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Abstract 

We introduce several congestion games and study the speed of convergence to Nash Equilibria under 

reasonable reallocation protocols. We focus on a particular atomic congestion game, distributed 

selfish load balancing, in which a set of resources are to be allocated to tasks with selfish agents 

willing to minimize their own latency. We revisit and improve the previous results for the uniform 

case where tasks share identical resources, and the latency function of a resource is the number of 

tasks utilizing it. Moreover we introduce two variations of this setting. In the first variation we 

consider the case where tasks have different weights and the latency of each resource is the total 

weights of the tasks utilizing it. Another variation is the case where tasks are identical, but resources 

have arbitrary latency functions. We give upper bounds for the convergence time of these models, 

and some examples to justify our protocols. 

iii 
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Introduction 

Most of us, as rational drivers, would probably choose the shortest route in order to get to school. 

Not surprisingly, to select one among all possible routes, we choose our route in a seljish manner, 

taking only the delay experienced by ourselves in to account without caring about the effects of 

our choice on other commuters. Regarding social welfare, the selfish behavior of the drivers can 

be quite bad. Apparently the time it takes to travel along a route depends on the congestion of the 

route and thus if all the drivers stick to a route which was initially the shortest one, and lose their 

incentive to migrate to other possible routes, the average delay could be very far from the optimal 

situation. In fact, the empirical and theoretical studies indicate that with the lack of central control 

and coordination, the average delay of the drivers can be substantially large. 

Not surprisingly, in the traffic model, an optimal solution which minimizes the average delay 

of all the drivers might not be stable. The drivers, which can be modeled as strategic and rational 

players in a congestion game, might change their actions and reroute to other permissible routes 

whenever an improvement to their own cost(de1ay) is possible. The concept of Nash equilibrium 

[32] seems to be the only reasonable solution for the study of these sorts of systems. A strategy 

profile for the players is at a Nash equilibrium if the players can not unilaterally improve their cost 

and thus have no incentive to change their action. 
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Related to the selfish behavior of the players and the concept of Nash equilibrium, several differ- 

ent models and questions have been addressed so far. In this thesis, our main focus is on the problem 

of convergence to Nash equilibria. We want to find out, what the dynamic behavior of a particular 

system looks like, and how much time it takes in order to reach or get close to a Nash equilibrium. 

For the classic load balancing model, where many individual selfish agents assign their tasks to cho- 

sen resources, we introduce natural reallocation protocols for the selfish agents, and study the time 

it takes for the system to reach a Nash equilibrium. 

For all three variations of the load balancing model which we study in this thesis, the nature 

of our reallocation protocols is as following: In each step, every agent samples one resource and 

compares the cost of its current utilized resource with the cost of the sampled resource. The agent 

will migrate to the sampled resource with a certain probability, where is it more likely to migrate if 

the ratio of the current cost to the new cost is large. The migrations are in parallel. 

It is worth mentioning that since the migrations are i'n parallel, naive reallocation protocols may 

lead to oscillatory effects. Consider for example a reallocation protocol which forces the agents 

to migrate to a lower-cost resource unconditionally(i.e., if an agent observes a resource with a cost 

lower than her current cost, then she certainly migrates to the new resource.) In a system with only 

two resources, it is easy to observe that if initially most tasks are assigned to one of the resources, the 

overload would oscillate indefinitely between two resources. Our protocols avoid such oscillatory 

effects. 

Another important feature of our protocols is that in order to guarantee the fast convergence 

toward a Nash equilibrium, agents do not need any global information. Each agent only needs to 

query the load of the sampled resource which can be done efficiently, and the sampling phase itself 

is quite simple. 

In the next section we review the formal definition of a congestion game and fundamental prop- 

erties of it. 
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1.1 Congestion game model 

Congestion games, introduced by Rosenthal [34], is a natural class of games in which participating 

players aim to allocate sets of resources simultaneously. Some of the resources might be shared 

among several players, and the cost of a resource is a function of the congestion (e.g. the number of 

players allocating the resource.) Two well studied special cases of congestion games are the parallel 

link model of [29] or equivalently the distributed selfish load balancing model of [16,4, 5) and the 

Wardrop's selfish routing model which has been widely studied in [20, 21, 41, 381. In the parallel 

link model, each agents use only one resource and the resource can be chosen from the set of all 

resources. The Wardrop's routing model is basically a continuous model in which infinite population 

of selfish agents carries an infinitesimal amount of flow each. In this model each agent may choose 

from a set of paths and strives to minimize its sustained latency selfishly. We will get back to these 

two cases of congestion games again. 

Formally a congestion game is a tuple (N, E, (Ci)iEN, ( fe)eEE) where N is the set of n players, 

E is the set of resources, Ci g 2E is the strategy space , a collection of strategies, of player i, and 

fe is a cost function associated with resource e. A strategy profile(state) S = (S1, . . . , Sn) is a 

vector of strategies where Si denotes the strategy of player i. The cost of player i, say ci, is a 

function of strategy profile given by &(S) = CeES, fe(ne (Si)), where ne(S) is the number of 

players allocating the resource e in S(e.g. the congestion on resource e.) 

A congestion game is called symmetric if all the players have the same strategy set: Ci = C. 

Normally the term asymmetric refers to all games(inc1uding the symmetric ones) [12]. 

Definition. [Nash equilibrium] A strategy profile S = (S1, . . . , Sn) is a Nash equilibrium if 

Vi E N, VS' E (Xi), ci(S) 5 &(S1,. . . , Si-1, Si, Si+l, .. . , Sn) . 

It is clear from the definition that a single player can not improve her cost by changing her 

strategy, when the system is at a Nash equilibrium. Rosenthal shows that a sequence of such im- 

provements by individual players ends up at a Nash equilibrium state in a finite number of steps 

[34]. A direct result of his potential function argument is that every congestion game admits a pure 
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Nash equilibrium. 

Remark. The term "pure" here, means that all the players choose a strategy deterministically, 

and no randomization is involved (e.g. players do not have mixed strategies). Curious readers may 

refer to game theory books such as [33], for more information on this topic. 

In order to prove the existence of a Nash equilibrium, a simple method can be shown to actually 

find one. Consider the Rosenthal's potential function, @ ( S ) ,  [34] as following, 

This potential function has the property that if player i improves her cost by migrating from 

strategy Si to Sl, then the change in @ exactly mirrors the player's gain. So after one improvement 

step by any of the players the potential function decreases. Since the number of all possible strategy 

profiles is finite, there should be some lower-bound for the potential. Therefore the number of 

such improvement steps before reaching a Nash equilibrium is finite; and hence we can find a Nash 

equilibrium. 

Discrete selfish load balancing model Throughout this thesis, we mostly talk about the discrete 

seljish load balancing model, which is a special case of general congestion games. In this model, 

we have m tasks b l ,  . . . , b, and n resources. Each task can be assigned to any resources, and 

the cost (latency) of resource i depends only on the total weight of the tasks using resource i and 

increases with the total weight of the tasks using the resource. The assignment of tasks to resources 

is represented by a vector x( t )  = (x l  ( t ) ,  . . . , x, ( t ) )  where xi ( t )  denotes the number of tasks using 

resource i in time t .  Note that in this model, tasks are not splittable. 

We restrict ourselves to three different models of the distributed load balancing model that we 

just defined. 

0 In the uniform model, all tasks have unit weights, and all the resources are identical. The cost 

of a resource is simply the number of users using it. 
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0 In the weighted tasks model, tasks have weights, say less than a parameter A, and resources 

are identical. The cost (latency) of resource R is the total weight of the tasks using R. 

The arbitrary latency functions model is much the same as the previous two models, except 

that we now assume uniform tasks, but each resource i, has its own latency function, fi. In this 

model fi(xi(t)) would be the latency function of resource i and each task using the resource 

experiences this cost (latency). 

1.2 Related work 

Congestion games have recently drawn attention from computer scientists. In this section we try to 

address some of the fundamental results in the literature. 

1.2.1 The complexity of Nash equilibria 

Although the potential function approach we mentioned in the previous section eventually finds a 

Nash equilibrium, it does not guarantee a fast convergence toward a Nash equilibrium. By applying 

this approach it might take an exponential number of steps to reach a Nash Equlibirium, even for 

symmetric congestion games, [la] or the best-response sequences algorithms [I]. In a best-response 

sequence algorithm, when a player changes her strategy, she always switches to an alternative strat- 

egy of minimal cost. 

In this section we shall briefly address the following question: Given a congestion game, how 

hard is to$nd a Nash equilibrium? The reader might have already observed the connection of this 

problem to a local search problem. Given a state S, we can look at the states which are deviating 

from S only in a single player's strategy as a neighborhood for S, and a Nash equilibrium as a local 

optimum. 

General congestion game. Fabrikant et al. [la] show that the problem of computing a Nash 

equilibrium is PLS-complete for general congestion games by a reduction from a version of the 
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MAX 3-SAT problem, so called POSNAE3FLIP. 

Symmetric network congestion game. In [18] the authors also show that for the special case of 

symmetric network congestion games, where sets of strategies are simple paths in a given network, 

and players choose their path from a comment set of paths, a Nash equilibrium can be found in 

polynomial time through a simple reduction to a min-cost flow computation. 

Theorem There is a polynomial algorithm for finding a Nash equilibrium in symmetric network 

congestion games. [18] 

Proot Given the network N and the cost functions d,, replace each edge in the network with n 

parallel edges with costs d, (1), . . . , d, (n). It is easy to see that any min-cost flow in the new 

network is a state of game which minimize the Rosenthal's potential function, and thus is a Nash 

equilibrium. 0 

In this thesis, our focus is on the convergence to Nash equilibrium. Having said that comput- 

ing a Nash equilibrium in a congestion game might be PLS-complete, we would really like to see 

for which class of the congestion games, there is a polynomial time algorithm to compute a Nash 

equilibrium. 

Singleton congestion games Ieong et al. [28] show that in singleton congestion games, all im- 

provement sequences have length O(m . n2), where n is the number of players, and n is the number 

of resources. Singleton games are special cases of congestion games in which the strategy profile of 

the players only contains single resources. Note that our discrete load balancing model is a special 

case of singleton congestion games. On the other hand, reallocation algorithms differ with the im- 

provement sequences algorithms in the way that in ours randomization is involved, players change 

their strategies in parallel, and players do not have huge amount of global knowledge. We will get 

back to these issues later. 
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Matroid congestion game Ackermann et al. [ I ]  study the impact of combinatorial structure on 

congestion games. They generalize the result of Ieong et al. [28] to a matroid congestion game 

and show that for matroid games, either symmetric or asymmetric, the complexity of computing 

equilibria is O(n2 . m2), where n is the number of players and m is the number of resources. 

A matroid itself can be defined as a combinatorial object. Suppose there is a ground set R = 

{1,2, . . , m), and let 2 be a family of subsets of R. (e.g. 2 C 2R). A pair ( R , 2 )  is a matroid 

such that, if I E 2 and J C I ,  then J E 2 ,  and, if I, J E 2 and (JI 5 1 I], then there exists an 

i E I\J with J U i E 2. Given a matroid M = (R,Z) ,  a basis of M is a maximal subset of R 

which is a member of 2 .  It is easy to observe that all basis of a matroid have the same cardinality. 

The cardinality is called rank of the matroid. A game is called a matroid congestion game, if for 

every player i, the strategy space i, is a bases of a matroid over the set of resources. 

Given a matroid game I?, Ackermann et al. [ I ]  show that, all best response improvements 

sequences have length 0 ( n 2 m .  rank(r)), where rank of a matroid congestion game is defined as the 

maximum matroid rank over all the players. They also show that their result is tight and the matroid 

property is a necessity. 

We summerize these complexity results in table 1.1. 

Recently Skopalik and Vocking [39] present inapproximability results on congestion games. 

They show that for any poly-time computable a > 1, finding and a-approximate Nash equilibrium 

in general congestion games with positive and increasing delay functions is PLS-hard. They also 

show that, for every n E N, there is a congestion game with n players having a state with the property 

that every sequence of improvement steps leading from this state to an approximate equilibrium has 

exponential length in n. 

1.2.2 Previous works on convergence to Nash equilibria 

Goldberg [25] considers a reallocation protocol in which tasks select alternative resources at random. 

In his protocol, tasks migrate sequentially in continuous time. The continuous time implies that only 
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Table 1.1: Complexity of computing equilibria for various congestion games 

Class of congestion game Symmetry Result 

General 
Singleton 
Matroid 
Network 
Network 

symmetric and asymmetric PLS-complete [I 81 
symmetric and asymmetric 0 (n2 . m) 1281 
symmetric and asymmetric 0 ( n 2  . m2) [l]  
symmetric Polynomial [l8] 
asymmetric PLS-complete[l8] 

one user tries to reroute at each specific time. In that model, rerouting succeeds only if the user 

migrates to an alternative resource with lower load. The work shows a simple randomized algorithm 

in which the expected number of rerouting attempts, until convergence to a Nash equilibrium, is 

polynomial in the number of the number of link users. 

Even-Dar and Mansour [17] allow concurrent, independent reallocation decisions where tasks 

are allowed to migrate from resources with load above the average to resources with load below the 

average. They show that the system reaches a Nash equilibrium after expected O(1og log m +log n) 

rounds, where m is the number of tasks and n is the number of resources. However, their protocol 

requires tasks to have a certain amount of global knowledge in order to make their decisions. 

Berenbrink et a1.[4] consider the distributed load balancing model and restrict themselves to 

uniform tasks. They show an upper bound of O(1og log m + n4) on the convergence time in their 

model as well as a lower bound of a(log log m + n) . Without loss of generality, assume that n is 

divisible by m, the only Nash equilibrium in the model studied in [4] is the perfectly balanced states, 

which means the load of each resource is exactly mln.  It can be observed that their convergence 

result also holds for a model that has one Nash equilibrium which is the perfectly balanced states. 

In particular it can be shown that, if there are identical resources with an arbitrary increasing latency 

function, (log log m + n4) is the upper bound for the protocol. They furthermore derive bounds on 

the convergence time to an approximate Nash equilibrium as well as an exponential lower bound for 

a slight modification of their protocol, which is possibly even more natural than the one considered 

for the O(1og logm + n4) bound in that it results in a perfectly even distribution in expectation after 



CHAPTER I. INTRODUCTION 

only one step whereas the "quicker" protocol does not have this property. Since their model is one 

of the models we consider in this thesis, and we actually borrow some of their techniques in our 

results, we explain this model in more details later. 

Chien and Sinclair [ l l ]  study the convergence to approximate Nash equilibria for symmetric 

congestion games in which the edges delay satisfy a bounded jump condition. By using the proper- 

ties of the Rosental's potential function, they show that convergence to an 6-Nash equilibrium occurs 

within a number of steps that is polynomial in the number of players and 6-I. 

In [20], Fischer, Racke, and Vocking investigate the convergence to Wardrop equilibria for both 

asymmetric and symmetric routing games. Wardrop's model [41] is one of the most important and 

well studied continuous network routing models. In this model an infinite population of agents 

carries an infinitesimal amount of flow each. Several commodities with specified flow demands are 

indicated in the network and the flow must satisfy the demands. Each agent may choose from a set of 

paths and strives to minimize its sustained latency selfishly. Similar to the congestion game model, 

the latency of a path p only depends on the volume of the agents who have chosen p. Population 

states which are stable in that no agent can improve its latency by migrating to another path are 

referred to as Wardrop equilibria. [19] 

Fischer et a1.[20] present a replicative rerouting protocol in which agents adopt strategies of more 

successful agents. For the symmetric case, where there is only one commodity in the network, and 

agents choose their routes from a common set of strategies, they show that their protocol converge 

fast toward a Wardrop equilibrium. 

1.3 Natural variations and results 

We consider the problem of dynamically reallocating m tasks among a set of n resources. We 

assume an arbitrary initial placement of tasks, and we study the performance of distributed, natural 

reallocation algorithms. We are interested in the time it takes the system to converge to a Nash 

equilibrium (or get close to an equilibrium). 
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Our result improves the previous upper bound for the uniform case where tasks share identical 

resources, and the latency function of a resource is the number of tasks utilizing it. In a first step, in 

Theorem 2.3.1 we show that for uniform tasks our protocol reaches (the unique) Nash equilibrium 

in expected time O(1og m + n log n). This already is better than [4] for small values of m (roughly 

when m/ log m < 2Q(n4)), but still worse for m >> n. The reason for this is mainly that we have 

smaller migration probabilities than [4] (the slowdown factor p in our protocol). These smaller prob- 

abilities have the effect that they speed up the end game (that is, once we are close to an equilibrium) 

at the expense of the early game, where the protocol in [4] is quicker. We first show a lower bound 

for the expected convergence time of our protocol of O(1og m+n), and then mention (Remark 2.3.8) 

how to combine our protocol with that of [4] in order to obtain overall O(1og log m + n log n). The 

idea here is mainly to run the protocol in [4] during the early game, and then later switch to our new 

protocol (which is faster for almost balanced systems), thus getting the best from both approaches. 

We also consider weighted tasks. Theorem 3.1.1 shows that our protocol yields an expected 

time to converge to an e-Nash equilibrium of 0(nmA3e-'). Notice that this would appear to be 

much worse than the O(1og log m + poly(n)) bound in [4] when only considering uniform tasks 

(i.e., assuming A = 1). We do, however, provide a lower bound of O(e-'mA) in Observation 3.3.1 

for the case A 2 2. In Corollary 3.2.7 we also show convergence to a Nash equilibrium in expected 

time 0(mnA5) in the case of integer weights. To justify our logarithmic bound on m instead of 

something smaller like log log m in [4] we refer the reader to Section 3.3. The ideas used in our 

proofs are different from those in [4], the main reason being that equilibria are no longer unique and 

can, in fact, have very different potentials. It is therefore not possible (as it was in [4]) to "simply" 

analyze in terms of distance from equilibrium potential, namely zero, as there is no such thing. 

Instead, we show that tasks improve their induced cost when and if they can as long as the possible 

improvement is not too small. 

The main contribution of this thesis is as follows. We study the variation where tasks are iden- 

tical, but resources have arbitrary latency functions. Similar to the concept of virtual potential in 
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[21, 201, we define the virtual potential function 9. Then we show that under our reallocation pro- 

tocol, the Rosenthal's potential function drops at least half of the absolute value of 9. We then 

state our main theorem which shows the system converges to Nash equilibrium in expected time 

0 (s log w) , where @(Q) and @* are the initial and minimum possible potential, respec- 

tively. R, a, P are some parameters related to the cost (latency) functions. Moreover we give some 

examples to justify that P is the relevant parameter in our analysis. 

1.4 The structure of the thesis 

The rest of the thesis is structured as follows. In the next chapter, we revisit the convergence results 

of Berenbrink et al. [4] for the uniform case. We express our new protocol and the analysis of our 

results which beats the previous O(1og logm + n4) upper bound in [4]. In Chapter 3, we define the 

setting for weighted tasks and show the upper bound for the convergence time of our protocol to an 

E -Nash equilibrium. We also show a lower bound to justify the protocol for the weighted case. In 

Chapter 4, we study the case where resources have different latency functions. There we give the 

upper bound of 0 ($ . log w) . We conclude in Chapter 5 with a summary of our results and 

future directions. 



Unit Weighted Tasks and Uniform 

Resources 

In this chapter, we consider the uniform case where m identical unit weighted tasks are to be as- 

signed to a set of n uniform resources. The cost of a resource is simply the number of users using 

it. We assume an arbitrary initial placement of tasks, and we study the performance of distributed, 

natural reallocation algorithms. We are interested in the time it takes the system to converge to an 

equilibrium. 

The assignment of tasks to resources is represented by a vector x( t )  = (x l  ( t ) ,  . . . , xn(t))  where 

xi( t )  denotes the number of tasks using resource i in time t .  

Potential function 

For any assignment x  = ( x l ,  . . . , x,), the potential function @(x)  is defined as following, 

where Z = z:=, X i .  
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This potential function has the property that if only one task migrates to a new resource, the 

change in is exactly twice the gain of the task. Note that, is equivalent to the Rosenthal's 

potential function[34] in the sense that after a single migration, the change in is proportional to 

the improvement of the cost 

2.1 The O(1og log m + n4) convergence time upper bound 

As we mentioned before, Berenbrink et. al. [4] studied the uniform case, and showed that the greedy 

distributed protocol in Algorithm 1, guarantees a fast convergence toward the Nash equilibrium. 

Algorithm 1 Reallocation Protocol for Uniform Case [41 

1: for each task b in parallel do 
2: let i be the current resource of task b 
3: choose resource j uniformly at random 
4: if Xi(t) > Xj(t) + 1 then 

x. ( t )  5: move task b from resource i to j with probability 1 - 

In the above algorithm, for every resource i and time step t, Xi(t) is a random variable defined 

as the load of resource i at time t. We can consider X(t) = (Xl(t), . . . , X,(t)) as the state of the 

system at time t, and the transition from state X(t) to X(t + 1) is given by the protocol in Algorithm 

1. 

Note that if X(t) is a Nash equilibrium, none of the tasks have incentive to migrate to another 

resource, and thus X (t + 1) = X (t) . 

The authors of [4] use the concept of multinomial distribution in order to describe the transition 

from a state X (t) = x. Independently, for every i E [n], let (Y,J (x), . , Y,,, (x)) be a random 

variable drawn from a multinomial distribution with the constraint ELl Y,,J(x) = xi. (Given the 

state x, Y,,J(x) represents the number of migrations from i to j in one round.) The corresponding 

probabilities pij(x) are given by 
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Given the state X(t)  = X, Xi(t + 1) = Cy=, X , ~ ( X ) .  

Theorem 2.1.1. [4] The expected number of steps taken by protocol of Algorithm 1 to reach a Nash 

equilibrium for thejrst  time is O(1og logm + n4). 

Sketch of the proof [4]. The proof of this theorem proceeds as follows. First they give an 

upper bound on E[@(X(t))] which implies that there is a T = O(1og logm) such that, with high 

probability, @(X(T)) = O(n). They also show that @(X(t))  is a super-martingale and it has 

enough variance. Using these facts, they obtain the upper bound on the convergence time. 

2.2 Reallocation protocol with a slowdown factor 

We modify the protocol of the previous section, and introduce another reallocation protocol for the 

uniform case in Algorithm 2. We set p = 118 as a slowdown factor, and let the migration probability 

(Line 5) be p times the original migration probability. 

Algorithm 2 Reallocation Protocol with a Slowdown Factor 

1: for each task b in parallel do 
2: let i be the current resource of task b 
3: choose resource j uniformly at random 
4: if Xi(t) > Xj(t)  + 1 then 

5: move task b from resource i to j with probability p 

Note that when Algorithm 2 terminates, we have Vi, j E [n], xi < xj  + 2. Hence the system is 

in (the) Nash equilibrium. 

Although experimental results show that the new protocol is actually slower than the one in [4], 

by slowing down the protocol, we would be able to show that given the state X(t) = x, the expected 
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potential function at the next step, E[@(X(t + I))], drops by a constant multiplicative factor. More 

formally in Lemma 2.3.7, we show that for any t > 0, E[@(X(t + I))] < (1 - &) E[@(X(t))]. 

The result of Lemma 2.3.7 is quite strong, because it holds for any time step t > 0. In particular 

when we are close to a Nash equilibrium, without applying the slowdown factor, it would be difficult 

to get such a result. The authors of [4] use a martingale technique to get the upper bound for this 

case. We think that it would be an interesting open question to give a potential function argument, 

similar to the one in Lemma 2.3.7 for the original potential. 

2.3 Convergence to Nash Equilibrium 

Our main result in this section is as follows. 

Theorem 2.3.1. Given any initial load conJiguration X(0) = x. Let T be the number of rounds 

taken by the protocol in Algorithm 2 to reach the unique Nash equilibrium for the Jirst time. Then, 

E[T] = O(1ogm + nlogn). 

Furthermore, T = O(1og m + n log n) with a probability of at least 1 - l /n.  

In the following, we show after O(1ogm + n logn) steps, Algorithm 2 terminates with high 

probability. This improves the previous upper bound of O(1og log m + n4) in [4] for small values 

of m. In fact, we can actually combine these two protocols to obtain a tight convergence time of 

O(log1og m + n  log n) with high probability1. The tightness of this result can be shown by Theorem 

4.2 in [4] and Observation 2.4.2. 

For simplicity we assume that m is a multiple of n, the proof can easily be extended to n f m. 

We first bound the expected potential drop in one round. Then we show that in each round the 

potential drops at least by a factor of 1/32 if the current system potential is larger than n (Lemma 

 h he probability is at least 1 - l /nm for some constant a: > 0 
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2.3.7(1)), and at least by a factor of 1/8n otherwise (Lemma 2.3.7(2)). With these two lemmas, we 

are ready to show Theorem 2.3.1. 

We will use the same potential function @ ( x )  as the one in the previous section. 

Observation 2.3.2. In the following we present two useful tools, 

Pro05 Part (1)  is similar to Lemma 10 in [7]. Part (2) is in Appendix A. 1. 

For resource i, k E [n] ,  let E[WiVk] denote the expected number of tasks being transferred from 

resource i to k. Note that by Algorithm 2, if xi - xk 2 2, E[Wi,k] = xi . p ( l  - x k / x i ) l n  = p(xi - 

x k ) / n ,  otherwise E[Wi,r,] = 0. Let &(x)  = {k : Xi > Xr ,  f 2)  and &(x)  = {k : Xi = X k  f 1). 

Let 
- n 

Note that the bigger r ( x )  is, the more tasks are expected to be transferred by Algorithm 2. We first 

show some relations between I'(x) and @ ( x ) .  

Observation 2.3.3. For any load conjguration x, we have 

1. I f@( , )  2 n, then r ( x )  > @(x)/2 .  

2. I f r ( x )  < 2, then r ( x )  = @ ( ~ ) ~ / n  and @ (2)  < fi. 
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3. If @ ( x )  < 2, then x  is Nash equilibrium. 

Proof. For Part ( I ) ,  by definition, 

Hence if @ ( x )  2 n ,  we get I'(x) > @ ( x )  - ( n  - 1)/2 > @(x) /2 .  

For Part (2) ,  we first show that if r ( x )  < 2, then X I  - x, 5 2  (notice that X I  > 5 2  > . . . > 5,). 

For a contradiction assume that I'(x) < 2  and X I -  x,  2 3. Hence V1 5 i 5 n,  either /xi  - xl 1 2 2  

or /xi  - x, 1 2. Also notice that by symmetry we have 

yielding a contradiction. 

Next we show r ( x )  = @ ( ~ ) ~ / n .  Since Z = m / n  is an integer and xl - x ,  5 2, each resource 

can only have a: - 1, a:, a: + 1  tasks. Let A ( B )  be the set of resources with a: - 1  tasks and (Z + 1  

tasks), respectively. Of course IAl = IBI : r. Thus @ ( x )  = Cy=, (xi  - = 2r. Hence, 

Consequently, given I'(x) < 2, we have @ ( x )  5 fi. 
For Part (3) ,  for a contradiction assume that x  is not Nash equilibrium. Then there must be two 

resources u, u ,  such that xu 2 a: + 1  and x ,  5 a: - 1. Thus @ ( x )  = Cy=, (xi  - 2 2. We get a 

contradiction. 



CHAPTER 2. UNIT WEIGHTED TASKS AND UNIFORM RESOURCES 

Lemma 2.3.4. 

Proof: Combining Observation 2.3 .2(2) ,  Lemma 3.2.1 ( 1 )  and 3.2.2, we get 

We then show the following bound for the expected potential drop in one step. 

Lemma 2.3.5. E [ @ ( X ( t  + 1 ) )  I X ( t )  = x ]  5 @ ( x )  - J?(x)/16. 

P r o d  Recall that if X i  - xk > 2 ,  E [ W i Y k ]  = p(Xi - x k ) / n ,  otherwise E [ W i I k ]  = 0. Hence, 

Due to Lemma 2.3.4 we get 

The following corollaries follow from Lemma 2.3.5. 

Corollary 2.3.6. 
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3. I f f i  > @(x) ,  E [ @ ( X ( t  + l ) ) I X ( t )  = x] 5 @ ( x )  - @ ( ~ ) ~ / ( 1 6 n ) .  

ProoJ: Part (1 )  follows directly from Lemma 2.3.5 and Observation 2.3.3(1). 

To prove Part (2) ,  if @ ( x )  2 6, by Observation 2.3.3(2) r ( x )  > 2. Then using Lemma 2.3.5 

we get E [ @ ( X ( t  + l ) ) I X ( t )  = x]  I @ ( x )  - 118. 

For Part (3 ) ,  note that E [ @ ( X ( t  + l ) ) I X ( t )  = x]  I @ ( x )  - r ( x ) / 1 6  by Lemma 2.3.5. Thus 

it is sufficient to show that r ( x )  > @ ( ~ ) ~ / n .  We consider two cases for different values of r ( x ) .  

If r ( x )  > 2, r ( x )  > @ ( ~ ) ~ / n  since @ ( x )  < 6. If r ( x )  < 2, by Observation 2.3.3(2), r ( x )  = 

I7 

Next we prove two results that bound the expected potential drop. 

Lemma 2.3.7. For any t  > 0, 

2. E [ @ ( X ( t  + I ) ) ]  I ( 1  - &) E [ @ ( X ( t ) ) ] .  

ProoJ: For Part ( I ) ,  by Corollary 2.3.6(1), 

To prove Part (2) ,  we first show that for any load configuration x ,  E [ @ ( X ( t  + l ) ) I X ( t )  = x] 5 

(1  - l / ( 8 n ) )  @ ( x ) .  There are four cases for different values of @ ( x ) .  

1. If @ ( x )  > n ,  by Corollary 2.3.6(1), E [ @ ( X ( t  + l ) ) I X ( t )  = x]  < ( 1  - 1/32)@(x) < 

( 1  - 1 / (8n ) )@(x )  as long as n  > 4. 
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2. If n > @ ( x )  > 6, by Corollary 2.3.6(2), E [ @ ( X ( t  + l ) ) I X ( t )  = x] < @ ( x )  - 118 < 
(1  - 1 / (8n ) )@(x )  since @ ( x ) / ( 8 n )  < 118 due to @ ( x )  < n. 

3. If \/lii > @ ( x )  2 2, by Corollary 2.3.6(3), E [ @ ( X ( t  + l ) ) / X ( t )  = x]  5 '(x)if(x)2 < 
(1  - 1 / (8n ) )@(x )  since @ ( x )  > 2. 

4. Finally, if @ ( x )  < 2, by Observation 2.3.3(3), x  must be Nash equilibrium so that @ ( x )  = 0. 

In this case the system potential will not change. Hence E [ @ ( X ( t  + l ) ) I X ( t )  = x]  = 0  I 

(1  - l / @ n ) ) @ ( x ) .  

Consequently, 

We are now ready to prove the main result in this section. 

Proof of Theorem 2.3.1. We first show that after T = 64 In m steps, E [ '  X ( T ) ) ]  < n. By Ob- 

servation 3.1.2(3), @(X(O) )  < m2A2 = m2. Using Lemma 2.3.7(1) iteratively for T times, we 

get 

E [ @ ( X ( r ) ) ]  I max{n ,  ( 1  - 1/32)' . @ ( X ( O ) ) )  I max { n ,  (1  - 1/32)' . m 2 )  = n .  

We then show that after T = 16n In n additional steps, the system reaches Nash equilibrium w.h.p. 

Using Lemma 2.3.7(2) iteratively for T times, we get 

E [ @ ( X ( r  + T)]  I E [ @ ( X ( r ) ) ]  . ( 1  - 1 / ( 8 n ) ) ~  I n . ( 1  - 1 / ( 8 n ) ) l ~ ~ ' " ~  < n . e-21nn = n-l. 

By Markov's inequality, Pr[@(X(r+T) )  > 21 < lln. Observation 2.3.3(3) tells us that if @ ( X ( T +  
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T)) < 2, X(T + T) is Nash equilibrium. Hence, after T + T = 64 1n m + 16n In n steps, the 

probability that the system does not reach the Nash equilibrium is at most l l n .  0 

Remark 2.3.8. Note that we can combine Algorithm 1 and Algorithm 2 to obtain an algorithm that 

converges in O(1og log m + n log n) steps. To see this, first note that by Corollary 3.9 in [4], afer 

Tl = 2 log log m steps, E[@(X(Tl)] 5 18n. Then using a similar argument as above, we can show 

that afer O(1og log m + n log n), the system state is at some Nash equilibrium w.h.p. 

2.4 Lower bounds 

We prove the following two lower bound results which show the tightness of Theorem 2.3.1. As 

discussed earlier, the "slowdown" (log m as opposed to the log log m in [4]) is the result of the 

introduction of the factor p to the migration probabilities in our protocol. 

Observation 2.4.1. Let T be the first time at which E[X(t)] 5 c for constant c > 0. There is an 

initial load configuration X(0) that requires T = R(1og m). 

Pro05 Consider a system with n = 2 resources and m uniform tasks. Let X(0) = ( m, 0 ). We first 

show that E [@(X(t + I)] 2 E [ @ ( ~ ( t ) ) ] .  By definition, 

Hence, setting E = 1 in Lemma 2.3.4(2) we obtain 

Now similar to Lemma 2.3.7 (1) we can show that E [@(X(t + I))] 2 7E [@(X(t))]/8. Note that 

@(X (0)) = m2/2. In order to make E [X(T)] 5 c, we need T = R(1og m). 0 
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Observation 2.4.2. Let T be thefirst time at which X(t) is a Nash equilibrium and T* be the upper 

bound for T. There is an initial load configuration X(0) that in order to make Pr[T 5 T*] > 

1 - l ln ,  we need T* = R(n logn). 

Pro05 Consider a system with n resources and m = n uniform tasks. Let X (0) be the assignment 

given by X(0) = (2,1, . . . , I ,  0 ). Denote q be the probability for the tasks in resource 1 to move 

to resource n (if exactly one of the two tasks in resource 1 moves, the system reaches the Nash 

equilibrium). By Algorithm 2 (with p = 1/8), q = 2/(2pn) = 1/(8n). Note that T is geometrically 

distributed with probability 2q(l - q) < 1/(4n). Consequently, Pr[T > T*] 5 (1/ (4n))~* (since 

steps 1 , .  . . , T* all fail). Thus, to have Pr[T I T*] > 1 - l l n ,  we need T* = R(n logn). 0 

Remark 2.4.3. Note that this lower bound also holds for the protocol in [4] (with p = 1). 



Weighted Tasks and Uniform Resources 

In this model we have m weighted tasks bl, . . . , b, and n uniform resources. Assume that m > n. 

Each task bi E [m] is associated with a weight wi 2 1. Let A = max{wi) denote the maximum 

weight of any task. Let M = C z l  wi be the total task weight. 

The assignment of tasks to resources is represented by a vector ( x l ( t ) ,  . . . , x,(t)) in which 

xi ( t )  denotes the load of resource i at the end of step t ,  i.e., the sum of weights of tasks allocated 

to resource i. Let : = Mln be the average load. For any task b E [m], let rb denote the current 

resource of task b. 

Definition. [Nash equilibrium] An assignment is a Nash equilibrium for task b if 

xTb < x j  + wb for all j E [n], 

i.e., if task b cannot improve its situation by migrating to any other resource. 

Definition. [c-Nash equilibrium] For 0 5 c 5 1, we say a state is an c-Nash equilibrium for task 

b if 

xTb < xj + (1  + c)wb. (3.2) 

Notice that this definition is somewhat different from (and stronger than), say, Chien and Sinclair's 
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in [l 11 where they say that (translated into our model) a state is an 6'-Nash equilibrium for 6' E (0, l)  

if (1 - d)xTb 5 x j  + wb for all j E [n]. However, our definition captures theirs: for E' E (0 , l )  let 

3.1 The reallocation model with weighted tasks 

We define our allocation process for weighted tasks and uniform resources. Let X1(0), . . . , Xn(0) 

be the initial assignment. The transition from state X(t) = (Xl (t), . . . , Xn (t)) to state X (t + 1) is 

given by the protocol below. Let 0 5 E 5 1 and p = €18. 

Algorithm 3 Greedy Reallocation Protocol for Weighted Tasks 

1: for each task b in parallel do 
2: let rb be the current resource of task b 
3: choose resource j uniformly at random 
4: if X,, (t) > Xi (t) + (1 + E) w b  /hiolation of Eq.3.W then 
5: move task b from resource rb to j with probability p 1 - , ( %) 

If the process converges, i.e. if X(t)  = X ( t  + 1) for all t > r for some r E N, then the 

system has reached some e-Nash equilibrium ("some" because E-Nash equilibria are, in general, not 

unique). Our goal is to bound the number of steps it takes for the algorithm to converge, that is, to 

find the smallest r with the property from above. We prove the following convergence result. 

Theorem 3.1.1. Let .E > 0 and p = €18. Let A > 1 denote the maximum weight of any task. Let 

T be the number of rounds taken by the protocol in Algorithm 3 to reach an E-Nash equilibrium for 

thefirst time. Then, 

E[T] = ~ ( r n n ~ ~ ( ~ ~ ) - ' ) .  
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Potential Function 

For the analysis we use a standard potential function: 

(see also [4]). In the following we assume, without loss of generality, that the assignment is "nor- 

malized, meaning xl > . . . 2 xn. If it is clear from the context we will omit the time parameter t  

in X ( t )  = ( X l ( t ) ,  . . . , Xn( t ) )  and write X = ( X I ,  . . . , Xn)  instead. We say task b has an incentive 

to move to resource i if xTb >_ xi + (1 + e)wb (notice that this is the condition used in Line 4 of 

Algorithm 3). 

Let yb = ( y b ( r b ,  l ) ,  . . . , y b ( r b , n ) )  be a random variable with Cy=l yb(rb , i )  = 1. yb is 

an n-dimensional unit vector with precisely one coordinate equal to 1 and all others equal to 0. 

yb(rb ,  i)  = 1 corresponds to the event of task b moving from resource rb to resource i (or staying at 

resource i if i = rb). Let the corresponding probabilities (pb(rb ,  I ) ,  . . . , pb(rb, n ) )  be given by 

The first (second) case corresponds to randomly choosing resource i and finding (not finding) 

an incentive to migrate, and the third case corresponds to randomly choosing the current resource. 

For i E [n],  let Si( t )  denote the set of tasks currently on resource i at step t. In the following we 

will omit t  in Si and write Si if it is clear from the content. For i, j E [n] with i # j ,  let Ij,i be the 

total weight of tasks on resource j that have an incentive to move to resource i, i.e., 
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Let 

denote the expected total weight of tasks migrating from resource j to resource i (the last inequality 

is true because Ij,i 5 Xjcj; at most all the tasks currently on j migrate to i). Next, we show three 

simple observations. 

Observation 3.1.2. 

ProoJ: Part (1) is similar to Lemma 10 in [7]. For Part (2), simply consider the worst case in which 

all the m tasks are in one particular resource. 0 

3.2 Convergence to Nash equilibrium 

In this section we bound the number of time steps for the system to reach some Nash equilibrium. 

We first bound the expected potential change during a fixed time step t (Lemma 3.2.3). For this 

we shall first prove two technical lemmas: bounds for C&, (E[Xi ( t  + l ) IX ( t )  = x] - T ) ~  and 

C:=l var[Xi(t + 1) IX(t) = XI, respectively (Lemma 3.2.1 and Lemma 3.2.2). 

Lemma 3.2.1. 

ProoJ: Since E[Wi,j] is the expected total weight migrating from resource i to j, we have E[Xi( t  + 
l ) l x ( t )  = x] = xi + E[Wj,i] - Ci=i+l E [ w ~ , ~ ] ;  recall that we assume xl 2 .. 2 x,. 
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To estimate Cy=l ( E [ X i ( t  + l ) I X ( t )  = z ]  - T ) ~ ,  we use an indirect approach by first analyz- 

ing a (deterministic) load balancing process. We then use the load balancing process to show our 

desired result (see [7]). 

We consider the following load balancing scenario: Assume that there are n  resources and 

every pair of resources is connected so that we have a complete network. Initially, every resource 

1  5 i 5 n  has zi = zi load items on it. Assume that zl 2 . . . 2 zn. Then every pair of resources 

(i ,  k )  , i < k  concurrently exchanges = E  [Wi,k] 5 p(zi - z k ) / n  = p(zi - z k ) / n  load items. 

If i 2 k  we assume ti,k = 0. Note that the above system is similar to one step of the diffusion load 

balancing algorithm on a complete graph Kn. In both cases the exact potential change is hard to 

calculate due to the concurrent load transfers. The idea we use now is to first "sequentialize" the 

load transfers, measure the potential difference after each of these sub-steps, and then to use these 

results to get a bound on the total potential drop for the whole step. 

In the following we assume that every edge e, = (i ,  k ) ,  i ,  k  E [n] ,  k  > i is labelled with weight 

ti,k 2 0. Note that ti,k = 0 if zi 5 zk. Let N  = n ( n  - 1) /2  and E  = {e l ,  e2,. . . e N )  be 

the set of edges sorted in increasing order of their labels. We assume the edges are sequentially 

activated, starting with the edge el with the smallest weight. Let zS = ( z f ,  . . . , z i )  be the load 

vector resulting after the activation of the first s edges. Note that z0 = (zy,  . . . ,z:) is the load 

vector before load balancing and zN = ( z r ,  . . . , z f )  is the load vector the activation of all edges. 

Note that @(zO)  = @ ( z )  since i E [n] ,  z: = zi = zi.  Moreover, by the definition of our load 

balancing process and since ti,k = E[Wi,k] we have 

Hence 

Next we bound @ ( z N ) .  For any s E [ N ] ,  let A,(@) = @(zS- l )  - @ ( z S )  be the potential drop 
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due to the activation of edge e, = ( i ,  k ) .  Note that 

Now we bound A, (a). Since all edges are activated in increasing order of their weights we get 

l i  5 ti,k = p(ti - t k ) / n  for any node j that is considered before the activation of e,. Node i  has 

n - 2  additional neighbors, hence the expected load that it can send to these neighbors before the 

activation of edge e, = ( i ,  k )  is at most ( n  - 2)ei,k < p(ti - z k )  - ti,k. This gives us 

Similarly, the expected load that k receives before the activation of edge e, = (i, k )  is at most 

p(zi - z k )  - ti,k. Hence, 

2 ; - I  < Z k  f p(ti - z k )  - 

Thus, 

Similarly, since zip' < t i  and 2L-l > zk, we get A s ( @ )  = 2ei,k . (zy-l - 2 ; - I  - < 

Next we bound @ ( z N ) .  
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Consequently, we get the following two bounds, 

Next we show an upper bound for the sum of variance. 

Lemma 3.2.2. C:=l var[xi(t  + l ) / x ( t )  = X ]  < (2  - E )  zz1 Cz=i+l E [ W i , k ] ( ~ i  - xk) .  

Proof. First of all, note that { y b ( r b ,  i ) )  and {yb'(rbI, i ) )  are independent for b # b'. Let Si( t )  be 

the set of tasks that is assigned to resource i in step t .  

var [X i  ( t  + 1) I X ( t )  = x] 
r 1 

- - var W b  . yb(rb,  i )  = C W E  . var[yb(rb, i )]  J b 

= C C wa . var[yb(rb, i )]  

= C , C W ;  . pb(rb, i )  (1 - pb(rb, i ) )  + W E  . pb(rb, i )  (1 - pb(rb, i ) )  

< C C W E  . pb(rb, i )  + C W E  . (1  - pb(rb, i ) )  
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The second inequality holds since ( x j  - x i )  2 ( 1  + 6 )  . wb whenever a task b in resource j have an 

incentive to move to resource i (see Algorithm 3). Now note that E[Wi , j ]  = 0 whenever x j  > xi. 

Hence, 

Now we are ready to show the following lemma bounding the potential change during step t .  

Lemma 3.2.3. 

1 .  E [ @ ( X ( t  + l ) ) I X ( t )  = X ]  < @ ( x )  - 5 EL1 x:=i+l E[Wi ,k] (x i  - xk).  

2. E [ @ ( X ( t  + l ) ) ( X ( t )  = X ]  > @ ( x )  - x7=1 xi=i+l E [ w i , k ] ( ~ i  - xk).  

Pro05 To prove part ( I ) ,  combining Observation 2.3.2(2), Lemma 3.2. l ( l )  and 3.2.2, we get 

since p = c/8. The proof of part (2) is similar. 0 

Next we first show that if @ ( x )  2 4nA2, then the expected system potential decreases by a 
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multiplicative factor of at least pel4 per round (Lemma 3.2.4). We then show that whenever x is not 

e-Nash equilibrium, in every round the system potential decreases at least by an additive factor of 

p e l ( 6 m A )  in expectation (Lemma 3.2.6). With these two lemmas, we are ready to show our main 

result (Theorem 3.1.1). 

Lemma 3.2.4. I f  @ ( x )  2 4 n A 2 ,  A is the inuximum task weight. We have E [ @ ( X  ( t  + 1 ) )  I X ( t )  = 

x]  < ( 1  - p e / 4 ) @ ( x ) .  

Proof: We fint bound x : = ,  z ; = i + l  E [ W i , k ] ( ~ i  - x k ) .  Recall that E [ W i j k ]  = Ii,k . p .  w, 
where 0 5 Ii,k 5 xi is the total weight of tasks in xi which have an incentive to migrate to xk. 

To prove our bound we only add up the cases when Ii,k = X i .  Note that if Ii,k < X i ,  we have 

xi - xk < ( 1  + € ) A ,  since otherwise every task in resource i would have an incentive to move to 

resource k resulting in Ii,k = xi.  

since @ ( x )  2 4 n A 2  and e 5 1. Now, using Lemma 3.2.3(1) we obtain, 
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It is easy to derive the following corollary from Lemma 3.2.4. 

Corollary 3.2.5. For any t > 0, E [ @ ( X ( t  + I ) ) ]  i max{4nA2,  ( 1  - ~ € 1 4 )  . E [ @ ( X ( t ) ) ] } .  

Proofi We first show that E [ @ ( X ( t  + 1 ) )  1X( t )  = x]  < max{4nA2,  ( 1  - p ~ / 4 ) @ ( x ) } .  We consider 

two cases for different values of @ ( x ) .  If @ ( x )  5 4nA2 ,  by Lemma 3.2.3(1) E  [@(X  ( t  + 1 ) )  1 X ( t )  = 

x]  < @ ( x )  < 4nA2 .  If @ ( x )  > 4 n a 2 ,  by Lemma 3.2.4 E [ @ ( X ( t  + l ) ) I X ( t )  = x ]  < ( 1  - 

~ € 1 4 )  @ ( x ) .  Consequently, 

E [ @ ( x ( ~  + I ) ) ]  = C { E [ @ ( x ( ~  + l ) ~ ( t )  = xj . P r [ X ( t )  = X I }  
Z 

5 {max{4nA2,  ( 1  - p ~ / 4 ) @ ( x ) }  . P r [ X ( t )  = x ] }  
Z 

= max{4nA2,  ( 1  - ~ € 1 4 )  . E [ @ ( X ( t ) ) ] } .  

Next we show that whenever the system is not at some E-Nash equilibrium, the system potential 

decreases by an amount of p ~ l ( 6 m A )  in expectation. 

Lemma 3.2.6. Assume that at step t the system is not at some E-Nash equilibrium. We have 

E [ @ ( X ( t  + l ) ) J X ( t )  = x ]  I @ ( x )  - &. 

Proo$ We consider two cases for different values of X I ,  the maximum load of a resource. 

1. x l  > ?E + 2A .  In this case we have x l  > x ,  + 2 A  > x ,  + ( 1  + € ) A  since x ,  5 ?E and 

0 < E < 1. Thus, every task in resource 1 has an incentive to move to resource n. Using 
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Lemma 3.2.3(1), we get 

2. XI 5 : + 2A. Since x is not E-Nash equilibrium, there must be at least one task b that has 

an incentive to migrate to some resource v # rb. Note that xTb - x, 2 ( 1  + c)wb > 1 and 

x,, 5 XI < a: + 2A. Similar to Case 1 ,  

For the last inequality, we use T .  n  = M 5 m . A  and m  > n. 

Now we are ready to prove Theorem 3.1.1. 

Proof of Theorem 3.1.1. We first show that after T = 8 ( ~ p ) - l  log m  steps, E[@(X(r ) ) ]  5 4na2. 

By Observation 2.3.2(2), @(X(O)) 5 m2a2 .  

Repeatedly using Corollary 3.2.5, we get E [ @ ( X ( r ) ) ]  5 max{4nA2, ( 1  - ~ € 1 4 ) ~  . @(X(O)))  = 

4nA2. By Markov inequality, Pr[@(X(r ) )  > 40nA2] 5 0.1. 
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The following proof is done by a standard Martingale argument similar to [4]. Let us assume 

that @(X(r ) )  5 40na2. Let T be the number of additional time steps for the system to reach some 

E-Nash equilibrium after step r and let t A T be the minimum of t and T.  Let V = pcl(6mA) and 

let Zt = @(X(t + r ) )  + Vt. Observe that {Zt)thT is a supermartingale since by Lemma 3.2.6 with 

X(t + r )  = x, 

Hence EIZt+l] = C, E [Zt+l 1 Zt = z] . Pr[Zt = z] < C, z . Pr [Zt = z] = E [Zt]. We obtain 

Therefore E[T] 5 4 0 n a 2 / v  = 240mnA~(pe)-~,  and Pr[T > 2 4 0 0 m n A ~ ( p ~ ) - ~ ]  < 0.1 

by Markov's inequality. Hence, after T + T = 8(pc)-llogm + 2400mnA~(pc)-~ rounds, the 

probability that the system is not at some E-Nash equilibrium is at most 0.1 + 0.1 = 0.2. 

Subdivide time into intervals of r + T steps each. The probability that the process has not 

reached an E-Nash equilibrium after s intervals is at most (1/5)S. This finishes the proof. 0 

The following corollary bounds the convergence time to a (real, non-E) Nash equilibrium in the 

case of integral weights. 

Corollary 3.2.7. Assume that every task has integer weight of at least 1, and let E = l/A. Let T be 

the number of rounds taken by the protocol in Algorithm 3 to reach a Nash equilibrium for theJirst 

time. Then, 

E[T] = ~ ( m n ~ ~ ) .  

Proof. When Algorithm 3 terminates, for any task b and resource i E [n], we have x,, < Xi + (1 + 
e)wb < Xi + wb + 1 5 xi + wb since wb 5 A and wb is an integer. This implies that the system is at 

one of the Nash equilibria. Now, setting E = l / A  in Theorem 3.1.1 and using p = €18 = (8A)-l, 
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we obtain the result. 

3.3 Lower bounds 

The main reason for the slow convergence is that migration probabilities (must) depend on the 

quotients of the involved resource loads. Intuitively, problematic cases are those where we have two 

resources with (large) loads that differ only slightly. With uniform tasks we would have that all tasks 

on the higher-loaded of the two would have a (small) probability to migrate. Here, bigger tasks may 

be perfectly happy and there may be only very few (small) tasks on the higher-loaded resource that 

would attempt the migration, each also with only small probability (recall that uniform tasks implies 

a direct correspondence between load and number of tasks). 

The authors feel that it is an interesting open problem to design a protocol that requires no or 

only a very small amount of (global) knowledge with regards to weight distribution, average loads, 

and number of tasks on each resource which circumvents this problem. 

Observation 3.3.1. Let T be thejirst time at which X( t )  is the Nash equilibrium. There is a load 

conjiguration X(0) that requires E[T] = R(mA/c). 

Proof. Consider a system with n resources, n tasks of weight 1 each, and m - n tasks of weight 

A > 2 each. Let C = m/n where m is a multiple of n. Let X(0) = ( ( C  - l ) A  + 2 ,  ( C  - l ) A  + 
1 ,  . . . , ( C  - 1)A + 1 ,  ( C  - 1)A ). The perfectly balanced state is the only Nash equilibrium. Let q 

be the probability for the unit-size tasks in resource 1 to move to resource n (if exactly one of the 

two unit-sized tasks moves, the system reaches the Nash equilibrium). By Algorithm 3, we have 

q = p .2/(n((C - 1)A + 2 ) )  = O(c/mA) since C = m/n and p = €18. Note that T is geometric 

distributed with probability 2q(l - q ) .  Thus E[T] = 1/(2q(l - q ) )  = R(mA/c). 0 

Remark 3.3.2. We believe that since there is lack of global knowledge and also tasks query the load 

of only one other serve6 even with sign8cant change to the protocol we can not omit the term A. 

For an evidence consider two diferent games as follow, both with two servers. 
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0 There are 4 tasks with weights (1,1, A, A) and the initial conjiguration is (A + 2,  A). 

0 There are 2 4  + 2 tasks all of unit weight, and the initial conjiguration is (A + 2, A). 

Considering the lack of global knowledge, a task with unit weight can not distinguish between 

the above games. But in order to have a fast convergence to Nash Equilibrium(see [17] for the 

dejnition), in the jrst game it needs to migrate with a probability sign$cantly higher than the 

corresponding probability in the second game. 



Resources with Different Latency 

Functions 

In this chapter we study the variation where tasks are identical, but resources have arbitrary latency 

functions. In this model we have m uniform tasks bl, . . . , b, and n resources with different latency 

functions f i .  The latency function of resource i depends only on the number of tasks using resource 

i and increases with the number of tasks using the resource. The assignment of tasks to resources 

is represented by a vector x ( t )  = ( x l ( t ) ,  . . . , x,(t)) where x i ( t )  denotes the number of tasks using 

resource i in time t .  In this model f i (xi( t))  would be the latency function of resource i and each 

task using the resource experiences this delay. Let Pi = max,,(o,m) f,!(a) which is nothing else 

than the maximum slope of f i  on the interval (0, m). We define P = maxi Pi. For each task b, let r b  

denote the utilized resource of task b. 

Nash equilibrium An assignment is a Nash equilibrium if for every task b, 

Intuitively the above definition means no task has an incentive to migrate to another resource. 
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4.1 The reallocation process with arbitrary latency functions 

We define our reallocation process for m uniform tasks and n resources with different latency func- 

tions. Suppose X1(0) ,  . . . , X,(O) is the initial assignment and the transition from state X ( t )  = 

Xl  ( t ) ,  . . . , X ,  ( t )  to state X  ( t  + 1) is given by Algorithm 4. Suppose the vector x  = ( x l  , . - - , x,) 

Algorithm 4 Reallocation protocol for tasks utilizing resources with different latency functions 

1: for each task b in parallel do 
2: let i be the current resource of task b 
3: choose resource j uniformly at random 
4: if f i ( X i ( t ) )  > f j ( X j  ( t )  + 1) then 
5 :  move task b from resource i to j with probability fi(x$:{~;&($~()+l) 

is the load vector of the resources at (fixed) time t .  According to the reallocation protocol in Algo- 

rithm 4, after one step, each task either switches to a new resource or remains at its utilized resource. 

Therefore at time t  + 1, we expect a new random load vector X ( t  + 1). We are interested in bound- 

ing the number of steps it takes for the protocol to converge, which means the system ends up in a 

configuration which is a Nash equilibrium. 

4.1.1 Potential function 

We define the natural potential function @ ( x )  as following: 

Note that, this potential function is introduced by Rosental[34] and recently used by Chien and 

Sinclair [Ill.  This function has the property that if at time t ,  only one task migrates to a new 

resource, the change in @ is exactly the gain of the task [34]. 

4.1.2 Summary of the convergence result 

In order to state our convergence result we do need to define two more notations: 
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Definition: 

R =  min 
f i b )  - f& + 1 )  

i , j7~;3i (~i )>f j (~j+l )  f i ( 1 i )  

a = min fio 
i€(O,n],l; fi(li)>O l i  

where 1 = ( I l ,  . . . , 1,) is an assignment. 

Theorem 4.1.1. Given any initial load vector X(0 ) .  Let T be the number of steps taken by the 

protocol in Algorithm 4 to reach a Nash equilibrium for the3rst time. Then, 

Where a* refers to the optimal(as minimum as possible) potential, and C = - log ( 1  - $$ 
a.R2 m' 

4.2 Notation and preliminary results 

In order to prove the convergence result we mentioned in the end of the previous section, we need 

to define some more notation and get some preliminary results. Note that after the reallocation 

process in a round, the load of some resources increase and the load of some other decrease. Let 

AXi  ( t )  = Xi ( t  + 1 )  - Xi ( t ) .  We define Pt  ( t )  as the set of resources whose load increase after the 

reallocation process is done in round t .  (e.g. Pt ( t )  = { i lAXi ( t )  > 0)) .  Similarly P- ( t )  is the set 

of resources whose load decrease. (e.g. P - ( t )  = { i lAXi ( t )  < 0) ) .  

Definition: Given a state X ( t )  = x, ut ( x )  is the number of tasks migrating to resource i from 

other resources in a round, similarly u; ( x )  is the number of tasks migrating from resource i  to other 

resources. 

Similar to [4], we describe the transition from a state X ( t )  = x. Given the state x, let the number 

of migrations from resource i to resource j in a round be represented by random variable y j ( x ) .  
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Independently, similar to the observation in [4], for every i E [n], xl ( x ) ,  . . . , Y,,(x) are drawn from 

a multinomial distribution with the constraint C;=, Y, j (x)  = xi. The corresponding probabilities 

pij ( x )  are given by 

We define the random variable 8 which is called virtual potential as follows 

Definition: 

We use the new notation 8 for the sake of analysis. Fischer et al. also use a similar definition in 

their own settings[21,20]. We have the following observation and lemma: 

Observation 4.2.1. 

Proof; 
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Let &(t, x) = $ E [ A X ~ ( ~ ) ~  - lAxi(t) I l x ( t )  = x)]. In the following lemma we show a lower 

bound for the absolute value of the expected potential drop is large. 

Lemma 4.2.2. 

Proofi Replacing @(x) with its definition we get, 

E[@(X(t + l)IX(t) = x)] - @(x) 

Thus. 



CHAPTER 4. RESOURCES WITH DEFERENT LATENCY FUNCTIONS 

Observation 4.2.3. For every 1 5 i 5 n ,  

ProoJ: In order to prove this observation, we prove the following inequality 

We consider two different cases, and for simplicity we omit the conditioning on X ( t )  = x  where it 

is clear: 

0 Case 1, u+(x) = 0: 

0 Case 2, u+(x) > 1: 

[Axi(t)12 - lAXi(t)  1 = [u?(x) - u ~ ( x ) ] ~  - J u ~ ( x )  - U; ( 5 ) )  

2 = [u+ ( x ) ]  + [u; ( x ) ]  - 2 . 21; (5)  . u; (5)  - I u+ ( x )  - u i  (5 )  1 
2 < [u+ (.)I2 + [u; ( x ) ]  - 2 . u+ (5)  . u; ( x )  - u+ (2 )  + u; (5)  

5 [.+(.)I2 + [a; (x)I2 - u+(x) - 21; (5 ) .  

Observation 4.2.4. 

< ( ~ - ~ ) . x ~ - , L ~ E [ Y , ~ ( x ) ] ~  
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Proof. Use Cauchy-Schwarz inequality. 

Observation 4.2.5. VAR[AXi(t)  l X ( t )  = x] = Cg, VAR[Ki ( x ) ]  

Proof. Given the state X ( t )  = x ,  for each 1 5 i 5 n, the number of task migrating to the resource 

i, u+(x),  and the number of tasks migrating to other resource from i, u; ( x )  are independent of each 

other. [ A X i ( t )  l X ( t )  = x] = u+ ( x )  - u i  ( x ) ,  thus VAR[AXi ( t )  l X ( t )  = x] = VAR[U' ( x ) ]  + 
VAR[u;(x)].  Moreover for every r, # rb, and i, YT,,i(x) and YT,,i(x) are independent. We use 

these facts to complete the proof: 

= C vAR[Y,~(x)] + VAR[& ( x ) ]  
j #i 

= CVAR[%~(X)]. 
j 

4.3 Convergence to Nash equilibria 

In this section we present out convergence to Nash equilibria result. First we prove the following 

simple observation. 

Observation 4.3.1. 
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Prooj Due to observation 4.2.5, xi + v A R [ ~ x i ( t ) l ~ ( t )  = x] = xi 9 xj VAR[Eji(x)]. 

Lemma 4.3.2. xi ti  ( t ,  x)  + < 0 

Pro08 For simplicity, in this proof we omit the conditioning on X ( t )  = x  where it is clear. Due to 

observation 4.2.3 we have, 

Pi 
5 C i T V m [ A X i  ( t ) ]  + C i :E [u: ( x ) ]  + C i $E [ur ( x ) l  
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Due to observations 4.2.4,4.2.5,4.3.1 and doing some substitutions, we get 

In the above inequality, we substitute v A R [ ~ , j ( x ) ]  with xipij(l - pij), and E[Y,.(x)] with xipij. 

Based on the definition of pij each term in the above summation would be negative, and so the 

summation itself. 0 

Corollary 4.3.3. 

W x )  E [ @ ( x ( ~ +  l ) ) l X ( t )  = X ]  - @(x)  5 - 
2 

Pro05 By applying Lemma 4.2.2 and 4.3.2, we have 

0 

Corollary 4.3.4. Assume that at step t the system is not at some Nash equilibrium. We have 
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Proof. 

Due to corollary 4.3.3, E [ @ ( ~ ( t  + 1))  IX(t)  = x] - @(x)  < 9 ( x ) / 2 ,  thus with substitution the 

proof can be completed. 0 

Lemma 4.3.5. Let Z(O), Z ( l ) ,  . . . be a sequence of random variables with support set S = {s l ,  s2, . . . , sh). 

Suppose 3X <_ 1 : E[Z(t + l ) IZ( t )  = sk]  < X . sk, for all 1  < k 5 h, and t  2 0. We have 

E[Z(t )]  I X t ~ [ Z ( 0 ) ]  

for all t >_ 0. 

Proof. See appendix 4.3.5. 

Next we proceed to show our main result of this section. For every assignment x = (x l  , . . , xn),  

we define r ( x )  as following: 

if x is a Nash equilibrium 
qx) = 

@ ( x )  otherwise. 
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Lemma 4.3.6. For every t  2 0, we have 

Proof Setting X = . by applying Corollary 4.3.4 and Lemma 4.3.5 is folklore. 0 

Lemma 4.3.7. For t ,  6 > 0, i fE[I'(X(t)]  < 6 . a* then X ( t )  is a Nash equilibrium with probability 

greater than 6. 

Proof Use Markov inequality. 

Theorem 4.3.8. Given any initial load vector X ( 0 )  = xo. Let T be the number of steps taken by 

the protocol in Algorithm 4 to reach a Nash equilibrium for the first time. Then, 

4.4 Justification 

In this section we show that the maximum slope of latency functions, P, is the relevant parameter 

in our analysis, and fast convergence is not possible under protocols which do not depend on some 

properties of latency functions. 

4.4.1 The maximum slope is the relevant parameter 

Assume there are n tasks and only 2 resources, R1 and R2. The latency functions are f l (k)  and 

f2(k)  which defined as follows. 
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Figure 4.1 : P is the relevant parameter for the analysis 

Let pl be significantly larger than 02. The only state at Nash equilibrium is when n - 1 tasks 

share resource R1, and a single task uses resource R2. It is easy to observe that reallocation protocols 

like the ones in Algorithms 1,2 ,  and 3 in which the migration probability of a task only depends on 

the delay experienced by the task, and the current delay of the sampled resource, does not converge 

fast to the equilibrium. 



Future work 

We considered three different models of the classical load balancing setting and studied the speed 

of convergence to Nash equilibria under reasonable reallocation protocols. Although we managed 

to achieve some of our goals, a number of open questions remains. 

The uniform case. Comparing with the natural protocol in [4], we introduced a reallocation 

protocol whose migration probability had an extra multiplicative factor p = 118. Having the slow- 

down factor p, we showed that the expected potential would drop after each step. It is still an open 

question for us to show the necessity of the slowdown factor. We conjecture that the slowdown 

factor is only for the sake of analysis and one might come up with a better analysis of protocol in 

[41. 

The weighted case. Although we showed a reasonable lower bound, our result is not the tightest 

one. An interesting open problem would be showing a tight analysis. 

Resources with different latencies. Fischer et. al. in [20] use a technique so called copying 

successful users strategies to achieve fast convergence to Nash equilibrium for Wardrop's model. 

Although their protocol needs quiet bit global knowledge, it is worth thinking about applying their 

technique to the atomic congestion game problems. Furthermore our results in this part is not tight. 

We believe that it is very hard to get better upper bounds, but still it is worth trying. 



I A I  Appendix 

Omitted proofs 

A.l Proof of Part (2) of Observation 3.1.2 

Proofi To prove Part (2), by definition of we have 
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A.2 Proof of Lemma 4.3.5 

Proo$ Let s be a vector as following 

and let A be a two dimensional matrix whose entry Aij equals to P(X(t + 1) = silX(t) = sj). Aij 

is independent oft .  Our assumption implies A . s 5 X . s.The rest of the proof is by induction on t. 

The base of the induction is trivial. Assume E[Z(t)] I XtEIZ(0)] as the induction hypothesis, then 

we have 

E[Z(t + 1)] = A ~ "  . s 

5 A . X t . s  

< ,Itf1 s = ,Itf1 . E[Z(O)] - 
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