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Abstract 

We study certain exponential sums K(a),  known as Kloosterman sums, when a E F2m or 

a E F3m. 

For the binary case we establish the exact spectrum of the number of coset leaders of 

cosets of weight 3 of the binary Melas code. We derive a family of elliptic curves that 

allows us to characterize all a E I F p  for which K(a)  is divisible by 3. As an application we 

construct so-called "caps with many free pairs of points" in PG(n, 2) and describe their use 

in statistical experimental designs. 

In the ternary case we use a similar method. By transforming a certain system of 

equations over into a parametrized family of elliptic curves, we classify and count those 

a E F3m for which K (a) - 0,2 (mod 4). 

We also present a result which is of independent interest, namely a generalization of the 

well known fact that Tr(a) = 0 (a E F2m) if and only if a = t2 + t for some t E F2m. 
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Chapter 1 

Background 

Throughout this thesis we assume a knowledge of finite fields and linear codes. We ask the 

reader to refer to [20], [22], [30] and [17] for more details on these subjects if needed. In 

this chapter we will state the essential facts and definitions which will be used later on. We 

will also present a new result which is of independent interest, namely a generalization of 

the well known fact that T r ( a )  = 0 ( a  E F2m) if and only if a = t2 + t for some t E IF2m. 

1.1 Results on finite fields 

Throughout the thesis let IFpm denote the finite field of order pm, where p is prime, q = pm, 

and let IF;, := IFpm \ (0). We will often use the fact that IFpm can be viewed as an m- 

dimensional vector space over I F p .  

Let T r  : IFpm + I F p  denote the trace mapping given by 

Lemma 1.1.1. [20, p. 55)  Let x, y E Fpm. Then  the trace mapping satisfies the following 

properties: 

3. T r ( c x )  = c T r ( x )  for all c E Fp,  

4 .  Trace mapping i s  a IFp-linear t rans fomat ion  from IFpm onto IFp. 
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The following result is well known and easy to prove: 

Proposi t ion 1.1.2. [20, p. 561 Let a E Fpm. Tr(a) = 0 if and only if a = tp - t for some 

t E Fpm. 

Proof. For all t E Fpm we have Tr(tp - t) = Tr(tp) - Tr(t) = 0. 

On the other hand, let 4 denote a mapping from Fpm to itself defined by 4(t) = tp - t. 

Notice that 4 is Fp-linear. Then Ker(4) = Fp and since Fpm IFF, we can consider Im(4) 

as a vector subspace of of dimension rn - 1. Every element in Im(4) is of trace zero and 

the set of elements of trace zero forms a proper subspace of F F  by Lemma 1.1.1. Therefore 

the elements of Im(4) are precisely the elements of trace zero. 0 

Corollary 1.1.3. Let a E IFp. Then Tr(x) = a for exactly pm-l elements x E Fpm . 

Proof. It  follows from the proof of Proposition 1.1.2 that there are pm-l elements of Fpm of 

trace zero. Then Lemma 1.1.1 (1, 4) implies the general statement. 0 

The following result can be found, for example, in [17, p. 81. 

Lemma 1.1.4. Let f (x) = ax2 + bx + c be a polynomial of degree 2 over F2m with b # 0 

and let 6 = ac/b2. Then f (x) has 2 roots in F2m if and only if Tr(6) = 0. 

Proof. Since b # 0, let y = axlb. Then ax2 + bx + c = 0 becomes 

Then by Proposition 1.1.2 equation (1 .I) ,  and hence f (x), has solutions in F2m if and only 

if Tr(6) = 0. To see that it has two solutions, note that if y  = yo is a solution to (1.1), then 

so is y  = y o +  1. 0 

Lemma 1.1.5. Let s be a positive integer. Then f (x) = x3 is injective on IF2m if and only 

if gcd(s, 2m - 1) = 1. 

Proof. Since f (x) = 0 if and only if x = 0, we have to consider all the non-zero elements of 

F2m. Let a be a primitive element of F2m and let XI = cra, x2 = crb for some a, b E Z2m-l, 

a # b. Then 

xi  = xi  9 aas = abs 9 as - bs (mod 2m - I) ,  

so that 

f(x1) = f(x2) 9 s (a-b)  - 0  ( m 0 d 2 ~ - 1 ) .  
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If the inverse of s exists, that is gcd(s, 2m - 1) = 1, then a = b and f (x) is injective. 

Otherwise, if gcd(s, 2m - 1) # 1,- then s t  = 0 (mod 2m - 1) for some non-zero t E Z2m-i 

and hence by (1.2) f (x) is not injective. 0 

It is surprising that the following natural generalization of Proposition 1.1.2 for p = 2 

to the case ~ r ( a l / ( ~ ~ - ' ) )  = 0 has not been noted before. It is an interesting result and we 

will also use it later on, however it does not generalize further to  the case p > 2. 

Theorem 1.1.6. Let m > 1 and let k be such that gcd(2k - 1, 2m - 1) = 1. Then for each 

a E F2m we have ~ r ( a l / ( ~ ~ - l ) )  = 0 if and only if a = t2k + t2k-1 for some t E F2m. 

Proof. Since gcd(2k - 1 , 2m - 1) = 1, there exists a unique x E Z2m-i such that y1/(2k-1) = yx 

for d l  y E F2m. 

(e) Let a = t2* + t2k-1 for some t E F2m. Then 

Therefore 

(+) We shall show that the equation 

k t2 + pk-l = a 
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has 0 or 2 solutions in F2m (not counting solution multiplicities) for each a E F2m. If a = 0, 

then (1.3) has 2 solutions t = 0 , l .  If a # 0, then by substituting t = l / t  into (1.3) and 

setting z = l / a  we arrive at 

Pk + z t +  z = 0. (1.4) 
k 

Let to be a solution to (1.4), i.e. t i  + ato + z = 0. We will show that there exists a unique 

d # 0 such that to + d is also a solution to (1.4). Substituting t = to + d into (1.4) we get: 

(to + d)2k + z(to + d) + z = o * t$ + d2* + zto + zd + z = o 
* d2k + zd = 0 

* d2k-1 = 2 

e+ d = z  1/(2~-1) 

Recall that z1/(2k-1) exists and therefore d is unique, and z # 0 implies d # 0, so if we 

have one solution to (1.4), then we have exactly two of them. Therefore exactly one half of 

the elements a E F2m can be written in the form a = t2k + t2k-' and from the first part of 

the proof we know that ~ r ( a ' / ( ~ ~ - ' ) )  = 0 for all such a .  There cannot be any other elements 

a for which ~ r ( a ' / ( ~ ~ - l ) )  = 0. This is because a I+ is a bijection on F2m by the 

assumption on k, and Tr(b) = 0 holds for exactly one half of the elements b E F2m. 0 

The following result will be needed in Chapter 3. 

Corollary 1.1.7. Let m be odd. The mapping t I+ t4 + t3 is two-to-one on F2m. Further- 

more, for each d € F2m such that Tr(d) = 1 there is exactly one pair {u, v) with u, v E F2m 

such that u - v = d and u4 + u3 = v4 + v3. 

Proof. The fact that t I+ t4 + t3 is two-to-one on F2m follows from the second part of the 

proof of Theorem 1.1.6 and from the fact that gcd(22 - 1, 2m - 1) = 1 (since m is odd). 

Let d be an arbitrary element of F2m of trace 1. The equation u4+u3 = ( ~ + d ) ~ + ( u + d ) ~  

simplifies to 

d(u2 + du + d3 + d2) = 0. 

The second factor on the right-hand side, viewed as a quadratic in u, has exactly two roots 

in F2m by applying Lemma 1.1.4 where we get S = (d3 + d2)/d2 = d + 1 and so Tr(6) = 0 

by the assumption Tr(d) = 1. These two roots are the pair {u, v) from the statement of the 

corollary. 
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1.2 Almost perfect nonlinear functions 

Most widely used secret-key block ciphers, such as Data Encryption Standard (DES) and 

Advanced Encryption Standard (AES), have a relatively simple structure 1311. The encryp 

tion process consists of a certain number of iterations. Within each round a given bitstring 

is xor-ed with a round key, transformed using substitution boxes, or S-boxes, and then per- 

muted. The security of these ciphers therefore heavily relies on S-boxes, since they are the 

only nonlinear components of such cryptosysterns. When DES was proposed by IBM in the 

19701s, there were a lot of concerns regarding its mysteriously chosen S-boxes. There were 

even suspicions that the National Security Agency of the US had modified them. While 

the majority of IBM researchers confirmed that NSA did not tamper with the security of 

the system, Konheim, one of the designers of DES, was quoted as saying, "We sent the 

S-boxes off to Washington. They came back and were all different. We ran our tests and 

they passed." 128, p. 2801 When comparing DES S-boxes with randomly chosen ones, it be- 

comes clear that they were specifically designed and finely tuned to prevent certain types 

of attacks. In particular, the concept of differential cryptanalysis, introduced by Eli Biharn 

and Adi Shamir in 1990, was known to both NSA and IBM before DES became a stan- 

dard. Although DES S-boxes do not appear to  have any algebraic structure, it was not 

until 2001 that a new standard (AES) was adopted. Due to its structured S-boxes, among 

other things, AES is proven secure against differential attacks. Its S-boxes are defined alge- 

braically using the function f (x) = x-I over I F p ,  a function that is close to one particular 

instance of a class of so-called almost perfect nonlinear (APN) functions; it is APN for most 

of (a, b) E (IF;,, IF2m), except for a small finite number of constants a E IF;,, b E IF2m for 

which Vf = 4 as introduced later in Section 1.2.1. 

APN functions are useful not only in cryptography. They can also be used to construct 

different combinatorial structures such as distance regular graphs, association schemes, uni- 

formly packed codes [9] and binary caps in PG(n, 2) with many free pairs of points. 

It is hard to trace who was the first person to introduce the notion of highly nonlinear 

functions with some references going as far back as 1967. In this section we will start with 

the definitions first presented by Nyberg and Knudsen 1271, 1261 and use the notation of [15]. 

We distinguish between three different classes of highly nonlinear functions, namely almost 

perfect nonlinear (APN), almost bent (AB) and crooked functions (CR), whose classes we 

shall denote by A P N ,  AB, CR correspondingly. Although the definitions can be extended 

to more general domains, all of the known constructions of these functions are done over 
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finite fields and their associated vector spaces, and this is what we will limit ourselves to. 

All known examples of APN functions are given as polynomial functions from IF2m to IF2rn. 

We will state alternative definitions for APN and AB functions and show some of their 

properties, but will not go into discussion regarding crooked functions. From now on we 

will freely switch between I F F  and IF2m.  

1.2.1 Highly nonlinear functions 

Let f be a mapping from IFpm to itself. For all a, b E IFpm let N(a ,  b) denote the number of 

solutions x E IFpm of f (x + a)  - f (x) = b. Consider 

The smaller the value of V f ,  the further f is from being linear. To see this consider a 

linear function f (x) = cx + d where c, d E IFpm. Then for a E IF;, , b E IFpm 

so that N(a,  b) = pm or N(a,  b) = 0 and hence V = pm. 

Therefore any function with Vf < pm is called nonlinear. A more precise measure of 

non-linearity was introduced in [26]. 

Definition 1.2.1 (Differentially k-uniform Function, Perfect Nonlinear Function). A map- 

ping f from IFpm to itself is called differentially k-uniform if V = k. Differentially l-unifonn 

mappings over Fpm are known as perfect nonlinear functions. 

From now on we will work with functions over IF2m unless otherwise specified. The 

2-uniform mappings over IF2m are known as almost perfect nonlinear functions: 

Definition 1.2.2 (Almost Perfect Nonlinear Function). A mapping f from IF2m to itself is 

called almost perfect nonlinear (APN) if for each a E IF;,, b E F2m the equation 

has at most two solutions in F2m 

Notice that the solutions to (1.5) in IF2m occur in pairs {xo, xo + a),  which is why these 

functions are called almost perfect nonlinear. 
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Definition 1.2.3 (Fourier Transform). [9] The  Fourier t r a n s f o m  of f (also called Walsh 

or  Hadamard transform) pf : FT x FT --+ Z is  defined as follows: 

where a,  b E IF2m and (., .) denotes the standard inner  product o n  IF? 

In [22] the Fourier transform of a Boolean function F : IF? --+ {0,1) is given by 

with a E IF?. The function F is called bent if F (a )  = f 2"12 for every a E IFp. Bent 

functions are furthest away than any other Boolean function from any linear function. 

More precisely, they are at the distance at least 2"-l f 2"12-' from any codeword of a 

[2", m + 1, 2"-l]-code, known as the first-order Reed-Muller code [22]. 

Definition 1.2.4 (Almost Bent Function). [9] A mapping f from IF? to  itself is  called 

almost bent ( A B )  i f  pf(a,  b) E (0, f 2("+l)I2) for all (a, b)  + (0,O). 

Note that AB functions exist only for m odd simply because f 2("+')l2 has to be an 

integer. 

There are connections between AB functions and bent Boolean functions [5], however 

we will not explore them here. 

Definition 1.2.5 (Crooked Function). [9] A function f from IF? to  itself is called crooked 

if f (0) = 0 and 

1. f (x) + f (y) + f (z) + f (x + y + z) + 0 when x, y, z are distinct 

1.2.2 Alternative definitions of APN functions 

Apart from the most classical definitions given in the previous section, both APN and AB 

functions have various alternative definitions. They can be characterized using sets Ha(f),  

the number of solutions to a certain system of equations, as well as in terms of binary linear 

codes and the Fourier transforms. 

Let f be a mapping from IF? to itself, q = 2m. For a E IF?, a # 0 denote by Ha(f), or 

simply Ha, the set Ha(f)  = {f(x + a )  - f(x)lx E IF?). 
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Lemma 1.2.6. A function f is A P N  if [ H a (  f ) l  = is for all non-zero a E IFF. 

Lemma 1.2.7. A function f is A P N  zf and only if the system of equations 

x + y =  a 

f (4 + f ( y )  = b 

has 0 or 2 solutions ( x ,  y )  for every ( a ,  b) E F? x IF?, a # 0. The system has precisely 2 

solutions when b E Ha( f ) .  

Both Lemma 1.2.6 and Lemma 1.2.7 follow directly from Definition 1.2.2. Using these 

Lemmas we can prove that APN property of functions is preserved under linear transfor- 

mations. 

Proposition 1.2.8. Let f be an A P N  function from IF2m to  itself, then given a E IF;,, 

b E F2m, the function f ( x )  = f ( a x  + b) is also APN.  

Proof. Consider ~ , ( f )  for all non-zero c E 

& ( f )  = { f ( x +  c)  + f ( z ) I x  E F a m }  

= { f ( a ( x + c )  + b )  + f ( a x + b ) 1 x  E F2m)  

= { f ( ~ + a c ) + f ( ~ ) l ~  E I F 2 4  

= H a c ( f ) -  

ac is a bijection on IF2m for all a E IF;,, therefore I & ( f )  1 = IHac( f )  1 = iq 
and f ( x )  is APN by Definition 1.2.6. 0 

APN functions can be defined in many different ways, and although we will not use the 

following result, it is interesting to note that, similarly to AB functions, APN functions can 

be defined in terms of the Fourier transform. 

Theorem 1.2.9. [9] For any function f : IF? -+ IF? 

(p,(a,b))' > 3 .  (Zrn)' - 2 .  (2rn)3 
a,bEF2m 

with equality if and only i f f  is APN. 

Just like APN functions, AB functions can be defined in terms of the number of solutions 

to certain systems of equations. The following theorem is also due to van Dam and Fon- 

Der-Flaass [9]. 

The mappi 
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Theorem 1.2.10. [9] A function f : FT --, FT is almost bent if and only if the system 

has q - 2 or 39 - 2 solutions (u, v, w) for eve? (a, b), where q = 2m. If so, then the system 

has 39 - 2 solutions if b = f (a) and q - 2 solutions otherwise. 

The proof is technical and is done in terms of matrices. The full version of it can be 

found in [9] and [23] .  

There are proper inclusions between the classes of highly nonlinear functions, namely: 

The second inclusion is easy to see: if f is not APN, then equation (1.5) has more than two 

solutions, say x = u, u such that f (u + a)  + f (u) = b = f (v + a)  + f (v) . Then the system 

x + y + a =  v 

f ( 4  + f (y )  + f b )  = f (v )  

has an additional solution x = u, y = u + a,  a = u + a. Therefore by Theorem 1.2.10 the 

function f (x) is not AB. 

Until recently, every known APN function was known to be equivalent to one of the 

families of power mappings from F2m to itself, i.e. f (x) = xk, as summarized in Tables 1.1 

and 1.2. It has been shown that for m 5 15 there are no more power APN mappings apart 

from those and so it was believed that this list is exhaustive. However, in 2005 the first 

example of a new APN function that is not equivalent to any power mapping was found 
3 [12]. This new function is a mapping F(x)  from F210 to itself defined by F(x)  = x + U X ~ ~ ,  

where u is a suitable element of F;Ilo. 

There are several notions of equivalence between highly nonlinear functions, including 

equivalence in the general sense known as CCZ-equivalence first introduced in [5] by Carlet, 

Charpin and Zinoviev and named after its authors. Given just two functions it is hard to 

decide whether they are CCZ-equivalent or not - there is no known theoretical approach 

to this problem. In fact, there is no reference showing that some of the classical families 

of APN and AB functions as in Tables 1.1 and 1.2 are not CCZ-equivalent. Today, with 

constantly emerging new results [4, 21, it becomes more and more difficult to prove that a 

given function is not equivalent in some way to any of the known ones. In [12] tools such 

as dimension arguments (via computer assistance) and Fourier spectra were used and the 

search for more invariants for CCZ-equivalence is ongoing. 
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. . .  , . - 

Field inverse (Kloosterman) I 2m - 2 -1 (mod 2m - 1) I APN I 

Name 
Gold 
Kasami 

I I 

Welch I 2 n + 3  1 AB 

Exponent k 
2'+1, ( i ,m)  = 1, 1 < i  < n  
222 -2 '+  1, ( i ,m)  = 1, 2 5 i < n 

Table 1.1: Known APN functions f (x) = xk over IF2m where m = 2n + 1 

Type 
CR 
AB 

Niho 

Dobbertin 

I Name I Ex~onent k I T v ~ e  I 

2n + 2n/2 - 1 for even n 
2n + 2(3n+1)/2 - 1 for odd n 
2 4 i + 2 3 i + 2 2 i + 2 i - 1 , m = 5 i  

Table 1.2: Known APN functions f (x) = xk over IFZm where m = 2n 

- - 

AB 
AB 
APN 

Gold 
Kasami 
Dobbertin 

1.3 Linear codes 

In this section we introduce binary linear codes and show their correspondence to almost 

perfect non-linear functions and binary caps in PG(n, 2). 

2%+1 ,  ( i ,m)  = 1, 1 < i  < n  
2" - 22i + 1, ( i ,m)  = 1, 2 5 i < n 
242 + Z3' + 222 + 2% - 1, m = 52 

1.3.1 Definitions and preliminary facts 

" 

APN 
APN 
APN 

We use standard definitions and notation for linear codes [22]. 

Definition 1.3.1 (Hamming Distance). For all x, y E IF! the Hamming distance d(x,y) is 

defined by 

i.e. d(x, y) is the number of coordinates in which x and y difler. 

Definition 1.3.2 (Linear Code, Binary Linear Code). A linear [n, k, dl,-code C is a k- 

dimensional linear subspace of IF: such that any two different elements of the code are at 

Hamming distance at least d and there exists a pair that is at Hamming distance exactly d. 
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The  block length of C is n, the redundancy is r = n - k, the m i n i m u m  distance is d and its 

elements are called codewords. If q = 2, then C is called binary [n, k ,  dl-code. 

The minimum distance of a code determines its error-correction capabilities. Given a 

received vector, the decoder will try to find the codeword closest to  it. However, if too 

many errors have occurred (over L(d - 1)/2J to be precise), the received vector might be 

equidistant from two codewords or even be closer to a codeword different from the correct 

one. 

Definition 1.3.3 (Hamming Weight). For x E the Hamming weight w ( x )  is defined by 

where 0 is the zero vector i n  F;. The  weight of a linear code C is the m in imum weight 

among all of i ts non-zero codewords. 

From now on by weight and distance we shall mean Hamming weight and Hamming 

distance, and by code or [n, k, dl-code we mean binary linear [n, k, dl-code, unless otherwise 

specified. 

Remark 1.3.4. Let C be a linear code. If x , y  E C ,  then x - y E C. Then d ( x ,  y)  = 

d ( x  - y ,  0)  and therefore the minimum distance of the code C is always equal to its weight. 

Definition 1.3.5 (Generator Matrix). Let C be an  [n, k, dl-code. A k x n matrix G is called 

a generator matrix  for C i f  i ts  rows form a basis for C .  

Definition 1.3.6 (Dual Code). For an [n, k, dlq-code C ,  the dual code C' i s  defined as 

follows: 

where (., .) denotes the standard inner product on  FG. 

Clearly the dual of a linear k-dimensional code is a linear code of dimension n - k. 

Definition 1.3.7 (Parity Check Matrix, Syndrome). Let C be an  [n, k, dlq-code with gen- 

erator matrix  G .  An r x n generator matrix H for C' is called a parity check matrix for C 

and H X ~  is called a syndrome of x with respect to  H for all x E FG. 
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Since G H ~  = 0 by the definition of the dual code, we have 

Theorem 1.3.8. [22, p. 331 Let H be a parity check matrix of an  [n, k ,  dl,-code C .  Then C 

has min imum distance d i f  and only if every d - 1 columns of H are linearly independent 

and some d columns of H are linearly dependent. 

Proof. Suppose C has block length n and let h l , .  . . , h, be columns of H .  Then w = 

(wl, . . . , wn) is a codeword of C if and only if 

Hence w is of weight u if and only if some u columns of H are linearly dependent. 0 

Definition 1.3.9 (Coset, Coset leader, Weight of a coset). Let C be a linear [n, k,d],-code. 

For any vector y E Ft, the set C + y = {x + ylx E C )  i s  called a coset of C .  A coset leader 

of C + y is its element (not necessarily unique) with the smallest Hamming weight. The 

weight of a coset i s  the weight of its coset leader(s). 

Proposition 1.3.10. Two  vectors are i n  the same coset i f  and only i f  they have the same 

syndrome. 

Proof. Let D = C + y be a coset of a code C ,  y E q. Then wl and wa belong to D if and 

only if wl = X I +  y and w2 = x2 + y for some XI, 2 2  E C. Therefore wl - w2 is a codeword 

in C, or, equivalently, H(wl - w2)T = 0 and so HUJ? = H w r .  0 

Thus there is a one-to-one correspondence between cosets and syndromes, giving rise 

to so-called "syndrome decoding". Suppose we are transmitting information over a noisy 

channel, and suppose that a codeword x E IF; of an [n, k ,  dl-code C is sent and the vector 

y E Fy, y = x + e is received. Then the vector e is called an error vector or an error pattern. 

The decoder then calculates the syndrome of the received vector, which depends only on 

the error pattern (hence the name). The possible error vectors are exactly the vectors in 

the coset D containing y. The decoder assumes that the probability of an error is low and 

therefore chooses a coset leader of D as an error vector. If there is more than one coset 

leader, the decoding is not unique and the decoder either outputs an error message or any 

one (or all) of the suitable codewords. 

We now can move on to see how codes correspond to almost perfect nonlinear functions 

and binary caps. 
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1.3.2 Correspondence between codes and APN functions 

Recall the definition of APN functions from Section 1.2. We have the following result due 

to Carlet, Charpin and Zinoviev [5] .  

Theorem 1.3.11. [5] Let f be a function from I Fp  to itself such that f (0) = 0 and let a 

be a primitive element of F2m. View ai and f (ai) as m-dimensional binary column vectors. 

Let Cf be the [n = 2m - 1, k, d]  binary code defined by the parity check matrix 

Then f is APN if and only if d = 5 .  

Proof. First notice that we can always apply a shift to get f (0) = 0. Since Xf is a (2m) x 

(2m - 1) matrix, the dimension k of the code is such that k >_ 2m - 1 - 2m. Since Xf 
doesn't contain zero columns or two equal columns, by Theorem 1.3.8 we have d L. 3. Now 

let c = (co, . . . , be a binary vector. Then by definition of a parity check matrix, c E Cf 
if and only if Xf cT = 0 or, equivalently, 

Therefore Cf has minimum distance 3 or 4 if and only if there are four distinct elements 

X, x', y, y' E IF2m such that 

{ 
x + y + x ' + y l  = 0, 

f (x) + f (y) + f (4 + f (Y') = 0. 

Since f (0) = 0, the minimum distance is 3 when one of those elements is zero, otherwise it's 

four. These equations can also be re-written as follows: 

where a ,  b E IF2m and a # 0. If there exist two distinct pairs {x, y) and {x', y') that satisfy 

(1.8), then there exist four distinct elements x, x', y, y' E I Fp  that satisfy (1.7) and vise 

versa. Therefore by Lemma 1.2.7 f (x) is APN if and only if Cf has minimum distance at 

least 5. 
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To see that d is at most 5, first assume that d 2 6. If there exists a linear [n, k, dl 

code, then there exists a linear [n - 1, I c ,  d - 11 code (simply delete one coordinate). So in 

our case if Cf has parameters [2m - 1, k, 61, with k 2 2m - 1 - 2m, then there is a linear 

[2m - 2, k, 51-code. However, such codes do not exist [3]. Therefore d 5 5. Together with 

the first part of the proof we now see that d = 5. 0 

Observation 1.3.12. Since a linear [2m - 1, 2m - 2m, 51-code does not exist [ll], the code 

Cf as defined in Theorem 1.3.11 in the case d = 5 has dimension k = 2m - 1 - 2m. 

Theorem 1.3.11 is useful when showing certain properties of APN functions. 

Proposition 1.3.13. If f is a one-to-one APN function from IF2m to itself, then f-' is 

also APN. 

Proof. Once again, without loss of generality we can assume that f (0) = 0. By Theorem 

1.3.11 f is APN if and only if the [n = 2m - 1, k, d] binary code C defined by the parity 

check matrix whose columns are of the form 

has minimum distance 5. By swapping the horizontal blocks of Rf we get a parity check 

matrix fi with columns of the form 

However, fif also defines C and, since f is one-to-one, by Theorem 1.3.1 1 f -' is APN. 0 

One special case of the above proposition is the following: 

Corollary 1.3.14. Let s, t E Z2m-l be such that s t  = 1 (mod 2m - 1). If f (x) = xS is 

APN, then so is f (x)  = xt. 

1.3.3 Codes and binary caps 

Let IF;+' be an (n  + 1)-dimensional vector space over the field F,. An (m + 1)-dimensional 

subspace of IF;+' with zero deleted is called an m-Jut. The n-dimensional projective space 

over IFq, denoted by PG(n, q) ,  is the set of all m-flats for m = - 1 , O , .  . . , n. Incidence is 
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defined by containment of the corresponding subspaces, so on every m-flat we have the 

structure of PG(m, q). A point, a line and a plane are 0-flat, 1-flat and 2-flat respectively. 

An (n  - 1)-flat is called a hyperplane. By (xo : . . . : x,) we denote a point of PG(n, q )  

corresponding to a 1-dimensional subspace of IF;+' spanned by (so,  . . . , a,) E q+' \ (0). 
Therefore the points in the projective space are equivalence classes with the equivalence 

relation defined as follows: 

(xO, .  . . , x,) - (AxO,. . . , Ax,), A E F1;. 

Since this representation is unique up to scalar multiplication, it will usually be right- 

normalized, i.e. scaled to make the right-most non-zero coordinate equal to one. 

Let u, v be distinct points of PG(n, 2). Since every point in PG(n, 2) is a 1-dimensional 

subspace of IF;+', the third point on the line determined by u and v is u + v. The smallest 

example of a projective plane is PG(2,2), known as the Fano plane: 

Note that in the figures for convenience we use ~ 0 x 1 . .  . xn instead of (xo : XI : . . . : x,) 

to denote points in PG(n, 2). 

With 15 points and 35 lines, PG(3,2) has a copy of the Fano plane in each of its 15 

hyperplanes (note that not all of the points are depicted in the following picture): 
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Definition 1.3.15 (Cap). A cap is a set of points i n  P G ( n ,  q )  that does not  contain any 

collinear triples. A n  s-cap i s  a cap with s points. 

Example 1.3.16. Consider the set S of points in P G ( 3 , 2 )  with xo = 1: 

Then S is an 8-cap in P G ( 3 , 2 ) .  

Proposition 1.3.17. H is a parity check matrix of an  [n, k, dlq-code C with min imum 

distance at least 4 if and only if H contains no  repeated columns and the columns of H form 

an n-cap i n  PG(r  - 1, q ) ,  where r = n - k. 

Proof. If the minimum distance of C is at least 4, then by Theorem 1.3.8 the columns of 

H are all non-zero, no two of them are multiples of each other and no three of them are 

linearly dependent. Therefore the columns of H viewed as points in P G ( r  - 1, q )  form a cap 

in P G ( r  - 1, q ) .  Similarly we can easily see the converse. 0 



Chapter 2 

Elliptic curves and binary 

Kloosterman sums 

In this chapter we work with elliptic curves over fields of characteristic 2 and binary Kloost- 

erman sums. In Section 2.1 we survey the known results. We ask the reader to refer to 

[32] and [30] for more details on these topics. In Section 2.2 we study certain elliptic curves 

associated with binary Kloosterman sums K(a)  (a E F2m) where m is odd. In Section 2.2.2 

we give a characterization of those a for which K(a)  is divisible by 3. In one direction 

this result was proved earlier; we give a shorter proof that shows the result in both direc- 

tions. New results due to  Charpin, Helleseth and Zinoviev then provide a connection to a 

characterization of all a E F2m such that ~ r ( a ' / ~ )  = 0. 

2.1 Basic definitions and properties of elliptic curves 

In this section we will use standard definitions and notation. We follow the notation of [30] 

and ask the reader to refer to [30] for a more thorough introduction to elliptic curves. 

Recall that the points in the projective plane PG(2,pm) are equivalence classes denoted 

by (X : Y : Z)  and this representation is right-normalized, i.e. scaled to make the right-most 

non-zero coordinate equal to one. The a f i n e  points are the points with Z = 1 and points at 

inf inity are those with Z = 0. 

- 
Definition 2.1.1 (Elliptic Curve, Generalized Weierstrass Equation). [30] Let Fpm be the  

algebraic closure of Fpm. A n  elliptic curve E(Fpm) over  the  finite field Fpm i s  the  set  of 



CHAPTER 2. ELLIPTIC CURVES AND BINARY KLOOSTERMAN SUMS 

points (X : Y : Z), (X, Y, Z) E ( F p m ) 3  given by the generalized Weierstrass equation: 

where a l ,  a2, a3, a4, a6 E Fpm are constants. The rational (or IFpm -rational) points on  E(Fpm) 

are points (X : Y : Z) on E(Fpm) such that (X,Y, Z) E ( ~ p m ) ~ .  By  #E(Fpm) we denote the 

number of rational points on  C .  

We will write E and #E when the underlying field is understood. 

Definition 2.1.2 (Singular Point, Singular Curve). Let P = (Xo : Yo : Zo) be a point on 

an elliptic curve E defined by F(X, Y, Z) = 0. Then P is called singular if and only if 

aF aF aF 
-(X0 : Yo : Zo) = -(X0 : Yo : Zo) = -(Xo : yo : Zo) = 0. ax ay az 

A curve is called singular if it contains a singular point and non-singular otherwise. 

If the characteristic of the field is not 2 or 3, then the Weierstrass equation can be further 

simplified to  include only two constants. However, since we will be working with elliptic 

curves over F2m and F3m, we need equation (2.1) in its most general form. Notice that in 

(2.1) Z = 0 implies X3 = 0, so the only point a t  infinity on E is 0 = (0 : 1 : 0). 

Since all the affine points can be written in the form (X : Y : I), for convenience we 

will use (X, Y) when describing them. We will normally use the Weierstrass equation in its 

non-homogenized form, which can be obtained by setting x = X/Z and y = Y/Z in (2.1): 

Then an elliptic curve E in Definition 2.1.1 is the set of points (x, y )  satisfying equation 

(2.2) together with the point a t  infinity. 

We define the following quantities: 

Proposition 2.1.3. [30] The value A defined above is called the discriminant of an  elliptic 

curve I. Then  the curve E is singular if and only i f  A = 0. 
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Group Law. Let E be an elliptic curve over IFpm given by the generalized Weierstrass 

equation. The group of E is (El  +), where E is the set of all Fpm-rational affine points on 

E (including the point at infinity). Let P = (x, y) be an affine point on E. The inverse of 

P is defined to  be -P = -(x, y) = (x, -alx - a3 - y). For the point a t  infinity we have 

-0 = 0 .  Let Pl = (xl,  yl) and P2 = (22, 92) be rational points on E different from 0. The 

group operation '+I arises naturally from the geometry of elliptic curves: to add two points 

Pl and P2, we first draw a line through them (it will be tangent to E if Pl = P2). This line 

intersects E in a third point -P3 which we then "reflect" in the x-axis to get P3 = Pl + P2. 

Algebraically, the group operation '+I is defined as follows: 

P + 0 = P ,  0 + 0 = 0, so 0 is the identity of the group (El +) 

If xi  = x2 and yl + y2 + aix2 + a3 = 0, then Pl + P2 = 0 

Otherwise, if xl  # x2 let 

and if x l  = x2 let 

Then 

For details on isomorphism between any two non-singular curves see [30]. 

Definition 2.1.4. [24] Two elliptic curves El and E2 over a field IFpm given by 

are isomorphic over IFpm if and only if there exist u, r, s, t E Fpm such that the change of 

variables 

(2, y) H (21'2 + T, u~~ + U 2 S 2  + t) 

transforms equation El to equation E2. 

We would like to emphasize that the number of rational points on a curve is invariant 

under an isomorphism as we will later often use this fact. 
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2.2 Binary Kloosterman sums 

Definition 2.2.1. The  Kloosterman map is the mapping K : Fpm -, R defined by 

where w is Pth root of unity,  i.e. w = e2"i/p. 

These sums were first introduced in 1926 by the Dutch mathematician Hendrik Kloost- 

erman and turn out to be fundamental for many problems in analytic number theory and in 

the theory of modular functions. Recently, Kloosterman sums have been shown to have close 

connections to coding theory. They are used when counting the number of coset leaders for 

cosets of a certain weight of some linear binary codes. Moreover, we can express the number 

of rational points on a parametrized family of elliptic curves, now known as Kloosterman 

curves, in terms of Kloosterman sums. We can therefore transform the problem of studying 

the spectrum of Kloosterman sums into counting the number of rational points on elliptic 

curves. This allows us to approach the problem from a different angle as well as run more 

extensive computations, since Schoff algorithm used by Magma for calculating the number 

of rational points on elliptic curves is quite fast and efficient. 

One property of general Kloosterman sums that will be used later on is the following: 

Lemma 2.2.2. K(a )  = K(aP) for all a E Fpm. 

Proof, Since the mapping x H xp is bijective on Fpm and since 

~ r ( x - '  + ax) = ~ r ( ( x - '  + ax)p) = T ~ ( X - ~  + apxp), 

K (a) = K (UP) by definition. 0 

In this chapter we will study Kloosterman sums over F2m, m 2 3. In this case w = -1 

and K(a)  is an integer for all a E F2m. 

2.2.1 Kloosterman curves 

Lauchaud and Wolfmann [19] provide a direct connection between a certain family of elliptic 

curves and binary Kloosterman sums. This enables them to discuss the distribution of the 

values of Kloosterman sums. We state their results below and include detailed proofs of 

their statements. 
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Definition 2.2.3 (Supersingular Curve, Ordinary Curve). A n  elliptic curve is called super- 

singular if i n  the generalized Weierstrass form a1 = 0. Otherwise it is said to be ordinary. 

Theorem 2.2.4. [19]. An ordinary elliptic curve E over IF2m is isomorphic to one of the 

following curves: 

where a E F2m and r is a fized element of Fzrn of trace 1. 

Proof. Let E be given by 

Since E is ordinary, a1 # 0  and we can apply the following substitution: 

aTa4 + a ;  
where a4 = and s E IFZm. After normalizing to  make the coefficient of z3 equal 

a? 
1 

to 1 we obtain: 

If Tr(Si2) = 0 ,  by Proposition 1.1.2 we can find s E IF2m such that a2 = s2 + s. If Tr(a2) = 1, 

we can find s E IF2m such that 7i2 + r = s2 + s .  Therefore E is isomorphic to I$ if Tr(a2) = 0  

and to EL otherwise. 0 

Corollary 2.2.5. [19] An ordinary elliptic curve E over F2m can be transformed into one 

of the Kloosterman curves: 

where a E F2m 
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Proof. Theorem 2.2.4 and its proof imply that E is isomorphic to an elliptic curve with 

homogeneous equation 

Y'Z + X Y Z  = x3 + b x 2 Z  + ?i6Z3, 

where b is either 0 or T, depending on trace of 7i2. Let a E IF2m be such that a2 = a6. Then 

apply the following substitutions in the listed order: 

We obtain the equation 

y2x + yx = ax2 + 1 + bx. 

Since x = 0 does not lead to any solutions in the equation above, we can divide by x to get: 

which completes the proof. 

Consider the following equations over IF2m : 

E,f : 'I'r(x-' + ax) = 0, 

EL : ~ r ( x - '  + ax) = 1, 

where a E IF2m is a fixed constant. Let N*(a) denote the number of solutions in IF;, to E: 

respectively. 

Proposition 2.2.6. [19] Let #XI: denote the number of F2m-rational points on XI:, a E 

IFZm respectively. Then #K1: = 2Nk(a) + 2. 

Proof. The homogeneous equations corresponding to Kl: are 

We can now see that the curves Kl: are non-singular and have 2 points at infinity each, 

namely (1 : 0 : 0) and (0 : 1 : 0). By Lemma 1 .l.4 if x is a solution to E$, then there are 

exactly two values y such that (x, y) are affine IFzm-rational points on K1:. Since there are 

~ ~ ( a )  solutions to E:, the statement follows. 0 
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Proposition 2.2.7. [19] Let a E IF2m. Then 2~~ (a) = 2m - 1 f K(a) .  

Proof. Since N+(a) + N-(a) = 2m - 1 we have: 

This implies that 2N+(a) = 2m - 1 + K(a) .  The expression for 2N- (a) follows similarly. 

The following proposition now follows easily: 

Proposition 2.2.8. [19] Let a E IF2m. Then # ~ 1 :  = 2m + 1 f K(a)  

Proposition 2.2.9. [19] Let a E F2m. The number N+(a) is odd and the number N-(a) is 

even. 

Proof. It's enough to show one of the assertions since Nf  (a) + N-(a) = 2m - 1 and the 
1 

other one will follow. First let a E IF;,. Notice that if x is a solution to E:, then so is - 
ax 

1 1 
and so we can pair up the solutions except when x = -. However, the equation x = - 

ax ax 
has exactly one root in IF;, for any non-zero a, namely x = 0. Hence we have an odd 

number of solutions to E:. 

Since the mapping x t, x-' is a bijection on IF;, , it follows immediately from Corollary 

1.1.3 that N+(O) is odd. 0 

The following theorem holds for both even and odd m. 

Theorem 2.2.10. [19] Let m 2 3. The set of K(a) ,  a E F;1, is the set of all the integers 

congruent to -1 (mod 4) in the mnge 

m/2+1 2m/2+1 
[-2 1 I. 

Proof. For every odd s in the interval [-2m/2+1, 2m/2+1] there is an ordinary elliptic curve 

Cs with #Cs = 2m + 1 + s [18]. Corollary 2.2.5 implies that C, can be transformed into 

one of ~ 1 :  and so s = f K (a) by Proposition 2.2.8. We know from Proposition 2.2.9 that 

N+(a) is odd. Then by equation (2.5) 

Therefore if s = -1 (mod 4)' we must have s = K(a) ,  otherwise if s - 1 (mod 4), then 

s = -K(a).  0 
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2.2.2 Kloosterman sums divisible by 3 

We will refer to results of Charpin, Helleseth and Zinoviev on the divisibility modulo 24 

of Kloosterman sums [7]. For that reason we need to point out that the Kloosterman sum 

K(a)  as defined in [7] relates to our Definition 2.2.1 by K(a)  = K ( a )  + 1 for all a E F2m. 

Also notice that in [7] the authors only consider the cases of odd m > 5, since m = 3 does 

not suit their purposes. However, all of the following statements hold for m > 3, m odd. 

Let t E F2m, t @ {0,1), and consider the following elliptic curve over F2m: 

where 

a2 = s2 + s + t ,  

with s E F2m chosen in such a way that 

Let #Et denote the number of points on Et over F2m. In the next chapter we will show 

that Et arises naturally in the problem of counting coset leaders for the Melas code. Before 

coming to that, let us first note that Et can be used to give a new proof of the characterization 

of those a E F2m for which 3 ( K ( a ) .  This strengthens the first part of Theorem 5 of [16], 

where only the right-to-left implication of the following theorem is stated: 

Theorem 2.2.11. Let m > 3 be odd, and let a be a nonzero element of F2m. Then K(;) is 

divisible by 3 i f  and only i f  a = t4 + t3 for some t E F2m. 

Proof. (+) The discriminant of Et is 

so It is non-singular since t @ {0,1). It is not hard to verify that the point P = (t2 + t : 
t4 + t3 + s( t2  + t )  : 1) lies on Et. Moreover (see Appendix C), 

Since the affine x-coordinate of 3 P  is zero, and as = 0 in the generalized Weierstrass equation 

of the curve, we have 3 P  = -3P and hence 6 P  = 3 P  + 3P = 0. Therefore the order of P in 



CHAPTER 2. ELLIPTIC CURVES AND BINARY KLOOSTERMAN SUMS 25 

the group of Et is equal to 6. By Lagrange's Theorem the order of a group element divides 

the order of the group and hence 6 divides #Et. Since (t4 + t3)2 = t8 + t6, we deduce from 

Proposition 2.2.8 and the proof of Corollary 2.2.5 that 

Since 31 (2m + 1) for odd m, it follows that 3 1 ~ ( t ~  + t3). 
(+) Assume that 31 K (a), then by Theorem 3 in [7] ~r(a'/~) = 0. Now apply Theo- 

rem 1.1.6 with lc = 2. 0 

Remark 2.2.12. A more combinatorial proof of the fact that 6 divides #Et arises from the 

proof of Theorem 3.2.3 in the next chapter, in which we find that #Et - 6 is the number 

of solutions to  a certain system of equations over Fa,, and this number is easily seen to be 

divisible by 6. 



Chapter 3 

Melas codes 

In this chapter we establish the exact spectrum of the number of coset leaders for cosets of 

weight 3 of the binary Melas code. In Section 3.2 we transform this problem to counting 

points on a certain parametrized family of elliptic curves. Similar techniques have been used 

before, see for example [29]. We provide a connection to  Theorem 2.2.11 of Chapter 2 thus 

giving a combinatorial interpretation (and a second proof) of it. In Section 3.3 we use the 

results of the previous section to construct caps with many free pairs of points in PG(n, 2), 

that have recently proved useful in statistical experimental design. 

3.1 Definitions and preparatory facts 

Definition 3.1.1 (Cyclic Code). A code C is  called cyclic if it i s  linear and any cyclic shift 

of a codeword is also a codeword. Equivalently, a cyclic code of block length n over a field 

IFq i s  a n  ideal i n  IFq [x]/(xn - 1). 

Every ideal in Fq[x]/(xn - 1) is a principal ideal, that is it consists of all multiples of a 

fixed polynomial g(x) by elements of Fq[x]/(xn - 1). The polynomial g(x) is then called a 

generator polynomial and therefore every cyclic code of length n has a generator polynomial. 

Definition 3.1.2 (Minimal Polynomial). The  minimal polynomial of P over the field IFpm 

is a monic polynomial m(x) of the lowest degree with coeficients i n  Fpm with ,L3 as a mot .  

Definition 3.1.3 (Melas Code). Let cr be a primitive element of F p  . The Melas code M ,  

i s  the bina y cyclic code of length n = 2, - 1 with generator polynomial m+ (x)m- (x), where 

m+(x) and m-(x) are the minimal polynomials of cr and cr-l respectively. 
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The redundancy of M ,  is 2m. It is known 16, p. 10211 that the minimum distance of 

M ,  is five when m is odd and three when m is even. Since we are primarily motivated by 

the application described in Section 3.3, we only consider the case when m is odd. Consider 

IF2m as an m-dimensional vector space over IF2 and view as and a-S as m-dimensional binary 

column vectors. Then by Theorem 5.4 of [6] the standard parity check matrix of the Melas 

code is 

That is, c E M ,  if and only if 3iMcT = 0. 

3.2 Counting coset leaders for the Melas code 

We assume that IfM as defined in the previous section is used to produce syndromes and we 

wish to study the number of coset leaders for a coset D of M ,  of weight 3 corresponding to 

a given syndrome. As discussed in Chapter 1, there is a one-to-one correspondence between 

cosets and syndromes. The number of coset leaders is the number of different error patterns 

of weight 3 resulting in the same syndrome and we would like to minimize this quantity as 

will be explained in the next section. 

Let d = ( d l , .  . . , d 2 m e l )  be a coset leader of a coset D of M ,  of weight 3 corresponding 

to a given syndrome ( a ,  b)T E IF2m x IF2m. Then 

Let the three non-zero coordinates of d be in positions i ,  j and k ,  0 < i < j < k 5 2,- 1. 

We then have the following system: 

If a # 0,  then we may assume without loss of generality that a = 1. We are then led to 

counting the number of solutions to the following system of equations over IF;,: 

where r E IF2m is a fixed constant. 
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Definition 3.2.1. Let S ( r )  denote the total number of solutions (ordered triples ( u ,  v ,  w ) )  

to (3.1) when r is the right-hand side of the second equation in  (3.1). 

Let us first consider the general case when r 6 ( 0 , l ) .  The special cases a = 0 or r = 0 , l  

will be treated separately at the end of this section. 

Lemma 3.2.2. For each r $! ( 0 ,  I ) ,  6 divides S ( r ) .  

Proof. Suppose that in (3.1) two variables are equal, without loss of generality let u = v .  

Then (3.1) becomes: 

which has no solutions under the assumption r # 1. Hence the assumption r # 1 forces 

u ,  v ,  w to be distinct in any solution (u, V ,  w )  to (3.1). Thus S ( r )  is divisible by 3! = 6. 

Theorem 3.2.3. Let m 2 3 be odd and let r E F2m \ ( 0 , l ) .  The number of solutions 

(u ,  v ,  w )  E (F; jm)3  of (3.1) is an integer T such that 

6 divides T .  

Conversely, each T satisfying these two conditions occurs as the number of solutions for at 

least one r E F2m \ ( 0 , l ) .  

Proof. Please see Appendix A for all the upcoming calculations. 

Without loss of generality we choose to eliminate w from the first equation in (3.1) and 

substitute the result into the second equation; we then clear the denominators. So far we 

have: 

ru2v + ruv2 + u2 + v2 + u + v + uv(r  + 1)  = 0. 

After introducing the homogenization variable Z by setting u = U / Z ,  v = V / Z  and clearing 

the denominators we arrive at the equation 
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We shall first transform (3.2) into Weierstrass form by setting 

r + l  
x + rr. 

Then, to make the computations easier, let 

Note that the assumption r E F2m \ {O,l) implies t E F2m \ {O,l). After dehomogenizing and 

scaling to make the coefficient of y2 to be equal to one we get an elliptic curve in standard 

Weierstrass form: 

y2 + alxy + a3 y = x3 + a2x2 + aqx + a6 

with a1 = 
(t + 1)2 (t  + 1)7 

, a s = -  
(t + 1)4 

a 2 = -  
(t + 1)9 

t2 t5 t2 1 a4 = t6 and a6 = 0 (please refer to 
Appendix D.l to see how this substitution was obtained). 

Next we apply the substitutions that Lachaud and Wolfmann used to obtain their canon- 

ical form of elliptic curves as given in (2.4). Combining (3.3) and (2.4) we get: 

From now on we will denote by Et the elliptic curve obtained by applying the substitution 

(3.5) to the equation (3.2): 

or, after dehomogenization (set r = I), 

where 
2 a 2 = s  + s + t .  
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We will now introduce the specific choice T = 1 in Theorem 2.2.4. Recall that Tr(1) = 1 

since m is odd and thus T satisfies the condition of Theorem 2.2.4. We then fix s such that 

in (3.6) we have 

a2 = Tr(t). 

Note that, with this choice of s, the equation (3.6) is precisely the equation (2.6) of the 

curve Et in Chapter 2. 

First, let us consider the points on Et that do not correspond to a solution of (3.1) (please 

see Appendix A.2). 

The points on Et are (x : y : 1) where x, y satisfy equation (3.6) together with the point 

at infinity 0 = (0 : 1 : 0). There are three types of points that we need to consider: 

0 point a t  infinity; 

points that correspond to (u, v, w) being a permutation of (0,0,1) (since we count 

triples (u, v,  w) E (F&n)3); 

0 points that lead to Z = 0. 

The point 0 leads to U = Z = 0, and hence it does not correspond to a solution of 

(3.1). It remains to consider the affine points of Et. Thus from now on we will consider the 

substitution (3.5) in its dehomogenized form, meaning that we set z = 1. 

Next consider the affine points on Et that lead to Z = 0 and hence do not give a solution 

to (3.1). From (3.5) we see that in this case x = t2. Substituting this into (3.6) results in 

Viewing (3.7) as quadratic equations in y, from Lemma 1.1.4 we obtain: 

Recall that by Lemma 1.1.1 ~ r ( a ~ ~ )  = Tr(a) for all a E F2m, so Tr(t) = 0 implies 

Tr(t4) = 0 and Tr(t) = 1 implies Tr(t4 + 1) = 0. Hence by Lemma 1.1.4 both equations of 

(3.7) will have 2 solutions each in F2n and so for each t 6 {0,1) there are exactly 2 affine 

points on Et that correspond to  Z = 0. 
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Consider the ideals Ii for i = 0 , l  in IF2m[x, y, s, t ,  U, V, Z] generated by the polynomials 

corresponding to the equations (3.5) and (3.6), where to each equation A = B corresponds 

the polynomial A - B with denominators cleared: 

Ii = (tU + x + t(t + 1), t 2 v  + (y + sx) + t2(t2 + t ) ,  t 2 z  + (t + 1)x + t2(t  + l), 

y2 + x y + x 3  + (s2 + S +  t)x2 + t 8 +  t 6 1 g i ( ~ , t ) ) ,  

where go(s, t)  = s2  + s + t and gl (s, t)  = s2 + s + t + 1 depending on the trace of t. 

To explicitly find the y-coordinates of the two points that make the homogenization 

variable Z = 0, first notice that if x = t2, then (3.5) implies U = 1. We now only need 

to compute Grobner bases Gl,i for I, with Z = 0, U = 1 and x = t2 with lexicographic 

ordering y > s > t > V. We obtain: 

The first polynomial in GlYi implies V = 0 or V = 1 and substituting it back in we obtain 

y = t2(t2 + t + S) and y = t2(t2 + t + s + l), respectively. 

The other case when a point on Et does not yield a solution to (3.1) is when one of u, v, w 

is equal to 0, because then its inverse does not exist. Either u or v equal to 0 lead to U or 

V being 0, whereas w = 0 implies u = v + 1 and so U = V + Z. Let us now determine the 

affine points on Et which lead to one of these three cases. 

We will first compute Grobner bases G2,i with lexicographic ordering x > y > s > t > 
V > Z for the above ideals with U = 0. We get: 

Therefore U = 0 implies that either V = 0 or V = 2 and in both cases x = t2 + t. 
Next, let G3,i denote Grobner bases for Ii together with V = 0 and lexicographic ordering 

x > y > s > t > U > Z. Then both G3,i contain the polynomial 

Therefore V = 0 implies either U = 0, U = 2 or U = 1. However, by (3.5) U = 1 leads to 

Z = 0. Finally, compute Grobner bases G4,i with lexicographic ordering x > y > s > t > 
V > Z for the ideals Ii with U = V + Z. This time, both bases contain the polynomial 
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Hence for U = V + Z we have that V = 0 or V = Z or V = Z + 1. Notice that U = V + Z 

and V = Z + 1 together imply U = 1 and so Z = 0. 

We have just shown the following implications for each f i n e  point on It ( A  and V are 

the logical "and" and the logical "or", respectively: 

Consequently, it is sufficient to consider the three cases (U = 0) A (V = 0), (U = 

0) A (V = Z )  and (U = Z)  A (V = 0). Again by computing Grobner bases with respect to 

some obvious lexicographic monomial orderings we see that to each case there corresponds 

exactly one affine point on I t :  

I Condition ( Affine point on Et 1 

We therefore summarize that for each t @ {0,1) there are precisely 6 points on Et that 

do not produce a solution to (3.1) 

I Description I Points on It 

I Point a t  infinity O l ( 0 :  1 :  0) I 

1 .  

Points that correspond to I (t2 + t : t ( t  + l ) ( t2  + s) : 1) 

Points that make Z = 0 
(t2 : t2(t2 + t + S) : 1) 

(t2 : t2(t2 + t + S + 1) : 1) 

Since t @ (0, I) ,  all six exceptional points found so far are clearly distinct. 

We will now prove that for z = 1, the mapping (x, y) H (u, v), defined by (3.5) com- 

posed with u = U/Z, v = V/Z, is injective, that is, distinct f i n e  points on Et produce 

distinct solutions to (3.1), if any. Let u = u(x), v = v(x, y) be this mapping. Towards a 

(u, v, w) being a permutation 

of (0, 0, 1) 

(t2 + t : t ( t  + l ) ( t2  + s + 1) : 1) 

(0 : t 3 ( t + l )  : 1) 
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contradiction assume that there are two distinct affine points ( x l ,  y l )  and ( 2 2 ,  y2) on Et so 

that ( u ( x l ) ,  v(x1,  y l ) )  = ( u ( x ~ ) , v ( x ~ ,  y2)) (see Appendix A.3). Then u ( x l )  = u ( x 2 )  gives 

and since t # 0 ,  1 ,  it must be that x1 = 22. Substituting xl  = 2 2  into v ( x l ,  y l )  = v ( x 2 ,  y2) 

results in 

which implies that yl = y2. Since the two points on Et with the x-coordinate equal to t2 do 

not produce solutions to (3.1), the two values displayed above are well defined. 

Recall that S ( r )  denotes the total number of ordered triples ( u ,  v ,  w) satisfying (3.1) 

where r is the right-hand side of the second equation in (3.1). We just proved that 

where #Et denotes the number of points on Et over F2m and t and r are related via (3.4). 

By the Hasse Theorem [17, p. 561 and Lemma 3.2.2 equation (3.8) implies 

where 6 Z  denotes the integers divisible by 6. 

Now we need to show the inclusion in the other direction: for each k E [2m + 1 - 

2"j2+l, 2m + 1 + 2m/21-1] n 6 9 ,  there exists t E IF2m \ { 0 , 1 )  so that #Et = k. Let k = #Et = 

2m + 1 + s ,  then s E [-2m/2+1, 2"I2+l]. Notice that 61k implies 31s (because rn is odd) and 

s - 1  (mod2) .  

Since (t4 + t3)2 = t8 + t6,  it follows from Proposition 2.2.8 that 

Then by Theorem 2.2.10 

Theorem 2.2.11 together with Corollary 1.1.7 imply that for each s E [-2m/2+1, 2m/2+1 1 n 
3Z such that s G -1 (mod 4 )  we can find t E IF2m \ { 0 , 1 )  such that s = ~ ( t ~  + t3) and 

T r ( t )  = 0. If on the other hand s = 1 (mod 4 ) ,  then we can find t E F2m \ {0 ,1 )  such that 

-s = K ( t 4  + t3) and T r ( t )  = 1. In either case applying equation (2.7) then completes the 

second part of the proof of Theorem 3.2.3. 0 
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Theorem 3.2.3 immediately translates to the following result for the number of coset 

leaders of the Melas code. 

Corollary 3.2.4. Let rn 2 3 be an  odd integer. Let a,  b E Fam, a # b. Suppose that the 

syndrome (a, b)T corresponds to a coset D of weight 3 of M,. Then  the number of coset 

leaders of D is  a n  integer L such that 

Conversely, each such L occurs as the number of coset leaders for at least one such coset D. 

Since #Et = S(r) + 6 and S(r) is divisible by 3! = 6, it follows that 6(#Et. This 

gives one of several possible combinatorial interpretations of Theorem 2.2.11. Another 

such interpretation is the aforementioned Theorem 5 of [16], where the proof is also of a 

combinatorial (counting) nature. However, if one is only interested in proving 61#Et without 

considering the implications for the cosets of the Melas code, then the (probably) easiest 

way to achieve that is to consider the point of order 6 mentioned in the proof of Theorem 

2.2.11. 

The following theorem is important for the application outlined in Section 3.3. 

Theorem 3.2.5. For S( r )  introduced i n  Definition 3.2.1, let N(k) denote the number of 

those r E IF2m \ {0,1) for which S(r) = k. Then for each 1 E N we have N(2, - 5 + 1 )  = 

N(2 ,  - 5 - l ) ,  that is, the values N(k) are symmetric about k = 2, - 5. 

Proof. Recall that S ( r )  = #Et - 6, where r and t are related via (3.4). The substitution 

(3.4) defines a one-to-one correspondence between the values r and t on the set IFp \ (0, 1). 

Corollary 1.1.7 implies that for each t E IF2m \ { O , 1 )  there exists a unique u E lFZm \ { O , 1 )  

such that {Tr(t),Tr(u)) = {0,1) and u4 + u3 = t4  + t3 .  The statement now follows from 

equation (2.7). 0 

The special cases r = 0 , l  not covered in Theorems 3.2.3 and 3.2.5 are of no interest for 

us because the number of solutions to (3.1) is too high for them (in particular, this number 

is greater than the average number of solutions 2, - 5 implied by Theorem 3.2.5) or because 

they do not produce cosets of weight 3. 

Consider first the case when r = 1. Then 'FIM contains a column of the form 
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implying that the corresponding coset of weight 1. Nonetheless, let us count the number of 

solutions to (3.1) in this case. As in the proof of Theorem 3.2.3 we first eliminate w from 

the system to get: 

u2 + v2 + u2v + uv2 + u + v = 0, (3.9) 

or, equivalently, 

( u + v ) ( u +  l ) ( v +  1) = 0. 

Since both u and v must be nonzero, the first factor gives 2m - 1 solutions, while the other 

two result in another 2m - 2 solutions each. Therefore for r = 1 the number of solutions 

(u, V ,  W)  E ( ~ ; r n ) ~  to  (3.1) is 3 . 2m - 5. 

Now consider syndromes of the form (0, a)T, so we are working with a different system 

of equations over IF;,: 

where a E IF2m is a fixed constant. For the syndromes of the form (a, o ) ~  (i.e. corresponding 

to r = 0 in (3.1)) we simply use the substitution (u, v, w) I+ (u-', v-', wdl) to get the 

system (3.1 1). 

A scaling argument shows that it is enough to consider the case a = 1. After eliminat- 

ing w from the second equation and clearing the denominators we arrive at  the following 

equation viewed as a quadratic equation in u: 

From Lemma 1.1.4 we get 6 = 1/(1 + v). For v # 0 , l  (3.12) has two solutions in IF2m 

if and only if Tr(6) = 0. Now, since the mapping v I+ 1/(1 + v) is one-to-one on the 

set S := IFp \ (0, I) ,  Tr(6) = 0 for 2m-1 - 1 elements of S and the number of solutions 

(u, V, W) E (Flm)3 is 2 .  (2m-1 - 1) = 2m - 2. 

3.3 Application to caps with free pairs 

In this section we outline one particular motivation for counting coset leaders for the Melas 

code. Given the size of a cap and its projective dimension, our objective is to maximize 

the number of pairs of points in the cap that are not contained in any coplanar quadruple. 
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In Section 3.3.1 we explain the motivation that comes from statistical experimental design, 

and in Section 3.3.2 we survey the known results and present a construction that improves 

the known lower bound on the number of free pairs of points in binary caps for odd m. 

3.3.1 Introduction and motivation 

In statistical terms, a factorial design is obtained when two or more experimental factors are 

used and each of them has a number of possible values, known as levels. Consider a (i-level) 

factorial design consisting of f factors at i possible levels each. Clearly, if the number of 

factors increases, it becomes impractical to run all possible if experiments and we turn to 

fractional factorial designs, meaning that we reduce the number of experiments. The main 

defining property of fractional factorial designs is their resolution, which is a measure of the 

amount of information lost. In practice the most common fractional designs are of so-called 

resolution IV, since they provide a reasonable trade-off between the number of runs and 

the amount of information lost. The major drawback of these designs is the fact that some 

two-factor interactions are indistinguishable, meaning that certain pairs of factors cannot 

be estimated independently of each other. Therefore in the construction of experiments we 

would like to minimize the number of two-factor interactions that are statistically aliased, 

or, alternatively, maximize the number of pairs of factors that are independent. 

Example 3.3.1. Suppose you wish to run an experiment consisting of 4 factors (A, B, C, 

and D) at two levels each (+ and -). Instead of 16 experiments, we choose to run only 8 and 

the following table summarizes the results (for full explanation please refer to Section 5.3.3.4 

+ success 

+ failure 
- failure 

- success 
- success 
- failure 

+ failure 

+ success 
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As can be seen from the table, AB = CD, hence these two interactions are statistically 

aliased and it is impossible to say which one caused the outcome. Since AB # BC, this pair 

of factors is independent. Notice, that although ABC = D, interaction of three or more 

factors are considered unlikely to happen in practice. 

Let C be a cap in PG(n, 2) as defined in Section 1.3.3. 

Definition 3.3.2 (Free pair of points). We say that {s, t )  C C is a free pair of points of C 

if {s,t)  is not contained in any coplanar quadruple of C. 

If a cap C is used as a fractional factorial design, then its points are viewed as random 

variables and if a set of points lies in the same plane of PG(n, 2), that means that the 

corresponding random variables are statistically dependent. Then a free pair of points in a 

cap corresponds to two random variables such that any set of 4 variables containing this pair 

is independent. This explains why in statistics free pairs of points are called clear two-factor 

interactions. Given the cardinality of a cap and the projective dimension, it is therefore 

desired to maximize the number of free pairs of points in the cap by choice of a cap. 

3.3.2 A construction of caps with many free pairs of points 

Let Hc be a matrix whose columns are points of a cap C in PG(r  - 1,2) with no repeated 

columns. Recall that by Proposition 1.3.17 Hc defines a parity check matrix of a binary 

linear [n, k, dl-code with minimum distance at least 4. Clearly, all pairs of points of C are 

free if and only if Hc defines a code of minimum distance at least 5, since in that case there 

are no dependent, that is coplanar, quadruples. Thus one way of obtaining caps with a large 

number of free pairs is as follows: start with the parity check matrix H* of a binary linear 

code of distance 5, and carefully add columns to it so that as many free pairs as possible are 

retained, and no dependent triples are created. First of all, notice that adding a syndrome 

corresponding to a coset of weight 2 would create a dependent triple and therefore destroy 

the cap property. If d is a newly added column and if x, y, a are three columns of 7-1* such 

that x + y + a = dl then the free pairs {x, y), {x, a) and {y, a) are destroyed. 

Recall the matrix from Theorem 1.3.11: 

The statement of the theorem implies that we can construct caps with many free pairs 

of points by extending parity check matrices of the form (3.13) using any APN function. 
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In [21] this approach was worked out for the case when H* is the parity check matrix of 

the primitive double-error correcting BCH code with one particular APN function, namely 

f (x) = x3. As in Chapter 3, the corresponding system of equations is 

where r E IF2m is a fixed constant. After eliminating w, homogenizing the equation and 

applying substitution (3.3), we get a supersingular elliptic curve. In [21] the previously 

known bounds were improved, but the right-hand side of the first equation was zero, making 

the counting easier. 

For a cap S, let g(S) denote the number of those subsets {x, y) c S that are free pairs. 

Then for positive integers n and r such that n 5 2'-', let F ( n ,  r )  denote the maximum of 

g(S) over all n-caps S in PG(r - 1,2). Let n be such that 2L'/21 < n 5 2 .  2L'/2J - 4. 

Theorem 3.3.3. [21] Let n = (2m - 1) + k, where m E {2,3) or m 2 6, and let 0 5 k < 

Since f (x) = x3 is not only APN, but AB when m is odd, by Theorem 1.2.10 the 

corresponding system of equations has q - 2 solutions over IF2m whenever b # a3, where 

q = 2m. On the other hand, if we take f to be the inverse function f (x)  = x-', which 

for m odd is APN but not AB, then the matrix (3.13) becomes the parity check matrix of 

the Melas code. Then by Theorem 3.2.3 the number of solutions can be as low as roughly 

q - 2 f i  compared to roughly q solutions for any AB function (Theorem 1.2.10). We skip 

the details, however, one can easily reproduce the proof of Theorem 3.3.3 using the inverse 

function to get the same result and even slightly improve the lower bound on F(n ,  2m) in 

equation (3.14) for m odd. 

Observation 3.3.4. Since the distribution of the number of solutions to (3.1) has been 

shown to be symmetric about q - 5 in Theorem 3.2.5, we see that when using the parity 

check matrix of the Melas code with m odd, roughly one half of the choices for syndromes 

yield better results than can be achieved by using the primitive double-error correcting BCH 

code, for which the number of solutions is q - 2 (or higher). 
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Ternary Kloosterman sums 

In Chapter 2 we studied binary Kloosterman sums using results by Lachaud and Wolfmann 

[19]. The authors transformed the problem of determining the spectrum of binary Kloost- 

erman sums into counting points on elliptic curves. Recently Moisio [25] has proved an 

analogous result for the ternary case. In this chapter we will use this connection to classify 

and count those a E F3m for which K ( a )  r 0 , 2  (mod 4) .  

4.1 Odd Kloosterman sums over IF3m 

Let Fgm be a finite field of characteristic 3, q = 3m, and let a E F3m. Recall Definition 2.2.1. 
1 Jli; 

In this case w = -- + -2, so that Kloosterman sums over F3m are defined as follows: 
2 2 

Let us first introduce some notation. Consider the following equations over Fjm: 

Eo : Tr(x- '+ a x )  = 0 ,  

E l  : Tr(x-' + a x )  = 1, 

E-' : T r ( x - ' + a x )  = -1, 

where a E F3m is a fixed constant. Let No(a) ,  N l ( a )  and N-'(a) denote the number of 

solutions x E Fjm to Eo, E l  and E-' respectively. 

Lemma 4.1.1. K ( a )  is an integer for all a E F3m. 
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1  v'3 Proof .  Fix an element a  E F j m .  Then each solution of E l  contributes -- + -i to the sum 
2 2 

1  v'3 
in K ( a ) ,  and each solution of E-1 contributes -2. Let x  be a 

solution to E l ,  that is T r ( x d l  + a x )  = 1. Then 

n ( ( - x ) - l  + a ( - x ) )  = -Tr(x-' + a x )  = -1, 

and hence - x  is a solution to E-1. Therefore N l ( a )  = N- l (a )  and 

K ( a )  = No(a) + N l ( a )  . w +  N- l (a )  .w2 

= No ( a )  + Nl ( a )  (w + w2) 

= No ( a )  - N l  ( a ) .  

Since No ( a )  + N l  ( a )  + N-1 ( a )  = 3" - 1  and N l  ( a )  = N- 1 ( a )  we have: 

Hence 

K ( a )  = No(a)  - N l  ( a )  = 3" - 1 - 3N1 (a ) .  

Lemma 4.1.2. L e t  a  E F3m. T h e n  K ( a )  E N l ( a )  (mod 2) .  

Lemma 4.1.3. L e t  a  E F3m. T h e n  K ( a )  = 2  (mod 3) .  

Both Lemma 4.1.2 and Lemma 4.1.3 follow directly from equation (4.2). 

Our research on this topic was motivated by the following result: 

Theorem 4.1.4. [25] L e t  c E FSm a n d  let  be a n  el l ipt ic  curve  o v e r  F3m defined by 

T h e n  #a = 3" + 1  + K ( c ) ,  where  #a denotes  t h e  n u m b e r  of F3m-rational  points  o n  a. 

We can now apply techniques similar to the ones in Chapter 2  to study the divisibility 

of ternary Kloosterman sums modulo 4. 

Before we proceed, let us note that by fi we will denote an element x E F3m such that 

x2 = a.  If this equation has a solution, then it has two of them, unless a  = 0. In all of the 

statements to follow it will not matter which square root is under consideration as long as 

it is consistent (we will arbitrarily pick one of them to be denoted by fi). 
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Theorem 4.1.5. Nl(a) is odd i f  and only if a = 0 or a is a square and Tr(&) # 0. 

Proof. First let a E IF:,. Consider the mapping n, from IF;, to itself defined by 

n,(z) = z-I + ax. 

Then for X,  y E F:m 

1 
Therefore n, maps x and l l a x  to the same element. Since x = - if and only if z = f m, 

ax 
we have to consider two cases: l l a  is a non-square and l l a  is a square. 

If l l a  is a non-square, then the mapping z t+ z-l + ax is two-to-one and hence Nl (a) 
1 

is even since if zo is a solution to El, then so is L. 
ax0 

If l l a  is a non-zero square, or equivalently a is a non-zero square, then the equation 
1 

x = - has two solutions X ~ J  = &m. If x = m, then 
az  

So for z = 0 we have ~ r ( x - l  + ax) = 1 if and only if Tr(-&) = 1. Similarly for 

z = - we have T~(x-'  +ax) = 1 if and only if Tr(&) = 1. Therefore ~ r ( z - '  +ax) = 1 

for exactly one of x = X I ,  22. 

Now let a = 0, then the mapping x t+ z-I is one-to-one on IF:,. Therefore ~ r ( x - l )  = 1 

for one third of the elements z E IF3m, implying that Nl(0) is odd. 0 

Corollary 4.1.6. K(a)  is odd for 3"-l + 1 elements a E IFp. 

Proof. By Corollary 1.1.3 two thirds of the elements of IF3m have non-zero trace. Because 

b2 = (-b)2, those elements will yield 3"-l non-zero squares. Since K(0) = -1, altogether 

K(a)  is odd for 3m-1 + 1 elements of IF3m. 0 

4.2 Counting the number of solutions 

Consider the following system of equations over IF:,: 
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where t  E F;, is a fixed constant. 

Although we will later work with this system of equations with r  = l l t ,  for now having 

l l t  in (4.3) makes the upcoming computations easier. 

Definition 4.2.1. Let S ( l / t )  denote the total number of solutions (ordered triples (u ,  v ,  w ) )  

to (4.3). 

Let t  E F3m \ {0,1) .  Consider solutions to (4.3) as ordered triples (u , v ,  w )  E IF;,. 

Notice that we can pair up the solution (u ,  v ,  w )  with the solution (i , 6 , $). We wish to see 

how many distinct ordered solutions there are in the set composed of all permutations of 

(u ,  v ,  w )  and all permutations of (i, i, 6). We will say that such a set is generated by the 

solution ( u ,  v ,  w ) .  In most cases there will be 12 triples in total except when l{u, v ,  w)l < 3 

or (i, 6 ,  $) is a permutation of (u ,  v ,  w ) .  We therefore have the following four cases: 

4. u  = t l v ,  w  = t l w  up to a permutation 

If u = v  = w, then the first equation of (4.3) is not satisfied. If u = t l u ,  v  = t l v ,  w  = t lw ,  

then u2 = t ,  v2 = t ,  w2 = t ,  SO that t must be a square. Since all three values cannot be the 

same, suppose that u = v  = &, w = -&. Then either equation of (4.3) implies that t  = 1. 

Therefore Cases 1 and 3 never occur. We now only need to  consider the other two cases. 

We will say that a set generated by the solution ( u ,  v ,  w )  is of type 1 if J { u , v ,  w}l = 2 

and it is of type 2 if u = t l v ,  w  = t lw .  Notice that a set cannot be of type 1 and 2 

simultaneously, since otherwise we must have u2 = t ,  v2 = t ,  w2 = t .  Therefore both type 1 

and type 2 sets are of size 6. 

Lemma 4.2.2. Let t  E IF3m \ {0,1).  There is exactly one set of type 1 if and only if 1  - t  

is a  square in F3m. Otherwise there are no sets of type 1. 

Proof. Without loss of generality suppose that u = v ,  then solving the first equation of (4.3) 

for w and substituting it back into the second one yields 
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Since the characteristic of the field is not 2, we can use the standard formula for solving 

quadratic equations. This equation has two roots if and only if 1 - t is a square and they are 

distinct, unless t = 1 which is excluded in the statement. Now, if uo is a root of equation 

(4.4), then the other root is t /uo so both of these roots generate the same set of type 1. 0 

Lemma 4.2.3. Let t E IF3m \ (0 , l ) .  There is one set of type 2 if and only if t is a square 

and exactly one of 1 f 4 is a square. There are two sets of type 2 if and only if t is a 

square and both 1 f 4 are squares. If t is not a square, then there are no sets of type 2. 

Proof. Without loss of generality assume that u = t l v ,  v = t / u  and w2 = t ,  so that t must 

be a square, and I{ul v ,  w)I = 3. 

Equation w2 = t has two solutions W ~ J  = f 4 .  Once again, we will simply pick one of 

w1,2 to be denoted by 4. If w = 4, then substituting it together with u = t lv ,  v = t / u  

into (4.3) results in the following quadratic equation in u: 

This equation has roots in IF3m if and only if 1 + 4 is a square and they are distinct, unless 

t = 1. If uo is a root of (4.5), then so is t /uo and hence both roots of (4.5) generate the 

same set of type 2. Similarly, if w = -4, then the corresponding quadratic equation is 

and it has roots in IF3m if and only if 1 - 4 is a square. Once again roots are distinct, 

unless t = 1; they are of the form uo and t /uo and so they generate the same set of type 2. 

Therefore there is one set of type 2 if and only if exactly one of 1 f 4 is a square. If 

both 1 f & are squares, then there are two sets of type 2, one corresponding to w = & 
and the other one corresponding to w = -4. 0 

Theorem 4.2.4. Let t E IF3m \ {0,1). If 1 - t is a square or t is a square, then S( l / t )  = 6 

(mod 12), otherwise S( l / t )  r 0 (mod 12). 

Proof. We have the following four disjoint cases and we draw conclusions by repeatedly 

using Lemmas 4.2.2 and 4.2.3: 

Case 1. 1 - t is a square, t is a non-square. 

Since 1 - t is a square, there is exactly one set of type 1. Since t is a non-square, there are 

no sets of type 2. 
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Case 2. 1 - t is a non-square, t is a square. 

Since 1 - t = ( 1  - & ) ( I  + A) and 1 - t is a non-square, exactly one of 1 f is a square. 

Therefore there is one set of type 2. There are no sets of type 1. 

Case 3. 1 - t is a square, t is a square. 

Since 1 - t = ( 1  - 4) ( 1  + A) either both 1 f 4 are squares or they are both non-squares. 

If both 1 f are squares, then there are two sets of type 2. However, since 1 - t is also 

a square, there is one set of type 1. Hence there are 3 distinct sets of size 6. 

If both 1 f are non-squares, then there are no sets of type 2,  so the only set of size 

6 is one set type 1. 

Case 4. 1 - t is a non-square, t is a non-square. 

There are no sets of type 1 or type 2. 

In the first 3 cases there was an odd number of sets of size 6 and hence S ( l / t )  - 6 

(mod 12). Otherwise S ( l / t )  - 0 (mod 12). 0 

4.3 Correspondence between solutions and points on the el- 

liptic curve 

Let Et denote the following elliptic curve over F3m: 

Theorem 4.3.1. Let t E F3m \ {0 ,1} .  Then 

where #zt denotes the number of points on ft  over F 3 m .  

Proof. Let r = llt be the right-hand side of the second equation of (4.3) ,  so that 

Then the assumption t E IF3m \ {0 ,1}  implies that r E F3m \ {0 ,1} .  

We eliminate w from the first equation in (4.7), substitute the result into the second 

equation, clear the denominators, and introduce the homogenization variable 2. We now 
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use the following substitution to obtain an elliptic curve in Weierstrass form (please refer 

to Appendix D.2 to see how this substitution was obtained): 

We get the following elliptic curve (see Appendix B.l):  

where 

First of all let us determine the points on that do not correspond to a solution of 

(4.7). 
1 

The discriminant of E, is A = so the curve is non-singular except for r = 0,1, 
r9 (r + 2)9 ' 

which are excluded in the assumpti&. w;! will now find the exact number of the points on 

E, that do not correspond to a solution of (4.7). 

The first candidate is the point at  infinity O = (0 : 1 : 0), which leads to U = Z = 0 and 

hence does not correspond to a solution of (4.7). From now on we will only deal with afine 

points on g,, and so will consider substitution (4.8) in its dehomogenized form with z = 1. 

The other cases when a point on E, does not correspond to a solution of (4.7) is when 

Z = 0, or when one of u, v or w is equal to zero, which is equivalent to U = 0, V = 0 

and Z = U + V. Consider the ideal I in IF3m [x, y, r ,  U, V, Z] generated by the polynomials 

corresponding to the equations (4.8,4.9), where to each equation A = B corresponds the 

polynomial A - B with denominators cleared. Since the polynomials in I have coefficients 

in IFs, and the Buchberger algorithm preserves this property, we can consider I to be an 

ideal in IFg [x, y, r, U, V, Z] and compute the corresponding Grobner basis over IF3. 
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First compute the Grobner basis GI for the above ideal with Z = 0 with lexicographical 

ordering x > y > r > U > V. It contains the polynomial 

so Z = 0 implies V = 0 or U = -V. In the similar fashion we compute all other corre- 

sponding Grobner bases with respect to some obvious lexicographical ordering. We find the 

following implications (see Appendix B.2): 

Consequently, it is sufficient to consider the five cases (U = 0) A (V = 0), (V = 0) A ( Z  = O), 

(U = 0) A (V = Z), (V = 0) A (U = Z), and ( Z  = 0) A (U = -V). By computing Grobner 

bases (see Appendix B.2) we find that there are exactly 5 affine points on g,. that do not 

correspond to a solution of (4.7): 

Notice that all the points in the table above are distinct for r # 0 , l .  

We now only need to prove that for a = 1, the mapping (x, y) tt (u, v), defined by 

(4.8) composed with u = U/Z, v = V/Z, is injective, that is, distinct affine points on E,. 
produce distinct solutions to (4.7), if any. Let u = u(x, y), v = v(x, y) be this mapping. 

Towards a contradiction assume that there are two distinct affine points (XI ,  yl) and ( 2 2 ,  y2) 

on g, so that (u(xl, yl), v(xl, yl)) = (u(x2, y2), v(x2, y 2 ) )  By computing the Grobner basis 

Condition Affine point on E,. 
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containing all of the above conditions together with the fact that Z(x l ,  yl) and Z(x2, y2) 

(according to (4.8)) cannot be zero, we get XI = x2 and yl = yz (see Appendix B.3). 

Therefore there are 6 points on E, that do not correspond to a solution of (4.7): 5 affine 

points summarized in the table above and the point at infinity. We have just proved that 

S ( r )  = #E, - 6. 

Given the curve E,, we will now apply the following substitution (see Appendix B.4): 

The curves E, and Et are isomorphic by Theorem 2.1.4, and therefore #•’, = #zt, so 

S ( l / t )  = #Et - 6. 0 

4.4 Kloosterman sums modulo 4 

Proposition 4.4.1. Let t E IF3m \ {0,1) and let a = t2  - t3. We have the following: 

If 1 - t is a square or t is a square, then K(a )  = 2m + 2 (mod 4), i.e. K(a)  = 0 

(mod 4) for odd m and K(a )  = 2 (mod 4) for even m; 

If both t and 1 - t are non-squares, then K(a )  = 2m (mod 4), i. e. K(a)  - 2 (mod 4) 

for odd m and K ( a )  = 0 (mod 4) for even m. 

Proof. Recall the elliptic curve Et and system (4.3). Theorem 4.3.1 together with Theorem 

4.2.4 imply that if at least one of t and 1 - t is a square, then S ( l / t )  = 6 (mod 12) and so 

#Et = 0 (mod 12). Otherwise S ( l / t )  G 0 (mod 12) and #Et r 6 (mod 12). By Theorem 

4.1.4 we can express the number of points on #Zt as follows: 

since K ( a )  = K(a3)  by Lemma 2.2.2. 

Since 3m + 1 r 0 (mod 4) for m odd and 2 (mod 4) for m even, the result now follows. 

0 
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Lemma 4.4.2. [17] Let f ( x )  = x3 - bx - c be a polynomial of degree 3 over F3m. Then 

f ( x )  has zero, one or three roots i n  F3m. If b is a non-zero square i n  F3m, such that b = s2 

for some s E F3m, then f ( x )  has three roots i n  F3m when T r ( c / s 3 )  = 0 and no  roots i n  F3m 

if ~ r ( c / s ~ )  # 0 .  If b is a non-square, then f ( x )  has exactly one root i n  F3m. 

Theorem 4.4.3. Let m 2 3 and let 

A1 = { a  E F3m la = 0 or a is a square and T r ( 6 )  # 0 ) ,  

A2 = { a  E F3mla = t2 - t3 for some t E F3m \ ( 0 ,  I ) ,  t or 1 - t is a square), 

A3 = { a  E F3m la = t2 - t3 for some t E F3m \ ( 0 ,  I ) ,  both t and 1 - t are non-squares). 

Then  the sets A1, A2 and A3 partition F3m. 

Proof. Consider the cubic polynomial f ( t )  = t3 - t2 + a. For a # 0 ,  f ( t )  has no zero roots 

and f (t-') = : f ( t ) ,  where 

By Lemma 4.4.2 the cubic polynomial f ( t ) ,  and consequently f ( t ) ,  has no roots in F3m if and 

only if l / a  is a square and T r ( 6 )  # 0 .  Therefore F3m \A1 consists of those elements a E F3m 

for which f ( t )  has at least one root, or equivalently, a = t2 - t3 for some t E F3m \ { O , l ) .  

Hence A1 is disjoint from both A2 and A3 and A2 U A3 = F3m \ Al. It only remains to see 

that A2 and A3 are disjoint. Choose a E A3. Then a = t2 - t3 = t 2 ( 1  - t ) ,  t @ { 0 , 1 ) ,  1 - t 

is a non-square and so a is a non-square. Lemma 4.4.2 implies that f ( t )  has exactly one 

root and hence this representation of a is unique. Therefore a cannot be an element of A2 

by the condition on t .  

0 

Corollary 4.4.4. Let m > 3 and a E F3m. Then  exactly one of  the following cases occurs: 

a E A1 and K ( a )  = 1 (mod 2 ) ,  

0 a E A2 and K ( a )  s 2 m  + 2 (mod 4 ) ,  

0 a E As and K ( a )  - 2 m  (mod 4 ) .  

Having characterized those a E F3m for which K ( a )  =- 0 , 2  (mod 4 ) ,  we will now count 

them. 
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For all t E IF3m define the mapping x : IF3m H { - 1 , 0 , 1 )  as follows: ~ ( 0 )  = 0,  ~ ( t )  = 1 

if t is a square and ~ ( t )  = -1 if t is a non-square. This implies that x is multiplicative, i.e. 

 st) = x ( s ) x ( t )  for all s , t  E IF3m. 

Recall that q = 3m. 

1 
Lemma 4.4.5. The set Sq = { t  E IF3mlx(t) = 1, ~ ( 1  - t )  = -1)  is of the size -(q - 3)  if m 

4 
1 

is odd and -(q - 1)  if m is even. 
4 

Proof. Consider the function ~ ( t )  : IF3m H R 

so that for t E IF3m \ { 0 , 1 )  we have n ( t )  = 1 if t E Sq and n ( t )  = 0 if t $! Sq. We have: 

1 
- (q  - 3 )  if m is odd, 

= ( 1  
(q  - 1)  if m is even. 

1 1 .  
Theorem 4.4.6. The number of a E IF:, such that K ( a )  r 0 (mod 4)  is -q - - zf m is 

4 4 
5 5 

even and -q - - if m is odd. The number of a E IF:, such that K ( a )  r 2 (mod 4)  is 
12 4 

5 3 .  1 1 .  -q - - zf m is even and -q + - zf m is odd. 
12 4 4 4 

2 
Proof. Corollary 4.1.6 implies that K ( a ) ,  a # 0 is even for -q - 1 elements of Fgm, i.e. 

3 
2 

[Az /  + lA31 = -q - 1. Hence it is enough to find the cardinality of Ag .  
3 

Recall the cubic polynomial from the proof of Theorem 4.4.3. By Lemma 4.4.2 we have 

the following two disjoint cases: 

1 - t is a square and f ( t )  has three distinct roots 
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0 1 - t is a non-square, t is a square and f ( t )  has exactly one root. 

q - 1  The number of t E IF3m \ { O , l )  such that 1 - t is a square is - - 1 = - 
2 

- 3 .  Since 
2 

in this case f ( t )  has three distinct roots, the number of the corresponding a E Fjm is 
q - 3  1 - . -  - - -  

2 3 
- 3 .  If 1 - t is a non-square and t is a square, then by Lemma 4.4.5 the 
6 

1 1 
number of such a E IF;, IS - (q  - 1)  if m is even and - (q  - 3 )  if m is odd. Hence altogether 

4 4 
for m even we get: 

5 5 
Similarly for m odd the number of such a E Fj, is -q - -. Combining all the facts above 

12 4 
we have the following table: 

Parity of m 1 K ( a )  (mod 4 )  1 Number of a 

4.5 New ternary quasi-perfect codes 

Danev and Dodunekov recently constructed [lo] a new family of ternary quasi-perfect codes 

with minimum distance 5 and covering radius 3. A major step in their proof of the covering 

radius value is showing that the system (4.3) is solvable over Fjm for any t E Fjm. In [lo] 

this is done by explicitly finding one solution. By applying Theorem 4.3.1 together with the 

Hasse Theorem, we offer an alternative proof of the solvability of (4.3) over IF3m. 



Appendix A 

Maple code for the binary case 

A . l  Substitution for the elliptic curve 

maple b inary- thes i s  

1 \-/ 1 Maple 11 (IBM INTEL LINUX) 

I 1 / 1 - .  Copyright (c) Maplesoft, a d i v i s i o n  of Waterloo Maple Inc .  

\ MAPLE / A l l  r i g h t s  reserved.  Maple is  a trademark of 

< - - - - - - - - > Waterloo Maple Inc .  

I Type ? f o r  he lp .  
# ......................................................... 

> with(Groebner) : 

> eq: =l/u+l/v+l/w+r : 

> eq: =subs (w=l+u+v, eq) : 

> eq: =numer (Normal (expand (eq) mod 2) : 

> eq  : =numer (Normal (expand (subs (Cu=U/Z, v=V/Z), eq) ) ) mod 2) ; 

2 2 2 2 2 2 

e q : = V  Z + U  Z + V Z  + U Z  + V U Z + r V U Z + r V U  + r V  U 

> s b  : = C U= (r+1) /r^4*x, V= ( r + l )  -2/re6*y, Z= (r+1) /re3*x+r*z 3 : 

> f a c t  : = f -> (Factor  (numer (f 1) mod 2) / (Factor  (denom(f) mod 2) ; 
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> g := subs( sb , eq) mod 2: g := subs( r=l+l/t , g) mod 2: 

> g:=subs( z=1 , g) mod 2: 

> c:=Normal(coeff (coeff (g,y,2) ,x,O)) mod 2: 

> g:= Normal(expand(g/c)) mod 2: 

> ~ormal(coeff (coeff (g,y,0) ,x,3)) mod 2; 

1 

> Normal(coeff(coeff(g,y,2),~,0)) mod 2; 

1 

> al:=Normal(coeff (coeff (g,y,l) ,x,l)) mod 2: fact(%); 

> a3:=Nomal(coeff (coeff (g,y,l) ,x,O)) mod 2: fact(%); 

7 

(t + 1) 

> a2:=Normal(coeff (coeff (g,y,O) ,x,2)) mod 2: fact(%); 
4 

(t + 1) 
-------- 
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> a4:=~ormal(coeff(coeff(g~y~O)~x~l)) mod 2: fact(%); 

9 

(t + 1) 
-------- 

6 

t 

> a6:=Normal(coeff (coeff (glyJO) 1~10)) mod 2; 

a6 := 0 

# Lauchaud-Wolfmann substitution 

> g: = expmd(subs( x=a1-2*x+a3/al1 g)) mod 2: 

> g: = expand(subs ( y=al-3* (y+s*x)+(a1-2*a4+a3-2) / a n  g) ) mod 2 : 

> c: =Normal (coef f (coef f (gly J~ J3)) mod 2: 

> g:= Normal(expand(g/c)) mod 2; 

2 2 2 3 2 8 6 2  

g : = s  x + s x  + x  + t x  + y x + t  + t  + y  

1 

> Normal(coeff (coeff (gJyJ2) ,x,0)) mod 2; 

> a3:=Normal(coeff (coeff (g,y, 1) mod 2; 

a3 := 0 
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> a2s:=Normal(coeff (coeff (coeff (g,y,O) , x , 2  S ,  mod 2; 

a2s := t 

> a4:=~ormal(coeff (coeff(g,y,O) ,x,l)) mod 2; 

a4 := 0 

> a6:=Normal(coeff (coeff (gly,O) ,x,O)) mod 2; 

8 6 

a6 := t + t 

> ~ormal(coeff (coeff (Et,y,O) ,x13)) mod 2; 

> Normal (coef f (coef f (Et ,y, 2) ,x,0) ) mod 2 ; 

1 
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> a1:=Norma1(coeff(coeff(Et,y,1),~,1)) mod 2; 

a1 := 1 

> a3:=Normal (coef f (coef f (Et ,y, 1) ,X ,O)) mod 2; 

a3 := 0 

> a2: =Normal (coef f (coef f (Et ,Y , 0) ,X , 2) ) mod 2; 

2 

a2 := s + s + t  

> a2s:=Normal(coeff (coeff (coeff (E~,Y,O) , x l  S O  mod 2; 

> a4:=Normal(coeff (coeff (Et ,y,O) ,x, 1)) mod 2; 

a4 := 0 

> a6:=Normal (coef f (coef f (Et ,y, 0) ,x, 0)) mod 2; 

8 6 

a6 := t + t 

> discriminant:=d2^2*d8+d6^2+d2*d4*d6; 

8 6 

discriminant := t + t  

A.2 Special points 
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> TrO:=sm2+s+t:  

> T r l : = s e 2 + s + t + l :  

> 

######### Z=0, Tr(t)=O 

> ~ 1 0 : = ~ ~ ~ i ~ ( s u b s ( { Z = O  , U = l  , x = t e 2  ,z=l), [op(sb) , E t  , T ~ o ]  J p l e x ( y J s  , t , v ) ,  

> c h a r a c t e r i s t i c = 2 ) :  

> map(po -> (Factor  (pol mod 2) , G10) ; 

4 2 2  2  4 3 

[ V t  ( V + l ) , s  + s + t , t  V + y + t  s + t  + t l  

> map(po -> (Factor  (po) mod 2) , subs(V=O ,G10) ) ; 

2 2  4 3 

[ O , s  + s + t , y + t  s + t  + t l  

> map(po -> (Factor  (po) mod 2) , subs (v=l ,  ~ 1 0 )  ) ; 

2 2  2  4 3 

[ O , s  + s + t , t  + y + t  s + t  + t l  

######### Z=0, T r ( t ) = l  

> ~ 1 1 : = ~ a s i s ( s u b s ( { Z = O  , U = l  ,x=t-2  ,z=l), [op(sb) ,E t  , T r l I )  , ~ l e x ( ~  ,s ,t , v ) ,  

> c h a r a c t e r i s t i ~ 2 )  : 

> map(po -> (Factor  (po) mod 2) , G11) ; 

4 2 2  2  4 3 

[ V t  ( V + l ) , s  + s + t + l , t  V + y + t  s + t  + t l  

> map(po -> (Factor  (po) mod 21, s u b s ( ~ = 0  ,G11) ) ; 

2 2  4 3 

[ O , s  + s + t + l , y + t  s + t  + t l  

> map (po -> (Factor  (pol mod 2) , subs (V=1 ,G11) ; 

2 2  2 4 3 

[ O , s  + s + t + l , t  + y + t  s + t  + t l  



APPENDIX A. MAPLE CODE FOR THE BINARY CASE 

######### V=O, Tr( t )=O 

> ~30:=Basis(subs(~V=O,z=1),Cop(sb) ,Et ,TrOl) , P ~ x ( x , Y , s , ~ , ~ , ~ ) ,  

> c h a r a c t e r i s t i c = 2 )  : 

> Fac to r  (G3O [I] ) mod 2 ; 

4 

u t (U + Z) (U + 1 )  

> map (po -> (Fac to r  (po) mod 2) , subs ( ~ = 1 ,  G ~ O  [31) ) ; 

2 

t Z  
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######### V=O, Tr(t)=l 

> ~31:=Basis(subs(~V=O,z=1),Cop(sb) ,Et,Trll 2p1ex(xJyJsJtJuJz) J 

> characteristic=2) : 

> Factor(G31[1]) mod 2; 

4 

u t (U + Z) (U + 1) 

> map(po -> (Factor (PO) mod 2) , subs (U=1, G3l[3] ) ) ; 

2 

t Z  

######### U=V+Z , Tr (t =O 

> ~40:=~asis(sub~((U=~+Z,z=~), [op(sb) ,E~,T~o] ,p1ex~x,y,s,t,~,~~, 

> characteristic=2) : 

>   actor (G4O [I] mod 2; 

4 

t (V+Z) V ( Z + V + l )  

> expand(subs(V=Z+1,G40[3])) mod 2; 

######### U=V+Z , Tr (t = 1 

> ~41:=~asis(subs(~U=V+Z,z=1),Cop(sb) jEt ,TrlI Jplex(xJyJs J ~ ~ V J Z )  

> characteristic=2): 

> Factor(G41 [I] ) mod 2; 
4 

t (V+Z) V ( Z + V + l )  

> Factor(G41[11) mod 2; 

4 

t (V+Z) V ( Z + V +  1) 
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> Factor( subs(x=te2+t ,G7 [21) - y ) mod 2; 
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> Factor( subs(x=t^2+t ,G8 [2]) - y mod 2 ;  

2 

t ( t  + 1) ( s  + t + 1) 

> expand( subs( { y=%, x=te2+t) , Et) ) mod 2 ;  

0 

################### u=z, v=o 
> ~9:=~asis(subs({U=Z,V=O,z=l), [op(sb) ,Et l )  ,plex(Z, s , t  , x , y ) ,  

> 

> c h a r a c t e r i s t i ~ 2 )  ; 

4 3 2 

G9 := [x,  t + t  + y ,  Z y + t y + y ,  Z t  + t  + t ]  

Injectivity of the mapping 



APPENDIX A. MAPLE CODE FOR THE BLNARY CASE 

> fv:=subs(xl=x2,fv): 

> fact (f v) ; 



Appendix B 

Maple code for the ternary case 

B.l Substitution for the elliptic curve 

maple ternary-thesis 

1  \-/ 1 Maple 11 (IBM INTEL LINUX) 

I 1 / 1 - .  Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 

\ MAPLE / All rights reserved. Maple is a trademark of 

<---- ----> Waterloo Maple Inc. 

1 Type ? for help. 
# ......................................................... 

> f : =numer (subs (w=l-u-v, eq) ) ; 

2 2 2 2 

f : = - v + u v + v  - u + u  + r u v - r u  v - r u v  
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> Z=2/(r + 2)*x + 2/(re4 + r-3 + re2)*z))) mod 3: 

> fact : = f ->  a actor (numer ( f )  mod 3) /(Factor (denom(f) ) mod 3) ; 

> E:=eval(C, ( z=1) 1: 

> lc:=Normal( coeff (E,x,3) ) mod 3: 

> Er:=E/lc: 
> Normal(coeff (coeff (Er,y,O) ,xY3)) mod 3; 

1 

> a2:=~orma1(coeff(coeff(Er,y,0),~,2)) mod 3: fact(%); 
2 r + 2  

----------- 

2 2 

r (r + 2) 

> al:=-Normal(coeff (coeff (Er,y, 1) ,x, 1) mod 3; 

a1 := l/r 

> a3:=-~ormal(coef f (coeff (~r,y, 1) ,x,0)) mod 3: fact (%) ; 

1 
----------- 

2 2 

r (r + 2) 

> a4 : =Normal (coef f (coef f (Er , y , 0) , x , 1) ) mod 3 : fact (%) ; 

> -Normal (coef f (coef f (Er ,y, 2) ,x,O) ) mod 3 ; 

1 

> a6:=Norma1(coeff(coeff(Er,y,0~,~,0)) mod 3; 
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> d2:=ale2+a2: d4:=2*a4+al*a3: d6:=a3*2+a6: 

> d8 : =a1-2*a6+a2*a6+2*al*a3*a4+a2*a3-2+2*a4-2 : 

> discrirninant:=2*d2-2*da+d4^3: 

> Factor (numer (discriminant ) mod 3 ; 

10 

r (r + 2) 

> Factor (denom(discriminant) ) mod 3; 

10 19 

r (r + 22) 

B.2 Special points 

> Er : =Normal (numer (E/lc) ) mod 3 : 

> sb:=[U*(rA2 + 2*r)-2*x,V-y,Z*(re4 + r-3 + re2)-2*re2*(r + 2)*x - 2*z] 
# ......................................................... ......................................................... 
# First phase 
# ......................................................... ......................................................... 

######### z=o 
> GI:= 

> Basis (subs ((Z=O ,z=l), [op(sb) ,Er] ) ,plex(x,y,r ,U,V) ,characteristic=3) : 

> Factor(Gl[l]) mod 3; 

v (U + V) 

#########I u=o 
> G2:= 

> Basis (subs ((U=O ,z=l) , [op(sb) ,Erl) ,plex(x, y ,r , V, Z) , characteristic=31: 
> Factor (G2[11) mod 3; 

v (V + 2 Z) 
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> Factor (G3 [I] 1 mod 3; 
z u  ( 2 Z + U )  

# ......................................................... 

# Second phase 
# ......................................................... 

################### u=o, v=o 
> G7:= 

> Basis(subs((U=O,V=O,z=1>,[op(sb),~]),plex(Z,r,x,y),~haracteristic=3): 

> map(po -> (Factor (pol mod 3) , G7) ; 
4 3 2 

[ y , x , Z r  + 1 + Z r  + Z r l  

> Basis (subs ((V=O, Z=O, z=1>, [op(sb), Erl 1 ,plex (U,r ,x, y) , ch=racteristic=3) : 

> map(po -> (Factor (pol mod 3) , Gal; 
3 2 2 

[ y , l + x r  + 2 x r , 2 x  r + U l  

################### u=o, V=Z 
> G9:= 

> Basis (subs((U=O ,V=Z,z=l>, [op(sb) ,Erl) ,plex(z,r ,x,y) , characteristic=3) : 

> map(po -> (Factor (po) mod 3) , G9) ; 
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4 3 2 

[ x , y r  + l + y r  + y r , Z + 2 y l  

################### V=O, u=z 
> G10:= 

>  asi is (subs ((V=O,U=Z,z=l), [op(sb) ,Erl) ,plex(Z,r ,x,y) , characteristic=3) : 

> map(po -> (Factor(po) mod 3), G10); 

3 2 2 2 

[ y , x r  + 1 + x r  + x r , 2 x  r + x  +Z] 

################### Z=O, u=-v 
> G11:= 

> Basis(subs((Z=O,U=-V,z=l),[op(sb),Erl),plex~V,x,y,r~,characteristic=3~: 

> map(po -> (Factor(po) mod 3) , G11) ; 

5 4 3 2 

[ 1 + y r  + y r  + y r , 2 y r  + y r + x , V + 2 y ]  

B.3 Injectivity of the mapping 

#take distinct (x1,yl) and (x2,y2), assume they produce the same (u,v) 

> sb:=[U=2/(ra2 + 2*r)*x,V=y,Z=2/(r + 2)*x + 2/(re4 + r"3 + ra2)*z] : 

> 

> ~1 :=subs ((x=xl ,y=yl ,z=l),rhs (sb Ell ) ) : 

> Zl:=subs((x=xl,y=yl,z=l),rhs(sb[31)): 

> U2:=subs((x=x2,y=y2,z=l),rhs(sb[l])): 

> Z2:=subs((x=x2,y=y2,z=l),rhs(sb[3])): 

> fu:=Ul/Zl-U2/Z2: 

> fu:=numer(fu) mod 3: 

> V1 :=subs ((x=xl ,y=yl ,z=l),rhs(sb[21)) : 

> V2:=subs((x=x2,y=y2,z=l),rhs(sb[2])): 
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> fv:=Vl/Zl-V2/Z2: 

> fv:=numer(fv) mod 3: 

> 

> G:=Basis([ 

> f~,f~,~~b~((~=~1,y=y1,z=1],Er) mod 3,subs((x=x2,y=y2,z=1),Er) mod 3, 

> numer(1-k*Z1*Z2) mod 31, 

> plex(k,xl,x2,yl,y2,r),characteristic=3): 

>   actor (G [I] ) mod 3; 
2 4 

(yl + 2 y2) r (r + 2) 

> Factor(G [3I ) mod 3; 

2 4 

2 (2 xl + x2) r (r + 2) 

B.4 Second substitution 

# Second substitution 

> Er:=x-3+a2*~^2-al*x*y+a4*x-a3*y-y^2: 

> Et:=expand(subs((r=l/t, y=2*t'3/(t+2)^3*y+t*x+t^4/(t+2)^2],Er)) mod 3: 

> Et :=expand(subs (x=ta2/ (t+2) ̂ 2*x+t^3*(t+l(t+2 , E t  mod 3: 

> Et :=Et*((2*t+l)/t)̂ 6: 

> Normal(coeff (coeff (Et,y,O) ,x,3)) mod 3; 

1 

> a2:=Normal (coeff (coeff (Et ,y , 0) , x, 2)) mod 3; 

a2 := 1 

> a1 :=-Normal(coeff (coeff (Et ,y, 1) ,x, 1)) mod 3; 

a1 := 0 
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> a4:=Normal(coef f (coef f (Et l y l  0) l~ 1) ) mod 3; 

a4 := 0 

> -Normal(coef f (coef f (Et ,y,2) ,x,O)) mod 3; 

1 

> a3:=-Normal(coeff(coeff(Etly,1~l~10)) mod 3; 

a3 := 0 

> a6:=Normal(coeff (coeff (EtlylO) ,x1O)) mod 3; 

9 6 

a6 := t + 2 t 
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Point of order 6 

I \ - / l  Maple 11 (IBM INTEL LINUX) 

I  1 / 1 - .  Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 

\ MAPLE / All rights reserved. Maple is a trademark of 

< - - - - - - - - > Waterloo Maple Inc. 

I Type ? for help. 

> Et:=x-3+(s-2+s+t)*x^2+x*y+y~2+t'8+t-6; 

3 2  2  2 8 6  

E t : = x  + ( s  + s + t ) x  + x y + y  + t  + t  

> expand(subs((x=t-2+t, y=ta4+t'3+s*t-2+s*t),Et)) mod 2; 

0 

> a2:=Normal (coeff (coeff (Et ,y ,O) ,x12) mod 2; 

2  

a 2 : = s  + s + t  
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> a4:=Normal(coeff (coeff (Et,y,O) ,x,l)) mod 2; 

a4 := 0 

> a6:=Normal(coeff (coeff (Et,y,O) ,x,O)) mod 2; 

8 6 

a6 := t + t 

#Adding points on the elliptic curve in characteristic 2. 

> AddPt :=proc (P: :list ,q: :list) 

> global al,a2,a3,a4,a6; 

> local lam,mu,x3 ,y3,xl ,yl ,x2 ,y2; 

> xl:=P[1] : yl:=P[2] : x2:=q[ll: y2:=q[2] : 

> if (xl mod 2 = x2 mod 2) and (yl+y2+al*x2+a3 mod 2 =O mod 2) 

> then return "PtAtInf inity" ; 

> elif xlox2 and xlo-x2 then 

> lam:=(y2-yl)/(x2-xl): mu:=(yl*x2-y2*xl)/(x2-~1): 

> else lam:=(xl~2+a4+al*yl)/(al*xl+a3): mu:=(x1~3+a4*xl-a3*yl)/(al*xl+a3): 

> fi; 

> x3:=1am^2+al*lam-a2-xl-x2: 

> y3: =- (lam+al) *x3-mu-a3; 

> return [Factor (Normal (x3) mod 2) mod 2, Factor (Normal (y3) mod 2) mod 21 ; 

> end: 

> 

> P:=[ta2+t, ta4+t-3+s*t-2+s*t1; 

2 4 3 2 

P:=[t + t , t  + t  + s t  + s t ]  

#Doubling the point P 

> P2:=AddPt(P,P); 
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# T r i p l i n g  t h e  p o i n t  3P=2P+P. 

> P3: =AddPt (P2,  PI ; 

3 

P3 := [0 ,  t ( 1  + t ) l  

#5P=2P+3P. 

> PS :=AddPt (P2, P3) ; 

2 

p s  := [t ( 1  + t ) ,  (s + t + 1 )  t (1 + t ) l  



Appendix D 

Magma code: Creation of the 

elliptic curves 

D . l  Binary case 

Magma V2.14-1 Mon Nov 5 2007 11:14:48 on ella 

Type ? for help. Type <Ctrl>-D to quit. 

> k<r> : =RationalFunctionField( GF(2), 1 ) ; 

> A2<u,v>:=AffineSpace(k,2); 

> / /  u+v+w = 1 

> / /  l/u+l/v+l/w = r 

> C:=Curve(A2, v* (1-u-v) + u*(l-u-v) + u*v - r*u*v*(l-u-v) ) ; 

> Genus (C) ; 

1 

> Dp: =ProjectiveClosure (C) ; 

> -<U,V,Z>:=Dp; 

> E,m:=EllipticCurve(Dp,Dp! [O,l,O]); 

> -<x,y,z> := E; 

> E; 

Elliptic Curve defined by y-2 + r^2*x*y + r-7/(rA2 + 1)*y = x-3 + 
r-4/(re2 + 1)*xe2 + rA9/(r-3 + r-2 + r + l)*x over Multivariate 

rational function field of rank 1 over GF(2) 

> d: = Discriminant (E) ; 
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I \-/ I 
I I /  
\ MAPLE 

Maple 11 (X86 64 LINUX) 

I - .  Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 

/ All rights reserved. Maple is a trademark of 

-> Waterloo Maple Inc. 

Type ? for help. 

> fact : = proc(f) (Factor(numer(f) mod 2)   actor (denom(f 1) mod 2) ; 

end proc; 

> E:=ya2 + rA2*x*y + r-7/(rA2 + l)*y + x-3 + 

> r-4/(rA2 + 1)*xa2 + rA9/(r^3 + r-2 + r + l)*x; 

7 4 2 9 

2 2 r Y  3 r x  r x 
E := y + r x y + ------ + + ------ + --------------- 

2 2 3 2 

r + 1  r + 1  r + r  + r + l  

> E := subs( r=l+l/t , E) mod 2: 
> E:=subs( z=1 , E) mod 2: 
> c:=Normal(coeff(coeff(E,y,2),x,O)) mod 2: 
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> E:= Normal(expand(E/c)) mod 2: 

> ~ormal(coeff (coeff (E,y,O) ,x,3)) mod 2; 

1 

> Normal(coeff(coeff(E,y,2),x,0)) mod 2; 

> a3:=~ormal(coef f (coef f (E,y, 1) ,x,0) ) mod 2: fact (%) ; 

7 

(t + 1) 
-------- 

5 

t 

> a2:=Normal(coeff(coeff(Ely10)l~12)) mod 2: fact(%); 
4 

(t + 1) 
-------- 

2 

> a4:=~ormal(coeff (coeff (ElylO) 1 ~ 1 1 ) )  mod 2: fact(%); 
9 

(t + 1) 
-------- 

6 
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D.2 Ternary case 

magma < ternary-thesis-magma 

Magma V2.14-1 Mon Nov 5 2007 14:19:46 on ella 

Type ? for help. Type <Ctrl>-D to quit. 

> k<r>: =RationalFunctionField( GF(3), 1 ) ; 

> A2<u ,v> : =Af f ineSpace (k, 2) ; 

> // u+v+w = 1 

> // l/u+l/v+l/w = r 

> C:=Curve(A2, v* (1-u-v) + u* (1-u-v) + u*v - r*u*v* (1-u-v) ) ; 

> Genus (C) ; 

1 

> Dp :=Pro j ectiveclosure (C) ; 

> -<U,V,Z>:=Dp; 

> E,m:=EllipticCurve(Dp) ; 

> -<x,y,z> := E; 

> E; 

Elliptic Curve defined by y-2 + l/r*x*y + l/(re4 + r-3 + ra2)*y = 

x-3 + (2*r + 2)/(ra4 + r-3 + r-2)*xa2 + l/(r-6 + 2*ra3)*x over 

Multivariate rational function field of rank 1 over GF(3) 

> d:= Discriminant(E) ; 

> Factorization(Numerator(d)) ; 
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> minv : =Inverse (m) ; 

> ~ l l ~ e f  iningPolynomials (Extend(minv) ) ; 

C 
C 

Y 3 

2 / (re2 + 2*r)*x, 

2 / (r  + 2)*x + 2/(re4 + r-3 + re2)*z 

I 
I 
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