-07; Table 3.5), where these extracellular proteins may correspond to

VFs secreted by the pathogen to act on the host cell. These similar trends were

also observed in our expanded genome dataset (Table 3.6 for Gram-negative

genomes; Table 3.7 for Gram-positive genomes). This observation is notable as

it fits well with the "cheater hypothesis" proposed by Jeff Smith (Smith 2001) (see

conclusions in Chapter 2).
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Table 3.4 PSORTb-predicted protein subcellular localization of pathogen-associated and
"Common" VFs for Gram-negative bacteria (VFDB dataset)

I Subcellular Pathogen-associated "Common" VFs p-value"
I Localization VFs

# %a # %a

Categories with a higher percentage of Pathogen-associated VFs

Unknown 310 67.83 458 38.78 1.32E-15*

Extracellular 24 5.25 59 5.00 9.31E-01

Categories with a higher percentage of "Common" VFs

CytoplasmicMembrane 19 4.16 186 15.75 1.04E-09*

OuterMembrane 14 3.06 124 10.50 3.86E-06*

Periplasmic 2 0.44 41 3.47 2.87E-04*

Cytoplasmic 88 19.26 313 26.50 3.29E-03*

TOTAL 457 1181

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional
category.

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05)

Table 3.5 PSORTb-predicted protein subcellular localization of pathogen-associated and
"Common" VFs for Gram-positive bacteria (VFDB dataset)

Subcellular Pathogen-associated "Common" VFs p-valueb

Localization VFs

# %a # %a

Categories with a higher percentage of Pathogen-associated VFs

Extracellular 35 54.69 19 16.24 8.25E-07*

Unknown 14 21.88 22 18.80 7.64E-01

Categories with a higher percentage of Pathogen-associated VFs

Cytoplasmic 5 7.81 31 26.50 1.22E-02*

CytoplasmicMembrane 4 6.25 20 17.09 6.95E-02

Cellwall 6 9.38 25 21.37 8.20E-02

TOTAL 64 117

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional
category.

b Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05)
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Table 3.6 PSORTb-predicted protein subcellular localization of pathogen-associated and
"Common" VFs for Gram-negative bacteria (expanded genome dataset - 267
complete genomes)

Localization Pathogen-associated (%)a Common (%)a p-value"

Categories with a higher percentage of Pathogen-associated VFs

Unknown 70.80 40.11 3.30E-16*

Outer Membrane 3.24 2.41 3.42E-02*

Categories with a higher percentage of "Common" VFs

Periplasmic 0.09 2.01 4.40E-16*

Cytoplasmic Membrane 9.25 18.53 6.60E-16*

Cytoplasmic 16.65 36.47 1.32E-15*

Extracellular 0.21 0.47 1.62E-04*

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional
category.

b Two-tailed paired t-test. Asterisks indicate statistical significance (p-value < 0.05)

Table 3.7 PSORTb-predicted protein subcellular localization of pathogen-associated and
"Common" VFs for Gram-positive bacteria (expanded genome dataset - 267
complete genomes)

Localization Pathogen-associated (%)a Common (%)a p-value"

Categories with a higher percentage of Pathogen-associated VFs

Unknown 50.09 20.38 5.50E-16*

Extracellular 10.49 1.72 5.78E-12*

Cell Wall 1.07 0.90 1.06E-01

Categories with a higher percentage of "Common" VFs

Cytoplasmic 25.29 54.75 1.10E-15*

Cytoplasmic Membrane 14.12 20.75 1.83E-09*

a Based on the percentage of pathogen-associated or "Common" VFs in a given functional
category.

b Two-tailed paired t-test. Asterisks indicate statistical significance (p-value < 0.05)

3.3.2 Reducing sampling bias of sequenced bacterial genomes

One potential source of bias with these functional category analyses is

that the taxonomical distribution of the genomes sequenced to date is uneven. In

particular some pathogens are over-represented by multiple strains while certain,
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predominately non-pathogenic, taxa are sparsely represented. To reduce

redundancy and bias in the whole genome dataset, we selected a subset of

pathogen and non-pathogen genomes with a minimum evolutionary distance

(substitutions/site) of 0.05 (adapted from a comprehensive phylogenetic analysis

(Ciccarelli et al. 2006)). This essentially reduced the number of pathogen

genomes that were highly similar (e.g., multiple strains of a pathogen) and thus

reduced sampling bias. When this less-biased genome dataset was analyzed

again using the same classification schemes and methods as described above,

no major differences in results were observed ruling out sampling bias as a major

contributing factor to our observations (data not shown).

3.3.3 Limitations of this study

This study of pathogen-associated genes of course has several

limitations. Firstly, it is limited by the number, and diversity, of genome

sequences, and known VFs, currently available. However, I felt that the diversity

of species whose genome sequences were available was sufficient to provide an

early sense of the degree in which certain gene types were pathogen-associated

since multiple well-studied pathogens, with closely related non-pathogenic

relatives, had complete genomes available from diverse phyla. I also repeated

these analyses using hundreds of genomes, taking into account the phylogenetic

distance between species to reduce the redundancy of the genomes dataset in

order to reduce potential biases due to sampling. Similar results were obtained,

with the same statistically significant observations, with this pared down dataset.

Regardless, clearly this analysis, or a similar type of analysis, bears repeating as
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the number of genome sequences available increases. Future analyses will need

to account for non-pathogens that may have recently evolved from pathogens.

The contextual nature of pathogenicity (for example, how an organism can be a

pathogen in one species and not in another) complicates analysis and will need

to be further considered. This analysis was also limited by the cutoffs used to

measure the similarity between sequences. I chose cutoffs that did not produce a

notably different result from cutoffs slightly above or below it. However, any hard

cutoff is not perfect and so I performed further manual inspection of results for a

given gene identified as pathogen-associated before pursuing further in depth

analysis of the gene of interest. It should also be taken into consideration that

some proteins, like T3SS effectors, may appear to be more pathogen-associated

simply because there are less constraints on their sequence and they have

diverged in sequence more rapidly. However, by focusing most of this analysis

on those genes that are found in multiple genera, I have been identifying genes

that do share a certain degree of similarity. Finally, I also investigated the utility of

different gene function classification systems in this analysis, like COG,

SUPERFAMILY, PRINTS, and the VFDB. It became clear over the course of this

study that general classification systems like COG do not perform well in

detecting trends in virulence since the classification system does not include

most VFs. The VFDB, with its curated dataset and virulence-guided classification

system, was the most effective. There are still some VFDB classifications that

could benefit from more curation - for example the T3SS component

classification could be improved further - but this more virulence-specific VFDB
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classification was of the most utility. More effort should be made to build upon

such efforts and develop a high quality ontology that is relevant to virulence, to

complement other ontology efforts.

Even with all of the limitations in this analysis described above, including

genome sequences available, VFs known, and classification systems available,

the criterion used clearly identifies genes and gene categories that have a

notable pathogen-association.

3.4 Discussion

Through the identification and analysis of pathogen-associated VFs, I

found that toxins, T3S, and T4S system genes may be disproportionately

associated with pathogens, suggesting that these types of genes may serve

more specific roles in pathogenesis. Furthermore, I show that pathogen­

associated genes are not well classified with common, general protein function

classification systems. I therefore propose there is an overall need to improve

coverage of current classification systems, because even programs with high

precision and recall, such as PSORTb (Gardy et al. 2005), have significantly

lower predictive capabilities for species-specific genes as shown above.

This investigation of putative pathogen-associated genes reveals several

universal strategies adopted by pathogens that can be used to gain access to

and colonize privileged sites in hosts'. These strategies appear to be absent in

non-pathogenic strains which typically do not colonize privileged sites and

therefore do not elicit a strong inflammatory response (Brown et al. 2006).
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Overall, these results suggest that while we have made substantial progress

towards understanding pathogenicity mechanisms, there are still many virulence­

associated factors and mechanisms that we don't understand. Additionally,

systematic screening for genes that are predominately or exclusively found in

pathogens, such as the one carried out here, may provide an alternative strategy

to identify potential VFs that more directly responsible for virulence, rather than

host-interaction factors.

This study also provides the beginnings of a list of pathogen-associated

genes that could be used as targets for novel therapeutic strategies that

specifically target pathogen-specific traits or mechanisms. I also provide whole

genome datasets of pathogen-associated, nonpathogen-associated and

"Common" genes identified in this study that are available for downloading at the

following website: www.pathogenomics.sfu.ca/pathogen-associated/index.html.

In Chapter 4 and Chapter 5, I expand my analyses of selected classes of

pathogen-associated VFs, and discuss their potential as candidates for vaccine

development.
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CHAPTER 4
PATHOGEN-ASSOCIATED GENES ENCODE
SPECIALIZED COMPONENTS OF TYPE III SECRETION

4.1 Introduction

Many pathogenic bacteria use T3SSs to deliver VFs, called effectors,

directly into the cytosol of host cells. T3SSs have also been discovered in

commensals and symbiotic bacteria, as a mechanism of interacting with their

hosts (Tampakaki et al. 2004). A more detailed description of T3SSs is presented

above in section 1.4.6.

In this study, I investigated and identified components of T3SSs that may

be more critical for virulence in pathogens by identifying components that are

predominately associated with pathogens and lack homologs with significant

sequence similarity in non-pathogens. I therefore used the BLAST-based

approach (described in Chapter 3) to identify pathogen-associated components

of the Ysc-Yop T3SS in Yersinia spp. I found particular components of this

system are predominately pathogen-associated, specifically, the effectors,

translocation pore, and regulatory genes involved in response to host cell

contact. Investigation of these components as potential vaccine candidates is

also discussed.
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4.2 Materials and methods

A list of genes and components of the Yersinia Ysc-Yop T3SS were

assembled by utilizing the subset of VFs classified as "T3SS" and "Type III

secreted proteins", according to the VFDB classification scheme (section 1.8.1).

Additional genes and annotation information were curated from the literature for

overall completeness of the dataset. T3SSs from enteropathogenic E. coli,

Salmonella spp., as well as the T4SS in Agrobacterium were also retrieved and

investigated in a similar manner. In the case of the T4SS, genes from the VFDB

classified as "T4SS" and "Type IV secretory protein" were used. The components

involved in the Ysc-Yop system seemed to be the most comprehensively studied

and so in depth analysis was done for this system.

Each gene was labeled either pathogen-associated or "common" using the

BLAST-based approach described Chapter 3. They were further manually

inspected to identify any that may have been falsely labeled as pathogen­

associated due to the cutoff used. For example, in some cases a gene may have

a significant homolog in a non-pathogen, but the e-value score is relatively close,

but slightly above, the chosen cutoff of 10-7. In these cases, the BLAST reports

are further manually examined for homology over the entire protein or only over a

small region or domain for example, and any questionable cases are reported. I

also used a less stringent criteria, by allowing a given gene to have a maximum

of 1 homolog in a non-pathogen. This would account for genes that should be

labelled pathogen-associated, but were not according to the BLAST analsysis.

For example, homology over only a small region or domain with a gene in a non-
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pathogen, may falsely label a gene as "common" when in fact it should be

pathogen-associated. Again, overall patterns in pathogen-associated

components of the entire T3SS were re-analyzed and compared to original data.

4.3 Results

4.3.1 Effectors, translocation pore and genes involved in host-contact
regulation are strongly pathogen-associated

According to my BLAST-based analysis, I found certain components of the

Ysc-Yop T3SS tend to be strongly associated with pathogens. These include the

effector proteins, genes involved in formation of the translocation pore, genes

regulated by host-dependent contact, and additional external components. All

pathogen-associated genes are shown in Figure 4.1.

Effector Yops have remarkable ability to evade the host immune system

by blocking phagocytosis and the host pro-inflammatory response (Cornel is

2002b). Four out of 6 known Yop effectors were identified as pathogen-

associated according to this BLAST analysis, including: YopE, YopH,

YpkA/YopO, and YopPlYopJ, as well as the known effector chaperones SycT,

SycH, SycElYerA (chaperones for YopT, YopH, and YopE respectively). Effector

YopT was identified as "common" to both pathogens and non-pathogens as it

had significant similarity to a gene found in nonpathogen Hahella chejuensis, a

marine microbe. Recent genomic sequencing of H. chejuensis led to the

discovery of two T3SSs and other virulence-associated genes, suggesting it may

be pathogenic to some marine eukaryotes (Jeong et al. 2005), although this is

not confirmed. The final effector YopM was also identified as "common", however
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the precise function of this protein remains unclear. The yopM gene was found in

multiple pathogen species and the plant-symbiont Bradyrhizobium japonicum, in

which a conserved T3SS was identified (Mazurier et al. 2006). It has been

suggested, but not confirmed, that the T3SS gene cluster identified is involved in

early interactions for establishing symbiosis with its host (Gottfert et al. 2001).

Formation of a pore in the host cell membrane is required for effective

translocation of Yop effectors into the host cell cytosol. Pore formation requires

YopS, YopD, and LcrV (Marenne et al. 2003; Neyt et al. 1999), which were all

identified as pathogen-associated and present in 4 genera (Yersinia, Vibrio,

Pseudomonas, and Photorhabdus).

YscW, a gene previously shown to be required for secretion of YopS,

YopD, and LcrV (Allaoui et al. 1995), is pathogen-associated and found in 3

different genera. TyeA and LcrG were identified as pathogen-associated and

found in the same 4 genera as above. These proteins playa role in blocking the

secretion channel in the absence of host cell contact (Cornel is et al. 2000). A

third gene with similar function, yopN/lcrE, is "common" and found in 6 different

genera including the non-pathogens Hahella chejuensis and Desulfovibrio

vulgaris Hildenborough, a sulfate-reducing bacterium, whose genome also

encodes essential T3SS genes (Heidelberg et al. 2004). Finally, yopK/yopQ

which regulates the size of the pore in the target membrane (Cornel is et al. 1998)

is pathogen-associated and in a single genus.

Genes which encode parts of the external injectisome, including yscO and

yscP (functions as a ruler, regulating needle length), components whose

79



products are required for Yop secretion, and YscX, another secreted component

whose function is not well understood, are all pathogen-associated and found in

.3 to 4 genera. YscF, the major subunit of the needle complex, is found in 6

different pathogen species (of the generas Pseudomonas, Vibrio, Photorhabdus,

and Yersinia) and one insect endosymbiont, Sodalis glossinidius str 'morsitans'.

It was recently observed that S. glossinidius does contain genes

homologous to T3SS genes in Yersinia and Salmonella. Several lines of

evidence suggest that adaptation of S. glossinidius to a symbiotic lifestyle from

free-living is fairly recent, and massive genome erosion has removed or

inactivated certain T3SS components and effectors that are likely to harm the

host (Dale et al. 2005; Toh et al. 2006). This provides an interesting example

where T3SS has adapted to mutualistic interaction. This also reflects the need for

methods that identify pathogen-associated genes to allow for such recent

evolutionary events.

Similar pathogen-associated genes/components were observed for the

enteropathogenic E. coli T3SS encoded by the LEE PAl (Figure 4.2), the

Salmonella SPI-1 (Figure 4.3), as well as the A. tumefaciens T4SS (Figure 4.4).

The majority of external or secreted componts in these systems were identified

as pathogen-associated as well and in notably less genera than "common"

genes. Additionally, when the more or less stringent criteria (see materials and

methods) for identifying pathogen-associated genes were re-examined, I found

the overall trend that these particular components are still strongly pathogen­

associated similar to the original dataset.
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Figure 4.1 Pathogen-associated and "Common" genes involved in Yersinia Ysc-Yop
T3SS.

Genes that are pathogen-associated are shown in red and genes "common" to pathogens
and non-pathogens are in black. The numbers in parentheses represent the number of
different genera this gene is found in according to the BLAST analysis.
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Figure 4.2 Pathogen-associated and " Com m on" genes involved in the enteropathogenic
E. coli T3SS.

Genes that are pathogen-associated are shown in red and genes "common" to pathogens
and non-pathogens are in black. The numbers in parentheses represent the number of
different genera this gene is found in according to the BLAST analys is . Those genes with
homologs in a maximum on 1 nonpathogen were classified as pathogen-associated.
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Figure 4.3 Pathogen-associated and "Common" genes involved in the Salmonella SPI-1
T3SS.

Genes that are pathogen-associated are shown in red and genes "common" to pathogens
and non-pathogens are in black. The numbers in parentheses represent the number of
different genera this gene is found in according to the BLAST analysis. Those genes with
homologs in a maximum on 1 non pathogen were classified as pathogen-associated.
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Figure 4.4 Pathogen-associated and "Common " genes involved in the Agrobacterium
tumefaciens T4SS.

Genes that are pathogen-associated are shown in red and genes "common" to pathogens
and non-pathogens are in black. The numbers in parentheses represent the number of
different genera this gene is found in according to the BLAST analysis.
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4.3.2 Basal body genes are "common" to pathogens and non-pathogens

T3SS genes which encode parts of the basal body, are known to be

evolutionarily related to some flagella genes (reviewed in (Saier 2004)). In the

Ysc-Yop T3SS, these include YscC encoding secretin (the outer ring

component), YscN an ATPase, YscR-V (proteins in the basal body in contact

with the cytoplasmic membrane), YscJ and YscQ. It is, therefore, not surprising

that all basal body genes in this system were identified as "common" to both

pathogens and non-pathogens, and are found in a minimum of 15 different

genera with the analysis cutoffs used (Figure 4.1). Similar trends were observed

for the E. coli T3SS (Figure 4.2), Salmonella T3SS (Figure 4.3), and the

Agrobacterium T4SS (Figure 4.4).

4.4 Discussion

While it is clear that T3SS can be adapted to non-pathogenic purposes,

this analysis suggests that certain specialized components are unique in, or

strongly associated with pathogens. In summary, T3SS genes involved in

formation of a pore in the host membrane, effectors, genes encoding part of the

external injectisome, and those involved in host-cell contact dependent regulation

are disproportionately associated with pathogens, whereas genes involved in the

basal body complex are more "common" to both pathogens and non-pathogens.

These specialized pathogen-associated components may therefore be important

for pathogens that utilize T3SSs to interact with their hosts.
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However, it should also be mentioned that some of these components, like

the effectors for example, have notably low sequence identity between species.

Such proteins, if they indeed are subject to less sequence constraints, may

diverge more rapidly to a point that they are not detectable as similar across

species at the BLAST cutoff used. However, even if some of these proteins are

simply diverging faster, and therefore appearing more pathogen-specific, versus

being selectively lost or gained in non-pathogens versus pathogens, the fact

remains that the pathogen-associated genes identified do not have close

homologs in the non-pathogens examined.

It has been suggested that targeting virulence-antigens may force

pathogens to evolve toward less virulence (Gandon et al. 2003). Therefore,

pathogen-associated components of the T3SSs may be better candidates for

vaccine development than the T3SS as a whole as currently envisaged

(Russmann 2004). To our knowledge, many of these more pathogen-associated

components of the T3SS have not yet been specifically investigated for their

utility as vaccine components. However, notably, particular pathogen-specific

components (of the T3SS systems studied) investigated to date for their potential

as vaccine components have been found to be immunogenic and protective. One

such example is LcrV in Yersinia pestis which has been previously shown to be

protective in mice (Anderson et al. 1996; Leary et al. 1995).
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CHAPTER 5
CERTAIN CLASSES OF TOXINS ARE
PATHOGEN-ASSOCIATED

5.1 Introduction

Genes that are conserved across multiple genera of pathogens and rarely

or never found in non-pathogens in these same genera may playa more

universal role in pathogenesis and virulence. Through my analysis of pathogen-

associated genes (Chapter 3), I found that pathogen-associated genes are

disproportionately toxins. However, there are several classes of toxins (see

section 1.4.3 for a review) and I wished to determine if there were certain types

of toxins that were disproportionately associated with pathogens.

Throuqh a more indepth, semi-manual analysis, I have now found that

several particular classes of toxins are pathogen-associated and found in

multiple genera of pathogens. These classes include toxins with pore-forming,

adenylate cyclase, and ADP-ribosyltransferase activities. Additionally, particular

pathogen-associated toxins identified in this study have been successfully used

as vaccine components, and so I propose that others that have not yet been

investigated may be used as well and warrant further study.

5.2 Materials and methods

A dataset of VFs from the most well-known medically important pathogens

was obtained from the VFDB (section 1.8.1). A subset of these VFs were

87



classified as "Toxin" according to the VFDB classification scheme, as well as

additional subclassifications according to their function: for example, "pore-

forming" or "ADP-ribosyltransferase". Each toxin qene was identified as

pathogen-associated or "common" according to a BLAST-based analysis

described in Chapter 3. Particular genes that may have been falsely identified as

pathogen-associated or "common" were further manually inspected (see

materials and methods in Chapter 3 for more details). I performed some manual

curation of the functional classifications for each gene for overall completeness.

Toxins gene were also subdivided into categories based on their COG (Clusters

of Orthologous Groups; (Tatusov et al. 1997)) functional category. The major

focus of this analysis was on toxins genes or categories present in multiple

genera of pathogens, as determined by the BLAST analysis (Chapter 3), so

mainly those particular genes/categories are reported.

5.3 Results

5.3.1 Pore-forming toxins, including cholesterol-dependent cytolysins, are
strongly pathogen-associated

Through my analysis of pathogen-associated genes, I found that several

pore-forming toxins, proteins that "punch holes" in the host cell membrane, are

pathogen-associated. In particular one family of these toxins, the CDCs were

found to be pathogen-associated and in multiple genera of pathogens (Table

5.1).
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Table 5.1 Pathogen-associated toxins in multiple genera of diverse pathogens

Toxin category Example toxins and species Number of
pathogen
generaa

Pore-forming toxins Listeriolysin a (Listeria monocytogenes) 5
(Cholesterol-dependent cytolysins) Pneumolysin (Streptococcus pneumoniae) 5

Streptolysin a (Streptococcus pyogenes) 5

Adenylate cyclase Exoenzyme Y (Rseudomonas aeruginosa) 4
Anthrax edema factor (Bacillus anthracis) 4

ADP-ribosyltransferase and/or Exoenzyme S (Pseudomonas aeruginosa) 3
I GTPase activating Exoenzyme T (Pseudomonas aeruginosa) 4

Pertussis toxin (Bordetella pertussis) 3

a Number of different pathogen genera this toxin is in according to the BLAST based analysis.

According to this analysis, COCs from the VFOB dataset (which includes

listeriolysin 0, pneumolysin, and streptolysin 0) were all found to be pathogen-

associated according to the BLAST cutoff used (see materials and methods).

COCs have previously been shown to be present in the following 5 genera:

Clostridium, Streptococcus, Listeria, Bacillus, and Arcanobacterium. This

analysis did not extend to include COCs in Arcanobacterium, because its

genome sequence is not yet available. However, they were present in the other 4

pathogen genera: Clostridium, Streptococcus, Listeria, and Bacillus. They also

show significant homology to putative hemolysins in the human pathogen

Bacteroides fragilis. A relatively significant homolog to Iisteriolysin 0 was found in

a non-pathogen Lactobacillus acidiophilus, which although below the chosen

cutoff value, did show fairly high homology (e-value =2.40E-06). However closer

examination shows that the homology is not over the entire length of the

listeriolysin 0 protein, and is only limited to small regions of the protein.
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Other types of pore-forming toxins were also identified as pathogen­

associated and in multiple genera through our analysis, such as hla encoding a­

hemolysin, leukocidins (IukF and lukS) from Staphylococcus eureus, and the

protective antigen in anthrax toxin (pagA) which forms the pore that delivers the

lethal factor and edema factor into the host cytosol. All pathogen-associated

toxins found in single or multiple genera are listed in Appendix 8, and all

"common" toxins are listed in Appendix C.

5.3.2 Adenylate cyclase toxins are pathogen-associated

Toxins with adenylate cyclase activity act on target cells by regulating the

concentration of intracellular cAMP. Four such secreted toxins have been

identified to date that increase cAMP concentration thereby modulating or halting

cellular function (reviewed in (Ahuja et al. 2004)). Two of the four toxins were

identified as pathogen-associated and present in multiple genera in my analysis:

the anthrax toxin edema factor in Bacillus anthracis (encoded by cya) and

exoenzyme Y from Pseudomonas aeruginosa, both of which are found in 4

genera of pathogens (Table 5.1). The third toxin with adenylate cyclase activity,

encoded by the cyaA gene in Bordetella pertussis, was identified as "common"

and found in 38 different genera. However, this toxin is bifunctional and contains

both adenylate cyclase and hemolytic properties. The hemolytic domain is linked

to a glycine-rich repeat motif that is found in all toxins in the RTX (repeat in toxin)

family (Ladant et al. 1999), and this motif has been previously been identified in

both pathogenic and some non-pathogenic Gram-negative bacteria (Kuhnert et

al. 1997). Therefore, it is possible that the domain with adenylate cyclase activity
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is pathogen-associated. Further manual inspection of the BLAST reports show

that in fact selected non-pathogens analyzed only show homology to the

hemolysin-encoded portion in the C-terminal region of CyaA, and not the .N­

terminal adenylate cyclase domain suggesting that the adenylate-cyclase domain

may be pathogen-associated. The fourth adenylate cyclase toxin of Yersinia

pestis was not included in our analysis as it was not obtained with the original

VFDB dataset.

5.3.3 Toxins with ADP-ribosyltransferase activity are pathogen-associated

Toxins with ADP-ribosyltransferase activity were also identified as

pathogen-associated, including pertussis toxin, cholera toxin, and P. aeruginosa

toxins exotoxin A, exoenzyme Sand T (Table 5.1). Some of these toxins were

found in multiple pathogen genera: exoS, exoT, and ptxA, the active subunit of

pertussis toxin, were found in 4,4, and 3 genera respectively, whereas the

cholera toxin active subunit (ctxA) and exotoxin A were found in a single genus.

5.3.4 Additional pathogen-associated toxins

Some of the toxins identified as pathogen-associated in our analysis are

either species-specific or genera-specific (Appendix B). Additionally, some toxins

are present in 2 closely related genera. For example, the bacterial superantiqens

present in Staphylococcus and Streptococcus sp., are known to be structurally

homologous (Baker et al. 2004). In my analysis the majority of superantigens

were found to be in the above 2 genera, including staphylococcal enterotoxins

(entD, entE, sea, seb, sec1, sec3, sed, seg2, seh, sek2) and almost
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streptococcal pyrogenic exotoxins (sme2, speA, speC, speG, speH, spel, speJ,

speL, speM, and ssa), with the exception of speK, which was identified in

Streptococcus only. However, it is notable that particular toxins such as those

with pore-forming, adenylate cyclase, and ADP-ribosyltransferase activity are still

found within diverse genera and clearly are pathogen-associated.

5.4 Discussion

In this study, I identify particular toxin classes such as those with pore­

forming, adenylate cyclase, and ADP-ribosyltransferase activity, that are found

within diverse genera and are pathogen-associated. Several of the toxins

identified here have been used as vaccine components, or have shown potential

through in vivo immunization studies. For example, pertussis toxin mutants

deficient in key enzymatic residues, were shown to be protective against B.

pertussis infection in mice (Pizza et al. 1989). Inactivated toxoids, like this one,

are still being used in vaccines (Plotkin 2005). Other studies report the efficacy of

the adenylate cyclase toxin from B. pertussis as a vaccine component in

combination with other antigens (Macdonald-Fyall et al. 2004; Orr et al. 2007).

Also, several lines of evidence suggest that LLO peptides induce protective

immunity against Listerial infection in mice (Bouwer et al. 1996; Harty et al. 1992)

These results, combined with the observation that many of these VFs are

not part of the core pathogen genomes, suggest that if we put selection pressure

on virulence specific antigens, we may be able to effectively reduce the number

of pathogens carrying these genes, and hence provide selection for pathogens to

evolve into less virulent forms. Our study confirms that several VFs used in

92



successful vaccinations are indeed specific to pathogens (based on the current

pathogen and non-pathogen data available). Additional literature review of the

pathogen-associated VFs we have identified in this analysis shows that some are

protective either on their own, or in combination with other VFs. However, not all

have been tested and clearly it would be prudent to examine the efficacy of other

pathogen-associated associated genes that have not yet been investigated for

their effectiveness in vaccines. Antigens that are common to both pathogens and

commensals are presumably less likely to elicit strong immunogenic responses.

This study provides the beginnings of a list of toxin genes (along with other

pathogen-associated proteins, both of known and unknown function) that may

encode good candidates for vaccine development.
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CHAPTER 6
THE VIRULENCE GENE EXPERIMENT DATABASE
(VGEDB)

6.1 Introduction

In light of increasing appreciation that defining a gene as a VF is a very

contextual phenomenon, there is a need to develop highly-structured database

resources that contain detailed information of the particular conditions in which a

given gene is involved in virulence. Currently, there are four databases

specifically focused on information about VFs (summarized in Table 1.4), of

which two are published, the VFDB (Chen et al. 2005) and MvirDB (Zhou et al.

2007). These databases are further reviewed in section 1.8.1.

All of the available VF databases are centered around lists of VFs and do

not provide structured, contextual information about the experimental conditions

under which the genes appear to playa role in virulence. I have therefore

developed the VGEDB, where each entry in the database contains information

about a given virulence gene experiment, rather than a virulence gene.

Currently, the majority of VGEDB entries consist of STM experiments

(section 1.7.2), a high-throughput approach for VF identification, as well as

additional gene knockout experiments (and associated complementation

experiments) that satisfy Molecular Koch's Postulates (section 1.2; (Falkow

1988)) for bacterial virulence gene identification (discussed in section 1.2). I then
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utilize the VGEDB to examine the accuracy of a BLAST-based computational

approach for identifying VFs in genomic sequence (described in Chapter 7), and

briefly discuss how continued expansion of the VGEDB can potentially improve

the accuracy of such approaches. Additionally, I discuss how the rich contextual

information in VGEDB can be used to gain insights into future questions

regarding trends in bacterial virulence that could not be easily examined before.

6.2 Development of the VGEDB

The VGEDB currently contains over 960 virulence gene experiments from

16 different pathogens. The majority of these entries (710/960) are from STM

experiments. The other 250 entries involve genes that have been inactivated

individually or "knock-out" genes, where a measurable decrease in virulence on

its host is observed and measured. For a given VF experiment, all experimental

results, methods, gene, sequence, bacteria and host information, are manually

curated from the literature and compiled into the database. The VGEDB

database schema (Figure 6.1) consists of 8 tables: Experiment, Organism,

Result, Literature, Gene, Nucleotide, Protein, and Name.

The Experiment table contains details of the type of mutant, host and

infection conditions for a given experiment. An example of an annotated

experiment is illustrated in Figure 6.2. Both in vitro and in vivo experiments are

included. Details of an in vivo experiment typically include the number of host

organisms used, infection dose, time required for infection, method of inoculation,

etc. Records for in vitro experiments generally include the number of replications,

multiplicity of infection, and the number of host cells and bacteria used in the
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infection. I also note the type of "knock-out" method used: insertion or deletion

mutation for example, and if available, if the mutation had a polar or non-polar

effect.

The Organism table stores information on bacterial strain and host used in

the infection. A host can be a whole organism (e.g. mouse) or a type of cell (e.g.

HELA cell). If available, taxonomy information for all bacterial strains and hosts

used in the experiment are retrieved from the National Center for Biotechnology

Information (NCBI) website and included in the database.

The Result table contains all results for a given experiment. To

accommodate different result formats, a code 'EX' identifies exact

numerical/statistical results, 'AP' is noted for results presented in graphical format

in a publication, which are approximated from the original data by the curator,

and 'F!' is indicated for figures such as electron microscopy images. Additionally,

auxotrophic mutants (mutants with reduced growth rate compared to wild-type in

vitro) are flagged so the user can choose not to retrieve these particular genes.

The Literature table contains a reference to the original published journal

article through NCBI Pubmed. The Gene table incorporates various functional

classifications for a given gene, provided from the following sources: 1) VFDB

(Chen et al. 2005), 2) PRINTS database of virulence factors, 3) TvFac from the

Los Alamos National Laboratory, 4) our own VGEDB classification, 5) COG

(Tatusov et al. 1997), and 6) PSORTb (Gardy et al. 2005). Additionally, the Gene

table is linked to the Protein and Nucelotide tables, which store sequence

information retrieved from GenPept and GenBank respectively. Finally, the Name
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table stores all gene, protein, and ORF names, as well as any alternative names,

such that experiments on a similar gene but with different name can be tracked

and retrieved over time. The VGEDB is a relational database, implemented in

Perl, and developed with the open source software mySQL.

Figure 6.1 VGEDB Database schema

Each table is represented by a box with data centered around one infection experiment for
a given gene, involving a particular pathogen and host organism/tissue. For brevity, some
fields are not included in this diagram. The relationships between the tables are shown
(1=one; M=many). For example: The Literature table is linked to the Experiment table by
the 'Pubmed_id' in a 1 to Many relationship, since there may be many experiments in one
publication. PK: Primary key, FK: Foreign key.
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Figure 6.2 Example VGEDB entry

This example annotates an experiment in which the virulence of wild-type Pseudomonas
aeruginosa PA01, and that of a genetically defined algC mutant, PA01 algC::tet, were
compared in a burned-mouse model of infection (Goldberg et al. 1995). For brevity, some
tables and fields are not included in this diagram.

EXPERIMENT GENE

- ExperimenUd 10 If
Gene id 1

Pubmed id 7558335 Name- aJgC
Gene id- 1 Organismjd 1
Mutant.Type Insertion Nucleotide_id AE004945.1
Mutant.Location Unique Pst! site Protein_id AAG08707.1
Mutant.Name PA01 algC::tet Orf PA5322
Mutant.Polarity polar Classification_VGEDBLPS Biosynthesis
Mutant.Orientation + Classification Prints -
Mutant.Description - Classification=TVFac -
Complement.Name PA01 algC::tet (pLPS1888) Classification_VFDB -
Complement.Descripbl Plasmid-based complementation Function Phosphoglucomutase and
In vivo or in vitro Vivo phosphomannomutase
Model - - - Bumed-mouse infection model
Host id 212

LHostAge - ORGANISM
HostWeight 2210 25g Organism_id 1 212
HostSex F Genus Pseudomonas Mus
HostDescription - Species aeruginosa musculus
Infection.Route Subcutaneous injection

Mice receive alcohol flame burn Strain PA01 CF-1

Infection.Description for 10 sec covering 15% of their Cell_type . -
body before innoculation Common_name- Mouse

Incubation Time Up to 10days Tax_id 208964 10090

Incubation=Temp -

LITERATURE
Pubmed_id 7558335
Authors Goldberg JB, Coyne MJ Jr, Neely AN, Holder IA
Tide Avirulence of a Pseudomonas aeruginosa algC mutant in a burned mouse

model of infection.
Joumal Infection and Immunity
Volume 63
Issue 10
Year 1995
Pages 4166-9
Date_Published 3()...()d.95

RESULT
ResulUd 1 2 3 4 5
Experiment_id 10 10 10 10 10
Type Killing Killing Killing Killing Killing
Dose 100CFU 100 100 100 100
Time 1day 2days 3days 4days 5days
Replicates 10 10 10 10 10
Tissue - . - - -
Description - - - - -
Units Numberkilled Number killed Number killed Number killed Numberkilled

WiI~type 0 4 9 10 10
Mutant 0 0 0 0 0
Complement - - . - -
Significance - - - - -
Source Table 1 Table 1 Table 1 Table 1 Table 1
Code EX EX EX EX EX
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6.3 Future use of the VGEDB

The contextual data present in the VGEDB can allow us to ask more

sophisticated questions of virulence trends that could not easily be answered

before. For example, we can ask questions such as the following: 1) Which VFs

are involved in disease in different hosts (e.g. Mouse, Worm, Plant - both

common and species-specific), 2) Are their functional categories of VFs that tend

to be more associated with broad host-range infection?, 3) Which VFs, or VF

categories, playa significant role in severe or lethal disease (e.g. mutants with

highest change in LD50 across multiple species)? Studying these types of trends

can take advantage of the contextual information provided by the VGEDB, and

may potentially lead to genuinely new insights regarding trends in pathogen

virulence.

In addition, I have performed an analysis of potentially improving the

accuracy of BLAST-based identification of VFs by utilizing a larger dataset of

VFs, such as the VGEDB, into the analysis. This is described further in Chapter

7.

6.4 Discussion

The VGEDB contains a set of high quality, well-annotated virulence genes

that have been experimentally verified through STM and bacterial gene knockout

experiments. The unique feature of this database is that rather than just providing

a simple list of virulence genes, the VGEDB incorporates contextual information

about the experimental conditions under which a given gene is involved in
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virulence, and this information can be used a base for more sophisticated

questions regarding trends in virulence.

Initially I set out to create a database that was focused on annotating all

VFs, primarily based on gene knockout experiments. However, with the advent of

8TM data, I decided to focus more on the use of this 8TM data to provide a more

consistent type of measure of virulence across species. This collection of 8TM

data, in an organized fashion, has not been developed previously, let alone any

development of a highly contextual database of VFs. This 8TM dataset collection

alone will now permit powerful new analyses of these data to be performed,

including identifying commonalities and differences across species and

conditions, that could not be easily performed before.

In this study, I utilized the VGEDB, coupled with additional high quality

datasets of known VFs, to investigate the accuracy of current VF identification

methods, and propose that further expansion of the VGEDB could improve

computational identification of VFs in newly sequenced genomes (discussed in

Chapter 7). Additionally, I hypothesize that the rich contextual information in the

VGEDB can be used to gain insights into future questions regarding trends in

bacterial virulence and that only through the analysis of such resources can more

complex patterns of trends in virulence be identified. There is still much to be

done on this front, but the development of this more complex VF databse

schema is an important start to being able to perform more sophisticated

analyses of trends in virulence.
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CHAPTER 7
ESTIMATING THE ACCURACY OF COMPUTATIONAL
IDENTIFICATION OF VIRULENCE FACTORS

7.1 Introduction

When a bacterial pathogen genome is first sequenced researchers often

have a primary interest in identifying any genes that may encode VFs. However,

current approaches for computationally identifying VFs are very ad hoc - usually

involving a BLAST analysis against a dataset of known VFs, such as that used to

identify T3SS genes in Chlamydia pneumonia (Kalman et al. 1999). There are

several limitations with current computational methods (discussed in section

1.8.2), including the fact that the accuracy of these methods has not been

examined before. As the number of sequenced bacterial genomes continue to

increase exponentially, such as from metagenomic studies for example,

propagation of errors in accuracy will inevitably increase as well.

There is therefore a need to investigate the accuracy of these methods

and to develop more robust methods to computationally identify potential VFs.

This is not a trivial endeavour due to the very contextual nature of a VF. Some

genes are VFs in one species, while not in another, due to changing genomic

context. However, by investigating the accuracy of current VF prediction

methods, I hypothesize that we can gain some insight into how well common

methods are performing as an important first step to developing improved

methods.

101



In this study, I examine the accuracy of a BLAST-based method using

high quality VFs from the VFDB (section 1.8.1), as well as additional VFs that

wer~ identified experimentally (either through signature-tagged mutagenesis

studies or additional gene knock-out experiments) from the VGEDB (Chapter 6).

These datasets were used to estimate both the sensitivity (recall) and specificity

(precision) of a BLAST-based approach for identifying VFs. I found that both

sensitivity and specificity are quite low and discuss possibilities for improving

computational identification of VFs in genomic sequence through the use of high

quality VF database resources such as the VGEDB (Chapter 6).

7.2 Materials and methods

I used a dataset of 1819VFs from the VFDB (described in section 1.8.1')

to identify putative VF homologs in the deduced proteome of P. eeruqmos«

PA01 using BLAST (Altschul et al. 1990) (e-value cut-off of 10-7 was used, which

represents a common e-value cutoff used in such analyses and a value used for

gene family identification, though other cut-offs were initially examined). This

analysis is typical of what is commonly performed during genome annotation to

identify possible VFs. The BLAST results were then compared against a dataset

of "true" VFs, consisting of 148 reported genes identified in a P. aeruginosa

PA01 STM screen, where mutants with disruptions in these genes showed

reduced virulence in a rat model of chronic respiratory infection (Potvin et al.

2003). The sensitivity (recall) was calculated using the formula: true

positives/(true positives + false negatives), or TP/(TP+FN), and specificity

(precision) using true positives/(true positives + false positives), or TP/(TP+FP).
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TPs correspond to the number of "true" VFs (out of the 148 experimentally

identified through STM) that were also identified by BLAST, FNs are the "true"

VFs not ldentifled by BLAST, and FPs are genes identified by BLAST that were

not identified in the STM screen.

To investigate whether accuracy of a BLAST based approach was

improved when using a larger VF dataset for the BLAST analysis against the test

genome (P. aeruginosa strain PA01), I repeated this analysis using two larger

datasets of VFs for the BLAST analysis: One, I used a dataset that comprises a

collection of genes from diverse species that have been experimentally identified

through STM studies and are included in the VGEDB (see description of the

VGEDB described in Chapter 7). Note that to avoid evaluating test data with the

same data, I did exclude the148 VFs from P. aeruginosa described above in this

dataset. The second larger dataset comprised the VGEDB as well as the VFDB

datasets, combined together into one dataset.

One potential bias with this analysis is that possible false-positives in the

STM-based analysis may occur due to polar effects on downstream genes. Using

a survey of 10 STM papers that investigated the number of false-positives due to

polar effects, I used an estimation of this error rate of 25% (see section 7.3.3).

7.3 Results

7.3.1 Overall accuracy of BLAST-based identification of virulence factors
is very low

Using these well defined datasets, I found that the sensitivity of this

BLAST-based approach for identifying VFs was quite low: only 25% (37/148) of
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the experimentally determined genes (under this particular infection condition)

were identified (Table 7.1). Additionally, the estimated specificity is only 3.4%,

indicating many potentially false positive VFs are being identified.

When the VFDB and VGEDB datasets are combined, there is an increase

in sensitivity to 39.2%. However, the specificity remained approximately the

same at 3.6%.

Table 7.1 Accuracy of BLAST-based identification of virulence factors

VF Dataset Sensitivity (%) Specificity (%)

VFDB Only 25.0 3.4

VGEDB Only 26.4 3.8

VGEDB and VFDB 39.2 3.6

VFDB with correction" 31.0 4.3

VGEDB and VFDB with correction" 48.6 4.4

a Correction due to polar effects of VF identification through STM

7.3.2 Classification of virulence factors identified and not-identified with a
BLAST-based approach

I also found that VFs identified by BLAST are disproportionately classified

as 'Signal transduction mechanisms' and 'Cell motility and secretion' COG

functional categories (p = 5.27E-03 and p = 3.61E-02 respectively). However, the

statistical significance, while less than 0.05, was not high. Genes that are

'Unclassified' or classified as 'Function unknown' are not well identified by this

approach (17.1% and 16.2% respectively) as shown in Table 7.2, however this

was not statistically significant.
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Table 7.2 COG Classification of VFs identified and not identified with BLAST

COG Category VFs identified by VFs not p-valuea

BLAST identified by
BLAST

# % # %

Categories with higher percentage of VFs identified by BLAST

Signal transduction mechanisms 7 18.~ 1 0.9 5.27E-03*

Cell motility and secretion 4 10.8 0 0.0 3.61E-02*

Intracellular trafficking secretion and 3 8.1 0 0.0 1.03E-01
vesicular transport

Transcription 4 10.8 3 2.7 2.76E-01

Inorganic ion transport and metabolism 3 8.1 4 3.6 8.56E-01

Posttranslational modification protein 2 5.4 4 3.6 1
turnover chaperones

Carbohydrate transport and 2 5.4 5 4.5 1
metabolism

Cell envelope biogenesis outer 1 2.7 3 2.7 1
membrane

Coenzyme metabolism a 0.0 0 0.0 1

Categories with higher percentage of VFs not identified by BLAST

Unclassified 1 2.7 19 17.1 1.38E-01

Function unknown 2 5.4 18 16.2 5.67E-01

Energy production and conversion 1 2.7 10 9.0 8.78E-01

Nucleotide transport and metabolism 0 0.0 5 4.5 8.71E-01

General function prediction only 1 2.7 8 7.2 9.47E-01

Translation ribosomal structure and a 0.0 3 2.7 1
biogenesis

Lipid metabolism 1 2.7 6 5.4 1

Cell division and chromosome 0 0.0 2 1.8 1
partitioning

Amino acid transport and metabolism 3 8.1 11 9.9 2

Defense mechanisms 1 2.7 4 3.6 1

DNA replication recombination and 1 2.7 4 3.6 1
repair

Secondary metabolites biosynthesis a 0.0 1 0.9 1
transport and catabolism

a Pearson's Chi-squared test with Yates' continuity correction. Asterisks indicate statistical
significance (p-value < 0.05).
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7.3.3 Potential bias in virulence factors identified through signature
tagged mutagenesis

One potential bias with this analysis is that possible false-positives in the

STM-based analysis may occur due to polar effects on downstream genes. In a

survey of 10 STM papers that investigated the number of false-positives due to

polar effects, I estimated an average false positive rate of 25% (Begun et al.

2005; Collins et al. 2005; Grant et al. 2005; Ku et al, 2005; Lawlor et al. 2005; Li

et al. 2005; Ojha et al. 2005; Paik et al. 2005; Shah et al. 2005; van Diemen et al.

2005). After correcting for these STM false positives, the sensitivity of identifying

VFs with this approach is increased to 31%, and the specificity to 4.3% (Table

7.1 ).

7.4 Discussion

Overall, these results suggest that the accuracy of current computational

approaches for identifying VFs is relatively low - only 31% sensitivity and 4.3%

specificity for an analysis that estimated false positives due to the STM method. I

show that the sensitivity can be greatly improved by incorporating a more

comprehensive list of VFs by factoring in datasets of putative VFs that have been

experimentally determined. However, I believe this increase is not enough to

warrant the exclusive use of this method for identification of potential VFs in

newly sequenced genomes. I also note that novel VFs are not well identified with

this approach, or well classified with existing gene functional classification tools,

since many of the genes involved were classified as "Unclassified" or "Function

Unknown". This suggests that there is a need to develop classification tools more
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specific for genes involved in virulence, as has been initiated with the VFDB

classification scheme. Also, more novel approaches to identify both known and

unknown VF genes, for example, by i~entifying pathogen-associated genes

(discussed in Chapter 3), may prove more useful than current methods. In

particular, when analyzing metagenomic data to identify possible pathogens, one

must be careful with the approach of identifying VFs in sequences by BLAST and

then assuming that they are either VFs, or that the microbe encoding them is

necessarily a pathogen. The identification of pathogen-associated genes, versus

simply genes involved in host-association, may identify more virulence- specific

genes and have more utility in identifying some pathogens from metagenomic

sequence data.

However, there are a number of cautionary notes regarding these data.

The specificity estimate may be exceptionally low in part because the STM

screen may not have comprehensively identified all VFs present in the pathogen.

Since virulence is so contextual, some genes may be required for virulence

under some conditions, but not others. However, based on a manual analysis of

selected genes, it is clear that a significant proportion of the false positives are

due to this BLAST analysis detecting similarity to genes that are not VFs but

share significant similarity to such genes. As the VF dataset used in the BLAST

analysis is increased in size, the specificity does not change. Accounting for

some false positives in the STM data does affect speciticity, but at a very minimal

level. Regardless of the reason for this low specificity, it is clear that the overlap

of STM data, versus common BLAST-based identification of VFs using a VF
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dataset, is low. Regarding sensitivity or recall, the values were more reasonable,

though still very low, but did increase when a larger VF dataset was used in the

BLAST analysis. This may be in part due to the fact that STM identifies some

genes that are involved in in vivo growth, but aren't strictly VFs. However, even

when a dataset based on STM data from other species was used, the sensitivity

was still below 50%. Clearly more sensitive detection methods are required ­

likely coupled with a more expanded dataset of VFs used for training of a

computational method.

Regardless, this study suggests that the accuracy of common BLAST­

based methods for the identification of VFs is likely very low and clearly has low

overlap with STM-based data. While it is generally appreciated that such an

analysis would not be highly accurate, to my knowledge it has not been

appreciated just how poorly such a method performs. I hypothesize that as more

VFs from STM studies are added to the VGEDB (see below), with contextual

information about the infection conditions involved, we can create a more

comprehensive, contextual, list of VFs and be able to identify potential VFs in

genomic sequence with increased sensitivity. However, methods that are more

precise than BLAST must be explored or coupled with a BLAST-based analysis.

The use of orthology information may be useful to avoid identifying non-VF

paralogs that are similar to VFs through a BLAST-based approach (Fulton et al.

2006). Likely in the end only certain classes of VFs may be accurately identified

using a computational approach, but at minimum, there is a significant need to

improve our current methods and use them with the understanding of the degree
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of accuracy of the methods used. More contextual information regarding the

genomic context and gene context (i.e. what other genes are present in the

genome) for a given gene in a genome will also likely be necessary to improve

computational VF identification. This will become increasingly critical as

metagenomic analysis of microbes of uncultural species becomes increasingly

common, necessitating more dependence on computational analyses of

virulence.
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CONCLUSIONS

These analyses of pathogen-associated genes and a curated dataset of

VFs suggest that such genes are, on average, more associated with Gis versus

non-Gis. Collectively, these results also further suggest that "offensive" and

virulence-specific VFs in bacterial pathogens are more likely to be associated

with GIs, versus VF homologs in non-pathogens involved in more passive host­

association functions. Though there are of course certain bacteria that are

exceptions, the work supports the strong role of Gis in the evolution of virulence

and provides the first systematic analysis of this trend across diverse genera. I

also identify pathogen-associated genes and provide evidence that certain

components of T3SSs and certain types of toxins are quite selectively pathogen­

associated. Additionally, I provide whole genome datasets of pathogen­

associated genes in a set of completely sequenced bacterial genomes. Such

pathogen-associated genes may warrant further study for their potential as anti­

infective drug targets and vaccine components.

In addition, I have developed the VGEDB, a resource that incorporates

detailed information about experimental conditions used to identify a given VF.

The contextual information in this database will potentially enable more

sophisticated analyses of virulence and VFs not easily performed before. Finally,

with the continuing increase of genomic data, I propose that there is a need to
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develop more robust approaches to computationally identify VFs in newly

sequenced genomes.
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APPENDICES

Appendix A:
Virulence Factor Database classification of "offensive" and
"defensive" virulence factors

Offensive virulence factors
1) Adherence
2) Invasion
3) Toxin

3.1) Toxin: membrane-acting
3.2) Toxin: membrane-damaging

3.2.1) Pore-forming
3.2.1.1) Channel-forming involving beta-sheet-containing toxin
3.2.1.2) Channel-forming involving alpha-helix-containing toxins
3.2.1.3) Thiol-activated cholesterol-binding cytolysin
3.2.1.4) RTX toxin

3.3) Toxin: intracellular toxin
3.3.1) ADP-ribosyltransferase
3.3.2) Adenylate cyclase
3.3.3) Deamidase
3.3.4) Guanylate cyclase
3.3.5) N-glycosidase
3.3.6) Dnasel

4) Actin-based motility
5) Secretion system

5.1) Type "' secretion system
5.2) Type IV secretion system
5.3) Autotransporter (Type V)

Defensive virulence factors
1) Antiphagocytosis
2) Anti-proteolysis
3) Cellular metabolism
4) Phase variation
5) Serum resistance
7) Ig protease
8) Stress protein
9) Complement Protease

Nonspecific virulence factor
1) Iron uptake system
2) Magnesium uptake system
3) Exoenzyme

Regulation of virulence-associated genes
1) Regulation
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Appendix B:
Pathogen-associated toxin genes

VFDBID Organism Toxin Toxin Description Number
Gene of
Name Pathog

en
genera

VFG0011 Bordetella pertussis ptxA pertussis toxin subunit 1 3
Tohama I precursor

VFG0012 Bordetella pertussis ptxB pertussis toxin subunit 2 1
Tohama I precursor

VFG0013 Bordetella pertussis ptxD pertussis toxin subunit 4 1
Tohama I precursor

I VFG0014 Bordetella pertussis ptxE pertussis toxin subunit 5 1
Tohama I precursor

VFG0015 Bordetella pertussis ptxC pertussis toxin subunit 3 1
Tohama I precursor

VFG0017 Bordetella pertussis ptlB pertussis toxin transport protein 5
Tohama I

VFG0019 Bordetella pertussis ptlD putative membrane protein 1
Tohama I

VFG0020 Bordetella pertussis ptll putative bacterial secretion 1
Tohama I system protein

VFG0026 Bordetella pertussis dnt dermonecrotic toxin 3

I
Tohama I

VFG0074 Listeria monocytogenes hly listeriolysin 0 precursor 5
EGD-e

VFG0107 Vibrio cholerae N16961 ctxA cholera enterotoxin, A subunit 1

VFG0108 Vibrio cholerae N16961 ctxB cholera enterotoxin, B subunit 1

VFG0115 Pseudomonas aeruginosa toxA exotoxin A precursor 1
PA01

VFG0147 Pseudomonas aeruginosa exoS exoenzyme S 3
PA01

VFG0148 Pseudomonas aeruginosa exoT exoenzyme T 4
PA01

VFG0150 Pseudomonas aeruginosa exoY adenylate cyclase ExoY 4
PA01

VFG0422 Yersinia pestis C092 ymt murine toxin 2

VFG0636 Shigella flexneri (serotype set1B ShET1B 1

I2a) 301

VFG0637 Shigella flexneri (serotype set1A ShET1A 1
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2a)301

VFG0676 Bacillus anthracis Sterne lef anthrax toxin lethal factor 1
precursor, lef,

VFG0677 Bacillus anthracis Sterne pagA anthrax toxin moiety, protective 1
antigen, pagA

VFG0678 Bacillus anthracis Sterne cya calmodulin sensitive adenylate 4
cyclase, edema factor, cya,

VFG0835 Escherichia coli 0157:H7 stx1A shiga-like toxin 1 subunit A 2
EDL933 encoded within prophage CP-

933V

VFG0836 Escherichia coli 0157:H7 stx1B shiga-like toxin 1 subunit B 2
EDL933 encoded within prophageCP-

933V

VFG0837 Escherichia coli 0157:H7 stx2A shiga-like toxin II A subunit 2
EDL933 encoded by bacteriophage BP-

933W

VFG0838 Escherichia coli 0157:H7 stx2B shiga-like toxin II B subunit 2
EDL933 encoded by bacteriophage BP-

933W

VFG0859 Escherichia coli 42 set1A toxin subunit Set1A 2

VFG0860 Escherichia coli 42 set1B toxin subunit Set1B 2

VFG0863 Escherichia coli 42 astA heat-stable enterotoxin 1 1

VFG0951 Streptococcus pyogenes speA exotoxin type A precursor - 2
MGAS315 phage associated

VFG0952 Streptococcus pyogenes spel streptococcal exotoxin I 2
SF370

VFG0953 Streptococcus pyogenes speK streptococcal pyrogenic exotoxin 1
MGAS315 SpeK - phage associated

VFG0954 Streptococcus pyogenes ssa streptococcal superantigen SSA 2
MGAS315 - phage associated

VFG0957 Streptococcus pyogenes speL putative exotoxin precursor 2
MGAS8232 (SpeL)

VFG0958 Streptococcus pyogenes speM putative exotoxin precursor 2
MGAS8232 (SpeM)

VFG0976 Streptococcus pyogenes Slo streptolysin 0 precursor 5
SF370

VFG0977 Streptococcus pyogenes sagA streptolysin S associated protein 1
SF370

VFG0978 Streptococcus pyogenes speC pyrogenic exotoxin C precursor, 2
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SF370 phage associated

VFG0979 Streptococcus pyogenes speG exotoxin G precursor 2
SF370

VFG0980 Streptococcus pyogenes speJ putative exotoxin (superantigen) 2
SF370

VFG0981 Streptococcus pyogenes smeZ mitogenic exotoxin Z 2
ISF370

VFG0982 Streptococcus pyogenes speH streptococcal exotoxin H 2
SF370 precursor

VFG1273 Staphylococcus aureus hlgA gamma-hemolysin chain II 2
MW2 precursor

VFG1274 Staphylococcus aureus hlgC gamma-hemolysin component C 2

I
MW2

VFG1275 Staphylococcus aureus hlgB gamma-hemolysin component B 2
MW2

VFG1276 Staphylococcus aureus lukF Panton-Valentine leukocidin 2
MW2 chain F precursor

VFG1277 Staphylococcus aureus lukS Panton-Valentine leukocidin 2
MW2 chain S precursor

VFG1292 Staphylococcus aureus hid delta-hemolysin 1
MW2

VFG1293 Staphylococcus aureus hla Alpha-Hemolysin precursor 2
MW2

VFG1325 Staphylococcus aureus sea staphylococcal enterotoxin A 2
MW2 precursor

VFG1326 Staphylococcus aureus seg2 staphylococcal enterotoxin SeG 2
MW2

I VFG1327 Staphylococcus aureus sek2 staphylococcal enterotoxin Sek 2
MW2

VFG1332 Streptococcus agalactiae cylE cylE protein 1
2603V/R

I VFG1333 Streptococcus agalactiae cfb CAMP factor 2
2603V/R

I

VFG1363 Streptococcus pneumoniae ply pneumolysin 5

I
TIGR4

VFG1800 Staphylococcus aureus Eta exfoliative toxin A 1

VFG1802 Staphylococcus aureus seb enterotoxin B 2

VFG1803 Staphylococcus aureus seh enterotoxin H precursor 2
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VFG1804 Staphylococcus aureus sect staphylococcal enterotoxin C3 2

VFG1805 Staphylococcus aureus sec3 enterotoxin C1 precursor 2

VFG1806 Staphylococcus aureus sed staphylococcal enterotoxin D 2

VFG1807 Staphylococcus aureus entD enterotoxin D precursor 2

VFG1808 Staphylococcus aureus entE enterotoxin E precursor 2

VFG1809 Staphylococcus aureus Tst toxic shock syndrome toxin-1 1
N315

VFG1828 Shigella dysenteriae stxA Shiga toxin subunit A; RNA-N- 2
(serotype 1) glycosidase; catalyticsubunit

VFG1829 Shigella dysenteriae stxB Shiga toxin subunit B; receptor 2
(serotype 1) binding subunit
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Appendix C:
Toxin genes "common" to both pathogens and non-pathogens

VFDBID Organism Toxin Toxin Description I Number
Gene of
Name Genera

VFG0016 Bordete/la pertussis ptiA pertussis toxin transport protein 4
ITohama I

VFG0018 Bordete/la pertussis ptiG putative bacterial secretion 27
Tohama I system protein

VFG0021 Bordete/la pertussis ptiE putative bacterial secretion 16
Tohama I system protein

VFG0022 Bordete/la pertussis ptiF putative bacterial secretion 18
Tohama I system protein

VFG0023 Bordete/la pertussis ptiG putative bacterial secretion 28
Tohama I system protein

VFG0024 Bordete/la pertussis ptlH putative bacterial secretion 77
Tohama I system protein

VFG0025 Bordete/la pertussis cyaA bifunctional hemolysin-adenylate 38
Tohama I cyclase precursor

VFG0109 Vibrio cholerae N16961 zot zona occludens toxin 5

VFG0110 Vibrio cholerae N16961 ace accessory cholera enterotoxin 1

VFG0157 Pseudomonas aeruginosa plcH hemolytic phospholipase G 17
PA01 precursor

VFG0158 Bordete/la pertussis cyaG cyclolysin-activating Iysine- 5
Tohama I acyltransferase

VFG0279 Helicobacter pylori 26695 vacA vacuolating cytotoxin 2

VFG0840 Escherichia coli 0157:H7 hlyA hemolysin toxin protein 30
EDL933

VFG0841 Escherichia co1i0157:H7 hlyB hemolysin transport protein 123
EDL933

I VFG0842 Escherichia coli 0157:H7 hlyG hemolysin transport protein 10
EDL933

VFG0843 Escherichia coli 0157:H7 hlyD hemolysin transport protein 62
EDL933

VFG0861 Escherichia coli 42 pic Pic serine protease precursor 15

VFG0862 Escherichia coli 42 pet Pet serine protease precursor 18

VFG0905 Escherichia coli CFT073 hlyG Hemolysin C 8

VFG0906 Escherichia coli CFT073 hlyA Hemolysin A 34

VFG0907 Escherichia coli CFT073 hlyB Hemolysin B 123
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VFG0908 Escherichia coli CFT073 hlyD Hemolysin D 61

VFG0983 Vibrio cholerae N16961 rtx RTX toxin RtxA 55

VFG1269 Bordetella pertussis cyaB cyclolysin secretion ATP-binding 123
ITohama I protein

VFG1270 Bordetella pertussis cyaD cyclolysin secretion protein 66
Tohama I

VFG1271 Bordetella pertussis cyaE cyclolysin secretion protein 7
Tohama I

VFG1394 Mycobacterium plcD plcD 14
tuberculosis H37Rv

VFG1400 Mycobacterium plcC plcC 15
tuberculosis H37Rv

I VFG1401 Mycobacterium plcB plcS 13
tuberculosis H37Rv

VFG1402 Mycobacterium pIcA picA 13
tuberculosis H37Rv

VFG1447 Escherichia coli cnf1 cytotoxic necrotizing factor 1 5

VFG1798 Staphylococcus aureus hlb beta-hemolysin 6

VFG1801 Staphylococcus aureus etb exfoliative toxin B 3

VFG1827 Shigella f1exneri (serotype sen enterotoxin 3
2a) 301
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